

Contributors
Victor R. Basili is a Professor of Computer Science at the University of Maryland,

College Park. He holds a Ph.D. in Computer Science from the University of Texas,

Austin and is a recipient of two honorary degrees from the University of Sannio,

Italy (2004) and the University of Kaiserslautern, Germany (2005). He was Director

of the Fraunhofer Center for Experimental Software Engineering - Maryland and a

director of the Software Engineering Laboratory (SEL) at NASA/GSFC. He works

on measuring, evaluating, and improving the software development process and

product. Dr. Basili is a recipient of several awards including the NASA Group

Achievement Awards, the ACM SIGSOFT Outstanding Research Award, the IEEE

computer Society Harlan Mills Award, and the Fraunhofer Medal. He has authored

over 250 journal and refereed conference papers, served as co-Editor-in-Chief of the

Springer Journal of Empirical Software Engineering and is an IEEE and ACM

Fellow. He can be reached at basili@cs.umd.edu.

Hal Berghel is currently Associate Dean of the Howard R. Hughes College of

Engineering, Founding Director of the School of Informatics, and Professor of

Computer Science at the University of Las Vegas. He is also the founding Director

of the Center for CyberSecurity Research and the Identity Theft and Financial Fraud

Research and Operations Center. The author of over 200 publications, his research

has been supported by business, industry, and government for over 25 years. He is

both an ACM and IEEE Fellow and has been recognized by both organizations for

distinguished service to the profession. His consultancy, Berghel.Net, provides

technology consulting services to government and industry.

José Carlos Cortizo Pérez (http://www.ainetsolutions.com/jccp) received his M.S.

degree in Computer Science and Engineering from Universidad Europea de Madrid.

His research areas include data preprocessing in machine learning and data-mining,

composite learning methods, AI applications on astrophysics and noisy information

retrieval. He is also co-founder of AINetSolutions (http://www.ainetsolutions.com),

a data-mining startup.
ix

mailto:basili@cs.umd.edu
http://Berghel.Net
http://www.ainetsolutions.com/jccp
http://www.ainetsolutions.com

x CONTRIBUTORS
James Cusick is an Assistant Director of Web Software Engineering in Wolters

Kluwer’s Corporate Legal Services Division where he provides strategic direction

for software development. Previously, James held a variety of roles with AT&T and

Bell Labs. James is the author more that 3 dozen papers and talks on Software

Reliability, Object Technology, and Software Engineering Technology. He has also

held the position of Adjunct Assistant Professor at Columbia University’s Department

of Computer Science where he taught Software Engineering. James is a graduate of

both the University of California at Santa Barbara and Columbia University in New

YorkCity and amember of IEEE. James is also a certified PMP and can be reached at j.

cusick@computer.org.

José Marı́a Gómez Hidalgo holds a Ph.D. in Mathematics, and has been a lecturer

and researcher at the Universidad Complutense de Madrid (UCM) and the

Universidad Europea de Madrid (UEM), for 10 years, where he has been the Head

of the Department of Computer Science. Currently he is Research and Development

Director at the security firm Optenet. His main research interests include Natural

Language Processing (NLP) and Machine Learning (ML), with applications to

Information Access in newspapers and biomedicine, and Adversarial Information

Retrieval with applications to spam filtering and pornography detection on the Web.

He has taken part in around 10 research projects, heading some of them. José Marı́a

has co-authored a number of research papers in the topics above, which can be

accessed at his home page. He is Program Committee member for CEAS 2007, the

spam Symposium 2007 and other conferences, and he has reviewed papers for

JASIST, ECIR, and others. He has also reviewed research project proposals for

the European Commission.

Anna Hać received the M.S. and Ph.D. degrees in Computer Science from the

Department of Electronics, Warsaw University of Technology, Poland, in 1977 and

1982, respectively. She is a Professor in the Department of Electrical Engineering,

University of Hawaii at Manoa, Honolulu. She has been a Visiting Scientist at the

Imperial College, University of London, England, a Postdoctoral Fellow at the

University of California at Berkeley, an Assistant Professor of Electrical Engineering

andComputer Science at The JohnsHopkinsUniversity, aMember of Technical Staff

at AT&T Bell Laboratories, and an ONR/ASEE Senior Summer Faculty Fellow at

the Naval Research Laboratory and SPAWAR. Her research contributions include

system and workload modeling, performance analysis, reliability, modeling process

synchronization mechanisms for distributed systems, distributed file systems,

distributed algorithms, congestion control in high-speed networks, reliable software

architecture for switching systems, multimedia systems, wireless networks, and

network protocols. Her research interests include multimedia, wireless data and

mailto:j.cusick@computer.org
mailto:j.cusick@computer.org

CONTRIBUTORS xi
sensor networks, and nanotechnology for information processing. She is a member of

the Editorial Board of the IEEE Transactions on Multimedia, and is on the Editorial

Advisory Board of Wiley’s International Journal of Network Management.

Lorin Hochstein received a Ph.D. in computer science from the University of

Maryland, an M.S. in electrical engineering from Boston University, and a B.Eng.

in computer engineering from McGill University. He is currently an Assistant

Professor in the Department of Computer Science and Engineering at the University

of Nebraska at Lincoln. He is a member of the Laboratory for Empirically-based

Software Quality Research and Development (ESQuaReD). His research interests

include combining quantitative and qualitative methods in software engineering

research, software measurement, software architecture, and software engineering for

high-performance computing. He is a member of the IEEE Computer Society and

ACM.

David Hoelzer is well known in the information security industry as an expert

in the fields of intrusion detection, incident handling, information security

auditing, and forensics. David is the Director of Research for Enclave Forensics

(www.enclaveforensics.com). He also serves as the CISO for Cyber-Defense

(www.cyber-defense.org). David has been named a SANS Fellow, a Research

Fellow with the Internet Forensics Center and an adjunct research associate of the

UNLV Center for Cybersecurity Research. In these roles his responsibilities have

included acting as an expert witness for the Federal Trade Commission, teaching at

major national and international SANS conferences and handling security incident

response and forensic investigations for several corporations and financial

institutions. David has provided advanced training to security professionals from

organizations including NSA, USDA Forest Service, most of the Fortune 500,

DHHS, various DoD sites and many universities.

Yasushi Ishigai is Research Director of Research Center for Information Technol-

ogy at Mitsubishi Research Institute, INC, Tokyo, Japan. And he is also a part time

researcher at Software Engineering Center of Information technology Promotion

Agency, Japan. Yasushi Ishigai received a degree in mechanical engineering (B.Sc.

and M.Sc.) from the University of Tokyo, Japan, in 1988. His research interest and

industrial activities include quantitative management, especially software cost

modeling.

Nahomi Kikuchi received a B.S. degree in mathematics from Niigata University,

Japan, a Master’s degree in computer science (MSCS) from Stanford University, and

a degree of Doctor of Engineering from Osaka University, Japan. She is a manager

http://www.enclaveforensics.com
http://www.cyber-defense.org

xii CONTRIBUTORS
for software quality group at Oki Electric Industry Co., Ltd. Japan. Her earlier work

at OKI includes the design and verification methods and support systems for

telecommunication software systems using ITU-T’s SDL Language and Petri net.

She has experience of leading a number of software projects. Her recent research

and industrial activities include software quality assurance, quality management,

and process improvement techniques with emphasis on quantitative methods and

measurement and application of software engineering techniques, tools and

methods. She has been a part-time researcher at Software Engineering Center,

Information-technology Promotion Agency Japan since October 2004. She is a

member of IEEE, the IEEE Computer Society, and IPSJ(Japan).

Michael Kläs received his degree in computer science (Diploma) from the

University of Kaiserslautern, Germany, in 2005. He is currently a researcher at the

Fraunhofer Institute for Experimental Software Engineering (IESE), Kaiserslautern,

Germany and member of DASMA, the German member organization of the

International Software Benchmarking Standards Group (ISBSG). As a member of

the Processes and Measurement department, he works on national and international

research and industrial projects. His research and industrial activities include goal-

oriented measurement, balancing strategies for quality assurance, and software cost

modeling.

Jürgen Münch is Division Manager for Software and Systems Quality

Management at the Fraunhofer Institute for Experimental Software Engineering

(IESE) in Kaiserslautern, Germany. Before that, Dr. Münch was Department Head

for Processes and Measurement at Fraunhofer IESE and an executive board member

of the temporary research institute SFB 501, which focused on software product

lines. Dr. Münch received his Ph.D. degree (Dr. rer. nat.) in Computer Science from

the University of Kaiserslautern, Germany, at the chair of Prof. Dr. Dieter Rombach.

Dr. Münch’s research interests in software engineering include: (1) modeling and

measurement of software processes and resulting products, (2) software quality

assurance and control, (3) technology evaluation through experimental means and

simulation, (4) software product lines, (5) technology transfer methods. Dr. Münch

has significant project management experience and has headed various large

research and industrial software engineering projects, including the definition of

international quality and process standards. His main industrial consulting activities

are in the areas of process management, goal-oriented measurement, quality man-

agement, and quantitative modeling. He has been teaching and training in both

university and industry environments. Dr. Münch has co-authored more than

80 international publications, and has been co-organizer, program co-chair, or

member of the program committee of numerous high-standard software engineering

CONTRIBUTORS xiii
conferences and workshops. Jürgen Münch is a member of ACM, IEEE, the IEEE

Computer Society, and the German Computer Society (GI).

Taiga Nakamura received the B.E. and M.E. degrees in aerospace engineering

from University of Tokyo in 1997, 1999, respectively. He received the Ph.D. degree

in computer science from University of Maryland, College Park in 2007. He is

presently a Research Staff Member at IBM Tokyo Research Laboratory, where he

works for the Services Software Engineering group. His research interests include

software patterns, metrics, software quality engineering and empirical methods in

software engineering. Dr. Nakamura is a member of the Association for Computing

Machinery, the Institute of Electrical and Electronics Engineers, and the Information

Processing Society of Japan.

Alpana Prasad is an Assistant Director at Wolters Kluwer Corporate Legal

Services, where she’s responsible for technical oversight and management of multi-

ple offshore initiatives. She also works on other corporate initiatives and programs

to improve platform and product development standards and best practices. Her

research interests include analysis of new and emerging technologies, primarily in

the Microsoft domain. She received her master’s in business administration from the

Indian Institute of Management, Lucknow. She’s a member of the IEEE. Contact her

at Wolters Kluwer Corporate Legal Services, 111 Eighth Ave., New York,

NY 10011; alpana.prasad@wolterskluwer.com.

Enrique Puertas Sanz (www.enriquepuertas.com) is Professor of Computing

Science at Universidad Europea de Madrid, Spain. His research interests are broad

and include topics like Artificial Intelligence, Adversarial Information Retrieval,

Content Filtering, Usability and User Interface Designs. He has co-authored many

research papers in those topics and has participated in several research projects in the

AI field.

Forrest Shull is a senior scientist at the Fraunhofer Center for Experimental

Software Engineering in Maryland (FC-MD), where he serves as Director for the

Measurement and Knowledge Management Division. He is project manager for

projects with clients that have included Fujitsu, Motorola, NASA, and the U.S.

Department of Defense. He has also been lead researcher on grants from the National

Science Foundation, Air Force Research Labs, and NASA’s Office of Safety and

Mission Assurance. Dr. Shull works on projects that help to transfer research results

into practice, and has served as a principal member of the NSF-funded national

Center for Empirically Based Software Engineering. He is Associate Editor in Chief

mailto:alpana.prasad@wolterskluwer.com
http://www.enriquepuertas.com

xiv CONTRIBUTORS
of IEEE Software. He received a Ph.D. degree in Computer Science from the

University of Maryland and can be reached at fshull@fc-md.umd.edu.

Michael Sthultz received his undergraduate education at Claremont Men’s

College (B.A.) and the University of California, Berkeley (B.S.E.E.). His M.S. in

Computer Science was completed at UNLV. He also holds industry certifications in

Aþ, CCNP, CCAI, CEH, CLS, CLP, CNA, MCSE, and MCT. He has extensive

industry experience in the areas of systems engineering, programming, network

administration, management, and consulting. Michael is currently on the faculty of

the College of Southern Nevada, teaching Cisco Networking Academy courses as

well as Digital Forensics and Informatics.

William Tepfenhart is author of several books on object orientation. He is currently

an Associate Professor in the Software Engineering Department at Monmouth

University investigating the potential of software solutions to enhance the effective-

ness of collaboration in engineering endeavors. Prior to his entry to the academic

world, he was employed as a developer and technologist at AT&T Laboratories

where he worked on applications associated with the long distance network, estab-

lishment of engineering practices at a corporate level, and working with advanced

object-oriented technologies. He had previously worked as a Senior Scientist at

Knowledge Systems Concepts investigating the use of artificial intelligence systems

for the USAF. Prior to that, he was an Associate Research Scientist at LTV where he

worked on applications for manufacturing devices composed of advanced materials.

Adam Trendowicz received a degree in computer science (B.Sc.) and in software

engineering (M.Sc.) from the Poznan University of Technology, Poland, in 2000. He

is currently a researcher at the Fraunhofer Institute for Experimental Software

Engineering (IESE), Kaiserslautern, Germany in the Processes and Measurement

department. Before that, he worked as a software engineering consultant at Q-Labs

GmbH, Germany. His research and industrial activities include software cost mod-

eling, measurement, and data analysis.

Axel Wickenkamp is working as a scientist at the Fraunhofer Institute for

Experimental Software Engineering in the department Processes and Measurement.

His main research areas include static code analysis and software process models.

Before joining the Fraunhofer Institute, he worked as a freelance consultant and

software developer in industrial software development projects. Axel Wickenkamp

received his degree in computer science (Diploma) from the University of

Kaiserslautern.

Nico Zazworka is currently a Ph.D. student in computer science at the University of

Maryland. He received his Diploma Degree from the University of Applied Sciences

mailto:fshull@fc-md.umd.edu

CONTRIBUTORS xv
in Mannheim, Germany in 2006. His research interests are software engineering and

information visualization.

Marvin Zelkowitz is a Research Professor of Computer Science at the University of

Maryland, College Park. He was one of the founders and principals in the Software

Engineering Laboratory at NASA Goddard Space Flight Center from 1976 through

2001. From 1998 through 2007 he was associated with the Fraunhofer Center

Maryland, where he was co-Director from 1998 through 2002. He has been involved

in environment and tool development, measuring the software process to understand

software development technologies, and understanding technology transfer. He has

authored over 160 conference, book chapters and journal papers. He has a B.S. in

Mathematics from Rensselaer Polytechnic Institute, and an M.S. and Ph.D.

in Computer Science from Cornell University. He is a Fellow of the IEEE, recipient

of the IEEE Computer Society Golden Core Award and the 2000 ACM SIGSOFT

Distinguished Service Award, as well as several ACM and IEEE Certificates of

Appreciation. He is also series editor of this series, the Advances in Computers. He

can be reached at marv@zelkowitz.com.

mailto:marv@zelkowitz.com

Preface
Welcome to volume 74 of theAdvances in Computers, subtitled ‘Recent Advances

in Software Development.’ This series, which began in 1960, is the oldest continu-

ously published series of books that has chronicled the ever-changing landscape of

information technology. Each year three volumes are published, each presenting

five to seven chapters describing the latest technology in the use of computers today.

In this current volume, we present six chapters that give an update on some of the

major issues affecting the development of software today.

The six chapters in this volume can be divided into two general categories. The

first three chapters deal with the increasing importance of security in the software we

write and provide insights into how to increase that security. The three latter

chapters look at software development as a whole and provide guidelines for how

best to make certain decisions on a project-level basis.

Cha pter 1, ‘Data Hiding Tactics for Windows and Unix File Systems’ by Hal

Berghel, David Hoelzer, and Michael Sthultz, describes a form of security

vulnerability generally unknown to the casual computer user. Most users today

realize that viruses often propagate by embedding their code into the executable

files (e.g., .exe files on Windows systems) of the infected system. By removing

such programs, most viruses can be eliminated. However, there are storage locations

in the computer which are not readily visible. A virus can be hidden in those areas (e.

g., parts of the boot sector of a disk are currently unused, so can be used to hide

malicious code), which result in them being harder to detect and eradicate. This

chapter describes several of these areas where malicious code can hide to help it

propagate its infection.

In Chapter 2, ‘Multimedi a and Sensor Secur ity’ by Anna Hać , Dr . Hać looks at the

increasingly important area of sensor security. As computers become ubiquitous in

our environment, an increasingly larger number of applications collect data from the

world around us and process that data, often without human intervention (e.g., the

use of RFID tags to track production, as described in the chapter by Roussos in

volume 73 of the Advances in Computers). How do we ensure security and integrity

of our collected data in an increasingly autonomous environment? In this chapter,
xvii

xviii PREFACE
various mechanisms to detect vulnerabilities and ensure the integrity of the data are

described.

Anyone who has received email, and I am sure if you are reading this volume you

either like email or are forced to use it, understands the problems with spam.

I receive �20,000 email messages monthly. Fortunately, spam detectors on my

computer systems weed out �17,000 of those messages giving me a tolerable level

of perhaps 100 messages a day, of which maybe 30 are undetected spam. But how do

spam detectors work and why are they so successful? Enrique Puertas Sanz, José

Marı́a Gó mez Hidalgo, and José Ca rlos Cortizo Pé rez in Cha pter 3, ‘Email Spam

Filterin g,’ provide an overv iew of spam and what can be done about it.

In Chapter 4, ‘The Use of Sim ulation Techni ques for Hybrid Softwa re Cos t

Estimation and Risk Analysis’ by Michael Kläs, Adam Trendowicz, Axel

Wickenkamp, Jürgen Münch, Nahomi Kikuchi, and Yasushi Ishigai, the authors

look at the problems in software cost estimation. Knowing how much a project is

going to cost and how long it will take are crucial factors for any software

development company. This editor, in 1982, was part of a study where some

major developers claimed that understanding this was even more important than

lowering the cost. They needed to know how many people to put on a project and not

have extra workers doing very little. In this chapter, the authors describe their

CoBRAÒ method for producing such estimates.

Chapter 5, ‘An Envir onment for Conduct ing Famil ies of So ftware Engineering

Experiments’ by Lorin Hochstein, Taiga Nakamura, Forrest Shull, Nico Zazworka,

Victor R. Basili, and Marvin V. Zelkowitz, looks at a crucial problem in doing

research for improving the software development process. Scientific research in

software engineering advances by conducting experiments to measure how effective

various techniques are in improving the development process. Data needs to be

collected, and in this case usually means defect, effort, and code generation

activities from project participants. But programmers and analysts view such data

collection as an intrusion on their activities, so the conundrum is to collect this data

without the participants’ need to ‘actively participate.’ In this chapter, the authors

describe an environment, where they have built an environment that automates, as

much as possible, the data collection activities.

In the final chapter, ‘Global Software Development: Origins, Practices, and

Directions’ by James J. Cusick, Alpana Prasad, and William M. Tepfenhart, the

authors discuss the current trends in software development becoming international.

What do companies have to do in order to provide for a global software development

PREFACE xix
workforce and how do they make the process work successfully? With an emphasis

on outsourcing to India, this chapter also discusses outsourcing issues worldwide.

I hope that you find these chapters interesting and useful. I am always looking for

new topics to write about, so if you have any ideas in what should be covered in a

future volume, please let me know. If you would like to write such a chapter, please

contact me. I can be reached at mvz@cs.umd.edu.
Marvin Zelkowitz

University of Maryland

College Park, Maryland

mailto:mvz@cs.umd.edu

Data Hiding Tactics for Windows
and Unix File Systems

HAL BERGHEL

Identity Theft and Financial Fraud Research and

Operations Center, University of Las Vegas,

Las Vegas, Nevada

DAVID HOELZER

Enclave Forensics, Las Vegas, Nevada

MICHAEL STHULTZ

Identity Theft and Financial Fraud Research and

Operations Center, University of Las Vegas,

Las Vegas, Nevada

Abstract

The phenomenon of hiding digital data is as old as the computer systems they

reside on. Various incarnations of data hiding have found their way into modern

computing experience from the storage of data on out-of-standard tracks on floppy

disks that were beyond the reach of the operating system, to storage information in

non-data fields of network packets. The common theme is that digital data hiding

involves the storage of information in places where data is not expected.

Hidden data may be thought of as a special case intentionally ‘dark data’ versus

unintentionally dark data that is concealed, undiscovered, misplaced, absent,

accidentally erased, and so on. In some cases, dark and light data coexist. Water-

marking provides an example where dark data (an imperceptible watermark)

resides within light data. Encryption is an interesting contrast, because it produces

light data with a dark message. The variations on this theme are endless.
ADVANCES IN COMPUTERS, VOL. 74 1 Copyright © 2008 Elsevier Inc.

ISSN: 0065-2458/DOI: 10.1016/S0065-2458(08)00601-3 All rights reserved.

2 H. BERGHEL ET AL.
The focus of this chapter will be intentionally dark or hidden data as it resides

on modern file systems – specifically some popular Windows and Unix file

systems. We will extrapolate from several examples implications on the practice

of modern digital forensics and the tools that are used in support thereof.

One forensically interesting dimension of physical data hiding is those tech-

niques that take advantage of the physical characteristics of formatted storage

media to hide data. An early attempt to do this was illustrated by Camouflage

(camouflage.unfiction.com) that hid data in the area between the logical end-of-

file and the end of the associated cluster in which the file was placed (called file

slack or slack space). Although primitive, hiding data in file slack has the dual

advantage that the host or carrier file is unaffected while the hidden data is

transparent to the host operating system and file managers. The disadvantage

is that the hidden message is easily recovered with a basic disk editor.

The ability to hide data on computer storage media is a byproduct of the

system and peripheral architectures. If all storage were bit-addressable at the

operating system level, there would be no place to hide data, hence no physical

concealment. But for efficiency considerations, system addressability has to be

at more abstract levels (typically words in primary, and blocks in secondary).

Such abstractions create digital warrens where data may go unnoticed or, in

some cases, be inaccessible. We investigate some of these warrens below.

1. The Philosophy of Digital Data Hiding . 3

1.1. The Concept of Data Hiding . 3

1.2. Physical Aspect of Data Hiding . 3

2. Digital Storage and File Systems . 4

2.1. Disk Structures . 4

2.2. Virtual File Systems . 6

2.3. Partition Organization . 7

2.4. ExtX . 8

2.5. NTFS . 8

3. Forensic Implications . 10

3.1. Fat16 . 10

3.2. NTFS . 12

4. Perspectives . 14

5. Conclusion . 16

References . 16

http://camouflage.unfiction.com

DATA HIDING TACTICS FOR WINDOWS AND UNIX FILE SYSTEMS 3
1. The Philosophy of Digital Data Hiding

1.1 The Concept of Data Hiding

Digital data hiding is actually a cluster concept that spans many contexts. In

modern times, nonphysical data hiding is usually associated with digital forms such

as cryptography, steganography, and watermarking. Although related in the sense

that they all are means to achieve secure or proprietary communications, there

are differences among their three activities at a number of levels – some of which

are quite subtle. To illustrate, the cryptographer’s interest is primarily with obscur-

ing the content of a message, but not the communication of the message. The

steganographer, on the other hand, is concerned with hiding the very communication

of the message, while the digital watermarker attempts to add sufficient metadata to

a message to establish ownership, provenance, source, and so on. Cryptography and

steganography share the feature that the object of interest is embedded, hidden, or

obscured, whereas the object of interest in watermarking is the host or carrier which

is being protected by the object that is embedded, hidden, or obscured. Further,

watermarking and steganography may be used with or without cryptography; and

imperceptible watermarking shares functionality with steganography, whereas

perceptible waterma rking does not. Ove rview s exist for cryptography [13] , stegano-

graphy [9, 14], and water marki ng [3].

1.2 Physical Aspect of Data Hiding

However, there is also a physical aspect of digital data hiding. In this case, digital

storage locations are used to hide or conceal data. Obviously, these storage locations

must be somewhat obscure or detection would be trivial. Examples include covert

channeling (e.g., within TCP/IP packet headers or Loki’s use of the ICMP options

field) or obscure or infrequently used addressable space in memory media. One of the

earliest examples of this arose when microcomputers were first introduced. There was

a difference between the number of tracks that a floppy drive controller could access

(usually 81 or 82) and the number of tracks that were recognized by the operating

system (DOS recognized only 80). The upper two tracks were used to hide data by

vendors and hackers alike. For awhile they were even used for product licensing.

A modern analogue might involve taking advantage of the physical characteristics

of a storage medium to hide data. The steganographic tool Camouflage was such a

program (camouflage.unfiction.com). Camouflage embeds messages in the file slack

(see below). This simple approach to data hiding has the advantage that the character-

istics of the host or carrier message remain unaffected but are transparent to the host

http://camouflage.unfiction.com

4 H. BERGHEL ET AL.
operating system and file managers. The disadvantage is that the hidden message is

easily recovered with a hex-editor. Although this approach has not met with great

success (and camouflage is no longer supported), it is a great segue into the art of data

hiding by taking advantage of the physical characteristics of computer systems.

The ability to hide data in computers is a byproduct of the system and peripheral

architectures. If all storage were bit-addressable at the operating system level, there

would be no place to hide data. For efficiency considerations, addressability has to

be at more abstract levels (typically words in primary, and blocks in secondary).

Such abstractions create digital warrens where data may go unnoticed or, in some

cases, be inaccessible.

2. Digital Storage and File Systems

2.1 Disk Structures

Digital storage encompasses a wide range of media including diskettes, hard

drives, zip disks, USB flash drives, compact flash cards, CD-ROMs, DVDs, and

so on. Since the structures of most of these media can be related to hard drives, a

discussion of hard drive architecture will serve to illustrate the various data hiding

mechanisms.

Hard drive technology existed long before the advent of personal computers

(although the early personal computers started out with only cassette tape or diskette

storage!). As PCs evolved, the emphasis on backward compatibility and the need

for user convenience (i.e., making data structures totally transparent to the user)

greatly influenced the development of secondary and tertiary storage technology –

both physically and logically. An unintended consequence has been the creation

of many places where data can be intentionally hidden or unintentionally left behind.

A functioning hard drive actually consists of a geometric structure and a set of

nested data structures: hard drive, partition, file system, file, record, and field.

Hidden data can be found at each of these levels. We will assume that the reader

is familiar with basic hard disk geometry (cylinders, tracks, blocks, clusters, and

sectors). These structures create areas on secondary storage devices where hidden

data or data residue could exist. Figure 1 provides a graphical illustration of these

digital warrens. In each example, the shaded area represents spaces within the

structures where hidden data could reside.

The following describes the various hiding mechanisms (as illustrated in Fig. 1),

starting at the level of the hard drive itself and then working down through the set of

nested data structures.

FIG. 1. Digital disk warrens.

DATA HIDING TACTICS FOR WINDOWS AND UNIX FILE SYSTEMS 5
Some hard drives can have a reserved area of the disk called the Host Protected
Area (HPA) (see Fig. 1, item 1). Device Configuration Overlay allows modification

of the apparent features provided by a hard drive, for example, the number of

available clusters. This was designed to be an area where computer vendors could

store data that is protected from normal user activities. It is not affected by operating

system utilities (format, delete, etc.) and cannot be accessed without the use of a

6 H. BERGHEL ET AL.
special program that reconfigures the controller to access all physical blocks. It is

not difficult, however, to write a program to access these areas, write data to them,

and subsequently return the area to an HPA. This is an example of a hiding method

that takes advantage of what is more or less a ‘physical’ feature of the drive

architecture.

2.2 Virtual File Systems

At the next layer, common operating systems typically require that a hard drive be

partitioned into virtual file systems before it can be used. This is true even if the

entire hard drive is to be mapped onto a single partition. A partition is a set of

consecutive blocks on a hard disk that appear to the operating system as a separate

logical volume (drive for Windows vs directory or mount point for Unix). Note that

there are several different types of partition formats. This discussion is confined to

the partition format that has evolved from the original PC (often referred to as DOS

partitions) and will not apply to Apple, xBSD, Sun Solaris, GPT partitioning, or

multiple disk volumes. A recommended source for additional detail appears as a

refere nce [6]. Even so, the various data hiding tec hniques at the data and file system

levels are partition format independent.

Every hard drive using a DOS partition has space reserved at the beginning of the

drive for a Master Boot Record (MBR) (see Fig. 1, item 2). This will often contain

the boot code necessary to begin the initial program load of an operating system and

will always contain a partition table (provided we are dealing with partitioned

media; e.g., floppy disks are not typically partitioned media while fixed disks are)

defining the size and location of up to four partitions. Since the MBR requires only a

single sector and partitions must start on a cylinder boundary, this results in 62

sectors of empty MBR space where data can be hidden.

As disk sizes grew beyond the limitations of existing operating systems, there

arose a need for more than four partitions on a single hard disk. Extended partitions
(as opposed to primary partitions) were then designed that could contain multiple

logical partitions. Each of these extended partitions contains a structure similar to

the MBR, leaving another 62 sectors within each extended partition with the

potential of harboring more hidden data. Extended partitions may contain at most

one file system and one extended partition, so this design permits us to nest the

extended partitions to satisfy our volume requirements. Of course, each iteration

creates yet another convenient hiding place for data.

If the partitions on a hard drive do not use up all of the available space, the

remaining area cannot be accessed by the operating system by conventional means

(e.g., through Windows Explorer). This wasted space is called volume slack (see

Fig. 1, item 3). It is possible to create two or more partitions, put some data into

DATA HIDING TACTICS FOR WINDOWS AND UNIX FILE SYSTEMS 7
them, and then delete one of the partitions. Since deleting the partition does not

actually delete the data, that data is now hidden.

2.3 Partition Organization

Once partitions have been defined, we are ready to move up to the next layer and

create an organizational structure for each partition. Before an operating system can

store and access data within a partition, a file system must be defined. Modern

operating systems support one or more native file systems. A file system allocates

data in blocks (or clusters) where a block consists of one or more consecutive

sectors. This allocation scheme allows a smaller number of references to handle

larger amounts of data, but limits us to accessing data within the file system as

block-sized chunks rather than sector-sized chunks. Overall, this tends to make

storage and access far more efficient than referencing each individual sector.

However, if the total number of sectors in a partition is not a multiple of the block

size, there will be some sectors at the end of the partition that cannot be accessed by

the operating system using any typical means. This is referred to as partition slack
(see Fig. 1, item 4) and is another place where data can be hidden.

Every partition contains a boot sector, even if that partition is not bootable. The

boot sectors in non-bootable partitions (see Fig. 1, item 5) are available to hide data.

Any space in a partition not currently allocated (i.e., unallocated space) to a

particular file (see Fig. 1, item 6) cannot be accessed by the operating system. Until

that space has been allocated to a file, it could contain hidden data.

It is possible to manipulate the file system metadata that identifies bad blocks

(e.g., the File Allocation Table in a FAT file system or $BadClus in NTFS) so that

usable blocks are marked as bad and therefore will no longer be accessed by the

operating system. Such metadata manipulation (see Fig. 1, item 7) will produce

blocks that can store hidden data.

Disk slack (see Fig. 1, item 8) is a byproduct of a strategy to accelerate file

management. Modern operating systems write data in complete ‘blocks’ where a

block could be a sector (the minimal addressable unit of a disk) or a cluster (same

concept as block in Microsoft’s terms). If a file is not an exact multiple of the sector

size, the operating system must pad the last sector and, in some cases (with older

operating systems), this padding is data frommemory (hence the historical term ‘RAM
slack’). Modern operating systems tend to pad this area with nulls. If the total amount

of data written does not fill an entire block, the remainder of the block from the sector

boundary of the last sector within the block actually used by the file to the actual end

of the block will remain unused and will likely contain data from a previously deleted

file (file slack). It may also be effectively used to hide ephemeral data.

8 H. BERGHEL ET AL.
All of the above applies to nearly every file system in common use today, including

FAT/FAT32, NTFS, and Linux Ext-based file systems. There are some potential data

hiding places in Linux file systems that require a more detailed description.

2.4 ExtX

Ext2 and Ext3 (ExtX) file systems are divided into sections called block groups.

Block groups are used to store file names, metadata, and file content. Information

about block group size and configuration is stored in a superblock at the beginning

of the file system, copies of which are scattered throughout the partition. The block

following the superblock (if present) or the first block in every group (if not present)

contains a group descriptor table with group descriptors describing the layout of

each block group.

An ExtX superblock has 1,024 bytes allocated to it and the last 788 bytes are

unused. There also might be some reserved area behind the superblock, depending

upon the block size. We call this superblock slack (see Fig. 1, item 9).

There is a reserved area behind the ExtX group descriptor since the group

descriptor is only 32 bytes long and the block bitmap that follows it must start on

a block boundary. This means there is a minimum of 992 bytes (1,006 if you count

the padding at the end of the group descriptor) where data could be hidden and more

if the block size is larger than 1,024 bytes. We refer to this as ExtX group descriptor
slack (see Fig. 1, item 10).

ExtX directories are like any other file and are allocated in blocks. The space

between the last directory entry and the end of the block is unused and can be used to

hide data. This is directory slack (see Fig. 1, item 11).

Figure 2 is a graphical illustration of the relative volatility of the various data

hiding areas discusse d above (cf. als o [10]). The degree of persistenc e of the hidde n

data is dependent upon the characteristics of the particular area where it is hiding and

the type of disk activity that has occurred since the data was written there. Figure 2

illustrates the relative persistence through normal disk activity and possible re-

partitioning and/or re-formatting. The numbers in the figure correspond to the

numbered items in Fig. 1.

2.5 NTFS

NTFS file systems also offer some unique opportunities for data hiding. The

NTFS file systems used today contain innovations that provide efficient file access

(for instance, B-Tree organization of files within directories) and readily accessible

metadata files to manage disk organization (Microsoft’s version of resource forks

called Alternate Data Streams), and some other small file storage oddities as well.

P = persistent
E = ephemeral

Normal disk use

EP
(1) (6)

(11)(2)
(3)
(4)
(5)
(7)

(9)
(10)

(1)
P

(2)
(5)2,3

(8)4

(9)2

(10)2

(3)5

(4)5

(7)

E

(8)1

P
(1)

E
(7)

(2)
(3)
(4)
(5)

(9)
(10)

(8)4

Re-format existing partition
Re-partition (requires format)
(can shrink, extend, or add)

1 if file is not changed
2 if partition is not moved
3 if partition is not made bootable
4 becomes ephemeral with normal disk use
5 becomes ephemeral with normal disk use if new partition and file system extends into
 this space

FIG. 2. Relative volatility of data hiding areas.

DATA HIDING TACTICS FOR WINDOWS AND UNIX FILE SYSTEMS 9
When seeking to hide data, there are various strategies that might be employed.

As mentioned in a more general sense, metadata manipulation may be used to

conceal covert data in bad clusters ($BadClus). In fact, this same concept can be

extended easily on an NTFS file system by working directly with the $Bitmap file.

10 H. BERGHEL ET AL.
The $Bitmap file contains a complete map marking the allocation status of every

addressable cluster in the partition. Should a consistency check be run, it would

become obvious should someone modify this table to hide data, but otherwise this

provides a wonderful avenue for hiding data in a way that allows the data to persist

for the life of the file system. Depending upon the purpose, these are far better

approaches than using file slack which persists only for the life of the file.

NTFS provides some other nooks and crannies. For instance, Alternate Data
Streams are actually additional $FILE entries associated with a parent file record

within the Master File Table. We could not find Microsoft documentation regarding

the number of alternate data streams that may be associated with a file or folder, but

empirical testing conducted by Jason Fossen (www.fossen.net) suggests that the

maximum is 4 106 regardless of the size of the ADSs themselves. These streams are

not identified by typical file management tools (e.g., Windows Explorer), and so are

hidden at that level. However, several utilities are available that report and manipu-

late alter nate data streams [1]. Alternate data streams pers ist for the life of the

attached file or folder as long as that file or folder remains in an NTFS file structure.

Small files also offer some interesting possibilities, especially when considered in

conjunction with alternate data streams. NTFS has a rather unusual capability in that if

a file is so small that the entire content of the file can fit within the boundaries of the

Master File Table entry for the file, NTFS will store the file there. This is, of course, a

convenient place to hide data. But it becomes even more interesting when a file

is deleted. When a file is deleted, the clusters that were in use are released to the file

system for reallocation. This includes the MFT entry itself. What if one were to create

several thousand files, thus consuming several thousand MFT entries; once these files

were created, a final file could be created that fits entirely within theMFT. All of these

files are now deleted. In essence, we have created a piece of hidden disk space that

resides within an allocated file ($MFT and $MFTMirror) that will persist until enough
files are created to reuse that particular MFT entry. For further detail, see [2].

3. Forensic Implications

3.1 Fat16

The implications of this type of intentional data hiding can be serious in the

context of forensic anal ysis [4], [11] , and [12] . Typically, fore nsic analysi s of

systems reveals that bad actors do not often take any extraordinary means to hide

data beyond, perhaps, either wiping the media or encrypting the data. In fact, in most

cases, the data is not even encrypted or wiped. What impact would a deep knowl-

edge of the on-disk structures coupled with a desire to hide data have on an analysis?

http://www.fossen.net

DATA HIDING TACTICS FOR WINDOWS AND UNIX FILE SYSTEMS 11
To consider this, we have created several sample disk images and have embedded

two pieces of data using the methods discussed in this chapter. After embedding the

data, we used a tool that is commonly used by law enforcement for forensic analysis

to determine how easily an analyst could uncover this hidden data.

The data that was hidden was a text string, ‘Hidden Message,’ and a GIF image

containing an image of the word ‘Hidden.’ Please understand, of course, that if the

investigator already knows something of what he is looking for, for example, the

word ‘Hidden,’ the difficulty of recovering this data is trivial. What we are seeking

to measure is whether or not the tool alerts the analyst to the presence of data in

unusual locations and how likely it is that the analyst would discover the materials.

The first test was run using FAT16. As a form of control, an image file was copied

to the disk using the typical file system tools. Data was hidden using two simple

methods: First, the FAT16, when formatted, automatically preferred a cluster size of

4 096 bytes. The result of this was that the boot sector of 512 bytes is immediately

followed by three empty sectors. Our ‘Hidden Message’ text was inserted here.

In order to conceal the presence of the GIF image, the first FAT was modified so that

clusters 24 through 29 were marked as bad (see Fig. 3). Finally, the GIF image was

placed onto the disk beginning in cluster 24.

With our data hidden, we used AccessData’s Forensic Toolkit (better known as

FTK) to acquire an image of the drive and perform data carving and full text

indexing (see Fig. 4).
FIG. 3. File allocation table with clusters 24–29 marked ‘bad.’

FIG. 4. Forensics toolkit results showing hidden GIF file.

12 H. BERGHEL ET AL.
Of particular interest to us were the results from the file carver. File carvers are

forensic tools (or data recovery tools) that analyze the data on a drive (typically

sector by sector or block by block) without any regard for the actual logical

organization of the disk. Each sector or block is then checked for known file

signatures and, if one is found, the data is extracted or marked appropriately. One

of the reasons that a GIF image was selected is that it has a very standard and easily

recognizable ‘magic number’ or fingerprint: Almost every one of them begins with

the marker ‘GIF89a.’ While FTK did find the file and mark it as a ‘Lost File Chain’

marked as bad sectors, it did not successfully identify this as an image.

Even though the ‘hidden message’ is sitting in what should be a completely barren

segment of the drive, FTK makes no special mention of this text. Unless the analyst

is in the habit of examining all reserved sectors for additional data or already knows

to search for a keyword of ‘Hidden,’ it is very unlikely that this data would be found.

From our experience, this is typical behavior for a forensic toolkit. In short, it is

unusual for any forensic analysis tool currently on the market to draw the analyst’s

attention to a piece of data that is residing in an atypical location.

3.2 NTFS

The next set of tests was performed using an NTFS file system with a cluster size

of 4096 bytes. Data was hidden using several of the techniques discussed. First, in

the reserved area between the primary partition table and the first partition, ‘Hidden

DATA HIDING TACTICS FOR WINDOWS AND UNIX FILE SYSTEMS 13
Message’ was again embedded. Since there was additional space, we also embedded

our image file, but this time the file was not embedded beginning at the beginning of

a sector. Many file carvers speed up their operation by examining only the first few

bytes of a sector or only the first sector in a cluster.

As an additional test, the $Bitmap file was modified to mark the final clusters of

the volume as ‘In Use’ and the GIF image was copied into these now reserved

clusters. The ‘Hidden Message’ was also embedded using the Alternate Data Stream

technique discussed.

To accomplish this, a host file was created followed by 1,000 associated

streams. The data that we wished to conceal was then copied into what amounts

to stream 1,001 and the host file was then deleted. Finally, additional files were

copied onto the drive to obscure the original host file MFT entries, but with the

cushion of 1,000 alternate data streams, the original hidden data would still be

untouched.

With all of these tasks completed, the drive was imaged and analyzed using FTK.

FTK was able to identify and carve the hidden data in the slack space between the

partition table and the first partition, even though it was not on a sector boundary.

Unfortunately, while it was successful with the image file, it still failed to ‘notice’

the hidden text. What if the file that was hidden did not match a known fingerprint or

were encoded in some way? FTK would fail to notify the analyst. It was also

successful in identifying the image file tucked away at the tail end of the disk in

space that we ‘reserved.’ While this is good, there was no notification that space was

marked ‘In Use’ that was not actually allocated to any disk structure or file.

Obviously, the same problem exists as does for the gap between the partition table

and the partition.

What about the alternate data streams? FTK, surprisingly, made no mention of the

fact that there were still ~800 remnants of alternate data streams floating around in

the MFT and, of course, did not notify us to the presence of the ‘Hidden Message’

unless we already knew what to search for.

Overall, this means that for us to be successful today with forensic investigations,

we need really sharp analysts who are willing to go above and beyond to find data

when we are dealing with clever malcontents. Our tests were performed on a small

drive (256 MB). Obviously, hunting down data on a 500 GB drive is well-nigh

impossible without good tools and good initial information. In the long run, as drives

continue to increase in size and those who desire to conceal activities become better

at their trade, the forensic community will be at a greater and greater disadvantage

unless we become proactive in this ‘Arms Race’ and move away from strict

signature-based analysis of media and start building in some sort of anomaly

detection capability.

14 H. BERGHEL ET AL.
4. Perspectives

It should be pointed out that this discussion includes methods of hiding data only

within the media and file system structure and does not address other data hiding

methods such as:

l Altered BIOS parameters

The system BIOS traditionally stores the physical configuration of the drives

that are connected. Typically, the BIOS is set to automatically detect the

drive parameters; however, it can be configured manually. By doing so, it is

possible to create a sort of pseudo HPA area beyond what is apparently the

end of the disk according to the BIOS.
l Registry entries using new keys or unused keys

There are a variety of technologies available that allow one to create a virtual

file system within a file on the system. With some minor modification, it is

trivial to create such a file system that is stored, notwithin a file, butwithin a set

of registry keys. Large disks would be prohibitively slow to access and have a

serious impact on system performance due to memory utilization.
l Swap files

While swap files are in fact files that are known to exist on a system, if the

swap mechanism is disabled or otherwise controlled, the swap space can be

used for the storage of arbitrary data. While it is true that swap space is

frequently analyzed by forensic investigators, it is typically viewed as a

memory dump. If a portion of the data is instead formatted as a virtual

encrypted disk, it is highly likely that this data will go unnoticed, dismissed

as random junk.
l Renamed files (e.g., as .dll)

Decidedly nontechnical, this remains an extremely effective way to hide

almost any kind of data. Malicious code authors have been using this same

technique to great effect for many years, concealing the malicious code as

what appears to be a system DLL. This will likely not fool a forensic

investigator, but a casual user or administrator will often overlook files

masked in this way.
l Binding of one executable file to another

Another very popular technique with malicious code authors is to redirect

execution from one application to another. In some ways, this is exactly

how appending viruses of the early nineties functioned in that the malicious

DATA HIDING TACTICS FOR WINDOWS AND UNIX FILE SYSTEMS 15
code was appended to the existing executable and then the executable

header was modified or the initial instruction modified to redirect execution

to the malicious code. Following execution of the malicious code, control

was handed back to the original code. These days redirection is accom-

plished in a variety of ways, for instance through DLL injection, which

could then allow a user to subvert the typical input/output system for file

and data access.
l Steganography

This well-known technique for hiding data in plain sight is fast gaining in

popularity. One of the most interesting applications of this is the StegFS

driver for Linux (http://www.mcdonald.org.uk/StegFS/) which allows the

user to create layers of hidden file systems on top of an existing Linux file

system.
l Hiding data within documents (e.g., as metadata or using a white font)

l Hiding data within html files

l Merging Microsoft Office documents

This is another steganographic technique. While some recent versions of

software have made this more difficult (for instance, newer versions of

Microsoft Word will actually display the white on white text as a grayed

out text), the hiding of data in metadata or through other techniques is still

possible. For instance, one tool embeds data by manipulating the white space

at the end of existing lines within a document.
l Encrypted files

l Compressed files

These two are perhaps the most direct way to store data on a system in a

somewhat unreadable format, though some may contend with how well

hidden the data actually is. From the point of view of someone who is looking

for ‘unusual’ data, a compressed or encrypted file would be of interest. From

the point of view of someone who is trying to run a file carver or a string

match against a set or large disks, it is quite likely that these methods will be

sufficient to hide the data from an investigator. For the compression, simply

using a common compression tool would likely not be enough to day. Many

tools are smart enough to take these files apart or alert the operator that a

password is required. Using a older technology like LHARC could prove

quite sufficient, though. This format (and others) could still be recognized,

but the investigator’s tools are far less likely to understand how to decom-

press the data.

http://www.mcdonald.org.uk/StegFS/

16 H. BERGHEL ET AL.
5. Conclusion

Knowing how data can be hidden within the media and file system structure

means knowing how that data can be found. Note that we are talking about only the

data hiding mechanisms that have been discussed here; methods such as encryption

and steganography present their own sets of analysis problems.

Many of those who attempt to temporarily hide data or use a computer with

nefarious intent are aware that there are ways in which this hidden data can be found.

They will therefore use one of the available ‘disk wiper’ utilities in an attempt to

eliminate the evidence. What they are not aware of is that many of these utilities are

ineffe ctive in elim inating all hidden d ata. See [2] for mor e informat ion.

A forensic analysis tool can be as simple as a hex-editor. While effective, this

approach is very labor intensive given the size of today’s hard drives. There are

many commercial and open source digital forensic tools available that will automate

this process. However, one must exercise caution when using these tools, since not

all of them are equally effective in finding all types of hidden data. It is often

advisable to use more than one of these tools to perform a digital forensic investiga-

tion. Fo r further info rmation, see [5], [7] , and [8] .

Finding hidden data is further complicated by the fact that there are a number of

antiforensic tools being developed. One source is the research being done by the

Metasploit Project (www.metasploit.com/projects/antiforensics). An example is

their Slacker tool that automatically encrypts and hides a set of data within the

slack space of multiple files that are known to be unlikely to be changed. Data thus

hidden cannot be detected by currently available digital forensic analysis software.

Data hiding becomes an increasingly important topic as the sophistication of

information technologists on both sides of the law increases.

References

[1] Berghel H., and Brajkovska N., 2004. Wading through alternate data streams. Communications of

the ACM, 47(4): 21–27.

[2] Berghel H., and Hoelzer D., What does a disk wiper wipe when a disk wiper does wipe disks.

Communications of the ACM, 49(8): 17–21.

[3] Berghel H., and O’Gorman L., 1996. Protecting ownership rights through digital watermarks. IEEE

Computer, 29(7): 101–103.

[4] Caloyannides M. A., 2001. Computer Forensics and Privacy. Artech House, Norwood, MA.

[5] Carrier B., and Winter B., 2003. Defining digital forensic examination and analysis tools using

abstraction layers. International Journal of Digital Evidence, 1(4): 1–12.

[6] Carrier B., 2005. File System Forensic Analysis. Addison-Wesley, Upper Saddle River, NJ.

http://www.metasploit.com/projects/antiforensics

DATA HIDING TACTICS FOR WINDOWS AND UNIX FILE SYSTEMS 17
[7] Carvey H., 2005. Windows Forensics and Incident Recovery. Addison-Wesley, Upper Saddle

River, NJ.

[8] Casey E., 2002. Handbook of Computer Crime Investigation. Academic Press, San Diego, CA.

[9] Cole E., 2003. Hiding in Plain Sight: Steganography and the Art of Covert Communication. Wiley

Publishing, Indianapolis.

[10] Farmer D., and Venema W., 2005. Forensic Discovery. Addison-Wesley, Upper Saddle River, NJ.

[11] Kruse I. I., Warren G., and Heiser J. G., 2002. Computer Forensics, Incident Response Essentials.

Addison-Wesley, Upper Saddle River, NJ.

[12] Nelson B., et al., 2006. Guide to Computer Forensics and Investigations. 2nd edition Course

Technology, Florence, KY.

[13] Singh S., 2000. The Code Book. Anchor Books, New York.

[14] Wang H., and Wang S., Cyber warfare: steganography vs. steganalysis. Communications of the

ACM, 47(10): 76–82.

Multimedia and Sensor Security

ANNA HAĆ

Department of Electrical Engineering

University of Hawaii at Manoa, Honolulu

Hawaii 96822

Abstract

Multimedia and sensor security emerged as an important area of research largely

due to growing accessibility of tools and applications through different media

and Web services. There are many aspects of multimedia and sensor security

ranging from trust in multimedia and sensor networks; security in ubiquitous

databases, middleware, and multi-domain systems; privacy in ubiquitous

environment and sensor networks; and radio frequency identification security.

Particularly interesting are multimedia information security, forensics, image

watermarking, and steganography.

There are different reasons for using security in multimedia and sensors that

depend on themethod of access, the type of accessed information, the information

placement and the availability of copying, sensitivity of protected information,

and potential ways for corruption of data and their transmission.

Protection of image and data includes watermarking, steganography, and

forensics. Multi-domain systems, middleware, and databases are used for both

local and distributed protections. Sensor networks often use radio frequency

identification tags for identification. Both trusted hardware and software are

needed to maintain multimedia and sensor security.

Different applications require various levels of security often embedded in the

multimedia image. In addition, a certain security level is needed for transmission

of the application. Sensors use different security for data gathering depending on

the type of data collected. Secure transmission is needed for sensor data.

We present a comprehensive approach to multimedia and sensor security from

application, system, network, and information processing perspective. Trusted

software and hardware are introduced as support base for multimedia and sensor

security.
ADVANCES IN COMPUTERS, VOL. 74 19 Copyright © 2008 Elsevier Inc.

ISSN: 0065-2458/DOI: 10.1016/S0065-2458(08)00602-5 All rights reserved.

20 A. HAĆ
1. Introduction . 20

2. Multimedia Systems and Applications 21

3. Multimedia Security . 24

4. Digital Watermarking . 26

5. Steganography . 28

6. Computer Forensics . 29

7. Sensor Networks . 30

8. Security Protocols for Wireless Sensor Networks 33

9. Communication Security in Sensor Networks 34

10. Sensor Software Design . 35

11. Trusted Software . 35

12. Hardware Power-Aware Sensor Security 36

13. Trusted Hardware . 36

14. Sensor Networks and RFID Security . 37

15. Conclusion . 37

References . 37

1. Introduction

Multimedia comprises of voice, data, image, and video, protection of which

becomes increasingly important in the information age. There are many security

levels depending on the application and the method in which the application is

executed. Multimedia applications include both software and hardware, which are

often the integral parts of the application in addition to the system software and

hardware used by the application. Both software and hardware security are crucial to

multimedia application performance and execution as well as to the multimedia

information delivered. We will describe trusted software and hardware needed to

protect multimedia application and its execution in the system.

Internet and Web-based applications have become an integral part of every day

life and security in accessing and executing these multimedia applications is neces-

sary for trustworthiness of the information sent and received. The methods used to

preserve multimedia information security include forensics, image watermarking,

and steganography.

MULTIMEDIA AND SENSOR SECURITY 21
Sensors have also become a part of every day life and of the growing new

developments and applications. Sensor applications include data being gathered

and transferred as well as the multimedia information. Trusted software and hard-

ware are needed, security and trust in multimedia and sensors is important, multi-

media and ubiquitous security is emerging, and the security in ubiquitous databases

for information access has been developed. In sensor networks, RFID (radio

frequency identification) security and multimedia information security are needed

for secure transmission of information.

We describe multimedia systems and applications, sensor networks, security pro-

tocols for wireless sensor networks, communication security in sensor networks,

sensor software design, trusted software, hardware power-aware sensor security,

trusted hardware, sensor networks and RFID security, forensics, image watermarking,

and steganography.
2. Multimedia Systems and Applications

Multimedia systems and applications are used in the representation, storage,

retrieval, and dissemination of machine-processable information expressed in mul-

timedia, such as voice, image, text, graphics, and video. High capacity storage

devices, powerful and economical computers, and high speed integrated services

digital networks, providing a variety of multimedia communication services made

multimedia applications technically and economically feasible. Multimedia confer-

ence systems can help people to interact with each other from their homes or offices

while they work as teams by exchanging information in several media, such as

voice, text, graphics, and video. Participants can communicate simultaneously by

voice to discuss the information they are sharing. The multimedia conference system

can be used in a wide variety of cooperative work environments, such as distributed

software developm ent, joint auth oring, and group deci sion suppor t [29] .

In multimedia conferencing, each participant has a computer that includes

high-resolution screen for computer output, keyboard and pointing device, microphone

and speaker, and camera and video monitor. Parts of each participant’s screen can

be dedicated to display shared space where everyone sees the same information.

Voice communication equipment can be used by the conference participants for

discussion and negotiation. Video communication can add illusion of physical pres-

ence by simulation of face-to-face meeting. Video teleconferencing is valuable when

nonverbal communication, in the form of gestures and facial expressions, is an

important part of the discussion and negotiation that takes place. Video communication

22 A. HAĆ
can be a useful enhancement to the multimedia conferencing, but is less critical than

voice communication and the ability to share information and software.

Electronic blackboards allow joint manipulation of shared image, but are subject

to the same limitations as the physical blackboard. The participant’s ability to access

and manipulate information dynamically by making use of powerful computer-

based tools is the distinguishing characteristics of the multimedia conferencing.

The goal of the multimedia conference systems is to emulate important character-

istics of face-to-face meetings. These systems allow group of users to conduct

meeting in real time and the conference participants can jointly view, edit, and

discuss relevant multimedia documents.

There are many applications of multimedia conferencing systems, ranging from

software development to medical image analysis, and to making assessments and

decisi ons in real time [33, 54]. Secur ity of multim edia confe rencing systems is very

important since the processing occurs in real time, and in case of some applications,

some crucial, even life-saving decisions are made.

Multiple compression algorithms allow for having quality performance in real-

time video through radio channels. In these algorithms, the computational complex-

ity is traded against image quality. Multimedia compression includes data and text

compressions by using semantic analysis, audio compression by using inaudible

audio masks, image compression by using graphic formats and blocks, and video

compression by using motion pictures and streaming and mobile applications.

The characteristics of modern embedded systems are the capability to communi-

cate over the networ ks and to adapt to differ ent operating envi ronments [28].

Embedded systems can be found in consumer devices supporting multimedia appli-

cations, for example, personal digital assistants, network computers, and mobile

communication devices. The low cost, consumer-oriented, and fast time to market

objectives characterize embedded system design. Hardware and software codesigns

are used to suppor t growin g design com plexity [19, 20].

Emerging embedded systems run multiple applications such as Web-browsers,

audio and video commun ication applications, and require n etwork connectiv ity [10] .

Networked embedded systems are divided into

l Multifunction systems that execute multiple applications concurrently, and

l Multimode systems that offer the users a number of alternative modes of

operation.

In the multifunction systems, the embedded systems can execute multiple appli-

cations concurre ntly [36]. These appl ications include capturing vide o data , proces-

sing audio streams, and browsing the Web. Embedded systems must often adapt to

the changing operating conditions. For example, multimedia applications adapt to

MULTIMEDIA AND SENSOR SECURITY 23
the changing network rate by modifying video frame rate in response to network

congestion. Different network rate and compression techniques are often determined

by the network load and quality of service feedback from the user applications.

Embedded multimode systems experience a number of alternative modes of

operation. A mobile phone is designed to change the way it operates to accommo-

date different communication protocols supporting various functions and features.

Flexible, multimode devices are used in applications such as electronic banking and

electronic commerce. Depending on the type of connection and the security level

required, devices use different encryption algorithms when transmitting data.

Embedded devices need to communicate over the networks and to adapt to

different opera ting envi ronments [19, 20, 35]. Mul timedia syst ems concur rently

execute multiple applications, such as processing audio streams, capturing video

data and Web browsing. These multimedia systems need to be adaptive to changing

operating conditions. For instance, in multimedia applications, the video frame rate

has to be adjusted depending on the network congestion. Audio streams different

compression techniques are the function of the network load.

In both home and industrial applications there are sensor and actuator devices

which can be remotely controlled and maintained via Internet. These applications

need Web-based security to maintain the accessed information and the data changes

and updates that may be introduced.

Multimedia is supported by MPEG (Moving Picture Experts Group) standards:

MPEG-1, MPEG-2, MPEG-4, MPEG-7, and MPEG-21. MPEG-1 includes video

and audio compression standards. MPEG-2 includes transport, video, and audio

standards for broadcast quality television. MPEG-4 supports DRM (digital rights

management). MPEG-7 is used to describe multimedia content, and MPEG-21

supports multimedia framework. Broadband and streaming video delivery as well

as video storage require MPEG-1, MPEG-2, and MPEG-4. Content-based retrieval,

adaptation, and multimedia filtering use MPEG-4 and MPEG-7. MPEG-7 allows for

semantic-based retrieval and filtering, and MPEG-21 allows for media mining on

electronic content by using digital items. Multimedia framework supported by

MPEG-21 allows the participants to exchange digital items, which include media

resources, learning objects, rights representations, reports, and identifiers.

Network security is critical to multimedia communication and access. There

are several security challenges to Internet transmission. Denial of service (DoS)

attacks may occur when the session protocol proxy server or voice-gateway devices

receive many unauthentic packets. A hijacking attack occurs when a participant

registers with an attacker’s address instead of the user’s legitimate address. Eaves-

dropping is an unauthorized interception of voice packets or decoding of signaling

messages. Packet spoofing occurs when an attacker impersonates a legitimate

24 A. HAĆ
participant transmitting multimedia information. Replay occurs when a message is

retransmitted causing the network device to reprocess the same message again.

Message integrity ensures that the message received is the same as the message

that was sent.
3. Multimedia Security

Multimedia security includes protection of information during transmission

as well as content security of the image and data, protection of intellectual property,

and support for trustworthiness. Multimedia content is protected through data

authentication and confidentiality that ensures privacy of multimedia transmission.

Protection of a multimedia image is important once it is posted on a Web site. The

multimedia image can be easily downloaded by unauthorized users in a very short

period of time after it has been posted. Having watermarks embedded in multimedia

images does not prevent unauthorized downloading of a file. Putting copyright

notices into image source code does not protect the multimedia image from being

downloaded by unauthorized users. Encryption of the image ensures that it cannot be

saved to a disk or linked directly from the other Web sites. Protection of multimedia

images by using encryption is available for both JPEG (joint photographic experts

group) and non-animated GIF (graphics interchange format) files.

We present multimedia security frameworks including image and communication

security. DRM describes, protects, and monitors all forms of access and use to

protect multimedia from illegal distribution and theft. A DRM system links user

rights to multimedia access for viewing, duplication, and sharing. Security services

preserve data integrity and confidentiality, support non-repudiation by protecting

against denial by the users during communication, and maintain access control

and authentication. Multimedia confidentiality is preserved by using encryption

supporting real-time access and communication as well as image compression

[4, 51, 62].

Encryption algorithms use keys to maintain security of the system. The strength of

a cryptographic system depends on the encryption algorithm used, the system

design, and the length of the key. The length of the key reflects the difficulty for

an attacker to find the right key to decrypt a message. The longer key requires more

combinations to be checked in a brute force attack to match the key. The key length

is given in bits and the number of possible keys that can be used grows exponentially

with the increase of key length.

DES (data encryption standard) is based on Feistel Cipher Structure, which is a

block ciph er with the plaintext of 64-bit bloc ks and 56-bits key [83] . Th e key length

MULTIMEDIA AND SENSOR SECURITY 25
is increased to 112/168 bits in triple DES and to 128/192/256 bits in AES (advanced

encryption standard) with 128-bit data. Both DES and AES require significant

computational resources and use block-based structures that introduce delay in

real-time communications. In RSA (Rivest, Shamir, and Adleman), the key length

is variabl e, and com monly used k ey length is 512 bits [70]. Th e block size in RSA is

variable. In MD5 (message digest standard), the message is processed in 512-bit

blocks, and the message digest is a 128-bit quantity [69] .

Lossless compression is used in applications where both the original file and

decompressed information need to be identical. The original file can be derived from

the compressed information after lossless compression algorithms have been

applied. In many multimedia applications, lossless compression, which requires

large compressed files, is expensive and unnecessary. Examples of files using

lossless compression are GIF, BMP (bitmap), PNG (portable network graphics),

and TIFF (tagged image file format).

Lossy compression is used to compress multimedia image, audio, and video, in

such a way that the retrieved decompressed multimedia information is a fraction of

lossless uncompressed multimedia while retaining acceptable quality. Because lossy

compression eliminates permanently redundant information from the multimedia

image, thus, repeatedly compressing and decompressing a multimedia file progres-

sively decreases decompressed file quality. JPEG file uses lossy compression. Exam-

ples of lossy compression methods include DCT (discrete cosine transform), VQ

(vector quantization), fractal compression, and DWT (discrete wavelet transform).

Multimedia authentication requires sensitivity, robustness for lossy compression,

security, portability, localization to detect changed area, and recovery to approxi-

mate the original in its particular area that was changed. Robust digital signature

verifies information integrity endorsed by the signed owner. Digital signature can

use content-related feature codes and distinguish content-preserving operations from

malicious attacks. SARI (self authentication and recovery images) detect the

manipulated area in multimedia work, and recover approximate values in the

changed area. Content-related feature codes use syntax in the form of objects’

composition and semantics to specify multimedia objects. Syntax describes shape,

texture, and color of multimedia objects. Semantic authentication describes types of

objects and their relationships. Semantic authentication also includes events and the

scene, where the objects are located.

A multimedia security framework using randomized arithmetic coding [24, 25]

allows for protection, encryption, and conditional access. The randomized arithmetic

coding is employed in JPEG 2000 security applications.

Image auth entication, robus tness, and security are explored in [80] by using an

image hash function based on Fourier transform. A framework for generating a hash

consists of feature extraction that generates a key-dependent feature vector from

26 A. HAĆ
the multimedia image, quantization of the generated feature vector, and finally

compression of the quantized vector.

A multimedia encryption scheme that does not rely on the security strength of an

under lying cryptogr aphic ciph er is introdu ced in [91]. A pseudo -random key hopin g

sequence is generated that prevents a chosen-plaintext attack. The method ensures

high semantic security by enhancing MHT (Multiple Huffman Tables) encryption

scheme. An evaluation of MHT schemes by using chosen-plaintext attacks is

describ ed in [102] .

An encryption scheme for MPEG-4 FGS (fine granularity scalability) video coding

stream is proposed in [95]. Compression efficiency is preserved by processing

encrypted FGS stream on the cipher text.

A peer-to-peer (P2P) interactive multimedia communication is described in [8].

Streaming multimedia traffic in wireless communication under SRTP (secure real-

time transport protocol) and the key management protocol MIKEY (multimedia

Internet KEYing) are explained. Authentication methods use message authentication

code or a signature.

An agent-ba sed multimedi a secur ity system is propos ed in [46]. A hier archy of

hosts supports multilevel security groups. Security service agents are created and

dispatched to security groups. Security problems related to multimedia multicast are

describ ed in [59, 60, 93]. Addit ional bandw idth for multica st transm ission with

multimedia security protection increases demand on distributed system resources.

A multica st packet authentica tion scheme is present ed in [71]. Mobile multica st

security is discusse d in [22] . Multi media security in FTTH (fiber to the home)

connec tivity in passive optical networ ks is expl ained in [73]. Propos ed securit y

enhancements include wavelength hopping and codes sequencing in downstream

traffic in P2MP (point to multi-point) network.

Multilevel 2D (2-dimensional) bar codes for high-capacity storage applications

are describ ed in [84] . A print- and-scan channe l is adapted to mul tilevel 2D bar codes

communication. Fully format compliant scrambling methods for compressed video

are propos ed in [37]. A decode r can decode the secured multimedi a stream in fully

format compliant scrambling method. Security problems for video sensors are

discusse d in [42] . Multime dia security for sensor networ ks includes scalin g down

security features to accommodate smaller sensors’ size and processing capabilities.
4. Digital Watermarking

Watermark is an additional information used to protect images. A watermark can

be a copyright notice on the picture, a date-stamp on photographs taken, additional

names and comments on the pictures, and a company logo on a document.

MULTIMEDIA AND SENSOR SECURITY 27
Digital watermarking uses hidden messages to copyright digital images, video,

and audio by employing sequence of bits carrying information characterizing the

owner of a multimedia item. A watermark can contain any useful information that

identifies copyright protection. In addition, there are watermarks that indicate other

types of ownerships.

Watermarking is used to embed visible and invisible information in the form of

code into multimedia to protect the image and to identify its ownership. Watermark

must be very difficult or impossible to remove. Visible watermark must be non-

obstructive. The invisible watermark should not visually affect the image content,

and must resist image manipulations.

Watermarking on multimedia content embeds watermark information into the

multimedia image by using coding and modulation. Coding is done by scrambling

with the use of cryptographic keys and error correction coding. Modulation employs

TDMA (time division multiple access), FDMA (frequency division multiple

access), CDMA (code division multiple access), or spread spectrum. Spread

spectrum uses DFT (discrete Fourier transform), DCT, and wavelet transforms.

JND (just noticeable distortion) is the maximum amount of invisible changes in a

specific pixel (or frequency coefficients) of an image. JND employs luminance

masking with the threshold specified by light adaptation of human cortex, where

the brighter background increases the luminance masking threshold. JND also

applies contrast masking, in which the visibility of one image component is reduced

by the presence of another image component. The contrast masking is the strongest

when both image components are of the same spatial frequency, orientation, and

location.

Multimedia security can be compromised through unauthorized embedding,

where the attacker is able to compose and embed the original watermark image,

which is either given away by the owner or extracted by the attacker. Standard

cryptographic techniques and content-related watermarks help to prevent unautho-

rized embedding. Multimedia security can also be compromised by unauthorized

detection of watermark image that was intended to remain sealed from the attacker.

This unauthorized detection can be prevented by using encryption and decryption

techniques. Unauthorized removal is another multimedia security attack where the

watermark is eliminated or masked. Spread spectrum techniques can be used to

prevent unauthorized removal. Finally, in the system-level multimedia security

attack, the weakness in using the watermark is exploited. By compromising

the system control over the watermark image, the attacker can gain access to the

watermarked multimedia work. To prevent system-level attack, a device scrambling

watermark multimedia work makes the watermark image undetectable to the

attacker. A descrambling device inverts the watermark multimedia work. There

are also attacks distorting watermark image and affecting synchronization between

28 A. HAĆ
multimedia audio and video. Ambiguity attacks pretend that the watermark image is

embedded where no such embedding occurred. The owner of the multimedia work

can use non-invertible embedding techniques to prevent ambiguity attack.

Digital watermarking can be fragile, which does not resist modifications of the

multim edia, or it can be robust, which is secure against com mon modifica tions [43] .

Fragile watermarks can be used for multimedia authentication whereas robust

watermark can be used in multimedia leakage. Semi-fragile watermarks can be

used for both media authentication and recovery. An image authentication scheme

that uses relat ive simi larity betwee n neig hboring image bloc ks is int roduced in [16] .

A fragile watermarking technique to increase security by embedding watermark into

the image fre quency domain by using g enetic algo rithms is descr ibed in [74] .

A method to vary quantization factor in DCT domain to weight robustness of the

water mark vers us the water mark’s image quality is present ed in [47] . A public and

privat e waterma rk extracti on methods are described in [1] by using asymm etric and

symmetric techniques, respectively. A watermark image, parts of which are embed-

ded into different video scene s is describ ed in [14] . In addition, the error corr ecting

code is embedded in the audio channel.

A multimedia gateway security protocol is introduced in [53]. The protocol pro-

vides authentication, a watermark detection at a server or gateway, and the system

response to security breach. Digital watermarking parameters and security measures

are described in [9]. The embedding algorithms and procedures are introduced in [89].

Discussions to improve the performance of watermarking algorithms are conducted in

[43]. A visible watermarking technique by using a contrast-sensitive function is

introduced in [34]. An algorithm to embed watermark coefficients into the image

blocks is presented in [67]. This nonuniform embedding allows for robustness against

cropping. A method to embed a watermark using neural networks is presented in [97].
5. Steganography

Steganography is used to write hidden messages inside the image in such a way

that nobody except for the intended recipient knows about the message. The hidden

message appears as something different from the image in which it is embedded, for

example, it can be a picture or text. A steganographic message can be encrypted in

many different ways, and only the recipient who knows the method used can decrypt

the message. In computer communication networks, the steganographic coding

occurs at the transport layer.

Steganography allows for hiding files or encrypted messages in several file types,

for example, JPEG, PNG, BMP, HTML (hypertext markup language), and WAV

MULTIMEDIA AND SENSOR SECURITY 29
(waveform). Steganalysis is used to detect modified files by comparing their con-

tents. Many files accessible through the Internet-use GIF image. A method to detect

secret messages in multimedia GIF format image by using statistical steganalysis is

presented in [40] .

In files using lossless compression, for example, GIF and BMP files, a simple data

hiding within the image can employ LSB (least significant bit) insertion. Changing

the LSB in the binary image according to a predefined pattern allows for inserting

hidden data.

Steganography methods can use other patterns to include or to extract a hidden

message. File transformation can be done by using DCT coefficients in JPEG

images to hide the information in lossy compression.

Steganography is employed to detect hidden communication channels used by

adversaries over the Internet. Intrusion detection systems for VoIP (voice over

Internet protocol) applications are describ ed in [18 , 31, 41].
6. Computer Forensics

Computer forensics is a technological inspection of a computer, its files, and the

devices for its present and past content that may be used as evidence of a crime or

other computer use that is the subject of an inspection. This computer inspection

must be both technical and legal to meet the standards of evidence that are admissi-

ble in a court of law. The examination of a computer includes its hardware, for

instance, memory, disk, and other I/O (input/output) devices, as well as the operating

systems actions, for example, system calls, including system traps, and finally the

software that was executed on the computer. In addition, the user programs and

electronic messages (E-mails) need to be reviewed.

The information recovered to show the crime depends on whether the computer

was a target of a crime or was a computer involved to commit a crime. Forensics

investigation includes computer break-ins by an unauthorized user, disallowed data

duplication, theft, espionage, inappropriate Internet use or abuse, etc. The informa-

tion recovered often resides on the disk drives and other storage devices that retain

traces of unauthorized access.

Multimedia forensics uses authentication and identification to recognize the

ownership and possible media manipulation. Multimedia forensics can be applied

to video and audio, can be used for facial recognition, speaker identification,

handwriting comparison, and image authentication. DNA profiling is used in foren-

sic analysis and investigations. Image forensics analyzes the condition of an image

to detect forgery or to identify the source of the image. Image forgery may occur

30 A. HAĆ
through photomontage, retouching, or removing some objects. The image source

can be identified as the camera, computer graphics, printer, scanner, etc. The image

scene can be identified as 2D or 3D (3-dimensional). The image forensics searches

image authenticity by defining characteristics of the imaging device and the scene of

the image. The device characteristics include specific effects of a particular camera,

for instance, optical low-pass, color filter array interpolation, and lens distortion.

The scene characteristics include lighting and shadows on the image, and the

reflectance of the objects present in the image.

Digital fingerprinting embeds a unique identifier into each copy of the multimedia

work. In a collusion attack, a group of users generates a new version of multi-

media work by combining these users’ copies of the same content, which originally

had different fingerprints. These fingerprints are attenuated or removed by a

collusion attack.

A theoretical framework for the linear collusion attack and analysis is presented in

[78]. A multipl e-frame linear collusio n resu lting in an approxim ation of the ori ginal

watermark is created by scaling and adding watermarked video frames. Collusion-

resistant watermarks are created by changing watermarking key every number of

frames that ensures certain frames to have pair-wise correlations.

The purpose of fingerprinting multimedia systems is to prevent collusion attacks

and other single-copy attacks. Secure video streaming of fingerprinted applications

over the networks to reduce bandwidth for large number of participants is presented

in [100] . A fingerp rinting image makes each multimedi a application slight ly dif fer-

ent and prevents traditional multicast technology, for instance, one-to-many or

many-to-many transfer, to be implemented directly. Spread spectrum embedding-

based fingerprinting is a data hiding method through coefficient embedding to

protect the multimedia image against collusion attacks.

An analysis of behavior pattern of attackers during multiuser collusion is dis-

cusse d in [98] . Timing of processi ng a fingerp rinted copy by a single collude r

impacts collusion detection. The quality of the fingerprinted copy, particularly a

highe r reso lution , increases likel ihood of collusion attac k [99] .
7. Sensor Networks

Wireless sensor networks use small devices equipped with sensors, microproces-

sor, and wireles s com munication interface s [63 , 64, 92]. Wirel ess senso r nodes are

deployed in areas and environments where they may be hard to access, yet these

nodes need to provide information about measurements of temperature, humidity,

MULTIMEDIA AND SENSOR SECURITY 31
biological agents, seismic activity, and sometimes take pictures and perform many

other activities. Macrosensor nodes usually provide accurate information about

measured activity. The accuracy of information provided by individual microsensor

nodes is lower, yet a network of hundreds or thousands of nodes deployed in an area

enables to achieve fault tolerant high quality measurements.

Wireless sensor nodes are designed by using MEMS (microelectromechanical

systems) technology and its associated interfaces, signal processing, and RF (radio

frequency) circuitry. Communication occurs within a wireless microsensor network,

which aggregates the data to provide information about the observed environment.

Low energy dissipation is particularly important for wireless microsensor nodes,

which are deployed in hundreds or thousands, and are often hard to read in inhospi-

table terrain. A power-aware system employs a network design whose energy

consumptio n adapts to constraints and change s in the envi ronment [66, 75, 76].

These power-aware design methods offer scalable energy savings in wireless micro-

sensor environment [3]. There is a trade off betwee n battery lifeti me and qu ality

performanc e of data collec tion and tran smission [2].

Activity in the observed environment may lead to significant measurement

diversity in the sensor node microprocessor. Node functionality may also vary,

for instance, a sensor networking protocol may request the node to act as a data

gatherer, aggregator, relay, or any combination of these. This way, the microproces-

sor can adjust the energy consumption depending on the activity in the measured

environment.

Several devices have been built to perform sensor node functions. A software and

hardware framework includes a microprocessor, low-power radio, battery, and

sensors [11, 65, 87]. Data aggregat ion and network protocol s are processe d by

using a micro-operating system. Data aggregation is used as a data reduction tool

[44]. Aggrega tes summa rize current senso r values in senso r networ k. Computi ng

aggregates in sensor network preserves network performance and saves energy by

reducing the amo unt of data routed thr ough the network [17].

The computation of aggregates can be optimized by using SQL (Structured Query

Language). The data are extracted from the sensor network by using declarative

queries. Examples of database aggregates (COUNT, MIN, MAX, SUM, and AVER-

AGE) can be implemented in a sensor network. Aggregation in SQL-based database

systems is defined by an aggregate function and a grouping predicate. The aggregate

function speci fies how to com pute an aggregate [50] .

Aggregation can be implemented in a centralized network by using a server-based

approach where all sensor readings are sent to the host PC (personal computer),

which computes the aggregates. A distributed system approach allows in-network

computing of aggregates, thus decreasing the number of forwarded readings that are

routed through the network to the host PC.

32 A. HAĆ
The small battery-powered sensor devices have limited computational and com-

munica tion reso urces [30]. This mak es it impractica l or even imposs ible to use

secure algorithms designed for powerful workstations. A sensor node memory is not

capable of holding the variables required in asymmetric cryptographic algorithms,

and perform operations by using these variables.

The sensor nodes communicate by using RF, thus trust assumptions and minimal

use of energy are important for network security. The sensor network communica-

tion patterns include sensor readings, which involve node to base station communi-

cation, specific requests from the base station to the node, and routing or queries

from the base station to all sensor nodes. Because of sensor nodes limitations, the

sensor nodes are not trusted. The base stations on the other hand, belong to the

TCPA trusted computing base. The senor nodes trust the base station and are given a

master key which is shared with the base station. The possible threats to network

communication security are an insertion of malicious code, an interception of the

messages, and injecting false messages.

Wireless technologies enabling communications with sensor nodes include

Bluetoot h and LR- WPAN (Low-R ate Wirel ess Perso nal Area Network) [27].

Bluetooth enables seamless voice and data communication via short-range

radio links. Bluetooth provides a nominal data rate of 1 Mbps for a piconet, which

consists of one master and up to seven slaves. The master defines and synchronizes

the frequency hop pattern in its piconet. Bluetooth operates in the 2.4 GHz ISM

(Industrial, Scientific, and Medical) band.

Low-Rate Wireless Personal Area Network (LR-WPAN) is defined by the IEEE

802.15.4 standard. This network has ultralow complexity, cost, and power for low

data-rate sensor nodes [13]. The IEEE 802.15.4 offers two physical layer options: the

2.4 GHz physical layer and the 868/915 MHz physical layer. The 2.4 GHz physical

layer specifies operation in the 2.4 GHz ISM band. The 868/915 MHz physical layer

specifies operation in the 868 MHz band in Europe and in 915 MHz band in the

United States.

The main features of the IEEE 802.15.4 standard are network flexibility, low cost,

and low-power consumption. This standard is suitable for many applications in the

home requiring low-data-rate communications in an ad hoc self-organizing network.

The major resource constraint in sensor networks is power, due to the limited

batter y life of senso r devi ces [30, 32]. Data- centric methodo logies can be u sed to

solve this problem efficiently. Data-centric storage (DCS) is used as a data-

dissemination paradigm for sensor networks. In DCS, data is stored, according to

event type, at corresponding sensornet nodes. All data of a certain event type is

stored at the same node. A significant energy saving benefit of DCS is that queries

for data of a certain type can be sent directly to the node storing data of that type.

Resilient Data-Centric Storage (R-DCS) is a method to achieve scalability and

MULTIMEDIA AND SENSOR SECURITY 33
resilience by replicating data at strategic locations in the sensor network [21]. This

scheme leads to significant energy savings in networks and performs well with

increasing node density and query rate.

Sensor network management protocol has to support control of individual nodes,

network configuration updates, location information data exchange, network clus-

tering, and data aggregation rules. Sensor network gateway has to provide tools and

functions for presentation of network topology, services, and characteristics to the

users and to connect the network to other networks and users.

Sensor networks are vulnerable to security attacks due to the wireless nature of the

transmission medium. In wireless sensor networks, the nodes are often placed in a

hostile or dangerous environment where they are not physically protected.

The standard approach to maintain data secrecy is to encrypt the data with a secret

key that is known only to the intended recipients. The secure channels can be set up

between sensor nodes and base stations based on their communications patters.
8. Security Protocols for Wireless
Sensor Networks

Sensor networks become more commonly used in many fields and applications,

causing the security issues to become more important. Security in sensor networks

needs to be optimized for resource-constrained environments and wireless commu-

nication. SPINS (Secu rity Prot ocol for Sensor Networks) [61] has two secure

building blocks: SNEP (Secure Network Encryption Protocol) and mTESLA (the

micro version of the Timed, Efficient, Streaming, Loss-tolerant Authentication

Protocol). SNEP provides the following security primitives: data confidentiality,

two-party data authentication, and data freshness. Efficient broadcast authentication

is an important mechanism for sensor networks. mTESLA is a protocol which

provides authenticated broadcast for resource-constrained environments making it

suitable for sensor nodes. An authenticated routing protocol uses SPINS building

blocks. Communications of sensor nodes uses RF that consumes node energy. There

is a trade off between computation and communication in energy consumption.

Devices usually employ a small battery as the energy source. The other sources of

energy are also limited. Communication over radio is the highest energy-consuming

function performed by the devices. This imposes limits on security used by these

devices. The lifetime of security keys is limited by the power supply of the micropro-

cessor performing security functions. On the other hand, the base stations have large

energy supplies often wired and connected to the communications network.

34 A. HAĆ
Wireless sensor network connects to a base station, to which information is routed

from the sensor nodes. The base station has significant battery power, large memory

to store cryptographic keys, and communicates with other wired and wireless net-

works. The communication between wireless sensor nodes and base station includes

sensor readings from sensor node to the base station, requests from base station to

sensor node, and routing beacons and queries from base station to sensor nodes.

Several encr yption algorithms are evaluat ed in [49] . SEAL (softwar e-opti mized

encryption algorithm) is stream cipher, making it much faster than block cipher

RC5, but having longer initialization phase. SEAL is a very safe algorithm using

160-bit key encr yption [49] .

RC4 is a fast stream cipher algorithm with key size of up to 2,048 bits. This

algorithm can be used with a new key selected for each message. RC5 is a fast

symme tric block ciph er algorithm [68, 69].

Tiny encryption algorithm (TEA) [55] is a block cipher operating on 64-bit blocks

and using 128-bit key. TEA is fast and simple, but its security weakness is having

equivalent keys, which reduces the effective key size to 126 bits. There are exten-

sions of TEA [56], which correct som e of the wea knesses o f original TEA. XTEA

(eXtended TEA) has a more complex key schedule, and XXTEA (corrected block

TEA) operates on variable length blocks that are 32 bits. A fast software encryption

is described in [96] .

The com parison of encr yption algo rithms in [49] sugges ts TEA as the mos t

suitable for sensor networks with limited memory and high speed requirements.

9. Communication Security
in Sensor Networks

A possible threat to network communication security is an insertion of malicious

code, which the network could spread to all nodes, potentially destroying the whole

network, or even worse, taking over the network on behalf of an adversary. The

sensor nodes location needs to be hidden from potential attackers. In addition, the

application specific content of messages needs to be protected. An adversary can

inject false messages that provide incorrect information.

The security overhead in wireless sensor network should be related to sensitivity

of the encrypted information. Three levels of information security rank the most

sensitive the mobile code, then the sensor location information in messages, and

finally the appl ication specifi c inf ormation [77]. The strengt h of the encryption for

each of security rank corresponds to the sensitivity of the encrypted information.

The encryption applied at the top rank is stronger than the encryption applied at next

rank, and the weakest encryption is at the lowest security rank. RC6 (symmetric

MULTIMEDIA AND SENSOR SECURITY 35
block cipher) meets the requirements of AES, and uses an adjustable parameter,

which is the number of rounds that affects its strength. The overhead for the RC6

encryption algorithm increases with the strength of the encryption.

A framework for a sensor network to protect data and communicate with the

operating system is introdu ced in [82] . Th e propos ed frame work detects attack s on

the sensor data and software. A model that captures system and user behavior is

developed and introduced as a control behavioral model (CBM). An application of

group key management scheme to sensor networks by using a clustering approach is

described in [94] .
10. Sensor Software Design

Embedded systems require hardware and software codesign tools and frame-

works. A complete design environment for embedded systems should include

dynamical ly reco nfigurable hardware component s [5] . Designing configur able hard-

ware and software systems requires specification, initial profiling, and the final

implementation of the system’s software components. Designing an embedded

system’s digital hardware requires a hardware description language and synthesis

tools, which are used for an abstract circuit design. In order to reduce development

time and effort, embedded systems’ designers employ abstract specification, and

apply the reuse of hardware and software components.

In embedded system design, a major share of functionality is implemented in

software. This allows for faster implementation, more flexibility, easier upgradability,

and customization with additional features [19, 20]. Networked embedded systems are

equipped with communication capabilities and can be controlled over networks.

Networked embedded system design includes Internet mobility, network

programmin g, security, and synchr onization [79 , 81]. Progr ammab le architecture

is an efficient way of implementing the multiple-application support.

Several system-level design languages and codesign frameworks have been

proposed. Designing run-time reconfigurable hardware and software systems

requires a complete design environment for embedded systems including dynami-

cally reconfigurable hardware components.
11. Trusted Software

Software is an important part of multimedia systems and applications. Reliable

and secure software design is often based on design diversity.

36 A. HAĆ
Software security is crucial to maintain run-time environment for multimedia

applications. Intrusion detection is a method to verify that the running software is

not prone to a particular attack. Intrusion prevention makes an adversary to solve a

computationally difficult (preferably intractable) task to create a binary program that

can be execu ted. SPEF (Secu re Program Ex ecution Framew ork) [39] is an intrus ion

prevention system that installs software binary programs by encoding constraints

using secure one-way hash function, where the secret key is hidden in the processor

hardware and can only be accessed by the software installer.
12. Hardware Power-Aware Sensor Security

Energy consumption is an important challenge to networks of distributed micro-

senso rs [85, 86]. Micros ensors are used for data gath ering, they are small, and the

life of micro senso r nodes is an important factor. Node s’ lifeti mes [6] depend on the

algorithms and protocols that provide the option of trading quality for energy

savings. Dynamic voltage scaling on the sensor node’s processor enables energy

savings from thes e scalabl e algo rithms [12, 52, 58]. Energy consump tion depend s on

the available resource s and com municati on betwee n sensor nodes [23] . The

architecture for a power-aware microsensor node employs collaboration between

softw are and hardw are [15] .

The node’s processor is capable of scaling energy consumption gracefully with

computational workload. This scalability allows for energy-agile algorithms of

scalable computational complexity. Energy and quality are important characteristics

of DSP (Digital Signal Processing) algorithms.

Power awareness becomes increasingly important in VLSI (Very Large Scale

Integration) systems to scale power consumption in response to changing operat-

ing conditions [7, 88]. Th ese change s are cause d by the change s in inputs, the ou tput

quality, or the environmental conditions. Low-power system design allows

the system’s energy consumption to scale with changing conditions and quality

require ments [26].
13. Trusted Hardware

Hardware is part of multimedia systems and applications. Reliable hardware

design is based on duplication.

TCPA (trust ed computing platfo rms) use hardwar e processor architecture [48]

that provides copy protection and tamper-resistance functions. In this hardware, the

processor is the trusted part of the architecture. Other architecture parts are not

MULTIMEDIA AND SENSOR SECURITY 37
trusted, for example, main memory. The trustworthiness of the management system

for the applications that do not trust that system creates a specialized set of functions

to maintain security between untrusted manager and trusted hardware processor.
14. Sensor Networks and RFID Security

RFID is a compact wireless technology using devices called RFID tags or

transpon ders [72] . Those RFID tags are attached to a product, an animal , o r a person

in a form of an integrated circuit communicating via radio frequency signal with the

receiving antenna. A chipless RFID allows for discrete identification of tags without

an integrated circuit, a decrease in cost of printed tags. The RFID tags are used to

store and retrieve data about the products, animals, or people; these tags are attached

to or printed onto.

Applications of different RFID tags in telemedicine and in banking are discussed in

[9 0] . An architecture of RFID network is presented in [101]. The RFID middleware is

employed to provide resilience for diversified RFIDs and increase the architecture

scalability and security. An analysis of middleware quality is introduced in [57].

The concept of mobile RFID is introduced in [45] along with related problems of

privacy threats. A multi-domain RFID system security is described in [38].
15. Conclusion

We have discussed several different aspects and requirements for multimedia and

sensor security. These aspects include communication security to transfer the

information over the communication medium, as well as access security to identify

the objects that were not subject to tampering.

The method to protect the information depends on the application, and on the type

of device, on which the application is executed. Multimedia applications rely on

security in real time, compression for transmission, and on digital watermarking and

steganography for access. Sensor security explores limited device size, power,

memory, and processing capability to maintain secure access and communication.

References

[1] Ahmed F., and My S., December 2005. A hybrid-watermarking scheme for asymmetric and

symmetric watermark extraction. In Proceedings of the IEEE 9th International Multitopic
Conference, pp. 1–6.

38 A. HAĆ
[2] Amirthajah R., Xanthopoulos T., and Chandrakasan A. P., 1999. Power scalable processing using

distributed arithmetic. In Proceedings of the International Symposium on Low Power Electronics

and Design, pp. 170–175.

[3] Asada G., et al., September 1998. Wireless integrated network sensors: Low power systems on a

chip. In Proceedings of the ESSCIRC.
[4] Bellovin S., and Merrit M., 1993. Augmented encrypted key exchange: A password-based protocol

secure against dictionary attacks and password file compromise. In First ACM Conference on

Computer and Communications Security CCS-1, pp. 244–250.

[5] Benini L., and Micheli G. D., 1997. Dynamic Power Management: Design Techniques and CAD

Tools. Kluwer, Norwell, MA.

[6] Bhardwaj M., Garnett T., and Chandrakasan A., June 2001. Upper bounds on the lifetime of sensor

networks. In Proceedings of the ICC, vol. 3, pp. 785–790.

[7] Bhardwaj M., Min R., and Chandrakasan A., December 2001. Quantifying and enhancing power-

awareness of VLSI systems. IEEE Transaction on Very Large Scale Integration (VLSI) Systems,

9(6): 757–772.

[8] Blom R., Carrara E., Lindholm F., Norrman K., and Naslund M., September 9–11, 2002. Conver-

sational IP multimedia security. In Proceedings of the IEEE 4th International Workshop on Mobile

and Wireless Communications Network, pp. 147–151.

[9] Bojkovic Z., and Milovanovic D., October 1–3, 2003. Multimedia contents security: Watermarking

diversity and secure protocols. In Proceedings of the 6th International Conference on Telecommu-
nications in Modern Satellite, Cable and Broadcasting Service, vol. 1, pp. 377–383.

[10] Borriello G., and Want R., May 2000. Embedding the internet: Embedded computation meets the

world wide web. Communications of the ACM, 43(5): 59–66.

[11] Bult K., et al., 1996. Low power systems for wireless microsystems. In Proceedings of the ISLPED,
pp. 17–21.

[12] Burd T., Pering T., Stratakos A., and Brodersen R., 2000. A dynamic voltage scaled microprocessor

system. In Proceedings of the ISSCC, pp. 294–295.
[13] Callaway E., Gorday P., Hester L., Gutierrez J. A., Naeve M., Heile B., and Bahl V., August 2002.

Home networking with IEEE 802.15.4: A developing standard for low-rate wireless personal area

networks. IEEE Communications Magazine, 40(8): 70–77.

[14] Chan P. W., Lyu M. R., and Chin R. T., December 2005. A novel scheme for hybrid digital video

watermarking: Approach, evaluation and experimentation. IEEE Transactions on Circuits and

Systems for Video Technology, 15(12): 1638–1649.

[15] Chandrakasan A. P., et al., May 1999. Design considerations for distributed microsensor systems.

In Proceedings of the Custom Integrated Circuits Conference, pp. 279–286. San Deigo, CA.

[16] ChotikakamthornN., and SangiamkunW., August 19–22, 2001. Digital watermarking technique for

image authentication by neighboring block similarity measure. In Proceedings of the IEEE Region

10th International Conference on Electrical and Electronic Technology, vol. 2, pp. 743–747.

[17] Czerwinski S. E., Zhao B. Y., Hodes T. D., Joseph A. D., and Katz R. H., August 1999. An

architecture for a secure service discovery service. In Fifth Annual ACM/IEEE International

Conference on Mobile Computing and Networking, pp. 24–35. Seattle, WA.

[18] Dittmann J., and Hesse D., September 29–October 1, 2004. Network based intrusion detection to

detect steganographic communication channels: On the example of audio data. In Proceedings of

the IEEE 6th Workshop on Multimedia Signal Processing, pp. 343–346.

[19] Fleischmann J., Buchenrieder K., and Kress R., 1998. A hardware/software prototyping environ-

ment for dynamically reconfigurable embedded systems. In Proceedings of the International IEEE
Workshop on Hardware/Software Codesign (CODES/CASHE’98), pp. 105–109.

MULTIMEDIA AND SENSOR SECURITY 39
[20] Fleischmann J., and Buchenrieder K., 1999. Prototyping networked embedded systems. Computer,
32(2): 116–119.

[21] Ghose A., Grossklags J., and Chuang J., 2003. Resilient data-centric storage in wireless Ad-hoc

sensor networks. In Proceedings of the 4th International Conference on Mobile Data Management

(MDM 2003), Melbourne, Australia, January 21–24, 2003, pp. 45–62. Lecture Notes in Computer

Science 2574. Springer.

[22] Gong L., and Shacham N., 1995. Multicast security and its extension to a mobile environment.

Wireless Networks, 1(3): 281–295.

[23] Goodman J., Dancy A., and Chandrakasan A., November 1998. An energy/security scalable

encryption processor using an embedded variable voltage DC/DC converter. Journal of Solid

State Circuits, 33(11): 1799–1809.

[24] Grangetto M., Grosso A., and Magli E., September 29–October 1, 2004. Selective encryption of

JPEG 2000 images by means of randomized arithmetic coding. In Proceedings of the IEEE 6th
Workshop on Multimedia Signal Processing, pp. 347–350.

[25] Grangetto M., Magli E., and Olmo G., October 2006. Multimedia selective encryption by means of

randomized arithmetic coding. IEEE Transactions on Multimedia, 8(5): 905–917.
[26] Gutnik V., and Chandrakasan A. P., December 1997. Embedded power supply for low-power DSP.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 5(4): 425–435.

[27] Haartsen J., Naghshineh M., Inouye J., Joeressen O. J., and Allen W., October 1998. Bluetooth:

Vision, goals, and architecture. Mobile Computing and Communications Review, 2(4): 38–45.
[28] Hać A., June 13–16, 2005. Embedded systems and sensors in wireless networks. In Proceedings of

the International IEEE Conference on Wireless Networks, Communications, and Mobile Comput-

ing WirelessCom, pp. 330–335. Maui, Hawaii.

[29] Hać A., and Lu D., 1997. Architecture, design, and implementation of a multimedia conference

system. International Journal of Network Management, 7(2): 64–83.

[30] Heinzelman W., Chandrakasan A., and Balakrishnan H., January 2000. Energy-efficient commu-

nication protocol for wireless microsensor networks. In Proceedings of the 33rd Hawaii Interna-
tional Conference on System Sciences (HICSS), pp. 3005–3014.

[31] Hesse D., Dittmann J., and Lang A., 2004. Network based intrusion detection to detect stegano-

graphic communication channels – on the example of images. In Proceedings of the 30th Euro-

micro Conference, pp. 453–456.
[32] Hill J., Szewczyk R., Woo A., Hollar S., Culler D., and Pister K., November 2000. System

architecture directions for networked sensors. In Proceedings of the 9th ACM International

Conference on Architectural Support for Programming Languages and Operating Systems,

pp. 93–104. Cambridge, Massachusetts.

[33] Hsu C., May 2002. WaveNet processing brassboards for live video via radio. In Proceedings of the

IEEE International Joint Conference on Neural Networks, vol. 3, pp. 2210–2213.

[34] Huang B.-B., and Tang S.-X., April–June 2006. A contrast-sensitive visible watermarking scheme.

IEEE Multimedia, 13(2): 60–66.
[35] Kalavade A., and Moghe P., 1998. A tool for performance estimation of networked embedded end-

systems. In Proceedings of the IEEE Design Automation Conference (DAC).

[36] Kalavade A., and Subrahmanyam P. A., 1997. Hardware/software partitioning for multi-function

systems. In Proceedings of the IEEE International Conference on Computer Aided Design,

pp. 516–521.

[37] Kiaei M. S., Ghaemmaghami S., and Khazaei S., February 19–25, 2006. Efficient fully format

compliant selective scrambling methods for compressed video streams. In Proceedings of the
International Conference on Internet and Web Applications and Services/Advanced International

Conference on Telecommunications, pp. 42–49.

40 A. HAĆ
[38] Kim D. S., Shin T.-H., and Park J. S., April 10–13, 2007. A Security framework in RFID

multi-domain system. In Proceedings of the Second IEEE International Conference on Availabil-

ity, Reliability and Security, pp. 1227–1234.

[39] Kirovski D., Drinic M., and Potkonjak M., 2002. Enabling trusted software integrity.

In Proceedings of the 10th ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pp. 108–120. ACM Press, San Jose, CA.

[40] Kong X., Wang Z., and You X., December 6–9, 2005. Steganalysis of palette images: Attack

optimal parity assignment algorithm. In Proceedings of the Fifth IEEE International Conference

Information, Communications and Signal Processing, pp. 860–864.
[41] Kratzer C., Dittmann J., Vogel T., and Hillert R., May 21–24, 2006. Design and evaluation of

steganography for voice-over-IP. In Proceedings of the IEEE International Symposium on Circuits

and Systems, p. 4.

[42] Kundur D., Zourntos T., and Mathai N. J., November 2004. Lightweight security principles for

distributed multimedia based sensor networks. In Proceedings of the Thirty-Eighth Asilomar

Conference on Signals, Systems and Computers, vol. 1, pp. 368–372.

[43] Kundur D., October–December 2001. Watermarking with diversity: Insights and implications.

IEEE Multimedia, 8(4): 46–52.

[44] Larson P.-A., 2002. Data reduction by partial preaggregation. In Proceedings of the International

Conference on Data Engineering, pp. 706–715.

[45] Lee H., and Kim J., April 20–22, 2006. Privacy threats and issues in mobile RFID. In Proceedings
of the IEEE First International Conference on Availability, Reliability and Security, p. 5.

[46] Li H., and Dhawan A., June 2004. Agent based multiple level dynamic multimedia security system.

In Proceedings of the Fifth Annual IEEE SMC Information Assurance Workshop, pp. 291–297.

[47] Li X., and Xue X., May 2–5, 2004. A novel blind watermarking based on lattice vector quantiza-

tion. In Proceedings of the Canadian Conference on Electrical and Computer Engineering, vol. 3,

pp. 1823–1826.

[48] Lie D., Thekkath C. A., and Horowitz M., October 2003. Implementing an untrusted operating

system on trusted hardware. In Proceedings of the 19th ACM Symposium on Operating Systems

Principles, pp. 178–192. ACM Press.

[49] Luo X., Zheng K., Pan Y., and Wu Z., October 2004. Encryption algorithms comparisons for

wireless networked sensors. In Proceedings of the International Conference on Systems, Man and
Cybernetics, vol. 2, pp. 1142–1146.

[50] Madden S., Szewczyk R., Franklin M. J., and Culler D., June 2002. Supporting aggregate queries

over Ad-Hoc wireless sensor networks. In Proceedings of the Fourth IEEE Workshop on Mobile

Computing and Systems Applications, pp. 49–58.
[51] Menezes A. J., van Oorschot P., and Vanstone S., 1997. Handbook of Applied Cryptography. CRC

Press.

[52] Min R., Furrer T., and Chandrakasan A., April 2000. Dynamic voltage scaling techniques for

distributed microsensor networks. In Proceedings of the IEEE Computer Society Annual Workshop
on VLSI (WVLSI 2000), pp. 43–46.

[53] Narang S., Grover P. S., and Koushik S., July 30–August 2, 2000. Multimedia security gateway

protocol to achieve anonymity in delivering multimedia data using watermarking. In Proceedings
of the IEEE International Conference on Multimedia and Expo, vol. 1, pp. 529–532.

[54] Nawab S. H., et al., January 1997. Approximate signal processing. Journal of VLSI Signal

Processing Systems for Signal, Image, and Video Technology, 15(1/2): 177–200.

[55] Needham R., and Wheeler D., 1994. TEA, a tiny encryption algorithm. In Fast Software Encryp-
tion: Second International Workshop, vol. 1008, pp. 14–16. Springer LNCS.

MULTIMEDIA AND SENSOR SECURITY 41
[56] Needham R., and Wheeler D., 1996. TEA Extension. Computer Laboratory Cambridge University.

[57] Oh G., Kim D., Kim S., and Rhew S., November 2006. A quality evaluation technique of RFID

middleware in ubiquitous computing. In Proceedings of the IEEE International Conference on

Hybrid Information Technology, vol. 2, pp. 730–735.

[58] Pering T., Burd T., and Broderson R., 1998. The simulation and evaluation of dynamic voltage

scaling algorithms. In Proceedings of the International Symposium on Low Power Electronics and

Design, pp. 76–81.

[59] Perrig A., Canetti R., Song D., and Tygar J. D., February 2001. Efficient and secure source

authentication for multicast. In Proceedings of the Network and Distributed System Security
Symposium, NDSS ‘01.

[60] Perrig A., Canetti R., Tygar J. D., and Song D., May 2000. Efficient authentication and signing of

multicast streamsover lossy channels. InProceedings of the IEEESymposiumonSecurity andPrivacy.

[61] Perrig A., Szewczyk R., Wen V., Culler D., and Tygar J. D., June 2001. SPINS: Security protocols

for sensor networks. In Proceedings of the ACM/IEEE International Conference on Mobile

Computing and Networking (MobiCom 2001), pp. 189–199.

[62] Pfleeger C. P., 1997. Security in Computing. Prentice Hall.

[63] Pottie G., 1998. Wireless sensor networks. In Proceedings of the Information Theory Workshop,

pp. 139–140.

[64] Pottie G. J., and Kaiser W. J., May 2000. Embedding the internet: Wireless integrated network

sensors. Communications of the ACM, 43(5): 51–58.

[65] Rabaey J. M., Ammer M. J., da Silva J. L., Patel D., and Roundy S., July 2000. PicoRadio supports

ad hoc ultra-low power wireless networking. IEEE Computer, 42–48.

[66] Raghunathan V., Schurgers C., Park S., and Srivastava M. B., March 2002. Energy-aware wireless

microsensor networks. IEEE Signal Processing Magazine, 19(2): 40–50.
[67] Retsas I., Pieper R., and Cristi R., March 18–19, 2002. Watermark recovery with a DCT based

scheme employing nonuniform embedding. In Proceedings of the 2002 IEEE Thirty-Fourth

Southeastern Symposium on System Theory, pp. 157–161.
[68] Rivest R. L., 1995. The RC5 encryption algorithm. In Proceedings of the First Workshop on Fast

Software Encryption, pp. 86–96.

[69] Rivest R. L., April 1992. The MD5 message-digest algorithm. Internet Request for Comments,

RFC 1321.

[70] Rivest R. L., Shamir A., and Adleman L. M., 1978. A method for obtaining digital signatures and

public-keycrypto systems. Communications of the ACM, 21(2): 120–126.

[71] Rohatgi P., November 1999. A compact and fast hybrid signature scheme for multicast packet

authentication. In Sixth ACM Conference on Computer and Communications Security.
[72] Roussos G., 2008. Computing with RFID: Drivers, technology and implications. In M. Zelkowitz,

editor, Advances in Computers Elsevier.

[73] Shawbaki W., February 19–25, 2006. Multimedia security in passive optical networks via wave-

length hopping and codes cycling technique. In Proceedings of the International Conference on
Internet and Web Applications and Services/Advanced International Conference on Telecommu-

nications, pp. 51–56.

[74] Shih F. Y., and Wu Y.-T., June 27–30, 2004. A novel fragile watermarking technique.

In Proceedings of the International Conference on Multimedia and Expo, vol. 2, pp. 875–878.

[75] Sinha A., and Chandrakasan A., January 2001. Operating system and algorithmic techniques for

energy scalable wireless sensor networks. In Proceedings of the Second International Conference

on Mobile Data Management (MDM 2001), Hong-Kong, Lecture Notes in Computer Science, vol.

1987, Springer Verlag.

42 A. HAĆ
[76] Sinha A., and Chandrakasan A., Mar/April 2001. Dynamic power management in wireless sensor

networks. IEEE Design and Test of Computers, 18(2): 62–74.

[77] Slijepcevic S., Potkonjak M., Tsiatsis V., Zimbeck S., and Srivastava M. B., 2002. On communi-

cation security in wireless ad-hoc sensor networks. In Proceedings of the Eleventh IEEE Interna-

tional Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET
ICE 2002), pp. 139–144.

[78] Su K., Kundur D., and Hatzinakos D., February 2005. Statistical invisibility for collusion-resistant

digital video watermarking. IEEE Transactions on Multimedia, 7(1): 43–51.

[79] Sukhatme G. S., and Mataric M. J., May 2000. Embedding the internet: Embedding robots into the

internet. Communications of the ACM, 43(5): 67–73.

[80] Swaminathan A., Mao Y., and Wu M., June 2006. Robust and secure image hashing. IEEE

Transactions on Information Forensics and Security, 1(2): 215–230.

[81] Tennenhouse D., May 2000. Embedding the internet: Proactive computing. Communnications of
the ACM, 43(5): 43–50.

[82] Uppuluri P., and Basu S., LASE: Layered approach for sensor security and efficiency.

In Proceedings of the International IEEE Conference on Parallel Processing Workshops,
pp. 346–352.

[83] U. S. National Institute of Standards and Technology (NIST) January 1999. Data encryption

standard (DES), draft federal information processing standards publication 46–3 (FIPS PUB 46–3).

[84] Villan R., Voloshynovskiy S., Koval O., and Pun T., December 2006. Multilevel 2-D Bar Codes:

toward high-capacity storage modules for multimedia security and management. IEEE Transac-

tions on Information Forensics and Security, 1(4): 405–420.

[85] Wang A., Cho S.-H., Sodini C., and Chandrakasan A., August 2001. Energy efficient modulation

and MAC for asymmetric RF microsensor systems. In Proceedings of the ISLPED, pp. 106–111.
[86] Wang A., Heinzelman W., and Chandrakasan A., October 1999. Energy-scalable protocols for

battery-operated microsensor networks. In Proceedings of the SiPS, pp. 483–492.

[87] Wei G., and Horowitz M., A low power switching supply for self-clocked systems. In Proceedings
of the ISLPED, pp. 313–317.

[88] Weiser M., Welch B., Demers A., and Shenker S., 1998. Scheduling for reduced CPU energy.

In A. Chandrakasan and R. Brodersen, editors, Low Power CMOS Design, pp. 177–187.

[89] Wu Y.-T., Shih F. Y., and Wu Y.-T., May 2006. A robust high-capacity watermarking algorithm.

In Proceedings of the IEEE International Conference on Electro/information Technology,

pp. 442–447.

[90] Xiao Y., Shen X., Sun B., and Cai L., April 2006. Security and privacy in RFID and applications in

telemedicine. IEEE Communications Magazine, 44(4): 64–72.
[91] Xie D., and Kuo C.-C. J., May 23–26, 2004. Enhanced multiple huffman table (MHT) encryption

scheme using key hopping. In Proceedings of the International Symposium on Circuits and

Systems, vol. 5, pp. V-568–V-571.

[92] Yao K., et al., October 1998. Blind beam forming on a randomly distributed sensor array system.

IEEE Journal on Selected Topics in Communications, 16(8): 1555–1567.

[93] Yongliang L., Gao W., and Liu S., August 29–September 1, 2004. Multimedia security in the

distributed environment. In Proceedings of the Joint Conference of the 10th Asia-Pacific Confer-
ence on Communications and the 5th International Symposium on Multi-Dimensional Mobile

Communications, vol. 2, pp. 639–642.

[94] Younis M. F., Ghumman K., and Eltoweissy M., August 2006. Location-aware combinatorial key

management scheme for clustered sensor networks. IEEE Transactions on Parallel and Distributed
Systems, 17(8): 865–882.

MULTIMEDIA AND SENSOR SECURITY 43
[95] Yuan C., Zhu B. B., Wang Y., Li S., and Zhong Y., May 25–28, 2003. Efficient and fully scalable

encryption for MPEG-4 FGS. In Proceedings of the International Symposium on Circuits and

Systems, vol. 2, pp. II-620–II-623.

[96] Yuval G., 1997. Reinventing the travois: Encryption/MAC in 30 ROM bytes. In Proceedings of the

Fourth Workshop on Fast Software Encryption.
[97] Zhang J., Wang N.-C., and Feng Xiong, November 4–5, 2002. A novel watermarking for images

using neural networks. In Proceedings of the International Conference on Machine Learning and

Cybernetics, vol. 3, pp. 1405–1408.

[98] Zhao H. V., and Liu K. J. R., December 2006. Traitor-within-traitor behavior forensics: strategy

and risk minimization. IEEE Transactions on Information Forensics and Security, 1(4): 440–456.

[99] Zhao H. V., and Liu K. J. R., September 2006. Behavior forensics for scalable multiuser collusion:

Fairness versus effectiveness. IEEE Transactions on Information Forensics and Security, 1(3):

311–329.

[100] Zhao H. V., and Liu K. J. R., January 2006. Fingerprint multicast in secure video streaming. IEEE

Transactions on Image Processing, 15(1): 12–29.

[101] Zhao Y. Z., and Gan O. P., August 2006. Distributed design of RFID network for large-scale RFID

deployment. In Proceedings of the IEEE International Conference on Industrial Informatics,

pp. 44–49.

[102] Zhou J., Liang Z., Chen Y., and Au O. C., March 2007. Security analysis of multimedia encryption

schemes based on multiple huffman table. IEEE Signal Processing Letters, 14(3): 201–204.

Email Spam Filtering
ADVAN

ISSN: 00
ENRIQUE PUERTAS SANZ
Universidad Europea de Madrid

Villaviciosa de Odón, 28670 Madrid, Spain
JOSÉ MARÍA GÓMEZ HIDALGO
Optenet

Las Rozas

28230 Madrid, Spain
JOSÉ CARLOS CORTIZO PÉREZ
AINet Solutions

Fuenlabrada 28943, Madrid, Spain
Abstract
In recent years, email spam has become an increasingly important problem, with a

big economic impact in society. In this work, we present the problem of spam,

how it affects us, and how we can fight against it. We discuss legal, economic, and

technical measures used to stop these unsolicited emails. Among all the technical

measures, those based on content analysis have been particularly effective in

filtering spam, so we focus on them, explaining how they work in detail. In

summary, we explain the structure and the process of different Machine Learning

methods used for this task, and howwe can make them to be cost sensitive through

several methods like threshold optimization, instance weighting, or MetaCost. We

also discuss how to evaluate spam filters using basic metrics, TREC metrics, and

the receiver operating characteristic convex hull method, that best suits classifica-

tion problems in which target conditions are not known, as it is the case. We also

describe how actual filters are used in practice. We also present different methods

used by spammers to attack spam filters and what we can expect to find in the

coming years in the battle of spam filters against spammers.
CES IN COMPUTERS, VOL. 74 45 Copyright © 2008 Elsevier Inc.

65-2458/DOI: 10.1016/S0065-2458(08)00603-7 All rights reserved.

46 E.P. SANZ ET AL.
1.
 I
ntroduction . 47
1
.1. W
hat is Spam? . 47
1
.2. T
he Problem of Email Spam . 47
1
.3. S
pam Families . 48
1
.4. L
egal Measures Against Spam . 50
2.
 T
echnical Measures . 51
2
.1. P
rimitive Language Analysis or Heuristic Content Filtering 51
2
.2. W
hite and Black Listings . 51
2
.3. G
raylisting . 52
2
.4. D
igital Signatures and Reputation Control 53
2
.5. P
ostage . 54
2
.6. D
isposable Addresses . 54
2
.7. C
ollaborative Filtering . 55
2
.8. H
oneypotting and Email Traps . 55
2
.9. C
ontent-Based Filters . 56
3.
 C
ontent-Based Spam Filtering . 56
3
.1. H
euristic Filtering . 57
3
.2. L
earning-Based Filtering . 63
3
.3. F
iltering by Compression . 80
3
.4. C
omparison and Summary . 83
4.
 S
pam Filters Evaluation . 83
4
.1. T
est Collections . 84
4
.2. R
unning Test Procedure . 87
4
.3. E
valuation Metrics . 88
5.
 S
pam Filters in Practice . 92
5
.1. S
erver Side Versus Client Side Filtering 93
5
.2. Q
uarantines . 95
5
.3. P
roxying and Tagging . 96
5
.4. B
est and Future Practical Spam Filtering 98
6.
 A
ttacking Spam Filters . 98
6
.1. I
n
troduction . 98
6
.2. I
n
direct Attacks . 99
6
.3. D
irect Attacks . 101
7.
 C
onclusions and Future Trends . 109
R
eferences . 109

EMAIL SPAM FILTERING 47
1. Introduction

1.1 What is Spam?

In literature, we can find several terms for naming unsolicited emails. Junk

emails, bulk emails, or unsolicited commercial emails (UCE) are a few of them,

but the most common word used for reference is ‘spam.’ It is not clear where do the

word spam comes from, but many authors state that the term was taken from a

Monty Python’s sketch, where a couple go into a restaurant, and the wife tries to get

something other than spam. In the background are a bunch of Vikings that sing the

praises of spam: ‘spam, spam, spam, spam . . . lovely spam, wonderful spam.’ Pretty

soon the only thing you can hear in the skit is the word ‘spam.’ That same idea would

happen to the Internet if large-scale inappropriate postings were allowed. You could

not pick the real postings out from the spam.

But, what is the difference between spam and legitimate emails? We can consider

an email as spam if it has the following features:

l Unsolicited: The receiver is not interested in receiving the information.

l Unknown sender: The receiver does not know and has no link with the sender.

l Massive: The email has been sent to a large number of addresses.

In the next subsections, we describe the most prominent issues regarding spam,

including its effects, types, and main measures against it.
1.2 The Problem of Email Spam

The problem of email spam can be quantified in economical terms. Many hours

are wasted everyday by workers. It is not just the time they waste reading spam but

also the time they spend deleting those messages.

Let us think in a corporate network of about 500 hosts, and each one receiving

about 10 spam messages every day. If because of these emails 10 min are wasted we

can easily estimate the large number of hours wasted just because of spam. Whether

an employee receives dozens or just a few each day, reading and deleting these

messages takes time, lowering the work productivity. As an example, the United

Nations Conference on Trade and Development estimates the global economic

impact of spam could reach $20 b in lost time and productivity. The California

legislature found that spam costs United States organizations alone more than $10 b

in 2004, including lost productivity and the additional equipment, software, and

48 E.P. SANZ ET AL.
manpower needed to combat the problem. A repost made by Nucleus Research1 in

2004 claims that spam will cost US employers $2K per employee in lost productiv-

ity. Nucleus found that unsolicited email reduced employee productivity by a

staggering 1.4%. Spam-filtering solutions have been doing little to control this

situation, reducing spam levels by only 26% on average, according to some reports.

There are also problems related to the technical problems caused by spam. Quite

often spam can be dangerous, containing virus, trojans, or other kind of damaging

software, opening security breaches in computers and networks. In fact, it has been

demonstrated that virus writers hire spammers to disseminate their so-called mal-

ware. Spam has been the main means to perform ‘phishing’ attacks, in which a bank

or another organization is supplanted in order to get valid credentials from the user,

and steal his banking data leading to fraud.

Also, network and email administrators have to employ substantial time and effort

in deploying systems to fight spam. As a final remark, spam is not only dangerous or

a waste of time, but also it can be quite disturbing. Receiving unsolicited messages is

a privacy violation, and often forces the user to see strongly unwanted material,

including pornography. There is no way to quantify this damage in terms of money,

but no doubt it is far from negligible.

1.3 Spam Families

In this subsection, we describe some popular spam families or genres, focusing on

those we have found most popular or damaging.
1.3.1 Internet Hoaxes and Chain Letters
There are a whole host of annoying hoaxes that circulate by email and encourage

you to pass them on to other people. Most hoaxes have a similar pattern. These are

some common examples to illustrate the language used:

l Warnings about the latest nonexistent virus dressed up with impressive but

nonsensical technical language such as ‘nth-complexity binary loops.’

l Emails asking to send emails to a 7-year-old boy dying of cancer, promises that

one well-known IT company’s CEO or president will donate money to charity

for each email forwarded.

l Messages concerning the Helius Project, about a nonexistent alien being com-

municating with people on Earth, launched in 2003 and still online. Many

people who interacted with Helius argue that Helius is real.
1 See http://www.nucleusresearch.com for more information.

http://www.nucleusresearch.com

EMAIL SPAM FILTERING 49
In general, messages that says ‘forward this to everyone you know!’ are usually

hoaxes or chain letters. The purpose of these letters is from joking to generating

important amounts of network traffic that involves economic losses in ISPs.
1.3.2 Pyramid Schemes
This is a common attempt to get money from people. Pyramid schemes are

worded along the lines of ‘send ten dollars to this address and add yourself to the

bottom of the list. In six weeks you’ll be a millionaire!’ They do not work (except

from the one on the top of the pyramid, of course). They are usually illegal and you

will not make any money from them.
1.3.3 Advance Fee Fraud
Advance fee fraud, also known as Nigerian fraud or 419 fraud, is a particularly

dangerous spam. It takes the form of an email claiming to be from a businessman or

government official, normally in a West African state, who supposedly has millions

of dollars obtained from the corrupt regime and would like your help in getting it out

of the country. In return for depositing the money in your bank account, you are

promised a large chunk of it.

The basic trick is that after you reply and start talking to the fraudsters, they

eventually ask you for a large sum of money up front in order to get an even larger

sum later. You pay, they disappear, and you lose.
1.3.4 Commercial Spam
This is the most common family of spam messages. They are commercial adver-

tisements trying to sell a product (that usually cannot be bought in a regular store).

According to a report made by Sophos about security threats in 2006,2 health- and

medical-related spam (which primarily covers medication which claims to assist in

sexual performance, weight loss, or human growth hormones) remained the most

dominant type of spam and rose during the year 2006. In the report we find the top

categories in commercial spam:

l Medication/pills – Viagra, Cialis, and other sexual medication.

l Phishing scams – Messages supplanting Internet and banking corporations like

Ebay, Paypal, or the Bank of America, in order to get valid credentials and steal

users’ money.

l Non-English language – an increasing number of commercial spam is trans-

lated or specifically prepared for non-English communities.
2 See the full report at http://www.sophos.com.

http://www.sophos.com

50 E.P. SANZ ET AL.
l Software – or how you can get very cheap, as it is OEM (Original Equipment

Manufacturer), that is, prepared to be served within a brand new PC at the store.

l Mortgage – a popular category, including not only mortgages but also specially

debt grouping.

l Pornography – one of the most successful businesses in the net.

l Stock scams – interestingly, it has been observed that promoting stock corpora-

tions via email has had some impact in their results.

The economics behind the spam problem are clear: if users did not buy products

marketed through spam, it would not be such a good business. If you are able to send

10 million messages for a 10 dollars product, and you get just one sell among every

10 thousand messages, you will be getting 10 thousand dollars from your spam

campaign. Some spammers have been reported earning around five hundred thou-

sand dollars a month, for years.

1.4 Legal Measures Against Spam

Fighting spam requires uniform international laws, as the Internet is a global

network and only uniform global legislation can combat spam.

A number of nations have implemented legal measures against spam. The United

States of America has both a federal law against spam and a separate law for each

state. Something similar can be found in Europe: the European Union has its anti-

spam law butmost European countries have its own spam law too. There are specially

effective or very string antispam laws like those in Australia, Japan, and South Korea.

There are also bilateral treaties on spam and Internet fraud, as those between the

United States andMexico or Spain. On the other side, there are also countries without

specific regulation about spam so it is an activity that is not considered illegal.

With this scenario, it is very difficult to apply legal measures against spammers.

Besides that, anonymity is one of the biggest advantages of spammers. Spammers

frequently use false names, addresses, phone numbers, and other contact information

to set up ‘disposable’ accounts at various Internet service providers. In some cases,

they have used falsified or stolen credit card numbers to pay for these accounts. This

allows them to quickly move from one account to the next as each one is discovered

and shut down by the host ISPs.While some spammers have been caught (a noticeable

case is that of Jeremy Jaynes), there are many spammers that have avoided their

capture for years. A trustable spammers’ hall of fame is maintained by The Spamhaus

Project, and it is known as the Register Of Known Spam Operations (ROKSO).3
3 The ROKSO can be accessed at http://www.spamhaus.org/rokso/index.lasso.

http://www.spamhaus.org/rokso/index.lasso

EMAIL SPAM FILTERING 51
2. Technical Measures

Among all the different techniques used for fighting spam, technical measures

have become the most effective. There are several approaches used to filter spam.

In the next section, we will comment some of the most popular approaches.

2.1 Primitive Language Analysis or Heuristic
Content Filtering

The very first spam filters used primitive language analysis techniques to detect

junk email. The idea was to match specific texts or words to email body or sender

address. In the mid 1990s when spam was not the problem that it is today, users

could filter unsolicited emails by scanning them, searching for phrases or words that

were indicative of spam like ‘Viagra’ or ‘Buy now.’ Those days spam messages

were not as sophisticated as they are today and this very simplistic approach could

filter ~80% of the spam.

The first versions of the most important email clients included this technique that

it worked quite well for a time, before spammers started to use their tricks to avoid

filters. The way they obfuscated messages made this technique ineffective.

Another weakness of this approach was the high false-positive rate: any message

containing ‘forbidden words’ was sent to trash. Most of those words were good for

filtering spam, but sometimes they could appear in legitimate emails. This approach

is not used nowadays because of the low accuracy and the high error rates it has.

This primitive analysis technique is in fact a form of content analysis, as it makes

use of every email content to decide if it is spam or legitimate. We have called this

technique heuristic filtering, and it is extensively discussed below.

2.2 White and Black Listings

Whi te and blac k lists are extremely popular appro aches to filter spam email [41] .

White lists state which senders’ messages are never considered spam, and black lists

include those senders that should always be considered spammers.

A white list contains addresses that are supposed to be safe. These addresses can

be individual emails, domain names, or IP addresses, and it would filer an individual

sender or a group of them. This technique can be used in the server side and/or in the

client side, and is usually found as a complement to other more effective approaches.

In server-side white lists, an administrator has to validate the addresses before

they go to the trusted list. This can be feasible in a small company or a server with a

small number of email accounts, but it can turn into a pain if pretended to be used in

large corporate servers with every user having his own white list. This is because the

52 E.P. SANZ ET AL.
task of validating each email that is not in the list is a time-consuming job. An

extreme use of this technique could be to reject all emails coming from senders that

are not in the white list. This could sound very unreasonable, but it is not. It can be

used in restricted domains like schools, where you prefer to filter emails from

unknown senders but want to keep the children away from potentially harmful

content, because spam messages could contain porn or another kind of adult content.

In fact, this aggressive antispam technique has been used by some free email service

providers as Hotmail, in which a rule can be stated preventing any message coming

from any other service to get into their users mailboxes.

White listings can also be used in the client side. In fact, one of the first techniques

used to filters spam consisted of using user’s address book as a white list, tagging as

potential spam all those emails that had in the FROM: field an address that was not

in the address book. This technique can be effective for those persons who use email

just to communicate with a limited group of contacts like family and friends.

Themain problem ofwhite listings is the assumption that trusted contacts do not send

junk email and, as we are going to see, this assumption could be erroneous. Many

spammers use computers that have been compromised using trojans and viruses for

sending spam, sending them to all the contacts of the address book, so we could get a

spammessage froma known sender if his computer has been infectedwith a virus. Since

these contacts are in the white list, all messages coming from them are flagged as safe.

Black listings, most often known as DNS Blacklists (DNSBL), are used to filter

out emails which are sent by known spam addresses or compromised servers. The

very first and most popular black list has been the trademarked Realtime Blackhole

List (RBL), operated by the Mail Abuse Prevention System. System administrators,

using spam detection tools, report IP addresses of machines sending spam and they

are stored in a common central list that can be shared by other email filters. Most

antispam softwares have some form of access to networked resources of this kind.

Aggressive black listings may block whole domains or ISPs having many false

positives. A way to deal with this problem is to have several distributed black listings

and contrast sender’s information against some of them before blocking an email.

Current DNS black lists are dynamic, that is, not only grow with new information, but

also expire entries, maintaining fresh reflection of current situation in the address space.

2.3 Graylisting

As a complement to white and black listings, one could use graylistings [94]. The

core behind this approach is the assumption that junk email is sent using spam bots, this

is specific software made to send thousands of emails in a short time. This software

differs from traditional email servers and does not respect email RFC standards. In

particular, emails that fail to reach its target are not sent again, as a real system would

EMAIL SPAM FILTERING 53
do. This is the right feature used by graylistings. When the system receives an email

from an unknown sender that is not in a white listing, it creates a tupla sender–receiver.

The first time that tupla occurs in the system, the email is rejected so it is bounced back

to the sender. A real server will send that email again so the second time the system

finds the tupla, the email is flagged as safe and delivered to the recipient.

Graylistings have some limitations and problems. The obvious ones are the delay

we could have in getting some legitimate emails when using this approach because

we have to wait until the email is sent twice, and the waste of bandwidth produced in

the send–reject–resend process.

Other limitations are that this approach will not work when spam is sent from

open relays as they are real email servers and the easy way for spammer to work-

around graylistings, just adding a new functionality to the software, allowing it to

send bounced emails again.

2.4 Digital Signatures and Reputation Control

With the emergence of Public Key Cryptography, and specifically, its application

to email coding and signing, most prominently represented by Pretty Good Privacy

(PGP) [103] and GNU Priv acy Gua rd (GPG) [64] , there exists the possi bility of

filtering out unsigned messages, and in case they are signed, those sent by untrusted

users. PGP allows keeping a nontrivial web/chain of trust between email users, the

way that trust is spread over a net of contacts. This way, a user can trust the signer of

a message if he or she is trusted by another contact of the email receiver.

The main disadvantage of this approach is that PGP/GPG users are rare, so it

is quite risky to consider legitimate email coming only from trusted contacts.

However, it is possible to extend this idea to email servers.

As we saw in previous section, many email filters use white listings to store safe

senders, usually local addresses and addresses of friends. So if spammers figure out

who our friends are, they could forge the FROM: header of the message with that

information, avoiding filters because senders that are in white listings are never

filtered out. Sender Policy Framework (SPF), DomainKeys, and Sender ID try to

prevent forgery by registering IPs of machines used to send email from for every

valid ema il sender in the server [89] . So if som eone is sending an email from a

particular domain but it does not match the IP address of the sender, you can know

the email has been forged. The messages are signed by the public key of the server,

which makes its SPF, DomainKeys, or Sender ID record public. As more and more

email service providers (specially the free ones, like Yahoo!, Hotmail, or Gmail) are

making their IP records public, the approach will be increasingly effective.

Signatures are a basic implementation of a more sophisticated technique, which is

reputation control for email senders. When the system receives an email from an

unknown sender, the message is scanned and classified as legitimate or spam. If the

54 E.P. SANZ ET AL.
email is classified as legitimate, the reputation of the sender is increased, and decreased

if classified as spam. The more emails are sent from that address, the more positive or

negative the sender is ranked. Once reputation crosses a certain threshold, it can be

moved to a white or black list. The approach can be extended to the whole IP space in

the net, as current antispam products by IronPort feature, named SenderBase.4

2.5 Postage

One of the main reasons of spam success is the low costs of sending spam.

Senders do not have to pay for sending email and costs of bandwidth are very low

even if sending millions of emails.5 Postage is a technique based upon the principle

of senders of unsolicited messages demonstrating their goodwill by paying some

kind of postage: either a small amount of money paid electronically, a sacrifice of a

few seconds of human time at answering a simple question, or some time of

computation in the sender machine.

As the email services are based on the Simple Mail Transfer Protocol, economic

postage requires a specific architecture over the net, or a dramatic change in the

email prot ocol. Aba di et al. [1] describ es a ticket -based client –server architecture to

provide postage for avoiding spamming (yet other applications are suitable).

An alternative is to require the sender to answer some kind of question, to prove

he is actually a huma n being. Th is is the kind of Turing Test [93] that has been

implemented in many web-based services, requiring the user to type the hidden word

in a picture. These tests are named CAPTCHAs (Completely Automated Public

Turin g test to tell Compu ters and Hum ans Apa rt) [2]. Th is appro ach can be espe-

cially effectively used to avoid outgoing spam, that is, preventing the spammers to

abuse of free email service providers as Hotmail or Gmail.

A third approach is requiring the sender machine to solve some kind of computa-

tional ly expens ive problem [32] , produc ing a delay and thus, disallowing spam mers

to send millions of messages per day. This approach is, by far, the less annoying of

the postage techniques proposed, and thus, the most popular one.
2.6 Disposable Addresses

Dispos able addre sses [86] are a tec hnique used to preven t a user to receive spam .

It is not a filtering system itself but a way to avoid spammers to find out our address.

To harvest email addresses, spammers crawl the web searching for addresses in web
4 The level of trust of an IP in SenderBase can be checked at: http://www.senderbase.org/.
5 Although the case against the famous spammer Jeremy Jaynes has revealed he has been spending

more than one hundred thousand dollars per month in high speed connections.

http://www.senderbase.org/

EMAIL SPAM FILTERING 55
pages, forums, or Usenet groups. If we do not publish our address on the Internet, we

can be more or less protected against spam, but the problem is when we want to

register in a web page or an Internet service and we have to fill in our email address

in a form. Most sites state that they will not use that information for sending spam

but we cannot be sure and many times the address goes to a list that is sold to third

party companies and used for sending commercial emails. Moreover, these sites can

be accessed by hackers with the purpose of collecting valid (and valuable) addresses.

To circumvent this problem, we can use disposable email addresses. Instead of

letting the user prepare his own disposable addresses, he can be provided with an

automatic system to man age them, like the channe ls’ infras tructure by ATT [50] .

The addresses are temporary accounts that the user can use to register in web

services. All messages sent to disposable address are redirected to our permanent

safe account during a configurable period of time. Once the temporary address is no

longer needed, it is deleted so even if that account receives spam, this is not

redirected.

2.7 Collaborative Filtering

Coll aborative filtering [48] is a distribut ed approach to filt er spam. Inst ead of

having each user to have his own filter, a whole community works together. Using

this technique, each user shares his judgments of what is spam and what is not with

the other users. Collaborative filtering networks take advantage of the problem of

some users that receive spam to build better filters for those that have not yet

received those spam messages. When a group of users in the same domain have

tagged an email coming from a common sender as spam, the system can use the

information in those emails to learn to classify those particular emails so the rest of

users in the domain will not receive them.

The weakness of this approach is that what is spam for somebody could be a

legitimate content for another. These collaborative spam filters cannot be more

accurate as a personal filter in the client side but it is an excellent option for filtering

in the server side. Another disadvantage of this approach is that spammers introduce

small variations in the messages, disallowing the identification of a new upcoming

spam email as a close variation of one rece iver earlier by anot her user [58] .

2.8 Honeypotting and Email Traps

Spammers are known to abuse vulnerable systems like open mail relays and

public open proxies. In order to discover spam activities, some administrators

have created honeypot programs that simulate being such vulnerable systems. The

existence of such fake systems makes more risky for spammers to use open relays

56 E.P. SANZ ET AL.
and open proxies for sending spam. Honeypotting is a common technique used for

system administrators to detect hacking activities on their servers. They create fake

vulnerable servers in order to burst hackers while protecting the real servers. Since

the term honeypotting is more appropriate for security environments, the terms

‘email traps’ or ‘spam traps’ can be used instead of referring to these techniques

when applied to prevent spam.

Spam traps can used to collect instances of spam messages on keeping a fresh

collection of spammer techniques (and a better training collection in learning-based

classifiers), to build and deploy updated filtering rules in heuristic filters, and to

detect new spam attacks in advance, avoiding them reach, for example, a corporate

network in particular.
2.9 Content-Based Filters

Content-based filters are based on analyzing the content of emails. These filters

can be hand-made rules, also known as heuristic filters, or learned using Machine

Learning algorithms. Both approaches are widely used these days in spam filters

because they can be very accurate when they are correctly tuned up, and they are

going to be deeply analyzed in next section.
3. Content-Based Spam Filtering

Among the technical measures to control spam, content-based filtering is one of

the most popular ones. Spam filters that analyze the contents of the messages and

take decisions on that basis have spread among the Internet users, ranging from

individual users at their home personal computers, to big corporate networks. The

success of content-based filters is so big that spammers have performed increasingly

complex attacks designed to avoid them and to reach the users’ mailbox.

This section covers the most relevant techniques for content-based spam filtering.

Heuristic filtering is important for historical reasons, although the most popular

modern heuristic filters have some learning component. Learning-based filtering is

the main trend in the field; the ability to learn from examples of spam and legitimate

messages gives these filters full power to detect spam in a personalized way. Recent

TREC [19] competitive evaluation s have stressed the impo rtance of a family of

learning-based filters, which are those using compression algorithms; they have

scored top in terms of effectiveness, and so they deserve a specific section.

EMAIL SPAM FILTERING 57
3.1 Heuristic Filtering

Since the very first spam messages, users (that were simultaneously their own

‘network administrators’) have coded rules or heuristics to separate spam from their

legitimate mes sages, and avoi d reading the first [24] . A content -based heurist ic filter

is a set of hand-coded rules that analyze the contents of a message and classify it as

spam or legitimate. For instance, a rule may look like:

if ðP‘Viagra’ 2 MÞorð‘VIAGRA’ 2 MÞthen classðMÞ ¼ spam

This rule means that if any of the words ‘Viagra’ or ‘VIAGRA’ (that are in fact

distinct characters strings) occur in a message M, then it should be classified as

spam. While first Internet users were often privileged user administrators and used

this kind of rules in the context of sophisticated script and command languages, most

modern mail user clients allow writing this kind of rules through simple forms. For

instance, a Thunderbird straightforward spam filter is shown in Fig. 1. In this

example, the users has prepared a filter named ‘spam’ that deletes all messages in

which the word ‘**spam**’ occurs in the Subject header.
FIG. 1. A simple spam filter coded as a Thunderbird mail client rule. If the word ‘**spam**’ occurs in

the Subject of a message, it will be deleted (sent to trash).

58 E.P. SANZ ET AL.
However, these filtering utilities are most often used to classify the incoming

messages into folders, according to their sender, their topic, or the mail list they

belong to. They can also be used in conjunction with a filtering solution out of the

mail client, which may tag spam messages (for instance, with the string ‘**spam**’

in the subject, or being more sophisticate, by adding a specific header like, for

example, X-mail report, which can include a simple tag or a rather informative

output with even a score), that will be later processed by the mail client by applying

the suitable filters and performing the desired action. A sensible action is to send the

messages tagged as spam to a quarantine folder in order to avoid false positives

(legitimate messages classified as spam).

It should be clear that maintaining an effective set of rules can be a rather

time-consuming job. Spam messages include offers of pharmacy products, porn

advertisements, unwanted loans, stock recommendations, and many other types of

messages. Not only their content, but their style is always changing. In fact, it is hard

to find a message in which the word ‘Viagra’ occurs without alterations (except for a

legitimate one!). In other words, there are quite many technical experts highly

committed to make the filter fail: the spammers. This is why spam filtering is

consider ed a problem of ‘adversa rial classificat ion’ [25] .

Neither a modern single network administrator nor even an advanced user will be

writing their own handmade rules to filter spam. Instead, a list of useful rules can

be maintained by a community of expert users and administrators, as it has been done

in the very popular open-source solution SpamAssassin or in the commercial service

Brightmail provided by Symantec Corporation. We discuss these relevant examples

in the next subsections, finishing this section with the advantages and disadvantages

of this approach.
3.1.1 The SpamAssassin Filter
While it is easy to defeat a single network administrator, it is harder to defeat a

community. This is the spirit of one of the most spread heuristic filtering solutions:

Spam Assass in [87] . Th is filt er h as received a numb er of prices, and as a matt er of

example, it had more than 3600 downloads in the 19 months the project was hosted

at Sourceforge6 (February 2002–September 2003).

SpamAssassin is one of the oldest still-alive filters in the market, and its main

feature (for the purpose of our presentation) is its impressive set of rules or

heuristics, contributed by tens of administrators and validated by the project
6 Sourceforge is the leading hosting server for open-source projects, providing versioning and down-

loading services, statistics, and more. See: http://sourceforge.net.

http://sourceforge.net

EMAIL SPAM FILTERING 59
committee. The current (version 3.2) set of rules (named ‘tests’ in SpamAssassin)

has 746 tests.7 Some of them are administrative, and a number of them are not truly

‘content-based,’ as they, for example, check the sender address or IP against public

white lists. For instance, the test named ‘RCVD_IN_DNSWL_HI’ checks if the

sender is listed in the DNS Whitelist.8 Of course, this is a white listing mechanism,

and it makes nearly no analysis of the very message content. On the other side, the

rule named ‘FS_LOW_RATES’ tests if the Subject field contains the words ‘low

rates,’ which is very popular in spam messages dealing with loans or mortgages.

Many SpamAssassin tests address typing variability by using quite sophisticated

regular expressions. We show a list of additional examples in the Fig. 2, as they are

presented in the project web page.

A typical SpamAssassin content matching rule has the structure shown in the next

example:

body DEMONSTRATION_RULE /test/

score DEMONSTRATION_RULE 0.1

describe DEMONSTRATION_RULE This is a simple test rule

The rule starts with a line that describes the test to be performed, it goes on with line

presenting the score, and it has a final line for the rule description. The sample rule

name is ‘DEMONSTRATION_RULE,’ and it checks the (case sensitive) occurrence

of the word ‘test’ in the body section of an incoming email message. If the condition is
FIG. 2. A sample of SpamAssassin test or filtering rules. The area tested may be the header, the body,

etc. and each test is provided with one or more scores that can be used to set a suitable threshold and vary

the filter sensitivity.

7 The lists of tests used by SpamAssassin are available at: http://spamassassin.apache.org/tests.

html.
8 The DNS Whitelist is available at: http://www.dnswl.org/.

http://spamassassin.apache.org/tests.html
http://spamassassin.apache.org/tests.html
http://www.dnswl.org/

60 E.P. SANZ ET AL.
satisfied, that is, the word occurs, then the score 0.1 is added to the message global

score. The score of the message may be incremented by other rules, and the message

will be tagged as spam if the global score exceeds a manually or automatically set

threshold. Of course, the higher the score of a rule, the more it contributes to the

decision of tagging a message as spam.

The tests perform ed in the rules can addre ss all the part s in a mes sage, and request

preproce ssing or not. For instance, if the rule start s with ‘header, ’ only the heade rs

will be tes ted:

header DEMONST RATION_ SUBJECT Subject =� /test/

In fact, the sym bols ‘=~’ preceding the tes t, along with the word ‘Subj ect,’ mea n

that only the subject heade r will be tested . Th is case, the subject field nam e is case

insensi tive.

The tests perform ed allow comple x expressi ons written in the Perl Regula r

Expres sions (Regex) Synta x. A slightly more com plex exam ple may be:

header DEMONST RATION_ SUBJECT Subject =� /\btest \b/i

In this exam ple, the expression ‘/ \btest\b /i’ mea ns that the word ‘test ’ will be

searched as a sing le word (and not as a part of othe rs, li ke ‘testing’), becau se it sta rts

and fin ishes with the wor d-break mark ‘\b,’ and the test will be case insensi tive

becau se of the finish ing mark ‘/i.’ Of course, regular expressions may be muc h mor e

comp lex, but covering them in deta il is beyond the scope o f this chapt er. We sugges t

[54] for the interest ed reader.

Manuall y assigni ng scores to the rul es is not a very good idea , as the rule coder

must have a precise and global idea of all the scor es in all the rest of the rul es. Instead ,

an automa ted method is require d, which shoul d be able to look at all the scor es and a

set of testi ng message s, and compute the scor es that mi nimize the error of the filter. In

versions 2.x, the scores of the rules have been assigned using a Genetic Algorit hm,

while in (curren t) versions 3.x, the scores are assig ned usin g a neural networ k traine d

with err or back propagat ion (a perc eptron) . Both syst ems attempt to o ptimize the

effect iveness of the rules that are run in ter ms of minimi zing the numb er of false

positi ves and false negativ es, and they are present ed in [87] and [91] , respective ly.

The scor es are optimize d on a set of real exampl es contri buted by volun teers.

The Spam Assassin group has in fact released a corpus of spam mes sages, the so-

named Spam Assass in Public Corpus. 9 This corpus includes 6047 messages, with

~31% spam ratio. As it has been extensively used for the evaluation of content-based

spam filter, we leave a more detailed descr iption of it for Sect ion 4.
9 The SpamAssassin Public Corpus is available at: http://spamassassin.apache.org/publiccorpus/.

http://spamassassin.apache.org/publiccorpus/

EMAIL SPAM FILTERING 61
3.1.2 The Symantec Brightmail Solution
Some years ago, Brightmail emerged as an antispam solution provider based on an

original business model in the antispam market. Instead of providing a final software

application with filtering capabilities, it focused more on the service, and took the

operation model from antivirus corporations: analysts working 24 h a day on new

attacks, and frequent delivering of new protection rules. The model succeeded, and

on June 21st, 2004, Symantec Corporation acquired Brightmail Incorporated, with its

solution and its customers. Nowadays, Symantec claims that Brightmail Anti-spam

protects more than 300 million users, and filters over 15% of the worldwide emails.

The Brightmail Anti-spam solution works at the clients’ gateway, scanning incom-

ing messages to the corporation, and deciding if they are spam or not. The decision is

taken on the basis of a set of filtering rules provided by the experts working in the

Symantec operations center, named BLOC (Brightmail Logistics Operations Cen-

ter). The operational structure of the solution is shown in Fig. 3. In this figure, circles

are used to denote the next processing steps:

1. The Probe Network (TM) is a network of fake email boxes (‘spam traps’ or

‘honeypots’) that have been seeded with the only purpose of receiving spam.

These email addresses can be collected only by automatic means, as spammers
Symantec Operations Center

Probe NetworkTM BLOCTM

Filter hand coding

27�7 service

Filter validation

Filter distribution

Internet

Spam Collected
spam

Reputation
data

collected

Corporation place

Spam

Email Gateway
Symantec
Brightmail
anti-spam

Email server

quarrantine

Legitimate
email

User
mailbox

Secure
filter

trans.

Spam

1

2

3

4

6

5

FIG. 3. Operational structure of the Symantec Brightmail Anti-spam solution. The numbers in circles

denote processes described.

62 E.P. SANZ ET AL.
do, and in consequence, they can receive only spam emails. The spam col-

lected is sent to the BLOC.

2. At the BLOC, groups of experts and, more recently, content-based analysis

automatic tools build, validate, and distribute antispam filters to Symantec

corporate customers.

3. Every 10 min, the Symantec software downloads the most recent version of the

filters from the BLOC, in order to keep them as updated as possible.

4. The software filters the incoming messages using the Symantec and the user-

customized filters.

5. The email administrator determines the most suitable administration mode for

the filtered email. Most often, the (detected as) spam email is kept into a

quarantine where users can check if the filter has mistakenly classified

a legitimate message as spam (a false positive).

6. The users can report undetected spam to Symantec for further analysis.

The processes at the BLOC were once manual, but the ever-increasing number of

spam attacks has progressively made impossible to approach filter building as a

hand-made task. In the recent times, spam experts in the BLOC have actually

switched their role to filter adapters and tuners, as the filters are being produced

by using the automatic, learning-based tools described in the next section.
3.1.3 Problems in Heuristic Filtering
Heuristic content-based filtering has clear advantages over other kinds of filter-

ing, especially those based on black and white listing. The most remarkable one is

that it filters not only on the ‘From’ header, but also it can make use of the entire

message, and inconsequence, to make a more informed decision. Furthermore, it

offers a lot of control on the message information that is scanned, as the filter

programmer decides which areas to scan, and what to seek.

However, heuristic filtering has two noticeable drawbacks. First, writing rules is

not an easy task. Or it has to be left on the hands of an experienced email adminis-

trator, or it has to be simplified via the forms in commercial mail clients as described

above. The first case usually involves some programming, probably including a bit

of regular expression definition, which is hard and error-prone. The second one

implies a sacrifice of flexibility to gain simplicity.

The second drawback is that, even being the rules written by a community of

advanced users or administrators, the number of spammers is bigger, and moreover,

they have a strong economic motivation to design new methods to avoid detection.

In this arms race, the spammers will be always having the winning hand if the work

of administrators is not supported with automatic (learning-based) tools as those we

describe in the next section.

EMAIL SPAM FILTERING 63
3.2 Learning-Based Filtering

During the past 9 years, a new paradigm of content-based spam filtering has

emerged. Bayesian filters, or more in general, learning-based filters, have the ability

to learn from the email flow and to improve their performance over time, as they can

adapt themselves to the actual spam and legitimate email a particular user receives.

Their impressive success is demonstrated by the deep impact they have had on spam

email, as the spammers have to costly change their techniques in order to avoid

them. Learning-based filters are the current state of the art of email filtering, and the

main issue in this chapter.
3.2.1 Spam Filtering as Text Categorization
Spam filtering is an instance of a more general text classification task named Text

Categorizat ion [85] . Text Categorizat ion is the assign ment of text docum ents to a set

of predefined classes. It is important to note that the classes are preexistent, instead

of being generated on the fly (what corresponds to the task of Text Clustering). The

main application of text categorization is the assignment of subject classes to text

documents. Subject classes can be web directory categories (like in Yahoo!10),

thematic descriptors in libraries (like the Library of Congress Subject Headings11

or, in particular domains, the Medical Subject Headings12 by the National Library of

Medicine, or the Association for Computing Machinery ACM’s Computing Classi-

fication System descriptors used in the ACM Digital Library itself), personal email

folders, etc. The documents may be Web sites or pages, books, scientific articles,

news items, email messages, etc.

Text Categorization can be done manually or automatically. The first method is the

one used in libraries, where expert catalogers scan new books and journals in order to

get them indexed according to the classification system used. For instance, the

National Library of Medicine employs around 95 full-time cataloguers in order to

index the scientific and news articles distributed via MEDLINE.13 Obviously this is a

time- and money-consuming task and the number of publications is always increasing.

The increasing availability of tagged data has allowed the application of Machine

Learning methods to the task. Instead of hand classifying the documents, or manu-

ally building a classification system (as what we have named a heuristic filter
10 Available at: http://www.yahoo.com/.
11 Available at: http://www.loc.gov/cds/lcsh.html.
12 Available at: http://www.nlm.nih.gov/mesh/.
13 James Marcetich, Head of the Cataloguing Section of the National Library of Medicine, in personal

communication (July 18, 2001).

http://www.yahoo.com/
http://www.loc.gov/cds/lcsh.html
http://www.nlm.nih.gov/mesh/

64 E.P. SANZ ET AL.
above), it is possible to automatically build a classifier by using a Machine Learning

algorithm on a collection of hand-classified documents suitably represented. The

administrator or the expert does not have to write the filter, but let the algorithm

learn the document properties that make them suitable for each class. This way, the

traditional expert system ‘knowledge acquisition bottleneck’ is alleviated, as the

expert can keep on doing what he or she does best (that is, in fact, classifying), and

the system will be learning from his decisions.

The Machine Learning approach has achieved considerable success in a number

of tasks, and in particular, in spam filtering. In words by Sebastiani:

(Automated Text Categorization) has reached effectiveness levels comparable to those

of trained professionals. The effectiveness of manual Text Categorization is not 100%

anyway (. . .) and, more importantly, it is unlikely to be improved substantially by the

progress of research. The levels of effectiveness of automated TC are instead growing

at a steady pace, and even if they will likely reach a plateau well below the 100% level,

this plateau will probably be higher than the effectiveness levels of manual Text

Categorization. [85] (p. 47)

Spam filtering can be considered an instance of (Automated) Text Categorization,

in which the documents to classify are the user email messages, and the classes are

spam and legitimate email. It may be considered easy, as it is a single-class problem,

instead of the many classes that are usually considered in a thematic TC task.14

However, it shows special properties that makes it a very difficult task:

1. Both the spam and the complementary class (legitimate email) are not the-

matic, that is, they can contain messages dealing with several topics or themes.

For instance, as of 1999, a 37% of the spam email was ‘get rich quick’ letters, a

25% was pornographic advertisements, and an 18% were software offers.

The rest of the spam included Web site promos, investment offers, (fake)

health products, contests, holidays, and others. Moreover, some of the spam

types can overlap with legitimate messages, both commercial and coming

from distribution lists. While the percentages have certainly changed (health

and investment offers are now most popular), this demonstrates that current

TC systems that relay on words and features for classification may have

important problems because the spam class is very fragmented.

2. Spam has an always changing and often skewed distribution. For instance,

accordi ng to the email secur ity corpo ration MessageLa bs [66] , spam has gone

from 76.1% of the email sent in the first quarter of 2005, to 56.9% in the first

quarter of 2006, and back to 73.5% in the last quarter of 2006. On one side,
14 The Library of Congress Subject Headings 2007 edition has over 280000 total headings and

references.

EMAIL SPAM FILTERING 65
Machine Learning classifiers expect the same class distribution they learnt

from; any variation of the distribution may affect the classifier performance.

On the other, skewed distributions like 90% spam (reached in 2004) may make

a learning algorithm to produce a trivial acceptor, that is, a classifier that always

classifies a message as spam. This is due to the fact that Machine Leaning

algorithms try to minimize the error or maximize the accuracy, and the trivial

acceptor is then 90% accurate. And even worse, the spam rate can vary from

place to place, from company to company, and from person to person; in that

situation, is very difficult to build a fit-them-all classifier.

3. Like many other classification tasks, spam filtering has imbalanced misclassi-

fication costs. In other words, the kinds of mistakes the filter makes are

significant. No user will be happy with a filter that catches 99% of spam but

that deletes a legitimate message once-a-day. This is because false positives

(legitimate messages classified as spam) are far more costly than false nega-

tives (spam messages classified as legitimate, and thus, reaching the users’

inbox). But again, it is not clear which proportion is right: a user may accept a

filter that makes a false positive per 100 false negatives or per 1,000, etc.

It depends on the user’s taste, the amount of spam he or she receives, the place

where he or she lives, the kind of email account (work or personal), etc.

4. Perhaps the most difficult issue with spam classification is that it is an instance

of adversar ial cla ssification [25] . An adversar ial cla ssification task is one in

which there exists an adversary that modifies the data arriving at the classifier in

order to make it fail. Spam filtering is perhaps the most representative instance

of adversarial classification, among many others like computer intrusion detec-

tion, fraud detection, counter-terrorism, or a much related one: web spam

detection. In this latter task, the system must detect which webmasters manipu-

late pages and links to inflate their rankings, after reverse engineering the

ranking algorithm. The term spam, although coming from the email arena, is

so spread that it is being used for many other fraud problems: mobile spam, blog

spam, ‘spim’ (spam over Instant Messaging), ‘spit’ (spam over Internet Tele-

phony), etc. Regarding spam email filtering, standard classifiers like Naı̈ve

Ba yes were initially succe ssful [79] , but spam mers soon learned to fool them by

inserting ‘nonspam’ words into emails, breaking up ‘spam’ ones like ‘Viagra’

with spurious punctuation, etc. Once spam filters were modified to detect these

tricks , spamm ers started usin g new ones [34] .

In our opinion, these issues make spam filtering a very unusual instance of

Automated Text Categorization. Being said this, we must note that the standard

structure of an Automated Text Categorization system is suited to the problem of

spam filtering, and so we will discuss this structure in the next subsections.

66 E.P. SANZ ET AL.
3.2.2 Structure of Processing
The structure of analysis and learning in modern content-based spam filters that

make use of Machine Learning techniques, is presented in Fig. 4. In this figure,15 we

represent processes or functions as rounded boxes, and information items as plain

boxes. The analysis, learning, and retraining (with feedback information) of the

classifier are time- and memory-consuming processes, intended to be performed

offline and periodically. The analysis and filtering of new messages must be a fast

process, to be performed online, as soon as the message arrives at the system.

We describe these processes in detail below.
Analysis and
learning

Classifier

Filtering

Spam
Legitimate

email
Incoming
message

Analysis

Message
represented

Spam/
legitimate

Feedback
learning

ONLINEOFFLINE

FIG. 4. Processing structure of a content-based spam filter that uses Machine Learning algorithms.

15 That figure is a remake of that by Belkin and Croft for text retrieval in [7].

EMAIL SPAM FILTERING 67
The first ste p in a lea rning-based filter is getting a collectio n of spam and

legitimate mes sages and training a classifi er on it. Of course, the collec tion of

messages (the training collec tion) mus t repr esent the operating conditions of the

filter as accur ately as possible. Machine Learning cla ssifiers often perform poorly

when they have been traine d on nois y, inaccurate , and insu fficient data. There are

some pub licly available spam /legitim ate ema il collec tions, discusse d in Sect ion 4

because they are mos t often used as test collectio ns.

The first proce ss in the filter is learning a classifier on the training message s,

named instanc es or exam ples. This process involves analyzi ng the mes sages in order

to get a suitable represe ntation for learning from them. In this process, the mes sages

are often repr esented as attri bute-value vectors, in which attributes are word tokens

in the mes sages, and values are, for exam ple, b inary (the word toke n occur s on the

message or not). Next, a Mach ine Learning algori thm is fed with the represe nted

examples, and it produc es a classifier, that is a mode l of the message s or a functi on

able to classify new mes sages if they follow the suitable repr esentatio n. Message

representa tion and classifier lea rning are the key proce sses in a learning-b ased filter,

and so they are discusse d in detail in the next subse ctions.

Onc e the classifi er has been traine d, it is read y to filt er new mes sages. As they

arrive, they are processe d in order to represe nt them accordi ng to the format used in

the trainin g message s. That typical ly involves, for instance, ignorin g new words in

the mes sages, as classi fication is mad e on the basis of known words in the training

messages. The classifi er rece ives the represe nted mes sage and classifies it as spam

or legitimat e (pro bably with a proba bility or a scor e), and tagged accor dingly (or

routed to the quara ntine, the user mail box, or whatev er).

The main strengt h of Mach ine Le arning-base d spam filters is their ability to learn

from user relevan ce judgmen ts, adaptin g the filt er model to the act ual ema il rece ived

by the user . When the filt er com mits a mistake (or depend ing on the learning mode,

after every message), the correct outpu t is submitte d to the filter, which stores it for

further re- training. This ability is a very noticeable strengt h, because if every user

receives d ifferent email, every filt er is d ifferent (in ter ms of stored data and model

learned), and it is very comple x to prepare attac ks able to avoid the filt ers of all users

simultaneously. As spammers benefit relies on the number of messages read, they

are forced to prepare very sophisticated attacks able to break different vendor filters

with d ifferent learned models . As we discuss in Sect ion 6, they sometim es succeed

using increasingly complex techniques.
3.2.3 Feature Engineering
Feature engineering is the process of deciding, given a set of training instances,

which properties will be considered for learning from them. The properties are the

features or attributes, and they can take different values; this way, every training

68 E.P. SANZ ET AL.
instance (a legitimate or email message) is mapped into a vector in a multidimensional

space, in which the dimensions are the features. As many Machine Learning are very

slow or just unable to learn in highly dimensional spaces, it is often required to reduce

the number of features used in the representation, performing attribute selection

(determining a suitable subset of the original attributes) or attribute extraction

(mapping the original set of features into a new, reduced set). These tasks are also a

part of the feature engineering process.

3.2.3.1 Tokens and Weights. In Text Categorization and spam

filtering, the most often used features are the sequences of characters or strings

that mi nimally convey som e kind of mea ning in a text, that is, the words [39, 85] .

More generally, we speak of breaking a text into tokens, a process named tokeniza-

tion. In fact, this just follows the traditional Information Retrieval Vector Space

Model by Salton [81] . This mode l speci fies that, for the purpos e of retrieval , texts

can be represented as term-weight vectors, in which the terms are (processed) words

(our attributes), and weights are numeric values representing the importance of

every word in every document.

First, learning-based filters have taken relatively simple decisions in this sense,

following what was the state of the art on thematic text categorization. The simplest

definition of features is words, being a word any sequence of alphabetic characters,

and considering any other symbol as a separator or blank. This is the approach

followed in the seminal work in this field, by Sahami et al. [79] . This work has been

improv ed by Androut sopoulos et al. [4–6] , in which they make use of a lemmat izer

(or stemmer), to map words into their root, and a stoplist (a list of frequent words

that should be ignored as they bring more noise than meaning to thematic retrieval:

pronouns, prepositions, etc.). The lemmatizer used it Morph, included in the text

analysis package GATE,16 and the stoplist includes the 100 most frequent words in

the British National Corpus.17

In the previous work, the features are binary, that is, the value is one if the token

occurs in the message, and zero otherwise. There are several more possible defini-

tions of the weights or values, traditionally coming in the Information Retrieval

field. For instanc e, usin g the same kind of tokens or features, the auth ors of [39] and

[40] make use of TF. IDF weight s. Its defini tion is the follow ing one:

wij ¼ tfij � log2
N

dfi

� �
16 The GATE package is available at: http://gate.ac.uk/.
17 The British National Corpus statistics are available at: http://www.natcorp.ox.ac.uk/.

http://gate.ac.uk/
http://www.natcorp.ox.ac.uk/

EMAIL SPAM FILTERING 69
tfij being the number of times that the i-th token occurs in the j-th message, N the

number of messages, and dfi the number of messages in which the i-th token occurs.
The TF (Term Frequency) part of the weight represents the importance of the token

or term in the current document or messages, while the second part IDF (Inverse

Document Frequency) gives an ad hoc idea of the importance of the token in the

entire document collection. TF weights are also possible.

Even relatively straightforward decisions like lowercasing all words, can strongly

affect the performance of a filter. The second generation of learning filters has been

much influe nced by Graham’s work [46, 47] , who took advant age o f the increasing

power and speed of computers to ignore most preprocessing and simplifying deci-

sions taken before. Graham makes use of a more complicated definition of a token:

1. Alphanumeric characters, dashes, apostrophes, exclamation points, and dollar

signs are part of tokens, and everything else is a token separator.

2. Tokens that are all digits are ignored, along with HTML comments, not even

considering them as token separators.

3. Case is preserved, and there is neither stemming nor stoplisting.

4. Periods and commas are constituents if they occur between two digits. This

allows getting IP addresses and prices intact.

5. Price ranges like $20–$25 are mapped to two tokens, $20 and $25.

6. Tokens that occur within the To, From, Subject, and Return-Path lines, or

within URLs, get marked accordingly. For example, ‘foo’ in the Subject line

becomes ‘Subject*foo.’ (The asterisk could be any character you do not allow

as a constituent.)

Graham obtained very good results on his personal email by using this token

definition and an ad hoc version of a Bayesian learner. This definition has inspired

other more sophisticated works in the field, but has also led spammers to focus on

tokenization as one of the main vulnerabilities of learning-based filters. The current

trend is just the opposite: making nearly no analysis of the text, considering any

white-space separated string as a token, and letting the system learn from a really big

number of messages (tens of thousands instead of thousands). Even more, HTML is

not decoded, and tokens may include HTML tags, attributes, and values.
3.2.3.2 Multi-word Features. Some researchers have investigated

features spanning over two or more tokens, seeking for ‘get rich,’ ‘free sex,’ or

‘OEM software’ patterns. Using statistical word phrases has not resulted into very

good results in Informat ion Retrieval [82] , lea ding to even decrease s in eff ective-

ness. However, they have been quite successful in spam filtering. Two important

works in this line are the ones by Zd ziarski [102] and by Yerazu nis [100, 101] .

70 E.P. SANZ ET AL.
Zdziarsk i has first used case -sensitive words in his filt er Dspam , and latter added

what he has calle d ‘chaine d toke ns.’ These token s are sequences of tw o adjacent

words, and follow the additional rules:

l There are no chai ns betwee n the mes sage h eader and the message body.

l In the mes sage heade r, there are no chains betwee n indivi dual headers.

l Words can be com bined with no nword toke ns.

Chained tokens are not a replace ment for indivi dual tokens, but rather a comp le-

ment to be used in conjunct ion with them for better anal ysis. For exampl e, if we are

analyzi ng an ema il with the phrase ‘CALL NOW, IT’s FREE!,’ ther e are four toke ns

create d under standar d analysi s (‘CA LL,’ ‘N OW,’ ‘IT’s,’ and ‘FRE E!’) and three

more chai ned tokens: ‘CALL NOW,’ ‘NOW IT’s ,’ ‘IT’s FREE! .’ Cha ined toke ns

are traditionally named word bigrams in the fields of Language Modeling and

Information Retrieval.

InTable I,wecan seehowchained tokensmay lead tobetter (moreaccurate) statistics.

In this table, we show the probability of spam given the occurrence of a word, which

is the conditional probability usually estimated with the following formula18:

P spamð jwÞ � N spam;wð Þ
N wð Þ

where N(spam, w) is the number of times that w occurs in spam messages, and N(w)
is the number of times the word w occurs. Counting can be done also per message:
the number of spam messages in which w occurs, and the number of messages in

which w occurs.

In the table, we can see that the words ‘FONT’ and ‘face’ have probabilities next

to 0.5, meaning that they neither support spam nor legitimate email. However, the

probability of the bigram is around 0.2, what represents a strong support to

the legitimate class. This is due to the fact that spammers and legitimate users use
Table I

SOME EXAMPLES OF CHAINED TOKENS ACCORDING TO [102]

Token words P(spam|w1) P(spam|w2) P(spam|w1*w2)

w1=FONT, w2=face 0.457338 0.550659 0.208403

w1=color, w2=#000000 0.328253 0.579449 0.968415

w1=that, w2=sent 0.423327 0.404286 0.010099

18 Please note that this is the Maximum Likelihood Estimator.

EMAIL SPAM FILTERING 71
different patterns of HTML code. While the firsts use the codes ad hoc, the seconds
generate HTML messages with popular email clients like Microsoft Outlook or

Mozilla Thunderbird, that always use the same (more legitimate) patterns, like

putting the face attribute of the font next to the FONT HTML tag. We can also

see how being ‘color’ and ‘#000000’ quite neutral, the pattern ‘color=#000000’ (the

symbol ‘=’ is a separator) is extremely guilty. Zdziarski experiments demonstrate

noticeable decreases in the error rates and especially in false positives, when using

chained tokens plus usual tokens.

Yerazu nis follows a slightly more sophist icated approach in [100] and [101] .

Given that spammers had already begun to fool learning-based filters by disguising

spam-like expressions with intermediate symbols, he proposed to enrich the feature

space with bigrams obtained by combining tokens in a sliding 5-words window over

the training texts. He has called this Sparse Binary Polynomial Hash (SBPH), and it

is implemented in his CRM114 Discriminator filter. In a window, all pairs of sorted

words with the second word being the final one are built. For instance, given the

phrase/window ‘You can get porn free,’ the following four bigrams are generated:

‘You free,’ ‘can free,’ ‘get free,’ ‘porn free.’ With this feature and what the author

calls the Bayesian Chain Rule (a simple application of the Bayes Theorem), impres-

sive results have been obtained on his personal email, claiming that the 99.9% (of

accuracy) plateau has been achieved.

3.2.3.3 Feature Selection and Extraction. Dimensionality

reduction is a required step because it improves efficiency and reduces overfitting.

Many algorithms perform very poorly when they work with a large amount of

attributes (exceptions are k Nearest Neighbors or Support Vector Machines), so a

process to reduce the number of elements used to represent documents is needed.

There are mainly two ways to accomplish this task: feature selection and feature

extraction.

Feature selection tries to obtain a subset of terms with the same or even greater

predictive power than the original set of terms. For selecting the best terms, we have

to use a function that selects and ranks terms according to how good they are. This

function measures the quality of the attributes.

In the literature, terms are often selected with respect to their information gain

(IG) scor es [6, 79, 80], and sometim es accor ding to ad hoc metrics [42, 71] .

Information gain can be described as:

IG X;Cð Þ ¼
X

x¼0;1;c¼s;l

P X ¼ x;C ¼ cð Þlog2
P X ¼ x;C ¼ cð Þ

P X ¼ xð Þ � P C ¼ cð Þ

s being the spam class and l the legitimate email class in the above equation.

Interestingl y, IG is one of the best selection metrics [78] . Other qual ity metrics are

72 E.P. SANZ ET AL.
Mutu al Informat ion [35, 59], w 2 [13 , 99], Docume nt Freque ncy [85, 99] , or

Relev ancy Score [95].

Feature extracti on is a techniq ue that aims to gener ate an artificia l set of terms

differ ent and sma ller than the original one. Techni ques used for featur e extracti on in

Autom ated Text Categ orization are Term Clust ering and Late nt Semantic Index ing.

Term Clustering creates groups of terms that are semantically related. In particular,

cluster group words then can be synonyms (like thesaurus classes) or just in the same

semantic field (like ‘pitcher,’ ‘ball,’ ‘homerun,’ and ‘baseball’). Term Clustering, as far

as we know, has not been used in the context of spam filtering.

Latent Sema ntic Index ing [27] tries to alleviate the p roblem produced by poly-

semy and synonym y when indexing document s. It compres ses index vect ors creat-

ing a space wi th a lower dimens ionality by combining origina l vecto rs using patter ns

of terms that appear togethe r. Th is algebra ic techniq ue has been appl ied to spam

filtering by Gee and Cook with mode rate success [37] .
3.2.4 Learning Algorithms
One of the mos t important parts in a document cla ssification syst em is the

learni ng algo rithm. Given an ideally perfect cla ssification function F that assigns
each message a T/F v alue, 19 lea rning algo rithms have the goal to build a functi on �F
that appro ximates the function F . The appro ximation functi on is usual ly nam ed a

classi fier, and it oft en takes the form of mode l of the data it has been trained in. The

most accur ate the approximat ion is, the better the filter will perf orm.

A wi de variety of learni ng algori thms families have been appl ied to spam classi fi-

cation, including the proba bilistic Naı̈ve Bayes [4, 6, 42, 71, 75, 79, 80] , rule learner s

like Ripper [34, 71, 75], Instance Ba sed k-N earest Neighb ors (kNN) [6, 42],

Decis ion Trees like C4. 5 [14, 3 4], linear Support Vector Mach ines (SV M)

[30], classifi ers com mittee s like sta cking [80] and Boosting [14], and Cost-Sensi tive

learni ng [39]. By far, the mos t o ften applied learner is the proba bility-b ased cla ssifier

Naive Bayes. In the next sections, we will describe the most important learning

families.

To illustrate some of the algorithms that we are going to describe in following

sections, we are going to use the public corpus SpamBase.20 The SpamBase collec-

tion contains 4,601 messages, being 1,813 (39.4%) spam. This collection has been

preprocessed, and the messages are not available in raw form (to avoid privacy

problems). Each message is described in terms of 57 attributes, being the first 48
19 Being T equivalent to spam; that is, spam is the ‘‘positive’’ class because it is the class to be

detected.
20 This collection can be accessed at: ftp://ftp.ics.uci.edu/pub/machine-learning-databases/spambase/.

ftp://ftp.ics.uci.edu/pub/machine-learning-databases/spambase/

EMAIL SPAM FILTERING 73
continuous real [0,100] attributes of type word_freq_WORD (percentage of words in

the email that match WORD). A word is a sequence of alphanumeric characters, and

the words have been selected as the most unbalanced ones in the collection. The last

9 attributes represent the frequency of special characters like ‘$’ and capital letters.

In order to keep examples as simple as possible, we have omitted the nonword

features and selected the five attributes with higher Information Gain scores. We

have also binarized the attributes, ignoring the percentage values. The word attri-

butes we use are ‘remove,’ ‘your,’ ‘free,’ ‘money,’ and ‘hp.’ The first four words

correspond to spammy words, as they occur mainly in spam messages (within

expressions like ‘click here to remove your email from this list,’ ‘get free porn,’

or ‘save money’), and the fifth word is a clue of legitimacy, as it is the acronym of

the HP corporation in which the email message donors work.

3.2.4.1 Probabilistic Approaches. Probabilistic filters are histori-
cally the first filt ers and have been frequently used in recent years [46, 79] . This

approach is mostly used in spam filters because of its simplicity and the very good

results it can achieve.

This kind of classifiers is based on the Bayes Th eorem [61], computing the

probability for a document d to belong to a category ck as:

Pðck dj Þ ¼ P ckð Þ�Pðd ckj Þ
P dð Þ

This probability can be used to make the decision about whether a document

should belong to the category. In order to compute this probability, estimations

about the documents in the training set are made. When computing probabilities for

spam classification, we can obviate the denominator because we have only two

classes (spam and legitimate), and one document cannot be classified in more than

one of them, so denominator is the same for every k. PðckÞ can be estimated as the

number of documents in the training set belonging to the category, divided by the

total number of documents.

Estimating P d ckj Þð is a bit more complicated because we need in the training set

some documents identical to the one we want to classify. When using Bayesian

learners, it is very frequent to find the assumption that terms in a document

are independent and the order they appear in the document is irrelevant.

When this happen s, the learner is called ‘N aı̈ve Bayes’ learner [61, 65]. This way

probability can be computed in the following way:

Pðd ckj Þ ¼
YT
i¼1

P ti ckj Þð

74 E.P. SANZ ET AL.
T being the number of terms considered in the documents representation and ti the
i-th term (or feature) in the representation.

It is obvious that this assumption about term independency is not found in a real

doma in, but it helps to com pute proba bilities and rar ely affects accuracy [28]. That

is the reason why this is the approach used in most works.

The most popular version of a Naı̈ve Bayes classifier is that by Paul Graham

[46, 47] . Apart from usin g an ad hoc formula for computing terms proba bilities, it

makes use of only the 15 most extreme tokens, defined as those occurring in the

message that have a probability far from the half point (0.5). This approach leads to

more extreme probabilities, and has been proven more effective than using the

whole set of terms occurring or not in a message. So strong is the influence of this

work in the literature that learning-based filters have been quite often named

Bayesian Filters despite using radically different learning algorithms.
3.2.4.2 Decision Trees. One of the biggest problems of probabilistic

approaches is that results are not easy to understand for human beings, speaking in

terms of legibility. In the Machine Learning field, there are some families of learners

that are symbolic algorithms, with results that are easier to understand for people.

One of those is the family of Decision Tree learners.

A Decision Tree is a finite tree with branches annotated with tests, and leaves

being categories. Tests are usually Boolean expressions about term weights in the

document. When classifying a document, we move from top to down in the tree,

starting in the root and selecting conditions in branches that are evaluated as true.

Evaluations are repeated until a leaf is reached, assigning the document to the

category that has been used to annotate the leaf.

There are many algorithms used for computing the learning tree. The most

important ones are ID3 [35], C4.5 [18, 56, 61], and C5 [62].

One of the simplest ways to induce a Decision Tree from a training set of already

classified documents is:

1. Verify if all documents belong to the same category. Otherwise, continue.

2. Select a term ti from the document representation and, for every feasible

r weight values wir (i.e., 0 or 1), build a branch with a Boolean test ti = wir,

and a node grouping all documents that satisfy the test.

3. For each document group, go to 1 and repeat the process in a recursive way.

The process ends in each node when all grouped documents in it belong to the

same category. When this happens, the node is annotated with the category name.

EMAIL SPAM FILTERING 75
A critical aspect in this approach is how terms are selected. We can usually find

functions that measure the quality of the terms according to how good they are

separating the set of documents, using Information Gain, or Entropy metrics. This is

basically the algo rithm used by ID3 system [76]. This algorithm h as been grea tly

improved using better test selection techniques, and tree pruning algorithms. C4.5

can be considered a state of the art in Decision Tree induction. In Fig. 5, we show a

portion of the tree learned by C4.5 on our variation of the SpamBase collection. The

figure shows how a message that does not contain the words ‘remove,’ ‘money,’ and

‘free’ is classified as legitimate (often called ham), and if does not contain ‘remove,’

‘money,’ and ‘hp’ but ‘free,’ it is classified as spam. The triangles represent other

parts of the tree, omitted for the sake of readability.
3.2.4.3 Rule Learners. Rules of the type ‘if-then’ are the base of one of
the concept description languages most popular in Machine Learning field. On one

hand, they allow one to present the knowledge extracted using learning algorithms in

an easy to understand way. On the other hand, they allow the experts to exanimate

and validate that knowledge, and combine it with other known facts in the domain.

Rule learners algorithms build this kind of conditional rules, with a logic condi-

tion on the left part of it, the premise, and the class name as the consequent, on the
Remove = 1Remove = 0

Money = 1Money = 0

Free = 1Free = 0

hp = 1hp = 0
HAM

HAMSPAM

FIG. 5. Partial Decision Tree generated by C4.5 using the SpamBase corpus.

76 E.P. SANZ ET AL.
right part. The premise is usually built as a Boolean expression using weights of

terms that appear in the document representation. For binary weights, conditions can

be simplified to rules that look for if certain combination of terms appears or not in

the document.

Actually there are several techniques used to induce rules. One of the most

popul ar on es is the algorithm proposed in [68]. It consi sts of:

1. Iterate building one rule on each step, having the maximum classify accuracy

over any subset of documents.

2. Delete those documents that are correctly classified by the rule generated in

the previous step.

3. Repeat until the set of pending documents is empty.

As in other learners, the criteria for selecting the best terms to build rules in step 1

can be quality metrics like Entropy or Information Gain. Probably the most popular

and eff ective rule learner is Ripper, applied to spam filtering in [34, 71, 75]. If the

algorithm is applied to our variation of the SpamBase collection, we get the next

four rules:

(remove = 1) => SPAM

((free = 1) and (hp = 0)) => SPAM

((hp = 0) and (money = 1)) => SPAM

() => HAM

The rules have been designed to be applied sequentially. For instance, the second

rule is fired by a message that has not fired the first rule (and in consequence, does

not contain the word ‘remove’), and that contains ‘free’ but not ‘hp.’ As it can be

seen, the fourth rule is a default one that covers all the instances that are not covered

by the previous rules.
3.2.4.4 Support Vector Machines. Support Vector Machines

(SVM) have been recently introdu ced in Autom atic Classif ication [55, 56], but

they have become very popular rather quickly because of the very good results

obtaine d with these algo rithms espec ially in spam classificat ion [22, 30, 39].

SVMs are an algebraic method, in which maximum margin hyperplanes are built

in order to attempt to separate training instances, using, for example, Platt’s sequen-

tial minimal op timization algorithm (SMO) with polynomial kerne ls [72].

Training documents do not need to be linearly separable. Thus, the main method

is based on calculation of an arbitrary hyperplane for separation. However, the

simplest form of hyperplane is a plane, that is, a linear function of the attributes.

Fast to learn, impressively effective in Text Categorization in general, and in spam

EMAIL SPAM FILTERING 77
classification in particular, SVMs represent one of the leading edges in learning-

based spam filters.

The linear function that can be obtained when using the SMO algorithm on our

version of the SpamBase collection is:

f mð Þ ¼ � 1:9999 �w removeð Þ þ �0:0001 �w yourð Þ þ �1:9992 �w freeð Þ
þ �1:9992 �w moneyð Þ þ 2:0006 �w hpð Þ þ 0:9993

This function means that given a messagem, in which the weights of the words are
represented by ‘w_word,’ being 0 or 1, the message is classified as legitimate if

replacing the weights in the functions leads to a positive number. So, negative

factors like �1.9 (for ‘remove’) are spammy, and positive factors like 2.0 (for

‘hp’) are legitimate. Note that there is an independent term (0.9993) that makes a

message without any of the considered words being classified as legitimate.

3.2.4.5 k-Nearest Neighbors. Previous learning algorithms were

based on building models about the categories used for classification. An alternative

approach consists of storing training documents once they have been preprocessed

and represented, and when a new instance has to be classified, it is compared to

stored documents and assigned to the more appropriate category according to the

similarity of the message to those in each category.

This strategy does not build an explicit model of categories, but it generates a

classifier know as ‘instance based,’ ‘memory based,’ or ‘lazy’ [68]. The most

popular one is kNN [99] . The k parame ter represe nts the numb er of neighbors

used for classification. This algorithm does not have a training step and the way it

works is very simple:

1. Get the k more similar documents in the training set.

2. Select the most often category in those k documents.

Obviously, a very important part of this algorithm is the function that computes

similarity between documents. The most common formula to obtain the distance

between two d ocuments is the ‘cos ine distanc e’ [82], which is the cosine of the angle

between the vectors representing the messages that are being compared. This

formula is very effective, as it normalizes the length of the documents or messages.

In Fig. 6, we show a geometric representation of the operation of kNN. The

document to be classified is represented by the letter D, and instances in the positive

class (spam) are represented as X, while messages in the negative class are repre-

sented as O. In the left pane, we show the case of a linearly separable space. In that

case, a linear classifier and a kNN classifier would give the same outcome (spam in

this case). In the right pane, we can see a more mixed space, where kNN can show its

FIG. 6. Geometric representation of k-Nearest Neighbors (kNN) classifier. For making figure simpler,

Euclidean distance has been used instead of ‘cosine distance.’

78 E.P. SANZ ET AL.
full power by selecting the locally most popular class (legitimate), instead of the one

a linear classifier would learn (spam).

3.2.4.6 Classifier Committees. Another approach consists of

applying different models to the same data, combining them to get better results.

Bagging, boosting, and stacking are some of the techniques used to combine

different learners.

The concept of bagging (voting for classification, averaging for regression-type

problems with continuous dependent variables of interest) combines the predicted

classifications (prediction) from multiple models, or from the same type of model

for different learning data. Note that some weighted combination of predictions

(weighted vote, weighted average) is also possible, and commonly used. A sophisti-

cated (Machine Learning) algorithm for generating weights for weighted prediction

or voting is the boosting procedure. The concept of boosting (applied to spam

detect ion in [14]) is used to generate multiple models or cla ssifiers (for predi ction

or classification), and to derive weights to combine the predictions from those

models into a single prediction or predicted classification.

A simple algorithm for boosting works like this: Start by applying some method to

the learning data, where each observation is assigned an equal weight. Compute the

predicted classifications, and apply weights to the observations in the learning

sample that are inversely proportional to the accuracy of the classification. In

other words, assign greater weight to those observations that were difficult to

classify (where the misclassification rate was high), and lower weights to those

that were easy to classify (where the misclassification rate was low). Then apply the

classifier again to the weighted data (or with different misclassification costs), and

EMAIL SPAM FILTERING 79
continue with the next iteration (application of the analysis method for classification

to the re-weighted data).

If we apply boosting to the C4.5 learner, with 10 iterations, we obtain 10 decision

trees with weights, which are applied to an incoming message. The first tree is that

of Fig. 5, with weight 1.88, and the last tree has got only a test on the word ‘hp’: if it

does not occur in the message, it is classified as spam, and as legitimate otherwise.

The weight of this last tree is only 0.05.

The conce pt of stacking (short for Stacked Gen eralizatio n) [80] is used to

combine the predictions from multiple models. It is particularly useful when the

types of models included in the project are very different. Experience has shown that

combining the predictions from multiple methods often yields more accurate pre-

dictions than can be derived from any one method [97]. In stacki ng, the predict ions

from different classifiers are used as input into a meta-learner, which attempts to

combine the predictions to create a final best predicted classification.
3.2.4.7 Cost-Sensitive Learning. When talking about spam

filtering, we have to take into account that costs of misclassifications are not

balanced in real life, as the penalty of a false positive (a legitimate message

classified as spam) is much higher than the one of a false negative (a spam message

classified as legitimate). This is due to the risk of missing important valid messages

(like those from the users’ boss!) because messages considered spam can be

immediately purged or, in a more conservative scenario, conserved in a quarantine

that the user rarely screens. The algorithms commented above assume balanced

misclassification costs by default, and it is wise to use techniques to make those

algorithms cost -sensitiv e, in order to build more reali stic filters [39].

Thresholding is one of the methods used for making algorithms cost-sensitive.

Once a numeric-prediction classifier has been produced using a set of pre-classified

instances (the training set), one can compute a numeric threshold that optimizes cost

on another set of pre-classified instances (the validation set). When new instances

are to be classified, the numeric threshold for each of them determines if the

instances are classified as positive (spam) or negative (legitimate). The cost is

computed in terms of a cost matrix that typically assigns 0 cost to the hits, a positive

cost to false negatives, and a much bigger cost to false positives. This way, instead of

optimizing the error or the accuracy, the classifier optimizes the cost.

The weighting method consists of re-weighting training instances according to the

total cost assigned to each class. This method is equivalent to stratification by over-

sampling as describ ed in [29]. The main idea is to replicat e instanc es of the most

costly class, to force the Machine Learning algorithm to correctly classify that class

80 E.P. SANZ ET AL.
instances. Another effective cost-sensitive meta-learner is the MetaCost method

[29], based on bu ilding an ensembl e of classi fiers using the baggi ng method,

relabeling training instances according to cost distributions and the ensemble out-

comes, and finally training a classier on the modified training collection.

In [39], the exper iments with a numb er of Mach ine Learning algo rithms and the

three previous cost-sensitive schemas have shown that the combination of weighting

and SVM is the most effective one.
3.3 Filtering by Compression

Compression has recently emerged as a new paradigm for Text Classification in

gener al [90], and for spam filtering in particular [11]. Compr ession demonst rates

high performance in Text Categorization problems in which classification depends

on nonword features of a document, such as punctuation, word stems, and features

spanning more than one word, like dialect identification and authorship attribution.

In the case of spam filtering, they have emerged as the top performers in competitive

evaluat ions like TREC [19].

An important problem of Machine Learning algorithms is the dependence of the

results obtained with respect to their parameter settings. In simple words, a big

number of parameters can make it hard to find the optimal combination of them, that

is, the one that leads to the most general and effective patterns. Keogh et al. discuss

the need of a parameter-free algorithm:

Data mining algorithms should have as few parameters as possible, ideally none. A

parameter-free algorithm prevents us from imposing our prejudices and presumptions

on the problem at hand, and let the data itself speak to us. [57] (p. 206)

Keogh presents data compression as a Data Mining paradigm that realizes this

vision. Data compression can be used as an effective Machine Learning algorithm,

especially on text classification tasks. The basic idea of using compression in a text

classification task is to assign a text item to the class that best compresses it. This can

be straightforwardly achieved by using any state-of-the-art compression algorithm

and a command line process. As a result, the classification algorithm (the compres-

sion algorithm plus a decision rule) is easy to code, greatly efficient, and it does not

need any preprocessing of the input texts. In other words, there is no need to

represent it as a feature vector, avoiding one of the most difficult and challenging

tasks, that is, text representation. As a side effect, this makes especially hard to

reverse engineer the classification process, leading to more effective and stronger

spam detection systems.

EMAIL SPAM FILTERING 81
The rule of classifying a message into the class that best compresses it is a

straightforward application of the Minimum Description Length Principle (MDL)

[11] that favors the most compact (shor t) explanat ion of the data. The recent works

by Sculley and Brodley [84] and by Bratk o et al. [11] formali ze this intuition in a

different way; we will follow partially the work by Sculley and Brodley.

Let C(.) be a compression algorithm. A compression algorithm is a function that

transforms strings into (shorter) strings.21 A compression algorithm usually gener-

ates a (possibly implicit) model. Let C(X|Y) also be the compression of the string Y

using the model generated by compressing the string X. We denote by |S| the length

of a string S, typically measured as a number of bits, and by XY the string Y

appended to the string X.

The MDL principle states that, given a class A of text instances, a new text X

should be assigned to A if it compresses X better than AC. If we interpret the class A

as a sequence of texts (and so it is AC), the decision rule may be:

class Xð Þ ¼ arg min
c¼A;AC

C cð jXj Þf jg

This formula is one possible decision rule for transforming a compression algorithm

into a classifier. The decision rule is based on the ‘approximate’ distance22 |C(A|X)|.
Sculley and Br odley [84] revi ew a numb er of metrics and measures that are beyond

the scope of this presentation.

The length of the text X compressed with the model obtained from a class A can

be approached by compressing AX:

C Að jXj Þj � C AXð Þj j � C Að Þj j
This way, any standard compressor can be used to predict the class of a text X,

given the classes A and AC.

Foll owing [11], there are two basic kinds of com pressors : two part and adapt ive

coders. The first class of compressors first trains a model over the data to encode,

and then encode the data. These require two passes over the data. These kinds of

encoders append the data to the model, and the decoder reads the model and then

decodes the data. The most classical example of this kind of compressors is a double

pass Huffman coder, which accumulates the statistics for the observed symbols,

builds a statistically optimal tree using a greedy algorithm, and builds a file with the

tree and the encoded data.
21 This presentation can be made in terms of sequences of bits instead of strings as sequences of

characters.
22 This is not a distance in the proper sense, as it does not satisfy all the formal requirements of a

distance.

82 E.P. SANZ ET AL.
Adaptive compressors instead start with an empty model (e.g., a uniform distribu-

tion over all the symbols), and update it as they are encoding the data. The decoder

repeats the process, building its own version of the model as the decoding progresses.

Adaptive coders require a single pass over the data, so they aremore efficient in terms

of time. They have also reached the quality of two-part compressors in terms of

compressing ratio, and more interestingly for our purposes, they make the previous

approximation an equality. Examples of adaptive compressors include all of those

used in our work, which we describe below. For instance, the Dynamic Markov

Compression (DMC), the Prediction by Partial Matching (PPM), and the family of

Lemp el-Ziv (LZ) algo rithms are all adaptiv e methods (see [11] and [84]).

Let us get back to the parameter issue. Most compression algorithms do not require

any preprocessing of the input data. This clearly avoids the steps of feature represen-

tation and selection usually taken when building a learning-based classifier. Also,

most often compressors have a relatively small number of parameters, approaching

the vision of a parameter-free or parameter-light Data Mining. However, a detailed

analysi s perfo rmed by Sculley and Brodl ey in [84] bri ngs light to thi s point, as they

may depend on explicit parameters in compression algorithms, the notion of distance

used, and the implicit feature space defined by each algorithm. On the other hand, it is

extremely easy to build a compression-based classifier by using the rules above and a

standard out-of-the-shelf compressor, and they have proven to be effective on a

number of tasks, and top-performer in spam filtering. In words by Cormack (one of

the organizers of the reputed TREC spam Track competition) and Bratko:

‘‘At TREC 2005, arguably the best-performing system was based on adaptive data

compression methods’’, and ‘‘one should not conclude, for example, that SVM and LR

(Logistic Regression) are inferior for on-line filtering. One may conclude, on the other

hand, that DMC and PPM set a new standard to beat on the most realistic corpus and

test available at this time.’’ [21]

While other algorithms have been used in text classification, it appears that only

DMC and PPM have been used in spam filtering. The Dynamic Markov Compres-

sion [11] algori thm models an inf ormation source with a fin ite state machin e (FSM) .

It constructs two variable-order Markov models (one for spam and one for legitimate

email), and classifies a message according to which of the models predicts it best.

The Partial Prediction Matching algorithm is a back-off smoothing technique for

finite-order Markov models, similar to back-off models used in natural language

processing, and has set the standard for lossless text compression since its introduc-

tion over two decad es ago accor ding to [17]. The best of both is DM C, but PPM is

better known and very competitive with it (and both superior to Machine Learning

approaches at spam filtering). There are some efforts that also work at the character

level (in combination with some ad hoc scoring function), but they are different

EMAIL SPAM FILTERING 83
from compression as this has been principle designed to model sequential data. In

particular, the IBM’ s Chun g-Kwei system [77] uses pattern matching tec hniques

originally devel oped for DNA seque nces, and the Pampapat hi et al. [70] have

proposed a filtering technique based on the suffix tree data structure. This reflects

the trend of minimizing tokenization complexity in order to avoid one of the most

relevant vulnerabilities of learning-based filters.
3.4 Comparison and Summary

Heuristic filtering relying on the manual effort of communities of experts has

been quickly beaten by spammers, as they have stronger (economic) motivation and

time. But automated with content-based methods, a new episode in the war against

spam is being written. The impact of and success of content-based spam filtering

using Machine Learning and compression is significant, as the spammers have

invested much effort to avoid this kind of filtering, as we review below. The main

strength of Machine Learning is that it makes the filter adapted to the actual users’

email. As every user is unique, every filter is different, and it is quite hard to avoid

all vendors’ and users’ filters simultaneously.

The processing structure of learning-based filters includes a tokenization step in

which the system identifies individual features (typically strings of character, often

meaningful words) on which the system relies to learn and classify. This step has

been recognized as the major vulnerability of learning-based filtering, and the

subject of most spammers’ attacks, in the form of tokenization attacks and image

spam. The answer from the research community has been fast and effective,

focusing on character-level modeling techniques based on compression, that detect

implicit patterns that not even spammers know they are using! Compression-based

methods have proven top effective in competitive evaluations, and in consequence,

that can be presented as the current (successful) trend in content-based spam

filtering.
4. Spam Filters Evaluation

Classifier system evaluation is a critical point: no progress may be expected if

there is no way to assess it. Standard metrics, collections, and procedures are

required, which allow cross-comparison of research works. The Machine Learning

community has well-established evaluation methods, but these have been adapted

and improved when facing what is probably the main difficulty in spam filtering: the

problem of asymmetric misclassification costs. The fact that a false positive

84 E.P. SANZ ET AL.
(a legitimate message classified as spam) is much more damaging than a false

negative (a spam classified as legitimate) implies that evaluation metrics must

attribute bigger weights to worse errors, but . . . w h ic h w ei gh ts ? W e a na ly ze t hi s

point in Se cti on 4 .3 .

Scientifi c evaluat ions have well -defined procedure s, consol idated metrics , and

public test collec tions that make cross-c omparison of results relative ly easy. Th e

basis of scientif ic experiment s is that they have to be reproduci ble. There are a

numb er of indus trial evaluat ions, perf ormed by the filter vendors themse lves and

typicall y present ed in their white papers, and mor e int erestingly , those perform ed by

special ized com puter magazines. For instanc e, in [53] , the antispa m applian ces

Border Ware MXtrem e MX -200 and Proof point P8 00 Mess age Prot ection Appli ance

are compare d usin g an ad hoc list of crite ria, includi ng Mana geabilit y, Perf ormance ,

Ease of Use, Setup, and Value. Or in [3] , 10 systems are again tested accordi ng to a

differ ent set of crite ria, allow ing no possibl e comparison . The limitations of indus -

trial eval uations include self-d efined criteri a, private test collections, and self-

defined perf ormance metrics . In conse quence , we focus on scientif ic eval uations

in this chapter .

The main issues in the evaluation of spam filt ers are the tes t collec tions, the

running procedure , and the eval uation metrics . We discuss these issues in the next

subse ctions, wi th special attent ion to what we consider a real and accur ate standar d

in current spam filter eval uation, the TREC spam Track com petition.
4.1 Test Collections

A test collec tion is a set of manual ly classified message s that are sent to a

classi fier in order to measur e its effective ness, in terms of hits and mist akes. It is

important that test collectio ns are publicl y available , because it allow s the com pari-

son of appro aches and the improvem ent of the tec hnology. On the other hand,

message collections may include privat e email , so privacy protectio n is an iss ue.

There are a number of wor ks in which the tes t collec tions emp loyed are kept privat e,

as they are personal ema ils from the author or are donat ed to them with the condi tion

of being kept privat e, like in early wor ks [30], [75] , and [79], or even in more recent

works like [36] , [47], and [69]. Th e privacy problem can be solved in different ways:

l Serving a processed version of the messages that does not allow rebuilding

them. This approach has been followed in the SpamBase, PU1, and the 2006

ECML-PKDD Discovery Challenge public collections.

l Building the collection using only messages from public sources. This is the

approach in the Lingspam and SpamAssassin Public Corpus.

EMAIL SPAM FILTERING 85
l Keeping the collection private in the hands of a reputable institution that

performs the testing on behalf of the researchers. The TREC spam Track

competition is such an institution, and makes some test collections public, and

keeps some others private.

In the next paragraphs, we present the test collections that have been publicly

available, solving the privacy problem:

l SpamBase23 is an email message collection containing 4,601 messages, being

1,813 (39%) marked as spam. The collection comes in preprocessed (not raw)

form, and its instances have been represented as 58-dimensional vectors. The

first 48 features are words extracted from the original messages, without stop

list or stemming, and selected as the most unbalanced words for the UCE class.

The next 6 features are the percentage of occurrences of the special characters

‘;,’ ‘(,’ ‘[,’ ‘!,’ ‘$,’ and ‘#.’ The following 3 features represent different

measures of occurrences of capital letters in the text of the messages. Finally,

the last feature is the class label. This collection has been used in, for example,

[34] , and its main probl em is that it is prepr ocessed, and in conse quence , it is

not possible to define and test other features apart from those already included.

l The PU1 corpus,24 presented in [6], consists of 1,099 messages, being 481

(43%) spam and 618 legitimate. Been received by Ion Androutsopoulos, it has

been processed by removing attachments and HTML tags. To respect privacy

issues, in the publicly available version of PU1, fields other than ‘Subject:’

have been removed, and each token (word, number, punctuation symbol, etc.)

in the bodies or subjects of the messages was replaced by a unique number, the

same number throughout all the messages. This hashing ‘encryption’ mecha-

nism makes impossible to perform experiments with other tokenization tech-

niques and features apart from those included by the authors. It has been used

in, for example, [14] and [52] .

l The ECML-PKDD 2006 Discovery Challenge collection25 has been collected

by the challenge organizers in order to test how to improve spam classification

usin g un tagged data [9]. It is avai lable in a proce ssed form: str ings that occur

fewer than four times in the corpus are eliminated, and each message is

represented by a vector indicating the number of occurrences of each feature

in the message. The same comments to PU1 are applicable to this collection.
23 This collection has been described above, but some information is repeated for the sake of

comparison.
24 Available at: http://www.aueb.gr/users/ion/data/PU123ACorpora.tar.gz.
25 Available at: http://www.ecmlpkdd2006.org/challenge.html.

http://www.aueb.gr/users/ion/data/PU123ACorpora.tar.gz
http://www.ecmlpkdd2006.org/challenge.html

86 E.P. SANZ ET AL.
l The Lings pam test collec tion, 26 pres ented in [4] and used in many studies

(including [14], [39], and very rece nt on es like [21]), has been built by mixin g

spam mes sages with mes sages extract ed from spam-f ree public archive s of

mailing lists. In particula r, the legitim ate message s have been extract ed from

the Lingui st list, a mode rated (hence, spam-free) list about the profession and

science of linguistics . The number of legit imate message s is 2 ,412, and the

number of spam message s is 481 (16%). Th e Linguist mes sages are, o f cours e,

more topic-spec ific than most users’ incoming ema il. They are less standar -

dized, and for instance, they contain job post ings, soft ware availabili ty

announc ements, and even flame-l ike respo nses. In consequ ence, the conclu-

sions obta ined from exper iments performed on it are limit ed.

l The SpamAssassin Public Corpus27 has been collected by Justin Mason (a Spam-

Assassin developer) with the public contributions of many others, and consists of

6 ,0 47 m es sa ge s, b e in g 1 ,8 97 (31 %) s pa m. T h e l eg it im at e m es sa ge s (na me d ‘ ha m’

in this collection) have been further divided into easy and hard (the ones that make

use of rich HTML, colored text, spam-like words, etc.). As it is relatively big,

realistic, and public, it has become the standard in spam filter evaluation. Several

works make use of it (including [11], [21], [22], and [67]), and it has been routinely

used as a benchmark in the TREC spam Track [19].

Apart from these collections, the TREC spam Track features several public and

private test collections, like the TREC Public Corpus – trec05p-1, and the Mr. X, S.B.,

and T.M. Private Corpora. For instance, the S.B. corpus consists of 7,006 messages

(89% ham, 11% spam) received by an individual in 2005. The majority of all ham

messages stems from four mailing lists (23%, 10%, 9%, and 6% of all ham messages)

and private messages received from three frequent correspondents (7%, 3%, and 2%,

respectively), while the vast majority of the spam messages (80%) are traditional spam:

viruses, phishing, pornography, and Viagra ads.

Most TREC collections have two very singula r and interesting prope rties:

1. Messages are chron ologica lly sorted, allow ing testing the eff ect of increm ental

learning, what we men tion belo w as online testing.

2. They have build by using an increm ental procedure [20] , in which message s

are tagged using several antispam filters, and the classification is reviewed by

hand when a filter disagrees.

TREC collections are also very big in comparison with the previously

described ones, letting the researchers arriving at more trustable conclusions.
26 Available at: http://www.aueb.gr/users/ion/data/lingspam_public.tar.gz.
27 Available at: http://spamassassin.apache.org/publiccorpus/.

http://www.aueb.gr/users/ion/data/lingspam_public.tar.gz
http://spamassassin.apache.org/publiccorpus/

EMAIL SPAM FILTERING 87
In other words, TREC spam Track has set the evaluation standard for antispam

learning-based filters.

4.2 Running Test Procedure

The most frequent evaluation procedure for a spam filter is batch evaluation. The

spam filter is trained on a set of messages, and applied to a different set of test

messages. The test messages are labeled, and it is possible to compare the judgment

of the filter and of the expert, computing hits and mistakes. It is essential that the test

collection is similar to, but disjoint of, the training one, and that it reflects opera-

tional settings as close as possible. This is the test procedure employed in most

evaluations using the SpamBase, PU1, and Linspam test collections.

A refinement of this evaluation is to performN-fold cross-validation. Instead of using
a separate test collection, portions of the labeled collection are sometimes used as

training and as test sets. In short, the labeled collection is randomlydivided intoN sets or

folds (preserving the class distribution), andN tests are run, usingN�1 folds as training

set, and the remainingone as test set. The results are averagedover theN runs, leading to

more statistically valid figures, as the experiment does not depend on unpredictable

features of the data (all of them are used for training and testing). This procedure has

been sometimes followed in spam filtering evaluation, like in [39].

A major criticism to this approach is that the usual operation of spam filters allows

them to learn from the mistakes they made (if the user reports them, of course). The

batch evaluation does not allow the filters to learn as it classifies, and ignores

chronological ordering if available. The TREC organizers have instead approached

filter testing as an on-line learning task in which messages are presented to the filter,

one at a time, in chronological order. For each message, the filter predicts its class

(spam or legitimate) by computing a score S which is compared to a fixed but

arbitrary threshold T. Immediately after the prediction, the true class is presented to

the filter so that it might use this information in future predictions. This evaluation

procedure is supported with a specific set of scripts, requiring a filter to implement

the next command-line functions:

l Initialize – creates any files or servers necessary for the operation of the filter.

l Classify message – returns ham/spam classification and spamminess score for

message.

l Train ham message – informs filter of correct (ham or legitimate) classification

for previously classified message.

l Train spam message – informs filter of correct (spam) classification for previ-

ously classified message.

l Finalize – removes any files or servers created by the filter.

88 E.P. SANZ ET AL.
This is the standard procedure used in TREC. An open question is if both methods

are equivalent, in term of the results obtained in public works. Cormack and Bratko

have mad e in [21] a system atic compari son of a number of top-per forming

algorithms following both procedures, and arriving at the conclusion that the current

leaders are compression methods, and that the online procedure is more suitable

because it is closer to operational settings.
4.3 Evaluation Metrics

We have divided the metrics used in spam filtering test studies into three groups:

the basic metrics employed in the initial works, the ROCCH method as a quite

advanced one that addresses prior errors, and the TREC metrics as the current

standard.
4.3.1 Basic Metrics
The effectiveness of spam filtering systems is measured in terms of the number of

correct and incorrect decisions. Let us suppose that the filter classifies a given

number of messages. We can summarize the relationship between the system

classifications and the correct judgments in a confusion matrix, like that shown in

Table II. Each entry in the table specifies the number of documents with the

specified outcome. For the problem of filtering spam, we take spam as the positive

class (+) and legitimate as the negative class (–). In this table, the key ‘tp’ means
‘number of true-positive decisions’ and ‘tn,’ ‘fp,’ and ‘fn’ refer to the number of

‘true-negative,’ ‘false-positive,’ and ‘false-negative’ decisions, respectively.

Most traditional TC evaluation metrics can be defined in terms of the entries of

the confusion matrix. F1 [85] is a measure that give s equal importanc e to reca ll and

precision. Recall is defined as the proportion of class members assigned to a

category by a classifier. Precision is defined as the proportion of correctly assigned
Table II

A SET OF N CLASSIFICATION DECISIONS REPRESENTED

AS A CONFUSION MATRIX

+ �
+ tp fp

� fn tn

EMAIL SPAM FILTERING 89
documents to a category. Given a confusion matrix like the one shown in the table,

recall (R), precision (P), and F1 are computed using the following formulas:

R ¼ tp

tpþ fn

R ¼ tp

tpþ fp

F1 ¼ 2RP

Rþ P

Recall and precision metrics have been used in some of the works in spam filtering

(e.g., [4–6, 42, 8 0]). Other works mak e use of sta ndard ML metrics , like accuracy and

error [71, 75] . Recal l that not all kinds of classificat ion mistakes have the same

importance for a final user. Intuitively, the error of classifying a legitimate message

as spam (a false positive) is far more dangerous than classifying a spam message as

legitimate (a false negative). This observation can be re-expressed as the cost of a

false positive is greater than the cost of a false negative in the context of spam

classification. Misclassification costs are usually represented as a cost matrix in

which the entry C(A,B) means the cost of taking a A decision when the correct

decision is B, that is the cost of A given B (cost(A|B)). For instance, C(+,–) is the cost

of a false-positive decision (classifying legitimate email as spam) and C(–,+) is the

cost of a false-negative decision.

The situation of unequal misclassification costs has been observed in many other

ML doma ins, like fraud and oil spills detection [74] . Th e metric used for evaluating

classification systems must reflect the asymmetry of misclassification costs.

In the area of spam filtering, several cost-sensitive metrics have been defined,

including weighted accuracy (WA), weighted error (WE), and total cost ratio

(TCR) (see e.g., [5]). Given a cost matrix, the cost ratio (C R) is defined as the

cost of a false positive over the cost of a false negative. Given the confusion matrix

for a classifier, the WA, WE, and TCR for the classifier are defined as:

WA ¼ CR� tnþ tp

CR tnþ fpð Þ þ tpþ fnð Þ

WE ¼ CR� fpþ fn

CR tnþ fpð Þ þ tpþ fnð Þ

TCR ¼ tnþ fp

CR� fpþ fn

90 E.P. SANZ ET AL.
TheWA andWEmetrics are versions of the standard accuracy and error measures

that penalize those mistakes that are not preferred. Taking the trivial rejecter that

classifies every message as legitimate (equivalent to not using a filter) as a baseline,

the TCR of a classifier represents to what extent is a classifier better than it. These

metrics are less standard than others used in cost-sensitive classification, as

Expected Cost, but to some extent they are equivalent. These metrics have been

calculated for a variety of classifiers, in three scenarios corresponding to three CR

values (1, 9, and 999) [4–6, 42, 80] .

The main problem presented in the literature on spam cost-sensitive categorization

is that the CR used does not correspond to real world conditions, which are unknown

and may be highly variable. There is no evidence that a false positive is neither 9 nor

999 times worse than the opposite mistake. As class distributions, CR values may

vary from user to user, from corporation to corporation, and from ISP to ISP. The

evaluation methodology must take this fact into account. Fortunately, there are

methods that allow evaluating classifiers effectiveness when target (class distribution

and CR) conditions are not known, as in spam filtering. In the next subsection, we

introduce the ROCCH method for spam filtering.
4.3.2 The ROCCH Method
The receiver operating characteristics (ROC) analysis is a method for evaluating

and comparing a classifiers performance. It has been extensively used in signal

detection, and introduced and extended by Provost and Fawcett in the Machine

Learn ing commun ity (see e.g., [74]). In ROC analysis, instead of a single value of

accuracy, a pair of values is recorded for different class and cost conditions a

classifier is learned. The values recorded are the false-positive (FP) rate and the

true-positive (TP) rate, defined in terms of the confusion matrix as:

FP ¼ fp

fpþ tn

TP ¼ tp

tpþ fn

The TP rate is equivalent to the recall of the positive class, while the FP rate is

equivalent to 1 less than the recall of the negative class. Each (FP,TP) pair is plotted

as a point in the ROC space. Most ML algorithms produce different classifiers in

different class and cost conditions. For these algorithms, the conditions are varied to

obtain a ROC curve. We will discuss how to get ROC curves by using methods for

making ML algorithms cost-sensitive.

EMAIL SPAM FILTERING 91
One point on a ROC diagram dominates another if it is above and to the left, that is,

has a higher TP and a lower FP. Dominance implies superior performance for a variety

of common performance measures, including expected cost (and then WA and WE),

recall, and others. Given a set of ROC curves for several ML algorithms, the one

which is closer to the left upper corner of the ROC space represents the best algorithm.

Dominance is rarely got when comparing ROC curves. Instead, it is possible to

compute a range of conditions in which one ML algorithm will produce at least

better results than the other algorithms. This is done through the ROC convex hull

(ROCCH) method, first pres ented in [74]. Concis ely, given a set of (FP,T P) points,

that do not lie on the upper convex hull, corresponds to suboptimal classifiers for any

class and cost conditions. In consequence, given a ROC curve, only its upper convex

hull can be optimal, and the rest of its points can be discarded. Also, for a set of ROC

curves, only the fraction of each one that lies on the upper convex hull of them is

retained, leading to a slope range in which the ML algorithm corresponding to the

curve produces best performance classifiers. An example of ROC curves taken from

[39] is present ed in Fig. 7. As it can be seen, ther e is no sing le dominator .

The ROC analysis allows a visual comparison of the performance of a set of ML

algorithms, regardless of the class and cost conditions. This way, the decision of which

is the best classifier orML algorithm can be delayed until target (real world) conditions

are known, and valuable information can be obtained at the same time. In the

most advantageous case, one algorithm is dominant over the entire slope range.
0.0
0.9

1.0

0.1 0.1 0.2 0.2

C4.5
SVM

NB
Roc CH

PART

FIG. 7. A ROC curve example.

92 E.P. SANZ ET AL.
Usually, several ML algorithms will lead to classifiers that are optimal (among those

tested) for different slope ranges, corresponding to different class and cost conditions.

Operatively, the ROCCH method consists of the following steps:

1. For each ML algorithm, obtain a ROC curve and plot it (or only its convex

hull) on the ROC space.

2. Find the convex hull of the set of ROC curves previously plotted.

3. Find the range of slopes for which each ROC curve lies on the convex hull.

4. In case the target conditions are known, compute the corresponding slope

value and output the best algorithm. In other case, output all ranges and best

local algorithms or classifiers.

We have made use of the ROCCH method for evaluating a variety of ML

algori thms for the problem o f spam filtering in [39]. This is the very first time that

ROC curves have been used in spam filtering testing, but they have become a

standard in TREC evaluations.
4.3.3 TREC Metrics
TREC Spam Track metrics [19] are considered also a stan dard in terms of spam

filtering evaluation. The main improvement over the ROC method discussed above

is their adaptation to the online procedure evaluation.

As online evaluation allows a filter to learn from immediately classified errors, its

(TP,FP) rate is always changing and the values improving with time. The ROC

graph is transformed into a single numeric figure, by computing the Area Under the

ROC curve (AUC). As the evaluated filters are extremely effective, it is better to

report the inverse 1�AUC value, which is computed over time as the learning-

testing online process is active. This way, it is possible to get an idea of how quickly

the systems learn, and at which levels of error the performance arrives a plateau.

In Fig. 8, a ROC Learning Curv e graph is also shown, taken from [19] for Mr. X text

collection. It is easy to see how filters start committing a relatively high number of

mistakes at the beginning of the ROC Learning Curve, and they improve their result

finally achieving an average performance level.
5. Spam Filters in Practice

Implementing effective and efficient spam filters is a nontrivial work. Depending

on concrete needs, it should be implemented in a certain way and the management of

spam messages can vary depending on daily amount of messages, the estimated

impact of possible false positives, and other peculiarities of users and companies.

5000
0.01

0.10

(1
-R

O
C

A
)%

 (
lo

gi
t s

ca
le

)

1.00

10.00

50.00

ROC learning curve

10,000 15,000 20,000 25,000

Messages
30,000 35,000 40,000 45,000 50,0000

kidSPAM1mrx
tamSPAM1mrx

lbSPAM2mrx
ijSPAM2mrx

yorSPAM2mrx

621SPAM1mrx

crmSPAM2mrx

FIG. 8. A ROC learning curve from TREC.

EMAIL SPAM FILTERING 93
Figure 9 shows a diagram of the mail transportation process, where spam filters can

be implemented at any location in this process, although the most common and

logical ones are in the receiver’s SMTP Server/Mail Delivery Agent (server side) or

in the receiver’s email client (client side). There are also some enterprise solutions

that perform the spam filtering in external servers, which is not reflected in this

diagram as not being usual at the current moment.

There are important questions that we cannot obviate and we need to test carefully

for their response before implementing or implanting a spam filter solution. Should

we implement our spam filter in the client side or in the server side? Should we use

any kind of collaborative filtering? Should the server delete the spam messages or

the user should decide what to do with those undesirable messages?
5.1 Server Side Versus Client Side Filtering

The first important choice when implementing or integrating a spam filter in our

IT infrastructure is the location of the filter: in the client side or in the server side.

Each location has its own benefits and disadvantages and those must be measured to

choose the right location depending on the user/corporation concrete needs.

Sender’s email client

Server side
filtering

Receivers’s email client

Sender’s SMTP server

Receiver’s SMTP client

Mail delivery agent

Receiver’s POP server

Client side
filtering

FIG. 9. Email transport process and typical location of server and client side filters. Filters can,

virtually, be implemented in any step of the process.

94 E.P. SANZ ET AL.
The main features of server side spam filters are:

l They reduce the network load, as the server does not send the mails categorized

as spam, which can be the biggest part of the received messages.

l They also reduce the computational load on the client side, as the mail client

does not need to check each received message. This can be very helpful when

most clients have a low load capacity (handhelds, mobile phones, etc.).

l They allow certain kinds of collaborative filtering or a better integration of

different antispam techniques. For example, when detecting spam messages

received in different users’ account from the same IP, this can be added to a

black list preventing other users to receive messages from the same spammer.

On the other side, client side spam filters:

l Allow a more personalized detection of management of the messages.

l Integrate the knowledge from several email accounts belonging to the same

user, preventing the user to receive the same spam in different email accounts.

l Reduce the need of dedicated mail servers as the computation is distributed

among all the users’ computers.

EMAIL SPAM FILTERING 95
As corporations and other organizations grow, their communications also need to

grow and they increasingly rely on dedicated servers and appliances that are

responsible for email services, including the email server, and the full email security

suite of services, including the antivirus and antispam solutions. Appliances and

dedicated servers are the choice for medium to big corporations, while small

organizations and individual users can group the whole Internet services in one

machine. In big corporations, each Internet-related service has its own machine, as

the computational requirements deserve special equipment, and it is a nice idea to

distribute the services in order to minimize risks.
5.2 Quarantines

Using statistical techniques is really simple to detect almost all the received spam

but a really difficult, almost impossible, point is to have a 0 false-positive ratio. As

common bureaucratic processes and communication are delegated to be conducted

via email, false positives are being converted into a really annoying question; losing

only one important mail can have important economic consequences or, even,

produce a delay in some important process.

On the other hand as each user is different, what should be done with a spam

message should be left to the user’s choice. A clocks lover user would conserve

Rolex-related spam. A key point here is that spam is sent because the messages sent

are of interest to a certain set of users.

These points are difficult to solve with server spam filter solution as the spam

filter is not as personalized as a spam filter implemented on the client side.

Quarantine is a strategy developed to face these points. The messages detected as

spam by the spam filter are stored in the server for a short period of time and the

server mails a Quarantine Digest to the user reporting all the messages under

quarantine. The user is given the choice of preserving those messages or deleting

them.

Quarantine is a helpful technique that allows to:

l Reduce the disk space and resources the spam is using on the mail servers.

l Reduce the user’s level of frustration when they receive spam.

l Keeps spam from getting into mailing lists.

l Prevent auto replies (vacation, out of office, etc.) from going back to the

spammers.

In Fig. 10, we show an example of quarantine, in the Trend Micro InterScan

Messaging Security Suite, a solution that includes antivirus and antispam features,

and that is designed for serve side filtering. The quarantine is accessed by actual

FIG. 10. An example of list of messages in the Trend Micro InterScan Messaging Security Suite.

96 E.P. SANZ ET AL.
users through a web application, where they log and screen the messages that the

filter has considered spam. This quarantine in particular features the access to a

white list of approved senders, a white list where the user can type in patterns that

make the filter ignore messages, like those coming from the users’ organization.
5.3 Proxying and Tagging

There are a number of email clients that currently implement their own content-

based filters, most often based on the Graham’s Bayesian algorithm. For instance,

the popular open-source Mozilla Thunderbird client includes a filter that is able to

learn from the users’ actual email, leading to better personalization and increased

effectiveness.

However, there are a number of email clients that do not feature an antispam filter

at all. Although there are a number of extensions or plugins for popular email clients

(like the ThunderBayes extension for Thunderbird, or the SpamBayes Microsoft

EMAIL SPAM FILTERING 97
Outlook plugin – both including the SpamBayes filter controls into the email

clients), the user may wish to keep the antispam software out of the email client,

in order to change any of them if a better product is found. There are a number of

spam filters that run as POP/SMTP/Imap proxy servers. These products download

the email on behalf of the user, analyze it deciding if it is spam or legitimate, and tag

it accordingly. Example of these products are POPFile (that features general email

classification, apart from spam filtering), SpamBayes (proxy version), K9, or

SAwin32 (Fig. 11).

As an example, the program SAwin32 is a POP proxy that includes a fully

functional port of SpamAssassin for Microsoft Windows PCs. The proxy is config-

ured to access the POP email server from where the user downloads his email and to

check it using the SpamAssassin list, rule, and Bayesian filters. If found to be spam,

a message is tagged with a configurable string in the subject (e.g., the default is ‘***

SPAM ***’) and the message is forwarded to the user with an explanation in the

body and the original message as an attachment. The explanation presents a digest of

the message, and describes the tests that have been fired by the message, the spam
FIG. 11. An example of message scanned by the SAwin32 proxy, implementing the full set of tests and

techniques of SpamAssassin.

98 E.P. SANZ ET AL.
score of the message, and other administrative data. The proxy also adds some

nonstandard headers, beginning with ‘X-,’28 like ‘X-Spam-Status,’ that includes the

spam value of the message (‘Yes’ in this case), and the tests and scores obtained.

The user can then configure a filter in his email client, sending to a spam box (a

local quarantine) all the messages that arrive tagged as spam. The user can also

suppress the additional tag and rely on the spam filter headers.

Also, most proxy-type filters also include the possibility of not downloading the

messages tagged as spam to the email client, and keeping a separate quarantine in

the proxy program, many often accessed as a local web application.

The tagging approach can also work at the organization level. The general email

server tags the messages for all users, but each one prepares a local filter based on

the server-side tags if that is needed.

5.4 Best and Future Practical Spam Filtering

As stated in [27] , ‘the best results in spam filtering could be achieved by a

combination of methods: Black lists stop known spammers, graylists eliminate

spam sent by spam bots, decoy email boxes alert to new spam attacks, and Bayesian

filters detect spam and virus attack emails right from the start, even before the black

list is updated.’ False positives are still a problem due to the important effects that

loosing an important mail can produce, along with the bouncing emails created by

viruses [8] , an important new k ind of spam .

Probably, in the future, all these techniques will be mixed with economic and

legal antispam measures like computing time-based systems,29 money-based sys-

tems [53] , strong antispa m laws [15] , and othe r high- impact social measures [80] .

Each day, the filters apply more and more measures to detect spam due to its high

economic impact.
6. Attacking Spam Filters

6.1 Introduction

As the volume of bulk spam email increases, it becomes more and more

important to apply techniques that alleviate the cost that spam implies. Spam

filters evolve to better recognize spam and that has forced the spammers to find
28 Non-standard headers in emails begin with ‘X-.’ In particular, our example includes some Mozilla

Thunderbird headers, like ‘X-Mozilla-Status.’
29 See, for instance, the HashCash service: http://www.hashcash.org.

http://www.hashcash.org

EMAIL SPAM FILTERING 99
new ways to avoid the detection of their spam, ensuring the delivery of their

messages. For example, as statistical spam filters began to learn that words like

‘Viagra’ mostly occur in spam, spammers began to obfuscate them with spaces

and other symbols in order to transform spam-related words in others like ‘V-i-a-

g-r-a’ that, while conserving all the meaning for a human being, are hardly

detected by software programs.

We refer to all the techniques that try to mislead the spam filters as attacks, and

the spammers employing all these methods as attackers, since their goal is to mislead

the normal behavior of the spam filter, allowing a spam message to be delivered as a

normal message. A good spam filter would be most robust to past, present, and

future attacks, but most empirical evaluations of spam filters ignore this because the

spammers’ behavior is unpredictable and then, the real effectiveness of a filter

cannot be known until its final release.

The attacker’s point of view is of vital importance when dealing with spam filters

because it gives full knowledge about the possible attacks to spam filters. This

perspective also gives a schema of the way of thinking of spammers, which allows

predicting possible attacks and to detect tendencies that can help to construct a

robust and safe filter. Following this trend, there exist some attempts to compile

spammers ’ attacks as the Graham Cummin g’s Spamme r’s Compe ndium [42] .

Usually, a spam filter is part of a corporate complex IT architecture, and attackers

are capable to deal with all the parts of that architecture, exploiting all the possible

weak points. Attending to this, there exist direct attacks that try to exploit the spam

filter vulnerabilities and indirect attacks that try to exploit other weak points of the

infrastructure. Indirect attacks’ relevance has been growing since 2004 as spammers

shifted their attacks away from content and focuses more on the SMTP connection

point [75] .

Spammers usually make use of other security-related problems like virus and

trojans in order to increase their infrastructure. Nowadays, a spammer uses trojan

programs to control a lot of zombie-machines from which he is able to attack many

sites while not being easily located as he is far from the origin of the attacks. That

makes it more and more difficult to counteract the spammers’ attacks and increases

the side effects of the attacks.
6.2 Indirect Attacks

Mail servers automatically send mails when certain delivery problems, such as a

mail over-quota problem, occur. These automatically sent emails are called bounce

messages. These bounce messages can be seen, in a way, as auto replies (like the out

of office auto replies) but are not sent by human decisions, and in fact are sent

100 E.P. SANZ ET AL.
automatically by the mail server. All these auto replies are discussed in the

RFC383430 that points out that it must be sent to the Return-Path established in

the received email that has caused this auto reply. The return message must be sent

without Return-Path in order to avoid an infinite loop of auto replies.

From these bounce messages, there exist two important ones: the NDRs (Non-

Delivery Reports), which are a basic function of SMTP and inform that a certain

message could not be delivered and the DSNs (Delivery Status Notifications) that can

be explicitly required by means of the ESMTP (SMTP Service Extension) protocol.

The NDRs implement part of the SMTP protocol that appears on the RFC282131: ‘If

an SMTP server has accepted the task of relaying the mail and later finds that the

destination is incorrect or that the mail cannot be delivered for some other reason,

then it must construct an ‘‘undeliverable mail’’ notification message and send it to

the originator of the undeliverable mail (as indicated by the reverse-path).’

The main goal of a spammer is to achieve the correct delivery of a certain

nondesired mail. To achieve this goal, some time is needed to achieve a previous

target. Indirect attacks are those that use characteristics outside the spam filter in

order to achieve a previous target (like obtain valid email addresses) or that camou-

flages a certain spam mail as being a mail server notification. These indirect attacks

use the bounce messages that the mail servers send in order to achieve their goals.

Three typical indirect attacks are:

1. NDR (Non-Delivery Report) Attack

2. Reverse NDR Attack

3. Directory Harvest Attack

The NDR Attack consists of camouflaging the spam in an email that appears to be

a NDR in order to confuse the user who can believe that he sent the initial mail that

could not be delivered. The curiosity of the user may drive him to open the mail and

the attachment where the spam resides. The NDR Attacks have two weak points:

1. Make intensive use of the attacker’s mail server trying to send thousands or

millions of NDR like messages that many times are not even opened by the

recipient.

2. If the receiver’s mail server uses a black list where the attacker’s mail server’s

IP is listed, the false NDR would not ever reach their destination. Then, all the

efforts made by the spammer would not be useful at all.
30 Available at: http://www.rfc-editor.org/rfc/rfc3834.txt.
31 Available at: http://www.ietf.org/rfc/rfc2821.txt.

http://www.rfc-editor.org/rfc/rfc3834.txt
http://www.ietf.org/rfc/rfc2821.txt

EMAIL SPAM FILTERING 101
To defeat thes e two wea k points, the Reverse NDR Attack was devi sed. In a

Reverse NDR At tack, the intende d target ’s email is used as the sender, rather than

the recipi ent. The recipient is a fictit ious email address that uses the doma in name

for the target’s com pany (for instanc e, ‘exa mple.c om’), such as noexist @exam ple.

com. The mail server of Exam ple Compa ny cannot deliver the message and sends an

NDR mail b ack to the sender (which is the target email). Th is ret urn mail carries the

NDR and the origina l spam mes sage attac hed and the target can read the NDR and

the include d spam thinking they may have sent the email . As can be seen in this

procedure , a relia ble mail serv er that is not in any black list and cannot be easily

filtered sends the NDR mail.

Another attack that expl oits the bo unce message s is the DHA (Directory Harves t

Attack) which is a techniq ue used by spamm ers attem pting to fin d valid email

addresse s at a certain domain. The success of a Directory Harves t At tack relie s on

the recipient email server rejecti ng email sent to invalid recipi ent email addre sses

during the Simple Mai l Protocol (SMTP) sess ion. Any addresse s to which ema il is

accepted are consider ed valid and are added to the spamm er’s list. There are two

main tec hniques for gener ating the addresse s that a DHA will target. In the first one,

the spamm er creates a list of all possibl e com binations of lett ers and numb ers up to a

maximum length and then append s the doma in name. This is a sta ndard brute force

attack and implies a lot of wor kload in both serv ers. Th e other tec hnique is a

standard dictionar y attac k and is based on the creation of a list com bining common

first names, surna mes, and initials. Th is secon d techniq ue usually wor ks well in

company domains whe re the emp loyees email addresse s are usual ly create d using

their real nam es and surna mes and not nicknam es like in fre e mail service s like

Hotmail or Gmai l.
6.3 Direct Attacks

The first generation of spam filters used rules to recognize specific spam features

(like the presence of the word ‘Viag ra’) [46] . Nowada ys, as spam evol ves quickly,

it is impossible to update the rules as fast as new spam variations are created,

and a new generation of more adaptable, learning-based spam filters has been

created [46] .

Direct attacks are attacks to the heart of those statistical spam filters and try to

transform a given spam message into a stealthy one. The effectiveness of the attacks

relies heavily on the filter type, configuration, and the previous training (mails

received and set by the user as spam). One of the simplest attacks is called picospam
and consists of appending random words to a short spam message, trying that those

random words would be recognized as ‘good words’ by the spam filter. This attack is

http://example.com
mailto:noexist@example.com
mailto:noexist@example.com

102 E.P. SANZ ET AL.
very simpl e and was previous ly seen to be ineffective [63] but show s the general

spirit of a direct attack to a spam filter.

There are many spam mer techniq ues [25, 9 1], which can be groupe d into four

main categor ies [96] :

l Tokenization: The attacks using tokenization work against the feature selection

used by the filter to extract the main features from the messages. Examples of

tokenization attacks include splitting up words with spaces, dashes, and aster-

isks, or using HTML, JavaScript, or CSS tricks.

l Obfuscation: With this kind of attacks, the message’s contents are obscured

from the filter using different kinds of encodings, including HTML entity or

URL encoding, letter substitution, Base64 printable encoding, and others.

l Statistical: These methods try to skew the message’s statistics by adding more

good tokens or using fewer bad ones. There exist some variations of this kind of

attacks depending on the methods used to select the used words. Weak statisti-

cal or passive attacks, that use random words and strong statistical or active

attacks, which carefully select the words that are needed to mislead the filter by

means of some kind of feedback. Strong statistical attacks are more refined

versions of weak attacks, being more difficult to develop and their practical

applicability can be questioned.

l Hiding the text: Some attacks try to avoid the use of words and inserts the spam

messages as images, Flash, RTF, or in other file format; some other attacks insert

a link to a web page where the real spam message resides. The goal is that the

user could see the message but the filter could not extract any relevant feature.

We discuss instances of these attacks in the next sections.
6.3.1 Tokenization Attacks
The statistical spam filters need a previous tokenization stage where the original

message is transformed into a set of features describing the main characteristics of

the email. A typical tokenization would count the occurrence of the words appearing

in the email and would decompose the words by locating the spaces and other

punctuation signals that separate the words. Tokenization attacks are conceived to

attack this part of the filter, trying to avoid the correct recognition of spammy words

by means of inserting spaces or other typical word delimiters inside the words. A

typical example for avoiding the recognition of the word ‘VIAGRA’ would be

separating the letters in this way ‘V-I.A:G-R_A.’ The user would easily recognize

the word ‘VIAGRA’ but many filters would tokenize the word into multiple letters

that do not represent the real content of the email.

EMAIL SPAM FILTERING 103
6.3.1.1 Hypertextus Interruptus. The tokenization attack is based

on the idea of splitting the words using HTML comments, pairs of zero width tags,

or bogus tags. As the mail client renders the HTML, the user would see the message

as if not containing any tag or comment, but the spam filters usually separates

the words according to the presence of certain tags. Some examples trying to avoid

the detection of the word ‘VIAGRA’:

l VIA<!- -garbage- -> GRA

l VI</n>AGRA

l VIAG<xyz>R<xyz>A

l V<comment>xyz</comment>IAGRA

l VIAGRA

A typical tokenizer would decompose each of the last lines into a different set of

words:

l VIA, GRA

l VI, AGRA

l VIAG, R, A

l V, IAGRA

l VIAGR, A

This makes more difficult to learn to distinguish the VIAGRA-related spam as

each of the spam messages received contains a different set of features. The only

way to face this kind of attacks is to parse carefully the messages trying to avoid

HTML comments or extracting the features from the output produced by an HTML

rendering engine.
6.3.1.2 Slice and Dice. Slice and Dice means to break a certain body of

information down into smaller parts and then examine it from different viewpoints.

Applied to spam attacks, slice and dice consists of dividing a spam message into text

columns and then rewrite the message putting each text column in a column inside

an HTML table. Applying the typical VIAGRA example, we could render it using a

table as follows:

<table><tr><td>V</td><td>I</td><td>A</td><td>G</td>

<td>R</td><td>A</td></tr></table>

The user would see only VIAGRA but the tokenizer would extract one feature by

each different letter in the message.

104 E.P. SANZ ET AL.
6.3.1.3 Lost in Space. This is the most basic tokenization attack, and

consists of adding spaces or other characters between the letters that composes

a word in order to make them unrecognizable to word parsers. ‘V*I*A*G*R*A,’

‘V I A G R A,’ and ‘V.I.A.G.R.A’ are typical examples applying this simple and

common technique. Some spam filters recognize the words by merging nonsense

words separated by common characters and studying if they compose a word that

could be considered as a spam feature.
6.3.2 Obfuscation Attacks
In obfuscation attacks, the message’s contents are obscured to the filter using

different encodings or misdirection like letter substitution, HTML entities, etc. The

way these attacks affect the spam filter is very similar to the way tokenization

attacks affect. The features extracted from an obfuscation attack do not correspond

with the standard features of the spam previously received. Obfuscating a word like

‘VIAGRA’ can be done in many ways:

l ‘V1AGRA’

l ‘VI4GR4’

l ‘VÍAGRÀ’

All the previous ways to obfuscate the word ‘VIAGRA’ produce a different

feature that would be used by the spam filter to distinguish or learn how to

distinguish a spam message related to the VIAGRA.

A prominent form of obfuscation is the utilization of leetspeak. Leetspeak or leet

(usually written as l33t or 1337) is an argot used primarily on the Internet, but

becoming very common in many online video games due to the excellent reception

of this argot from the youngsters who use to obfuscate their mails or SMS trying to

avoid their parents to understand what they write to other friends. The leet speech

uses various combinations of alphanumeric characters to replace proper letters.

Typical replacements are ‘4’ for ‘A,’ ‘8’ or ‘13’ for ‘B,’ ‘(’ for ‘C,’ ‘)’ or ‘|)’ for

‘D,’ ‘3’ for ‘E,’ ‘ph’ for ‘F,’ ‘6’ for ‘G,’ ‘#’ for ‘H,’ ‘1’ or ‘!’ for ‘I,’ etc. Using these

replacements, ‘VIAGRA’ could be written as ‘V14GR4’ or ‘V!4G2A,’ which can be

understood by a human being but would be intelligible by a spam filter.

Foreign accent is an attack very similar to the leetspeak, but do not replace letters

with alphanumeric characters, it uses accented letters to substitute vocals or even

characters like ‘ç’ to substitute ‘c’ due to their similarity. ‘VIAGRA’ could be

rewritten in huge set of ways like ‘VÍÁGRÁ,’ ‘VÌÀGRÀ,’ ‘VÏAGRÄ,’ etc.

The simplest way to affront these attacks is to undo these replacements, which can

be very simple in the foreign accent attacks because there exists a univocal

EMAIL SPAM FILTERING 105
correspondence between an accented letter and the unaccented letter. But the leet-

speak is more difficult to translate as when a certain number or character is found, it

would be needed to study whether the alphanumeric is representing a certain letter or

it must continue being an alphanumeric.
6.3.3 Statistical Attacks
While tokenization and obfuscation attacks are more related with the preproces-

sing stage of a spam filter, the statistical attacks have the main goal of attacking the

heart of the statistical filter. Statistical attacks, more often called Bayesian poisoning

[27, 37, 8 8] as most of the classifiers used to detect spam are Bayesian or Good Word

Attacks [63] , are based on adding random, or even carefully selected, wor ds that are

unlikely to appear in spam messages and are supposed to cause the spam filter to

believe the message is not a spam (a statistical type II error). The statistical attacks

have a secondary effect, a higher false-positive rate (statistical I error) because when

the user trains their spam filter with spam messages containing normal words, the

filter learns that these normal words are a good indication of spam.

Statistical attacks are very similar, and what most vary among them is the way the

words are added into the normal message and the way the words are selected. Accord-

ing to the word selection, there exist active attacks and passive attacks. According to

the way the words are inserted in the email, there exist some variations like Invisible

Ink and MIME-based attacks. Attacks can combine approaches, and for each possible

variation of including the words in the message, the attack can be active or passive.
6.3.3.1 Passive Attacks. In passive attacks, the attacker constructs the

word list to be used as the good words to be added in the spam messages without any

feedback from the spam filter. Calburn [16] explain s this process as ‘The automa ta

will just keep selecting random words from the legit dictionary . . .When it reaches a

Bayesian filtering system, [the filtering system] looks at these legitimate words and

the probability that these words are associated with a spam message is really low.

And the program will classify this as legitimate mail.’

The simplest passive attack consists of selecting a random set of words that would

be added to all the spam messages sent by the attacker. If the same words are added

to all the spam messages sent, that set of words would finish being considered as a

good indicative of a spam message and the attack would convert into unproductive.

Another simple yet more effective attack consists of a random selection of words per

each spam mail sent or for each certain numb er of spam mes sages sent . Wittel [96]

shows that the addition of random words was ineffective against the filter CRM-114

but effective against SpamBayes.

106 E.P. SANZ ET AL.
A smarter attack can be achieved by selecting common or hammy words instead

of perform ing a random selection . Witt el [96] show s that attac ks using com mon

words are more effective against SpamBayes even when adding fewer words than

when the word select ion was randomizi ng. Instead , the work in [88] show s that b y

adding common words, the filter’s precision decreases from 84% to 67% and from

94% to 84% and proposes to ignore common words when performing the spam

classification to avoid this performance falling.

6.3.3.2 Active Attacks. In active attacks, the attacker is allowed to

receive some kind of feedback to know whether the spam filter labels a message

as spam or not. Graham -Cumming [43] present s a simple way of getti ng this

feedback by including a unique web bug at each message sent. A web bug is a

graphic on a web page or inside an email that is designed to monitor who is reading a

certain web or mail by counting the hits or accesses to this graphic. Having one web

bug per word or per each word set allows the spammer to control what are the words

that makes a spam message to look like a ham message to a certain spam filter.

Lowd [63] shows that passive attac ks adding random words to spam message s is

ineffective as a form of attacks and also demonstrates that adding hammy words was

very effective agai nst naı̈ve Bayesian filters. Lowd [63] also show s in detail tw o

active attacks that are very effective against most typical spam filters.

The best way of preventing active attacks is to close any door that allows the

spammer to receive any feedback from our system such as nondelivery reports,

SMTP level errors, or web bugs.

6.3.3.3 Invisible Ink. This statistical attack consists of the addition of

some real random words in the message but not letting the user to see those words.

There are some variants of doing this:

l Add the random words before the HTML.

l Add an email header packer with the random words.

l Write a colored text on a background of the same color.

For avoiding this spammer practice, spam filters should work only with the data

the user can see, avoiding headers and colored text over the same color background

(Fig. 12).
6.3.4 Hidden Text Attacks
These kind of attacks try to show the user a certain spam message but avoiding the

spam filter to capture any feature from the content. The important point here is to

place the spam message inside an image or other format, as RTF or PDF, that the

FIG. 12. An example of image-based spam.

EMAIL SPAM FILTERING 107
email client will show to the user embedded into the message. We describe several

kinds of attacks that try to avoid using text, or disguise it in formats hard to process

effectively and efficiently.

6.3.4.1 MIME Encoding. MIME (Multipurpose Internet Mail Exten-

sions) is an Internet standard that allows the email to support plain text, non-text

attachments, multi-part bodies, and non-ASCII header information. In this attack,

the spammer sends a MIME document with the spam message in the HTML section

and any normal text in the plain text section, which makes more difficult the work of

the spam filter.

6.3.4.2 Script Hides the Contents. Most email clients parse the

HTML to extract the features and avoid the information inside SCRIPT tags as they

usually contain no important information when we are extracting features to detect

spam contents. Recently, some attackers have made use of script languages to

change the contents of the message on mouse-over event or when the email is

opened. Using this technique, the spam filter would read a normal mail that would

be converted into a spam mail when opened by the email client.

6.3.4.3 Image-Based Spam. The first image-based spam was

reported by Graham-Cumming in 2003 and was very simple; it included only an

image with the spam text inside. At that time images were loaded from Web sites

using simple HTML image tags, but as email clients started to avoid the remote

image load, spammers started to send the images as MIME attachments. First

attempts to detect this kind of spam made the developers to use OCR (Optical

Character Recognition) techniques to pull words out of the images and use them as

features to classify the message as spam or ham.

108 E.P. SANZ ET AL.
But OCR is computationally expensive; its accuracy leaves much to be desired

and can be easily mislead by adding noise to the images or even obfuscating the

contents with the same techniques used to obfuscate the text content in text spam.

Accordi ng to Iron Port statist ics [49] , 1% of spam was image b ased in June 2 005 and

one year later , it had risen to 16%. Cos oi [23] shows that the evolution of image-

based spam was from 5% by March 2006 to almost 40% at the end of 2006.

Samo sseiko [83] asse rts that more than the 40% of the spam seen in So phosLab s

at the end of 2006 is image-based spam. All these numbers show the real importance

of image-based spam in the present spam’s world (Fig. 13).

For a mor e detail ed review of actual image-bas ed techniq ues, Cumm ing [45]

shows the evolution of image spam along the last years, from single images contain-

ing the whole spam, combinations (more or less complicated) of different images to

show the spam to the user, integrating images with tokenization and obfuscation

attacks, using strange fonts, adding random pixels to avoid OCR, hashing, etc.

Interestingly, a number of researchers have devised approaches to deal with

specific form of image spam . In partic ular, Biggio and others [10] have propos ed

to detect spam email by using the fact that spammers try to add noise to images in

order to avoid OCRs, what it is called ‘obscuring’ by the authors. Also, and in a more

general approach, Byun and others make use of a suite of synthesized attributes of
FIG. 13. An example of image-based spam with noise in order to avoid text recognition using OCR

software.

EMAIL SPAM FILTERING 109
spam images (color moment, color heterogeneity, conspicuousness, and self-

similarity) in order to char acterize a variety of image spam types [12] . These are

promising lines of research, and combined with other techniques offer the possibility

of high accuracy filtering.

6.3.4.4 Spam Using Other Formats. As spam filter developers

increase the precision of their software, spammers develop new variation of their

attacks. One simple variation of image-based attacks consists of using a compressed

PDF instead of an image to place the spam content trying to avoid the OCR scanning

as PDF do not use to contain spam. Another attack consists of embedding RTF files,

containing the spam message, which are sniffed by Microsoft email clients.
7. Conclusions and Future Trends

Spam is an ever growing menace that can be very harmful. Its effects could be

very similar to those produced by a Denial of Service Attack (DoS). Political,

economical, legal, and technical measures are not enough to end the problem, and

only a combination of all of them can lower the harm produced by it.

Among all those approaches, content-based filters have been the best solution,

having big impact in spammers that have had to search newways to pass those filters.

Luckily, systems based onMachine Learning algorithms allow the system to learn

adapt to new treats, reacting to countermeasures used by spammers.

Recent competitions in spam filtering have shown that actual systems can filter

out most of the spam, and new approaches like those based on compression can

achieve high accuracy ratios. Spammers have designed new and refined attacks that

hit one of the critical steps in every learning method: the tokenization process, but

compression-based filters have been very resistant to this kind of attack.

References

[1] Abadi M., Birrell A., Burrows M., Dabek F., and Wobber T., December 2003. Bankable postage for

network services. In Proceedings of the 8th Asian Computing Science Conference, Mumbai, India.

[2] Ahn L. V., Blum M., and Langford J., February 2004. How lazy cryptographers do AI. Commu-

nications of the ACM.

[3] Anderson R., 2004. Taking a bit out of spam. Network Computing, Magazine Article, May 13.

[4] Androutsopoulos I., Koutsias J., Chandrinos K. V., Paliouras G., and Spyropoulos C. D., 2000. An

evaluation of Naive Bayesian anti-spam filtering. In Proceedings of the Workshop on Machine

Learning in the New Information Age, 11th European Conference on Machine Learning (ECML),
pp. 9–17. Barcelona, Spain.

110 E.P. SANZ ET AL.
[5] Androutsopoulos I., Paliouras G., Karkaletsis V., Sakkis G., Spyropoulos C. D., and

Stamatopoulos P., 2000. Learning to filter spam e-mail: A comparison of a naive Bayesian and a

memory-based approach. In Proceedings of the Workshop on Machine Learning and Textual

Information Access, 4th European Conference on Principles and Practice of Knowledge Discovery

in Databases (PKDD), pp. 1–13. Lyon, France.
[6] Androutsopoulos I., Koutsias J., Chandrinos K. V., and Spyropoulos C. D., 2000. An experimental

comparison of naive Bayesian and keyword-based anti-spam filtering with encrypted personal

e-mail messages. In Proceedings of the 23rd Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, pp. 160–167. Athens, Greece, ACM Press,

New York, US.

[7] Belkin N. J., and Croft W. B., 1992. Information filtering and information retrieval: Two sides of the

same coin? Communications of the ACM, 35(12): 29–38.

[8] Bell S., 2003. Filters causing rash of false positives: TelstraClear’s new virus and spam screening

service gets mixed reviews. http://computerworld.co.nz/news.nsf/news/CC256CED0016AD1ECC-

256DAC000D90D4? Opendocument.

[9] Bickel S., September 2006. ECML/PKDD discovery challenge 2006 overview. In Proceedings of
the Discovery Challenge Workshop, 17th European Conference on Machine Learning (ECML) and

10th European Conference on Principles and Practice of Knowledge Discovery in Databases

(PKDD), Berlin, Germany.

[10] Biggio B., Giorgio Fumera, Ignazio Pillai, and Fabio Roli, August 23, 2007. Image spam filtering by

content obscuring detection. In Proceedings of the Fourth Conference on Email and Anti-Spam

(CEAS 2007), pp. 2–3. Microsoft Research Silicon Valley, Mountain View, California.

[11] Bratko A., Cormack G. V., Filipic B., Lynam T. R., and Zupan B., Dec 2006. Spam filtering using

statistical data compression models. Journal of Machine Learning Research, 7: 2699–2720.
[12] Byun B., Lee C.-H., Webb S., and Calton P., August 2–3, 2007. A discriminative classifier learning

approach to image modeling and spam image identification. In Proceedings of the Fourth Conference

on Email and Anti-Spam (CEAS 2007), Microsoft Research Silicon Valley,Mountain View, California.

[13] Caropreso M. F., Matwin S., and Sebastiani F., 2001. A learner-independent evaluation of the

usefulness of statistical phrases for automated text categorization. In Text Databases and Document

Management: Theory and Practice, A. G. Chin, editor, pp. 78–102. Idea Group Publishing,

Hershey, US.

[14] Carreras X., and Márquez L., 2001. Boosting trees for anti-spam email filtering. In Proceedings of

RANLP-2001, 4th International Conference on Recent Advances in Natural Language Processing.

[15] Caruso J., December 2003. Anti-spam law just a start, panel says. Networld World, http://www.

networkworld.com/news/2003/1218panel.html.

[16] Claburn T., 2005. Constant struggle: How spammers keep ahead of technology, Message Pipeline.

http://www.informationweek.com/software/messaging/57702892.

[17] Cleary J. G., and Teahan W. J., 1997. Unbounded length contexts for PPM. The Computer Journal,

40(2/3): 67–75.

[18] Cohen W. W., and Hirsh H., 1998. Joins that generalize: Text classification using WHIRL.

In Proceedings of KDD-98, 4th International Conference on Knowledge Discovery and Data

Mining, pp. 169–173. New York, NY.

[19] Cormack G. V., and Lynam T. R., 2005. TREC 2005 spam track overview. In Proc. TREC 2005 – the

Fourteenth Text REtrieval Conference, Gaithersburg.

[20] Cormack G. V., and Lynam T. R., July 2005. Spam corpus creation for TREC. In Proc. CEAS

2005 – The Second Conference on Email and Anti-spam, Palo Alto.

http://computerworld.co.nz/news.nsf/news/CC256CED0016AD1ECC-256DAC000D90D4? Opendocument
http://computerworld.co.nz/news.nsf/news/CC256CED0016AD1ECC256DAC000D90D4?Opendocument
http://www.networkworld.com/news/2003/1218panel.html
http://www.networkworld.com/news/2003/1218panel.html
http://www.informationweek.com/software/messaging/57702892

EMAIL SPAM FILTERING 111
[21] Cormack G. V., and Bratko A., July 2006. Batch and on-line spam filter evaluation. In CEAS 2006 –
Third Conference on Email and Anti-spam, Mountain View.

[22] Cormack G., Gómez Hidalgo J. M., and Puertas Sanz E., November 6-9, 2007. Spam filtering for

short messages. In ACM Sixteenth Conference on Information and Knowledge Management (CIKM

2007), Lisboa, Portugal.
[23] Cosoi C. A., December 2006. The medium or the message? Dealing with image spam. Virus

Bulletin, http://www.virusbtn.com/spambulletin/archive/2006/12/sb200612-image-spam.dkb.

[24] Cranor L. F., and LaMacchia B. A., 1998. Spam! Communications of the ACM, 41(8): 74–83.

[25] Dalvi N., Domingos P., Sanghai M. S., and Verma D., 2004. Adversarial classification.

In Proceedings of the Tenth International Conference on Knowledge Discovery and Data Mining,

pp. 99–108. ACM Press, Seattle, WA.

[26] Dantin U., and Paynter J., 2005. Spam in email inboxes. In 18th Annual Conference of the National

Advisory Committee on Computing Qualifications, Tauranga, New Zealand.
[27] Deerwester S., Dumais S. T., Furnas G. W., Landauer T. K., and Harshman R., 1990. Indexing by

latent semantic indexing. Journal of the American Society for Information Science, 41(6): 391–407.

[28] Domingos P., and Pazzani M. J., 1997. On the optimality of the simple Bayesian classifier under

zero-one loss. Machine Learning, 29(2–3): 103–130.

[29] Domingos P., 1999. MetaCost: A general method for making classifiers cost-sensitive.

In Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining,

pp. 155–164. San Diego, CA, ACM Press.

[30] Drucker H., Vapnik V., and Wu D., 1999. Support vector machines for spam categorization. IEEE

Transactions on Neural Networks, 10(5): 1048–1054.

[31] Dumais S. T., Platt J., Heckerman D., and Sahami M., 1998. Inductive learning algorithms and

representations for text categorization. In Proceedings of CIKM-98, 7th ACM International Confer-
ence on Information and Knowledge Management, G. Gardarin, J. C. French, N. Pissinou, K. Makki,

and L. Bouganim, eds. pp. 148–155. ACM Press, New York, US, Bethesda, US.

[32] Dwork C., Goldberg A., and Naor M., August 2003. On memory-bound functions for fighting spam.

In Proceedings of the 23rd Annual International Cryptology Conference (CRYPTO 2003).

[33] Eckelberry A., 2006. What is the effect of Bayesian poisoning? Security Pro Portal, http://www.

netscape.com/viewstory/2006/08/21/what-is-the-effect-of-bayesian-poisoning/.

[34] Fawcett T., 2003. ‘‘In vivo’’ spam filtering: A challenge problem for KDD. SIGKDD Explorations, 5
(2): 140–148.

[35] Fuhr N., Hartmann S., Knorz G., Lustig G., Schwantner M., and Tzeras K., 1991. AIR/X—a rule-

based multistage indexing system for large subject fields. In Proceedings of RIAO-91, 3rd Interna-

tional Conference ‘‘Recherche d’Information Assistee par Ordinateur,’’ pp. 606–623. Barcelona,
Spain.

[36] Garcia F. D., Hoepman J.-H., and van Nieuwenhuizen J., 2004. Spam filter analysis. In Security and

Protection in Information Processing Systems, IFIP TC11 19th International Information Security

Conference (SEC2004), Y. Deswarte, F. Cuppens, S. Jajodia, and L. Wang, eds. pp. 395–410.

Toulouse, France.

[37] Gee K., and Cook D. J., 2003. Using latent semantic Iidexing to filter spam. ACM Symposium on

Applied Computing, Data Mining Track.

[38] Gómez-Hidalgo J. M., Maña-López M., and Puertas-Sanz E., 2000. Combining text and heuristics

for cost-sensitive spam filtering. In Proceedings of the Fourth Computational Natural Language

Learning Workshop, CoNLL-2000, Association for Computational Linguistics, Lisbon, Portugal.

[39] Gómez-Hidalgo J. M., 2002. Evaluating cost-sensitive unsolicited bulk email categorization.

In Proceedings of SAC-02, 17th ACM Symposium on Applied Computing, pp. 615–620. Madrid, ES.

http://www.virusbtn.com/spambulletin/archive/2006/12/sb200612-image-spam.dkb
http://www.netscape.com/viewstory/2006/08/21/what-is-the-effect-of-bayesian-poisoning/
http://www.netscape.com/viewstory/2006/08/21/what-is-the-effect-of-bayesian-poisoning/

112 E.P. SANZ ET AL.
[40] Gómez-Hidalgo J. M., Maña-López M., and Puertas-Sanz E., 2002. Evaluating cost-sensitive

unsolicited bulk email categorization. In Proceedings of JADT-02, 6th International Conference

on the Statistical Analysis of Textual Data, Madrid, ES.

[41] Goodman J., 2004. IP addreses in email clients. In Proceedings of The First Conference on Email

and Anti-Spam.
[42] Graham-Cumming J., 2003. The Spammer’s Compendium. In MIT Spam Conference.

[43] Graham-Cumming J., 2004. How to beat an adaptive spam filter. In MIT Spam Conference.

[44] Graham-Cumming J., February 2006. Does Bayesian poisoning exist? Virus Bulletin.

[45] Graham-Cumming J., November 2006. The rise and rise of image-based spam. Virus Bulletin.
[46] Graham P., 2002. A plan for spam. Reprinted in Paul Graham, Hackers and Painters, Big Ideas from

the Computer Age, O’Really (2004). Available: http://www.paulgraham.com/spam.html.

[47] Graham P., January 2003. Better Bayesian filtering. In Proceedings of the 2003 Spam Conference.

Available:http://www.paulgraham.com/better.html.
[48] Gray A., and Haahr M., 2004. Personalised, collaborative spam filtering. In Proceedings of the First

Conference on Email and Anti-Spam (CEAS).

[49] Hahn J., 2006. Image-based spam makes a comeback.Web Trends, http://www.dmconfidential.com/

blogs/column/Web_Trends/916/.

[50] Hall R. J., March 1998. How to avoid unwanted email. Communications of the ACM.

[51] Hird S., 2002. Technical solutions for controlling spam. In Proceedings of AUUG2002, Melbourne.

[52] Hovold J., 2005. Naive Bayes spam filtering using word-position-based attributes. In Proceedings of
the Second Conference on Email and Anti-spam, CEAS, Stanford University.

[53] InfoWorld Test Center. Strong spam combatants: Brute anti-spam force takes on false-positive

savvy. Issue 22 May 31, 2004.

[54] Jeffrey E., and Friedl F., August 2006. Mastering Regular Expressions. 3rd edn. O’Really.

[55] Joachims T., 1998. Text categorization with support vector machines: learning with many relevant

features. In Proceedings of ECML-98, 10th European Conference on Machine Learning,

pp. 137–142. Chemnitz, Germany.

[56] Joachims T., 1999. Transductive inference for text classification using support vector machines.

In Proceedings of ICML-99, 16th International Conference on Machine Learning, pp. 200–209.

Bled, Slovenia.

[57] Keogh E., Lonardi S., and Ratanamahatana C. A., 2004. Towards parameter-free data mining.

In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pp. 206–215. Seattle, WA, USA, August 22–25, 2004). KDD ’04. ACM,

New York, NY.

[58] Kolcz A., Chowdhury A., and Alspector J., 2004. The impact of feature selection on signature-driven

spam detection. In Proceedings of the First Conference on Email and Anti-Spam (CEAS).

[59] Larkey L. S., and Croft W. B., 1996. Combining classifiers in text categorization. In Proceedings of

SIGIR-96, 19th ACM International Conference on Research and Development in Information

Retrieval, H.-P. Frei, D. Harman, P. Schäuble, and R. Wilkinson, eds. pp. 289–297. ACM Press,

New York, US, Zurich, CH.

[60] Lewis D. D., and Gale W. A., 1994. A sequential algorithm for training text classifiers.

In Proceedings of SIGIR-94, 17th ACM International Conference on Research and Development
in Information Retrieval, W. B. Croft and C. J. van Rijsbergen, eds. pp. 3–12. Springer Verlag,

Heidelberg, DE, Dublin, IE.

[61] Lewis D. D., 1998. Naive (Bayes) at forty: The independence assumption in information retrieval.

In Proceedings of ECML-98, 10th European Conference on, Machine Learning, C. Nédellec and

http://www.paulgraham.com/spam.html
http://www.paulgraham.com/better.html
http://www.dmconfidential.com/blogs/column/Web_Trends/916/
http://www.dmconfidential.com/blogs/column/Web_Trends/916/

EMAIL SPAM FILTERING 113
C. Rouveirol, eds. pp. 4–15. Springer Verlag, Heidelberg, DE, Chemnitz, DE. Lecture Notes in

Computer Science, 1398.

[62] Li Y. H., and Jain A. K., 1998. Classification of text documents. The Computer Journal, 41(8):

537–546.

[63] Lowd D., and Meek C., 2005. Adversarial Learning. In Proceedings of the Eleventh ACM SIGKDD
International Conference on Knowledge Discovery and DataMining (KDD), ACMPress, Chicago, IL.

[64] Lucas M. W., 2006. PGP & GPG: email for the Practical Paranoid. No Starch Press.

[65] McCallum A., and Nigam K., 1998. A comparison of event models for Naive Bayes text

classification. In Proceedings of the AAAI-98 Workshop on Learning for Text Categorization.
[66] MessageLabs, 2006. MessageLabs Intelligence: 2006 Annual Security Report. Available: http://

www.messagelabs.com/mlireport/2006_annual_security_report_5.pdf.

[67] Meyer T. A., and Whateley B., 2004. Spambayes: Effective open-source, bayesian based, email

classification system. In Proceedings of the First Conference on Email and Anti-spam (CEAS).
[68] Mitchell T. M., 1996. Machine learning. McGraw Hill, New York, US.

[69] O’Brien C., and Vogel C., September 2003. Spam filters: Bayes vs. chi-squared; letters vs. words.

In Proceedings of the International Symposium on Information and Communication Technologies.
[70] Pampapathi R., Mirkin B., and Levene M., 2006. A suffix tree approach to anti-spam email filtering.

Mach. Learn, 65(1): 309–338.

[71] Pantel P., and Lin D., 1998. Spamcop: A spam classification and organization program. In Learning

for Text Categorization: Papers from the 1998 Workshop, Madison, Wisconsin. AAAI Technical

Report WS-98-05.

[72] Platt J., 1998. Fast training of support vector machines using sequential minimal optimization.

B. Schölkopf, C. Burges, and A. Smola, eds. Advances in Kernel Methods – Support Vector

Learning.

[73] Postini White Paper, 2004. Why content filter is no longer enough: Fighting the battle against spam

before it can reach your network. Postini Pre-emptive email protection.

[74] Provost F., and Fawcett T., 1997. Analysis and visualization of classifier performance: Comparison

under imprecise class and cost distributions. In Proceedings of the Third International Conference

on Knowledge Discovery and Data Mining.

[75] Provost J., 1999. Naive-bayes vs. rule-learning in classification of email. Technical report

Department of Computer Sciences at the University of Texas at Austin.

[76] Quinlan R., 1986. Induction of decision trees. Machine Learning, 1(1): 81–106.

[77] Rigoutsos I., and Huynh T., 2004. Chung-kwei: A pattern-discovery-based system for the automatic

identification of unsolicited e-mail messages (spam). In Proceedings of the First Conference on

Email and Anti-Spam (CEAS).
[78] Saarinen J., 2003. Spammer ducks for cover as details published on the web, NZHerald. http://www.

nzherald.co.nz/section/1/story.cfm?c_id=1&objectid=3518682.

[79] Sahami M., Dumais S., Heckerman D., and Horvitz E., 1998. A Bayesian approach to filtering junk

e-mail. In Proceedings of the AAAI-98 Workshop on Learning for Text Categorization, AAAI Press,
Madison, WI.

[80] Sakkis G., Androutsopoulos I., Paliouras G., Karkaletsis V., Spyropoulos C. D., and

Stamatopoulos P., 2001. Stacking classifiers for anti-spam filtering of e-mail. In Proceedings of
EMNLP-01, 6th Conference on Empirical Methods in Natural Language Processing, Pittsburgh, US,

Association for Computational Linguistics, Morristown, US.

[81] Salton G., 1981. A blueprint for automatic indexing. SIGIR Forum, 16(2): 22–38.

[82] Salton G., and McGill M. J., 1983. Introduction to Modern Information Retrieval. McGraw Hill,

New York, US.

http://www.messagelabs.com/mlireport/2006_annual_security_report_5.pdf
http://www.messagelabs.com/mlireport/2006_annual_security_report_5.pdf
http://www.nzherald.co.nz/section/1/story.cfm?c_id=1&objectid=3518682
http://www.nzherald.co.nz/section/1/story.cfm?c_id=1&objectid=3518682

114 E.P. SANZ ET AL.
[83] Samosseiko D., and Thomas R., 2006. The game goes on: An analysis of modern spam techniques.

In Proceedings of the 16th Virus Bulletin International Conference.

[84] Sculley D., and Brodley C. E., 2006. Compression and machine learning: a new perspective on

feature space vectors. In Data Compression Conference (DCC’06), pp. 332–341.

[85] Sebastiani F., 2002. Machine learning in automated text categorization. ACM Computing Surveys,
34(1): 1–47.

[86] Seigneur J.-M., and Jensen C. D., 2004. Privacy recovery with disposable email addresses. IEEE

Security and Privacy, 1(6): 35–39.

[87] Sergeant M., 2003. Internet-level spam detection and SpamAssassin 2.50. In Spam Conference.
[88] Stern H., Mason J., and Shepherd M., A linguistics-based attack on personalized statistical e-mail

classifiers. Technical report CS-2004-06, Faculty of Computer Science, Dalhousie University,

Canada. March 25, 2004.

[89] Taylor B., 2006. Sender reputation in a large webmail service. In Proceedings of the Third
Conference on Email and Anti-Spam (CEAS), Mountain View, California.

[90] Teahan W. J., and Harper D. J., 2003. ‘‘Using compression based language models for text

categorization’’. In Language Modeling for Information Retrieval, W. B. Croft and J. Laferty,

eds. The Kluwer International Series on Information Retrieval, Kluwer Academic Publishers.

[91] Theo V. D., 2004. New and upcoming features in SpamAssassin v3, ApacheCon.

[92] Thomas R., and Samosseiko D., October 2006. The game goes on: An analysis of modern spam

techniques. In Virus Bulletin Conference.
[93] Turing A. M., 1950. Computing machinery and intelligence. Mind, 59: 433–460.

[94] Watson B., 2004. Beyond identity: Addressing problems that persist in an electronic mail system

with reliable sender identification. In Proceedings of the First Conference on Email and Anti-Spam

(CEAS), Mountain View, CA.
[95] Wiener E. D., Pedersen J. O., and Weigend A. S., 1995. A neural network approach to topic

spotting. In Proceedings of SDAIR-95, 4th Annual Symposium on Document Analysis and Infor-

mation Retrieval, pp. 317–332. Las Vegas, US.
[96] Wittel G. L., and Wu F., 2004. On attacking statistical spam filters. In Proceedings of the

Conference on Email and Anti-spam (CEAS).

[97] Witten I. H., and Frank E., 2000. Data Mining: Practical Machine Learning Tools and Techniques

with Java Implementations. Morgan Kaufmann, Los Altos, US.

[98] Yang Y., and Chute C. G., 1994. An example-based mapping method for text categorization and

retrieval. ACM Transactions on Information Systems, 12(3): 252–277.

[99] Yang Y., and Pedersen J. O., 1997. A comparative study on feature selection in text categorization.

In Proceedings of ICML-97, 14th International Conference on Machine Learning. D. H. Fisher,
editor.

[100] Yerazunis B., 2003. Sparse binary polynomial hash message filtering and the CRM114 discrimi-

nator. In Proceedings of the Spam Conference.

[101] Yerazunis B., 2004. The plateau at 99.9. In Proceedings of the Spam Conference.
[102] Zdziarski J., 2004. Advanced language classification using chained tokens. In Proceedings of the

Spam Conference.

[103] Zimmermann P. R., 1995. The Official PGP User’s Guide. MIT Press.

The Use of Simulation Techniques
for Hybrid Software Cost
Estimation and Risk Analysis

MICHAEL KLÄS

Fraunhofer Institute for Experimental Software

Engineering, 67663 Kaiserslautern, Germany

ADAM TRENDOWICZ

Fraunhofer Institute for Experimental Software

Engineering, 67663 Kaiserslautern, Germany

AXEL WICKENKAMP

Fraunhofer Institute for Experimental Software

Engineering, 67663 Kaiserslautern, Germany

JÜRGEN MÜNCH

Fraunhofer Institute for Experimental Software

Engineering, 67663 Kaiserslautern, Germany

NAHOMI KIKUCHI

Oki Electric Industry Co., Ltd., Warabi-shi,

Saitama 335-8510, Japan

YASUSHI ISHIGAI

Information-Technology Promotion Agency,

Software Engineering Center, Bunkyo-Ku,

Tokyo 113-6591, Japan
ADVANCES IN COMPUTERS, VOL. 74 115 Copyright © 2008 Elsevier Inc.

ISSN: 0065-2458/DOI: 10.1016/S0065-2458(08)00604-9 All rights reserved.

116 M. KLÄS ET AL.
Abstract

Cost estimation is a crucial field for companies developing software or software-

intensive systems. Besides point estimates, effective project management also

requires information about cost-related project risks, for example, a probability

distribution of project costs. One possibility to provide such information is the

application of Monte Carlo simulation. However, it is not clear whether other

simulation techniques exist that are more accurate or efficient when applied in

this context. We investigate this question with CoBRAÒ,1 a cost estimation

method that applies simulation, that is, random sampling, for cost estimation.

This chapter presents an empirical study, which evaluates selected sampling

techniques employed within the CoBRAÒ method. One result of this study is that

the usage of Latin Hypercube sampling can improve average simulation accuracy

by 60% and efficiency by 77%. Moreover, analytical solutions are compared with

sampling methods, and related work, limitations of the study, and future research

directions are described. In addition, the chapter presents a comprehensive over-

view and comparison of existing software effort estimation methods.

1. Introduction . 117

2. Background . 119

2.1. CoBRAÒ Principles . 119

2.2. Simulation Techniques . 122

3. Related Work . 126

3.1. Software Effort Estimation Methods . 126

3.2. Overview of Random Sampling Techniques 138

4. Problem Statement . 140

5. Analytical Approaches . 143

5.1. Point Estimation . 144

5.2. Distribution Computation . 144

6. Stochastic Approaches . 145

6.1. The MC Approach . 145

6.2. The LH Approach . 146

6.3. Comparison of Stochastic Algorithms . 149

7. Experimental Study . 149

7.1. Experimental Planning . 149

7.2. Experimental Operation . 157
1 CoBRA is a registered trademark of the Fraunhofer Institute for Experimental Software Engineering

(IESE), Kaiserslautern, Germany.

SIMULATION TECHNIQUES FOR HYBRID COST ESTIMATION 117
7.3. Experimental Results . 158

7.4. Validity Discussion . 162

8. Summary . 166

Acknowledgments . 169

References . 169

1. Introduction

Rapid growth in the demand for high quality software and increased investment into

software projects show that software development is one of the key markets worldwide

[27, 28]. A fast changing market demands software products with ever more functional-

ity, higher reliability, and higher performance. Moreover, in order to stay competitive,

software providers must ensure that software products are delivered on time, within

budget, and to an agreed level of quality, or even with reduced development costs and

time. This illustrates the necessity for reliable software cost estimation, since many

software organizations budget unrealistic software costs, work within tight schedules,

and fin is h their pro jects beh ind sc hed ule an d bud get, o r d o no t c om plete the m at all [10 0].

At the same time, software cost estimation is considered to be more difficult than

cost estimation in other industries. This is mainly because software organizations

typically develop products as opposed to fabricating the same product over and over

again. Moreover, software development is a human-based activity with extreme

uncertainties. This leads to many difficulties in cost estimation, especially in early

project phases. These difficulties are related to a variety of practical issues. Examples

include difficulties with project sizing, a large number of associated and unknown

cost factors, applicability of cost models across different organizational contexts, or,

finally, insufficient data to build a reliable estimation model on. To address these and

many other issues, considerable research has been directed at gaining a better

understanding of the software development processes, and at building and evaluating

software cost estimation techniq ues, methods, and tools [12].

Traditionally, effort estimation has been used for the purpose of planning and

tracking project resources. Effort estimation methods that grew upon those objectives

do not, however, support systematic and reliable analysis of the causal effort depen-

dencies when projects fail. Currently software industry requires effort estimation

methods to support them in understanding their business and identifying potential

sources of short-term project risks and areas of long-term process improvements.

Moreover, in order to gain wider industrial acceptance, a candidate method should

minimize the required overhead, for example, by utilizing a variety of already existing

information sources instead of requiring extensive expert involvement and/or large

project measurement databases. Yet, existing estimation methods (especially those

currently used in the software industry) do not offer such comprehensive support.

118 M. KLÄS ET AL.
An example prerequisite to accepting a certain estimation method is its applicability

within a particular context, which includes its adaptability to organization-specific

characteristics such as availability of required data or effort required to apply the

method. Usually, the latter two issues are contradictory: The less effort a method

requires to build the estimation model, the more measurement data from previous

projects is needed.2 Data-based methods focus on the latter exclusively. Contrariwise,

expert-based methods require almost no measurement data, but obtaining estimates

costs a lot of effort. Software organizationsmove between those two extremes, tempted

either by low application costs or low data requirements. In fact, a great majority of

organizations that actually use data-based methods do not have a sufficient amount of

appropriate (valid, homogeneous, etc.) data as required by such methods. Hybrid

methods offer a reasonable bias between data and effort requirements, providing at

the same time reliable estimates and justifiable effort to apply the method [14, 18, 69].

Moreover, estimation methods are required to cope with the uncertainty inherent

to software development itself as well as to the estimation activity. On the one hand,

the preferred method should accept uncertain inputs. On the other hand, besides

simple point estimates means to draw conclusions about the estimation uncertainty

and effort-related project risk should be provided. The use of probabilistic simula-

tion provides the possibility to deal with estimation uncertainty, perform cost risk

analyses, and provide an add-on of important information for project planning

(e.g., how probable it is not to exceed a given budget).

One of the methods that respond to current industrial objectives with respect to

effort estimation is CoBRAÒ [14], an estimation method de veloped at t he Fraunhofer

Institute for Experimental Software Engineering (IESE). The method uses sparse mea-

surement data (size, effort) from already completed software projects in order to model

development productivity and complements it with expert evaluations in order to explic-

itly model the influence of various project characteristics on productivity deviations.

Random simulation is one of the core elements of the CoBRAÒ method; it is

supposed to deal with estimation uncertainty introduced through expert evaluations.

Experts first specify a causal model that describes which factors influence costs (and

each other) and how. Afterwards, they quantify the impact of each factor on costs by

giving themaximal, minimal, andmost likely increase of costs dependent on a certain

factor. The simulation component of CoBRAÒ processes this information into a

probability distribution of project costs. This provides decision makers with a robust

basis for managing software development costs, for example, planning software

costs, analyzing and mitigating cost-related software risks, or benchmarking projects
2 The more data is available, the less expert involvement is required and the company’s effort is

reduced. This does not include the effort spent on collecting the data. Above a certain maturity level,

companies have to collect the data needed anyway.

SIMULATION TECHNIQUES FOR HYBRID COST ESTIMATION 119
with respect to softw are costs. Numer ous practical benef its of CoBRA Ò have been

proven in various industria l appl ications (e.g., [14, 97]).

Origi nally, CoBRA Ò utilize d the Monte Carlo (MC) simulat ion techniq ue. Yet,

experience from appl ying the CoBRA Ò method in an indus trial proj ect [14] sug-

gested that MC might n ot be the optim al solution for that purpos e. Latin Hype rcube

(LH) was propos ed as an alter native method that can im prove the performanc e of the

CoBRAÒ imple mentati on. Yet, neither a defini tion of the performanc e nor empirica l

evidence is avai lable that would suppor t this hypothesi s. This led us to the questio n

of whethe r there exist techniq ues that deliver mor e accurate resu lts in the context of

software cost estimation in gener al, and for the CoBRA Ò method in partic ular,

than simpl e MC sampling or performi ng the simulat ion in a more efficient way.

In addition, we are intere sted in the extent of accuracy improv ement that can be

expected from the use of such a technique.

In this chapter , we d escribe analytica l consider ations as well as the results of an

empirical stud y we conduc ted in order to answ er these quest ions. Our major

objective was to evalu ate the magnitude of possi ble CoBRA Ò accuracy and effi-

ciency improv ement related to the selection of a certain simul ation techniq ue and its

parameters. In order to achi eve our goal, we deri ved sever al analytica l err or estima-

tions and compare d select ed simulat ion tec hniques (in cluding MC and LH) in an

experiment emp loying various set tings (i.e., para meters) within the sam e CoBRA Ò

application (i.e., on the same input data).

The chapter is organized as follows: Sec tio n 2 presents the necessary theoretical

foundations regarding the CoBRAÒ cost estimation method and the simulation techni-

ques relevant for this chapter. Sec tio n 3 provides an overview of related work. It presents

a comprehensive overview and comparison of existing estimation methods as a well as

summary of common simulation techniques. In Se ctio n 4 , the research questions (RQ)

ar e d es crib ed. Section 5 presents analytical results regarding one of the research ques-

tio ns . Se ctio n 6 sketches simulation algorithms that were selected for comparison and

motivates why an empirical study is necessary for such a comparison. Sec tio n 7

presentsthe empirical study, including its results and limitations. Finally, Se cti on 8 su m-

marizes the findings of the study and outlines perspectives of further research work.

2. Background

2.1 CoBRAÒ Principles

CoBRAÒ is a hybrid method combining data- and expert-based cost estimation

approache s [14]. Th e CoBRA Ò method is based on the idea that proj ect costs consi st

of two basic components: nominal project costs (Equation 1) and a cost overhead

(CO) portion (Equation 2).

120 M. KLÄS ET AL.
Cost ¼Nominal Productivity � Size|ffl{zffl}
Nominal Cost

þCost Overhead ð1Þ

Cost Overhead ¼
X
i

Multiplieri Cost Factorið Þ

þ
X
i

X
j

Multiplierij Cost Factori; Indirect Cost Factorj
� � ð2Þ

Nominal cost is the cost spent only on developing a software product of a certain size

in the context of a nominal project. A nominal project is a hypothetical ‘ideal’

project in a certain environment of an organization (or business unit). It is a project

that runs under optimal conditions; that is, all project characteristics are the best

possible ones (‘perfect’) at the start of the project. For instance, the project objec-

tives are well defined and understood by all staff members and the customer and all

key people in the project have appropriate skills to successfully conduct the project.

CO is the additional cost spent on overcoming imperfections of a real project

environment such as insufficient skills of the project team. In this case, a certain

effort is required to compensate for such a situation, for example, team training has

to be conducted.

In CoBRAÒ, CO is modeled by a so-called causal model. The causal model

consists of factors affecting the costs of projects within a certain context. The causal

model is obtained through expert knowledge acquisition (e.g., involving experi-

enced project managers). An example is presented in Fig. 1. The arrows indicate

direct and indirect relationships. A sign (‘+’ or ‘–’) indicates the way a cost factor

contributes to the overall project costs. The ‘+’ and ‘–’ represent a positive and

negative relationship, respectively; that is, if the factor increases, the project costs

will also increase (‘+’) or decrease (‘–’). For instance, if Requirements volatility
Cost

Disciplined
requirements
management

Requirements
volatility

−

−

Platform
capabilities

Application
domain

capabilities

Development
team capabilities

Customer
participation

−−

+
+

+ +

FIG. 1. Example causal cost model.

SIMULATION TECHNIQUES FOR HYBRID COST ESTIMATION 121
increases, costs will also increase. One arrow pointing to another one indicates

an interaction effect. For example, an interaction exists between Disciplined
requirements management and Requirements volatility. In this case, increased

disciplined requirements management compensates for the negative influence of

volatile requirements on software costs.

The CO portion resulting from indirect influences is represented by the

second component of the sum shown in Equation 2. In general, CoBRAÒ allows

for expressing indirect influences on multiple levels (e.g., influences on Disciplined
requirements management and influences on influences thereon). However, in

practice, it is not recommended for experts to rate all factors due to the increased

complexity of the model and the resulting difficulties and efforts. Further details on

computing the CO can be found in [14].

The influence on costs and between different factors is quantified for each factor

using experts’ evaluation. The influence is measured as a relative percentage

increase of the costs above the nominal project. For each factor, experts are asked

to give the increase of costs when the considered factor has the worst possible value

(extreme case) and all other factors have their nominal values. In order to capture the

uncertainty of evaluations, experts are asked to give three values: the maximal,

minimal, and most likely CO for each factor (triangular distribution).

The second component of CoBRAÒ, the nominal project costs, is based on data

from past projects that are similar with respect to certain characteristics (e.g.,

development and life cycle type) that are not part of the causal model. These

characteristics define the context of the project. Past project data is used to deter-

mine the relationship between CO and costs (see Equation 1). Since it is a simple

bivariate dependency, it does not require much measurement data. In principle,

merely project size and effort are required. The size measure should reflect

the overall project volume, including all produced artifacts. Common examples

include lines of code or function points [60]. Past p roject inf ormation on iden tified

cost factors is usually elicited from experts.

On the basis of the quantified causal model, past project data, and current project

characteristics, a CO model (distribution) is generated using a simulation algorithm

(e.g., MC or LH). The probability distribution obtained could be used further to

support various project management activities, such as cost estimation, evaluation of

cost-relate d proj ect risks, or benchmar king [14]. Figure 2 illus trates two usage

scenarios using the cumulative cost distribution: Calculating the project costs

for a given probability level and computing the probability for exceeding given

project costs.

Let us assume (scenario A) that the budget available for a project is 900 U and that

this project’s costs are characterized by the distribution in Fig. 2. There is roughly

a 90% probability that the project will overrun this budget. If this probability

0.8

0.6

0.4

0.2

1.0

0.0

Cost

A

B

1000 1200800 1400

P
ro

ba
bi

lit
y

FIG. 2. Example cumulative cost distribution.

122 M. KLÄS ET AL.
represents an acceptable risk in a particular context, the project budget may not be

approved. On the other hand, let us consider (scenario B) that a project manager

wants to minimize the risks of overrunning the budget. In other words, the cost of a

software project should be planned so that there is minimal risk of exceeding it. If a

project manager sets the maximal tolerable risk of exceeding the budget to 30%,

then the planned budget for the project should not be lower than 1170 U.

The advantage of CoBRAÒ over many other cost estimation methods is its low

requirements with respect to measurement data. Moreover, it is not restricted to

certain size and cost measures. The method provides means to develop an estimation

model that is tailored to a certain organization’s context, thus increasing model

applicability and performance (estimation accuracy, consistency, etc.) A more

detailed d escription of the CoBRA Ò method can be found in [14].

2.2 Simulation Techniques

Simulation is an approach to obtaining knowledge about the behavior or

properties of a real system by creating and investigating a similar system or a

mathematical model of the system.

Before computer simulations were possible, formally modeled systems had to be

analytically solved to enable predicting the behavior of the system from a given

SIMULATION TECHNIQUES FOR HYBRID COST ESTIMATION 123
number of para meters and initial conditions. Stoch astic com puter simulat ion meth-

ods like MC samp ling and LH sampling make it possi ble to handle mor e com plex

systems with larger numb ers of input variabl es and more com plex int eractions

between them.

2.2.1 Basic Principles of the MC Method

The MC method [90] is the mos t p opular simul ation appro ach, used in numerous

science areas (see Section 3). One signif icant advantage of the MC method is the

simplicity of it s algorithmi c structure . In princi ple, an MC algorithm consists of a

process of produc ing rando m event s (so-cal led trials). These event s are used as input
for the mathem atica l mode l and produc e possibl e occurren ces of the observed

variable. This process is repeated n times (iteratio ns) and the aver age of o verall
occurren ces is calcul ated as a resu lt.

The mathem atical founda tion of the MC method is built upon the stro ng law of
large numb ers [59]:
Let �i(i 2 N) be a sequence of integr able, inde penden t rando m variables with

identical distribut ions and a finite expec ted value m ¼ E(�i). It follows that for near ly
any realizatio n o :

li m
n !1

Pn
i ¼ 1 � i oð Þ
n

¼ m ð 3Þ

This means that we can transf orm � into the integr al, stoc hastically, by taking
repeated sam ples from � and aver aging �i(o).
The expected error for n itera tions can be estimat ed with [90]:

EAR ¼ E
1

n

Xz
i¼ 1

�i oð Þ � m

�����
�����

 !
� sffiffiffi

n
p ð 4Þ

where s is the sta ndard deri vation of the rando m variable �i.
In this chapter , however , we also consider sampling as an attem pt to appro ximate

an u nknown proba bility distribut ion with the help of rando mly sample d values.

In the context of MC , this means that we are not only intere sted in the expec tation

of the rando m variable (�), but also in an appro ximation of its distrib ution D� ,

describabl e by its probabi lity densi ty func tion (pdf) f (x) [90].
The range of random samples obtained (result of independent realizations of �)

build up an interval [x,y]. After breaking it into a number of equal length intervals

and counting the frequency of the samples that fall into each interval, we may

construct a histogram that approximates the density distribution of the sampled

random variable � (see Fig. 3).

Probability

8

x y

11 18 24 21 12 6 η

FIG. 3. Example histogram of a probability variable.

124 M. KLÄS ET AL.
2.2.2 Stratification and LH Sampling

The expec ted error of the MC method depend s on the numb er of itera tions n and
the variance s of the rando m variabl e � (see Equation 4). The error can thus be
reduc ed either by increas ing the numb er of trial s and/or reducing the variance of the

rando m variabl e. Numer ous variance reduc tion techniq ues (VRT) are discusse d in

the lite rature (see Section 3). One of them is strat ification. In this section, we present

the idea of stratification in general, as well as LH as a modification for multidimen-

sional problems that can be used without deeper knowledge of the random variable.

We explain both: how LH can be used for mean computation and how it can be used

for sampling.

When we use stratification for variance reduction, we break the domain of the input

distribution into s independent domains (so-called strata). In a one-dimensional case,

this is simply a partitioning of the range of the input distribution (Fig. 4). If we use strata

of equal size and consider the input variable x as being uniformly distributed across the

half-open interval [0,1), we can get random variables xj for each j-th strata as:

xj ¼
j� x
s

ð5Þ

So, we can simulate any random variable � with the density function f(x) if its

inverse cumulative density F–1(x) is given:

xS ¼
1

m� s

Xm;s
i, j¼1

�i; j ¼
1

n

Xm;s
i; j¼1

F�1 xj
� �

with n ¼ m� s ð6Þ

Probability

1

η
η1,3 (ω)

F−1

FIG. 4. Example stratification for s and n ¼ 4.

X

s

s

X
X

X

X X X X

s

X X X X
X X X X
X X X X

s

FIG. 5. Two-dimensional straightforward application of stratification requires 16 cells to get four

strata (left), the LH algorithm selects only four cells (right).

SIMULATION TECHNIQUES FOR HYBRID COST ESTIMATION 125
Moreover, we obtain for m ¼ 1, a variance reduction of:

Varnew ¼ Varold �
Xn
j¼1

E� Ej

� �2
n2

ð7Þ

where E is the expectation of F–1(x) over [0,1] and Ej is the expectation of F–1(x)
over strata j.
In the multidimensional case, we have the problem that a straightforward gener-

alization is not efficient [50]. Th e reaso n is that we must sam ple in too man y cel ls

(subintervals). If we want s strata in any dimension d, we need sd cells to partition

the input variable(s) (Fig. 5).

The LH techniq ue [64] overc omes this problem by sam pling each strat um only

once. In order to obtain a perfect stratification within a single dimension, each

126 M. KLÄS ET AL.
rando mly selected stratum is taken only once and inde penden tly of the strat a withi n

other dimens ions . This can be guara nteed by usin g d independe nt permut ations p k of
{1, . . ., s} with k ¼ 1, . . ., d.

For s=n, we obtain the following estimator that converges against the expected

value E(�) (see also Equation 3):

xLH ¼ 1

n

Xn
j ¼1

� i ¼
1

n

Xn
j¼ 1

F�1 xj ;1 ; :::; xj;d
� �

with xj;k ¼
pk jð Þ � x

n
ð8Þ

In order to sample a pdf using the LH approach, we can use the same proce dure as

for the MC appro ach (see Section 2.2.1). In fact, LH is an improv ement (spe cial

case) of the MC appro ach. Therefor e, the error can be estimated in the same way as

for MC (see Section 2.2.1).

3. Related Work

3.1 Software Effort Estimation Methods

3.1.1 Classification of Existing Effort
Estimation Methods

Software researchers have made a number of attempts to systematize software

effort estimation methods [8, 9, 12, 103].

Proposed classification schemes are subjective and there is no agreement on the

best one. Some of the classes, like Price-to-Win, cannot really be considered to be an
estimation technique. Other classes are not orthogonal, for example, expert judg-

ment can be used following a bottom-up estimation strategy. The systematization we

propose in this chapter (Fig. 6) is probably also not fully satisfactory, but is designed

to overview the current status of effort estimation research and evaluate it against the

most recent industrial requirements.

3.1.1.1 Data-driven Methods. Data-driven (data-intensive) methods

refer to methods that provide effort estimates based on an analysis of measurement

project data.

Proprietary Versus Non-proprietary. Proprietary effort estimation methods

refer to methods that are not fully documented in the public domain. Examples of

propr ietary appro aches are PRICE -S [19], SPQR/ 100 [44], and So ftCost-R [77].

Because of the lack of sufficient documentation, we exclude these methods from

further consideration.

FIG. 6. Classification of software effort estimation methods.

SIMULATION TECHNIQUES FOR HYBRID COST ESTIMATION 127
Model-Based Methods. Model-based methods provide a model that relates the

dependent variable (effort) to one or more independent variables, typically a size

measure and one or more effort factors. The model is built, based on the historical

project data and used for predictions; the data are generally not needed at the time of

the prediction. An estimation model may be characterized by different parameters.

They might be specified a priori before analyzing the project data (parametric

methods) or determined completely from the data at the time of model development

(nonparametric methods).

Parametric Model-Based Methods. Specify the parameters of the estimation

model a priori. Statistical regression methods, for instance, require a priori specifi-
cation of the model’s functional form and assume estimation errors to follow certain

parametric distributions. Typical functional forms of the univariate regression
include [54, 61, 82]: linear, quadratic, Cob b-Dougl as, log- linear, and Trans log.

Multivariate regression, on the other hand, constructs models that relate effort to

many independe nt variables [20, 66]. Typic al regress ion methods fit regr ession

parameters to historical project data using ordinary least squares strategy. Yet, this

technique is commonly criticized for its sensitivity to data outliers. As an alternative,

128 M. KLÄS ET AL.
robus t regression has been proposed by several authors [61, 67]. Another statistical

approach to handle unbalanced data is Stepwise Analysis of Variance (Stepwise
AN OVA), which combines classical ANOVA with OLS regression [53]. In each step

of an iterative procedure, ANOVA is applied to identify the most significant effort

factor and remove its effect by computing the regression residuals; ANOVA is then

applied again using the remaining variables on the residuals. Another critical point

regarding classical regression is that it does not handle noncontinuous (ordinal and

categorical) variables. In order to solve that problem, generalized regression methods

such as Categorical Regression [3] and Ordinal Regression [82] have been proposed.
Fixed-m odel estimation methods such as COC OMO [8, 1 0], SLIM [75], and

SEER –SEM [40] als o belong to the group of para metric methods . In fact, all three

mode ls have their roots in the early Jense n’s regre ssion models [41, 42]. All of them
actually represent regression models that were once built on multiple proprietary

project data and were intended to be applied ‘as is’ in contexts that may significantly

differ from the one they were built in. Yet, the software estimation community

agrees that effort models work better when cal ibrated with local data [24, 66].

In order to improve the performance of fixed-model methods when applied within

a specific context, various adjustment techniques have been proposed, such as

periodical updates of fixed models to reflect current trends and changes in the

softw are doma in are (e.g., the family of COCO MO mode ls [8, 1 0]). The fre quency

of official model calibrations might, however, not be sufficient to keep them up to

date [66]. There fore, additional mechani sms to fit fix ed models to local context have

been suggested. Already, authors of fixed models are proposing certain local
calibration techniques as part of a model’s application procedures. Moreover,

several adju stment appro aches were propos ed by independe nt researc hers [66, 89].

The COCONUT approach, for instance, calibrates effort estimation models using an

exhaus tive search over the space of COC OMO I calibrat ion para meters [66].

Recently, a parametric regression method that adapts ecological predator–prey
models to represent dynamics of software testing and maintenance effort has been

propos ed [17]. Th e basic idea is that the high popul ation of prey allows preda tors to

survive and reproduce. In contrast, a limited population of prey reduces the chances

of predators to survive and reproduce. A limited number of predators, in turn, creates

favorable conditions for the prey population to increase. Authors adopt this phe-

nomenon to software maintenance and testing. Software corrections represent pre-

dating software defects, and associated effort is fed by defects being discovered by

the user. Perfective and adaptive maintenance are both fed by user needs, and the

corresponding maintenance effort adapts itself to the number of change requests.

Parametric estimation also adapts selected machine learning approaches.

Examples include Artificial Neural Networks (ANN). Network parameters such as

architecture or input factors must be specified a priori; the learning algorithm then

SIMULATION TECHNIQUES FOR HYBRID COST ESTIMATION 129
searches for values of parameters based on project data. The simplest ANN, so-called

single-layer perceptron, consists of a single layer of output nodes. The inputs are fed
directly to the outputs via a series of weights. In this way, it can be considered the

simplest kind of feed-forward network. The sum of the products of the weights and the

inputs is calculated in each node, and if the value is above a certain threshold

(typically 0), the neuron fires and takes the activated value (typically 1); otherwise,

it takes the deactivated value (typically –1). Neurons with this kind of activation

function are also called McCulloch–Pitts neurons or threshold neurons. In the area of

effort estimation, the sigmoid and Gaussian functions are usually used. Since single-

unit perceptrons are only capable of learning linearly separable patterns, multilayer

perceptrons are used to represent nonlinear functions. Examples of such ANN are the

Multilayer feed-forward back-propagation perceptron (MFBP) [32] and the Radial
Basis Function Network (RBF N) [32, 87].
The Cerebellar Model Arithmetic Computer (CMAC), also known as Albus

perceptron, is a special type of a neural network, which represents a multidimen-

sional funct ion appro ximator [81]. It discreti zes values of continuo us input to select

so-called training points. CMAC first learns the function at training points and then

interpolates to intermediary points at which it has not been trained. The CMAC

method operates in a fashion similar to a lookup table, using a generalization

mechanism so that a solution learned at one training point in the input space will

influence solutions at neighboring points.

Finally, Evolutionary Algorithms (EA) represent an approach that can be used to

provide various types of traditionally data-based estimation models. EA simulates

the natural behavior of a population of individuals (chromosomes) by following an

iterative procedure based on selection and recombination operations to generate new

individuals (next generations). An individual (chromosome) is usually represented

by a finite string of symbols called chromosome. Each member of a population

encodes a possible solution in a given problem search space, which is comprised of

all possible solutions to the problem. The length of the string is constant and

completely dependent of the problem. The finite string of symbol alphabet can

represent real-v alued encodings [2, 7 9], tree represe ntation [21], or software code

[83]. In each simul ation itera tion (gene ration), relat ively good solutions p roduce

offspring that replace relatively worse ones retaining many features of their parents.

The relative quality of a solution is based on the fitness function, which determines

how good an individual is within the population in each generation, and what its

chance of reproducing is, while others (worse) are likely to disappear. New indivi-

duals (offspring) for the next generation are typically created by using two basic

operations, crossover and mutation.

Shukla, for instance, used EA to generate an optimal ANN for a specific problem

[88]. The method was called a Neuro- genetic Effort Es timation Method (GANN).

130 M. KLÄS ET AL.
The author encoded the neural network using so-called strong representation and

learned it using genetic algorithm. The ANN generated in each cycle was evaluated

against a fitness function, defined as the inverse of the network’s prediction error

when applied on the historical project data.

Nonparametric Model-Based Methods. Differ from parametric methods in that

the model structure is not specified a priori but instead is determined from quantita-

tive (project) data. In other words, nonparametric estimators produce their infer-

ences free from any particular underlying functional form. The term nonparametric

is not meant to imply that such methods completely lack parameters, but rather that

the number and nature of the parameters are flexible and not fixed in advance.

Typical nonparametric methods originate from the machine learning domain. The

most prominent examples are decision tree methods. The most popular one in

the artificial intelligence domain, the C4.5 algorithm has not been exploited much

in the software effort estimation domain due to its inability to handle numerical

input data [2]. Propos ed in [11], the classifi cation and regress ion trees (CART)

method overcame this limitation and is applicable for both categorical and numeri-

cal data. The CART algorithm was re-implemented in numerous software tools such

as CAR T [11], CARTX [93], and GC&R T [96]. Dec ision trees group instanc es

(software projects) with respect to a dependent variable. A decision tree represents a

collection of rules of the form: if (condition 1 and . . .and condition N) then Z and

basically forms a stepwise partition of the data set being used. In that sense, decision

trees are equivalent to decision rules, that is, a decision tree may be represented as a

set of decision rules. Successful applications in a number of different domains have

motivated software researchers to apply dedicated rule induction (RI) methods that

gener ate effort estimation decisi on rules dir ectly from statistica l data [63].

Finally, some applications of the EA can be classified as nonparametric, for

instanc e, EA applied to generat e regress ion equat ions (EA Regressi on) [16 , 21].
In that case, the elements to be evolved are trees representing equations. That is, the

population P of the algorithm is a set of trees to which the crossover and mutation

operators are applied. A crossover exchanges parts of two equations, preserving the

syntax of the mathematical expression, whereas amutation randomly changes a term

of the equation (function, variable or constant). The terminal nodes are constants or

variables, and not-terminals are basic functions that are available for system defini-

tion. Each member of the population (regression equation) is evaluated with respect

to the fitness function defined as the average estimation error on the historical

project data obtained when using the member.

Shan et al. applied so-called Grammar Guided Genetic Programming (GGGP) to
gener ate compute r progr ams that estimat e softw are devel opment effort [83]. Gen -

erating computer programs using EA creates a separate area of machine learning

SIMULATION TECHNIQUES FOR HYBRID COST ESTIMATION 131
called Genetic Programming (GP). The objective of GP is to optimize a population

of computer programs according to a fitness function determined by a program’s

ability to perform a given computational task (in this case accurately estimate

software effort). In GGGP, generation process is guided by a specific language

grammar that (1) imposes certain syntactical constraints and (2) incorporates back-

ground knowledge into the generation process. The grammar used resulted in

models that are very similar to regression. The means square estimation error

on the historical project data was applied as the fitness function to evaluate the

model-generated GGGP process.

Finally, Aguilar-Ruiz et al. applied EA to generate a set of Hierarchical Decision
Ru le s (HIDER) f or t he e ff or t c la ss if ic at io n p ro bl em [2]. Members of the population

are coded using a vector of real values. The vector consists of pair values representing

an interval (lower and upper bound) for each effort factor. The last position in the

vector represents a discrete value of effort (effort class). The EA algorithm extracts

decision rules from this representation. Each member of the population (decision rule)

is evaluated with respect to the fitness function that discriminates between correct and

incorrect effort predictions (classifications) of historical projects using the member.

Semi-parametric Model-Based Methods. Represent methods that contain both

parametric and nonparametric components. In a statistical sense, a semi-parametric

method produces its inferences free from a particular functional form but within a

particular class of functional forms, for example, it might handle any functional

form within the class of additive models.

A typical example of the semi-parametric method where parametric and nonpara-

metric elements were merged is the integration of decision trees and ordinary least
squares regressi on (CART+ OLS) propos ed by Briand and collea gues [12, 13]. The
method generates a CART tree and applies regression analysis to interpret projects

at each terminal node of the tree.

The application of EA to generateMultiple Regression Splines (MARS) is another
example o f the semi- parametr ic method [79]. Instead of buil ding a single parametr ic

model, EA-MARS generates multiple parametric models, using linear regression.

In this case, the search space comprises a set of cut-points (CP) in the independent

variable (e.g., software size measured in function points, FP), so a different

parametric estimation model can be used for the intervals that comprise such CP.

Memory-based Methods. Model-based methods, such as neural networks or

statistical regression, use data to build a parameterized model (where parameters

must be specified a priori or might be learned from data). After training, the model

is used for predictions and the data are generally not needed at the time of prediction.

In contrast, memory-based methods (or analogy-based methods) do not create a

132 M. KLÄS ET AL.
model but explicitly retain the available project data, and use them each time

a prediction of a new project needs to be made. Each time an estimate is to be

provided for a new project (target), the project data (case base) is searched for the

projects (analogues) that are most similar to the target. Once the most similar

projects are found, their actual efforts are used as a basis for estimation.

The Case-based Reasoning (CBR) method represents an exact implementation of

the memory-based estimation paradigm. It estimates a new project (target) by

adaptin g the effort of the most simi lar histor ical projects (ana logues) [49].

In order to find project analogies, the CBR method first selects the most relevant

characteristics of a software project and defines a project similarity measure upon it.

The early methods, such as the Analogy Software Tool (ANGEL), required a priori
selection of the most significant characteristics or simply used all characteristics

available in the data repository [86] . L a te r, a u to ma ti c f ac to r s el ec ti on [49] and

weighting [57] techniques were applied that optimize the performance of the CBR

estimator. The most commonly used similarity measure is based on the Euclidian
distance [86]. The Gray Relational Analysis Based Software Project Effort (GRACE)
method computes the gray relational grade [91], a n d t he Collaborative Filtering (CF)
method uses a similarity measure proposed in the field of information retrieval to

evaluate the similarity between two documents [71] . T h e m os t r ec en t AQ UA method

[57] uses a locally weighted similarity measure, where local weights are computed for

different project attributes dependent on their type (nominal, ordinal, continuous, set,

fuzzy, etc.) The Analogical and Algorithmic Cost Estimator (ACE) and Bootstrap
Based Analogy Cost Estimation (BRACE) consider several alternative similarity

measures. ACE uses average similarity computed over several distance measures

[39, 102, 103], whereas BRACE analyzes each alternative similarity measure to select

the one that entails optimal estimation performance [94, 95]. In addition, scaling

techniques are used to transform values of project characteristics such that all have the

same degree of influence, independently of the choice of units [71, 86, 91]. On the

basis of the results of the similarity analysis, analogues are selected to base target

estimates on. One group of methods proposes a small constant number (1–3) of

nearest neighbors [13, 65, 86, 102]. Other methods, such as BRACE [94] and

AQUA [57], determine the optimal number of analogies in a cross-validation analysis.

The effort of selected analogues is then adapted to predict the target project. In case of

a single analogue, its effort may be adopted [13] o r a dd it io na ll y a dj us te d u si ng t he s iz e

of the analogue and target projects [94, 102]. Adapting several analogues includes

median, mean, distance-weighted mean [65, 71, 86], and inverse rank weighted mean

[49, 65]. Again, BRACE analyzes several alternative adaptation approaches to deter-

mine the optimal one [94].

Another way of implementing memory-based estimation is represented by the

Optimized Set Reduction (OSR) method [13, 15, 104]. On the basis of the characteristics

SIMULATION TECHNIQUES FOR HYBRID COST ESTIMATION 133
of the target project, OSR iteratively partition the set of project data into subsets of

similar projects that assure increasing information gain. Similarly to decision trees, the

final effort estimate is based on projects in the terminal subset.

Composite Methods. These integrate elements of the model- and memory-based

methods. Typical examples are applications of CBR or OLS regression to adapt

projects in the CART terminal node [12, 13] or OSR terminal subse t [47]. Another

example is the usage of cluster analysis to group similar projects in order to facilitate

the tra ining of the n eural networ k [56]. Th e analo gy with virtual neighb or method
(AVN) represents a more sophisticated combination of model- and memory-based

methods. It enhances the classical CBR approach in that the two nearest neighbors of

a target project are identified based on the normalized effort, which is computed

from the multiple-regression equation. Moreover, AVN adjusts the effort estimation

by compensating for the location of the target project relative to the two analogues.

3.1.1.2 Expert-Based Methods. Expert-based estimation methods

are based on the judgment of one or more human experts. The simplest instance of the

unstructured expert-based estimation is the so-calledGuesstimation approach, where a
single expert provides final estimates. An expert could just provide a guess (‘rule-of-
thumb’ method) or give estimates based on more structured reasoning, for example,

breaking the project down into tasks, estimating them separately and summing those

predictions into a total estimate (bottom-up approach). An example formal way of

structuring expert-based effort estimation is represented by the Analytic Hierarchy
Process (AHP) method, which systematically extracts a subjective expert’s predictions

by means of pair-wise comparison [84].

Because of many possible causes of bias in individual experts (optimist, pessi-

mist, desire to win, desire to please, and political), it is preferable to obtain estimates

from more than one exper t [68]. A group of experts may , for instanc e, provide their

individual estimates, which are then aggregated to a final estimation, for example,

by use of statistical mean or median. This is quick, but subject to adverse bias by

individual extreme estimates. Alternative group consensus approaches try to hold

group meetings in order to obtain expert agreement with regard to a single estimate.

Example s of such methods are Wide-band Delphi [10, 68], Estimeet ing [98], and,
recently d efined in the cont ext of agile softw are developm ent, Planning Game [7].
A more formal approach to integrating uncertain estimates of multiple human

experts is Stochastic Budgeting Simul ation (SB S) [22]. SBS emp loys rando m sam-

pling to combine effort of individual effort items (work products or development

activities) and project risks specified by experts in terms of triangular or Erlang

distribution.

134 M. KLÄS ET AL.
3.1.1.3 Hybrid Methods. Hybrid methods combine data- and expert-

based methods. In practice, hybrid methods are perceived as the answer to the more

and more common observation that human experts, when supported by low-cost

analytica l techniq ues, might be the mos t accur ate estim ation method [43].

The ESTOR method, for instance, [69] provid es the initial eff ort of a target project

based on the CBR estimation and then adjusts it by applying a set of expert-based

rules, which account for the remaining differences between the analog and the target

project. The Cost Estimation, Benchmarking, and Risk Analysis (CoBRA) method

applies expert-based effort causal modeling to explain the variance on the develop-

ment produc tion rate mea sured as eff ort divided by siz e [14 , 99].

Recently, the software research community has given much attention to Bayes
Theorem and Bayesian Belief Networks (BBN). Chulani, for instance, employed

Bayes theorem to combine a priori information judged by experts with data-driven

information and to calibrate one of the first versions of the COCOMO IImodel, known

as COCOMO II.98 [8]. Several researchers have adapted BB N to build causal effort
models and combine a priori expert judgments with a posteriori quantitative project

data [23, 74]. Recently, BBN was used to construct the probabilistic effort model called

COCOMO-U, which extends COCOMO II [8] t o h an dl e u nc e r ta in ty [107].

3.1.2 Handling Uncertainty

Uncertainty is inherent to software effort estimation [46, 52]. Yet, software man-

agers usually do not understand how to properly handle the uncertainty and risks

inherent in estimates to improve current project budgeting and planning processes.

Kitchenham et al. conclude that estimation, as an assessment of a future condition,

has inherent probabilistic uncertainty, and formulate four major sources of estimation

uncertainty: measurement error, model error, assumption error, and scope error [52].

We claim that limited cognition of effort dependencies is another major source of

estimation uncertainty. We distinguish two major sources of effort estimation uncer-

tainty: probabilistic and possibilistic. Probabilistic uncertainty reflects the random

character of the underlying phenomena, that is, the variable character of estimation

problem parameters. Uncertainty is considered here in terms of probability, that is, by

the random (unpredictable, nondeterministic) character of future software project

conditions, in particular, factors influencing software development effort. Possibilistic
uncertainty (epistemological uncertainty) reflects the subjectivity of the view on

modeled phenomena due to its limited cognition (knowledge and/or experience).

This may, for instance, include limited granularity of the description of the modeled

phenomena, that is, a finite number of estimation parameters (e.g., effort factors and

the ways they influence effort). The lack of knowledge may, for instance, stem from a

partial lack of data, either because this data is impossible to collect or too expensive to

SIMULATION TECHNIQUES FOR HYBRID COST ESTIMATION 135
collect, or because the measurement devices have limited precision. Uncertainty is

considered here in terms of possibilities.

Handling Probabilistic Uncertainty. Themost commonapproach,which actually

explicitly refers to probabilistic uncertainty, is based on the analysis of the probability

distribution of given input or output variables. Representing effort as a distribution of

values contributes, for instance, to better understanding of estimation results [52].

Motivated by this property, a number of estimationmethods that operate on probability

distributions have been proposed. Recent interest in BB N [23, 74, 107] is one example of

this trend. Another one is generally acknowledged to be the application of random
sampling over the multiple estimation inputs represented by probability distribution [14,

22, 34, 75, 76, 94, 99]. The resulting effort distribution may then be interpreted using

various analysis techniques. Confidence and prediction intervals are commonly used

statistical means to reflect predictive uncertainty. Human estimators are traditionally

asked to provide predicted min–max effort intervals based on given confidence levels,

for example, ‘almost sure’ or ‘90 percent confident.’ This approachmay, however, lead

to overoptimistic views regarding the level of estimation uncertainty [44]. J �rgensen
proposesanalternative, so-calledpX-effortapproach,where insteadofgivinganumber,

the human estimator should give ranges and views based on probabilistic distributions

[45]. The pX-view means there is an X percent probability of not exceeding the estimate.

Handling Possibilistic Uncertainty. In practice, handling possibilistic uncer-

tainty involves mainly the application of the fuzzy set theory [108]. The approaches
proposed in the effort estimation domain can be principally classified into two cate-

gories: (1) fuzzifying existing effort estimationmethods and (2) building-specific rule-

based fuzzy logic models.

The first approach simply adapts existing software effort estimation methods to

handle the uncertainty of their inputs and outputs using fuzzy sets. A typical

estimation process consists of three steps: (1) fuzzification of inputs, (2) imprecise

reasoning using fuzzy rules, and (3) de-fuzzification of outputs. Inputs and outputs

can be either linguistic or numeric. Fuzzification involves finding the membership

of an input variable with a linguistic term. The membership function can, in

principle, be either defined by human experts or analytically extracted from data,

whereas fuzzy rules are usually defined by experts. Finally, de-fuzzification pro-

vides a crisp number from the output fuzzy set. One example implementation of

such an idea is a series of fuzzy-CO COMO models [1, 38, 58 , 70]. Other adaptat ions

of traditional estimation methods include fuzzyfying similarity measures within

CBR methods [37, 57] or informat ion gain measur e in decisi on trees [35].

Rule-based fuzzy logic models directly provide a set of fuzzy rules that can then be

used to infer predictions based on the fuzzy inputs [29, 62]. Fuzzy rules may be based

3 A series of industrial surveys were performed as part of the research presented in this section. The

presentation of the detailed results is, however, beyond the scope of this chapter and will be published in a

separate article.

136 M. KLÄS ET AL.
on human judgment [61] or learned from empirical data [106]. Neuron-fuzzy systems
(NFS) represent a hybrid approach to learn fuzzy rules. The equivalence between

neural networks (ANN) and fuzzy logos systems makes it possible to create initial

fuzzy rules based on expert judgment, translate them into equivalent ANN, and learn

weights for the rules from quantitative data [26]. Neuro-Fuzzy COCOMO employs

NFS to individually model each linguistic input of the COCOMO model [36].

Another approach to handle possibilistic uncertainty is based on the rough sets theory
[73]. A rough set is a formal approximation of a crisp set (i.e., conventional set) in terms

of a pair of sets, which give the lower and the upper approximation of the original set.

The lower and upper approximation sets themselves are crisp sets in the standard

version of the rough sets theory. The rough sets theory was recently applied within

the AQUA+ method to cover the uncertain impact of effort drivers on effort [57].

3.1.3 Evaluation and Comparison of Existing

Effort Estimation Methods

Literature on software effort estimation methods is rich with studies that evaluate

and compare several est imation methods [12, 46, 48, 68]. Howeve r, they do not

provide a clear answer to the question ‘Which method is the best one?’

The first impression one may get when looking over hundreds of empirical studies

published so far, is that the only reasonable criterion to evaluate an estimation method

is the accuracy of the estimates it derives. The second impression is that this criterion

is probably not very helpful in selecting the best estimation method because instead of

at least converging results, the reader often has to face inconsistent and sometimes

even contradicting outcomes of empirical investigations [46]. The source of this

apparent inconsistency is a number of factors that influence the performance of

estimation methods, but which are usually not explicitly considered in the published

results. Examples are: inconsistent empirical data (source, quality, preprocessing steps

applied, etc.), inconsistent configuration of apparently the same method, or inconsis-

tent design of the empirical study (e.g., evaluation strategy and measures).

Despite a plethora of published comparative studies, software practitioners have

actually still hardly any basis to decide which method they should select for their

specific needs and capabilities. In this chapter, we propose an evaluation framework

derived directly from industrial objectives and requirements with respect to effort

estimation methods.3 In addition, the definitions of individual criteria are based on

related works [1, 9, 10, 12, 16, 51].

SIMULATION TECHNIQUES FOR HYBRID COST ESTIMATION 137
We propose to evaluate individual criteria using the four-grade Likert scale [92].

For that purpose, we define each criterion in the form of a sentence that describes

its required value from the perspective of industrial objectives and capabilities.

We grouped the evaluation criteria in the two groups: criteria related to the estimation

method (C01–C10) and criteria related to the estimation outputs (C11–C13).

C01. Expert Involvement: The method does not require extensive expert’s

involvement, that is, it requires a minimal amount of experts, limited involve-

ment (effort) per expert, minimal expertise.

C02. Required data: The method does not require many measurement data of

a specific type (i.e., measurement scale) and distribution (e.g., normal).

C03. Robustness: The method is robust to low-quality inputs, that is, incomplete

(e.g.,missing data), inconsistent (e.g., data outliers), redundant, and collinear data.

C04. Flexibility: The method is free from a specific estimation model and

provides context-specific outputs.

C05. Complexity: The method has limited complexity, that is, it does not employ

many techniques, its underlying theory is easy to understand, and it does not

require specifying many sophisticated parameters.

C06. Support level: There is comprehensive support provided along with the

method, that is, complete and understandable documentation as well as a useful

software tool.

C07. Handling uncertainty: The method supports handling the uncertainty of the

estimation (i.e., inputs and outputs).

C08. Comprehensiveness: The method can be applied to estimate different kinds

of project activities (e.g., management and engineering) on various levels of

granularity (e.g., project, phase, and task).

C09. Availability: The method can be applied during all stages (phases) of the

software development lifecycle.

C10. Empirical evidence: There is comprehensive empirical evidence supporting

theoretical and practical validity of the method.

C11. Informative power: The method provides complete and understandable infor-

mation that supports the achievement of numerous estimation objectives

(e.g., effective effort management). In particular, it provides context-specific infor-

mation regarding relevant effort factors, their interactions, and their impact on effort.

C12. Reliability: The method provides the output that reflects the true situation in

a given context. In particular, it provides accurate, precise and repeatable

estimation outputs.

C13. Portability: Themethod provides estimation outputs that are either applicable

in other contexts without any modification or are easily adaptable to other

contexts.

138 M. KLÄS ET AL.
We evaluate existing estimation methods on each criterion by rating our agreement

regarding the extent to which each method fulfills a given requirement. We use the

following symbols: (++) strongly agree, (+) agree, (�) disagree, and (��) strongly

disagree. Presented in the Ta ble I , evaluation is based on individual author’s experiences

and critique presented in related literature. It includes both subjective and objective

results.

An evaluation of existing estimation methods against industry-oriented criteria

shows that none of them fully responds to industrial needs. One of the few methods

that support most of the estimation objectives is the CoBRA method. Yet, it has still

several significant weaknesses that may prevent its wide industrial acceptance. First is

the substantial involvement of human experts. The CoBRA causal effort model (the so-

calledCOmodel) is currently built exclusivelybyexperts,which significantly increases

estimation costs and reduces the reliability of outputs. The second problem is the

unclear impact of the selected simulation technique on the reliability and computational

cost of estimation outputs. In this chapter, we investigate the second problem.

3.2 Overview of Random Sampling Techniques

In Sect ion 2.2 , we provided the necessar y theoretic al founda tions o f simul ation

techniq ues such as LH and MC, including lite rature references. Therefore, we

reduce the scope of our review in this section to literature regarding comparative

studies of sampling techniques (concerning their theoretical and practical efficiency/

usability issues) that can be applied in the context of cost estimation with CoBRAÒ.

We consider only methods that can be used for high problem dimensions (number of

input distributions). We do not consider approaches for ‘very high-dimensional’

problem s like Latin Superc ube Sampling [72], since they are of limit ed practical

applicability in the context of software cost estimation.

Saliby descr ibes and comp ares in [80a] a sampling metho d calle d Des criptive

Sampling (DS) against LH and shows that DS is an improvement over LH. He

proves that DS represents the upper limit of maximal improvement over standard

MC that could be achieved with LH. Yet, he also showed that the improvement of

DS over LH sampling decreases with an increasing number of iterations. The

experimental data provided in the chapter shows that the improvement at even

relatively small numbers of iterations, such as 1,000 (in our study we used between

10,000 and 640,000 iterations) is not significant anymore (<0.4%). Moreover,

5 years later, Saliby [80b] com pared the perf ormance of six MC sampling methods :

Standard Monte Carlo, Descriptive Sampling, LH, and Quasi-MC using three

different numeric sequences (Halton, Sobol, Faure). Their convergence rates

and precision were compared with the standard MC approach in two finance

Table i

EVALUATION AND COMPARISON OF EXISTING SOFTWARE EFFORT ESTIMATION METHODS

 Estim. Method C01 C02 C03 C04 C05 C06 C07 C08 C09 C10 C11 C12 C13

Uni-regression ++ - -- - ++ ++ - ++ ++ ++ -- + -
Multi-Regression ++ -- -- + + ++ - ++ ++ ++ - + -

CATREG ++ -- -- + + + - ++ ++ - - + -

Ordinal Regression ++ -- -- + + + + ++ ++ - - + -

S-ANOVA ++ + + + + + - ++ ++ - - + -

COCOMO I ++ - - -- + ++ - - - ++ - - +

COCOMO II ++ - - -- + ++ - - + ++ - - +

SLIM ++ - - -- - ++ - - + - - + +

SEER-SEM ++ - - -- - + - - + -- - + +

ANN ++ - + + -- ++ -- ++ ++ + - + -

Decision Trees ++ + + ++ - + - ++ ++ + ++ + +

Rule Induction ++ + + ++ - + -- ++ ++ - + + +

CMAC ++ - + + -- - -- ++ ++ - - - -

EG/GP ++ ++ + ++ - + -- ++ ++ + + - +

M
o

d
e
l-

b
a
se

d

CART+OLS ++ - + ++ - + - ++ ++ - ++ + +

OSR ++ + ++ ++ -- + - ++ ++ + ++ - +

ANGEL ++ + + ++ + ++ -- ++ ++ ++ - + -

GRACE ++ + + ++ + + -- ++ ++ + - + -

BRACE ++ + + ++ + + + ++ ++ + - - -

AQUA ++ + ++ ++ - + -- ++ ++ + - ++ -

M
e
m

o
ry

-b
a
se

d

CF ++ + + ++ + + -- ++ ++ - - + -

CART+CBR ++ + + ++ + + - ++ ++ - ++ - +

OSR+OLS ++ + + ++ -- + - ++ ++ - ++ - +

ANN+Clustering ++ - + + -- + -- ++ ++ - - + -

AVN ++ + ++ - + + - ++ ++ - - ++ -

D
a
ta

-d
ri

v
e
n

C
o
m

p
o
si

te

ACE ++ + ++ ++ + + -- ++ ++ - - + -

Guesstimation - ++ + ++ ++ -- - + - + - -- -

Wideband Delphi -- ++ ++ ++ ++ ++ - + + - - - -

Estimeeting -- ++ ++ ++ ++ - - + + - - - -

AHP - ++ ++ ++ + + - + + - - - +

SBS -- ++ ++ ++ + - + + + - - + -

E
x

p
e
rt

-b
a
se

d

Planning Game -- ++ ++ ++ ++ ++ + + + + - - +

COCOMO II.98 - - + -- + + + -- + - - + +

CoBRA - + ++ ++ + ++ ++ ++ ++ + ++ ++ +

BBN - + + ++ + ++ ++ ++ ++ - ++ - +

ESTOR + - - ++ + - - ++ ++ - - - - H
y

b
ri

d

NFS ++ - + + -- ++ + ++ ++ + - - +

SIMULATION TECHNIQUES FOR HYBRID COST ESTIMATION 139

140 M. KLÄS ET AL.
applica tions: a risk anal ysis and a correlate d stock portfolio evaluat ion. In this stud y,

the best aggre gate perform ance index was obtaine d by LH sampling.

Additiona lly, there exist a lot of VRT that prom ise to improv e the stand ard MC

method. A collection of them is pres ented in [55]. In contras t to MC, DS, and LH, (1)

these techniq ues require know ledge of the functi on to be estimat ed, (2) they can be

used only under special circumst ances, and/or (3) they requi re an appro priate

adopt ion of the algori thm depend ent on the functi on to be estimat ed.

Although for our context (the context of software project cost simulation), no results

co uld be fou nd in th e literatu re, LH is b eing use d s ucc essfu lly in oth er d om ains , fo r

ex am ple, in the automo tive ind ustry , fo r rob ustne ss ev aluatio ns [109] and in the proba-

bility an alysis o f lo ng -span bridg es [30]. In [78], it is men tione d that stan dard M C ofte n

req uires a large r n um be r o f sa mples (iteration s) to a chiev e th e same leve l of acc urac y as

an LH ap pro ach. Th ese a nd other a rticles sh ow us th e p ractical ap plicab ility of L H in

va rious do mains. T her efore, we see LH samplin g a s a pro mising app roa ch to impro vin g

the standard MC method. Nevertheless, its concrete performance improvement depends

on the app lication area w ith the asso ciated simulation eq uation s an d in pu t distribu tions .

Data about LH on a more theoretical level is provided by [33]. Here, standard MC

and LH sampling are compared in an experiment where two simple synthetic func-

tions, one monotonic and one non-monotonic, are sampled with both approaches. For

both functions and for 25, 50, and 100 iterations, authors showed that the samples

produced by the LH approach were more stable. Additionally, Owen showed in 1997

[72] that an LH sampling with n iterations never has worse accuracy than a standard
MC sampling with n–1 iterations.

Avramidis et al. [4] investigate various techniques to improve estimation accuracy

when estimating quantiles with MC approaches. The results of this work were of

special interest for us because our aim of sampling a probability function has more in

common with quantile estimation (see DoP in Section 7.1.1) than with the estimation

of its mean (which is the common case). Avramidis provides a theoretical proof that

for the class of probability functions with a continuous and nonzero density function,

the LH approach delivers at least equally accurate (or more accurate) results than the

standard MC method. In a second work [5], Avramidis also provides experimental

evidence that supports this conclusion in the context of the upper extreme quantiles

estimation of the network completion time in a stochastic activity network.

4. Problem Statement

The problem described in the introduction is to evaluate whether more accurate

and efficient techniques than standard MC exist that support software cost estima-

tion and cost risk management. CoBRAÒ was selected as a representative method

SIMULATION TECHNIQUES FOR HYBRID COST ESTIMATION 141
for this evaluation. Further, the extent of accuracy improvement above standard MC

should be determined.

More precisely, we want to determine and compare the accuracy and efficiency of

methods that transform the input of CoBRAÒ project cost simulation (i.e., the expert

estimations) into the data required for the different kinds of predictions provided by

CoBRAÒ.

In the following, fundamental research scenarios are described. Afterwards, RQ

are stated based on the problem statement.

The following three scenarios cover all principle kinds of application of

simulation data in the CoBRAÒ method. Even through they are derived from the typical

application of the CoBRAÒ method, we see no reason why they should not be general

scenarios when applying any cost estimation or cost risk analyzing methods:

AS1: The question to be answered in this scenario is: How much will the project

cost? The answer should be the point estimation of the project cost, a single value

that represents the average project costs. Spoken in terms of probability theory,

we look for the expected value of the project costs. This value is also needed to

validate the accuracy of a built CoBRAÒ model with the help of statistics.

AS2: The question to be answered in this scenario is: How high is the probability

that the project costs stay below a given budget of X? It is possible to answer

this question for any X if a probability distribution of the project costs is

available. In this case, we can simply calculate P (cost < X).

AS3: The question to be answered in this scenario is: Which is a realistic

budget for a given project that is not exceeded with a probability of Y?

Considering the previous scenario, this is finally the inverse application of

the project cost probability distribution; here, we are interested in X with P

(cost < X) = Y, where Y is given.

When we compare the scenarios, we see that AS2 and AS3 make use of a variable

to allow customization. Therefore, they require the knowledge of the entire cost

probability distribution, whereas AS1 requires only a single characterizing value of

the distribution, the expectation value. As mentioned above, the study focuses on the

transformation of the simulation input (i.e., consolidated expert estimations for the

different influencing factors) into the data required in the different application

scenarios (AS). This is the transformation that was done till now by standard MC

sampling. The input is a matrix D(m,n) of estimates of m different experts for n
different cost drivers (see Fig. 7). The estimates themselves are triangular distribu-

tions that represent the expert opinion as well as the uncertainty in their answers

[101]. The outpu t for AS1 shoul d be the (appr oximated) expected value; the outpu t
for AS2 and AS3 should be the (approximated) probability distribution for further

calculations based on variable X or Y (e.g., see Fig. 8).

FIG. 7. Example of an expert estimation matrix D(m,n).

0.60

0.48

0.36

0.24

0.12

0.72

0.00
118 163 207 252

Cost overhead in %
296 341 385 430 47474 519

Probability distribution

P
ro

ba
bi

lit
y

in
 %

FIG. 8. Example cost overhead distribution.

142 M. KLÄS ET AL.

SIMULATION TECHNIQUES FOR HYBRID COST ESTIMATION 143
On the basis of this, more deta iled descr iption of the probl em and the AS that

should be consi dered, we derived the followi ng researc h questio ns:

RQ1: Do feasible (in terms of calcul ation effort) analytica l solu tions exist to

calcul ate data required in AS1, AS2, and AS3?

RQ2: If data cannot be calcul ated analytica lly, do stochast ic solutions exist that

calcul ate the data used in AS1, AS2, and AS3 more accurat ely and more

efficient ly than the standard MC simul ation approach?

RQ3: How high is the aver age accuracy and efficiency gain ed by choosing a

certain simul ation appro ach (e.g., LH) when compare d with standar d MC

sampling?

In the next section, we answer RQ1 and explain why we need stochastic

approaches for AS2 and AS3. Then, Se cti on 6 presents the adoption of stochastic

approaches to the context of CoBRAÒ and explains the need to conduct an experiment

toanswerRQ2andRQ3.Theplanningof theexperiment, itsexecution,and its results are

described in Se ct io n 7 . Finally, Section 8 summarizes the answers to all RQ (Fig. 9).
5. Analytical Approaches

In the following, we show that the data that have to be provided in application

scenario AS1 (i.e., expected project costs) can be calculated analytically. However,

we also show that the analytical derivation of the cost probability distribution

necessary in AS2 and AS3 is not feasible with respect to the calculation effort.
FIG. 9. Structure of chapter.

144 M. KLÄS ET AL.
5.1 Point Estimation

To calculate the expected value analytically, in a first step, we have to derive a

mathematical representation of the CO distribution D described by the D(m,n) matrix.

Having a distribution De,v that represents a distribution provided by expert e for the
cost factor v, we obtain the following equation for distribution D:

D ¼
Xn
v¼1

Dv with Dv ¼

D1;v with probability
1

m

D2;v with probability
1

m
. . .

Dm;v with probability
1

m

8>>>>>>>>>><
>>>>>>>>>>:

ð9Þ

However, we are interested in the expected value (mean) E of distribution D.
Assuming the linearity of the expected value and a lack of correlation between

D1, . . ., Dn, we can derive the following equation:

E Dð Þ ¼ 1

m

Xm
e¼1

Xn
v¼1

E De;v

� � ð10Þ

After considering that De,v’s represent the expert estimations as triangular distribu-

tions in the form Triang (ae,v, be.v, ce,v), where a, b, and c are the known minimum,

most likely, and maximum cost overhead, we obtain:

E Dð Þ ¼ 1

m

Xm
e¼1

Xn
v¼1

ae;v þ be;v þ ce;v
3

ð11Þ

The derivation of an algorithm that implements Equation 11 is trivial. It delivers no

error, because the results are calculated analytically. The asymptotical runtime of

the analytical mean computation is O(m�n), the respective memory usage is O(1).

In practice, computation on a 12�12 test matrix consists of 432 additions, which

results in non-noticeable runtime of less than 1 ms on our test machine (desktop pc).

5.2 Distribution Computation

For AS2 and AS3, the density distribution D of the expert estimation matrix D(m,n)

is needed. In order to analytically determine a function D(x) that describes the

density distribution, again, we can use the mathematical representation introduced

SIMULATION TECHNIQUES FOR HYBRID COST ESTIMATION 145
in Eq ua ti on 9. The need density function of Dv(x) can be computed using Equation 12,

wh er e De, v(x) is the density function of the single triangular distribution.

Dv xð Þ ¼ 1

m

Xm
e¼ 1

D e;v xð Þ ð12 Þ

But the next ste p would be the calculat ion of a sum of n ontrivial probability

functions (see Equation 9). The only analytical possibility to build a sum of

nontrivial probability functions is to calcul ate their convolu tion [25]. In case of

probability density functi on D, this means to solve an (n–1)-multiple integral

equation (Equation 13).

D xð Þ ¼
ð x
0

D 1 x � y 1ð Þ
ð y1
0

D 2 y 1 � y 2ð Þ . . . d y1 . . . dyn�1 ð13Þ

This, however, is not a trivial task, especially for larger n. In principle, the integral

equation for given Dv’s and x might be comp uted using the Fast Fourier Trans for-

mation [31] or multidi mensio nal Gaussi an quadratu res [97]. Yet, both appro aches

deliver only appro ximation s instea d of analytica lly prope r (exact) resu lts.

So, we cannot pres ent an exact analytica l appro ach to dete rmining the proba bility

density functi on for expert est imation matrix D(m,n). Therefor e, the next logical step

is to take a look at MC simul ation and othe r com petitive stochast ic appro aches.

6. Stochastic Approaches

This sectio n shows the adoption of two stochast ic simul ation approache s to the

approximat ion of the CO distributio n as required in AS2 and AS3. The reason for

choosing the first, standard MC sam pling is that it has been the approach applied in

CoBRAÒ until now. In addition, it is the simplest simulation approach known and

serves as a baseline for comparison with more sophisticated simulation approaches.

The second approach, LH sampling, was chosen as best competitor based on the

results of the literat ure researc h (see Sect ion 3). We impleme nted LH in two variants

with differences in runtime and required memory. In the final subsection, we explain

why an experimental approach is needed to answer RQ2 and RQ3.

6.1 The MC Approach

For AS2 and AS3, the density distributionD of the expert estimation matrix D(m,n)

is needed. In order to obtain an approximation of D with the help of the standard

MC, the algorithm follows the attempt ed sampling descr ibed in Section 2.2.1 .

for i=0 to #Intervals : d[i] = 0;
for i=1 to z {
 sample = 0;
for v=1 to n {
 sample +=
 D-1[random({1,…,m})][v](random([0,1])
 }
 s = roundDown(sample);
 d[s] = d[s]+1;
}
for i=0 to #Intervals : d[i] = d[i] / z;
return d;

FIG. 10. MC sampling in pseudo-code.

146 M. KLÄS ET AL.
In the algorithm, we u se the unbia sed est imator as defined in Equation 14 to create

sample s of D (Equat ion 9).

D oð Þ ¼
Xn
v¼ 1

Xm
e ¼ 1

we x mð Þ oð Þ
� �

D � 1
e;v x 1ð Þ

v oð Þ
� �

ð 14 Þ

x 1ð Þ
v oð Þ is an inde penden t reali zation of the proba bility variabl e x 1ð Þ

v that is u niformly

distribut ed on [0,1) , x(m)(o) is a realizatio n of x(m) that is uniforml y distributed over

the set {1, . . ., m }, we is the charac teristic func tion of e (Eq uation 15), and D� 1
e; v is the

inverse distribut ion function of the triang ular distribut ion De,v .

we xð Þ ¼ 1 if x ¼ e
0 else

	

ð 15 Þ

Th e asymptotical runtime for the MC sampling is O(z� n) for a D(m,n) matrix and z
iterations4 and the respective memory usage for the computation is O(#intervals)

(Fi g. 1 0).

6.2 The LH Approach

In order to obtain the density distribution D of the expert estimation matrix D(m,n)

with the help of LH, we mak e use of sam pling as descr ibed in Section 2.2.2 . For the

purpose of calculating D (see Equation 9) with the LH approach, we first need an
4 Under the assumption always valid in practice that m aswell as the number of intervals is less than z.

SIMULATION TECHNIQUES FOR HYBRID COST ESTIMATION 147
unbiased estimator D(o) of D. The starting point for the devel opment of such

an estimator is the reali zation of D(o) presented for MC (Eq uation 14).

If we expec t that the numb er of iterations (z), accordi ng to the number of strat a is a

multiplic ation of the number of experts (m), then we can optimize Eq uation 14 by

replacing the rando m variable x(m) and the chi function by 1/m (Equation 16). This is

possible because, when stratified by z, x(m) delivers (remember z is a multiplication

of m) a sequence of exact values: (z/m � 1), (z/m � 2), . . ., (z/m � m).
D oð Þ ¼

Xn
v¼1

Xm
e¼1

1

m
D � 1

e; v x 1ð Þ
v oð Þ

� �
ð 16 Þ

The stratifica tion of the remainin g random variabl e D e,v , which is requi red for

implementin g an LH algorithm (see Sect ion 2.2.2), is quite simple becau se we can

construct a random number generator with the help of the inversion method for De,v

(triangular distributio n) [101]. This mea ns that the only rando m variables that mus t

be stratified are the x 1ð Þ
v (v=1. . .n), which are uniformly distributed on the range

[0,1]. In practice, this is done by replacing x 1ð Þ
v by a random variable uniformly

distributed between [(pv(i)–1)/z and pv(i)/z]:

cv o; ið Þ ¼ x 1ð Þ
v oð Þ þ p ið Þ � 1

z
ð17Þ

where i is the current iteration, z the total number of iterations, and pv represents
random permutation over the elements 1, . . ., z.
This way, we get the following estimator (Equation 18), which can be further

optimized by removing 1/m, the sum over m, and replacing e with (i mod m) þ 1

(see Equation 19).

x oð Þ ¼ 1

z

Xz
i¼1

Xn
v¼1

Xm
e¼1

1

m
D�1

e;v

x 1ð Þ
v oð Þ þ p ið Þ � 1

z
ð18Þ

x oð Þ ¼ 1

z

Xz
i¼1

Xn
v¼1

D�1
imodmð Þþ1;v

x 1ð Þ
v oð Þ þ p ið Þ � 1

z
ð19Þ

The problem with implementing an estimator defined in such a way is that we need

n independent permutations p[v], where each p[v][i] has the probability of 1/z of

being equal to c2{1, . . ., z} (*).

We have implemented two algorithms that solve this problem in different ways.

The first one, LH [Fig. 11(A)], randomly chooses c from the figures 1, . . ., z for each
variable v in each iteration i. If the figure is flagged as having been chosen in an

earlier iteration, a new figure is chosen; else the figure is used and flagged.

for i=0 to #Intervals : d[i] = 0;
p[*][*] = 0;
for i=1 to z {
 sample = 0;
 for v=1 to n {
 c = random(0,…,z);
 while p[v][c] == 1 do p[v][c mod z +1];
 p[v][c] == 1;
 sample +=
 D-1[i mod m][v]((random ([0,…,1])+c-1)/z)

}
 s = roundDown(sample);
 d[s] = d[s]+1;
}
for i=0 to #Intervals : d[i] = d[i] / z;
return d

for i=0 to #Intervals : d[i] = 0;
for v=1 to n {
 for i=1 to z {

p[v][i] = i;
 }
 for i=1 to z {
 c = random(1,…,z);
 d = p[v][i];
 p[v][i] = p[v][c];
 p[v][c] = d;
 }
}
for i=1 to z {
sample = 0;
 for v=1 to n {

sample += D-1[i mod m][v](
(random ([0,1])+p[v][i]-1)/z)

}
 s = roundDown(sample);
 d[s] = d[s]+1;
}
for i=0 to #Intervals : d[i] = d[i] / z;
return d

A B

FIG. 11. Sampling in pseudo-code: (A) LH, (B) LHRO.

148 M. KLÄS ET AL.
For a D(m,n) matrix and z iterations,5 the asymptotical runtime of the LH sampling

algorithm is O(z2�n), and memory usage for the computation is O(z�n).
The second algorithm, LHRO [Fig. 11(B)], represents a runtime-optimized (RO)

version. It creates all needed permutations p[v] before the sampling part of the

algorithm starts and any iteration is executed. To do this, it permutes for each

variable v all numbers from 1,. . ., z at random and stores the result. The proof that

the permutations obtained satisfy (*) is a simple induction over z.
Computational complexities of the LHRO for a D(m,n) matrix and z iterations6 are

asymptotical runtime of O(z�n), and memory usage of O(z�n).
Please note that although both algorithms store O(z�n) values, their actual storage

differs in that LH stores z�n flags (one bit each) and LHRO stores z�n integers (32 bits
each).
5 On the basis of the assumption always valid in practice thatm as well as #intervals are less than z2.
6 On the basis of the assumption always valid in practice thatm as well as #intervals are less than z.

SIMULATION TECHNIQUES FOR HYBRID COST ESTIMATION 149
6.3 Comparison of Stochastic Algorithms

When considering the MC and LH algorithms, we are unable to determine

accuracy and efficiency regarding AS2 and AS3 based merely on theoretical con-

siderations; neither can we say which one is more accurate or which one is more

efficient in our context.

This is because we are not aware of any possibility to show that the errors of the

algorithms based on the LH approach are lower for typical expert estimation

matrices in CoBRAÒ application. Especially, we do not know, if the LH error is

lower, to which extent it is lower compared with the error of MC.

Additionally, if considering efficiency, for example, as runtime efficiency, we

have to execute the algorithms to measure the runtime. The runtime depends, among

other things, on the chosen implementation language and execution environment

and cannot be calculated theoretically only based merely on the pseudo-code

representations.

But most notably, MC and LH are stochastic approaches, since their results suffer

from a different degree of error, which not only depends on input data and number of

iterations, but also on pure randomness. The same statement is true for the runtime.

Therefore, in order to draw reliable conclusions regarding RQ2 and RQ3, we

conduct an experiment where we compare the different approaches/algorithms in

a typical CoBRAÒ application context.

7. Experimental Study

7.1 Experimental Planning

During experimental planning, we first define the constructs accuracy and

efficiency we want to measure and use for comparing the sampling approaches.

Next, we describe the independent and dependent variables relevant for our experi-

ment and set up some hypotheses to answer RQ2. Then we present the experimental

design we use to check our hypothesis and answer RQ2 and RQ3.

7.1.1 Construct: Accuracy

In order to quantify the accuracy and efficiency of the simulation techniques

evaluated in the study, appropriate metrics had to be defined first. In this section, we

start with the quantification of the accuracy construct. The next section deals with

the accuracy-dependent efficiency construct.

150 M. KLÄS ET AL.
Follow ing the goal/que stion/me tric paradigm [6], we had to consider the obje ct of

the study (i.e., the simul ation methods), the purpose (i.e., char acteriza tion and

comp arison), the quality focus (accura cy), the perspectiv e (CoBR AÒ method

user), and the context. Whereas most of them are straightf orward to define in our

setting, we can see that two different context s exis t, which are descr ibed by applica-
tion scena rios AS2 and AS3 (see Section 4). AS1 is not rel evant at this point becau se

it is covered by the analytical solution presented in the previous section.

But before we derived an accuracy measure for each of the two AS, we had to

solve a general problem in our setting: In order to measure the accuracy of the

simulation output, we need the expected output to perform some kind of comparison

between actual and expected output. However, the computation of an analytic

correct output distribution is not possible for a complex distribution within an

acce ptable period of time (see Section 5.2). So instead, we have to use an approxi-

mation with a known maximal error regarding applied measures. In the following,

when we speak of reference data, we mean the approximation of expected output

based on the approximated expected distribution (called reference distribution). We

obtain our reference distribution by generating distributions with MC and LH

algorithms and a very large number of iterations in order to get extremely high

precision. The distributions obtained in this way were next compared to each other

with respect to the same measures that were used in the experiment. The magnitude

of obtained errors determined the upper limit of accuracy that can be measured in the

experiment. It means that a derivation below the identified limit is practically not

possible to observe and thus considered not to be significant.

We introduced two major types of error measure to compare the results of the

sampling algorithms considered: Derivation over Cost Overhead (DoCO) and

Derivation over Percentiles (DoP).
The DoCO measure has been designed to calculate the deviation between the

sampled distribution and the reference distribution with respect to AS1, where we

ask how probable it is to be below a certain cost (overhead) limit X, more formally:

P(X�CO). TheDoCOvalue represents the derivation (absolute error) ofPS(X�CO)

calculated for the sampled distribution from the expected P(X � CO), averaged

over all meaningful CO values.

DoCO ¼ 1

MaxCO�MinCOð Þ �
XMaxCO�1

CO¼MinCO

PS X < COð Þ � PR X < COð Þj j ð20Þ

where MaxCO ¼ max {maximum CO of DS with probability greater than 0,

maximum CO of DR with probability greater than 0}, andMinCO ¼min {minimum

CO of DS with probability greater than 0, minimum CO of DR with probability

greater than 0}. PS(X < CO) returns the accumulated probability of the sampled

aMin aMax

CO

Probability distribution

Sampled

Reference

FIG. 12. Probabilities of cost overhead values of sampled and reference distribution.

SIMULATION TECHNIQUES FOR HYBRID COST ESTIMATION 151
distribution for all CO values less than CO, and PR(X < CO) returns the accumulated

probability for the reference distribution for all CO values less than CO.

This measure is meant to give more importance to errors spread over a wider

range of the distribution than to errors that have ‘local’ impact on a narrow range of

the distribution. This property of DoCO is important because narrow local errors

appear less frequently when determining the probability for a given CO interval.

Consider, for example, the last two intervals in Fig. 12. The deviations between

sampled and reference distributions (error) in each of the two intervals have the

same magnitude but opposite signs, so that they compensate each other (total error

over both intervals is equal to zero). Therefore, considering any larger interval that

contains both or none of them would not be affected by derivations (errors)

measured separately for each interval. Furthermore, DoCO has the advantage of

being independent of errors caused by the data model because it uses the same

interval boundaries as the data model, whole numbers of CO unit (short, %CO).

TheDoPmeasures were derived from the practice described in AS3: For instance,

we might want to estimate the software cost (or cost overhead) that has a certain

probability of not being exceeded. More formally, we search for the CO value with

a certain probability P(X � CO) = p/100 associated to it, where p 2 N, p 2 [1,99].

With DoP we capture the average absolute error over all percentiles7 (Equation 21)
7 The Percentile of a distribution of values is a number xp such that a percentage p of the population

values is less than or equal to xp. For example, the 25th percentile of a variable is a value (xp) such that

25% (p) of the values of the variable fall below that value.

Distribution A

α−1 α−1α α

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

Distribution B

FIG. 13. Example of two distributions with the same sampling data, but different mean (DR).

152 M. KLÄS ET AL.
as well as the maximum absolute error that is reached in a single percentile

(Equation 22):

DoPabs ¼ 1

99
�
X99
p¼1

COS pð Þ � COR pð Þj j ð21Þ

DoPmax ¼ max \99
p¼1

COS pð Þ � COR pð Þj j
	

ð22Þ

where COS(p) is the CO value (COS) with PS(X � COS) = p/100 and COR(p) is the
CO value (COR) with PR(X� COR) = p/100, where PS(X� COS) is the accumulated

probability of the sampled distribution for all CO values less than or equal to COS,

and PR(X � COR) is the accumulated probability of the reference distribution for all

CO values less than or equal to COR.

The disadvantage of DoP is that the data model we used to store the sampling

data8 can theoretically cause an error of 0.5% in CO (absolute error of 0.5). To

explain this, let us consider two hypothetical distributions (Fig. 13):

l (A) PA(a � 1% CO) = 1 (a 2 N) and PA(x) = 0 for x 6¼ (a�1% CO),

l (B) PB(a � 0% CO) = 1 and PB(x) = 0 for x 6¼ (a � 0% CO).

In our data model, both distributions have the same representation: P([0, 1% CO])=

0, . . ., P([a � 1% CO, a % CO)) = 1, P([a %CO, a + 1% CO)) = 0,
8 To store the results of the cost overhead distribution sampling, we used a data model in which every

distribution interval is represented by a numeric value. Each value represents the probability that a cost

overhead value contained in the respective interval occurs. Each of the half-opened intervals covers the

same range: one unit of cost overhead (1% CO). Intervals with a probability value of zero are redundant

and need not be stored in the model.

SIMULATION TECHNIQUES FOR HYBRID COST ESTIMATION 153
Using the data from the data model, we would calculate for both distributions

COA(1) = COB(1) = . . . = COA(99) = COB(99), whereas in fact, distribution

A should have COA(1) = . . . = COA(99) = a � 1% CO and B COB(1) = . . . =
COB(99) ¼ a %CO. Therefore, in the worst case, the minimal error of the DoP

measures that can be reached is 0.5 of the CO unit (i.e., 0.5% CO).

With the understanding of derivation (error) being the opposite of accuracy, we

define accuracy of the output as the inverse of the measured derivation regarding

AS2: Accuracy=(DoCO)–1.

We used DoCO and not DoP to calculate accuracy because DoCO is, contrary to

the DoP measures, independent of the imprecision of the sampling data model and

therefore allows higher accuracy concerning the calculated derivation.

7.1.2 Construct: Efficiency

From the perspective of the CoBRAÒ method user, who wants to perform cost

estimation or cost risk analysis, the accuracy of the result and the computation effort

needed are the key factors that define efficiency. Therefore, following the goal/

question/metric paradigm, efficiency is considered as accuracy per computation

effort.

On the one hand, we can define computation effort as a measure of computational

expense, measured by the number of executed iterations;9 on the other hand, we can

define computation effort as the execution time of the simulation algorithm in a typical

execution environment, measured in milliseconds. Here, the number of iterations is

independent of the development language and execution environment; measuring the

execution time takes into consideration that the runtime of a single iteration can be

different in different simulation approaches. Therefore, we defined two efficiency

measures: accuracy per iteration (A/I) and accuracy per millisecond (A/ms).

A=I DSð Þ ¼ DoCOabsð Þ�1

Iterations
ð23Þ

A=ms DSð Þ ¼ DoCOabsð Þ�1

execution time
ð24Þ
9 The simulation consists of many recalculation cycles, so-called iterations. In each iteration, cost

overhead values from triangular distributions across all cost drivers are sampled and used to calculate one

possible total cost overhead value (according to the CoBRAÒ causal model).

154 M. KLÄS ET AL.
where #Iterations is the number of iterations performed and excec ution_t ime is the

runtime of the algori thm in millisecon ds.

7.1.3 Independent and Dependent Variables

The variabl es that are cont rolled in this exper iment (inde penden t variables) are the
chose n simul ation algo rithm, the number of iterations execu ted, the execu tion envi -

ronment , as well as the simulat ion input (i.e., the matrix with the expert estimation s).

We cont rol these vari ables, becau se we expec t that they influence the measur ed direct
depend ent variabl es we are interest ed in: the simul ation result (i.e., the sample d CO

distribut ion) and the executio n time of the simul ation algorithm. On the basis of the

sample d distributio n, we can calculat e the derivatio n regarding the ref erence distri-

bution (error) with the DoCO and DoP measur es, and with our accur acy definition

being based on DoCO . Knowin g the accur acy, we can cal culate efficienc y regardi ng

the numb er of iterations as well as regarding the require d runtime. There fore, our

indirec t d ependent variabl es are DoCO , DoP, accur acy, accuracy per iteration (A /I),
and accuracy per millisecond (A/ms) (Fig. 14).

7.1.4 Hypotheses

On the basi s of the previous defini tion of variabl es and the RQ sta ted in Sect ion 4,

we have the following hypotheses and corresponding 0-hypotheses (which we want

to reject):

HA: The LH approach provides more accurate results (regarding DoCO) than the

standard MC approach applied with the same number of iterations (�10,000).

HA0: The LH approach provides less or equally accurate results (regarding DoCO)

than the standard MC approach applied with the same number of iterations

(�10,000).

HB: The LH approach is more efficient (per iteration performed) than the standard

MC approach when applied with the same number of iterations (�10,000).

HB0: The LH approach is less efficient than or as efficient as (per performed

iteration) the standard MC approach when applied with the same number of

iterations (�10,000).

HC: The LH approach is more efficient (per millisecond of runtime) than the

standard MC approach when running in the same execution environment and

with the same number of iterations (�10,000).

HC0: The LH approach is less efficient than or as efficient as (per millisecond of

runtime) the standard MC approach when running in the same execution

environment and with the same number of iterations (�10,000).

Execution

Independent variables

Indirect dependent variables

Direct dependent variables

Execution
time

Sampled
distr.

DoCODoP

Accuracy
(DoCO)−1

Efficiency
A/I

Efficiency
A/ms

#Iterations
Simulation
algorithm

Input:
est. matrix

Execution
environment

FIG. 14. Relation between (direct/indirect) dependent and independent variables.

SIMULATION TECHNIQUES FOR HYBRID COST ESTIMATION 155
There is a hypothesis that would be even more interesting to consider than HC: The
LH approach is more efficient (per millisecond of runtime) than the standard MC
approachwhen running in the same execution environment and produces a result of the
same accuracy (regarding DoCO). But this hypothesis would be hard to investigate,

since receiving enough LH andMCdata points with the same result accuracywould be

very difficult.

7.1.5 Experimental Design

The experimental design is based on the previously stated hypotheses and on the

defined dependent and independent variables. In the following, subjects and objects

involved in the experiment are presented; then, the chosen experiment design and

statistical tests for checking the stated hypotheses are described.

Process or
method Subject

Simulation
algorithm

Instance of
random

variable (ω)

Expert
estimations

matrix

Number of
iterations, ...

Object
Influencing

factors

FIG. 15. Mapping of the terms: method, subject, object, and influencing factors for our experiment

setting.

156 M. KLÄS ET AL.
Subjects: In our setting, the methods that should be compared to each other are

performed by a computer since they are algorithms; consequently, there exist no

subjects in the narrow sense. But following the statistical theory used in experimen-

tation, the randomness (o) required in the algorithms, visible as different instantia-

tions of a random variable, and leading to different outcomes, can be seen as

a ‘perfect subject.’ Perfect, because it is representative (perfectly random-sampled

from the totality), available without any noticeable effort (simply generated by

a computer as a set of pseudo-random numbers), and really independent of any

other ‘subject.’

Object: In order to get a representative study object for the context of cost

estimation (i.e., realistic simulation algorithms input), we decided to use data from

a real CoBRAÒ project. For that purpose, we employed data gained during the most

recent industrial application of the CoBRAÒ method, which took place in the context

of a lar ge Japanese soft ware organ ization [97]. Th e input data consist ed of measur e-

ment data (size, effort) and experts’ assessments (cost drivers, effort multipliers)

collected across 16 software projects. The resulting simulation input was a 12 � 12-

triangular distribution matrix, where the 144 triangular distributions represent esti-

mates provided by twelve experts for twelve cost drivers. This matrix size is at the

upper level when compare d to other CoBRA Ò projects known to the authors (Fig. 15).

Since the computer can generate without noticeable effort any number of pseudo-

random numbers, we have as many ‘subjects’ as we need. Therefore, we decided to

conduct a multi-test within object study (i.e., we have multiple subjects, but only one

object), where each subject (as a concrete instantiation of used random variables) is

used only in one test, which means we have a fully randomized design. The factor

Table II

BLOCK DESIGN: DISTRIBUTION OF TESTS OVER SIMULATION ALGORITHM

AND NUMBER OF ITERATIONS

Simulation Algorithms

Iterations MC LH LHRO

10 240 000 1, 2, 3 4, 5, 6 7, 8, 9

2 560 000 10, 11, 12 13, 14, 15 16, 17, 18

640 000 19, 20, 21 22, 23, 24 25, 26, 27

160 000 28, 29, 30 31, 32, 33 34, 35, 36

40 000 37, 38, 39 40, 41, 42 43, 44, 45

10 000 46, 47, 48 49, 50, 51 52, 53, 54

SIMULATION TECHNIQUES FOR HYBRID COST ESTIMATION 157
whose influence should be observed is the chosen simulation algorithm with the

three treatments: standard MC, LH, and Latin Hypercube Runtime Optimized

(LHRO). Since the number of iterations influenced the measured dependent vari-

ables accuracy and execution time, we chose a block design with six blocks with

respect to the number of iterations performed: 10k, 40k, 160k, 640k, 2.56M, and

10.24M. Per treatment and block, three tests were performed and the median

regarding the used derivation measure was selected. This was done to avoid outliers

with respect to measured dependent variables (DoCO and DoP); the median was

chosen because it is more robust than the mean (Table II).

To confirm our hypothesis, we conducted one-sided Sign Tests between the MC

and both LH approaches for each of the presented hypotheses. In addition,

we performed one-sided paired t-tests on the normalized10 DoCO values (i.e.,

inverse accuracy) to provide evidence of the accuracy improvement by LH (HA).

The stricter t-test is possible at this point, since we consider simulation errors (which

can be assumed to follow a normal distribution).

7.2 Experimental Operation

The experiment was conducted as prescribed in the experiment design. The

investigated simulation algorithms were implemented in Java within the existing

CoBRAÒ software tool. Tests were performed on a Desktop PC with Windows XP

(SP2), AMD AthlonXP3000+, and 1GB DDR-RAM.
10 DoCO values are normalized by multiplying them with the square of iterations performed (i.e., the

expected reduction of derivation).

158 M. KLÄS ET AL.
For each trail, we let our test system compute the approximated distributions and

stored them for further analyses. In addition, the simulation runtime in milliseconds

was kept. Problems that occurred during operation were that tests 4–6 could not be

performed due to extreme computation time (we stopped after 1 h) and tests 7–9 as

well as tests 16–18 were not performable due to stack overflows (memory problem).

The resulting distributions were used to calculate the corresponding DoCO and

DoP values, ending up with the following tuple for each block of our test design

(triple of tests):

l Median DoCO, corresponding simulation runtime

l Median DoPabs, corresponding simulation runtime

l Median DoPmax, corresponding simulation runtime

The first kind of tuple was then used to get the needed accuracy (A) and efficiency

values (A/I, A/ms) for each block.

7.3 Experimental Results

In this section, we present and discuss the results of our experiment. We check the

stated hypotheses and compare the simulation approaches regarding accuracy and

efficiency. The algorithms considered are the previously introduced standard MC

sampling (MC), LH sampling, and the runtime optimized version of LH sampling

(LHRO).

7.3.1 Accuracy of Simulation Algorithms

First, we look at the accuracy of the simulation approaches, more precisely at the

DoCO as inverse accuracy. In addition, we preset the DoP results. Even if they

are not used to calculate and compare the accuracy of the algorithms, they give some

hints about the magnitude of the expected error when applying the different

approaches (Tables III–V).

Discussion: Considering Table III, one can see that both the LH and the LHRO

algorithms have comparable accuracy (regarding DoCO) for a given number of

iterations. This is not surprising because both are based on the general LH sampling

approach and both differ only with respect to the way they were implemented. The

LH algorithms outperform the MC algorithm in accuracy in any given number of

iterations. The relative accuracy gain with respect to MC varies for LH (mean 0.60)

and LHRO (mean 0.63) around 0.6; this means a 60% improvement of accuracy of

LH approaches over MC. The number of iterations seems to have no noticeable

influence on this.

Table III

COMPARISON OF DERIVATION OVER COST OVERHEAD

DoCO

Iterations MC LH LHRO

10 240 000 3.69E�05 – –

2 560 000 8.13E�05 5.50E�05 –

640 000 2.19E�04 1.36E�04 1.75E�04

160 000 4.17E�04 2.66E�04 1.81E�04

40 000 8.61E�04 4.97E�04 4.92E�04

10 000 1.77E�03 1.11E�03 1.42E�03

Table IV

COMPARISON OF AVERAGE DERIVATION OVER PERCENTILES

DoP Average

Iterations MC LH LHRO

10 240 000 2.34E�02 – –

2 560 000 3.85E�02 3.31E�02 –

640 000 2.84E�01 9.42E�02 1.04E�01

160 000 1.49E�01 2.07E�01 1.03E�01

40 000 6.55E�01 2.34E�01 2.93E�01

10 000 6.73E�01 5.62E�01 8.82E�01

Table V

COMPARISON OF MAXIMUM DERIVATION OVER PERCENTILES

DoPmax

Iterations MC LH LHRO

10 240 000 7.09E�02 – –

2 560 000 4.03E�01 2.15E�01 –

640 000 4.90E�01 7.09E�01 8.56E�01

160 000 5.21E�01 6.28E�01 5.19E�01

40 000 1.22E+00 1.95E+00 2.28E+00

10 000 4.09E+00 2.36E+00 4.28E+00

SIMULATION TECHNIQUES FOR HYBRID COST ESTIMATION 159

160 M. KLÄS ET AL.
Hypothesis testing:We check our hypothesis HA with a sign test and can reject the

null hypothesis at an a level of .05 for LH; performing a paired Student’s t-test on
normalized DoCO values, we can reject the null hypothesis for both implementa-

tions, LH and LHRO. Therefore, we can conclude that the LH approach delivers

better results than the standard MC approach in the context of our application

scenario and the range of 10 000 to 2 560 000 iterations (Table VI).

7.3.2 Efficiency of Simulation Algorithms

After we considered the accuracy of the different algorithms, we next looked at

their efficiency. Efficiency is measured as accuracy per iteration as well as accuracy

per millisecond of runtime (Table VII). In the following, we discuss the results

obtained and check our efficiency-related hypotheses.

Discussion: The efficiency index accuracy per iteration shows that the LH

algorithms outperform the MC algorithm. The relative accuracy per iteration gain

shows the same picture as the accuracy improvement calculated for LH (mean 0.60)

and LHRO (mean 0.63). This means around 60% improved A/I of the LH

approaches over MC. An interesting aspect, which we can observe in Table VII, is

that I/A decreases at the factor 2 when the number of iterations is quadrupled by any

of the three sampling approaches. Thus, it can be concluded that the DoCO error
Table VI

TEST RESULTS REGARDING HYPOTHESIS HA

Hypothesis HA LH LHRO

Sign test p = 0.031 p = 0.063

Paired Student’s t-test p < 0.001 p = 0.027

Table VII

COMPARISON ACCURACY: PER ITERATION (A/I) AND PER MILLISECOND (A/MS)

A/I A/ms

Iterations MC LH LHRO MC LH LHRO

10 240 000 2.65E�03 – – 5.50E�01 – –

2 560 000 4.80E�03 7.10E�03 – 9.99E�01 3.48E�02 –

640 000 7.14E�03 1.15E�02 8.94E�03 1.46E+00 1.06E�01 1.07E+00

160 000 1.50E�02 2.35E�02 3.45E�02 3.12E+00 3.86E�01 4.17E+00

40 000 2.90E�02 5.03E�02 5.08E�02 6.21E+00 1.03E+00 4.20E+00

10 000 5.66E�02 9.02E�02 7.03E�02 1.21E+01 4.44E+00 1.50E+01

SIMULATION TECHNIQUES FOR HYBRID COST ESTIMATION 161
decreases for all algorithms at the rate of �(#iterations–1/2), confirming our expec-

tation based on our theoretical results (Equation 35).

The picture changes when looking at Table VII, which presents the accuracy per
millisecond results (A/ms). The accuracy-per-iteration advantage of the LH

approaches is leveled down by the additional effort for creating the needed random

and independent permutations. The precision per millisecond values of the MC and

the LHRO algorithms at a given number of iterations are comparable, so that the

performance of both algorithms for a given number of iterations can be considered

as being nearly equivalent. Both LHRO andMCoutperform the LH algorithm that uses

(in contrast to the LHRO) a runtime-consuming (yet memory-saving) method to create

the permutations. The higher the number of iterations, the higher the gap between the

A/ms value of the LH algorithm and the other algorithms. For 10 000 iterations, the

A/ms efficiency of the LH algorithm is 2.7 times worse; for 2,560,000 iterations,

the efficiency is worse by the factor 28.

Our conclusion that the A/ms performance of theMC and LHRO algorithm is nearly

equivalent is true only if comparing themwith regard to the same number of iterations.

Nevertheless, for the same number of iterations, the LHRO algorithm delivers a higher

accuracy than the MC algorithm. For example, the accuracy of the LHRO algorithm

with 160,000 iterations is nearly equal to the accuracy of the MC algorithm with

640,000 iterations, but when comparing the corresponding A/ms values, the efficiency

of the LHRO algorithm is almost twice as good. The problem is that a statistical test to

prove this conclusion cannot be provided becausewewould need comparison datawith

equal accuracy for all algorithms and such data are difficult to obtain.

In order to perform a nondiscriminatory comparison between the performance of

the MC and LHRO approach with respect to runtime in ms (A/ms), they have to be

compared on the same level of accuracy. Because we do not have the data for MC

and LHRO on the same accuracy level, the relation between the number of iterations

and the achieved accuracy is considered (Fig. 16). For MC, there seems to be a linear

relationship between the square root of the number of iterations and the achieved

accuracy. A linear regression through the origin results in the following equation

with an r2 value of more than 0.999:

AMC ¼ 5:7658� ffiffizp ð25Þ
Using Equation 22, the number of iterations (z) that MC requires to reach the

accuracy of the LHRO executions at 640,000, 160,000, 40,000, and 10,000 iterations

can be calculated. The results are 982, 189, 918, 150, 124, 263, and 14,917 iterations.

Additionally, a linear relationship between the number of iterations and the runtime

of the implemented algorithm can be recognized for the implemented MC algorithm

(r2> 0.999). Therefore, the runtime of MC can be calculated for 982, 189, 918, 150,

124, 263, and 14,917 iterations (i.e., for the number of iterations MC requires to

Table VIII

TEST RESULTS REGARDING HYPOTHESES HB AND HC

Hypothesis HB LH LHRO

Sign test p = 0.031 p = 0.063

Hypothesis HC LH LHRO

Sign test p = 0.969 p = 0.500

Relationship between accuracy and number of iterations

0

1000

2000

3000

4000

5000

6000

9008007006005004003002001000

SQRT(#interations)

A
cc

u
ra

cy
 (

A
)

MC

LHPO

FIG. 16. Relationship between accuracy and number of iterations.

162 M. KLÄS ET AL.
reach the same accuracy as LHPO at 640,000, 160,000, 40,000, and 10,000 itera-

tions). Comparing these runtimes with corresponding runtimes of LHRO shows an

average reduction of runtime through LHPO of �30%, equivalent to the efficiency

(A/ms) improvement of �77% (mean).

Hypothesis testing:We checked our hypotheses HB and HC with a sign test at an a
level of 0.05, but we could only reject HB0 for LH. Therefore, based on the limited

number of data points, we can only conclude that the LH approach is more efficient

regarding the number of iterations (A/I) (Table VIII).

7.4 Validity Discussion

First, we discuss typical threats to validity that are relevant for our experiment.

Next, we present upper bound estimation for average simulation error with respect to

application scenario AS2 (DoCO) and the dependent accuracy measure.

SIMULATION TECHNIQUES FOR HYBRID COST ESTIMATION 163
7.4.1 Threats to Validity

In this section, we consider possible threats to validity based on the experiment

design and its operation. We present them in the categories proposed by Wohlin et al.

[105]: First, conclusion validity, which concerns the problem of drawing a wrong

conclusion from the experiment outcome; then we look at internal validity, which is

threatened by uncontrolled influences distorting the results. Next, construct validity is

addressed (‘Do we measure what we propose to measure?’), and finally, external

validity is regarded, which describes how well results can be generalized beyond our

experimental setting.

Conclusion validity:

l The sign test, which is primarily used in our experiment, is one of the most

robust tests. It makes no assumption beyond those stated in H0. The paired

Student’s t-test is only used when comparing normalized simulation errors that

can be assumed to be normally distributed.

l One problem is the low statistical power of the sign tests that results from the

low number of pairs that could be compared. When testing LHRO against MC,

for example, we could compare only four instead of the expected six pairs, since

we were not able to execute tests 7, 8, 9, 16, 17, and 18, which result in stack

overflows due to their memory requirements.

Internal validity:

l The chosen implementation in Java and the execution environment influence

the runtime of the algorithms. Therefore, other implementations executed in

different environments can result in different runtime and thus efficiency. To

keep the results of different algorithms and iteration numbers comparable, all

algorithms are implemented in the same programming language and executed

on the same system. But we cannot assure that each algorithm is implemented

in the most runtime-efficient way possible.

l The measures derived for AS3 (DoP) suffer from measurement inaccuracy as a

result of the data model. Therefore, the algorithms are compared based on the

measure derived for AS2 (DoCO), which is independent of this bias.

l The used stochastic simulation algorithms have no deterministic result. Therefore,

there is a minor but not dismissible possibility of getting a very unusual result if

executing a simulation. In order to avoid the presence of such outliers in analyzed

data, we execute three trails (i.e., tests) for each setting and take the median.

l The reference distribution applied to measure the accuracy of the simulation

results is not the analytically correct output distribution. Instead, we have to use

an approximation with a known error regarding applied measures. The reason is

164 M. KLÄS ET AL.
that computa tion of an analytica lly correct output distribut ion is not possi ble for

a com plex distri bution within an acce ptable period of time. For a more detailed

discussion, see Sect ion 7.1.

Construct validity:

l The chosen constructs that represent accuracy and efficiency are selected

carefully and based on the understanding of accuracy and efficiency in typical

AS of cost estimation and cost risk analysis. But we provide no empirical

evidence that this is true for the majority of users.

External validity:

l The number of experts and variables as well as the characteristics of input

distributions can influence the accuracy and performance of the algorithm.

These input data (represented by the distribution matrix) are different in

different CoBRAÒ AS. We performed the experiment only for one set of

input data; therefore, generalizability of results (i.e., representativity of input

data) is an issue. To reduce this threat as much as possible, input data was taken

from an actual industrial application. The input data have a complexity in the

number of experts and variables at an upper, but not untypical, level compared

with other known applications.

7.4.2 Analytical Considerations

As previously mentioned, based on theoretical considerations, we cannot decide

whether LH is more accurate and efficient than MC in our context. But we can give a

lower boundary for the expected accuracy (regarding DoCO) that is true for both

MC and LH. Such a lower boundary for accuracy allows us, on the one hand, to

perform a simple validity check on the measured accuracy values; on the other hand,

it can increase the external validity of our experiment results.

To derive this lower boundary, we first consider the MC algorithm. When we look

at a single individual interval Is, it appears that for this interval, the algorithm does

nothing else than estimate the result of the integral of the density function D(x) over
this interv al (Equat ion 26) with the standar d MC integration [50].

Is ¼
ðsþ1

s

D xð Þdx ð26Þ

Since interval size is one (measured in percentage of cost overhead), Is delivers the
average density of D on the interval [s,s+1]. This is interesting because the error of

SIMULATION TECHNIQUES FOR HYBRID COST ESTIMATION 165
the whole distribution can now be expressed with the help of the errors of the Is
estimators �. Considering our algorithm (Fig. 10), the estimation of Is is calculated
as follows:

Es zð Þ ¼ 1

z

Xz
i¼1

�i;with �i ¼ w s;sþ1½ � D oið Þð Þ ð27Þ

D(oi) is the i-th independent realization of the randomvariableD(o)with distribution
D and w[s,s+1] is the characteristic function for the interval [s,s+1] (Equation 28).

w s;sþ1½ � xð Þ ¼ 1 if x 2 s; sþ 1½ �
0 else

	

ð28Þ

This estimator is unbiased, meaning limz!1 Es(z) = Is. This is clear when we recall

that the expected value is the ratio of |DS| to |D|, and that |D| = 1 (D is a probability

density distribution).

Now, in order to calculate the expected error for z iterations with Equation 4, we

need the standard deviation (or variance) of our estimator. Having the variance

definition (Equation 29) and E(�) = E(�2) = Is, we derive upper bounds for estimator

variance (Equation 30).

V �ð Þ ¼ E �2
� �� E �ð Þ2 ð29Þ

V �ð Þ ¼ Is � I2s � Is � 1 ð30Þ
The expected error for z iterations can be calculated with Equation 4 as follows

(Equation 31):

EARIs �
ffiffiffiffi
Is

p
ffiffi
z

p ð31Þ

Example: If we have an average value of 0.01 over the interval [s,s+1] and run

10 000 iterations, we would get an EARIs of 0.1/100 = 0.001 (corresponding to a

relative error of 10%).

In addition, Equation 31 can be used to provide a theoretical upper boundary

estimation of Deviation over Cost Overhead (DoCO) measure (Equation 20). The

term jPsðX < iÞ�PRðX < iÞj in the DoCO measure represents nothing else than the

absolute derivation of the integral of distribution D over the interval [0,i] (Ii).
Expressing Ii with the intervals over [s,s+1] (Equation 32) and reusing Equation 31

allows us to obtain a final estimation of the expected error estimating Ii and DoCO

value (Equat ion 33 and Eq uation 34 , respective ly), whe n execu ting z iterations.

Ii ¼
Xi�1

s¼0

ðsþ1

s

D xð Þdx ¼
Xi�1

s¼0

Is ð32Þ

166 M. KLÄS ET AL.
EARIi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi � 1

s ¼ 0 I s

q
ffiffi
z

p ð 33 Þ

DoCO � 1ffiffi
z

p � #Inter vals �
X# Intervals
i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiXi� 1

s ¼ 0

Is

vuut ð 34 Þ

At a give n number of iteration s and intervals , DoCO becomes max imal if the doubl e

sum in Equat ion 34 becomes maximal . This, in turn, happen s when I1 is 1 and all
other Is are equal to 0 (conside r that the sum of all I s = |D| = 1).

DoCO � 1ffiffi
z

p and Accurac y � ffiffi
z

p ð 35 Þ

Equat ion 35 is a wea k assessment , but it is suff icient for our purpos e. A stronger

assessm ent (dependent on #Intervals) is possibl e regardi ng the exact varianc e of Is .
Example : If we sample a distribu tion D with MC and 10,000 iterations, we get an

expec ted DoCO value of les s than 0. 01.

The expec ted err or of the LH appro ach can be estimat ed with the sam e equatio ns

as thos e used by the standar d MC appro ach. In particula r, Equation 35 holds for the

expected DoCO value. The reason is that the LH approach is a special case of

the standard MC approach and converges at least as fast as the MC approach

(see Section 2.2.2).

8. Summary

In this chapter, we investigated the potential impact of simulation techniques on

the estimation error of CoBRAÒ, as an exemplary cost estimation and cost risk

analyzing method. This was done by deriving an analytical solution for point

estimat ions and performi ng an exper iment with industria l project data [97]. This

experiment was necessary to compare the stochastic simulation approaches when

applied to the sophisticated analysis of project costs. We could answer the question

of whether there exist techniques that deliver more accurate results than simple MC

sampling or performing the simulation in a more efficient way. In addition, we

present results regarding the magnitude of accuracy and efficiency improvement

that can be reached through the use of LH as an alternative sampling technique. The

summarizing presentation of results is structured according to the three detailed RQ

defined in Section 4 and the cont ext of the three differ ent AS; see Ta ble IX .

Table IX

ANSWERED RESEARCH QUESTIONS

Application

Scenario

RQ1

Analytical

Feasibility

RQ2 Comparison: Accuracy and

Efficiency

RQ3 Magnitude of

Improvement

AS1 Yes Not relevant Not relevant
AS2 No HA0 rejected (accuracy A) �60% accuracy (A) and

�77% efficiency (A/ms)

gain by LHPO

HB0 rejected (efficiency A/I)

HC0 not rejected (efficiency A/ms)

AS3 No – –

SIMULATION TECHNIQUES FOR HYBRID COST ESTIMATION 167
With resp ect to RQ1, we show ed in Section 5 that analytica l mea n compu tation

(AS1) is possible and should be preferred over computation based on simulation.

First of all, in contrast to stochastic approaches, the analytical approach provided

repeatable and error-free results. Besides that, it has an extremely short runtime

(<1 ms), that is, it has very low application costs, which makes the approach highly

efficient. In that context (analytical approach is feasible and has excellent runtime),

considering research questions RQ2 and RQ3 made no sense. On the basis of

these results, the analytical computation of mean CO should be employed within

the CoBRAÒ method (and implemented by a tool supporting the method). Yet, we

could not find a feasible analytical approach to compute the CO distribution required

in application scenarios AS2 and AS3. Thus, we had to sample the distribution with

selected stochastic methods.

Since the measure derived to calculate the sampling error regarding the needs of

AS3 suffers from inaccuracy based on the sampling data model, we calculated

accuracy and efficiency only based on the error measure derived for AS2 (namely,

DoCO). Therefore, we can answer RQ2 and RQ3 with certainty only for AS2.

Regarding RQ2, we can say that the LH algorithm and its performance-optimized

version (LHRO) provide comarable accuracy for a given number of iterations. This

is not surprising, since both are based on the same general sampling approach and

practically differ only with respect to the way they were implemented. Yet, they

outperform the MC algorithm regarding accuracy at any number of iterations, which

we proved with a sign test at a level 0.05 (HA).

The LH algorithms present about 60% improvement in accuracy over MC on

average, with respect to DoCO (RQ3). Moreover, the number of iterations does not

seem to have a noticeable influence on the improvement rate.

In case of LH, however, high accuracy is achieved at the expense of lower

performance (increased runtime) as compared to MC and LHRO. Already at 10,000

iterations, efficiency measured as accuracy per millisecond (A/ms) of LH differs by a

168 M. KLÄS ET AL.
factor of 2.7 and decreaseswith an increasing number of iterations. It seems that LHRO

has a better efficiency regarding runtime (A/ms) than MC at a given level of accuracy

(�77% estimated, based on 8 data points), but we could not prove this statistically,

since the required data are difficult to obtain. The data for comparing the approaches at

a given number of simulation runs are easier to obtain. However, the magnitude of

accuracy improvement decreases with increasing accuracy, so an improvement at a

given number of simulation runs could not be proven (HC).

With respect to the number of simulation runs (i.e., iterations), LH has a better

efficiency than MC, which could be proven by rejecting the corresponding null

hypothesis (HB0).

Summarizing, since the results of our experiment showed that LHRO has a statisti-

cally significant higher accuracy than the MC when employed within CoBRAÒ

and seems to also have a higher efficiency regarding runtime compared to MC at

the same level of accuracy, LHRO should be the preferred simulation technique to be

employed within the CoBRAÒ method. We showed that with 640 000 iterations on

the test PC in less than 6 s, the LHRO algorithm delivers more than sufficiently

accurate results.

It is, however, necessary to stress that a simulation algorithm is only responsible

for transforming CoBRAÒ input data (expert estimations) into model output (CO

distribution) and is practically independent of the quality of the input data. Although

LHRO significantly improves sampling accuracy (60% increase) and efficiency

(77% increase) compared to MC, its impact on the overall output of estimation

strongly depends on the characteristics of the specific estimation method. For

instance, the more sampling runs (e.g., for numerous input factors) are performed,

the larger the gain in computational performance of the whole estimation method.

Regarding the estimation accuracy, the error introduced by even the worst sampling

algorithms considered here (<4.3%) is only a small fraction of the potential error

caused by, for example, low quality of the input data, which in case of the CoBRAÒ

method may easily exceed 100% [97]. Yet, considering that for valid data , CoBRA Ò

is capab le of providi ng estimates with les s than 15% inac curacy [97], the error

introduced by the simulation technique alone may be considered significant. There-

fore, we recommend LHRO as the preferable simulation technique for the CoBRAÒ

method. Compared to MC, LHRO does not entail significant implementation

overhead but may provide significant estimation precision and efficiency gains.

On the basis of the presented theoretical error estimations (especially Equation 31

and Equation 35) and confirmed by the exper iment results, which reflect a typical

application scenario of simulation for cost estimation purposes, the aforementioned

conclusions might, in practice, be generalized on any cost estimation method

employing simulation. Specific gains in accuracy and performance depend, how-

ever, on the number of simulation runs and operations performed on the sampling

SIMULATION TECHNIQUES FOR HYBRID COST ESTIMATION 169
output (e.g., multiplying sampling outputs may multiply overall error). Moreover,

the contribution of the simulation error to the overall estimation inaccuracy depends

on the magnitude of error originating from other sources such as invalid estimation

(and thus sampling) inputs. In practice, for instance, the quality and adequacy of

input data proved, over the years and over various estimation methods, to have a

large impact on predict ion qual ity [85]. Th erefore, one of the essential method

acceptance criteria should be the extent to which a certain estimation method

copes with potentially sparse and messy data.

Summarizing, selecting theLHRO simulation technique instead of the traditionally

acknowledged MC may provide non-ignorable effort estimation accuracy and per-

formance gains at no additional overhead. The relative estimation improvement

depends, however, on the magnitude of other estimation errors. In practice, inade-

quate, redundant, incomplete, and inconsistent estimation inputs are still responsible

for most of the loss in estimation performance (accuracy, precision, efficiency, etc.)

Therefore, one of the essential method acceptance criteria should be the extent to

which a certain estimation method copes with potentially sparse and messy data. In

addition to efforts spent on improving the quality of data (both measurements and

experts’ assessments), future research should focus on a method that can handle low-

quality data and support software practitioners in building appropriate, goal-oriented

measurem ent progr ams. One direction of work mig ht be, as already propos ed in [97],

a framework that combines expert- and data-based approaches to iteratively build a

transparent effort model. The framework proposes additional quantitative methods to

support experts in achieving more accurate assessments as well as to validate avail-

able measurement input data and underlying processes. Successful results of the

initial validat ion of the proposed approach presented in [97] are very promising .

Acknowledgments

We thank OKI for providing the CoBRAÒ field data used to perform the study, the Japanese Information-

technology Promotion Agency (IPA) for their support, Prof. Dr. Dieter Rombach and Marcus Ciolkowski

from the Fraunhofer Institute for Experimental Software Engineering (IESE) for their valuable comments

to this chapter, and Sonnhild Namingha from the Fraunhofer Institute for Experimental Software

Engineering (IESE) for reviewing the first version of the chapter.

References

[1] AhmedM. A., Saliu M. O., and AlGhamdi J., January 2005. Adaptive fuzzy logic-based framework

for software development effort prediction. Information and Software Technology, 47(1): 31–48.

[2] Aguilar-Ruiz J. S., Ramos I., Riquelme J. C., and Toro M., 2001. An evolutionary approach to

estimating software development projects. Information and Software Technology, 43: 875–882.

170 M. KLÄS ET AL.
[3] Angelis L., Stamelos I., and Morisio M., 2001. Building a software cost estimation model based on

categorical data. In Proceedings of the IEEE 7th International Symposium on software Metrics,

pp. 4–15. England, UK.

[4] Avramidis A. N., and Wilson J. R., 1995. Correlation-induction techniques for estimating quantiles

in simulation experiments. In Proceedings of The Winter Simulation Conference, IEEE Press.
[5] Avramidis A. N., and Wilson J. R., Correlation-induction techniques for estimating quantiles in

simulation experiments. Technical Report 95-05, Department of Industrial Engineering. North

Carolina State University, Raleigh, North Carolina.

[6] Basili V. R., and Rombach H. D., June 1988. The TAME project: towards improvement-oriented

software environments. IEEE Transactions on Software Engineering, 14(6): 758–773.

[7] Beck K., and Fowler M., October 2000. Planning Extreme Programming. Addison-Wesley

Longman Publishing Co., Inc. Boston, MA, USA.

[8] Boehm B. W., Abts C., Brown A. W., Chulani S., Clark B. K., Horowitz E., Madachy R., Refer D.,

and Steece B., 2000. Software Cost Estimation with COCOMO II. Prentice Hall PTR, Upper

Saddle River, NJ, USA.

[9] Boehm B., Abts C., and Chulani S., 2000. Software development cost estimation approaches – a

survey. Annals of Software Engineering, 10: pp. 177–205. Springer, Netherlands.

[10] Boehm B. W., 1981. Software Engineering Economics. Prentice Hall PTR, Upper Saddle River,

NJ, USA.

[11] Breiman L., Friedman J., Ohlsen R., and Stone C., 1984. Classification and Regression Trees.

Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, USA.

[12] Briand L. C., and Wieczorek I., 2002. Software resource estimation. In Encyclopedia of Software

Engineering, J. J. Marciniak, ed. Volume 2, John Wiley & Sons, Inc., New York, NY, USA.

1160–1196.

[13] Briand L., Langley T., and Wieczorek I., 2000. A replicated assessment and comparison of

common software cost modeling techniques. In Proceedings of the 22nd International Conference

on Software Engineering, Limerick, Ireland.

[14] Briand L. C., El Emam K., and Bomarius F., 1998. CoBRA: A hybrid method for software cost

estimation, benchmarking and risk assessment. In Proceedings of the 20th International Confer-

ence on Software Engineering, pp. 390–399.

[15] Briand L. C., Basili V. R., and ThomasW. M., November 1992. A pattern recognition approach for

software engineering data analysis. IEEE Transactions on Software Engineering, 18(11): 931–942.

[16] Burgess C. J., and Lefley M., 2001. Can genetic programming improve software effort estimation?

A comparative evaluation. Information and Software Technology, 43(14): 813–920.

[17] Calzolari F., Tonella P., and Antoniol G., July 2001. Maintenance and testing effort modeled by

linear and nonlinear dynamic systems. Information and Software Technology, 43(8): 477–486.

[18] Chulani S., Boehm B. W., and Steece B., July/August 1999. Bayesian analysis of empirical

software engineering cost models. IEEE Transactions on Software Engineering, 25(4): 573–583.

[19] Cuelenaere A. M. E., van Genuchten M. J. I. M., and Heemstra F. J., December 1987. Calibrating

software cost estimation model: Why and how. Information and Software Technology, 29(10):

558–567.

[20] De Lucia A., Pompella E., and Stefanucci S., 2004. Assessing effort estimation models for

corrective maintenance through empirical studies. Information and Software Technology, 47: 3–15.

[21] Dolado J. J., 2001. On the problem of the software cost function. Information and Software

Technology, 43: 61–72.

[22] Elkjaer M., April 2000. Stochastic budget simulation. International Journal of Project Manage-
ment, 18(2): 139–147.

SIMULATION TECHNIQUES FOR HYBRID COST ESTIMATION 171
[23] Fenton N., Marsh W., Neil M., Cates P., Forey S., and Tailor M., May 2004. Making resource

decisions for software projects. In Proceedings of the 26th International Conference on Software

Engineering, pp. 397–406.

[24] Ferens D. V., and Christensen D. S., April 2000. Does calibration improve predictive accuracy?

Cross-Talk: The Journal of Defense Software Engineering, 4: 14–17.
[25] FellerW., 1971. An Introduction to Probability – Theory and Its Application. JohnWiley&Sons, NY.

[26] Garratt P.W., andHodgkinsonA.C.,October 1999.Aneurofuzzy cost estimator. InProceedings of the

3rd International Conference Software Engineering and Applications, pp. 401–406. Arizona, USA.

[27] Gartner Inc. press releases, Gartner Survey of 1,300 CIOs Shows IT Budgets to Increase by
2.5 Percent in 2005, 14th January 2005, http://www.gartner.com/press_releases/pr2005.html.

[28] Gartner Inc. press releases, Gartner Says Worldwide IT Services Revenue Grew 6.7 Percent in

2004, 8th February 2005, http://www.gartner.com/press_releases/pr2005.html.

[29] Gray A., and MacDonell S., 1997. Applications of fuzzy logic to software metric models for

development effort estimation. In Proceedings of the Annual Meeting of the North American Fuzzy

Information Processing Society, pp. 394–399. Syracuse NY, USA.

[30] Guo Tong, Li Aiqun, and Miao Changqing, December 2005. Monte Carlo numerical simulation

and its application in probability analysis of long span bridge. Journal of Southeast University

(English Edition), 21(4): 469–473. China.

[31] Hayashi I., and Iwatsuki N., 1990. Universal FFT and its application. Journal of the Japan Society

of Precision Engineering, 25(1): 70–75.
[32] Heiat A., December 2002. Comparison of artificial neural network and regression models for

estimating software development effort. Information and Software Technology, 44(15): 911–922.

[33] Helton J. C., and Davis F. J., 2003. Latin hypercube sampling and the propagation of uncertainty in

analyses of complex systems. Reliability Engineering and System Safety, 81(1): 23–69.
[34] Hörts M., and Wohlin C., 1997. A subjective effort estimation experiment. Information and

Software Technology, 39(11): 755–762.

[35] Huang S.-J., Lin C.-Y., and Chiu N.-H., March 2006. Fuzzy decision tree approach for embedding

risk assessment information into software cost estimation model. Journal of Information Science

and Engineering, 22(2): 297–313.

[36] Huang X., Capretz L. F., Ren J., and Ho D. A., 2003. Neuro-fuzzy model for software cost

estimation. In Proceedings of the 3rd International Conference on Quality Software.
[37] Idri A., Abran A., Khoshgoftaar T., and Robert S., June 2002. Estimating software project effort

by analogy based on linguistic values. In Proceedings of the 8th International Symposium on

Software Metrics, IEEE computer Society, pp. 21–30. Ottawa, Canada.

[38] Idri A., Kjiri L., and Abran A., February–March 2000. COCOMO cost model using fuzzy logic.

In Proceeding of the 7th International Conference on Fuzzy Theory & Technology, Atlantic City,

New Jersey.

[39] Jeffery R., Ruhe M., and Wieczorek I., November 2000. A comparative study of two software

development cost modeling techniques using multi-organizational and company-specific data.

Information and Software Technology, 42(14): 1009–1016.

[40] Jensen R.W., Putnam L. H., and RoetzheimW., February 2006. Software estimating models: Three

viewpoints. Cross-Talk, The Journal of Defense Software Engineering, 2: 23–29.
[41] Jensen R. W., April 1983. An improved macro-level software development resource estimation

model. In Proceedings of the 5th International Society of Parametric Analysts Conference,

pp. 88–92. St. Louis, MO.

[42] Jensen R. W., November 1980. A macro-level software development cost estimation methodology.

Proceedings of the 14th AsilomarConference onCircuits, Systems andComputers, PacificGrove, CA.

http://www.gartner.com/press_releases/pr2005.html
http://www.gartner.com/press_releases/pr2005.html

172 M. KLÄS ET AL.
[43] Johnson P. M., Moore C. A., Dane J. A., and Brwer R. S., November/December 2000. Empirically

guided software effort guesstimation. IEEE Software, 17(6): 51–56.

[44] Jones T. C., 1998. Estimating Software Costs. McGraw-Hill, Inc., Hightstown, NJ, USA.

[45] J�rgensen M., May/June 2005. Practical guidelines for better support of expert judgment-based

software effort estimation. IEEE Software, 22(3): 57–63.
[46] J�rgensen M., April 2004. Realism in effort estimation uncertainty assessments: it matters how you

ask. IEEE Transactions on Software Engineering, 30(4): 209–217.

[47] J�rgensen M., 1995. Experience with the accuracy of software maintenance task effort prediction

models. IEEE Transactions on Software Engineering, 21(8): 674–681.
[48] J�rgensen M., and Shepperd M., 2007. A systematic review of software development cost estima-

tion studies. IEEE Transactions on Software Engineering, 33(1): 33–53.

[49] Kadoda G., Cartwright M., and Shepperd M., August 2001. Issues on the effective use of CBR

technology for software project prediction. In Proceedings of the 4th International Conference on
Case-Based Reasoning: Case-Based Reasoning Research and Development, pp. 276–290.

[50] Kalos M. H., and Whitlock P. A., 1986. Monte Carlo Methods—Volume I: Basics. A Wiley-

Interscience Publication, NY.

[51] Kitchenham B. A., Pickard L., Linkman S. G., and Jones P., May 2005. A framework for evaluating

a software bidding model. Information and Software Technology, 47(11): 747–760.

[52] Kitchenham B., Pickard L. M., Linkman S., and Jones P. W., June 2003. Modeling software

bidding risks. IEEE Transactions on Software Engineering, 29(6): 542–554.
[53] Kitchenham B., 1998. A procedure for analyzing unbalanced datasets. IEEE Transactions on

Software Engineering, 24(4): 278–301.

[54] Kitchenham B., 1992. Empirical studies of the assumptions that underline software cost-estimation

models. Information and Software Technology, 34(4): 211–218.
[55] L’Ecuyer P., 1994. Efficiency improvement and variance reduction. In Proceedings of The Winter

Simulation Conference.

[56] Lee A., Cheng C. H., and Balakrishnan J., August 1998. Software development cost estimation:

integrating neural network with cluster analysis. Information and Management, 34(1): 1–9.

[57] Li J., and Ruhe G., 2006. A comparative study of attribute weighting heuristics for effort

estimation by analogy. In Proceedings of the International Symposium on Empirical Software

Engineering, pp. 66–74. Rio de Janeiro, Brazil.

[58] Liang T., and Noore A., March 2003. Multistage software estimation. In Proceedings of the 35th

Southeastern Symposium on System Theory, pp. 232–236.

[59] Loève, M., 1987. Graduate texts in mathematics. 4. ed., 3.print. New York: Springer (45).

[60] Lother M., and Dumke R., 2001. Point metrics. Comparison and analysis. In Dumke/Abran:
Current Trends in Software Measurement, pp. 228–267. Shaker Publication, Aachen, Germany.

[61] MacDonell S. G., 1997. Establishing relationships between specification size and software process

effort in CASE environments. Information and Software Technology, 39(1): 35–45.

[62] MacDonell S. G., and Gray A. R., 1996. Alternatives to regression models for estimating software

projects. In Proceedings of the IFPUG Fall Conference, Dallas TX.

[63] MairC., and ShepperdM. J.,May 1999.An investigation of rule induction based prediction systems. In

Proceeding of the IEEEICSEWorkshoponEmpirical Studies of SoftwareDevelopment andEvolution.
[64] McKay M. D., Beckman R. J., and Conover W. J., 1979. A comparison of three methods for

selecting values of input variables in the analysis of output from a computer code. Technometrics,

21(2): 239–245.

[65] Mendes E., Watson I., Chris T., Nile M., and Steve C., 2003. A comparative study of cost estimation

models for web hypermedia applications. Empirical Software Engineering, 8(2): 163–196.

SIMULATION TECHNIQUES FOR HYBRID COST ESTIMATION 173
[66] Menzies T., Port D., Chen Z., Hihn J., and Stukes S., May 2005. Validation methods for calibrating

software effort models. In Proceedings of the 27th International Conference on Software Engi-

neering, pp. 587–595.

[67] Miyazaki Y., Terakado M., Ozaki K., and Nozaki H., 1994. Robust regression for developing

software estimation models. Journal of Systems and Software, 27, 3–16.
[68] Mol�kken-�stvold K. J., and J�rgensen M., December 2004. Group processes in software effort

estimation. Empirical Software Engineering, 9(4): 315–334.

[69] Mukhopadhyay T., Vicinanza S. S., and Prietula M. J., June 1992. Examining the feasibility of a

case-based reasoning model for software effort estimation. MIS Quarterly, 16(2): 155–171.
[70] Musilek P., Pedrycz W., and Succi G., 2000. Software cost estimation with fuzzy models. ACM

SIGAPP Applied Computing Review, 8(2): 24–29.

[71] Ohsugi N., Tsunoda M., Monden A., and Matsumoto K., April 2004. Applying collaborative

filtering for effort estimation with process metrics. In Proceedings of the 5th International
Conference on Product Focused Software Process Improvement, 3009: 274–286. Kyoto, Japan.

[72] Owen A. B., 1997. Monte Carlo variance of scrambled equidistribution quadrature. Journal on

Numerical Analysis, 34(5): 1884–1910.
[73] Pawlak Z., 1991. Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic

Publishers, Boston, MA, USA.

[74] Pendharkar P.C., SubramanianG.H., andRodger J.A., July 2005.A probabilisticmodel for predicting

software development effort. IEEE Transactions on Software Engineering, 31(7): 615–624.
[75] Putnam L. H., and Myers W., 2003. Five Core Metrics, Dorset House, New York.

[76] Putnam L. H., and Myers W., June 2000. What we have learned. Cross-Talk: The Journal of

Defense Software Engineering, 6: 21–24.

[77] Reifer D. J., December 1987. SoftCost-R: User experiences and lessons learned at the age of one.

Journal of Systems and Software, 7(4): 279–286.

[78] @RISK 4.5 User’s Guide. Palisade Corporation. October, 2004.

[79] Rodriguez D., Cuadrado-Gallego J. J., and Aguilar J., 2006. Using genetic algorithms to generate

estimation models. In Proceedings of the International Workshop on Software Measurement and

Metrik Kongress, Potsdam, Germany.

[80a] Saliby E., 1997. Descriptive sampling: An improvement over Latin hypercube sampling.

In Proceedings of Winter Simulation Conference, 230–233, IEEE Press.

[80b] Saliby E., 2002. An empirical evaluation of sampling methods in risk analysis simulation:

Quasi-Monte Carlo, descriptive sampling, and Latin hypercube sampling. In Proceedings of Winter

Simulation Conference, 1606–1610.

[81] Samson B., Ellison D., and Dugard P., 1997. Software cost estimation using an Albus perceptron

(CMAC). Information and Software Technology, 39(1): 55–60.

[82] Sentas P., Angelis L., Stamelos I., and Bleris G. L., January 2005. Software productivity and effort

prediction with ordinal regression. Journal of Information & Software Technology, 47(1): 17–29.

[83] Shan Y., McKay R. I., Lokan C. J., and Essam D. L., July 2002. Software project effort estimation

using genetic programming. In Proceedings of the International Conference on Communications,

Circuits and Systems, pp. 1108–1112. Chengdu, China.

[84] Shepperd M., and Cartwright M., 2001. Predicting with sparse data. IEEE Transactions on
Software Engineering, 27(11): 987–998.

[85] Shepperd M., and Kadoda G., November 2001. Comparing software prediction techniques using

simulation. IEEE Transactions on Software Engineering, 27(11): 1014–1022.

174 M. KLÄS ET AL.
[86] Shepperd M., and Schofield C., 1997. Estimating software project effort using analogies. IEEE
Transactions on Software Engineering, 23(12): 736–743.

[87] Shin M., and Goel A. L., June 2000. Empirical data modeling in software engineering using radial

basis functions. IEEE Transactions on Software Engineering, 26(6): 567–576.

[88] Shukla K. K., 2000. Neuro-genetic prediction of software development effort. Information and
Software Technology, 42: 701–713.

[89] Smith R. K., Hale J. E., and Parrish A. S., March 2001. An empirical study using task assignment

patterns to improve the accuracy of software effort estimation. IEEE Transactions on Software

Engineering, 27(3): 264–271.
[90] Sobol I. M., 1974. The Monte Carlo Method. The University of Chicago Press, Chicago.

[91] Song Q., Shepperd M., and Mair C., 2005. Using grey relational analysis to predict software effort

with small data sets. In Proceedings of the 11th IEEE International Software Metrics Symposium,

pp. 35–45. Como, Italy.

[92] Spector P., 1992. Summated Rating Scale Construction. Sage Publications, Newbury Park, CA,

USA.

[93] Srinivasan K., and Fisher D., 1995. Machine learning approaches to estimating software develop-

ment effort. IEEE Transactions on Software Engineering, 21(2): 126–137.

[94] Stamelos I., and Angelis L., November 2001. Managing uncertainty in project portfolio cost

estimation. Information and Software Technology, 43(13): 759–768.

[95] Stamelos I., Angelis L., and Sakellaris E., April 2001. BRACE: Bootstrap based analogy cost

estimation. InProceedings of the 12th European Software ControlMetrics, pp. 17–23. London, UK.

[96] StatSoft Inc. Statistica 7 Data Miner. http://www.statsoft.com.

[97] Stroud A. H., 1971. Approximate Calculation of Multiple Integrals. Prentice-Hall, New Jersey.

[98] Taff L. M., Brochering J. W., and Hudgins W. R., 1991. Estimeetings: Development estimates and

a front-end process for a large project. IEEETransactions on Software Engineering, 17(8): 839–849.

[99] Trendowicz A., Heidrich J., Münch J., Ishigai Y., Yokoyama K., and Kikuchi N., 2006. Develop-

ment of a hybrid cost estimation model in an iterative manner. In Proceeding to 28th International
Conference on Software Engineering ICSE, Shanghai, China.

[100] The Standish Group, 2005. CHAOS Chronicles. The Standish Group International, Inc., West

Yarmouth, MA.

[101] Vose D., 1996. Quantitative Risk Analysis. A Guide to Monte Carlo Simulation Modelling. John

Wiley & Sons, Chichester.

[102] Walkerden F., and Jeffery R., 1999. An empirical study on analogy-based software effort estima-

tion. Empirical Software Engineering, 4: 135–158.

[103] Walkerden F., and Jeffery R., 1997. Software cost estimation: A review of models, process, and

practice. Advances in Computers, 44: 59–125.

[104] Wieczorek I., 2002. Improved software cost estimation – a robust and interpretable modelling

method and a comprehensive empirical investigation. Empirical Software Engineering, 7(2):

177–180.

[105] Wohlin C., Runeson P., Höst M., Ohlsson M., Regnell B., and Wesslen A., 2000. Experimentation

in Software Engineering. An Introduction. Kluwer Academic Publishers, Boston.

[106] Xu Z., and Khoshgoftaar T. M., 2004. Identification of fuzzy models of software cost estimation.

Fuzzy Sets and Systems, 145(1): 141–163.

[107] Yang D., Wan Y., Tang Z., Wu S., He M., and Li M., COCOMO-U: An extension of COCOMO II

for cost estimation with uncertainty. In Q. Wang, et al., ed. Software Process Change, SPW/ProSim

2006. LNCS 3966, pp. 132–141. Springer-Verlag, Berlin, Heidelberg.
[108] Zadeh L. A., April 1965. Fuzzy sets. Information and Control, 8: 338–353.

[109] Zou T., Mahadevan S., Mourelatos Z., and Meernik P., December 2002. Reliability analysis of

automotive body-door subsystem. Reliability Engineering & System Safety, 78(3): 315–324.

http://www.statsoft.com

An Environment for Conducting
Families of Software Engineering
Experiments

LORIN HOCHSTEIN

University of Nebraska

TAIGA NAKAMURA

University of Maryland

FORREST SHULL

Fraunhofer Center Maryland

NICO ZAZWORKA

University of Maryland

VICTOR R. BASILI

University of Maryland, Fraunhofer Center, Maryland

MARVIN V. ZELKOWITZ

University of Maryland, Fraunhofer Center, Maryland

Abstract

The classroom is a valuable resource for conducting software engineering

experiments. However, coordinating a family of experiments in classroom

environments presents a number of challenges to researchers. Understanding

how to run such experiments, developing procedures to collect accurate data,

and collecting data that is consistent across multiple studies are major problems.
ADVANCES IN COMPUTERS, VOL. 74 175 Copyright © 2008 Elsevier Inc.

ISSN: 0065-2458/DOI: 10.1016/S0065-2458(08)00605-0 All rights reserved.

176 L. HOCHSTEIN ET AL.
This paper describes an environment, the Experiment Manager that simplifies

the process of collecting, managing, and sanitizing data from classroom experi-

ments, while minimizing disruption to natural subject behavior. We have success-

fully used this environment to study the impact of parallel programming languages

in the high-performance computing domain on programmer productivity at

multiple universities across the United States.

1. Introduction . 176

1.1. Collecting Accurate Data . 177

1.2. Classroom Studies . 178

2. Classroom as Software Engineering Lab 179

3. The Experiment Manager Framework 182

3.1. Instrumentation Package . 183

3.2. Experiment Manager Roles . 184

3.3. Data Collection . 186

4. Current Status . 190

4.1. Experiment Manager Effectiveness . 191

4.2. Experiment Manager Evolution . 192

4.3. Supported Analyses . 193

4.4. Evaluation . 197

5. Related Work . 197

6. Conclusions . 198

Acknowledgments . 199

References . 199

1. Introduction

Scientific research advances by the creation of new theories and methods, fol-

lowed by an experimental paradigm to either validate those theories and methods or

to offer alternative models, which may be more appropriate and accurate. Computer

science is not different from other sciences, and the field has been moving to adopt

such exper imental appro aches [25] . Howeve r, in muc h of compute r science , and in

software engineering in particular, the experimental model poses difficulties possi-

bly unique among the sciences. Software engineering is concerned about the appro-

priate models applicable to the development of large software systems. As such it

involves the study of numerous programmers and other professionals over long

SOFTWARE ENGINEERING EXPERIMENTS 177
periods of time. Thus, much of this research involves human behavior and in many

ways is similar to research in psychology or the social sciences.

The major experimental approach accepted in scientific research is the replicated

study. However, by being expensive to produce, software is not amenable to such

studies. While a typical medical clinical trial may involve hundreds of subjects

testing a drug or a new treatment, even one duplication of a software development is

beyond the resources of most organizations. Although this approach is commonly

used in various fields of research involving humans, such as clinical study in

medical science, conducting many studies is still difficult and expensive, which is

often a major obstacle for good software engineering research.

The problems with empirical studies in software engineering can be classified by

two major problems: cost of such studies and accuracy of the data.

1.1 Collecting Accurate Data
1.1.1 Costs of Software Engineering Studies
Because of the cost of developing a piece of software, typically case studies of a

single development are monitored, and after many such studies, general trends can

be observed. As an example of this, we will look at the NASA Goddard Space Flight

Center (GSFC) Software Engineering Laboratory (SEL), which from 1976 to 2001

conducted many such studies [6]. The exper iences of the SEL are illus trative of the

problems encountered in data collection. The data was collected, beginning in 1976,

at GSFC from NASA developers and the main development contractor, Computer

Sciences Corporation (CSC). The data was then manually reviewed at GSFC before

being sent to the University of Maryland for entry into the project measures database

using a UNIX-based Ingres system.

The naı̈ve simplicity in which data was collected broke down by 1978 and a more

rigorous set of processes was instituted. This could not be a part-time activity by

faculty using undergraduate employees. In addition, the university researchers

wanted a considerable amount of data, and soon realized that the GSFC program-

ming staff did not have the time to comply with their requests. They had to

compromise on the amount of data desired versus the amount of data that realisti-

cally could be collected. Data, which was collected on forms filled out by the

programming staff, were shortened to allow for more complete collection.

The data collection process for the 20 projects then under study became more

rigorous with this five-step approach:

1. Programmers and managers completed forms.

2. Forms were initially verified at CSC.

3. Forms were encoded for entry at GSFC.

178 L. HOCHSTEIN ET AL.
4. Encoded data checked by validation program at GSFC.

5. Encoded data revalidated and entered into database at University (after several

years, CSC took over total management of the database).

But, to obtain contractor cooperation, a 10% overhead cost to projects was

allocated for data collection and processing activities. Eventually the overhead

cost of collecting data was reduced, but the total cost of collecting, processing,

and analyzing data continued to remain between 5% and 10%. However, on a $500K

project, this still amounted to almost $50K just for data collection – an amount that

few organizations are willing to invest. While the SEL believed that the payoff in

improved software development justified this cost, it is beyond the scope of this

chapter to prove that. Suffice it to say that most organizations consider the additional

costs of data collection as unjustified expenses.
1.1.2 Accuracy in Collected Data
Most data collected on software development projects can be generally classified

as self-reported data – the technical staff fill out effort reports on hours worked,

change reports on defects found and fixed, etc. The care in which such data is

reported and collected greatly affects the accuracy of the process. Unfortunately, the

process is not very accurate. Self-reported measures can vary over time, due to

histor y or maturation effect s [7] , and the accuracy of such measures varies acro ss

individuals. This is a particular problem when the subjects have more interest in

comp leting the task than complyin g with the protocols of the stud y. Basili et al. [2]

evaluated Software Science metrics against self-reported effort data collected from

GSFC software projects. There was very little correlation between this effort and

metrics known to predict effort, and there was concern that poor self-reported data

was distorting the results. Perr y et al. [18] anal yzed previous data from project

notebooks and free-form programmer diaries which were originally kept for per-

sonal use. They found that the free-form diaries were too inconsistent across subjects

and sometimes lacked sufficient resolution.
1.2 Classroom Studies

The overhead in collecting accurate detailed data at the SEL was too high to

maintain a data collection process. This same result has been found in other data

collection studies. Instead of large replications, running studies in classrooms using

students as subjects have become a favorite approach for trying out new develop-

ment techniq ues [20] . Even thoug h a concl usion drawn from student subjects cannot

always be generalized to other environments, such experiments aid in developing

SOFTWARE ENGINEERING EXPERIMENTS 179
approaches usable elsewhere. However, conducting larger-scale software engineer-

ing research in classroom environments can be quite complex and time consuming

without proper tool support. Proper tool support is a requirement if we want to

improve on the poor quality of self-reported data.

A single environment (e.g., a single class) is often insufficient for obtaining

significant results. Therefore, multiple replications of a given experiment must be

carried out by different faculty at different universities in order to provide sufficient

data to make conclusions. This means, each experiment must be handled in a similar

manner to allow for combining partial results. The complexity of providing consistent

data across various experimental protocols has been overwhelming so far.

In this chapter, we describe an environment we are developing to simplify the

process of conducting software engineering experiments that involve development

effort and workflow and ensure consistency in data collection across experiments in

classroom environments. We have used this environment to carry out research to

identify the effect of parallel programming languages on novice programmer pro-

ductivity in the doma in of high- performanc e com puting (e.g., MPI [12], Ope nMP

[11], UPC [8] , and Matlab* P [10]). Altho ugh there are often issues rega rding the

external validity of students as subjects, this is not a major concern here since we are

explicitly interested in studying student programmers.

This work was carried out in multiple universities across the United States in

courses where the professors were not software engineering researchers and were,

therefore, not experienced with conducting experiments that involved human subjects.

2. Classroom as Software Engineering Lab

The classroom is an appealing environment for conducting software engineering

experiments, for several reasons:

l Most researchers are located at universities. Being close to your subjects is

often necessary to obtain accurate results.

l Training can be integrated into the course. No extra effort is then required by

the subjects since there is the assumption that the training is a valuable

academic addition to the classroom syllabus.

l Required tasks can be integrated into the course.

l All subjects are performing identical programming tasks, which are not gener-

ally true in industry. This provides an easy source for replicated experiments.

In addition to the results that are obtained directly by these studies, such experi-

ments are also useful for piloting experimental designs and protocols which can later

be applied to industry subjects, an approach which has been used successfully

elsewhere (e.g., [3, 4, 5]).

180 L. HOCHSTEIN ET AL.
While there are threats to validity of such studies by using students as subjects as

proxies for professional programmers (e.g., the student environment may not be

representative of the ones faced by professional programmers), there are additional

complexities that are specific to research in this type of environment. We encoun-

tered each of these issues when conducting research on the effects of parallel

progr amming mode l on effort in high- performanc e computin g [14] :

1. Complexity: Conducting an experiment in a classroom environment is a

complex process that requires many different activities (e.g., planning the

experimental design, identifying appropriate artifacts and treatments, enrolling

students, providing for data collection, checking for process compliance,

sanitizing data for privacy, and analyzing data). Each such activity identifies

multiple points of failure, thus requiring a large effort to organize and run

multiple studies. If the study is done at multiple universities in collaboration

with other professors, these professors may have no experience in organizing

and conducting such experiments.

2. Research versus pedagogy: When the experiment is integrated into a course, the

experimentalist must take care to balance research and pedagogy [9]. Studies

must have minimal interference with the course. If the students in one class are

divided up into treatment groups and the task is part of an assignment, then care

must be taken to ensure that the assignment is of equivalent difficulty across

groups. Students who consent to participate must not have any advantage or

disadvantage over students who do not consent to participate, which limits

additional overhead required by the experiment. In fact, each university’s

Institutional Review Board (IRB), required in all United State universities

performing experiments with human subjects, insists that participation (or

nonparticipation) must have no effect on the student’s grade in the course.

3. Consistent replication across classes: To build empirical knowledge with

confidence, researchers replicate studies in different environments. If studies

are to be replicated in different classes, then care must be taken to ensure that

the artifacts and data collection protocols are consistent. This can be quite

challenging because professors have their own style of giving assignments.

Common projects across multiple locations often differ in crucial ways making

meta-anal ysis of the combine d results impo ssible [16] .

4. Participation overhead for professors: In our experience, many professors are

quite willing to integrate software engineering studies into their classroom

environment. However, for professors who are unfamiliar with experimental

protocols, the more effort required of them to conduct a study, the less likely it

will be a success. In addition, collaborating professors who are not empirical

researchers may not have the resources or the inclination to monitor the quality

SOFTWARE ENGINEERING EXPERIMENTS 181
of captured data to evaluate process conformance. Therefore, empirical research-

ers must try to minimize any additional effort required to run an empirical

study in the course while ensuring that data is being captured correctly.

The required IRB approval, when attempted for the first time, seems like a

formidable task. Help in understanding IRB approval would greatly aid the

ability of conducting such research experiments.

5. Participation overhead for students: An advantage of integrating a study into a
classroom environment is that the students are already required to perform the

assigned task as part of the course, so the additional effort involved in participat-

ing in the study is much lower than if subjects were recruited from elsewhere.

However, while the additional overhead is low, it is not zero. The motivation to

conform to the data collection process is, in general, much lower than the

motivation to perform the task, because process conformance cannot be graded.

In addition, the study should not subvert the educational goals of the course.

Putting the experiment in the context of the course syllabus is never easy.

This can be particularly problematic when trying to collect process data from

subjects (e.g., effort, activities, and defects), especially for assignments that take

several weeks (e.g., we saw a reduction in process conformance over time when

subjects had to fill out effort logs over the course of multiple assignments).

6. Automatic data collection of software process: To reduce subject overhead and
increase data accuracy, it is possible to collect data automatically from the

programmer’s environment. Capturing data at the right level of granularity is

difficult. All user-generated events can be captured (keyboard and mouse

events), but this produces an enormous volume of data that may not abstract

to useful information. Allowing this raw data to be used can create privacy

issues, such as revealing account names, with the ability to then determine how

long specific users took to build a product or how many defects they made.

All development activities taking place within a particular development

environment (e.g., Eclipse) simplifies the task of data collection, and tools

exist to s upport s uch c ases (e.g., Marmos et [21]). However, in many

domains, development will involve a wide range of tools and possibly

even multiple machines. For example, in the domain of high-performance

computing, preliminary programs may be compiled on a home PC, final

programs are developed on the university multiprocessor, and are ulti-

mately run on remote supercomputers at a distant datacenter. Programmers

typically use a wide variety of tools, including editors, compilers, build

tools, debuggers, profilers, job submission systems, and even web browsers

for viewing documentation.

7. Data management: Conducting multiple studies generates an enormous vol-

ume of heterogeneous data. Along with automatically collected data and

182 L. HOCHSTEIN ET AL.
manually-reported data, additional data includes versions of the programs,

pre-and post-questionnaires, and various quality outcome measures (e.g.,

grades, code performance, and defects). Because of privacy issues, and to

conform to IRB regulations, all data must be stored with appropriate access

controls, and any exported data must be appropriately sanitized. Managing this

data manually is labor-intensive and error-prone, especially when conducting

studies at multiple sites.
3. The Experiment Manager Framework

We evolved the Experiment Manager framework (Fig. 1) to mitigate the complex-

ities described in the previous section. The framework is an integrated set of tools to

support software engineering experiments in HPC classroom environments. While

aspects of the framework have been studied by others, the integration of all features

allows for a uniform environment that has been used in over 25 classroom studies

over the past 4 years. The framework supports the following.
Local server:
capture data

Upload

UM Admin

Master
DB

Sanitized
data

Install

Write/run code

HPC Machine

Umdinst
+

Hackystat
sensors

UM Experiment
Manager (EM)

+
Hackystat server

Local
Log

Upload

Create a course
Monitor registration

Sign up for account/key

Manual online logs
questionnaire

Technician

Professor

Student

UMD server:
store data

UMD server:
analyze data

HPDBugBase
(defect data)

UM workflow
tool

Upload
develop
analysis

tool

Download
analysis
results

Data analysis
interfaces

SQL queries

Sanitized
DB

UM data
analysis

environment

FIG. 1. Experiment Manager structure.

SOFTWARE ENGINEERING EXPERIMENTS 183
1. Minimal disruption of the typical programming process: Study participants solve
programming tasks under investigation using their typical work habits, spreading

out programming tasks over several days. The only additional activity required is

filling out someonline forms. Sincewedonot require them to complete the task in

an alien environment or work for a fixed, uninterrupted length of time, we

minimize any negative impact on pedagogy or subject overhead.

2. Consistent instruments and artifacts: Use of the framework ensures that the

same type of data will be collected and the same type of problems will be

solved, which increases confidence in meta-analysis across studies at different

universities.

3. Centralized data repository with web interface: The framework provides a

simple, consistent interface to the experimental data for experimentalists, sub-

jects, and collaborating professors. This reduces overhead for all stakeholders

and ensures that data is consistently collected across studies.

4. Sanitization of sensitive data: The framework provides external researcher

with access to the data sets that have been stripped of any information that

could identify subjects, to preserve anonymity and comply with the protocols

of human subject research as set out by IRBs at American universities.
3.1 Instrumentation Package

Our instrumentation package, called UMDinst, supports automatic collection of

software process data in a Unix-based, command-line development environment,

which is commonly used in high-performance computing. The package is designed

to be installed in a master account on the local server and then enabled in the accounts

of each subject by executing a set up script, or be installed in the account of individual

subjects. The appropriate installation mode depends on the need of a specific experi-

ment and the configuration of the machine to be instrumented. In either case, the

package can be used without the intervention of system administrators.

UMDinst package instrument programs that are involved in the software devel-

opment process by replacing each command that invokes a tool (e.g., compiler) with

a script that first collects the desired information and then calls the original tool. It is

used for instrumenting compilers, although it is also designed to support job

schedulers (common in high-performance computing environments), debuggers,

and profilers. For each compile, the following data is captured:

l a time stamp when the command is executed

l contents of the source file that were compiled

l contents of local header files referenced in the source file

184 L. HOCHSTEIN ET AL.
l the command used to invoke the compiler

l the return code of the compiler

l the time to compile

The UM Dinst package includes Hackystat senso rs [15] to instru men t suppor ted

editors such as Emacs and vi, and to capture shell commands and time stamps. The

collected data is used in studies to estimate total effort as well as to infer develop-

ment activities (e.g., debugging, parallelizing, and tuning). Hackystat is a system

developed by Johnson at the University of Hawaii that captures low-level events

from a set of instrumented tools. Thus, while UMDinst captures data at the com-

mand-line level, Hackystat captures time stamps and events from editors and related

tools that have been instrumented. The pair of tools provides a complete history of

user interaction in developing a program.
3.1.1 Web Portal
The heart of the Experiment Manager framework is the web portal, which serves

as a front-end to the database that contains all of the raw data, along with metadata

about individual experiments. Multiple stakeholders use the web interface: experi-

menters, subjects, and data analysts. For example, experimenters specify treatments

(in our case, parallel programming models), assignment problem, participation rate,

and grades. They also upload data captured automatically from UMDinst. Subjects

fill in questionnaires, and report on process data such as time worked on different

activit ies and defects . Ana lysts would export data of intere st, such as tot al effort [13]

for hypothesis testing, or a stream of time stamped events for workflow modeling.
3.2 Experiment Manager Roles

We have divided the functionality of the Experiment Manager into four roles. For

each role, we developed several use cases that describe its functionality, thus

simplifying the design of the software.

1. Technician: The technician sets up the environment on the local server, usually

not at the University of Maryland. This will be someone at a university with

access to the machine the students use for the class. Often it is the Teaching

Assistant in the course the software will be used in. The tasks for the technician

are to install UMDinst so that students can use it. At the end of the semester,

the technician also sends the collected data to the University of Maryland

server in case it was collected locally.

SOFTWARE ENGINEERING EXPERIMENTS 185
2. Profe ssor: A database provides the professo r with sample IRB quest ionnaires

for submitta l. This cannot be fully automated since each universit y has its own

guide lines for submitting the IRB appro val form. But experience with many

unive rsities over the last 4 years allow s us to help in answering the most

com mon question s on these forms.

The instructor first regist ers each class with the Experim ent Manager to set

up a classr oom experiment. For each such class, the prof essor can assign

sever al progr amming proj ects from our collec ted datab ase of assignm ents or

assign one of his own. Dur ing the sem ester, the syst em allow s the p rofessor to

see if stud ents have com pleted their assignm ents, but does not allow access

to any of the collected data u ntil the grade s for the assi gnment are comple ted.

In reali ty, the Teaching Assistan t may be the person to act ually perform this

task, but conceptua lly is acting in the role of the professo r.

3. Stude nt: A student who takes part in the experiment provides data on HPC

development. This requires the student to:

1. Register with the Experiment Manager by filling out a background ques-

tionnaire on courses taken and experiences in com puter science in gener al

and HPC programmi ng in particula r. Althou gh this regist ration process can

take up to 15 min, it is required only o nce d uring the semester .

2. Run the script to set up the wrapper s for the comman ds that edit, compile

and run programs. Onc e an assignment is underway, the data collection

process is mostly automatic and data is collected mostly painlessly.

4. Analyst: An analyst accesses the collected data for evaluating som e hypot hesis

about HPC development . At the present time, the analysis tools are relatively

simple. Analysts can see the total effort and defects made by each student and

collect workflow data.

Many tools exist in prototypes to support the various types of studies. For

example, the HPC community is developing concepts of what productivity means

in the HPC envi ronment [26] and we have been looking at developi ng workflow

models (e.g., how much time is spent in various activities, such as developing code,

testing, parallelizing the code, and tuning the code for better performance).

To support the study of workflows and productivity, we have developed a tool

to allow the experimenter to apply various heuristics to the base data to see if we can

automatically deduce the developer’s programming activity, for example, testing

and debugging versus development. This tool takes raw data, collected from online

tools such as Hackystat and manual logs generated by students, and we have been

developing algori thms for automa tically inferring the workfl ow cycle [23] . Resul ts

of this work are describ ed in Section 4. Curre nt activit ies are looking at extendi ng

these tools.

186 L. HOCHSTEIN ET AL.
3.3 Data Collection

The actual data collection activity was designed to present minimal complexity to

the student (Figs. 2 and 3). Within the Experiment Manager, the student has two

options. If data was not collected automatically, the student can enter a set of

activities, with the times each activity started and ended (Fig. 3) (e.g., self-reported

data, which we discussed earlier to be less reliable). However, the effort tool

simplifies the process greatly. If the student clicks to start the tool (small oval

near bottom of Fig. 3), then a small window opens on the top left corner of the

screen (large oval in upper left in Fig. 3). Each time the student starts a different

activity, the student only needs to pull down the menu in the effort tool and set

the new activity type (Fig. 2). The time between clicks is recorded as the time of the

previous activity. Thus, while the data is not totally automatic, we believe we have

minimized the overhead of collecting such data.
FIG. 2. Effort capture tool.

FIG. 3. Effort collection screen.

SOFTWARE ENGINEERING EXPERIMENTS 187
The tool automatically computes elapsed time between events and saves the data

in the database. If the student stops for a period of time (e.g., goes to lunch and surfs

the web), there is a stop button on the tool. Upon returning, the user simply clicks on

start to resume timing.

For most HPC development, the student simply has to:

1. Log into Experiment Manager to go to effort page (Fig. 4), then click on effort

tool (Fig. 3).

2. Develop program as usual.

3. Each time a new activity starts, click on the new activity in the effort tool

(Fig. 2).

4. If any errors are found, the student records that defect by invoking the defect

tool (Fig. 4) to explain the defect on a separate page (Fig. 5).

Only steps 3 and 4 involve any separate activity for participating in these experi-

ments, and such activity is minimal.

Effort

Invoke Defecttool

Invoke

FIG. 4. Student view of Experiment Manager.

188 L. HOCHSTEIN ET AL.
3.3.1 Data Sanitization
While personal data collected by the experiments must be kept private, we would

like to provide as much data as possible to the community as part of our analysis.

The sanitization process exports ‘safe’ data into a database that can be made

accessible to other researchers, running on a separate machine.

The sanitization process is briefly described in Fig. 6. Each data object we

obtained in an experiment is classified as one of:

1. Prohibited: Data contains personal data we cannot reveal (e.g., name or other

personal identifiers).

2. Clean: Data we can reveal (e.g., effort data for development of another clean

object).

3. Modified: Data we can modify to make it clean (e.g., removing all personal

identification in the source program).

FIG. 5. Defect reporting tool.

SOFTWARE ENGINEERING EXPERIMENTS 189
Clean data can be moved to the analysis server and modified data can also be

moved. Only prohibited data cannot be exported to others desiring to look at our

collected database. Our sanitization process on data consists of the following

four functions:

1. Normalization – Normalize the time stamps for each class on a common basis.

By making each time stamp relative to 0 from the beginning of that experi-

ment, information about in which semester it was collected (and hence from

which school the data was collected) is hidden.

2. Discretization – Since grades are considered private data, we define a mapping

table that maps grades on a small set, such as {good,bad}. Converting other

interval or ratio data into less specific ordinal sets, while it loses granularity,

it helps to present anonymity.

3. Summarization – With some of the universities, we can give out source code if

we remove all personal identifiers of the students who wrote the code. But in

Master
DB

Source
DB objects

Modifying
DB objects

Rules

Tool

Website:
Requests for
other data

Sanitized
DB objects

Sanitized
DB

Website:
Documentation
of DB design

UM admin

Analyst

Prohibited objects

Clean objects

Modified objects

FIG. 6. Basic sanitization process.

190 L. HOCHSTEIN ET AL.
some cases, we are prohibited from doing even that. If we cannot give

out source code, we can collect patterns and counts of their occurrence in the

source code. For example, we can count lines of code, or provide analyses of

‘diffs’ of successive versions of code.

4. Anonymization – We can create hash values for dates, school names, and other

personal identifiers.
4. Current Status

Our Experiment Manager framework currently contains data from 25 classroom

experiments conducted at various universities in the United States (Fig. 7). While

some of the experiments preceded the Experiment Manager (and motivated

its development) and their data was imported into the system; perhaps half the

experiments used parts or all of the system.

Stanford U
ASC-Alliance

CalTech
ASC-

Alliance

SDSC
Multiple
studies

U Utah
ASC-Alliance

UIUC
ASC-Alliance

U Chicago
ASC-Alliance

MIT
3 studies

UMD
10 studies

Classroom

ProfessionalsMississippi State
2 studies

Iowa State
1 study

U Hawaii
1 study

UCSD
1 study

USC
4 studies

UCSB
3 studies

WA

OR

NV

I

CO

WY

MT ND

SD

NE

KS

OH

LA

AR

MO

IA

MN

MI
WI

MS
AL GA

SC

NC

VAWV
KY

TN

IN
OH

PA

NY

VT NH ME

MA

RI

CN
NJ

M

FL

NMAZ

CA

FIG. 7. Completed studies.

SOFTWARE ENGINEERING EXPERIMENTS 191
4.1 Experiment Manager Effectiveness

Before using the experiment manager, we discovered many discrepancies between

successive classroom projects which prevented merging the results. Some of these

were:

1. It was not often obvious for how many processors the final programs were
written. Since a major goal of HPC programming is to divide an algorithm to

run on multiple processors, this speedup (i.e., relative decrease in execution

time by using multiple processors) is a critical measure of performance.

Without knowing the initial goals for each student assignment, it was unclear

how to measure performance goals for each class.

2. Related to the previous problem, the projects all had differing requirements for
final program complexity (e.g., the number of replicated cells needing to be

computed). How big a grid (e.g., number of replicated cells) were required in

which to compute an answer and measure performance? This affected student

programming goals.

3. Grading requirements differed. Was performance on an HPC machine impor-

tant? Sometimes just getting a valid solution mattered. Maximum speedup, or

the decrease in execution time of an HPC machine over a serial implementation,

was sometimes the major goal.

192 L. HOCHSTEIN ET AL.
By using our collected database of potential assignments, as well as our checklist

of project attributes, this problem has lessened across multiple classes recently,

allowing for the combination of results across different universities.

The IRB process seems like a formidable roadblock the first time any new

professor encounters it. Often, in contacting faculty at a new university we would

lose a semester’s activity simply because the IRB approval process was too onerous

the first time it was attempted. With our experience of IRB issues, and our collection

of IRB forms required by various universities, this no longer is a major problem.

A related problem was the installation of software on the host computer for the

collection of data. Again, this often meant the delay by a semester since the

installation process was too complex. This was a major driving force to host much

of this software as a web server at the University of Maryland, with a relatively

simple UMDinst package that needed to be installed at each university’s site.

The effort tool (pictured earlier as Figs. 2 and 3) also solved some of our data

collection problems. We can collect effort data by three ways (Hackystat at the level

of editor and shell event time stamps, manual data via programmer filled-in forms,

and com piler time stamps via UM Dinst). All give different results [13] . The use of

the effort tool greatly eases the data collection problem, which we believe increases

the reliability of such data.

Most of our results, so far, are anecdotal. But we have been able to address new

universities and additional classes in a more methodical manner at present and

believe the Experiment Manager software is a major part of this improvement.
4.2 Experiment Manager Evolution

The system is continuing to evolve. Current efforts focus on the following tasks:

l Weare evolving the user interface to theExperimentManagerweb-based tool.The

goal is to minimize the workload of various stakeholders (i.e., roles) for setting up

the experiment environment, registering with the system, entering the data, and

conducting an analysis. We would like to develop small native applications

that provide a more integrated interface to the operating system, making it less

disruptive to users.

l Wewant to continue our experimentation with organizations that are often behind

firewalls. Although we are currently studying professionals in an open environ-

ment, we want to use the Experiment Manager in this environment. Although the

UMDinst instrumentation package can be set up in secure environments, the

collected data cannot be directly uploaded to the University of Maryland servers.

We have planned extensions to the Experiment Manager architecture to better

SOFTWARE ENGINEERING EXPERIMENTS 193
support the experimentations with these organizations. Working in these

environments is necessary to see how professionals compare to the students.

l We will continue to evolve our analysis tools. For example, our prototype

experience bases for evolving hypotheses and high end computing defects (e.g.,

www.hpcbugbase.org) will continue to evolve both in content and usability.

l We will evolve problem-specific harnesses that automatically capture informa-

tion about correctness and performance of intermediate versions of the code

during development to ensure that the quality of the solutions (specifically,

correctness and performance) is measured consistently across all subjects.

This also requires us to evolve our experience bases to generate performance

measures for each program submitted in order to have a consistent performance and

speedup measure for use in our workflow and time to solution studies.

Our long-range goal is to allow the community access to our collected data. This

requires additional work on a sanitized database that removes personal indicators

and fulfills legal privacy requirements for use of such data.

4.3 Supported Analyses

The Experiment Manager was designed to ease data analysis, in order to support

the investigation of a range of different research questions. Some of these analyses

are focused in detail on a single developer being studied, while others aggregate data

over several classes, allowing us to look across experimental data sets to discover

influencing factors on effective HPCS development.
4.3.1 Views of a Single Subject
One view of a subject’s work patterns is provided directly by the instrumentation.

We refer to this view as the physical level view since it objectively reports incontro-

vertible occurrences at the operating system level, such as the time stamp of each

compilation.

Figure 8 shows such a physical view for a 9 hour segment of work done by a given

subject. The x-axis represents time and each dot on the graph represents a compile

event. Although we have the tools to measure physical activities with a high degree

of accuracy, this type of analysis does not yield much insight. For example, although

we know how often the compiler was invoked, we do not know why: We cannot

distinguish compilations which add new functionality from compilations which

correct problems or defects that could have been avoided. This is an important

distinction to make, if we want to know the cause of unnecessary rework so it can be

avoided.

http://www.hpcbugbase.org

0:00 1:12 2:24 3:36 4:48

Elapsed time

Compilations

6:00 7:12 8:24 9:36

FIG. 8. Compilation events for one subject.

Heuristics Tools

0

1

2

3

4

0:00 1:12 2:24 3:36 4:48 6:00 7:12 8:24 9:36

Testing
debugging

Syntax
fixes

Parallel
coding

Serial
coding

Break

FIG. 9. Types of development activities for one subject.

194 L. HOCHSTEIN ET AL.
A second approach is to use the logged compile times along with a snapshot of the

code at each such compile and then apply a set of heuristics to guess at the semantics

of the activities requiring that compilation. We have built such a tool that allows us

to use various algorithms to manipulate these heuristics. The purpose of determining

the semantic activities is to build baselines for predicting and evaluating the impact

of new tools and languages.

Figure 9 uses the same data as Fig. 8 to illustrate this view. By evaluating the

changes in the code for each compile, we can infer an activity being performed by

the programmer. Again, each dot represents one compile but in this case the activity

preceding each compile has been classified as one of:

SOFTWARE ENGINEERING EXPERIMENTS 195
l Serial coding: The developer is primarily focused on adding functionality

through serial code. This is inferred since most of the changes since the

previous compiler was in new code being added.

l Parallel coding: The developer is adding code to take advantage of multiple

processors, not just adding function calls to the parallel library. We decided to

separate out this activity since the amount of effort spent in this activity is

indicative of how difficult it is to take advantage of the parallel architecture for

solving the problem. This is inferred since parallel execution calls (such as to

the MPI library) were added to the program.

l Syntax fixes: The developer is fixing errors from a previous compile. We can

determine this since the previous compile failed, and the source program is

changed with no intervening execution.

l Testing and debugging: The developer is focused on finding and fixing a

problem, not adding new functionality. This activity can be identified via

some typical and recognizable testing strategies, such as when a high percentage

of the code added before a compile were output statements (so that variable

values can be checked at runtime); creating/modifying test data files instead of

the main code block; or removing test code back out of the system at the end of a

debugging session. Our hypothesis is that effort spent on these activities can

come from misunderstanding of the problem or the proposed solution and so

could be addressed with more sophisticated aides given to developers.

Such a view helps us understand better the approach used by the subject, and how

much of his/her time was spent on rework as opposed to adding new functionality.

The duration data associated with each activity also helps us identify interesting

events during the development: For example, when a large amount of time is spent

debugging, analysts can focus on events preceding the debugging activity to under-

stand what type of bug entered the system and how it was detected. This type of

information can be used to understand how hard or easy it is for the developer to

program in a given environment, and allows us to reason about what could be

changed to improve the situation.
4.3.2 Validation of Workflow Heuristics
The heuristics to date have been developed by having researchers examine the

collected data in detail (e.g., examining successive changes in source code versions).

However, the accuracy of these heuristics is not generally known. We have devel-

oped a tool that provides a programmer with information about the inferred activities

in real time. Using the tool, the developer then provides feedback about whether the

196 L. HOCHSTEIN ET AL.
heuristic has correctly classified the activity. This allows us to evaluate how well the

heuristics agree with the programmer’s belief about the current development

activity.
4.3.3 Views of Multiple Subjects Across

Several Classes
From the same data, total effort can be calculated for each developer and

examined across problems and across classes to understand the range of variation

and whether causal factors can be related to changes in other measures of outcome,

such as the performance of the code produced.

We note that for our experimental paradigm to support effective analyses, subjects

in different classes who tackle the same problem using the same HPC approach should

exhibit similar results regarding effort and the performance achieved. Moreover, we

must be able to find measurable differences between subjects who, for example,

applied different approaches to the same problem. In a previous paper [19], we

presented some initial analyses of the data showing that both conditions hold.

Such analyses have been instrumental in developing an understanding of the

effectiveness of different HPC approaches in different contexts. For example,

Fig. 10 shows a comparison of effort data for two HPC approaches, ‘OpenMP’
100

50

0

−50

−100

Buffon Matvec Resistors Life Sharks

FIG. 10. Percentage effort reduction for OpenMP over MPI.

SOFTWARE ENGINEERING EXPERIMENTS 197
and ‘MPI.’ The percentage of effort saved by using OpenMP instead of MPI is shown

for each of five parallel programming problems (‘Buffon,’ ‘Matvec,’ etc.) represent-

ing different classes of parallel programs. Thus, 50 on the y-axis represents 50% less

effort for OpenMP; �50% would indicate that OpenMP required 50% more effort.

The height of each bar represents the range of values from across an entire dataset of

subjects. As can be seen, in two cases OpenMP yielded better results than MPI as all

subjects required less effort; for two other cases although there were some who

required less effort for MPI, the majority of data points indicated an effort savings

associated with OpenMP. In only one case, for the Buffon problem, did MPI appear

to give most subjects a savings in effort. As we gather more datasets using the

Experiment Manager tool suite, we will continue this type of analysis to understand

what other problems are in the set for which MPI requires less effort, and what it

is about these situations that sets them apart from the ones where OpenMP was the

less effort-intensive approach. (Interested readers can find a description of these

approaches and programming problems in other publications [19].)
4.4 Evaluation

We have been performing classroom experiments in the HPC domain since early

2003. While we have not performed a careful controlled experiment of its effective-

ness, we have observed anecdotally that the Experiment Manager avoids many of

the problems others (including ourselves) have observed in running experiments.

Many of these problems have already been reported in this paper. We have been able

to run the same experiment across multiple classes in multiple universities and

combine the results. Data is collected reliably and consistently across multiple

development platforms. We have been able to obtain data to install into our database

effortlessly without the need for students to perform any post-development activity.

Faculty, who are not experimental researchers, have been able to run their own

experiments with only minimal help from us. And finally, the ability to sanitize data

allows us to provide copies of datasets to others wanting to perform their own

analysis without running into IRB and privacy restrictions.
5. Related Work

There are various other projects that either support software engineering experi-

ments, or support automatic data collection during development, but not both.

The SESE system [1] has many simi larities: it is web-bas ed and supports features

such as managing subjects, supporting multiple roles, administering questionnaires,

198 L. HOCHSTEIN ET AL.
capturing time spent during the experiment, collection of work products, and

monitoring of subject activity. By comparison, Experiment Manager supports addi-

tional data capture (e.g., intermediate source files and defects) and data analysis

(e.g., sanitization and workflow analysis).

PLUM, back in 1976, was one of the first systems to automatically collect

developm ent data [24] . It, along with Hackyst at [15] , Ginger2 [22] , Marmos et

[21] , and Myl yn [17] are exampl es o f syst ems which are desi gned to collec t data

during the development process, but do not have data management facilities that are

specifically oriented towards running multiple experiments. Hackystat, which we

are using in the Experiment Manager, can collect data from several different types of

applications (e.g., vi, Emacs, Eclipse, jUnit, and Microsoft Word) via sensors. It was

originally designed for project monitoring rather than running experiments. We have

adopted the use of some of the Hackystat sensors into our data collection system.

Ginger2 is an environment for collecting an enormous amount of low-level detail

during software development, including eye-tracking and skin resistance. Marmoset

is an Eclipse-specific system which captures source code snapshots at each compile,

and is designed for computer science education research. Mylyn (originally called

Mylar) is also an Eclipse-specific system. Mylyn provides support for task-focused

code development and includes a framework for capturing and reporting on

information about Eclipse usage.
6. Conclusions

The classroom provides an excellent opportunity for conducting software engi-

neering experiments, but the complexities inherent in this environment makes such

research difficult to perform across multiple classes and at multiple sites. The

Experiment Manager framework supports the end-to-end process of conducting

software engineering experiments in the classroom environment. This allows

many others to run such experiments on their own in a way that allows for the

appropriate controls of the experiment so that results across classes and organization

at geographically diverse locations can be compared. The Experiment Manager

significantly reduces the effort on behalf of the experimentalists who are managing

the family of studies, and on the subjects themselves, by applying heuristics to infer

programmer activities.

We have successfully applied the Experiment Manager framework and with each

application are learning and improving the interface, simplifying the use by students,

making its use of value in shrinking the overall problem solving process by students,

for example, various forms of harnesses, the support for analysis, in order to get a

thorough understanding of the HPC development model.

SOFTWARE ENGINEERING EXPERIMENTS 199
Acknowledgments

This research was supported in part by Department of Energy contract DE-FG02-04ER25633 and Air

Force grant FA8750-05-1-0100 to the University of Maryland. Several students worked on the Experi-

ment Manager including Patrick R. Borek, Thiago Escudeiro Craveiro, and Martin Voelp.
References

[1] Arisholm E., Sjoberg D. I. K., Carelius G. J., and Lindsjom Y., September 2002. A web-based

support environment for software engineering experiments. Nordic Journal of Computing, 9(3):
231–247.

[2] Basili V. R., Selby W. R., and Phillips T.-Y., November 1983. Metric analysis and data validation

across Fortran projects. IEEE Transactions on Software Engineering, SE-9, 6: 652–663.

[3] Basili V., and Green S., July 1994. Software process evolution at the SEL. IEEE Software, 11(4):
58–66.

[4] Basili V., July 1997. Evolving and packaging reading technologies. Journal of Systems and

Software, 38(1): 3–12.

[5] Basili V., Shull F., and Lanubile F., July 1999. Building knowledge through families of experiments.

IEEE Transactions on Software Engineering, 25(4): 456–473.

[6] Basili V., McGarry F., Pajerski R., and Zelkowitz M., May 2002. Lessons learned from 25 years of

process improvement: The rise and fall of the NASA Software Engineering Laboratory. In IEEE
Computer Society andACMInternationalConference on SoftwareEngineering, pp. 69–79.Orlando, FL.

[7] Campbell D. T., and Stanley J. C., 1963. Experimental and Quasi-Experimental Designs for

Research. Houghton-Mifflin, Chicago.

[8] Carlson W., Culler D., Yellick K., Brooks E., and Warren K., 1999. Introduction to UPC and

language specification (CCS-TR-99–157). Technical report, Center for Computing Sciences.

[9] Carver J., Jaccheri L., Morasca S., and Shull F., 2003. Issues in using students in empirical studies in

software engineering education. In International Symposium on Software Metrics, pp. 239–249.

Sydney, Australia.

[10] Choy R., and Edelman A., 2003. MATLAB*P 2.0: A unified parallel MATLAB. Singapore MIT

Alliance Symposium.

[11] Dagum L., and Memon R., January 1998. OpenMP: An industry-standard API for shared-memory

programming. IEEE Computational Science & Engineering, 5(1): 46–55.

[12] Dongarra J. J., Otta S. W., Snir M., and Walker D., July 1996. A message passing standard for MPP

and workstations. Communications of the ACM, 39(7): 84–90.

[13] Hochstein L., Basili V., Zelkowitz M., Hollingsworth J., and Carver J., September 2005. Combining

self-reported and automatic data to improve effort measurement. In Joint 10th European Software

Engineering Conference and 13th ACM SIGSOFT Symposium on the Foundations of Software

Engineering, pp. 356–365. Lisbon, Portugal.

[14] Hochstein L., Carver J., Shull F., Asgari S., Basili V., Hollingsworth J. K., and Zelkowitz M.,

November 2005. HPC Programmer Productivity: A Case Study of Novice HPC Programmers,

Supercomputing 2005. Assoc. for Computing Machinery and Institute for Electronic and Electrical

Engineers, Seattle, WA.

[15] Johnson P. M., Kou H., Agustin J. M., Zhang Q., Kagawa A., and Yamashita T., August 2004.

Practical automated process and productmetric collection and analysis in a classroom setting: Lessons

200 L. HOCHSTEIN ET AL.
learned from Hackystat-UH. In International Symposium on Empirical Software Engineering,
Los Angeles, California.

[16] Miller J., September 2000. Applying meta-analytical procedures to software engineering experi-

ments. Journal of Systems and Software, 54(1): 29–39.

[17] Murphy G. C., Kersten M., and Findlater L., July/August 2006. How are Java Software Developers

using the eclipse IDE? IEEE Software, 23(4): 76–83.

[18] Perry D. E., Staudenmayer N. A., and Votta L. G., 1995. Understanding and improving time usage in

software development. Volume 5 of Trends in Software: Software Process John Wiley & Sons,

New York.

[19] Shull F., Carver J., Hochstein L., and Basili V., 2005. Empirical study design in the area of high

performance computing (HPC). In International Symposium on Empirical Software Engineering,

Noosa Heads, Australia.

[20] Sjoberg D., Hannay J., Hansen O., Kampenes V., Karahasanovic A., Liborg N., and Rekdal A. C.,

September 2005. A survey of controlled experiments in software engineering. IEEE Transactions on

Software Engineering, 31(9): 733–753.

[21] Spacco J., Strecker J., Hovemeyer D., and Pugh W., 2005. Software repository mining with

Marmoset: an automated programming project snapshot and testing system. In Proceedings of the

International Workshop on Mining Software Repositories, pp. 1–5. St. Louis, Missouri.

[22] Torii K., Mastumoto K., Nakakoji K., Takada Y., Takada S., and Shima K., July 1999. Ginger2: An

environment for computer-aided empirical software engineering. IEEE Transactions on Software
Engineering, 25(4): 474–492.

[23] Voelp M., August 2006. Diploma Thesis, Computer Science. University of Applied Sciences,

Mannheim, Germany.

[24] Zelkowitz M. V., October 1976. Automatic program analysis and evaluation. In International
Conference on Software Engineering, pp. 158–163. San Francisco, CA.

[25] Zelkowitz M. V., and Wallace D., May 1998. Experimental models for validating computer

technology. IEEE Computer, 31(5): 23–31.
[26] Zelkowitz M. V., Basili V., Asgari S., Hochstein L., Hollingsworth J., and Nakamura T., September

2005. Productivity measures for high performance computers. In International Symposium on

Software Metrics, Como, Italy.

Global Software Development:
Origins, Practices, and Directions

JAMES J. CUSICK

Wolters Kluwer

ALPANA PRASAD

Wolters Kluwer

WILLIAM M. TEPFENHART

Monmouth University

Abstract

The global software industry emerged in the wake of the first computers over

60 years ago. Computing was a global industry from its earliest days initially in

the US and the UK. Today the industry touches all aspects of our modern lives in

all corners of the globe. Increasingly this global industry also produces its

products using globally dispersed and culturally diverse teams of scientists,

engineers, technicians, and managers. This chapter explores the roots of Global

Software Development (GSD), provides a detailed practice approach to con-

ducting GSD especially with Indian suppliers, and examines current trends and

their implications for the future. An exploration of the roots of this economic and

technical phenomenon through the presentation of the earliest global software

teams, their experiences, and how they laid the foundation for today’s practi-

tioners sets the stage. This review will place into context today’s practices in

GSD. Building on this foundation a detailed examination of current practices in

GSD will lead to the introduction of a systematic and practical approach to

conducting cross-shore development that is based on the experiences of one

company which provides lessons for the industry at large. This practice approach

builds on the history of GSD as well as specific adaptations of both engineering

and managerial approaches to distributed development. This model for offshore

development represents a tactical approach to modeling an offshore process for

companies currently pursuing or planning to expand into offshore development.
ADVANCES IN COMPUTERS, VOL. 74 201 Copyright © 2008 Elsevier Inc.

ISSN: 0065-2458/DOI: 10.1016/S0065-2458(08)00606-2 All rights reserved.

202 J.J. CUSICK ET AL.
Key practices that lead to success in this environment are documented and traps

that can limit project effectiveness are pointed out in detail. Finally, the chapter

discusses current trends in GSD and the implications for the industry in coming

years. Among the topics considered include the likelihood of an acceleration in

GSD, its limitations for expansion and adoption, new models of organization for

effective leverage of global teams, and technical evolutions occurring due to the

cross pollination of the industry and the emergence of offshore research and

newly established centers of innovation. In summary, this chapter will start at the

beginning of the GSD experience, provide detailed and deployable methods to

conducting GSD, and point to the probable future of the field and its impacts.
1. Introduction . 203

2. IT Sourcing Landscape . 204

3. Global Software Development . 210

3.1. GSD as an Industry . 210

3.2. Origins of Global Development . 211

3.3. Strengths of Indian IT Industry . 214

3.4. Other Countries . 216

4. Current GSD Practice . 216

4.1. Practice Introduced . 217

4.2. Practice Background . 218

4.3. Business Drivers . 220

4.4. The Supplier Selection Process . 222

4.5. Our Model for Cross-Shore Development 226

4.6. Distributed Approach Details . 228

4.7. A Micro Engineering Process . 230

4.8. Production Support . 234

4.9. Knowledge Management . 241

4.10. Critical Loose Ends . 242

4.11. Things You Have to Live With . 242

4.12. Risks . 244

4.13. Collaborating with Vendors . 244

4.14. Results . 244

4.15. Future Direction in the Program . 245

4.16. Practice Model Concluded . 245

5. A Virtual Roundtable on Outsourcing 246

5.1. The Roundtable Mechanics . 246

5.2. The Roundtable Responses . 246

5.3. Roundtable Discussed . 251

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 203
6. Future Directions in Offshoring . 251

6.1. Political Factors Affecting Offshoring . 251

6.2. Business Factors Affecting the Future of Offshoring 253

6.3. Technology Factors Affecting Offshoring 256

6.4. A Future Target for GSD . 259

7. Conclusions . 261

Acknowledgments . 262

Appendix 1: Interview with K. (Paddy) Padmanabhan of Tata Consultancy

Services 3/9/07 . 262

Appendix 2: List of Acronyms . 265

References . 267

1. Introduction

All around us there is software. In the contemporary world of technology,

software plays a vital role in running everything from kitchen appliances to aircraft.

The creation of all this software is now a truly global industry. Computers were born

as an international industry some 60 years ago and today it is a global business which

is growing in size, scope, and geography. Increasingly this global industry also

produces its products using globally dispersed and culturally diverse teams of

scientists, engineers, technicians, and managers. This chapter will explore the

roots of Global Software Development (GSD), provide a detailed practice approach

to conducting GSD, and examine current trends and their implications for the future.

The first step in this examination will be to explore the nature of software

acquisition or sourcing models. A range of options will be discussed and the

implications of each will be presented. The sourcing models available run the

range from fully in-house to dominantly outsourced or offshored. This will lead to

a discussion on Global Software Development and its variants. A special emphasis

will be placed on understanding how this phenomenon developed and on defining its

key characteristics. As software is such a global business, there is great interplay

between companies, countries, and cultures. These aspects will be outlined and the

pattern of technology transfer between the countries engaged in Global Software

Development will be examined. These exchanges have led to the development of

generalized practices used in running GSD and offshore engagements. A detailed

discussion of such practices provides a practical tutorial on managing offshore

projects and can be applied by anyone facing this challenge. This discussion is

based on the in-depth experience of the authors’ company and while it does not

represent a broad set of experiences it does provide depth that can be exported to

others interested in replicating successful offshore methods. Special focus is placed

204 J.J. CUSICK ET AL.
on the technical and engineering aspects of running projects in a distributed fashion.

Finally, we will look ahead from today’s environment to the near future. What trends

do we see emerging, what impacts will there be from these endeavors, and what new

opportunities will be presented to those working in this field.

The authors have dozens of years of combined software development experience

in a wide variety of settings from start-ups to Fortune 10 R&D to academia. They

also have experience teaching Software Engineering and developing new ideas and

processes in the field. In addition, they have managed numerous offshore projects

over the past 10 years working with a variety of partners in China, the UK, India, and

Japan. It is from this base of practical and academic experience that the approach

and recommendations presented here flow.

During the course of our careers, the importance of software has grown and the

dependence on distributed sources has become endemic. The software field has

changed and is changing the industries it touches. Virtually no product or service is

produced today without the involvement of IT (Information Technology) with the

exception of craft level production.

l Product design is done with CAD (Computer-Aided Design) tools,

l Focus groups are managed with databases,

l Advertising is planned using statistical models and demographic analysis on

computers,

l Current product usage is determined by tracking the online transactions of users

by scanners and POS (Point of Sale) devices linked to databases,

l POS systems report on every item moving through retail shelves [also the use of

RFID (Radio Frequency ID) is growing], and

l Packages are tracked by GPS (Global Positioning System).

Thus, IT is indispensable and acquiring IT services is a buyer’s game. Virtually

every business needs IT and the choices available to acquire IT services are varied.

From a business perspective, it boils down to cost with quality a close second.

IT costs are primarily driven by labor, and so the sourcing of that labor is critical.

The models for such sourcing can be laid out and examined by looking at current

trends in software business arrangements.

2. IT Sourcing Landscape

To develop software today requires one or more physical locations with adequate

facilities, including computing, networking, telecommunications, and tools. Most

importantly, it requires a staff of trained, talented, and dedicated engineers, man-

agers, testers, and other specialists such as business analysts and human factors

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 205
engineers. Finally, capital is required. Assuming financing is available, there are a

number of options available for acquiring such facilities and staff. At a minimum

they include [11] the following:

l In-house development

l On-site contractors

l Onshore outsourcing

l Near Shore outsourcing

l Far Shore outsourcing

l In-house offshoring [Global R&D (Research & Development) or captive

model]

l Purchased applications

l Hybrid sourcing

Each of these options has advantages and disadvantages worth exploring. In-

house development offers the most control but in developed countries may have the

highest cost. For some industries, such as defense, this may be the only option.

A contracting option allows for scaling up and scaling down of resources more

readily but also exposes the organization to a higher risk of turnover. Onshore

outsourcing allows some work to be done offsite on a contract basis and can provide

cost advantages as well as leverage the skills of the professional services firm. Near

shore and far shore outsourcing vary only in the geographic locations. Near shore is

considered to be in an aligned time zone proximity, while far shore may be around

the world where day and night could be opposite. Cost is the primary advantage to

both of these approaches while communications and coordination provide chal-

lenges as will be discussed in some detail below in the practices section. In-house

offshoring is a model which large-scale international firms can employ effectively

by setting up development centers around the world (e.g., captive model). This

removes the middle man from the sourcing equation and leads to better company

loyalty as the offshore staff are employees of the parent company. This taxes the

corporation, however, in terms of overhead and administration. Also, software can

be sourced through purchased applications, which changes the approach altogether.

In this case, the company needs people skilled in the vendor technology in order to

deploy and integrate with other infrastructure. The disadvantage here is that there is

little flexibility in functionality once adopted.

Finally, the hybrid sourcing solution picks two or more of these approaches.

Typically, companies have an in-house staff supplemented by some contractors on

site and in many cases an offshore relationship as well. Thus, the benefits from all of

these models can be combined. This assumes a layer of employees managing an

206 J.J. CUSICK ET AL.
onsite consulting crew who directly manage the offshore team. Naturally, all the

difficulties inherent in these approaches also manifest themselves and require

additional administration and management to keep things running smoothly.

A valuable question to ask is whether the existence of these choices is a benefit or

not. If you are a US- or Europe-based business executive, today’s choices are an

opportuni ty [11]:

l It is possible to save 25–75% of your IT budget and get the same (better/worse)

results.

l For a typical company spending 5% of revenue on IT, this could be a 2–4%

increase in prof it year over year (for large com panies, this coul d be up to a

billion dollars a year).

However, if you are a US- or Europe-based IT professional, today’s choices for IT

acquisition could be a problem:

l Average salary levels in the US are between 1 and 4 times greater than those of

comparably skilled workers abroad.

l Current and future job prospects will be under severe price attack by foreign

service suppliers.

These trends have reshaped the corporate organizations of the past. In Fig. 1,

a typical corporate structure is presented. In it, there are several core functions run

by a central corporate headquarters function. Everything lies within the corporation

except suppliers who straddle the organizational boundary by being outside the

comp any but closel y aligned espec ially for part s supplie rs or strategi c partner s. This

mode l lasted for most of the 20 th cent ury [11].
Operations 1

Corporate

Operations n

Legal

HR

IT

Suppliers

FIG. 1. The old corporate model.

Operations

Corporate

Operations

Legal

HR

IT

Outsourced IT

Outsourced HR

Operations
Subcontractor

Suppliers

FIG. 2. The new corporate model.

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 207
Now take a look at Fig. 2. In this model, we see a major shift of corporate

functions outside the traditional boundaries of the company. Here there are subcon-

tractors of many types taking over key functions for the company and the former

groups within the company have shrunk. These groups now become contract and

service oversight for the outsourced functions. This has happened for most corporate

functions through BPO (Business Process Outsourcing) including the following:

l IT (various capabilities)

l Human Resources (mostly routine benefits administration)

l Medical and legal transcription

l Accounting

l Helpdesk

l Customer service (account inquiry)

l Technical support

l And more

Within IT, almost anything can be outsourced either onshore or offshore. This

includes requirements development, design and architecture, coding, testing, sup-

port, technical writing, network design and maintenance, and more. However, there

are some functions which companies are keeping in-house. It is generally necessary

to maintain a PMO (Project Management Office) function to run the outsourced

projects and services. The PMO manages project initiation, staffing to one or more

208 J.J. CUSICK ET AL.
sources, budgeting, status, and project closure. Additionally, firms must decide what

level of engineering expertise to keep in-house. It is beneficial to maintain require-

ments and architecture development to own the solution direction and retain core

domain knowledge. On the other end of the life cycle, some degree of quality

assurance will typically be retained. For example, test planning and test verification

(verif ication that outsou rced testing was com pleted effect ively) [10]. Finall y, som e

things need to be done onsite but can be done with subcontract personnel like

deskside support and cabling.

Naturally, there are job implications from this new model. For traditional workers

of typical US firms, there is job pressure and ample downsizing as a result of these

new relationships. Some reports claim that 1 million US jobs have moved to India

thus far [6]. Howeve r, som e of this effect is mitigat ed by ‘In-sour cing,’ which is the

creation of jobs by foreign corporations creating jobs in the US, for example.

In Fig. 3, this offset shows an adjusted job gap that is much lower than the total

outsourced figure.

These job-le vel change s can be put into a bigger pers pective. Daniel Dr ezner [15]

of Foreign Affairs states that:

As for the jobs that can be sent offshore, even if the most dire-sounding forecasts come

true, the impact on the economy will be negligible. [A] . . . Forrester’s prediction of 3.3
million lost jobs, for example, is spread across 15 years. That would mean 220,000 jobs

displaced per year by offshore outsourcing. This number sounds impressive until one

considers that total employment in the United States is roughly 130 million, and that . . .
[millions of] new jobs are expected to be added between now and 2010. Annually,

outsourcing would affect less than 0.2 percent of employed Americans.

Of course for people losing jobs due to outsourcing, these statistics are of little

solace. And the typical leadership response that more education is the answer
Outsourcing and insourcing of jobs

0

2

4

6

8

10

12

19
82

19
86

19
90

19
94

19
98

20
02

Jo
bs

 in
 m

ill
io

ns

Workers
employed
overseas by US
companies

Workers
employed by
foreign
companies in
US

FIG . 3. Offsetting job migrations [2].

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 209
does not really apply for a master’s level educated software engineer. They are

already educated. The issue gets back to the earlier comment about what jobs may or

may not be outsourced. For those writing code, their jobs have become commodity

elements in the global job marketplace made possible by GSD and offshoring. Other

sectors are yet to be affected. Pharmaceutical research is done using global teams but

largely in the developed world. Life science education in India and China may soon

produce quality graduates that will allow outsourcing of basic drug research and

other medical research to take place in the developing world. This may then threaten

the high skill and high wage jobs of thousands of US and European researchers and

engineers just as we have seen with IT and other sectors.

In addition to the job impacts, it should be pointed out that not all sourcing deals

work out well for one party or another. For example, there has been enough experi-

ence to date with outsourcing and offshoring that some deals are being undone. CIO
Magazine states that ‘. . . we are starting to see the second phase of [outsourcing] –

CIOs [Chief Information Officers] are renegotiating terms, contracts are expiring.

Some deals just aren ’t workin g out at all . . .’ [7]. They go on to state that som e 78% of

executives who have outsourced an IT function have ended up terminating the deal

early. It is common to hear in the news about functions that were moved overseas

which were subsequently moved back onshore. Dell is a good example of this,

recently pullin g some of its technic al suppor t funct ions back onshor e [46]. Addit ion-

ally, Cha se cance led a $5 billion outs ourcing deal with IB M [37].

To summarize this discussion on sourcing, which lays the foundation for our

exploration of Global Software Development, there are a few conclusions we can

draw. First of all, the need for software is prevalent and the options for acquiring it

are diverse. The outsourcing trend is deep and growing because of the low costs.

Conducting outsourcing requires management changes and can be challenging due

to cross-cultural issues and geographic dispersion. Outsourcing also allows one to

focus on new core competencies like product innovation and also sets the stage for the

ascendancy of certain higher value-added skills like requirements engineering and

project management at the expense of programming. Other skills become required

like the ability to develop RFPs (Request for Proposals), SLAs (Service Level

Agreements), and other contract-oriented documents. Finally, this type of work

requires a clear architecture and the ability to project a vision across company lines.

In terms of jobs we know that IT is critical to the economy but approaching

commodity status. Sourcing decisions can both add and subtract jobs in the US and

overall global IT jobs are growing with the world economy. However, for IT in

developed countries, continued pressure on local jobs will be a mainstay for years to

come. High-end and onsite skills will remain in the US, sometimes at a premium, but

getting a foot in the door may be difficult especially for entry level positions as they

will have mostly migrated overseas.

210 J.J. CUSICK ET AL.
3. Global Software Development

3.1 GSD as an Industry

With this background on sourcing, we can better understand Global Software

Development. Sahay defines GSD as ‘software work undertaken at geographically

separated locations across national boundaries in a coordinated fashion involving real

time or asynchronous interaction’ [48]. GSD is broadly used. Nearly half of the Fortune

500 currently engage in GSD and up to 50 countries are doing so and projections for

GSD reach the $159 billion mark [39]. According to Duke University and Booze Allen,

up to 45% of US companies engage in IT offshoring as of 2006 [36]. In a r ec en t

McKinsey study, this trend was summarized as follows:

Any job that is not confined to a particular location has the potential to be globally

resourced, or performed anywhere in the world. Broadly speaking, this includes any

task that requires no physical or complex interaction between an employee and

customers or colleagues, and little or no local knowledge [18].

The McKinsey description aptly fits many IT jobs, thereby driving the use of GSD

up further. As we have noted, the implications for software is that many software

functions can be offshored. According to Sahay, development in global settings

remains empirically largely unexamined. New organizational patterns are develop-

ing and new social and political issues are being encountered with rapid economic

growth in previously stagnant areas which still have underdeveloped populations

living side by side with the newly prosperous.

Within this context, GSD has emerged as a potent force economically and

technologically. Major outsourcing customers are the US, the UK, Australia, West-

ern Europe, and expanding to Japan and Korea. US consumption reached $5.5

billion in 2000 and approximately $17.6 billion by 2005. It is estimated for India

alone to reach $90 billion by 2010 [36]. Major ‘Tech nopol es’ have emerge d in

Ireland, India, and Israel, with emerging sources in Russia, the Philippines, and

China [48]. Relati ve market sizes of outsourc ing serv ice sectors are provided in

Table I.

The scope of this trend is staggering. In India alone, the offshore industry is

projected to hit $50 billion by 2008. Ireland produces 60% of packaged software for

Europe and Russi a’s industr y is growin g at 50% [48]. One rece nt McKin sey stud y

concluded that up to 50% of IT jobs can be done offshore [5] while 11% of all global

service jobs could be done anywher e in the world [18]. The rate of expans ion in

these supplier countries speaks to the high demand for low cost technical services.

Some of this work is done in a pure outsource model and some is done in a joint

Table I

OFFSHORE MARKET SIZES

2003 Offshore Services Market Size Includes BPO and IT (in Billions)

Country Market Size

India $12.2

Ireland $8.6

Canada $3.8

Israel $3.6

China $3.4

Other Asia $2.3

Latin America $1.8

Philippines $1.7

East Europe $0.6

Mexico $0.5

Australia $0.4

Russia $0.3

South Africa $0.1

Thailand $0.1

TOTAL $39.40

Source: McKinsey [18].

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 211
cross-border fashion. We will focus on this later. However, it is worth pointing out

that while impressive in scope and size, the ‘entire Indian IT services industry

represents less than a quarter of IBM’ s Global Servi ces division’ [33] or � 3% of

total softw are serv ices worldw ide [6].

3.2 Origins of Global Development

Understanding the current hype around GSD, it is instructive to take a step back

and look at how technology development has occurred over the longer term and to

look specifically at where GSD began and how it has matured. We should remind

ourselves that global trade has been with us for thousands of years. Global Software

Development differs from the ancient form of trade in that it is conducted in a semi-

connected state through instantaneous communications, which was not possible in

centuries past. However, the nature of trade between countries which GSD repre-

sents has been with us for ages. In fact, while communications were not instanta-

neous, there was a ‘dialogue’ between countries on technical matters. A thousand

years ago Chinese papermaking spread Westward while Iranian windmills became

212 J.J. CUSICK ET AL.
known in China. Cotton textiles were first developed in India but the spinning wheel

was brought from Iran into India. These interchanges of technology represented not

one time exchanges but continuous dialogue around agricultural, mechanical, and

civil engi neering tech nologies [45]. It is this p attern of technic al dialogue that has

continued from those ancient years into today’s world. The entire Indian IT capabil-

ity was transferred from the West largely in one piece over a relatively short period

of time. Today this technology dialogue is continuing with new innovations being

invented in the developing world and being brought into the technical culture of the

advanced countries. It will be instructive to look at these origins of outsourcing and

the supporting technology transfer making it possible.

In looking at the origins of outsourcing we can look at the early examples cited

above and we can also find references to outsourcing in early economic writings.

In discussing the origins of outsourc ing, Blin der [6] quotes Ada m Smi th from

The Wealth of Nations in 1776 as stating that:

It is the maxim of every prudent master of a family, never to attempt to make at home

what it will cost him more to make than to buy . . . If a foreign country can supply us

with a commodity cheaper than we ourselves can make it, better buy it of them with

some part of the produce of our own industry, employed in a way in which we have

some advantage.

Clearly this is a call to outsourcing at this early date. In fact in the early days of US

history, such items as covered wagons and ship’s sails were outsourced to Scotland

using raw mater ials from India [31].

3.2.1 Early Computing Sourcing

To trace the development of Global Software Development within the IT industry,

one must start at the beginning of the computing age. There were numerous fore-

runners to the first computing machines dating back centuries. These were mostly

calculating machines of various types like Schickard’s in 1623 and Pascal’s in 1642.

Software itself has been dated as far back as 1812 with Jacquard’s paper tape-driven

loom [21]. From the very begi nning, these cal culating d evices were built acro ss

Europe and then in the US. In the 1930s, several electronic calculating devices from

IBM and Bell Labs began forming the technical base for the first digital computers.

Arguably, the first such computer was in fact built in the UK. Colossus, built by the

British in 1943, was a cipher breaking machine and while not a true multipurpose

comp uter it was the direct forerunn er of modern digital compute rs [55].

Harvard’s Mark I went online in 1944 and influenced the further development

of computers using punched card programming. It is well known that ENIAC

(Electronic Numerical Integrator And Computer) was the first general purpose

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 213
programma ble compute r built in 1946 in the US at the Univer sity of Pennsylvan ia’s

Moore School of Electr ical Engine ering. In the USSR, the first com puter arr ived in

1950. It was developed at the Kiev Institute of Electr otechnol ogy in the Ukr aine

[27]. Comm ercial com puters soon followed in 1951. The first was the UNIVA C I

(Universa l Automat ic Computer). This com puter used magnet ic tape for input,

output, and storage but could handle both numeri cal and alph abetic inf ormation.

Shortly thereafte r, IBM’ s 701 was releas ed in 1953 [19]. Th ese machin es ushered in

the mode rn computing era and a new intern ational busi ness sector.

The development of the first computers thus brought into existence programmers

and software. Initially there was no possibility of physical separation of programmers

from their machines. Programming had to be done through card readers or consoles

attached to the machines. Development was always done on-site. These early

machines were primarily located in the US and Europe and the labor markets for

computer engineers and computer programmers grew up around these centers. Even-

tually outsourcing began to take place. Some of the earliest outsourcing occurred in

the 1970s with the outsourcing of electronic payroll services. This expanded in the

1980s with accounting services, word processing, and other data processing services

moving to specialty vendors [31] most of whom were onshore for their US customers

but provided services to international customers as well as exporters of IT services.

3.2.2 Emergence of India as an IT Supplier

Since the 1980s outsourcing has been ‘increasing . . . across national and cultural
borders, a phenomenon which is known as ‘‘global software outsourcing,’’’ and cost

is a major driver as production occurs in lower wage countries [48]. This followed a

pattern set up by the relocation of manufacturing to lower cost areas. Factories were

moved from the NorthEast to the South and to the SouthWest in the 1980s to take

advantage of lower costs and incentives [18]. Also, the government has been con-

tracting essentially all of its IT work for 50 years. For many in industry this is new; the

government has been successful by developing elaborate process controls around

subcontracting. For industry developing these types of processes will be required [51].

This outsourc ing was not restrict ed to onshor e vendors. As early as 1974, there

were Indi an v endors providi ng outsourc e IT serv ices [14]. Th e first recorded project

was a venture between Tata Consultancy Services (TCS) and Burroughs. TCS (and

other leading companies like Wipro and Infosys) developed their businesses despite

governme nt restrict ions. (See Appe ndix I for a detailed interv iew o n the origins of

one vendor.) Soon regulatory changes began helping the industry grow. Importantly,

in 1984 Prime Minister Rajiv Gandhi’s government instituted the New Computer

Policy which broadly reduced import tariffs on computing products and services

[14]. Dur ing the 1990s, telec ommuni cations bandwid th increased and costs decl ined.

214 J.J. CUSICK ET AL.
Overal l risks (percei ved or real) in opera ting acro ss borde rs were reduc ed [18]. This

aided the development of offshore services in many countries.

In the case of India, early protectionist legislation put barriers in the path of the

outsourcing industry. Thus, the early years were dominated by body shopping

services where Indian programmers traveled to onsite locations outside of India.

Advances in programming technologies and platforms including the PC and the

Internet soon better enabled offshore development and this coincided with the easing

of Indian regul ations, allowing for more rapid grow th of the business [14]. This

growth was also fueled by investments made by multinational companies. The

combination of foreign investment, relaxed policies, local ventures, and skilled

labor supply led to the emergence of the IT industry with 21 companies of $4

million or more by 1980. As Dossani writes,

The implantation of a technically sophisticated industry like software into a less-

developed host country has typically been explained by the access of transnational

corporations to local resources facilitated by policy reform . . . [14].

The development of the Indian software services industry can be viewed in

historical jumps based on market, industry, and technological evolutions, which

were driven both by multinational corporations and by indigenous investment by

local firms. From 1960 to 1970, the emergence of Independent Software Vendors

(ISVs) allowed for the initial ventures in the field and were driven by the rise of the

minicomputer. During the 1970s, wider development of custom applications

emerged and a separation of hardware and software became standard practice. In

India, the export of programmers and technical workers dominated. The 1980s saw a

growth of complexity in software applications and lowered import tariffs in India

allowing for lower cost services based in India. Finally, from the 1990s to today,

managed services emerge d arisi ng on top of open system s and the Int ernet [14]. This

has now laid the foundation for wider R&D and product-based innovation.

3.3 Strengths of Indian IT Industry

3.3.1 Large Human Resource

Every year, �19 million students are enrolled in high schools and 10 million

students in pregraduate degree courses across India. Moreover, 2.1 million graduates

and 0.3 million postgraduates pass out of India’s nonengineering colleges.

While some find jobs in other fields or pursue further studies abroad, the rest opt

for employment in the IT industry. If the flow from high schools to graduate courses

increases even marginally, there will be a massive increase in the number of skilled

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 215
workers available to the industry. Even at current rates, there will approximately be

17 million people available to the IT industry by 2008.

3.3.2 Indian Education System

The Indian education system places strong emphasis on mathematics and science,

resulting in a large number of science and engineering graduates. Mastery over

quantitative concepts coupled with English proficiency has resulted in a skill set that

has enabled the country to take advantage of the current international demand for IT.

3.3.3 Quality Manpower

Indian programmers are known for their strong technical skills and their eagerness

to accommodate clients. In some cases, clients outsource work to get access to more

specialized engineering talent, particularly in the area of telecommunications. India

also has one of the largest pools of English-speaking professionals.

3.3.4 Strengths at a Glance

l Varied accomplishments in software development

l English language proficiency

l Government support and policies

l Cost advantage

l Strong tertiary education

l Process quality focus

l Skilled workforce

l Expertise in new technologies

l Entrepreneurship

l Reasonable technical innovations

l Reverse brain drain

l Existing long-term relationships

l Creation of global brands

l BPO (Business Process Outsourcing) and call center offerings

l Expansion of existing relationships

l Chinese domestic and export market

l Leverage relationships in West to access overseas markets

l Indian domestic-market growth

Source: www.nasscom.org.

http://www.nasscom.org

216 J.J. CUSICK ET AL.
3.4 Other Countries

With China, the situation is different. According to Zhang, ‘The software out-

sourc ing business in China is still in it s infancy’ [59]. China’s economy did not open

up until 1979 and there was little industry to build on. The IT services business

started only in the 1990s. One of the authors worked with an initial R&D site in

Beijing established as part of a US multinational in the late 1990s. The best

engineers and graduates were recruited and they were delighted to be working for

a foreign company. A number of these individuals would subsequently leave to join

or form Chinese ventures in the technology services arena. The industry has grown

to over $3 billion in 2004 with more than 8,000 firms, many of them under 50

employe es each [59].

As has been pointed out, other key countries also developed IT services capabil-

ities including Israel and Ireland. Each country leveraged a mix of characteristics to

build its industry including incentives, education, and language skills. With the

creation of these supplier sources, it is important to have concrete approaches to

manage global software development across borders or in a cross-shore manner. The

next section presents a complete model for the technical and managerial leadership

of such globally distributed efforts. This approach has been used on numerous

projects and continues to be applied today. It is offered as a guide to the sometimes

challenging aspects of Global Software Development.

4. Current GSD Practice

Global Software Development has emerged as a research and practical area of

experience over the past 15 years. As we have shown, the earliest computing

projects were localized projects while the industry was global in scope. By the

1970s, large distributed teams were working across time zones. IBM was a pioneer

in this form o f work [9]. This prac tice became routine by the early 1990s and

researchers and practitioners began documenting experiences and approaches for

application in these scenarios.

The primary aspect to a global software team is its decentralized nature and its

work across nationa l boundarie s [9]. These teams are distribut ed, rely on electroni c

communication, come from different organizations and cultures, and manage work

via computerized processes. Typical problems encountered are around the difficulty

of communications across great distance and offset time zones as well as a loss of

‘teamness’ and difficulty in coordination.

Numerous approaches to managing these problems have been discussed. Battin

and collea gues [1] present a set of iss ues in GSD includi ng distanc e, time zones ,

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 217
domain expertise, integration, government policies, and process. For each of these

issues, they present tactics to counteract. These tactics include using liaisons,

multiple communications channels, incremental integration, common tools, and

others. These techniques influenced our approach detailed in this section.

Recent articles on GSD have been popular and widespread. Special issues of

IEEE Software have sought to define the general success factors around global

development. These issues (March 2001 and September 2006) report on require-

ments, best practices, knowledge management, use of componentization, educa-

tional models, managing outsource relationships, and the effects of distribution on

teams lead to an established set of approaches to the challenges of GSD. A recurring

conference dedicated to GSD also produces useful and far-ranging treatments of

these key topics. ICGSE (International Conference on Global Software Engineering)

is easily found on the Internet. Its 2007 conference was to be held in Munich (see

http://www.inf.pucrs.br/icgse/).

The materials produced by these venues provide a strong base for discussing

specific GSD practices. What we propose to do in this section focuses on the core

challenges of selecting vendors and managing offshore projects and how to ensure

technical success with distributed teams. We begin with a set of recommendations

and then detail the approach which led to these recommendations. We cover staffing

implications of our model and introduce the concept of an interim deliverable in

order to control the quality of deliverables. Finally, we discuss those aspects of

GSD which pose special problems and which managers especially need to be

mindful of in order to succeed. This approach is largely reusable to any GSD

environment but is based on our experience in working with multiple vendors

onshore and in India.

4.1 Practice Introduced

As we have shown, global development of software is more the norm today than

ever before [26]. Fo r firm s devel oping or maintai ning softw are produc ts, the impact

and effects of global software development cannot be ignored. Our experiences in

leading web development efforts with global teams led us to a set of concrete

approaches which minimize risk and maximize effectiveness.1 Managing multiple

simultaneous projects and production support with a global composition of staff

over the last several years has yielded both successful approaches and problematic

traps to avoid. After providing a brief introduction on business drivers and supplier

selection, we discuss in detail our processes for managing offshore teams and
1 Based on [12]. © [2006] IEEE.

http://www.inf.pucrs.br/icgse/

218 J.J. CUSICK ET AL.
highli ght key enabl ers and appro aches that work [12]. We als o outline thos e aspects

of offshore development we have to live with. We believe that our findings can be

applied broadly by technical managers, project leaders, and project managers to help

ensure consistency, institute a common approach, and develop a best practice around

global collaboration.

This section offers the reader a practitioner’s view of our proven approach in an

offshore model. We present our model for offshore development and insights

into our management and engineering techniques which can be replicated in

other environments. This work adds to the existing literature by providing a struc-

tural framework and guidelines necessary to ensure ongoing quality of offshore

engagements.

4.2 Practice Background

The practical approaches described here have been developed and proven mostly

at Wolters Kluwer and previous employers. Wolters Kluwer is a Netherlands-based

international publisher and information services provider with operations around the

world. The experience documented here focuses on global development teams

managed from the New York-based Corporate Legal Services Division. The prac-

tices described are grounded on numerous projects performed primarily in the US

(onshore) and India (offshore). Much of our traditionally onshore work has migrated

offshore over the years through outsourcing deals made with multiple preferred

vendors. This move mimics the market at large where 90% of US executive boards

have discusse d globa l deliver y options [34].

Our offshore engagements today are in a mature state. We are in the fourth phase

of our outs ourcing agreem ent in the model descr ibed by Berry [4], which consi sts of

(1) Strategy Development, (2) Selection Process, (3) Relationship Building, and

(4) Sustained Management. This section focuses on the second, third, and fourth

stages including sustained management and provides a complete management and

engineering approach to working with our offshore collaborators. On the basis of our

experiences, we have also derived numerous recommendations which we list in

Table II.

The projects within our scope of experience have been as small as 1 or 2 devel-

opers and as large as 100 developers. All of these projects have been of the multitier

web-based Application Service Provider architecture chiefly written in Microsoft’s

C# and ASP. Cycle times for these projects varied from 3 to 9 months. The processes

used in developing these projects adhered to a CMMI (Capability Maturity Model

Integrated) Level 2 framework.

Table II

SUMMARY OF RECOMMENDATIONS

Issue Category Recommendation

Organizing for

offshoring

Set clear criteria for offshoring, analyze whether a project is an

offshore candidate or not.

Break large projects into medium-size bundles for offshoring.

Interim deliveries and reviews are key.

Limit durations to keep control, shorter phases are easier to track

and manage.

Document requirements and baseline them.

Formal document review and signoff should be required in order to

move into development.

Communications and

management

Both structured communication and unstructured communications

are required. Structured communications provide regular means for

status updates while unstructured communication encourages team

bonding.

Track all issues assiduously.

Higher communication overhead forces more management atten-

tion, more frequent communications with formal tracking required.

Distributed virtual teams require better planning; this drives both

documentation and communications rigor.

Onsite staff can be skittish when work moves offshore, must

communicate career paths.

Managing staff Maintain subset of teams leads release to release to build domain

expertise, continuity of offshore staff should be goal.

Retain domain expertise onshore and offshore, protect senior staff

and reward them.

Manage vendor experience level – rigorously vette candidates, take

only the well qualified.

Select leads carefully, leads can ensure success, take only ones with

lead-level experience.

Forecast resource needs early, lead time in getting appropriately

skilled staff is increasing.

Maintenance staff require application experience, rotate leads onto

support releases.

Infrastructure issues Infrastructure is a necessity to begin a project, work the network and

facilities issues early.

Develop core code infrastructure in advance, our model depends on

a core framework.

Mirrored computing environments require specification and

investment, start early.

(continued)

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 219

TABLE II (Continued)

Issue Category Recommendation

Managing

development

Require adherence to best practices and standards, this drives in

quality.

Prepared standard ramp-up guide and enforce.

Require interim deliverables, another key aspect to our model

ensuring quality deliveries.

Page development must achieve performance goals, this is a key

technical requirement.

Mange support through bundles of defects.

All defect repairs reviewed onsite.

Quality and data

privacy

Quality needs to be enforced through coding standards and

verification.

Protect data moving offshore through confidentiality agreements.

220 J.J. CUSICK ET AL.
4.3 Business Drivers

Outsourcing is a critical factor in our business strategy. By 2001, it was apparent

that the growing demands of the business community could not be met by the limited

pool of resources onsite.

While cost was an important factor, our primary driver for outsourcing was not

cost cutting or workforce reduction. The objective was to increase scalability by

enabling better utilization of scarce resources onsite. This model provided us better

return on investment while enabling us to support a larger number of projects.

Based on the business drivers defined, the outsourcing strategy was to retain

domain expertise onsite at all times. We embarked on a workforce restructuring

program where key roles of Program Management, Architecture, and Quality

Verification were retained onsite. Day-to-day labor-intensive jobs of construction,

test execution, etc. were mostly transferred offshore. The onsite developers were

envisioned to grow up the value chain into Technical Leads who were responsible

for end-to-end delivery of projects utilizing a team of offshore resources. A large

population of Technical Leads, Architects, and Management staff was retained

onsite to support an even larger population of developers offshore (Fig. 4).

The 2003 Restructuring Program announced by WK (Wolters Kluwer) was a

catalyst for transforming the offshore program. By that time, individual business

units already had limited offshore development programs on a selective basis. These

were managed by the individual business units on an ad-hoc basis. There was limited

process or supporting infrastructure to manage the process effectively.

WK IT Outsourcing Principles

Resource ImplicationsWK will maintain full control over IP of products

WK IT Outsourcing Principles were defined and agreed to by the North American CTOs at the start
of the CLS baseline project. These principles continue to guide the overall outsourcing program

Management of software projects is lead by US based
staff

Software architecture is driven by US based staff

Acceptance Test specification is the responsipility of US
staff

Verification of the configuration management process
will be US based

Standards around new product development should
adhere to WK practices where appropriate

Domain expertise must exist within WK for applications
that are under consideration for offshoring

Program and Project Management is a US
based responsibility.

Architects and Senior Designers are US
based staff positions

The function of translating business
requirements into technical specficatins will
transition offshore overtime

Coding, testing and low level design
resources are in play on an application by
application review

Management and support staff has to be right
sized over time based on the results of the
offshoring program

Domain expertise must remain/be built within
WK

All resources will be assessed on a case-by-case basis
for applications that are considered to be either in
legacy state or in pure maintenance mode

– Comprehensive control and ownership over all software
 produced
– Retain knowledge of design and implementation

WoltersKluwer

FIG. 4. WK outsourcing principles.

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 221
The offshoring program was announced to the analyst community by the CEO

(Chief Executive Officer) of WK with targeted cost savings in 2003. The direction

provided by the CEO provided the structure for all CTOs (Chief Technology

Officers) to work together and formulate a development strategy for individual

business units to meet the ROI (Return on Investment) targets.

In order to institutionalize the process across all business units, the WK Shared

Services Offshore development team was formed. The deliverable of the team was

to work with the CTOs of the business units and define the offshore development

process. Additionally, the team was required to develop a way to measure whether

the program was truly successful or not.

The program was launched by identifying the application offshore opportunities

across all units. This led to a comprehensive RFP (Request for Proposal) process in

partnership with all the CTOs in each business unit.

India was the obvious choice for offshore development owing to its standing in

the global marketplace as the optimal choice for offshore development and as

described above. This was helped by the following factors:

l Large number of established companies in the arena

l Experience level of Indian software engineers

222 J.J. CUSICK ET AL.
l Large software development population

l Infrastructure availability

l Government property laws

l Senior management familiarity with Indian processes and culture

l Fluency in English

l Workable time zone differential

4.4 The Supplier Selection Process

In order to gain maximum leverage, we engaged a third party firm to assist in the

definition and selection process.

Our framework for selection was based on two primary dimensions – quality and

price. Key stakeholders from individual business units provided weights for the

quality criteria used in the RFP. Some special information like ERP (Enterprise

Resource Planning) knowledge was also included.

The quality framework followed a 3-tier approach. The first tier comprised four

primary categories – Company Background, Delivery, Processes, and Personnel.

Each of these categories was further subdivided into subcategories and individual

metrics at the lowest level. Weights were assigned to different criteria, subcriteria,

and metrics based on detailed discussions with individual stakeholders. This

provided a weighted index of qualitative metrics provided by all stakeholders.

Some special information like ERP knowledge was also included. The evaluation

components for reviewing vendors consisted of the following breakdown of factors

including four main categories, 26 subcategories, and 150 individual metrics. The

first two levels are listed below (Fig. 5).

The process for evaluation based on this set of categories included generating

metric-level information based on supplier responses. Metrics examples include

revenue growth, CMM certification, number of business continuation sites, etc.

Next, comparisons of the metrics for each supplier were made using a weighted

value. These were rolled up to arrive at an overall quality score. Price evaluation was

based on the rates offered by the partners for the roles [Software Engineer, Technical

Lead, QA (Quality Assurance) Tester, etc.] which they needed to fill. These

included onsite, offsite, and offshore rates for each of the roles (Fig. 6).

The selection process comprised two phases. In the first phase, the RFP was

floated to a wide selection of software development firms in India. Metric-level

information was generated based on the responses provided by vendors. This was

matched against the predetermined weights provided by key stakeholders across

business units to generate scores for each subcriteria. These scores were then rolled

• Company background (19.25%)
– Customer reference (5.0%)
– Financial Information (4.5%)
– Engagement structure (2.5%)
– Geographical coverage (2.5%)
– Key personnel (1.75%)
– Quality assessment (1.5%)
– Industry coverage (1.0%)
– Type of company (0.5%)

• Delivery (39.75%)
– Performance metrics (12.0%)
– Subject matter expertise (9.0%)
– Business continuity (8.0%)
– Delivery model (3.0%)
– Pricing practices (3.0%)
– Relationship management (2.25%)
– Subcontracting (1.5%)
– Data backup (1.0%)

• Processes (18.00%)
– Planning and estimating (6.0%)
– Knowledge transfer (4.5%)
– Software development lifecycle (4.0%)
– Quality metrics (2.5%)
– Release management (1.0%)

• Personnel (23.00%)
– Capacity (11.0%)
– Turnover (4.5%)
– Training (4.0%)
– Recruiting (3.0%)
– Compensation practices (0.5%)

FIG. 5. Evaluation criteria.

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 223
up to generate the ‘Overall Quality Score’ of each supplier. The overall quality

scores were reviewed by all the key stakeholders along with the recommendations of

the team. On the basis of the findings, the stakeholders unanimously agreed on the

top six companies which would be considered for the second round of evaluation

(Fig. 7).

The second phase comprised detailed presentations by the vendors on topics of

interest evinced by the key stakeholders of individual business units. A three-day

marathon offsite meeting was organized where the second round participants made

presentations on the topics of interest along with supporting materials. At the end of

each presentation, the stakeholders provided their ratings of the vendor. At the end

of all sessions, the scores were tabulated. Three companies were chosen from the six

as the final partners to begin pricing negotiations (Fig. 8).

Offshore

Onsite US

Offsite US

Location

Roles

Engineer
Application architect
Business/system analyst
Technical lead
UI designer
Quality analyst
Production operations
Network engineer

Skills

Price evaluation components

Client server

Mainframe

Enterprise

Web

Database

QA

Architecture

Bus/sys analysis

Prod oper

FIG. 6. Pricing evaluation criteria.

Supplier selection summary framework

Vendors invited to round 1 and 2 based on evaluation along
two major dimensions – quality and price

Vendors eliminated after round 1

Vendors eliminated after
round 2

Final
vendors
selected

FavorableUnfavorable

Favorable

Unfavorable

Quality
score

Price
score

Actions

• Round 1: leadership team
agreement on selection of
vendors based on RFP quality
and price scores

• Round 2: selection based on
evaluation of presentations,
supporting material, initial
quality scores, and revised
pricing

FIG. 7. Scoring matrix.

224 J.J. CUSICK ET AL.

12

10 0,10
 Vendor 1

Favorable Legend: (price score, quality score)

Price-quality matrix

Round 1 vendor quality and price summary

Price savings score

Vendor 2
5.1, 8.9

5.7, 8.1
Vendor 15

Vendor 11

Vendor 7

10, 5.9

6.7, 4.7
5.9, 4.8

Vendor 11
3.9, 5.6

Vendor 12
0.8, 3.2

Vendor 8

Vendor 3

Vendor 16
4.2, 0

Vendor 6

Vendor 4
8.1, 3.9

7.8, 2.8

6.1, 3.7

8

6

Q
ua

lit
y

sc
or

e
4

2

0
0
Unfavorable

1. Estimated by doubling the 2003 six month revenue

Unfavorable

Favorable

2 4 6 8 10 12

Vendor
name

Vendor 11

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

No 13,000

324

42

5

388

60

100

118

240

500

1,200

1,100 13,266

29,990

9,205

3,000

1,730

1,615

1,795

9,160

795

105

48,000

7,776No

No

No

No

No

No

No

WoltersKluwer

FS

CLS,FS

Tax Acct.

CLS

Vendor 2

Vendor 3

Vendor 4

Vendor 5

Vendor 6

Vendor 7

Vendor 8

Vendor 9

Vendor 10

Vendor 11

Vendor 12

Vendor 13

Vendor 14

Vendor 15

Vendor 16

Total FTE
Est. 2003

Rev
USD MM(1)

Incumbency

No response

Dropped out

Dropped out

Dropped out

FIG. 8. Vendor quality and price summary sheet.

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 225
In order to avoid providing unlimited leverage to one partner, the plan was to

work with at least two partners on an ongoing basis. However, three partners were

selected as the finalists to allow for contingencies in case one of the partners dropped

off during the price negotiations.

We then entered into pricing negotiations with the three finalists. Each finalist

was provided a pricing percentage to adhere to for each role (Software Engineer,

Sr. Software Engineer, QA Analyst, QA Tester, etc.). During the negotiation,

volume was not tightly linked with pricing. This was an important criterion for

negotiating rates in order to avoid creating issues related to volume-based pricing at

a later stage of the relationship. Eventually, we formulated a Master Service

Agreement (MSA) and a Rate Card across WK with all the finalists.

Key Success Criteria

l Senior executive backing is a must

l Involve necessary stakeholders at all levels in the decision-making process

226 J.J. CUSICK ET AL.
l Send summarized information to executives

l Use mathematical model for comparisons

l Get all stakeholders together for final decision

l Gather scores immediately after presentation

Over time our offshore program has grown exponentially. Most of our customer

units are utilizing preferred vendors. The number of offshore suppliers for IT

initiatives has been optimized. All business units are leveraging the terms and

conditions agreed upon by the MSA. Our model now enables us to deliver large-

scale enterprise critical applications with a high degree of predictability. This model

continues to grow and evolve to meet the ever growing needs of the business.

4.5 Our Model for Cross-Shore Development

Our model for cross-shore development follows the ‘implementation’ model

sugges ted by Nisse n [40]. This model has the client retaining key require ments

and design functions and the vendor carrying out detailed implementation within a

defined framework supervised by onsite leads. Our model requires that an onsite

team lead is retained for each offshore initiative throughout the project life cycle. In

this model, the offshore team is treated as an extension of the development team and

not as a replacement.

There are some key success factors that underlie our model which we found early

on and include the following:

l Careful setup and planning

l Knowledge transfer/training

l Use of a proven Web Delivery Foundation (WDF)

l Established policies and procedures

l Focus on communication and checkpoints

We follow a modified waterfall approach where the Concept, Analysis, and

Design phases are primarily implemented onsite. Construction and Testing are

primarily offshore. The resource breakdown and responsibilities are documented

in Table III. This table indicates the staffing levels we typically deploy across the

life cycle along with the key deliverables and who is responsible for each.

During the concept phase, we ramp up both the onshore and offshore technical

leads and give them major tasks including high level requirements, architecture, and

technical approach. We bring the offshore lead onsite to participate in the concept,

analysi s, and design phase s as suggeste d in the literature [20, 41]. Any knowled ge

Table III

LIFE CYCLE MODEL

Phase Concept Analysis Design Construction QA

Location Onsite Onsite Mostly

onsite

Offshore Onsite and

offshore

Number of

resources

2–4 IT

resources

2–4 IT

resources

2–4 IT

resources

10–20 IT

resources

10–20 IT

resources

Key

deliverables

HLR

Estimates

Assumptions/

risks

New

infrastructure

Detailed

requirements

Class model

Data model

Interface

definitions

Sequence

diagrams

Code

Unit tests

Code review

Defect fixing

Actors Onsite and

offshore lead

Onsite and

offshore lead

Onsite and

offshore lead

Onsite and

offshore lead

with

development

team

Onsite and

offshore lead

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 227
transfer required is handled as a planned activity with clear deliverables. The onsite

and offshore lead jointly sign off on the estimates and resource planning. During the

construction phase, the offshore team takes primary responsibility for artifact

development (code and tests) and delivery in accordance with defined coding

standards and best practices.

The onsite team developed our core Web Delivery Framework (WDF) early on

comprising infrastructure code, coding standards, best practices, and value-added

tools. The WDF established the technical foundation to support offshore develop-

ment and is explained in more detail below.

As each project matures, we ramp up the remaining offshore team as we get into

the detailed design and construction phases. We also use an established set of

process procedures, a standard estimation model, and a resource planning sheet to

forecast staffing needs and plan specific responsibilities.

On average, our current onshore and offshore teams are distributed in the follow-

ing manner:

Onsite Team Corporate Legal Services (CLS) (40%)
l Business Stakeholder

l Project Manager

l Technical Manager

Offshore

Onsite

QAConstructionDesignAnalysisConcept

100%

Onsite lead (s)

Offshore lead (s)
developers

100%

90%
 10%

10%
 90%

20%
 80%

Product Mgr
onsite lead

offshore lead (s)
Onsite lead

offshore lead (s)

Tech lead
developers (HTML)

FIG. 9. Onsite and offshore balance.

228 J.J. CUSICK ET AL.
l Technical Project Lead

l Business Analyst

l QA Lead

Offshore Partner (60%)
l Technical Project Lead

l Development Team

l QA Lead

l QA Team

Figure 9 represents a breakup of tasks between onsite and offshore during a

project life cycle. The offshore participation in the project increases during the

later phases of the project. Onsite oversight and control by CLS is maintained at

all times.

4.6 Distributed Approach Details

Our model comprises management and engineering guidelines complementing

each other to provide a comprehensive offshore development and management

process. This process starts with a decision approach to determine which projects

can be offshored. The process then covers tools, communications, planning, and the

technical framework to support the offshoring. Research has shown that it is difficult

to achieve iterative and incremental development in distributed development [44].

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 229
To counteract these difficulties, the use of design and code reviews, communications

for fast iterations, a behavior pattern of ‘immediate escalation of issues,’ and frequent

deliveries can be used. Our model incorporates all of these proven methods in a

combined manner.

4.6.1 Key Management Guidelines

1. Is the project offshorable

Not all projects are well suited to an offshore model. Some key characteristics we

consider in making a determination on whether to utilize offshore development on a

project include s the followi ng [24]:

l Business Process

l Interaction Requirements

l Complexity

l Current Cost

l Control Requirements

l Risk of Failure

In particular, we have found that new development projects of medium size on

existing frameworks are most manageable in an offshore approach. We also consider

whether there are touch points with other applications that may or may not be

supported offshore. In our business, we interface with government agencies and

other external organizations and if there are significant touch points with these

external bodies our offshore strategy may vary. Unless the entire infrastructure

footprint can be replicated offshore, numerous issues may be discovered during

the integration phase which makes offshore development cost prohibitive.

2. Planning, Policies, and Procedures

Projects which are candidates for offshore development need to be planned as such

from inception. All deliverables required by both onshore and offshore teams are well

defined in our process documentation. Roles and responsibilities are also clearly

defined and specified in the SLA (Service Level Agreement). In addition, suppliers

are responsible for delivery of code as per our coding standards and guidelines.

All functional and technical artifacts are signed off and baselined prior to transi-

tioning the project offshore. The offshore lead then moves back to the offshore site

to conduct the knowledge transfer and to oversee the construction phase. The

detailed resource planning and tracking during the construction phase and the over-

seeing of the offshore team is the responsibility of the offshore lead.

230 J.J. CUSICK ET AL.
3. Communication

As has been noted by many others [9, 56], above all, both structured and

unstructured communications are vital to the work effort in a global setting. We

follow a set of key principles to keep communications effective:

l We maintain a direct line of communication between the onsite team and the

offshore lead retaining the closeness developed in the initial co-located phases

of the project.

l All issues are communicated via an issues tracking sheet keeping track of the

date of initiation, originator, assignee, description, classification, status, and

more. Most issues are resolved at the lead level. Critical issues are escalated to

the management governance body as defined at the outset of the project.

l Weekly team meetings with the offshore team are held to monitor progress and

discuss any open issues. These meetings also foster team spirit. The meetings

are conducted mainly by conference call and recently by video conference.

l Depending on the project structure, there may be an onsite lead from offshore

present throughout the project to answer any questions and address open issues.

4.7 A Micro Engineering Process

4.7.1 Infrastructure and Tools

Having the necessary infrastructure and tools to support a multicountry effort is

critica l as was pointed out b y Carmel [8]. We have found as well that advanc ed

planning and setup of supporting infrastructure and setting clear expectations of

deliverables is critical to the delivery of a successful relationship. Items we con-

centrated on included the following:

l Physical connectivity

l Machine configuration and setup requirements

l Configuration management standards and guidelines

l Defect tracking standards and guidelines

Since our customers and product lines require a high level of security and protec-

tion, we established a dedicated LAN at the partner site for all developers working on

WK projects. Over time, we also establishedWAN connectivity between NY and our

primary partner in India. We developed detailed specifications on the machine

configuration and software requirements for all developer machines. Templates

and images were created which were used to replicate the onsite development

environment offshore on a consistent and reproducible basis. This alleviated issues

of a ‘nonreproducible error’ and ensured a stable environment for all developers.

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 231
At the outset we decided that all teams work off a common source control

repository. The process and standards for configuration management were clearly

documented. Similar processes were followed to extend and document the defect

tracking repository to ensure its accessibility by all.

4.7.2 The Delivery Framework

Brand new infrastructure initiatives without an established foundation are gener-

ally not good candidates for offshore development. Since a large percentage of

offshore engineers are new graduates, giving them a free reign could result in

subquality code. Setting up a framework for offshore delivery to ensure consistent,

repeatable results is crucial for successful offshore development.

This led us to the creation of our WDF (Web Delivery Framework) which

encapsulated all the fundamental coding practices we wanted to insert in any project.

The WDF comprises four pillars:

l Application building blocks (ABBs)

l Supporting coding standards and code review guidelines

l Value-added tools

l Best practices

4.7.2.1 Application Building Blocks. Every software develop-

ment company requires a core set of application building blocks which form the

foundation layer for all development. A robust ABB is a necessity for the success of

offshore initiatives.

We developed the application building blocks to be used by all offshore developers

as a part of our first pilot initiative. This was done in parallel to the requirement

gathering phases such that it did not impact the project timeline. While building the

ABB, we had the option of adopting the Microsoft Application Building Blocks or

other open source code.However, our primary objective of the ABB was to provide a
limited set of ways in which the offshore developers could implement. Open source

foundational components by their very nature provide multiple interfaces which

allow developers the choice of approach to be adopted. In an offshore engagement,

this can quickly lead to unmanageable code. Learning from the best practices of

industry ABBs, we built the ‘sandbox layer’ of foundational components to be used

by the offshore team at all times.

Establishing the application building blocks provided us the following benefits:

l Code consistency: The infrastructure code establishes a ‘sand-box model’ of

application building blocks with supporting coding guidelines to provide con-

sistency within the development architecture. Such a sand-boxed approach

helps to improve consistency and reliability of the overall code base.

232 J.J. CUSICK ET AL.
l Approach consistency: Developers used a consistent approach to writing code,

always starting with the data access, layering the business objects on top of it,

and finally plugging in the web pages.

l Developer productivity: Systematic ramp-up of all developers around the infra-

structure layer plays a critical role in increasing developer productivity, thus

reducing development timelines.

l Safe code: Critical components such as connection handling and caching were

abstracted in the ABB and handled gracefully. Control over critical components

ensured that all server and database resources were not abused.

l Organizational standards: We developed well-defined policies around the

build, deployment, and management of runtime configurations across multiple

development, test, and production environments. The infrastructure layer,

serving as the sand-box, helps to enforce these policies and best practices.

l Clear guidelines and deliverables to team members.

l Consistent code quality in a cross-shore development model.

l Estimation model: The ‘sandbox layer’ and development approach provided a

consistent framework which was used as the basis of our estimation model.

4.7.2.2 Supporting Standards and Code Review
Guidelines. In addition to the ‘sandbox layer’ of ABB, we created extensive

coding standards, sample code, and ramp up documentation for the team. These

encompassed the following primary areas:

l Concepts and Quick Start Guide for ABBs

l Sample Code and Unit Testing mechanism for Data Access and Business Layer

l Naming conventions and standard programming best practices

l Allowable data types and data model standards

l Query writing and optimization guidelines

l Component Inventory and Code Review corresponding to the coding standards

4.7.2.3 Value-Added Tools. While the infrastructure code base and

guidelines provide a foundation architecture, a set of supporting value-added tools

and best practices ensure and validate application health on an ongoing basis. Key

health indicators like performance monitoring and error tracking need to be baked

into the overall delivery to ensure the quality and maintainability of the application.

We developed value-added tools to capture key metrics like page execution time

starting from the development phase. The tools enabled developers to examine

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 233
components comprising Page Execution time (Data Access, Business Object Load,

and Save) to tune slow-performing pages early. Corresponding best practices were

initiated to ensure all pages correspond to agreed-upon performance criteria prior to

entering development shakeout.

Similar tools were developed to monitor other key criteria like Viewstate size,

SQL execution time, and exception reports.

These tools enabled the onsite leads to keep an eye on key criteria and maintain
code quality and performance while working with large offshore teams.

4.7.2.4 Best Practices. The ABBs, coding standards, and value-added

tools together provided the necessary structure and tools in our arsenal which

enabled us to define best practices required to identify issues well ahead of time

during the development cycle and monitor the health of sites on an ongoing basis.

Below is a sample of reports created under our best practices (Fig. 10).

4.7.3 Interim Functional Delivery

To enable clear segregation of work between onsite and offshore, our model is

based on functional separation of tasks between the two teams. While this provided

clear separation of tasks and responsibilities, we faced numerous challenges when
Report name Report description Responsibility
Frequency - new

projects

Frequency -
production

support

1
Error
categorization
report

Unique errors
categorized by error
description, no. of
occurrences, defect
number

Offshore lead

Daily starting from
development
shakeout through 2
weeks post
production. Sign off
required as entry
criteria to QA

Weekly

2
Performance
viewer report

Page execution time
of 10 worst
performing pages
with exec time > 1 s

Offshore lead

Daily starting from
development
shakeout. Sign off
from required as
entry criteria to QA

Weekly

3
SQL execution
time report

SQL execution time
of all SQL's for
identified customer
accounts with large
amount of data

Onsite lead

Deployment
verification step while
moving from one
environment to
another. Sign off
required as entry
criteria to each new
environment

Weekly

FIG. 10. Sample management report.

234 J.J. CUSICK ET AL.
attempting to integrate the code and then test end-to-end integration scenarios.

Additionally, since the functionalities delivered back from offshore were delivered

close to code freeze, it provided very little time to recover from integration issues.

Teams attempted to address issues identified late in the project in panic mode,

leading to patchy code.

To address these issues, a key milestone introduced during the construction phase

is the Interim Functional Delivery (IFD). This represents a form of incremental

development into the process. We learned to require that all main scenarios within

the Use Cases are delivered in a functionally complete stage to the onsite team mid-

way through the project. This enforces a practice of work allocation where all

capabilities are functionally complete mid-way through the project as opposed to a

subset of functionalities being fully complete while others have not even been

started. This milestone is called the IFD and enforces incremental practice. Hence,

if the project has an 8-week construction cycle, the IFD is received at the end of

4 weeks.

The IFD can be used in any environment irrespective of offshore or onsite.

However, this is especially useful in an offshore delivery mode to ensure sufficient

time for integration testing and review of code by the CLS onsite Technical Lead.

Figures 11 and 12 provide a pictorial comparison of a normal delivery cycle

versus an IFD. As indicated in Table II, the IFD provides multiple benefits:

l The offshore teammust ramp up faster since there is an onsite delivery mid-way

into the project.

l The onsite lead starts reviewing code mid-way through the project providing

sufficient time for corrections.

l Sufficient time is provided for end-to-end integration testing onsite.

l We have time to overcome the environmental and configuration challenges

encountered while trying to deploy the new code onsite for the first time.

l Last but not the least, corrections can be done in a methodical manner as

opposed to the panic-mode correction of last minutes issues.

4.8 Production Support

The production support or maintenance work which we have offshored follows a

docum ented procedure as recommend ed by the literature [32]. Th e chie f dif ference

between new projects and production support arrangements is that knowledge

transfer is done once upfront to transition the project offshore and thereafter no

iteration takes place on moving the offshore lead to and from the onsite location.

Apart from emergencies, PS is handled as bundled releases which follow a cyclic

nature. Following is the procedure we follow for PS bundles:

In
te

ri
m

 F
n

 d
el

iv
er

y

Q
AD

ev
 s

h
ak

eo
u

t

In
te

rn
al

 c
o

d
e

fr
ee

ze

1 2 3 4 6 7 85Week

C
o

d
e

co
m

p
le

ti
o

n

Team ramps
up faster

• Onsite delivery due mid-way through project
• More time for onsite lead to review code
• Performance issues can be identified
• Team gets time to correct issues
• Integration issues identified early

• Most issue resolved
• Execute test cases in Dev

FIG. 12. An interim functional delivery model for code completion.

Q
AD

ev
 s

h
ak

eo
u

t

In
te

rn
al

 c
o

d
e

fr
ee

ze

1 2 3 4 5 6 7 8Week

C
o

d
e

C
o

m
p

le
ti

o
n

Team ramps up
slowly

• Team ramps up slowly
• Onsite delivery due in advanced stage of project
• Overtime late in the project
• Less time for code review
• Panic mode corrections
• Project Integration issues

FIG. 11. A standard delivery model for code completion.

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 235

236 J.J. CUSICK ET AL.
l The list of defects to be included in the bundle is reviewed and signed off by a

business representative.

l Estimates for the bundle are completed jointly by onsite and offshore PS team.

l Analysis and design artifacts are updated by onsite and offshore PS team and

signed off.

l Defects fixes are sent for construction offshore.

l Once offshore has finished construction and unit testing of the bundle, it is sent

to the onsite PS lead for review and verification.

Key criteria for managing PS (Production Support) include the following:

l Since the PS team is typically smaller and less buffered than a project team,

only experienced offshore members who have worked on a project are typically

placed on the PS team. The team is continued through the year.

l An onsite PS lead is maintained at all times to review the code delivered from

offshore which must adhere to coding standards.

l The list of defects/enhancements entering into bundled releases is closely

monitored and reviewed by the onsite lead and technical stakeholders to ensure

that big ticket items are not allowed into the PS track.

Once the new project execution process had been defined and stabilized, we initiated

the process of transitioning the day-to-day maintenance of projects to the offshore

team. The primary driver for transitioning Production Support to offshore was to free

up valuable onsite development resources to focus on new project development.

We engaged our development partner to set up an Offshore Development Center

(ODC) for ongoing Production Support activities. The profile of services included in

the scope of the offshore development center included the following:

l Production Support

l Minor Application Enhancements

l Re-engineering and Maintenance Projects

Similar to new project development, the overall strategy was to maintain over-
sight of key Production Support tracks by employees managing large offshore teams.

4.8.1 Engagement Model

The engagement model for the ODC is composed of the following elements:

l A governance model that enables effective teaming of offshore resources with

employees to provide high quality services.

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 237
l Key Result Areas: Cost Reduction; Capacity Ramp Up/Down; Free up employ-

ees for strategic initiatives.

l An organization structure of the ODC aligned with the internal organization

structure of WK ensuring that every WK manager who gets services from the

ODC has a partner counterpart from the ODC.

l Effective focused forums and mechanisms to provide the ODC with strategic

direction, tactical management, and operational excellence.

l Clearly defined roles, responsibilities, and reporting and escalation procedures.

The processes and methodologies to be followed by the ODC were derived based

on the Web Development Framework practices and best practices of partner. The

processes covered the following:

l Knowledge and service transition processes to the ODC

l Service delivery processes

l Infrastructure requirements

l Software metrics for each service

l Business continuity and DR plans

l IT security policies

l IPR protection policies

l People development processes

4.8.2 Governance Model

The governance model for the ODC defines the key stakeholders and their roles

and responsibilities. Key points in our governance model are as follows:

l Steering Committee (STC) comprising the CTO of the business unit and the

partner Business Relationship Manager and WK Relationship Manager.

Monthly scheduled meetings between the steering committee members to

discuss key issues.

l Program Management Committee (PMC) responsible for monitoring the

progress of all activities in the ODC.

l Application Leads comprising of the onsite employee and corresponding

partner counterpart.

The organization structure also clearly segregates the responsibilities of the ODC

across the strategic, tactical, and operational level ensuring a clear delineation of

accountability within the ODC.

Table IV

STC AND PMC RESPONSIBILITIES

No. Forum Responsibilities

1 Steering Committee l Provide strategic direction to the ODC
l Approve scope, budget, resources, and

schedule

2 Program Management

Committee

l Identify and control necessary financial and

personnel resources, information, etc. and to

provide sufficient infrastructure and facilities

to ensure unhindered progress
l Identify and evaluate changes to the scope and

content of work during the project which may

impact the original budget and/or schedule
l Approval of change management requests
l Monitor the fulfillment of contractual terms
l Compare project status against plan and iden-

tify corrective action to maintain progress

toward meeting the objectives
l Review significant pending and unresolved

project-related issues and provide decisions or

take suitable actions leading to resolutions
l Ensure that all elements of the deliverables

meet the specified quality objectives and goals
l Approval of all the project deliverables

238 J.J. CUSICK ET AL.
Each area (strategic, tactical, and operational) of the ODC organization has its

own key result and key performance areas under which they are measured and these

results and performance areas are aligned with the strategic vision of the ODC,

ensuring an alignment of ODC organization with the vision for the ODC. The

partner is responsible for measuring and tracking the performance of the ODC

using a balanced scorecard approach.

Table IV summarizes the responsibilities of the STC and the PMC.

4.8.3 Infrastructure and Setup

Infrastructure and setup requirements for the ODC were defined and implemented

with our offshore partner. These included the following:

l Sufficient VOIP (Voice over IP) lines for day-to-day communication.

l A dedicated link between our office and the offshore partner to provide secure

access to intranet applications.

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 239
l Data provisioning strategy.

l Offshore staging setup for all production applications with remote connectivity to

onsite leads. This was required for onsite leads to be able to test builds provided

by offshore in their staging area prior to accepting onsite. In case of deployment

issues such as application working in offshore staging while not working onsite,

the onsite lead had the capability to remote into the offshore staging machine to

validate configuration. This eliminated the necessity to wait for the offshore

resource while it was night in India to troubleshoot deployment issues.

4.8.4 Knowledge Transition Process

The following diagram explains the knowledge transition process for mainte-

nance (Fig. 13):

The various activities during the knowledge transition include the following:

l Identification of the provisioning of interfaces in the offshore development and

staging environments.
Roles

Activities • Execute pilots
 (production support,
 enhancements)
• Finalize SLAs

• Train of-shore staff

Phases

Understand Pilot Transition

Deliverables

Time line

Ownership

• CLS business analyst
• CLS business user
• CLS system analyst
• Off-shore core
 team
• Understand & document

• Business
 architecture
• Technical
 architecture
• Processes
• Tools
• Maintenance
 history

• Induction manual
• Off-shore support
 processes

• CLS system analyst
• Off-shore core team

• Know-how
• SLAs

• Off-shore core team
• Off-shore developers

• Off-shore set-up

• Test support processes
• Start services

• Services performed of-shore

On-site On-site Off-shore

50% 20% 30%

FIG. 13. Knowledge transition in practice.

240 J.J. CUSICK ET AL.
l Identification of the scope of development and testing in view of the interfaces

available at the offshore environments.

l Offshore data provisioning strategy.

4.8.5 Operational Process for Maintenance

and Support

Maintenance and production support for mission-critical applications need perfect

co-ordination between CLS and offshore teams, high levels of proactive monitoring,

stringent service level adherence, quick reaction times, and well-defined processes.

The following diagram explains the overall context for the production support and

maintenance of mission-critical applications (where CLS stands for Corporate Legal

Services Division of Wolters Kluwer) (Fig. 14):

The Business Operations team works closely with the Call Center and provides

Level 1 support for customer calls. It is composed of domain experts in the
Maintenance team

P
ro

bl
em

 ti
ck

et
s

P
ro

bl
em

 a
ck

no
w

le
dg

em
en

t

P
ro

bl
em

 r
es

ol
ut

io
n

P
ro

bl
em

 fi
x

T
ic

ke
t c

lo
su

re

CLS business operations

CLS first level support
(call centre)

CLS system
operations

S
ys

te
m

 o
ut

ag
e

is
su

es

P
ro

bl
em

 a
ck

no
w

le
dg

em
en

t

P
ro

bl
em

 fi
x

Is
su

e
cl

os
ur

e

Corrective
maintenance

Pro-active
monitoring

Preventive
maintenance

FIG. 14. Production support context.

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 241
individual applications. Approximately 80% of the issues can be addressed by this

team without escalation to the next level. Issues which cannot be addressed by this

team are prioritized and escalated to the System Operations team. This is composed

of development resources from CLS and the partner organization. They work closely

with the offshore development team to resolve the issues. The Systems Operations

team is also responsible for proactive systems monitoring (performance, error logs,

etc.) and performing corrective and preventive maintenance as required.

4.9 Knowledge Management

As more and more projects transition offshore, knowledge transition and man-

agement both onsite and offshore becomes a challenge. Domain expertise of onsite

resources decreases over time as more and more work transitions to offshore. Higher

churn of resources offshore creates challenges of domain knowledge continuity.

To address these issues, we follow the following approaches:

l Choose the critical projects where domain knowledge retention is mandatory:
With an increasing number of projects which need to be managed, IT needs to

make a consumption choice between which projects can be completely out-

sourced versus which ones can only be offshored. In order to retain domain

knowledge across key product lines, we consciously chose to focus our

resources on the key projects. Other projects have been completely outsourced,

typically on a fixed cost basis, and are monitored at a distance only.

l Retain Offshore Engineering Manager across all projects: An offshore Engi-

neering Manager should be retained across all projects. The engineering man-

ager is responsible for ensuring key best practices are followed across all

projects. Over time, the engineeringmanager becomes an extension of the onsite

development team and is a key participant in ensuring quality across all projects.

l Retain at least one dedicated onsite lead for a project through project lifetime:
The onsite lead works closely with the partner lead while the project is in the

concept/analysis/design phase. During the construction phase, the onsite lead

retains a close eye on the project, at times also contributing to critical function-

ality. This ensures that the domain knowledge onsite is not compromised.

l Keep a close eye on Production Support: High volumes of enhancements/fixes

moving through the Production Support pipeline creates the distinct possibility

of degradation in code quality. Onsite leads should maintain oversight on

Production Support at all times. Best practice guidelines should be followed

to ensure errors and performance issues are proactively addressed. Automated

code coverage reports and unit testing should be used where possible.

242 J.J. CUSICK ET AL.
4.10 Critical Loose Ends

In addition to these fundamental process steps, there are several key points that

must be kept in mind when deploying such an approach. These issues are discussed

below:

l Retain local domain experts: With a larger number of offshore initiatives,

dependence on the offshore team increases over time. However, the control

and supervision of internal technical leads and domain knowledge should not be

compromised.

l Manage vendor experience levels: Expect entry level talent to require some

grooming. The principal offshore vendors are growing so fast that their experi-

enced talent moves up or out quickly. Thus, they put a lot of junior people who

need extra guidance to work effectively on projects.

l Select the leads carefully: The vendor leads for both onshore and offshore roles
are critical to the success of the project. As the rank and file tends to be very

junior, it is the leads who ensure delivery. They must have strong communica-

tion to interface with the onshore team. We look for a minimum of 5 years

experience with at least 2 years in a lead capacity.

l Forecast resource needs early: Finally, it is more and more difficult to get good

onsite staff from our vendors on short notice. Competing projects, resource

shortages, and visa availability all need to be planned for in advance in order to

get staff when required.

4.11 Things You Have to Live With

Through our work with offshore teams, we have also gained some key insights

which we have learned need to be accepted and managed. These are things which

are part and parcel of any offshore initiative which we do our best to accommodate.

The list includes the following:

1. Higher documentation overhead: Projects for offshore implementation neces-

sarily have higher documentation overhead. Detailed documentation needs to

be produced to ensure clarity. All documents have to be signed-off prior to

transitioning offshore.

2. Locality: You can no longer walk into a developer’s cube to get status or make

a request. You often need to wait for a full day to go by before you can get

status. This means you have to plan ahead further and anticipate problems

better. This leads to the issue tracking sheet which becomes an important tool

in dealing with this reality.

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 243
3. Higher management overhead: Close management oversight is critical to the

success of offshore initiatives. Lack of clear assignments or monitoring leads

to gaps in delivery. Detailed planning, weekly checkpoints, team meetings,

regular review of issues, and status reports are a necessity.

4. Environments: In our environment it has been difficult to set up a replica of

some legacy or ERP infrastructure offshore. Projects which have only partial

environments replicated offshore have had significant integration issues once

the code was bought back onsite. Teams must evaluate their environments for

portability and may need to execute tactical projects to convert code bases

before offshoring.

5. Quality: We have learned through experience that quality levels are driven by

the client – you get what you ask for. This has made us more careful in

specifying our needs. This must be reiterated on every release to ensure

compliance. We recommend specifying coding standards in detail and enfor-

cing them. Also, technical measures like transaction throughput can be agreed

to and monitored for achievement.

6. Culture differences: Cultural differences do play a role in running software

projects between diverse locations. In our case, differences between American

and Indian approaches often became apparent. We found that Indian engineers

would infrequently push back or report problems. Further, if left to their own

directions, they would rarely, if ever, take initiative and offer up creative

solu tions. These finding s mirror thos e of Hof stede [28, 29] who characterize d

Americans as leading and Indians lagging in his individuality index. To

manage these differences, we probed carefully on status and progress in status

calls and maintained peer-to-peer dialogues with our on-staff engineers to

work around hierarchies.

7. Staff impacts: In our model, there are new opportunities for people with excel-

lent communication skills, good architecture ability, leadership, responsibility,

and a keen sense of how to leverage partner teams onsite or offshore. Junior

developers and senior software engineers need to actively develop the soft skills

which are becoming increasingly crucial to their success. Managers need to

communicate to staff regarding future opportunities to keep people engaged. In

our experience, the job impacts have beenneutral up to now aswe always planned

on using our offshore partners to expand capacity not decrease local staff.

8. Customer data privacy: Offshore development necessitates that we periodi-

cally transfer data offshore. Customers sometimes express concern over the

security of data being transmitted offshore. All offshore vendors and employ-

ees working on the team are required to sign a confidentiality agreement with

WK. Additionally, any private data is masked with a set of prepackaged scripts

prior to sending offshore. This ensures the confidentiality of customer data.

244 J.J. CUSICK ET AL.
4.12 Risks

Conducting offshore development brings with it some risks. The first risk is that

of reduced produc tivity due to distribut ed team loca tions. Teasley [50] reporte d that

in collocated teams, productivity is much higher as is job satisfaction. Further,

Karol ak [30] descr ibed common risks for Global So ftware Developme nt project s

to include decreased morale, loss of face-to-face interaction, and a lack of trust

between teams. In our experience, we have been largely able to avoid these risks

through collocating team leads with the onshore teams and circulating them to the

offshore location periodically to provide a human bridge. From a sustained manage-

ment perspective, it has proven much more difficult to communicate changes and

get clear understanding of significantly modified approach and requirements with

offshore teams as compared to co-located teams.

Over time, we also face the risk of domain knowledge and expertise diminishing

onsite as most of the construction is done offshore. We mitigate this by ensuring that

an onsite representative is involved in all key projects and work hands-on in defect

fixing as necessary.

4.13 Collaborating with Vendors

Our offshore partners bring a variety of strengths to each project. First, they are

eager for the business and the staff is willing to work long hours. In most cases, they

bring adequate skills to the project. They routinely get the job done to match

specifications. We count on them and they are very reliable.

On the flip side, we have found some drawbacks in working with our vendors.

They normally work only on specific tasks as directed and can show limited

creativity when faced with problems. This tendency forces more documentation

on us than if the work were done onsite. Finally, infrastructure can pose problems

and requires detailed planning for data sharing, intranet access, etc., which are all

primarily logistical issues but can slow down projects on a tight schedule if not

adequately planned for in advance.

4.14 Results

Over the last several years, we have made dozens of releases using our offshore

model on three major platforms. While we do not have shareable metrics on the

release performance, empirical evidence shows that these releases have all been

delivered at or near their estimated release dates with schedule variance of less than

5%. Additionally, the defect count of the releases have been similar to what we

encountered with onsite initiatives. Business and customer satisfaction for these

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 245
releases have been high as we have been able to deliver more releases in a shorter

time than we could have with onsite personnel only. These results offer proof that

our offshore model has proven to be successful. As a testament to the success of the

model, the model has been extended to other WK subsidiaries in the last two years.

4.15 Future Direction in the Program

Over time our offshore program has grown and matured. Starting from initial

ad hoc project implementations, we are moving toward co-coordinated offshoring

across all business units. Best practices and success stories within individual units

are exchanged with others.

We have also initiated an audit with our partners to explore performance of

sample projects across business units. This will be used to improve the processes

being followed and continue growing up the value chain.

We began the Testing Center of Excellence (TCOE) and Offshore Development

Center (ODC) in 2003. Over time these have evolved and now form the basic

structure to enable co-ordination of processes and best practices across all business

units. On the basis of successes in the past, we see our offshore program as

continuing to grow and expand as we continue to explore ways to improve efficiency

and provide better monitoring.

4.16 Practice Model Concluded

Our model allows for a truly globalized team. Today companies like ours find

talent all over the world. The technical and intellectual infrastructure required to

compete is relatively low cost and is transportable. ‘Everything that can move down
a wire is up for grabs’ [5].
In the onsite world, we are moving to a model that has a light developer core and a

heavy project lead and architecture layer with development done offshore. The

onsite staff needs to think at a system engineering level and offshoring allows

engineers to focus on end-to-end problems if they are prepared to make that leap.

The offshore team will need strong management as well and improved architec-

tural skills to design for completeness, modularity, and clarity. In this model

standardization and communication of procedures is key, especially for consistency

in requests and follow-up. Finally, awareness of cultural issues and clear expecta-

tions are paramount for all sides. In this way, offshore collaboration models such as

ours can be even more successful in the future.

246 J.J. CUSICK ET AL.
5. A Virtual Roundtable on Outsourcing

5.1 The Roundtable Mechanics

In order to highlight some of the issues discussed above, a survey was conducted on

key aspects in outsourcing. The survey participants ranged from managers to execu-

tives in large US multinationals including Telecom Services, Telecom Equipment, an

India-based services contractor, and an independent consultant. There were a total of 6

respondents out of 12 requested questionnaires. The surveys were responded to via

e-mail. The survey was carried out in 2004 and first reported at a seminar conducted at

Columbia University [11] but has never appeared in print until now.

The participants in this virtual roundtable were selected based on their broad

industry experience and their direct work with offshore and outsourced environ-

ments. There answers to the survey questions are both revealing and to the point. It is

hoped that their comments will put some additional context on this discussion of

sourcing and GSD. The questions on the survey were as follows:

1. How has outsourcing affected your business?

2. What are the key criteria for a successful outsourcing deal?

3. What is the most successful blend of outsourcing (percentage or type of

resources)?

4. What are the key business practices for managing an outsource deal?

5. What are the key engineering practices for running an outsource deal?

6. What types of process controls must be in place to manage outsourcing?

7. How is product quality affected by outsourcing?

8. How do you see the future of outsourcing, will it accelerate, change?

9. What is the net for US companies, overall beneficial?

10. What is the prospect for US IT professionals, how will careers be affected?

5.2 The Roundtable Responses

The verbatim responses are reproduced below.

1. How has outsourcing affected your business?
l Allowed us to reduce costs from our internal operations; provided more

process and measurement control of our systems initiatives.

l Has also complicated getting new work done by having multiple suppliers

to deal with when implementing new initiatives. Led to our needing to

establish strong governance processes and controls over our suppliers.

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 247
l Very positively. While the cost structure continues to be a bonus, clients

are also increasingly looking to outsource for reasons of specific skills

and competence.

l Outsourcing has been challenging because the original structure of the

contract had many areas that were not well defined in regard to roles,

responsibilities, and deliverables. This led to much confusion between IT

and the vendor and often created disputes on how work was to be

performed and which organization was responsible for it. This situation

has improved over a period of time but required much work by both

parties to get it on the right path.

2. What are the key criteria for a successful outsourcing deal?
l Picking a good partner to do business with. It isn’t all just about cost. As the

relationship continues over several years, the partnership aspect becomes

key to resolving issues as well as to any changing business conditions.

l It depends on fromwhoseperspective you are asking the question. For client,

cost, year-on-year productivity gains, flexibility in the contract structure,

successful transition, riskminimization, trust, capability, infrastructure qual-

ity, etc. are some of the key factors. For the vendor, however, client lock-in

and more business with a multiyear contract is a key consideration.

l A good contract or statement of work that clearly defines responsibilities,

deliverables, and pricing.

l Must actively manage, and:

l Must ask specifically what you want back.

l Engineers will have to be better trained in writing and communicating.

3. What is the most successful blend of outsourcing (percentage or type of
resources)?

l If you mean onshore/offshore, it probably is good to have a 70/30 blend.

l It depends on a company’s business strategy, although a client would do well

to keep a core IT organization for planning, architecting, coordination, and

vendormanagement, aswell as outsourcing in away that risks are distributed.

l Typically, application outsourcing, infrastructure outsourcing, and busi-

ness process outsourcing are best candidates for outsourcing, although for

BPO successful transition management is the key.

l My perception is it should be ‘all’ or ‘nothing.’. Operations should be

outsourced or remain in-house but not split between IT and the vendor.

A PMO organization should be established to oversee all vendor activities

and staffed to provide sufficient quality control of vendor activities or in-

house provided operations support.

248 J.J. CUSICK ET AL.
4. What are the key business practices for managing an outsource deal?
l Strong governance model that specifies how the contract will be gov-

erned. Strong SLAs that are defined and managed on-going and used to

make corrections.

l For a client, good RFP process, negotiation for flexibility in the contract,

year-on-year productivity gains, tight SLAs, maintaining the control, a

strong oversight process, asking for business innovation, competitive cost

structures, IP protection, etc. are some of the key practices.

l For a vendor, however, multiyear contract negotiation, good pricing,

learning extraction, gaining domain expertise, productivity gain and

optimal resource deployment, and cost management are some of the key

considerations.

l A PMO that lives with and understands the contract. This organization is

responsible for quality and PM deliverables in addition to overseeing the

vendor to ensure they deliver against the terms and conditions specified in

the contract and/or statement of work.

l Need to focus on legal requirements, SLAs, performance metrics more so

than in the past. Pilot projects should be considered when ramping up.

Communication is key. Indian firms, often CMM Level 5, can learn from

them, may require more sophistication from US firm. Need good entry/

exit criteria.

l (For Global Development work) Crisp identification of responsibility for

each subteam; constant communication.

5. What are the key engineering practices for running an outsource deal?
l Strong control over architecture and where you are heading. You should

direct suppliers. If you have multiple suppliers, you need to ensure they

are all working together.

l Good upfront analysis of new work and impacts that it has on the systems.

We have a group call Solution Consultants that provide the first look at

work to be done.

l Good quality processes, reuse, and project management.

l Discovery! IT needs to understand what makes up the IT environment,

including ‘shadow’ functions that may need to be included in the deal,

before considering outsourcing as an option.

l Outsourcing companies are flexible, they will always say yes when asked

to do something, not going to push back, especially in India social

structure plays a role, less of a desire to report bad news.

l Lack of face-to-face communications can limit effectiveness (onsite rep

can help).

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 249
6. What types of process controls must be in place to manage outsourcing?
l Strong governance with scheduled meetings to view issues. Stung review

of SLAs and any corrective actions. Cross-vendor project management

and release control is essential. We have a group that provides overall

project management of cross-vendor activities and we also have a change

control board that reviews any scheduled work going into production.

l Service level agreement (SLA) based and quality of deliverables based,

aligned to each delivery.

l Financial, project, and quality controls must be in place to manage out-

sourcing. This includes mutually agreed upon metrics that are well

defined and delivered at scheduled intervals to IT for review.

7. How is product quality affected by outsourcing?
l I would stay initially it was worse’ than over 2 years improved. However,

we have still had some problems especially after the outsourcer has

reduced staff. We have better mechanisms for tracking though than we

did when it was internal.

l The effect can be both positive and negative – depends on what kind of

product, at what stage outsourced, the quality of the product before out-

sourcing, the outsourcing organizational model, the capability of the

organization, complexity of the product, etc. Majority of instances I

have seen have had positive impact on product quality.

l Quality is possible if IT expectations are well defined up front. When

expectations are not well defined, quality is jeopardized and often exploited.

8. How do you see the future of outsourcing, will it accelerate, change?
l I believe that as companies seek to reduce costs and also devote more time

to their core business, it will increase. I believe there will be increases in

the business transformation outsourcing area, more than just in the IT

area. Companies will look for the vendor to do more than just run things

as they were; they are looking for improvements.

l Of course, the trend is an irreversible one and will certainly accelerate,

although the offshore geographies might change. The growth can be

easily explained by transactions cost theory (in economics).

l I think outsourcing will accelerate; many companies cannot afford to

retain the required resources with current skills to do the work themselves.

l Supply and demand will apply, trend will accelerate for now, will go too

far, outsourcing wrong projects or against best practices, smaller projects

may stay onshore. Will end up with the right mix of onshore and offshore

projects.

l Need to protect your core competencies to run your business.

250 J.J. CUSICK ET AL.
9. What is the net for US companies, overall beneficial?
l Yes – since it will reduce cost and provide more work to US companies

(e.g., IBM, CSC, EDS). It also allows companies to focus more on their

core competence and not worry about staffing areas that are not a core

competence.

l Yes, and there are studies confirming this. Notable studies are theMcKinsey

studies and a paper in recent issue of Sloan Management Review. But,
certainly, it is a debatable topic.

l It can be beneficial if expectations are set upfront, the contract is clearly

defined, and both parties understand their roles within the specified

parameters. The ‘loyalty’ factor is a concern with outsourcing as a

salaried company employee stays with a problem after hours with no

discussion about pay. A vendor will bring additional expense under this

circumstance or perhaps have less interest in resolving the problem in a

timely manner if service agreements are lacking. There are many pros/

cons in this area and it really comes down to how well the ‘deal’ is

structured and the cost.

l Small, medium, large companies will adopt different strategies (onsite,

low pay; outsource; global development, big problems).

10. What is the prospect for US IT professionals, how will careers be affected?
l I believe the prospect for certain skill sets will diminish but there will be a

need for other IT skill sets. For example, coding and testing will become

more of a commodity skill set that can be done anywhere – offshore. I

believe project management, business analysis, and IT vendor manage-

ment will become more predominant skill sets in the US over time. There

will a need to manage onshore or offshore outsourcing and project

manage work across multiple suppliers.

l How were US professionals’ careers affected when significant US

manufacturing was outsourced to China? Like manufacturing, IT is also

increasingly becoming a commodity (see Nick Carr’s 2003 controversial

article in Harvard Business Review). For a professional, the key is to

manage his professional value in the market and ensure that there will be

demand for his skills and that those skills are not in abundance.

l Some will move from the company they have been with and perhaps be

absorbed or hired by the vendor. Some may have opportunities to join

other vendors that provide services as this becomes more of a standard

practice. Outsourcing to foreign-based entities may reduce the available

domestic IT job base and potentially drive some to consider alternate

career opportunities.

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 251
l Education is failing US industry, skills are below that of other countries,

current outsourcing relies on architects to give specs to programmers,

how will these architects be trained in the future?

l The search for talent is a global one. To succeed, individuals need breath

(for flexibility) and depth (for unique value).

5.3 Roundtable Discussed

The expert roundtable discussion above underlines several of the points made

throughout this chapter. Outsourcing brings lower cost but also greater complexity of

operations. It can be challenging but rewarding for the company pursuing it. Running

outsourced agreements requires strong governance and management by specific

measures. From a technical point of view, one should retain strong architectural

control and expect some initial drop in quality. Finally, this trend is seen as accel-

erating and it will have some impact on jobs in the countries that are offshoring work.

Such observations are valuable in validating the research discussed as well as the

GSD practice detailed above. To be successful with offshore outsourcing requires

strong management and organization as well as appropriate technical capabilities.

6. Future Directions in Offshoring

Now that we have taken a broad look at sourcing and GSD as well as a deep dive

into current offshore management practices, a look into the future is warranted. It

should be emphasized that the practices described in this chapter are optimized for

the current GSD environment. As the future unfolds, these practices will have to

change to take into account the evolving GSD environment. There are some key

topics related to GSD which bear discussion.

6.1 Political Factors Affecting Offshoring

The evolution of international political relationships will introduce risks and

advantages that will influence the evolution of offshoring. The current international

political climate is not all that stable, but all offshoring strategies demand stability.

6.1.1 Political Stability at the National Level

Change at an international level can occur with blinding speed. In January of

1978, the relationship between Iran and the US supported 4 billion dollars of imports

by Iran. By January of 1979, only four months after a report by the CIA had asserted

252 J.J. CUSICK ET AL.
that the government of Iran was stable and would stand for another 10 years, the

Shah had fled Iran and a new government had been formed. Sanctions in April 1980

left a number of compani es sustaining major losses of revenue and inve stments [17].

Very few people predicted the fall of communism in Eastern Europe and the

Soviet Union. Only a little more than two years passed from the date of Reagan’s

famous speech asking Gorbachev to tear down the Berlin Wall on June 12, 1987, to

when the Berlin Wall was opened on November 9, 1989.

A number of countries that are currently sources in the GSD environment are

considered moderately or significantly unstable.

6.1.2 Global Economic Stability

Like never before our world is tied closely together. Major upheavals in the world

can now affect our technological infrastructure quickly and severely. An example is

the monsoons in India. Years ago these were of local concern to the people directly

affected. Now, if the streets of Chennai are flooded, our software and systems

support teams cannot make it to work and their home computing infrastructure is

not sufficient to allow them to work remotely. Imagine if political tensions or wars

impacted key areas where US technical infrastructure is managed from. This could

have a devastating effect. Current disaster planning does not generally take this into

account.

6.1.3 Cross-Country Alliances

With a globally distributed IT infrastructure, the cooperation of multiple nations

becomes required. Some code may reside in India and some in China or Russia. The

economic relationships between these countries and the US become critical to

sustain technical cooperation. If tariffs are established or trade barriers are erected,

this could add cost to agreements and strain relations. This thought was spelled out

recently as reported by Macintyre in discussing the ‘triangular dance’ between

China, India, and the US. He reports that ‘relations between the three big powers

will outwei gh all othe r ties’ [37].

6.1.4 Local Effects

The economic multiplier effect will be active as new billions of dollars find their

way into these diverse economies. With 10% of India’s GNP tied to IT services,

monetary benefits will spread out to the local economies. It is hard to predict how the

economic growth in China and India will affect the populations there. Those people

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 253
directly employed in foreign firms or local outsourcing firms will have relatively

huge disposable income. This income will find its way into local goods and services

and create jobs in construction, support, and new kinds of ventures. GSD is increas-

ing the underlying economies of the major developing countries but may have

a much more significant effect on the developing countries. For India and China,

40–60% of their labor forces are engaged in agriculture respectively as compared

with 2.5% or less for the US and UK [18]. Changes in this proportion over the next

10 years due to advances in GSD are quite possible. In India, this expansion of the

economy is already affecting small villages. In remote villages, major Indian

companies are currently outsourcing their work to start-up firms with limited facil-

ities but whe re English skills are adequate [22]. Natur ally, there is a long way to go

as over 300 million Indians live in undeveloped villages and literacy runs at only

33% but the effects may be prof ound [23]. It is not too far an exagge ration to believe

that GSD can lead to a transformation in the economies of these countries.

6.2 Business Factors Affecting the
Future of Offshoring

The business of software development is still relatively young compared to other

manufacturing industries. This has introduced some business instabilities that

require current practice to manage. It is a far different problem to outsource the

manufacture of some widget to an overseas factory and to outsource the develop-

ment of software to an overseas shop. With time, some of those management issues

will be solved and implemented as standard practice.

6.2.1 Competition Among Suppliers

One can see a new landscape forming in global software. A bifurcate is develop-

ing between the US and many developing countries supplying software profes-

sionals. It appears that the US remains strong in new concepts, management, tools,

languages, and domain engineering. The Far East is tending to develop language-

specific applications, advanced manufacturing systems, and embedded systems.

India and other developing countries are maturing in a wide range of systems

development functions leveraging cost differentials [10]. Interestingly, costs are also

adding layering into the supply chain. Russia is cheaper than India and Mexico is

cheaper than Russia. This is shaping new relationships and partnerships in global
development.

254 J.J. CUSICK ET AL.
The specification and operation of many systems will occur in the US and

the development will occur in multicountry development formats or completely

offshore. Today some companies operate globally with R&D facilities throughout

the world. The authors have witnessed technical interactions which have included

engineers and managers from Ireland, France, Spain, England, India, China, and

the US on a single project. Each of these sites was staffed by multidisciplinary

teams who contribute when and where needed. At times the split in responsibilities

is due to technical specialty, for example, database work versus network protocols.

At other time s, the split is o n custom er facing vers us imple mentatio n ground s [10].

This changes the demand side of the equation for IT professionals around the world.

6.2.2 Talent Supply

In some countries, the supply of appropriately talented individuals cannot keep up

with demand. In India, schools are struggling to provide enough qualified engineers.

It has been stated that only 26% of graduates are employable. This could raise wages

and also reduce the ability of offshore suppliers to meet demand in the developed

countries. McKinsey reports that, among other factors, many professionals in devel-

oping countries may not live near major cities or be wi lling to relocate [18], which

reduces the global talent pool. Specifically, among the 33 million university

educated professionals in developing countries the majority were not suitable for

the global workforce; in fact they found that only 6.4 million were suitable.

The numbers on the demand side are significant. Leading outsourcing firms such

as Infosys and Tata Consultancy Services are hiring as many as 2,000 people a

month. US-base d compani es are als o hir ing deeply [54]. Acc enture plan s to have

more people in India than in the US (a total of 35 000 in India by year end 2007) and

IBM has upwards of 53,000 staff and growing in India. A major fallout from this

rush to increase staff is a decrease in qualified managers to lead these new armies of

IT workers. Managers are grown over many years and require training and experi-

ence to manage well. In India, today some staffers can jump into management and

even executi ve ranks rapidl y rising with the tide [55]. It is not clear that thes e

managers will have sufficient maturity to lead in difficult times or on challenging

projects.

These wild increases in global IT staffing come after years of ups and downs in

the US IT labor market. The authors have observed massive downsizings and

outsourcings in both good and bad times.2 Offshoring and other trends, including
2 Based on [10]. © [2003] IEEE.

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 255
the commoditization of core infrastructure software such as in ERP and financial

systems, have limited the need for new application creation skills. Vendors and

integrators remain in demand of such skills but many mainstream IT shops have a

much decr eased need [10].

Throughout the 1990s, researchers like Howard Rubin reported on a glut of

software jobs. At times this figure exceeded a million available positions in the

US alon e [47]. These kinds of sta tistics mad e the engineer confi dent that jobs were

available and made employers shudder at the prospect of hiring replacements where

none could be found. As hiring managers we experienced first hand the paucity of

good talent at the height of the boom circa 1999. Some positions really did go

unfilled at that time.

Immediately following these flush times, only one or two brief years later, there

were tens of thousands if not hundreds of thousands of veteran developers out of

work. Thus, the job surplus moved from a crisis for employers to a crisis for workers

with a swing of at least a million jobs seemingly disappearing overnight. This may

mean that many of these jobs never existed or were duplicate entries, or it may be

that as R&D dried up, jobs truly disappeared. Further, the successful Y2K repairs

that then surplused many maintenance programmers and the draw of the dot.com

boom to thousands of new entrants into the profession also played a role. Either way,

the mood among high-tech workers was bleak as reflective of the sparse opportu-

nities available then. At that time, software professionals were spending six months

or more out of work. It was not uncommon to hear tales of hundreds of job

applications yielding only one interview.

Ed Yourdon predicted this scenario in his 1992 book Decline and Fall of the
American Programm er [57]. Citing produc tivity gain s, new tooling, qual ity, and
the flight of jobs to low wage countries, especially India, Yourdon built a case for the

declining future of software development in the US. The continued movement of

both new application development and maintenance programming overseas pro-

vides ample testament to this prediction. Yourdon backtracked somewhat on this

view a few years later citing the Internet boom, service systems, and embedded

systems as new para digms stalling this path of decl ine [58]. Intere stingly, with the

crash of the Internet stocks, much of the frenzied new development was halted and

without unbounded capital low cost wages are again in favor.

At this writing, the market has changed again, rebounding in favor of IT staff.

There are jobs available. For employers finding good people is difficult again. In our

case, we are only looking for experienced staff with specific skills. We rely on our

offshore partners for entry level programming talent which they have in abundance.

This picture, while hard to project into the future, looks favorable for veteran

engineers and those with in-demand skills. There appears to be continued demand

for onsite project leads and architects.

256 J.J. CUSICK ET AL.
6.2.3 Domain Knowledge Loss

As more and more work moves overseas, the detailed problem-related knowledge

known as domain knowledge may move with it. Such knowledge is central to how a

business operates, how its systems interoperate, how a service is provided. Without

day-to-day deep work experience with this information, local staff will loose

currency in this awareness. Dependence on foreign offshore developers who are

not committed to the company can represent a serious risk to the ability to innovate

on top of the existing infrastructure to meet competitive needs.

6.2.4 Reduction in Management and

Technical Currency

Just as the domain knowledge drain hurts the understanding of the business, less

hands on management work and technical tasks can reduce the capabilities of the in-

house development team. The trend toward offshoring will also change the nature of

careers for those in developed countries. As jobs move overseas ‘. . . workers in the

[deve loped] countries [w ill] find othe r thi ngs to do’ [6]. Th ere will als o be a shortage

of qualif ied man agers in offshore count ries, which is already being obser ved [18].

6.3 Technology Factors Affecting Offshoring

The technologies upon which software is based evolve at a very fast rate.

Innovations will start to emerge locally and propagate across political boundaries.

The speed of adoption will make some localities more competitive than others.

Thus, one can expect that the powerhouses of offshoring will change over time.

6.3.1 Innovation Emergence

Just as Japanese automakers at first were low budget entrants into the US market

and now dominate in many ways and have become innovators along the way so too

will the various undeveloped countries start to innovate and dominate. India’s IT

workforce will soon be about one third that of the US. GSD may lead to India and

China producing start-ups that carve out all new markets in the US or Europe.

Instead of being subcontractors, they may become technology leaders and move up

the value chain in producing products and services far different from legacy main-

tenance projects. Naturally, this will take time as India is currently dependent on the

US for 60% of its IT revenue [48].

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 257
Bangalore is known as India’s Silicon Valley but is it destined to produce the

same level of innovation as the original valley? Bangalore is home to over 1,200

technology firm s and repr esents 35% of India’s software exports [52]. There are

other key software centers around the country such as Chennai, Pune, and others.

The question is what is Silicon Valley really like, what makes it tick? Lee and his

team [35] docum ented the esse nce of Silicon Valley and can it be mimicke d

overseas.

Like Hollywood or Detroit, Silicon Valley is marked by a distinctive collection of

people, firms, and institutions dedicated to the region’s particular industrial activities.

The Valley’s focus on the intersection of innovation and entrepreneurship is evidenced

by the many specialized institutions and individuals dedicated to helping start-ups

bring new products to market.

Within this context, there were several key characteristics making Silicon Valley

what it is; these include favorable rules, knowledge intensity, a high quality mobile

workforce, results-oriented meritocracy, climate of risk taking and tolerance toward

failures, open business environment, universities and research institutes, and a high

quality of life. We might ask whether any of India’s technical centers has produced

much in the way of innovation thus far. By and large they have focused on picking

up established sets of source code and building new releases on top of them. There

have been few new products or breakthrough hits that created new markets. Up to

now it has been primarily a game of subcontracting or working largely under the

direction of US-based R&D in the case of the globalized development model.

However, some India- and China-based researchers do appear in the literature and

this trend is growing. Konana points out that the India firms are in a good position to

begin such innovation [33]. He also points out that wha t got them to the dance ,

highly structured CMM-based development models, may not lead them far on this

new path. That will require new models more open to risk taking, creativity, and

experimentation.

In Fig. 15, the rise in patent applications from China and India is shown as a

percentage of all patent appl ications [53]. Both China and India have grown in the

last 10 years from as little as 142 patent applications per year to as many as 2,127 per

year for China, reflecting a 14 times increase. This data should be understood in the

backdrop of all the patent applications from abroad. Today, a full 46% of applica-

tions come from foreign countries. Japan alone accounts for 34% of all patent

applications and has provided more than 25% of patent applications for over

20 years. In raw numbers, Japan has grown from 24,516 to 71,994 patents per

year since 1987 and may set the model for China’s growth in this area with a

stronger manufacturing focus in the economy than India which often drives more

patents. The rise in patents does not necessarily mean more innovation. It could

China and India as percent of US patents applications

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

19
65

19
67

19
69

19
71

19
73

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

P
er

ce
n

t
o

f
p

at
en

ts

China as % of US patents

Inida as % of US patents

FIG. 15. China and India’s share of US patent applications.

258 J.J. CUSICK ET AL.
mean a move to protect commercial interests. While patents alone do not guarantee

success in innovation, it is a reliable measure of where new ideas are coming from.

The recent sharp increase coming from India and China is a useful barometer in

tracking global innovation.

The return of Indians to India to start new businesses is today more talk than

reality. The ‘entrepreneurial culture is still embryonic in India’ and failure is not

gener ally acce pted, ‘in India, you tend to get one chanc e’ [25]. Neverthel ess, the

innovation engine may kick on for India and other emerging technology countries.

Such a switch from legacy support to forward-looking R&D could have a profound

effect on global software development. New methods and tools could begin

emerging from various locations around the world and not simply being developed

by advanced countries and propagated outward. This could mark the switch from US

and European countries being dominant technology leaders to being followers in

some niche areas initially and then in broader technical sectors eventually.

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 259
6.3.2 Engineering Evolution

Just as business may change, Indian and Chinese engineers may begin contribut-

ing more broadly to the development of science and engineering. If the innovation

engine does indeed start in these countries, it could greatly influence the future of

software engineering. To date little fundamental research has been contributed from

the developing countries to the advancement of the state of the art in software

engineering. This has been largely a one-way flow of ideas from US and Europe

to China, India, and other emerging countries. Nearly all major tools are produced in

the developed countries as are advances in methodologies. No major languages have

emerged from offshore. The core platforms of the major computing environments all

originate in the developed world. Even the open source movement relies heavily on

those in the developed world. Naturally, this could all change now that more than a

million engineers are located in the emerging countries. But they must have the

inclination to invent and the infrastructure or risk taking environment to do so.

6.4 A Future Target for GSD

Very few companies consider structural engineering and construction of their

manufacturing facilities to be one of their core business capabilities. Most compa-

nies hire other companies to design, build, and maintain their factories. Architectural

firms, structural engineering firms, contractors, subcontractors, and leasing compa-

nies are all involved in the effort to construct a new facility. In fact, many companies

do not even own facilities, but rent them from holding companies. In essence, the

development of the physical infrastructure of a company is completely outsourced.

The physical infrastructure is viewed as an engineering product that can be pur-

chased. In many cases, a firm does not know the names of all of the companies that

worked to build the facility they occupy. An American company can have a hotel

constructed in Burma using local companies performing the construction under the

guidance of German Structural Engineers who are working from an architecture

specified by anAustralian architect. It is truly a field that supports global development.

This situation does not hold for the software infrastructure of most large compa-

nies. Even in the GSD strategy presented within this chapter, the corporation retains

a huge amount of control over the technologies, designs, and processes used to

develop software in a global software development effort. It is not that corporations

want to have total control, but at present they must have total control.

Despite the new corporate model presented in Fig. 2, companies have not restruc-

tured their IT management to reflect that model. There are several reasons for this

and until these reasons are addressed it won’t make sense for a company to fully

restructure itself to that model. Once certain conditions are met, the whole nature of

outsourcing will change.

260 J.J. CUSICK ET AL.
Part of reason why companies have not fully embraced the new corporate model

with regard to IT is because the software industry as a whole has not matured to the

point where software engineering best practices have become standards. In the

process presented here, this limitation is overcome by the specification of a delivery

framework in which application building blocks are used, coding standards are

specified, value-added tools are provided, and best practices are enumerated. It

should be noted that these are defined for the corporation, not the industry. When

the industry defines them, then corporations won’t have to go through that step. This

is the goal of the So ftware Engine ering Institut e [49].

The adoption of standardized business architectures, such as the Open Group

Archi tecture Fram ework [43], Service Oriented Archi tectures [16], and Age nt

Orien ted Architec tures [3], will provide a basi c frame work against which soft ware

development shops can target their capabilities. These architectures help define

the functional components that work together to achieve robust and uniform enter-

prise computing capabilities. It also gives a common language by which features can

be specified and defined.

Adoption of the new corporate model is further hindered because corporations

are hard pressed to identify and specify their existing software infrastructure in

which future software must fit. At present, many corporations find that their

software infrastructure is evolving at a rate that is faster than can be documented.

This is most visible during attempts to migrate legacy systems to newer

technologies.

Corporations will have to get a handle on their software infrastructure in order to

remain competitive. Low-cost approaches for identifying the enterprise architecture

of a corporation that can deal with the evolution of a software infrastructure have

been developed [13]. Su ch a step will support the identificat ion of appl ication

building blocks as well as dictate value-added tools.

Finally, the global adoption of a uniform means of documenting enterprise and

system architectures will facilitate communications between clients and providers.

While the Unified Modeling Language (UML) is widely used, it is not yet a

universal standard particularly at the system and enterprise level. The Object

Management Group is still developing UML profiles for Enterprise Application

Integration (EAI), CORBA (Common Object Request Broker Architecture)

Compon ent Model (CC M), and Systems Modeli ng Languag e (SysM L) [42].

Once appropriate engineering standards are adopted, standard architectures are

defined, corporations have a handle on their enterprise architecture, and a global

standard for documentation is adopted, then outsourcing will experience a funda-

mental change. New specializations will emerge that are intended to facilitate

outsourcing. New types of sourcing companies will become commonplace and

geography will be less of an issue.

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 261
A new and particularly important engineering position will emerge – the Infor-

mation Engineer. These engineers will specialize in the identification of information

and data processing needs of corporations. They will serve an equivalent role that

industrial engineers have served with respect to the physical facilities of corpora-

tions. They will be critical in the successful acquisition of software capabilities from

external sources. The Information Engineer will be the primary software specialist

that remains within most corporations.

Information engineers will interact with Enterprise Architects. They will identify

how best to incorporate elements into the existing enterprise architecture of a company

that meet the information and data processing needs. Interestingly enough, corpora-

tions can follow the traditional path of contracting with Enterprise Architects on a

competitive basis in which architects present their individual visions for the product

and the architect whose vision best matches that of management is selected.

Enterprise Architects will oversee Systems Engineers who will modify existing

systems or develop new systems consistent with the architecture. System engineers

will deal with very concrete engineering concepts such as loading, throughput,

accuracy, reliability, security, and cost. They will specify well-characterized soft-

ware components in the same fashion that structural engineers specify well-known

structural elements.

Systems Engineers will work with contractors who oversee subcontractors to

implement new components or modify existing components. This will be the software

construction activities that require the skills of detail-oriented coding specialists. This

will be a truly global business with firms competing on a bid for work basis.

Testing firms will emerge to provide quality assurance and oversight in much the

same way onsite inspectors operate in the world of physical structures. These firms

will perform onsite construction inspections, code reviews, code audits, security

testing, and integration testing.

It will take at least 20 years for GSD to evolve to this point. Although the pieces

are slowly getting in place, professionals with the appropriate qualifications are

scarce. Businesses will not change their structure overnight once an appropriate pool

of professionals is in place. New businesses will not start up until the demand is

sufficient to support them. All of this takes time. However, it is important to keep a

final goal in mind when implementing a GSD strategy.

7. Conclusions

GSD is here to stay. Global trade has been with us for centuries and software

development is just the latest industry to be pulled into the worldwide economy.

Because of its intellectual nature instead of being physically oriented, GSD

262 J.J. CUSICK ET AL.
introduces new aspects to global trade. Work can be abstracted and transported

across borders more readily than with localized and physicalized activities. While

there will always be some local content to GSD, wide segments of the work can be

transported to suitable locations. This will make the practices discussed here more

critical. From vendor selection to software infrastructure development, successful

global practices will be required to compete.

Acknowledgments

The authors thank Dan Focazio of Wolters Kluwer Shared Services for his insights into the business

process around outsourcing selection. Also, Subu Subramanian, Ravi Raghunathan, and Paddy Padma-

nabhan of TCS were generous in their help providing information from the vendor perspective. Support

from the Wolters Kluwer management team is appreciated, especially from Venkatesh Ramakrishnan.

Finally, we thank the reviewers and the editor for their many helpful comments.

Appendix 1. Interview with K. (Paddy)
Padmanabhan of Tata Consultancy

Services 3/9/07

This interview was conducted by telephone and was meant to provide perspective
on the establishment, growth, and ongoing practice of offshore development.
Mr Padmanabhan is an executive with Tata Consultancy Services based in India
and has extensive experience with offshore projects and IT projects in general. The
dialogue as captured follows:

1. When did you join TCS?

I joined TCS in 1975 right after attaining my master’s degree.

2. Is it true that TCS’ first offshore project was in 1974?

The company was very small at that time: about 100 professional staff,

with about 100 support staff. We were doing what we called bureau

service (which is now called BPO) for Indian companies, the electricity

company, mutual funds company, and so on. Offshore came about

because we wanted to get the latest computers. IBM was pushing the

1401 not the 360/370s. Getting the latest computers was very difficult

and our CEO was keen on getting latest technology and disciplines to be

able to build software for the best in the world. He used his IEEE

connections to do a barter deal with Burroughs to develop software in

order to get a computer. We acquired a Burroughs 1600 and then a 1700

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 263
and developed lots of software for the UK and other places in Europe

and the US. I was involved in the 2nd or 3rd project which was for

Builders and Plumbers Merchants. The approach was to leverage what-

ever computers we had to develop on what we had and deploy on the

target machine even if it was different. We had to be good at migrations;

we had to carry tape and load the applications (at that time we used telex

to communicate). There might be a team of 10–15 in India in those days

and 2–3 would go on site to do the deployment. Memory was also a

constraint; Burroughs would allow 30K or 50K for a program that ran on

a given machine that would require careful memory management.

3. Can you describe how those first projects were created and developed from a

business perspective?

Early Business Development was done from India; Burroughs might

suggest early projects for overseas work, they brought prospects or

subcontracted back to us, we would develop and deliver. Eventually,

the NY office was established in 1979; then we started doing our own

sales development, and other joint venture partners were developed in

Europe and Australia in the early 1980s. This is when we started to be

independent of Burroughs from a business development perspective.

4. How was the offshore model conceived? Was there a vision for what you

wanted to achieve with the business?

We had a vision – we wanted to ‘transform the world using IT’ – we

thought that the time will come when IT will transform people’s lives

and it will become ubiquitous; we had a strong vision of IT transforming

all of business, not a strong vision of what sectors or markets might be

involved, but early it was in financial services and also in logistics as we

had competencies there. The vision was that in 20 years we would

transform the world; by 1978–1979 we recognized that specializing in

Burroughs was too narrow, and so we set up joint a venture called Tata-

Burroughs and then TCS started focusing on the IBM marketplace, then

had to source new business without partner of Burroughs; this is when

we, the business, started to grow independently.

5. In the early days, did you supply staff onsite more than conducting offshore

projects or was it a mix?

We had numerous people who worked onsite with the customer, but

significant work was done in India; for many reasons this was seen as

more advantageous; we wanted to maintain roughly 80% of the work in

India, sometimes less. It was also important to serve the India market-

place; we could not work only on overseas projects, and so a certain

percentage of the business was from India; today less than 10% is India

264 J.J. CUSICK ET AL.
based but there is still a strong commitment on strategic projects such as

the Indian stock exchange and some major bank projects. A key devel-

opment was in 1982, establishment of the first R&D organization by a

software company in India. We created numerous major sponsored

projects to do significant efforts in waste management and process

engineering and also tools for migrating, and so there was vision around

R&D as well as the core business.

6. What were some of the barriers to developing the offshore model?

Credibility issues were always there. People would say ‘Indian software?

You must be joking!’ People would say that we did not know what was

needed. We used Burroughs as a big brother to get started, but success

bred success, we started to get references and could go to other countries

and multinationals to get more work, some things below the cutoff line for

one customer is something we could do inexpensively and with high

quality; for example, with AMEX we worked all over South America to

develop systems for them and succeeded in building a strong relationship.

7. Was the government helpful?

Exchange regulationswere problematic, even if you had the rupees you could

not spend overseas without permissions, you needed guarantees on what

wouldbe importedonany foreignpurchase,dutieswerealsosignificant; the

eventual export processing zones changed this to some extent in the early

1980s but these were very restricted to what you could bring out into India

from these zones.However, therewere tax benefits to the foreign exchange

earned; major problems were also in the number of permits required.

8. What about the role of foreign governments?

The biggest problems were traditionally visas; initially this was difficult to

do but not impossible; later job protectionists started and this became

more complex and continues to be a challenge.

9. How did competition play a role in the development of the business?

In the 1970s and the 1980s, TCS created the software industry and set the

path for many other companies, the competitors were not really consid-

ered until the 1990s, there was always a differentiator between TCS and

others but India’s capabilities were enhanced by the suite of companies

doing business in IT services.

10. What have been some of the technical innovations required to run the business?

Ability to develop on one platform and use tools to migrate was a key. This

migration challenge led to work which led to automation of program

migration and automation; we also developed the poorly named ‘addict’

tool which was ‘a data dictionary’; this was strong entry point to one

client, also we developed a culture of building tools for everything, we

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 265
thought productivity and quality could be enhanced through tool build-

ing and tool use, from small widgets to large project support, the ability

to use standardized tools allowed for broad development capability and

leverage, we also built performance modeling tools and quality predic-

tion tools, we were not the first to build these things but the investment

was critical to the business. We also started working with IBM Labs and

raised our level of quality also through this relationship.

In all of this, Burroughs and other partnerships were key to develop-

ment of business, relationships, and technology; some were key, for

example, Citibank and AMEX; these relationships were key to our

success.

11. What is the future of offshoring?What are the forecasts for growth? Are there

new markets to be pursued?

We should be able to leverage a true global model in future, no longer a

pure offshore-only model but use a global workforce to the benefit of the

client. We will be able to put people where they need to be using

collaboration tools, open source, web tools, wikis, you can get a totally

different development environment so folding all this together for the

client will be effective in new ways. It will no longer be solely offshore.

We may see traditional models disappear.

Appendix 2. List of Acronyms

ABB – Application Building Blocks

BPO – Business Process Outsourcing

CAD – Computer Aided Design

CCM – CORBA Component Model

CEO – Chief Executive Officer

CIA – Central Intelligence Agency

CIO – Chief Information Officer

CLS – Corporate Legal Services

CMMI – Capability Maturity Model Integrated

CORBA – Common Object Request Broker Architecture

CTO – Chief Technology Officer

EAI – Enterprise Application Integration

ENIAC – Electronic Numerical Integrator And Computer

266 J.J. CUSICK ET AL.
ERP – Enterprise Resource Planning

GNP – Gross National Product

GPS – Global Positioning System

GSD – Global Software Development

ICGSE – International Conference on Global Software Engineering

IEEE – Institute of Electronic and Electrical Engineers

IFD – Interim Functional Delivery

ISV – Independent Software Vendors

IT – Information Technology

LAN – Local Area Network

MSA – Master Service Agreement

NY – New York

ODC – Offshore Development Center

PMC – Program Management Committee

PMO – Project Management Office

POS – Point of Sale

PS – Production Support

QA – Quality Assurance

R&D – Research & Development

RFID – Radio Frequency ID

RFP – Request for Proposals

ROI – Return on Investment

SEI – Software Engineering Institute

SLA – Service Level Agreements

SOA – Service Oriented Architectures

STC – Steering Committee

SysML – Systems Modeling Language

TCOE – Testing Center of Excellence

TCS – Tata Consultancy Services

UK – United Kingdom

UML – Unified Modeling Language

UNIVACI – Universal Automatic Computer

US – United States

VOIP – Voice over IP

WAN – Wide Area Network

WDF – Web Delivery Foundation

WDF – Web Delivery Framework

WK – Wolters Kluwer

Y2K – Year 2000

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 267
References

[1] Battin R., et al., March/April 2001. Leveraging resources in global software development. IEEE

Software, 18(2).
[2] Belson K., Outsourcing, turned inside out. New York Times, April 11, 2004, section 3, Page 1.

[3] Bergenti F., Gleizes M.-P., and Zambonelli F., (Eds.), 2004. Methodologies and Software Engineer-

ing for Agent Systems: The Agent-Oriented Software Engineering Handbook. Springer.

[4] Berry J., 2006. Offshoring Opportunities: Strategies and Tactics for Global Competitiveness. John

Wiley & Sons, Inc., Hoboken, NJ.

[5] Berryman K., et al., Software 2006 Industry Report, viewed 2/3/07, http://www.sandhill.com/

conferences/sw2006_materials/SW2006_Industry_Report.pdf.

[6] Blinder A., Fear of Offshoring. Princeton University, December 16, 2005, viewed 1/31/07, www.

princeton.edu/blinder/papers/05offshoringWP.pdf.

[7] Bringing IT Back Home, CIO Magazine, March 1, 2003, http://www.cio.com/archive/030103/home.

html.

[8] Carmel E., and Agarwal R., March/April 2001. Tactical approaches for alleviating distance in global

software development. IEEE Software.

[9] CarmelE., 1999.Global SoftwareTeams:CollaboratingAcrossBorders andTimeZones. Prentice-Hall.

[10] Cusick J., May/June, 2003. How the work of software professionals changes everything. IEEE
Software, 20(3): 92–97.

[11] Cusick J., August 5, 2004. Developing software (and careers) in a global IT market place: The

realities of software work in today’s offshore environment. In Computer Technologies & Applica-

tions Seminar Series. Columbia University.

[12] Cusick J., and Prasad A., Sept/Oct, 2006. A practical management and engineering approach to

offshore collaboration. IEEE Software, 23(5): 20–29.

[13] Cusick J., and Tepfenhart W., July, 2006. Creating an enterprise architecture on a shoestring: A light

weight approach to enterprise architecture. In IT Architecture Practitioners Conference, The Open

Group Architecture Forum, Miami, FL.

[14] Dossani R., Origins and Growth of the Software Industry in India. Asia-Pacific Research Center,

Stanford University, http://iis-db.stanford.edu/pubs/20973/Dossani_India_IT_2005.pdf, viewed

2/10/2007.

[15] Drezner D., May/June 2004. The outsourcing bogeyman. Foreign Affairs. Council in Foreign

Relations, http://www.foreignaffairs.org/20040501faessay83301/daniel-w-drezner/the-outsourcing-

bogeyman.html.

[16] Erl T., 2005. Service-Oriented Architecture (SOA): Concepts, Technology, and Design. Prentice Hall.

[17] Estelami H., 1998. The evolution of Iran’s reactive measures to US economic sanctions. Journal of

Business in Developing Nations, 2, ARTICLE 1, http://www.ewp.rpi.edu/jbdn/jbdnv201.htm.

[18] Farrell D., et al., June 2005. The Emerging Global Labor Market. McKinsey Global Institute,

http://www.mckinsey.com/mgi/reports/pdfs/emerginggloballabormarket/MGI_executivesummaries_

offshoring.pdf.

[19] The First Commerical Computers, http://physinfo.ulb.ac.be/divers_html/PowerPC_Programming_

Info/intro_to_risc/irt2_history4.html, viewed 2/3/2007.

[20] Fowler M., April 2004. Using an Agile Software Process with Offshore Development, http://www.

martinfowler.com/articles/agileOffshore.html., viewed 3/11/2006.

[21] Goldstine H., 1972. The Computer from Pascal to von Neumann. Princeton University Press,

Princeton, New Jersey.

http://www.sandhill.com/conferences/sw2006_materials/SW2006_Industry_Report.pdf
http://www.sandhill.com/conferences/sw2006_materials/SW2006_Industry_Report.pdf
http://www.princeton.edu/blinder/papers/05offshoringWP.pdf
http://www.princeton.edu/blinder/papers/05offshoringWP.pdf
http://www.cio.com/archive/030103/home.html
http://www.cio.com/archive/030103/home.html
http://iis-db.stanford.edu/pubs/20973/Dossani_India_IT_2005.pdf
http://www.foreignaffairs.org/20040501faessay83301/daniel-w-drezner/the-outsourcing-bogeyman.html
http://www.foreignaffairs.org/20040501faessay83301/daniel-w-drezner/the-outsourcing-bogeyman.html
http://www.ewp.rpi.edu/jbdn/jbdnv201.htm
http://www.mckinsey.com/mgi/reports/pdfs/emerginggloballabormarket/MGI_executivesummaries_offshoring.pdf
http://www.mckinsey.com/mgi/reports/pdfs/emerginggloballabormarket/MGI_executivesummaries_offshoring.pdf
http://physinfo.ulb.ac.be/divers_html/PowerPC_Programming_Info/intro_to_risc/irt2_history4.html
http://physinfo.ulb.ac.be/divers_html/PowerPC_Programming_Info/intro_to_risc/irt2_history4.html
http://www.martinfowler.com/articles/agileOffshore.html
http://www.martinfowler.com/articles/agileOffshore.html

268 J.J. CUSICK ET AL.
[22] Hamm S., Outsourcing heads to the outskirts. Business Week, January 22, 2007.

[23] Hempel J., The Indian paradox. Business Week, February 12, 2007.

[24] Herbsleb J., and Grinter R., Architectures, coordination, and distance: Conway’s law and beyond.

IEEE Software, September/October 1999.

[25] Hibbard J., A slow start for Indian startups? Business Week Online, March 8, 2005, http://www.

businessweek.com/the_thread/dealflow/archives/2005/03/a_slow_start_fo.html.

[26] Hira R., Testimony to the US-China Economic Security Review Commission on Offshoring of

Software & High Technology Jobs, January 13, 2005, http://www.ieeeusa.org/policy/POLICY/

2005/021305.pdf.

[27] History of computer hardware in Soviet Bloc countries, http://en.wikipedia.org/wiki/History_of_

computer_hardware_in_Soviet_Bloc_countries, viewed 2/3/07.

[28] Hofstede G., et al., June 1, 2004. Cultures and Organizations: Software of the Mind, 2nd edition.

McGraw-Hill.

[29] Hofstede G., Cultural Dimensions, http://www.geert-hofstede.com/, viewed 3/19/2006.

[30] Karolak D., 1998. Global Software Development: Managing Virtual Teams and Environments.

IEEE Computer Society, Los Alamitos, CA.

[31] Kelly T., A brief history of outsourcing. Global Envision, December 7, 2004, viewed on 1/28/07,

http://www.globalenvision.org/library/3/702/.

[32] Kobitzsch W., et al., Outsourcing in India. IEEE Software, March/April, 2001.

[33] Konana P., July 2006. Can Indian software firms compete with the global giants? Computer, 39(7):
43–47.

[34] Lackow H., Outsourcing Trends and Best Practices, http://www.cio.com/research/outsourcing/edit/

trends/sld001.htm, November 6, 2005.

[35] Lee C.-M., et al., 2000. The Silicon Valley Edge: A Habitat for Innovation and Entrepreneurship.

Stanford University Press, Stanford, California.

[36] Lewin A., and Mani M., Next generation offshoring: The globalization of innovation. Offshore

Research Network, April 11, 2007.
[37] MaCintyre B., Midnight’s grandchildren: A British correspondent reports on the emergence of

modern India. New York Times Book Review, Sunday, February 04, 2007.

[38] McDougall P., Chase cancels IBM outsourcing deal, true to its President’s Form. Information Week,

September 15, 2004, viewed 2/3/07, http://www.informationweek.com/story/showArticle.jhtml?

articleID=47208515.

[39] Mohagheghi P., Global Software Development: Issues, Solutions, Challenges, 21 September 2004,

viewed 2/3/07, http://www.idi.ntnu.no/grupper/su/publ/parastoo/gsd-presentation-slides.pdf.

[40] Nissen H., Designing the inter-organizational software engineering cooperation: An experience

report. In Third International Workshop on Global Software Development, ICSE Workshop:

May 24, 2004, Edinburgh, Scotland.

[41] OAO Technology Solutions, Criteria for Making an Appropriate Outsourcing Selection: Insourcing,

Nearshore, and Outsourcing, http://www.oaot.com/downloads/about/library/whitepapers/, November

6, 2005.

[42] Object Management Group, http://www.omg.org.

[43] The Open Group, TOGAF, http://www.opengroup.org/architecture/togaf, 2006.

[44] Paasivaara M., and Lassenius C., Using interactive & incremental processes in global software

development. In Third International Workshop on Global Software Development, ICSE Workshop:

May 24, 2004, Edinburgh, Scotland.

[45] Pacey A., Technology in World Civilization: A Thousand-Year History. The MIT Press, Edinburgh,

Scotland, 1991.

http://www.businessweek.com/the_thread/dealflow/archives/2005/03/a_slow_start_fo.html
http://www.businessweek.com/the_thread/dealflow/archives/2005/03/a_slow_start_fo.html
http://www.ieeeusa.org/policy/POLICY/2005/021305.pdf
http://www.ieeeusa.org/policy/POLICY/2005/021305.pdf
http://en.wikipedia.org/wiki/History_of_computer_hardware_in_Soviet_Bloc_countries
http://en.wikipedia.org/wiki/History_of_computer_hardware_in_Soviet_Bloc_countries
http://www.geert-hofstede.com/
http://www.globalenvision.org/library/3/702/
http://www.cio.com/research/outsourcing/edit/trends/sld001.htm
http://www.cio.com/research/outsourcing/edit/trends/sld001.htm
http://www.informationweek.com/story/showArticle.jhtml?articleID=47208515
http://www.informationweek.com/story/showArticle.jhtml?articleID=47208515
http://www.idi.ntnu.no/grupper/su/publ/parastoo/gsd-presentation-slides.pdf
http://www.oaot.com/downloads/about/library/whitepapers/
http://www.opengroup.org/architecture/togaf
http://www.omg.org

GSD: ORIGINS, PRACTICES, AND DIRECTIONS 269
[46] Regan K., Dell recalls tech support from India after complaints. TechNewsWorld, 11/25/03, viewed
2/3/07, http://www.technewsworld.com/story/32248.html.

[47] Rubin H., Global Software Engineering and Information Technology Competitiveness of the United

States. Department of Commerce Presentation, March 17, 1997.

[48] Sahay S., Nicholson B., and Krishna S., 2003. Global IT Outsourcing: Software Development across

Borders. Cambridge University Press.

[49] Software Engineering Institute, http://www.sei.cmu.edu.

[50] Teasley S. D., et al., July 2002. Rapid software development through team collocation. IEEE

Transactions of Software Engineering, 28(7): 671–683.
[51] Tepfenhart W., 2004. Discussions with the author.

[52] Tilak S., India’s Silicon Valley hits Dirt Track, Aljazeera.net, Tuesday, November 29, 2005. http://

english.aljazeera.net/news/archive/archive?ArchiveId=16357.

[53] U.S. PATENT AND TRADEMARK OFFICE, Number of Utility Patent Applications Filed in the

United States, By Country of Origin, Calendar Years 1965 to Present, Electronic Information

Products Division, Patent Technology Monitoring Branch (PTMB) http://www.uspto.gov/web/

offices/ac/ido/oeip/taf/appl_yr.htm, viewed 2/18/2007.

[54] Weier M. H., As hiring soars in India, good managers are hard to find. InformationWeek, February 5,

2007, 33.

[55] Who Invented the Computer? Alan Turing’s Claim. The Alan Turing Internet Scrapbook:

http://www.turing.org.uk/turing/scrapbook/computer.html, viewed 2/3/2007.

[56] Yan Z., Efficient maintenance support in offshore software development: A case study on a global

e-commerce project. In Third International Workshop on Global Software Development, ICSE

Workshop: May 24, 2004, Edinburgh, Scotland.

[57] Yourdon E., 1992. Decline & Fall of the American Programmer. Yourdon Press: PTP Prentice Hall,

Englewood Cliffs, NJ.

[58] Yourdon E., 1996. Rise & Resurrection of the American programmer. Yourdon Press, Upper Saddle

River, N.J.

[59] Zhang J., SPECIAL REPORT: Outsourcing to China, Part 1, Sourceingmag.com, http://www.

sourcingmag.com/content/c050802a.asp, viewed 1/29/07.

http://www.technewsworld.com/story/32248.html
http://www.sei.cmu.edu
http://english.aljazeera.net/news/archive/archive?ArchiveId=16357
http://english.aljazeera.net/news/archive/archive?ArchiveId=16357
http://www.uspto.gov/web/offices/ac/ido/oeip/taf/appl_yr.htm
http://www.uspto.gov/web/offices/ac/ido/oeip/taf/appl_yr.htm
http://www.turing.org.uk/turing/scrapbook/computer.html
http://www.sourcingmag.com/content/c050802a.asp
http://www.sourcingmag.com/content/c050802a.asp

Author Index
Numbers in italics indicate the pages on which complete references are given.
A

Abadi, M., 54, 109
Abran, A., 135, 171
Abts, C., 126, 128, 134, 136, 170
Agarwal, R., 230

Aguilar, J., 129, 131, 173
Aguilar-Ruiz, J.S., 129–131, 169
Agustin, J.M., 184, 198, 199
Ahmed, F., 28, 37
Ahmed, M.A., 135, 136, 140, 169
Ahn, L., 54, 109
Amirthajah, R., 31, 38
Anderson, R., 84, 109
Androutsopoulos, I., 68, 71, 72, 79, 85, 86,

89, 90, 109, 110
Angelis, L., 127, 128, 132, 135,

150, 170
Arisholm, E., 197, 199
Asada, G., 31, 38
Asgari, S., 180, 185, 199
Avramidis, A.N., 140, 170
B

Basili, V.R., 150, 170, 175–198, 199
Battin, R., 216, 267
Beck, K., 133, 170
Beckman, R.J., 125, 172
Belkin, N.J., 66, 110
Bell, S., 98, 110
Bellovin, S., 24, 38
27
Belson, K., 208, 267
Benini, L., 35, 38
Bergenti, F., 260, 267
Berghel, H., 1–15, 16
Berry, J., 218, 267
Berryman, K., 245, 267
Bhardwaj, M., 36, 38
Bickel, S., 85, 110
Biggio, B., 108, 110
Bleris, G.L., 127, 128, 173
Blinder, A., 208, 211, 212, 256, 267
Blom, R., 26, 38
Boehm, B.W., 118, 126, 128, 133, 134,

136, 170
Bojkovic, Z., 28, 38
Borriello, G., 22, 38
Brajkovska, N., 10, 16
Bratko, A., 80–82, 86, 88, 110
Breiman, L., 130, 170
Briand, L.C., 117–119, 121, 122, 126,

131–136, 170
Bringing IT Back Home, CIO

Magazine, 209, 267
Brochering, J.W., 133, 174
Brodley, C.E., 81, 82, 114
Brooks, E., 179, 199
Buchenrieder, K., 22, 23, 35, 38
Bult, K., 31, 38
Burd, T., 36, 38
Burgess, C.J., 130, 136, 170
Byun, B., 109, 110
1

272 AUTHOR INDEX
C

Callaway, E., 32, 38
Caloyannides, M.A., 10, 16
Calzolari, F., 128, 170
Campbell, D.T., 178, 199
Canetti, R., 26, 33, 41
Capretz, L.F., 136, 171
Carelius, G.J., 197, 199
Carlson, W., 179, 199
Carmel, E., 216, 230, 267
Caropreso, M.F., 72, 110
Carreras, X., 72, 78, 85, 86, 110
Carrier, B., 6, 16, 16
Cartwright, M., 132, 133, 172
Caruso, J., 98, 110
Carver, J., 180, 184, 192, 196,

197, 199
Carvey, H., 16, 17
Casey, E., 16, 17
Cates, P., 134, 135, 171
Chan, P.W., 28, 38
Chandrakasan, A.P., 31, 36, 38
Chen, Z., 127, 128, 173
Cheng, C.H., 133, 172
Chotikakamthorn, N., 28, 38
Choy, R., 179, 199
Chris, T., 132, 172
Christensen, D.S., 128, 171
Chulani, S., 118, 126, 128, 134,

136, 170
Chute, C.G., 77, 114
Claburn, T., 105, 110
Cleary, J.G., 82, 110
Cohen, W.W., 74, 110
Cole, E., 3, 17
Conover, W.J., 125, 172
Cormack, G.V., 56, 76, 80, 82,

86, 88, 92, 110, 111
Cosoi, C.A., 108, 111
Cranor, L.F., 57, 111
Croft, W.B., 66, 72, 110, 112, 114
Cuadrado-Gallego, J.J., 129, 131, 173
Cuelenaere, A.M.E., 126, 170
Culler, D., 179, 199
Cusick, J.J., 201–265, 267
Czerwinski, S.E., 31, 38
D

Dagum, L., 179, 199
Dalvi, N., 58, 65, 111
Dantin, U., 98, 111
Davis, F.J., 140, 171
De Lucia, A., 127, 170
Deerwester, S., 72, 111
Dittmann, J., 29, 38
Dolado, J.J., 129, 130, 170
Domingos, P., 74, 111
Dongarra, J.J., 179, 199
Dossani, R., 213, 214, 267
Drezner, D., 208, 267
Drucker, H., 72, 76, 84, 111
Dugard, P., 129, 173
Dumais, S., 65, 68, 71–73, 84, 111
Dumke, R., 121, 172
Dwork, C., 54, 111
E

Eckelberry, A., 105, 111
Edelman, A., 179, 199
Elkjaer, M., 133, 135, 170
Ellison, D., 129, 173
Erl, T., 260, 267
Essam, D.L., 129, 130, 173
Estelami, H., 252, 267
F

Farmer, D., 8, 17
Farrell, D., 210, 211, 213, 214, 253, 254,

256, 267
Fawcett, T., 65, 89–91, 111
Feller, W., 145, 171
Fenton, N., 134, 135, 171
Ferens, D.V., 128, 171

AUTHOR INDEX 273
Findlater, L., 198, 200
The First Commercial Computers,

213, 267
Fisher, D., 130, 174
Fleischmann, J., 22, 23, 35, 38, 39
Focazio, D., 262

Fowler, M., 133, 170, 226, 267
Friedman, J., 130, 170
Fuhr, N., 74, 111
G

Gan, O.P., 37, 43
Garcia, F.D., 84, 111
Garratt, P.W., 136, 171
Gartner Inc., 117, 171
Gee, K., 72, 111
Ghose, A., 33, 39
Gleizes, M.-P., 260, 267
Goel, A.L., 129, 174
Goldstine, H., 212, 267
Gomez-Hidalgo, J.M., 68, 72, 76, 79,

80, 86, 87, 91, 92, 111, 112
Gong, L., 26, 39
Goodman, J., 36, 39 51, 112
Graham, P., 69, 73, 74, 84, 101, 112
Graham-Cumming, J., 99, 102, 105, 106,

108, 112
Grangetto, M., 25, 39
Gray, A., 55, 112 135, 171
Green, S., 179, 199
Grinter, R., 229, 268
Guo-Tong, S., 140, 171
Gutnik, V., 36, 39
H

Haahr, M., 55, 112
Haartsen, J., 32, 39
Hac, A., 19–37, 39
Hahn, J., 108, 112
Hale, J.E., 128, 174
Hall, R.J., 55, 112
Hamm, S., 253, 268
Hannay, J., 178, 200
Hansen, O., 178, 200
Hayashi, I., 145, 171
He, M., 134, 135, 174
Heckerman, D., 65, 68, 71–73, 84,

111, 113
Heiat, A., 129, 171
Heidrich, J., 134, 135, 174
Heinzelman, W., 32, 39
Heiser, J.G., 10, 17
Helton, J.C., 140, 171
Hempel, J., 253, 268
Herbsleb, J., 229, 268
Hesse, D., 29, 38, 39
Hibbard, J., 258, 268
Hihn, J., 127, 128, 173
Hill, J., 32, 39
Hira, R., 217, 268
Hird, S., 98, 112
History of Computer Hardware in Soviet

Block Countries, 213, 268
Hochstein, L., 175–198, 199
Hodgkinson, A.C., 136, 171
Hoelzer, D., 1–16, 16
Hofstede, G., 243, 268
Hollingsworth, J., 180, 184, 185,

192, 200
Hörts, M., 135, 171
Horvitz, E., 65, 68, 71–73, 84, 113
Höst, M., 163, 171
Hovemeyer, D., 181, 198, 200
Hovold, J., 85, 112
Hsu, C., 22, 39
Huang, B.-B., 28, 39
Huang, S.-J., 135, 171
Huang, X., 136, 171
Hudgins, W.R., 133, 174
I

Idri, A., 135, 171
InfoWorld Test Center, 84, 112
Ishigai, Y., 115–174, 174
Iwatsuki, N., 145, 171

274 AUTHOR INDEX
J

Jaccheri, L., 180, 199
Jeffrey, E., 60, 112
Jeffery, R., 126, 132, 171
Jensen, C.D., 54, 114
Jensen, R.W., 128, 171
Joachims, T., 74, 76, 112
Johnson, P.M., 134, 172 184, 198,

199, 200
Jones, T.C., 126, 172
Jorgensen, M., 133–136, 171
K

Kadoda, G., 132, 169, 171
Kagawa, A., 184, 198, 199
Kalavade, A., 22, 23, 39
Kalos, M.H., 125, 164, 172
Kampenes, V., 178, 200
Karahasanovic, A., 178, 200
Karolak, D., 244, 268
Kelly, T., 212, 213, 268
Keogh, E., 80, 112
Kersten, M., 198, 200
Khoshgoftaar, T.M., 136, 174
Kiaei, M.S., 26, 39
Kikuchi, N., 115–169, 174
Kim, D.S., 37, 40
Kirovski, D., 36, 40
Kitchenham, B.A., 127, 128,

134–136, 172
Kjiri, L., 135, 171
Kläs, M., 115–169

Kobitzsch, W., 234, 268
Kolcz, A., 55, 112
Konana, P., 211, 257, 268
Kong, X., 29, 40
Kou, H., 184, 198, 199
Koutsias, J., 68, 72, 86, 89, 90, 109, 110
Kratzer, C., 29, 40
Krishna, S., 210, 213, 256, 269
Kruse, I.I., 10, 17
Kundur, D., 26, 28, 40
L

Lackow, H., 218, 268
Langley, T., 131–133, 170
Lanubile, F., 179, 199
Larkey, L.S., 72, 112
Larson, P.-A., 31, 40
Lassenius, C., 228, 268
L’Ecuyer, P., 140, 172
Lee, A., 133, 172
Lee, C.-M., 257, 268
Lee, H., 37, 40
Lefley, M., 130, 136, 170
Lewin, A., 210, 268
Lewis, D.D., 72–74, 112
Li, H., 26, 40
Li, J., 132, 135, 136, 172
Li, M., 134, 135, 174
Li, X., 28, 40
Li, Y.H., 74, 113
Li-Aiqun, S., 140, 171
Liang, T., 135, 172
Liborg, N., 178, 200
Lie, D., 36, 40
Lin Chieh-Yi, C., 135, 171
Lin, D., 71, 72, 76, 89, 113
Lindsjom, Y., 197, 199
Linkman, S., 134–136, 172
Liu, K.J.R., 30, 43
Loève, M., 123, 172
Lokan, C.J., 129, 130, 173
Lother, M., 121, 172
Lowd, D., 105, 106, 113
Lu, D., 21, 39
Lucas, M.W., 53, 113
Luo, X., 34, 40
Lynam, T.R., 56, 80, 86, 110
M

MacDonell, S.G., 127, 128, 135, 136, 172
MaCintyre, B., 252, 268
Madden, S., 31, 40
Mahadevan, S., 140, 174

AUTHOR INDEX 275
Mair, C., 130, 132, 172
Maña-López, M., 68, 71, 72, 89, 90, 112
Mani, M., 210, 268
Marsh, W., 134, 135, 171
Mason, J., 105, 106, 116
Mastumoto, K., 198, 200
McCallum, A., 73, 113
McDougall, P., 209, 268
McGarry, F., 177, 199
McGill, M.J., 69, 77, 113
McKay, M.D., 125, 172
McKay, R.I., 129, 130, 173
Meek, C., 105, 106, 113
Meernik, P., 140, 174
Memon, R., 179, 199
Mendes, E., 132, 172
Menezes, A.J., 24, 40
Menzies, T., 127, 128, 173
MessageLabs, 64, 113
Meyer, T.A., 86, 113
Miller, J., 180, 200
Min, R., 36, 40
Mitchell, T.M., 76, 77, 113
Miyazaki, Y., 128, 173
Mohagheghi, P., 210, 268
Molokken-Ostvold, K.J., 133, 136, 173

Monden, A., 132, 173
Moore, C.A., 134, 172
Morasca, S., 180, 199
Morisio, M., 128, 150, 170
Mourelatos, Z., 140, 174
Mukhopadhyay, T., 118, 134, 173
Münch, J., 115–169

Murphy, G.C., 198, 200
Musilek, P., 135, 173
My, S., 28, 37
Myers, W., 128, 135, 173
M

Nakakoji, K., 198, 200
Nakamura, T., 175–198, 200
Narang, S., 28, 40
Nawab, S.H., 22, 40
Needham, R., 34, 40, 41
Neil, M., 134, 135, 171
Nelson, B., 10, 17
Nicholson, B., 210, 213, 256, 269
Nile, M., 132, 172
Nissen, H., 226, 268
NIST see U.S.National Institute of Standards

and Technology

Noore, A., 135, 172
O

OAO Technology Solutions. . ., 226, 268
Object Management Group, 260, 268
O’Brien, C., 84, 113
O’Gorman, L., 3, 16
Oh, G., 37, 41
Ohlsson, M., 163, 174
Ohsugi, N., 132, 173
The Open Group, 260, 268
Otta, S.W., 179, 199
Owen, A.B., 138, 140, 173
Ozaki, K., 128, 173
P

Paasivaara, M., 228, 268
Pacey, A., 212, 268
Padmanabhan, Paddy, 262–265

Pajerski, R., 177, 199
Paliouras, G, 68, 71, 72, 79, 86, 89,

90, 109, 110, 113
Pampapathi, R., 83, 113
Pantel, P., 71, 72, 76, 89, 113
Parrish, A.S., 128, 174
Pawlak, Z., 136, 173
Pedersen, J.O., 71, 72, 114
Pedrycz, W., 135, 173
Pendharkar, P.C., 134, 135, 173
Pérez, José Carlos Cortizo, 45–113

Pering, T., 36, 41
Perrig, A., 26, 33, 41
Perry, D.E., 178, 200
Pfleeger, C.P., 24, 41

276 AUTHOR INDEX
Phillips, T.-Y., 178, 199
Pickard, L., 134–136, 172
Platt, J., 76, 113
Pompella, E., 127, 170
Port, D., 127, 128, 173
Postini White Paper, 99, 113
Pottie, G., 30, 41
Prasad, A., 201–265, 267
Provost, F., 89, 90, 91, 113
Provost, J., 72, 76, 84, 89, 113
Pugh, W., 181, 198, 200
Putnam, L.H., 128, 135, 173
Q

Quinlan, R., 75, 113
R

Rabaey, J.M., 31, 41
Raghunathan, R., 262

Raghunathan, V., 31, 41
Ramos, I., 129–131, 169
Regan, K., 209, 269
Regnell, B., 163, 174
Reifer, D.J., 126, 173
Rekdal, A.C., 178, 200
Ren, J., 136, 171
Retsas, I., 28, 41
Rigoutsos, I., 83, 113
Riquelme, J.C., 129–131, 169
@RISK, 140, 173
Rivest, R.L., 25, 34, 41
Robert, S., 135, 171
Rodger, J.A., 134, 135, 173
Rodriguez, D., 129, 131, 173
Rohatgi, P., 26, 41
Roussos, G., 37, 41
Rubin, H., 255, 269
Ruhe, G., 132, 135, 136, 171
Runeson, P., 163, 174
S

Saarinen, J., 98, 113
Sahami, M., 65, 68, 71–73, 84, 113
Sahay, S., 210, 213, 256, 269
Sakkis, G., 71, 72, 79, 89, 90, 113
Saliby, E., 138, 173
Saliu, M.O., 135, 136, 140, 169
Salton, G., 68, 69, 77, 113
Samosseiko, D., 102, 108, 114
Samson, B., 129, 173
Sanz, E.P., 45–109, 111, 112
Schofield, C., 132, 174
Sculley, D., 81, 82, 114
Sebastiani, F., 63, 64, 68, 72, 88, 114
Seigneur, J.-M., 54, 114
Selby, W.R., 178, 199
Sentas, P., 127, 128, 173
Sergeant, M., 58, 60, 114
Shan, Y., 129, 130, 173
Shawbaki, W., 26, 41
Shepherd, M., 105, 106, 114
Shepperd, M., 130, 132, 133, 136, 169,

173, 174
Shih, F.Y., 28, 41
Shima, K., 198, 200
Shin, M., 129, 174
Shukla, K.K., 129, 174
Shull, F., 175–198, 200
Singh, S., 3, 17
Sinha, A., 31, 41, 42
Sjoberg, D., 178, 197, 200
Slijepcevic, S., 34, 42
Smith, R.K., 128, 174
Snir, M., 179, 199
Sobol, I.M., 123, 174
Software Engineering Institute, 260, 269
Song, Q., 132, 174
Spacco, J., 181, 198, 200
Spector, P., 137, 174
Srinivasan, K., 130, 174
Stamelos, I., 127, 128, 132, 135, 150, 174
The Standish Group, 117, 174
Stanley, J.C., 178, 199
StatSoft Inc., 130, 174
Staudenmayer, N.A., 178, 200
Stern, H., 105, 106, 114
Steve, C., 132, 172

AUTHOR INDEX 277
Sthultz, M., 1–17

Strecker, J., 181, 198, 200
Stroud, A.H., 119, 145, 156, 166, 168,

169, 174
Stukes, S., 127, 128, 173
Su, K., 30, 42
Subramanian, G.H., 134, 135, 173
Subramanian, S., 262

Succi, G., 135, 173
Sukhatme, G.S., 35, 42
Swaminathan, A., 25, 42
T

Taff, L.M., 133, 174
Takada, Y., 198, 200
Tang, S.-X., 28, 39
Tang, Z., 134, 135, 174
Taylor, B., 53, 114
Teahan, W.J., 80, 114
Teasley, S.D., 244, 269
Tennenhouse, D., 35, 42
Tepfenhart, W.M., 201–269, 269
Terakado, M., 128, 173
Theo, V.D., 60, 114
Thomas, R., 102, 108, 114
Tilak, S., 257, 269
Tonella, P., 128, 170
Torii, K., 198, 200
Toro, M., 129–131, 169
Trendowicz, A., 115–169, 174
Tsunoda, M., 132, 173
Turing, A., 54, 114 212, 269
U

Uppuluri, P., 35, 42
U.S. National Institute of Standards and

Technology (NIST), 24, 42
U.S. Patent and Trademark Office, 257, 269
V

van Genuchten, M.J.I.M., 126, 170
Venema, W., 8, 17
Vicinanza, S.S., 118, 134, 173
Villan, R., 26, 42
Voelp, M., 185, 200
Vogel, C., 84, 113
Vose, D., 141, 147, 174
Votta, L.G., 178, 200
W

Walker, D., 179, 199
Walkerden, F., 126, 132, 174
Wallace, D., 176, 200
Wan, Y, 134, 135, 174
Wang, A., 36, 42
Wang, H., 3, 17
Wang, S., 3, 17
Wang, Z., 29, 40
Warren, G., 10, 17
Warren, K., 179, 199
Watson, B., 52, 114
Watson, I., 132, 172
Wei, G., 31, 42
Weier, M.H., 254, 269
Weiser, M., 36, 42
Wesslen, A., 163, 174
Whateley, B., 86, 113
Whitlock, P.A., 125, 164, 172
Wickenkamp, A., 115–169

Wieczorek, I., 117, 126, 131–133,

136, 174
Wiener, E.D., 72, 114
Wilson, J.R., 140, 170
Winter, B., 16, 16
Wittel, G.L., 102, 105, 106, 114
Witten, I.H., 79, 114
Wohlin, C., 135, 163, 174
Wu, F., 102, 105, 106, 114
Wu, S., 134, 135, 174
Wu, Y.-T., 28, 42
X

Xiao, Y., 37, 42
Xie, D., 26, 42
Xu, Z., 136, 174

278 AUTHOR INDEX
Y

Yamashita, T., 184, 198, 199
Yan, Z., 230, 269
Yang, D., 134, 135, 174
Yang, Y., 71, 72, 77, 114
Yao, K., 30, 42
Yellick, K., 179, 199
Yerazunis, B., 69, 71, 114
Yongliang, L., 26, 42
You, X., 29, 40
Younis, M.F., 35, 42
Yourdon, E., 255, 269
Yuan, C., 26, 43
Yuval, G., 34, 43
Z

Zadeh, L.A., 135, 174
Zambonelli, F., 260, 267
Zazworka, N., 175–198

Zdziarski, J., 69, 114
Zelkowitz, M.V., 175–198, 200
Zhang, J., 28, 43 216, 269
Zhang, Q., 184, 198, 199
Zhao, H.V., 30, 37, 43
Zhao, Y.Z., 37, 43
Zhou, J., 26, 43
Zimmermann, P.R., 53, 114
Zou, T., 140, 174

Subject Index
A

A/I efficiency measure, 153–69

A/ms efficiency measure, 153–69

ABBs see application building blocks

absolute error, 150–74

Accenture, 254

AccessData’s Forensic Toolkit (FTK), 11–13

accuracy in collected data, software

engineering experiments, 178, 181–2,

197–8

accuracy of simulation algorithms

experimental results, 158–69

sampling techniques for software cost

estimation and risk analysis, 143,

149–74

acronyms’ list, 265–6

active attacks, email spam filtering, 106

ADS see Alternative Data Streams

advance fee fraud, email spam, 49

advanced encryption standard (AES) 25, 35

advertising, IT uses, 204

AES see advanced encryption standard

aggregation, sensor networks, 31–2

AHP, 127, 133, 139

algorithms, learning-based spam filtering,

72–83

Alternative Data Streams (ADS), data

hiding, 8–10, 13

ambiguity attacks, watermarking, 27–8

AMD AthlonXP3000þ 157–8

AMEX, 265

analogy-based methods see memory-based

methods
27
analysis phase, GSD life cycle model, 226–8

analyst role

experiment managers, 185

GSD, 226–8

analytical approaches, simulation

techniques, 143–5, 164–9

ANGEL, 127, 132–3, 139

ANN, 127–30, 133, 136, 139

anomaly detection capabilities, data hiding, 13

anonymity problems, email spam, 50

anonymization functions, sanitized

data, 190

ANOVA, 127, 128, 139

antiforensic tools, data hiding, 16

application building blocks (ABBs), 231–4

Application Service Providers (ASPs), 218

applications

ABBs, 231–4

ASPs, 218

multimedia security, 20–4

AQUA, 127, 132–3, 136, 139

ASCII, 107

ASPs see Application Service Providers

attacks on email spam filters, 98–109

audio

see also multimedia

concepts, 21–43

audits, GSD, 245

Australia, 210–11

authentication requirements

multimedia, 24–6, 29–30

sensor networks, 33–7

auto replies, email spam, 95–6, 99–101

AVN, 127, 133, 139
9

280 SUBJECT INDEX
B

bad sectors, data hiding, 5, 7–8, 11–12

Bangalore, India, 257

basic evaluation metrics, email spam

filtering, 88–90

Basili, Victor R. 175–200

batch evaluations, email spam

filtering, 87–8

battery limitations, sensor networks, 32–4,

36, 37

Bayesian filters

see also learning-based spam filtering

concepts, 63, 71, 73–4, 96–8, 105–6

BBN, 127, 134, 135, 139

behavioral aspects, software engineering

experiments, 176–7

Bell Labs, 212

Berghel, Hal, 1–17

best practices, GSD, 231, 233–4, 247–51

BIOS parameters, data hiding, 14

black lists, email spam, 51–3, 94–5,

98, 101

BLOC, Symantec Brightmail solution, 61–2

blocks, abstract addressability levels, 2, 4,

7–10

Bluetooth, 32–3

BMF, 25

BMP files, 9–10, 13–14, 28–9

boot sectors, partitions, 7–8

BorderWare MXtreme MX-200, 84

Boroughs, 213–14

bounce messages, 95–6, 99–101

BPO see Business Process Outsourcing
BRACE, 127, 132–3, 139

Brightmail, 58, 61–2

British National Corpus, 68

broadband, 23–4

Buffon, 197

Burroughs, 262–3

business change factors, GSD, 253–6

business drivers, GSD, 217–18, 220–2,

246–7, 253–6
Business Process Outsourcing (BPO),

207–8, 211, 215, 262–3
C

C#, 218

calculators

see also computers

historical background, 212–13

Camouflage, 2

Canada, 210

Carr, Nick, 250

CART, 127, 130–3, 139

CARTþCBR, 127, 133, 139

CARTþOLS, 127, 131–3, 139

case-based reasoning see memory-based

methods

causal model, overhead costs, 120–2

CBM see control behavioral model

CBR, 127, 132–3, 139

CCM, 260

CD-ROMs, 4

CDMA, 27

CG&RT, 130–3, 139

chain letters, email spam, 48–9

chained tokens, learning-based spam

filtering, 69–72, 83

Chase, 209

Chennai, India, 252, 257

Chief Information Officers (CIOs), 209

China, 204, 209, 210–12, 215, 216, 250,

252–6, 257–9

Chung-Kwei system, 83

CIA, 251–2

CIOs see Chief Information Officers

Citibank, 265

classifier committees, email spam filtering,

78–84

classroom resources

IRB issues, 181–2, 192

software engineering experiments,

175–7, 178–82

clean data, sanitized data, 188–90

SUBJECT INDEX 281
client-side email spam filtering, 93–5

cluster analysis, 133

CMAC, 127, 129–30, 139

CMMI Level 2 framework, 218, 222, 248

CO see overhead. . .
Cobb-Douglas, 127–8

CoBRA

see also hybrid methods; project risk

analysis; software development cost

estimation methods

accuracy study, 149–74

advantages, 122, 134, 138–9

analytical approaches, 143–5, 164–9

concepts, 116–17, 118–22, 134, 138–74

critique, 122, 134, 138–9

definition, 119–20, 134

efficiency study, 149, 153–74

empirical study, 119, 149–74

experimental design, 155–7, 163–9

experimental operation, 157–8

experimental results, 158–69

hypotheses, 154–69

Latin Hypercube (LH) sampling, 116, 119,

138–40, 146–74

Monte Carlo simulations, 119

overhead costs, 119–74

principles, 119–22

research questions, 119, 140–74

sampling techniques, 138–74

stochastic approaches, 143, 145–9

validity discussion, 162–9

weaknesses, 139

CoBRA causal effort model, critique, 138,

153

COCOMO. . ., 127–8, 134–6, 139
COCONUT, 127–8, 139

code see software
coding, watermarking, 27–8

collaborative filtering, email spam, 55, 94–5

collecting data, software engineering

experiments, 175–6, 177–8, 181–2,

186–90, 197–8

collusion attacks, forensics, 29–30
Colossus computer, 212

Columbia University, 246

commercial spam 49–50

see also email spam

communications

GSD, 216–17, 219–20, 226–30

sensor networks security, 34–5

compact flash cards, 4

comparative studies, software development

cost estimation methods, 136–40

competing suppliers, GSD, 253–6

compilers, Experiment Manager, 183–4,

194–5

complexity factors, software engineering

experiments, 180–1

composite methods, software development

cost estimation methods, 127, 133,

136–9

compression

data hiding, 15

email spam filtering, 56, 80–3, 109

multimedia, 22–3, 25–6, 29, 37

Computer Sciences Corporation (CSC),

177–8, 250

Computer-Aided Design (CAD), 204

computers 204, 212–13

see also IT

historical background, 212–13

concept phase, GSD life cycle

model, 226–8

conclusion validity, simulation techniques,

163–9

conference systems, multimedia, 21–2

confidentiality requirements

data privacy GSD recommendations,

220, 243

sensor networks, 33–7

configuration management, GSD, 219–20,

230–1, 259–61

confusion matrices, email spam filtering

evaluations, 88–9

construct validity, simulation techniques,

163–9

282 SUBJECT INDEX
construction phase, GSD life cycle model,

226–8

content-based spam filtering 51, 56–98, 109

see also email spam; heuristic. . .
concepts, 51, 56–98, 109

feature engineering, 67–72

implementation in practice, 92–8

learning-based spam filtering, 45, 56–7,

63–98

Machine Learning, 45, 56–7, 63–83, 109

processing structure, 65–7, 83

Text Categorization, 63–6, 72, 80–3

control behavioral model (CBM), 35

CORBA, 260

corporate models, outsourcing changes,

206–8, 213–14, 259–60

corpus of spam messages, SpamAssassin, 60,

84–5, 86

cost estimation methods

see also software development. . .
concepts, 115–74

cost overhead distributions 141–74

see also overheads

cost-sensitive learning, email spam filtering,

79–80

costs 47–8, 54, 98, 109, 115–74, 177–8,

205–6, 210–11, 213–14, 220–1, 222–6,

229–30, 253–4

see also overhead. . .; overheads
CoBRA, 116–17, 118–22, 134, 138–74

email spam, 47–8, 54, 98, 109

outsourcing, 205–6, 210–11, 213–14,

220–1, 222–6, 229–30, 253–4

software engineering experiments, 177–8

sourcing IT landscape, 205–6, 210–11,

213–14, 220–1, 222–6, 229–30,

253–4

country alliances, GSD, 252

crime

see also forensics

data hiding, 1–17, 29–30

email spam, 48–50

CRM-114, 105
cross-shore development model 226–8

see also global software development

cryptography

see also data hiding. . .
definition, 3

CSC see Computer Sciences Corporation

CSS tricks, 102

cultural issues, GSD, 203–4, 243

cumulative cost distributions, 121–2

current status, Experiment Manager, 190–7

Cusick, James, 201–69
D

Dalvi, 65

dark data

see also data hiding

concepts, 1–17

data

carving, 11–12, 15

collecting data, 175–6, 177–8, 181–2,

186–90, 197–8

mining paradigms, 80–3

self-reported data, 178–9

software engineering experiments,

176–200

data encryption standard (DES), 24–5

data hiding

abstract addressability levels, 2, 4

AccessData’s Forensic Toolkit (FTK),

11–13

Alternative Data Streams, 8–10

anomaly detection capabilities, 13

antiforensic tools, 16

background, 1–2

bad sectors, 5, 7–8, 11–12

BIOS parameters, 14

compressed files, 15

concepts, 1–17, 29–30

conclusions, 16

definition, 3

digital storage, 4–10

disk slack, 5, 7–8

SUBJECT INDEX 283
DLL files, 14–15

encryption, 1–2, 10–11, 15–16

ExtX, 5, 8

FAT, 7–8, 10–12

file slack, 2, 3–4, 6–8, 16

file systems, 5, 7–10

forensics, 2, 10–16, 29–30

metadata manipulation, 5, 7–8, 15

Metasploit Project’s Slacker tool, 16

methods, 14–16

Microsoft Office documents, 15

NTFS, 7–10, 12–13

partitions, 5, 6–8

philosophy, 3–4

physical aspects, 1, 3–4

redirected application executions, 14–15

registry entries, 14

relative volatility of hiding areas, 8–9

signature-based analysis of media, 12–13

steganography, 3, 15–16, 28–9, 37

superblock slack, 5, 8

swap files, 14

virtual files systems, 6–7

watermarking, 1–2

data management, software engineering

experiments, 181–2

data privacy GSD recommendations,

220, 243

data-driven methods

see also non-proprietary. . .
software development cost estimation

methods, 119–22, 126–34, 136–9

databases, 182, 183–4, 204

DCS, 32–3

DCT, 25, 27–8

debugging, Experiment Manager, 195

decision trees, 127, 130–3, 139

email spam filtering, 74–5

model-based data-driven methods,

127, 130–3, 139

decoy email boxes

see also honeypotting (email traps)

future spam filtering prospects, 98
Delivery Status Notifications (DSNs), 100–1

Dell, 209

denial of service (DoS), 23–4, 109

dependent variables, simulation techniques,

154–5

DES see data encryption standard

Descriptive Sampling (DS), 138–9

design phase, GSD life cycle model, 226–8

Device Configuration Overlay, 5–6

DFT 27

see also Fourier transform

DHA see Directory Harvest Attacks

digital fingerprints, 30

digital rights management

(DRM), 23–4

digital signatures

concepts, 25–6, 53–4

email spam, 53–4

digital storage

concepts, 4–10

data hiding, 4–6

media types, 4

digital watermarking see watermarking

direct attacks, email spam filtering, 101–2

Directory Harvest Attacks (DHA), 100–1

directory slack, data hiding, 5–8

disasters, economic costs, 252

discretization functions, sanitized data,

189–90

disk slack, data hiding, 5, 7–8

disk structures, concepts, 4–6

disposable addresses, email spam, 54–5

distributed approach GSD details, 228–30

distributed systems, sensor

networks, 31–2

distribution computation, 141–9

DLL files, data hiding, 14–15

DMC see Dynamic Markov Compression

DNA profiling, 29–30, 83

DNS Blacklists (DNSBL), 52, 59

DoCO, simulation algorithms, 150–74

Document Frequency, 72

documentation overhead, GSD, 242

284 SUBJECT INDEX
domain knowledge loss, GSD, 256

DoP, simulation algorithms, 150–74

DoS see denial of service
DOS partitions, 6

dot.com boom, 255

Drezner, Daniel, 208

DRM see digital rights management

DS see Descriptive Sampling

DSNs see Delivery Status Notifications

Dspam, 70–1

DVDs, 4

DWT, 25

Dynamic Markov Compression (DMC),

82–3
E

EA, 127, 129–33

EA-MARS, 127, 131

EAI see Enterprise Application Integration

eavesdropping, 23–4

Eclipse, 198

ECML-PKDD Discovery

Challenge, 84–5

economic costs

disasters, 252

email spam, 47–8, 54, 98, 109

economic multiplier effects, GSD, 252–3

EDS, 250

education systems

India, 215, 221–2, 254

US, 251

effectiveness issues, Experiment Manager,

191–2

efficiency of simulation algorithms

experimental results, 158–69

measures, 153–4

sampling techniques for software cost

estimation and risk analysis, 149,

153–74

electronic banking, 23

electronic blackboards 22

see also multimedia
Emacs, 198

email spam

advance fee fraud, 49

anonymity problems, 50

auto replies, 95–6, 99–101

chain letters, 48–9

commercial spam, 49–50

concepts, 45, 47–113

costs, 47–8, 54, 98, 109

crime, 48–50

definition, 47, 65

economic costs, 47–8, 54, 98, 109

evasive offenders, 50

families of spam, 48–50

features, 47

Internet hoaxes, 48–9

legal measures, 50, 98

‘phishing’ attacks, 48, 49–50

problems, 47–8

pyramid schemes, 49

spam bots, 52–3, 98

third-party sources, 54–5

Viagra, 49, 57–8, 65, 99, 101–4

viruses, 48, 98

email spam filtering

active attacks, 106

attacks on filters, 98–109

basic evaluation metrics, 88–90

batch evaluations, 87–8

Bayesian filters, 63, 71, 73–4,

96–8, 105–6

black lists, 51–3, 94–5, 98, 101

classifier committees, 78–84

client-side filtering, 93–5

collaborative filtering, 55, 94–5

combined methods, 98

compression filters, 56, 80–3, 109

concepts, 45, 47–113

confusion matrices, 88–9

content-based filtering, 51, 56–98, 109

cost-sensitive learning, 79–80

critique, 83–92, 98

decision trees, 74–5

SUBJECT INDEX 285
digital signatures, 53–4

direct attacks, 101–2

disposable addresses, 54–5

DMC, 82–3

evaluations, 83–92

feature engineering, 67–72

filtering concepts, 45–113

future prospects, 98, 109

graylistings, 52–3, 98

heuristic spam filtering, 51, 56–62

hidden text attacks, 102, 106–9

honeypotting (email traps), 55–6,

61–2, 98

HTML files, 69–71, 102–7

image-based spam, 107–9

implementation in practice, 92–8

indirect attacks, 99–101

invisible ink attacks, 106

k-Nearest Neighbors, 77–8

learning-based filtering, 45,

56–7, 63–98

legitimate emails, 47, 56, 83–96, 98

MDL, 81–3

metrics of evaluation, 84, 88–92

MIME encoding, 107

misclassification costs, 84–96, 98

Mozilla Thunderbird, 57, 71, 96–8

N-fold cross-validation, 87–8

obfuscation attacks, 102, 104–5, 108

passive attacks, 105–6

picospam, 101–2

postage techniques, 54

PPM, 82–3

primitive language analysis, 51

probabilistic approaches, 73–4

proxying methods, 96–8

quarantine folders, 58, 95–6

reputation controls, 53–4

ROCCH metrics, 88, 90–2

rule learners, 75–6

running test procedures, 84, 87–8

SCRIPT tags, 107

server-side filtering, 93–5
SpamAssassin filter, 58–60,

84–5, 86, 97–8

statistical attacks, 102, 105–6

summary, 83, 98, 109

support vector machines, 71–2, 76–7

Symantec Brightmail solution,

58, 61–2

tagging methods, 96–8

technical measures, 51–6

test collections, 84–7

Text Categorization, 63–6, 72, 80–3

tokenization attacks, 102–4, 109

tokens and weights, 68–72, 79–80, 83,

102–4, 109

TREC metrics, 45, 56, 80–3, 85–8, 92

Trend Micro InterScan Messaging

Security Suite, 95–6

Turing Test, 54

white and black lists, 51–3, 59,

94–5, 98

embedded systems

multimedia, 22–3, 27–8, 35

sensor networks, 35

empirical studies

GSD, 244–5

software development cost estimation

methods, 119, 149–74

employees see human resources

encryption

see also steganography

concepts, 24–6, 33–7, 53–4

data hiding, 1–2, 10–11, 15–16

email spam, 53–4

keys, 24–5, 26, 33–7

multimedia security, 24–6, 33–7

sensor networks, 33–7

ENIAC, 212–13

Enterprise Application Integration (EAI),

260–1

Enterprise Architects, 261

Enterprise Resource Planning (ERP),

222, 255

Entropy, 76

286 SUBJECT INDEX
epistemological uncertainty see possibilistic
uncertainty

ERP see Enterprise Resource Planning
estimation of software efforts, related work,

126–40

Estimeeting, 127, 133, 139

ESTOR, 127, 134, 139

European Union (EU)

email spam, 50

GSD statistics, 210–11

evaluations

email spam filtering, 83–92

existing software effort estimation

methods, 126–40

Experiment Manager, 197

software development cost estimation

methods, 136–9

evolution, Experiment Manager, 192–3

existing software effort estimation methods,

126–40

expected error, 123–4

Experiment Manager

see also software engineering experiments

centralized database benefits, 182, 183–4

collecting data, 186–90, 197–8

compilers, 183–4, 194–5

concepts, 176, 182–98

consistency benefits, 183

current status, 190–7

effectiveness issues, 191–2

evaluation, 197

evolution, 192–3

experiment managers, 182, 184–6

future prospects, 192–3

Hackystat, 182, 184, 185, 192, 198

instrument package (UMDinst), 183–5,

192

minimal disruption benefits, 183

overview, 182–3, 190–1

sanitized data benefits, 182, 183,

188–90, 193

structure, 182–3

subject views, 193–5, 196–7
supported analyses, 193–7

US studies, 190–1

validation of workflow heuristics, 195–6

web, 182, 183, 184–98

workflow cycles, 182, 185, 195–6

experiment managers

analyst role, 185

Experiment Manager, 182, 184–6

professor role, 185

roles, 184–5

student role, 185

technician role, 184–5

experiments

replicated studies, 177, 180–1, 191–2

software development cost estimation

methods, 119, 149–74

software engineering experiments,

175–200

expert systems, learning-based spam

filtering, 63–4

expert-based methods, software

development cost estimation methods,

119–22, 127, 133, 134, 136–9, 141–3

exports, 211–12

extended partitions, concepts, 5, 6–7

external validity, simulation techniques,

164–9

ExtX, data hiding, 5, 8
F

families of spam 48–50

see also email spam

far shore outsourcing, IT resources, 205–9

Fast Fourier Transformation, 145

FAT see File Allocation Table

FDMA, 27

feature engineering, email spam, 67–72

feature selection and extraction, learning-

based spam filtering, 71–2

Feistel Cipher Structure, 24–5

FGS, 26

File Allocation Table (FAT), 7–8, 10–12

SUBJECT INDEX 287
file carvers, 11–12, 15

file slack, data hiding, 2, 3–4, 6–8, 16

file systems, concepts, 5, 7–10

filtering

see email spam. . .
fingerprints, forensics, 30

finite state machine (FSM), 82–3

fitness function, 129–30

floppy disks, data hiding, 1, 3–4

Focazio, Dan, 262

focus groups, 204

forensics see also crime

collusion attacks, 29–30

concepts, 29–30

data hiding, 2, 10–16, 29–30

definition, 29–30

multimedia security, 20–1, 29–30

Fourier transform, 25–6, 27

France, 254

Fraunhofer Institute for Experimental

Software Engineering 116, 118

see also CoBRA

free-form diaries, 178

freshness requirements, sensor networks,

33–7

FSM see finite state machine

FTK see AccessData’s Forensic Toolkit
FTTH, 26

full text indexing, 11–12

future prospects

email spam filtering, 98, 109

Experiment Manager, 192–3

GSD, 201–2, 204, 245, 249–62

fuzzy decision trees, 127, 130–3,

135–6, 139
G

Gandhi, Rajiv, 213–14

GANN, 127, 129–30, 139

GATE, 68

Germany, 259

GGGP, 130–3
GIF files, 11, 24–5, 29

Ginger2, 198

global software development (GSD)

see also outsourcing; software. . .
ABBs, 231–4

audits, 245

best practices, 231, 233–4, 247–51

blend statistics, 247

business change factors, 253–6

business drivers, 217–18, 220–2,

246–7, 253–6

China, 204, 209, 210–12, 215, 216, 250,

252–6, 257–9

communication problems, 216–17

communications/management

recommendations, 219–21,

226–30

competing suppliers, 253–6

concepts, 201–69

configuration management, 219–20,

230–1, 259–61

controls, 249

costs, 205–6, 210–11, 213–14, 220–1,

222–6, 229–30, 253–4

country alliances, 252

critical loose ends, 242

critique, 244–5, 246–62

cross-shore development model, 226–8

cultural issues, 203–4, 243

current GSD practice, 216–45

definition, 210, 211–12

distributed approach details, 228–30

documentation overheads, 242

domain knowledge loss, 256

economic disasters, 252

economic multiplier effects, 252–3

empirical study, 244–5

future prospects, 201–2, 204, 245,

249–62

governance model, 237–9

human resources, 208–9, 214–15,

219–26, 243, 250–1, 254–6

IFD, 233–5

288 SUBJECT INDEX
global software development (GSD)

(Continued)

India, 201, 204, 208–9, 210–12,

213–16, 221–2, 243, 246, 252–65

industry concepts, 210–11

infrastructural recommendations,

219–21, 229–31, 238–9, 259–61

innovation leaders, 256–9

job losses, 208–9, 220, 250–1, 254–5

knowledge management, 241

knowledge transition process, 239–40

life cycle model, 226–8

locality issues, 242

McKinsey study, 210–11, 250, 254

management reports, 233–4

management shortages, 254–6

managing-development

recommendations, 219–21, 229–34,

248–51, 254–5, 259–61

micro engineering process, 230–4, 248–9

models, 218–20, 226–8

ODC, 236–8, 245

operational process for maintenance and

support, 240–1

organizational recommendations,

219, 229–30

origins, 201–2, 203–4, 211–14

overheads, 242–3

planning guidelines, 219–20, 229–30

PMO, 207–8, 247–8

politics, 203–4, 251–3

practical tutorial, 203–4

practices, 201–2, 203–4, 216–45

privacy recommendations, 220, 243

problems, 216–17

production (maintenance) support, 234–41

quality recommendations, 220, 222–8,

232–4, 243, 249

recommendations, 217–22, 226–30

results, 244–5

retention issues, 241–2

RFPs, 221–5, 248

risks, 244
statistics, 210–11, 247

suitability issues, 229–30

suppliers, 217–18, 222–6, 244, 253–6

supporting standards and code review

guidelines, 231, 232–4

surveys, 246–51

talent supply, 254–6

targets for the future, 259–62

TCS, 213–14, 254, 262–5

teams, 216–18, 226–30

technology change factors, 256–9

testing, 226–8, 245, 261

things you have to live with, 242–3

trends, 210–11

US, 201, 206–9, 210–11, 243, 250–6

value-added tools, 231, 232–3

virtual roundtable, 246–51

WDF, 226–8, 231–4

Gmail, 53, 54, 101

GNU Privacy Guard (GPG), 53–4

Gorbachev, Mikhail, 252

governance model, production

(maintenance) support, 237–9

GP, 127, 131–3, 139

GPG see GNU Privacy Guard

GPS, 204

GRACE, 127, 132–3, 139

graylistings, email spam, 52–3, 98

GSD see global software development

GSFC see NASA Goddard Space

Flight Center

Guesstimation, 127, 133, 139
H

Hac, Anna, 19–43

hackers, data hiding, 3

Hackystat, 182, 184, 185, 192, 198

hard drive architecture, concepts, 4–6

hardware

see also IT

historical background, 212–13

sensor networks, 32–4, 35, 36–7

SUBJECT INDEX 289
TCPA, 32, 36–7

trusted hardware, 36–7

Harvard’s Mark I computer, 212

Helius Project, 48

heuristic spam filtering

see also content-based. . .; email spam

concepts, 51, 56–62, 83

problems, 62, 83

SpamAssassin filter, 58–60

Symantec Brightmail solution,

58, 61–2

Hidalgo, José Marı́a Gómez, 45–113

hidden data see data hiding
hidden text attacks, email spam filtering,

102, 106–9

HIDER, 127, 131–3

hijacking attacks, Internet security

challenges, 23–4

histograms, 123–4

Hochstein, Lorin, 175–200

Hoelzer, David, 1–17

honeypotting (email traps), email spam,

55–6, 61–2, 98

Host Protected Area (HPA), 5–6

Hotmail, 52, 53, 54, 101

HPA see Host Protected Area

HPC classroom environments, 182–91,

193, 196–8

HTML files, 15, 28–9, 69–71, 102–5

data hiding, 15, 28–9

email spam filtering, 69–71, 102–7

Huffman coder, 81–2

human resources

see also teams

GSD, 208–9, 214–15, 219–26, 243,

250–1, 254–6

India, 214–15, 221–2, 243, 254–6

outsourcing job losses, 208–9, 220,

250–1, 254–5

programmers, 176–98, 213–14, 226–8,

231–4, 243, 250–1, 254–6

talent supply, 254–6

hybrid methods
see also CoBRA; data-driven. . .;
expert-based. . .

software development cost estimation

methods, 116, 119–22, 127, 134,

136–9

hybrid sourcing, IT resources, 205–9

hypertextus interruptus tokenization attacks,

103

hypotheses

sampling techniques for software cost

estimation and risk analysis, 154–69

software engineering experiments, 176–7
I

IBM, 83, 209, 212–13, 216, 250, 254, 262–5

ICGSE see International Conference on
Global Software Engineering

ICMP options field, 3

identification requirements,

multimedia, 29–30

IEEE, 32, 217, 262–3

IFD see interim functional delivery

image-based spam attacks, 107–9

images

see also multimedia

concepts, 21–43

Imap, 97

implementation in practice, email spam

filtering, 92–8

imports, 211–12

in-house development, IT resources, 205–9

in-house offshoring, IT resources, 205–9

in-sourcing, 208

Independent Software Vendors (ISVs), 214

independent variables, simulation

techniques, 154–5

India

background, 213–16, 221–2, 246,

252–65

Bangalore, 257

Chennai, 252, 257

economic multiplier effects, 252–3

290 SUBJECT INDEX
India

(Continued)

education system, 215, 221–2, 254

GSD, 201, 204, 208–9, 210–12, 213–16,

221–2, 243, 246, 252–65

historical background, 213–16

human resources, 214–15, 221–2, 243,

254–6

innovation leaders, 256–9

monsoons, 252

New Computer Policy, 213–14

patent applications, 257–8

software engineering experiments, 259

strengths of IT industry, 214–16, 221–2

indirect attacks, email spam filtering, 99–101

Information Engineers, 261

information gain (IG), 71–2, 76

Infosys, 213, 254

infrastructural GSD recommendations,

219–20, 229–31, 238–9, 259–61

innovation leaders, GSD, 256–9

Instant Messaging, 65

instrument package (UMDinst), Experiment

Manager, 183–5, 192

intellectual property, multimedia security,

23–4

interim functional delivery (IFD), GSD,

233–5

internal validity, simulation techniques,

163–9

International Conference on Global Software

Engineering (ICGSE), 217

Internet

see also email. . .; web
hoaxes, 48–9

multimedia security, 20–4, 29

security challenges, 23–4

VoIP, 29, 238–9

invisible ink attacks, email spam filtering, 106

Iran, 211–12, 251–2

IRB issues, software engineering

experiments, 181–2, 192

Ireland, 210–11, 254
Ishigai, Yasushi, 115–74

ISM band, 32

ISPs, email spam, 49, 52

Israel, 210–11

ISVs see Independent Software Vendors
IT

see also hardware; software. . .
corporate models, 206–8, 213–14, 259–60

costs, 205–7

GSD change factors, 256–9

historical background, 201–4, 211–14

importance, 201–2, 204

India, 201, 204, 208–9, 210–12, 213–16,

221–2, 243, 246, 252–65

LANs/WANs, 230–1

PMO, 207–8

RFID, 21, 37, 204

sensor networks, 30–7

sourcing landscape, 203–9
J

Jacquard’s paper tape-driven loom, 212

Japan, 204, 210–11, 256

JavaScript, 102

Jaynes, Jeremy, 50, 54

Jensen’s regression models, 128

JND, 27

job losses

see also human resources

outsourcing, 208–9, 220, 250–1, 254–5

JPEG files, 24, 28–9

jUnit, 198

junk email see email spam
K

k-Nearest Neighbors (kNN), email spam

filtering, 77–8

K9, 97

keys, encryption, 24–5, 26, 33–7

Kiev Institute of Electrotechnology in the

Ukraine, 213

Kikuchi, Nahomi, 115–74

SUBJECT INDEX 291
Kläs, Michael, 115–74

kNN see k-Nearest Neighbors
knowledge management, GSD, 241

knowledge transition process, production

(maintenance) support, 239–40

Korea, 210–11
L

LANs, 230–1

Latent Semantic Indexing, 72

Latin Hypercube (LH) sampling

accuracy study, 154–74

concepts, 116, 119, 124–6, 138–40,

146–74

DS comparison, 138–9

efficiency study, 154–74

empirical study, 154–74

experimental results, 158–69

hypotheses, 154–69

Monte Carlo simulations, 149, 164–5

research questions, 119, 140–74

stochastic approaches, 146–9

validity discussion, 162–9

learning-based spam filtering

algorithms, 72–83

classifier committees, 78–84

concepts, 45, 56–7, 63–98

cost-sensitive learning, 79–80

decision trees, 74–5

evaluations, 83–92

feature engineering, 67–72

feature selection and extraction, 71–2

k-Nearest Neighbors, 77–8

multi-word features, 69–71

probabilistic approaches, 73–4

processing structure, 65–7, 83

rule learners, 75–6

support vector machines, 71–2, 76–7

Text Categorization, 63–6, 72

tokens and weights, 68–72, 79–80, 83,

102–4

leetspeak, 104–5

legal measures
see also crime

email spam, 50, 98

legitimate emails, email spam filtering, 47,

56, 83–96, 98

Lempel-Ziv algorithm (LZ), 82–3

Lewis, 72

LH sampling see Latin Hypercube sampling

LHARC, 15

LHRO, 148–9, 157–69

life cycle model, GSD, 226–8

Likert scale, 137–9

Lingspam, 84, 86, 87

Linux, 8

locality issues, GSD, 242

log-linear form, 127

Loki, 3

lossless compression, 25, 29

lossy compression, 25

lost in space tokenization attacks, 104

LR-WPAN, 32–3

LSB insertion, 29
M

Machine Learning 45, 56–7, 63–83, 109

see also content-based spam filtering

McKinsey study, GSD, 210–11, 250, 254

macrosensor nodes, sensor networks, 30–7

Mail Abuse Prevention System, 52

Mail Delivery Agent, email spam filtering,

93–5

maintenance see production (maintenance)

support

management reports, GSD, 233–4

management shortages, GSD, 254–6

managing-development GSD

recommendations, 219–21, 229–34,

248–51, 254–5, 259–61

Markov models, 82–3

Marmoset, 198

Master Boot Record (MBR)

concepts, 5, 6–7

data hiding, 6–7

Master File Table (MFT), 10

292 SUBJECT INDEX
Matlab*P, 179

Matvec, 197

MBR see Master Boot Record

MC see Monte Carlo simulations

MD5, 25

MDL see Minimum Description length

Principle

memory-based methods, software

development cost estimation methods,

127, 131–3, 136–9

MEMS, 31

MessageLabs, 64–5

metadata manipulation, data hiding,

5, 7–8, 15

Metasploit Project’s Slacker tool, 16

metrics of evaluation, email spam filtering,

84, 88–92

Mexico, 211, 253

MFBP, 129

MFT see Master File Table

MHT, 26

micro engineering process, GSD, 230–4,

248–9

microsensor nodes, sensor networks, 30–7

Microsoft

C#, 218

Office documents, 15

Outlook, 71, 96–7

Windows, 1–17

Windows XP (SP2), 157–8

Word, 198

MIKEY, 26

MIME encoding, email spam filtering, 107

Minimum Description length Principle

(MDL), 81–3

misclassification costs, email spam filtering,

84–96, 98

mobile phones, 23

model-based data-driven methods

see also nonparametric. . .; parametric. . .;
semiparametric. . .

software development cost estimation

methods, 127–33, 136–9
modified data, sanitized data, 188–90

modulation, watermarking, 27–8

monsoons, India, 252

Monte Carlo simulations 116, 119, 121–4,

138–74

see also simulation techniques

accuracy study, 154–74

basic principles, 123–4

CoBRA, 119

concepts, 123–4, 138–40, 145–6,

149, 154–69

efficiency study, 154–74

empirical study, 154–74

experimental results, 158–69

hypotheses, 154–69

LatinHypercube (LH)sampling, 149, 164–5

stochastic approaches, 145–6, 149

Monty Python, 47

mortgages, email spam, 50, 58

Mozilla Thunderbird, 57, 71, 96–8

MPEG standards, 23, 26

MPI, 179

multi-word features, learning-based spam

filtering, 69–71

multifunction networked embedded systems,

concepts, 22–3

multilevel 2D bar codes, 26

multimedia

see also sensor security

applications, 20–4

authentication requirements, 24–6, 29–30

compression, 22–3, 25–6, 29, 37

concepts, 19–43

conference systems, 21–2

definition, 20–1

digital signatures, 25–6

DRM, 23–4

embedded systems, 22–3, 27–8, 35

encryption, 24–6, 33–7

forensics, 20–1, 29–30

MPEG standards, 23, 26

networks, 21–4, 30–7

SPEF, 36

SUBJECT INDEX 293
steganography, 20–1, 28–9

trusted hardware, 36–7

trusted software, 32, 35–6

types, 20–1

watermarking, 20–1, 24, 26–30, 37

multimode networked embedded systems,

concepts, 22–3

multivariate regression, 127–30, 139

Münch, Jürgen, 115–74

Mutual Information, 72

Mylyn, 198
N

N-fold cross-validation, email spam

filtering, 87–8

Naı̈ve Bayes, 65, 73–4

Nakamura, Taiga, 175–200

NASA Goddard Space Flight Center

(GSFC), 177

National Library of Medicine, 63

NDRs see Non-Delivery Reports

near shore outsourcing, IT resources, 205–9

Nearest Neighbors, 71–2

networks

multimedia, 21–4, 30–7

neural networks, 128–40

sensor networks, 30–7

neural networks, 128–40

New Computer Policy, India, 213–14

NFS, 127, 134, 136, 139

Nigerian fraud, 49

noise, image-based spam attacks,

108–9

nominal project costs

CoBRA, 119–74

definition, 120, 121

Non-Delivery Reports (NDRs), 100–1

non-proprietary data-driven methods

see also composite. . .; memory-based. . .;
model-based. . .

software development cost estimation

methods, 126–40
nonparametric model-based data-driven

methods

see also model-based. . .
software development cost estimation

methods, 127, 130–3, 136–9

normalization functions, sanitized data,

189–90

NTFS, data hiding, 7–10, 12–13

Nucleus Research, 48
O

obfuscation attacks, email spam filtering,

102, 104–5, 108

Object Management Group, 260–1

OCR, 107–8

Offshore Development Center (ODC),

236–8, 245

on-site contractors, IT resources, 205–9

onshore outsourcing, IT resources, 205–9

open source, 231–2

OpenMP, 179, 196–7

operational process for maintenance and

support, GSD, 240–1

organizational GSD recommendations, 219,

229–30

OSR, 127, 132–3, 139

OSRþOLS, 127, 133, 139

outsourcing

see also global software development

best practices, 231, 233–4, 247–51

blend statistics, 247

business drivers, 217–18, 220–2, 246–7,

253–6

concepts, 203–9, 212–16

controls, 249

corporate models, 206–8, 213–14, 259–60

costs, 205–7, 210–11, 213–14, 220–1,

222–6, 229–30, 253–4

critique, 244–5, 246–51

failures, 209

functional areas, 206–8

future prospects, 201–2, 204, 245, 249–62

294 SUBJECT INDEX
outsourcing

(Continued)

India, 201, 204, 208–9, 210–12, 213–16,

221–2, 243, 246, 252–65

job losses, 208–9, 220, 250–1, 254–5

options, 205

origins, 212–16

PMO, 207–8, 247–8

principles, 220–2

RFPs, 221–5, 248

supplier selection, 217–18, 222–6, 244,

253–6

surveys, 246–51

testing, 208, 221, 226–8, 245, 261

virtual roundtable, 246–51

overheads

see also costs

causal model, 120–2

CoBRA, 119–74

global software development (GSD),

242–3

GSD, 242–3

software engineering experiments, 180–8
P

P2MP, 26

P2P, 26

packets, Internet security challenges, 23–4

Padmanabhan, K. (Paddy), 262–5

paired t-tests, 157, 160–1

parallel coding, Experiment Manager, 195–7

parallel programming languages, 176,

179–98

parametric model-based data-driven methods

see also model-based. . .
software development cost estimation

methods, 127–33, 136–9

partition slack, data hiding, 5, 7–8

partitions

boot sectors, 7–8

concepts, 5, 6–8

data hiding, 5, 6–8
Pascal’s calculating machine, 212

passive attacks, email spam filtering, 105–6

patent applications, India and China, 257–8

PDF files, 106–7, 109

percentiles, definition, 151

Pérez, José Carlos Corizo, 45–113

Perl, 60

PGP see Pretty Good Privacy

pharmaceutical industry, outsourcing, 209

Philippines, 210–11

philosophy, data hiding, 3–4

‘phishing’ attacks, 48, 49–50

physical aspects, data hiding, 1, 3–4

picospam, 101–2

pilots, knowledge transition

process, 239–40

Planning Game, 127, 133, 139

planning GSD guidelines, 219–20,

229–30

PLUM, 198

PMO see Project Management Office

PNG files, 25, 28–9

point estimates, 116, 141–4

politics, GSD, 203–4, 251–3

POP, 97

pornography, email spam, 50, 58–9, 96

POS systems, 204

possibilistic uncertainty, software

development cost estimation methods,

134–6

postage techniques, email spam, 54

power constraints, sensor networks, 32–4,

36, 37

PPM see Prediction by Partial Matching

practices, current GSD practice, 201–2,

203–4, 216–45

Prasad, Alpana, 201–69

predator-prey models, 127–9, 139

Prediction by Partial Matching (PPM),

82–3

Pretty Good Privacy (PGP), 53–4

PRICE-S, 126, 127

Price-to-Win efforts, 126

SUBJECT INDEX 295
primitive language analysis

see also content-based. . .; email spam

concepts, 51

privacy GSD recommendations, 220, 243

probabilistic approaches, email spam

filtering, 73–4

probabilistic uncertainty, software

development cost estimation methods,

134–6

probability density function, 123–4, 141–9

processing structure, learning-based spam

filtering, 65–7, 83

product designs, IT uses, 204

production (maintenance) support

concepts, 234–41, 261

governance model, 237–9

GSD, 234–41

knowledge transition process, 239–40

management issues, 236–7

new projects, 234–5

productivity issues, programmers, 176,

179–98, 231–2

professor participation overheads, software

engineering experiments, 180–3

professor role, experiment managers, 185

programmers 176–98, 208–9, 213–15, 220,

226–8, 231–4, 243, 250–1, 254–5

see also global software development;

human resources

historical background, 213

job losses, 208–9, 220, 250–1, 254–5

productivity issues, 176, 179–98, 231–2

software engineering experiments, 176–98

prohibited data, sanitized data, 188–90

project management committee (PMC),

237–8

Project Management Office (PMO), 207–8,

247–8

project risk analysis

CoBRA, 116–17, 118–22, 134, 138–74

concepts, 116–74, 244

empirical study, 119, 149–74

experimental results, 158–69
GSD, 244

simulation techniques, 115–74

Proofpoint P800 Message Protection

Appliance, 84

proprietary/non-proprietary data-driven

methods, software development cost

estimation methods, 126–34, 136–9

proxying methods, email spam filtering,

96–8

PS see production (maintenance) support

psychological aspects, software engineering

experiments, 176–7

PU1, 84–5, 87

Public Key Cryptography, 53–4

purchased applications, IT resources, 205–9

pX-effort approach, 135

pyramid schemes, email spam, 49
Q

QKI, 169

quality GSD recommendations, 220, 222–8,

232–4, 243, 249

quarantine folders, email spam, 58, 95–6

Quasi-MC, 138–9
R

R-DCS, 32–3

RAM slack, 7

random sampling

concepts, 116, 118–19, 138–9

overview, 138–9, 190–1

randomized arithmetic coding, 25–6

RBFN, 129

RBL see Realtime Blackhole List

RC4, 34

RC5, 34

RC6, 34–5

Reagan, Ronald, 252

Realtime Blackhole List (RBL), 52

redirected application executions, data

hiding, 14–15

reference data, definition, 150

296 SUBJECT INDEX
Register of Known Spam Offenders

(ROKSO), 50

registry entries, data hiding, 14

regression analysis, 127–31

related work

simulation techniques, 126–40

software engineering

experiments, 197–8

relative volatility of data hiding

areas, 8–9

Relevancy Score, 72

replicated studies, experiments, 177, 180–1,

191–2

reputation controls, email spam, 53–4

Request for Proposals (RFPs), 209, 221–5,

248

research questions (RQs), CoBRA, 119,

140–74

research/pedagogy balance, software

engineering experiments, 180–1

retention issues, GSD, 241–2

Reverse NDR Attacks, 100–1

RF, 31–4

RFC2821, 100

RFC3834, 100

RFID, 21, 37, 204

RFPs see Request for Proposals
Ripper, 76

risks

see also project risk analysis

GSD, 244

ROCCH metrics, 88, 90–2

ROKSO see Register of Known Spam

Offenders

Rolex, 95

roundtable see virtual roundtable
RQs see research questions

RSA, 25

RTF files, 106–7, 109

Rubin, Howard, 255

rule induction, 127, 130–1, 139

rule learners, email spam filtering, 75–6

rules, heuristic spam filtering, 51, 56–62
running test procedures, email spam

filtering evaluations, 84, 87–8

Russia, 210–11, 213, 252, 253
S

sampling techniques for software cost

estimation and risk analysis see also
Latin Hypercube (LH) sampling;

simulation techniques

accuracy study, 143, 149–74

concepts, 116, 118–19, 124–6, 138–74

dependent variables, 154–5

efficiency study, 149, 153–74

empirical study, 149–74

experimental design, 155–7, 163–9

experimental operation, 157–8

experimental results, 158–69

hypotheses, 154–69

independent variables, 154–5

Monte Carlo simulations, 116, 119,

121–4, 138–74

validity discussion, 162–9

‘sand-box model’ of ABBs, 231–4

sanitized data

classifications, 188–9

Experiment Manager, 182, 183,

188–90, 193

functions, 189–90

Sanz, Enrique Puertas, 45–113

SARI, 25

SAwin32, 97

SBS, 127, 133, 139

Schickard’s calculating machine, 212

SCRIPT tags, email spam

filtering, 107

SEAL, 34

Sebastiani, 64, 72

sectors, data hiding, 7–10

security

see also data hiding; sensor. . .
concepts, 19–43

security protocols, sensor

networks, 33–7

SUBJECT INDEX 297
SEER-SEM, 127–9, 139

SEL see Software Engineering Laboratory

self-reported data, 178–9

semantic-based multimedia retrieval, 23,

25–6

semiparametric model-based data-driven

methods see also model-based. . .
software development cost estimation

methods, 127, 131–3, 136–9

Sender Policy Framework (SPF), 53–4

sensor networks

aggregation, 31–2

battery limitations, 32–4, 36, 37

communications security, 34–5

concepts, 30–7

DCS benefits, 32–3

encryption, 33–7

hardware, 32–4, 35, 36–7

RFID, 21, 37, 204

security protocols, 33–7

software design, 35–6

SPEF, 36

threats, 32–3, 34–5

trusted software, 32, 35–6

sensor security see also multimedia

concepts, 19–20, 22–4, 30–7

encryption, 33–7

needs, 21, 22–4, 33–7

SEAL, 34

TEA, 34

XXTEA, 34

serial coding, Experiment Manager, 195

server-side email spam filtering, 93–5

Service Level Agreements (SLAs), 209, 229,

239–40, 248–9

SESE system, 197–8

Shull, Forrest, 175–200

signature-based analysis of media, data

hiding, 12–13

Silicon Valley, 257

simulation techniques

see also Latin Hypercube. . .; sampling. . .
accuracy study, 143, 149–74
analytical approaches, 143–5, 164–9

concepts, 119, 121–6, 138–74

definition, 122–3

dependent variables, 154–5

efficiency study, 149, 153–74

empirical study, 119, 149–74

experimental design, 155–7, 163–9

experimental operation, 155–7

experimental results, 158–69

hypotheses, 154–69

independent variables, 154–5

Monte Carlo simulations, 116, 119, 121–4,

138–74

software development cost estimation,

115–74

stochastic approaches, 143, 145–9

validity discussion, 162–9

single-layer perception 129

see also ANN

slack space see file slack
SLAs see Service Level Agreements

slice and dice tokenization attacks, 103

SLIM, 127–9, 139

Sloan Management Review, 250
Smith, Adam, 212

SMTP, 93, 97, 100–1

SNEP, sensor security, 33–4

socio-economic aspects, software

engineering experiments, 176–7

SoftCost-R, 126, 127

software 115–74, 175–200, 201–69

see also global software development; IT

ABBs, 231–4

costs, 205–7

development resources needed, 204–5

email spam, 50, 96

engineering, 175–200, 259–61

historical background, 201–4, 211–14

importance, 201–2, 204

life cycle model, 226–8

open source, 231–2

production (maintenance) support,

234–41

298 SUBJECT INDEX
software

(Continued)

programmers, 176–98, 213–15, 226–8,

231–4, 243, 250–1

sourcing landscape, 203–9

WDF, 226–8, 231–4

software development cost estimation

methods

accuracy study, 143, 149–74

analytical approaches, 143–5, 164–9

CoBRA, 116–17, 118–22, 134, 138–74

comparative studies, 136–40

composite methods, 127, 133, 136–9

concepts, 115–74

data-driven methods, 119–22, 126–34,

136–9

difficulties, 117–18

efficiency study, 149, 153–74

effort estimation methods, 126–40

evaluation criteria, 136–9

existing effort estimation methods,

126–40

experimental design, 155–7, 163–9

experimental operation, 157–8

experimental results, 158–69

experimental study, 119, 149–74

expert-based methods, 119–22, 127, 133,

134, 136–9

hybrid methods, 116, 119–22, 127, 134,

136–9

memory-based methods, 127, 131–3,

136–9

model-based data-driven methods,

127–33, 136–9

nonparametric model-based data-driven

methods, 127, 130–3, 136–9

parametric model-based data-driven

methods, 127–33, 136–9

possibilistic uncertainty, 134–6

probabilistic uncertainty, 134–6

proprietary/non-proprietary data-driven

methods, 126–34, 136–9

related work, 126–40
research questions, 140–74

semiparametric model-based data-driven

methods, 127, 131–3, 136–9

simulation techniques, 116, 119, 121–6,

138–74

stochastic approaches, 143, 145–9

uncertainty concepts, 134–6, 137–9

validity discussion, 162–9

software engineering experiments

see also Experiment Manager

accuracy in collected data, 178, 181–2,

197–8

behavioral aspects, 176–7

classroom resources, 175–7, 178–82

collecting data, 175–6, 177–8, 181–2,

186–90, 197–8

complexity factors, 180–1

concepts, 175–200

consistent replication across classes,

180–1, 183, 191–2

costs, 177–8

data management, 181–2

experiment managers, 182, 184–6

Hackystat, 182, 184, 185, 192, 198

hypotheses, 176–7

India, 259

IRB issues, 181–2, 192

PLUM, 198

professor participation overheads, 180–3

related work, 197–8

research/pedagogy balance, 180–1

SEL, 177–82

SESE system, 197–8

socio-economic aspects, 176–7

student participation overheads, 181–8

Software Engineering Institute, 260

Software Engineering Laboratory (SEL),

177–82

Sophos, 49, 108

sourcing IT landscape

see also outsourcing 203–9, 212–16

concepts, 203–9, 212–16

conclusions, 209

SUBJECT INDEX 299
corporate models, 206–8, 213–14, 259–60

costs, 205–6, 210–11, 213–14, 220–1,

222–6, 229–30, 253–4

failures, 209

job losses, 208–9, 220, 250–1, 254–5

options, 205–6

origins, 212–16

Soviet Union 213, 252

see also Russia

Spain, 254

spam see email spam

spam bots, 52–3, 98

SpamAssassin, 58–60, 84–5, 86, 97–8

SpamBase, 76–7, 84–5, 87

SpamBayes, Microsoft Outlook, 96–7,

105–6

The Spamhaus Project, 50

Sparse Binary Polynomial Hash (SBPH), 71

SPEF, 36

SPF see Sender Policy Framework

SPINS, sensor security, 33–4

SPQR/100, 126, 127

spread spectrum, watermarking, 27–8

SQL, 31, 182, 233–4

SRTP, 26

Stacked Generalization, 79

staff see human resources

statistical attacks, email spam filtering, 102,

104–6

steering committees (STC), 237–8

steganalysis, concepts, 29

steganography

see also data hiding; encryption

concepts, 3, 15–16, 19, 20–1, 28–9, 37

definition, 3, 28

multimedia security, 20–1, 28–9, 37

stepwise analysis of variance 127, 128, 139

see also ANOVA

Sthultz, Michael, 1–17

stochastic approaches

Latin Hypercube (LH) sampling, 146–9

Monte Carlo simulations, 145–6, 149

simulation techniques, 143, 145–9
stock scams, email spam, 50, 58

strata concepts, 124–6

stratification, concepts, 124–6

streaming video, 23–4, 30

string matching, data hiding, 11–12, 15

strong law of large numbers, 123–4

structural engineers, 259–60

student participation overheads, software

engineering experiments, 181–8

student role, experiment managers, 185

subject views, Experiment

Manager, 193–5, 196–7

suitability issues, GSD, 229–30

summarization functions, sanitized data,

189–90

superblock slack, data hiding, 5, 8

suppliers, GSD, 217–18, 222–6,

244, 253–6

support vector machines (SVMs), email

spam filtering, 71–2, 76–7

supported analyses, Experiment

Manager, 193–7

supporting standards and code review

guidelines, GSD, 231, 232–4

SVMs see support vector machines

swap files, data hiding, 14

Symantec Brightmail solution, 58, 61–2

Symantec Corporation, 58

syntax fixes, Experiment Manager, 195

SysML, 260

systems analysts/designers, GSD, 226–8

Systems Engineers, 261
T

tagging methods, email spam

filtering, 96–8

talent supplies

see also human resources

GSD, 254–6

targets for the GSD future, 259–62

Tata Consultancy Services (TCS), 213–14,

254, 262–5

300 SUBJECT INDEX
TCOE see Testing Center of Excellence

TCP/IP, 3

TCPA 32, 36–7

see also hardware

TCS see Tata Consultancy Services

TDMA, 27

TEA, 34

teams

see also human resources

GSD, 216–18, 226–30

technician role, experiment

managers, 184–5

technology change factors, GSD, 256–9

Tepfenhart, William M., 201–69

Term Clustering, 72

term frequency (TF), learning-based spam

filtering, 68–9

TESLA, sensor security, 33–4

test collections, email spam filtering

evaluations, 84–7

testing

Experiment Manager, 195

GSD life cycle model, 226–8,

245, 261

outsourcing, 208, 221, 226–8, 245, 261

Testing Center of Excellence

(TCOE), 245

Text Categorization, email spam, 63–6,

72, 80–3

TF see term frequency

things you have to live with, GSD, 242–3

third-party sources, email spam, 54–5

Thunderbird, 57, 71, 96–8

TIFF, 25

tokens and weights

learning-based spam filtering, 68–72,

79–80, 83, 102–4, 109

tokenization attacks, 102–4, 109

Translog form, 127

TREC metrics, 45, 56, 80–3, 85–8, 92

Trend Micro InterScan Messaging Security

Suite, 95–6

Trendowicz, Adam, 115–74
trust, sensor networks, 32, 35–6

trusted hardware, multimedia, 36–7

trusted software, multimedia, 32, 35–6

Turing Test, email spam, 54
U

UK

Colossus computer, 212

computing history, 212–13

GSD, 201, 204

UMDinst, Experiment Manager,

183–5, 192

UML see Unified Modeling Language

uncertainty concepts, software development

cost estimation methods, 134–6, 137–9

Unified Modeling Language (UML), 260

United Nations Conference on Trade and

Development, 47

UNIVAC I, 213

univariate regression, 127–30, 139

University of Maryland, 177–8, 184–5,

192–3

University of Pennsylvania, 213

Unix

data hiding, 1–17

UMDinst, 183

unsolicited emails see email spam

UPC, 179

URL, 102

US

computing history, 212–13

education system, 251

email spam, 47–8, 50

Experiment Manager studies, 190–1

GSD, 201, 206–9, 210–11, 243, 250–7

patent applications, 257–8

Silicon Valley, 257

USB flash drives, 4

USSR

see also Russia

computing history, 213

political changes, 252

SUBJECT INDEX 301
V

validity discussion, simulation techniques,

162–9

value-added tools, GSD, 231, 232–3

Viagra, email spam, 49, 57–8, 65,

99, 101–4

video

see also multimedia

concepts, 21–43

video teleconferencing

see also multimedia

concepts, 21–2

virtual files systems

concepts, 5, 6–7

data hiding, 6–7

virtual roundtable, outsourcing, 246–51

viruses, email spam, 48, 98

VLSI, 36

VoIP, 29, 238–9

volume slack, data hiding, 5, 6–7

VQ, 25
W

WANs, 230–1

watermarking

ambiguity attacks, 27–8

coding, 27–8

collusion attacks, 29–30

concepts, 1–2, 3, 19, 20–1, 24,

26–30, 37

definition, 3, 26–7

fragile watermarks, 28

modulation, 27–8

multimedia security, 20–1, 24, 26–30, 37

types, 26–7

WAV files, 28–9

WDF see Web Delivery Foundation

weather disasters, economic effects, 252
web 182, 183, 184–98, 226–8, 231–4

see also Internet

Experiment Manager, 182, 183,

184–98

Web Delivery Foundation (WDF), 226–8,

231–4

weights, learning-based spam

filtering, 68–9, 79–80

white and black lists, email spam, 51–3, 59,

94–5, 98

Wickenkamp, Axel, 115–74

Wideband Delphi, 127, 133, 139

Windows, data hiding, 1–17

Windows XP (SP2), 157–8

Wipro, 213

wireless sensor networks

see also sensor networks

concepts, 30–7

Wolters Kluwer (WK), 218, 220–1, 237,

243–5, 262

words, abstract addressability levels, 2, 4

workflow cycles, Experiment

Manager, 182, 185, 195–6
X

XTEA, 34

XXTEA, 34
Y

Yourdon, Ed, 255
Z

Zazworka, Nico, 175–200

Zelkowitz, Marvin V., 175–200

zip disks, 4

Contents of Volumes in This Series
Volume 42

Nonfunctional Requirements of Real-Time Systems

TEREZA G. KIRNER AND ALAN M. DAVIS

A Review of Software Inspections

ADAM PORTER, HARVEY SIY, AND LAWRENCE VOTTA

Advances in Software Reliability Engineering

JOHN D. MUSA AND WILLA EHRLICH

Network Interconnection and Protocol Conversion

MING T. LIU

A Universal Model of Legged Locomotion Gaits

S. T. VENKATARAMAN

Volume 43

Program Slicing

DAVID W. BINKLEY AND KEITH BRIAN GALLAGHER

Language Features for the Interconnection of Software Components

RENATE MOTSCHNIG-PITRIK AND ROLAND T. MITTERMEIR

Using Model Checking to Analyze Requirements and Designs

JOANNE ATLEE, MARSHA CHECHIK, AND JOHN GANNON

Information Technology and Productivity: A Review of the Literature

ERIK BRYNJOLFSSON AND SHINKYU YANG

The Complexity of Problems

WILLIAM GASARCH

3-D Computer Vision Using Structured Light: Design, Calibration, and Implementation Issues

FRED W. DEPIERO AND MOHAN M. TRIVEDI

Volume 44

Managing the Risks in Information Systems and Technology (IT)

ROBERT N. CHARETTE

Software Cost Estimation: A Review of Models, Process and Practice

FIONA WALKERDEN AND ROSS JEFFERY

Experimentation in Software Engineering

SHARI LAWRENCE PFLEEGER

Parallel Computer Construction Outside the United States

RALPH DUNCAN

Control of Information Distribution and Access

RALF HAUSER
303

304 CONTENTS OF VOLUMES IN THIS SERIES
Asynchronous Transfer Mode: An Engineering Network Standard for High Speed Communications

RONALD J. VETTER

Communication Complexity

EYAL KUSHILEVITZ

Volume 45

Control in Multi-threaded Information Systems

PABLO A. STRAUB AND CARLOS A. HURTADO

Parallelization of DOALL and DOACROSS Loops—a Survey

A. R. HURSON, JOFORD T. LIM, KRISHNA M. KAVI, AND BEN LEE

Programming Irregular Applications: Runtime Support, Compilation and Tools

JOEL SALTZ, GAGAN AGRAWAL, CHIALIN CHANG, RAJA DAS, GUY EDJLALI, PAUL HAVLAK, YUAN-SHIN

HWANG, BONGKI MOON, RAVI PONNUSAMY, SHAMIK SHARMA, ALAN SUSSMAN, AND MUSTAFA UYSAL

Optimization Via Evolutionary Processes

SRILATA RAMAN AND L. M. PATNAIK

Software Reliability and Readiness Assessment Based on the Non-homogeneous Poisson Process

AMRIT L. GOEL AND KUNE-ZANG YANG

Computer-Supported Cooperative Work and Groupware

JONATHAN GRUDIN AND STEVEN E. POLTROCK

Technology and Schools

GLEN L. BULL

Volume 46

Software Process Appraisal and Improvement: Models and Standards

MARK C. PAULK

A Software Process Engineering Framework

JYRKI KONTIO

Gaining Business Value from IT Investments

PAMELA SIMMONS

Reliability Measurement, Analysis, and Improvement for Large Software Systems

JEFF TIAN

Role-Based Access Control

RAVI SANDHU

Multithreaded Systems

KRISHNA M. KAVI, BEN LEE, AND ALLI R. HURSON

Coordination Models and Language

GEORGE A. PAPADOPOULOS AND FARHAD ARBAB

Multidisciplinary Problem Solving Environments for Computational Science

ELIAS N. HOUSTIS, JOHN R. RICE, AND NAREN RAMAKRISHNAN

Volume 47

Natural Language Processing: A Human–Computer Interaction Perspective

BILL MANARIS

CONTENTS OF VOLUMES IN THIS SERIES 305
Cognitive Adaptive Computer Help (COACH): A Case Study

EDWIN J. SELKER

Cellular Automata Models of Self-replicating Systems

JAMES A. REGGIA, HUI-HSIEN CHOU, AND JASON D. LOHN

Ultrasound Visualization

THOMAS R. NELSON

Patterns and System Development

BRANDON GOLDFEDDER

High Performance Digital Video Servers: Storage and Retrieval of Compressed Scalable Video

SEUNGYUP PAEK AND SHIH-FU CHANG

Software Acquisition: The Custom/Package and Insource/Outsource Dimensions

PAUL NELSON, ABRAHAM SEIDMANN, AND WILLIAM RICHMOND

Volume 48

Architectures and Patterns for Developing High-Performance, Real-Time ORB Endsystems

DOUGLAS C. SCHMIDT, DAVID L. LEVINE, AND CHRIS CLEELAND

Heterogeneous Data Access in a Mobile Environment – Issues and Solutions

J. B. LIM AND A. R. HURSON

The World Wide Web

HAL BERGHEL AND DOUGLAS BLANK

Progress in Internet Security

RANDALL J. ATKINSON AND J. ERIC KLINKER

Digital Libraries: Social Issues and Technological Advances

HSINCHUN CHEN AND ANDREA L. HOUSTON

Architectures for Mobile Robot Control

JULIO K. ROSENBLATT AND JAMES A. HENDLER

Volume 49

A Survey of Current Paradigms in Machine Translation

BONNIE J. DORR, PAMELA W. JORDAN, AND JOHN W. BENOIT

Formality in Specification and Modeling: Developments in Software Engineering Practice

J. S. FITZGERALD

3-D Visualization of Software Structure

MATHEW L. STAPLES AND JAMES M. BIEMAN

Using Domain Models for System Testing

A. VON MAYRHAUSER AND R. MRAZ

Exception-Handling Design Patterns

WILLIAM G. BAIL

Managing Control Asynchrony on SIMD Machines—a Survey

NAEL B. ABU-GHAZALEH AND PHILIP A. WILSEY

A Taxonomy of Distributed Real-time Control Systems

J. R. ACRE, L. P. CLARE, AND S. SASTRY

306 CONTENTS OF VOLUMES IN THIS SERIES
Volume 50

Index Part I

Subject Index, Volumes 1–49

Volume 51

Index Part II

Author Index

Cumulative list of Titles

Table of Contents, Volumes 1–49

Volume 52

Eras of Business Computing

ALAN R. HEVNER AND DONALD J. BERNDT

Numerical Weather Prediction

FERDINAND BAER

Machine Translation

SERGEI NIRENBURG AND YORICK WILKS

The Games Computers (and People) Play

JONATHAN SCHAEFFER

From Single Word to Natural Dialogue

NEILS OLE BENSON AND LAILA DYBKJAER

Embedded Microprocessors: Evolution, Trends and Challenges

MANFRED SCHLETT

Volume 53

Shared-Memory Multiprocessing: Current State and Future Directions

PER STEUSTRÖM, ERIK HAGERSTEU, DAVID I. LITA, MARGARET MARTONOSI, AND MADAN VERNGOPAL

Shared Memory and Distributed Shared Memory Systems: A Survey

KRISHNA KAUI, HYONG-SHIK KIM, BEU LEE, AND A. R. HURSON

Resource-Aware Meta Computing

JEFFREY K. HOLLINGSWORTH, PETER J. KELCHER, AND KYUNG D. RYU

Knowledge Management

WILLIAM W. AGRESTI

A Methodology for Evaluating Predictive Metrics

JASRETT ROSENBERG

An Empirical Review of Software Process Assessments

KHALED EL EMAM AND DENNIS R. GOLDENSON

State of the Art in Electronic Payment Systems

N. ASOKAN, P. JANSON, M. STEIVES, AND M. WAIDNES

Defective Software: An Overview of Legal Remedies and Technical Measures Available to Consumers

COLLEEN KOTYK VOSSLER AND JEFFREY VOAS

CONTENTS OF VOLUMES IN THIS SERIES 307
Volume 54

An Overview of Components and Component-Based Development

ALAN W. BROWN

Working with UML: A Software Design Process Based on Inspections for the Unified Modeling Language

GUILHERME H. TRAVASSOS, FORREST SHULL, AND JEFFREY CARVER

Enterprise JavaBeans andMicrosoft Transaction Server: Frameworks for Distributed Enterprise Components

AVRAHAM LEFF, JOHN PROKOPEK, JAMES T. RAYFIELD, AND IGNACIO SILVA-LEPE

Maintenance Process and Product Evaluation Using Reliability, Risk, and Test Metrics

NORMAN F. SCHNEIDEWIND

Computer Technology Changes and Purchasing Strategies

GERALD V. POST

Secure Outsourcing of Scientific Computations

MIKHAIL J. ATALLAH, K. N. PANTAZOPOULOS, JOHN R. RICE, AND EUGENE SPAFFORD

Volume 55

The Virtual University: A State of the Art

LINDA HARASIM

The Net, the Web and the Children

W. NEVILLE HOLMES

Source Selection and Ranking in the WebSemantics Architecture Using Quality of Data Metadata

GEORGE A. MIHAILA, LOUIQA RASCHID, AND MARIA-ESTER VIDAL

Mining Scientific Data

NAREN RAMAKRISHNAN AND ANANTH Y. GRAMA

History and Contributions of Theoretical Computer Science

JOHN E. SAVAGE, ALAN L. SALEM, AND CARL SMITH

Security Policies

ROSS ANDERSON, FRANK STAJANO, AND JONG-HYEON LEE

Transistors and 1C Design

YUAN TAUR

Volume 56

Software Evolution and the Staged Model of the Software Lifecycle

KEITH H. BENNETT, VACLAV T. RAJLICH, AND NORMAN WILDE

Embedded Software

EDWARD A. LEE

Empirical Studies of Quality Models in Object-Oriented Systems

LIONEL C. BRIAND AND JÜRGEN WÜST

Software Fault Prevention by Language Choice: Why C Is Not My Favorite Language

RICHARD J. FATEMAN

Quantum Computing and Communication

PAUL E. BLACK, D. RICHARD KUHN, AND CARL J. WILLIAMS

Exception Handling

PETER A. BUHR, ASHIF HARJI, AND W. Y. RUSSELL MOK

308 CONTENTS OF VOLUMES IN THIS SERIES
Breaking the Robustness Barrier: Recent Progress on the Design of the Robust Multimodal System

SHARON OVIATT

Using Data Mining to Discover the Preferences of Computer Criminals

DONALD E. BROWN AND LOUISE F. GUNDERSON

Volume 57

On the Nature and Importance of Archiving in the Digital Age

HELEN R. TIBBO

Preserving Digital Records and the Life Cycle of Information

SU-SHING CHEN

Managing Historical XML Data

SUDARSHAN S. CHAWATHE

Adding Compression to Next-Generation Text Retrieval Systems

NIVIO ZIVIANI AND EDLENO SILVA DE MOURA

Are Scripting Languages Any Good? A Validation of Perl, Python, Rexx, and Tcl against C, Cþþ, and Java

LUTZ PRECHELT

Issues and Approaches for Developing Learner-Centered Technology

CHRIS QUINTANA, JOSEPH KRAJCIK, AND ELLIOT SOLOWAY

Personalizing Interactions with Information Systems

SAVERIO PERUGINI AND NAREN RAMAKRISHNAN

Volume 58

Software Development Productivity

KATRINA D. MAXWELL

Transformation-Oriented Programming: A Development Methodology for High Assurance Software

VICTOR L. WINTER, STEVE ROACH, AND GREG WICKSTROM

Bounded Model Checking

ARMIN BIERE, ALESSANDRO CIMATTI, EDMUND M. CLARKE, OFER STRICHMAN, AND YUNSHAN ZHU

Advances in GUI Testing

ATIF M. MEMON

Software Inspections

MARC ROPER, ALASTAIR DUNSMORE, AND MURRAY WOOD

Software Fault Tolerance Forestalls Crashes: To Err Is Human; To Forgive Is Fault Tolerant

LAWRENCE BERNSTEIN

Advances in the Provisions of System and Software Security—Thirty Years of Progress

RAYFORD B. VAUGHN

Volume 59

Collaborative Development Environments

GRADY BOOCH AND ALAN W. BROWN

Tool Support for Experience-Based Software Development Methodologies

SCOTT HENNINGER

Why New Software Processes Are Not Adopted

STAN RIFKIN

CONTENTS OF VOLUMES IN THIS SERIES 309
Impact Analysis in Software Evolution

MIKAEL LINDVALL

Coherence Protocols for Bus-Based and Scalable Multiprocessors, Internet, and Wireless Distributed

Computing Environments: A Survey

JOHN SUSTERSIC AND ALI HURSON

Volume 60

Licensing and Certification of Software Professionals

DONALD J. BAGERT

Cognitive Hacking

GEORGE CYBENKO, ANNARITA GIANI, AND PAUL THOMPSON

The Digital Detective: An Introduction to Digital Forensics

WARREN HARRISON

Survivability: Synergizing Security and Reliability

CRISPIN COWAN

Smart Cards

KATHERINE M. SHELFER, CHRIS CORUM, J. DREW PROCACCINO, AND JOSEPH DIDIER

Shotgun Sequence Assembly

MIHAI POP

Advances in Large Vocabulary Continuous Speech Recognition

GEOFFREY ZWEIG AND MICHAEL PICHENY

Volume 61

Evaluating Software Architectures

ROSEANNE TESORIERO TVEDT, PATRICIA COSTA, AND MIKAEL LINDVALL

Efficient Architectural Design of High Performance Microprocessors

LIEVEN EECKHOUT AND KOEN DE BOSSCHERE

Security Issues and Solutions in Distributed Heterogeneous Mobile Database Systems

A. R. HURSON, J. PLOSKONKA, Y. JIAO, AND H. HARIDAS

Disruptive Technologies and Their Affect on Global Telecommunications

STAN MCCLELLAN, STEPHEN LOW, AND WAI-TIAN TAN

Ions, Atoms, and Bits: An Architectural Approach to Quantum Computing

DEAN COPSEY, MARK OSKIN, AND FREDERIC T. CHONG

Volume 62

An Introduction to Agile Methods

DAVID COHEN, MIKAEL LINDVALL, AND PATRICIA COSTA

The Timeboxing Process Model for Iterative Software Development

PANKAJ JALOTE, AVEEJEET PALIT, AND PRIYA KURIEN

A Survey of Empirical Results on Program Slicing

DAVID BINKLEY AND MARK HARMAN

Challenges in Design and Software Infrastructure for Ubiquitous Computing Applications

GURUDUTH BANAVAR AND ABRAHAM BERNSTEIN

310 CONTENTS OF VOLUMES IN THIS SERIES
Introduction to MBASE (Model-Based (System) Architecting and Software Engineering)

DAVID KLAPPHOLZ AND DANIEL PORT

Software Quality Estimation with Case-Based Reasoning

TAGHI M. KHOSHGOFTAAR AND NAEEM SELIYA

Data Management Technology for Decision Support Systems

SURAJIT CHAUDHURI, UMESHWAR DAYAL, AND VENKATESH GANTI

Volume 63

Techniques to Improve Performance Beyond Pipelining: Superpipelining, Superscalar, and VLIW

JEAN-LUC GAUDIOT, JUNG-YUP KANG, AND WON WOO RO

Networks on Chip (NoC): Interconnects of Next Generation Systems on Chip

THEOCHARIS THEOCHARIDES, GREGORY M. LINK, NARAYANAN VIJAYKRISHNAN, AND MARY JANE IRWIN

Characterizing Resource Allocation Heuristics for Heterogeneous Computing Systems

SHOUKAT ALI, TRACY D. BRAUN, HOWARD JAY SIEGEL, ANTHONY A. MACIEJEWSKI, NOAH BECK,

LADISLAU BÖLÖNI, MUTHUCUMARU MAHESWARAN, ALBERT I. REUTHER, JAMES P. ROBERTSON,

MITCHELL D. THEYS, AND BIN YAO

Power Analysis and Optimization Techniques for Energy Efficient Computer Systems

WISSAM CHEDID, CHANSU YU, AND BEN LEE

Flexible and Adaptive Services in Pervasive Computing

BYUNG Y. SUNG, MOHAN KUMAR, AND BEHROOZ SHIRAZI

Search and Retrieval of Compressed Text

AMAR MUKHERJEE, NAN ZHANG, TAO TAO, RAVI VIJAYA SATYA, AND WEIFENG SUN

Volume 64

Automatic Evaluation of Web Search Services

ABDUR CHOWDHURY

Web Services

SANG SHIN

A Protocol Layer Survey of Network Security

JOHN V. HARRISON AND HAL BERGHEL

E-Service: The Revenue Expansion Path to E-Commerce Profitability

ROLAND T. RUST, P. K. KANNAN, AND ANUPAMA D. RAMACHANDRAN

Pervasive Computing: A Vision to Realize

DEBASHIS SAHA

Open Source Software Development: Structural Tension in the American Experiment
COSKUN BAYRAK AND CHAD DAVIS

Disability and Technology: Building Barriers or Creating Opportunities?

PETER GREGOR, DAVID SLOAN, AND ALAN F. NEWELL

Volume 65

The State of Artificial Intelligence

ADRIAN A. HOPGOOD

Software Model Checking with SPIN

GERARD J. HOLZMANN

CONTENTS OF VOLUMES IN THIS SERIES 311
Early Cognitive Computer Vision

JAN-MARK GEUSEBROEK

Verification and Validation and Artificial Intelligence

TIM MENZIES AND CHARLES PECHEUR

Indexing, Learning and Content-Based Retrieval for Special Purpose Image Databases

MARK J. HUISKES AND ERIC J. PAUWELS

Defect Analysis: Basic Techniques for Management and Learning

DAVID N. CARD

Function Points

CHRISTOPHER J. LOKAN

The Role of Mathematics in Computer Science and Software Engineering Education

PETER B. HENDERSON

Volume 66

Calculating Software Process Improvement’s Return on Investment

RINI VAN SOLINGEN AND DAVID F. RICO

Quality Problem in Software Measurement Data

PIERRE REBOURS AND TAGHI M. KHOSHGOFTAAR

Requirements Management for Dependable Software Systems

WILLIAM G. BAIL

Mechanics of Managing Software Risk

WILLIAM G. BAIL

The PERFECT Approach to Experience-Based Process Evolution

BRIAN A. NEJMEH AND WILLIAM E. RIDDLE

The Opportunities, Challenges, and Risks of High Performance Computing in Computational Science and

Engineering

DOUGLASS E. POST, RICHARD P. KENDALL, AND ROBERT F. LUCAS

Volume 67

Broadcasting a Means to Disseminate Public Data in a Wireless Environment—Issues and Solutions

A. R. HURSON, Y. JIAO, AND B. A. SHIRAZI

Programming Models and Synchronization Techniques for Disconnected Business Applications

AVRAHAM LEFF AND JAMES T. RAYFIELD

Academic Electronic Journals: Past, Present, and Future

ANAT HOVAV AND PAUL GRAY

Web Testing for Reliability Improvement

JEFF TIAN AND LI MA

Wireless Insecurities

MICHAEL STHULTZ, JACOB UECKER, AND HAL BERGHEL

The State of the Art in Digital Forensics

DARIO FORTE

312 CONTENTS OF VOLUMES IN THIS SERIES
Volume 68

Exposing Phylogenetic Relationships by Genome Rearrangement

YING CHIH LIN AND CHUAN YI TANG

Models and Methods in Comparative Genomics

GUILLAUME BOURQUE AND LOUXIN ZHANG

Translocation Distance: Algorithms and Complexity

LUSHENG WANG

Computational Grand Challenges in Assembling the Tree of Life: Problems and Solutions

DAVID A. BADER, USMAN ROSHAN, AND ALEXANDROS STAMATAKIS

Local Structure Comparison of Proteins

JUN HUAN, JAN PRINS, AND WEI WANG

Peptide Identification via Tandem Mass Spectrometry

XUE WU, NATHAN EDWARDS, AND CHAU-WEN TSENG

Volume 69

The Architecture of Efficient Multi-Core Processors: A Holistic Approach

RAKESH KUMAR AND DEAN M. TULLSEN

Designing Computational Clusters for Performance and Power

KIRK W. CAMERON, RONG GE, AND XIZHOU FENG

Compiler-Assisted Leakage Energy Reduction for Cache Memories

WEI ZHANG

Mobile Games: Challenges and Opportunities

PAUL COULTON, WILL BAMFORD, FADI CHEHIMI, REUBEN EDWARDS, PAUL GILBERTSON, AND

OMER RASHID

Free/Open Source Software Development: Recent Research Results and Methods

WALT SCACCHI

Volume 70

Designing Networked Handheld Devices to Enhance School Learning

JEREMY ROSCHELLE, CHARLES PATTON, AND DEBORAH TATAR

Interactive Explanatory and Descriptive Natural-Language Based Dialogue for Intelligent Information

Filtering

JOHN ATKINSON AND ANITA FERREIRA

A Tour of Language Customization Concepts

COLIN ATKINSON AND THOMAS KÜHNE

Advances in Business Transformation Technologies

JUHNYOUNG LEE

Phish Phactors: Offensive and Defensive Strategies

HAL BERGHEL, JAMES CARPINTER, AND JU-YEON JO

Reflections on System Trustworthiness

PETER G. NEUMANN

CONTENTS OF VOLUMES IN THIS SERIES 313
Volume 71

Programming Nanotechnology: Learning from Nature

BOONSERM KAEWKAMNERDPONG, PETER J. BENTLEY, AND NAVNEET BHALLA

Nanobiotechnology: An Engineer’s Foray into Biology

YI ZHAO AND XIN ZHANG

Toward Nanometer-Scale Sensing Systems: Natural and Artificial Noses as Models for Ultra-Small,

Ultra-Dense Sensing Systems

BRIGITTE M. ROLFE

Simulation of Nanoscale Electronic Systems

UMBERTO RAVAIOLI

Identifying Nanotechnology in Society

CHARLES TAHAN

The Convergence of Nanotechnology, Policy, and Ethics

ERIK FISHER

Volume 72

DARPA’s HPCS Program: History, Models, Tools, Languages

JACK DONGARRA, ROBERT GRAYBILL, WILLIAM HARROD, ROBERT LUCAS, EWING LUSK, PIOTR LUSZCZEK,

JANICE MCMAHON, ALLAN SNAVELY, JEFFERY VETTER, KATHERINE YELICK, SADAF ALAM, ROY

CAMPBELL, LAURA CARRINGTON, TZU-YI CHEN, OMID KHALILI, JEREMY MEREDITH, AND

MUSTAFA TIKIR

Productivity in High-Performance Computing

THOMAS STERLING AND CHIRAG DEKATE

Performance Prediction and Ranking of Supercomputers

TZU-YI CHEN, OMID KHALILI, ROY L. CAMPBELL, JR., LAURA CARRINGTON, MUSTAFA M. TIKIR, AND

ALLAN SNAVELY

Sampled Processor Simulation: A Survey

LIEVEN EECKHOUT

Distributed Sparse Matrices for Very High Level Languages

JOHN R. GILBERT, STEVE REINHARDT, AND VIRAL B. SHAH

Bibliographic Snapshots of High-Performance/High-Productivity Computing

MYRON GINSBERG

Volume 73

History of Computers, Electronic Commerce, and Agile Methods

DAVID F. RICO, HASAN H. SAYANI, AND RALPH F. FIELD

Testing with Software Designs

ALIREZA MAHDIAN AND ANNELIESE A. ANDREWS

Balancing Transparency, Efficiency, AND Security in Pervasive Systems

MARK WENSTROM, ELOISA BENTIVEGNA, AND ALI R. HURSON

Computing with RFID: Drivers, Technology and Implications

GEORGE ROUSSOS

Medical Robotics and Computer-Integrated Interventional Medicine

RUSSELL H. TAYLOR AND PETER KAZANZIDES

	Cover Page
	Contributors
	Contributors

	Preface
	Preface

	Data Hiding Tactics for Windows and Unix File Systems
	Data Hiding Tactics for Windows and Unix File Systems
	The Philosophy of Digital Data Hiding
	The Concept of Data Hiding
	Physical Aspect of Data Hiding

	Digital Storage and File Systems
	Disk Structures
	Virtual File Systems
	Partition Organization
	ExtX
	NTFS

	Forensic Implications
	Fat16
	NTFS

	Perspectives
	Conclusion
	References

	Multimedia and Sensor Security
	Multimedia and Sensor Security
	Introduction
	Multimedia Systems and Applications
	Multimedia Security
	Digital Watermarking
	Steganography
	Computer Forensics
	Sensor Networks
	Security Protocols for Wireless Sensor Networks
	Communication Security in Sensor Networks
	Sensor Software Design
	Trusted Software
	Hardware Power-Aware Sensor Security
	Trusted Hardware
	Sensor Networks and RFID Security
	Conclusion
	References

	Email Spam Filtering
	Email Spam Filtering
	Introduction
	What is Spam?
	The Problem of Email Spam
	Spam Families
	Internet Hoaxes and Chain Letters
	Pyramid Schemes
	Advance Fee Fraud
	Commercial Spam

	Legal Measures Against Spam

	Technical Measures
	Primitive Language Analysis or Heuristic Content Filtering
	White and Black Listings
	Graylisting
	Digital Signatures and Reputation Control
	Postage
	Disposable Addresses
	Collaborative Filtering
	Honeypotting and Email Traps
	Content-Based Filters

	Content-Based Spam Filtering
	Heuristic Filtering
	The SpamAssassin Filter
	The Symantec Brightmail Solution
	Problems in Heuristic Filtering

	Learning-Based Filtering
	Spam Filtering as Text Categorization
	Structure of Processing
	Feature Engineering
	Tokens and Weights
	Multi-word Features
	Feature Selection and Extraction

	Learning Algorithms
	Probabilistic Approaches
	Decision Trees
	Rule Learners
	Support Vector Machines
	k-Nearest Neighbors
	Classifier Committees
	Cost-Sensitive Learning

	Filtering by Compression
	Comparison and Summary

	Spam Filters Evaluation
	Test Collections
	Running Test Procedure
	Evaluation Metrics
	Basic Metrics
	The ROCCH Method
	TREC Metrics

	Spam Filters in Practice
	Server Side Versus Client Side Filtering
	Quarantines
	Proxying and Tagging
	Best and Future Practical Spam Filtering

	Attacking Spam Filters
	Introduction
	Indirect Attacks
	Direct Attacks
	Tokenization Attacks
	Hypertextus Interruptus
	Slice and Dice
	Lost in Space

	Obfuscation Attacks
	Statistical Attacks
	Passive Attacks
	Active Attacks
	Invisible Ink

	Hidden Text Attacks
	MIME Encoding
	Script Hides the Contents
	Image-Based Spam
	Spam Using Other Formats

	Conclusions and Future Trends
	References

	The Use of Simulation Techniques for Hybrid Software Cost Estimation and Risk Analysis
	The Use of Simulation Techniques for Hybrid Software Cost Estimation and Risk Analysis
	Introduction
	Background
	CoBRA Principles
	Simulation Techniques
	Basic Principles of the MC Method
	Stratification and LH Sampling

	Related Work
	Software Effort Estimation Methods
	Classification of Existing Effort Estimation Methods
	Data-driven Methods
	Proprietary Versus Non-proprietary
	Model-Based Methods
	Parametric Model-Based Methods
	Nonparametric Model-Based Methods
	Semi-parametric Model-Based Methods
	Memory-based Methods
	Composite Methods

	Expert-Based Methods
	Hybrid Methods

	Handling Uncertainty
	Handling Probabilistic Uncertainty
	Handling Possibilistic Uncertainty

	Evaluation and Comparison of Existing Effort Estimation Methods

	Overview of Random Sampling Techniques

	Analytical Approaches
	Point Estimation
	Distribution Computation

	Stochastic Approaches
	The LH Approach
	Comparison of Stochastic Algorithms

	Experimental Study
	Experimental Planning
	Construct: Accuracy
	Construct: Efficiency
	Independent and Dependent Variables
	Hypotheses
	Experimental Design

	Experimental Operation
	Experimental Results
	Accuracy of Simulation Algorithms
	Efficiency of Simulation Algorithms

	Validity Discussion
	Threats to Validity
	Analytical Considerations

	Summary
	Acknowledgments
	References

	An Environment for Conducting Families of Software Engineering Experiments
	An Environment for Conducting Families of Software Engineering Experiments
	Introduction
	Collecting Accurate Data
	Costs of Software Engineering Studies
	Accuracy in Collected Data

	Classroom Studies

	Classroom as Software Engineering Lab
	The Experiment Manager Framework
	Instrumentation Package
	Web Portal

	Experiment Manager Roles
	Data Collection
	Data Sanitization

	Current Status
	Experiment Manager Effectiveness
	Experiment Manager Evolution
	Supported Analyses
	Views of a Single Subject
	Validation of Workflow Heuristics
	Views of Multiple Subjects Across Several Classes

	Evaluation

	Related Work
	Conclusions
	Acknowledments
	References

	Global Software Development: Origins, Practices, and Directions
	Global Software Development: Origins, Practices, and Directions
	Introduction
	IT Sourcing Landscape
	Global Software Development
	GSD as an Industry
	Origins of Global Development
	Early Computing Sourcing
	Emergence of India as an IT Supplier

	Strengths of Indian IT Industry
	Large Human Resource
	Indian Education System
	Quality Manpower
	Strengths at a Glance

	Other Countries

	Current GSD Practice
	Practice Introduced
	Practice Background
	Business Drivers
	The Supplier Selection Process
	Our Model for Cross-Shore Development
	Distributed Approach Details
	Key Management Guidelines

	A Micro Engineering Process
	Infrastructure and Tools
	The Delivery Framework
	Application Building Blocks
	Supporting Standards and Code Review Guidelines
	Value-Added Tools
	Best Practices

	Interim Functional Delivery

	Production Support
	Engagement Model
	Governance Model
	Infrastructure and Setup
	Knowledge Transition Process
	Operational Process for Maintenance and Support

	Knowledge Management
	Critical Loose Ends
	Things You Have to Live With
	Risks
	Collaborating with Vendors
	Results
	Future Direction in the Program
	Practice Model Concluded

	A Virtual Roundtable on Outsourcing
	The Roundtable Mechanics
	The Roundtable Responses
	Roundtable Discussed

	Future Directions in Offshoring
	Political Factors Affecting Offshoring
	Political Stability at the National Level
	Global Economic Stability
	Cross-Country Alliances
	Local Effects

	Business Factors Affecting the Future of Offshoring
	Competition Among Suppliers
	Talent Supply
	Domain Knowledge Loss
	Reduction in Management and Technical Currency

	Technology Factors Affecting Offshoring
	Innovation Emergence
	Engineering Evolution

	A Future Target for GSD

	Conclusions
	Acknowlegdments
	Interview with K. (Paddy) Padmanabhan of Tata Consultancy Services 3/9/07
	List of Acronyms
	References

	Author Index
	Subject Index
	Contents of Volumes in This Series
	Contents of Volumes in This Series

