

Advances in

COMPUTERS
VOLUME 73

This page intentionally left blank

Advances in
COMPUTERS
EmergingTechnologies

EDITED BY

MARVIN V. ZELKOWITZ
Department of Computer Science
University of Maryland
College Park, Maryland

VOLUME 73

Amsterdam • Boston • Heidelberg • London • New York • Oxford
Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo

Academic Press is an imprint of Elsevier

ACADEMIC
PRESS

Academic Press is an imprint of Elsevier
84 Theobald’s Road, London WC1X 8RR, UK
Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
525 B Street, Suite 1900, San Diego, CA 92101-4495, USA

First edition 2008

Copyright © 2008 Elsevier Inc. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means electronic, mechanical, photocopying,
recording or otherwise without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333;
email: permissions@elsevier.com. Alternatively you can submit your request online by
visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting
Obtaining permission to use Elsevier material.

Notice
No responsibility is assumed by the publisher for any injury and/or damage to persons
or property as a matter of products liability, negligence or otherwise, or from any use
or operation of any methods, products, instructions or ideas contained in the material herein.

ISBN: 978-0-12-374425-8

ISSN: 0065-2458

For information on all Academic Press publications
visit our website at elsevierdirect.com

Printed and bound in USA

08 09 10 11 12 10 9 8 7 6 5 4 3 2 1

Contents

Contributors . ix

Preface . xiii

History of Computers, Electronic Commerce and Agile
Methods

David F. Rico, Hasan H. Sayani and Ralph F. Field

1. Introduction . 3
2. History of Computers and Software 4
3. History of Electronic Commerce . 9
4. History of Software Methods . 13
5. History of Software Quality Measurement 24
6. History of Agile Methods . 30
7. History of Studies on Agile Methods 40
8. Conclusions . 44

References . 45

Testing with Software Designs

Alireza Mahdian and Anneliese A. Andrews

1. Introduction . 58
2. Testing Criteria . 59
3. Design Evaluation Methods . 64
4. Conclusions . 94

References . 95

v

vi CONTENTS

BalancingTransparency, Efficiency and Security in
Pervasive Systems

Mark Wenstrom, Eloisa Bentivegna and Ali R. Hurson

1. Introduction . 101
2. Resource Management . 103
3. Security . 136
4. Current Projects . 146
5. Final Remarks . 155

Acknowledgements . 157
References . 157

Computing with RFID: Drivers,Technology and
Implications

George Roussos

1. Introduction . 162
2. Supply Chain Basics . 163
3. Business Computing and the Supply Chain 166
4. Supply Chain Optimization . 175
5. RFID Technology Basics . 179
6. RFID Software and Network Services 191
7. Practical RFID in the Supply Chain 198
8. Business Drivers . 202
9. Consumer Acceptance of Item-Level Applications 205

10. Privacy Implications of Item-Level Tagging 209
11. RFID and EU Law . 211
12. Discussion and Conclusions . 214

References . 215

Medical Robotics and Computer-Integrated Interventional
Medicine

Russell H.Taylor and Peter Kazanzides

1. Introduction . 220
2. Technology and Techniques . 222

CONTENTS vii

3. Surgical CAD/CAM . 237
4. Surgical Assistance . 242
5. Summary and Conclusion . 249

References . 250

Author Index . 261
Subject Index . 275
Contents of Volumes in This Series . 283

This page intentionally left blank

Contributors

Anneliese Amschler Andrews is Professor and Chair of the Department of Computer
Science at the University of Denver. Her current research interests include software
testing, software design, software maintenance and empirical software engineering.
She has published over 150 research papers in refereed software engineering journals
and conferences. She serves in the editorial board of five software engineering jour-
nals and in many program committees for conferences. She received a PhD degree in
Computer Science from Duke University.

Eloisa Bentivegna is a Ph.D. student in physics (with a minor in high-performance
computing) at the Pennsylvania State University, State College. She received an M.Sc.
in Theoretical Physics summa cum laude from University of Catania, Italy, in 2002.
Her research areas include numerical relativity and cosmology. She was appointed as
a John Archibald Wheeler Fellow in 2006 and has been an Eberly College of Science
Duncan Fellow since 2003.

Ralph F. Field has 25 years of experience in education and program management.
He has been working for the University of Maryland University College’s Graduate
School of Management and Technology since 1995, where he is an associate profes-
sor at both the masters and doctoral level. At University College, he is the Program
Director for Not-for-Profit Management, Naval Operations and National Security,
Army Sustaining Base Management, Joint Military Strategy, Planning and Decision
Making and Air and Space Strategic Studies. He has performed extensive field work
in Botswana, Africa, as a Peace Corp. volunteer. He holds a PhD in Development
Sociology.

A. R. Hurson is the department chair and professor of the computer science depart-
ment at the university of Missouri-Rolla. Before his current appointment, he was
a Computer Science and Engineering professor at The Pennsylvania State Univer-
sity. His research for the past 25 years has been directed towards the design and

ix

x CONTRIBUTORS

analysis of general as well as special-purpose computer architectures. His research
has been supported by NSF, NCR Corp., DARPA, IBM, Lockheed Martin, ONR and
Penn State University. He has published over 250 technical papers in areas including
database systems, multi-databases, global information-sharing processing, applica-
tion of mobile-agent technology and object-oriented databases, Mobile-computing
environment and computer architecture parallel and distributed processing. He is the
co-author of the IEEETutorials on ParallelArchitectures for Database Systems, Multi-
database Systems: An Advanced Solution for Global Information Sharing, Parallel
Architectures for Data/Knowledge Base Systems, and Scheduling and Load Balan-
cing in Parallel and Distributed Systems.

He served as a member of the IEEE Computer Society Press Editorial Board, an IEEE
distinguished speaker and editor of IEEE transactions on computers and IEEE/ACM
Computer Sciences Accreditation Board. Currently, he is serving as an ACM lecturer,
editor of Journal of Pervasive and Mobile Computing and editor of The CSI Journal
of Computer Science and Engineering.

Peter Kazanzides received the B.Sc., M.Sc. and Ph.D. degrees in electrical engineer-
ing from Brown University in 1983, 1985 and 1988, respectively. His dissertation
focused on force control and multi-processor systems for robotics. He began work on
surgical robotics in March 1989 as a postdoctoral researcher at the IBM T.J. Watson
Research Center with Dr. Russell Taylor. Dr. Kazanzides co-founded Integrated Sur-
gical Systems (ISS) in November 1990 to commercialize the robotic hip replacement
research performed at IBM and the University of California, Davis. As Director of
Robotics and Software, he was responsible for the design, implementation, validation
and support of the ROBODOC® hardware and software. Dr. Kazanzides joined the
Engineering Research Center for Computer-Integrated Surgical Systems and Tech-
nology (CISST ERC) at Johns Hopkins University in December 2002. He currently
holds an appointment as an Assistant Research Professor of Computer Science at
Johns Hopkins University.

Alireza Mahdian is currently a second-year PhD student at the Department of Com-
puter Science at the University of Denver. His current research interests include
software testing, software design and software maintenance. He received his BS
degree in Computer Engineering from Sharif University of Technology, Iran.

David F. Rico has been a systems engineer in support of the NSA, NRO, NASA,
DARPA, DISA, SPAWAR, USAF, NAVAIR, CECOM and MICOM for 20+ years.
He worked on NASA’s $20 billion space station in the 1980s, he worked for a

CONTRIBUTORS xi

$40 billion Japanese corporation in Tokyo in the early 1990s and he worked on U.S.
Navy fighters such as the F-18, F-14 and many others. He’s been an international
keynote speaker, has published numerous articles and has contributed to five books
on computer science. He holds a bachelor’s degree in computer science, a master’s
degree in software engineering and a doctoral degree in information technology.

George Roussos holds a first degree in Pure Mathematics from the University of
Athens, an MSc in Numerical Analysis and Computing from the University of Man-
chester and a PhD in Distributed Scientific Computing from Imperial College, where
his studies were supported by a Marie Curie Fellowship. He is currently a Senior Lec-
turer at the School of Computer Science and Information Systems, Birkbeck College,
University of London, where he leads the pervasive computing lab. Before joining
Birkbeck College as a lecturer, he worked as the Research and Development Manager
for a multi-national information technology corporation in Athens, Greece, where he
was responsible for the strategic development of new IT products in the areas of
knowledge management and mobile internet; as an Internet security officer for the
Ministry of Defence, Athens, where he designed the Hellenic armed forces Internet
exchange and domain name systems; and as a research fellow for Imperial College,
London, where he conducted research in distributed systems. He is currently investi-
gating the effects of social activity on system architectures and exploring mechanisms
to support navigation and findability. He is a member of the ACM, SIGMOBILE, the
IEEE, the IEEE Communications and the IEEE Computer Society.

Hasan H. Sayani’s interests lie in information systems, development of information
systems, life cycle methods and tools and semantic database management systems. He
has taught at the University of Maryland – College Park in the Information Systems
Management program. He also co-founded a commercial organization which built
systems for various commercial and governmental organizations. He has participated
in various professional (e.g., IEEE, ACM, CASE) and standardization organizations
(e.g., ANS, CODASYL, DoD, CALS). He holds a BSE, MSE and PhD from the
University of Michigan.

Russell H. Taylor received his Ph.D. in Computer Science from Stanford in 1976.
He joined IBM Research in 1976, where he developed the AML robot language and
managed the Automation Technology Department and (later) the Computer-Assisted
Surgery Group before moving in 1995 to Johns Hopkins, where he is a Professor of
Computer Science, with joint appointments in Mechanical Engineering, Radiology
and Surgery, and is Director of the NSF Engineering Research Center for Computer-
Integrated Surgical Systems and Technology. He is the author of more than 200

xii CONTRIBUTORS

refereed publications, a Fellow of the IEEE and AIMB and a recipient of the Maurice
Müller award for excellence in computer-assisted orthopaedic surgery.

Mark Wenstrom received his B.S. degree (summa cum laude) in computer science
and engineering from Bucknell University, Lewisburg, in 2005. He received his M.E.
degree in computer science and engineering from The Pennsylvania State University,
State College, on May 2007.

Preface

This is volume 73 of the Advances in Computers. This series, which began pub-
lication in 1960, is the oldest continuously published anthology that chronicles the
ever changing information technology field. In these volumes, we publish from 5 to 7
chapters that cover the latest changes to the design, development, use and implications
of computer technology on society today. In this current volume, subtitled ‘Emerging
Technologies’, we discuss several new advances in computer software generation as
well as describe new applications of those computers.

In the first chapter, ‘History of computers, electronic commerce and agile meth-
ods’, D. F. Rico, H. H. Sayani and R. F. Field give an overview of various software
development technologies that have been applied during the past 40 years, with the
goal of improving the software development process. This includes various methods
such as structured development methods, reviews, object-oriented methods and rapid
development technologies. In this latter category, they spend the last third of their
chapter reviewing the current development and interest in agile methods as a means
to rapidly produce effective programs.

Anneliese Andrews and Alireza Mahdian in Chapter 2, ‘Testing with software
designs’, explore implications of UML as an emerging design notation for software.
As they state in their chapter ‘Originally, designs in UML have been used to test
implementations against their design artifacts, but there are also testing techniques
that test the design artifacts directly’. They discuss techniques where designs in UML
can be used to test the underlying implementation.

Chapter 3 ‘Balancing transparency, efficiency and security in pervasive systems’,
by Mark Wenstrom, Eloisa Bentivegna and Ali Hurson deal with the emerging con-
cept of pervasive computing and its impact on resource management and security.
The basic goals of pervasive computing are that computer technology is seamlessly
available whenever and wherever the user is situated. But this goes against the security
goals of isolating users from potentially malicious attacks by unauthorized individ-
uals. Similarly, resources are not uniformly distributed throughout an environment,
although computing resources are expected to be available when needed. In this chap-
ter, the authors discuss how this goal of transparency of computers affects efficiency
of the system as well as security concerns.

xiii

xiv PREFACE

RFID, or Radio Frequency Identification, is coming to a store near you. This is
the technology that cheaply tags products with unique identifiers that only need to
pass near a reading device rather than specifically being read by a scanner. With
this technology, products can be easily traced through the supply chain from the
manufacturer to the user. George Roussos in Chapter 4, ‘Computing with RFID:
drivers, technology and implications’, discusses this technology, how supply chains
work in industry, and briefly gives an overview of the basic technology of its operation.

In addition to changes to your local supermarket described in the preceding chap-
ter, robotic research will have an important impact on other aspects of everyday
life. One area of growing use of robot control is in medicine. In the final chapter,
Dr. Russell Taylor and Dr. Peter Kazanzides discuss the use of robot technology in
medicine, specifically Computer-Integrated Interventional Medicine (CIIM), where
robotic control takes over some or all of the aspects of surgery.

I hope you found this volume to be interesting. I am always looking for new and
different chapters and volume themes to use for future volumes. If you know of a
topic that has not been covered recently or are interested in writing such a chapter,
please let me know. I am also always looking for qualified authors. If interested, I can
be contacted at mvz@cs.umd.edu. I hope you like these volumes and I look forward
to producing the next one in this long-running series.

Marvin Zelkowitz
University of Maryland
College Park, Maryland

History of Computers,
Electronic Commerce and
Agile Methods

DAVID F. RICO

HASAN H. SAYANI

Graduate School of Management andTechnology
University of Maryland University College

RALPH F. FIELD

Graduate School of Management andTechnology
University of Maryland University College

Abstract
The purpose of this chapter is to present a literature review relevant to a study
of using agile methods to manage the development of Internet websites and their
subsequent quality. This chapter places website quality within the context of the
$2.4 trillion U.S. electronic commerce industry. Thus, this chapter provides a
history of electronic computers, electronic commerce, software methods, soft-
ware quality metrics, agile methods and studies on agile methods. None of these
histories are without controversy. For instance, some scholars begin the study
of the electronic computer by mentioning the emergence of the Sumerian text,
Hammurabi code or the abacus. We, however, will align our history with the
emergence of the modern electronic computer at the beginning of World War II.
The history of electronic commerce also has poorly defined beginnings. Some
studies of electronic commerce begin with the widespread use of the Internet in
the early 1990s. However, electronic commerce cannot be appreciated without
establishing a deeper context. Few scholarly studies, if any, have been performed
on agile methods, which is the basic purpose of this literature review. That is,
to establish the context to conduct scholarly research within the fields of agile
methods and electronic commerce.

ADVANCES IN COMPUTERS, VOL. 73 1 Copyright © 2008 Elsevier Inc.
ISSN: 0065-2458/DOI: 10.1016/S0065-2458(08)00401-4 All rights reserved.

2 D.F. RICO ET AL.

1. Introduction . 3

2. History of Computers and Software . 4

2.1. Electronic Computers . 4

2.2. Programming Languages . 6

2.3. Operating Systems . 6

2.4. Packaged Software . 7

2.5. Internet and WWW . 7

3. History of Electronic Commerce . 9

3.1. Electronic Commerce . 9

3.2. Second-Generation Electronic Commerce 9

3.3. Third-Generation Electronic Commerce 11

3.4. Fourth-Generation Electronic Commerce 11

3.5. Mid-Fourth-Generation Electronic Commerce 11

4. History of Software Methods . 13

4.1. Database Design . 13

4.2. Automatic Programming . 13

4.3. Software Project Management . 16

4.4. Early User Involvement . 16

4.5. Structured Methods . 16

4.6. Formal Methods . 17

4.7. Software Life Cycles . 17

4.8. Software Reviews . 18

4.9. Object-Oriented Methods . 18

4.10. Software Testing . 19

4.11. Software Environments . 19

4.12. Software Quality Assurance . 20

4.13. Software Processes . 20

4.14. Rapid Development . 21

4.15. Software Reuse . 21

4.16. Software Architecture . 22

4.17. Agile Methods . 22

5. History of Software Quality Measurement 24

5.1. Software Size . 24

5.2. Software Errors . 24

5.3. Software Attributes . 26

5.4. Static Defect Models . 26

5.5. Software Complexity . 27

HISTORY OF COMPUTERS, ELECTRONIC COMMERCE 3

5.6. Software Reliability . 28

5.7. User Satisfaction . 29

5.8. Website Quality . 29

6. History of Agile Methods . 30

6.1. New Product Development Game . 30

6.2. New Development Rhythm . 32

6.3. Scrum . 32

6.4. Dynamic Systems Development Method 33

6.5. Synch-N-Stabilize . 33

6.6. Judo Strategy . 34

6.7. Internet Time . 34

6.8. Extreme Programming . 35

6.9. Crystal Methods . 36

6.10. Feature-Driven Development . 36

7. History of Studies on Agile Methods 40

7.1. Harvard Business School I . 40

7.2. Harvard Business School II . 40

7.3. Boston College Carroll School of Management 40

7.4. Reifer Consultants . 42

7.5. Shine Technologies . 42

7.6. CIO Magazine . 42

7.7. Digital Focus . 42

7.8. Version One . 43

7.9. AmbySoft 2006 . 43

7.10. AmbySoft 2007 . 43

7.11. UMUC . 43

8. Conclusions . 44

References . 45

1. Introduction

Agile methods are an approach for managing the development of new products
based on principles of flexible manufacturing and lean development. The use of agile
methods for Internet software was a reaction to the emergence of traditional software
development methods, which were too cumbersome, expensive, rigid and fraught with
failure. Downsizing was the norm and traditional methods were being used by large

4 D.F. RICO ET AL.

corporations in decline, rather than by young, energetic firms on the rise. Millions of
websiteswerecreatedovernightbyanyonewithacomputerandamodicumofcuriosity.
Agile methods marked the end of traditional methods in the minds of their creators.

Traditional methods for managing software development were created when the
first commercial computers began emerging in the 1950s. Scientists and engineers
began creating increasingly more powerful and complex computer systems, and inor-
dinately complex computer programs beyond the comprehension of a single human.
These early computer programs had millions of components to perform the simplest
of operations, giving rise to traditional methods. The rise of traditional methods is
also linked to the debut of the commercial software industry in the 1960s. Traditional
methods consisted of formal project plans, well-documented customer requirements,
detailed engineering processes, hundreds of documents and rigorous testing.

Agile methods emerged with a focus on iterative development, customer feedback,
well-structured teams and flexibility. Internet technologies such as HTML and Java
were powerful new prototyping languages, enabling smaller teams to build bigger
software products in less time. Because they could be built faster, customers could
begin to see finished software sooner and provide earlier feedback, and developers
could rapidly refine their software. This gave rise to closed-loop, circular, highly
recursive and tightly knit processes for rapidly creating Internet software, leading to
improvements in website quality for electronic commerce.

2. History of Computers and Software

2.1 Electronic Computers
Electronic computers are simply machines that perform useful functions such as

mathematical calculations or inputting, processing and outputting data and informa-
tion in meaningful forms [1]. As shown in Figure 1, modern electronic computers
are characterized by four major generations: first-generation vacuum tube comput-
ers from 1940 to 1950, second-generation transistorized computers from 1950 to
1964, third-generation integrated circuit computers from 1964 to 1980 and fourth-
generation microprocessor computers from 1980 to the present [1]. First-generation
or vacuum tube computers consisted of the electronic numerical integrator and
calculator or ENIAC; electronic discrete variable computer or EDVAC; universal
automatic computer or UNIVAC; and Mark I, II and III computers [1]. Second-
generation or transistorized computers consisted of Philco’s TRANSAC S-1000,
Control Data Corporation’s 3600 and International Business Machine’s 7090 [1].
Third-generation or integrated-circuit-based computers consisted of International
Business Machine’s System/360, Radio Corporation of America’s Spectra 70 and

HISTORY OF COMPUTERS, ELECTRONIC COMMERCE 5

FIRST GENERATION
(Vacuum Tubes 1940–50)

SECOND GENERATION
(Transistorized 1950–64)

THIRD GENERATION
(Integrated Circuit 1964–80)

FOURTH GENERATION
(Microprocessor 1980-Present)

Electronic Computers
• ENIAC
• EDVAC
• UNIVAC
• MARK I, II, III

Operating Systems

Packaged Software

Internet & WWW

Programming Languages

• TRANSAC S-100
• CDC 3600
• IBM 7090

• IBM 3/360
• RCA Spectra 70
• Honeywell 200
• CDC 7600
• DEC PDP-8

• IBM PC
• Apple Macintosh

• FORTRAN
• FLOWMATIC
• ALGOL
• COBOL
• JOVIAL

• BASIC
• PL/I
• Smalltalk
• Pascal
• C

• Ada
• C++
• Eiffel
• Perl
• Java

• IBM 0S/360
• MIT CTSS
• MULTICS
• UNIX
• DEC VMS

• CPM
• DOS
• MAC OS
• MS Windows

• Autoflow • Wordperfect
• Word
• Excel
• 1-2-3
• Visicalc
• dBase

• ARPA
• IMP
• NCP
• Ethernet
• TCP/IP

• DNS
• AOL
• HTML
• HTTP
• Netscape

Fig. 1. Timeline and history of computers and software.

Honeywell’s 200 [1]. Late third-generation computers included Cray’s CDC 7600
as well as Digital Equipment Corporation’s PDP-8, VAX 11/750 and VAX 11/780
[4]. Fourth-generation or microprocessor-based computers included the International
Business Machine’s Personal Computer or PC and Apple’s Macintosh [3].

6 D.F. RICO ET AL.

2.2 Programming Languages
Programming languages are defined as ‘any of various languages for expressing

a set of detailed instructions for a digital computer’ [5]. By 1972, there were 170
programming languages in the U.S. alone [6] and today there are over 8500 pro-
gramming languages worldwide [7]. First-generation or vacuum tube computers
did not have any programming languages [6]. Second-generation or transistorized
computers were characterized by an explosion of programming languages, the most
notable of which included formula translation or FORTRAN, flowchart automatic
translator or FLOWMATIC, algorithmic language or ALGOL, common business-
oriented language or COBOL, Jules own version of the international algorithmic
language or JOVIAL and the list processing language or LISP [6]. Third-generation
or integrated-circuit-based computers likewise experienced a rapid increase in pro-
gramming languages, the most notable of which were the beginner’s all-purpose
symbolic instructional code or BASIC, programming language one or PL/1, Smalltalk,
Pascal and C [8]. Fourth-generation or microprocessor-based computers continued
the trend of introducing new programming languages, such as Ada, C++, Eiffel, Perl,
Java and C#.

2.3 Operating Systems
Operating systems are simply a layer of software between the computer hardware

and end-user applications used for controlling hardware peripherals such as key-
boards, displays and printers [2]. First-generation or vacuum tube computers did not
have any operating systems and ‘all programming was done in absolute machine
language, often by wiring up plugboards’ [3]. Second-generation or transistorized
computers did not have any operating systems per se, but were programmed in
assembly languages and even using the early computer programming language called
formula translation or FORTRAN [3]. Third-generation or integrated-circuit-based
computers consisted of the first formalized multi-programming operating systems
and performed useful functions such as spooling and timesharing [3]. Examples
of third-generation operating systems included IBM’s Operating System/360, the
Massachusetts Institute of Technology’s compatible time-sharing system or CTSS,
the multiplexed information and computing service or MULTICS, the uniplexed
information and computer system or UNICS, which became UNIX, and Digital
Equipment Corporation’s virtual memory system or VMS [3]. Fourth-generation or
microprocessor-based computers consisted of the control program for microcompu-
ters or CPM, disk operating system or DOS, Apple’s Macintosh operating system or
MAC OS and Microsoft’s Windows [3].

HISTORY OF COMPUTERS, ELECTRONIC COMMERCE 7

2.4 Packaged Software
Software is defined as ‘instructions required to operate programmable computers,

first introduced commercially during the 1950s’ [9]. The international software indus-
try grew slowly in revenues for commercially shrink-wrapped software from about
zero in 1964, to $2 billion per year in 1979, and $50 billion by 1990 [10]. It is
important to note that the custom, non-commercially available software industry
was already gaining billions of dollars in revenue by 1964 [10]. First-generation or
vacuum tube computers, much like programming languages and operating systems,
did not have any software and ‘all programming was done in absolute machine
language’ [3]. Second-generation or transistorized computers were characterized
by bundled software, e.g., software shipped free with custom computer systems,
and customized software such as International Business Machine’s SABRE airline
reservation system and the RAND Corporation’s SAGE air defense system [10].
Third-generation or integrated-circuit-based computers saw the first commercialized
shrink-wrapped software such as Applied Data Research’s Autoflow flowcharting
software [12] and the total annual sales for commercial software were only $70
million in 1970 compared with over $1 billion for custom software [10]. In part due
to the U.S. Justice Department’s anti-trust lawsuit against IBM around 1969, com-
mercial software applications reached over 175 packages for the insurance industry
in 1972 and an estimated $2 billion in annual sales by 1980 [10]. Fourth-generation or
microprocessor-based computers represented the golden age of shrink-wrapped com-
puter software and were characterized by Microsoft’s Word and Excel, WordPerfect’s
word processor, Lotus’ 1-2-3 and Visicorp’s Visicalc spreadsheets, and Ashton Tate’s
dBase database [13]. By 1990, there were over 20 000 commercial shrink-wrapped
software packages in the market [14]. And, the international software industry grew
to more than $90 billion for pre-packaged software and $330 billion for all software-
related products and services by 2002 [15] and is projected to reach $10.7 billion for
the software as a service or SAAS market by 2009 [16].

2.5 Internet and WWW
The Internet is defined as a network of millions of computers, a network of net-

works, or an internetwork [17]. First-generation or vacuum tube computers were not
known to have been networked. Late second-generation or transistorized computers
gave rise to the Internet as it is known today [18]. Second-generation computers of
the 1960s gave rise to packet switching theory, the first networked computers, the
U.S. military’s advanced research project’s agency or ARPA and the first interface

8 D.F. RICO ET AL.

message processor or IMP [18], [19]. An MIT researcher published the first paper
on packet switching theory, devising what was known as the ‘Galactic Network’
[18], [19]. This same researcher was appointed head of ARPA’s Behavioural Sciences
and Command and Control Programs [18]. The ARPANET was developed to see if
machines could be networked and many machines, such as second-generation IBM
7090s were on the early ARPANET, even as third-generation computers began to
emerge [18]. Third-generation or integrated-circuit-based computers took the early
networking concepts devised during the second generation and formalized them into
the ARPANET and Internet concepts as they are known today [18] All this came
together when the Bolt, Beranek and Newman (BBN) Corporation installed the first
IMP at UCLA in 1969 and the first host computer was connected [18]. The Network
Working Group (NWG) completed the initial ARPANET host-to-host protocol called
the Network Control Protocol (NCP) in 1970, network users began developing appli-
cations from 1971 to 1972 and the first public demonstration of the ARPANET took
place in 1972 [18]. In summary, late third-generation computers of the 1970s gave
rise to the network control protocol or NCP, email, open architecture networking,
ethernet, transmission control protocol, Internet protocol and one of the first bulletin
boards by Compuserve [18]. Late third-generation computers gave rise to the hyper
text markup language or HTML. Tim Berners-Lee, a British physicist working for the
Conseil Européen pour la Recherche Nucléaire or CERN (European Organization for
Nuclear Research) created an early HTML prototype called Enquire, which ran on a
Norwegian minicomputer called the Norsk Data Machine running the NORD Time
Sharing System or NORD-TSS. HTML was first proposed to the Internet Engineering
Task Force (IETF) in 1991 to 1993 and became an official standard in the 1995 to 1996
timeframe. Early fourth-generation or microprocessor-based computers gave rise to
the domain name system or DNS and Prodigy and AOL were created [18]. Using mid-
dle fourth-generation computers, Tim Berners-Lee of CERN had created the first web
server on a NeXTcube running the NeXTstep operating system, which was a UNIX
variant, and is credited with the creation of the hyper text transfer protocol or HTTP
in 1989. Middle fourth-generation computers of the Internet era were adapted to the
formalized IETF HTML and HTTP standards and gave rise to Mosaic and Netscape,
which caused the number of computers on the Internet to reach one million by 1992 and
110 million by 2001 [19]. Using ideas from Tim Berners-Lee, Marc Andreessen and
Eric Bina, students at the National Centre for Supercomputing Applications (NCSA)
at University of Illinois at Urbana-Champaign created the first popular WWW browser
called Mosaic in 1992. Marc Andreessen formed Mosaic Communications Corpora-
tion to commercialize his WWW browser, which was renamed Netscape to deconflict
with the NCSA’s intellectual property claims. Netscape is credited with popularizing
the WWW and Internet as it is known today.

HISTORY OF COMPUTERS, ELECTRONIC COMMERCE 9

3. History of Electronic Commerce

3.1 Electronic Commerce
The purpose of this section is to give a brief overview of the history of electronic

commerce. Though electronic commerce seemed to enter into mainstream public
consciousness in the 1990s, the electronic commerce industry is as old as the computer
and software industries themselves. This section attempts to give readers a small
appreciation of the earliest beginnings of the electronic commerce industry, as we
believe electronic commerce is the key for the convergence of electronic computers,
operating systems, programming languages, packaged software and the Internet and
WWW (e.g., Apple iPhones). From a simple perspective, electronic commerce is
defined as sharing of business information, maintaining business relationships or
conducting business transactions using the Internet. However, there are at least four
comprehensive definitions of electronic commerce [20]:

1. Communications perspective. Electronic commerce is the delivery of informa-
tion, products, services or payments via telephones or computer networks.

2. Business process perspective. Electronic commerce is the application of
technology to the automation of business transactions and workflows.

3. Service perspective. Electronic commerce is a tool that helps firms, consumers
and managers cut service costs, improve quality and speed delivery.

4. Online perspective. Electronic commerce provides the capability of buying and
selling products and information on the Internet and other online services.

Electronic commerce is one of the most misunderstood information technologies
[20]. For instance, there is a tendency to categorize electronic commerce in terms
of two or three major types, such as electronic retailing or online shopping [21].
However, as shown in Figure 2, electronic commerce is as old as the computer
and software industries themselves and predates the Internet era of the 1990s [20].
There is no standard taxonomy of electronic commerce technologies, but they do
include major categories such as magnetic ink character recognition, automatic teller
machines, electronic funds transfer, stock market automation, facsimiles, email, point
of sale systems, Internet service providers and electronic data interchange, as well
as electronic retail trade and shopping websites [20].

3.2 Second-Generation Electronic Commerce
Second-generation or transistorized computers were associated with electronic

commerce technologies such as magnetic ink character recognition or MICR

10 D.F. RICO ET AL.

SECOND GENERATION
(Transistorized 1950–64)

THIRD GENERATION
(Integrated Circuit 1964–80)

FOURTH GENERATION
(Microprocessor 1980–1990)

MID FOURTH GENERATION
(Microprocessor 1990-Present)

• MICR

• ATM
• EFT
• NYSE
• FAX
• Email
• POS
• DOT
• Compuserve
• EDI

• Super DOT

• Books
• Clothing
• Computers
• Software
• Health
• Electronics
• Food
• Furniture
• Music
• Sports
• Toys
• Transportation
• Automotive
• Vehicles
• Brokerages
• Finance
(This is only a partial
listing for illustrative
purposes)

Fig. 2. Timeline and history of electronic commerce.

HISTORY OF COMPUTERS, ELECTRONIC COMMERCE 11

created in 1956, which was a method of ‘encoding checks and enabling them to
be sorted and processed automatically’ [22].

3.3 Third-Generation Electronic Commerce
Third-generation or integrated-circuit-based computers were associated with elec-

tronic commerce technologies such as automatic teller machines, electronic funds
transfer, stock market automation, facsimiles, email, point of sale systems, electronic
bulletin boards and electronic data interchange. In 1965, automated teller machines
were created [23], which were electronic machines or computers that automatically
dispense money or cash [22]. In 1966, electronic funds transfer or EFT was created
[24], which was ‘a set of processes that substitutes electronic messages for checks
and other tangible payment mechanisms’ [22]. Also in 1966, the New York Stock
Exchange or NYSE was first automated [25]. In 1971, facsimiles were created [26].
In 1973, email was created [19]. In 1975, electronic point of sale systems were created
[27], which involved ‘the collection in real-time at the point of sale, and storing in
a computer file, of sales and other related data by means of a number of electronic
devices’ [28]. In 1976, the designated order turn-around or DOT was created, which
automated small-volume individual trades [25]. In 1979, Compuserve launched one
of the first electronic bulletin boards [19]. Also in 1979, electronic data interchange
was created [29], which is the ‘electronic movement of information, such as payments
and invoices, between buyers and sellers’ [30].

3.4 Fourth-Generation Electronic Commerce
Fourth-generation or microprocessor-based computers were associated with elec-

tronic commerce technologies such as the vast automation of the stock market. In
1984, the super designated order transfer 250 was launched to enable large-scale
automatic program trading [25].

3.5 Mid-Fourth-Generation Electronic Commerce
Mid-fourth-generation computers were associated with electronic commerce tech-

nologies such as selected electronic services, electronic retail trade and electronic
shopping and mail order houses. Selected electronic services consisted of industry
sectors such as transportation and warehousing; information, finance, rental and
leasing services; professional, scientific and technical services; administrative and
support services; waste management and remediation services; health care and social

12 D.F. RICO ET AL.

assistance services; arts, entertainment and recreation services; accommodation and
food services; and other services [21]. Electronic retail trade consisted of industry
sectors such as motor vehicles and parts dealers; furniture and home furnishing
stores; electronics and appliance stores; building materials, garden equipment and
supplies stores; food and beverage stores; health and personal services; gasoline sta-
tions; clothing and accessories stores; sporting goods, hobby, book and music stores;
general merchandise stores; miscellaneous store retailers; and non-store retailers
[21]. And, electronic shopping and mail order houses consisted of industry sec-
tors such as books and magazines; clothing and clothing accessories; computer
hardware; computer software; drugs, health aids and beauty aids; electronics and
appliances; food, beer and wine; furniture; music and videos; office equipment; sport-
ing goods, toys, hobby goods, and games; other merchandise; and non-merchandise
receipts [21].

Today, the U.S. electronic commerce industry garners revenues in excess of $2.4
trillion per year [31].About $2.2 trillion is acquired from business-to-business or B2B
commerce, also known as electronic data interchange or EDI.Agood example of B2B
is Wal-Mart computers, which automatically initiates an order and shipment from a
wholesaler such as Proctor and Gamble when supplies run low. About $136 billion to
$189 billion worth of U.S. electronic commerce comes from business-to-consumer
(B2C), also known as online retail sales or Internet retailers. The best example of
B2C is a consumer shopping for and ordering a textbook from Amazon. In 2007, 147
million Internet shoppers conducted 632.5 million transactions worth $136 billion to
$189 billion. In total, there are 1.25 billion Internet users, the number of websites has
reached 136 million and the number of web hosts has reached 470 million. Information
technology, primarily in the form of the Internet contributes to more than 50% of total
labour productivity growth in the top 10 industrialized nations and nearly 100% in
China and India.

In 2006, the top 100 Internet retailers grew at an average rate of 19%, the bottom
100 from the top 500 grew at an average rate of 23%, startups grew at 55%, the fastest
Internet retailers grew at 200%, and one firm grew at a rate of 400%. As many as 45%
of U.S. Internet retailers are considered ‘pure-plays’; that is, non-brick-and-mortar
retailers such as Amazon. Traditional retailers such as Wal-Mart, Sears and others
lag behind pure-plays in growth, conversion rates, customer satisfaction, website
satisfaction and website quality. (Conversion rates refer to the percentage of Internet
shoppers who make a purchase after visiting an electronic commerce website.) It’s
important to note that Internet retailing only garners about 3% to 4% of all retail sales
in the U.S. That is, for every dollar spent by the Americans, only four cents is spent
making online purchases. As the number of world-wide Internet users, shoppers and
sales increase, this will result in unprecedented demands on the number of websites
that need to be produced.

HISTORY OF COMPUTERS, ELECTRONIC COMMERCE 13

4. History of Software Methods

4.1 Database Design
One of the earliest software methods that emerged in the mainframe era of the

1960s was database design. As shown in Figures 3 and 4, database design is a process
of developing the structure and organization of an information repository [32]. And,
the U.S. formed a standard information resource dictionary system or IRDS [33],
which is a ‘logically centralized repository of data about all relevant information
resources within an organization, often referred to as metadata’ [34]. The use of flat
files for the design of information repositories was one of the earliest forms of database
design [35]. Network databases were one of the earliest forms of industrial-strength
information repositories consisting of many-to-many relationships between entities
or data records, examples of which include IBM’s Information Management System
or IMS/360 and UNIVAC’s Data Management System or DMS 1100 [36]. Hierarchi-
cal databases soon emerged with a focus on organizing data into tree-like structures,
which were believed to mimic the natural order of data in the real world [37]. Rela-
tional database design was introduced to create more reliable and less redundant
information repositories based on the mathematical theory of sets [38].

4.2 Automatic Programming
Another of the earliest software methods that emerged in the mainframe era of

the 1960s was automatic programming, which is also known as fourth-generation
programming languages or 4GLs. Automatic programming is defined as the ‘process
and technology for obtaining an operational program and associated data structures
automatically or semi-automatically, starting with only a high-level user-oriented
specification of the environment and the tasks to be performed by the computer’
[39]. Decision tables were one of the first automatic programming methods, which
provided a simple format enabling both users and analysts to design computer software
without any programming knowledge [40]. Programming questionnaires were also
one of the first automatic programming methods, which provided an English-like yes
or no questionnaire enabling non-computer programmers to answer a few discrete
questions about their needs, leading to the automatic production of computer software
[41]. The next evolution in automatic programming methods that emerged in the early
midrange era was problem statement languages, characterized by the information
system design and optimization system or ISDOS, which provided a means for users
and other non-programmers to specify their needs and requirements and ‘what’ to do,
without specifying ‘how’ the computer programs would perform their functions [42].
Special purpose languages also began emerging in the early midrange area, which

14
D

.F.R
IC

O
E

T
A

L.

Structured Methods

Object Oriented Methods

Database Design

Software Life Cycles

Software Reviews

Formal Methods

Early User Involvement

Software Project Management

• Structured Programming (Dijkstra, 1969)
 • Stepwise Refinement (Wirth, 1971)
 • Structured Design (Stevens, Myers, & Constantine, 1974)
 • Structured Analysis (Yourdon, 1976)

• Modular Programming (Parnas, 1972)
 • Object Oriented Programming (Liskov & Zilles, 1974)
 • Object Oriented Design (Booch, 1981)
 • Object Oriented Analysis (McIntyre & Higgins, 1988)

• Egoless Programming (Weinberg, 1971)
• Chief Programmer Team (Mills, 1971)
 • Walkthrough (Waldstein, 1974)
 • Inspection (Fagan, 1976)

• Axiomatic Programming (Hoare, 1969)
 • Vienna Definition Language (Wegner, 1972)
 • Communicating Sequential Processes (Hoare, 1978)
 • Cleanroom (Mills, Linger, & Hevner, 1987)

• Software Project Management (Anderson, 1966)
 • Software Project Scheduling (Fisher, 1968)
 • Software Cost Estimation (Merwin, 1972)
 • Software Productivity Estimation (Jones, 1978)

• Management Involvement (Dunn, 1966)
 • User Involvement (Fitch, 1969)
 • Participatory Design (Milne, 1971)
 • End User Programming (Miller, 1974)

• Flat Files (Lombardi, 1961)
 • Networked (Bachman, 1969)
 • Hierarchical (Dodd, 1969)
 • Relational (Codd, 1970)

• Waterfall (Royce, 1970)
 • Iterative (Basili & Turner, 1975)
 • Evolutionary (Bauer, 1976)
 • Incremental (Cave & Salisbury, 1978)

Automatic Programming
• Decision Tables (Montalbano, 1962)
 • Programming Questionnaires (Oldfather, Ginsberg, & Markowitz, 1966)
 • Problem Statement Languages (Teichroew & Sayani, 1971)
 • Special Purpose Languages (Sammet, 1972a)

MAINFRAME ERA
(1960s)

MIDRANGE ERA
(1970s)

MICROCOMPUTER ERA
(1980s)

INTERNET ERA
(1990s)

PERSONALIZED ERA
(2000s)

Fig. 3. Timeline and history of software methods.

H
IS

TO
R

Y
O

F
C

O
M

P
U

T
E

R
S

,E
LE

C
T

R
O

N
IC

C
O

M
M

E
R

C
E

15
MAINFRAME ERA

(1960s)
MIDRANGE ERA

(1970s)
MICROCOMPUTER ERA

(1980s)
INTERNET ERA

(1990s)
PERSONALIZED ERA

(2000s)

Software Testing

Software Processes

Software Environments

Software Quality Assurance

Software Reuse

Software Architecture

Rapid Development

Agile Methods

• Usage Testing (Brown & Lipow, 1975)
• Domain Testing (Goodenough & Gerhart, 1975)
 • Top Down Testing (Panzl, 1976)
 • Structured Testing (Walsh, 1977)

• Maturity Grid (Crosby, 1979)
 • Process Grid (Radice, Harding, Munnis, & Phillips, 1985)
 • Process Maturity Framework (Humphrey, 1987)
 • Capability Maturity Model (Weber et al., 1991)

• Structured Programming Environment (Baker, 1975)
• Software Factory (Bratman & Court, 1975)
 • Computer Assisted Software Engineering (Amey, 1979)
 • Ada Programming Support Environment (Wegner, 1980)

• Software Quality Assurance (Fujii, 1978)
 • Verification and Validation (Adrion, Branstad, & Cherniavsky 1982)
 • Defect Prevention (Jones, 1985)
 • Quality Management System (Rigby, Stoddart, & Norris, 1990)

• Reusable Software (Neighbors, 1984)
 • Reusable Designs (Jameson, 1989)
 • Reusable Assets (Holibaugh, Cohen, Kang, & Peterson, 1989)
 • Catalysis (D’Souza & Wills, 1998)

• Domain Analysis (Prieto-Diaz, 1987)
 • Domain Engineering (Arango, 1988)
 • Software Architecture (Horowitz, 1991)
 • Product Lines (Wegner et al., 1992)

• Rapid Prototyping (Naumann & Jenkins, 1982)
 • Joint Application Development (Alavi, 1985)
 • Joint Application Design (Guide, 1986)
 • Rapid Systems Development (Gane, 1987)

• DSDM (Millington & Stapleton, 1995)
• Scrum (Schwaber, 1995)
 • XP (Anderson et al., 1998)
 • OSS (O’Reilly, 1999)

Fig. 4. Timeline and history of software methods (continued).

16 D.F. RICO ET AL.

were regarded as very high level, English-like computer programming languages
used for rapid prototyping and quick software composition, major examples of which
include statistical analysis packages, mathematical programming packages, simplified
database query languages and report generators [43].

4.3 Software Project Management
The earliest notions of software project management also emerged in the main-

frame era of the 1960s. An early definition of software project management was the
‘skillful integration of software technology, economics, and human relations’ [44].
The project evaluation and scheduling technique or PEST was one of the first complete
approaches to software project management emerging in this era [45]. Project net-
work diagrams in the form of the program evaluation review technique or PERT and
the critical path method or CPM, though not originating in computer programming,
were soon applied for planning, scheduling and managing resources associated with
software projects [46]. Cost-estimation techniques were soon added to the repertoire
of software project management, especially for managing large U.S. military projects
[47]. The framework for software project management was finally in place for years
to come when basic measures of software productivity and quality were devised [48].

4.4 Early User Involvement
Early user involvement has long been recognized as a critical success factor in

software projects since the earliest days of the mainframe era. Early user involvement
is defined as ‘participation in the system development process by representatives of
the target user group’ [49]. While project overruns were considered a normal part of
the early computer age, scholars began calling for management participation to stem
project overruns, which are now regarded as a ‘management information crisis’ [50].
By the late 1960s, ‘user involvement’ began to supplant management participation
as a key for successfully designing software systems [51]. In the early 1970s, end
users were asked to help design software systems themselves in what was known
as ‘participatory design’ [52]. End user development quickly evolved from these
concepts, which asked the end users to develop the applications themselves to help
address the productivity paradox [53].

4.5 Structured Methods
The late mainframe period gave rise to structured methods as some of the earliest

principles of software engineering to help overcome the software crisis. Structured

HISTORY OF COMPUTERS, ELECTRONIC COMMERCE 17

methods are approaches for functionally decomposing software designs, e.g.,
expressing software designs in high-level components, which are further refined in
terms of lower level components [54]. Structured programming emerged in this time-
frame to help programmers create well-structured computer programs [55]. The next
innovation in structured methods was called ‘top down stepwise refinement’, which
consisted of the hierarchical design and decomposition of computer programs [56].
Structured design quickly followed suit, which is defined as ‘a set of proposed gen-
eral program design considerations and techniques for making coding, debugging, and
modification easier, faster, and less expensive by reducing complexity’ [57]. Struc-
tured analysis methods rounded out this family of methods by suggesting the use of
graphs for depicting the decomposition of software functions and requirements [58].

4.6 Formal Methods
The late mainframe period also gave rise to formal methods, which would be used

as the theoretical basis for software engineering for the next two decades. Formal
methods are ‘mathematically based languages, techniques, and tools for specifying
and verifying’ reliable and complex software systems [59]. Axiomatic programming
is one of the first recognized formal methods, which uses mathematical set theo-
ries to design functionally correct software [60]. An entire set of formal semantics
was soon devised to serve as a basis for creating mathematically correct computer
programming languages called the Vienna definition language [61]. The communi-
cating sequential processes method was then created by Tony Hoare to help design
mathematically correct multi-tasking software systems [62]. The cleanroom or box-
structured methodology was created to serve as a stepwise refinement and verification
process for creating software designs [63]. Formal methods, primarily due the dif-
ficulty associated with their mathematical rigor, never enjoyed widespread adoption
by the growing community of computer programmers [64].

4.7 Software Life Cycles
One of the first methods to come out of the early midrange era was the notion

of software life cycles. A software life cycle is a ‘collection of tools, techniques,
and methods, which provide roles and guidelines for ordering and controlling the
actions and decisions of project participants’ [65]. The waterfall is one of the first
recognized software life cycles consisting of seven stages: system requirements, soft-
ware requirements, analysis, program design, coding, testing and operations [66] as
popularized by Barry Boehm. The iterative software lifecycle appeared around the
middle of the decade, which consisted of using a planned sequence of programming
enhancements until computer software was complete [67]. The evolutionary software

18 D.F. RICO ET AL.

life cycle soon formed with notions of gradually enhancing computer programs rather
than developing them in phases or iterations [68]. The incremental software life cycle
followed next, recommending project assessments at each major milestone in order
to identify and reduce risk [69]. The spiral model called for risk analysis between
major milestones and prototypes as well [70].

4.8 Software Reviews
Software reviews emerged as a methodology in the very earliest stages of the

midrange era. Software reviews are meetings held by groups of software engineers to
review software products to identify and remove their defects [73]. Egoless program-
ming was introduced in the early midrange era as a method of transforming software
development from an individual craft into a loosely structured group activity [74].
Chief programmer teams emerged shortly thereafter to formalize the notion of ego-
less programming with one small difference; the team would have a clear leader [75].
Structured walkthroughs were quickly formed to once again place the responsibility
for maintaining the overall program quality in the hands of the team, rather than a
in the hands of a single individual [76]. Software inspections crystallized the con-
cept of structured walkthroughs with a rigid meeting protocol for group reviews in
order to optimize team performance [77]. In the same year, the U.S. military formed
a standard with system design reviews, software specification reviews, preliminary
design reviews, critical design reviews, test readiness reviews, functional configura-
tion audits, physical configuration audits, formal qualification reviews and production
readiness reviews [78].

4.9 Object-Oriented Methods
Object-oriented methods emerged in the midrange era as a direct response to calls

for a software engineering discipline to mitigate the software crisis. Object-oriented
methods are processes that ‘allow a designer to generate an initial design model in the
context of the problem itself, rather than requiring a mapping onto traditional com-
puter science constructs’[79]. The Simula programming language actually emerged in
the late 1960s, which was recognized by some as having modular and object-oriented
programming features and capabilities [80]. Smalltalk soon followed as an offshoot
of the flex programming language and reactive engine, which also had many early
modular and object-oriented programming features [81]. However, the principles of
modular and object-oriented programming – information hiding, self-contained data
structures, co-located subroutines, and well-defined interfaces – were first formalized
just after the emergence of Simula and Smalltalk programming languages, the princi-
ples of which were claimed to improve efficiency, flexibility and maintainability [84].

HISTORY OF COMPUTERS, ELECTRONIC COMMERCE 19

Object-oriented design emerged in the early microcomputer era to demonstrate one
of the first graphical notations for describing object-oriented programming languages
[85]. Finally, object-oriented analysis methods emerged, often reusing the tools of
structured analysis to begin constructing specifications of software systems prior to
devising their object oriented design [86].

4.10 SoftwareTesting
Software testing gained recognition in the middle of the midrange era though system

and hardware component testing had been the norm for at least two decades. Software
testing is defined as ‘the process of executing a software system to determine whether
it matches its specification and executes in its intended environment’ [87]. Software
usage testing was developed based on the notion that software reliability could be
improved by specifying how computer programs will be used, devising tests to model
how users operate programs and then measuring the outcome of the testing [88].
Domain testing emerged at the same time with its principles of identifying test cases
from program requirements, specifying a complete set of inputs using mathematical
set theory and using set theory itself to prove program correctness when necessary
[89]. Soon thereafter, top down testing was introduced, which recommended a unique
test procedure for each software subroutine [90]. Finally, structured testing emerged
as an approach to encapsulate best practices in software testing for novice computer
programmers [91].

4.11 Software Environments
Software environments emerged in the middle of the midrange era as a means of

improving software quality and productivity through automation.Asoftware environ-
ment may be described as an ‘operating system environment and a collection of tools
or subroutines’ [92]. A slightly better definition of software environment is a ‘coor-
dinated collection of software tools organized to support some approach to software
development or conform to some software process model’ [93], where software tools
are defined as ‘computer programs that assist engineers with the design and develop-
ment of computer-based systems’ [94]. Structured programming environments were
created as a means of improving software reliability and productivity using guide-
lines, code libraries, structured coding, top down development, chief programmer
teams, standards, procedures, documentation, education and metrics [95]. Software
factories were soon created to introduce discipline and repeatability, software visu-
alization tools, the capture of customer needs or requirements, automated software
testing and software reuse [96]. Computer-assisted software engineering or CASE

20 D.F. RICO ET AL.

was also created to enhance software productivity and reliability by automating
document production, diagram design, code compilation, software testing, configura-
tion management, management reporting and sharing of data by multiple developers
[97]. TheAda programming support environment orAPSE was suggested as a core set
of programming tools consisting of editors, compilers, debuggers, linkers, command
languages and configuration management utilities [98]. Computer-aided software
engineering was created to automate the tasks of documenting customer requirements,
creating software architectures and designs, maintaining requirements traceability and
configuration management [99]. Integrated computer-aided software engineering or
I-CASE tools emerged, merging analysis and code generation tools [100]. However,
I-CASE was a concept readily adopted by the U.S. DoD that was soon abandoned
since it was never delivered and never worked well [101].

4.12 Software Quality Assurance
The modern day tenets of software quality assurance began to assume their current

form in the late midrange era. Software quality assurance is defined as a ‘planned
and systematic pattern of all actions necessary to provide adequate confidence that
the software conforms to established technical requirements’ [102]. Software quality
assurance was created to establish ‘adherence to coding standards and conven-
tions, compliance with documentation requirements and standards, and successful
completion of activities’ [103]. Software verification and validation was created to
determine the adequacy of software requirements, software designs, software source
code and regression testing during software maintenance [104]. Defect prevention
was a structured process of determining the root causes of software defects and then
institutionalizing measures to prevent their recurrence [105]. Quality management
systems consisted of a set of organizational policies and procedures to ensure that the
software satisfied its requirements [106].

4.13 Software Processes
Software processes were formed in the microcomputer era, though they were rooted

in the traditions of software engineering, structured methods, software life cycles and
software environments dating back to the late mainframe and early midrange eras.
A software process is the ‘collection of related activities seen as a coherent process
subject to reasoning involved in the production of a software system’ [107]. The
maturity grid (e.g., uncertainty, awakening, enlightenment, wisdom and certainty),
though not for software, inspired the software process modelling movement of the
microcomputer era [108]. IBM then created its own process grid (e.g., traditional,
awareness, knowledge, skill and wisdom and integrated management system) for

HISTORY OF COMPUTERS, ELECTRONIC COMMERCE 21

conducting site studies of computer programming laboratories [109]. The process
maturity framework was directly adapted from IBM’s process grid [110], which was
finally turned into the capability maturity model for U.S. military use [111].

4.14 Rapid Development
Rapid development was formalized in the microcomputer era though its tenets

can be traced back to early notions of structured methods and prototyping. Rapid
development is defined as a ‘methodology and class of tools for speedy object deve-
lopment, graphical user interfaces, and reusable code for client-server applications’
[112]. Rapid development leveraged productivity-enhancing technologies to build
early models of information systems and involved end users in the definition of
system requirements and designs [112]. Rapid development sought to control cost and
schedule overruns; improve user acceptance, customer satisfaction, system quality
and system success; and ultimately reduce information systems backlogs [112]. Rapid
prototyping was defined as a process of quickly creating an informal model of a
software system, soliciting user feedback and then evolving the model until it satisfied
the complete set of customer requirements [113]. Joint application development was
a process of having professional software developers assist end users with the deve-
lopment of their applications by evaluating their prototypes [114]. Joint application
design, on the other hand, was a structured meeting between end users and software
developers, with the objective of developing software designs that satisfied their
needs [115]. Rapid systems development was an extension of the joint application
design method, which advocated specific technological solutions such as relational
databases and the completion of the software system, not just its design [116]. In a
close adaptation, rapid application development recommended iterative rapid system
development cycles in 60- to 120-day intervals [117].

4.15 Software Reuse
Software reuse assumed its current form in the early microcomputer era, though

its earliest tenets can clearly be seen in literature throughout the 1950s, 1960s and
1970s. Software reuse is the ‘use of existing software or software knowledge to con-
struct new software’ [118]. Software reuse was proposed as early as 1968 in order
to help alleviate the ‘software crisis’ characterized by an explosion in computers and
software complexity through the production of mass-produced software components
[119]. The purpose of software reuse has evolved over the years to include improve-
ments in productivity [120], reliability [121], quality [122] and cost efficiency [123].
Reusable software became synonymous with the Ada programming language in the

22 D.F. RICO ET AL.

1980s though it was prophesied as a major strategy in 1968 and was a central
management facet of Japanese software factories in the 1970s [124]. Toward the end
of the microcomputer era, reusable software designs were considered just as important
as reusable software source code [125]. In the same year, reusability was expanded
to include requirements, designs, code, tests, and documents and dubbed ‘reusable
assets’ [126]. Toward the end of the Internet era, catalysis was formed based on com-
posing new applications from existing ones [127]. Though several studies chronicled
software reuse success stories from the 1970s, 1980s and 1990s, [9, 128], scholars
have concluded that software reuse has only had marginal success since 1968 [131].

4.16 Software Architecture
Software architecture began to assume a strategic role for managing the develop-

ment of software systems near the end of the microcomputer era. Software architecture
is defined as ‘the structure and organization by which modern system components
and subsystems interact to form systems and the properties of systems that can best be
designed and analysed at the system level’ [133]. Domain analysis was the discipline
of identifying, capturing and organizing all of the information necessary to create a
new software system [134]. Domain engineering was a process of managing reusable
information about specific types of software systems, gathering architectural data and
gathering data about the computer programs themselves [135]. Software architecture
was a discipline of creating flexible software designs that were adaptable to multiple
computer systems in order to respond to the rapidly changing military threats [136].
Software product lines soon emerged with an emphasis on evolving software archi-
tectures to reduce costs and risks associated with changes in design [137], along with
software product families [138].

4.17 Agile Methods
Agile methods gained prominence in the late Internet and early personalized eras in

part to accommodate the uniquely flexible nature of Internet technologies [139]. More
to the point, the use of agile methods for Internet software was a reaction to the rise
of traditional software development methods, which were too cumbersome, expen-
sive, rigid and fraught with failure [139]. Downsizing was the norm and traditional
methods were being used by large corporations in decline [139]. Agile methods are an
approach for managing the development of software, which are based upon obtaining
early customer feedback on a large number of frequent software releases [140]. In
2001, the ‘agile manifesto’ was created to outline the values and principles of agile
methods and how they differed from traditional ones [141]. A council of 17 experts

HISTORY OF COMPUTERS, ELECTRONIC COMMERCE 23

in agile methods met in order to find an ‘alternative to documentation-driven,
heavyweight software development processes’. They believed that ‘in order to suc-
ceed in the new economy, to move aggressively into the era of e-business,
e-commerce, and the web, companies have to rid themselves of their Dilbert manifes-
tations of make-work and arcane policies’. Once the ground rules and assumptions of
agile methods were established, they were able to get on with the business of writing
the agile manifesto itself and publish it on the Internet. The agile manifesto began with
the following statement: ‘we are uncovering better ways of developing software by
doing it and helping others do it’. Then the agile manifesto laid out four broad values:
(a) ‘working software over comprehensive documentation’, (b) ‘customer collabora-
tion over contract negotiation’, (c) ‘individuals and interactions over processes and
tools’, and (d) ‘responding to change over following a plan’. The agile manifesto itself
was derived [139] from the dynamic system development methodology [142], scrum
[143], extreme programming [144], open-source software development [145], crys-
tal methods [146], feature-driven development [147], rational unified process [148],
adaptive software development [149] and lean development [150]. Other approaches
also influenced the development of agile methods such as the new product develop-
ment game, new-product development rhythm, synch-n-stabilize, judo strategy and
Internet time, which will be described later [139].

The dynamic system-development methodology or DSDM has three broad phases,
which consist of requirement prototypes, design prototypes and an implementation
or production phase [142]. Scrum is a light-weight software-development process
consisting of implementing a small number of customer requirements in two- to four-
week sprint cycles [143]. Extreme programming or XP consists of collecting informal
requirements from on-site customers, organizing teams of pair programmers, develo-
ping simple designs, conducting rigorous unit testing, and delivering small and simple
software packages in short two-week intervals [144]. Open-source software develop-
ment involves freely sharing, peer reviewing, and rapidly evolving software source
code for the purpose of increasing its quality and reliability [145]. Crystal methods
involve frequent delivery; reflective improvement; close communication; personal
safety; focus; easy access to expert users; and a technical environment with automated
testing, configuration management and frequent integration [146]. Feature-driven
development involves developing an overall model, building a features list, plan-
ning by feature, designing by feature and building by feature [147]. The rational
unified process involves a project management, business modelling, requirements,
analysis and design, implementation, test, configuration management, environment
and deployment workflow [148]. Adaptive software development involves product
initiation, adaptive cycle planning, concurrent feature development, quality review
and final quality assurance and release [149]. And, lean development involves elim-
inating waste, amplifying the learning process, making decisions as late as possible,

24 D.F. RICO ET AL.

delivering products as fast as possible, empowering teams, building integrity in, and
seeing systems as a whole [150].Agile methods such as extreme programming adapted
customer feedback, iterative development, well-structured teams, flexibility from the
new product development game, new product development rhythm, synch-n-stabilize,
judo strategy and Internet time [139].

5. History of Software Quality Measurement

5.1 Software Size
One of the earliest known measures used to describe computer programs was

software size [151]. Software size is a measure of the volume, length, quantity, amount
and overall magnitude of a computer program [152]. In the mid 1960s, lines of code
or LOC was one of the first known measures of software size, which referred to
the number of computer instructions or source statements comprising a computer
program and is usually expressed as thousands of lines of code [153]. Almost a
decade later in the mid to late 1970s, more sophisticated measures of software size
emerged such as token count, volume, function count and function points [152].
Recognizing that individual lines of code had variable lengths, token count was created
to distinguish between unequally sized lines of code, which was technically defined
as ‘basic syntactic units distinguishable by a compiler’ [154]. In yet another attempt
to accurately gauge the size of an individual line of code, volume was created to
measure the actual size of a line of code in bits, otherwise known as binary zeros
and ones [154]. Shortly thereafter, function count was created to measure software
size in terms of the number of modules or subroutines [155]. Function points was
another major measure of software size, which was based on estimating the number
of inputs, outputs, master files, inquiries and interfaces [156]. Though software size
is not a measure of software quality itself, it formed the basis of many measures or
ratios of software quality right on through the modern era (e.g., number of defects,
faults, or failures per line of code or function point). Furthermore, some treatises
on software metrics consider software size to be one of the most basic measures of
software complexity [157]. Thus, a history of software quality measurement may not
be complete without the introduction of an elementary discussion of software size.

5.2 Software Errors
One of the earliest approaches for measuring software quality was the practice of

counting software errors dating back to the 1950s when digital computers emerged.
Software errors are human actions resulting in defects, defects sometimes manifest

H
IS

TO
R

Y
O

F
C

O
M

P
U

T
E

R
S

,E
LE

C
T

R
O

N
IC

C
O

M
M

E
R

C
E

25
MAINFRAME ERA

(1960s)
MIDRANGE ERA

(1970s)
MICROCOMPUTER ERA

(1980s)
INTERNET ERA

(1990s)
PERSONALIZED ERA

(2000s)

Software Complexity

Software Size

User Satisfaction

Website Quality

Software Reliability

Software Defect Models

Software Attributes

• Operand Count (Halstead, 1972)
 • Segment Global Usage Pair (Basili & Turner, 1975)
 • Cyclomatic Complexity (McCabe, 1976)
 • Information Flow (Henry & Kafura, 1981)

• WAM (Selz & Schubert, 1997)
 • AST (Chen & Wells, 1999)
 • E-SAT (Szymanski et al., 2000)
 • WebQ (Barnes et al., 2000)

• Time Between Failures (Jelinski & Moranda, 1972)
 • Reliability Growth (Coutinho, 1973)
 • Non-Homogeneous Poisson Process (Goel & Okumoto, 1979)
 • Rayleigh Model (Kan, 1995)

• Program Quality (Rubey & Hartwick, 1968)
 • Software Quality (Boehm, Brown, Kaspar, & Lipow, 1973)
 • Software Maintenance (Swanson, 1976)
 • Database Design (Gilb, 1977)

• Total Defects (Akiyama, 1971)
 • Programming Errors (Motley & Brooks, 1977)
 • Total Defects (Halstead, 1977)
 • Number of Defects (Potier, Albin, Ferreol, & Bilodeau, 1982)

• Computer Instructions (McIlroy, 1960)
 • Lines of Code (Martin, 1965)
 • Token Count (Halstead, 1972)
 • Function Points (Albrecht, 1979)

• Quality of Service (Lucas, 1974)
 • User Behavior (Maish, 1979)
 • End User Computing Satisfaction (Doll & Torkzadeh, 1988)
 • CUPRIMDA (Kan, 1995)

Software Errors

• Errors Per Statement (Weinberg & Gressett, 1963)
 • Error Density (Shooman & Bolsky, 1975)
 • Fault Density (Lipow, 1982)

• Defect Density (Shen, Yu, Thebaut, & Paulsen, 1985)

Fig. 5. Timeline and history of software quality measures.

26 D.F. RICO ET AL.

themselves as faults, and faults lead to failures, which are often referred to as software
crashes [157]. The concept of ‘errors per statement’ first appeared in the early 1960s
[158] and studies of ‘error proneness’ intensified towards the end of the decade [159].
The term error density was coined in the mid 1970s, which referred to the simple
ratio of errors to software size [160]. Fault density was also a measure of software
quality, which referred to the ratio of anomaly-causing faults to software size [161].
The term defect density subsumed the measure of error and fault density in the mid
1980s, which referred to the ratio of software errors to software size [162]. Many
unique types of errors were counted, such as number of requirement, design, coding,
testing and maintenance errors, along with number of changes and number of changed
lines of code [152]. Even the term problem density emerged in the early 1990s, which
referred to the number of problems encountered by customers to measure and track
software quality [157]. The practice of counting errors, defects, faults and failures as
a means of measuring software quality enjoyed widespread popularity for more than
five decades.

5.3 Software Attributes
Another of the earliest approaches for measuring software quality was the prac-

tice of quantifying and assessing attributes or characteristics of computer programs.
Software attributes are an ‘inherent, possibly accidental trait, quality or property’
such as functionality, performance or usability [163]. Logicon designed a model to
measure software attributes such as correctness, logicality, non-interference, opti-
mizability, intelligibility, modifiability and usability [164]. Next, TRW identified
software attributes such as portability, reliability, efficiency, modifiability, testability,
human engineering and understandability [165]. These early works led to numerous
specialized spin-offs such as a framework for measuring the attributes of software
maintenance [166] and even a database’s design [167]. Spin-offs continued to emerge
with an increasing focus on operationalizing these attributes with real software met-
rics [168]. By the mid 1980s, this practice reached Japan [171] and a comprehensive
framework emerged replete with detailed software measures [172]. Use of software
attributes to measure software quality was exemplified by the functionality, usability,
reliability,performance,andsupportability,whichwasnamedtheFURPSmodel [173].
Software attributes enjoyed widespread use among practitioners throughout the 1970s
and 1980s because of their simplicity, though scientists favoured statistical models.

5.4 Static Defect Models
One of the earliest approaches for predicting software quality was the use of

statistical models referred to as static reliability or static software defect models.

HISTORY OF COMPUTERS, ELECTRONIC COMMERCE 27

‘A static model uses other attributes of the project or program modules to estimate
the number of defects in software’ [157], ignoring ‘rate of change’ [152]. One of the
earliest software defect models predicted the number of defects in a computer program
as a function of size, decision count or number of subroutine calls [174]. Multi-linear
models were created with up to 10 inputs for the various types of statements found
in software code such as comments, data and executable instructions [175]. The
theory of software science was extended to include defect models by using volume
as an input, which itself was a function of program language and statement length
[154]. Research on software defect models continued with more extensions based
on software science, cyclomatic complexity, path and reachability metrics [176].
More defect models were created by mixing defects, problems and software science
measures such as vocabulary, length, volume, difficulty and effort [162]. Later, IBM
developed models for predicting problems, fielded defects, arrival rate of problems
and backlog projection, which were used to design midrange operating systems [157].
Static linear or multi-linear statistical models to predict defects continue to be useful
tools well into modern times, though older dynamic statistical reliability models are
overtaking them.

5.5 Software Complexity
With its emergence in the early 1970s, the study of software complexity became

one of the most common approaches for measuring the quality of computer pro-
grams. Software complexity is defined as ‘looking into the internal dynamics of the
design and code of software from the program or module level to provide clues about
program quality’ [157]. Software complexity sprang from fervor among research
scientists eager to transform computer programming from an art into a mathemati-
cally based engineering discipline [177]. Many technological breakthroughs in the
two decades prior to mid 1970s led to the formation of software complexity mea-
sures. These included the advent of digital computers in the 1950s, discovery of
high-level computer programming languages and the formation of compiler theory.
Furthermore, flowcharting was routinely automated, axiomatic theorems were used
for designing new computer languages and analysis of numerical computer algorithms
became commonplace.As a result, three major classes of software complexity metrics
arose for measuring the quality of software: (a) data structure, (b) logic structure and
(c) composite metrics [178]. One of the first data structure metrics was the count of
operands, which measured the number of variables, constants and labels in a com-
puter program versus measuring logic [177]. The segment-global-usage-pair metric
determined complexity by counting references to global variables, a high number of
which was considered bad among coders [67]. Another data structure metric was the
span between variables, which measured how many logic structure statements existed

28 D.F. RICO ET AL.

between variables where a higher number was poor [179]. A unique data structure
metric for measuring software quality was the number of live variables within a pro-
cedure or subroutine as a sign of undue complexity [180]. One data structure metric
surviving to modern times is the information flow, or fan in-fan out metric, which
measures the number of modules that exchange data [181]. Logic structure metrics
were cyclomatic complexity or paths [182], minimum paths [183] and gotos or knots
[184].Also included were nesting [185], reachability [186], nest depth [187] and deci-
sions [162]. Composite metrics combined cyclomatic complexity with other attributes
of computer programs to achieve an accurate estimate of software quality [188].
They also included system complexity [191] and syntactic construct [192]. Finally,
it’s important to note that most complexity metrics are now defunct, though cyclo-
matic complexity, which arose out of this era, is still used as a measure of software
quality today.

5.6 Software Reliability
Software reliability emerged in the early 1970s and was created to predict the

number of defects or faults in software as a method of measuring software quality.
Software reliability is the ‘probability that the software will execute for a particu-
lar period of time without failure, weighted by the cost to the user of each failure
encountered’ [193]. Major types of reliability models include: (a) finite versus infi-
nite failure models [194], (b) static versus dynamic [152] and (c) deterministic versus
probabilistic [195]. Major types of dynamic reliability models include: life cycle
versus reliability growth [157] and failure rate, curve fitting, reliability growth, non-
homogeneous Poisson process and Markov structure [195]. One of the first and most
basic failure rate models estimated the mean time between failures [196]. A slightly
more sophisticated failure rate model was created based on the notion that software
became more reliable with the repair of each successive code failure [197]. The next
failure rate model assumed that the failure rate was initially constant and then began
to decrease [198]. Multiple failure rate models appeared throughout the 1970s to
round out this family of reliability models [199]. Reliability or ‘exponential’ growth
models followed the emergence of failure rate models, which measured the relia-
bility of computer programs during testing as a function of time or the number of
tests [202, 203]. Another major family of reliability models is the non-homogeneous
Poisson process models, which estimate the mean number of cumulative failures up
to a certain point in time [205]. Reliability models estimate the number of software
failures after development based on failures encountered during testing and opera-
tion. Though rarely mentioned, the Rayleigh life cycle reliability model accurately
estimates defects inserted and removed throughout the software lifecycle [157]. Some
researchers believed that the use of software reliability models offered the best hope

HISTORY OF COMPUTERS, ELECTRONIC COMMERCE 29

for transforming computer programming from a craft industry into a true engineering
discipline.

5.7 User Satisfaction
User satisfaction gradually became a measure of software quality during the 1950s,

1960s and 1970s [208] User satisfaction is defined as ‘the sum of one’s feelings or
attitudes toward a variety of factors affecting that situation’, e.g., computer use and
adoption by end users [212]. Though not the first, one study of user satisfaction anal-
ysed attitudes towards quality of service, management support, user participation,
communication and computer potential [213]. A more complex study of user satis-
faction considered the feelings about staff, management support, preparation for its
use, access to system, usefulness, ease of use and flexibility [214]. Most studies until
1980 focused on the end user’s satisfaction with regards to software developers; but
one study squarely focused on the end user’s satisfaction with regards to the soft-
ware itself [215]. One of the first studies to address a variety of software attributes
such as software accuracy, timeliness, precision, reliability, currency and flexibil-
ity appeared [216]. Studies throughout the 1980s addressed user satisfaction with
both designers and software [212, 217]. The late 1980s marked a turning point, with
studies focusing entirely on user satisfaction with the software itself and attributes
such as content, accuracy, format, ease of use and timeliness of the software [221].
A study of user satisfaction at IBM was based on reliability, capability, usabil-
ity, installability, maintainability, performance and documentation factors [222].
Throughout the 1990s, IBM used a family of user satisfaction models called UPRIMD,
UPRIMDA, CUPRIMDA and CUPRIMDSO, which referred differently to factors
of capability, usability, performance, reliability, installability, maintainability, docu-
mentation, availability, service and overall satisfaction [157]. User satisfaction, now
commonly referred to as customer satisfaction, is undoubtedly related to earlier mea-
sures of software attributes, usability or user friendliness of software and more recently
web quality.

5.8 Website Quality
With their emergence in the late 1990s, following the user satisfaction move-

ment, models of website quality appeared as important measures of software quality
[223]. One of the first models of website quality identified background, image size,
sound file display and celebrity endorsement as important factors of software quality
[224]. The web assessment method or WAM quickly followed with quality factors of
external bundling, generic services, customer-specific services and emotional expe-
rience [225]. In what promised to be the most prominent web quality model, attitude

30 D.F. RICO ET AL.

towards the site or AST had quality factors of entertainment, informativeness, and
organization [226]. The next major model was the e-satisfaction model with its five
factors of convenience, product offerings, product information, website design and
financial security [227]. The website quality model or WebQual for business school
portals was based on factors of ease of use, experience, information and communica-
tion and integration [228]. An adaptation of the service quality or ServQual model,
WebQual 2.0 measured quality factors such as tangibles, reliability, responsiveness,
assurance and empathy [229]. The electronic commerce user consumer satisfaction
index or ECUSI consisted of 10 factors such as product information, consumer service,
purchase result and delivery, site design, purchasing process, product merchandising,
delivery time and charge, payment methods, ease of use and additional information
services [230]. On the basis of nine factors, the website quality or SiteQual model
consisted of aesthetic design, competitive value, ease of use, clarity of ordering,
corporate and brand equity, security, processing speed, product uniqueness and
product quality assurance [231]. In what promised to be exclusively for websites,
the Internet retail service quality or IRSQ model was based on nine factors of
performance, access, security, sensation, information, satisfaction, word of mouth,
likelihood of future purchases and likelihood of complaining [232]. In a rather com-
plex approach, the expectation-disconfirmation effects on web-customer satisfaction
or EDEWS model consists of three broad factors (e.g., information quality, system
quality and web satisfaction) and nine sub-factors [233]. In one of the smallest and
most reliable website quality models to date, the electronic commerce retail quality
or EtailQ model consists of only four major factors (e.g., fulfillment and reliability,
website design, privacy and security, and customer service) and only 14 instrument
items [234]. On the basis of techniques for measuring software quality dating back to
the late 1960s, more data have been collected and validated using models of website
quality than any other measure.

6. History of Agile Methods

6.1 New Product Development Game
As shown in Figure 6, two management scholars from the School of International

Corporate Strategy at Hitotsubashi University in Tokyo, Japan, published a manage-
ment approach called the ‘new product development game’ in the Harvard Business
Review in early 1986 [235]. In their article, they argued that Japanese ‘companies are
increasingly realizing that the old sequential approach to developing new products
simply will not get the job done’. They cited the sport of Rugby as the inspiration
for the principles of their new product development game – In particular, Rugby’s

HISTORY OF COMPUTERS, ELECTRONIC COMMERCE 31

Japan
New Product Development Game

(Takeuchi & Nonaka, 1986)

MICROCOMPUTER ERA
(1980s)

INTERNET ERA
(1990s)

PERSONALIZED ERA
(2000s)

IBM
New Development Rhythm

(Sulack, Lindner, & Dietz, 1989)

ADM
Scrum

(Schwaber, 1995)

UK
Dynamic Systems Development

(Millington & Stapleton, 1995)

Microsoft
Synch-n-Stabilize

(Cusumano & Selby, 1995)

Netscape
Judo Strategy

(Cusumano & Yoffie, 1998)

Chrysler
Extreme Programming
(Anderson et al., 1998)

Yahoo, etc.
Internet Time

(MacCormack, 1998)

Cutter
Agile Methods

(Highsmith, 2002)

IBM
Crystal Methods
(Cockburn, 2002a)

PowerLender
Feature Driven Development

(Palmer & Felsing, 2002)

Fig. 6. Timeline and history of agile methods.

32 D.F. RICO ET AL.

special play called the Scrum, when the players interlock themselves together as a
tightly bound group to gain possession of the ball. The new product development
game consisted of six major factors: (a) built-in instability, (b) self-organizing project
teams, (c) overlapping development phases, (d) multi-learning, (e) subtle control and
(f) organizational transfer of learning. They went on to demonstrate how four Japanese
firms, e.g., Fuji-Xerox, Canon, Honda and NEC, applied the six factors of the new
product development game to develop six major products, which became market suc-
cesses. The six major factors of the new product development game were not unlike
the total quality management and concurrent engineering movements that were pop-
ular in the U.S. during that timeframe, and their work inspired the development of
agile methods for the next 20 years.

6.2 New Development Rhythm
In 1989, three managers from IBM in Rochester, Minnesota, published an article

on how IBM devised a management approach called the ‘new development rhythm’,
to bring the AS/400 midrange computer to market in only two years [236]. In their
article, they stated that ‘user involvement programs yielded a product offering that
met the user requirements with a significantly reduced development cycle’. The new
development rhythm consisted of six major factors: (a) modularized software designs,
(b) software reuse, (c) rigorous software reviews and software testing, (d) iterative
development, (e) overlapped software releases and (f) early user involvement and
feedback. IBM’s new development rhythm was a remarkable feat of management
science and boasted a long list of accomplishments: (a) time-to-market improve-
ment of 40%, (b) development of seven million lines of operating system software
in 26 months, (c) compatibility with 30 billion lines of commercial applications,
(d) $14 billion in revenues and (e) the IBM corporation’s first Malcolm Baldrige
National Quality Award. While there was nothing innovative about IBM’s new devel-
opment rhythm, it was IBM’s audacity to apply these academic textbook approaches
to commercial product development that was unique.

6.3 Scrum
In 1993, Jeff Sutherland of the Easel Corporation adapted the principles from the

‘new product development game’ [235] to the field of computer programming man-
agement, explicitly calling it ‘scrum’ [143]. In particular, scrum assumes that the
‘systems development process is an unpredictable and complicated process that can
only be roughly described as an overall progression’. Furthermore, scrum’s creators
believed ‘the stated philosophy that systems development is a well-understood
approach that can be planned, estimated, and successfully completed has proven

HISTORY OF COMPUTERS, ELECTRONIC COMMERCE 33

incorrect in practice’. Therefore, scrum’s creators set out to define a process as a ‘loose
set of activities that combines known, workable tools and techniques with the best that
a development team can devise to build systems’. Today, scrum is composed of three
broad phases: (a) pre-sprint planning, (b) sprint and (c) post-sprint meeting. During
the pre-sprint planning phase, computer programmers gather to prioritize customer
needs. During the sprint phase, computer programmers do whatever it takes to com-
plete a working version of software that meets a small set of high-priority customer
needs. Finally, during the post-sprint meeting, computer programmers demonstrate
working software to their customers, adjust their priorities and repeat the cycle.

6.4 Dynamic Systems Development Method
In 1993, 16 academic and industry organizations in the United Kingdom banded

together to create a management approach for commercial software called the
‘dynamic systems development method’ or simply DSDM [142]. Their goal was to
‘develop and continuously evolve a public domain method for rapid application deve-
lopment’ in an era dominated by proprietary methods. Initially, DSDM emphasized
three success factors: (a) ‘the end user community must have a committed senior staff
that allows developers easy access to end users’, (b) ‘the development team must be
stable and have well established skills’ and (c) ‘the application area must be commer-
cial with flexible initial requirements and a clearly defined user group’. These success
factors would later be expanded to include functionality versus quality, product versus
process, rigorous configuration management, a focus on business objectives, rigorous
software testing, risk management and flexible software requirements. DSDM con-
sists of five major stages: (a) feasibility study, (b) business study, (c) functional model
iteration, (d) design and build iteration and (e) implementation. The goal of DSDM is
to explore customer requirements by building at least two full-scale prototypes before
the final system is implemented.

6.5 Synch-N-Stabilize
In 1995, management scholars from MIT’s Sloan School of Management and the

University of California at Irvine published a textbook on how Microsoft managed
the development of software for personal computers, dubbed as the ‘sync-n-stabilize’
approach [237]. The scholars were experts on software management approaches for
the mainframe market and their two-year case study from 1993 to 1995 was a grounded
theory or emergent research design, which led them to some startling conclusions.
At one point in their textbook, they stated that ‘during this initial research, it became
clear why Microsoft was able to remain on top in its industry while most contem-
poraries from the founding years of the 1970s disappeared’. The synch-n-stabilize

34 D.F. RICO ET AL.

approach consisted of six major factors: (a) parallel programming and testing,
(b) flexible software requirements, (c) daily operational builds, (d) iterative devel-
opment, (e) early customer feedback and (f) use of small programming teams.
Microsoft’s success was indeed remarkable, and their synch-n-stabilize approach did
indeed help them create more than 20 million lines of code for Windows and Office
95, achieve customer satisfaction levels of 95% and maintain annual profit margins
of approximately 36%.

6.6 Judo Strategy
In 1998, two management scholars from both the Harvard Business School and

MIT’s Sloan School of Management published a textbook on how Netscape managed
the development of software for the Internet, dubbed as the ‘judo strategy’ [238]. The
scholars were experts on software management approaches for the personal computer
market and their one year case study from 1997 to 1998 was a grounded theory or
emergent research design, which prophetically led them to be critical of Netscape’s
future. Whereas Microsoft’s strategic advantage was its immense intellectual capi-
tal, Netscape’s only advantage seemed to be its first-mover status, which was quickly
eroding to Microsoft’s market share for browsers at the time their book was published.
In fact, the authors criticized Netscape for not having a technical CEO in the fast-
moving Internet market, which was a very unconventional view among management
scholars. Some of the more notable factors characteristic of Netscape’s judo strategy
included: (a) design products with modularized architectures; (b) use parallel devel-
opment; (c) rapidly adapt to changing market priorities; (d) apply as much rigorous
testing as possible and (e) use beta testing and open source strategies to solicit early
market feedback on features, capabilities, quality and architecture.

6.7 Internet Time
In 1998, a management scholar from the Harvard Business School conducted

a study on how U.S. firms manage the development of websites, referring to his
approach as ‘Internet time’ [239]. His study states that ‘constructs that support a more
flexible development process are associated with better performing projects’. Basi-
cally, what he did was survey 29 software projects from 15 Internet firms such as
Microsoft, Netscape, Yahoo, Intuit and Altavista. He set out to test the theory that
website quality was associated with three major factors: (a) greater investments in
architectural design, (b) early market feedback and (c) greater amounts of genera-
tional experience. Harvard Business School scholars believed that firms must spend a
significant amount of resources to create flexible software designs, they must incorpo-
rate customer feedback on working ‘beta’versions of software into evolving software

HISTORY OF COMPUTERS, ELECTRONIC COMMERCE 35

designs, and higher website quality will be associated with more experience among
computer programmers.After determining the extent to which the 29 website software
projects complied with these ‘Internet time’ factors through a process of interviews
and surveys, he then assembled a panel of 14 industry experts to objectively evaluate
the associated website quality. Statistical analysis supported two of the hypotheses,
e.g., greater architectural resources and early market feedback were associated with
higher website quality, but not the third, e.g., greater experience among computer pro-
grammers is associated with higher website quality. This was one of the first studies
to offer evidence in support of agile methods.

6.8 Extreme Programming
In 1998, 20 software managers working for the Chrysler Corporation published an

article on how they devised a management approached called ‘extreme programming’
or XP to turn around a failing software project that would provide payroll services
for 86 000 Chrysler employees [144]. Today, extreme programming is synonymous
with agile methods or agile programming and is one of the most widely used agile
methods although its market lead is eroding. In their article, they stated that ‘extreme
programming rests on the values of simplicity, communication, testing, and aggres-
siveness’. They also stated that the ‘project had been declared a failure and all code
thrown away, but using the extreme programming methodology, Chrysler started over
from scratch and delivered a very successful result’. Extreme programming consists
of 13 factors: (a) planning game, (b) small releases, (c) metaphor, (d) simple design,
(e) tests, (f) refactoring, (g) pair programming, (h) continuous integration, (i) collec-
tive ownership, (j) onsite customer, (k) 40 hour workweek, (l) open workspace and
(m) just rules. The planning game consists of estimation of the scope and timing of
releases. Small releases consist of groups of iterations that will be put into produc-
tion when complete. Metaphors are a common nomenclature for objects and classes.
Simple design is self-evident; that is keeping the software architecture and design as
simple as possible without adding unnecessary bells and whistles. Tests are unit tests
that must be written before the code is written and run after the code is complete.
Refactoring is defined as the continuous refining of the designs and code for simplic-
ity and efficiency. Pair programming means a team of two programmers responsible
for writing a software module or group of modules. Continuous integration is also
self-evident; all code must be integrated with the system soon after it is written and
unit tested as a form of validation. Collective ownership means that anyone has the
authority to redesign and recode any portion of the system. Onsite customer means
that a customer is always present with the software team. Open workspace refers to
collocated teams with few walls to optimize communication. And, just rules means
programmers must agree to a common set of flexible rules. What these 20 software

36 D.F. RICO ET AL.

managers did was start over, get an informal statement of customer needs, gradually
evolve a simple system design using iterative development, apply rigorous testing,
use small teams of programmers, and get early customer feedback on their evolving
design. In the end, Chrysler was able to deploy an operational payroll system serving
more than 86 000 employees.

6.9 Crystal Methods
In 1991, a software manager with IBM was asked to create an approach for

managing the development of object-oriented systems called ‘crystal methods’ [146].
Crystal methods were piloted on a ‘$15 million firm, fixed-price project consisting
of 45 people’. Crystal methods are a ‘family of methods with a common genetic
code, one that emphasizes frequent delivery, close communication and reflective
improvement’. Crystal methods are a family of 16 unique approaches for project
teams ranging from 1 to 1000 people and project criticality ranging from loss of
comfort to loss of life. The seven properties of crystal methods are: (a) frequent
delivery; (b) reflective improvement; (c) close communication; (d) personal safety;
(e) focus; (f) easyaccess toexpertusersand (g)a technical environmentwithautomated
testing, configuration management and frequent integration. The five strategies of
crystal methods are: (a) exploratory 360, (b) early victory, (c) walking skeleton,
(d) incremental re-architecture and (e) information radiators. The nine techniques
of crystal methods are: (a) methodology shaping, (b) reflection workshop, (c) blitz
planning, (d) Delphi estimation, (e) daily stand-ups, (f) agile interaction design,
(g) process miniature, (h) side-by-side programming and (i) burn charts. The eight
roles of crystal methods are: (a) sponsor, (b) team member, (c) coordinator, (d) business
expert, (e) lead designer, (f) designer-programmer, (g) tester and (h) writer. The work
products include a mission statement, team structure and conventions, reflection
workshop results, project map, release plan, project status, risk list, iteration plan
and status, viewing schedule, actor-goal list, use cases and requirements file, user
role model, architecture description, screen drafts, common domain model, design
sketches and notes, source code, migration code, tests, packaged system, bug reports
and user help text.

6.10 Feature-Driven Development
In 1997, three software managers and five software developers created a software

development approach called ‘feature driven development’to help save a failed project
for an international bank in Singapore [147]. In their textbook, they stated that ‘the
bank had already made one attempt at the project and failed, and the project had
inherited a skeptical user community, wary upper management, and a demoralized

H
IS

TO
R

Y
O

F
C

O
M

P
U

T
E

R
S

,E
LE

C
T

R
O

N
IC

C
O

M
M

E
R

C
E

37
Table I

Summary of Practices and Processes of Agile Methods

Feature FDD Extreme programming DSDM Scrum

Practice • Domain object modeling • Planning game • Active user involvement • Product backlog
• Developing by feature • Small releases • Empowered teams • Burndown chart
• Class (code) ownership • Metaphor • Frequent delivery • Sprint backlog
• Feature teams • Simple design • Fitness (simplicity) • Iterations and increments
• Inspections • Tests • Iterations and increments • Self managed teams
• Regular build schedule • Refactoring • Reversible changes • Daily scrums
• Configuration management • Pair programming • Baselined requirements
• Reporting/visibility of results • Continuous integration • Integrated testing

• Collective ownership • Stakeholder collaboration
• On-site customer
• 40-hour weeks
• Open workspace
• Just rules

Process Develop an Overall Model User Stories Feasibility Study Iteration (1)
Form the Modeling Team Requirements Feasibility Report Sprint Planning Meeting
Conduct a Domain Walkthrough Acceptance Tests Feasibility Prototype (optional) Product Backlog
Study Documents Architectural Spike Outline Plan Sprint Backlog
Develop Small Group Models System Metaphor Risk Log Sprint
Develop a Team Model Release (1) Business Study Daily Scrum
Refine the Overall Object Model Release Planning Business Area Definition Shippable Code
Write Model Notes Release Plan Prioritized Requirements List Sprint Review Meeting
Internal and External Assessment Iteration (1) Development Plan Shippable Code

Build a Features List Iteration Planning System Architecture Definition Sprint Retrospective Meeting
Form the Features List Team Iteration Plan Updated Risk Log Iteration (2)
Build the Features List Daily Standup Functional Model Iteration Sprint Planning Meeting
Internal and External Assessment Collective Code Ownership Functional Model Product Backlog

continued

38
D

.F.R
IC

O
E

T
A

L.
Table I

continued

Feature FDD Extreme programming DSDM Scrum

Process Plan by Feature Create Unit Tests Functional Prototype (1) Sprint Backlog
Form the Planning Team Unit Tests Functional Prototype Sprint
Determine Development Sequence Pair Programming Functional Prototype Records Daily Scrum
Assign Features to Chief Coders Move People Around Functional Prototype (2) Shippable Code
Assign Classes to Developers Refactor Mercilessly Functional Prototype Sprint Review Meeting
Self Assessment Continuous Integration Functional Prototype Records Shippable Code

Iteration (1) Acceptance Testing Functional Prototype (n) Sprint Retrospective Meeting
Design by Feature Iteration (2) Functional Prototype Iteration (n)

Form a Feature Team Iteration Planning Functional Prototype Records Sprint Planning Meeting
Conduct Domain Walkthrough Iteration Plan Non-functional Requirements List Product Backlog
Study Referenced Documents Daily Standup Functional Model Review Records Sprint Backlog
Develop Sequence Diagrams Collective Code Ownership Implementation Plan Sprint
Refine the Object Model Create Unit Tests Timebox Plans Daily Scrum
Write Class/Method Prologue Unit Tests Updated Risk Log Shippable Code
Design Inspection Pair Programming Design and Build Iteration Sprint Review Meeting

Build by Feature Move People Around Timebox Plans Shippable Code
Implement Classes/Methods Refactor Mercilessly Design Prototype (1) Sprint Retrospective Meeting
Conduct Code Inspection Continuous Integration Design Prototype
Unit Test Acceptance Testing Design Prototype Records
Promote to the Build Iteration (n) Design Prototype (2)

Iteration (2) Iteration Planning Design Prototype
Design by Feature Iteration Plan Design Prototype Records

Form a Feature Team Daily Standup Design Prototype (n)
Conduct Domain Walkthrough Collective Code Ownership Design Prototype
Study Referenced Documents Create Unit Tests Design Prototype Records
Develop Sequence Diagrams Unit Tests Tested System
Refine the Object Model Pair Programming Test Records
Write Class/Method Prologue Move People Around Implementation
Design Inspection Refactor Mercilessly User Documentation

H
IS

TO
R

Y
O

F
C

O
M

P
U

T
E

R
S

,E
LE

C
T

R
O

N
IC

C
O

M
M

E
R

C
E

39
Build by Feature Continuous Integration Trained User Population

Implement Classes/Methods Acceptance Testing Delivered System
Conduct Code Inspection Release (2) Increment Review Document
Unit Test Iteration (1)
Promote to the Build Iteration (2)

Iteration (n) Iteration (n)
Design by Feature Release (n)

Form a Feature Team Iteration (1)
Conduct Domain Walkthrough Iteration (2)

Process Study Referenced Documents Iteration (n)
Develop Sequence Diagrams
Refine the Object Model
Write Class/Method Prologue
Design Inspection

Build by Feature
Implement Classes/Methods
Conduct Code Inspection
Unit Test
Promote to the Build

40 D.F. RICO ET AL.

development team’. Furthermore, they stated that ‘the project was very ambitious, with
a highly complex problem domain spanning three lines of business, from front office
automation to backend legacy system integration’. In order to address this highly com-
plex problem domain that had already experienced severe setbacks, they created an
agile and adaptive software development process that is ‘highly iterative, emphasizes
quality at each step, delivers frequent tangible working results, provides accurate and
meaningful progress, and is liked by clients, managers, and developers’. As shown
in Table I, feature- driven development consists of five overall phases or processes:
(a) develop an overall model, (b) build a features list, (c) plan by feature, (d) design
by feature and (e) build by feature. Feature driven development also consists of other
best practices in software management and development such as domain object mod-
eling, developing by feature, individual class ownership, feature teams, inspections,
regular builds, configuration management and reporting and visibility of results.

7. History of Studies on Agile Methods

7.1 Harvard Business School I
In 1998, two management scholars from the Harvard Business School conducted a

survey of 391 respondents to test the effects of flexible versus inflexible product tech-
nologies, as shown in Figure 7 and Table II [240]. What they found was that projects
using inflexible product technologies required over two times as much engineering
effort as flexible product technologies (e.g., 17.94 vs. 8.15 months).

7.2 Harvard Business School II
In 1998, another management scholar from the Harvard Business School condu-

cted a survey of 29 projects from 15 U.S. Internet firms to test the effects of flexible
software development management approaches on website quality [239]. What he
found was that flexible product architectures and customer feedback on early beta
releases were correlated to higher levels of website quality.

7.3 Boston College Carroll School of Management
In 1999, two management scholars from Boston College’s Carroll School of Man-

agement conducted a case study of 28 software projects to determine the effects
of iterative development on project success [241]. What they found was that soft-
ware projects that use iterative development deliver working software 38% sooner,
complete their projects twice as fast, and satisfy over twice as many software
requirements.

HISTORY OF COMPUTERS, ELECTRONIC COMMERCE 41

Harvard
Flexible Technologies

(Thomke & Reinertsen, 1998)

INTERNET ERA
(1990s)

PERSONALIZED ERA
(2000s)

Harvard
Flexible Development Processes

(MacCormack, 1998)

Boston College
Iterative Development

(Fichman & Moses, 1999)

Reifer Consultants
Agile Benefits
(Reifer, 2003)

Shine Technologies
Agile Benefits

(Johnson, 2003)

CIO Magazine
Agile Organizations

(Prewitt, 2004)

Version One
Agile Benefits

(Version One, 2006)

Digital Focus
Agile Benefits

(Digital Focus, 2006)

NANO COMPUTING ERA
(2010s)

AmbySoft
Agile Adoption Rate

(Ambler, 2006)

Fig. 7. Timeline and history of studies on agile methods.

42 D.F. RICO ET AL.

7.4 Reifer Consultants
In 2003, Reifer Consultants conducted a survey of 78 projects from 18 firms to

determine the effects of using agile methods to manage the development of software
[242]. What they found was that 14% to 25% of respondents experienced productivity
gains, 7% to 12% reported cost reductions and 25% to 80% reported time-to-market
improvements.

7.5 ShineTechnologies
In 2003, Shine Technologies conducted an international survey of 131 respon-

dents to determine the effects of using agile methods to manage the development of
software [243]. What they found was that 49% of the respondents experienced cost
reductions, 93% of the respondents experienced productivity increases, 88% of the
respondents experienced quality increases and 83% experienced customer satisfaction
improvements.

7.6 CIO Magazine
In 2004, CIO Magazine conducted a survey of 100 information technology execu-

tives with an average annual budget of $270 million to determine the effects of agile
management on organizational effectiveness [244]. What they found was that 28%
of respondents had been using agile management methods since 2001, 85% of the
respondents were undergoing enterprise-wide agile management initiatives, 43% of
the respondents were using agile management to improve organizational growth and
market share, and 85% said agile management was a core part of their organizational
strategy.

7.7 Digital Focus
In 2006, Digital Focus conducted a survey of 136 respondents to determine the

effects of using agile methods to manage the development of software [245]. What
they found was that 27% of the respondents were adopting agile methods for a project,
23% of the respondents were adopting agile methods company wide, 51% of the
respondents wanted to use agile methods to speed up the development process, 51%
of the respondents said they lacked the skills necessary to implement agile methods
at the project level, 62% of the respondents said they lacked the skills necessary
to implement agile methods at the organization level and 60% planned on teaching
themselves how to use agile methods.

HISTORY OF COMPUTERS, ELECTRONIC COMMERCE 43

7.8 Version One
In 2006, Version One conducted an international survey of 722 respondents to

determine the effects of using agile methods to manage the development of software
[246]. What they found was that 86% of the respondents reported time-to-market
improvements, 87% of the respondents reported productivity improvements, 86% of
the respondents reported quality improvements, 63% of the respondents reported cost
reductions, 92% of the respondents reported the ability to manage changing priorities,
74% of the respondents reported improved morale, 72% of the respondents reported
risk reductions, 66% of the respondents reported satisfaction of business goals and
40% were using the scrum method.

7.9 AmbySoft 2006
In 2006, Ambysoft conducted an international survey of 4232 respondents to deter-

mine the effects of using agile methods to manage the development of software [247].
What they found was that 41% of organizations were using agile methods; 65% used
more than one type of agile method; 44% reported improvements in productivity,
quality and cost reductions; and 38% reported improvements in customer satisfaction.

7.10 AmbySoft 2007
In 2007, Ambysoft conducted another international survey of 781 respondents to

further determine the effects of using agile methods to manage the development of
software [248]. What they found was that 69% of organizations had adopted agile
methods, 89% of agile projects had a success rate of 50% or greater, and 99% of
organizations are now using iterative development.

7.11 UMUC
In 2007, a student at the University of Maryland University College (UMUC)

conducted a survey of 250 respondents to determine the effects of using agile methods
on website quality [249]. What he found was that: (a) 70% of all developers are
using many if not all aspects of agile methods; (b) 79% of all developers using agile
methods have more than 10 years of experience; (c) 83% of all developers using
agile methods are from small- to medium-sized firms; (d) 26% of all developers
using agile methods have had improvements of 50% or greater; and (e) developers
using all aspects of agile methods produced better e-commerce websites.

44 D.F. RICO ET AL.

Table II
Summary of Recent Studies and Surveys of Agile Methods

Year Source Findings Responses

1998 Harvard
(Thomke and
Reinertsen, 1998)

50% reduction in engineering effort
55% improvement in time to market
925% improvement in number of changes allowed

391

1998 Harvard
(MacCormack,
1998)

48% productivity increase over traditional methods
38% higher quality associated with more design effort
50% higher quality associated with iterative development

29

1999 Boston College
(Fichman and
Moses, 1999)

38% reduction in time to produce working software
50% time to market improvement
50% more capabilities delivered to customers

28

2003 Reifer Consultants
(Reifer, 2003)

20% reported productivity gains
10% reported cost reductions
53% reported time-to-market improvements

78

2003 Shine
Technologies
(Johnson, 2003)

49% experienced cost reductions
93% experienced productivity increases
88% experienced customer satisfaction improvements

131

2004 CIO Magazine
(Prewitt, 2004)

28% had been using agile methods since 2001
85% initiated enterprise-wide agile methods initiatives
43% used agile methods to improve growth and marketshare

100

2006 Digital Focus
(Digital Focus,
2006)

27% of software projects used agile methods
23% had enterprise-wide agile methods initiatives
51% used agile methods to speed-up development

136

2006 Version One
(Version One,
2006)

86% reported time-to-market improvements
87% reported productivity improvements
92% reported ability to dynamically change priorities

722

2006 AmbySoft
(Ambler, 2006)

41% of organizations used agile methods
44% reported improved productivity, quality, and costs
38% reported improvements in customer satisfaction levels

4,232

2007 AmbySoft
(Ambler, 2007)

69% of organizations had adopted agile methods
89% of agile projects had a success rate of 50% or greater
99% of organizations are now using iterative development

781

2007 UMUC
(Rico, 2007)

70% of developers using most aspects of agile methods
26% of developers had improvements of 50% or greater
Agile methods are linked to improved website quality

250

8. Conclusions

The gaps and problem areas in the literature associated with agile methods and
website quality are numerous. First, there are few scholarly studies of agile methods.

HISTORY OF COMPUTERS, ELECTRONIC COMMERCE 45

That is, this author has been unable to locate and identify very many scholarly studies
containing theoretical conceptual models of agile methods. Furthermore, few of the
articles in the literature review were based on systematic qualitative or quantitative
studies of agile methods. The literature review only mentions textbooks and articles
with notional concepts in agile methods. Most of the quantitative survey research
mentioned in the literature review was of a rudimentary attitudinal nature. In addition,
few of the articles mentioned in the literature review addressed all four of the factors
associated with agile methods (e.g., iterative development, customer feedback, well-
structured teams and flexibility). And, few of them were systematically linked to
scholarly models of website quality. So, the gaps are quite clear, a dearth holistic
scholarship on agile methods and scholarly outcomes such as information systems
quality.

There is a clear need for new studies on agile methods. We hope to inspire the
creation of a long line of scholarly studies of agile methods. Furthermore, we hope
to inspire more studies that attempt to link the factors of agile methods to scholarly
models of information systems quality. First and foremost, there is a need for a sys-
tematic analysis of scholarly literature associated with the factors of agile methods.
Then there is a need for a scholarly theoretical model of agile methods, depicting
the factors, variables and hypotheses associated with using agile methods. In addi-
tion, there is a need for an analysis of scholarly literature to identify the factors and
variables associated with website quality. Finally, there is a need to identify, survey,
select or develop scholarly measures and instrument items for both agile methods and
information systems quality, both of which together constitute new studies of agile
methods.

References

[1] Rosen S., 1969. Electronic computers: a historical survey. ACM Computing Surveys, 1(1):7–36.
[2] Denning J., 1971. Third generation computer systems. ACM Computing Surveys, 3(4):175–216.
[3] Tanenbaum A., 2001. Modern Operating Systems. Englewood Cliffs, NJ: Prentice Hall.
[4] Carlson B., Burgess A., and Miller C., 1996. Timeline of Computing History. Retrieved on October

21, 2006, from http://www.computer.org/portal/cms_docs_ieeecs/ieeecs/about/history/timeline.pdf.
[5] Nerlove M., 2004. Programming languages: A short history for economists. Journal of Economic

and Social Measurement, 29(1–3):189–203.
[6] Sammet J. E., 1972b. Programming languages: history and future. Communications of the ACM,

15(7):601–610.
[7] Pigott D., 2006. HOPL: An Interactive Roster of Programming Languages. Retrieved on October

21, 2006, from http://hopl.murdoch.edu.au.
[8] Chen Y., Dios R., Mili A., Wu L., and Wang K., 2005. An empirical study of programming language

trends. IEEE Software, 22(3):72–78.
[9] Cusumano M. A., 1991. Japan’s Software Factories: A Challenge to U.S. Management. New York,

NY: Oxford University Press.

46 D.F. RICO ET AL.

[10] Campbell-Kelly M., 1995. Development and structure of the international software industry:
1950–1990. Business and Economic History, 24(2):73–110.

[11] Steinmueller W. E., 1996. The U.S. software industry: an analysis and interpretive history. In
Mowery D. C. (Ed.), The International Computer Software Industry (pp. 25–52). New York, NY:
Oxford University Press.

[12] Johnson L., 1998. A view from the 1960s: how the software industry began. IEEE Annals of the
History of Computing, 20(1):36–42.

[13] Campbell-Kelly M., 2001. Not only microsoft: the maturing of the personal computer software
industry: 1982–1995. Business History Review, 75(1):103–146.

[14] Middleton R., and Wardley P., 1990. Information technology in economic and social history: the
computer as philosopher’s stone or pandora’s box? Economic History Review, 43(4):667–696.

[15] U.S. Department of Commerce. 2003. Digital Economy. Washington, DC: Author.
[16] Borck J., and Knorr E., 2005. A field guide to hosted apps. Infoworld, 27(16):38–44.
[17] Reid R. H., 1997. Architects of the Web: 1,000 Days that Build the Future of Business. New York,

NY: John Wiley and Sons.
[18] Leiner B., Cerf V. G., Clark D. D., Kahn R. E., Kleinrock L., Lynch D. C., et al. 1997. The past and

future history of the internet. Communications of the ACM, 40(2):102–108.
[19] Mowery D. C., and Simcoe T., 2002. Is the internet a US invention? An economic and technological

history of computer networking. Research Policy, 31(8/9):1369–1387.
[20] Kalakota R., and Whinston A., 1996. Electronic Commerce: A Manager’s Guide. Reading, MA:

Addison Wesley.
[21] U.S. Census Bureau. 2006. E-stats. Washington, DC: Author.
[22] Mandell L., 1977. Diffusion of EFTS among national banks. Journal of Money, Credit, and Banking,

9(2):341–348.
[23] Anonymous. 1965. A fascinating teller. Banking, 58(3):95–95.
[24] Ellis G. H., 1967. The fed’s paperless payments mechanism. Banking, 67(60):100–100.
[25] New York Stock Exchange 2006. NYSE Timeline of Technology. Retrieved on October 23, 2006,

from http://www.nyse.com/about/history/timeline_technology.html.
[26] Anonymous. 1971. Tela-fax takes dead aim on checks, credit cards. Banking, 64(3):52–53.
[27] Anonymous. 1975. Bank patents its EFT system. Banking, 67(1):88–88.
[28] Lynch J. E., 1990. The impact of electronic point of sale technology (EPOS) on marketing strategy

and retailer-supplier relationships. Journal of Marketing Management, 6(2):157–168.
[29] Accredited Standards Committee. 2006. The Creation of ASC X12. Retrieved on October 22, 2006,

from http://www.x12.org/x12org/about/X12History.cfm.
[30] Smith A., 1988. EDI: will banks be odd man out? ABA Banking Journal, 80(11):77–79.
[31] Internet Retailer. 2007. Internet Retailer 2007 Edition Top 500 Guide: Profiles and Statistics of

America’s 500 Largest Retail Web Sites Ranked by Annual Sales. Chicago, IL: Vertical Web Media,
LLC.

[32] Teorey T. J., and Fry J. P., 1980. The logical record access approach to database design. ACM
Computing Surveys, 12(2):179–211.

[33] American National Standards Institute. 1988. Information Resource Dictionary System (ANSI
X3.138–1988). New York, NY: Author.

[34] Dolk D. R., and Kirsch R. A., 1987. A relational information resource dictionary system.
Communications of the ACM, 30(1):48–61.

[35] Lombardi L., 1961. Theory of files. Communications of the ACM, 4(7):324–324.
[36] Bachman C. W., 1969. Data structure diagrams. ACM SIGMIS Database, 1(2):4–10.
[37] Dodd G. G., 1969. Elements of data management systems. ACM Computing Surveys, 1(2):117–133.

HISTORY OF COMPUTERS, ELECTRONIC COMMERCE 47

[38] Codd E. F., 1970. A relational model of data for large shared data banks. Communications of the
ACM, 13(6):377–387.

[39] CardenasA. F., 1977. Technology for automatic generation of application programs. MIS Quarterly,
1(3):49–72.

[40] Montalbano M., 1962. Tables, flowcharts, and program logic. IBM Systems Journal, 1(1):51–63.
[41] Oldfather P. M., Ginsberg A. S., and Markowitz H. M., 1966. Programming by Questionnaire: How

to Construct a Program Generator (RM-5128-PR). Santa Monica, CA: The RAND Corporation.
[42] Teichroew D., and Sayani H., 1971. Automation of system building. Datamation, 17(16):25–30.
[43] Sammet J. E., 1972a. An overview of programming languages for special application areas. Pro-

ceedings of the Spring Joint American Federation of Information Processing Societies Conference
(AFIPS 1972), Montvale, New Jersey, USA, 299–311.

[44] Boehm B. W., and Ross R., 1988. Theory W software project management: a case study. Proceedings
of the 10th International Conference on Software Engineering, Singapore, 30–40.

[45] Anderson R. M., 1966. Management controls for effective and profitable use of EDP resources.
Proceedings of the 21st National Conference for the Association for Computing Machinery,
New York, NY, USA, 201–207.

[46] Fisher A. C., 1968. Computer construction of project networks. Communications of the ACM,
11(7):493–497.

[47] Merwin R. E., 1972. Estimating software development schedules and costs. Proceedings of the
Ninth Annual ACM IEEE Conference on Design Automation, New York, NY, USA, 1–4.

[48] Jones T. C., 1978. Measuring programming quality and productivity. IBM Systems Journal,
17(1):39–63.

[49] Ives B., and Olson M. H., 1984. User involvement and MIS success: a review of research.
Management Science, 30(5):586–603.

[50] Dunn O. E., 1966. Information technology: a management problem. Proceedings of the Third ACM
IEEE Conference on Design Automation, New York, NY, USA, 5.1–5.29.

[51] Fitch A. E., 1969. A user looks at DA: yesterday, today, and tomorrow. Proceedings of the Sixth
ACM IEEE Conference on Design Automation, New York, NY, USA, 371–382.

[52] Milne M. A., 1971. CLUSTR: a program for structuring design problems. Proceedings of the Eighth
Annual ACM IEEE Design Automation Conference, Atlantic City, New Jersey, USA, 242–249.

[53] Miller L. A., 1974. Programming by non-programmers. International Journal of Man-Machine
Studies, 6(2):237–260.

[54] Bechtolsheim A., 1978. Interactive specification of structured designs. Proceedings of the 15th
Annual ACM IEEE Design Automation Conference, Las Vegas, Nevada, USA, 261–263.

[55] Dijkstra E. W., 1969. Notes on structured programming (T.H.-Report 70-WSK-03). Eindhoven,
Netherlands: Technological University of Eindhoven.

[56] Wirth N., 1971. Program development by stepwise refinement. Communications of the ACM,
14(4):221–227.

[57] Stevens W. P., Myers G. J., and Constantine L. L., 1974. Structured design. IBM Systems Journal,
13(2):115–139.

[58] Yourdon E., 1976. The emergence of structured analysis. Computer Decisions, 8(4):58–59.
[59] Clarke E. M., and Wing J. M., 1996. Formal methods: state of the art and future directions. ACM

Computing Surveys, 28(4):626–643.
[60] Hoare C. A. R., 1969. An axiomatic basis for computer programming. Communications of the ACM,

12(10):576–583.
[61] Wegner P., 1972. The vienna definition language. ACM Computing Surveys, 4(1):5–63.
[62] Hoare C. A. R., 1978. Communicating sequential processes. Communications of the ACM,

21(8):666–677.

48 D.F. RICO ET AL.

[63] Linger R. C., Mills H. D., and Witt B. I., 1979. Structured programming: Theory and Practice.
Reading, MA: Addison-Wesley.

[64] Shapiro S., 1997. Splitting the difference: the historical necessity of synthesis in software
engineering. IEEE Annals of the History of Computing, 19(1):20–54.

[65] Van Den Bosch F., Ellis J. R., Freeman P., Johnson L., McClure C. L., Robinson D., et al. 1982.
Evaluation of software development life cycle: methodology implementation. ACM SIGSOFT
Software Engineering Notes, 7(1):45–60.

[66] Royce W. W., 1970. Managing the development of large software systems. Proceedings of the
Western Electronic Show and Convention (WESCON 1970), Los Angeles, California, USA, 1–9.

[67] Basili V. R., and Turner J., 1975. Iterative enhancement: a practical technique for software
development. IEEE Transactions on Software Engineering, 1(4):390–396.

[68] Bauer F. L., 1976. Programming as an evolutionary process. Proceedings of the Second International
Conference on Software Engineering, San Francisco, California, USA, 223–234.

[69] Cave W. C., and Salisbury A. B., 1978. Controlling the software life cycle: the project management
task. IEEE Transactions on Software Engineering, 4(4):326–337.

[70] Boehm B. W., 1986. A spiral model of software development and enhancement. ACM SIGSOFT
Software Engineering Notes, 11(4):14–24.

[71] Belz F. C., 1986. Applying the spiral model: observations on developing system software in ada.
Proceedings of the 4th Annual National Conference on Ada Technology, Atlanta, Georgia, USA,
57–66.

[72] Iivari J., 1987. A hierarchical spiral model for the software process. ACM SIGSOFT Software
Engineering Notes, 12(1):35–37.

[73] Sauer C., Jeffery D. R., Land L., and Yetton P., 2000. The effectiveness of software development
technical reviews: a behaviorally motivated program of research. IEEE Transactions on Software
Engineering, 26(1):1–15.

[74] Weinberg G. M., 1971. The Psychology of Computer Programming. New York, NY: Van Nostrand
Reinhold.

[75] Mills H. D., 1971. Chief Programmer Teams: Principles and Procedures (IBM Rep. FSC 71–5108).
Gaithersburg, MD: IBM Federal Systems Division.

[76] Waldstein N. S., 1974. The Walk Thru: A Method of Specification Design and Review (TR 00.2536).
Poughkeepsie, NY: IBM Corporation.

[77] Fagan M. E., 1976. Design and code inspections to reduce errors in program development. IBM
Systems Journal, 15(3):182–211.

[78] U.S. Department of Defense. 1976. Military Standard: Technical Reviews and Audits for Systems,
Equipments, and Computer Software (MIL-STD-1521A). Hanscom AFB, MA: Author.

[79] Rosson M. B., andAlpert S. R., 1990. The cognitive consequences of object oriented design. Human
Computer Interaction, 5(4):345–379.

[80] Dahl O. J., and Nygaard K., 1966. Simula: an algol based simulation language. Communications
of the ACM, 9(9):671–678.

[81] Kay A., 1968. Flex: A Flexible Extensible Language. Unpublished master’s thesis, University of
Utah, Salt Lake City, UT, United States.

[82] Kay A., 1969. The Reactive Engine. Unpublished doctoral dissertation, University of Utah, Salt
Lake City, UT, United States.

[83] Kay A., 1974. Smalltalk: A Communication Medium for Children of All Ages. Palo Alto, CA: Xerox
Palo Alto Research Center.

[84] Parnas D. L., 1972. On the criteria to be used in decomposing systems into modules. Communica-
tions of the ACM, 15(12):1053–1058.

[85] Booch G., 1981. Describing software design in ada. SIGPLAN Notices, 16(9):42–47.

HISTORY OF COMPUTERS, ELECTRONIC COMMERCE 49

[86] McIntyre S. C., and Higgins L. F., 1988. Object oriented systems analysis and design: methodology
and application. Journal of Management Information Systems, 5(1):25–35.

[87] Whittaker J. A., 2000. What is software testing? And why is it so hard? IEEE Software, 17(1):70–79.
[88] Brown J. R., and Lipow M., 1975. Testing for software reliability. Proceedings of the First

International Conference on Reliable Software, Los Angeles, California, USA, 518–527.
[89] Goodenough J. B., and Gerhart S. L., 1975. Toward a theory of test data selection. Proceedings of

the First International Conference on Reliable Software, Los Angeles, California, USA, 493–510.
[90] Panzl D. J., 1976. Test procedures: a new approach to software verification. Proceedings of the

Second International Conference on Reliable Software, San Francisco, California, USA, 477–485.
[91] Walsh D. A., 1977. Structured testing. Datamation, 23(7):111–111.
[92] Leblang D. B., and Chase R. P., 1984. Computer aided software engineering in a distributed envi-

ronment. Proceedings of the First ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, Pittsburgh, Pennsylvania, USA, 104–112.

[93] Dowson M., and Wileden J. C., 1985. Panel discussion on the software process and software
environments. Proceedings of the 8th International Conference on Software Engineering, London,
England, 302–305.

[94] Nemchinova Y., 2007. The Feasibility of Using Software Tools in Teaching Technical Courses.
Unpublished doctoral dissertation, University of Baltimore, Baltimore, MD.

[95] Baker F. T., 1975. Structured programming in a production programming environment. Proceedings
of the First International Conference on Reliable Software, LosAngeles, California, USA, 172–185.

[96] Bratman H., and Court T., 1975. The software factory. IEEE Computer, 8(5):28–37.
[97] Amey W. W., 1979. The computer assisted software engineering (CASE) system. Proceedings of

the Fourth International Conference on Software Engineering, Munich, Germany, 111–115.
[98] Wegner P., 1980. The ada language and environment. ACM SIGSOFT Software Engineering Notes,

5(2):8–14.
[99] Day F. W., 1983. Computer aided software engineering (CASE). Proceedings of the 20th Conference

on Design Automation, Miami Beach, Florida, USA, 129–136.
[100] Banker R. D., and Kauffman R. J., 1991. Reuse and productivity in integrated computer aided

software engineering: an empirical study. MIS Quarterly, 15(3):375–401.
[101] Hsieh D., 1995. David hsieh of lbms: integrated case is dead. VARBusiness, 11(17):136–136.
[102] Abdel-Hamid T. K., 1988. The economics of software quality assurance: a simulation based case

study. MIS Quarterly, 12(3):394–411.
[103] Fujii M. S., 1978. A comparison of software assurance methods. Proceedings of the First Annual

Software Quality Assurance Workshop on Functional and Performance Issues, New York, NY, USA,
27–32.

[104] Adrion W. R., Branstad M. A., and Cherniavsky J. C., 1982. Validation, verification, and testing of
computer software. ACM Computing Surveys, 14(2):159–192.

[105] Jones C. L., 1985. A process-integrated approach to defect prevention. IBM Systems Journal,
24(2):150–165.

[106] Rigby P. J., StoddartA. G., and Norris M. T., 1990.Assuring quality in software: practical experiences
in attaining ISO 9001. British Telecommunications Engineering, 8(4):244–249.

[107] Notkin D., 1989. The relationship between software development environments and the software
process. Proceedings of the Third ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, Boston, Massachusetts, USA, 107–109.

[108] Crosby P. B., 1979. Quality is Free. New York, NY: McGraw-Hill.
[109] Radice R. A., Harding J. T., Munnis P. E., and Phillips R. W., 1985. A programming process study.

IBM Systems Journal, 24(2):91–101.

50 D.F. RICO ET AL.

[110] Humphrey W. S., 1987. Characterizing the Software Process: A Maturity Framework (CMU/SEI-
87-TR-011). Pittsburgh, PA: Software Engineering Institute.

[111] Weber C., Paulk M., Wise C., and Withey J., 1991. Key Practices of the Capability Maturity Model
(CMU/SEI-91-TR-025). Pittsburgh, PA: Software Engineering Institute.

[112] Agarwal R., Prasad J., Tanniru M., and Lynch J., 2000. Risks of rapid application development.
Communications of the ACM, 43(11):177–188.

[113] Naumann J. D., and Jenkins A. M., 1982. Prototyping: the new paradigm for systems development.
MIS Quarterly, 6(3):29–44.

[114] Alavi M., 1985. Some thoughts on quality issues of end-user developed systems. Proceedings of the
21st Annual Conference on Computer Personnel Research, Minneapolis, Minnesota, USA, 200–207.

[115] Guide International, Inc. 1986. Joint Application Design. Chicago, IL: Author.
[116] Gane C., 1987. Rapid Systems Development. New York, NY: Rapid Systems Development, Inc.
[117] Martin J., 1991. Rapid Application Development. New York, NY: Macmillan.
[118] Frakes W. B., and Kang K., 2005. Software reuse research: status and future. IEEE Transactions

on Software Engineering, 31(7):529–536.
[119] McIlroy M. D., 1968. Mass produced software components. Proceedings of the NATO Software

Engineering Conference, Garmisch, Germany, 138–155.
[120] Pyster A., 1982. Software development productivity. Proceedings of the National ACM Conference.

Dallas, Texas, USA, 94–94.
[121] Lubars M. D., 1982. Affording higher reliability through software reusability. ACM SIGSOFT

Software Engineering Notes, 11(5):39–42.
[122] Zychlinski B. Z., and Palomar M. A., 1984. A software quality assurance program through

reusable code. Proceedings of the 3rd Annual International Conference on Systems Documentation,
Mexico City, Mexico, 107–113.

[123] Lim W. C., 1994. Effects of reuse on quality, productivity, and economics. IEEE Software, 11(5):
23–30.

[124] Neighbors J. M., 1984. The draco approach to constructing software from reusable components.
IEEE Transactions on Software Engineering, 10(5):564–574.

[125] Jameson K. W., 1989. A model for the reuse of software design information. Proceedings of the
11th International Conference on Software Engineering, Pittsburgh, Pennsylvania, USA, 205–216.

[126] Holibaugh R., Cohen S., Kang K., and Peterson S., 1989. Reuse: where to begin and why.
Proceedings of the Conference on Tri-Ada, Pittsburgh, Pennsylvania, USA, 266–277.

[127] D’Souza D. F., and Wills A. C., 1998. Objects, Components, and Frameworks With UML: The
Catalysis Approach. Reading, MA: Addison Wesley.

[128] McGibbon T., 1996. A Business Case for Software Process Improvement (Contract Number
F30602–92-C-0158). Rome, NY: Air Force Research Laboratory – Information Directorate
(AFRL/IF), Data and Analysis Center for Software (DACS).

[129] Poulin J. S., 1997. Measuring Software Reuse: Principles, Practices, and Economic Models.
Reading, MA: Addison Wesley.

[130] Lim W. C., 1998. Managing Software Reuse: A Comprehensive Guide to Strategically Reengineering
the Organization for Reusable Components. Upper Saddle River, NJ: Prentice Hall.

[131] Edwards S. H., 1999. The state of reuse: perceptions of the reuse community. ACM SIGSOFT
Software Engineering Notes, 24(3):32–36.

[132] Sherif K., and Vinze A., 1999. A qualitative model for barriers to software reuse adoption. Pro-
ceeding of the 20th International Conference on Information Systems, Charlotte, North Carolina,
USA, 47–64.

[133] Kruchten P., Obbink H., and Stafford J., 2006. The past, present, and future of software architecture.
IEEE Software, 23(2):22–30.

HISTORY OF COMPUTERS, ELECTRONIC COMMERCE 51

[134] Prieto-Diaz R., 1987. Domain analysis for reusability. Proceedings of the 11th Annual International
Computer Software and Applications Conference (COMPSAC 1987), Tokyo, Japan, 23–29.

[135] Arango G., 1988. Domain Engineering for Software Reuse (ICS-RTP-88–27). Irvine, CA: University
of California Irvine, Department of Information and Computer Science.

[136] Horowitz B. B., 1991. The Importance of Architecture in DoD Software (Technical Report M91-35).
Bedford, MA: The Mitre Corporation.

[137] Wegner P., Scherlis W., Purtilo J., Luckham D., and Johnson R., 1992. Object oriented megapro-
gramming. Proceedings on Object Oriented Programming Systems, Languages, and Applications,
Vancouver, British Columbia, Canada, 392–396.

[138] Northrop L. M., 2002. SEI’s software product line tenets. IEEE Software, 19(4):32–40.
[139] Highsmith J. A., 2002. Agile Software Development Ecosystems. Boston, MA: Addison Wesley.
[140] Beck K., 1999. Embracing change with extreme programming. IEEE Computer, 32(10):70–77.
[141] Agile Manifesto. 2001. Manifesto for Agile Software Development. Retrieved on November 29,

2006, from http://www.agilemanifesto.org.
[142] Millington D., and Stapleton J., 1995. Developing a RAD standard. IEEE Software, 12(5):54–56.
[143] Schwaber K., 1995. Scrum development process. Proceedings of the 10th Annual ACM Conference

on Object Oriented Programming Systems, Languages, and Applications (OOPSLA 1995), Austin,
Texas, USA, 117–134.

[144] Anderson A., Beattie R., Beck K., Bryant D., DeArment M., Fowler M., et al. 1998. Chrysler goes
to extremes. Distributed Computing Magazine, 1(10):24–28.

[145] O’Reilly T., 1999. Lessons from open source software development. Communications of the ACM,
42(4):32–37.

[146] Cockburn A., 2002a. Agile Software Development. Boston, MA: Addison Wesley.
[147] Palmer S. R., and Felsing J. M., 2002. A Practical Guide to Feature Driven Development. Upper

Saddle River, NJ: Prentice Hall.
[148] Kruchten P., 2000. The Rational Unified Process: An Introduction. Reading, MA: Addison Wesley.
[149] Highsmith J. A., 2000. Adaptive Software Development: A Collaborative Approach to Managing

Complex Systems. New York, NY: Dorset House.
[150] Poppendieck M., and Poppendieck T., 2003. Lean Software Development: An Agile Toolkit for

Software Development Managers. Boston, MA: Addison Wesley.
[151] McIlroy M. D., 1960. Macro instruction extensions of compiler languages. Communications of the

ACM, 3(4):214–220.
[152] Conte S. D., Dunsmore H. E., and Shen V. Y., 1986. Software Engineering Metrics and Models.

Menlo Park, CA: Benjamin Cummings.
[153] Martin J., 1965. Programming Real-Time Computer Systems. Englewood Cliffs, NJ: Prentice Hall.
[154] Halstead M. H., 1977. Elements of Software Science. New York, NY: Elsevier North Holland.
[155] Basili V. R., and Reiter R. W., 1979. An investigation of human factors in software development.

IEEE Computer, 12(12):21–38.
[156] Albrecht A. J., 1979. Measuring application development productivity. Proceedings of the

IBM Applications Development Joint SHARE/GUIDE Symposium, Monterrey, California, USA,
83–92.

[157] Kan S. H., 1995. Metrics and Models in Software Quality Engineering. Reading, MA: Addison-
Wesley.

[158] Weinberg G. M., and Gressett G. L., 1963. An experiment in automatic verification of programs.
Communications of the ACM, 6(10):610–613.

[159] Youngs E. A., 1970. Error Proneness in Programming. Unpublished doctoral dissertation.
University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.

52 D.F. RICO ET AL.

[160] Shooman M. L., and Bolsky M. I., 1975. Types, distribution, and test and correction times for
programming errors. Proceedings of the International Conference on Reliable Software,
Los Angeles, California, USA, 347–357.

[161] Lipow M., 1982. Number of faults per line of code. IEEE Transactions on Software Engineering,
8(4):437–439.

[162] Shen V. Y., Yu T. J., Thebaut S. M., and Paulsen L. R., 1985. Identifying error prone software: An
empirical study. IEEE Transactions on Software Engineering, 11(4):317–324.

[163] Institute of Electrical and Electronics Engineers. 1990. IEEE Standard Glossary of Software
Engineering Terminology (IEEE Std 610.12–1990). New York, NY: Author.

[164] Rubey R. J., and Hartwick R. D., 1968. Quantitative measurement of program quality. Proceedings
of the 23rd ACM National Conference, Washington, DC, USA, 671–677.

[165] Boehm B. W., Brown J. R., Kaspar H., and Lipow M., 1973. Characteristics of Software Quality
(TRW-SS-73-09). Redondo Beach, CA: TRW Corporation.

[166] Swanson E. B., 1976. The dimensions of maintenance. Proceedings of the Second International
Conference on Software Engineering, San Francisco, California, USA, 492–497.

[167] Gilb T., 1977. Software Metrics. Cambridge, MA: Winthrop Publishers.
[168] Cavano J. P., and McCall J. A., 1978. A framework for the measurement of software quality.

Proceedings of the Software Quality Assurance Workshop on Functional and Performance Issues,
San Diego, California, USA, 133–139.

[169] Dzida W., Herda S., and Itzfeldt W. D., 1978. User perceived quality of interactive systems. Pro-
ceedings of the Third International Conference on Software Engineering, Atlanta, Georgia, USA,
188–195.

[170] Gaffney J. E., 1981. Metrics in software quality assurance. Proceedings of the ACM SIGMETRICS
Workshop/Symposium on Measurement and Evaluation of Software Quality, Las Vegas, Nevada,
USA, 126–130.

[171] Sunazuka T., Azuma M., and Yamagishi N., 1985. Software quality assessment technology. Pro-
ceedings of the Eighth International Conference on Software Engineering, London, England,
142–148.

[172] Arthur L. J., 1985. Measuring Programmer Productivity and Software Quality. New York, NY: John
Wiley and Sons.

[173] Grady R. B., and Caswell R. B., 1987. Software Metrics: Establishing a Company Wide Program.
Englewood Cliffs, NJ: Prentice Hall.

[174] Akiyama F., 1971. An example of software system debugging. Proceedings of the International
Federation for Information Processing Congress, Ljubljana, Yugoslavia, 353–379.

[175] Motley R. W., and Brooks W. D., 1977. Statistical Prediction of Programming Errors (RADC-TR-
77-175). Griffis AFB, NY: Rome Air Development Center.

[176] Potier D., Albin J. L., Ferreol R., and Bilodeau A., 1982. Experiments with computer software com-
plexity and reliability. Proceedings of the Sixth International Conference on Software Engineering,
Tokyo, Japan, 94–103.

[177] Halstead M. H., 1972. Natural laws controlling algorithm structure? ACM SIGPLAN Notices,
7(2):19–26.

[178] Weissman L., 1973. Psychological complexity of computer programs. ACM SIGPLAN Notices,
8(6):92–95.

[179] Elshoff J. L., 1976.An analysis of some commercial PL/1 programs. IEEE Transactions on Software
Engineering, 2(2):113–120.

[180] Dunsmore H. E., and Gannon J. D., 1979. Data referencing: an empirical investigation. IEEE
Computer, 12(12):50–59.

HISTORY OF COMPUTERS, ELECTRONIC COMMERCE 53

[181] Henry S., and Kafura D., 1981, Software structure metrics based on information flow. IEEE
Transactions on Software Engineering, 7(5):510–518.

[182] McCabe T. J., 1976. A complexity measure. IEEE Transactions on Software Engineering, 2(4):
308–320.

[183] Schneidewind N. F., and Hoffmann H., 1979. An experiment in software error data collection and
analysis. IEEE Transactions on Software Engineering, 5(3):276–286.

[184] Woodward M. R., Hennell M. A., and Hedley D., 1979. A measure of control flow complexity in
program text. IEEE Transactions on Software Engineering, 5(1):45–50.

[185] Dunsmore H. E., and Gannon J. D., 1980. Analysis of the effects of programming factors on
programming effort. Journal of Systems and Software, 1(2):141–153.

[186] Shooman M. L., 1983. Software Engineering. New York, NY: McGraw Hill.
[187] Zolnowski J. C., and Simmons D. B., 1981. Taking the measure of program complexity. Proceedings

of the AFIPS National Computer Conference, Chicago, Illinois, USA, 329–336.
[188] Myers G. J., 1977. An extension to the cyclomatic measure of program complexity. SIGPLAN

Notices, 12(10):61–64.
[189] Hansen W. J., 1978. Measurement of program complexity by the pair (cyclomatic number, operator

count). ACM SIGPLAN Notices, 13(3):29–33.
[190] Oviedo E. I., 1980. Control flow, data flow, and program complexity. Proceedings of the Fourth

International IEEE Computer Software and Applications Conference (COMPSAC 1980), Chicago,
Illinois, USA, 146–152.

[191] Card D. N., and Glass R. L., 1990. Measuring Software Design Quality. Englewood Cliffs, NJ:
Prentice Hall.

[192] Lo B., 1992. Syntactical Construct Based APAR Projection (Technical Report). San Jose, CA: IBM
Santa Teresa Research Laboratory.

[193] Myers G. J., 1976. Software Reliability: Principles and Practices. New York, NY: John Wiley and
Sons.

[194] Musa J. D., 1999. Software Reliability Engineering. New York, NY: McGraw Hill.
[195] Pham H., 2000. Software Reliability. Singapore: Springer Verlag.
[196] Jelinski Z., and Moranda P. B., 1972. Software reliability research. In Freiberger W. (Ed.), Statistical

Computer Performance Evaluation (pp. 465–484). New York, NY: Academic Press.
[197] Schick G. J., and Wolverton R. W., 1978. An analysis of competing software reliability analysis

models. IEEE Transactions on Software Engineering, 4(2):104–120.
[198] Moranda P. B., 1979. An error detection model for application during software development. IEEE

Transactions on Reliability, 28(5):325–329.
[199] Goel A. L., and Okumoto K., 1979. Time dependent error detection rate model for software and

other performance measures. IEEE Transactions on Reliability, 28(3):206–211.
[200] Littlewood B., 1979. Software reliability model for modular program structure. IEEE Transactions

on Reliability, 28(3):241–246.
[201] Sukert A. N., 1979. Empirical validation of three software error prediction models. IEEE

Transactions on Reliability, 28(3):199–205.
[202] Coutinho J. S., 1973. Software reliability growth. Proceedings of the IEEE Symposium on Computer

Software Reliability, New York, NY, USA, 58–64.
[203] Wall J. K., and Ferguson P. A., 1977. Pragmatic software reliability prediction. Proceedings of the

Annual Reliability and Maintainability Symposium, Piscataway, New Jersey, USA, 485–488.
[204] Huang X. Z., 1984. The hypergeometric distribution model for predicting the reliability of software.

Microelectronics and Reliability, 24(1):11–20.
[205] Musa J. D., Iannino A., and Okumoto K., 1987. Software Reliability: Measurement, Prediction, and

Application. New York, NY: McGraw Hill.

54 D.F. RICO ET AL.

[206] Ohba M., 1984. Software reliability analysis models. IBM Journal of Research and Development,
21(4):428–443.

[207] Yamada S., Ohba M., and Osaki S., 1983. S shaped reliability growth modeling for software error
prediction. IEEE Transactions on Reliability, 32(5):475–478.

[208] Thayer C. H., 1958. Automation and the problems of management. Vital Speeches of the Day,
25(4):121–125.

[209] Hardin K., 1960. Computer automation, work environment, and employee satisfaction: a case study.
Industrial and Labor Relations Review, 13(4):559–567.

[210] Kaufman S., 1966. The IBM information retrieval center (ITIRC): system techniques and applica-
tions. Proceedings of the 21st National Conference for the Association for Computing Machinery,
New York, NY, USA, 505–512.

[211] Lucas H. C., 1973. User reactions and the management of information services. Management
Informatics, 2(4):165–162.

[212] Bailey J. E., and Pearson S. W., 1983. Development of a tool for measuring and analyzing computer
user satisfaction. Management Science, 29(5):530–545.

[213] Lucas H. C., 1974. Measuring employee reactions to computer operations. Sloan Management
Review, 15(3):59–67.

[214] Maish A. M., 1979. A user’s behavior toward his MIS. MIS Quarterly, 3(1):39–52.
[215] Lyons M. L., 1980. Measuring user satisfaction: the semantic differential technique. Proceedings

of the 17th Annual Conference on Computer Personnel Research, Miami, Florida, USA, 79–87.
[216] Pearson S. W., and Bailey J. E., 1980. Measurement of computer user satisfaction. ACM

SIGMETRICS Performance Evaluation Review, 9(1):9–68.
[217] Walsh M. D., 1982. Evaluating user satisfaction. Proceedings of the 10th Annual ACM SIGUCCS

Conference on User Services, Chicago, Illinois, USA, 87–95.
[218] Ives B., Olson M. H., and Baroudi J. J., 1983. The measurement of user information satisfaction.

Communications of the ACM, 26(10):785–793.
[219] Joshi K., Perkins W. C., and Bostrom R. P., 1986. Some new factors influencing user information

satisfaction: implications for systems professionals. Proceedings of the 22nd Annual Computer
Personnel Research Conference, Calgary, Canada, 27–42.

[220] Baroudi J. J., and Orlikowski W. J., 1988. A short form measure of user information satisfaction:
a psychometric evaluation and notes on use. Journal of Management Information Systems,
4(4):44–59.

[221] Doll W. J., and Torkzadeh G., 1988. The measurement of end user computing satisfaction. MIS
Quarterly, 12(2):258–274.

[222] Kekre S., Krishnan M. S., and Srinivasan K., 1995. Drivers of customer satisfaction in software
products: implications for design and service support. Management Science, 41(9):1456–1470.

[223] Lindroos K., 1997. Use quality and the world wide web. Information and Software Technology,
39(12):827–836.

[224] Dreze X., and Zufryden F., 1997. Testing web site design and promotional content. Journal of
Advertising Research, 37(2):77–91.

[225] Selz D., and Schubert P., 1997. Web assessment: a model for the evaluation and the assessment of
successful electronic commerce applications. Electronic Markets, 7(3):46–48.

[226] Chen Q., and Wells W. D., 1999. Attitude toward the site. Journal of Advertising Research, 39(5):
27–37.

[227] Szymanski D. M., and Hise R. T., 2000. E-satisfaction: an initial examination. Journal of Retailing,
76(3):309–322.

[228] Barnes S. J., and Vidgen R. T., 2000. Webqual: an exploration of web site quality. Proceedings of
the Eighth European Conference on Information Systems, Vienna, Austria, 298–305.

HISTORY OF COMPUTERS, ELECTRONIC COMMERCE 55

[229] Barnes S. J., and Vidgen R. T., 2001. An evaluation of cyber bookshops: the webqual method.
International Journal of Electronic Commerce, 6(1):11–30.

[230] Cho N., and Park S., 2001. Development of electronic commerce user consumer satisfaction index
(ECUSI) for internet shopping. Industrial Management and Data Systems, 101(8/9):400–405.

[231] Yoo B., and Donthu N., 2001. Developing a scale to measure the perceived quality of an internet
shopping site (sitequal). Quarterly Journal of Electronic Commerce, 2(1):31–45.

[232] Janda S., Trocchia P. J., and Gwinner K. P., 2002. Consumer perceptions of internet retail service
quality. International Journal of Service Industry Management, 13(5):412–433.

[233] McKinney V., Yoon K., and Zahedi F., 2002. The measurement of web customer satisfaction: an
expectation and disconfirmation approach. Information Systems Research, 13(3):296–315.

[234] Wolfinbarger M., and Gilly M. C., 2003. Etailq: dimensionalizing, measuring, and predicting etail
quality. Journal of Retailing, 79(3):183–198.

[235] Takeuchi H., and Nonaka I., 1986. The new product development game. Harvard Business Review,
64(1):137–146.

[236] Sulack R. A., Lindner R. J., and Dietz D. N., 1989. A new development rhythm for AS/400 software.
IBM Systems Journal, 28(3):386–406.

[237] Cusumano M. A., and Selby R. W., 1995. Microsoft Secrets: How the World’s Most Powerful
Software Company Creates Technology, Shapes Markets, and Manages People. New York, NY: The
Free Press.

[238] Cusumano M. A., and Yoffie D. B., 1998. Competing on Internet Time: Lessons from Netscape and
Its Battle with Microsoft. New York, NY: The Free Press.

[239] MacCormack A., 1998. Managing Adaptation: An Empirical Study of Product Development in
Rapidly Changing Environments. Unpublished doctoral dissertation, Harvard University, Boston,
MA, United States.

[240] Thomke S., and Reinertsen D., 1998.Agile product development: managing development flexibility
in uncertain environments. California Management Review, 41(1):8–30.

[241] Fichman R. G., and Moses S. A., 1999. An incremental process for software implementation. Sloan
Management Review, 40(2):39–52.

[242] Reifer D. J., 2003. The business case for agile methods/extreme programming (XP). Proceedings
of the Seventh Annual PSM Users Group Conference, Keystone, Colorado, USA, 1–30.

[243] Johnson M., 2003. Agile Methodologies: Survey Results. Victoria, Australia: Shine Technologies.
[244] Prewitt E., 2004. The agile 100. CIO Magazine, 17(21):4–7.
[245] Digital Focus. 2006. Agile 2006 Survey: Results and Analysis. Herndon, VA: Author.
[246] Version One. 2006. The State of Agile Development. Apharetta, GA: Author.
[247] Ambler S. W., 2006. Agile Adoption Rate Survey: March 2006. Retrieved on September 17, 2006,

from http://www.ambysoft.com/downloads/surveys/AgileAdoptionRates.ppt.
[248] Ambler S. W., 2007. Agile Adoption Survey: March 2007. Retrieved on July 23, 2007, from

http://www.ambysoft.com/downloads/surveys/AgileAdoption2007.ppt.
[249] Rico D. F., 2007. Effects of Agile Methods onWebsite Quality for Electronic Commerce. Unpublished

doctoral dissertation, University of Maryland University College, Adelphi, MD, United States.
[250] Rico D. F., Sayani H. H., Stewart J. J., and Field R. F., 2007. A model for measuring agile methods

and website quality. TickIT International, 9(3):3–15.
[251] Rico D. F., 2007. Effects of agile methods on electronic commerce: Do they improve website

quality? Proceedings of the 40th Annual Hawaii International Conference on System Sciences
(HICSS 2007), Waikaloa, Big Island, Hawaii.

[252] Rico D. F., 2008. Effects of agile methods website quality for electronic commerce. Proceedings
of the 41st Annual Hawaii International Conference on System Sciences (HICSS 2008), Waikaloa,
Big Island, Hawaii.

This page intentionally left blank

Testing with Software Designs

ALIREZA MAHDIAN AND ANNELIESE A. ANDREWS

Department of Computer Science
University of Denver
Denver, CO 80208, USA
contact: andrews@cs.du.edu, 303-871-3374

Abstract
This chapter explores current state-of-the-art techniques that have been used in
software design testing, either to test the designs or to test implementations against
the designs. A common design notation that is in use today is UML. Originally,
techniques have been designed with the intentions of testing implementations
against their design artifacts provided in UML, but there are also techniques
that test the design artifacts directly. Given that UML is a defacto standard in
design notations, this chapter mostly focuses on testing techniques that either test
designs in UML directly, or use a design in UML to test its implementation. As
appropriate, we refer to general testing principles and techniques to illustrate their
application in the context of testing with software designs. The chapter covers
relevant testing criteria, testing techniques based on the type of UML diagram
and automated test generation.

1. Introduction . 58

2. Testing Criteria . 59

3. Design Evaluation Methods . 64

3.1. With UML . 66

3.2. For UML . 82

4. Conclusions . 94

References . 95

ADVANCES IN COMPUTERS, VOL. 73 57 Copyright © 2008 Elsevier Inc.
ISSN: 0065-2458/DOI: 10.1016/S0065-2458(08)00402-6 All rights reserved.

58 A. MAHDIAN AND A.A. ANDREWS

1. Introduction

Building of quality software is a major concern for software development organiza-
tions. Effective testing is an important part of a quality development effort. Software
testing research has provided a wide array of test and test generation methods,
particularly for code. More recently, testing methods have been proposed for designs.
Given that the Unified Modelling Language (UML) [35] is the defacto standard for
design artifacts, most of the testing approaches revolve around designs using various
UML diagrams. UML has made it possible to describe designs with a uniform notation
at a variety of design levels ranging from conceptual to detailed design [8].

There are two basic ways to use UML design artifacts for testing; either for testing
an implementation against its design (e.g., [10]), or to test the designs themselves to
evaluate their quality (e.g., [33]). This chapter covers both uses of UML artifacts for
testing. Testing rather than the more traditional inspection of design artifacts becomes
important for the following reasons:

• The complexity and sheer size of many designs.

• UML designs contain multiple notations allowing for complex interactions
between design artifacts.

Complex systems such as telecommunication systems can lead to hundreds of pages
of UML design in various notations, from Class Diagrams, to Sequence Diagrams, to
State Charts, etc. These diagrams commonly interact in ways such that their correct-
ness is far from being easily determined. Given the complexity and multiple views
through multiple models such as Class Diagrams, Sequence Diagrams, constraints in
Object Control Language (OCL) [35] and the like, the evaluation of the designs can
be difficult.

This results in an urgent need for devising a systematic (testing) approach to design
evaluation. To be comprehensive, one must provide:

• test criteria that cover all elements of UML models,

• test-generation techniques and tools to automate them

• test-execution environments including coverage measurement,

• test-validation techniques and tools (oracles).

This chapter surveys the state-of-the art techniques with respect to testing with
UML designs (with UML) and testing UML designs themselves (for UML). As can
be expected, not all areas of systematic testing listed above have been covered widely.
Currently, a comprehensive set of testing criteria, approaches and tools does not
exist. This chapter analyses the currently available techniques. Roughly, more test-
ing techniques have been proposed for more commonly occurring diagrams, such as
Class Diagrams, Collaboration or sequence Diagrams, or Statecharts. There are more

TESTING WITH SOFTWARE DESIGNS 59

Table I
Classification of Existing Work on Testing (with) Software Designs

Design Methods With UML For UML

Testing criteria (Abdurazik and Offut, 2000, [1]) (Ghosh et al., 2003, [15])
(Andrews et al., 2000, [2])

UML artifacts:
Multiple diagrams

(Briand and Labiche, 2001, [10]) (Pilskalns et al., 2007, [33])
(Pilskalns et al., 2003, [34])
(Trong et al., 2005, [38])

Statechart (Briand et al., 2003, [9])
(Gnesi et al., 2004, [16])
(Latella and Massink, 2001, [24])
(Offut and Abdurazik, 1999, [29])

Class diagram (Briand and Labiche, 2001, [10])
(Scheetz et al., 1999, [36])
(von Mayrhauser et al., 2000, [39])

(Gogolla et al., 2003, [17])
(Pilskalns et al., 2007, [33])
(Pilskalns et al., 2003, [34])
(Trong et al., 2005, [38])

Collaboration/sequence
diagram

(Briand and Labiche, 2001, [10]) (Pilskalns et al., 2007, [33])
(Pilskalns et al., 2003, [34])
(Trong et al., 2005, [38])

Automated test
generation

(Briand and Labiche, 2001, [10])
(von Mayrhauser et al., 2000, [39])

(Pilskalns et al., 2007, [33])
(Knight, 2005, [23])

proposed techniques than automated test generation tools. Fewer solutions exist for
regression testing. Table I shows existing testing approaches, classified based on
whether they are with UML or for UML. In addition, the table distinguishes between
the areas of testing listed above (rows in Table I) as well as whether a particular tech-
nique targets a specific type of UML notation or covers multiple types of diagrams.
Section 2 describes test adequacy criteria related to testing UML. Section 3 surveys
testing methods, with UML and for UML. Section 4 discusses the limits of current
state-of-the-art techniques and suggests future testing improvements.

2. Testing Criteria

A test adequacy criterion defines requirements for sufficient testing. This area of
testing has been extensively analysed for white-box testing of code. For example,
a common white-box adequacy criterion is branch adequacy. If a program P is repre-
sented by a flowchart, then a branch is an edge of the flowchart. A test set T is branch
adequate for P , provided for every branch b of P , there is some t in T which causes
b to be traversed.

Associated with the definition of test criteria is the question of whether they are
‘reasonable’. This question can be assessed analytically or empirically. An analytic

60 A. MAHDIAN AND A.A. ANDREWS

approach in [41] defines a general axiomatic theory for test adequacy criteria. The
motivation behind this work is to understand the strengths and weaknesses of the
proposed adequacy criteria and guide the definition of new adequacy criteria.

Test adequacy criteria were originally defined for code, either for white box testing
[40, 41] or for testing code against its specification [30]. Test adequacy criteria for
UML designs have been developed more recently [2].

Summarizing [41]:

• The first four properties state that:

1. Every program must be testable.
2. An adequacy criterion must be satisfiable in a non-trivial way.
3. Aprogram which has not been tested at all should not be deemed adequately

tested.
4. Once a program has been adequately tested, no amount of additional test

data can result in an inadequately tested program.

• The next three properties state that:

1. Programs which are closely related either syntactically or semantically, but
not both, may well require different test data.

2. The fact that all parts of a program have been adequately tested does not
necessarily imply that the entire program has been adequately tested.

3. Even though a program has been adequately tested, it does not follow that
each of its components has been adequately tested. This is due to the fact
that programs may contain unreachable code.

Weyuker [40] extended her previous work by showing that even though the
properties were useful in assessing the strength and weaknesses of the proposed
program-based adequacy criteria, they could all be simultaneously satisfied by obvi-
ously unsuitable adequacy criteria. Weyuker then adds three new properties to
substantially strengthen the set and, in particular, to rule out unsuitable adequacy
criteria. The three additional properties are:

• Renaming property: renaming of identifiers does not change an adequate test set
into an inadequate one.

• Complexity property: a program exists for every minimal test suite size n.

• Statement coverage property: test criteria must force statement coverage.

With some modifications, these properties can be extended to cover design-based
criteria:

• Property 1: For every design, there exists an adequate test set. A design can
be implemented in different ways, and there exists an adequate test set for each

TESTING WITH SOFTWARE DESIGNS 61

of those implementations. If each implementation can be tested adequately by a
particular test set, then there has to exist a test set that can adequately test the set
of all these implementations and thus the design itself.

• Property 2: There is a design and a corresponding test set that can non-
exhaustively and adequately, test that design. This means that a criterion cannot
always require an exhaustive test set for every possible design.

• Property 3: If there exists a subset of a test set adequate for a design, then that
test set is also adequate for that particular design.

• Property 4:An empty set is not adequate for any design. This means that a design
always needs to be tested.

• Property 5: There are designs that are equivalent but require different adequate
test sets. Since a functionality can be accomplished by different designs, we can
have equivalent designs. The fact that two designs are equivalent does not imply
that they necessarily have the same adequate test set.

• Property 6: If two designs are similar in structure, this does not necessarily mean
that they require the same adequate test set.

• Property 7: If a design is composed of smaller components, then an adequate
test set for the whole design does not guarantee an adequate test set for each
component of the design as an independent individual component.

• Property 8: If a design is composed of two or more components, then an adequate
test set would be more than just the union of adequate test sets for each design
component. This is due to the complexity added to the whole design because of
added interactions among the different components in the design.

While Weyuker [40, 41] did not use any concepts from UML, they influenced the
definition of test adequacy criteria for UML designs [2, 15]. In [15] and [2], a set
of testing criteria for UML-based design artifacts has been presented. The method
incorporates the use of test adequacy criteria based on UML model elements in class
diagrams and interaction diagrams. Class diagram criteria are used to determine the
object configurations on which tests are run, while interaction diagram criteria are used
to determine the sequences of messages that should be tested. Table II summarizes
the criteria derived for the class and collaboration diagrams. The basic approach
for defining these testing criteria is to define key building blocks for each type of
diagram (class and collaboration diagrams) and to enforce block coverage as a test
requirement. For class diagrams, these blocks are:

• Generalization relationships.

• Association-end multiplicities.

• Class attributes.

62 A. MAHDIAN AND A.A. ANDREWS

Table II
Test Criteria for Class and Collaboration Diagrams Adapted from [2]

Association-end multiplicity (AEM) criterion
Given a test set T and a system model SM, T must cause each representative multiplicity-pair in
SM to be created.

Generalization (GN) criterion
Given a test set T and a system model SM, T must cause every specialization defined in a
generalization relationship to be created.

Class attribute (CA) criterion
Given a test set T , a system model SM, and a class C, T must cause a set of representative attribute
value combinations in each instance of class C to be created.

Condition coverage (Cond) criterion
Given a test set T and a collaboration diagram CD, T must cause each condition in each decision
for evaluation of both TRUE and FALSE.

Full predicate coverage (FP) criterion
Given a test set T and a collaboration diagram CD, T must cause each clause in every condition
in CD to take the values of TRUE and FALSE, while all other clauses in the predicate (condition)
have values such that the value of the predicate will always be the same as the clause being tested.

Each message on link (EML) criterion
Given a test set T , a collaboration diagram CD, T must cause each message on a link connecting
two objects in CD to be executed at least once.

All message paths (AMP) criterion
Given a test set T , a collaboration diagram CD, T must cause each possible message path (sequ-
ence of message numbers) in CD to be taken at least once.

Collection coverage (Coll) criterion
Given a test set T , a collaboration diagram CD, T must test each interaction with collection objects
of various representative sizes at least once.

For collaboration diagrams, they are:

• Conditions in the collaboration diagram.

• Each clause within each condition.

• Each message.

• Each message path.

The AEM and CA criteria are expressed in terms of representative values. A form
of category-partition testing adapted to UML diagrams can be used to establish the
set of representative values. The value domain is partitioned into equivalence classes,
and one value from each class is selected for the representative values.

In [2], preliminary results of a case study are presented. They are based on a fault
model for various types of UML design artifacts. Faults are classified as incorrect

TESTING WITH SOFTWARE DESIGNS 63

sequence numbering, missing flows, and dataflow gaps. It is shown that these types
of faults can be uncovered by the proposed criteria.

Offut et al. [29] propose test criteria for UML statecharts. They defined four testing
criteria:

1. Transition coverage: every transition in the statechart must be traversed.
2. Full predicate coverage: the test set should include a pair of tests for each clause

c in each predicate P so that the value of P directly correlates with the value
of c.

3. Transition pair coverage: for each pair of adjacent transitions Si : Sj and Sj : Sk

in SG, T contains a test that traverses the pair of transitions in sequence.
4. Complete sequence coverage: meaningful sequences of transitions should be

defined for the statechart.

Collaboration diagrams consist of messages that are passed between objects and
their sequences, thus they provide design-level control and data flow information.
Because many testing techniques use data flow and control flow information, collabo-
ration diagrams play an important role in testing designs. Abdurazik et al. [1] defined
testing criteria specifically for collaboration diagrams. They define testing criteria for
both static and dynamic testing of UML collaboration diagrams. The static testing
focuses on checking of the code without executing it as opposed to dynamic checking
where the software is executed on some inputs. The items that should be used in static
testing are described as follows:

• Classifier roles:An object plays a classifier role in a collaboration diagram. Those
classifier roles that originate from the same class should be tested to see if they
have all the required attributes and operations.

• Collaborating pairs: Any pair of objects that are connected to each other via a
link in the collaboration diagram are collaborating pairs. Each collaborating pair
should be tested at least once.

• Message or stimulus: Testing a message will reveal most integration problems.
Return value type, thread of control and input parameters are some aspects of a
message that needs to be tested. A stimulus is an instance of a message.

• Local variable definition-usage link pairs: Variable definition-usage link pair is
a pair of link which consists of the message that defines the variable and the
first message that uses the variable. Testing of variable definition-usage link pair
includes traversing the links between these two. This test would help the tester
in finding data flow anomalies.

64 A. MAHDIAN AND A.A. ANDREWS

For dynamic testing, the test set should have at least one test case per collaboration
diagram that executes the complete message sequence of that collaboration diagram.
To check that the system will produce an event trace which conforms to the message
sequence path of the collaboration diagrams, instrumentations can be inserted at
the entry point of each method in the message path sequence in the original program.
These instruments are more like watchdogs that help keep track of run-time interaction
traces.

3. Design Evaluation Methods

In this section, we review testing methods that use UML. The first three methods
use UML diagrams as input artifacts in order to test code (With UML), as opposed to
other methods which use UML diagrams to test the UML design itself (For UML).
We will illustrate each testing method with the same example throughout the chapter.
The example represents a simplified course registration system. The registrar is the
only actor who interacts with the system. Figure 1 represents the class diagram for
the registration system.

The main functions of the system are classified into two groups based on whether
they are initiated by the registrar or executed automatically by the system itself. The
following functions are initiated by the registrar:

• Add /remove student.

• Add /remove instructor.

• Add /remove department.

• Add /remove course and sections.

• Add /remove course catalog.

• Add course to student’s schedule.

• Display course list, student list, department list and course catalog.

The following functions are executed automatically based on the system time:

• Archiving the registration information for the current semester at the end of the
semester.

• Removing classes that do not have the minimum number of students by the end
of registration deadline.

• Finalizing student schedules and list of students in each course right after the
deadline for dropping a course is over.

TESTING WITH SOFTWARE DESIGNS 65

Fig. 1. Class diagram for the course registration system.

66 A. MAHDIAN AND A.A. ANDREWS

3.1 With UML

3.1.1 TOTEM
Briand et al. [10] introduce an approach to derive system test requirements. With

the availability of detailed design information, these test requirements can then be
transformed into test cases, test oracles and test drivers. Test requirements help in
devising the system test plan, in sizing the system test task and in planning appropriate
resources early in the lifecycle.

Derivation of system test requirements in [10] is part of a system testing methodo-
logy called TOTEM. In TOTEM, the goal is to compare implementation against
specification, hence the artifacts used are produced in the analysis stage. TOTEM
uses the following UML diagrams as input artifacts:

• Use case diagram.
• Use case descriptions.
• Sequence or Collaboration diagrams.
• Class Diagram for application domain classes.
• A data dictionary that describes each class, method and attribute.
• Class invariants and operation contracts expressed in OCL.

TOTEM consists of eight steps (A1–A8) as illustrated in Fig. 2. A1 ensures testa-
bility. Testability is defined as the degree to which a model has sufficient information
to support automatic test case generation. The next five steps are concerned with the
derivation of test requirements. A2 to A5 derive test requirements from different arti-
facts. A6 merges all of them into one set and derives a test plan. A7 and A8 generate
test cases and test oracles.

Fig. 2. TOTEM steps adapted from [10].

TESTING WITH SOFTWARE DESIGNS 67

Briand et al. [10] address steps A2, A3 and A5. We will explain the approach
by deriving test requirements for a part of our example course registration system.
The following are a subset of registration system’s functionalities that are used to
demonstrate this technique:

• Add (Remove) students to (from) the system.

• Add (Remove) courses to (from) the system.

• Add (Remove) sections for each course.

• Register (Drop) courses for each student.

There is a sequential dependency among the use cases. For example, assuming that
there are no students or courses when the system is first used, the Remove student
(course) use case can only be executed after Add student (course) is executed at least
once. This sequential dependency among use cases is used when test requirements
are required. Sequential dependencies are represented with an activity diagram for
each actor; vertices are use cases and edges are sequential dependencies. Figure 3
shows the activity diagram representing use-case sequences for actor registrar in the
example.

Use-case parameters (both input and output) are listed in parentheses to show the
dependencies between parameters during path execution. The activity diagram in
Fig. 3 is converted to the directed graph of Fig. 4. The use-case sequence derivation
is initiated by path derivation in the directed graph via a depth first search. Loops can
cause infinite paths. To avoid this, loop iterations are limited to zero (if possible), one,
an average value greater than one and a maximum value. Figure 5 shows the paths in
the form of a tree derived from the directed graph in Fig. 4.

Next, dependencies among actual use-case parameters along the path need to
be determined. For instance, going back to our example, in path AddCourse.
AddSection.RemoveSection.RemoveCourse, the parametercid for
use caseAddSectionmust be identical to parametercid inAddCourse. These
parameter dependencies are used to derive data flow information in use-case sequence
executions, which is necessary for the generation of test data. These dependencies
can be documented simply by representing the parameters in the sequence. These
use-case sequences are called parameterized use-case sequences. Using the example
path mentioned above, we obtain:

AddCourse(cid).AddSection(cid,secid)
.RemoveSection(cid, secid).RemoveCourse(cid)

Next, instantiated use-case sequences are derived by replacing parameters in each
use-case sequence with a symbolic value. Several instances of one parameterized
use-case sequence may be created depending on the number of objects participating in

68
A

.M
A

H
D

IA
N

A
N

D
A

.A
.A

N
D

R
E

W
S

Fig. 3. Use-case sequential dependency diagram for the registrar.

TESTING WITH SOFTWARE DESIGNS 69

Fig. 4. Directed graph corresponding to Fig. 3.

Fig. 5. Tree derived from the directed graph in Fig. 4.

70 A. MAHDIAN AND A.A. ANDREWS

the test. For instance, if the tester indicates one course and two sessions, the following
instantiated use-case sequence is derived from the parameterized use-case sequence
mentioned above:

S1:AddCourse(cid1).AddSection(cid1,secid1)
.RemoveSection(cid1,secid1).RemoveCourse(cid1)
S2:AddCourse(cid1).AddSection(cid1,secid2)
.RemoveSection(cid1,secid2).RemoveCourse(cid1)

All instantiated use-case sequences are combined into one set by finding com-
mon use cases across pairs of sequences. For each pair, all sub-sequences between
each common pair of use cases are instantiated by generating a subset of all
possible sequences resulting from combining the sub-sequences. For the example
(S1, S2), a possible combined sequence is:

AddCourse(cid1).AddSection(cid1,secid1)

.AddSection(cid1,secid2).RemoveSection(cid1,secid2)

.RemoveSession(cid1,secid1).RemoveCourse(cid1)

Next, a sequence of use-case scenarios to be tested is derived. Use-case scenarios
are represented by sequence diagrams. Thus, we need to have a sequence diagram
describing the use-case scenarios for each use case in the test plan. Figure 6 represents
the sequence diagram for the RemoveCourse use case. Each sequence diagram is
represented as a regular expression in sum of products from where its alphabets are
the public methods of the objects participating in the sequence diagram.

The ‘.’ represents sequences of message calls, while ‘+’ denotes alternative
sequences. The following regular expression is the sum of product form for the
sequence diagram in Fig. 6:

% TERM 1
diplayCourseListRegistrarTerminal
.removeCourseRegistrarTerminal
.displayErrorRegistrarTerminal
.displayCourseListRegistrarTerminal
+
% TERM 2
diplayCourseListRegistrarTerminal
.removeCourseRegistrarTerminal
.∼courseCourse.∼section*RegistrarTerminal
.updateSchedulesSchedule
.displayCourseListRegistrarTerminal
+

T
E

S
T

IN
G

W
IT

H
S

O
FT

W
A

R
E

D
E

S
IG

N
S

71

Fig. 6. Analysis sequence diagram for RemoveCourse.

72 A. MAHDIAN AND A.A. ANDREWS

% TERM 3
diplayCourseListRegistrarTerminal
.removeCourseRegistrarTerminal
.∼courseCourse.∼section∗

RegistrarTerminal
.displayCourseListRegistrarTerminal

Each term in the regular expression is associated with a number of conditions
enabling or disabling its execution. These path realization conditions are expressed
in OCL. The path realization condition for TERM 2 is:

[not self.Course->exists(c:Course-c.getID = cid)]

and

[self.Course.Section->collect(Schedule)->size()> 0]

After identifying the path realization condition for each term, the precise operation
sequences need to be identified taking into account the actual number of iterations. The
next step is to identify test oracles. Test oracles for each test sequence are derived from
post conditions for each operation participating in the operation sequence. One way of
deriving test oracles is to put assertions as pre/post conditions and class invariants at
entry/exit points of each operation and raise an exception whenever they are violated.

Next, test requirements are formalized in the form of a decision table. The deci-
sion table consists of variants for each use case. Each variant corresponds to a path
realization condition for one of the terms in the sum of products form of the regular
expression of the sequence diagram. The decision table also has columns for initial
conditions and the actions that are taken as a result of running the test cases. The
actions correspond to system state changes and output messages being sent to actors.
Steps A2, A3 and A5 are automated with a prototype tool.

3.1.2 Test Objectives and AI Planner-basedTest
Generation

Von Mayrhauser et al. [39] describe an approach to black-box test generation
in which an artificial intelligence (AI) planner is used to generate test cases from
test objectives derived from UML class diagrams. They developed a representation
method at the application-domain level that allows for the statement of test objectives
at that level and their mapping into a planner representation. A planner is an algorithm
that finds a sequence of actions (i.e., plan) to reach a specified goal from the specified
initial state, considering all the constraints and assumptions. Thus, AI planning is goal
oriented and assuming that the test objectives are derived, the planner then generates
a set of tests that achieves the test objectives.

TESTING WITH SOFTWARE DESIGNS 73

The test objectives are described as sets of objects in terms of the states they can
take on. Desired states for an object are determined through its attribute values and
its links to other objects. The approach in [39] to derive test objectives is based on
three steps:

1. Test objectives are derived for each class (and its instantiated objects) in the
diagram separately, considering the class’ relationship to other classes.

2. Test objectives are aggregated from those for individual classes (and their
instantiated objects, subject to constraints through class relationships).

3. Test objectives are expressed as states of objects instantiated from classes
depicted in the UML class diagram.

Test objectives are derived based on four parameters:

• number of instances of each class.

• properties for such instances.

• selections for how many instantiated objects should be brought into a particular
state.

• states that they can take on.

Table III lists the building blocks for test objectives. Test objectives are derived by
choosing one option for each of the four parameters. This leads to the 4-step process
for deriving test objectives for a class:

1. Select a class, for which the states to be used as a test objective need to be
identified.

2. Reduce the class diagram into a sub-diagram consisting of the classes and rela-
tionships that offer state information relative to the primary class. Table IV lists
the detailed rules used to create sub-diagrams.

3. Select the set of instantiated objects for the primary class. This is a subset of
the system configuration.

4. Determine the states for the set of instantiated objects. Select one or more of
these states as the test objective.

Table III
Building Blocks of Class-Based Test Objectives

Number of Objects Property Participating Objects States

1 p1 All s1
1 < n < max … Sampling one …
max py None sk

74 A. MAHDIAN AND A.A. ANDREWS

Table IV
Rules to Create Sub-Diagrams

1. Ignore aggregations. They are captured in persistent initial condition of the test generator.
2. Substitute subclasses of generalization relationships. Subclasses inherit attributes, methods and

associations of the superclasses. There should be no superclasses or generalization relationships
in the diagram following this step.

3. Keep only classes that are in (bi)directed associations with the primary class.
4. Reduce bi-directed associations with the primary class to directed associations with the primary

class as the source class.
5. Remove any dangling associations (associations without classes on both sides).

Test objectives have two parts:

1. State information: desired goal states with regards to testing objects of this class.
2. Implications for necessary system configurations: how many objects could be

instantiated.

Test directives guide the generation of test cases by converting the test objectives
into a problem description. The AI Planner derives test sequences to achieve test
objectives based on this problem description. The postprocessor converts them into
executable test cases. A drawback of this approach is that when multi-object test
objectives are aggregated, the space of possible test objectives can become intractably
large.

Here, we will demonstrate the test objective derivation for the schedule class (as
primary class) of the registration system. The classes and relationships that offer
state-related information relative to class schedule are shown in the sub-diagram of
Fig. 7. Note that according to the rules in Table IV, the sub-diagram in Fig. 7 should
have included more classes (i.e., instructor, department and student), but since those
classes do not offer any state-related information, there is no need to include them in
the sub-diagram.

Figure 8 shows five test objectives derived specifically for the class schedule. The
second column shows the number of instances of schedule participating in each test.
For example in case of the first test objective, there are two instances of schedule
(i.e., sch0000, and sch0001) participating in the test scenario. The third
column shows the state-dependent attributes and their values. These attributes
are used to gather information about the state of the object. The fourth column
denotes the number of objects that should satisfy the test objective. Finally, the goal
state of the primary class for each test objective is defined in the last column. For
example, the following test objective is defined as the fourth test objective in Fig. 8:
From the four schedules participating in the scenario, add a section of a course to two
of the schedules where the section is full and there are already two other schedules
in the reservation list of that section.

TESTING WITH SOFTWARE DESIGNS 75

Fig. 7. Example of sub-diagram.

Fig. 8. Example test objectives.

3.1.3 Test Generation from State Charts
Offut et al. [29] derive test cases from UML statecharts based on the type of the

event. They defined four types of events: call events, signal events, time events and
change events. They use change events as the basis for test generation. Test generation
addresses four levels of test coverage: (1) Transition coverage, (2) Full predicate
coverage, (3) Transition pair coverage and (4) Complete sequence coverage.

76 A. MAHDIAN AND A.A. ANDREWS

Each test case consists of the following: (1) an initial state, (2) a sequence of states
to reach the initial state, (3) a sequence of testing steps and (4) a final state. A testing
step is composed of the following components:

1. Action name: this is the name of the function(s) that is executed when the
transition is traversed.

2. Clause name and value tuples: a value is assigned to each clause in the predicate
on the transition.

3. Attribute name and value tuples: the before and after value of each attribute that
is changed by the execution of the transition is denoted.

4. The next state: the state which follows the test step.

An automatic test generation tool (UMLTest) has been developed to support the
process. A limitation of this work is that it does not support all the transitions in
statecharts.

Figure 9 represents the statechart for the registration system. The four automatic
tasks of the registration system are modelled using the five change events shown in
this figure. Figure 10 shows the general test-set structure and example test sets for the
registration system. Full predicate coverage has been used to derive these test sets. In

Fig. 9. Statechart diagram for registrarTerminal.

TESTING WITH SOFTWARE DESIGNS 77

Fig. 10. Example of test case generated using [29].

the first example, the predicate consists of two clauses, hence we should have three
different test cases. The initial state is the idle state. Since the system starts at the idle
state, there are no prefix states (i.e., denoted by φ). The change event in this example
executes when the deadline for registration has been reached and there exists at least
one class that has less than the minimum number of students required for a course.
As the transition is traversed, the removeSection function is executed. The next
state of the system is again the idle state. This means that there is no change in the
value of state attributes.

The second example demonstrates the transition of the system from the idle state
as the initial state to the archiving state as the final state. In this case there is only one
clause associated with the predicate.According to the full predicate coverage criterion
this will result in two test cases. One that executes and one that fails to execute the

78 A. MAHDIAN AND A.A. ANDREWS

transition. Note that in the first test case the before and after value of the status
attribute is different as opposed to the second test case.

Briand et al. [9] propose a different approach for deriving test data from UML
statecharts. When statecharts are tested, two consecutive steps need to be performed.
First, a sequence of transitions (i.e., transition test sequence) needs to be defined.
The second step is to assign values to arguments (i.e., parameter values) for events
and actions in transitions. In the process of assigning values to test arguments, some
constraints on test data need to be solved (e.g., the value of an event’s parameter
should be smaller than an attribute’s value). Briand et al. focus on constructing a
problem domain for the constraints involving the test data.

The input domain to this approach consists of a specific class to be tested, its
statechart, its associated classes and a set of interacting statecharts belonging to some
of the associated classes. The output is a set of constraints on the state of the system and
on specific arguments for events and actions. For every path tested, the system state
for each event/transition and also the input domain for parameters are automatically
determined. Compared with the approach described in [29], this approach is less
restrictive. This means that in addition to change events, other kinds of events are
also dealt with. Furthermore, guards can involve attributes that are not necessarily of
boolean type.

This methodology is based on normalization and analysis of event/action contracts
and transition guards written with the object constraint language (OCL). The concept
of an invocation sequence tree (IST) is introduced: it defines the invocation chain
caused by actions received by objects that have state-dependent behaviour. This tree-
like data structure shows all possible invocation scenarios that may occur during
the execution of a transition test sequence. Constraints are derived from the tree by
normalizing OCL expressions. The normalization will support the analysis process
in terms of constraint derivation and consistency checking among OCL expressions.
An algorithm produces a sequence of sequences whose elements are constraints. This
is done by traversing the IST, starting with the first trigger event. As a transition test
sequence is traversed, all the associated constraints must be fulfilled.

We demonstrate this approach by using it to test the class Section of our reg-
istration system. The statechart of class Section is shown in Fig. 11. The set of
classes that are associated with Section are: Schedule, Instructor and
Course. Since Instructor and Course are stateless, the only interacting
statechart is the Schedule’s statechart, which is represented in Fig. 12.

A transition test sequence has the following general form: @state0@event0
[pred0]/actions0 @state1@event1[pred1]/actions1@...,
wherestate0,state1,... are the states of the statechart diagram;event0,
event1,... are the input events; pred0,pred1,... are the predicates
derived from the corresponding guard conditions and actions0,

T
E

S
T

IN
G

W
IT

H
S

O
FT

W
A

R
E

D
E

S
IG

N
S

79

Fig. 11. Statechart diagram for class Section.

80 A. MAHDIAN AND A.A. ANDREWS

Fig. 12. Statechart diagram for class Schedule.

Table V
Example of a Transition Test Sequence (TTS)

@section not full@self.Schedule.addCourse(s1)[true]
/self.confirmAdd(self.Schedule.getID)@section full
@self.Schedule.addCourse(s1)[true]
/self.reservationList.enqueue(self.Schedule.getID);
self.confirmReservation(self.Schedule.getID)
@section full@self.Schedule.cancelReservation(s1)
[self.reservationList.size > 0]/self.reservationList
.delete(self.Schedule.getID)@section full
@self.Schedule.removeCourse(s1)[true]/
self.confirmRemove(self.Schedule.getID);
@section not full@self.Course.removeSection(s1)
[true]/self.updateSchedules(
self->collect(Schedules));destroy;

actions1,... are the set of actions generated at each state upon receiving an
event if the guard condition is evaluated as being true. In case there is no predicate on
the transition, a [true] is written instead. Let us assume that we want to test the
transition test sequence (TTS) of Table V on an instance of section.

TESTING WITH SOFTWARE DESIGNS 81

This sequence corresponds to the following scenario: The registrar adds a course
(section s1) to the schedule of a student. Then that section becomes full. The reg-
istrar tries to add the same section to another student’s schedule. Since the section
is full, the request is put into the reservation list. At this stage, a withdrawal of
registration request (i.e., cancelReservation) is issued and in response the
corresponding schedule is removed from the reservation list of the section. Reg-
istrar then removes section s1 from a student’s schedule. Finally, the registrar
decides to completely remove the section from the system. Although the section
is not in full state, it is not empty, thus, the schedules of those students that are
registered in the section are updated and then the section is removed. Figure 13
shows the IST for this scenario. The directed arc between c5.1 and c5.2 means

Fig. 13. Invocation Sequence Tree corresponding to Schedule and Section Statecharts.

82 A. MAHDIAN AND A.A. ANDREWS

that self.updateSchedules(self->collect(Schedules)) and
destroy are executed in sequence.

Each sub-scenario has at least one test constraint. The constraint is derived by
propagating constraints that appear in the tree branches of the sub-scenario (i.e.,
invocation conditions for edges and post-conditions for nodes) onto the first edge
of the sub-scenario (e.g., edge labelled (c5) for event (5) sub-scenario). The state
of the system is changed by the execution of each operation in the IST. This means
that for each operation, the pre- and post-conditions must be mapped to a condition
that is meaningful in the pre-state of that operation. It is important to eliminate all
local variables and query conditions in the OCL expressions before the constraint
propagation process is started. This is done simply by replacing them with their
actual values. The following is the test constraint derived for sub-scenario (5.2):

{[self->collect(Schedule)->size() > 0] or
[self->collect(Schedule)->size() > 0]} and
{[self.oclInState() = Section not full] or
[self.oclInState() = Section full]}

Latella et al. [24] proposed a formal testing framework for a behavioural subset of
UML statechart diagrams (UMLSDs). They also provide a way for effective automatic
verification of testing equivalence of statecharts, based on existing techniques and
tools. The approach converts statechart diagrams into Hierarchical Automata, which
are then analysed. A drawback of this technique is that it does not consider history,
action and activity states.

Latella et al. [16] extended this work and proposed a formal conformance testing
relation and a non-deterministic test-case generation algorithm. The test-case gene-
ration algorithm generates test cases in a language that is a mix of process algebra
(guarded action prefix, choice, and process definition/instantiation) and a simplified
version of the lambda calculus. The main contribution of this work is to set the
theoretical basis for test-case generation in a conformance testing setting. In order to
use the proposed test-generation algorithm in practice, proper test-selection strategies
are needed.

3.2 For UML

3.2.1 State Validation via Snapshot Creation
Gogolla et al. [17] propose an approach to validate system states. These states,

called snapshots, are represented by object diagrams which consist of objects, attribute
values for each object and links among objects. Snapshot validation is done using a
tool called USE, which the authors developed earlier. The goal here is to facilitate

TESTING WITH SOFTWARE DESIGNS 83

the snapshot generation by defining the properties that they need to satisfy. For this
purpose, Gogolla et al. developedASnapshot Sequence Language (ASSL) that allows
for the generation of desired snapshots by specifying their properties.

ASSL defines the sequence of operations that is needed to generate a snapshot
with USE. In other words, the properties of snapshots are integrated with ASSL
procedures. Test cases examine the system with respect to desired properties that
need to be satisfied by class diagrams. Each property in the test case is specified
using dynamic invariants as opposed to present invariants that need to be satisfied
globally. Dynamic and present invariants are defined using OCL expressions. When
a dynamic invariant is loaded into USE, it will make sure that there exists a snapshot
that satisfies both the dynamic invariant and the present invariant. This is done by
showing that there exists no valid snapshot that satisfies the present invariant as well
as the negation of the dynamic invariant.

A test case in USE is a script that contains commands to generate the desired snap-
shot. Table VI shows the commands needed to generate a snapshot of the registration
system that consists of one instance of every class in the registration system class

Table VI
Example Test Case for USE

gen start regsys.assl generateCourse(1)

gen start regsys.assl generateSection(1)

gen start regsys.assl generateInstructor(1)

gen start regsys.assl generateDepartment(1)

gen start regsys.assl generateRegistrarTerminal(1)

gen start regsys.assl generateStudent(1)

gen start regsys.assl generateSchedule(1)

gen start regsys.assl generateCourseCatalog(1)

gen load student schedule.invs

gen load student department.invs

gen load student registrarterminal.invs

gen load schedule section.invs

gen load section inctructor.invs

gen load section course.invs

gen load course department.invs

gen load course coursecatalog.invs

gen load course registrarterminal.invs

gen load coursecatalog registrarterminal.invs

gen load instructor department.invs

gen load instructor registrarterminal.invs

gen load department registrarterminal.invs

gen start regsys.assl generateScheduleStudentLink(1)

84 A. MAHDIAN AND A.A. ANDREWS

diagram. For the sake of simplicity, we only considered the constraints on the
association-end multiplicities as invariants. In other words, we have thirteen invari-
ants i.e., one for each association link in the class diagram. The test case uses theASSL
procedures defined in regsys.assl to instantiate one instance of every class and
then loads the invariants for each association link from the corresponding .invs
file. Finally, the ASSL procedure generateScheduleStudentLink(1)
asks USE to generate a snapshot that has one link between the schedule and stu-
dent objects. USE automatically generates all the other links that are required
based on the loaded invariants. Note that in our example if one of the objects e.g.,
Instructor, had not existed, no snapshot would have been generated. This is due to
the fact that some of the invariants, namely, section_inctructor.invs,
instructor_department.invs and instructor_registrar-
terminal.invs require at least one instance of instructor to participate in the
snapshot.

3.2.2 Test Execution via JAL
Trong et al. [38] introduced a testing approach in which executable forms of UML

design models are exercised with test inputs generated from the class diagrams and
activity diagrams. Later, the expected behaviour and the observed behaviour are
compared and failures are reported. Their approach is supported by a prototype tool.
Class diagrams are used to characterize a set of valid object configurations, while
activity diagrams help define class operations. A Java-like Action Language (JAL)
[28] is employed to describe the semantics of actions. The testing process begins
with the introduction of the Design Under Test (DUT) into the testing system. DUT
is transformed into Executable DUT (EDUT). EDUT is a program that simulates
the behaviour modelled in the DUT. EDUT contains two parts: a static structure
representing the runtime configuration of the DUT and a simulation engine.

The static structure is derived from the class diagrams, while the simulation engine
is generated from the activity diagrams. Test scaffolding is added to EDUT to perform
failure checks (TDUT). Test cases are implemented on the TDUT and results are
reported by an observer class. Figure 14 illustrates an overview of this approach.

Figure 15 shows the activity diagram in the form of JAL specification for
addCourse operation of the RegistrarTerminal class and the related
partial class diagram. The corresponding EDUT is generated by combining informa-
tion from the class diagram and activity diagram. In addition to instances of classes
that are part of the test case, EDUT includes the following classes:

• SetOfC: Each instance of SetOfC maintains a collection of instances of class
C. The purpose of this class is to take care of association-end multiplicities.

TESTING WITH SOFTWARE DESIGNS 85

Fig. 14. Overview of the testing process.

• TFactory: This is a class that has public methods to create and destroy
instances of every class and association in the class diagrams.

Figure 16 represents the TDUT for the addCourse operation in Fig. 15. The
method _addCourse that is generated as part of EDUT is called from
addCourse. Lines 2–8 and 10–15 are inserted to check pre- and post-conditions
of the addCourse operation. The USE tool [17] is used to validate the objects’
configuration and pre- and post- conditions of each operation. Any detected violation
is reported as test failure.

Figure 17 shows a sample test case for operation addCourse. Test cases
are represented by an abstract class called TestDriver. The executeTest
is an abstract method in TestDriver which implements each test case.
For each test case, executeTest is implemented as a method within class
TestDriverImpl, which is a sub-class of TestDriver. executeTest
has two parts: a prefix to create the start configuration and a sequence of system
operation calls.

3.2.3 Testing Multiple DiagramTypes
Most existing testing approaches for UML designs provide simple static analy-

sis capabilities that can check model consistency. This can be done by validating
structural views (e.g., class diagrams) against invariants represented by OCL expres-
sions, or by validating behavioural views (e.g., sequence diagrams) against pre- or
post-conditions represented by OCL expressions. However, these approaches do not
validate dependencies between views. In other words, they do not address the problem
of revealing inconsistencies among behavioural and structural views.

Pilskalns et al. [33, 34] address this problem by introducing a framework to test
behavioural and structural aspects of UML designs by integrating the two views into a
single representation called Testable Aggregate Model (TAM)[33] (its earlier version

86 A. MAHDIAN AND A.A. ANDREWS

Fig. 15. Partial DUT of Registrar System related to Add Course Scenario.

TESTING WITH SOFTWARE DESIGNS 87

Fig. 16. Partial TDUT generated for the addCourse operation.

Fig. 17. A sample test case.

88 A. MAHDIAN AND A.A. ANDREWS

was called Object Method Directed Acyclic Graph (OMDAG))[34]. They provide a
framework to generate and execute test cases using TAM and to validate test results
by comparing them against OCL expressions.

The TAM is constructed by combining the behavioural information of sequence dia-
grams with the structural information of class diagrams. This aggregation of sequence
and class diagrams makes this approach different from [17] as it allows validation
of multiple types of diagrams at the same time, allowing for the effective testing for
cross-diagram defects. The approach consists of the following steps:

1. Build TAM using UML models.

(a) Construct a Directed Graph (DG) from each sequence diagram.
(b) Construct Class and Constraint Tuples (CCT) from class diagram and

OCL expressions.
(c) Combine DG and CCT into TAM.

2. Determine input model and generate test cases.

(a) Determine which attributes need partitioning.
(b) Partition attributes with domain analysis [7] to generate test cases.

3. Execute the tests.

(a) for each test:

i. record potential faults.
ii. validate test results.

Going back to our registration system example, Fig. 18 shows the sequence dia-
gram for a scenario where a course is added and then a course (which might be
different) is removed from the system. We will use this sequence diagram as an input
to demonstrate this methodology. At the very first step, a DG needs to be derived from
the sequence diagram. The construction of DG starts by traversing the first message
in the sequence diagram and creating its corresponding vertex. In general, if mi and
mj are two messages in the sequence diagram and vi and vj be the corresponding
vertices, an edge is added from vi to vj if it is possible to execute mj directly after mi.

ADG is represented by the tuple G = 〈V, E, s〉, where V is a set of vertices, E is the
set of edges and s is the starting vertex. A vertex in DG can be a simple vertex repre-
senting a message or a sub-DG representing a combined fragment, hence representing
several levels of abstraction. Combined fragments allow the developer to describe the
control flow of messages with conditions. In the context of [33], three kinds of com-
bined fragments are considered. These are option (i.e., ‘if’ statement), alternative

TESTING WITH SOFTWARE DESIGNS 89

Fig. 18. Example of sequence diagram.

(i.e., ‘switch’ statement) and loop. The loop fragment may contain a boolean guard
condition, as well as a minimum and maximum number of iterations.

The DG corresponding to the sequence diagram in Fig. 18 is represented in Fig. 19.
This graph has four Sub-DGs which correspond to the two alternative constructs.
Each sub-DG, vsub = 〈 [boolean, min, max], 〈V, E, s〉〉, is composed of a DG and a
guarded boolean expression. The boolean expression indicates the condition that must
be satisfied for sub-DG to be traversed and the min and max values indicate how many
times it should be traversed.Although the return messages of each function call are not
shown in Fig. 18, there is a vertex present for each of them in the corresponding DG.

In general, each message vertex, v, is defined by the tuple v = 〈o,m, lifeline,
ARGS,c〉, where o is an object calling m, m is the message, lifeline classifies an
object as new if it is being created, deleted if it is being deleted and exists otherwise.

90 A. MAHDIAN AND A.A. ANDREWS

Fig. 19. Directed graph corresponding to sequence diagram of Fig. 18.

ARGS is a set of argument tuples and c the class name of the instance o. The ARGS
tuple is composed of 〈type, name, value〉, where the type is the argument type, the
name is the argument name and the value is any assigned value. For example, the first
vertex in Fig. 19 represents the message addCourse in Fig. 18. The calling object

TESTING WITH SOFTWARE DESIGNS 91

of addCourse is reg. The object registrarTerminal already exists.
The arguments for addCourse are courseName of type string, deptID
of type int and level of type int. Finally, the class name of the calling object
reg is Registrar.

Constraint Class Tuples (CCTs) contain structural and constraint information. Class
diagrams and OCL expressions are used to derive CCTs. OCL expressions contain
pre/post conditions as well as invariants. OCL invariants can represent association
and multiplicity information among classes. Constraint Class Tuples consist of a class
name, attributes from class and superclasses (if applicable), operations for the class
and superclasses and OCL information for both the attributes and the operations (e.g.,
pre/post conditions). A CCT of a class c has the form:

CCT(c) = 〈{〈ParentCCT 〉}, {〈Attribute〉}, {〈Operation〉}, {[invariant]}〉
where c is the class name, {〈ParentCCT 〉} is a set consisting of parent class CCTs

for each parent class of c, {〈Attribute〉} is a set of attribute tuples with constraints,
{〈Operation〉} is a set of operation tuples with constraints and invariant is a set of
constraints at the class level (e.g., number of instances). The Attribute tuple is defined
as follows:

Attribute = 〈attributename, attributetype, visibility, invariant, 〈CCT 〉〉.
The Operation tuple is defined as follows:

Operation = 〈name, returntype, visibility, pre_condition, post_condition,

〈Parameters〉〉.
Figure 20 shows an annotated CCT for the class Course. The final step in

building the aggregate model is to combine CCTs and DGs. This is done by replacing
class name c in the DGs with their corresponding CCTs. While CCTs and DGs are
being combined, static evaluation tests the consistency of methods and parameters.

Test cases consist of values for variables or attributes that enable traversing a path
in the TAM. Thus, variables and attributes that are present in conditional statements
constitute the input model. The set of values that they can obtain defines the input
domain. The following steps define the input model:

1. Identify the set of variables that occur in conditions.
2. Determine the range based on type of variable. Use one of the combinatorial

techniques in [7] to determine partitions and combinations of partitions.
3. Select test values based on the combinatorial techniques used in step 2.

Table VII shows the input model corresponding to the sequence diagram of Fig. 18.
The size of the complete test set is 3 × 6 = 18, but since many of the test cases are

92 A. MAHDIAN AND A.A. ANDREWS

Fig. 20. Annotated CCT(course).

replicas of each other, we omitted those test cases. In general, in addition to ON and
OFF boundary values, a typical value needs to be included. Test execution traverses
the TAM using the generated test cases derived from the input model. To validate
the results, the changes to the system during test execution must be recorded. This is
facilitated by the use of an instance and trace table. The instance table keeps count
of the number of instances for each class. The trace table records each message, each
object and every attribute assigned values. The instance table is updated as execution
proceeds for the class type of the object as well as all of its super classes (if available).
For each conditional vertex vi attribute values are assigned and recorded based on
the executed test case. Tables VIII and IX show the trace tables for test cases T1 and
T2, respectively.

With the trace table and instance table, two types of faults can be revealed. The first
type is an OCL fault. It occurs when states recorded in the execution trace or instance
tables violate OCL constraints. Table VIII shows an OCL fault. This is due to the
OCL invariant that requires each section to have a capacity of at least one instead of
zero. The second type is classified as path fault, where a path may not be traversable
or may not exist. This can be caused by calling a private, abstract or non-existing
operation. An example of this kind of error is demonstrated in Table IX. This error is
caused because there is no path sequence to handle PHD course creation.

In addition to detecting OCL and path faults, the instance table can be used to
detect association end multiplicity violations. For example, Table X reveals this kind
of error. On the basis of the class diagram of the registration system, an instance of
Course should always be associated with one department. After the execution of

TESTING WITH SOFTWARE DESIGNS 93

Table VII
Input MODEL

Test Cases

Conditions Boundary T1 T2 T3 T4 T5 T6 T7 T8 T9

(level == MS) ON MS MS MS
OFF PHD PHD

(level == BS) ON BS BS BS
OFF PHD

(capacity ≥ 0) ON 0 0 0
OFF −1 −1 −1
TYPICAL 30 30 30

Table VIII
Trace Table for T1

Calling Object Operation Call Attribute Values

Reg addCourse courseName = “SE”, dep-tID = 1, level = MS
terminalWindow msCourse courseName = “SE”, dep-tID = 1
MsCourse addSection instID = 1, capacity = 0 (OCLfault)

Table IX
Trace Table for T2

Calling Object OperationCall Attribute Values

Reg addCourse courseName = “SE”, dep-tID = 1, level = PHD (Path fault)

Table X
Instance Table After

Execution of T6

Class Number

RegistrarTerminal 1
Course 1
Section 1
Department 0

T6, this constraint is violated. A suggested solution is to delete all courses associated
with a department before removing the department. Pilskalns et al. also provide a
prototype tool calledAdaptUML[23], which automates the test generation, execution
and validation.

94 A. MAHDIAN AND A.A. ANDREWS

4. Conclusions

This chapter explored the existing approaches to test implementations against their
design, as well as testing approaches to test the design itself. Not surprisingly, most
work centered around the most commonly used UML design artifacts, i.e., Class Dia-
grams, Sequence Diagrams and State Charts. Some approaches either require or prefer
the use of OCL to diagnose inconsistencies, provide partial test oracles and locate
faults. Testing criteria have been defined for Class Diagrams, Sequence/Collaboration
Diagrams, and State Charts. We also provided a set of properties that reasonable
UML design testing criteria should exhibit. Many of the techniques on which we
reported are not (fully) tool supported. Some require information that is not included
in UML artifacts (e.g., partitioning of the input model for test generation purposes).
Most of the existing techniques provide testing methods for single types of UML
diagrams. Only one technique allows for cross-diagram analysis by combining struc-
tural and behavioural diagrams into one notation [33]. None of the testing techniques
goes beyond functional testing to evaluate other important design properties like
performance. Empirical and experimental validation of the techniques is extremely
limited.

On the basis of the current limitations of UML design testing, we recommend the
following:

• Include testing techniques that span a larger number of UML diagrams types,
including interfaces, components and phases (from business use case and analysis
models to deployment and implementation models).

• Provide more tools and increase the degree of test automation.

• Provide approaches that allow cross-diagram analysis by combining structural
and behavioural models to allow testing of more subtle interactions.

• Integrate multiple techniques for a more powerful approach. For example,
Pilskalns et al. [33] technique could be strengthened by combining it with the
technique of Trong et al. [38]. This would allow for actual test execution via the
JAL, instead of the more limited symbolic execution. It would also need less
OCL. Trong et al. [38] already make use of Gogolla’s tool [17].

• Extend testing to include assessment of performance, security, fault tolerance,
etc. Currently, a large body of work has been carried out to assess UML design
performance [3, 4, 6, 11–13, 25, 27, 32, 37, 42]. Similarly, there are papers on
assessing various security properties [5, 14, 20–22, 26, 31]. However, from an
evaluator’s point of view, it would be preferable if one did not have to work with
different representations for each type of analysis. Again, an integrated represen-
tation that can be analysed with different methods would make this task easier.

TESTING WITH SOFTWARE DESIGNS 95

Grassi et al. [18] suggest transforming a series of different design notations into
an intermediate model that includes a model extractor for each target analysis
(e.g., Petri net Analysis, Markov Processes, etc.). While this approach addresses
performance and reliability analysis rather than testing, it follows the same phi-
losophy as that of Pilskalns et al. [33], i.e., integrating different models for a
more powerful analysis.

• Provide more empirical and experimental evaluation. There are over 25 years of
testing technique experiments for code [19] including laboratory studies, formal
analysis, controlled experiments and field studies. Given that, existing techniques
used to test with UML designs are comparatively recent, we still have very little
evidence with regards to the nature of common faults in designs, their frequency
and the ability of the design test techniques to find them.

References

[1] Abdurazik A., and Offutt A. J., 2000. Using UML collaboration diagrams for static checking and test
generation. In UML 2000: Proceedings of the 3’rd International Conference on UML, pp. 383–395.

[2] Andrews A., France R., Ghosh S., and Craig G., October 2000. Test adequacy criteria for UML design
models. Journal of Software Testing, Verification, and Reliability, 13(2):95–127.

[3] Balsamo S., Di Marco A., Inverardi P., and Simeoni M., May 2004. Model-based performance predic-
tion in software development: a survey. IEEE Transactions on Software Engineering, 30(5):295–309.

[4] Balsamo S., and Marzolla M., Performance evaluation of uml software architectures with multiclass
queueing network models. In WOSP ’05.

[5] Basin D., Doser J., and Lodderstedt T., 2006. Model driven security: from UML models to access
control infrastructures. ACM Transactions on Software Engineering and Methodology, 15(1):39–91.

[6] Bernardi S., Donatelli S., and Meseguer J., 2002. From uml sequence diagrams and statecharts to
analyzable petri nets. Proceedings of the 3rd International Workshop on Software and Performance
(WOSP).

[7] Binder R., 1999. Testing Object-Oriented systems models. Addison-Wesley.
[8] Booch G., Rumbaugh J., and Jacobson I., 2005. The Unified Modeling Language User Guide – 2nd

Edition. Addison-Wesley.
[9] Briand L. C., Cui J., and LabicheY., 2003. Towards automated support for deriving test data from UML

statecharts. In UML ’03: Proceedings of the 6’th International Conference on UML, pp. 249–264.
[10] Briand L. C., and Labiche Y., 2001. A UML-based approach to system testing. In UML ’01:

Proceedings of the 4’th International Conference on UML, pp. 194–208, Springer-Verlag,
London, UK.

[11] Canevet C., Gilmore S., Hillston J., Prowse M., and Stevens P., 2002. Performance Modelling with
Uml and Stochastic Process Algebra.

[12] Cortellessa V., and Mirandola R., Deriving a queueing network based performance model from uml
diagrams. Proceedings of the 2nd IEEE Workshop on Software and Performance (WOSP 2000).

[13] D’Ambrogio A., 2005. A model transformation framework for the automated building of performance
models from uml models. Proceedings of the 5th InternationalWorkshop on Software and Performance
(WOSP).

96 A. MAHDIAN AND A.A. ANDREWS

[14] Georg G., Ray I., and France R., 2002. Using aspects to design a secure system. In ICECCS ’02:
Proceedings of the 8’th IEEE International Conference on Engineering of Complex Computer Systems,
pp. 117–126, IEEE Computer Society, Washington, DC, USA.

[15] Ghosh S., France R., Braganza C., Kawane N., Andrews A., and Pilskalns O., 2003. Test adequacy
assessment for UML design model testing. In ISSRE ’03: Proceedings of the 14’th International
Symposium on Software Reliability Engineering, pp. 332–343, IEEE Computer Society, Washington,
DC, USA.

[16] Gnesi S., Latella D., and Massink M., 2004. Formal test-case generation for UML statecharts. In
ICECCS ’04: Proceedings of the 9’th IEEE International Conference on Engineering Complex Com-
puter Systems Navigating Complexity in the e-Engineering Age (ICECCS ’04), pp. 75–84, IEEE
Computer Society, Washington, DC, USA.

[17] Gogolla M., Bohling J., and Richters M., 2003. Validation of UML and OCL models by automa-
tic snapshot generation. In UML ’03: Proceedings of the 6’th International Conference on UML,
pp. 265–279.

[18] Grassi V., Mirandola R., and Sabetta A., 2005. From design to analysis models: a kernel language
for performance and reliability analysis of component-based systems. In WOSP ’05: Proceedings
of the 5’th international workshop on Software and performance, pp. 25–36, ACM Press, New York,
NY, USA.

[19] Juristo N., Moreno A., and Vegas S., March 2004. Reviewing 25 years of testing technique
experiments. Empirical Software Engineering Journal, 9(1/2).

[20] Jürjens J., 2002. UMLsec: extending UML for secure systems development. In UML ’02: Proceedings
of the 5’th International Conference on the Unified Modeling Language, pp. 1–9, Springer, Berlin,
Germany.

[21] Jürjens J., 2004. Secure Systems Development with UML, Springer-Verlag, London, UK.
[22] Jürjens J., 2005. Sound methods and effective tools for model-based security engineering with UML.

In ICSE ’05: Proceedings of the 27th International Conference on Software Engineering, pp. 322–331.
[23] Knight A. S., August 2005. ADAPTUML: A Tool for Evaluating UML Designs. Master’s thesis,

Washington State University, Pullman.
[24] Latella D., and Massink M., 2001.Aformal testing framework for UMLstatechart diagram behaviours:

From theory to automatic verification. In HASE ’01: The 6’th IEEE International Symposium on
High-Assurance Systems Engineering, pp. 11–22, IEEE Computer Society, Washington, DC, USA.

[25] Lindemann C., Thummler A., Klemm A., Lohmann M., and Waldhorst O. P., 2002. Performance
analysis of time-enhanced uml diagrams based on stochastic processes. WOSP ’02.

[26] Lodderstedt T., Basin D., and Doser J., 2002. SecureUML: a UML-based modeling language for
model-driven security. In UML ’02: Proceedings of the 5’th International Conference on the Unified
Modeling Language, pp. 426–441, Springer, Berlin, Germany.

[27] Lopez-Grao J. P., Merseguer J., and Campos J., From uml activity diagrams to stochastic petri nets:
application to software performance engineering. In Workshop on Software and Performance.

[28] Mellor S. J., and Balcer M. J., 2002. Executable UML: A Foundation for Model Driven Architecture.
Addison-Wesley Professional.

[29] Offutt A. J., and Abdurazik A., 1999. Generating tests from UML specifications. In UML ’99:
Proceedings of the 2’nd International Conference on UML, pp. 416–429.

[30] ParrishA., and Zweben S. H., 1991.Analysis and refinement of software test data adequacy properties.
IEEE Transactions on Software Engineering, 17(6):565–581.

[31] Petriu D. C., Woodside C. M., Petriu D. B., Xu J., Israr T., Georg G., France R., Bieman J. M., Houmb
S. H., and Jürjen J., 2007. Performance analysis of security aspects in uml models. In WOSP ’07:
Proceedings of the 6’th International Workshop on Software and Performance, pp. 91–102, ACM
Press, New York, NY, USA.

TESTING WITH SOFTWARE DESIGNS 97

[32] Petriu D. C., and Wang X., 2000. From uml description of high-level software architecture to lqn
performance model. In M. Muench M. Nagl, A. eds. Computer Performance Evaluation – Modelling
Techniques and Tools, number 2324, pp. 159–177.

[33] Pilskalns O., Andrews A., Knight A., Ghosh S., and France R., August 2007. UML design testing.
Journal of Information Science and Technology, 19(8):192–212.

[34] Pilskalns O., Andrews A. A., Ghosh S., and France R. B., 2003. Rigorous testing by merging structural
and behavioral UML representations. In UML ’03: Proceedings of the 6’th International Conference
on UML, pp. 234–248.

[35] Rumbaugh J., Jacobson I., and Booch G., 2005. The Unified Modeling Language Reference Manual.
Addison-Wesley.

[36] Scheetz M., von Mayrhauser A., France R., Dahlman E., and Howe A. E., 1999. Generating test cases
from an OO model with an AI planning system. In ISSRE ’99: Proceedings of the 10’th International
Symposium on Software Reliability Engineering, pp. 250–259, IEEE Computer Society, Washington,
DC, USA.

[37] Smith C. U., and Williams L. G., Performance evaluation of software architectures. In Proc. 1st
International Workshop on Software and Performance (WOSP 1998).

[38] Trong T. D., Kawane N., Ghosh S., France R., and Andrews A., 2005. A tool-supported approach to
testing UML design models. In ICECCS ’05: Proceedings of the 10’th IEEE International Conference
on Engineering of Complex Computer Systems, pp. 519–528.

[39] von Mayrhauser A., France R., Scheetz M., and Dahlman E., 2000. Generating test-cases from
an object-oriented model with an artificial-intelligence planning system. IEEE Transactions on
Reliability, 49(1):26–36.

[40] Weyuker E., 1988. The evaluation of program-based software test data adequacy criteria. Communi-
cations of the ACM, 31(6):668–675.

[41] Weyuker E. J., 1986. Axiomatizing software test data adequacy. IEEE Transactions on Software
Engineering, 12(12):1128–1138.

[42] Woodside C. M., Petriu D. C., Petriu D. B., Shen H., Israr T., and Merseguer J., Performance by
unified modified analysis (puma). In Proceedings of Workshop on Software and Performance.

This page intentionally left blank

BalancingTransparency, Efficiency
and Security in Pervasive Systems

MARK WENSTROM, ELOISA BENTIVEGNA∗
AND ALI R. HURSON

Department of Computer Science and Engineering
Pennsylvania State University
University Park, PA 16802
wenstrom@cse.psu.edu, hurson@mst.edu
∗Department of Physics
Pennsylvania State University
University Park, PA 16802
bentiveg@phys.psu.edu

Abstract
This chapter surveys pervasive computing with a focus on how its constraint
for transparency affects issues of resource management and security. The goal
of pervasive computing is to render computing transparent, such that computing
resources are ubiquitously offered to the user and services are proactively per-
formed for a user without his or her intervention.The task of integrating computing
infrastructure with everyday life without making it excessively invasive brings
about trade-offs between flexibility and robustness, efficiency and effectiveness,
as well as autonomy and reliability. While efficiency in resource management is
not the primary goal of pervasive computing, it should be considered in order
to best utilize a limited set of resources (bandwidth, computing, etc.) so as to
avoid congestion and creation of a visible and distracting bottleneck in the eyes
of the user. As solutions to efficiently manage the resources in a pervasive com-
puting environment, three techniques will be examined: the distributed caching
and sharing of data between mobile hosts, the broadcasting of services by public
service providers and the ability for mobile hosts to adaptively adjust the quality
of offered services. Likewise, security is often an afterthought in many computing
projects, though it should be of high consideration in a pervasive environment

ADVANCES IN COMPUTERS, VOL. 73 99 Copyright © 2008 Elsevier Inc.
ISSN: 0065-2458/DOI: 10.1016/S0065-2458(08)00403-8 All rights reserved.

100 M. WENSTROM ET AL.

where users share public resources to operate on private data. Specifically, how
can a user be authenticated in this environment with minimal or no user
intervention? Solutions such as single sign-on via smartcards and biometrics
will be examined to carry out authentication in a pervasive environment. As the
feasibility of ubiquitous computing and its real potential for mass applications are
still a matter of controversy, this chapter will look into the underlying issues of
resource management and authentication to discover how these can be handled
in a least invasive fashion. The discussion will conclude with an overview of the
solutions proposed by current pervasive computing efforts, both in the area of
generic platforms and for dedicated applications such as pervasive education and
healthcare.

1. Introduction . 101

2. Resource Management . 103

2.1. Distributed Caching . 105

2.2. Broadcasting . 115

2.3. Adaptive Fidelity . 129

2.4. Conclusions . 135

3. Security . 136

3.1. User Identification . 137

3.2. Service Identification . 141

3.3. Conclusions . 146

4. Current Projects . 146

4.1. Multi-Purpose Systems . 148

4.2. Dedicated Systems . 152

4.3. Conclusions . 155

5. Final Remarks . 155

Acknowledgments . 157

References . 157

List of Abbreviations

FMR false match rate
FNM false non-match rate
FPS frames per second
FR read frequency
LRU least recently used

BALANCINGTRANSPARENCY, EFFICIENCY 101

MTBR mean time between reads
MTBU mean time between updates
P2P peer-to-peer
PDA personal digital assistant
PDF probability density function
PM probability that an object has been modified
PNM probability that an object has not been modified
QoS quality of service
SDS secure discovery service
STDV standard deviation
TGS ticket granting service
TSP travelling salesman problem

1. Introduction

Pervasive computing explores the task of integrating technology with an environ-
ment, such that a multitude of computing devices are available to proactively perform
services for each user, thereby lightening the user’s workload. It has been pointed out
[1] that pervasive systems constitute the third wave in computing, after the main
frame era (one computer, many users) and the personal computer era (one computer,
one user). Pervasive computing is the next natural step in order to set a single user
in control of several computing elements. It should be noted that occasionally, the
literature has used the term ‘ubiquitous computing’ and ‘pervasive computing’ inter-
changeably. In this article, however, we are making a distinction between the two:
Pervasive refers to the invisibility and proactivity where the computer dissolves into
the fabric of the surroundings, while ubiquity refers to the availability. In other words,
ubiquitous computing facilitates a better pervasive computing.

In a pervasive environment, a user should always have access to computing
resources, whether the user is mobile or stationary; thus it is assumed that each user
is in control of a personal mobile device (e.g., a PDA or laptop). One’s device can
be used to connect to a multitude of resources: it can wirelessly tap into an access
point for connectivity to the global Internet; similarly, the device can tap into a local
access point for connectivity to a local network (e.g., a university or office network);
on the other hand, the device may not be able to tap into a structured network, but
may be able to join an ad hoc network of wireless devices in order to utilize those
resources.

As of the year 2007, the aforementioned forms of connectivity and resource
sharing are widely available. The field of mobile computing has provided some of the

102 M. WENSTROM ET AL.

framework for pervasive computing, as mobile devices currently give users access to
computing resource at all times. Not only does pervasive computing require constant
access to resources, but it also requires that technology be seamlessly and invisibly
integrated into the lives of its users. Thus, the field of artificial intelligence must also
be employed, such that one’s mobile device can predict the desires of its user and can
independently carry out services for this user. This implies that a mobile device must
be aware of its surrounding context and must be able to locate and call upon remote
resources to carry out its user’s intent. Consequently, the field of distributed compu-
ting must be employed to provide techniques to divide out computations to remote
resources; this is especially important to a pervasive environment, as the environ-
ment consists of a variety of computing elements, ranging from powerful servers to
resource-constrained mobile devices.

These areas of computing can be adapted, fused and ameliorated to achieve the
goal of pervasive computing: balancing proactivity of services and transparency of
operation in order to saturate an environment with computing agents that automate
the trivial daily tasks of life (e.g., transferring one’s lecture notes from a PDA to a
workstation), leaving humans free to focus on the high-level tasks (e.g., delivering a
lecture). In other words, the focus of one’s action is intended to be the high-level task
rather than the technology.

Notwithstanding the availability of the required technology, true pervasive compu-
ting environments have not been realized, as only prototypes and theoretical designs
have been developed by the research community. A major open field is related to
the fact that pervasive computing faces the delicate issue of which choices can be
delegated to the system (in the form of local clients, neighbouring peers or a central
server) and which must be imperatively performed by the user. The goal of pervasive
computing is obviously to maximize the former and minimize the latter. This often
demands for smarter algorithms, architectures and technologies than those that are
presently available. In order to create a system that proactively issues tasks, yet
remains mostly transparent from the user, two broad-range issues, with ramifications
and follow-ons need to be addressed:

• The computing agents need to be able to predict the user’s intent based
on history and context awareness. Predicting a user’s intent implies that the
services performed for a user should be desired by the user. Thus, the system must
intelligently decide what services a user desires at each moment. For example, a
user commuting to work will want to know if there is traffic along his route, and
in this event he may need an alternate route. In the case where there is no traffic,
the user should not be notified. Therefore, the system should know to check for
traffic along the user’s normal route, and calculate alternate routes in the event

BALANCINGTRANSPARENCY, EFFICIENCY 103

of traffic and relay this information to the user, and in the case where there is no
traffic the user should not be bothered.

• A reliable way of integrating all the computing agents into a seamless entity
needs to be designed. The requirement for a transparent system brings about dif-
ficult questions and issues that need to be addressed. First, what is an appropriate
mobile device for a user? Should this device be a full-size laptop, capable of
running applications and providing standard I/O? Or should the device be a thin
client, which only provides I/O and outsources heavy computation to resource-
abundant machines? As more features are supported by a mobile device, more
resources are needed on the device, which implies a physically larger device. Yet,
a physically large device violates the transparency requirement. Ideally, these
devices would be wearable computers, implying that such a device can be carr-
ied as if it was a personal accessory, such as a wallet or wristwatch. Since a small
device lacks computational power and battery life, the device must outsource
its workload to more capable machines in order to provide the same features of
larger devices. Furthermore, the issue of security of operation, when combined
with the transparency requirement, raises additional caveats. First, the system
needs to be endowed with user authentication procedures that grant a sufficient
degree of security while at the same time retaining the invisibility feature of a
pervasive application. Second, only authorized agents should have the capability
of initiating processes for the user; a framework to scan and filter the available
services will then have to be integrated into the system.

In this chapter, we will focus on two issues that are crucial for the design of a
proactive yet transparent system, in which mobile devices outsource tasks and services
to remote machines. First, we will describe techniques for resource management in a
pervasive environment, considering a realistic assumption that the proactive issuing
of tasks may overwhelm the available resources and may bring about distraction to the
user. Second, we will present the issue of authentication and recognition of users and
services, again focusing on solutions that minimize the amount of human–machine
interaction but still provide the required level of security. We conclude our discussion
with the review of a spectrum of current pervasive computing projects.

2. Resource Management

As outlined in the Introduction, a reasonable strategy to reduce the computational
burden of small devices in a pervasive environment is to allow those clients to

104 M. WENSTROM ET AL.

outsource their workload to larger machines. This outsourcing of work brings about
its own issues in the realm of transparency.

The machines that take on the outsourced work are known as surrogates.
A surrogate may be a standard workstation, a server-grade machine or even a
cluster of servers. A mobile device may outsource a computationally intensive
task to a surrogate through some type of remote procedure call. Thus, the mobile
device could act as a thin client, whereby the surrogate runs a user’s applica-
tions and the mobile device is only used for I/O. For simplicity, this article will
group all types of outsourced tasks under the label of services. Therefore, the
servers and surrogates processing the clients’ requests will be known as service
providers.

A main argument promoting the idea of pervasive computing is that computing
power is monetarily cheap, as the most powerful workstations of yesteryear (e.g.,
late 1990s to 2000) can be bought for a few hundred US dollars. These machines of
yesteryear are plentiful and can easily be set up as surrogates. While this is an easy
argument to make about the potential computing power of a pervasive environment,
one must also consider the number of users in this environment as well as the demand
placed on a surrogate by each user. In an urban or densely populated area, the number
of mobile devices requesting services may greatly outnumber the available surrogate
service providers, and the service rate of the providers may not meet the needs of the
users. Thus, the service providers may form the bottleneck in a pervasive environment.
The surrogate machines offering the services can be thought of as a public commodity;
therefore, it may be difficult to predict their load, and hence, difficult to provision
these resources.

While the cost to provision these resources as well as the efficiency of these
resources may not be the foremost goals of pervasive computing, there is rea-
son to address these concerns; the bottleneck may degrade the performance to
a degree where a user is annoyed by the high latency to perform a task. An
element of transparency is therefore lost, as the user becomes aware of the under-
provisioned and over-utilized system. Yet, provisioning the proper number of
resources may not be possible and the users may have to settle for the best-effort
provisioning.

Therefore, under best-effort provisioning, we will examine how resources can be
best allocated in order to minimize distraction to the user. However, this resource
allocation must not require users to micromanage their own resources, as this should
be done transparently from the user in a pervasive environment. Yet, this transparent
allocation must also provide users with the same level of satisfaction as if the users
were managing their own resources. This section will describe techniques to trans-
parently manage resources at the mobile-host level, as well as techniques to alleviate
the bottleneck at the service providers.

BALANCINGTRANSPARENCY, EFFICIENCY 105

2.1 Distributed Caching
One technique to alleviate the bottleneck and congestion at the surrogate level is to

distribute the workload of the surrogates among the mobile devices. This is not a novel
idea, as its application can be seen in decentralized peer-to-peer (P2P) file-sharing
systems. In a decentralized P2P system, the peers act as both clients and servers, as
they request and service queries. Regarding file sharing, a peer sends a request for a
particular file, and any peer who has a copy of this file can respond to this request
by sending the file to the requesting client. Thus, there is no central server to handle
requests, but rather, the clients themselves service each other’s requests. Therefore,
the workload is distributed among the clients instead of being concentrated at a single
source, which would act as a bottleneck.

Regarding a service-oriented pervasive environment, a user sends a request for a
common service from his or her mobile device to a remote server which handles the
request and provides the mobile client with the response. Common services could be
a request about the current weather condition or a request about the current traffic
pattern. In a centralized approach, all mobile clients would send these requests to
the same service provider. A provider would process a request by calculating the
most current state of the weather or traffic and relay this response to the requesting
client.

Distributing the load in a service-oriented pervasive environment is subtly different
than distributing the load in a P2P file-sharing environment. Files in a P2P system
are static, and as such, they do not grow stale. The same file can satisfy two requests
occurring at two different points in time. Whereas the data requested in a service-
oriented system is dynamic. Two requests for the weather at different points in time
(e.g., a few days apart) cannot be satisfied by the same response. Therefore, one must
keep in mind the idea of freshness of the data in a service-oriented environment.
For some services (e.g., weather and traffic requests), the service providers are the
only ones capable of producing fresh responses to the queries, as these machines are
connected to the weather centre or news centre via a local network or the Internet.
A mobile client, on the other hand, only has knowledge of the responses to its own
queries as well as those responses to the queries it overhears. It may overhear a query
if it is promiscuously listening to the wireless medium, or if the client is being used
to forward a query–response pair on the path between the client and server. For other
services (e.g., time of day requests), a mobile client may be capable of servicing
fresh data.

Thus, while a central server can be eliminated in the P2P file-sharing model since
the peers are capable of independently performing a service equivalent to that of the
central server, a central server cannot be eliminated in the service-oriented model.
The dynamic nature of the data in a service-oriented model suggests that clients will

106 M. WENSTROM ET AL.

depend on a true service provider to obtain fresh data. A client providing a cached
response to a service request is not performing the equivalent service of the true source,
since the cache response grows stale over time. Thus, a pervasive environment must
incorporate true service providers and cannot distribute all the workload to the clients
themselves. A hybrid model is more appropriate, in which the true service providers
are used to service the clients demanding the freshest data, and the clients with cached
copies are used to service fellow clients who can tolerate stale data. The following
section details the advantages of this hybrid caching model.

2.1.1 Advantages of Caching in a Pervasive
Environment

The most obvious advantages of employing caching in a pervasive environment
are that the bottleneck at the service provider can be alleviated and the response time
for service requests can be decreased. The bottleneck is alleviated as requests are
dispersed away from the source and directed to the clients. Alleviating the bottleneck
lowers the congestion at the source and also lowers the source’s workload, which in
turn reduces the response time of a query to the source. More significantly though,
response time of a query can be lowered if a mobile client chooses to send its request
to another mobile device servicing cached data instead of sending this request to the
source. A mobile device serving cached data will be most likely be less congested
than the actual source and will also be geographically closer than this source. Thus,
response time is decreased due to the reduced congestion and a lower round-trip time.
However, the most significant advantage of caching is its scalability. As more clients
are introduced to the pervasive environment, these clients soon become servers of
cached data. Therefore, even though the demand for services will increase due to an
increase in the number of clients, the availability of cached data will also increase, and
thus, the increase in demand will be met by an increase in supply. One caveat when
the number of clients are increased is that as more clients exchange cached data, stale
data is propagated to more nodes and the lifetime of this stale data is increased. Stale
data propagation will be addressed later in this article, but first, a simple software
architecture for implementing a caching system in a pervasive environment will be
presented.

2.1.2 Software Architecture of a Caching System
In the protocol presented in [2], mobile devices act as both clients and servers,

requesting and responding to service requests. The software architecture of the pro-
tocol consists of three entities: Providers, Consumers and Information Managers. All

BALANCINGTRANSPARENCY, EFFICIENCY 107

three entities are housed on a user’s mobile device. A Provider process simply offers
a service, which it can provide to remote devices or to the local device on which the
Provider process is located. A Consumer process requests a service. Lastly, the Infor-
mation Manager is a process that manages all the Providers and Consumers within
a single mobile device and also communicates with the Information Managers of
remote devices. Figure 1 illustrates the communication between these entities.

In order to provide a service, a Provider will register itself with the local Information
Manager. The Information Manager will then advertise this service to all mobile
devices within its transmission range (i.e., one-hop neighbours) by broadcasting an
advertisement. When querying for a service, a Consumer will send its query to the
local Information Manager of the device. The local Information Manager will first
check a cache of queries, and if it has a cached response for the very same query,
it will respond with the proper answer. Otherwise, it will check the list of Providers
that are registered within this device in an attempt to satisfy this query locally. If no
local Provider is found within the device, then the query will be broadcast to one-hop
neighbours with the hope that a neighbouring device will have a cached response to
this query or will have a Provider who can answer the query. In [2], a broadcast query
is limited to one-hop as a means to regulate the flooding. As an alternative, one-hop
neighbours could subsequently broadcast the query further. However, broadcasting
a query aimlessly can easily congest the network, thus it is important to limit the
size of the flood. Rather than expanding the flood radius, a host whose query cannot
be answered by neighbouring hosts may, instead, send its query directly to a known
data source, such as a weather centre when attempting to obtain the current weather
conditions.

BProvider

Provider

Provider

Consumer

Consumer

Information
Manager

Provider

Provider

Provider

Consumer

Consumer

Information
Manager

Mobile Device
A

Mobile Device

Cache Cache

Fig. 1. Communication scheme between Providers, Consumers and Information Managers.

108 M. WENSTROM ET AL.

2.1.3 Propagation of Stale Data
While having much in common with a decentralized peer-to-peer file-sharing

protocol, the aforementioned protocol [2] also resembles a proxy cache through its
use of cached responses. A proxy cache, or web cache, is located between the true
web server and a querying client. It can answer a client’s request by serving the client
a cached HTML page, instead of forwarding the query to the server. In the protocol
offered in [2], each Information Manager can cache queries and responses which
it overhears or forwards. If the Information Manager receives a query for which it
has cached a response, it will respond with this answer. As with a web cache, the
response to this query may be stale. In this situation, a trade-off has been made to
serve stale data in an attempt to shift some of the load off the service providers. In
[2], simple techniques to deal with stale data are offered. First, cached responses have
a timeout period, such that an entry is deleted after some period of time. Similarly,
instead of deleting an entry after a timeout, the Information Manager may re-query
for this service, as a means to update its cache with more current data. Unfortunately,
a re-query may result in the same stale data being sent by another remote device, and
thus there may be prolonged existence of the stale data in the system. These timeout
and update schemes are simple, but do not offer the user much control, nor do they
guarantee that fresh data will be received after a timeout. Implicit to the pervasive
goal, a user’s mobile device should be an unobtrusive tool, and as such, it must be
elegantly customized and tuned to its user. A user may require more than a simple
timeout to govern the updating of data. The user may want a certain level of freshness
when accepting cached data, and therefore, the user may wish to know when the
cached data was generated by the source. On the basis of the time at which the data
was generated, the user may wish to know the probability that the cached data is fresh.
The following section offers a different technique to combat stale data, in which the
user controls the level of freshness of the cached data that he or she receives.

2.1.4 Imposing a Quality-of-Service Metric on
Cached Data Objects

The previous sections have discussed the advantages of employing a caching system
to alleviate the bottleneck at the service providers; nevertheless, the issue of stale data
propagation remains a problem. In general, this issue concerning the spread of stale
or fresh data is known as data consistency. Some environments require a strong
consistency for cached data. For example, in a multi-processor environment in which
each processor has its own cache, the same data object may reside in multiple caches;
yet when any processor reads this object, this read must reflect the latest write to this
object. The requirement where any read must reflect the most recent write is known

BALANCINGTRANSPARENCY, EFFICIENCY 109

as strong consistency, and thus, stale data will never be read. In a multi-processor
setting, maintainenance of this condition is important to ensure the correctness of
an executed program. Relaxing this condition to a point where the latest read of a
data object may not return the value of the latest write yields a weaker consistency.
The caching protocol discussed in Section 2.1.2 assumed a weak consistency for data
objects, allowing the propagation of stale data. The problem of stale data can be
addressed by a technique described in [7]. While the offered technique was intended
for Internet caching, it is just as appropriate in the domain of pervasive computing,
as the service-oriented architecture of pervasive computing is similar to the service-
oriented architecture of most websites. This technique allows the user to adjust the
level of consistency for the requested data objects in order to meet one’s personal
needs.

It should be noted that maintaining a strict coherency between a data object at the
source and all cached copies of the object held at the clients is very time-consuming.
The classical cache coherency protocols come in two patterns: update and invalidate.
These require some service to manage a directory, which stores the list of locations of
all cached copies as well as state information describing the current access permissions
of the clients. In a pervasive environment, the number of clients will likely be too
large to manage such a directory. In addition, broadcasting (or multi-casting) the
invalidate messages, or the larger update messages, would congest the network with
great deal of overhead traffic. Moreover, connectivity to the mobile hosts in a pervasive
environment is not guaranteed. Thus, the invalidate and update messages are not
guaranteed to reach all of the hosts, and therefore, the coherency protocol would only
be best-effort. Settling for a controlled weak consistency is therefore an appropriate
solution in a pervasive setting.

2.1.5 Trading-off Consistency for ResponseTime
When servicing the requests in a pervasive environment where caching is permis-

sible, there is a trade-off between the consistency of the data served and the response
time. If a user requires strong consistency, then the request must go to the source
serving the data in order to ensure that this user receives the most recent copy of the
data (e.g., only the server in the weather centre can provide the most recent weather
conditions). If we reasonably assume that there is congestion at the main source, or
that the mobile client has intermittent connectivity to the source, the client will expe-
rience a high response time when querying this source. On the other hand, if a client
can tolerate a stale data object, then a cached copy of the object can be received from
one of many less-loaded, and possibly physically nearer, clients, thereby, reducing
the response time. In the technique introduced in [7], the user can decide, for each
data object, whether consistency or response time is important.

110 M. WENSTROM ET AL.

Fig. 2. Quality-of-service domain.

The decision for consistency or response time is not a binary decision, but rather,
there is a continuous domain from which a user can select a point between strongest
consistency (high response time) and weakest consistency (low response time) for
a particular data object. In [7], this domain is known as a quality-of-service (QoS)
domain, and it is illustrated in Fig.2. Values in this domain represent the minimum
probability, between zero and one, that the data object received will reflect the latest
write to this object. By selecting a value of one, the user is guaranteeing with 100%
probability that he or she receives the latest version of a data object. By selecting a
value of zero, the user is suggesting that he or she is willing to receive any version
of the requested data object, no matter whether it is stale or fresh. By selecting an
intermediate value, say 0.3, the user is suggesting that he or she is willing to receive a
version of the data object where there is a 30% or greater probability that the received
object reflects the most recent version.

Users in a pervasive environment can set a QoS value for each service performed by
their mobile device. For example, on the one hand, an investment banker would select
a high QoS value for the service updating stock quotes. Only the most current quote is
important to the banker. On the other hand, a casual investor may set a low QoS value
for the stock quote service. Similarly, a golfer checking the weather at the course may
set a low QoS value for the weather service. The golfer may believe that the weather
does not change drastically within a day, and therefore a stale cached value would
be sufficient for offering the approximate temperature and weather condition. Yet, a
newscaster reporting on a tornado may require the most accurate weather condition
and therefore set a high QoS value for the weather service. Thus, a user must be able
to customize this setting for each service.

How can the system determine the probability that a cached object is fresh and
reflects the latest write? This probability depends on how often an object is updated
and on the time of the last update. To implement this, the source for a service would
maintain a table of entries, in which an entry is inserted after an update is made to the
data object. An entry to the table consists of the time between updates (the time from
the last update to the most recent update). An average can be calculated across these
entries to acquire the mean time between updates (MTBU) along with its standard

BALANCINGTRANSPARENCY, EFFICIENCY 111

deviation (STDVMTBU). The source would maintain the MTBU, STDVMTBU and
time-of-last-update values and would provide these to a client requesting its service.

A client will use these metadata values to determine the probability that cached
object is fresh and has not been modified. When receiving a request for a cached data
object, the servicing client can calculate the probability that the data object has been
changed since the time the object was cached. This assumes that the time-between-
update values follow a normal distribution pattern. The servicing client needs to first
calculate how much time has passed since the time-of-last-update. Using this value
along with the MTBU and STDVMTBU, the servicing client can calculate the area
under the normally distributed bell curve for this object (e.g., by integrating over the
probability density function or using a simplified statistical z-score table) to determine
the probability that the object has been modified (PM). Equation (1) describes the
probability density function (PDF) for the time between updates, where the indepen-
dent variable t represents the time since the last update. Figure 3 graphically illustrates
this curve. Once the PM has been determined, the simple calculation in Equation (2)
will determine the probability that the object has not been modified (PNM).

PDF = 1√
2π · STDVMTBU

2
· e

−(t−MTBU)2

2·STDVMTBU
2 (1)

PNM = 1 − PM (2)

Fig. 3. PDF for the time between updates.

112 M. WENSTROM ET AL.

Before a request is satisfied, the requesting client should compare the PNM value
of a cached object to the QoS value set for this object. If the QoS value is less than or
equal to the PNM , then the request can be satisfied by the cached data. Otherwise, a
different servicing client can be sought, or the true source of the object can be queried.
It should be noted that the servicing client and requesting client may be one and the
same. Before a client uses an object in its own cache, it should calculate the PNM for
the object and compare it with its own QoS value for the object.

2.1.6 Alternative QoS Metrics
While the proposed method [7] achieves its goal by allowing users to customize the

quality-of-service level of their requested data objects, there are alternative metrics for
quantifying quality of service which may be more appropriate in a pervasive setting.
The offered QoS metrics should give the pervasive user control and flexibility, such
that the user attains high satisfaction and minimal distraction. The method discussed
in Section 2.1.5 uses freshness as the metric for calculating a QoS value. For services
reporting data such as stock quotes or breaking news, the freshness metric is well
suited for characterizing quality of service. The changes made to these types of data
are important and worth noting. Those individuals requesting these services expect
up-to-the-minute data, and thus, the current metric is fitting. However, for a service
such as the weather, the freshness metric might not be as fitting. A weather centre
may update the current temperature, pressure and wind speed every minute or even
every few seconds. Yet, most people do not require an up-to-the-minute report on the
weather. Thus, stale data is permissible here. This raises the following question: how
should a user set the QoS value for this service? Consider that the user does not mind
receiving stale data, as long as the data was generated within the last twelve hours. It
would be difficult for the user to set an appropriate QoS value for the object, if QoS
values are based on the probability of receiving fresh data. Even once an appropriate
probability value is found to satisfy this case, any change in the mean time between
updates or standard deviation will lead to change in the range of acceptable objects.

Therefore, the time an object was last modified may be a better quality-of-service
metric for some data objects; or an even more complicated metric could be devised
based on the payload of the data object. Again referring back to the weather example,
an individual typically only cares about significant fluctuations in the temperature.
Similar to the mean time between updates, a weather centre could record the mean
change in temperature and a user could select a QoS value based on this value. On
the days where temperature greatly increases or decreases, a user would require more
current data, and on the days where temperature is stagnant a user could accept older
data. Even within a single day, temperature may go through periods of change and
periods of consistency; for example, the temperature may greatly increase during the

BALANCINGTRANSPARENCY, EFFICIENCY 113

morning, remain stagnant during the afternoon, fall during the evening, and remain
stagnant overnight. Thus, even though the weather centre may update their temper-
ature reading every minute, a user may only require updates when the temperature
significantly changes (i.e., during the morning and evening periods). Therefore, to
offer flexibility and customization options to the users in a pervasive environment,
multiple QoS metrics should be available.

2.1.7 A Cache Replacement Policy
Query resolution based on the quality-of-service of cache contents brings about

the issue of a cache replacement policy. In [7], a technique is offered for replacing
objects in a client’s cache. This policy attempts to keep the most appropriate objects
in the client’s cache under the assumption that coherence is not maintained between
the cached object and the master copy. The issue of coherence changes the definition
of an appropriate object for caching between the context of a traditional system
and that of a pervasive computing environment. In a traditional system, coherence is
maintained, and therefore, when describing an appropriate object, spatial and temporal
localities are well-suited indicators of appropriateness. Traditionally, the least recently
used (LRU) policy is employed to take advantage of spatial and temporal localities
of objects. In a pervasive environment, spatial and temporal localities may still be
relevant, yet the opportunity for objects to grow stale should be considered in the
replacement policy as well. Objects that are frequently read by mobile clients and
infrequently updated by the service provider should be kept in cache, as copies of
these objects will remain fresh for a long period of time, and moreover, a client with a
cached copy becomes a suitable server for fresh data. On the other hand, those objects
that are infrequently read by clients and frequently updated by the provider should be
replaced, as these cache copies become stale quickly, and clients with cached copies
become poor servers for fresh data.

To create a cache replacement policy based on the previous definition of appro-
priateness in the pervasive environment, a second set of statistical values needs to
be maintained regarding the read history of a data object in order to find the mean
time between reads (MTBR). Using the MTBU and MTBR values, a Caching Quality
Factor can be calculated, as illustrated by Equation (3). This quality factor is a simple
ratio of the MTBU and MTBR. Each cached object will be ranked by this factor; the
higher the rank, the more appropriate an object is for caching. Thus, if a new object is
to be cached, it must have a higher Caching Quality Factor than the object currently
in the cache with the lowest Caching Quality Factor.

Caching Quality Factor = MTBU

MTBR
(3)

114 M. WENSTROM ET AL.

2.1.8 Alternative Cache Replacement Policy
The cache replacement policy outlined in Section 2.1.7 keeps the freshest data

objects in cache, and as such, mobile clients become effective servers of cached data
to their fellow clients; however, clients in a pervasive environment should not be
concerned with serving others, but rather, be concerned with serving themselves.
The proposed policy [7] is intended for use in a web cache, where the purpose
of the cache is to benefit the global population of clients. A pervasive environ-
ment is slightly different in that the client itself is hosting the cache in order to
serve itself first and other clients second. Users in a pervasive environment have
the independence to manage their cache according to their wish. It can be assumed
that users are selfish, and therefore, they want a policy whereby a maximal num-
ber of their local requests can be satisfied from their local cache. Assuming that
users only accept objects that meet the aforementioned QoS setting, it can be
shown that the proposed cache replacement policy is not optimal for each user.
For example, if a user gives a QoS value of zero to an object which he or she
frequently reads, the user would not want the object to leave the local cache. There-
fore, even if this object has the lowest Caching Quality Factor, it should not be
replaced.

A better replacement policy would consider the number of reads one makes to each
object (as in the LRU policy), as well as the QoS value for each object, in addition to
the MTBU statistics. Using all these factors, a user can calculate if a cached object
meets his or her personal QoS setting. If an object meets the QoS value and this object
is frequently read by the user, then it should be kept, and otherwise it can be replaced.
Equation (4) describes an Alternative Caching Quality Factor in the range of [0, 1],
where FR is the read frequency as a percentage cache reads for this object, PNM is
probability that the object has not been modified, and QoS is the quality-of-service
setting. As long as PNM is greater than QoS, this factor is positive, indicating that
the cached object meets the user’s QoS requirement. When PNM is less than QoS,
this factor is negative, indicating that the cached object does not meet the user’s QoS
requirement. The greater this factor, the more appropriate an object is for caching.
Those objects which do not meet a user’s QoS requirement will have a negative
caching factor and will be replaced by objects which meet the user’s QoS requirement.
FR scales the factor such that an object meeting the QoS requirement is scaled up by
its read frequency (i.e., making it more appropriate for caching, indicative of an LRU
policy), and an object failing the QoS requirement is scaled down by its read frequency
(i.e., making it less appropriate for caching, since it is read often but fails the QoS
requirement).

Alternative Caching Quality Factor = FR · (PNM − QoS) (4)

BALANCINGTRANSPARENCY, EFFICIENCY 115

This alternative cache replacement policy is intended to be user-centric, as users
in a pervasive environment are independent, and as such, serving oneself is more
important than serving others. Thus, the alternative policy favours objects which meet
the individual user’s QoS requirements and are read frequently by the user. Consider
the aforementioned situation where a user sets a low QoS value for an object. The
object will remain appropriate for caching as long as the PNM for that object is greater
than its QoS. Thus, even when there is a low probability that an object is fresh, it may
be appropriate for one’s cache; and the fact that this low-probability object may not
be suitable to serve other clients is irrelevant to the selfish user. In addition, the selfish
user wants to retain in cache those objects which he or she frequently reads; and the
access patterns of other users are irrelevant. In summation, users are not altruistic and
should not base their caching decision on their ability to benefit others, but rather on
their ability to benefit themselves.

2.2 Broadcasting
As with distributed caching, the simple technique of broadcasting can be used to

alleviate the bottleneck and congestion at the service providers. The idea of broad-
casting is not unique to pervasive computing, nor is it unique to computing in general.
During a broadcast, one speaker delivers information to all the listeners in an area. To
apply this idea to a pervasive environment, consider a service provider broadcasting a
response of a query to all mobile devices within its wireless range. The mobile devices
in range could store a response if it may be of need to the user, or may ignore a particu-
lar broadcast. To extend this idea further, consider a service-provider broadcasting
data that has not been specifically requested, but there is a high probability that this
data is in demand by the mobile users. This is the idea behind the broadcasting of
analog radio and television. A listener does not request that a radio feed is sent to him
or her, but the listener just tunes into the frequency on which the desired station is
being broadcast.

The service-oriented environment offered by pervasive computing could benefit
from this basic principle of broadcasting. The benefits of broadcasting in a wire-
less setting have been advocated in [3], [4] and [6]. First, broadcasting scales well
to the number of users in a pervasive environment. Consider the example where
commuters wish to know the traffic report in their area. Whether there are ten or
ten million commuters, the service provider for the traffic report performs the same
amount of work when broadcasting this data. Not only does it scale to the number of
listeners, but broadcasting can minimize the workload of the service provider, as the
service provider only needs to broadcast a data object once in order to transmit it to the
listeners, as opposed to responding multiple times to individual queries requesting this

116 M. WENSTROM ET AL.

identical data object. This same reasoning can be used to argue that broadcasting can
minimize the amount of bandwidth consumed. If a broadcast settles more than one
potential request for a data object, then it has saved bandwidth by sending this object
in one transmission, rather than multiple individual transmissions. Even if a broad-
cast only settles one potential request, bandwidth has been saved, as an actual request
did not have to be sent to the provider. These scenarios show how broadcasting can
minimize bandwidth and the workload of the service provider. Yet, if a broadcast
data object is not requested by any user, then the broadcast has wasted bandwidth
and wasted resources at the service provider. Bandwidth is the targeted resourced in
a wireless setting, as wireless bandwidth is much smaller than wired bandwidth, and
therefore it must be allocated more efficiently. Another subtle advantage of broad-
casting in a wireless setting is that battery-constrained mobile devices can reduce the
number of expensive wireless transmissions if they do not need to actively request
certain data objects.

2.2.1 Published vs. On-Demand Data Objects
In [4], techniques are presented to maximize the efficiency of broadcasting data

objects, and therefore minimize wasted resources. The context for these techniques is
a general wireless setting, yet the same ideas can be applied to the pervasive environ-
ment. Data objects, or services in the pervasive environment, are partitioned into two
categories: published and on-demand.Apublished object is one that is broadcast with-
out request, and an on-demand object is one that is only transmitted upon the request of
a user. There must be an elegant balance of objects between these types. If all objects
are broadcast all the time, resources will be wasted from the broadcast of those objects
that no user desires. Thus, only the most popular objects should be broadcast to mini-
mize wasted resources. In addition, the bandwidth allotted to published objects cannot
be so great as to limit the resources for those on-demand objects, thereby increasing
the access time for the on-demand objects. The constraints of the analytical model
[4] for allocating resources between the two object types are as follows: minimize
the number of transactions and minimize the access time for a data object. The first
constraint implies that a provider should publish as many high-demand data objects as
possible, in order to eliminate redundant transactions. The second constraint implies
that there should be adequate bandwidth allotted to the on-demand requests. Simi-
larly, there should not be too many published objects in order to give each published
item a fair share of the published bandwidth. It is apparent that providers benefit
from broadcasting via a reduced workload, but users in a pervasive environment also
benefit by means of a less congested network due to the elimination of redundant
transactions.

BALANCINGTRANSPARENCY, EFFICIENCY 117

In [4], the authors have modelled the access of data objects as a class-based
open-form queuing network. Each data object represents a class with its own arrival
rate of requests and service rate. Equation (5) shows the expected access time, t, for
any data object. It is defined in terms of the arrival rates, λi, for each of the n data
objects as well as expected access times, tbroadcast and ton−demand , for each group of
objects. There are k objects in the published group and n – k objects in the on-demand
group. Equation (6) is a simplified equation for expected access time for broadcast
data objects, where S is the size of an object and Bb is the bandwidth allotted to
the published, or broadcasted, data objects. It is simplified in that it assumes that
all published objects are of the same length, and there are no replicated objects in
the broadcast cycle. Thus, the expected access time for published objects is half the
cycle time of a broadcast. A more complete equation for the expected access time of
published object can be found in [4]. Finally, the expected access time for on-demand
objects, ton−demand , is described by Equation (7). It is defined in terms of the aggregate
arrival rate for on-demand objects, λd , and the service rate for on-demand objects,
μd . The service rate, μd , is further defined in terms of the bandwidth allotted to
on-demand objects, Bd , the size of a data object, S, and the size of a request, R.

t =
k∑

i=1

λi · tbroadcast +
n∑

i=k+1

λi · ton−demand (5)

tbroadcast ≈ k · S

2 · Bb

(6)

ton−demand = 1

μd − λd

(7)

μd = Bd

S + R
(8)

λd =
n∑

i=k+1

λi (9)

With basic calculus, Equation (5) can be optimized in order to minimize expected
access time. The optimized equation provides the optimal allocation of bandwidth for
on-demand objects, Bd , and published objects, Bb. Once optimized, the equation can

118 M. WENSTROM ET AL.

be used to partition a real set of data objects into published and on-demand groups
by the following iterative algorithm:

1. All objects are initially categorized as on-demand.
2. The object with the greatest arrival rate of requests (i.e., most demanded) in the

set of on-demand objects is moved to the set of published objects.
3. The expected average access time for this configuration of objects is calculated

using the optimized equation for expected access time, and the time is compared
to some predefined threshold.

4. If the access time is less than the threshold, steps 2–4 are repeated.
5. Once the access time is greater than the threshold, the algorithm stops and the last

configuration to satisfy the threshold is used.

To further save bandwidth, one can batch the responses of on-demand requests [4].
This technique suggests that a service provider should not immediately respond to a
single on-demand request with a unicast response to the client. Rather, the provider
should wait for a small period of time with the hope that one or more identical queries
will be received within this time.After this waiting period, a single multi-cast response
can be sent to all clients querying for the same data object. This technique increases
the access time for the clients by imposing a waiting time. However, bandwidth is
saved whenever multiple requests can be satisfied by a single multicast. Therefore, a
trade-off exists between access time and bandwidth controlled by the waiting time.As
the waiting time increases, there is a greater chance for more requests to be received
and more bandwidth can be saved in the multi-cast, at the expense of a greater access
time for the pervasive user. This technique is a blend of the on-demand and published
realms, as requests are taken in an on-demand fashion, but responses are sent in the
broadcast fashion.

2.2.2 Broadcast Cells
In [3] and [4], there is insight into implementing a broadcasting system in a real-

world wireless setting. For a real-world implementation, geographical areas should be
partitioned into cells, whereby each cell has an access point for receiving on-demand
requests and for broadcasting published objects. Each cell should not necessarily
publish the same objects, but rather, each cell should publish the objects which are
of greatest demand in that geographical area. For example, in an airport, arrival and
departure schedules should be broadcast. In a grocery store, the current sale items
can be broadcast. Figure 4 illustrates this idea. To notify users of these published
objects, each cell must broadcast a directory, which describes a schedule for a time-
division multiplexing of data objects. A client can use this schedule to identify the

BALANCINGTRANSPARENCY, EFFICIENCY 119

Fig. 4. Partition of a geographical area into broadcast cells (adapted from [4]).

data objects it overhears, as the data objects are broadcast in the order detailed by
the directory. When moving between cells, there is no guarantee that the new cell
will be broadcasting the same data as the old cell. Even if two cells are broadcasting
the same object, the scheduling for this object may be different between the cells;
thus for a client to continue to receive a particular service as it moves from one cell
to the next, it must read the new directory to determine if the service is broadcast
in the new cell and when this service can be retrieved in the broadcast. It should be
noted that cells may overlap, and as such, the broadcast of one cell must occur on a
different channel(s) than is used by the broadcasts of overlapping cells. The concept
of multi-channel broadcasting is described in the following section, and the concept
of how overlapping cells can share the wireless medium will become evident.

Further, the idea of partitioning geographic regions into different broadcast cells
is appropriate in many real-world applications, as a person’s needs are dependent
upon his or her geographical location. One’s needs while at work in an urban centre
are quite different from one’s needs at home in a rural suburb; hence the need for
location-awareness and location-dependent services varies. To implement this idea,
an administrator of a cell could determine which objects are to be published in a cell,
or this set of published objects could be dynamically determined. The aforementioned
algorithm for deciding which objects are published and which remain as on-demand is

120 M. WENSTROM ET AL.

applicable to the situation of dynamically determining the set of published objects in
a cell. Under the dynamic allocation, all objects would initially be cast as on-demand,
and a fixed number of the most requested objects would move to the published group
while maintaining some minimal access time threshold. One caveat of the dynamic
allocation is the determination of whether an object of the published group should be
removed or replaced after some period of time. Once an object is published, the arrival
rate of requests for this object will be low, as only those clients who have not read the
directory and are not aware of the published objects would send an on-demand request
for a broadcast object. Thus, it is difficult to determine how desirable each published
object is to the users when the arrival-rate-of-requests metric cannot be used. Yet,
even in the midst of this caveat, it should be obvious that dynamic determination of
the set of published object is the best solution to meet the needs of users, as these
needs vary region by region, day by day, and hour by hour.

2.2.3 Balancing ResponseTime and Power
Consumption

After decisions have been made as to which data objects should be broadcast in a
region and how the airtime should be partitioned into broadcast and on-demand time,
there are additional subtle issues which need to be addressed, such as how clients
locate requested data objects on a broadcast medium and the ordering by which a
client retrieves multiple broadcast data objects. These issues can be discussed in the
context of a single-channel or multi-channel broadcast. However, before these issues
are discussed, there are two goals which should be kept in mind when considering
solutions to these issues.

First, the response time for retrieving data objects should be minimized. This helps
maintain the distraction-free environment for the pervasive user. Second, the amount
of power consumed by the mobile host should be minimized. A mobile host has a
limited battery life, and therefore by reducing power consumption, the lifetime of a
mobile host is increased. The mobile host’s ability to switch between different modes
of operation allows it to save power. In active mode, the host can actively listen to
the wireless medium, whereas in doze mode, the host cannot listen to the medium
as its wireless access card is not in use. Therefore, the ideal way for a mobile host
to minimize power consumption is for it to only listen to the wireless medium when
it is receiving data objects that it desires. During the time when undesirable objects
are being broadcast, the mobile host should not listen and should go into doze mode.
Since the benefits of pervasive computing are lost when a user’s mobile device(s) is
powerless, battery conservation is essential. In addition, the frequent need to recharge
one’s mobile device creates distraction, which disturbs the seamless integration of

BALANCINGTRANSPARENCY, EFFICIENCY 121

technology with one’s life. In [6], techniques to address these issues of response time
and power consumption are discussed in the context of broadcasting.

2.2.4 Indexing
The first issue which will be discussed is known as indexing. Previously, it was

mentioned that a directory was to be broadcast along with data objects to describe the
ordering of data objects on the broadcast channel. An indexing scheme has the same
objective: inform the clients as to when a data object will be broadcast. An index for
a particular data object may be a hash of certain attributes of the data object, such
as a filename or URL. A client desiring a data object will first compute this index by
performing a hash of the appropriate attributes. Once computed, this index can be
used in a variety of ways in order to locate a data object on the broadcast medium.
This section will describe two such schemes for locating data objects: distributed
indexing and aggregate indexing. Either indexing scheme will benefit the pervasive
user by reducing the amount of power consumed by one’s mobile device, therefore
extending the battery life of the device. The point has already been made that one’s
mobile device is his or her connection to the pervasive computing world, and thus, it
is essential that these devices remain powered for a sufficient period of time without
recharging.

Under a simple indexing scheme, known as distributed indexing, an object’s index
is broadcast immediately before its associated data object. To retrieve a desired data
object, a client will listen to all the indices on the medium and when it hears the index
that matches that of the desired object, the client will retrieve the data object following
its index. What are the implications of this in respect to the two aforementioned goals?
Without any indexing scheme, the only items that are broadcast on the medium are
the data objects themselves. With distributed indexing, index objects are broadcast
along with data objects, and therefore, the length of the broadcast has increased. This
is illustrated graphically by Figs. 5(i) and 5(ii). A longer broadcast length implies
a longer response time. The trade-off for a longer response time is that indexing
allows for a reduction in the power consumption of mobile devices. A mobile client
only needs to listen to these short indices and the desired data objects; thus when
undesired objects are being broadcast, the client can save power by switching into
doze mode.

As an alternative indexing scheme, the individual indices for each data object can
be combined into an aggregate index. The aggregate index can be organized as a
serial list of individual indices, describing the order of broadcast data objects much
like a directory. The aggregate index can also be structured as a tree, which can be
searched faster than a list. The organization of the individual indices in the aggregate
index may not be of critical importance and will not be discussed further in this

122 M. WENSTROM ET AL.

Obj 1 Obj 2 Obj 3 Obj 4

Obj 1 Obj 2 Obj 3 Obj 4

Index 1

Index 2

Index 3

Index 4

Obj 1 Obj 2 Obj 3 Obj 4
Aggregate

Index

Obj 1 Obj 2 Obj 3 Obj 4

Obj 4

Aggregate
Index

Aggregate
Index

Obj 1 Obj 2 Obj 3
Aggregate

Index
Aggregate

Index
Aggregate

Index
Aggregate

Index

i. No Indexing

ii. Distributed Indexing

iii. Once-per-cycle Aggregate Indexing

iv. (1, m) Aggregate Indexing where m = 2

v. (1, m) Aggregate Indexing where m = 4

Fig. 5. Graphical representation of indexing schemes.

chapter; yet it is important to note that aggregate indexing can further reduce power
consumption with respect to the reduction achieved by distributed indexing. Under
the distributed indexing scheme, a client has to frequently tune into the medium to
hear each individual index, switching in and out of listening mode. Switching modes
require some power. By aggregating the indices, a client only needs to switch into
listening mode once in order to hear the entire index; thus, consuming less power.

Next, when should the aggregate index be broadcast? A simple solution is to broad-
cast this index once at the beginning of each broadcast cycle (see Fig. 5(iii)).Although
under this solution the broadcast length is the same as it is under distributing index-
ing, the average response time is worse. If a client has not yet read the aggregate
index, the client will have to wait half of the broadcast length, on average, before
reading the index. Then, the client will have to wait an average of half the broad-
cast length, again, to retrieve the desired data object. With distributed indexing, a
client only has to wait half the broadcast length for the desired index and data object

BALANCINGTRANSPARENCY, EFFICIENCY 123

(since these are always broadcast in sequence), but this decrease in response time is
at the expense of an increase in power consumption. Another option is to broadcast
the entire aggregate index m times throughout the broadcast cycle; this is known as
(1, m) indexing. Figures 5(iv) and 5(v) illustrate this indexing scheme with two dif-
ferent values for m. Here, the average waiting time for the index is L / (2m), where
Lis the broadcast length and m is the number of index replicas in the broadcast. The
average waiting time for the data object will again be half the broadcast length. This
solution increases the broadcast length, but reduces the response time in compari-
son to the once-per-cycle broadcast of the aggregate index. Power consumption is
the same as the once-per-cycle broadcast scheme as well. Thus, the (1, m) indexing
scheme is recommended in [6]. The (1, m) indexing is suitable for a pervasive envi-
ronment, since less power is required under this scheme in comparison to distributed
indexing scheme. Response time under (1, m) indexing is only slightly worse than
the alternatives.

Thus, when choosing (1, m) indexing as the appropriate indexing scheme, we are
assuming that it is more important to the users to extend the lifetime of their mobile
device than to experience a slightly lower response time when retrieving broadcasted
data. Due to the nature of the service-oriented architecture in a pervasive environment,
response time for broadcasted data does not seem to be critical. The mobile host is
expected to predict the user’s intent and to retrieve data that it believes the user will
want in the near future; thus, data will be ready for the user earlier than if the user were
to personally request such data. That is to say, users will not be actively waiting for
completion of services, due to the proactive nature of the mobile device in a pervasive
setting.

2.2.5 Broadcasting Over Multiple Channels
Another issue brought about in [6] which needs to be resolved is whether to broad-

cast all the data objects on a single channel, or to distribute the data objects across
multiple channels. Until this point, a single broadcast channel has been assumed. The
trade-offs of broadcasting over multiple channels will now be explored. The most
obvious gain from switching from a single channel to multiple parallel channels is
that the length of the broadcast cycle decreases. Assuming d data objects and c chan-
nels, each channel must only broadcast d/c objects. Consequently, a shorter broadcast
cycle implies a lower response time. Thus, as more channels are introduced, response
time decreases. This relationship is true when response time is used to describe the
time taken to satisfy a single request. Thus far, response time and power consump-
tion have been analysed under this single-request scenario. Analysis of the impact
of multiple channels with respect to these metrics becomes more complicated in a
situation where a client is requesting more than one data object. We must note that in

124 M. WENSTROM ET AL.

a multiple-channel, multiple-request environment, response time describes the time
taken to satisfy all requests.

The main issue when expanding to an environment with multiple channels and
multiple requests is the possibility for conflicts. It is assumed that a mobile host
can only listen to one channel at a time and that switching of channels requires
some amount of time and energy. For simplicity, we can assume that each channel is
partitioned into the same number of equally sized time slots. Therefore, if two desired
data objects are broadcast during the same time slot on two different channels, a client
will have to retrieve one object during the first cycle, switch channels and retrieve
the other object during the next broadcast cycle. Even if objects are found in adjacent
time slots but on different channels (e.g., Object1 is broadcast on ChannelA in slot
ti, and Object2 is broadcast on ChannelB in slot ti+1), a client will have to wait for
a second broadcast cycle before retrieving the second object. This is due to the fact
that channel switching requires some amount of time.

How do channel switching and conflicts affect response time and power con-
sumption? By nature, switching of channels consumes power; therefore, power
consumption increases linearly as the number of channel switches increases. Response
time is not so much a function of the number of channel switches, but more a func-
tion of the number of conflicts. Yet, it is not as easy to classify the relationship
between response time and the number of conflicts. It is obvious that when a conflict
is introduced in a situation where there are only two requested data objects, response
time will increase because a second broadcast cycle will be necessary. Yet, when
conflicts are introduced in a setting where more data objects are being requested,
additional cycles may not be the consequence. Figure 6 illustrates these situations.
Fig. 6(i) shows how an additional broadcast is necessary when there is a conflict
between the only two requested data objects. Figure 6(ii) illustrates a more compli-
cated retrieval where multiple data objects are requested, and two passes are necessary
for the retrieval. Figure 6(iii) is an extension of the example from Fig. 6(ii), with an
additional sixth object in the retrieval. The sixth object is in conflict with the first data
object retrieved in the first pass. However, this sixth object can be retrieved during the
second pass, and therefore no additional passes were necessary to resolve this conflict.
The response time between 6(ii) and 6(iii) remains the same, even though a conflict
has been added. In general, conflicts increase response time, but this does not hold in
all cases.

It was shown as to how indexing could reduce power consumption at the expense
of a slightly longer response time in the case of a single broadcast channel; however,
in the case of multiple broadcast channels, indexing will lower both response time and
power consumption. Thus, it is obvious that indexing is beneficial to the pervasive
clients under a multi-channel broadcast. First, consider the case where indexing is
not used. A client must scan all broadcast channels sequentially to find the desired

BALANCINGTRANSPARENCY, EFFICIENCY 125

Fig. 6. Examples illustrating how conflicts affect response time.

126 M. WENSTROM ET AL.

items. If the broadcast length is L time units and there are C channels, the full scan
requires LC time units. When indexing is used, the length of the broadcast cycle will
increase, but a full scan may be avoided. Consider the simple case where only one
object is requested. A client may read an aggregate index from ChannelA and skip to
ChannelD to read the desired object in the same broadcast cycle. Thus, scans through
the intermediate channels were avoided and response time is lower than it would be
under a situation where indexing was not used.

Therefore, for implementation in a pervasive environment, it is beneficial to imple-
ment multiple broadcast channels along with an indexing scheme in order to lower
the response time for service requests as well as reduce the power consumption of
the mobile device. However, the number of channels implemented in a real-word
pervasive environment depends on the resource availability. For a wireless medium,
the number of channels depends on the number of available radio frequencies. Ana-
logously, the bandwidth of a fiber network depends on the number of fiber cables
laid. It is obviously advantageous to increase bandwidth, yet the amount of fiber laid
depends on financial resources. This relates back to the motivating factor for this sec-
tion on resource management. Even if computing power and technological resources
are cheap, they are not endless; hence, resource management techniques are necessary.
To the point of broadcast channels, a maximal number of channels should be imple-
mented with respect to financial and physical constraints. Once the number of channels
has been determined, a (1, m) indexing scheme can be implemented on each channel to
describe the broadcast objects. As an alternative, one or more broadcast channels can
be solely dedicated to broadcasting indices, while the other channels broadcast only
data. Under this solution, the waiting time for an index is reduced, and hence, response
time for a data object is reduced at the expense of a dedicated index channel(s).

2.2.6 Retrieval Algorithms
This section will describe three algorithms for retrieving data objects on a multiple-

channel broadcast medium. While the details of these algorithms can be found in [6],
this section will only present the basic idea of each algorithm in order to find a
fitting algorithm for a pervasive environment. With each algorithm, it is assumed
that the client has read the aggregate index and knows the broadcast location of each
desired data object. Knowing these locations, the retrieval algorithms attempt to find
an optimal order by which to retrieve the objects.

The first, and simplest, algorithm is a Row Scan, where the term row is synonymous
with channel. Here, a client tunes into each channel, on which desirable objects reside,
for one pass of the broadcast cycle. During the pass, the client will retrieve each
desired object that is broadcast on the current channel. After one pass, the client

BALANCINGTRANSPARENCY, EFFICIENCY 127

Fig. 7. Row scan and next object access retrieval algorithms.

will then switch to the next channel on which desirable objects reside. Figure 7(i)
illustrates this algorithm. The Row Scan provides the client with a minimal number
of channel switches. It also requires minimal computation to determine the ordering;
a client simply uses the index to determine which channels are broadcasting desirable
objects, and sequentially cycles between these channels.

Second, there is a greedy algorithm known as Next Object Access. Under this
algorithm, a client begins by retrieving the first available object with respect to time.
It then continues to select the next earliest object which can be retrieved, no matter
in which channel that next object resides. Figure 7(ii) illustrates this algorithm. As
a greedy heuristic, it does not guarantee optimal performance. This algorithm will

128 M. WENSTROM ET AL.

Fig. 8. Simulation results from [6] illustrating how response time varies with the number of requested
objects.

usually require more channel switches than a Row Scan, and at best, it will require as
many channel switches as the Row Scan. Thus, power consumption is greater under
this algorithm. Simulation results from [6], shown in Fig. 8, find that this algorithm
provides a lower response time than Row Scan when the number of requested object
is low and yields a higher response time than Row Scan as the number of requested
object increases. Figure 8 plots response time as the number of broadcast cycles
needed to retrieve all requested objects.

Finally, finding the optimal retrieval order of objects in a broadcast is similar to
finding the optimal order of cities to be visited in the classical traveling salesman
problem (TSP). The goal of TSP solutions is to avoid an exhaustive search through
all possible orderings of data objects. Simulation results, shown in Fig. 8, show
that TSP heuristics yield a lower response time than both the Row Scan and Next
Object Access algorithms. Furthermore, the number of channel switches under the
TSP algorithm will be greater than or equal to the number of channel switches of the
Row Scan algorithm; therefore, power consumption will not be improved compared
with the Row Scan.

Which retrieval algorithm is most appropriate for a client in a pervasive environ-
ment? Because users have different needs, the easy solution is to push this decision
to the individual user. A user could select some point between minimal response time
and minimal power consumption, and the most appropriate algorithm can be chosen.
This would be similar to the aforementioned technique for choosing QoS levels for

BALANCINGTRANSPARENCY, EFFICIENCY 129

cached data objects, presented in Section 2.1.5. However, regarding the retrieval of
broadcast data, the users in a pervasive environment would most likely value power
consumption and computational cost over response time. As argued in Section 2.2.4,
since a mobile device predicts a user’s intent and request services in advance, the
response time of these services is not crucial. Reducing power consumption, on the
other hand, is important to extend the battery life of a mobile device. In addition,
computational cost is important to the pervasive user. Given that a mobile device
independently performs services for its user, it is safe to assume that many services
and decision-making processes will be competing for computational time on a user’s
mobile device. Thus, the choice for a power-conserving, computationally simple algo-
rithm which sacrifices response time may be appropriate. The Row Scan algorithm
fits this description because it has the lowest computational cost and power consump-
tion and yields a response time that is close to that attained by the TSP heuristics,
especially when the number of requested objects is high.

2.3 Adaptive Fidelity
Another resource management technique which can help create a distraction-free

user environment is fidelity adaptation. The term fidelity is used to describe the qual-
ity of an offered service; thus, fidelity adaptation implies a dynamic adjustment in the
quality of a service in order to meet the current resource constraints. Lower fidelities
require fewer resources, while higher fidelities require more resources. Examples of
fidelity parameters include frame rate and resolution for a streaming video service.
In this example, a streaming video player may lower the frame rate or resolution if
bandwidth is decreased due to a congested network. If the bandwidth increases, the
frame rate and resolution can be increased. For traditional services, users can control
these fidelity parameters to meet their needs. A user may request low-resolution video
stream if his or her bandwidth is low, or may request a web page without images in
the same scenario to reduce the latency. In a pervasive environment, a user should
not be bothered about manually setting fidelity parameters each time resource levels
change. Micromanagement of fidelities takes away from the transparent user experi-
ence, in which technology is seamlessly incorporated into the everyday activities of
the user. Thus, the system must make dynamic decisions about fidelity without user
input. There are two questions which the system must answer when making decisions
on fidelity adaptation: How do different settings of fidelity parameters affect resource
consumption? What are the user’s preferences in terms of which fidelity factors to
adjust in a given situation? Section 2.3.1 will address the first question by presenting
a technique to determine resource consumption as a function of fidelity parame-
ters. Section 2.3.2 will address the second question by presenting a technique that

130 M. WENSTROM ET AL.

determines the level of user satisfaction (i.e., utility) provided by a configuration of
fidelity parameters.

2.3.1 Modelling Resource Consumption as a
Function of Fidelity

Narayanan et al. have designed an empirical method for estimating resource con-
sumption as a function of fidelity. This method captures and logs resource usage levels
as well as the associated fidelities during the run of an application. On the basis of these
historical values, resource consumption can be modelled as a function of fidelity at the
expense of computation and storage overhead. As an alternative to this technique, an
analytical model can be used, whereby the application developers provide a function
for resource consumption in terms of the fidelity factors that their application offers.
Yet, it would be difficult for developers to construct a function that is generic enough
to apply to a variety of machines with different hardware configurations. In order to
tailor such a generic function to any hardware configuration, the function would be
to incorporate a sufficient number of input parameters that can be used to describe
the architecture and organization of any machine (e.g., processor speed and mem-
ory size are two such input parameters). Unfortunately, systems are defined by more
parameters than simply by clock rate and memory size. Other important parameters
include memory organization, processor organization, processor architecture, cache
hit rate and many more. These parameters all affect how resources are consumed,
but the incorporation of these parameters into a function is difficult. However, there
is no need for the empirical model in [5] to consider any of these parameters, as it
only uses historical statistics as its basis for estimating resource consumption. Thus,
its simplicity makes it a better choice than the complicated analytical approach. The
empirical approach can be applied to any application on any machine.

The empirical method implemented in [5] is broken into three phases: logging,
learning and an online phase. During the logging phase, a service is run at different
fidelity levels while the resource consumption is monitored by hardware and software
monitors. The learning phase uses the logged results to build an estimation function
for resource consumption in terms of multiple fidelity factors. For an inexpensive
computation, a linear regression is used to map the fidelity parameters (e.g., frame rate
and resolution) to the consumption level of a single resource (e.g., computation time
or bandwidth). At the end of the learning phase, each resource is estimated by its own
function. Initially, the logging and learning phases are performed offline. Thus, when
a user first uses a service, the logging and learning phases will have been performed,
such that during the online phase, the fidelity parameters of the service can be tuned to
meet the resource constraints. In order to tune these parameters, the current resource

BALANCINGTRANSPARENCY, EFFICIENCY 131

constraints (e.g., available CPU and bandwidth) become the input parameters to the
functions, and the maximum fidelity levels that satisfy these constraints are returned.

Equations (10) through (13) show an example of the set of functions determined
by the learning phase. In this example, the consumption of four resources is modelled
by four functions with respect to three fidelity parameters. During the online phase,
the availability of each resource will be monitored and will become the input to these
functions. The functions will be used to determine the appropriate levels of fidelity
to satisfy these resource constraints. Consider the case where Resource1 represents
bandwidth, and there is 10 Mbps of available bandwidth. Equation (10) will then be
fixed to 10 Mbps and solved to determine the configurations of the three parameters
(i.e., Param1, Param2,Param3) that can satisfy the constraint of 10 Mbps. Consider
that these parameters are frame rate, resolution and audio quality. There will be
multiple configurations of frame rates, resolutions and audio qualities that satisfy the
bandwidth of 10 Mbps. Which configuration is most appropriate? As the available
bandwidth decreases, should frame rate, resolution or audio quality degrade? In [5], it
is assumed that there exists a utility function that details a user’s preference between
fidelity parameters. Hence, the utility function may show that a user prefers a drop
in frame rate to a drop in resolution as bandwidth is reduced. The following section
will take a deeper look into techniques to estimate the utility functions of a user.

Resource1 = f1(Param1, Param2, Param3) (10)

Resource2 = f2(Param1, Param2, Param3) (11)

Resource3 = f3(Param1, Param2, Param3) (12)

Resource4 = f4(Param1, Param2, Param3) (13)

2.3.2 Modelling Utility as a Function of Fidelity
As part of Project Aura [9] at Carnegie Mellon University, an analytical model has

been developed to determine the configuration of fidelity parameters that maximizes a
user’sutility in thepresenceof resourceconstraints [8].Theanalyticalmodelefficiently
finds an optimal configuration of fidelity parameters for a service by considering a
set of service providers, a set of fidelity configurations for each provider and the
utility provided to the user by each configuration. For example, fidelity configurations
for a video player would be the pairs of frame rates and resolutions that satisfy a
given bandwidth. It is assumed that given a fixed resource level, it is possible to
find all the configurations of fidelity parameters which satisfy the resource constraint.
The functions constructed by the empirical technique presented in Section 2.3.1 can
providesuchconfigurations.Once this setofconfigurations isknown, theconfiguration
which provides the user with the greatest utility should be chosen.

132 M. WENSTROM ET AL.

The proposed model calculates a single utility value for each configuration of
fidelity parameters. Utility assumes a value in the range of [0, 1], where zero implies
that a user is completely unsatisfied, while one implies that the user is completely
satisfied. The simplest way to map utility values onto fidelity configurations is to
have the user choose a utility value for every possible configuration. However, the
number of possible configurations can be undoubtedly large. For example, the set
of configurations for a streaming video player is the Cartesian product of the frame
rate and resolution offerings. Consider that the set of offered frame rates includes
20, 30 and 40 frames per second (FPS) and the set of resolutions includes the qual-
itative values high and low. The Cartesian product of these two fidelity parameters
produces the complete configuration domain shown in Table I. This domain grows
quickly when either the number of fidelity parameters is increased (e.g., adding a
third fidelity parameter of audio quality) or the set of offered values for a particu-
lar fidelity parameter is increased (e.g., adding 50 FPS to the set of offered frame
rates). To avoid this large configuration domain and its rapid growth, each fidelity
parameter can be considered independent from one another. Therefore, instead of
mapping a utility value to each configuration in complete configuration domain, a
utility value only needs to be mapped to each offering in the individual fidelity-
parameter domains. In our example, instead of mapping utility values to each of the
six possible configurations in the complete configuration domain, utility values only
need to be mapped to each of the three frame rate offering and to each of the two
resolutions.

For discrete fidelity-parameter domains, such as the ones presented in Table I,
a mapping table suffices to capture the mapping between utility and fidelity. These
mapping tables would need to be manually set by the user in a pervasive environment.
These could be set once in an initial offline setup procedure. The user would not
be distracted by such configuration decisions after the initial setup. For continuous
domains, such as the volume of an audio track, a mapping table cannot be used
since there are an infinite number of elements in these continuous domains. Instead,
a sigmoid function can be constructed to capture the relationship between utility and
fidelity over a continuous domain. Figure 9 depicts a utility function in the form of
a sigmoid function. The function asymptotically approaches a lower limit and an
upper limit. By knowing the range and the knees of a sigmoid function, a continuous

Table I
Discrete Fidelity-Parameter Domains

Frame Rate Domain {20, 30, 40}
Resolution Domain {high, low}
Complete Configuration Domain {(20, low), (30, low), (40, low),

(20, high), (30, high),(40, high)}

BALANCINGTRANSPARENCY, EFFICIENCY 133

Fig. 9. Utility function over a continuous domain.

function can be interpolated. Therefore, storing a utility function for a continuous
domain parameter only requires storing the two knee values, as the upper and lower
limits are known to be one and zero, respectively. Upon setup, a user needs to manually
determine the knees. These can be prompted to the user by asking him or her for the
domain value which is insufficient for the service (lower knee) and a domain value
which is good enough for the service (upper knee).

Equation (14) is the basic formula for determining the maximum utility over a
set of service providers and fidelity configurations within each provider. The inner
most term, F

wp
p (cp), is the aforementioned utility function for an independent fidelity

parameter. This function is either given by a mapping table or a sigmoid function.
The power term, wp, is a weight that denotes the importance of a fidelity parameter
to the user. This is also a manually set parameter in the range of [0, 1], where zero is
the highest weight and one is the lowest. This weighted utility value is calculated for
each fidelity parameter in a configuration and the results are multiplied together; the
resulting product will be between [0, 1]. This result denotes a user’s overall utility from
a single configuration offered by a service provider. A consequence of multiplying the
individual utility values together to form the overall utility is that if the utility received

134 M. WENSTROM ET AL.

by a single parameter in the configuration is zero (i.e., completely insufficient), then
the overall utility will be zero and will indicate a completely insufficient configuration.
Finally, this product is then multiplied by the value, Fs, indicating a user’s preference
for the service provider. Again, this value is manually set by the user in the range of
[0, 1], where zero denotes that the provider is insufficient and one denotes that the
provider is completely sufficient. A user may prefer one service provider over another
due to some qualitative features of the providers which are not captured by the utility
function. For example, Emacs and Microsoft Word are both word processors, but a
user may prefer Microsoft Word over Emacs because of the formatting options offered
by Microsoft Word. The value, Fs, allows a user to express these preferences.

Maximum Utility = max

⎡
⎣Fs ·

⎛
⎝ ∏

p∈QoS Param(s)

F
Wp
p (cp)

⎞
⎠

⎤
⎦ (14)

When finding the maximum utility value, the work of an exhaustive search through
the configuration space can be reduced by implementing an elegant stop condition.
First, service providers are to be visited in descending order of their Fs values.
A utility value for each configuration is calculated and the greatest value is saved
as the current maximum. Before repeating this process for the next service provider,
the Fs value of the next service provider is compared with the current maximum
utility value. If the next Fs value is less than the current maximum, the algorithm can
be stopped, as the current maximum will be the global maximum. This is true because
the aggregate product term is upper-bounded by one, and therefore the overall utility
is upper-bounded by Fs for a service provider. Therefore, a service provider does
not need to be considered if its Fs value is below the current maximum. By visiting
the providers in descending order, it is safe to stop the algorithm once this condition
is met.

The proposed algorithm achieves its goal, but it has its limitations. The analytical
model offers a solution to find the configuration of fidelity parameters that offers the
highest utility. It is distraction-free during the online phase, but requires the user to
set: (i) utility values for the elements in the individual fidelity domains; (ii) weights
for each fidelity parameter; and (iii) preferences for each service provider. It makes
the assumption that by considering each fidelity parameter independently, the optimal
global configuration will be found. Finally, its early termination condition can only be
used if a user has different preferences towards service providers. When this condition
is used, the algorithm will only show a great improvement over an exhaustive search
if there is significant deviation in the preferences towards service providers. When
homogeneous service providers are considered, those for which a user has equal
preference, an exhaustive search must be performed. Therefore, while the analytical
approach may reduce the storage by assuming independence of fidelity parameters,

BALANCINGTRANSPARENCY, EFFICIENCY 135

it has not been proven that fidelity parameters should be interpreted independently.
Furthermore, the search time can only be reduced when there is enough deviation
between a user’s preferences towards service providers.

2.4 Conclusions
This section covered three solutions to the resource management problem in

pervasive computing: distributed caching, broadcasting and adaptive fidelity. One
motivating factor for these solutions comes from the fact that pervasive comput-
ing is intended to be service-oriented, and thus there is foreseeable congestion at
the service providers. Therefore, to prevent congestion at the service providers, the
solutions must be scalable with respect to the number of clients which are sending
requests to these providers. The techniques of distributed caching and broadcasting
were offered to alleviate this congestion in a scalable manner. A second motivating
factor for these solutions comes from the fact that many of the clients in a perva-
sive environment will be mobile devices, whose resource capacity is low. Resources
such as battery power, wireless bandwidth, CPU time and memory must be used
efficiently in order for the mobile device to provide the user with a distraction-
free experience. Realizing that the independent actions (i.e., service requests) made
by a mobile device may place a high demand on system resources, a technique
was offered to adaptively adjust the fidelity of the services in a manner that pro-
vides the user with the most utility. Resource conservation, specifically regarding
power consumption, on the mobile device was also considered when a choice was
made for the appropriate implementation for a broadcasting system in a pervasive
environment.

Distributed caching shows its scalability, which is obvious from the fact that clients
become service providers for cached data. As the number of clients increases, the
number of service providers increases as well. However, the caveat is that cached
data becomes stale over time. To combat stale data, a technique was presented to
allow users to select some quality-of-service level for the data objects they receive.
For some data object, a user may sacrifice response time to obtain the most recent
version of the object, or may relax the constraint for fresh data, thereby decreasing
the response time. The mean time between updates was the key metric in defining
quality of service.

Broadcasting proves its scalability, which is obvious from the fact that as the num-
ber of clients receiving broadcast data increases, the resources required to broadcast
this data remains the same, since the service provider does not process requests for
this data, nor does the provider need to transmit more data onto the network as the
number of clients increases. An algorithm was presented to partition the bandwidth
between broadcast and on-demand data objects, in order to minimize the access time

136 M. WENSTROM ET AL.

of requests. Furthermore, the idea of indexing was presented as a solution to minimize
power consumption at the clients, with the only trade-off being an increased response
time under a single-channel allocation. As the number of channels increases, response
time decreases. It is necessary to implement a proper retrieval algorithm to acquire
all desired data objects in the face of conflicts. In a pervasive environment, the choice
for a retrieval algorithm as well as for an indexing scheme depends on the trade-off
between power consumption and response time. By slightly sacrificing the optimal
response time, indexing can be implemented to greatly decrease power consump-
tion, and the Row Scan retrieval can be employed to offer the minimal number of
channel switches. Since one’s mobile device is intended to issue requests without
user interaction, response time is not crucial, for the user will not be actively wait-
ing for each issued request. The effect of power consumption on the battery life of
the mobile device is important, with the goal being to prolong the usage time of the
device. Thus, a small increase in response time is worth a larger decrease in power
consumption.

Finally, the adaptive fidelity technique is capable of effectively managing the
resources of a user’s mobile device. In a service-oriented pervasive environment,
it is foreseeable that many applications will compete for the limited resources on the
mobile devices, resulting in high utilization, which will degrade the performance of
the individual applications. The presented technique for adaptive fidelity monitors
the resource usage and adjusts different fidelity factors of each application according
to the current resource constraints and predefined user preferences. When a resource
such as bandwidth becomes constrained, applications will lower their dependence
on this resource by adjusting appropriate fidelity factors, such as the resolution of
received images. By predefining preferences to each fidelity factor, the user will not
be distracted with on-the-fly decisions to increase or decrease the load on resources
in order to better the performance; these decisions will be made behind the scenes,
transparent to the user. This solution is fitting for a pervasive environment, since it
prevents the user from being distracted by an over-utilized system and also shifts the
decision-making responsibility of adjusting fidelity factors away from the user and
onto the system.

3. Security

The concept of an environment saturated with computing agents that seamlessly
interact with one another as well as with human users lends itself to many poten-
tial exploitation hazards. Security measures will be required in order to guarantee
the integrity of operations; however, the authentication overhead must be limited to

BALANCINGTRANSPARENCY, EFFICIENCY 137

ensure seamless interaction. Two main identification issues have been recognized and
addressed in the literature [11]:

1. User identification: the computing environment needs to be aware of the
identity of each user in order to properly handle access to data and services.
The smoothness of the identification protocols is particularly critical when
synchronizing and transferring data across multiple platforms.

2. Service identification: users need a method to check that a particular service
is trustworthy before engaging in its use. This prevents malicious services,
which may be disguised as trusted services, from infecting a mobile client with
malware or viruses. It also gives the user a sense of comfort and confidence
when calling a service, such that the intended service is the one that is actually
called.

Although they are both related to the common area of minimal-overhead security
maintenance, these two tasks are very different in nature and need separate treat-
ment. We will address strategies for user and service identification in the next two
sections.

3.1 User Identification
The field of user identification is one of the unresolved issues in the context of com-

puting services, and many secure solutions have been elaborated. First, it is appropriate
to distinguish between user authentication, where the user claims an identity and the
system verifies the validity of that claim, and user recognition, where the system
proactively identifies a user (usually based on physical features) without any action
on the user’s part. User authentication can be further divided into two categories:
knowledge-based (i.e., the identity claim is validated on the basis of some informa-
tion provided by the user, usually a password or a PIN) and token-based (i.e., the
identity is confirmed through the possession of a token, which can be anything from
digital keys to smart cards).

Quite obviously, user recognition is conceptually more appropriate to the perva-
sive idea of a smart environment than user authentication, as the user will not need to
undertake any distracting action to gain access to desired services. However, recogni-
tion is computationally more challenging than authentication, in that the system will
have to compare the user’s features against a potentially large database of identities
in order to determine if the presented features match any stored entry. Authentica-
tion, on the other hand, only requires the comparison of presented information (i.e.,
username and password) against a single database entry in order to determine if the
presented password matches that of the stored password for the presented username.

138 M. WENSTROM ET AL.

This distinction implies that the relative efficiency of authentication with respect to
recognition can only be determined on a case-by-case basis, establishing which of
the two (the user-initiated process of authentication, or the waiting time to search a
database in recognition) is more bothersome for the user. In the next two sections, we
will examine two user identification methods: token-based authentication and bio-
metric recognition. We will compare and contrast the two approaches and describe
the respective benefits and limitations.

3.1.1 Token-based User Authentication: Kerberos
Protocol with Smartcards

In the effort to strike an optimal balance between low computational complexity
(and therefore transparency) and security of operations, secure hardware has promi-
sing features. It provides secure storage for highly sensitive information (such as
the user’s cryptographic keys) and also offers the ability to perform cryptographic
operations in hardware, thereby allowing for efficient and transparent authentication
strategies. The user is not responsible for the initiation and execution of authentica-
tion protocols, since the secure hardware contains all the necessary information to
complete the authentication in an independent manner.

One possible strategy that has been proposed involves the integration of
Kerberos V5 with a smartcard [10]. In order to understand the role played by the
secure hardware, let us first examine an ordinary Kerberos authentication:

1. As a preliminary step, all users and services need to have a long-term crypto-
graphic key registered with an Authentication Server.

2. When a registered user wants to login to a particular service, it will send the
Authentication Server a request for an initial ticket to connect to the Ticket
Granting Service. The Authentication Server will then provide a session key
encrypted with user’s long-term key.

3. The user will receive the session key, decrypt it and use it to request a ticket from
the Ticket Granting Service (TGS) in order to connect to the desired service.
The Ticket Granting Service will now return a session key encrypted with the
initial Ticket Granting Service key, rather than the user’s long-term key.

Kerberos thus provides two layers of indirection in order to limit the use of the
user’s long-term key, therefore increasing the security of this protocol. Short-term
session keys are used to encrypt the communications between the user and service
provider. Due to the volume of transactions encrypted with a short-term key, these
keys are susceptible to be being discovered by an eavesdropper. Yet, a discovered
key only allows the eavesdropper to listen to a single session, as these keys change

BALANCINGTRANSPARENCY, EFFICIENCY 139

session by session. The long-term key is used in very few transactions, preserving its
security. However, two issues remain unaddressed:

1. The long-term key will have to be used occasionally, since the session keys from
the TGS are only temporary. Furthermore, the encryption/decryption operations
will be performed on the user’s workstation, which is not necessarily a secure
place.

2. In order to guarantee a sufficient level of security, the long-term key will have
to be protected by a safe password, which the user will have to enter every time
the key is required. In a pervasive scenario, this might result in an excessive
burden on the user.

In [10], an authentication method is used where the user’s long-term key is stored
in a smartcard. All the encryptions and decryptions are performed by the card, which
guarantees the security of operations (addressing the first problem) and eliminates the
need for a user password (addressing the second problem), in that all the information
necessary to login is securely stored in the card.

Note that this process will of course still suffer from the drawbacks of token-based
authentication methods; above all is the risk connected to the token’s misplacement.
Whoever possesses the smartcard can authenticate as the smartcard’s owner. However,
simply introducing PIN-activated smartcards, at the expense of a little user interaction,
might ease the problem.

3.1.2 User Recognition: Biometric Applications
The basic working principle of biometric recognition can be summarized as follows:

1. A photometric sensor detects the user and converts the relative information into
a digital form.

2. The digital information is then processed by a feature extractor, which isolates
the traits which are relevant to the recognition process.

3. The user’s features are then compared against a template database. The result
of the comparison will return the user’s identity or a no-match.

The first step of biometric recognition poses the question: which human character-
istics should be used in the detection process? Ideally, these characteristics will have
to satisfy two conditions: (i) the trait will have to be unique and non-reproducible, in
order to unambiguously identify a user and avoid system circumvention and (ii) the
information should be easy to acquire and acceptable on the user’s end, since a tech-
nology that is invasive (like a retinal pattern read) or has criminal reminiscences (such

140 M. WENSTROM ET AL.

as fingerprints) may be unwelcome to users and may disrupt an otherwise seamless
environment.

There are currently several biometric sensors on the market and under develop-
ment. Biometric sensors can be used to recognize facial features (using optical or
thermal techniques), as well as a human iris, written signatures, fingerprints and hand
geometry. Facial thermography proves to be perfect solution, for it satisfies the two
aforementioned requirements, as it is resistant to forgery and is least invasive. A ther-
mographic sensor will detect and map the temperature distribution on the user’s face.
Since the blood flow pattern seems to be unique to each individual (and also hardly
modifiable through surgery), the identification is highly secure. The features are also
relatively easy to acquire.

The second and third steps of biometric recognition bring about a different aspect of
identification, namely, the computational cost and performance.As mentioned earlier,
one of the fundamental requirements of a pervasive environment is the transparency
of operations; not only should tasks be performed with minimal (if any) user inter-
vention, but their execution should also be as invisible as possible. The process of
matching biometric features against a template should therefore carry a computational
complexity that does not exceed a small fraction of the system’s resources.

As a last remark, note that security and invisibility are two conflicting objectives,
in that increasing one will necessarily degrade the other. This is well expressed in
Fig. 10, which shows the False Match Rate (FMR) – False Nonmatch Rate (FNR)
plane. FMR represents the probability of erroneously detecting a match (i.e., when the
matching procedure is not restrictive enough, due to computational limitations such
as the pervasive requirement for invisibility), while FNR represents the probability
of failing to detect a match (i.e., when the matching procedure is too conservative,
as in situations where security is of utmost importance).

Different applications will result in different trade-offs between FMR (computa-
tional simplicity) and FNR (security). A high-security access application will have
very restrictive matching rules, whereas applications where a match is missing is
undesirable (like criminal identification and forensics) and will have a high FMR at
the expense of FNR. Determination of a pervasive environment’s collocation on the
graph is an open problem that requires careful examination of the computing capa-
bilities of the system, the sensitivity of data and applications in the system’s domain,
and the details of the identification process (complexity of feature extractor, size of
user template etc.).

When compared to the solution provided by secure hardware, biometric recognition
offers a solution that is more transparent and resistant to forgery. At least for the
type of identification described in this section, the recognition process is completely
invisible and hassle-free. However, the present level of the biometric technology is far
from the ideal, exploitation-proof condition that is required for a secure application.

BALANCINGTRANSPARENCY, EFFICIENCY 141

Most Liberal

Most Conservative

Fig. 10. Optimal set in the False Match Rate–False Nonmatch Rate plane. These two objectives, which
represent, respectively, the computational simplicity and the security associated with a recognition method,
are conflicting, and cannot be maximized simultaneously. An appropriate trade-off between FMR and FNR
depend on the goals and requirements of each specific application (image adapted from [11]).

Feature extractors will also play a fundamental role in determining how secure and
computationally expensive the process will be.

On the other hand, smartcards are not associated with any of the previous issues
related to pattern recognition. The identification is performed in the traditional, well-
established cryptographic key methods, which are not associated with FMR and FNR
issues. However, the use of smartcards is less invisible than biometric recognition
and will always be subject to the risk of misplaced or stolen cards, even in the case
of password-protected cards. While the risk of false identification with biometric
systems is likely to be reduced by the constant improving technology, the risk of false
impersonation due to fraudulent card possession will be very hard to control.

3.2 Service Identification
A similar, yet distinct, security issue that is inherent to pervasive systems is the

integrity of the services available to the user. In the pervasive scenario, the user does

142 M. WENSTROM ET AL.

not initiate jobs; instead the jobs are proactively launched based on user preferences,
history and context. Therefore, it makes sense to provide service identification in addi-
tion to user identification. In other words, the system will have to be endowed with
an authenticating structure that filters out possible fraudulent services and restricts
job initiation capabilities and data access only to those services that have been
authorized.

Similar issues are already present in the area of network systems, where users
are constantly faced with the task of locating services (such as printing or storage
services), verifying the trustworthiness of these services and submitting a query to
those trusted services. Many different methods for service lookup and discovery have
been proposed in the past [13] [15], with philosophies and designs that are fitting
to the pervasive idea. Such architectures usually involve the existence of discovery
and authentication servers, which mediate the interaction between users and services
by providing information about service capability, service authentication and user
authentication. In most cases, they will invoke the participation of other actors, such
as additional certificate databases that physically hold the required information. The
structure helps users search for particular services and verify their identity. At the
same time, services will broadcast their presence and capabilities within the net-
work, with the possibility of filtering (or customizing) the set of amenities offered to
each user.

Similar types of network architecture, presently used to manage and secure the
use of distributed computational resources in the standard sense (users initiating pro-
cesses), can finally be adapted to pervasive system by letting the services, rather than
the users, control the execution of tasks. The missing link necessary for the last step
is represented by the integration of intelligent devices with the above architectures,
i.e., the capability for storing the user’s profile and performing pattern recognition on
the present context. In the following section, we will discuss the secure Ninja Service
Discovery Service (SDS) architecture [13].

3.2.1 Secure SDS with Ninja
The Ninja architecture is based on five classes of agents:

1. The users (clients)
2. The services
3. The SDS servers
4. The Capability Managers
5. The Certificate Authorities

Each SDS server governs its own domain, which comprised a number of agents
from the other four classes. Domains are organized in a hierarchical fashion, allowing

BALANCINGTRANSPARENCY, EFFICIENCY 143

for easy scalability in case of overload; whenever a SDS server is unable to handle
all the services and broadcasts in its domain, it will start a new child SDS server that
will take over a sub domain. The following shows the interaction between the main
entities:

• Each SDS server sends authenticated messages over a global multi-cast chan-
nel, which includes a description of the domain itself, descriptions of services
registered in the domain, the multi-cast group address for each service in the
domain, the address of the Certificate Authority and the address of Capability
Manager.

• Each service is responsible for registering itself with a live SDS server (who
multi-casts their presence via periodic advertisements). This implies that when
a SDS server crashes, a service under this server is responsible for regis-
tering itself with a new server; this ensures some degree of fault tolerance.
A service periodically multi-casts its service descriptions (using authenticated
and encrypted messages) to its SDS server as well as clients in its multi-cast
group.

• Each client submits its queries for services to the SDS server responsible for its
domain. The server will then reply with a list of matches corresponding to the
client’s query, the available resources and the user’s privileges. It is assumed
that there is trust between the clients and the SDS server, such that the client
can trust that the service descriptions received by the SDS server are accurate.
However, this does not imply anything about the functionality or correctness of
the services; it simply verifies the descriptions of the registered services. The
client can then choose a service from list and join the multi-cast group on which
this service is being transmitted.

The core of the security framework of SDS is contained in the encryption of all
messages between the system’s entities, especially between servers and services.
The use of asymmetric encryption would be the best choice for all encryptions, but
efficiency requirements (which play an important role in simple network systems,
and even more so in pervasive environments) suggest that a hybrid symmet-
ric/asymmetric method would be best. Therefore, the service multi-casts follow
the three-segment format illustrated in Fig. 11. The first part of the message con-
tains the sender ID. The second part, ciphered with the SDS server’s public key,

Sender ID Ciphered Text (containing symmetric key) Payload (encrypted with symmetric key)

Fig. 11. The format of a service broadcast.

144 M. WENSTROM ET AL.

contains several pieces of information (again the sender ID, the destination, etc.)
along with a symmetric key that can be used to decipher the third, and largest, por-
tion of the message, which is the actual payload. Thus, computationally expensive
public-key decryption is only necessary to obtain the symmetric key, while compu-
tationally cheaper symmetric-key decryption can be done on the larger payload. This
reduces the decryption overhead while at the same time securing the messages against
eavesdropping.

In addition to encryption, the system implements a global authentication proce-
dure to guarantee the integrity of the associations between the system components
and their public keys. In other words, security against fraudulent identities must be
guaranteed not only by encrypted communications but also through authentication of
the endpoints. This is the role of the Certificate Authority and is accomplished in two
steps:

1. The Certificate Authority collects certificates from the various system
components.

2. Clients can query the Certificate Authority for a certificate to assess the validity
of a public key associated with a service.

Since the keys and the certificates are public, the service of a Certificate Author-
ity would not require computationally expensive encryptions when in operation (as
the Certificate Authority only performs the signing of certificates offline) and there-
fore would blend well with a pervasive system where thin agents with low latency
responses are a priority.The only requirement for implementing a CertificateAuthority
is that it must reside on a secure server.

The last component in this architecture is the Capability Manager, which stores
the lists of clients’ privileges in order to determine which user has access to which
services. This greatly simplifies the amount of user interaction needed for each single
query, since the SDS servers will prompt the Capability Manager for possible access
restrictions, instead of asking the user to authenticate. In addition, the user is only
returned a list of matches which he or she is authorized to use; all other services are
effectively invisible to the user.

Let us consider the example structure in Fig. 12 depicting an SDS that manages
resources in a computer science building. The hierarchy comprises four SDS servers,
which can either be responsible for the administration of a specific physical location
(such as the ‘CS Hall”, ‘4th Floor’ and ‘Room 443’ servers) or for the control
of certain services (like the ‘Systems’ server). In this figure, solid lines represent
one-time communications, while dashed lines represent the system’s various periodic
broadcasts. One-time communications include the Remote Method Invocations by
which each server can generate additional servers, as well as the clients’ queries

BALANCINGTRANSPARENCY, EFFICIENCY 145

“CS Hall”
SDS Server

“4thFloor”
SDS Server

“Systems”
SDS Server

“Stock Info”
Service

“Room 443”
SDS Server

(1) (1)

(2)

(4)

(4)

(3) (4)

“MP3”
Service

(1)

Certificate
Authority

Capability
Manager

Client

Fig. 12. The structure of a SDS architecture: dashed lines indicate periodic broadcasts, while solid
ones represent one-time communications. Lines marked with (1) are the authenticated server connections
between a server and its offspring; lines marked with (2) represent the authenticated client connection;
lines marked with (3) are the service broadcasts and lines marked with (4) are the server broadcasts (image
adapted from [13]).

for services. The periodic broadcasts include the periodic server broadcast that
disseminate the information about the server domain and the service broadcasts that
publicize the available facilities.

From a pervasive perspective, this architecture provides an infrastructure that
satisfies the demand for a transparent, yet trustable, provisioning of services. The
identification of services is assigned to the SDS servers, which keep track of their
identity (which has been verified by a Certificate Authority) and only share with the
clients the existence of those services with trusted identities. All a client needs to do is
submit a service query to the server, and the resulting matches will be, by construction,
already authenticated. As an aside, the structure provides the additional benefit of a
straightforward organization of the user’s privileges through the Capability Manager.
Lastly, it should be strongly noted that the level of trust guaranteed by this architecture
is only as strong as the trust between a client and the Certificate Authority and the
trust between a client and the SDS server.

146 M. WENSTROM ET AL.

In order to incorporate this architecture into a pervasive system, an additional step
is required to eliminate the need for explicit queries for services made by the user,
transferring this task to the control of the mobile device itself.

3.3 Conclusions
This section has presented a set of available tools and platforms to address security

issues in the specific context of a pervasive environment, i.e. in a system with strong
constraints on transparency and minimal user distraction. The issues of identification
have been separated into two categories: user identification and service identification.
Furthermore, user identification has been partitioned into authentication and recog-
nition, and each has been reviewed in order to offer a spectrum of different (and
possibly, complementary) identification mechanisms which realize different degrees
of security and transparency.

Finally, we have described a model service identification architecture equipped
with a selective discovery protocol that not only prevents unauthorized users from
using the available resources but also prevents them from detecting those services
to which they have not been granted access, increasing both the efficiency and the
security of the system in a context-adaptive fashion.

4. Current Projects

As a realistic illustration of the challenges posed by resource management and
security requirements, as well as the practical solutions that have been devised over
the years, we present here a few projects that are currently under way.

The applications of pervasive computing span the entire spectrum from generic,
multi-purpose distributed computing to the implementation of specific services like
home automation or pervasive healthcare. An extensive list of ongoing projects is
shown in Table II. This section will focus on a selected group of these projects,
including:

• Multi-purpose systems providing proactive services to the users: MIT’s Oxygen,
Carnegie Mellon’s Project Aura and Berkeley University’s Smart Dust all belong
to this category.

• The Pervasive Continuous Curriculum (PCC) project from Pennsylvania State
University [14] andAULAfrom University of Castilla investigate the application
of pervasive systems to academic issues, such as the administration of classes
and the design of individual curricula.

BALANCINGTRANSPARENCY, EFFICIENCY 147

Table II
A Sample of Current Pervasive Computing Projects Based

on Category

MULTI-PURPOSE SYSTEMS

Oxygen (MIT, [16])

Aura (CMU, [17])

(Berkeley, [18])

Spectacles (Johannes Kepler Universität Linz, [19])

PerComp (Federal University of Campina Grande, [20])

Application SuperNetworking - All-IP (University of Oulu, [21])

Particles (University of Munich, [22])

Mundo (Technische Universität Darmstadt, [23])

MOBIUS (European Mobius consortium, [24])

OTOGI (Waseda University, [25])

ACAMUS (Kyung Hee University, [26])

LOCAL (University of Minho, [27])

Disappearing Computer Initiative ([28])

EDUCATION

PCC (PSU, [14])

AULA-IE (University of Castilla - la Mancha, [29])

HEALTHCARE

MyMD (MIT, [30])

Context Aware Health Monitoring (University of Technology, [31])

Abaris (Georgia Institute of Technology, [32])

TMBP (Denmark Centre for Pervasive Healthcare, [33])

Centre for Pervasive Healthcare, [33])

UniCare (Imperial College, [34])

HOME, OFFICE AND URBAN AUTOMATION

LiveSpaces (University of South Australia, [37])

FlexHaus (Fraunhofer Institut SIT, [38])

SSLab (Keio University, [35])

SmartLab (University of Deusto, [36])

Interactive Workspaces (Stanford University, [39])

Cityware (Imperial College et al., [40])

Shared Worlds (University of Limerick, [41])

148 M. WENSTROM ET AL.

• Medical services: the projects MyMD (from MIT) and TMBP (Centre for
Pervasive Healthcare, Denmark) provide a framework for healthcare monitoring.

• Smart environments naturally lend themselves to home, office and urban automa-
tion applications. Existing projects propose the implementation of pervasive
devices at several different scales, spanning from the automation of daily home
tasks (like powering on/off the lights or operating appliances) to the concept of
connectivity and service provision as integral components of urban design and
architecture.

4.1 Multi-Purpose Systems
One of the founding ideas of pervasive systems is the concept of a single user

served by a multitude of computing agents, which saturate the environment in order
to monitor the context, predict the user’s intent and offer a wide range of services
(ideally, all services that are necessary to the user and do not require his or her
interactive participation) in a proactive fashion. A vast number of current pervasive
projects deliver a generic framework for the provision of services, from a simple
weather forecast update to more complex business transactions. In this section, we
will describe two such frameworks: MIT’s Oxygen and Project Aura from Carnegie
Mellon University.

4.1.1 Transparent Security with Oxygen
Traditionally, the interaction between humans and computers has required humans

to learn and adapt to the logic and working principles of the specific machinery at hand.
Conversely, the Oxygen project orbits around the idea of bridging this interaction by
teaching computers to communicate in a human-friendly manner, supplying the user
with service-providing agents that completely mask the underlying technology. This
framework involves three principal entities: Users, Devices and Networks:

• Users: the human clients, and main focus, of the system. In other words, the
computational platform provides a set of technologies that enable the user to
automate tasks, network with other users, and communicate information in a
completely natural and transparent fashion:

◦ Automation: low-level actions are represented by basic automation objects,
and user technologies include scripting tools capable of manipulating these
objects and constructing arbitrarily sophisticated actions from the basic
building blocks. The objects can be physical (which can include per-
ceptual devices, temperature or light sensors and power switches among

BALANCINGTRANSPARENCY, EFFICIENCY 149

others) or virtual (which comprise software agents and daemons capable
of processing information and making decisions). As an example, a set
of physical objects could be combined in a script specifying user prefer-
ences such as indoor temperature, light and sound levels, computer screen
resolution, preferred font size and so forth; this script could then be run
whenever the user enters a building or a computer lab, allowing him or her
to concentrate on high-level tasks rather than on adjusting the environment
settings.

◦ Collaboration: the system also provides a platform that keeps track of the
interactions between users, using context-aware agents to classify the content,
the properties and the parties involved in each specific collaboration instance.
This information is then passed to the global system to provide collaboration-
related services, such as teleconference infrastructure, scheduling of meetings,
and collaboration in database management.

◦ Knowledge access: data can be produced, searched and shared among users
with the aid of the knowledge access subsystem, equipped with semantic search
capabilities and tools for extensible data representation and acquisition. The
Haystack platform [42], the Semantic Web [43] and the START language [44]
are all components of this subsystem.

• Devices: the entities responsible for detecting the user’s intent and providing the
appropriate services. They can be portable or embedded in the environment.

◦ Users are provided with Handy21s (H21s), i.e. handheld devices that are
associated with a specific user, rather than with an environment. The hand-
helds provide continuous connectivity for the users wherever they are, at
any time.

◦ Vehicles, buildings and public spaces are assigned one or more computing
agents called Enviro21s (E21s). These are responsible for the provision of
services that pertain to the given environment, such as receiving and sorting
telephone calls within a certain building or delivering travel information and
driving directions in a user’s car.

A visual representation of these two categories is illustrated in Fig. 13, showing
the implementation of devices in a given environment: the space is pervaded by
several Enviro21s (for instance, one in each room of a building); in addition,
the mobile devices Handy21s move across the domain communicating with the
relevant Enviro21s and between each other, as appropriate.

• Networks: the infrastructure that establishes connectivity between users and
devices. The networks (N21s) can dynamically reconfigure themselves to provide

150 M. WENSTROM ET AL.

E21

E21

E21

E21 E21

E21 E21

E21

H21

H21

H21

H21

H21

H21
H21

E21

E21

E21

E21 E21

E21 E21

E21

H21

H21

H21

H21

H21

H21
H21

Fig. 13. A typical oxygen environment, with fixed devices embedded in each section (for instance,
each room of a building) for the provision of room-related services such as controlling the appliances and
guaranteeing the access to a certain set of users only. Handheld devices move through this structure com-
municating with the ambient devices and between each other, and negotiating all the low-level procedures
that are required by each action, thereby absorbing most sources of user distraction.

the interconnection between subsets of computers, also referred to as collabora-
tive regions. Networks also play a fundamental role in the discovery of services by
mobile agents. When a user enters a new smart space, the user’s handheld device
will automatically explore the surrounding environment, through the provided
network, and record the available services for future use.

Oxygen thus provides a realization of several of the security techniques described
in Section 3. For ordinary operations, the system resorts to a token-based method
of authentication. The tokens are, in this case, the handheld devices H21s, which
are furnished with the capabilities to authenticate the users with the surrounding
services, eliminating the need for any other type of access control (the system is also
endowed with a Discovery Service architecture responsible for resolving the service
requests). Furthermore, the token-based authentication can be combined with more
secure identification methods (such as fingerprint identification implemented on the
H21s) for those specific applications that require an increased level of protection,
such as bank transactions or access to sensitive information. In addition, the H21s
can be instructed to identify each other, in order to form a collaborative region, i.e. a
self-organized set of mutually authenticated users who may share data or have access
to specific services. The routing infrastructure is provided by Chord [45], a scalable
framework for peer-to-peer overlay networks.

BALANCINGTRANSPARENCY, EFFICIENCY 151

4.1.2 Project Aura: Resource Management by a
User Proxy

Project Aura from Carnegie Mellon University is a pervasive platform based on
the concept of a personal aura, i.e. an abstract representation of the user’s intent
and preferences, which facilitates the user’s mobility by taking control of all the
migration-related duties [17].

In particular, the project addresses four types of causes of user distraction due to
heterogeneous computing infrastructure: (i) a migration to a different environment,
as the user moves between different locations and chooses to transfer the pending
tasks across devices; (ii) a change in available resources, as network connectivity
and/or computing power fluctuation due to time-varying system load; (iii) a change
in the executing task, due to a change in the user’s task priority; and (iv) a change
in the context, which requires the suspension of prior tasks and the inception of
new ones.

Ideally, the user proxy plays the role of a coordinating entity that decides on the
services to request, on the quality-of-service that can be considered acceptable and
on all the other issues related to the aforementioned distraction sources. The system
architecture comprises four components:

• The Task Manager, or Prism, constitutes the user proxy. Prism resorts to a plat-
form independent description of tasks, treated as high-level, conceptual objects
rather than just as a collection of specific applications. This allows the system
to be more aware of user intent (e.g., denoting one’s action as ‘editing a text
document’ as opposed to ‘using Microsoft Word’) and to easily migrate the tasks
between different platforms.

• The Service Suppliers provide the service wrappers for the specific environment
they reside in. The Suppliers will respond to an abstract service request (such as
‘editing a text document’) by invoking the specific application (e.g., Microsoft
Word) present in the current environment. This is the system component that
targets the heterogeneity of computing environments by encapsulating all appli-
cations with the required capabilities in one high-level wrapper. The other system
components do not need to be aware of these details.

• The Context Observer monitors the physical context, passing the relevant infor-
mation to the other units in charge of the migration of tasks. The Context Observer
is, for instance, responsible to detect when a user leaves a specific environment
and joins a new one.

• The Environment Manager plays the role of a domain coordinator, monitoring
the available resources and organizing the users’ requests.

152 M. WENSTROM ET AL.

Service
Supplier Context

Observer

Environment
Manager

Service
Supplier

Service
Supplier

Service
Supplier

Service
Supplier

Task
Manager

Service
Supplier

Task
Manager

Service
Supplier

Fig. 14. The outline of Aura’s architecture.

Every environment is equipped with an Environment Manager, a Context Observer
and an instance of Task Manager for each user in the environment. The environ-
ment also contains Suppliers for each available service, which is registered with the
Environment Manager through a XML-based feature description system. A pictorial
representation of the system interactions is provided in Fig. 14.

Project Aura represents a solution to the resource management problem that relies
on a complex unit (the Prism) making smart decisions based on context and user
intent.

4.2 Dedicated Systems
The concept of computing agents that permeate the environment has also stimulated

work in the realm of specific applications, such as education, healthcare, unmanned
vehicles and home automation.

Quite understandably, predicting user intent and preferences in a dedicated environ-
ment is simpler than it would be in a generic environment, as the system architecture
can be tailored to the specific properties and constraints of the application at hand. In
other words, it is feasible to trade some of the flexibility of multi-purpose systems for
simple and accurate prediction of user intent. We will now describe two application-
driven scenarios, illustrating how some of the issues of non-specialized frameworks
find here a natural solution.

BALANCINGTRANSPARENCY, EFFICIENCY 153

4.2.1 Pervasive Education
The task of curriculum design in collegiate programs is an elaborate, often time-

demanding procedure that involves evaluating the student interests, establishing the
required corpus of knowledge or expertise needed for a specific degree and avoiding,
to the largest possible extent, duplication of material across courses.

There is a conspicuous list of issues connected with such a task:

• Curriculum development and access tools:

◦ To each degree, it is necessary to associate a set of modules that constitute the
essential, indispensable core of knowledge for that specific curriculum. This
set should also be as uniform as possible across different institutions, in order to
guarantee that the same denomination is indeed affixed to the same educational
path; this is particularly suited to computer science and engineering degrees,
but can be extended to other areas.

◦ On top of the standardized core, each student can build a collection of individ-
ual subfields of expertise. The selection of the appropriate units involves the
interaction between the student, his or her academic advisor, and the faculty
members offering course modules in related areas. This process presupposes
the existence and availability of relevant, up-to-date information, and the
ability to process this information efficiently.

• Teaching practices: The course offering itself should present a similar degree
of flexibility and 1-1 interaction between parts. In the first place, class syllabi
should be fine-grained to allow individual students to only select the topics which
they have not yet learned. Ideally, the granularity should eventually be so fine
that the degree consists in a continuous knowledge acquisition rather than a
discrete course-based learning process. Second, interactive methods should both
facilitate the course offering and increase classroom participation, making sure
the student’s progress is fed back directly into the system.

It is apparent that the advances obtained in the area of database management, learn-
ing structures, distributed computing, mobile agents and pervasive systems provide
a feasible solution to many of these issues. As an example, the Pervasive Continuous
Curriculum (PCC) project constitutes an effort to collect the relevant technologies
emerging in these fields in order to construct a pervasive education framework. The
platform includes three sets of components:

• The set of instructors, I

• The set of students, S

• The set of courses, C.

154 M. WENSTROM ET AL.

The members of each set and their interactions are realized on the backbone
provided by the Pervasive Information Community Organization (PICO) framework
[14], which consists of software agents (called Intelligent Delegates or delegents) that
can self-organize into dynamic communities with the purpose of sharing data between
one another, processing different sources of information, and making context-aware
decisions. For example, as a course is scheduled within an academic program, a course
delegent Dc is created, which holds information about the course syllabus and records
the student delegentsDs that are created for each student that registers for the course.
The Ds will perform extensive checks on each student’s background to determine
whether he or she meets the prerequisites to attend the class and whether the class
contents match the student interests and/or satisfy the chosen degree requirements.The
Ds will also interact with the instructor’s delegent Di to create an effective 1-1 learning
scenario, where individual questions and difficulties are addressed on an adaptive, per-
sonalized basis. An illustration of the system’s components and interaction is shown
in Fig. 15.

4.2.2 Pervasive Healthcare
In this section, we will describe how a pervasive system can offer continuous health-

care monitoring for patients with critical medical conditions. Quite understandably,

Design and Analysis of
Algorithms
Modules
Preliminaries
Recurrence relations
Sorting Algorithms
Graph Algorithms
Flow Networks
Greedy Algorithms
Dynamic Programming
Computational Geometry
String Matching Algorithms
NP-Complete Problems
Approximations

Graph definitions
Depth-first search
Breadth-first search
Spanning tree
Single-source Shortest path
All-pairs shortest path
Bipartite graphs

Greedy Strategy

Dijkstra’s Algorithm

Network Routing

Quiz

Student

Faculty

Sample Programs,
Source Code

Programming
Project

Challenges
Research problems

Other students

Fig. 15. A model of the interactions involved in course administration using a computer science course
in algorithms as an example.

BALANCINGTRANSPARENCY, EFFICIENCY 155

the delicate issues involved in patient treatment demand for a strict set of constraints
regarding the system’s quality-of-service and, to some extent, privacy and security.

One such system is MyMD, a project developed at MIT [30]. The platform is
composed of five entities:

• Sensors, which monitor the patient’s vital signs

• Sensor proxies, in charge of combining and coordinating the readings of all the
different sensors

• A real-time streaming database, for fast access to the patient’s history (both for
reading and updating purposes)

• Storage capabilities, to provide database support

• Communication facilities to promptly issue alerts and provide emergency
directions

The realization of this architecture poses several challenges within the domain of
resource management: the medical devices will need to be portable yet autonomous
entities, capable of performing their task with minimum energy consumption. The
system will also have to constantly, proactively monitor the network conditions in
order to predict possible failures and promptly effectuate the transition to alternative
procedures in case communication is lost.

4.3 Conclusions
In order to provide a realistic sample of the features and requirements for the imple-

mentation of a pervasive system, we have reviewed a sample of ongoing pervasive
computing projects, along with their strategies to tackle the challenges described in
Sections 2 and 3.

Acrucial element in this scenario is represented by the following inherent challenge
to pervasive systems: while dedicated applications come with intrinsic and well-
defined notions of the minimum quality-of-service and security levels necessary for
safe operation, generic platforms required by pervasive environments must be more
flexible to satisfy the heterogeneous requirements of the clients, service providers and
intermediate networks.

5. Final Remarks

Pervasive computing is the third generation of computing in which many computing
devices, of different shapes and forms, concurrently serve the individual user. Much
of the groundwork for pervasive computing, with respect to hardware, is already
present, such as wireless networks, powerful mobile devices and an abundance of

156 M. WENSTROM ET AL.

workstations and servers. Furthermore, many traditional theories and algorithms are
applicable to pervasive computing. Yet, there is an important property of pervasive
computing which requires these traditional hardware and software elements to be
modified; it is the requirement for a transparent integration between the user and the
computing resources. Services must be performed for the user in a least-invasive,
distraction-free manner. A possible resource bottleneck at the surrogate servers, who
act as service providers to multitudes of mobile devices, may disturb the users’ inter-
action in the pervasive environment. In addition, the constant need to authenticate
oneself with different services in the environment can obstruct the user’s interac-
tion. This chapter presented ways to smoothen this interaction and to maintain a
distraction-free environment.

Regarding resource management, the techniques of distributed caching, broadcas-
ting and adaptive fidelity were offered. Distributed caching and broadcasting allevi-
ate the bottleneck at the service providers. Distributed caching spreads the workload
across the mobile devices, while broadcasting eliminates the need to process redun-
dant requests and transmit redundant responses. Both techniques scale well and
are therefore suitable for a large-scale pervasive environment. Since mobile clients
become mobile servers with distributed caching, as more clients enter an environ-
ment, the increased client demand will be met by an increase in server availability.
In addition, the spread of stale date in a caching environment can be thwarted by
imposing some quality-of-service guarantee on the data received. With regards to
broadcasting, the resources consumed in a broadcast are independent of the number
of clients, thus implying the scalability of this technique. Moreover, the power of a
mobile host can be conserved when an indexing scheme is integrated with a broad-
cast, and the response time for a request can be decreased as more parallel channels
are introduced. Furthermore, to efficiently utilize the limited resources of a mobile
device, an adaptive fidelity technique can be implemented to dynamically adjust the
fidelity of services in a manner which yields the greatest utility under the given set
of resource constraints. The presented techniques for adaptive fidelity are suitable
for pervasive computing as they offer portability and limited user distraction. Since
resource consumption can be modelled empirically, regardless of the architecture and
organization of a machine, this aspect of an adaptive fidelity algorithm can be ported
to the diverse assortment of machines in a pervasive environment. By considering
fidelity parameters independently from one another with respect to their offered util-
ity, less setup is required from the user and less storage is required for these settings,
thus, limiting the interaction from the user and limiting the storage requirement on the
resource-constrained mobile device. With sufficient resources in the available service
providers as well as in the mobile clients and communication network, these resource
management techniques would not be necessary; yet for a realistic implementation
of pervasive computing, resource management techniques should be employed to

BALANCINGTRANSPARENCY, EFFICIENCY 157

compensate for an under-provisioning of resources and to allow for a distraction-free
environment.

We have also discussed how multiple security issues must be addressed before
pervasive systems become a trustable environment to perform important tasks. In the
first place, the identities of the system’s clients need to be verified in a way that is both
secure and transparent. While the integrity of the system operation is naturally a non-
negligible concern, the pervasive philosophy brings about an additional, conflicting
priority: to minimize distraction to the user, allowing his or her focus to remain
on the high-level tasks. The design of valid identification strategies that integrate
themselves with the seamless ensemble of pervasive components is an extremely
complex task. Token-based authentication with smartcards and biometric recognition
have been discussed and contrasted against each other in order to present a profile
of the complications involved. In addition, the idea of a smart environment initiating
processes on behalf of the user demands for an additional identity check: the services
and the service providers themselves will have to be authenticated before they can be
integrated with the system. We have discussed an architecture that provides service
identification without placing any additional burden on the user’s workload. Before a
similar type of organization becomes effective in the pervasive context, the concept
of users querying for services will have to be replaced with the concept of processes
initiating services based on the situation and on the user’s preferences and history.
Drawing upon the field of artificial intelligence to supply the groundwork for context-
aware devices will provide this last step towards the third generation of computing.

As a practical counterpart of our analysis, we have reviewed a few current attempts
to achieve a safe yet transparent pervasive operation, commenting on the many
different strategies and designs.

Acknowledgments

We wish to thank Robert Collins for providing helpful comments on this work
and Kevin Grady for carefully reviewing and revising this manuscript. This work
in part has been supported by the National Science Foundation under the contracts
IIS-0324835.

References

[1] Weiser M., September 1991. The computer for the 21st century, Scientific American, 256(3):
pp. 94–104.

[2] Perich F., Joshi A., Finin T., and Yesha Y., May 2004. On data management in pervasive comput-
ing environments, in IEEE Transactions on Knowledge and Data Engineering, Vol. 16, No. 5,
pp. 621–634.

158 M. WENSTROM ET AL.

[3] Imielinski T., Viswanathan S., and Badrinath B. R., May–June 1997. Data on air: organization and
access, in IEEE Transactions on Knowledge and Data Engineering, Vol. 9, No. 3, pp. 353–372.

[4] Imielinski T., and Viswanathan S., October 1994. Adaptive wireless information systems, in
Proceedings of the Special Interest Group on DataBase Systems, Japan, pp. 19–41.

[5] Narayanan D., Flinn J., and Satyanarayanan M., December 2000. Using history to improve mobile
application adaptation, in Proceedings of the Third Workshop on Mobile Computing Systems and
Applications, Monterey, CA, pp. 31–40.

[6] Hurson A. R., Jiao Y., and Shirazi B., 2006. Broadcasting a means to disseminate public data in a
wireless environment: issues and solutions, Advances in Computers, Vol. 67, pp. 1–85.

[7] Sustersic J., and Hurson A. R., 2005. Quality of Service (QoS) in Internet Cache Coherence, Journal
of High Performance Computing and Networking, Vol. 3, No. 5/6, pp. 296–308.

[8] Poladian V., Sousa J., Garlan D., and Shaw M., May 2004. Dynamic configuration of resource-aware
services, in Proceeding of the 26th International Conference on Software Engineering, pp. 604–613.

[9] Sousa J., and Garlan D., 2002. Aura: an architectural framework for user mobility in ubiquitous
computing environments, in Proceeding of the Third IEEE/IFIP Conference on Software Architecture,
Vol. 224, Montreal, pp. 29–43.

[10] Itoi N., and Honeyman P., 1999. Practical security systems with smartcards, in Proceedings of the
Seventh Workshop on Hot Topics in Operating Systems, Arizona, pp. 185–190.

[11] Jam A., Hong L., and Pankanti S., 2000. Biometric identification, in Communications of the ACM,
Vol. 43, Issue 2, pp. 90–98.

[12] Satyanarayanan M., 2001. Pervasive computing: vision and challenges, in IEEE Personal Commu-
nications, Vol. 8, Issue 4, pp. 10–17.

[13] Czerwinski S. E., Zhao B. Y., Hodes T. D., Joseph A. D., and Katz R. H., 1999. An architecture
for a secure service discovery service, in Proceedings of the Fifth Annual ACM/IEEE International
Conference on Mobile Computing and Networking, pp. 24–35.

[14] Hurson A. R., Jean E., Ongtang M., Gao X., Jiao Y., and Potok T. E., 2007. Recent advances in mobile
agent-oriented applications, in Mobile Intelligence: When Computational Intelligence meets Mobile
Paradigm, L.T. Yang and A.B. Waluyo (editors), John Wiley & Sons.

[15] Mauro J., and Minden G., 2004. Security model in the ambient computational environment, M.Sc.
Thesis, University of Kansas.

[16] Project Oxygen’s website: oxygen.csail.mit.edu.
[17] ProjectAura’s website: www.cs.cmu.edu/Thura; Sousa J., and Garlan D., 2002.Aura: an architectural

framework for user mobility in ubiquitous computing environments, in Proceeding of the Third
IEEE/IFIP Conference on Software Architecture, Vol. 224, Montreal, pp. 29–43.

[18] SmartDust’s website: robotics.eecs.berkeley.edu/pister/SmartDust
[19] Spectacles’ website: www.pervasive.jku. at/Research/Projects/SPECTACLES
[20] PerComp’s wiki: wiki.percomp.org
[21] All-IP’s website: www.mediateam.oulu.fi/projects/allip
[22] Particles’ website: particles.teco.edu
[23] www.tk.informatik.tu-darmstadt.de/Forschung/Poster/Mundo
[24] Mobius’ website: mobius.inria.fr
[25] Interaction Group’s website: www.dcl.info.waseda.ac.jp/groups/intg.html
[26] Acamus’ website: uclab.khu.ac.kr/camus
[27] LOCAL’s website: get.dsi.uminho.pt/local
[28] DC’s website: www.disappearing-computer.net
[29] AULA’s website: chico.Inf-cr.uclm.es/AULA_IE
[30] MyMD’s website: mymd.csail.mit.edu
[31] www-staff.it.uts.edu.aut∼peterl/mobilelab/research/project1_health.html

BALANCINGTRANSPARENCY, EFFICIENCY 159

[32] Abaris’ website: home.cc.gatech.edu/julie/24
[33] TMBP’s website: www.tmbp.dk
[34] UbiCare’s website: www-dse.doc.ic.ac.uk/Projects/ubicare
[35] SSLab website: www.ht.sfc.keio.ac.jp/SSLab
[36] SmartLab’s website: www.smartlab.deusto.es
[37] University of South Australia e-World Lab page: e-world.unisa.edu.au
[38] www.sit.fhg de/_SITProjekte/flexhaus
[39] Interactive WorkSpaces’ website: iwork.stanford.edu
[40] Cityware’s website: www.cityware.org.uk
[41] Shared Worlds’ website: www.shared-worlds.org
[42] Haystack’s website: haystack.csail.mit.edu
[43] Semantic Web’s page: www.w3.org/2OO1/sw
[44] START’s website: start.csail.mit.edu
[45] Chord’s website: pdos.csail.mit.edu/chord

This page intentionally left blank

Computing with RFID: Drivers,
Technology and Implications

GEORGE ROUSSOS

School of Computer Science and Information Systems
Birkbeck College
University of London
Malet Street, London WC1E 7HX, UK

Abstract
Radio Frequency Identification or simply RFID has become an integral part of
modern computing. RFID is notable in that it is the first practical technology to
tightly couple physical entities and digital information. In this survey, we cater
to the computing professional who is not familiar with the specifics of RFID,
which we discuss in the context of supply chain management, its most popular
application. We begin with a primer on supply chains, with particular reference to
the relationship between efficiency and information flow. We recognize universal
identification with bar codes and electronic data interchange as the two princi-
ple computing technologies that have played a central role in the optimization
of supply chains. We then discuss RFID and supporting network technologies
and identify their novel features and capabilities. We proceed by examining the
performance improvements in supply chain management due to RFID and dif-
ferentiate between different levels of tagging. We explore consumer applications
and services using item-level RFID in particular. Such applications not only offer
novel opportunities for business but also raise important social and policy chal-
lenges primarily related to privacy protection, which we discuss in more detail.
We conclude by exploring how European law is attempting to address the new
issues arising from the use of RFID and look ahead at the challenges encoun-
tered when computing with RFID before it can be made an effective end-user
technology.

1. Introduction . 162

2. Supply Chain Basics . 163

3. Business Computing and the Supply Chain 166
3.1. Unique Product Identification . 167

ADVANCES IN COMPUTERS, VOL. 73 161 Copyright © 2008 Elsevier Inc.
ISSN: 0065-2458/DOI: 10.1016/S0065-2458(08)00404-X All rights reserved.

162 G. ROUSSOS

3.2. Universal Product Identification . 168

3.3. Anatomy of a Bar Code . 169

3.4. Electronic Data Interchange . 171

3.5. The GS1 System . 172

4. Supply Chain Optimization . 175

4.1. Causes of Supply Chain Inefficiencies 175

4.2. Efficient Consumer Response . 176

4.3. Information Flow and ECR . 177

5. RFID Technology Basics . 179

5.1. Operating Principle . 180

5.2. RFID Types . 182

5.3. Readers . 184

5.4. Tags . 185

5.5. RFID as Smart Product Labels . 187

5.6. Identifiers . 188

6. RFID Software and Network Services 191

6.1. Middleware . 192

6.2. Programming RFID . 194

6.3. RFID Network Services . 196

7. Practical RFID in the Supply Chain 198

8. Business Drivers . 202

9. Consumer Acceptance of Item-Level Applications 205

10. Privacy Implications of Item-Level Tagging 209

11. RFID and EU Law . 211

11.1. Data Protection and Privacy . 211

11.2. Commercial Transactions . 212

11.3. Governance . 212

11.4. Spectrum Regulation . 213

11.5. Environmental Issues . 213

12. Discussion and Conclusions . 214

References . 215

1. Introduction

Several authors would have you believe that RFID is the greatest information
technology innovation: it will deliver cheaper, better quality and safer food for the

COMPUTING WITH RFID: DRIVERS, TECHNOLOGY AND IMPLICATIONS 163

global market; it will simplify the manufacturing of cars and airplanes; it will save the
environment by allowing every single product to be recycled; it will save human lives
by preventing medical mistakes; it will make the world a safer place by averting acts
of terrorism; it will do away with counterfeiting, especially of drugs; and of course
it will spark the next computing revolution by creating the Internet of Things. Few
computer technologies have sparked such excitement.

In this survey, we attempt to separate fact from fiction and develop an understanding
of RFID based on evidence and the experience gained through field implementations
of this technology. A common theme will be RFID as the catalyst for change in
business information system implementations due to its capability to intimately link
physical and digital assets and establish relationships that can be processed auto-
matically without need for any manual intervention. For this reason, and despite its
relative simplicity, RFID has found numerous applications. Its influence is nowhere
more pronounced than in the supply chain, where its popularity has been growing
rapidly. There are already several very large-scale deployments of RFID within this
sector, which often also takes a leading role in the development of RFID technology.
RFID in the supply chain and its extensions in consumer services will also be at the
centre of our discussions.

We structure this discussion as follows: first we introduce the basics of supply chain
management and the role that computing plays within it. Then, we provide an analysis
of RFID technology in this context and identify the role that it can play to provide
novel information sources that significantly enhance its efficiency. Yet, the use of
RFID in the supply chain has unintended consequences, especially when objects are
tagged at the item – rather than the container – level. We conclude by reviewing such
implication with particular reference to privacy protection and identify areas where
law and policy have to play a significant role if RFID would have a long-term effect.

2. Supply Chain Basics

Supply chains are at the core of modern globalized open markets. Each supply
chain has unique characteristics and requirements but they all comprise a network of
coordinated organizations, which collaborate in diverse activities to transform raw
material and components into finished products and deliver them to the end consumer.
Such material and information resources move link by link from supplier to retailer
across the supply chain, adding value at each stage, bringing the product farther from
the point of production and closer to the point of consumption.

A simplified example of a supply chain for grocery products is displayed in
Fig. 1: Raw materials are received by suppliers, who process them in usable forms
for example, turning polystyrene and polypropylene granules into plastic film rolls

164 G. ROUSSOS

Upstream

- High inventory levels
- High returns
- Rush orders
- Unstable production
 plan
- Changeovers
- High out-of-stock
- Long order cycle
 times
- Long lead times
- Lack of visibility

- High inventory levels
- Low forecast accuracy
- Rush orders
- Lost sales due to out
 of stock
- Decreased on-self
 availability
- Decreased POS
 service levels
- Ad-hoc replensihment
 strategies

Supplier Manufacturer Retailer POS

Downstream

Fig. 1. An idealized typical grocery supply chain.

that can be used for packaging, or fresh milk into pasteurized milk and stored in large
containers suitable for travel over long distances. Processed materials are received
by the manufacturer and are used to fabricate and package the product which is then
transported to a retail distribution centre. From this location, products are delivered
to retail outlets and displayed at the point of sale for purchase by consumers. To be
sure that this is a somewhat simplified view of the process, as at each link there would
be more than a single bilateral relationship for example, several suppliers would be
needed to provide the full list of materials required for the manufacture of a particular
product, and many manufacturers would deliver products to the same distribution
centre. Nevertheless, Fig. 1 provides a good model for thinking about the process
and helps identify the main issues related to the performance of each step of the
process. In practice, the majority of supply chains would include a much longer and
complex network of exchanges which spans great distances and more often distances
no longer than state borders. Needless to say that supply chains provide great vari-
ation. As a point in case, consider the delivery of munitions to the field needed to
support operations for the Department of Defense, or the special traceability require-
ments of so-called cold chains where products are temperature and environment
controlled.

One could argue that it is possible to avoid such complexity and the complications
of developing and maintaining a multi-partner supply chain by keeping full control
of the whole process within a single company. Although this idea may be concep-
tually attractive, in actual fact this approach would require a single organization of
enormous size, which in some cases would far exceed even the largest companies
in existence today. In fact, there is some evidence that such a massive organization
would be highly inefficient and would suffer due to internal difficulties that would

COMPUTING WITH RFID: DRIVERS, TECHNOLOGY AND IMPLICATIONS 165

negate any benefits derived from the internalization of the supply chain. Furthermore,
collaborative supply chains have gained prominence as a result of the globalization
of production and commercial activity and due to the dominance of network effects
within this environment. Consequently, supply chain management has increasingly
attained greater significance and is today a core factor in establishing competitive
advantage. In turn, this fact has brought into focus the role of business relationships
which extend beyond traditional enterprise boundaries.

According to the Council of Supply Chain Management Professionals, supply
chain management (SCM) encompasses the planning and management of all activi-
ties involved in sourcing, procurement, conversion and logistics management. These
activities include coordination and collaboration with channel partners, which can
be suppliers, intermediaries, third-party service providers and customers. Note that
SCM activities travel both upstream (from retailer to supplier) and downstream (from
supplier to retailer) across the supply chain. For example, new products (travelling
downstream) could be produced and delivered as a result of an order (transmitted
upstream) placed to the pertinent distribution centre by a particular outlet.

The principal metric for measuring SCM success is consumer satisfaction, that is,
whether the product on offer completely satisfies the needs of a particular consumer
and if it is available for purchase at the appropriate time and location as required. This
task clearly requires that demand for specific products must be predicted and matched
to production and the ability to deliver so that the two sides are in sync. There are
many reasons why this may not happen: products may not be produced or delivered
in time or may not be delivered in the required mix (for example of colors, sizes,
quantities and so forth), may be misplaced, may be stolen by employees or externals
or may have expired. Making an inaccurate prediction in excess of true needs can
also have negative effects since the extra stock will not be sold and will have to be
discarded at a loss. Finally, there are performance issues that are inherent to the modus
operandi of the supply chain itself, primarily related to the time lag between ordering
and delivery. For example, in cases when demand fluctuates considerably and cannot
be met responsively, it is common practice that products are ordered in excess of what
is required so as to maintain a stock buffer. Unfortunately, such safety stock orders
create false demands lower in the supply chain, which are amplified downstream
and result in wasted effort and resources – this condition is often referred to as the
bullwhip effect.

To provide good performance, it is necessary that SCM addresses the following
tasks:

• Distribution network configuration, that is, how to structure all levels of the sup-
ply chain network including the selection of suppliers, the number and location
of production facilities, distribution centres, warehouses and retail outlets.

166 G. ROUSSOS

• Distribution strategy, that is, the organization of transportation of products
between the different links of the distribution network. Options available to SCM
are centralized versus decentralized coordination, direct shipments, cross dock-
ing between trading partners, pull or push strategies and the use of third-party
logistics.

• Inventory management, that is, how to ensure that records of the quantity
and location of inventory levels are accurate and updated in a timely manner,
including raw materials, work-in-process and finished goods.

To be sure, to effectively conduct these tasks, SCM requires detailed information man-
agement and coordination across business boundaries throughout the supply chain.
As a result, it is a particularly critical component in implementing any SCM strat-
egy as this scale is the effective use of information technology. Despite the fact that
to a certain extent SCM is about processes, training and business partnerships, it is
inconceivable that its objectives can be achieved to any significant extent without
computing and communications. In particular, it is necessary to integrate systems
and processes, taking into consideration the complete structure of a particular sup-
ply chain, to share information including demand signals, forecasts, inventory and
transportation and reduce delays in transmitting this information between trading
partners.

3. Business Computing and the Supply Chain

Thursday 29 November 1951 marks the beginning of business computing. Before
that, computers had only been used in scientific and military applications. On that
day, at the offices of J. Lyons & Co1 LEO, the Lyons Electronic Office, became the
first ever software used to conduct business. LEO was able to calculate the amount
and cost of raw materials required to meet the nationwide orders for bread placed
with the company [10] and initiated a trend for computers to support and improve the
efficiency of business processes through a detailed understanding of the objectives of
business users.

Supply chains offer great variety ranging from supplying fresh food from the farm
to the supermarket shelf, to delivering uniforms from the manufacturer to the soldier in
the desert. Yet, they all share the same objective: to keep the process simple, standard,

1 J. Lyons & Co. was founded in 1887 and grew to become one of the largest catering and food
manufacturing companies in the world. At its peak, Lyons owned the popular Baskin Robbins and Dunkin
Donuts brands, but in the 1970s the company was severely affected by high interest rates and finally became
defunct in 1998.

COMPUTING WITH RFID: DRIVERS, TECHNOLOGY AND IMPLICATIONS 167

speedy and certain [32]. To achieve this goal, it is necessary that all trading partners
across a particular supply chain exchange information frequently and accurately, that
supply chain costs be minimized, and that all goods and services moving through the
supply chain be unequivocally identifiable at all times. An essential element to any
solution that can meet these requirements is the use of open, worldwide data standards
for globally unique product identifiers and a universal product classification system,
combined with internetworked information services that can be used to track and
trace goods and services.

Automation in open supply chains is becoming even more important due to the
increasing use of RFID which can provide the required high product visibility and
the free flow of information into fully automatic systems that can identify product
items and link them to their associated information without any manual input. This
level of interoperability through direct machine-to-machine interactions at such large
scale demands the availability of open shared specifications describing every aspect
of business activity.

In the decades since LEO became operational, two ingredients in particular have
played a central role in facilitating such automation: the availability of standard prod-
uct identification and classification schemes and the ability to exchange messages
about business processes between trading partners across a supply chain in stan-
dardized formats. Unique product identification in particular has become ubiquitous
and highly visible through the popularity of bar codes which are exactly represen-
tations of such identifiers. Moreover, the majority of transactions between trading
partners is carried out through some dialect of the Electronic Data Interchange (EDI)
standard, which defines templates for common business actions, for example order-
ing and invoicing. We discuss each of these developments in turn in the following
sections.

3.1 Unique Product Identification
Tracing of the history of business computing in the supply chain identifies a second

landmark date as Wednesday 26 June 1974, when the first bar code was scanned and
the collected identifier used for a commercial transaction. This was the culmination
of a long process that lasted over 30 years to develop automated ways of capturing
product data. Since then, supply chain automation has grown rapidly and the use
of bar codes has spread from retailers to suppliers and ultimately to the suppliers’
supplier.

The history of modern bar coding began in the 1940s, when in response to a
challenge by the president of an American food chain, Woodland and Silver of Drexel
University, created a system to encode information in combinations of concentric
circles printed on paper. At that time, their solution was limited by the inability to

168 G. ROUSSOS

automatically input the encoded product identifier in a computer system. This problem
was not addressed until the mid 1960s and until the advent of lasers which made
reading bar codes practical. The initial idea received little attention in the grocery
sector until 1968 when RCA, which had acquired the intellectual property, developed
a similar symbol and corresponding scanner and tested it extensively during the early
1970s [3].

Bar coding was also investigated in the rail industry as a means of tracking
individual railway wagons. By 1962, Sylvania Corporation introduced a system
using optical scanning devices to read orange and blue coloured bars on a non-
reflective black background. By 1968 the colours were eliminated, and by 1971
about 95% of all railway wagons had been bar coded. At that point, only 120 scan-
ners had been installed, and recession in the mid 1970s led to the system being
abandoned.

Owing to such diverging activities, it soon became apparent that separate groups
would develop different and incompatible systems for product identification that
could considerably hinder the wider acceptance of a common standard. As a result,
in 1969 the American National Association of Food Chains (NAFC) proposed a
product-marking system to representatives of all sections of the grocery industry,
including manufacturers, retailer, and retail associations. The result of these efforts
was the recommendation in 1973 by the Ad Hoc Committee of the Grocery Industry
of the Universal Product Code (UPC), a common standard for the representation of
the information held in bar codes. By the end of 1973, over 800 manufacturers were
assigned UPC numbers, and the following year scanners from IBM and NCR were
supplied to retailers. It was such a UPC code that was used in 1973 for the first
bar-code-based transaction.

3.2 Universal Product Identification
The original UPC was a ten-digit code, with five digits used to identify the man-

ufacturer and another five for the product line, and also a symbol design that would
be printed on products was defined. A core management activity under the scheme
is the allocation of prefix numbers to companies, to manage the numbering space
and ensure that each number is unique. This task was assigned to the Uniform
Grocery Product Code Council established for this purpose in 1971 and became
Uniform Product Code Council in 1974 by which time it had over three thousand
members. Since 1984 the Council is known by its current name, the Uniform Code
Council (UCC).

Naming this solution, the Universal Product Code was of course an exaggeration.
Not only was it not universal, but it did not even extend beyond North America.
Soon after their introduction, these ideas were taken over by European retailers and

COMPUTING WITH RFID: DRIVERS, TECHNOLOGY AND IMPLICATIONS 169

manufacturers, who made it truly international. Moreover, they were extended and
developed in several ways, for example, where UPC concentrated on the point of
sale, the European approach adopted a supply chain perspective and code semantics
were further developed beyond the manufacturer/product identification pair.

This work was carried out by a core group of collaborating companies, which
formed was for this reason in 1977 under the so-called European Article Number-
ing (EAN) system. EAN worked closely with its national counterparts such as the
UK-based Article Number Association (ANA). Such collaboration was uncommon
within the fiercely competitive consumer goods sector and was the result of the clear
need to adopt common open standards.

One of the new features of the EAN system that make it particularly flexible is the
separation of data from the data carrier, that is, the product identifier from its bar code
representation. This feature has enabled the introduction of more types of bar code
symbols in addition to the original EAN specifications. For example, RFID tags can
be used to encode existing EAN product numbers and this is indeed the method of
choice for the ISO item-level tagging standards which we discuss in the following
section. In any case, the focus on item identity rather than product information in
automatic data capture has provided great adaptability and efficiency over the years,
which seems to suit well current technologies.

EAN extends well beyond Europe and to mark this orientation in 1981 EANA was
renamed as International Article Numbering Association (IANA). EAN codes are
the standard product identification scheme across the world except North America,
where UPC is still the dominant form. Several provisions ensure that the two
systems are compatible, notably the formal agreement in 1990 between EAN and
UCC to co-managed global standards for identification of products, shipping units,
assets, locations and services, as well as a variety of other business standards that
have become known as the EAN.UCC system. To complete the integration of
UCC within EAN International, the organization was re-launched across the globe
as GS1.

3.3 Anatomy of a Bar Code
Looking closer at a typical bar code for example, the one following the EAN-13

standard2 displayed in Fig. 2, it is a symbol which encodes strings of 13 decimal
digits, which represent unique identifiers for specific products following the Global
Trade Item Number (GTIN-13) specification. This symbol can be read into a computer
system using a (portable or fixed) low-power laser scanner, which can translate the
sequence of white and black bars into the corresponding digits.

2 Other EAN schemes follow a similar structure but support different identifier lengths.

170 G. ROUSSOS

5 012345 678900

Fig. 2. A typical example of an EAN-13 bar code.

The encoded number follows a scheme designed to ensure that each number
assigned to a product line is unique and includes a unique number which identifies a
particular user (most commonly its manufacturer):

• The first two digits are called the indicator digits and specify the particular num-
bering system used. In the case of the EAN-13 bar code of Fig. 2, the indicator
digits correspond to the GTIN-13 system.

• The following five digits is the GS1 company prefix, which represents the
manufacturer of the product.

• The following five digits represent the product code, which identifies a product
line (but not individual items).

• Finally, the last digit is a checksum used by acquiring computer systems to
confirm that the code has been retrieved correctly.

The company prefix which is also known as the manufacturer code is assigned to the
particular business by GS1, while the digits corresponding to the product code are
selected by the manufacturer.

The GTIN number itself does not contain classification information in it – infor-
mation about the industrial sector, the country or the region where the product was
manufactured or the type of product (for example clothing, food, electronic device
and so forth) cannot be retrieved from the code. It is a simple unique identifier akin to
a key in database parlance, and to obtain associated product information, it is neces-
sary to query a related product information repository. Moreover, the unique identifier
characterizes the product, for example, one carton of 1-liter orange juice made by the
Squeezed Juice company, rather than a particular instance of the product for example,
the specific carton of Squeezed Juice orange juice which was produced at 12:15:01
on January 1st 2007 at the Orange Grove facility.

Note that these are many bar code varieties, of which several of these outside the
EAN.UCC system and some of which carry additional information, for example, sell

COMPUTING WITH RFID: DRIVERS, TECHNOLOGY AND IMPLICATIONS 171

by dates or product weight, or designed to deal with specific environments including
pallets, locations and returnable assets. Specialist formats have also been employed in
specific situations, for example, the datamatrix standard for small items used to mark
surgical instruments, and new higher capacity symbologies have also been introduced,
some of which employ colour and three-dimensional structures.

3.4 Electronic Data Interchange
The second core ingredient of modern supply chain management information sys-

tems unfortunately is not associated with a specific landmark, but has come about as a
process rather than as a single event. Electronic Data Interchange (EDI) is the ability
of direct computer-to-computer transactions between vendor and ordering systems,
for example, to place orders, create invoices and reconcile transactions. EDI has very
considerable advantages over paper-based procurement systems since it can reduce
the time needed for product replenishment, labour costs, accuracy and access to infor-
mation. The final point is of particular importance: by recording detailed information
about patterns of consumption over time, it becomes possible to develop an accu-
rate model of product use and a strategy for product movement through the supply
chain.

Development of EDI started in the early 1960s as a response to the perceived
need for a common vocabulary of business exchanges. Of particular relevance to the
current discussion is the work carried out under the remit of the United Nations Direc-
tories for Electronic Data Interchange for Administration, Commerce and Transport
(UN/EDIFACT). Unfortunately, the resulting system has been particularly complex
and overloaded, hard to deploy and often leads to unnecessarily irksome implementa-
tions. As a result, several groups have identified and promoted the independent use of
particular subsets that satisfy the needs of specific industrial sectors, specific business
processes or specific supply chains. For example, GS1 has developed EANCOM to
support cross-border trade and cover only the functions required to effect a complete
trade transaction.

Another case of a partial EDI vocabulary within a specific market segment defined
with the EAN.UCC system is the Trading Data Communications standard (TRADA-
COMS). TRADACOMS was developed in the early 1980s and employs EAN codes
for product identification. Similar to other EDI activities, TRADACOMS came about
as a response to the desire of several leading retailers in the UK at the time to
establish electronic communications with their suppliers, which was failing due to
different and incompatible message structures and content used by each company.
Successful implementation of TRADACOMS in trials allowed electronic invoicing
to become supported in law, and indeed the system is still widely used in retail
applications.

172 G. ROUSSOS

3.5 The GS1 System
The benefits of the common product identification schemes and business message

exchange formats outlined in the previous sections highlighted the advantages of an
open and standard supply chain management system, but fall short of providing a
complete solution. The incorporation of GS1 as a global umbrella organization for
such activities provided the structure for the formalization of the so-called GS1 System
(One Global System), which aims to support the efficient operation and management
of supply chains and in this way create added value for the consumer. This objective is
addressed through the provision of the technological foundation for the construction of
inter-operable systems for asset tracking, traceability, collaborative planning, order
management and logistics across all the organizations participating in the supply
chain. GS1 standards address three areas:

• Part I deals with unique identifiers for products, companies and so forth and data
standards for attribute encoding.

• Part II relates to the encoding of this information into data carriers such as bar
codes and RFID tags.

• Part III sets data standards for automatic electronic communication through sup-
ply chains, including conventional EDI standards (mostly employed in closed
networks) as well as the ebXML family of standards for open supply chains.

ebXML in particular is a recent development which employs modern technolo-
gies including the Unified Modelling Language (UML) and the Extensible Markup
Language (XML).

In practice, GS1 is a complex system in perpetual development, which affects a
large business community coordinated by more than 100 national organizations oper-
ating across 133 countries. Over a million member companies worldwide use GS1,
and every day more than five billion transactions are made using GS1 standards. GS1
national organizations play a critical role within this community: they help members
implement current bar coding systems and business-to-business communications such
as EDI, and they also represent their corresponding countries in international initia-
tives for new standards and solutions. Notable recent additions to the GS1 standards
include reduced space symbology (RSS) bar codes, radio frequency identification
(RFID) tags and the EPCglobal network.

3.5.1 Messaging for Open Supply Chains
The design of EDI is limited by its focus on closed, proprietary networks and as

a result in many ways it is not suitable for use over the Internet. This is primar-
ily due to the fact that it was designed primarily as a one-to-one technology and

COMPUTING WITH RFID: DRIVERS, TECHNOLOGY AND IMPLICATIONS 173

lacks flexibility. Moreover, the requirements for the development and operation of an
EDI-based system have proven in practice to be quite significant and hardly afford-
able by small- and medium-sized companies, which until recently have been largely
excluded from participating in electronic data exchanges as a result.

To address these restrictions and to capitalize on the business opportunities opened
up by the Internet, ebXML has been introduced as an altogether new messaging
technology for GS1 under the Organization for the Advancement of Structured Infor-
mation Standards (OASIS). Unlike EDI, ebXML assumes that the communications
substrate is the Internet and aims to provide a modular rather than a rigid set of
specifications for conducting business. The use of open and well-understood Internet
standards implies that ebXML can be implemented at relatively low cost due to the
fact that it is supported on commodity internet platforms.

Nevertheless, ebXML is a very extensive set of specifications with universal scope
both in terms of geography and industrial sector [27] and is structured around the
following parts:

• Messages: ebXML messaging functions directly extend EDI functionality and
follow the standard Simple Object Access Protocol (SOAP) envelope-and-
message format.

• Business Processes: ebXML offers standard models that capture the flow of
business data among trading partners recorded using UML. This systematic defi-
nition of specific business processes is then used as the basis for common message
sequences across industry boundaries. Several such processes have been recorded
in detail.

• Trading Partner Profiles andAgreements: Complementing models of specific
processes, ebXML also provides systematic representations of company capabi-
lities to conduct e-business in the so-called Collaboration Protocol Profile (CPP).
Using the CPP, a company can list the industries, business processes, messages
and data-exchange technologies that it supports. Trading partners use such CPPs
to specify Collaborative Protocol Agreements (CPA) that define the business
processes, messages and technologies employed.

• Registries: Registries are ebXML-shared repositories that hold descriptions of
industry processes, messages and vocabularies used to define the transactions
exchanged with trading partners in CPP and CPA formats. Such repositories can
be queried by other business to retrieve details of e-business capabilities for
inspection so as to locate companies with the capabilities desired in forming
partnerships.

• Core Components: Core Components (CC) are standardized XML schemas
that represent the core entities involved in ebXML scenarios. CCs are lower level
descriptions of the main entities that participate in business transactions and can

174 G. ROUSSOS

be viewed as the extension of more traditional GS1 data structures updated for
use by open supply chains operating over the Internet.

3.5.2 Global Product Information Repositories
The final ingredient for effective data dissemination in the supply chain according

to GS1 vision is the Global Data Synchronization Network (GDSN) specification [5].
GDSN maintains master data alignment, or else authoritative information about any
entity that can be assigned a unique identity within the EAN.UCC system including
products, prices, promotions and locations. GDSN is a database-based mechanism
(called GS1 Data Pools in GDSN parlance) of global reach that guarantees accurate
and synchronized information across supply chains.

GDSN acts as a shared electronic directory between supply chain partners used
to increase the quality of information across all supply chain activities and thus the
efficiency of transactions. GDSN is a highly controlled environment supported by
a small number of providers authorized by GS1, which are responsible for ensur-
ing that the service is available and provides good-quality information at all times.
GS1 operates the root of the directory called the GS1 Global Registry, which holds
information about the location of all participating data pools. Individual suppliers and
retailers gain access to GDSN via subscriptions to local data pools (often provided
by GS1 national organizations) and either publish or retrieve information pertaining
to specific supply chain tasks.

Product information maintained within GDSN must be organized into categories
so as to be useful and easy to access. Such structure is provided by yet another
GS1 standard, the Global Product Classification (GPC), which defines exactly such
a hierarchical scheme. At the top of this hierarchy is the Segment which represents a
particular industrial sector, for example, food, beverages and tobacco. Within a par-
ticular segment, there are one or more families which represent broad sub-divisions;
in the same example, a particular family would be milk, butter, cream, yoghurts,
cheese, eggs and substitutes. The next level in the GPC hierarchy is the Class which
represents a collection of like-product categories, for example, milk and substitutes
and at the bottom is the brick, which represents product lines. Each brick is associated
with attributes that define the specifics of the product line.

Products manufactured by a particular company would correspond to one brick that
can also be assigned GTIN numbers which, as noted earlier, are printed on bar codes
and affixed on products. The mapping between the GTIN and the corresponding brick
as well as detailed associated information about the product would be published by
the manufacturer and via its local Data Pool into the Global Repository of GDSN. So,
when a vendor receives a shipment of such items, they need only query the GDSN to
retrieve complete information about the product. This information is guaranteed to

COMPUTING WITH RFID: DRIVERS, TECHNOLOGY AND IMPLICATIONS 175

be fully up to date and authoritative and the whole process can be completed without
any manual intervention and without the need for any direct bilateral communication.

Although clearly this is a much more complex system, this approach removes all
limitations inherent in closed systems like EDI and does provide a scalable informa-
tion infrastructure, which is dynamic and open to all partners. The main benefit of
this approach is that by federating responsibility for the maintenance of such data, it
is possible to improve accuracy of orders, invoices and other business documents, to
reduce the number of delivery errors, and last but not least, to reduce the administrative
requirements related to maintenance of product and location information.

4. Supply Chain Optimization

Improving the performance of a supply chain depends on identification of the ineffi-
ciencies and resolution of their causes. Typically, this requires detailed measurements
of performance and then implementing changes in those areas that appear to block
products, services or information. Information technology can play a central role in
two ways: providing the information needed to identify the causes of inefficiencies
and in improving communication between partner organizations.

4.1 Causes of Supply Chain Inefficiencies
Recent research in supply chain efficiencies has identified several common prob-

lems and quantified their effects on performance, concentrating on five areas:
out-of-stock, shrinkage, invoice accuracy, unsealable products and inventory accu-
racy [41]. Upstream supply chain inefficiencies affect the relationships of all trading
partners and result in high out-of-stock conditions at the point of sale, high rate of
returns and prolonged lead times. Inefficiencies in the downstream direction nega-
tively affect demand forecast accuracy, which results in low on-shelf availability and
thus loss of revenue despite the fact that products are available on site.

Preventing out-of-stock situations. Recent investigations of out-of-stocks [19]
estimate their level for the retail industry to 8.3% (varying between 7.9% in the US
and 8.6% in Europe). According to this study, in 47% of the cases, this was a result
of erroneous forecasting and ordering; in 28% by various upstream activities; and in
25% by inadequate shelf restocking. The latter requires particular reference as in this
case the required product was available in the backroom of the retail store but was
not available on the shelf. Another study [17] specific to the grocery sector found that
for promotional items, the out-of-stock level was almost twice as high.

Preventing Shrinkage. Inventory shrinkage or simply shrink refers to the loss of
products and can happen anywhere between their manufacture and the point of sale.

176 G. ROUSSOS

In recent years, shrinkage has been identified as a serious problem [22], which may
be as high as 1.7% of sales. Almost half of it is due to employee theft, but shoplifting
and administrative errors also play a significant role.

Improving invoice accuracy. Inaccurate invoices have a particularly painful effect
as they lead to reduction of the expected revenue and give a misleading view of the
financial standing of the organization. Yet, they are not uncommon and on average
they lead to deductions estimated to between 4.9 and 9.9% of annual invoiced sales
[18]. Even top-10 retailers face invoice deductions averaging 5.9%. The main causes
for such deductions are erroneous pricing, coupons and penalties.

Reducing unsaleables. Products may become unsaleable for a variety of reasons,
with damage being the most common, followed by expired and discontinued items.
Loses due to this cause amount to about 1% of sales [30].

Improving inventory accuracy. In a recent case study of inventory accuracy, over
70% of SKU records per store were found to be in error [35]. These figures are based
on actual inventory counts at six stores in the US (each representing in excess of 9000
SKUs) conducted specifically for this study and compared against the records held.
Higher than actual quantities were recorded for 42% SKUs and lower than actual
quantities for 29%. For an average inventory of 150 000 product items per store, the
total difference was 61,000 items or else about 7 items per SKU.

Among all retail sectors, supermarkets are the most competitive as they operate with
minimal profit margins. It is then even more important for grocery retailers to exploit
any opportunities to reduce the inefficiencies outlined above wherever possible using
information technology. Over the past fifty years, they have certainly pursued this
objective with considerable success.

4.2 Efficient Consumer Response
Grocery products and/or Fast Moving Consumer Goods (FMCG) have been one

of the main beneficiaries of the improved understanding of the structure and per-
formance of supply chains. The development of strategies that employ this new
understanding to achieve improved performance has become possible through the
use of technology, notably bar codes, messaging and resource planning and opti-
mization software. Implementation of these techniques in the field requires extensive
coordination between trading partners and to a large extent is orchestrated by Efficient
Consumer Response (ECR), a voluntary industrial initiative to raise performance lev-
els across the entire retail sector [31]. ECR promotes the premise that improvements
will be made as a result of the continuous and detailed self-examination of processes
and procedures across the sector, the development of concrete guidelines and recom-
mendations and by closely promoting their implementation. ECR was initiated in
the United States but its perceived advantages from a business perspective have

COMPUTING WITH RFID: DRIVERS, TECHNOLOGY AND IMPLICATIONS 177

extended its scope to the rest of the world, with national and regional initiatives in
action.

ECR has developed a specific strategy around three objectives:

• to increase consumer value,

• to remove costs that do not add consumer value, and

• to maximize value, while at the same time minimizing inefficiency throughout
the supply chain.

In practice, these priorities are used to identify and fulfill specific goals, for example,
providing consumers with the products and services they require, reducing inven-
tory, eliminating paper transactions and streamlining product flow. To meet these
goals, distributors and suppliers are making fundamental changes to their business
processes that can only be enabled through the implementation of novel information
and communication systems.

4.3 Information Flow and ECR
Nevertheless, fifteen years of ECR involvement and the introduction of information

systems in production and logistics control have not completely removed inefficien-
cies in modern supply chains, which directly impact retail operations. Despite the fact
that information is shared between trading partners more frequently and in finer detail,
such exchanges are still not adequate to provide the required accuracy of demand fore-
casts and thus the scheduling of the replenishment process. Indeed, changes in patterns
of consumer demand change frequently but propagate relatively slowly through the
supply chain. As a consequence, upstream partners have an inaccurate, time-delayed
view of the current situation, which is often the cause of the bullwhip effect discussed
previously. Another direct consequence of low-demand forecast accuracy is that trad-
ing partners have to maintain increased inventory levels as a security measure in
response to unpredictable increases in demand, which further increased warehousing
and logistics costs.

In practice, it is still common to forecast consumer demand by processing
historical point-of-sale data, using decision support systems that utilize data ware-
housing and data mining techniques. One core limitation of forecasts conducted
in this way is that they are not effective in taking into account the influence of
promotions and other marketing instruments since the success rate of such mech-
anisms is generally hard to quantify beforehand. Even when the use of real-time
point-of-sale data is possible, forecasts still have lower accuracy because demand
patterns are changing rapidly and such fluctuations cannot be captured in a timely
manner at the point of sale but have to be identified earlier in the consumption
process.

178 G. ROUSSOS

One approach developed within ECR to address the problem of accurate forecast-
ing is the so-called Vendor Managed Inventory (VMI) where the vendor, rather than
the customer, specifies delivery quantities sent through the distribution channel [40].
This reversal of roles in the procurement process has become possible through the
deployment of EDI. VMI had succeeded in reducing stock-outs and inventory buffers
in the supply chain. Common benefits of VMI implementations include a signifi-
cant reduction in supply chain length, the centralization of forecasting and frequent
communication of inventory levels. VMI has a particularly noticeable effect on fleet
management since the order in which delivery vehicles are loaded is defined by the
system with items that are expected to stock out have top priority, then the items that
are furthest below the targeted stock levels, then advance shipments of promotional,
and finally, items that are least above targeted stock levels.

In addition to EDI, VMI also depends on the common use of universal product
identifiers and bar codes to record and process shipments with only limited manual
intervention. Bar coding in particular is essential for the automated initiation and
entry stages of the order cycle and can reduce the total cycle time by several days
at a time. When used together, standardized messaging and bar codes can enable
collaborative relationships in which any combination of retailer, wholesaler, broker
and manufacturer can work together to seek out inefficiencies and reduce costs by
looking at the net benefits for all participants in the relationship. Such techniques
work at the Store Keeping Unit (SKU) or container level, for example, a case, a pallet
or a truck. However, an inherent limitation of existing SG1 bar code schemes is that
they cannot differentiate between two SKUs from the same product line. As a result,
the specifics of a particular SKU cannot be recorded unambiguously and so large
inaccuracies in inventory levels can be observed [24].

Overall, VMI has been successful in significantly reducing inventory levels and
the number of stock-outs. The latter issue is particularly important not only because
of lost sales but also because shelf availability is central to supermarket strategy.
Indeed, a significant proportion of supermarket profit margins are due to interest-free
periods for products already available on the shelves. Thus, one of the main concerns
of retailers implementing VMI has been the perception that reduced inventory will
result in less product being available on the shelves at any one time and therefore
loss of market share. A partial solution to the problem is to fill shelf space with other
SKUs from the same vendor, but this approach does not fully address the problem.

The quality of information flow between trading partners can be improved in two
ways that can have significant impact:

1. By extending unique identifier schemes at the containment level and in such a
way that different instances of the same type of SKU can be unequivocally

COMPUTING WITH RFID: DRIVERS, TECHNOLOGY AND IMPLICATIONS 179

identified. In this way, individual containers can become traceable and
associated with location and other related meta-data. Moreover, the concept of
identification can be taken into the next level and schemes that identify uniquely
specific product items can be developed, thus assigning a single identity to a
particular product item.

2. By fully automating the product identification process so that the need for man-
ual operation is removed. This can remove a variety of errors in data input, and
also with the appropriate hardware provisions, it can supply faster and more
points of control across the supply chain.

Both of these improvements can be achieved using RFID technology which we discuss
in detail in Section 5. A more ambitious approach to improve forecasting accuracy
involving RFID would aim to capture information much earlier in the consumption
cycle, for example, when products are removed from the display, or even earlier when
already purchased products are used by the consumer and their packaging discarded,
thus initiating the replenishment process. The latter approach would require fully
automated unique product item – rather than container or SKU – identification and is
further explored in Sections 8 and 9.

5. RFIDTechnology Basics

Although RFID is a relatively simple technology, it offers a unique advantage in
that it allows highly compact battery-free electronic devices, the so-called tags, to
be embedded in objects, artifacts, locations or living organisms and automatically
identify their carrier using wireless communication and without any need for man-
ual processing. Generally, this identification information would be a code that would
uniquely pinpoint the carrier within a numbering scheme. In some cases, a tag would
also hold and transmit a small amount of additional data associated with it. The infor-
mation help in a tag is retrieved by a higher capability device called the reader which
transmits power to the tag and directs the communication. As a result, RFID is never
used in isolation but it depends on a variety of supporting information technologies
to create usable systems.

In this section, we will consider each element of a complete RFID system, but
before delving into the details it is worth exploring how the different components fit
together. Unlike other wireless communication systems, RFID is asymmetric in that
the tag and the reader are devices with very different characteristics that take distinct
roles in the process. In addition to readers and tags, an RFID system would also have
a number of associated services which provide the reader with a scan plan and receive

180 G. ROUSSOS

Reader
Tag

25

1 3

4

Middleware

Network
Management

Reader
Management

Fig. 3. Components of a complete RFID system and sequence of events.

the results of the actions specified. The sequence of operations follows the following
common pattern which is depicted in Fig. 3:

1. An observation plan is programmatically specified by the system developer and
implemented in purpose specific middleware, which relays the instructions to
one or more readers for execution.

2. Upon receipt of the observation plan, the reader starts transmitting with the
immediate effect that tags within its vicinity receive power which they can use
to power up.

3. After conducting an inventory of all tags that are within range, the reader selects
a specific tag according to the parameters specified in its observation plan
and interrogates it specifically for its product identifier and possibly associated
information.

4. The tag receives instructions, checks the contents of its memory and responds
to the query of the reader (the actions in steps 3 and 4 may be repeated several
times per second).

5. The responses from all relevant tags are processed, filtered and aggregated by
the reader and a report is returned to the middleware or some other consuming
application.

In addition to the actual RFID processing steps, the reader would often communicate
with the network management software to report its status and also with reader-
specific management software that would monitor operational parameters specific to
RFID, for example, the correct operation of all antennas attached to the reader.

5.1 Operating Principle
Despite its numerous applications, RFID is a relatively simple technology which

allows for the short-range wireless transmission of small amounts of information,
often representing a single identifier that gives it its name. As noted earlier, RFID
is asymmetric in that communication is established between peers with distinct

COMPUTING WITH RFID: DRIVERS, TECHNOLOGY AND IMPLICATIONS 181

READER

TAG

Fig. 4. Communication by reflection in ultra high-frequency RFID tags.

roles: one peer, the so-called reader or interrogator, takes on the role of the transmitter
and the other, the so-called tag, the role of the responder.

This split of roles allows the communication of the tag by modulation of the
electromagnetic waves emitted by the reader instead of creation of its own trans-
mission (cf. Fig. 4). This approach implies that a complex reader can be used with a
very simple tag of small size, which can be built at very low cost. Moreover, in the
case of passive RFID tags, electromagnetic waves emitted by the reader carry enough
energy to be used by the tag (using the coupling effect induced on the tag antenna by
the electromagnetic carrier wave) as its source of power.

These two core ideas behind RFID, namely, communication by reflection and
remote activation using radio frequency, were first discovered in the 40s and the 60s,
respectively. But it was not until the mid 70s that fully passive relatively long-range
systems became possible (for a more detailed discussion of the history of RFID, see
[29]); however, early tags were still limited by the non-availability of high capacity,
high-performance chips. At that time, RFID could only provide up to a dozen read-
only bits on massive die sizes which occupied most of the tag volume. Shrinking
electronics, especially in the 90s, have been critical to the development of the cur-
rent generation of tags which are both significantly more power efficient and provide
higher storage and computational capability – both as a result of miniaturization.

182 G. ROUSSOS

5.2 RFIDTypes
One particular type of RFID, the so-called active tag, uses batteries as their source

of power and is not wholly dependent on the reader to provide energy. Such tags
have considerable advantages over passive tags that draw all their power from the
reader signal, as they transmit at higher power levels and thus have longer range
and support more reliable communication. Moreover, active tags can operate in par-
ticularly challenging environments; for example, around water, it is easy to extend
them with additional sensing capability, for example, temperature sensors, and they
can initiate transmissions, but they stop operating when their battery expires. Despite
their advantages, the current interest in RFID is solely due to passive tags which do
not depend on batteries and thus do not require recharging or replacement. Active
RFID, on the other hand, is just one of an increasing number of wireless local area
communication technologies and as such it is of limited interest to this survey. In
this review, we only consider passive tags as they are the only viable solution for
large-scale deployments. For this reason, we will refer to passive RFID simply as
RFID, without further qualification.

RFID tags can be naturally classified under two main categories: those that use the
magnetic component generating the near field of the radio wave and those that use
the electric component, which generates the far field (cf. Table I for a comparison
of their characteristics). Near-field tags communicate by changing the load of the
tag antenna in such a way that they control the modulation of the radio signal in a
process appropriately called load modulation. These changes can be detected by the
reader and decoded by examining changes in the potential variation in its resistance.
Because the magnetic field decays very rapidly with distance from the centre of the
reader antenna (inverse cube ratio), the changes to be detected by the reader are tiny
compared with its own transmission. For this reason, the tag modulates the radio
signal in such a way that it responds in a slightly shifted frequency from that of the
reader (what is often referred to as the sub-carrier frequencies).

Power transmission from the reader to the tag is by magnetic induction (the principle
employed by power converters) and for this reason near-field readers and tags have a
characteristic antenna design that also makes them easily identifiable: their antenna
is a simple coil. The effectiveness of this process depends on the strength of the near
field at the tag location, which in turn depends on the distance between the centre of
the reader and the centre of the tag antennas (and the particular frequency used). In
any case, at frequency f, the near field ends at distance proportionate to 1

2πf
from

the reader antenna. For example, at 13.56 Mhz, the frequency used by the popular
ISO 14443 standard, the near field extends to about 3.5 meters from the reader.
However, in practice ISO 14443 systems would consistently work at a maximum
range of approximately 30 cm using medium-sized antennas on the reader (radius
approximately 20 cm) and credit-card sized tags.

COMPUTING WITH RFID: DRIVERS, TECHNOLOGY AND IMPLICATIONS 183

One of the advantages of the 13.56 Mhz frequency that makes it so popular is the
fact that this section of the wireless spectrum is assigned worldwide to smart cards
and labels and hence it is globally available to the vast majority of RFID applications.
Other frequencies commonly used by near-field RFID are within the 120–136 kHz
range, but these are loosing rapidly in popularity as they can only be employed for
very short-range communications. Their short range makes them unattractive for
applications as in most practical situations they necessitate contact of the card and
the reader (but not of the electronics directly).

RFID systems using the far field of the carrier wave operate using a technique called
backscatter rather than load modulation. This process is very similar to the operation of
the radar in that the tag reflects back a small part of the electromagnetic wave emitted
by the reader. The reflection can be used to transmit information by examining the
so-called reflection cross-section, that is, the signature of the component of the wave
that has been sent back to the reader and compared with the original. In practice, data
are encoded by the tag by turning on and off the load connected to its antenna and
thus shifting the reflection cross-section between two clearly identifiable characteristic
signatures. Similar to near-field RFID, also in this case there is very considerable loss
of power during the reflection process and readers have to be sensitive to less than a
microwatt in most cases.

Because of the involvement of the far field, tag and reader antennas are dipoles.
This fact can again be used to identify far-field tags via simple visual inspection. Far-
field RFID commonly operates in the UHF band between 865 and 956 Mhz, but the
complete range is not available to applications globally (and there are also radically
different signal power output limitations especially between Europe and the US).
Instead, common far-field tags are able to respond in the complete range and it is the
responsibility of the reader to select frequencies that are allowed within a particular
regulatory region (typically 865–869 Mhz in Europe, 902–928 Mhz in the US and
950–956 MHz in Japan). Far-field systems allow for longer range communication
and it is common to achieve between 3 and 4 meters using approximately 30 cm

Table I
Comparison of HF versus UHF Rfid Technologies

HF (Near Field) UHF (Far Field)

Frequency ≈ 13 Mhz ≈ 900 Mhz
Spectrum allocation Uniform Fragmented
Cost (per tag) < 15 cents < 15 cents
Range < 30 cm (1 m max) < 4 m (10 m max)
External interference No Cellular phones
Memory capacity 4 Kbits 256 bits

184 G. ROUSSOS

antennas and 10 cm tags. Using larger antennas and power amplification, the range
of such a system can reach up to 10 meters. More detailed descriptions of far-field
RFID performance can be found in [8].

5.3 Readers
An RFID reader or interrogator consists of three main components (cf. Fig. 5):

• One or more antennas, which may be integrated or external.

• The radio interface, which is responsible for modulation, demodulation, trans-
mission and reception. Due to the high-sensitivity requirement, RFID readers
often have separate pathways to receive and transmit.

• The control system, which consists of a micro-controller and in some cases
additional task and application-specific modules (for example, digital signal or
cryptographic co-processors) and one or more networking interfaces. The role
of the control system is to direct communication with the tag and interact with
applications.

RFID readers are increasingly becoming complete network computing devices
(akin to routers) that provide advance processing of RFID observation streams and
wired or wireless connectivity to the internet. Such readers would receive a scanning
plan from a driving application or other middleware, which they would implement
by issuing state-transition instructions to the tags within their range. The latter step
usually has three stages: broadcasting to all tags within range and receiving responses,
selecting a particular tag as the peer for communication, and exchanging information
with the selected tag. This process can be quite complex, especially in the case where

HF interface

Antenna

Control
System

Fig. 5. RFID reader and subsystems.

COMPUTING WITH RFID: DRIVERS, TECHNOLOGY AND IMPLICATIONS 185

a large number of tags are within range or when two or more readers overlap. In such
cases, additional collision-avoidance techniques must be implemented to ensure that
communication is organized in a structured way so as to allow the participation of all
tags in this process [11].

5.4 Tags
The tag is a far simpler device and consists of:

• The antenna.

• A capacitor that stores harvested power.

• The chip which in most cases implements a simple state machine and holds the
object identifier.

• A protective paper or polymer enclosure, which guards against the rupture of the
antenna that would result in the immediate expiration of the tag.

A typical example of a modern tag is the EPC Class 1 Gen 2 [8, Chapter 4]
which operates at UHF frequencies (cf. Fig. 6). The chip has a relatively complex

UPM Rafsee POSS_10_5 Cu

1

Fig. 6. Gen2 RFID tag operating at UHF frequencies.

186 G. ROUSSOS

Bank 00

Bank 01
Session ID

Object ID

Tag ID

Bank 10

Bank 11

Access Password

Destroy Password

Reserve

EPC
Memory

TID

User

CRC-16

Protocol Control

Electronic Product Code

Tag Identification

User

Fig. 7. Memory layout of an EPC Gen 2 tag.

non-volatile memory structure divided into four distinct areas (cf. Fig. 7). The reserved
memory bank holds two 32-bit passwords, the ‘access’ password for gaining access
to the contents of the tag, and the ‘kill’ password that when presented permanently
disables the tag. The EPC memory bank contains the Electronic Product Code, a uni-
versally unique identifier assigned to the object, location or other asset on which the
tag is attached, and optionally other metadata. The Tag Identification bank contains
information about the type and the manufacturer of the tag including a unique serial
number which identifies the tag itself. The user bank is optional and can be used freely
by applications.

It should be clear from this discussion that a single tag holds several identifiers or
codes that correspond to different functions and have distinct roles and semantics,
including a fixed tag ID and a writable object ID. Tags often use a third identifier,
the so-called session ID (in the case of Gen 2 tags, this is a pseudo-random number
generated by the Protocol Control section), which is used by the reader to address
the tag during a particular session. The session ID is roughly equivalent to the MAC
address of a typical wireless networking physical layer protocol, but in the case of
Gen 2 it is only locally unique. Alternatively, the session ID may be fixed and stored

COMPUTING WITH RFID: DRIVERS, TECHNOLOGY AND IMPLICATIONS 187

in the tag memory as is the case for ISO 14443 Type A tags. Note that tags that
employ this approach can be easily traced using the session ID as a handler, a fact that
raises very considerable privacy and security issues which we discuss in more detail
in Section 10. For this reason, most recent tag protocols implement a randomization
process, whereby tags use a pseudo-random number each time they are interrogated
by a reader so as to avoid easy tracing.

5.5 RFID as Smart Product Labels
Although it has been noted that more than one identifiers are stored in a tag, all but

one are involved in low-level operations and are thus of limited interest for enterprise
computing. The object ID is the identifier that is related to the product, container or
location where the tag is affixed. One clear use of this stored information is as a direct
replacement of bar codes: the exact same information stored in a visual representation
can be stored in a tag in electronics and transmitter over radio frequency. Even this
simple substitution of bar codes with RFID provides considerable advantages, namely:

• higher capacity, so that larger identifiers or even additional metadata can be
stored.

• higher data read rate, so that many more product labels can be read in very short
period of time.

• the tag is rewritable, so new data can be added during the product lifetime or old
data can be updated or changed to reflect changes in the product.

• greater resilience to damage, especially since the RFID tag could be embedded
safely in the product fabric itself.

• greater read range and independence from line of sight requirement.

• anti-theft support, as tags can be identified at exit points.

Of course, despite these advantages, a direct replacement of bar codes with RFID
tags has very considerable cost implications since bar codes are more often printed
with packaging and have no cost at all.

Although valuable in some cases, such a direct substitution of bar codes for RFID
would fail to capitalize on the full range of opportunities offered by the technology.
Moreover, it would fail to recognize and build on top of the current generation of
network infrastructures, which have advanced since the introduction of the bar code.
As a result, the new circumstances combined with the capabilities of RFID offer a
unique opportunity to re-think and re-design systems of unique product identification.
There are several current proposals on how to best extend current schemes, and in
the next section, we review some of these proposals, with particular reference to the
work conducted within the EAN.UCC system.

188 G. ROUSSOS

5.6 Identifiers
The most successful numbering scheme in terms of industrial adoption so far that

is specifically developed for RFID and use in the supply chain is defined within the
Electronic Product Code (EPC) specifications, part of the EAN.UCC system. Unlike
other generally available RFID standards, EPC defines both how and what data will
be stored in the tag including the tag memory layout (as described in the previous
section), for communication with readers, and for the composition and layout of a
unique identifier scheme which extends existing GS1 schemes.3 The EPC identifier
in particular can follow one of several schemes, depending on whether the tag is used
to identify a product container or item, a location or some other asset.

The most important type of identifier encoded in EPC is the Serialized Global Trade
Identification Number (SGTIN), which comes in two version of different lengths (96
and 198 bits correspondingly). SGTIN-96 codes are made up of six parts, namely,

• Header, which identifies the tag as an SGTIN-96 (8 bits).

• Filter Value, which allows the pre-selection of the object type (3 bits).

• Partition, which indicates the split of the last 82 bits between the remaining three
fields (3 bits).

• Company Prefix, which contains the GS1 company prefix (20–40 bits).

• Item Reference, which contains the GTIN reference number and identifies the
product line (4–24 bits).

• Serial Number, which is the unique identifiers of the specific tagged item (38
bits).

In following with common practice within GS1, the Header, Filter, Partition and Com-
pany Prefix sections of the EPC are provided by GS1 so that their use and assignment
is coordinated and guaranteed to be uniquely defined, but the Item Reference and
Serial Number are assigned by the manager or else the manufacturer of the product.
An example of an EPC encoding an SGTIN-96 and its interpretation is displayed in
Fig. 8.

ECP also provides schemes for tagging other types of resources in addition to
product items, including shipping containers (for example, pallets and other SKUs),
returnable assets (for example, fruit cases) or general asset items and locations. In
addition to these identifiers defined by GS1, there are also provisions for the inclusion
of general-purpose identifiers within EPC as well as resource identifiers following
the Department of Defense numbering schemes.

3 The specification also includes a Filter Value which is not part of the identifier but provides a shortcut
in that it is a quick way to identify the particular type of identifier encoded in the tag and is used for fast
preselection of particular tag types.

COMPUTING WITH RFID: DRIVERS, TECHNOLOGY AND IMPLICATIONS 189

HEX 30700048440663802E185523
Binary 0011000001110000000000000100100001

000100000001100
1100100000000000001011100001100001
01010100100011

URN urn:epc:tag:sgtin-
96:3.0037000.06542.773346595

Filter Company Prefix Item Reference Serial Number

3 0037000 06542 773346595
Shipping Unit P & G Bounty Paper Item UID

Towels (15 pack)

Fig. 8. Example of an EPC SGTIN-96 tag and its decoding. The top table shows the actual forms of the
EPC in different stages of the encoding process and the bottom shows the interpretation of the SGTIN-96
identifier in particular.

Looking closer at the Serialized Global Location Number, this identifier is a seri-
alized form of the Global Location Number (GLN) defined within the standard
EAN.UCC system and includes provisions for an extension serial number that rep-
resents internal company locations that are not openly available to external parties.
SGLNs follow a very similar structure to SGTINs with header, filter, partition and
company prefix. The last past of the GLN is the location reference, which is a num-
ber, the semantics of which are at the discretion of the manager. Since these numbers
cannot be interpreted without access to their definitions, it is necessary for a company
to publish the appropriate correspondence in a publicly available location, which is
often the GDSN.

One point that sets GLNs apart from other similar systems is that they define a rather
extended concept of location in addition to physical places, which in the context of
the supply chain would often be stores, warehouses, manufacturing plants, warehouse
gates, loading docks or vending machines. GLN also includes within its scope legal
(for example, companies, subsidiaries or divisions) and functional entities (in most
cases, these would be departments within the company, for example, accounting or
fulfillment). In any case, this unique identifier can be encoded in an RFID tag which
can be automatically read by interrogators within its vicinity, which can subsequently
resolve this information through the GDSN and thus discover their location.

The Serial Shipping Container Code follows the common structure, with the notable
exception that its serial number segment is defined by the standard EAN.UCC

190 G. ROUSSOS

systems. Similar structure is also followed by the final two types of indemnifiers
called Global Returnable Asset Identifier (GRAI) and Global Individual Asset Identi-
fier (GIAI). Finally, EPC provides for two additional types which are defined outside
the EAN.UCC system, namely, the resource codes defined by the Department of
Defense specification for military supply chains and a general-purpose type pre-
dictably called General Identifier (GID-96), which is a catchall for other uses of the
EPC tag specifications.

A competitive scheme to EPC is the ISO/IEC 15459 specification on unique iden-
tifiers with provisions on registration (Part 2), common addressing rules (Part 3),
transport unit address provisions (Part 1) and item-level tagging for the supply chain
(Part 4).

Under this scheme, a guaranteed world-wide unique serial object identifier (i.e., the
object ID) is associated with an artefact by its manufacturer at production time. ISO
15459 codes have four parts: data identifier (DI) header, issuing agency code, company
ID and serialized item code (cf. Fig. 9). In conformance to previous related ISO
standards, each part of the code holds alphanumeric digits rather than numbers. The
DI specifies the structure of the contents of the object ID and follows the specification
of ISO/IEC 15418 encoded under ANSI MH 10.8.2 provisions. For example, DI set
to 25S specifies that the object ID is a globally unique serial object number, and DI
set to 2L specifies that the object ID is a location specified in a format defined in a
subsequent field, for example, a post code. Rules for the coordination of the address
space are also defined in the standard, with the Netherlands Normalization Institute
being the only authorized registrar that can assign IACs. EDIFICE, an association
of electronics suppliers, is such a registered issuing agency and can thus provide its
members with their individual unique company identification numbers. Each member
can then decide internally on how to structure the object serial numbers. A common
approach is to separate the number into two parts, the first identifying the type of the
object – often referred to as product class – and the second identifying the particular
item within this class – often referred to as item serial number.

An important feature of ISO 15459 is that unlike EPC, it accommodates a variety
of existing product classification schemes that can be used as object identifiers. For
example, the currently most popular way to tag objects is by way of a barcode, mostly

Data Identifier Issuing Agency Code Company Serial Number

25S LE:EDIFICE E999 C204060897294374

Fig. 9. ISO/IEC 15459 worldwide unique serial identifier example. The object ID stored in user memory
of the tag is 25SLH:EDIFICEE999C20406089.

COMPUTING WITH RFID: DRIVERS, TECHNOLOGY AND IMPLICATIONS 191

using identifiers specified with in the EAN.UCC system that are excluded under EPC.
This approach also allows the incorporation into the system of a number of other
domain-specific numbering schemes under a unified hierarchical classification. For
example, ISO 14223-2 defines a code structure specific for use for animal tracking,
including information on the species and the premises where it is held. These codes are
incorporated under ISO 15459 simply by setting DI to 8N. This facility also allows
improved interoperability with other competing or emerging numbering schemes
which can be incorporated under particular DIs as well as provide flexibility for
future extensions.

Although not evident from the previous descriptions, EPC also supports interop-
erability with ISO standards although at a lower protocol layer. Gen 2 tags provide a
parity bit as a toggle to indicate the type of identifier stored in their EPC memory bank
(cf. Bank 01 in Fig. 7, the Numbering System Identifier is part of the Protocol Control
section) so that other numbering systems can be used instead of EPC. Although the
EPC scheme clearly has few differences with the previous ones and indeed several
limitations when compared against ISO, it has nevertheless attracted considerable
interest due to its exclusive supply chain focus and the fact that it provides a complete
set of specifications for middleware, resolution, discovery and repository services
(cf. Section 6). Moreover, several IT vendors have already integrated these specifica-
tions with their products and as a result, the EPC standards have gained considerable
advantage against competitors.

6. RFID Software and Network Services

A recurring theme in the discussion of modern GS1 standards is their dependence
on the Internet for disambiguating the semantics of the different types of identifiers
that are retrieved either from bar codes or from RFID tags. Until now, we have only
considered static data, that is, mappings between identifiers and their representations
which are defined at the time of manufacture and do not change over the lifetime of
the product. Such data are well served by the repository and network infrastructures
developed for GDSN that can provide pointers to authoritative information.

However, GDSN is limited in one particularly important way that is critical for
effective supply chains, namely, in that it does not trace products as they move from
trading partner to trading partner and from location to location. Rather, the GDSN
maintains general information about product lines and their attributes including pric-
ing. The capability to do so is clearly fundamental in monitoring the flow upstream
or downstream. To this end, in addition to GDSN, a complimentary set of network
services are defined within the EPC specifications that target information related to

192 G. ROUSSOS

specific product containers and items and their complete history as they cross the
supply chain [16].

6.1 Middleware
One immediate implication of the construction of such a network is its massive size:

the scope of the network is for every single product manufactured everywhere in the
world to be tagged and tracked. Clearly, this process generates enormous quantities
of data that must be available online for querying by all participants. As a result,
it is necessary that a core feature of the network mechanism is that it reduces the
volume of information that propagates between systems. One way to achieve this
is by recording only events that make sense at the business level rather than, for
example, every sighting of a particular tag.

Recall that communication is always initiated by RFID readers that may scan
for tags several hundred times per second. As a result, a particular product may be
observed by a certain reader several times although its condition has not changed.
Keeping a record of all these observations would be unnecessary and would not
provide any useful information. Instead, such raw observations should be aggregated
and filtered into higher level events that are significant. This is the role of RFID
middleware which provide exactly this functionality. Moving in sequence from the
lower level where observations are acquired by a reader towards application-level
processing, RFID captured data enters the following stages:

• Collect observations: Readers interrogate their vicinity for the presence of tags
and subsequently request and retrieve object IDs and potentially additional data
stored in the chip memory (some systems would require an intermediate authen-
tication step to allow access to this information). Depending on the application,
the duration of the interrogation cycle can vary considerably. For example, for
e-passport applications, a read cycle could last up to a minute, while in supply
chain applications, several hundreds of tags would be read per second. The read
phase could be followed by a further write cycle as is the case in ticketing appli-
cations where information about the current trip would be added to the ticket.
Additional sensors and actuators may be activated at this stage; for example, tem-
perature sensors could be used to record the environmental conditions in which
a particular object has been observed and LED displays could be operated to
indicate the state of the object.

• Smooth observation data: Raw observation data can be erroneous and incom-
plete as a result of read errors. Smoothing observations is the process of cleaning
the collected data from incomplete reads that are discarded, from IDs recorded
due to transient and thus irrelevant objects that must also be removed, from

COMPUTING WITH RFID: DRIVERS, TECHNOLOGY AND IMPLICATIONS 193

indeterminate reads must be resolved (for example, using authoritative records
from local persistent storage), and last but not the least tags that have not been
read must rescanned.

• Translate observations into events: Following smoothing, observation data are
still not useful to applications which are interested in higher level events. For
example, in a supply chain application, it is not relevant to the business logic
layer if a tag has been read by a particular reader but rather the fact that a specific
pallet containing particular product items has entered the warehouse through a
specific portal. This transformation of lower level observations into higher level
application events is typically achieved via filtering and aggregation.

• ID resolution and context retrieval: Specific object IDs recorded in obser-
vations and events must be associated with object descriptions and related
contextual-use retrieved data. This conversion requires access to network ser-
vices that play a two-fold role: (i) to map object IDs to network service locations
that can be further queried about object details and (ii) to respond to specific
queries related to the current condition, the properties and the history of the
object.

• Dispatch and processing of event data: Application-level events must be
returned to consuming applications for further processing. For example, a pal-
let entry event would trigger updates of inventory records to include the items
contained in the identified shipment.

Of course, this process works bi-directionally, that is, applications control data
flow by defining events of interest and by declaring their interest to the RFID infras-
tructure. An orthogonal layer to the application execution profile is infrastructure
management, that is, maintaining configuration and status information related to the
operating condition of RFID readers and other sensor elements [7].

The sequence of tasks outlined above is carried out by distinct network seg-
ments [6]: observations are collected at the reader level outside the IP network;
observation processing and event translation at the network edge by the event man-
ager; and application logic at the network core (or data centre) level. A layer of
mediation between the network core and edge is provided by the network services
and other event-consuming applications, which have the role of resolving identifiers
into object descriptions and the subsequent querying for associated and context data.
Put together, these distinct elements define the RFID stack depicted in Fig. 10. A
notable feature of this approach is the introduction of the event manager [4], which
implements the translation of observations into events by:

• Bridging the IP and RFID networks by translating RFID observations into higher
level events via filtering and aggregation.

194 G. ROUSSOS

Analytics

Internet Core

Application Layer Routing

Internet Edge

Reader level
(non-IP)

Applications/
Consumers

Event Manager

Middleware

Device Manager

Readers Sensors
Actuators
Displays

Tag
Tag

Tag
Tag

Discovery and
Information Services

Fig. 10. The RFID stack.

• Managing the RFID reader infrastructure and related sensor and actuator
devices.

• Offering a single interface to applications.

6.2 Programming RFID
Event managers require specific rules to translate observations into events. Such

rules are often defined in terms of a tag scan and query plan, specified through an
appropriate reader abstraction layer, which is relayed to and executed by the reader
infrastructure. A scanning plan specifies the frequency of data acquisition, how many
attempts are made, triggering conditions and so on. It may also include information
about the specific components of each participating reader that is employed, for exam-
ple, which of the attached antennas will be activated. Naturally, this device abstraction
layer also provides facilities for the discovery of reader capabilities (for example, sup-
ported functionality, attached components, software versions and so forth) and can
also request the pre-processing of the observation data if this functionality is sup-
ported by the reader. Finally, the device abstraction layer can also potentially support
actions predicated on a triggering observation, for example, when a motion sensor

COMPUTING WITH RFID: DRIVERS, TECHNOLOGY AND IMPLICATIONS 195

detects movement. Examples of such device abstraction layers are offered by the
Reader Protocol [RR] part of the EPCglobal standards and the generic interface of
WinRFID [34]. Particular reader manufacturers have also developed such abstract
device interfaces, but these are less useful as they can only be used with readers from
specific suppliers.

The event manager provides application programming interfaces for event discov-
ery, subscription and reporting [12, 36]. This allows client applications to find what
events are available and define new ones, subscribe to those of interest and receive
reports with results. Events are defined over event cycles, that is, delimited time
intervals over which observations are processed. Note that although observations and
events are related to read and event cycles correspondingly, the event manager decou-
ples their respective domains and provides a clear separation of scope (cf. Fig. 11).
While the adoption of cycles as the main modus operandi for the event manager may
appear limiting, this is not so, as in addition to defining cycles either periodically or
within fixed time slots, it is also possible to have arbitrary bounds defined on triggers
fired by specific observations or by software interrupts or by external notifications.

Filtering and aggregation processing by the event manager aims to identify spe-
cific patterns in the event data and to summarize data collected from different readers
over several event cycles correspondingly [42]. Filters work by applying include or
exclude regular patterns, that is, by setting rules that define ID lists or ranges to be
included (or excluded) in the processing of observations. For example, following the
EPC filtering specification, the exclusion filter epc:gid-96:18.[321–326].* encoun-
tered while processing EPC tags specifies that the product range that corresponds to
product codes between 321 and 326 will not be processed, irrespective of the serial
number of the objects recorded. Similarly, the aggregation pattern epc:gid-96:*.*.X.*
results in grouping observations by product code and reports only the total num-
ber of observations for each class of product. Due to relatively frequent read errors,

Observations

Observation Plan

Events

Event Cycles

Event Manager
(abstraction, filtering,

aggregation, persistence)

Fig. 11. The RFID event manager.

196 G. ROUSSOS

such filtering and aggregation techniques are rather complex to implement in practice
and recent work highlights the significance of statistical techniques to improve data
fidelity [23,43].

The programming interface provided by the event manager can be implemented
using different methods: the Application Level Events (ALE) specification [2] is a
middleware specification and the Java RFID System provides the same abstraction
as a language-specific implementation of a component model built on top of the Jini
event management framework. While there seems to be some consensus about the
desired functionality of the application event interfaces, the actual implementation
of the event manager can be done in several alternative ways. These alternatives
are not mutually exclusive but adapt to their operational context and explore diffe-
rent trade-offs between levels of functionality and performance guarantees [21, 25].
In practice, the event manager may consist of one or more distinct physical devices
and logical service end-points, with the responsibility for specific tasks shared
between them.

6.3 RFID Network Services
To provide full functionality, the upper three layers of the RFID stack of Fig. 10

require access to discovery and repository management services accessible on the
internet. Discovery services resolve captured object identifiers into network service
locations where repository services reside. Repository services in turn can be further
queried via standard service profiles to obtain trace and other meta-data related to a
particular ID.

Discovery services. Mapping EPCs to network service locations is a relatively
straightforward task, which can be easily accommodated within current internet
infrastructures. One way to accomplish this is by simply using the directory capabili-
ties of the Domain Name System, which can support an extended collection of record
types. This approach is advocated by the Object Naming System (ONS) specifica-
tion within the EPCglobal family of standards, which employs the Naming Authority
Record [33] to provide associations of EPC codes to Universal Resource Descriptors.
Under ONS, the serial item segment of an EPC code is removed and the remain-
der segments reversed and appended to a pre-determined well-known domain name
(as of this writing onsepc.com). Of course, one problem with this approach is that
ONS inherits and perpetuates the well-known limitations and vulnerabilities of DNS,
though some of these issues are addressed by the use of a single domain where
delegation and updating can be handled with greater effectiveness.

ONS is limited since it only retains the most recent service location related to a
particular EPC, for example, the URI published by the current owner of an artefact.
This is hardly enough in many cases: in addition to the description of the current

COMPUTING WITH RFID: DRIVERS, TECHNOLOGY AND IMPLICATIONS 197

situation of the object, many pervasive computing applications need to gain access
to historical use data collected during its lifetime or at least over a considerable
length of time. This is not only due to the importance of context history for system
adaptation but also because of a practical consideration: Object IDs are assigned at
production time from the address space controlled by their manufacturer, while the
artifact itself changes ownership several times during its lifetime. As a result, such
naive resolution of the EPC would point to the initial owner of the identifier rather than
the current custodian of the artifact and hence authoritative up-to-date information
would no longer be available at the returned service location. Moreover, the full object
history is fragmented over different service locations corresponding to the different
custodians that possessed the artifact at different times and a single service location
could not represent the complete data set.

Hence, rather than mapping an EPC to the service point provided by its manu-
facturer, the resolution process could alternatively point to a secondary discovery
service instead, which maintains the record of the complete sequence of successive
custodians, from production to the present day. This approach is implemented in the
so-called EPC Discovery Service which can be registered with the ONS and provide
the list of URIs of all custodians for a particular object ID. This solution to maintain-
ing a complete trace is preferable over the alternative, whereby the current custodian
would be identified via sequence of links through past holders. Such chaining is vul-
nerable to broken links that can easily occur, for example, if any one of the custodians
ceases to exist. One broken link would be enough to result in the complete loss of the
ability to trace the object history.

Repository services. The second element of RFID network services aims to
manage and maintain object usage information and is provided by custodians. Con-
ceptually, it is little more than a federated distributed database, and provisions for
this task are offered by the EPC Information Service. From a usage perspective, both
standards are little more than a set of web service specifications to access object-
specific data repositories. Both provide methods to record, retrieve and modify event
information for specific EPCs. What does stand out, however, is the massive size and
complexity of such a data repository which – if successfully implemented – would be
unique. This task is complicated by the complex network of trust domains, roles and
identities, which requires the careful management of relationships between authoriza-
tion domains and conformance to diverse access policies and regulations. Yet, these
challenges are inadequately understood at the moment as neither system has attracted
significant support.

One feature of such repository services that merits further discussion today is the
so-called containment profiles. This technique is necessary to form single objects out
of individual components and to be able to reference them directly. Consider the case
of an automobile for example: it is made up of thousands of individual components,

198 G. ROUSSOS

mostly sourced from third party manufacturers, which at a certain point in time come
together to be assembled in a single entity. Over the lifetime of a particular car, these
components will change as a result of maintenance, upgrades or changing use. In most
cases, the only requirement would be that the car as a whole is identified but in others
it would be necessary to identify individual components as well. The containment
profile has been introduced to address exactly such time-dependent processes, and
is used within the EPC Information Service to group together components that are
assembled into a new entity with its own unique EPC code. The composite object has
an associated creation and expiry date and its elements can be modified via related
containment interfaces.

7. Practical RFID in the Supply Chain

In previous sections we have discussed at length the information requirements of
efficient and effective supply chains, and how network RFID technologies can be
used to provide up-to-date and detailed information about product items, containers,
service locations and other assets used in support of operations. In this section, we
turn out attention on how the latter can be used to satisfy the former by highlighting
in practical terms how and where RFID shall be used. Note that there are significant
differences when tagging is done at the container and at the item level and these will
be identified and discussed.

Let us consider a typical although somewhat simplified supply chain scenario:
a variety of consumer products are manufactured at a specific facility, packaged in
cases, loaded an pallets and then on trucks for delivery to a retail distribution centre
(DC). Upon arrival at the DC, the pallets are dismantled and individual product cases
separated and stored. At a later time, product cases are picked (and in some cases
loaded on new pallets) and shipped to a local retail store. At the store, products are
stored in the back room and used for restocking the shelves of the storefront in response
to sales. Customers pick up products from the shelf, place them in the shopping cart
and take them to check out where they complete their purchase. Clearly, this is a
rather long process which is carried over a potentially very extensive geographic
area and involves many individuals and organizations. It is thus not practical to
monitor the progress of a particular product at every point, but rather it is necessary to
identify control points, where the product changes state, and employ them to update
the information held.

Revisiting this scenario from an RFID perspective, at the manufacturing facility,
products are fixed with individual tags encoding their EPC code including their GTIN,
which contains their item-specific serial number. Individual product items are then
packaged in cases which are also tagged individually using EPC and assigned with

COMPUTING WITH RFID: DRIVERS, TECHNOLOGY AND IMPLICATIONS 199

their particular SSCC (or in some cases, a GTIN representing a case of product items).
At this stage, each case SSCC is associated with the GTINs of all the items it contains
and this information is published on the local EPC IS. Cases are then loaded on
pallets and often enclosed within some protective material, usually either cardboard
wrap or transparent stretch film, and again tagged with their corresponding SSCC.
A particular pallet may contain cases from different product lines which are mixed
due to the specific quantities included in the order placed by the retailer. The SSCC
of each pallet is also associated with the SSCCs of the cases it contains and this
information is also published on the local EPC IS.

When all the necessary pallets are prepared for shipping, they are placed in a con-
tainer and loaded on a truck for delivery to one or several DCs. This point offers the
first opportunity to establish a control point for the movement of products downstream
in the supply chain: readers located at the exit gates of the loading bay of the manu-
facturer facility scan the shipment as it is being loaded on the trucks and record every
product item, case and pallet identifier, grouping them together and associating them
with the corresponding retailer order details and DC destination. This information
can be transmitted to the retailer to anticipate the arrival of the shipment.

On their arrival at the DC, pallets are individually unloaded and moved into the
warehouse via a portal which records the arrival of the scanned EPC codes and
cross references the recorded numbers against those expected. If the products are
confirmed to be the ones expected for delivery, the warehouse management systems
are automatically updated and the pallets are forwarded for storage on the facility.
The same process is followed in loading the product cases for delivery to retail shops.
At the shop, cases are again received, automatically checked against the expected
deliveries and if confirmed, the store WMS is automatically updated.

In this process, a central role is reserved for the loading bay doors into the ware-
house (cf. Figure 12), as in most cases they represent the best location to place a
control point for checking and updating the flow of products. As a result, dock doors
are often turned into RFID-enabled portals where pallets are scanned and where the
actual items delivered can be cross-referenced and inventories updated. This location
works equally well as a control point for manufacturing plants as for distribution
centres and retailer stores, and for both incoming and outgoing shipments.

Looking closer at the sequence of events involved in the operation of one such
portal, the retail store receiving dock, the process starts with the receipt of anAdvanced
Shipment Notice (ASN). This is a common EDI message which is prepared and
transmitted by the DC at the time when the pallets for a particular shipment have
been loaded on a truck and have left the DC warehouse. The ASN is a notification of
pending delivering and is send to all parties responsible for the movement of freight
from DC to store and the contents and configuration of a shipment. In this case, the
ASN would contain at least the SSCCs of every pallet and possibly also of the cases

200 G. ROUSSOS

Fig. 12. Typical RFID-enabled warehouse loading bay portal.

and the GTIN of the products included (the latter as a means of providing redundancy
to EPC IS). The ASN would also record the total number of pallets, address and
related details of the DC and retailer and can also contain numerous other related
details.

At the store receiving dock, the external motion sensor is tripped by the movement
of the first pallet passing through the portal (cf. item 3 in Fig. 13). Tripping the sensor
results in the publication of a sensor-event message to the ALE engine operating
on the warehouse event manager. This event marks the beginning of an event cycle
which instructs the readers attached to the portal (item 2 in Fig. 13) to begin collecting
observations. The readers keep scanning and discover all tags marking individual
products, cases and pallets. Each tag is typically discovered and read several hundred
times and the observations are passed to the ALE engine either residing on the reader
itself or at the event manager (depending on the model and the capability of the reader).
Observations are processed according to the event cycle specification and reported
to the WMS. An event cycle may be time constrained or terminated in response to a
motion-sensing event tripped by the second, internal sensor (item 1 in Fig. 13).

COMPUTING WITH RFID: DRIVERS, TECHNOLOGY AND IMPLICATIONS 201

Fig. 13. Schematic of the components of an RFID-enabled warehouse portal: items 1 and 3 are motion
sensor which activate on entry and deactivate on exit the postal operation; 2 are RFID readers, each of
which has two external antennas attached; and 4 are red and green indicator lights that signal shipment
approval or rejection.

Upon receipt of the event cycle report by the WMS, the list of products recorded is
compared against the expected deliveries as specified in active ASN messages within
the system. If the details match, then the pallet is expected and the portal switches
on the green light on its frame (position 4 in Fig. 13), indicating that the delivery has
been accepted. At the same time, the inventory is updated with the new item received
and cross-checked against the relevant purchase order. In case the codes retrieved by
the pallet are unexpected, the red light is switched on instead and the pallet returned
to the truck.

During the aggregation cycle, the event manager filters duplicates, removes tran-
sients and codes that are not requested by the event cycle specification and returns the
gathered EPC codes in a report. For example, if the event cycle specification requires
that only pallet codes are collected, then all other types of tags (for example, item
GTINs and case SSCCs) are observed but ignored.

Making the assumption that each product item is individually tagged with its own
EPC, information gathering does not need to stop at the time when products are

202 G. ROUSSOS

moved to the storefront for display and purchase. Indeed, it is perfectly feasible that
a variety of locations within the storefront will be equipped with readers which will
support a number of consumer applications and product demand data. For example,
RFID readers at the point of sale (POS) would allow the rapid scanning of products
selected by a consumer and thus a much quicker checkout which would minimize
queuing time. Another related application would see readers installed in shopping
carts together with embedded displays which can support a variety of personalized
shopping applications, for example, e-recommendations on the basis of the content
of the cart and the user profile or tracking its total cost. Last but not the least, RFID
readers can be installed below shelves to monitor the number of items stored and
would possibly be combined with price and quantity displays that would change
automatically depending on the conditions of the product.

The latter application, for example, would have dual use, both as an assistive
technology for consumers and as an effective means to monitor the availability of
product on display and provide early warning of impending out-of-stock conditions.
Even the simpler case where portable or hand-held readers are used to take stock
at the end of the day can have considerable benefits: in case where a product is
available in several different versions that are not necessarily easily discernible with-
out checking their GTINs, quick stock taking using RFID can provide significant
improvement for the replenishment process.

This is especially relevant in the case of apparel retail; for example, consider the
case of a retailer of formal menswear. Suits, in particular, come in various sizes and
colours, which are often identified by a single GTIN. Nevertheless, it important that
a full mix of the different types is always available to fulfill consumer demand, and
it is often the case that after closing, sales personnel have to manually conduct an
availability survey, which is a time-consuming task that becomes particularly onerous
due to the timing constraints. Instead, a quick scan of the racks you immediately
identify current stock and missing ranges and colours would become automatically
identifiable without further need for manual intervention. Of course, such applications
would be feasible for higher cost items like garments that provide a higher return and
profit margin.

8. Business Drivers

Having developed an understanding of the information requirements for effective
supply chain optimization in Section 4 and the capabilities of RFID technology in
Section 5, we can now turn our attention on how the latter can cater to the former.
In doing so, we shall make a distinction between container and item-level tagging since
extending the application of RFID to every product item has significant implications

COMPUTING WITH RFID: DRIVERS, TECHNOLOGY AND IMPLICATIONS 203

in terms of extra capabilities and applications that become possible but also far higher
associated costs.

Handling efficiency. A clear benefit of RFID is that it allows for the fully auto-
matic identification of products and containers without the need to preserve line-of-
sight between reader and tag as is the case for bar codes. In Section 7, for example,
we discussed in detail how RFID portals at the distribution centre docking bay doors
are used to reduce manual data capture needs and expedite the delivery confirmation
process. Similar scenarios can be developed for most shipping and receiving situa-
tions where container-level tagging would satisfy all logistics requirements. Further,
item-level tagging would allow the development of additional consumer-facing appli-
cations, notably fast-scan point of sale portals that can considerably reduce queuing
times for checkout.

Out-of-stock reduction. Despite the considerable progress of ECR and other such
industry initiatives, stock-outs remain common at the retail store level. Case and
pallet-level RFID tagging can increase product availability by reducing the number
of delivery errors, by increasing inventory accuracy, and by improving the timely
replenishment of products from the back store. Item-level tagging can further reduce
stock-outs by providing precise information about inventory levels in the store front,
rather than estimates based on sales data which can be erroneous in excess of ten per
cent. Especially for clothing, item-level RFID can provide detailed information about
the product mix that is actually available on the storefront shelves and thus signifi-
cantly increase availability. This information can be captured either with portable
readers and periodic inventory scans or by embedding readers in shelves as part
of their construction. Although the latter approach is far more costly, it allows for
the development of ‘smart’ shelves which also include additional small displays that
expose additional inventory information, for example, products sizes that are available
in the back room but not in the store front, an approach that has been proven especially
successful for higher cost garments and shoes [26].

Inventory reduction. At this stage of RFID development, it is not possible to
quantify or even confirm the possible potential of this technology to lower inven-
tory levels for some or all trading partners, a fact which is especially critical in the
case of FMCG. Although in some cases this would clearly be possible, for example,
by helping avoid excess stock due to reorders of products already available but not
immediately locatable in the storeroom, there is insufficient evidence that either con-
tainer or item-level tagging will increase the accuracy or the timeliness of demand
forecasts, which still appear to remain intractable. Similar reasoning applies to the
case of unsaleables where traceability and common sense can play a role in reducing
inventory levels. Further experience and research in this area is required although
some estimates based on simulations employing simplified models of the FMCG
supply-chain appear to be encouraging [24].

204 G. ROUSSOS

Order reconciliation. Container-level RFID can prevent delivery errors (as
highlighted in the scenario of Section 7) and reduce the manual effort associated
with delivery confirmation as well as the time required to complete this process from
several minutes to almost immediate verification. This technology may also prove
sufficient as a means of proof for shipment delivery and thus simplify dispute reso-
lution. Nevertheless, in most cases disputes relate to pricing which is best addressed
through the implementation of GDSN and RFID has little to offer in this respect.
Item-level RFID does not appear to have any impact for order reconciliation.

Theft. While RFID at the container level does not prevent theft, it may assist
with the detection of specific sections of the supply chain where this problem is of
particular significance. Item-level RFID, on the other hand, can have considerable
implications as it is already a proven technology for anti-theft systems for retail.
Furthermore, item-level tagging makes far more challenging the re-introduction of
stolen or indeed counterfeit products into the supply chain and for this reason it has
attracted intense interest, especially in the case of medicines and medical supplies in
general.

Nonetheless, the focused performance metrics discussed in the preceding para-
graphs may not be the whole story. In addition to the specific new information sources
afforded by RFID which can be related directly to quantifiable optimization effects,
it is likely that the technology has a secondary role as the catalyst for change. Indeed,
to capitalize on the data produced by RFID systems and gain a competitive advan-
tage, it is not enough to simply implement the technology but also to be able to
transform data into meaningful business information that can be acted upon. This
requires advanced integrated information technology infrastructure across the enter-
prise including warehouse management and enterprise resource planning systems,
but perhaps more importantly a reorganization of business processes and strate-
gies. Such changes require a long-term commitment and considerable investment
in human resources and can potentially completely transform the way business is
conducted.

Hence, the decision or not to implement RFID may in many cases extend well
beyond a simple automation decision into a business change [38]. In this case, the
implication is that the decision to implement the technology is associated with signi-
ficant business risk and requires very careful planning and execution. In view of that,
the business that decides to be involved in such technology implementation must be
convinced of its benefits and be able to implement such a programme of change. But
with convincing evidence lacking in many cases, this risk cannot be justified only on
the basis of a cost-benefit analysis. Nevertheless, it is characteristic that the pioneers
of bar code, the previous generation of auto-identification technology, have emerged
as the dominant corporations in their respective domains and it is likely that this will
be repeated for those willing to take well-calculated risks.

COMPUTING WITH RFID: DRIVERS, TECHNOLOGY AND IMPLICATIONS 205

The rationale for making adecisions is quite different between container-level and
item-level implementations. The former would be completely related to benefits in
the supply chain and would explore the issues that we have already discussed in this
and previous sections. Item-level tagging, on the other hand, has quite different value
proposition as its high cost cannot be justified today or indeed in the foreseeable future
for all types of products although specific application of limited scope can be easily
developed for higher cost items.

In fact, widespread item-level tagging for products irrespective of their price is
unlikely to be justified on the grounds of supply chain needs alone. Instead, item-
level RFID is valuable for a variety of consumer services and indeed this is the most
promising area for investigations of this technology and offers the promise of the
most likely return on investment. Applications of this type have already appeared and
are gaining in popularity [26]. For a discussion of related service development using
a variety of sensors in addition to RFID, refer to [15].

Nevertheless, extending supply chain technologies in this way has significant
repercussions for consumers who become directly involved in the enterprise data
processing pipeline. Services employing item-level RFID use personal data associ-
ated with individual consumers in intimate ways and that can be used to reconstruct
their private activities at an unprecedented level of detail. Moreover, recent studies
indicate that the implementation of this technology may transform the consumption
experience in unpredictable ways.

9. Consumer Acceptance of Item-Level
Applications

Recent research in item-level RFID retail applications has identified a generally
positive stance by consumers, especially when considering situations within the store.
Project MyGrocer was the first to explore opportunities to develop such applica-
tions by focusing primarily around the concept of the smart shopping cart [28]. The
working assumption of this work was that each product sold in a supermarket is
individually tagged. The MyGrocer cart was fitted with a RFID reader so that every
time a product was placed in it, it would be scanned and its code retrieved. The cart
also carried a wireless computer with a large touch screen display connected to the
reader (cf. Figure 14).

The main application provided three distinct areas of functionality. The first would
present a shopping list, that is, a list of item for purchase selected by the individual
shopper. This list would be associated with the profile of a specific user and cre-
ated using historical purchase data, which can be further edited manually via a web
interface on the supermarket web site. Each time one of the products on this list

206 G. ROUSSOS

Fig. 14. MyGrocer shopping cart in action at the Atlantic supermarkets during system testing.

would be placed in the cart, the item would be crossed out to confirm that it has
been picked. The second application displays a running list of items in the cart, their
quantities, their cost and the total cost of all the products in the cart. Finally, a third
application would display information related to the last item picked, for example,
ingredients, directions for use, health warnings and so forth. The same area of the
screen may also be used to display offers and promotions, or comparisons with simi-
lar products to the ones in the shopping list. Finally, use of the smart shopping cart
allows rapid checkout as the products are already scanned and the total price directly
calculated.

This in-store scenario developed around item-level RFID received a favourable
response, with the main benefit perceived to be the improvement of the shopping

COMPUTING WITH RFID: DRIVERS, TECHNOLOGY AND IMPLICATIONS 207

experience, which was understood to be faster, easier and to offer better value for
money. The features of the applications that proved most attractive to consumers
during the trials were:

• constant awareness of the total cost of the shopping cart content, which offers
the opportunity to accurately control spending during a shopping trip,

• access to complete and accurate descriptions of products including price, size,
ingredients, suitability for particular uses and so forth,

• the ability to compare the value of similar products,

• the provision of personalized, targeted promotions that reflect the individual
consumer profile in addition to the usual generic promotions as well as the fact
that they could access all offers available in the specific supermarket at a single
contact point,

• the proposed in-store navigation system, especially in the case of hypermarkets
where orientation is particularly complex,

• the smart checkout and the ability to bypass queues and reduce waiting
time.

However, not all comments were positive. Focus groups and survey findings high-
lighted the collection of detailed personalized purchase statistics by the retailer and
collaborating service providers to be of concern, even though the participants were
aware of the provisions (although not the practicalities) of the data protection act.
Their negative reaction to data collection was triggered primarily after (eponymous)
authentication during log in to the shopping cart when, after presenting their RFID-
enabled loyalty card and entering their private credentials, they were presented with
their personalized shopping list. Two issues were raised, both relating to the immedi-
ate recognition that for the construction of the list, their past purchase data has been
recorded, preserved and processed.

This reaction was more pronounced when considered in the context of MyGrocer
applications outside the physical space of the store. In following with the ideas of
consumer VMI explored in the previous section and in an attempt to collect sup-
ply chain data as early on in the consumption process as possible, the project also
developed two additional scenarios that provided shopping list and ordering facili-
ties: ‘on the go’ employed a cell phone to place orders, and ‘at home’ enabled the
automatic collection of items for replenishment using RFID readers embedded at
several positions at the use residence. The latter scenario, in particular, was the main
source of concern since private data, collected in the sheltered space of the home,
would be delivered to commercial organizations without the explicit control of the
consumer.

208 G. ROUSSOS

Indeed, even in the more acceptable case of the store scenario, the vast majority of
participants did not trust the retail service provider or the provider of the infrastructure
to protect their privacy, irrespective of whether it was a contractual obligation or not.
Moreover, the collection of very detailed information about their purchases over an
extended period of time raised concerns about the use of the data for purposes that
they have not consented to. They were also concerned that such availability of data
could reveal their habits or private behaviours, especially to third parties that would
subsequently gain access to these data.

Another major concern related to the overall shopping experience was perceived
to point towards a technology controlled, fully standardized life-style. Two issues
interrelate on this point. On the one hand, participants rejected the claim that a soft-
ware system could predict accurately their wishes just by collecting historical data
and monitoring habitual purchases. Indeed, this aspect of the system appeared to be
patronizing and overtly rationalized, but most importantly contrary to the experience
of being human. In fact, the majority of participants discarded the possibility of a
computer system that could successfully predict their wishes, while some of them
went as far as becoming offended by this suggestion as they interpreted it as denying
their free will. On the other hand, the participants of the study perceived that such
a system promoted primarily the interests of the supplier, while the consumer only
received marginal benefits.

This issue of directly verifiable consumer value, or rather the lack thereof, was
one of the two fundamental reasons for rejecting the system as a whole. Yet, this was
not an absolute rejection of the system as the majority of participants in the studies
would consider its use if they would receive appropriate compensation for the loss
of privacy that they experience. The main challenge they set for retailers was how
to fairly and appropriately strike a balance between their and the consumer benefit.
The second core challenge before the system could become acceptable was that of
control, in the sense that users demanded control over its operation. The form that this
feature would take depended on the circumstances of its use and could vary from the
anonymous use of the smart shopping cart (at the loss of the personalized shopping
list feature), or indeed an off button for the RFID recording at home.

More recently, Metro Supermarkets in Germany has developed its so-called Store
of the Future, which investigates ideas very similar in spirit to those explored by the
MyGrocer store scenario. Although this activity is much more extensive in scope
and intends to provide a full technological validation of modern RFID supply chain
technologies, user studies have revealed that the same issues of control are still critical
for consumers [20].Although in this case again, shoppers would be willing to negotiate
a loss of privacy in exchange for extra value, they wish to have control over when
and how this would occur.

COMPUTING WITH RFID: DRIVERS, TECHNOLOGY AND IMPLICATIONS 209

10. Privacy Implications of Item-LevelTagging

Item-level RFID can provide retailers with unique sources of information that can
be employed for applications beyond supply chain management. Such applications
may offer welcome new shopping facilities to consumers, but at the same time, they
also make possible new ways to violate personal privacy. Moreover, attacks on privacy
enabled by item-level RFID are not limited to the physical confines of the store, but
to all purposes extend to any public space and even to the intimate space of the home.
In these cases, the risk is not solely due to the use of RFID by the retailer but rather
by third parties using the availability of the technology to mount independent attacks
on consumers.

There are two main types of privacy attacks that can be developed capitalizing
on the widespread availability of item-level RFID tagging. In tracking attacks, the
actions of individuals are recorded through the observation of RFID tags associated
with their person, and their future behaviours potentially inferred. For example, an
RFID tag that remains embedded into an item of clothing long after its purchase
can be used to identify its wearer wherever they go. Information leaks happen when
personal or intimate information stored in RFID tags is revealed without the consent
of its owner [14, Chapter 4]. For example, when personal details encoded in a tag
are skimmed from an e-passport without the owner consent. Both types of attacks
become particularly likely when item-level tags affixed or embedded in consumer
goods are not removed at the point-of-sale, so that stored identifiers can be retrieved
by unauthorized readers, recorded and processed without any visible indication to the
user that this activity occurs.

A closer examination of tracking attacks identifies several distinct scenarios that
become possible through item-level tagging [13]. For example, one of the earliest
uses of RFID outside the supply chain that was explored during the development of
the EPC system was in anti-theft applications. This is of particular relevance to items
of small size but high value such as replacement razor blades, which are the most
common target of shoplifting. In this scenario, smart shelves would monitor high
value items placed on them, and in case where a relatively large number be suddenly
removed, a camera would take a photograph as evidence against a potential thief. But
in practice, it is hard to differentiate between lawful behavior and attempts to steal
and as a result photographs were taken in many more cases than it was necessary.
Although this may appear as a minor compromise of privacy it is nevertheless highly
suggestive of the type of applications that are possible and how easy it is to develop
applications using flawed heuristics.

Consumer privacy violations can be are examined in finer granularity in terms of
specific threats, to pinpoint the many ways in which data analysis techniques, profile
data, and the presence or absence of specific products can lead to violating ones’rights

210 G. ROUSSOS

[13]. As noted earlier, the widespread availability of RFID tagged products present
opportunities for covert data collection in locations and situations without the consent
of the consumer. Individuals associated with particular product item tags can in this
way linked with visits to specific locations at specific times. Even more, if readers
observe several locations, sequences of visits can be reconstructed and using simple
inference techniques common behaviors, habits or routines can be discovered.

Simpler but equally effective uses of the technology are also possible: a con-
sumer carrying a particular type of product can be identified and approached with a
discriminatory intention for example, because they carry a particular book title. A
related use of the technology but with different intent, would see the consumer being
approached as a result of their possessing a particular item or brand which reveal their
preferences. Identification of such preferences can be an effective marketing tool for
competing retailers or simply used to identify the value of ones’ property and identify
them as a worthwhile target of criminal intentions.

Such techniques are more effective when considering constellations rather than
single products. Depending on the fact that a particular person is singularly associated
with a specific product item may be haphazard as products can be shared between
several consumers, tracing collections of product identifiers moving together in a
single constellation can provide much more accurate results. Even more so, when
individual items are shifted from an established constellation into another, then it
is possible to conclude that a transaction has taken place between the two persons
involved.

Observing product items or product constellations over extended periods of time
can provide adequate information to predict or infer preference or behaviors.Although
this is to some extend possible today through the use of loyalty schemes and cell
phone records, tracking RFID tags does not require a contractual relationship with
the consumer due to the technical characteristics of RFID. Moreover, RFID readers
can be installed in such a way that there is no perceptible indication of their existence.
Even when data collection in this way is carried out within the provisions of a mutu-
ally agreed upon contract the wealth of information collected makes the indirectly
enforced use of the technology through preferential pricing particularly attractive can
significantly reduce the capability of consumers to make free choices.

Last but not least, RFID tags can be used as a physical equivalent of cookies with
the vast majority of preferential pricing techniques developed for the web directly
applicable [1]. Indeed, historical information about acceptance or rejection of offers
or other transaction opportunities can be stored on one or more tags carried by an
individual and used to tailor future approaches to fit their profile. This is certainly
feasible for the retailer that supplier the particular item used as carrier but due to
the generally inadequate security provisions of RFID, this technique could well be
accessible to third parties.

COMPUTING WITH RFID: DRIVERS, TECHNOLOGY AND IMPLICATIONS 211

RFID technology has been the cause of the majority of privacy concerns, early
commercial applications have not helped to develop public confidence as many events
show. For example, Metro Supermarkets in Germany violate their own stated privacy
policy by embedding covert RFID tags in their loyalty cards, and an early briefing of
Auto-ID Center sponsors urged them to capitalize on consumer apathy and push for
item-level tagging thus creating a de-facto situation before consumer organizations
could react [9].

The lack of adequate security and privacy protection provisions has sparked intense
interest in this area of RFID technology. It is characteristic that during the year 2006
almost a century of research papers have been published in this area and the trend is
accelerating. Despite this fact, the main RFID standards have already been ratified
without adequate provisions and during the time of publication of these research over
1.5 billion tags entered circulation.

11. RFID and EU Law

Although the consensus appears to be that RFID is a critical technology for future
economic growth across several industrial sectors, it is also clear that its applica-
tion must also be socially and politically acceptable, ethically admissible and legally
allowable. This aim becomes even more complex to achieve due to the universal
scope of RFID technology, which must respect the policies, ethics and law of every
region and country where it is employed. To be sure, this is a challenging task and
in an attempt to make the main issues tractable from a computing perspective, in this
section we will discuss the main considerations as they relate to the legal framework
of the European Union.

11.1 Data Protection and Privacy
The EU founding treaty declares the fundamental freedoms that its citizens may

expect including liberty, democracy and respect for human rights. Article 30 of the
treaty in particular requires the enforcement of appropriate provisions for the prote-
ction of personal data including the collection, storage, processing, analysis and
exchange of information. Moreover, Article 8 of its Charter of Fundamental Rights
proclaims the protection of personal data as one of the freedoms that each citizen has
a right to enjoy.

These principles are interpreted and implemented in practice through the legislative
framework for data protection and privacy. The Data Protection directive in particular
has been developed aiming to provide the general rules and the long-term vision
and to be robust despite technological innovations. Privacy protection is specifically

212 G. ROUSSOS

addressed within the directive and is expressed in a way that is independent of the
specific techniques and mechanisms employed in information processing and thus
also applies in the case of RFID.

This directive is complemented by the more recent Privacy and Electronic Com-
munications directive (also known as ePrivacy directive). This extension applies the
general principles to the processing of personal data for the provision of public elec-
tronic communications services over public communications networks as well as to
the recording and use of location data. It also specifies that direct marketing commu-
nications are only allowed when the recipient has agreed to be contacted in advance
or in the context of an existing customer relationship, in which case companies can
continue to market their own similar products on an opt-out basis. However, since
RFID in most cases operates over private or corporate networks, it has been argued
that the provisions of the ePrivacy directive do not apply although this is only one
interpretation which does not take into account the case of the use of RFID readers
in public spaces.

11.2 CommercialTransactions
The Electronic Commerce directive regulates the process of contract offer and

acceptance and applies to the fast checkout process supported by RFID points
of sale. The eCommerce directive has several provisions regarding appropriate
ways of notifications of contractual terms and conditions and dictates that explicit
consumer consent be given at all stages. Although exceptions apply to cases in which
the interaction medium does not allow for information-rich interactions, RFID’s
predominantly silent operation stresses this requirement to its limit.

11.3 Governance
A central issue that affects the implementation of RFID is governance in the sense

of access to RFID-related standards and infrastructures. The EU has been conceived
as a vehicle for economic collaboration and has a tradition of creating a common
open and non-discriminatory set of rules which strive to promote fairness and inter-
operable infrastructures. As such, its regulating bodies take a particularly negative
view of any attempt to fragment public or shared infrastructures or the deployment of
proprietary systems with the specific objective to prevent competitors from entering
a market.

Arguably, the EPC system is tightly controlled by a group of companies and deve-
loped with a view to serve their interests and specific ends which relate to commercial,
security and political aspects of governance. Furthermore, the spirit of the commu-
nity is one where protection is not limited to individuals but extends to companies,

COMPUTING WITH RFID: DRIVERS, TECHNOLOGY AND IMPLICATIONS 213

whose sensitive commercial information is also protected as is the case of data within
RFID-enabled business processes. As such, it is natural to expect the two opposite
sides of the EPC proposition, namely, rapid development of a new market sector and
proprietary technology and infrastructures, will cause considerable friction and can
potentially lead to closer regulation.

11.4 Spectrum Regulation
Recently, the EU has opted to liberate more spectrum for the growing demand for

RFID usage, implemented through Decision 12 for RFID frequencies in the UHF
band adopted by the Commission. This establishes a harmonized base for RFID
applications across European states but nevertheless does not completely address the
problem. In some cases, for example in distribution centres and shopping malls, it
is necessary to operate hundreds or even thousands of readers in close proximity to
each other in event driven mode. However, ETSI, the European Telecommunications
Standards Institute, in standard EN 302 208 requires the use of Listen Before Talk to
prevent a base station from transmitting if the channel is already occupied by another
transmission. This limits the number of readers able to operate simultaneously in a
particular radio neighborhood to about twenty if all available channels are used and
has some incompatibilities with Gen2 tag operation.

11.5 Environmental Issues
There are two directives that have already had very significant repercussions for

electronics in general and RFID in particular, namely, on waste electrical and elec-
tronic equipment (WEEE) and on the restriction of the use of certain hazardous
substances in electrical and electronic equipment (RoHS). RoHS in particular bans
the use of certain hazardous substances which are rather common in electronics.

Relating to public health, the EU has some of the most strict regulation of the level
of electromagnetic regulations that workers or the general public may be exposed to.
Moreover, the Commission has in place a regular program of monitoring the possible
effects of electromagnetic fields on human health through its Scientific Committees.
Moreover, restrictions on EMF emissions from products available in any European
state have been established to ensure the safety of both users and non-users. Although
electromagnetic fields created by RFID equipment are generally low and thus expo-
sure of the general public and workers is expected to be well below current limits,
RFID nevertheless contributes to the total radiation in working and home environ-
ments and its widespread use may well have significant results, especially when taking
into account wireless networking technologies used in tandem.

214 G. ROUSSOS

12. Discussion and Conclusions

Many believe that technology and business dominate culture today, yet it is a
society’s privacy culture that defines its values, sensibilities and commitments. To
be sure, attitudes toward privacy change as technologies that blur the distinctions
between what is public and private emerge. Deploying any new technology involves
risk, and society relies on experts to accurately assess that risk; failure to do so
compromises their role as gatekeepers. It is thus the responsibility of the computing
profession to confront the challenges of RFID in retail. How we deal with these issues
will determine the chances of widespread adoption of not only RFID but potentially
the whole range of emerging ubiquitous computing technologies.

Advising that deployment of RFID, or any technology for that matter, should exploit
‘consumer apathy’ does little to inspire public trust, as does making a tag impossible
to remove. Two aspects of the technology accentuate the trust problem and dictate
collaboration across disciplines:

• RFID-based systems’ silent and transparent operation; and

• the fact that trust is not a purely cognitive process and thus is not amenable to
a strictly quantitative treatment, for example, as a personal utility optimization
problem, a popular view within computer science today.

In fact, many of the core challenges involve managing the enormous amounts of
data that RFID generates and monitoring the massive increase in points of con-
tact between user and system rather than developing cryptographic algorithms and
security mechanisms that control access to tag data. While individuals’ initial entitle-
ment to control their data is well recognized, economic coercion mechanisms based on
price discrimination are less so. Such mechanisms result from negotiations between
private organizations and public institutions, and this is where our professional social
responsibility must play a critical role. Dealing effectively with misuse will become
more urgent in the near future.

This survey has attempted to provide an in-depth description of issues and
technologies and to supply computing professionals with the information needed.
Yet, several issues related to large-scale deployments of RFID are still poorly under-
stood and we could not conclude this discussion without exploring the additional
implications from a waste management perspective caused by the extensive use of
RFID.

Indeed, RFID tags routinely embedded in a variety of products affect a wide gamut
of recycling processes, both of materials used in containers for the supply and in prod-
uct item packaging. For example, as relates to paper recycling adhesives, chips, pieces
of metal from antennae and conductive inks affect the process of reclaiming containers
and paperboard and prevent the manufacture of new board from recycled feedstock.

COMPUTING WITH RFID: DRIVERS, TECHNOLOGY AND IMPLICATIONS 215

Similar effects would be caused contamination on steel, glass and plastic recycling
processes by RFID tag debris. Furthermore, at the end of their useful life, pallets
are ground up for use as landscape mulch, animal bedding, compost, soil amend-
ment, or core material for particle board. However, metallic pieces from antennae
will be shredded, but cannot break down and would pollute the composting process
and render the material unusable. It is ironic that RFID is often seen as the solution
for reclaiming materials from consumer products due to its capability to record an
accurate and complete history of the product. At least in the short term, its effect will
almost certainly be negative.

References

[1] Acquisti A., 2006. Ubiquitous computing, customer tracking, and price discrimination, in Roussos
G., ed. Ubiquitous and Pervasive Commerce (Springer, London), pp. 115–132.

[2] Bornhövd C., Lin T., Haller S., and Schaper J., 2004. Integrating automatic data acquisition with
business processes – experiences with SAP’s auto-ID infrastructure, in Proc. VLDB04.

[3] Brown S. A., 1997. Revolution at the Checkout Counter: The Explosion of the Bar Code (Harvard
University Press).

[4] Caneel R., and Chen P., 2006. Enterprise Architecture for RFID and Sensor Based Services (Oracle
Corporation, Redwood Shores).

[5] Gemini C., 2005. Global Data Synchronisation At Work in the Real World: Illustrating the
Business Benefits (Global Commerce Initiative).

[6] Chamberlain J., Blanchard C., Burlingame S., Chandramohan S., Forestier E., Griffith G.,
Mazzara M. L., Musti S., Son S-I., Stump G., and Weiss C., 2006. IBM WebSphere RFID Handbook:
A Solution Guide (IBM Redbooks, Raleigh).

[7] Chen H., Chou P. B., Duri S., Elliott J. G., Reason J. M., and Wong D. C., 2005. A model-driven
approach to RFID application programming and infrastructure management, in Proc. ICEBE05
(IEEE Press), pp. 256—259.

[8] Curty J-P., Declercq M., Dehollain C., and Joehl N., 2006. Design and Optimization of Passive
UHF RFID Systems (Springer, Berlin).

[9] Dunne H., June 2002. Message Development, Auto-ID Sponsor briefing.
[10] Ferry G., 2003. A Computer Called LEO: Lyons Teashops and the World’s First Office Computer,

Fourth Estate.
[11] Finkenzeller K., 2003. RFID Handbook: Fundamentals and Applications in Contactless Smart Cards

and Identification (John Wiley & Sons, London).
[12] Floerkemeier C., and Lampe M., 2005. RFID middleware design – addressing application require-

ments and RFID constraints, in Proc. SOC-EUSAI, ACM International Conference Proceeding Series,
Vol. 121, pp. 219–224.

[13] Garfinkel S. L., Juels A., and Pappu R., 2005. RFID Privacy: an overview of problems and proposed
solutions. IEEE Security and Privacy, 3(3):34–43.

[14] Garfinkel S., and Rosenberg B., 2005. RFID: Applications, Security, and Privacy (Addison-Wesley).
[15] Gershman A., and Fano A. E., 2003. Customer service with Eyes, in Proc. Work. Ubiq. Comm.

(electronic proceedings).
[16] Global Commerce Initiative, An Integrated View of the Global Data Synchronisation Network and

the Electronic Product Code Network (IBM Consulting Services, 2004).

216 G. ROUSSOS

[17] Grocery Manufacturers of America, Full-Shelf Satisfaction: Reducing Out-of-Stocks in the Grocery
Channel (2002).

[18] Grocery Manufacturers of America, A Balanced Perspective: EPC/RFID Implementation in the CPG
Industry (2004).

[19] Gruen T. W., Corsten D. S., and Bharadwaj S., 2002. Retail Out-of-Stocks: AWorldwide Examination
of Extent, Causes and Consumer Responses (Grocery Manufacturers ofAmerica, The Food Marketing
Institute).

[20] Günther O., and Spiekermann S., 2005. RFID and the perception of control: the consumer’s view,
Comm. ACM, 48(9):73–76.

[21] Hoag J. E., and Thompson C. W., 2006. Architecting RFID Middleware, IEEE Int. Comp.
10(5):88–92.

[22] Hollinger R. C., and Davis J. L., 2002. National Retail Security Survey 2001 (Center for Studies in
Criminology and Law, University of Florida).

[23] Jeffery S. R., Garofalakis M., and Franklin M. J., 2005. Adaptive cleaning for RFID data streams, in
Proc. VLDB05, pp. 163–174.

[24] Kelepouris T., Pramatari K., and Doukidis G., 2007. RFID-enabled traceability in the food supply
chain, Ind. Man. & Data Systems, 107(2):183–200.

[25] Kim Y., Moon M., and Yeom K., 2006. A Framework for Rapid Development of RFID Applications,
in Proc. ICCSA 2006, Lecture Notes in Computer Science, Vol. 3983, pp. 226–235.

[26] Konomi S., and Roussos G., 2007. Ubiquitous computing in the real world: lessons learnt from large
scale RFID deployments, Pers. Ubiq. Comp., forthcoming.

[27] Kotok A., and Webber D. R. R., 2001. ebXML: The New Global Standard for Doing Business on the
Internet (New Riders Publishing).

[28] Kourouthanassis P., and Roussos G., 2003. Developing consumer-friendly pervasive retail systems,
IEEE Perv. Comp., 2(2):32–39.

[29] Landt J., 2005. The history of RFID, IEEE Potentials, 24(4):8–11.
[30] Lightburn A., 2002. Unsaleables Benchmark Report, Joint Industry Unsaleables Steering Committee

(Food Marketing Institute and Grocery Manufacturers of America).
[31] MartinA. J., 1995. Infopartnering: The Ultimate Strategy forAchieving Efficient Consumer Response

(John Wiley & Sons).
[32] McGuffog T., and Wadsley N., 1999. The general principles of value chain management, Supp. Ch.

Man, 4(5):218–225.
[33] Mealling M., 2002. Dynamic Delegation Discovery System (DDDS) Part Three: The Domain Name

System (DNS) Database (IETF).
[34] Prabhu B. S., Su X., Ramamurthy H., Chu C.-C., and Gadh R., 2006. WinRFID A Middleware for the

enablement of radio frequency identification (RFID) based applications, in Shorey R., Choon C. M.,
Tsang O. W., and Ananda A., eds., Mobile, Wireless and Sensor Networks: Technology, Applications
and Future Directions (Wiley-IEEE Press).

[35] Raman A., 2000. Retail-Data Quality: Evidence, causes, costs, and fixes, Tech. Soc., 22(1):97–109.
[36] Römer K., Schoch T., Mattern F., and Dübendorfer T., 2004. Smart identification frameworks for

ubiquitous computing applications, Wireless Networks 10(6):689–700.
[37] Roussos G., and Moussouri T., 2004. Consumer Perceptions of Privacy, Security and Trust in

Ubiquitous Commerce, Pers. Ubiq. Comp., 8(6):416–429.
[38] Roussos G., 2006. Enabling RFID in retail, IEEE Computer., 39(3):25–30.
[39] Roussos G., 2005. Ubiquitous and Pervasive Commerce: New Frontiers for Electronic Business

(Springer, London).
[40] Smaros J., and Holmstrom J., 2000. Reaching the consumer through e-grocery VMI, Int. J. Retail

Distr. Man., 28(2):55–61.

COMPUTING WITH RFID: DRIVERS, TECHNOLOGY AND IMPLICATIONS 217

[41] Tellkamp, 2006. The impact of auto-ID technology on process performance RFID in the FMCG
supply chain, Technical Report (Auto-ID Lab St. Gallen).

[42] Vogt H., 2002. Efficient object identification with passive RFID tags, in Proc. Pervasive 2002,
Lecture Notes Computer Science, Vol. 2414, pp. 98–113.

[43] Wang F., and Liu P., 2005. Temporal management of RFID data, in Proc. VLDB05, pp. 1128–1139.

This page intentionally left blank

Medical Robotics and
Computer-Integrated
Interventional Medicine∗

RUSSELL H.TAYLOR AND PETER KAZANZIDES

Department of Computer Science
The Johns Hopkins University
Baltimore, Maryland

Abstract
This chapter is concerned with computer-integrated interventional medicine
(CIIM). The fundamental premise of CIIM, which is sometimes also referred
to as Computer-Integrated Surgery (CIS), is that the use of information and
information-driven systems will fundamentally change clinical care by improving
physicians’ ability to plan, execute and follow up surgical and other interven-
tional procedures. We first introduce the concepts of Surgical (or Interventional)
CAD/CAM and Surgical Assistance. Next, we discuss the basic technology and
techniques underlying these systems and provide examples of typical Surgical
CAD/CAM and Surgical Assistant Systems. We conclude with a few thoughts
about the growing significance and future prospects of the field.

1. Introduction . 220

2. Technology and Techniques . 222

2.1. System Architecture . 222

2.2. Registration and Transformations Between Coordinate Systems 222

2.3. Navigational Trackers . 225

2.4. Robotic Devices . 225

2.5. Intraoperative Human–Machine Interfaces 229

2.6. Sensorized Instruments . 230

∗ Reprinted from Biomedical Information Technology, D. Feng, Ed.; Russell Taylor and Peter
Kazanzides, “Medical Robotics and Computer-Integrated Interventional Medicine”, pp. 393–416, 2007,
Reprinted with permission from Elsevier.

ADVANCES IN COMPUTERS, VOL. 73 219 Copyright © 2008 Elsevier Inc.
ISSN: 0065-2458/DOI: 10.1016/S0065-2458(08)00405-1 All rights reserved.

220 R.H.TAYLOR AND P. KAZANZIDES

2.7. Software and Robot Control Architectures 231

2.8. Accuracy Evaluation and Validation . 233

2.9. Risk Analysis and Regulatory Compliance 235

3. Surgical CAD/CAM . 237

3.1. Example: Robotically Assisted Joint Reconstruction 237

3.2. Example: Needle Placement . 241

4. Surgical Assistance . 242

4.1. Basic Concepts . 242

4.2. Surgical Navigation Systems as Information Assistants 243

4.3. Surgeon Extenders . 243

4.4. Auxiliary Surgeon Supports . 248

4.5. Remote Telesurgery and Telementoring 248

4.6. Toward ‘Intelligent’ Surgical Assistance 248

5. Summary and Conclusion . 249

References . 250

1. Introduction

This chapter is concerned with computer-integrated interventional medicine
(CIIM). Over the past 50 years, the technology used in interventional medicine
increasingly has been computer-based. Medical imaging devices have progressed
from simple x-ray units to sophisticated systems, combining advanced sensors
and computation to provide unprecedented information about a patient’s anatomy
and physiology. Medical workstations are able to combine information from many
sources to help surgeons and other physicians to plan interventions and to provide
real-time information supports in carrying out these plans. Robotic devices and endo-
scopic cameras enable physicians to perform minimally invasive procedures that
would otherwise be impossible. Computer-controlled systems use directed energy to
destroy tumours and other malformations inside a patient’s body without surgery.
Computer-based physiological monitoring devices are ubiquitous in operating rooms
and intensive care units.

This evolution is a natural consequence of the computer’s ability to integrate infor-
mation with action to fundamentally improve treatment processes, in much the same
way that computer-integrated systems and processes have affected other sectors of
our society, such as manufacturing, transportation, retailing and agriculture. The basic
‘information loop’of interventional medicine is illustrated in Fig. 1. The process starts
with information about the patient, such as images, lab results, genetic information
and symptoms. This information is combined with general information about human

MEDICAL ROBOTICS AND COMPUTER-INTEGRATED INTERVENTIONAL 221

Model

Patient-specific
Information

(Images, lab results,
genetics, etc.)

General information
(anatomic atlases,

statistics, rules)

Information

Plan

Patient-specific Evaluation

Statistical Analysis

Action

Fig. 1. Computer-integrated interventional medicine (CIIM) as a closed-loop process.

anatomy and physiology to create a patient-specific ‘model’ or representation that is
used to diagnose the patient’s condition and formulate an interventional plan. During
the intervention, the ‘virtual reality’of the model and plan are registered to the ‘actual
reality’ of the patient and may be coupled with appropriate technology to assist the
clinician in carrying out the plan. Further information is typically generated both
during and after the intervention to update the model and to assess the effect of the
intervention. This information may be used subsequently in further treatment of the
patient. It may also be analysed statistically to assess and improve the overall effec-
tiveness of treatment plans and protocols, in a manner somewhat analogous to the use
of statistical quality control and process learning in manufacturing.

We often refer to this closed-loop process of i) constructing a patient-specific
model and interventional plan; ii) registering the model and plan to the patient;
iii) using technology to assist in carrying out the plan; and iv) assessing the result as
Surgical (or Interventional1) CAD/CAM, again emphasizing the analogy between
computer-integrated interventional medicine and computer-integrated manufactu-
ring. Of course, it is important to recognize that there are also profound differences

1 The terms Computer-Integrated Surgery and Computer-Assisted Surgery have often been applied to
the concepts discussed in this chapter. However, the use of the word ‘surgery’ is somewhat limiting and
causes a certain amount of discomfort among interventional radiologists and others who perform computer-
assisted or image-guided interventions but who do not consider themselves to be ‘surgeons’. Consequently,
we will frequently use the more general terms ‘interventional medicine’ and ‘interventionist’.

222 R.H.TAYLOR AND P. KAZANZIDES

between medicine and manufacturing. In particular, our goal is not automation of
medical interventions. Rather, our goal is to exploit computer-based technology and
systems to assist human clinicians in treating patients. Thus, we often refer to these
systems as Surgical (or Interventional) Assistants, especially when the interventional
decisions are highly interactive, as is frequently the case with surgery. However, it is
important to remember that these concepts are not incompatible. Although it is often
more convenient to think of a CIIM system as being primarily a CAD/CAM or an
Assistant system, the same underlying concepts and technology are present in both
cases. As these systems become more and more sophisticated, the distinction will be
harder and harder to make.

2. Technology and Techniques

In this section, we will provide a brief overview of key technology components
found in CIIM systems, with special attention to surgical navigation and medical
robotics. Further discussion may be found in [1–4].

2.1 System Architecture
The overall architecture of CIIM systems is shown in Fig. 2. Broadly, these sys-

tems consist of the following components: 1) Computational components performing
a wide variety of image processing, surgical planning, monitoring and similar tasks;
2) databases of patient-specific information, as well as more generic knowledge bases
about human anatomy and physiology, common treatment plans, outcome data, etc.,
and 3) devices such as images, robots, and human–machine interfaces relating the
‘virtual reality’ of computer representations to the ‘actual reality’ of the patient,
interventional room and clinician.

2.2 Registration and Transformations Between
Coordinate Systems

Geometric relationships between portions of the patient’s anatomy, images, robots,
sensors and equipment in interventional suites are fundamental in all areas of
computer-integrated interventional medicine, and there is an extensive literature on
techniques for determining the transformations between the associated coordinate
systems (e.g., [5, 6]). The brief discussion below follows the basic framework
developed in [6]. Given two coordinates
vA = [xA, yA, zA] and
vB = [xB, yB, zB]
corresponding to comparable features in two coordinate systems Ref A and Ref B, the
process of registration is simply that of finding a function TAB (· · ·) such that

vB = TAB(
vA)

MEDICAL ROBOTICS AND COMPUTER-INTEGRATED INTERVENTIONAL 223

Fig. 2. The architecture of computer-integrated interventional medicine systems.

Although non-rigid registrations are becoming more common, TAB (· · ·) is still
usually a rigid transformation of the form

vB = TAB(
vA) = RAB ·
vA +
pAB

where RAB represents a rotation and
pAB represents a translation. RAB is often
represented by an axis
n and angle θ so that

RAB(
n, θ) = eθn̂ where n̂ =
⎡
⎣

0 −nz ny

nz 0 −nx

−ny nx 0

⎤
⎦

Thus, if we have two transformations TAB and TBC, the rotation and displacement
components associated with the composite transformation will be given by

RAC = RAB · RBC

pAC = RAB ·
pBC +
pAB

224 R.H.TAYLOR AND P. KAZANZIDES

In many cases, TAB cannot be computed exactly, so that the actual transformation
T∗

AB is related to the nominal value TAB by a small perturbation, i.e.,T∗
AB = TAB ·

�TAB. In this case, we frequently approximate the rotational component of a small
rotation �R by �R ≈ I + θn̂, so that �R ·
v ≈
v + θ
n ×
v. Furthermore, we often
ignore the effects of a small rotation �R on a sufficiently small translation vector �
p,
so that �R · �
p ≈ �
p. Thus, if the actual value of a coordinate
v∗

A ≈
vA + �
vA,
then the actual value of
v∗

B = T∗
AB ·
v∗

A will be given by

v∗
B = TAB · �TAB · (
vA + �
vA

)

= TAB · (
�RAB ·
vA + �RAB · �
vA + �
pAB

)

≈ TAB · (
vA + θ
n ×
vA + �
vA + θ
n × �
vA + �
pAB

)

≈ TAB · (
vA + θ
n ×
vA + �
vA + �
pAB

)

= RAB · (
vA + θ
n ×
vA + �
vA + �
pAB

) +
pAB

=
vB + RAB · (
θ
n ×
vA + �
vA + �
pAB

)

Thus, the uncertainty in
vB will be given by

�
vB = RAB · (
θ
n ×
vA + �
vA + �
pAB

)
.

There is an extensive literature concerning registration methods. Typically, the
process involves finding corresponding sets of features FA and FB and then find-
ing a transformation TAB (· · ·) that minimizes some distance function dAB =
distance(FB, TAB(FA)). Typical features can include artificial fiducial objects (pins,
implanted spheres, rods, etc.) or anatomical features such as point landmarks, ridge
curves or surfaces. One very common case involves registration of a set of sample
points from an anatomical surface with a computer representation of that surface. In
this case, variations of the Iterated Closest Point algorithm of Besl and McKay [7] are
commonly used. For example, 3-D robot coordinates
aj may be found for a collection
of points known to be on the surface of an anatomical structure which can also be
found in a segmented 3D image. Given an estimate Tk of the transformation between

image and robot coordinates, the method iteratively finds corresponding points
b(k)

j

on the surface that are closest to Tk ·
aj and then finds a new transformation

Tk+1 = arg min
T

∑
j

∥∥∥
b(k)

j − Tk ·
aj

∥∥∥2

The process is repeated until some suitable termination condition is reached.

MEDICAL ROBOTICS AND COMPUTER-INTEGRATED INTERVENTIONAL 225

2.3 Navigational Trackers
Real-time measurement of intraoperative positions and orientations is ubiquitous

in CIIM, and a number of different technologies are available for this purpose. These
include encoded mechanical linkages, ultrasound localizers, electromagnetic local-
izers, ‘active’ optical triangulation systems that locate light emitting diodes, ‘passive’
optical triangulation systems that locate reflective markers and more general computer
vision systems. Excellent technology surveys may be found in books such as [8–10]
and in papers comparing different systems (e.g., [11–13]), although one should be
aware that the relative technical capabilities of different technology approaches can
change as technology develops.

In recent years, optical systems such as the Optotrak� and Polaris� systems
(Northern Digital, Inc., Waterloo, Canada) have been the most widely used option for
surgical navigation systems (see Section 4.2 and Fig. 10) because of their relatively
high accuracy, predictable performance, and insensitivity to environmental variations.
However, they do have several limitations. The most serious of these is the require-
ment that a clear line of sight be maintained between the tracking cameras and the
markers being tracked, which can complicate the arrangement of equipment and work-
flow around the patient. A related drawback is that the markers being tracked must
generally be on portions of surgical instruments outside the patient. This approach
can lead to inaccuracies in instrument tip position determination and cannot be used
with flexible instruments such as catheters.

Electromagnetic trackers were considered for many early surgical navigation appli-
cations, but the measurement distortions associated with metal in operating rooms
caused them to fall out of favour. More recently, improvements in electromagnetic
tracking technology (including reduced distortion and the development of very small
sensors) and increased interest in tracking devices inside the patient has led to
increased interest in this technology. Current examples include the Aurora� (North-
ern Digital, Waterloo, Canada), Flock-of-Birds� (Ascension Technology, Burlington,
Vermont), Polhemus Patriot (Polhemus, Inc., Burlington, Vermont) and proprietary
systems used in the Medtronic Axiem� (Medtronic Navigation, Inc. Louisville,
Colorado) and the GE InstaTrak� (General Electric OEC Medical Systems, Salt
Lake City, Utah).

2.4 Robotic Devices
Historically, the term robot has been used for multi-axis machines that are capable

of autonomous motion. With this strict definition, the well-known daVinci system
would not be classified as a robot, but rather as a teleoperator, because it does not
operate autonomously. In fact, this would be true of many of the medical robot systems

226 R.H.TAYLOR AND P. KAZANZIDES

that have been developed in recent years. Therefore, at least in the medical field, the
definition of a robot has been expanded to include virtually any mechanism that
provides assistance to the surgeon, whether or not it can operate autonomously. In
fact, safety is such a critical concern in medical robotics that it has prompted several
researchers to develop robots that are incapable of autonomous motion (e.g., [14–17]).
These systems rely on the surgeon, rather than motors, to provide sufficient force to
create motion. The systems may still contain powered elements (e.g., motors, brakes),
but they are only used to constrain motion. Although such systems do not fit the
classical definition of a robot, they are considered passive robots in the medical field.

In an industrial setting, the benefit of robotics over fixed automation is that a robot
can be programmed to serve in many different capacities. An industrial robot can
assemble typewriters, weld car bodies or debur molded parts. There is, of course,
some degree of specialization. A robot that places surface mount components on a
printed circuit board is likely to be small and extremely accurate, whereas a robot
that installs automobile windshields must be large and powerful. This specialization
also applies to medical robots. For example, a robot developed for microsurgery will
differ from a robot developed for orthopaedic joint reconstruction. Although the field
of medical robotics is not yet mature, current experience suggests that medical robots
may be more specialized than their industrial counterparts; a robot developed for one
medical procedure may not be as easily adapted for other procedures, for reasons
outlined below. Some examples of multi-functional medical robots do exist, such as
the orthopaedic robot systems that assist with hip and knee replacement surgery as
well as ligament repair.

Clearly, there are many similarities between industrial and medical robots: both
(typically) consist of motors, sensors and articulated links that can be programmed
to perform a variety of functions. There are, however, many differences, including
the integration in the working environment, the relationship between the robot and
the workpiece, the mechanical design and the strategies for assuring safe operation.
These issues are discussed in the following paragraphs.

Robots are now commonplace on factory floors, and much experience has been
gained in workcell configuration. Workcell design is simplified by the fact that other
pieces of equipment, such as conveyer belts and parts feeders, are designed to integrate
with robots and other industrial machines. Once a workcell design is completed, the
robot and associated equipment are installed and, in most cases, left in place for a
long time. In contrast, robots are not (yet) standard equipment in the interventional
suite or operating room, where space is limited. Thus, a medical robot must be easily
transported in and out of the room or, if permanently installed, should be able to be
moved out of the way. In effect, a medical robot must be ‘installed’ in the medical
workcell for each use. This installation includes transporting the robot to the site
(e.g., operating room), connecting it to appropriate power sources, and sterilizing it.

MEDICAL ROBOTICS AND COMPUTER-INTEGRATED INTERVENTIONAL 227

Since other medical equipment is not designed for compatibility with robotics, the
robot must ‘fit in’ as unobtrusively as possible. It is important to minimize the space
requirement around the operating table, since much of this space is needed for the
medical team and equipment.

Similarly, the manufacturing industry has widely adopted the principle of ‘design
for manufacturability’, which means that parts are designed for ease of manufacturing
by automated machines, including robots. Furthermore, in an industrial setting, the
number of distinct parts is limited and like parts typically differ only by small manu-
facturing tolerances. The environment can be further structured using specialized
parts feeders to orient or align the parts. In contrast, medical robots must operate on
human anatomy, which cannot be redesigned to facilitate robotic procedures and is
often not easily accessible from outside the body. Also, although humans have the
same types of parts, there are large variations between individuals. A medical robot
must be able to sense and adapt to these variations. If sensors alone cannot perform
this task (and they often cannot), the clinician should be included ‘in the loop’ to
augment the system’s sensing capabilities. This requires a human–machine interface
that is easy to use by individuals (clinicians) who do not have robotics backgrounds.
In addition, novel kinematic designs are often necessary to be able to operate on the
target anatomy without unduly restricting the clinician.

Although the mechanical design of medical robots has many similarities to that of
industrial robots, the special requirements associated with interventional procedures
(access, workspace, biocompatibility, imaging-device compatibility, etc.) has tended
to produce distinct designs. For example, many medical robots are designed to mani-
pulate surgical instruments or needles passed through constrained entry points into
the patient’s body. This consideration has led many groups (e.g., [17–20]) to develop
kinematic structures that decouple tool orientation motions about a ‘remote cen-
ter of motion (RCM)’ distal to the robot’s structure. In clinical use, the robot is
typically positioned so that the RCM point is positioned at the point where the instru-
ment or needle passes into the patient’s body (see Fig. 5 for an example). Similarly,
a number of groups (e.g., [21–27]) have developed robots specifically for use in an
MRI imaging environment.

Safety is an important consideration for both industrial and medical robots (e.g.,
[28]). In both cases, the goals, in order of priority, are: 1) to prevent injury to human
beings working near the robot, and 2) to prevent the robot from damaging itself,
other equipment, or the workpiece. In an industrial setting, safety systems typically
involve gates, pressure-sensitive mats, and flashing lights – devices designed to keep
people out of the robot’s workspace or to shut down the system if a person comes
too close. This is especially important when the robot is capable of high speeds or
torques. In an industrial robot, high speeds and torques are desirable because they
reduce the cycle time, thereby increasing the robot’s productivity. In addition, many

228 R.H.TAYLOR AND P. KAZANZIDES

industrial robots require super-human strength to perform their tasks (e.g., lifting
heavy parts). Unfortunately, these desirable attributes increase the potential danger to
human beings. In the medical domain, there is little distinction between the two safety
goals listed above since the ‘workpiece’ is a human patient, and ‘other equipment’
includes life-sustaining medical equipment. Because the medical staff and the patient
must be inside the workspace, medical robot safety systems must ensure that they are
not harmed even in the event of a malfunction. The situation is even more challenging
for cases where the robot is holding a potentially dangerous device, such as a cutting
instrument, and is supposed to actually contact the patient with this device (in the
correct place, of course). As a result, compared with industrial robots, medical robots
usually contain more redundancy in hardware and software and often have lower
maximum speeds and torques.

Many classifications systems for medical robotics have been proposed [29]; some
of them define systems as being active, semi-active, or passive. There is no univer-
sally accepted definition of these terms – some would argue that any robot that is
capable of motion (i.e., contains powered actuators) can never be considered passive,
whereas others focus on the manner in which the robot is used. This chapter adopts
the latter convention, which is an operational definition rather than a mechanical
definition:

• Active robot: automatically performs an intervention, such as machining bone.

• Semi-active robot: performs the intervention under the direct control of the
surgeon (e.g., a ‘hands on’ or ‘cooperative control’ mode).

• Passive robot: does not actively perform any part of the intervention (e.g.,
positions a tool guide).

There is some debate whether one class of robots may be better than another when
considering factors such as safety, user acceptance or regulatory approval. In the
latter case, it is likely that the less active a robot is, the more comfortable regulatory
agencies will be in granting approval. Regarding safety, although a passive robot may
avoid some of the risks inherent with a more active robot, there are still considerable
safety issues that must be considered in all cases. For example, when preparing the
bone for a knee prosthesis, regardless of whether the bone is automatically machined
by an active robot, cooperatively machined by the surgeon and semi-active robot, or
machined by the surgeon using a tool guide positioned by a passive robot, it is critical
that the cutting be performed at the correct position and orientation. Therefore, each
of these robots must provide a safety system to ensure that sensor failures do not
cause them to incorrectly position the cutting tool or tool guide. The question of
user acceptance has not yet been answered because currently, the difficulty of using
medical robots has been a bigger obstacle than whether they are active, semi-active
or passive.

MEDICAL ROBOTICS AND COMPUTER-INTEGRATED INTERVENTIONAL 229

2.5 Intraoperative Human–Machine Interfaces
Fundamentally, CIIM systems are intended to work with clinicians, not replace

them in the operating room or interventional suite. Consequently, technology and
methods for human – machine communication are crucial components in these
systems. This communication is two-way, and successful systems must address tech-
niques both for providing information to and for accepting information and direction
from the clinician.

Visual display is the most common method for providing information to the
clinician. Computer displays relating the positions of surgical instruments to cross-
sectional medical images or to x-ray projections are ubiquitous in surgical navigation
systems (see Section 4.2). The ergonomics of such systems have some serious limita-
tions. Once a procedure has begun, the clinician’s attention is necessarily focused on
the patient’s anatomy, and it is awkward for the clinician to look away from the patient.
Consequently, a number of groups have developed systems and devices for superim-
posing visual information directly on the surgeon’s view of the patient. The first of
such systems (e.g., [30–32]) were designed to ‘inject’ registered graphic information
into a surgical microscope. Subsequently, several groups have developed variations
on this theme for use in other environments (see Fig. 3). Some of these systems
may use active elements such as laser pointers (e.g., [33, 34]) to help the surgeon
achieve a desired alignment. Other forms of feedback used by CIIM systems include
auditory feedback, either in the form of computer-generated speech [35] or simple
auditory cues [36], haptic (force) feedback [37–40] or visual/auditory representation
of tool–tissue interaction forces (e.g., [41]).

There are many ways for a surgeon to provide information or command direction
to a CIIM system. The most common are those used with any computer worksta-
tion: typed text and mouse-like pointing devices. Intraoperatively, these devices have
many limitations, especially because they are difficult to sterilize and they tie up the
clinician’s hands. One common, though clearly limited, work-around has been to rely
on verbal instructions to technicians operating the equipment. Another has been to
rely on computer voice recognition systems (e.g., [46–49]). Still another has been to
rely upon sterile touch screen displays or upon the motions of instruments tracked
by surgical navigation systems. A few groups have explored video tracking of the
clinician’s head or eye motions (e.g., [50]).

The motion of surgical robots is frequently commanded through the use of con-
ventional telerobotic ‘master’ devices, which are essentially powered or unpowered
robot manipulators moved by the clinician, or by ‘cooperative’ control methods in
which the robot’s motion complies to forces exerted on it by the clinician (see Section
4.3). Other methods, often used in research systems designed for more ‘intelligent’
assistance to a surgeon, include visual tracking of surgical instruments and target
anatomy (e.g., [51, 52]).

230 R.H.TAYLOR AND P. KAZANZIDES

Fig. 3. Visual information display in CIIM systems.A) CMU image overlay system [42] based on active
tracking of surgeon’s head, 3D graphics, and semi-transparent mirror; B) JHU image overlay system for
simple in-scanner display of scan planes [43, 44]; C) typical display from a surgical navigation system
(courtesy, Medtronic Navigation); D) Osaka/Tokyo laser guidance system [33]; E) JHU/Intuitive Surgical
overlay of laparoscopic ultrasound onto daVinci surgical robot video monitor [45]; F) Sensory substitution
display of surgical force information onto daVinci surgical robot video monitor [41].

2.6 Sensorized Instruments
A number of research groups (e.g., [56–63]) have developed ‘sensorized’ surgical

instruments capable of measuring tool-to-tissue interaction forces and providing
these results to surgical workstations. Often, these efforts have relied on graph-
ical interfaces to display force data, whether the instrument was manipulated
freehand by the clinician or by a robot. For example, Poulose et al. [58, 59]
demonstrated that a force sensing instrument used together with an IBM/JHU
LARS robot [51] could significantly reduce both average retraction force and
variability of retraction force during Nissen fundoplication. There have also been
efforts to incorporate sensed force information into the control of robotic devices
(e.g., [64–67]). Several researchers (e.g., [68, 69]) have focused on specialized ‘fin-
gers’ and display devices for palpation tasks requiring delicate tactile feedback
(e.g., for detecting hidden blood vessels or cancerous tissues beneath normal tissues).
Yet another use of sensorized instruments is in biomechanical studies to measure
organ and tissue mechanical properties to improve surgical simulators (e.g., [70,71]).

There has also been work to integrate non-haptic sensors with surgical instruments.
For example, our group at Johns Hopkins is developing instruments that measure

MEDICAL ROBOTICS AND COMPUTER-INTEGRATED INTERVENTIONAL 231

Fig. 4. Sensorized instruments from our laboratory at JHU [53–55]. A) Liver retractor with integrated
force sensor and optical sensors for measuring blood oxygenation. B) Retraction of pig liver; C) Sensor
readings as blood supply is cut off and restored; D) Laparoscopic instrument with force and oxygenation
sensing fingers.

tissue oxygenation as well as force [53–55]. Our plan is to use this information to
help surgeons assess tissue viability, avoid ischemic tissue damage during retraction
and distinguish tissue types (see Fig. 4).

2.7 Software and Robot Control Architectures
Figure 5 shows the basic control architecture for a robot system There are two

periodic loops: a high-frequency servo loop (typically 1 KHz or higher) that controls
the individual motors and a low-frequency supervisory loop (typically about 100 Hz)
that coordinates the individual motors and may also close a loop around an external
sensor, such as a force sensor or imaging system. Although the dynamic equations
of a robot include coupling between the axes, the standard practice is to perform the
servo control of each motor independently. In fact, some robot systems perform the
servo control on a distributed network of embedded microprocessors, where each

232 R.H.TAYLOR AND P. KAZANZIDES

Fig. 5. Architecture of a typical robot system. The robot shown was developed at Johns Hopkins for
in-scanner percutaneous needle placement procedures [19,72,73]. The screen interface at the top is typical
of the sort of research interface commonly developed for similar procedures, although a different interface
was used for the kidney biopsy shown at the bottom.

microprocessor is attached to just one or two motor/sensor pairs. Fortunately, most
medical robots move rather slowly (often for safety reasons), so the dynamic coupling
between joints can be ignored without affecting control performance.

For a typical path-controlled robot, the supervisory control loop consists of a
trajectory planner that breaks down a high-level motion command (such as mov-
ing at a specified velocity along a straight line) into a set of intermediate set points
that are sent to the servo control loop(s). Because the high-level motion command is
often in a Cartesian coordinate system, this process generally includes the invocation
of the robot’s inverse kinematic equations to transform the Cartesian coordinates into
the robot’s joint coordinates expected by the servo loop. Although path-controlled
robots are common in industrial applications, in the medical field many other super-
visory control strategies are often required. One example is a compliant control mode,
where robot motion is dictated by the forces and torques applied by the surgeon and
measured by a force sensor. This is often implemented as an admittance controller,
where the measured forces/torques are multiplied by an admittance gain to produce

MEDICAL ROBOTICS AND COMPUTER-INTEGRATED INTERVENTIONAL 233

a desired Cartesian velocity. Typically, the Cartesian velocity is transformed to joint
velocities via the robot’s inverse Jacobian. Alternatively, the Cartesian velocity can
be added to the current Cartesian position to obtain a desired position, which can be
transformed to joint positions via the robot’s inverse kinematics.

Historically, robot manufacturers have provided an interpreted language for pro-
gramming the robot, since this allows the end-user (or systems integrator) to quickly
develop new applications or modify existing applications in the field, if necessary.
An interpreter environment allows fast implement-test-debug cycles, especially since
debugging changes can be made during execution without losing any of the program
state, such as the robot’s position [74]. On the other hand, compiled code runs sig-
nificantly faster than interpreted code, which is especially important for tasks that
require real-time performance, such as closing a loop around an external sensor. For
medical robots, regulatory requirements must also be considered – these dictate that
a medical device manufacturer must carefully control all software changes (configu-
ration control). This requirement and liability considerations necessitate a system
design that prevents inadvertent or unauthorized software modifications, especially
in the field. Although it is possible to protect interpreted code from modification (e.g.,
by encryption of the source code), a compiled language has the advantage of enabling
manufacturers to provide end-users with only the executable. For these reasons
(efficiency and security), most medical robots are programmed in a compiled lan-
guage such as C or C++. For development, however, it is still desirable to have an
interactive (interpreted) environment. This can be achieved by ‘wrapping’ the C/C++
code for use with a standard interpreted language, such as TCL or Python.

The development of standard software and control libraries and application frame-
works for medical robotics research represents a significant challenge and opportunity.
This goal has been a major research focus at Johns Hopkins University. Figure 6
illustrates the software/hardware environment being developed in our laboratory at
Johns Hopkins for research on ‘intelligent’ surgical assistants, which is based on the
set of open source software libraries which we are developing (e.g., [75–77]). The
development of this sort of infrastructure can be an important ‘enabler’ in medical
robotics research. See also Section 4.6.

2.8 Accuracy Evaluation and Validation
Validation of computer-integrated interventional systems is challenging because

the key measure is how well the system performs in an operating room or interven-
tional suite with a real patient. Clearly, for both ethical and regulatory reasons, it is
not possible to defer all validation until a system is used with patients. Furthermore,
it is often difficult to quantify intraoperative performance because there are lim-
ited opportunities for accurate post-operative assessment. For example, even though

234 R.H.TAYLOR AND P. KAZANZIDES

Fig. 6. Modular system environment for robotic surgical assistance research at Johns Hopkins
University (http://www.cisst.org/cisst).

CT scans are accurate, they may not provide sufficient contrast for measuring the
post-operative result and they expose the patient to additional radiation. For these
reasons, most computer-integrated interventional systems are validated using phan-
toms, which are objects that are designed to mimic (often very crudely) the relevant
features of the patient.

One of the key drivers of Surgical CAD/CAM is the higher level of accuracy that
can be achieved using some combination of computers, sensors and robots. There-
fore, it is critical to be able to evaluate the overall accuracy of such a system. One
common technique is to create a phantom with number of objects whose locations
are accurately known, either by precise manufacturing or measurement. If the sys-
tem uses fiducial-based registration, the objects in the phantom should correspond
to fiducials. Furthermore, the phantom should contain extra fiducials (not used for
registration) or other known features that can be used as targets. If the system uses
an anatomic registration, it may still be useful to place a number of fiducials in the
phantom so that they can provide a reasonably accurate estimate of the ‘ground truth’
registration.

MEDICAL ROBOTICS AND COMPUTER-INTEGRATED INTERVENTIONAL 235

The basic technique is to image the phantom, perform the registration and then
locate the target features. Maurer [78] defined the following types of error:

• Fiducial Localization Error (FLE): the error in locating a fiducial in a particular
coordinate system (i.e., imaging system or surgical CAD/CAM system).

• Fiducial Registration Error (FRE): the root-mean-square (RMS) residual error
at the registration fiducials, i.e.,

FRE =
√√√√ 1

N

N∑
k=1

∥∥∥
bk − T ·
ak

∥∥∥2

where T is the registration transform and (
ak,
bk) are matched pairs of homo-
logous fiducials (k = 1, . . . , N).

• Target Registration Error (TRE): the error in locating a feature or fiducial that
was not used for the registration; if multiple targets are available, the mean error
is often reported as the TRE.

For a robot system, one method for measuring TRE is to locate the targets in the
image, transform them to the robot coordinate system (using the registration) and
then command the robot to position its instrument at the computed target location.
The TRE is given by the difference between the robot’s position and the actual position
of the target. It may not be practical or convenient to measure this position difference;
however, a common strategy is to manually position the robot at the physical target
and then compute the TRE as the difference between the computed position (based
on the registration) and the robot’s actual position. Essentially, this method uses the
robot itself to measure the TRE.

2.9 Risk Analysis and Regulatory Compliance
The medical device industry is a heavily regulated industry. In the United States,

medical devices must be cleared for market by the Food and Drug Administration
(FDA). There are two paths to market: one via the 510(K) premarket notification
process and one via the Pre-Market Approval (PMA) process. A manufacturer can
obtain a 510(K) clearance if the new device is ‘substantially equivalent’ to an existing
device that is already on the market. Otherwise, the PMA application is required. Sur-
prisingly, several medical robots obtained clearance via the 510(K) path, including
Aesop (Computer Motion, Inc.), Neuromate (Innovative Medical Machines Interna-
tional and subsequently Integrated Surgical Systems) and daVinci (Intuitive Surgical).
In contrast, the earlier ROBODOC System (Integrated Surgical Systems and subse-
quently Curexo Medical) started down the PMA path, although the company was

236 R.H.TAYLOR AND P. KAZANZIDES

later able to switch to the 510(K) process. As of March 2008, the ROBODOC 510(K)
application is still pending.

In addition to the need for 510(K) or PMA approval, medical device companies
must comply with the Quality System Regulations (QSR) and are periodically audited
by the FDA to verify compliance. Initially, the FDA required companies to adhere
to Good Manufacturing Practices (GMP), which regulated just the manufacturing
phase. For simple devices, this worked well because device failures were primarily
due to manufacturing flaws. As devices became more complex, especially with the
integration of computers and software, FDA discovered that a large number of device
failures were due to design flaws, rather than manufacturing flaws. The infamous
Therac-25 accident, where six patients received massive overdoses of radiation from
a computer-controlled medical linear accelerator, is a well-known example [79]. As
a result, FDA QSR began to regulate the design phase as well.

In the European market, all products (medical or otherwise) require CE marking.
Furthermore, the design and manufacturing processes must comply with ISO 9001
and 9002, respectively (often these are grouped together under the umbrella term
ISO 9000). The CE marking and ISO 9000 certification are handled by a number of
notified bodies, which are independent (non-governmental) entities.

To comply with ISO 9000 and/or FDAQSR, medical device companies must define
their development and manufacturing processes and then produce documents (quality
system records) that demonstrate adherence to these processes. Although ISO 9000
and FDA QSR are similar, they are not identical, which requires most medical device
companies to comply with both of them.

It should be noted that obtaining FDA approval and CE marking and complying
with FDA QSR and ISO 9000 is still not enough to guarantee commercial success.
Obviously, it is necessary for the device to be marketable (i.e., to provide a favourable
cost–benefit ratio). It is perhaps less obvious, however, that the device must also be
accepted by the third-party payers in the health-care system. In the U.S., this consists of
Medicare and the health insurance companies. These entities must agree to reimburse
for procedures performed with the new technology in order for that technology to
proliferate in the marketplace.

Risk (or Hazard) Analysis is one of the key elements of a medical device develop-
ment process and is often a focal point for audits by FDA or notified bodies. A Failure
Modes Effects Analysis (FMEA) or Failure Modes Effects and Criticality Analysis
(FMECA) is the most common method [80]. These are ‘bottom up’ analyses, where
potential component failures are identified and traced to determine their effect on the
system. Methods of control are devised to mitigate the hazards associated with these
failures. The information is generally presented in a tabular format. The FMECA
adds the ‘criticality’ assessment, which consists of three numerical parameters: the
severity (S), occurrence (O) and detectability (D) of the failure.Arisk priority number

MEDICAL ROBOTICS AND COMPUTER-INTEGRATED INTERVENTIONAL 237

(RPN) is computed from the product of these parameters; this determines whether
additional methods of control are required. The FMEA/FMECA is a proactive anal-
ysis that should begin early in the design phase and evolve as hazards are identified
and methods of control are developed.

3. Surgical CAD/CAM

3.1 Example: Robotically Assisted Joint
Reconstruction

The relative rigidity of bone and the excellent contrast available in X-ray and
CT images make orthopaedic procedures – especially joint replacement surgery –
natural applications for medical robots and about 20% of all medical robots surveyed
in 2005 were intended for such applications [81]. The authors of this chapter were
co-developers of one of the first robotic systems for orthopaedics (ROBODOC�
[82,83]), so it is natural for us to use it as an example in discussing surgical CAD/CAM
applications. Earlier research using a robot for total knee replacement surgery was
performed at the University of Washington [84] and subsequently, a number of other
groups also developed systems for similar applications (e.g., [85–89]).

ROBODOC� (ROBODOC, a Curexo Technology Company, formerly Integrated
Surgical Systems, Inc., Sacramento, CA) was initially developed for Total Hip
Replacement (THR) surgery [90, 91] and was later applied to Total Knee Replace-
ment (TKR) [92]. THR surgery involves the preparation of an elongated cavity in the
femur (thigh bone) and a rounded cavity in the acetabulum (hip socket) to accom-
modate the two components of a hip prosthesis: the femoral stem (Fig. 7, Right) and
acetabular cup. Accurate placement of components relative to the patient’s bones is
very important for achieving a good result. Furthermore, with cementless implants,
the bone must be shaped to achieve a close fit between the implant and the bone in
order to encourage the bone to grow into a porous coating on the implant.

For conventional THR surgery, preoperative planning is performed by overlay-
ing templates (outlines) and by making measurements on two-dimensional X-rays.
Templates are available at different magnification factors so that errors due to
X-ray magnification can be minimized. Usually, planning is limited to identifying
an approximate range of implant sizes and the approximate desired implant position
relative to the bone. During surgery, the bone is prepared using hand-held ream-
ers (drills) and broaches to create the desired cavities. Proper execution relies on
a significant amount of experience and ‘surgical feel’, especially when the femoral
cavity is prepared. In this case, the surgeon typically begins with the reamer and
broach corresponding to the smallest planned implant size. If the cavity feels ‘loose’

238 R.H.TAYLOR AND P. KAZANZIDES

Fig. 7. (Left) Typical screen view from ORTHODOC� CT-based planning system for ROBODOC�
orthopaedic robot (Integrated Surgical Systems, Sacramento, California); (Right) Typical implant
components for cementless hip and knee reconstruction surgery.

(i.e., insufficient contact with hard cortical bone), the surgeon switches to the next
larger size until he/she feels that there is sufficient, but not excessive, cortical contact.
If the surgeon chooses a prosthesis that is too large, the femur can fracture either dur-
ing cavity preparation or during prosthesis insertion. This is one of the most common
intraoperative complications associated with THR. Similarly, although the surgeon
can plan any desired prosthesis position, the actual position is determined mostly by
anatomical constraints because the hand-held instruments tend to follow the path of
least resistance.

Laboratory tests [93] showed that the conventional method for cavity preparation is
inherently inaccurate. The cavities produced were extremely irregular, with large gaps
between implant and bone. Furthermore, accurate alignment of the cavity relative to
bone was extremely uncertain, since the interior surface of the bone could deflect the
path of the broach. These considerations led our surgeon colleagues (Dr. Paul and
Dr. Bargar) to propose the use of a robot to prepare the implant cavity. Expected
benefits included adequate and uniform bone in growth, uniform stress transfer,
reduced stress shielding, less thigh pain and the elimination of femoral fractures
as an intraoperative complication.

The ROBODOC procedure for THR (and TKR) consists of two phases: a preopera-
tive planning phase (ORTHODOC�) and an intraoperative (ROBODOC) phase. The

MEDICAL ROBOTICS AND COMPUTER-INTEGRATED INTERVENTIONAL 239

input to ORTHODOC consists of a CT scan of the patient’s anatomy, the prosthesis
geometry that is supplied by the manufacturers and clinical decisions made by the
surgeon. The surgeon plans the procedure by selecting a prosthesis from the database
and positioning it in the CT image. ORTHODOC displays three orthographic views
(i.e., orthogonal slices) of the data as well as a 3-D model (see Fig. 7). Each joint of
the five-axis surgical robot (Fig. 8-A,B) contains two optical encoders for redundant
position feedback. The system includes a wrist-mounted six-axis force sensor that
monitors the forces applied at the tool. This force information makes it possible to
implement functionality such as manual guidance, tactile search, safety checking and
an adaptive cutter feed rate. ROBODOC executes the preoperative plan by machin-
ing the specified prosthesis cavity in the femur. This requires the bone to be rigidly
attached to the robot. A bone motion monitor (BMM) is used as a safety sensor to
detect motion of the bone relative to the robot. In addition, accurate cavity placement
requires a registration between the patient’s anatomy in the preoperative plan (i.e.,

Fig. 8. Clinically applied robots for orthopaedic surgery. A, B) the Robodoc� system for cementless
total hip and knee replacement surgery machines bone to match a surgeon-selected implant shape, according
to a presurgical plan based on patient’s CT images [83, 94]; C, D), the Acrobot system [85] employs
cooperative hand guiding with ‘active constraints’derived from the implant shape for total knee replacement
surgery.

240 R.H.TAYLOR AND P. KAZANZIDES

the bones in the CT scan) and the anatomy of the actual patient. The preoperative
plan is specified in image (CT) coordinates, whereas intraoperative localization of
the patient can be obtained in robot coordinates, so registration implies finding the
transformation between image and robot coordinates.

Initially, ROBODOC used a ‘pin-based’ registration method, which required the
implantation of titanium bone screws (pins) in the femur prior to the CT scan. Regi-
stration was accomplished by defining at least three reference points on the pins and
then identifying them in both the CT and robot coordinate systems. Because the pins
are titanium, the ORTHODOC software could easily locate them in the CT data using
image processing techniques. The robot system identified the physical pins via a
tactile search, using feedback from its wrist-mounted force sensor [83]. ROBODOC
initially used three registration pins, with the centres of the pin heads serving as the
three reference points. Shortly afterwards, it transitioned to a two-pin method, where
the third reference point was obtained by creating a ‘virtual pin’ based on the centre
and axis of the distal pin. In this case, a longer distal pin was required to enable
accurate determination of the pin axis in the CT data.

Although pin-based registration is reliable, it involves an extra (minor) surgery to
implant the pins prior to the CT scan and is also the source of postoperative knee pain
for many patients. This motivated the development of a ‘pinless’ system [95], which
uses anatomical features instead of metal pins as fiducials. Registration is performed
using a method similar to the iterated closest point method outlined in Section 2.2,
using bone surface point positions measured by a small digitizing arm.

Once cutting has commenced, ROBODOC provides a visual display of its progress
on the computer monitor. As the robot mills the cavity, the monitor displays the CT
data overlaid with a model of the prosthesis cavity. The completed portion of the cavity
is displayed in one colour, while the remaining portion is displayed in another. This is
similar to the visualization provided by most navigation systems. During cutting, the
control software continuously monitors the force sensor and adjusts the cutter feed
rate based on the sensed force and on parameters specific to the prosthesis design and
cutting tool [96]. This enables the robot to adapt to the patient’s anatomy by slowing
down in regions of hard cortical bone and speeding up in other regions.

As of March 2008, ROBODOC has been installed in about 50 hospitals around
the world and has performed over 20,000 hip and knee surgeries. Use of this system
became controversial, especially in Germany, with surgeons and patients reporting
both positive and negative results. Two points that both sides seem to agree on are:
1) the robot procedure requires a longer surgery time and results in higher surgical
costs, compared with the conventional technique and 2) the robot can execute the
preoperative plan more accurately than the conventional technique. However, there
is no consensus on whether the improved accuracy provided by the robot system
provides a clinical benefit to the patient.

MEDICAL ROBOTICS AND COMPUTER-INTEGRATED INTERVENTIONAL 241

3.2 Example: Needle Placement
Placement of needles or similar devices2 is one of the most basic interventional

CAD/CAM applications, though there are numerous challenges depending on the
target organ and the operating environment. The problem can be simply stated as
placing the tip of the needle at a location specified on an image, typically through an
entry point that is also specified on the image. Both robots and navigation systems have
been used to assist with this task. In some cases, the interventional device (robot or
navigation system) is used to position a cannula or instrument guide through which the
needle is manually advanced.Accurate placement of needles in the brain was one of the
first uses of robots in interventional medicine (e.g., [97,98] [99,100]), and since then
these techniques have been extended to many parts of the body, including prostate,
liver, spine, etc. Furthermore, percutaneous needle placement is a natural application
for surgical navigation and ‘image overlay’ techniques such as those illustrated in
Fig. 3. There is an extensive literature on robotic and non-robotic systems for needle
placement. This section will touch briefly on a few common themes.

When performed using CAD/CAM techniques, the entry and target positions can
be identified on preoperative images, intraoperative images or some combination of
the two. In all cases, it is necessary to register the image space to the interventional
device (e.g., robot or tracked instrument). When using intraoperative images, this
registration can be obtained by placing a calibration object on the robot or patient.
The transformation between the calibration object and device coordinate system is
known by design, and the transformation between the calibration object and the image
coordinate system is computed by locating features of the calibration object in the
image, often via image-processing techniques. Recent examples from the work of our
own group at Johns Hopkins include [101,102], although these techniques are widely
practiced by many groups.

Another potential issue for CAD/CAM needle placement is target motion. This
is especially challenging for soft-tissue organs such as liver, kidneys or prostate,
as well as for anatomical targets such as the lungs or spine, which can be affected
by respiratory motion or by heart beats. For this reason, many groups have empha-
sized placement of needles under direct feedback from imaging modalities such as
X-ray fluoroscopy, CT, MRI or ultrasound. Whether or not direct image feedback is
available, it is often important to compensate for motion and/or to register preoperative
images with (possibly deformed) intraoperative anatomy or images.

In many cases, needle placement under direct (intraoperative) image guidance is
difficult due to patient access issues. This is especially true when the image modality

2 For convenience, we use the term ‘needle placement’, but the problem is generic to the placement of
any ‘needle-like’ instrument, including probes, drills, radiation beams, etc.

242 R.H.TAYLOR AND P. KAZANZIDES

is a closed-bore MR scanner, where the patient is placed inside a long cylindrical
tube that has a diameter that is not much larger than the patient. Here, the only option
for performing needle placement (besides catheter-based methods) is to use a robot
that is small enough to fit inside the MRI scanner (e.g., [27, 103]). The design of
MR-compatible robotic devices poses significant challenges due to materials and
component limitations associated with the high magnetic fields and radiofrequency
sensing associated with MR imaging (e.g., [104]). Even for a robot intended for use
with CT or X-ray fluoroscopy, it is generally desirable for the robot’s end effector to
be as radiolucent as possible in order to reduce interference with the images used for
guidance and targeting.

4. Surgical Assistance

4.1 Basic Concepts
Interventional procedures – especially those that we think of as ‘surgery’ – can

be highly interactive processes, and many interventional decisions are made in the
operating room and executed immediately. The goal of computer-based interventional
systems, including medical robots, is not to replace the surgeon or interventionist3

with a machine so much as to provide the surgeon with versatile tools that augment his
or her ability to treat patients. Currently, there are three main sub-classes of Assistant
Systems, although the distinctions between them are by no means hard-and-fast.

The first class, Intraoperative Information Support Systems, simply provides infor-
mation to the surgeon, who uses his or her manual dexterity to manipulate the surgical
instruments in performing the intervention. An extremely important sub-class of
these systems (discussed in Section 4.2) is Surgical Navigation Systems, which relate
surgical instrument positions to medical images and patient anatomy.4

The second class, Surgeon Extender Robots, are operated directly by the surgeon
and augment or supplement the surgeon’s ability to manipulate surgical instruments.
Potentially, these systems can give even average surgeons super-human capabilities
such as elimination of hand tremor or ability to perform dexterous operations inside the
patient’s body. The potential clinical advantages associated with these systems include
a) the ability to treat otherwise untreatable conditions; b) reduced invasiveness and
patient morbidity; c) improved safety and reduced complication rates; and d) reduced

3 For simplicity of discussion, we will use the word ‘surgeon’ throughout the balance of this section,
rather than the more inclusive (but awkward) ‘interventionist’.

4 Interestingly, Surgical Navigation systems can also be thought of as Surgical CAD/CAM, since they
provide the capability to couple presurgical image-based planning with intraoperative execution.

MEDICAL ROBOTICS AND COMPUTER-INTEGRATED INTERVENTIONAL 243

surgeon fatigue. A special sub-class of surgeon extender robots is Remote Telesurgery
Systems, which permit the surgeon to operate on patients at distances ranging from a
few hundred meters to several thousand kilometers.

A third class, Auxiliary Surgical Supports, generally works side by side with the
surgeon and performs such functions as endoscope holding, tissue retraction or limb
positioning. These systems typically provide one or more direct control interfaces
such as joysticks, head trackers, or voice control. However, there have been some
efforts to make these systems ‘smarter’ so as to require less of the surgeon’s attention
during use, for example, by using computer vision to keep the endoscope aimed at an
anatomic target or to track a surgical instrument. Although these systems may offer
some of the same advantages as surgeon extenders (e.g., reduced tissue damage due
to more delicate retraction), their main justification is improved operative efficiency
and reduced need of operating room staff.

4.2 Surgical Navigation Systems as
Information Assistants

Surgical navigation systems track the positions of surgical instruments and other
objects in the operating room and display this information graphically, usually relative
to registered images of the patient. Although first developed for neurosurgery (e.g.,
[8, 105]) they have also been widely adapted to ENT surgery (e.g., [11, 106]),
orthopaedic surgery (e.g., [9, 10]), craniofacial surgery (e.g., [107, 108]) and other
applications placing a high value on precise localization and integration of informa-
tion from medical imaging systems. There are currently many commercially available
systems, and surgical navigation has rather larger acceptance in the interventional
systems market than does any form of robotic assistance.

As shown in Fig. 9, a typical surgical navigation system consists of a navigational
tracking device capable of determining the position and orientation of ‘rigid bodies’
attached to surgical instruments and to the patient’s anatomy, together with a computer
workstation and display. After a registration step is performed, the workstation is able
to compute and display the position of instruments relative to patient images.

4.3 Surgeon Extenders
Telesurgical robots are the most widely deployed form of surgeon extender system

and have been extensively employed for cardiac, prostate, and other minimally inva-
sive laparoscopic procedures. Examples include numerous (dozens) research systems
(e.g., [20,25,109–114]), as well as commercially deployed systems such the daVinci

244 R.H.TAYLOR AND P. KAZANZIDES

Fig. 9. Atypical surgical navigation system, showing key coordinate transformations.After registration,
the system computes
pCtip, the position in image coordinates corresponding to the current position of the
pointer tip, and uses this information to update a display.

[115] (Intuitive Surgical, Sunnyvale, Ca.) and Zeus [116] (formerly marketed by
Computer Motion, Goleta, Ca.).

The architecture of a typical system (here, the daVinci) is shown in Fig. 10. The
system consists of a patient-side ‘slave’ robot and a master control console. The
slave robot has three or four robotic arms which manipulate a stereo endoscope and
dexterous surgical instruments such as scissors and needle holders. The surgeon sits
at the master control station and grasps handles attached to two dexterous ‘master’
manipulator arms, which are capable of exerting limited amounts of force feedback
to the surgeon. The surgeon’s hand motions are sensed by the master manipulators
and the motions are mimicked by the slave manipulators. A variety of control modes
may be selected by means of foot pedals on the master console and used for such
purposes as determining which slave arms are associated with the hand controllers.
Stereo video is transmitted from the endoscope to a pair of high-quality video monitors
in the master control station, thus providing high-fidelity stereo visualization of the
surgical site. The display and master manipulators are arranged so that it appears to

MEDICAL ROBOTICS AND COMPUTER-INTEGRATED INTERVENTIONAL 245

Fig. 10. Architecture of a typical telesurgical system. Photos: Intuitive Surgical Systems.

the surgeon that the surgical instruments (inside the patient) are in the same position as
his or her hands inside the master control console. Other telesurgical systems employ
the same basic architecture, although there are many differences in implementation.
For example, many systems (e.g., [26, 116]) use more conventional ‘stereo TV set’
displays that use polarizing glasses or LCD shutter glasses to multiplex left- and right-
eye images. Some surgeons find this arrangement more comfortable for long-duration
procedures, although much of the ‘immersive’ feel of the daVinci is lost. Similarly,
research systems incorporate many different mechanical designs for the patient-side
‘slave’ robots.

A primary advantage promised by telesurgical robots for minimally invasive
surgery is their ability to permit the surgeon to perform dexterous manipulation of
instruments and tissues inside the patient’s body. A major theme in current research
has been the development of highly dexterous, miniaturized robotic end-effectors
suitable for this purpose. Some examples are shown in Fig. 11. Many systems (e.g.,
[20,25,115,121,122]) have used cable actuated tools. One drawback of this approach
is that it becomes increasingly difficult to provide high strength and dexterity as the
mechanisms get smaller and smaller. This has led various groups to investigate alter-
natives. For example, several groups have explored micro-hydraulic systems (e.g.,
[123, 124]). At Johns Hopkins, we have explored another approach, illustrated in

246 R.H.TAYLOR AND P. KAZANZIDES

Fig. 11. Dexterity and mobility inside the patient’s body. A) daVinci dexterous wrist with typical
surgical instrument (courtesy: Intuitive Surgical); B, C) 4.2 mm diameter JHU/Columbia University ‘Snake’
manipulator [128, 129]; D) 5 dof, 3 mm diameter micro-catheter robot [112, 121]; E) dexterous robot for
endogastric surgery [122]; F) mobile ‘Heart Lander’ robot for crawling across the heart [127].

Fig. 11 B-C, using parallel super-elastic spines to produce ‘snake’-like end-effectors
[123]. Although most current surgical robots employ manipulator arms to position
tools within the patient’s body, with wrist-like mechanisms to provide distal dexterity,
there has been some work on systems with a greater degree of autonomous motion
capability (e.g., [125–127]).

Although teleoperation has many advantages, especially for high-dexterity robotic
manipulation inside the patient’s body, it also has some drawbacks. The amount of
equipment required is large, since both ‘master’ and ‘slave’ manipulators are needed.
The surgeon is frequently somewhat removed from the patient, since he or she is
sitting at a master control station and may have a reduced overall awareness of the
surgical situation.

Consequently, several groups, including our own, have developed an alterna-
tive approach based on ‘hands-on’ admittance control, in which the robot moves
in response to forces exerted by the surgeon directly on the robot’s end effector or

MEDICAL ROBOTICS AND COMPUTER-INTEGRATED INTERVENTIONAL 247

on a handle attached to the robot. Our early experiences with Robodoc� [83] and
other surgical robots (e.g., [51, 130]) showed that surgeons find this form of control
to be very convenient and natural for surgical tasks. Two notable uses of cooperative
control are the Imperial College AcrobotTM orthopaedic system [85] (Fig. 8 C–D)
and the Johns Hopkins ‘Steady Hand’ microsurgery system [117] (Fig. 12). Although
cooperative control is usually limited to precise positioning tasks, it can also pro-
vide force scaling via the use of two force sensors: one to sense the surgeon’s input
and another to measure tool-to-tissue interaction forces and then move the robot in
response to a scaled difference between these forces (e.g., [66, 131]).

Other groups have developed completely free-hand instruments that sense and
actively cancel physiological tremor (e.g., [132, 133]). The main advantage of this
approach is that it requires the least change in normal operating room procedure.
The surgeon uses the tremor-reducing tool just as he or she would use any other
instrument. The challenges are instrument ergonomics (mostly size and weight) and
precise motion performance, which is still not as good as that of fully robotic devices.

One problem commonly encountered in all forms of medical robotics is the diffi-
culty of maintaining a desired relationship between an instrument held by the robot
and moving patient anatomy. Broadly speaking, there are two approaches for solving
this problem. The first approach (e.g., [52,134]) is to sense the relative motion – most

Fig. 12. JHU ‘Steady Hand’ cooperative manipulation systems for microsurgery. A) First-generation
system [117], which is here used to demonstrate fenestration of the stapes bone for an otology applica-
tion [67]; B) Comparative motion tremor with freehand instrument manipulation and steady-hand robot
manipulation [118]; C) Steady-hand micro-injections into mouse embryos [119]; D) Newer generation
steady-hand robot for eye surgery [120]; E–F) Evaluation on chick embryos.

248 R.H.TAYLOR AND P. KAZANZIDES

commonly with computer vision or some other form of imaging device – and then
move the robot. The second approach (e.g., [83, 86, 127, 135, 136]) is to attach the
robot’s base firmly to the patient’s anatomy, so that it rides with the patient. This
approach is especially common in orthopaedics, but may fruitfully be applied in
other areas such as ENT, neurosurgery, cardiac surgery or ophthalmology, where a
good attachment point is available.

4.4 Auxiliary Surgeon Supports
Although attention is often focused on robotic systems that directly extend the sur-

geon’s ability to manipulate surgical instruments, many of the most successful robotic
applications in surgery have focused on auxiliary tasks such as patient positioning
(e.g., [137]), surgical instrument delivery [138, 139] and laparoscopic camera posi-
tioning (e.g., [51,52,140]). In fact, the AESOP® laparoscopic camera surgery system
[46,141] (formerly distributed by Computer Motion, Goleta, Ca.) was one of the first
widely deployed surgical robots.

4.5 RemoteTelesurgery andTelementoring
The possibility for using master-slave telesurgery systems to perform procedures in

which the surgeon and patient are separated by very long distances has long been rec-
ognized [142, 143]. Commonly considered applications include space exploration,
military combat care and provision of care in sparsely populated areas. A num-
ber of research groups have developed experimental systems over the years (e.g.,
[20, 144–149]). A major milestone was achieved by Marescaux et al. in 2001, with
successful performance of a trans-Atlantic laparoscopic cholecystectomy [150]. Sub-
sequent work has included efforts by Anvari et al. to develop a practical system for
deployment in Canada [151, 152].

There has also been significant interest in using telesurgical technology to provide
remote (or on-site) mentoring, in which an expert surgeon advises a less experienced
surgeon in carrying out a procedure (e.g., [153–155]). Although in some ways similar
to more ‘conventional’ telesurgery, this form of telementoring can introduce some
additional challenges. In particular, protocols may be needed to enable the expert
and ‘trainee’ surgeon to trade-off control of a surgical robot or otherwise to work
cooperatively during completion of the case.

4.6 Toward ‘Intelligent’ Surgical Assistance
Although one goal of both teleoperation and hands-on control in a surgeon extender

system is to enable the surgeon to directly control the motion of the robot, the fact that

MEDICAL ROBOTICS AND COMPUTER-INTEGRATED INTERVENTIONAL 249

Fig. 13. (Left) Functional Architecture of a typical ‘intelligent’ surgical assistant; (Right) segmented
trace of daVinci hand motions during a suturing procedure [161]

a computer is meditating between the surgeon’s command input and the robot’s actual
motion can create many more possibilities. The simplest is a safety barrier or ‘no fly
zone’, in which the robot’s tool is constrained from entering certain portions of its
workspace. More sophisticated versions include virtual springs, dampers or complex
kinematic constraints that help a surgeon align a tool, maintain a desired force or
perform similar tasks. This concept has many names, of which ‘virtual fixtures’seems
to be the most popular (e.g., [156–160]). The Acrobot system shown in Fig. 8 C–D
represents a successful clinical application using virtual barriers to limit the motion
of the cutting tool.

Anumber of groups (e.g., [162–165]) are exploring extensions of the virtual fixtures
concept to active cooperative control, in which the surgeon and robot share or trade-off
control of the robot during a surgical task or sub-task. As the ability of computers to
model and ‘follow along’ surgical tasks (e.g., [139,161]) improves, these modes will
become more and more important in surgical-assistant applications. Figure 13 (Left)
shows the functional architecture of a typical ‘surgical assistant’ workstation being
developed at Johns Hopkins University. Figure 13 (Right) illustrates initial efforts to
develop automatic motion segmentation tools to distinguish the different steps in a
suturing procedure.

5. Summary and Conclusion

Medical Robotics and computer-integrated interventional medicine are still rela-
tively ‘young’fields. Nevertheless, they have grown remarkably, especially in the past
5–8 years, as clinical systems have been deployed and as more researchers enter them.

250 R.H.TAYLOR AND P. KAZANZIDES

This short chapter has only provided a brief introduction to some of the main areas
of research and practice, and our treatment has necessarily skipped over important
research and groups working in the field. To those who may have been left out, we
extend our sincere apologies and hope that readers of this chapter will be motivated to
pursue further reading, perhaps starting with books such as [166,167], recent journal
special issues such as [114, 168] or any of the many conference proceedings in the
field.

By coupling information to action in ways that were not possible before, these
systems have the potential to fundamentally change the practice of interventional
medicine. Enough progress has been made in all of the architectural elements shown
in Fig. 2 so that clinically useful systems can indeed be deployed. However, further
advances are still needed across the board in the modelling and analysis required for
medical robotic applications, for the interface technologies required to relate the ‘data
world’ to the physical world of patients and clinicians and to the system science that
makes it possible to put everything together safely, robustly and efficiently. It is our
belief that this research is best done in interdisciplinary teams motivated by impor-
tant applications. Our experience has been that building a strong researcher-surgeon
industry team is one of the most challenging, but also one of the most rewarding
aspects of medical robotics and CIIM research. The only greater satisfaction is the
knowledge that the results of such teamwork can have a very direct impact on patients’
health. This is a challenging area, but it is worth it.

References

[1] Taylor R. H., Lavallee S., Burdea G., and Mosges R., 1996. Computer-Integrated Surgery,
Cambridge, Mass.: MIT Press.

[2] Taylor R. H., September 2006. A perspective on medical robotics. IEEE Proceedings, vol. 94,
pp. 1652–1664.

[3] Taylor R. H., and Joskowicz L., 2003. Computer-integrated surgery and medical robotics.
In Kutz M., Ed., Standard Handbook of Biomedical Engineering and Design, McGraw Hill,
pp. 29.23–29.45.

[4] Taylor R. H., and Stoianovici D., October 2003. Medical robotics in computer-integrated surgery,
IEEE Transactions on Robotics and Automation, vol. 19, pp. 765–781.

[5] Maintz J. B., and Viergever M. A., 1998. A survey of medical image registration, Medical Image
Analysis, vol. 2, pp. 1–37.

[6] Lavallee S., 1996. Registration for computer-integrated surgery: methodology, state of the art, in
Taylor R. H., Lavallee S., Burdea G., and Mosges R., Eds. Computer-Integrated Surgery, Cambridge,
Mass.: MIT Press, pp. 77–98.

[7] Besl P. J., and McKay N. D., 1992. A method for registration of 3-D shapes, IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 14, pp. 239–256.

[8] Maciunas R. J., 1993. Interactive Image-Guided Neurosurgery: American Association of Neuro-
logical Surgeons.

MEDICAL ROBOTICS AND COMPUTER-INTEGRATED INTERVENTIONAL 251

[9] DiGioia A., Jaramaz B., Picard F., and Nolte L. P., 2004. Computer and Robotic Assisted Knee and
Hip Surgery, Oxford Press.

[10] Stiehl J. B., Konerman W. H., and Haaker R. G., 2003. Navigation and Robotics in Total Joint and
Spine Surgery. Berlin: Springer.

[11] Metson R., Gliklich R. E., and Cosenza M., 1998. A comparison of image guidance systems for
sinus surgery, The Laryngoscope, vol. 108, pp. 1164–1170.

[12] Chassat F. L., S., 1998. Experimental protocol for accuracy evaluation of 6-d localizers for
computer-integrated surgery: application to four optical localizers. In Medical Image Computing
and Computer-Aided Interventions (MICCAI), Cambridge, Mass., pp. 277–284.

[13] Li Q., Zamorano L., Jiang Z., Gong J., Pandya A., Perez R., and Diaz F., 1999. Effect of optical
digitizer selection on the application accuracy of a surgical localization system. Comput Aided
Surg., vol. 4, pp. 314–321.

[14] Troccaz J., Peshkin M., and Davies B. L., 1997. The use of localizers, robots, and synergistic devices
in CAS. In Proc. First Joint Conference of CVRMed and MRCAS, Grenoble, France, pp. 727–729.

[15] Peshkin M. A., Colgate J. E., Wannasuphoprasit W., Moore C. A., Gillespie R. B., and Akella P.,
2001. Cobot architecture, IEEE Transactions on Robotics and Automation, vol. 17, pp. 377–390.

[16] Taylor, R. H., Paul H. A., Cutting C. B., Mittelstadt B., Hanson W., Kazanzides P., Musits B.,
Kim Y.-Y., Kalvin A., Haddad B., Khoramabadi D., and Larose D., 1992. Augmentation of Human
Precision in computer-integrated surgery. Innovation et Technologie en Biologie et Medicine, vol.
13, pp. 450–459.

[17] Davies B. L., Hibberd R. D., Timoney A. G., and Wickham J. E. A., 1996. A clinically applied robot
for prostatectomies. In Computer Integrated Surgery: Technology and Clinical Applications: MIT
Press, pp. 593–601.

[18] Taylor R. H., Funda J., Eldridge B., Gruben K., LaRose D., Gomory S., and Talamini M. D., Mark,
1996. A telerobotic assistant for laparoscopic surgery. In Taylor R., Lavallee S., Burdea G., and
Moesges R., Eds., Computer-Integrated Surgery, MIT Press, pp. 581–592.

[19] Stoianovici D., Whitcomb L., Anderson J., Taylor R., and Kavoussi L., 1998. A modular surgi-
cal robotic system for image-guided percutaneous procedures. In Medical Image Computing and
Computer-Assisted Interventions (MICCAI-98), Cambridge, Mass. pp. 404–410.

[20] Mitsuishi M., Watanabe T., Nakanishi H., Hori T., Watanabe H., and Kramer B., 1995. A telemi-
crosurgery system with colocated view and operation points and rotational-force-feedback-free
master manipulator. In Proc. 2nd Int. Symp. on Medical Robotics and Computer Assisted Surgery,
Baltimore, Md., pp. 111–118.

[21] DiMaio S., Fischer G., Haker S., Hata N., Iordachita I., Tempany C., and Fichtinger G., 2006.
Design of an prostate needle placement robot in MRI scanner. In IEEE International Conference
on Biomedical Robotics, Pisa, Italy.

[22] Krieger A., Fichtinger G., Metzger G., Atalar E., and Whitcomb L. L., 2006. A hybrid method for
6-DOF tracking of MRI-compatible robotic interventional devices. In IEEE International Confer-
ence on Robotics and Automation, Orlando, Florida.

[23] Chinzei K., Gassert R., and Burdet E., 2006. Workshop on MRI/fMRI compatible robot tech-
nology – a critical tool for neuroscience and image guided intervention. In IEEE Int. Conference
on Robotics and Automation, Orlando, Florida.

[24] Hempel E., Fischer H., Gumb L., Hohn T., Krause H., Voges U., Breitwieser H., Gutmann B.,
Durke J., Bock M., and Melzer A., 2003. An MRI-compatible surgical robot for precise radiological
interventions, Comput Aided Surg., vol. 8, pp. 180–191.

[25] Harada K., Tsubouchi K., Fujie M. G., and Chiba T., 2005. Micro manipulators for intrauterine fetal
surgery in an open MRI. In IEEE International Conference on Robotics and Automation (ICRA),
Barcelona, Spain, pp. 504–509.

252 R.H.TAYLOR AND P. KAZANZIDES

[26] Louw D. F., Fielding T., McBeth P. B., Gregoris D., Newhook P., and Sutherland G. R., 2004.
Surgical robotics: a review and neurosurgical prototype development. Neurosurgery, vol. 54,
pp. 525–537.

[27] Stoianovici D., Patriciu A., Doru Petrisor, Dumitru Mazilu, Muntener M., and Kavoussi L., 2006.
MRI-guided robot for prostate interventions. In Society for Minimally Invasive Therapy (SMIT)
18th Annual Converence, Pebble Beach.

[28] Davies B., 1996. A discussion of safety issues for medical robots. In Taylor R., Lavallee S.,
Burdea G., and Moesges R., Eds., Computer-Integrated Surgery, Cambridge, Mass.: MIT Press,
pp. 287–296.

[29] Picard F., Moody J., and DiGioia A., 2004. Clinical classification of CAOS systems in Computer
and Robotic Assisted Knee and Hip Surgery, Oxford University Press, pp. 43–48.

[30] Frets E. M., Strobe J. W., Hatch K. F., and Roberts D. W., 1989. A Frameless stereotaxic operating
microscope for neurosurgery. IEEE Transactions on Biomedical Engineering, vol. 36, pp. 608–617.

[31] Roberts D. W., Friets E. M., Strohbehn J. W., and Nakajima T., 1993. The sonic digitizing micro-
scope. In Maciunas R. J., Ed., Interactive Image-Guided Neurosurgery, USA, American Association
of Neurological Surgeons.

[32] King A. P., Edwards P. J., Maurer Jr. C. R., de Cunha D. A., Gaston R. P., Clarkson M., Hill
D. L. G., Hawkes D. J., Fenlon M. R., Strong A. J., Cox T. C. S., and Gleeson M. J., 2000. Stereo
augmented reality in the surgical microscope, Presence: Teleoperators and Virtual Environments,
vol. 9, pp. 360–368.

[33] Sasama T., Sugano N., Sato Y., Momoi Y., Koyama T., Nakajima Y., Sakuma I., Fujie M. G.,
Yonenobu K., Ochi T., and Tamura S., 2002. A novel laser guidance system for alignment of
linear surgical tools: its principles and performance evaluation as a man-machine system. In
5th International Conference on Medical Image Computing and Computer-Assisted Intervention,
pp. 125–132.

[34] Fischer G. S., Wamsley C., Zinreich S. J., and Fichtinger G., 2006. MRI guided needle insertion-
comparison of four techniques. In Annual Scientific Conference of the Society of Interventional
Radiology, Toronto, Canada.

[35] Uecker D. R., Lee C., Wang Y. F., and Wang Y., 1994. A speech-directed multi-modal man-machine
interface for robotically enhanced surgery. In First Int. Symp. on Medical Robotics and Computer
Assisted Surgery (MRCAS 94), Pittsburgh, pp. 176–183.

[36] Gupta P. K., 2001. A Method to Enhance Microsurgical Tactile Perception and Performance Through
the Use of Auditory Sensory Perception, Master of Science Thesis in M.S. in Engineering, The Johns
Hopkins University, Baltimore.

[37] Abovitz R. A., and Quaid A. E., 2001. The future use of networked haptic learning information
systems in computer-assisted surgery. In Proc. CAOS USA 2001, Pittsburgh, pp. 337–338.

[38] Gerovich O., Marayong P., and Okamura A. M., 2004. The effect of visual and haptic feedback on
computer-assisted needle insertion. Computer-Aided Surgery, vol. 9, pp. 243–249.

[39] OkamuraA. M., 2004. Methods for haptic feedback in teleoperated robot-assisted surgery. Industrial
Robot, vol. 31, pp. 499–508.

[40] Quaid A. E., and Abovitz R. A., 2002. Haptic information dispays for computer-assisted surgery.
In IEEE International Conference on Robotics and Automation, pp. 2092–2097.

[41] Akinbiyi T., Reiley C. E., Saha S., Burschka D., Hasser C. J., Yuh D. D., and Okamura A. M.,
2006. Dynamic augmented reality for sensory substitution in robot-assisted surgical systems. In
28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,
pp. 567–570.

[42] Blackwell M., Nikou C., DiGioia A. M., and Kanade T., 2000. An image overlay system for medical
data visualization. Medical Image Analysis, vol. 4, pp. 67–72.

MEDICAL ROBOTICS AND COMPUTER-INTEGRATED INTERVENTIONAL 253

[43] Fichtinger G., Degeut A., M. K., Balogh E., Fischer G., Mathieu H., Taylor R. H., Zinreich S., and
Fayad L. M., 2005. Image overlay guidance for needle insertion on CT scanner. IEEE Trans on
Biomedical Engineering, vol. 52, pp. 1415–1424.

[44] Fischer G. S., Deguet A., Fayad L. M., Zinreich S. J., Taylor R. H., and Fichtinger G., 2006.
Musculoskeletal needle placement with MRI image overlay guidance. In Annual Meeting of the
International Society for Computer Assisted Surgery, Montreal, Canada, pp. 158–160.

[45] Leven J., Burschka D., Kumar R., Zhang G., Blumenkranz S., Dai X., Awad M., Hager G. D.,
Marohn M., Choti M., Hasser C. J., and Taylor R. H., 2005. DaVinci canvas: a telerobotic surgical
system with integrated, robot-assisted, laparoscopic ultrasound capability. In MICCAI, pp. 811–818.

[46] Mettler L., Ibrahim M., and Jonat W., October 1998. One year of experience working with the
aid of a robotic assistant (the voice-controlled optic holder AESOP) in gynaecological endoscopic
surgery., Hum Reprod., vol. 13, pp. 2748–2750.

[47] Reichenspurner H., Demaino R., Mack M., Boehm D., Gulbins H., Detter C., Meiser B.,
Ellgass R., and Reichart B., 1999. Use of the voice controlled and computer-assisted surgical system
Zeus for endoscopic coronary artery surgery bypass grafting., J. Thoracic and Cardiovascular
Surgery, vol. 118.

[48] Sturges R., and Laowattana S., 1996. A voice-actuated, tendon-controlled device for endoscopy.
In Taylor R. H., Lavallee S., Burdea G., and Mosges R., Eds. Computer-Integrated Surgery,
Cambridge, Mass.: MIT Press.

[49] Confer R. G., and Bainbridge R. C., 1984. Voice control in the microsurgical suite. In Proc. of the
Voice I/O Systems Applications Conference ’84, Arlington, Va.,

[50] Nishikawa A., Hosoi T., Koara K., and Dohi T., October 2003. FAce MOUSE: a novel human-
machine interface for controlling the position of a laparoscope. IEEE Trans on Robotics and
Automation, vol. 19, pp. 818–824.

[51] Taylor R. H., Funda J., Eldridge B., Gruben K., LaRose D., Gomory S., Talamini M., MD,
Kavoussi L., MD, and Anderson J., 1995. A telerobotic assistant for laparoscopic surgery. In
IEEE EMBS Magazine Special Issue on Robotics in Surgery, pp. 279–291.

[52] Krupa A., Gangloff J., Doignon C., deMathelin M. F., Morel G., Leroy J., Soler L., and
Marescaux J., October 2003. Autonomous 3D positioning of surgical instruments in robotized
laparoscopic surgery using visual servoing. IEEE Trans on Robotics and Automation, vol. 19,
pp. 842–853.

[53] Fischer G., Akinbiyi T., Saha S., Zand J., Talamini M., Marohn M., and Taylor, R. H., 2006.
Ischemia and force sensing surgical instruments for augmenting available surgeon information.
In IEEE International Conference on Biomedical Robotics and Biomechatronics – BioRob 2006,
Pisa, Italy.

[54] Fischer G. S., Zand J., Marohn M., Akinbiyi T., Kanev K., Kuo J., Kazanzides P., and Taylor R. H.,
2005. Intraoperative ischemia sensing surgical instruments. In International Conference on Complex
Medical Engineering, Takamatsu, Japan.

[55] Fischer G., Saha S., Horwat J., Yu J., Zand J., Marohn M., Talamini M., and Taylor R. H.,
2005. An intra-operative system for relating ischemic damage to retraction forces. In BMES,
Baltimore, MD.

[56] Morimoto A., Foral R., Kuhlman J., Zucker K., Curet M., Bockalage T., MacFarlane T., and Kory
L., 1997. Force sensor for laparoscopic Babcock. In Medicine Meets Virtual Reality, pp. 354–361.

[57] BicchiA., Canepa G., Rossi D. D., Iacconi P., and Scilingo E., 1996.Asensorised minimally invasive
surgery tool for detecting tissutal elastic properties. In Proc. of the IEEE International Conference
on Robotics and Automation, pp. 884–888.

[58] Poulose B., Kutka M., Sagaon M. M., Barnes A., Yang C., Taylor R., and Talamini M.,
1998. Human versus robotic organ retraction during laparoscopic Nissen Fundoplication. In

254 R.H.TAYLOR AND P. KAZANZIDES

Medical Image Computing and Computer-Assisted Interventions (MICCAI-98), Cambridge, Mass.
pp. 197–206.

[59] Poulose P. K., Kutka M. F., Mendoza-Sagaon M., Barnes A. C., Yang C., Taylor R. H., and Talamini
M.A., 1999. Human vs robotic organ retraction during laparoscopic Nissen Fundoplication. Surgical
Endoscopy, vol. 13, pp. 461–465.

[60] Prasad S., Kitagawa M., Fischer G. S., Zand J., Talamini M. A., Taylor R. H., and Okamura
A. M., 2003. A modular 2-DOF force-sensing instrument for laparoscopic surgery. In Conference
on Medical Image Computing and Computer Assisted Intervention, Montreal, pp. 279–286.

[61] Gupta P., Jensen P, and de Juan E., 1999. Quantification of tactile sensation during retinal micro-
surgery. In MICCAI99: The Second International Conference on Medical Image Computing and
Computer-Assisted Intervention, Cambridge, England.

[62] Gupta P., Jensen P., and de Juan E., 1999. Surgical forces and tactile perception during retinal
microsurgery. In MICCAI, pp. 1218–1225.

[63] Rosen J., Brown J. D., Chang L., Barreca M., Sinanan M., and Hannaford B., 2002. The Blue-
DRAGON – a system for measuring the kinematics and the dynamics of minimally invasive surgical
tools in-vivo. In IEEE International Conference on Robotics and Automation, pp. 1876–1881.

[64] Rosen J., Hannaford B., MacFarlane M., and Sinanan M., 1999. Force controlled and teleoperated
endoscopic grasper for minimally invasive surgery – experimental performance evaluation. IEEE
Transactions on Biomedical Engineering, vol. 46, pp. 1212–1221.

[65] Menciassi A., Eisinberg A., Carrozza M. C., and Dario P., 2003. Force sensing microinstrument for
measuring tissue properties and pulse in microsurgery. IEEE/ASME Transactions on Mechatronics,
vol. 8, pp. 10–17.

[66] Berkelman P. J., Whitcomb L., Taylor R., and Jensen P., October 2003. A miniature microsurgical
instrument tip force sensor for enhanced force feedback during robot-assisted manipulation. IEEE
T. Robotics and Automation, vol. 19, pp. 917–922.

[67] Rothbaum D. L., Roy J., Berkelman P., Hager G., Stoianovici D., Taylor R. H., Whitcomb L. L.,
Howard Francis M., and Niparko J. K., November 2002. Robot-assisted stapedotomy: micropick
fenestration of the stapes footplate, Otolaryngology – Head and Neck Surgery, vol. 127, pp. 417–426.

[68] Howe R. D., Peine W. J., Kontarinis D. A., and Son J. S., 1995. Remote palpation technology. IEEE
Engineering in Medicine and Biology, vol. 14, pp. 318–323.

[69] Beasly R., and Howe R., 2002. Tactile tracking of arteries in robotic surgery. In IEEE International
Conference on Robotics and Automation, pp. 3801–3806.

[70] Ottensmeyer M. P., and Salisbury J. K., 2001. In vivo data acquisition instrument for solid organ
mechanical property measurement. Proceedings of the Medical Image Computing and Computer-
Assisted Intervention 4th International Conference, pp. 975–982.

[71] Brouwer I., Ustin J., Bentley L., Sherman A., Dhruv N., and Tendick F., 2001. Measuring in vivo
animal soft tissue properties for haptic modeling in surgical simulation. In Medicine Meets Virtual
Reality, Westwood J. D., Ed., IOS Press, Amsterdam, pp. 69–74.

[72] Solomon S. B., Patriciu A., Bohlman M. E., Kavoussi L. R., and Stoianovici D., 2002. Robotically
driven interventions: a method of using CT fluoroscopy without radiation exposure to the physician.
Radiology, vol. 225, pp. 277–282.

[73] Patriciu A., Solomon S., Kavoussi L. R., and Stoianovici D., 2001. Robotic kidney and spine
percutaneous procedures using a new laser-based CT registration method. In Proceedings to
Medical Image Computing and Computer-Assisted Intervention, pp. 249–257.

[74] Lozano-Pérez T., July 1983. Robot programming. Proceedings of the IEEE, vol. 71.
[75] Kazanzides P., Deguet A., Kapoor A., Sadowsky O., LaMora A., and Taylor R., 2005.

Development of open source software for computer-assisted intervention systems. In

MEDICAL ROBOTICS AND COMPUTER-INTEGRATED INTERVENTIONAL 255

ISC/NAMIC/MICCAI Workshop on Open-Source Software (also available online at Insight Journal,
http://hdl.handle.net/1926/46), Palm Springs, CA.

[76] Kapoor A., Deguet A., and Kazanzides P., 2006. Software components and frameworks for medical
robot control. In Proc. IEEE Intl. Conf. on Robotics and Automation, pp. 3813–3818.

[77] Kazanzides P., DiMaio S., Cleary K., Fichtinger G., and Taylor R., 2006. System architecture and
toolkits for image-guided intervention systems. In Medicine Meets Virtual Reality 14, Long Beach,
California.

[78] Maurer C., Fitzpatrick J., Wang M., Galloway R., Maciunas R., and Allen G., 1997. Registration
of head volume images using implantable fiducial markers. IEEE Trans. on Medical Imaging,
vol. 16, pp. 447–462.

[79] Levensen N. G., and Turner C. S., 1993. An investigation of the Therac-25 accidents. Computer,
vol. 26, pp. 18–41.

[80] McDermott R. E., Mikulak R. J., and Beauregard M. R., 1996. The Basics of FMEA: Quality
Resources.

[81] Pott P., Scharf H., and Schwarz M., March 2005. Today’s state of the art in surgical robotics.
Computer Aided Surgery, vol. 10, pp. 101–132.

[82] Mittelstadt B., Kazanzides P., Zuhars J., Williamson B., Cain P., Smith F., and Bargar W.,
1996. The evolution of a surgical robot from prototype to human clinical use. In Taylor R. H.,
Lavallee S., Burdea G., and Mosges R., Eds., Computer-Integrated Surgery, Cambridge, Mass.:
MIT Press, pp. 397–407.

[83] Taylor R. H., Paul H. A., Kazanzides P., Mittelstadt B. D., Hanson W., Zuhars J. F., Williamson
B., Musits B. L., Glassman E., and Bargar W. L., 1994. An image-directed robotic system
for precise orthopaedic surgery. IEEE Transactions on Robotics and Automation, vol. 10,
pp. 261–275.

[84] Garbini J. L., Kaiura R. G., Sidles J. A., Larson R. V., and Matson F. A., 1987. Robotic instru-
mentation in total knee arthroplasty. In Proc. 33rd Annual Meeting, Orthopaedic Research Society,
San Francisco, p. 413.

[85] Jakopec M., Harris S. J., Baena F. R. Y., Gomes P., Cobb J., and Davies B. L., 2001. The first
clinical application of a hands-on robotic knee surgery system. Computer Aided Surgery, vol. 6,
pp. 329–339.

[86] Kwon D. S., Lee J. J., Yoon Y. S., Ko S. Y., Kim J., Chung J. H., Won C. H., and Kim J. H.,
2002. The mechanism and the registration method of a surgical robot for hip arthroplasty. In IEEE
International Conference on Robotics and Automation, pp. 1889–2949.

[87] Sugita N. M. N., Warisawa S., Mitsuishi M., Fujiwara K., Abe N., Inoue T., Kuramoto K.,
Nakashima Y., Tanimoto K., Suzuki M., Moriya H., and Hashizume H., 2006. Development of a
computer-integrated minimally invasive surgical system for knee arthroplasty. In IEEE/RAS-EMBS
International Conference Biomedical Robotics and Biomechatronics.

[88] Marcacci S., Dario P., Fadda M., Marcenaro G., and Martelli S., 1996. Computer-assisted knee
arthroplasty. In Taylor R. H., Lavallee S., Burdea G., and Mosges R., Eds., Computer-Integrated
Surgery, Cambridge, Mass.: MIT Press, pp. 417–423.

[89] Siebert W., and Mai S., 2001. One year clinical experience using the robot system CASPAR for
TKR. In Proc. CAOS USA 2001, Pittsburgh, pp. 141–142.

[90] Bargar W., DiGioia A., Turner R., Taylor J., McCarthy J., and Mears D., 1995. Robodoc multi-
center trial: an interim report. In Proc. 2nd Int. Symp. on Medical Robotics and Computer Assisted
Surgery, Baltimore, Md., pp. 208–214.

[91] Skibbe H., Börner M., Wiesel U., and Lahmer A., 1999. Revision THR using the ROBODOC
system. In CAOS/USA ’99, Pittsburgh, Pennsylvania, USA, pp. 110–111.

256 R.H.TAYLOR AND P. KAZANZIDES

[92] Wiesel U., Lahmer A., Tenbusch M., and Börner M., 2001. Total knee replacement using the
Robodoc system. In Proc. First Annual Meeting of CAOS International, Davos, p. 88.

[93] Paul H., Bargar W., Mittelstadt B., Musits B., Taylor R., Kazanzides P., et al., December 1992.
Development of a surgical robot for cementless total hip arthroplasty. Clinical Orthopaedics and
Related Research, vol. 285, pp. 57–66.

[94] Kazanzides P., Mittelstadt B. D., Musits B. L., Bargar W. L., Zuhars J. F., et al., 1995. An inte-
grated system for cementless hip replacement. IEEE Engineering in Medicine and Biology, vol. 14,
pp. 307–313.

[95] Cohan S., 2001. ROBODOC achieves pinless registration. Industrial Robot, vol. 28, pp. 381–386.
[96] Zuhars J., and Hsia T., 1995. Nonhomogeneous material milling using a robot manipulator with force

controlled velocity. In IEEE Intl. Conf. on Robotics and Automation, Nagoya, Japan, pp. 1461–1467.
[97] Kwoh Y. S., Hou J., Jonckheere E. A., and Hayati S., 1988. A robot with improved absolute

positioning accuracy for CT guided stereotactic brain surgery. IEEE Transactions on Biomedical
Engineering, vol. 35, pp. 153–160.

[98] Benabid A. L., Cinquin P., Lavalle S., Le Bas J. F., Demongeot J., and de Rougemont J., 1987.
Computer-driven robot for stereotactic surgery connected to CT scan and magnetic resonance
imaging. Technological design and preliminary results. Appl. Neurophysiol, vol. 50, pp. 153–154.

[99] Masamune K., Kobayashi E., Masutani Y., Suzuki M., Dohi T., Iseki H., and Takakura K., 1995.
Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery.
Journal of Image Guided Surgery, vol. 1, pp. 242–248.

[100] Li Q., Zamorano L., Pandya A., Perez R., Gong J., and Diaz F., 2002. The application accuracy of
the NeuroMate robot–A quantitative comparison with frameless and frame-based surgical localiza-
tion systems. Computer Assisted Surgery, vol. 7, pp. 90–98.

[101] Masamune K., Fichtinger G., Patriciu A., Susil R. C., Taylor R. H., Kavoussi L. R.,
Anderson J. H., Sakuma I., Dohi T., and Stoianovici D., 2001. System for robotically assisted percu-
taneous procedures with computed tomography guidance. Journal of Computer Assisted Surgery,
vol. 6, pp. 370–383.

[102] Jain A., Mustufa T., Zhou Y., Burdette E., Chirikjian G., and F. G, 2005. Robust fluoroscope
tracking fiducial. Med Phys., vol. 32, pp. 3185–3198.

[103] Susil R. C., Ménard C., Krieger A., Coleman J. A., Camphausen K., Choyke P., Ullman K.,
Smith S., Fichtinger G., Whitcomb L. L., Coleman N., and Atalar E., January 2006. Transrectal
prostate biopsy and fiducial marker placement in a standard 1.5T MRI scanner. J. Urol., vol. 175,
pp. 113–120.

[104] Chinzei K., Kikinis R., and Jolesz F. A., 1999. MR compatibility of mechatronic devices: design
criteria. In Second International Conference on Medical Image Computing and Computer-Assisted
Intervention, pp. 1020–1030.

[105] Watanabe E., Watanabe T., and Manka S., et. al., 1987. Three-dimensional digitizer (neuronaviga-
tor): new equipment for computed tomography-guided stereotaxic surgery, Surg. Neurol., vol. 27,
pp. 543–547.

[106] Adams L., Knepper A., Krybus W., Meyer-Ebrecht D., Pfeifer G., Ruger R., and Witte M., 1992.
Orientation aid for head and neck surgeons. Innovation et Technologie en Biologie et Medicine,
vol. 14, pp. 409–424.

[107] VanderKolk C., Zinreich S., Carson B., Bryan N., and Manson P., 1992. An interactive 3D-CT
surgical localizer for craniofacial surgery. In Craniofacial Surgery, Bologna, Italy, p. 25.

[108] Cutting C. B., Bookstein F. L., and Taylor R. H., 1996. Applications of simulation, morphometrics
and robotics in craniofacial surgery. In Taylor R. H., Lavallee S., Burdea G., and Mosges R., Eds.,
Computer-Integrated Surgery, Cambridge, Mass.: MIT Press, pp. 641–662.

MEDICAL ROBOTICS AND COMPUTER-INTEGRATED INTERVENTIONAL 257

[109] Schenker P. S., Das H. O., and Timothy R., 1995. Development of a new high-dexterity manipulator
for robot-assisted microsurgery. In Proceedings of SPIE – The International Society for Optical
Engineering: Telemanipulator and Telepresence Technologies, Boston, MA, pp. 191–198.

[110] Cavusoglu M. C., Williams W., Tendick F., and Sastry S., January 2003. Robotics for Telesurgery:
Second Generation Berkeley/UCSF Laparoscopic telesurgical workstation and looking towards the
future applications. Industrial Robot, vol. 30, pp. 22–29.

[111] Salcudean S. E., Ku S., and Bell G., 1997. Performance measurement in scaled teleoperation
for microsurgery. In Proc. First Joint Conference of CVRMed and MRCAS, Grenoble, France,
pp. 789–798.

[112] Ikuta K., Hasegawa T., and Daifu S., 2003. Hyper redundant miniature manipulator ‘hyper finger’
for remote minimally invasive surgery in deep area, in IEEE Conference on Robotics and
Automation, Taiwan, pp. 1098–1102.

[113] Hongo K., Kobayashi S., Kakizawa Y., Koyama J.-I., Goto T., Okudera H., Kan K., Fujie M. G.,
Iseki H., and Takakura K., October 2002. NeuRobot: telecontrolled micromanipulator system for
minimally invasive microneurosurgery – preliminary results. Neurosurgery, vol. 51, pp. 985–988.

[114] Kanade T., Davies B., and Riviere C., 2006. Special issue on medical robotics. IEEE Proceedings,
vol. 94.

[115] Guthart G. S., and Salisbury J. K., 2000. The intuitive telesurgery system: overview and application.
In Proc. of the IEEE International Conference on Robotics and Automation (ICRA2000), San
Francisco, pp. 618–621.

[116] Marescaux J., and Rubino F., 2003. The ZEUS robotic system: experimental and clinical
applications, Surg. Clin. North Amer., vol. 83, pp. 1305–1315.

[117] Taylor R., Jensen P., Whitcomb L., Barnes A., Kumar R., Stoianovici D., Gupta P., Wang Z.,
deJuan E., and Kavoussi L., 1999. A steady-hand robotic system for microsurgical augmentation.
International Journal of Robotics Research, vol. 18.

[118] Gomez-Blanco M. A., Riviere C. N., and Khosla P. K., 2000. Intraoperative tremor monitoring for
vitreoretinal microsurgery. In Proc. Medicine Meets Virtual Reality 8, pp. 99–101.

[119] Kapoor A., Kumar R., and Taylor R., 2003. Simple biomanipulation tasks with a ‘steady hand’
cooperative manipulator. In Proceedings of the Sixth International Conference on Medical Image
Computing and Computer Assisted Intervention – MICCAI 2003, Montreal, pp. 141–148.

[120] Iordachita I., KapoorA., Mitchell B., Kazanzides P., Hager G., Handa J., and Taylor R., 2006. Steady-
hand manipulator for retinal surgery. In MICCAI Workshop on Medical Robotics, Copenhagen,
pp. 66–73.

[121] Ikuta K., Yamamoto K., and Sasaki K., 2003. Development of remote microsurgery robot and new
surgical procedure for deep and narrow space. In IEEE Conference on Robotics and Automation,
Taiwan, pp. 1103–1108.

[122] Suzuki N., Hayashibe M., and Hattori A., 2005. Development of a downsized master-slave surgical
robot system for intragastic surgery. In ICRA Surgical Robotics Workshop, Barcelona, Spain.

[123] Ikuta K., Ichikawa H., Suzuki K., and Yajima D., 2006. Multi-degree of freedom hydraulic pressure
driven safety active catheter. In Proceedings of the 2006 IEEE International Conference on Robotics
and Automation, Orlando, Florida, pp. 4161–4166.

[124] Ascari L., Stefanini C., Menciassi A., Sahoo S., Rabischong P., and Dario P., 2003. A new active
microendoscope for exploring the sub-arachnoid space in the spinal cord. In IEEE Conference on
Robotics and Automation, pp. 2657–2662.

[125] Grundfest S. W., Burdick J. W., and Slatkin A. B., 1995. The development of a robotic
endoscope. In IEEE International Conference on Robotics and Automation, Nagoya, Japan,
pp. 162–171.

258 R.H.TAYLOR AND P. KAZANZIDES

[126] Stefanini C., Menciassi A., and Dario P., May-June 2006. Modeling and experiments on a legged
microrobot locomoting in a tubular, compliant and slippery environment. International Journal of
Robotics Research, vol. 25, pp. 551–560.

[127] Patronik N., Riviere C., Qarra S. E., and Zenati M. A., 2005. The HeartLander: a novel epicardial
crawling robot for myocardial injections. In Proceedings of the 19th International Congress of
Computer Assisted Radiology and Surgery, pp. 735–739.

[128] Simaan N., Taylor R., and Flint P., 2004. High dexterity snake-like robotic slaves for minimally
invasive telesurgery of the throat. In Int. Symp. on Medical Image Computing and Computer-Assisted
Interventions, pp. 17–24.

[129] Simaan N., Taylor R., Hillel A., and Flint P., 2007. Minimally invasive surgery of the upper
airways: addressing the challenges of dexterity enhancement in confined spaces. In R. Faust,
Ed., Robotics in Surgery – History, Current and Future Applications, Nova Science Publishing,
pp. 261–280.

[130] Goradia T. M., Taylor R. H., andAuer L. M., 1997. Robot-assisted minimally invasive neurosurgical
procedures: first experimental experience. In Proc. First Joint Conference of CVRMed and MRCAS,
Grenoble, France, pp. 319–322.

[131] Taylor R., Jensen P., Whitcomb L., Barnes A., Kumar R., Stoianovici D., Gupta P., Wang Z. X.,
deJuan E., and Kavoussi L., 1999. Steady-hand robotic system for microsurgical augmentation,
International Journal of Robotics Research, vol. 18, pp. 1201–1210.

[132] Riviere C. V., Rader R. S., and Thakor N. V., 1995. Adaptive real-time cancelling of physiological
tremor for microsurgery. In Proc. 2nd Int. Symp. on Medical Robotics and Computer Assisted
Surgery (MRCAS), Baltimore, Md.

[133] Ang W. T., and Riviere C. N., 2001. Neural network methods for error canceling in human-machine
manipulation. In 22nd Annu. Conf. IEEE Eng. Med. Biol. Soc, Istanbul, pp. 3462–3465.

[134] Xu S., Fichtinger G., Taylor R. H., and Cleary K., 2004. 3D motion tracking of pulmonary lesions
using CT fluoroscopy images for robotically assisted lung biopsy. In SPIE International Society of
Optical Engineering, pp. 394–402.

[135] Shoham M., Burman M., Zehavi E., Joskowicz L., Batkilin E., and KunicherY., 2003. Bone-mounted
miniature robot for surgical procedures: concept and clinical applications. IEEE Transactions on
Robotics and Automation, vol. 19, pp. 893–901.

[136] Plaskos C., Cinquin P., Lavallee S., and Hodgson A. J., December 2005. Praxiteles: a miniature
bone-mounted robot for minimal access total knee arthroplasty, Int. J. of Medical Robotics and
Computer Assisted Surgery, vol. 1, pp. 67–79.

[137] McEwen J. A., Bussani C. R., Auchinleck G. F., and Breault M. J., 1989. Development and ini-
tial clinical evaluation of pre-robotic and robotic retraction systems for surgery. In Proc. Second
Workshop on Medical and Health Care Robotics, Newcastle-onTyne, pp. 91–101.

[138] Kochan A., 2005. Scalpel please, robot: Penelope’s debut in the operating room. Industrial Robot,
vol. 32, pp. 449–451.

[139] Miyawaki F., Masamune K., Suzuki S., Yoshimitsu K., and Vain J., 2005. Scrub nurse robot system-
intraoperative motion analysis of a scrub nurse and timed-automata-based model for surgery. IEEE
Transactions on Industrial Electronics, vol. 52, pp. 1227–1235.

[140] Begin E., Gagner M., and Hurteau R., 1995. A robotic camera for laparoscopic surgery: conception
and experimental results. Surgical Laparoscopy & Endoscopy, vol. 5.

[141] Sackier J. M., and Wang Y., January 1994. Robotically assisted laparoscopic surgery, from concept
to development. Surg Endosc, vol. 8, pp. 63–66.

[142] Satava R., 1992. Robotics, telepresence, and virtual reality: a critical analysis of the future of surgery.
Minimally Invasive Therapy, vol. 1, pp. 357–363.

MEDICAL ROBOTICS AND COMPUTER-INTEGRATED INTERVENTIONAL 259

[143] Satava R., 1995. Virtual reality, telesurgery, and the new world order of medicine. Journal of
Image-Guided Surgery, vol. 1, pp. 12–16.

[144] Green P., Satava R., Hill J., and Simon I., 1992. Telepresence: advanced teleoperator technology of
minimally invasive surgery (abstract), Surgical Endoscopy, vol. 6.

[145] Mitsuishi M., Warisawa S. I., Tsuda T., Higuchi T., Koizumi N., Hashizume H., and Fujiwara K.,
2001. Remote ultrasound diagnostic system. In Proc. IEEE Conf. on Robotics and Automation,
Seoul, pp. 1567–1574.

[146] Cunha D. D., Gravez P., Leroy C., Maillard E., Jouan J., Varley P., Jones M., Halliwell M.,
Hawkes D., Wells P. N. T., and Angelini L., 1998. The MIDSTEP system for ultrasound guided
remote telesurgery, In IEEE EMBS, pp. 1266–1269.

[147] Lee B. R., Stoianovici D., Bishoff J. T., Micali S., Micali F., Bauer J., Whitcomb L. L., Taylor R. H.,
and Kavoussi L. R., 1999. TELEPAKY: a new robotic system for active remote telesurgery. The
Lancet.

[148] Bauer J., Lee B. R., Stoianovici D., Bishoff J. T., Micali S., Micali F., and Kavoussi L. R., Winter
2001. Remote percutaneous renal access using a new automated telesurgical robotic system. Telemed
J E Health, vol. 7, pp. 341–346.

[149] Frimberger D., Kavoussi L. R., Stoianovici D., Adam C., Zaak D., Corvin S., Hofstetter A., and
Oberneder R., 2002. Telerobotische Chirurgie zwischen Baltimore und München, Der Urologe [A],
vol. 41, pp. 489–492.

[150] Marescaux J., Leroy J., Gagner M., Rubino F., Mutter D., Vix M., Butner S. E., and Smith M. K.,
September 27 2001. Transatlantic robot-assisted telesurgery. Nature, vol. 413, pp. 379–380.

[151] Anvari M., Broderick T., Stein H., Chapman T., Ghodoussi M., Birch D. W., Mckinley C.,
Trudeau P., Dutta S., and Goldsmith C. H., March 2005. The impact of latency on surgical precision
and task completion during robotic-assisted remote telepresence surgery. Comput Aided Surg, vol.
10, pp. 93–99.

[152] Dotto L., 2006. Application – revolutionary telemedicine techniques, Summary online article about
Anvari’s remote telesurgery work.

[153] Kavoussi L., Moore R., PartinA., Bender J., Venilman M., and Satava R., 1994. Telerobotic-assisted
laparoscopic surgery: initial laboratory and clinical experience. Urology, vol. 44, pp. 15–19.

[154] Hanly E., Miller B., Kumar R., Hasser C., Coste-Maniere E., Talamini M., Aurora A.,
Schenkman N., and Marohn M., 2006. Mentoring console improves collaboration and teaching
in surgical robotics. J. Laparoendosc Adv. Surg. Tech., vol. 16, pp. 445–451.

[155] Herman B., Hanly E., Schenkman N., Taylor R., Talamini M., and Marohn M., 2005. Telerobotic
surgery creates opportunity for augmented reality surgery. Telemedicine Journal and e-Health,
vol. 11, p. 203.

[156] Rosenberg L. B., 1993. Virtual Fixtures: Perceptual tools for telerobotic manipulation. Proceedings
of IEEE Virtual Reality International Symposium, pp. 76–82.

[157] Park S., Howe R. D., and Torchiana D. F., 2001. Virtual fixtures for robotic cardiac surgery, Fourth
International Conference on Medical Image Computing and Computer-Assisted Intervention.

[158] Li M., and Okamura A. M., 2003. Recognition of operator motions for real-time assistance using
virtual fixtures. In 11th International Symposium on Haptic Interfaces for Virtual Environment and
Teleoperator Systems, pp. 125–131.

[159] Marayong P., Bettini A., and Okamura A., 2002. Effect of Virtual Fixture Compliance on Human-
Machine Cooperative Manipulation. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 1089–1095.

[160] Li M. and Taylor R. H., 2004. Spatial Motion Constraints in Medical Robots Using Virtual Fixtures
Generated by Anatomy. In IEEE Conf. on Robotics and Automation, New Orleans, pp. 1270–1275.

260 R.H.TAYLOR AND P. KAZANZIDES

[161] Lin H. C., Shafran I., Murphy T. E., Okamura A. M., Yuh D. D., and Hager G. D., 2005. Automatic
detection and segmentation of robot-assisted surgical motions. In MICCAI, pp. 802–810.

[162] Mayer H., Nagy I., and Knoll A., 2003. Skill transfer and learning by demonstration in a realis-
tic scenario of laparoscopic surgery. In IEEE International Conference on Humanoids, Munich,
Germany.

[163] Kragic D., Marayong P., Li M., Okamura A. M., and Hager G. D., 2003. Human-machine
collaborative systems for microsurgical applications. In International Symposium on Robotics
Research.

[164] Li M., Ishii M., and Taylor R. H., 2007. Spatial motion constraints in medical robot using virtual
fixtures generated by anatomy. IEEE Transactions on Robotics, vol. 23, pp. 4–19.

[165] Kapoor A., Li M., and Taylor R. H., 2006. Constrained control for surgical assistant robots. In
IEEE Int. Conference on Robotics and Automation, Orlando, pp. 231–236.

[166] Taylor R. H., Lavallee S., Burdea G. C., and Mosges R., 1996. Computer integrated surgery,
MIT Press.

[167] Faust R., 2007. Robotics in Surgery – History, Current and Future Applications: Nova Science
Publishing.

[168] Taylor R. H., Troccaz J., and Dario P., 2003. Special issue on medical robotics. IEEE Transactions
on Robotics and Automation, vol. 19.

Author Index

Numbers in italics indicate the pages on which complete references are given.

A

Abdel-Hamid, T.K., 20, 49
Abdurazik, A., 63, 75, 78, 95, 96
Abe, N., 96, 237, 255
Abovitz, R.A., 229, 252
Acquisti, A., 210, 215
Adam, C., 248, 259
Adams, L., 243, 256
Adrion, W.R., 20, 49
Agarwal, R., 21, 50
Akella, P., 251
Akinbiyi, T., 229, 231, 247, 252, 253
Akiyama, F., 27, 52
Alavi, M., 21, 50
Albin, J.L., 27, 52
Albrecht, A.J., 24, 51
Allen, G., 235, 255
Alpert, S.R., 18, 48
Ambler, S.W., 43, 55
Amey, W.W., 20, 49
Anderson, A., 23, 35, 51
Anderson, J.H., 227, 229, 241, 248,

251, 253, 256
Anderson, R.M., 16, 47
Andrews, A., 58–62, 84, 85, 88, 94, 95,

95–97
Ang, W.T., 247, 258
Angelini, L., 248, 259
Anvari, M., 248, 259
Arango, G., 22, 51
Arthur, L.J., 26, 52
Ascari, L., 245, 257
Atalar, E., 227, 242, 251, 256

Auchinleck, G.F., 248, 258
Auer, L.M., 247, 258
Aurora, A., 248, 259
Awad, M., 230, 253
Azuma, M., 26, 52

B

Bachman, C.W., 13, 46
Badrinath, B.R., 115, 118, 158
Baena, F.R.Y., 237, 239, 247, 255
Bailey, J.E., 29, 54
Bainbridge, R.C., 229, 253
Baker, F.T., 19, 49
Balcer, M.J., 84, 96
Balogh, E., 230, 253
Balsamo, S., 94, 95
Banker, R.D., 20, 49
Bargar, W., 237–240, 247, 248, 255, 256
Barnes, A., 230, 247, 253, 254, 257, 258
Barnes, S.J., 30, 54, 55
Baroudi, J.J., 54
Barreca, M., 230, 254
Basili, V.R., 17, 24, 27, 48, 51
Basin, D., 94, 95, 96
Batkilin, E., 248, 258
Bauer, F.L., 18, 48
Bauer, J., 248, 259
Beasly, R., 230, 254
Beattie, R., 23, 35, 51
Beauregard, M.R., 236, 255
Bechtolsheim, A., 17, 47
Beck, K., 22, 35, 51
Begin, E., 248, 258

261

262 AUTHOR INDEX

Bel, P.J., 224
Bell, G., 243, 257
Belz, F.C., 48
Benabid, A.L., 241, 256
Bender, J., 248, 259
Bentley, L., 230, 254
Berkelman, P.J., 230, 247, 254
Bernardi, S., 94, 95
Besl, P.J., 250
Bettini, A., 249, 259
Bharadwaj, S., 175, 216
Bicchi, A., 230, 253
Bieman, J.M., 94, 97
Bilodeau, A., 27, 52
Binder, R., 91, 95
Birch, D.W., 248, 259
Bishoff, J.T., 248, 259
Blackwell, M., 230, 252
Blanchard, C., 193, 215
Blumenkranz, S., 230, 253
Bock, M., 227, 251
Bockalage, T., 230, 253
Boehm, B.W., 16, 18, 26, 47, 48, 52
Boehm, D., 229, 253
Bohling, J., 59, 82, 85, 96
Bohlman, M.E., 232, 254
Bolsky, M.I., 26, 52
Booch, G., 19, 48, 58, 95, 97
Bookstein, F.L., 243, 256
Borck, J., 7, 46
Borner, M., 237, 255, 256
Bornhövd, C., 196, 215
Bostrom, R.P., 54
Braganza, C., 59, 61, 96
Branstad, M.A., 20, 49
Bratman, H., 19, 49
Breault, M.J., 248, 258
Breitwieser, H., 227, 251
Briand, L.C., 59, 66, 67, 78, 95
Broderick, T., 248, 259
Brooks, W.D., 27, 52
Brouwer, I., 230, 254
Brown, J.D., 230, 254
Brown, J.R., 19, 26, 49, 52
Brown, S.A., 167, 215
Bryan, N., 243, 256
Bryant, D., 23, 35, 51
Burdea, G.C., 222, 250, 250, 260

Burdet, E., 227, 251
Burdette, E., 241, 256
Burdick, J.W., 246, 257
Burgess, A., 5, 45
Burlingame, S., 193, 215
Burman, M., 248, 258
Burschka, D., 229, 230, 252, 253
Bussani, C.R., 248, 258
Butner, S.E., 259

C

Cain, P., 237, 255
Campbell-Kelly, M., 7, 46
Camphausen, K., 242, 256
Campos, J., 94, 96
Caneel, R., 193, 215
Canepa, G., 230, 253
Canevet, C., 94, 95
Card, D.N., 28, 53
Cardenas, A.F., 13, 47
Carlson, B., 5, 45
Carrozza, M.C., 230, 254
Carson, B., 243, 256
Caswell, R.B., 26, 52
Cavano, J.P., 26, 52
Cave, W.C., 18, 48
Cavusoglu, M.C., 243, 257
Cerf, V.G., 7, 8, 46
Chamberlain, J., 193, 215
Chandramohan, S., 193, 215
Chang, L., 230, 254
Chapman, T., 248, 259
Chase, R.P., 19, 49
Chassat, F.L.S., 225, 251
Chen, H., 193, 215
Chen, P., 193, 215
Chen, Q., 30, 54
Chen, Y., 6, 45
Cherniavsky, J.C., 20, 49
Chiba, T., 227, 243, 245, 251
Chinzei, K., 227, 242, 251, 256
Chirikjian, G., 241, 256
Cho, N., 30, 55
Choti, M., 230, 253
Chou, P.B., 193, 215
Choyke, P., 242, 256
Chu, C.-C., 195, 216

AUTHOR INDEX 263

Chung, J.H., 237, 248, 255
Cinquin, P., 241, 248, 256, 258
Clark, D.D., 7, 8, 46
Clarke, E.M., 17, 47
Clarkson, M., 229, 252
Cleary, K., 233, 247, 255, 258
Cobb, J., 237, 239, 247, 255
Cockburn, A., 23, 51
Codd, E.F., 13, 47
Cohan, S., 240, 256
Cohen, S., 22, 50
Coleman, J.A., 242, 256
Coleman, N., 242, 256
Colgate, J.E., 226, 251
Confer, R.G., 229, 253
Constantine, L.L., 17, 47
Conte, S.D., 24, 26–28, 51
Corsten, D.S., 175, 216
Cortellessa, V., 94, 95
Corvin, S., 248, 259
Cosenza, M., 225, 243, 251
Coste-Maniere, E., 248, 259
Court, T., 19, 49
Coutinho, J.S., 28, 53
Cox, T.C.S., 229, 252
Craig, G., 59–62, 95
Crosby, P.B., 20, 49
Cui, J., 58, 78, 95
Cunha, D.D., 248, 259
Curet, M., 230, 253
Curty, J.P., 184, 185, 215
Cusumano, M.A., 7, 22, 33, 34, 45, 55
Cutting, C.B., 226, 243, 251, 256
Czerwinski, S.E., 142, 145, 158

D

Dahl, O.J., 18, 48
Dahlman, E., 72, 73, 97
Dai, X., 253
Dai, Z., 230
Daifu, S., 243, 246, 257
D’Ambrogio, A., 94, 96
Dario, P., 230, 237, 245, 246, 250,

254, 255, 257, 258, 260
Das, H.O., 243, 257
Davies, B.L., 226, 227, 237, 239, 243,

247, 250, 251, 252, 255, 257

Davis, J.L., 176, 216
Day, F.W., 20, 49
de Cunha, D.A., 229, 252
de Juan, E., 230, 254
de Rougemont, J., 241, 256
DeArment, M., 23, 35, 51
Declercq, M., 184, 215
Deguet, A., 230, 233, 253–255
Dehollain, C., 184, 215
deJuan, E., 247, 257, 258
Demaino, R., 229, 253
DeMaio, D., 227
deMathelin, M.F., 229, 248, 253
Demongeot, J., 241, 256
Denning, J., 6, 45
Detter, C., 229, 253
Dhruv, N., 230, 254
Di Marco, A., 94, 95
Diaz, F., 225, 241, 251, 256
Dietz, D.N., 32, 55
DiGioia, A., 225, 228, 230, 237, 243,

251, 252, 255
Dijkstra, E.W., 17, 47
DiMaio, S., 251, 255
Dios, R., 6, 45
Dodd, G.G., 13, 46
Dohi, T., 229, 241, 253, 256
Doignon, C., 229, 248, 253
Dolk, D.R., 13, 46
Doll, W.J., 29, 54
Donatelli, S., 94, 95
Donthu, N., 30, 55
Doser, J., 94, 95, 96
Dotto, L., 248, 259
Doukidis, G., 178, 203, 216
Dowson, M., 19, 49
Dreze, X., 29, 54
D’Souza, D.F., 22, 50
Dübendorfer, T., 195, 216
Dunn, O.E., 16, 47
Dunne, H., 211, 215
Dunsmore, H.E., 24, 26–28, 51–53
Duri, S., 193, 215
Durke, J., 227, 251
Dutta, S., 248, 259
Dzida, W., 52

264 AUTHOR INDEX

E

Edwards, P.J., 229, 252
Edwards, S.H., 22, 50
Eisinberg, A., 230, 254
Eldridge, B., 227, 229, 248, 251, 253
Ellgass, R., 229, 253
Elliott, J.G., 193, 215
Ellis, G.H., 24, 46
Ellis, J.R., 17, 48
Elshoff, J.L., 28, 52

F

Fadda, M., 237, 255
Fagan, M.E., 18, 48
Fano, A.E., 205, 215
Faust, R., 250, 260
Fayad, L.M., 230, 253
Felsing, J.M., 23, 36, 51
Fenlon, M.R., 229, 252
Ferguson, P.A., 28, 53
Ferreol, R., 27, 52
Ferry, G., 166, 215
Fichman, R.G., 55
Fichtinger, G., 227, 229, 230, 233, 241,

242, 247, 251–253, 255, 256, 258
Field, R.F., 55
Fielding, T., 227, 245, 252
Finin, T., 106–108, 157
Finkenzeller, K., 185, 215
Fischer, G., 227, 229–231, 247, 251–254
Fischer, H., 227, 251
Fisher, A.C., 16, 47
Fitch, A.E., 16, 47
Fitzpatrick, J., 235, 255
Flinn, J., 130, 131, 158
Flint, P., 246, 258
Floerkemeier, C., 195, 215
Foral, R., 230, 253
Forestier, E., 193, 215
Fowler, M., 23, 35, 51
Frakes, W.B., 21, 50
France, R., 58–62, 72, 73, 84, 85,

88, 94, 95, 95–97
Franklin, M.J., 196, 216
Freeman, P., 17, 48
Frets, E.M., 229, 252

Friets, E.M., 252
Frimberger, D., 248, 259
Fry, J.P., 13, 46
Fujie, M.G., 227, 229, 243, 245, 251, 252, 257
Fujii, M.S., 20, 49
Fujiwara, K., 237, 248, 255, 259
Funda, J., 227, 229, 248, 251, 253

G

Gadh, R., 195, 216
Gaffney, J.E., 52
Gagner, M., 248, 258, 259
Galloway, R., 235, 255
Gane, C., 21, 50
Gangloff, J., 229, 248, 253
Gannon, J.D., 27, 28, 52, 53
Gao, X., 146, 147, 154, 158
Garbini, J.L., 237, 255
Garfinkel, S., 209, 210, 215
Garlan, D., 131, 158
Garofalakis, M., 196, 216
Gassert, R., 227, 251
Gaston, R.P., 229, 252
Gemini, C., 215
Georg, G., 94, 96, 97
Gerhart, S.L., 19, 49
Gerovich, O., 229, 252
Gershman, A., 205, 215
Ghodoussi, M., 248, 259
Ghosh, S., 58–62, 85, 88, 94, 95, 95–97
Gilb, T., 26, 52
Gillespie, R.B., 226, 251
Gilly, M.C., 30, 55
Gilmore, S., 94, 95
Ginsberg, A.S., 13, 47
Glass, R.L., 28, 53
Glassman, E., 237, 239, 240, 247, 248, 255
Gleeson, M.J., 229, 252
Gliklich, R.E., 225, 243, 251
Gnesi, S., 82, 96
Goel, A.L., 28, 53
Gogolla, M., 59, 82, 85, 96
Goldsmith, C.H., 248, 259
Gomes, P., 237, 239, 247, 255
Gomez-Blanco, M.A., 247, 257
Gomory, S., 227, 229, 248, 251, 253
Gong, J., 225, 241, 251, 256

AUTHOR INDEX 265

Goodenough, J.B., 19, 49
Goradia, T.M., 247, 258
Goto, T., 243, 257
Grady, R.B., 26, 52
Grassi, V., 95, 96
Gravez, P., 248, 259
Green, P., 248, 259
Gregoris, D., 227, 245, 252
Gressett, G.L., 26, 51
Griffith, G., 193, 215
Gruben, K., 227, 229, 248, 251, 253
Gruen, T.W., 175, 216
Grundfest, S.W., 246, 257
Gulbins, H., 229, 253
Gumb, L., 227, 251
Günther, O., 208, 216
Gupta, P.K., 229, 230, 247, 252, 254, 257, 258
Guthart, G.S., 244, 245, 257
Gutmann, B., 227, 251
Gwinner, K.P., 30, 55

H

Haaker, R.G., 225, 243, 251
Haddad, B., 226, 251
Hager, D.G., 249
Hager, G., 230, 247, 249, 253, 254, 257, 260
Haker, S., 227, 251
Haller, S., 196, 215
Halliwell, M., 248, 259
Halstead, M.H., 24, 27, 51, 52
Handa, J., 247, 257
Hanly, E., 248, 259
Hannaford, B., 230, 254
Hansen, W.J., 53
Hanson, W., 226, 237, 239, 240, 247,

251, 255, 258
Harada, K., 227, 243, 245, 251
Hardin, K., 54
Harding, J.T., 21, 49
Harris, S.J., 237, 239, 247, 255
Hartwick, R.D., 26, 52
Hasegawa, T., 243, 246, 257
Hashizume, H., 237, 248, 255, 259
Hasser, C.J., 229, 230, 248, 252, 253, 259
Hata, N., 227, 251
Hatch, K.F., 229, 252
Hattori, A., 245, 246, 257

Hawkes, D., 229, 248, 252, 259
Hayashibe, M., 245, 246, 257
Hayati, S., 241, 256
Hedley, D., 28, 53
Hempel, E., 227, 251
Hennell, M.A., 28, 53
Henry, S., 28, 53
Herda, S., 52
Herman, B., 248, 259
Hibberd, R.D., 226, 227, 251
Higgins, L.F., 19, 49
Highsmith, J.A., 22–24, 51
Higuchi, T., 248, 259
Hill, D.L.G., 229, 252
Hill, J., 259
Hillel, A., 246, 258
Hillston, J., 94, 95
Hise, R.T., 30, 54
Hoag, J.E., 196, 216
Hoare, C.A.R., 17, 47
Hodes, T.D., 142, 145, 158
Hodgson, A.J., 248, 258
Hoffmann, H., 28, 53
Hofstetter, A., 248, 259
Hohn, T., 227, 251
Holibaugh, R., 22, 50
Hollinger, R.C., 176, 216
Holmstrom, J., 178, 216
Honeyman, P., 138, 139, 158
Hong, L., 137, 158
Hongo, K., 243, 257
Hori, T., 227, 243, 245, 248, 251
Horowitz, B.B., 22, 51
Horwat, J., 231, 253
Hosoi, T., 229, 253
Hou, J., 241, 256
Houmb, S.H., 94, 97
Howard Francis, M., 230, 247, 254
Howe, A.E., 97
Howe, R., 230, 249, 254, 259
Hsia, T., 240, 256
Hsieh, D., 20, 49
Huang, X.Z., 53
Humphrey, W.S., 21, 50
Hurson, A.R., 109, 110, 112–115, 121, 123,

126, 128, 146, 147, 154, 158
Hurteau, R., 248, 258

266 AUTHOR INDEX

I

Iacconi, P., 230, 253
Iannino, A., 28, 53
Ibrahim, M., 229, 248, 253
Ichikawa, H., 245, 246, 257
Iivari, J., 48
Ikuta, K., 243, 245, 246, 257
Imielinski, T., 115–119, 158
Inoue, T., 237, 255
Inverardi, P., 94, 95
Iordachita, I., 227, 247, 251, 257
Iseki, H., 241, 243, 256, 257
Ishii, M., 249, 260
Israr, T., 94, 97
Itoi, N., 138, 139, 158
Itzfeldt, W.D., 52
Ives, B., 16, 47, 54

J

Jacobson, I., 58, 95, 97
Jain, A., 241, 256
Jakopec, M., 237, 239, 247, 255
Jam, A., 137, 158
Jameson, K.W., 22, 50
Janda, S., 30, 55
Jaramaz, B., 225, 243, 251
Jean, E., 146, 147, 154, 158
Jeffery, D.R., 18, 48
Jeffery, S.R., 196, 216
Jelinski, Z., 28, 53
Jenkins, A.M., 21, 50
Jensen, P., 230, 247, 254, 257, 258
Jiang, Z., 225, 251
Jiao, Y., 115, 121, 123, 126, 128, 146,

147, 154, 158
Joehl, N., 184, 215
Johnson, L., 7, 17, 46, 48
Johnson, M., 42, 55
Johnson, R., 23, 51
Jolesz, F.A., 242, 256
Jonat, W., 229, 248, 253
Jonckheere, E.A., 241, 256
Jones, C.L., 20, 49
Jones, M., 248, 259
Jones, T.C., 16, 47
Joseph, A.D., 142, 145, 158

Joshi, A., 106–108, 157
Joshi, K., 54
Joskowicz, L., 222, 248, 250, 258
Jouan, J., 248, 259
Juels, A., 209, 210, 215
Juristo, N., 95, 96
Jürjens, J., 94, 96, 97

K

Kafura, D., 28, 53
Kahn, R.E., 7, 8, 46
Kaiura, R.G., 237, 255
Kakizawa, Y., 243, 257
Kalakota, R., 9, 46
Kalvin, A., 226, 251
Kan, K., 243, 257
Kan, S.H., 24, 26–29, 51
Kanade, T., 230, 243, 250, 252, 257
Kanev, K., 231, 253
Kang, K., 21, 22, 50
Kapoor, A., 233, 247, 249, 254, 255, 257, 260
Kaspar, H., 26, 52
Katz, R.H., 142, 145, 158
Kauffman, R.J., 20, 49
Kaufman, S., 54
Kavoussi, L., 227, 229, 232, 241, 242,

247, 248, 251–254, 256–259
Kawane, N., 59, 61, 84, 96, 97
Kay, A., 18, 48
Kazanzides, P., 226, 231, 233, 237–240,

247, 248, 251, 253–257
Kekre, S., 29, 54
Kelepouris, T., 178, 203, 216
Khoramabadi, D., 226, 251
Khosla, P.K., 247, 257
Kikinis, R., 242, 256
Kim, J.H., 237, 248, 255
Kim, Y., 196, 216
Kim, Y.-Y., 226, 251
King, A.P., 229, 252
Kirsch, R.A., 13, 46
Kitagawa, M., 230, 254
Kleinrock, L., 7, 8, 46
Klemm, A., 93, 95
Knepper, A., 243, 256
Knight, A.S., 58, 59, 85, 88, 94, 95, 96, 97
Knoll, A., 249, 260

AUTHOR INDEX 267

Knorr, E., 7, 46
Ko, S.Y., 237, 248, 255
Koara, K., 229, 253
Kobayashi, E., 241, 256
Kobayashi, S., 243, 257
Kochan, A., 248, 258
Koizumi, N., 248, 259
Konerman, W.H., 225, 243, 251
Konomi, S., 205, 216
Kontarinis, D.A., 230, 254
Kory, L., 230, 253
Kotok, A., 173, 216
Kourouthanassis, P., 205, 216
Koyama, J.-I., 243, 257
Koyama, T., 229, 252
Kragic, D., 249, 260
Kramer, B., 227, 243, 245, 248, 251
Krause, H., 227, 251
Krieger, A., 227, 242, 251, 256
Krishnan, M.S., 29, 54
Kruchten, P., 22, 23, 50, 51
Krupa, A., 229, 248, 253
Krybus, W., 243, 256
Ku, S., 243, 257
Kuhlman, J., 230, 253
Kumar, R., 230, 247, 248, 253, 257–259
Kunicher, Y., 248, 258
Kuo, J., 231, 253
Kuramoto, K., 237, 255
Kutka, M., 230, 253, 254
Kwoh, Y.S., 241, 256
Kwon, D.S., 237, 248, 255

L

Labiche, Y., 58, 66, 67, 78, 95
Lahmer, A., 237, 255, 256
LaMora, A., 233, 254
Lampe, M., 195, 215
Land, L., 18, 48
Landt, J., 181, 216
Laowattana, S., 229, 253
Larose, D., 226, 227, 229, 248, 251, 253
Larson, R.V., 237, 255
Latella, D., 82, 96
Lavallee, S., 222, 241, 248, 250, 250,

256, 258, 260
Le Bas, J.F., 241, 256

Leblang, D.B., 19, 49
Lee, B.R., 248, 259
Lee, C., 229, 252
Lee, J.J., 237, 248, 255
Leiner, B., 7, 8, 46
Leroy, C., 248, 259
Leroy, J., 229, 248, 253, 259
Leven, J., 230, 253
Levensen, N.G., 236, 255
Li, M., 249, 259, 260
Li, Q., 225, 241, 251, 256
Lightburn, A., 176, 216
Lim, W.C., 21, 50
Lin, H.C., 260
Lin, T., 196, 215
Lindemann, C., 94, 96
Lindner, R.J., 32, 55
Lindross, K., 29, 54
Linger, R.C., 17, 48
Lipow, M., 19, 26, 49, 52
Littlewood, B., 53
Liu, P., 196, 217
Lo, B., 28, 53
Lodderstedt, T., 94, 95, 96
Lohmann, M., 94, 96
Lombardi, L., 13, 46
Lon, H.C., 249
Lopez-Grao, J.P., 94, 96
Louw, D.F., 227, 245, 252
Lozano-Pérez, T., 233, 254
Lubars, M.D., 21, 50
Lucas, H.C., 29, 54
Luckham, D., 23, 51
Lynch, D.C., 7, 8, 46
Lynch, J.E., 21, 28, 46, 50
Lyons, M.L., 29, 54

M

McBeth, P.B., 227, 245, 252
McCabe, T.J., 28, 53
McCall, J.A., 26, 52
McCarthy, J., 237, 255
McClure, C.L., 17, 48
MacCormack, A., 34, 40, 55
McDermott, R.E., 236, 255
McEwen, J.A., 248, 258
MacFarland, M., 230, 254

268 AUTHOR INDEX

MacFarlane, T., 230, 253
McGibbon, T., 22, 50
McGuffog, T., 167, 216
McIlroy, M.D., 21, 24, 50, 51
McIntyre, S.C., 19, 49
Maciunas, R., 225, 235, 243, 250, 255
Mack, M., 229, 253
McKay, N.D., 224, 250
Mckinley, C., 248, 259
McKinney, V., 30, 55
Mai, S., 237, 255
Maillard, E., 248, 259
Maintz, J.B., 222, 250
Maish, A.M., 29, 54
Mandell, L., 11, 46
Manka, S., 243, 256
Manson, P., 243, 256
Marayong, P., 229, 249, 252, 259, 260
Marcacci, S., 237, 255
Marcenaro, G., 237, 255
Marescaux, J., 229, 244, 245, 248,

253, 257, 259
Maritn, J., 50
Markowitz, H.M., 13, 47
Marohn, M., 230, 231, 248, 253, 259
Martelli, S., 237, 255
Martin, A.J., 176, 216
Martin, J., 21, 24, 51
Marzolla, M., 94, 95
Masamune, K., 241, 248, 249, 256, 258
Massink, M., 82, 96
Masutani, Y., 241, 256
Mathieu, H., 230, 253
Matson, F.A., 237, 255
Mattern, F., 195, 216
Maurer, C., 235, 255
Maurer, J., 229, 252
Mauro, J., 142, 158
Mayer, H., 249, 260
Mazilu, D., 227, 242, 252
Mazzara, M.L., 193, 215
Mealling, M., 196, 216
Mears, D., 237, 255
Meiser, B., 229, 253
Mellor, S.J., 84, 96
Melzer, A., 227, 251
Ménard, C., 242, 256
Menciassi, A., 230, 245, 246, 254, 257, 258

Mendoza-Sagaon, M., 230, 254
Merseguer, J., 94, 96, 97
Merwin, R.E., 16, 47
Meseguer, J., 94, 95
Metson, R., 225, 243, 251
Mettler, L., 229, 248, 253
Metzger, G., 227, 251
Meyer-Ebrecht, D., 243, 256
Micali, F., 248, 259
Micali, S., 248, 259
Middleton, R., 7, 46
Mikulak, R.J., 236, 255
Mili, A., 6, 45
Miller, B., 248, 259
Miller, C., 5, 45
Miller, L.A., 16, 47
Millington, D., 23, 33, 51
Mills, H.D., 17, 18, 48
Milne, M.A., 16, 47
Minden, G., 142, 158
Mirandola, R., 94, 95, 95, 96
Mitchell, B., 247, 257
Mitsuishi, M., 227, 237, 243, 245, 248,

251, 255, 259
Mittelstadt, B., 226, 237–240, 247,

248, 251, 255, 256
Miyawaki, F., 248, 249, 258
Momoi, Y., 229, 252
Montalbano, M., 13, 47
Moody, J., 228, 252
Moon, M., 196, 216
Moore, C.A., 226, 251
Moore, R., 248, 259
Moranda, P.B., 28, 53
Morel, G., 229, 248, 253
Moreno, A., 95, 96
Morimoto, A., 230, 253
Moriya, H., 237, 255
Moses, S.A., 55
Mosges, R., 222, 250, 250, 260
Motley, R.W., 27, 52
Moussouri, T., 216
Mowery, D.C., 8, 46
Munnis, P.E., 21, 49
Muntener, M., 227, 242, 252
Murphy, T.E., 249, 260
Musa, J.D., 28, 53

AUTHOR INDEX 269

Musits, B.L., 226, 237–240, 247, 248,
251, 255, 256

Musti, S., 193, 215
Mustufa, T., 241, 256
Mutter, D., 259
Myers, G.J., 17, 28, 47, 53

N

Nagy, I., 249, 260
Nakajima, T., 229, 252
Nakajima, Y., 229, 252
Nakanishi, H., 227, 243, 245, 248, 251
Nakashima, Y., 237, 255
Narayanan, D., 130, 131, 158
Naumann, J.D., 21, 50
Neighbors, J.M., 22, 50
Nemchinova, Y., 19, 49
Nerlove, M., 6, 45
Newhook, P., 227, 245, 252
Nikou, C., 230, 252
Niparko, J.K., 230, 247, 254
Nishikawa, A., 229, 253
Nolte, L.P., 225, 243, 251
Nonaka, I., 30, 32, 55
Norris, M.T., 20, 49
Northrop, L.M., 22, 51
Notkin, D., 20, 49
Nygaard, K., 18, 48

O

Obbink, H., 22, 50
Oberneder, R., 248, 259
Ochi, T., 229, 252
Offutt, A.J., 63, 75, 78, 95, 96
Ohba, M., 54
Okamura, A.M., 229, 230, 249, 252,

254, 259, 260
Okudera, H., 243, 257
Okumoto, K., 28, 53
Oldfather, P.M., 13, 47
Olson, M.H., 16, 47, 54
Ongtang, M., 146, 147, 154, 158
O’Reilly, T., 23, 51
Orlikowski, W.J., 54
Osaki, S., 54

Ottensmeyer, M.P., 230, 254
Oviedo, E.I., 53

P

Palmer, S.R., 23, 36, 51
Palomar, M.A., 21, 50
Pandya, A., 225, 241, 251, 256
Pankanti, S., 137, 158
Panzl, D.J., 19, 49
Pappu, R., 209, 210, 215
Park, S., 30, 55, 249, 259
Parnas, D.L., 18, 48
Parrish, A., 60, 95
Partin, A., 248, 259
Patriciu, A., 227, 232, 241, 242, 252, 254, 256
Patronik, N., 246, 258
Paul, H., 226, 237–240, 247, 248, 251, 255, 256
Paulk, M., 21, 50
Paulsen, L.R., 26–28, 52
Pearson, S.W., 29, 54
Peine, W.J., 230, 254
Perez, R., 225, 241, 251, 256
Perich, F., 106–108, 157
Perkins, W.C., 54
Peshkin, M., 226, 251
Peterson, S., 22, 50
Petrisor, D., 227, 242, 252
Petriu, D.B., 94, 97
Petriu, D.C., 94, 97
Pfeifer, G., 243, 256
Pham, H., 28, 53
Philips, R.W., 21, 49
Picard, F., 225, 228, 243, 251, 252
Pigott, D., 6, 45
Pilskalns, O., 58, 59, 61, 85, 88, 94, 95, 96, 97
Plaskos, C., 248, 258
Poladian, V., 131, 158
Poppendieck, M., 24, 51
Poppendieck, T., 24, 51
Potier, D., 27, 52
Potok, T.E., 146, 147, 154, 158
Pott, P., 237, 255
Poulin, J.S., 50
Poulose, B., 230, 253
Poulose, P.K., 254
Prabhu, B.S., 195, 216
Pramatari, K., 178, 203, 216

270 AUTHOR INDEX

Prasad, J., 21, 50
Prasad, S., 230, 254
Prewitt, E., 42, 55
Prieto-Diaz, R., 22, 51
Prowse, M., 94, 95
Purtilo, J., 23, 51
Pyster, A., 21, 50

Q

Qarra, S.E., 246, 258
Quaid, A.E., 229, 252

R

Rabischong, P., 245, 257
Rader, R.S., 247, 258
Radice, R.A., 21, 49
Ramamurthy, H., 195, 216
Raman, A., 176, 216
Ray, I., 94, 96
Reason, J.M., 193, 215
Reichart, B., 229, 253
Reichenspurner, H., 229, 253
Reid, R.H., 7, 46
Reifer, D.J., 40, 42, 55
Reiley, C.E., 229, 252
Reinertsen, D., 40, 55
Reiter, R.W., 24, 51
Richters, M., 59, 82, 85, 96
Rico, D.F., 43, 44, 55
Rigby, P.J., 20, 49
Riviere, C., 243, 246, 247, 250, 257, 258
Roberts, D.W., 229, 252
Robinson, D., 17, 48
Römer, K., 195, 216
Rosen, J., 230, 254
Rosen, S., 4, 45
Rosenberg, B., 209, 215
Rosenberg, L.B., 249, 259
Ross, R., 16, 47
Rossi, D.D., 230, 253
Rosson, M.B., 18, 48
Rothbaum, D.L., 230, 247, 254
Roussos, G., 204, 205, 216
Roy, J., 230, 247, 254
Royce, W.W., 17, 48
Rubey, R.J., 26, 52

Rubino, F., 244, 245, 257, 259
Ruger, R., 243, 256
Rumbaugh, J., 58, 95, 97

S

Sabetta, A., 95, 97
Sackier, J.M., 248, 258
Sadowsky, O., 233, 254
Sagaon, M.M., 230, 253
Saha, S., 229, 231, 247, 252, 253
Sahoo, S., 245, 257
Sakuma, I., 229, 241, 252, 256
Salcudean, S.E., 243, 257
Salisbury, A.B., 18, 48
Salisbury, J.K., 230, 244, 245, 254, 257
Sammet, J.E., 6, 16, 45, 47
Sasaki, K., 245, 246, 257
Sasama, T., 229, 252
Sastry, S., 243, 257
Satava, R., 248, 258, 259
Sato, Y., 229, 252
Satyanarayanan, M., 130, 131, 158
Sauer, C., 18, 48
Sayani, H., 13, 47, 55
Schaper, J., 196, 215
Scharf, H., 237, 255
Scheetz, M., 72, 73, 97
Schenker, P.S., 243, 257
Schenkman, N., 248, 259
Scherlis, W., 23, 51
Schick, G.J., 28, 53
Schneidewind, N.F., 28, 53
Schoch, T., 195, 216
Schubert, P., 29, 54
Schwaber, K., 23, 32, 51
Schwarz, M., 237, 255
Scilingo, E., 230, 253
Selby, R.W., 33, 55
Selz, D., 29, 54
Shafran, I., 249, 260
Shapiro, S., 17, 48
Shaw, M., 131, 158
Shen, H., 94, 97
Shen, V.Y., 24, 26–28, 51, 52
Sherif, K., 50
Sherman, A., 230, 254
Shirazi, B., 115, 121, 123, 126, 128, 158

AUTHOR INDEX 271

Shoham, M., 248, 258
Shooman, M.L., 26, 28, 52, 53
Sidles, J.A., 237, 255
Siebert, W., 237, 255
Simaan, N., 246, 258
Simcoe, T., 8, 46
Simeoni, M., 94, 95
Simmons, D.B., 28, 53
Simon, I., 259
Sinanan, M., 230, 254
Skibbe, H., 237, 255
Slatkin, A.B., 246, 257
Smaros, J., 178, 216
Smith, A., 11, 46
Smith, C.U., 94, 97
Smith, F., 237, 255
Smith, M.K., 259
Smith, S., 242, 256
Soler, L., 229, 248, 253
Solomon, S.B., 232, 254
Son, J.S., 230, 254
Son, S.-I., 193, 215
Sousa, J., 131, 158
Spiekermann, S., 208, 216
Srinivasan, K., 29, 54
Stafford, J., 22, 50
Stapleton, J., 23, 33, 51
Stefanini, C., 245, 246, 257, 258
Stein, H., 248, 259
Steinmeuller, W.E., 46
Stevens, P., 94, 95
Stevens, W.P., 17, 47
Stewart, J.J., 55
Stiehl, J.B., 225, 243, 251
Stoddart, A.G., 20, 49
Stoianovici, D., 222, 227, 230, 232,

241, 242, 247, 248, 250–252,
254, 256–259

Strobe, J.W., 229, 252
Strohbehn, J.W., 229, 252
Strong, A.J., 229, 252
Stump, G., 193, 215
Sturges, R., 229, 253
Su, X., 195, 216
Sugano, N., 229, 252
Sugita, N.M.N., 237, 255
Sukert, A.N., 53
Sulack, R.A., 32, 55

Sunazuka, T., 26, 52
Susil, R.C., 241, 242, 256
Sustersic, J., 109, 110, 112–114, 158
Sutherland, G.R., 227, 245, 252
Suzuki, K., 245, 246, 257
Suzuki, M., 237, 241, 255, 256
Suzuki, N., 245, 246, 257
Suzuki, S., 248, 249, 258
Swanson, E.B., 26, 52
Szymanski, D.M., 30, 54

T

Takakura, K., 241, 243, 256, 257
Takeuchi, H., 30, 32, 55
Talamini, M., 227, 229–231, 247, 248,

251, 253, 254, 259
Tamura, S., 229, 252
Tanenbaum, A., 5–7, 45
Tanimoto, K., 237, 255
Tanniru, M., 21, 50
Taylor, J., 237, 255
Taylor, R., 227, 230, 233, 238, 246–248,

251, 253–259
Taylor, R.H., 222, 226, 227, 229–231, 237,

239–241, 243, 247–250, 250, 251,
253–256, 258–260

Teichroew, D., 13, 47
Tellkamp., 175, 217
Tempany, C., 227, 251
Tenbusch, M., 237, 256
Tendick, F., 230, 243, 254, 257
Teorey, T.J., 13, 46
Thakor, N.V., 247, 258
Thayer, C.H., 29, 54
Thebaut, S.M., 26–28, 52
Thomke, S., 40, 55
Thompson, C.W., 196, 216
Thummler, A., 94, 96
Timoney, A.G., 226, 227, 251
Timothy, R., 243, 257
Torchiana, D.F., 249, 259
Torkzadeh, G., 29, 54
Troccaz, J., 226, 250, 251, 260
Trocchia, P.J., 30, 55
Trong, T.D., 59, 84, 97
Trudeau, P., 248, 259
Tsubouchi, K., 227, 243, 245, 251

272 AUTHOR INDEX

Tsuda, T., 248, 259
Turner, C.S., 236, 255
Turner, J., 17, 27, 48
Turner, R., 237, 255

U

Uecker, D.R., 229, 252
Ullman, K., 242, 256
Ustin, J., 230, 254

V

Vain, J., 248, 249, 258
Van Den Bosch, F., 17, 48
VanderKolk, C., 243, 256
Varley, P., 248, 259
Vegas, S., 95, 96
Venilman, M., 248, 259
Vidgen, R.T., 30, 54, 55
Viergever, M.A., 222, 250
Vinze, A., 50
Viswanathan, S., 115–119, 158
Vix, M., 259
Voges, U., 227, 251
Vogt, H., 195, 217
von Mayrhauser, A., 72, 73, 97

W

Wadsley, N., 167, 216
Waldhorst, O.P., 94, 96
Waldstein, N.S., 18, 48
Wall, J.K., 28, 53
Walsh, D.A., 19, 49
Walsh, M.D., 29, 54
Wamsley, C., 229, 252
Wang, F., 196, 217
Wang, K., 6, 45
Wang, M., 235, 255
Wang, X., 94, 97
Wang, Y., 229, 248, 252, 258
Wang, Y.F., 229, 252
Wang, Z., 247, 257
Wang, Z.X., 258
Wannasuphoprasit, W., 226, 251
Wardley, P., 7, 46

Warisawa, S., 237, 248, 255
Warisawa, S.I., 259
Watanabe, E., 243, 256
Watanabe, H., 227, 243, 245, 248, 251
Watanabe, T., 227, 243, 245, 248, 251, 256
Webber, D.R.R., 173, 216
Weber, C., 21, 50
Wegner, P., 17, 20, 22, 47, 49, 51
Weinberg, G.M., 18, 26, 48, 51
Weiser, M., 101, 157
Weiss, C., 193, 215
Weissman, L., 27, 52
Wells, P.N.T., 248, 259
Wells, W.D., 30, 54
Weyuker, E., 59–61, 97
Whinston, A., 9, 46
Whitcomb, L., 227, 230, 242, 247, 248,

251, 254, 256–259
Whittaker, J.A., 19, 49
Wickham, J.E.A., 226, 227, 251
Wiesel, U., 237, 256
Wileden, J.C., 19, 49
Williams, L.G., 94, 97
Williams, W., 243, 257
Williamson, B., 237, 239, 240, 247,

248, 255
Wills, A.C., 22, 50
Wing, J.M., 17, 47
Wirth, N., 17, 47
Wise, C., 21, 50
Withey, J., 21, 50
Witt, B.I., 17
Witte, M., 243, 256
Woesel, U., 237, 255
Wolfinbarger, M., 30, 55
Wolverton, R.W., 28, 53
Won, C.H., 237, 248, 255
Wong, D.C., 193, 215
Woodside, C.M., 94, 97
Woodward, M.R., 28, 53
Wu, L., 6, 45

X

Xu, J., 94, 97
Xu, S., 247, 258

AUTHOR INDEX 273

Y

Yajima, D., 245, 246, 257
Yamada, S., 54
Yamagishi, N., 26, 52
Yamamoto, K., 245, 246, 257
Yang, C., 230, 253, 254
Yeom, K., 196, 216
Yesha, Y., 106–108, 157
Yetton, P., 18, 48
Yoffie, D.B., 34, 55
Yonenobu, K., 229, 252
Yoo, B., 30, 55
Yoon, K., 30, 55
Yoon, Y.S., 237, 248, 255
Yoshimitsu, K., 248, 249, 258
Youngs, E.A., 26, 51
Yourdon, E., 47
Yu, J., 231, 253
Yu, T.J., 27, 28, 52
Yuh, D.D., 229, 249, 252, 260

Z

Zaak, D., 248, 259
Zahedi, F., 30, 55
Zaho, B.Y., 158
Zamorano, L., 225, 241, 251, 256
Zand, J., 230, 231, 247, 253, 254
Zehavi, E., 248, 258
Zenati, M.A., 246, 258
Zhang, G., 230, 253
Zhao, B.Y., 142, 145
Zhou, Y., 241, 256
Zinreich, S., 229, 230, 243, 252,

253, 256
Zolnowski, J.C., 28, 53
Zucker, K., 230, 253
Zufryden, F., 29, 54
Zuhars, J., 237, 239, 240, 247, 248,

255, 256
Zweben, S.H., 60, 96
Zychlinski, B.Z., 21, 50

This page intentionally left blank

Subject Index

A

Acrobot system, 247, 249
adaptive fidelity, 129–35, 136

resource consumption, 130–1
utility, 131–5

advanced shipment notice, 199
Aesop system, 235, 248
aggregate index, 121–3
agile methods, 30–6

crystal methods, 36
dynamic systems development model, 33
extreme programming, 35–6
feature-driven development, 36–40
history of, 40–4
Internet time, 34–5
judo strategy, 34
new development rhythm, 32
new product development game, 30–2
scrum, 32–3
synch-N-stabilize, 33–4

ALGOL, 6
AmbySoft 2006, 43
AmbySoft 2007, 43
Apple iPhone, 9
Apple Macintosh operating system, 5
application level events (ALE), 196, 200
APSE, 20
ARPANET, 8
artificial intelligence planner, 72–5
AULA project, 146
Aurora system, 225
automatic programming, 13–16
auxiliary surgeon supports, 248

B

backscatter, 183
bandwidth, 116
bar codes, 167–8, 169–71, 178
BASIC, 6
Berners-Lee, Tim, 8
biometrics, 139–41, 157
Boston College Carroll School of

Management, 40
broadcasting, 115–29, 135–6, 156

broadcast cells, 118–20
indexing, 121–3
multiple channels, 123–6
published vs on-demand data objects, 116–18
response time and power consumption,

120–21
retrieval algorithms, 126–9

business computing, 166–75
bar codes, 167–8, 169–71
electronic data interchange, 171
GS1 system, 172–5
unique product identification, 167–8
universal product identification, 168–9

business drivers, 202–5

C

cache replacement policy, 113–15
alternative, 114–15

caching quality factor, 113
CAD/CAM, surgical, 237–42
call events, 75
capability manager, 144

275

276 SUBJECT INDEX

CASE, 19–20
certificate authority, 144
change events, 75
CIO Magazine, 42

class diagrams, 58, 94
test criteria, 62

COBOL, 6
collaboration diagrams, 63

test criteria, 62
collaborative regions, 150
combined fragments, 88
commercial transactions, legal aspects, 212
complete sequence coverage, 75
computer-integrated interventional

medicine, 219–60
accuracy evaluation and validation, 233–5
intraoperative human-machine

interfaces, 229–230
navigational trackers, 225
registration, 222–4
risk analysis and regulatory compliance,

235–7
robotic devices, 225–8
sensorized instruments, 230–41
software and robot control architecture,

231–3
surgical assistance, 242–9
surgical CAD/CAM, 237–42
system architecture, 222
transformations between coordinate

systems, 222–4
computers, history of, 4–5
constraint class tuples, 88, 91
consumer processes, 106–7
containment profiles, 197
crystal methods, 36
CUPRIMADA, 29
CUPRIMDSO, 29

D

data consistency, 108
vs response time, 109–12

data mining, 177
data objects

on-demand, 116–18
published, 116–18

Data Protection directive, 211–12

data warehousing, 177
database design, 13
daVinci system, 225, 235, 243–4, 245, 246
decentralized peer-to-peer systems, 105
dedicated systems, 152–5
defect density, 26
design for manufacturability, 227
design under test, 84, 85
Digital Focus, 42
directed graphs, 89, 90
directory, 118
discovery services, 196–7
distributed caching, 105–15, 135, 156

advantages of, 106
consistency vs response time, 109–12
propagation of stale data, 108
quality of service, 108–9, 112–13
replacement policy, 113–15
software architecture, 106–7

distributed indexing, 121
domain name system, 196
DOS, 6
DSDM, 23
dynamic systems development model, 33

E

early user involvement, 16
ebXML, 173
EDIFICE, 190
education, pervasive, 153–4
EDVAC, 4
Efficient Consumer Response, 176–7

and information flow, 177–9
egoless programming, 18
electromagnetic emissions, 213
electromagnetic trackers, 225
electronic commerce, 9

fourth-generation, 11
mid-fourth-generation, 11–12
second-generation, 9–11
third-generation, 11

Electronic Commerce directive, 212
electronic data interchange, 167, 171
electronic product code (EPC), 186, 188, 197

discovery service, 197
ENIAC, 4
Enviro21s, 149

SUBJECT INDEX 277

environmental issues, 213
errors per statement, 26
EtailQ, 30
European article numbering system, 169
European Telecommunications Standards

Institute, 213
European Union directives

Data Protection directive, 211–12
Electronic Commerce directive, 212
Privacy and Electronic Communications

directive, 212
European Union law, 211–13

commercial transactions, 212
data protection and privacy, 211–12
environmental issues, 213
governance, 212–13
spectrum regulation, 213

extreme programming, 23, 35–6

F

facial thermography, 140
failure modes effects analysis, 236
failure modes effects and criticality

analysis, 236
false match rate, 140, 141
false nonmatch rate, 140, 141
fast moving consumer goods, 176
fault tolerance, 143
feature-driven development, 36, 40
fidelity adaptation see adaptive fidelity
fiducial localization error, 235
fiducial registration error, 235
Flock-of-Birds system, 225
FLOWMATIC, 6
Food and Drug Administration, 235
formal methods, 17
FORTRAN, 6
full predicate coverage, 75, 77
FURPS model, 26

G

GE InstaTrak system, 225
general identifier, 190
GID-96, 190
Global Data Synchronization Network

(GDSN), 174, 191

global individual asset identifier, 190
global location number, 189
global product classification, 174
global product information repositories,

174–5
global returnable asset identifier, 190
Global Trade Item Number, 169
good manufacturing practices, 236
governance, 212–13
GS1 system, 172–5

global product information
repositories, 174–5

messaging for open supply chains, 172–4

H

handling efficiency, 203
Handy21s, 149
Harvard Business School, 40
healthcare, pervasive, 154–5

MyMD project, 13, 148
historical aspects, 1–57

agile methods, 30–6
computers and software, 4–8
electronic commerce, 9–12
software methods, 13–22
software quality measurement, 24–9

HTML, 8

I

IBM, Information Management System, 13
identifiers, 188–91
indexing, 121–3
information leaks, 209
information manager processes, 106–7
instrumentations, 4
instruments, 4
Internet, 7–8
Internet retailing, 12
Internet time, 34–5
interrogators see readers
intraoperative human-machine interfaces,

229–230
intraoperative information support

systems, 242, 243
inventory accuracy, 176
inventory reduction, 203

278 SUBJECT INDEX

invocation sequence tree, 78
invoicing, accuracy of, 176
ISDOS, 13
ISO 9000, 236
ISO 9001, 236
ISO 9002, 236
ISO 14223-2, 191
ISO/IEC 15459 specification, 190
item-level tagging

consumer acceptance, 205–9
privacy aspects, 209–11
see also radio frequency identification

J

Java-like Action Language, 84–5
joint reconstruction, robotically assisted,

237–40
JOVIAL, 6
judo strategy, 34

K

Kerberos protocol, 138–9

L

learning, 130–1
lines of code, 24
load modulation, 182
logging, 130–1
Lyons Electronic Office, 166

M

Markov processes, 94
mean time between reads, 113
mean time between updates, 110–11
medical robotics, 219–60
Medtro Axiem system, 225
Metro Supermarkets

privacy violation, 211
Store of the Future, 208

middleware, 192–4
MULTICS, 6
multiple channel broadcasting, 123–6
multiple diagram types, 85–93
multiple failure rate models, 28
multipurpose systems, 148–52

MyGrocer project, 205–8
MyMD project, 13, 148

N

naming authority record, 196
navigational trackers, 225
needle placement, robotially assisted, 241–2
network services, 196–8
Neuromate system, 235
new development rhythm, 32
new product development game, 30–2
next object access, 127–8
Ninja system, 142–6
numbering system identifier, 191

O

object constraint language, 78
Object Control Language, 58
Object Method Directed Acyclic Graph, 85–88
object naming system, 196
object-oriented methods, 18–19
on-demand objects, 116–18
operating systems, 6
optical trackers, 225
Optotrak system, 225
order reconciliation, 204
ORTHODOC system, 238–9
out-of-stocks, 175

reduction in, 203
Oxygen project, 146, 148–50

P

participatory design, 16
passwords, 137
path realization conditions, 72
peer-to-peer systems, 105
PERT, 16
Pervasive Continuous Curriculum, 146
pervasive education, 153–4
pervasive healthcare, 154–5

MyMD project, 13, 148
pervasive systems, 99–159

current projects, 146–55
dedicated, 152–5
multi-purpose, 148–52

SUBJECT INDEX 279

resource management, 103–136
security, 136–146

PEST, 16
Petri net analysis, 95
phantoms, 234
PIN numbers, 137
point of sale (POS), 202
Polaris system, 225
Polhemus Patriot system, 225
pre-market approval, 235
privacy, 211–12
Privacy and Electronic Communications

directive, 212
privacy violation, 209–11
problem density, 26
programming languages, 6
Project Aura, 146, 151–2
provider processes, 106–7
published objects, 116–18

Q

quality assurance, 20
quality measurement, 24–9
quality of service, 108–9

alternative metrics, 112–13
quality system regulations, 236
quality-of-service domain, 110

R

radio frequency identification, 161–217
business computing, 166–75
business drivers, 202–5
consumer acceptance, 205–9
and EU law, 211–13
identifiers, 188–91
network services, 196–8
operating principle, 180–1
practical uses, 198–202
privacy aspects, 209–11
programming, 194–6
readers, 181, 184–5
as smart product labels, 187
software and network services, 191–98
supply chain optimization, 175–9
supply chains, 163–6
tags, 179–81, 182, 185–7

technology, 179–80
types of, 182–4

rapid development, 21
Rayleigh life cycle reliability model, 28
readers, 181, 184–5
reader protocol, 195
Reifer Consultants, 42
remote centre of motion, 227
repository services, 197–8
resource consumption, as function

of fidelity, 130–1
resource management, 103–35

adaptive fidelity, 129–35
broadcasting, 115–29
distributed caching, 105–15

response time
broadcasting, 120–21
distributed caching, 109–12

retrieval algorithms, 126–9
RFID see radio frequency identification
ROBODOC system, 235, 237–40, 247
robotic devices, 225–8

active, 228
control architecture, 231–3
passive, 228
semi-active, 228
see also surgical CAD/CAM

row scan, 126–7

S

SABRE system, 7
SAGE system, 7
scrum, 32–3
security, 136–46

service identification, 137, 141–6
user identification, 137–41

sensorized instruments, 230–1
sequence diagrams, 58, 89, 94
serial shipping container code (SSCC),

189–90, 199
serialized global trade identification

number, 198
service identification, 137, 141–6

Ninja system, 142–6
service providers, 104
ServQual, 30
session ID, 186

280 SUBJECT INDEX

SGTIN-96, 198–9
Shine Technologies, 42
shrinkage, 175–6, 204
signal events, 75
Simula programming language, 17
Smalltalk programming language, 17
Smart Dust project, 146
smart product labels, 187
smartcards, 138–9
snapshot creation, 82–4
software

complexity, 27–8
computer-integrated interventional

medicine, 231–3
environments, 18–19
errors, 24, 26
history of, 4–8
life cycles, 17–18
packaged, 7
quality assurance, 20
quality measurement, 24–9
radio frequency identification, 191–8
reliability, 28–9
reuse, 21–2
reviews, 18
size, 24
testing, 18
see also individual systems

software architecture, 22
caching systems, 106–7

software attributes, 26
software design testing, 57–97

adequacy criteria, 59–64
evaluation methods, 64–93

software methods, 13–22
software processes, 20–1
software project management, 16
spectrum regulation, 213
stale data, 108
State Charts, 58, 75–82, 94
static defect models, 26–7
Steady Hand system, 247
Store Keeping Units, 178
structured methods, 16–17
sum of products, 72
supply chains, 163–6

and business computing, 166–75
causes of inefficiency, 175–6

Efficient Consumer Response, 176–7
information flow, 177–9
optimization, 175–9
practical use of RFID, 198–202

surgeon extenders, 243–8
surgical assistance, 242–3

intelligent, 248–9
see also various systems

surgical CAD/CAM, 237–42
needle placement, 241–2

robotically assisted joint reconstruction,
237–40

surgical navigation systems, 243
surrogates, 104
synch-N-stabilize, 33–4

T

tags, 179–81, 182, 185–7
active, 182
effect on waste management, 214–15
far-field, 183
near-field, 182–3
passive, 182
see also tokens

tag identification bank, 186
target registration error, 235
telementoring, 248
telesurgery, remote, 248
Testable Aggregate Model, 85
theft, 204
Therac-25 system, 236
ticket granting service, 138
time events, 75
TMBP project, 147
tokens, 137, 138–9, 157
Handy21s, 149
Kerberos protocol, 138–9

see also tags
top down stepwise refinement, 17
TOTEM, 68–72
tracking, 209
TRADACOMS, 171
TRANSAC S-1000, 4
transition coverage, 75
transition pair coverage, 75
transition test sequence, 78, 80
traveling salesman problem, 128

SUBJECT INDEX 281

U

UML, 64–93
For UML testing, 82–93
With UML testing 64–82

UML statecharts, 75–82
UML test, 76
UNICS, 6
Unified Modelling Language (UML), 57, 58

unique product identification, 167–8
UNIVAC, 4

Data Management System, 13
universal product code, 168
universal product identification, 168–9
universal resource descriptors, 196

University of Maryland University College, 43
UNIX, 6
unsaleables, 176, 203
UPRIMD, 29
UPRIMDA, 29
USE, 82
user authentication, 137, 157

token-based, 137, 138–9
user identification, 137–41

user recognition, 137
biometric, 139–41

user satisfaction, 29
utility, as function of fidelity, 131–5

V

vendor managed inventory, 178
Version One, 43
Vienna definition language, 17
visual display systems, 229–30

W

waste electrical and electronic equipment, 213
waste management, 214
WebQual, 30
website quality, 29–30
Windows, 6
World-Wide Web, 7–8

Z

Zeus system, 244

This page intentionally left blank

Contents of Volumes inThis Series

Volume 42

Nonfunctional Requirements of Real-Time Systems
Tereza G. Kirner and Alan M. Davis

A Review of Software Inspections
Adam Porter, Harvey Siy, and Lawrence Votta

Advances in Software Reliability Engineering
John D. Musa and Willa Ehrlich

Network Interconnection and Protocol Conversion
Ming T. Liu

A Universal Model of Legged Locomotion Gaits
S. T. Venkataraman

Volume 43

Program Slicing
David W. Binkley and Keith Brian Gallagher

Language Features for the Interconnection of Software Components
Renate Motschnig-Pitrik and Roland T. Mittermeir

Using Model Checking to Analyze Requirements and Designs
Joanne Atlee, Marsha Chechik, and John Gannon

Information Technology and Productivity: A Review of the Literature
Erik Brynjolfsson and Shinkyu Yang

The Complexity of Problems
William Gasarch

3-D Computer Vision Using Structured Light: Design, Calibration, and Implementation Issues
Fred W. DePiero and Mohan M. Trivedi

Volume 44

Managing the Risks in Information Systems and Technology (IT)
Robert N. Charette

Software Cost Estimation: A Review of Models, Process and Practice
Fiona Walkerden and Ross Jeffery

Experimentation in Software Engineering
Shari Lawrence Pfleeger

Parallel Computer Construction Outside the United States
Ralph Duncan

Control of Information Distribution and Access
Ralf Hauser

Asynchronous Transfer Mode: An Engineering Network Standard for High Speed Communications
Ronald J. Vetter

283

284 CONTENTS OF VOLUMES IN THIS SERIES

Communication Complexity
Eyal Kushilevitz

Volume 45

Control in Multi-threaded Information Systems
Pablo A. Straub and Carlos A. Hurtado

Parallelization of DOALL and DOACROSS Loops—a Survey
A. R. Hurson, Joford T. Lim, Krishna M. Kavi, and Ben Lee

Programming Irregular Applications: Runtime Support, Compilation and Tools
Joel Saltz, Gagan Agrawal, Chialin Chang, Raja Das, Guy Edjlali, Paul Havlak,
Yuan-Shin Hwang, Bongki Moon, Ravi Ponnusamy, Shamik Sharma, Alan Sussman, and
Mustafa Uysal

Optimization Via Evolutionary Processes
Srilata Raman and L. M. Patnaik

Software Reliability and Readiness Assessment Based on the Non-homogeneous Poisson Process
Amrit L. Goel and Kune-Zang Yang

Computer-Supported Cooperative Work and Groupware
Jonathan Grudin and Steven E. Poltrock

Technology and Schools
Glen L. Bull

Volume 46

Software Process Appraisal and Improvement: Models and Standards
Mark C. Paulk

A Software Process Engineering Framework
Jyrki Kontio

Gaining Business Value from IT Investments
Pamela Simmons

Reliability Measurement, Analysis, and Improvement for Large Software Systems
Jeff Tian

Role-Based Access Control
Ravi Sandhu

Multithreaded Systems
Krishna M. Kavi, Ben Lee, and Alli R. Hurson

Coordination Models and Language
George A. Papadopoulos and Farhad Arbab

Multidisciplinary Problem Solving Environments for Computational Science
Elias N. Houstis, John R. Rice, and Naren Ramakrishnan

Volume 47

Natural Language Processing: A Human–Computer Interaction Perspective
Bill Manaris

Cognitive Adaptive Computer Help (COACH): A Case Study
Edwin J. Selker

Cellular Automata Models of Self-replicating Systems
James A. Reggia, Hui-Hsien Chou, and Jason D. Lohn

Ultrasound Visualization
Thomas R. Nelson

CONTENTS OF VOLUMES IN THIS SERIES 285

Patterns and System Development
Brandon Goldfedder

High Performance Digital Video Servers: Storage and Retrieval of Compressed Scalable Video
Seungyup Paek and Shih-Fu Chang

Software Acquisition: The Custom/Package and Insource/Outsource Dimensions
Paul Nelson, Abraham Seidmann, and William Richmond

Volume 48

Architectures and Patterns for Developing High-Performance, Real-Time ORB Endsystems
Douglas C. Schmidt, David L. Levine, and Chris Cleeland

Heterogeneous Data Access in a Mobile Environment – Issues and Solutions
J. B. Lim and A. R. Hurson

The World Wide Web
Hal Berghel and Douglas Blank

Progress in Internet Security
Randall J. Atkinson and J. Eric Klinker

Digital Libraries: Social Issues and Technological Advances
Hsinchun Chen and Andrea L. Houston

Architectures for Mobile Robot Control
Julio K. Rosenblatt and James A. Hendler

Volume 49

A Survey of Current Paradigms in Machine Translation
Bonnie J. Dorr, Pamela W. Jordan, and John W. Benoit

Formality in Specification and Modeling: Developments in Software Engineering Practice
J. S. Fitzgerald

3-D Visualization of Software Structure
Mathew L. Staples and James M. Bieman

Using Domain Models for System Testing
A. Von Mayrhauser and R. Mraz

Exception-Handling Design Patterns
William G. Bail

Managing Control Asynchrony on SIMD Machines—a Survey
Nael B. Abu-Ghazaleh and Philip A. Wilsey

A Taxonomy of Distributed Real-time Control Systems
J. R. Acre, L. P. Clare, and S. Sastry

Volume 50

Index Part I
Subject Index, Volumes 1–49

Volume 51

Index Part II
Author Index
Cumulative list of Titles
Table of Contents, Volumes 1–49

286 CONTENTS OF VOLUMES IN THIS SERIES

Volume 52

Eras of Business Computing
Alan R. Hevner and Donald J. Berndt

Numerical Weather Prediction
Ferdinand Baer

Machine Translation
Sergei Nirenburg and Yorick Wilks

The Games Computers (and People) Play
Jonathan Schaeffer

From Single Word to Natural Dialogue
Neils Ole Benson and Laila Dybkjaer

Embedded Microprocessors: Evolution, Trends and Challenges
Manfred Schlett

Volume 53

Shared-Memory Multiprocessing: Current State and Future Directions
Per Steuström, Erik Hagersteu, David I. Lita, Margaret Martonosi, and MadanVerngopal

Shared Memory and Distributed Shared Memory Systems: A Survey
Krishna Kaui, Hyong-Shik Kim, Beu Lee, and A. R. Hurson

Resource-Aware Meta Computing
Jeffrey K. Hollingsworth, Peter J. Kelcher, and Kyung D. Ryu

Knowledge Management
William W. Agresti

A Methodology for Evaluating Predictive Metrics
Jasrett Rosenberg

An Empirical Review of Software Process Assessments
Khaled El Emam and Dennis R. Goldenson

State of the Art in Electronic Payment Systems
N. Asokan, P. Janson, M. Steives, and M. Waidnes

Defective Software: An Overview of Legal Remedies and Technical Measures Available to Consumers
Colleen Kotyk Vossler and Jeffrey Voas

Volume 54

An Overview of Components and Component-Based Development
Alan W. Brown

Working with UML: A Software Design Process Based on Inspections for the Unified Modeling Language
Guilherme H. Travassos, Forrest Shull, and Jeffrey Carver

Enterprise JavaBeans and Microsoft Transaction Server: Frameworks for Distributed Enterprise
Components

Avraham Leff, John Prokopek, James T. Rayfield, and Ignacio Silva-Lepe
Maintenance Process and Product Evaluation Using Reliability, Risk, and Test Metrics

Norman F. Schneidewind
Computer Technology Changes and Purchasing Strategies

Gerald V. Post
Secure Outsourcing of Scientific Computations

Mikhail J. Atallah, K. N. Pantazopoulos, John R. Rice, and Eugene Spafford

CONTENTS OF VOLUMES IN THIS SERIES 287

Volume 55

The Virtual University: A State of the Art
Linda Harasim

The Net, the Web and the Children
W. Neville Holmes

Source Selection and Ranking in the WebSemantics Architecture Using Quality of Data Metadata
George A. Mihaila, Louiqa Raschid, and Maria-Ester Vidal

Mining Scientific Data
Naren Ramakrishnan and Ananth Y. Grama

History and Contributions of Theoretical Computer Science
John E. Savage, Alan L. Salem, and Carl Smith

Security Policies
Ross Anderson, Frank Stajano, and Jong-Hyeon Lee

Transistors and 1C Design
Yuan Taur

Volume 56

Software Evolution and the Staged Model of the Software Lifecycle
Keith H. Bennett, Vaclav T. Rajlich, and Norman Wilde

Embedded Software
Edward A. Lee

Empirical Studies of Quality Models in Object-Oriented Systems
Lionel C. Briand and Jürgen Wüst

Software Fault Prevention by Language Choice: Why C Is Not My Favorite Language
Richard J. Fateman

Quantum Computing and Communication
Paul E. Black, D. Richard Kuhn, and Carl J. Williams

Exception Handling
Peter A. Buhr, Ashif Harji, and W. Y. Russell Mok

Breaking the Robustness Barrier: Recent Progress on the Design of the Robust Multimodal System
Sharon Oviatt

Using Data Mining to Discover the Preferences of Computer Criminals
Donald E. Brown and Louise F. Gunderson

Volume 57

On the Nature and Importance of Archiving in the Digital Age
Helen R. Tibbo

Preserving Digital Records and the Life Cycle of Information
Su-Shing Chen

Managing Historical XML Data
Sudarshan S. Chawathe

Adding Compression to Next-Generation Text Retrieval Systems
Nivio Ziviani and Edleno Silva de Moura

Are Scripting Languages Any Good? A Validation of Perl, Python, Rexx, and Tcl against C, C++, and Java
Lutz Prechelt

288 CONTENTS OF VOLUMES IN THIS SERIES

Issues and Approaches for Developing Learner-Centered Technology
Chris Quintana, Joseph Krajcik, and Elliot Soloway

Personalizing Interactions with Information Systems
Saverio Perugini and Naren Ramakrishnan

Volume 58

Software Development Productivity
Katrina D. Maxwell

Transformation-Oriented Programming: A Development Methodology for High Assurance Software
Victor L. Winter, Steve Roach, and Greg Wickstrom

Bounded Model Checking
Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and

Yunshan Zhu
Advances in GUI Testing

Atif M. Memon
Software Inspections

Marc Roper, Alastair Dunsmore, and Murray Wood
Software Fault Tolerance Forestalls Crashes: To Err Is Human; To Forgive Is Fault Tolerant

Lawrence Bernstein
Advances in the Provisions of System and Software Security—Thirty Years of Progress

Rayford B. Vaughn

Volume 59

Collaborative Development Environments
Grady Booch and Alan W. Brown

Tool Support for Experience-Based Software Development Methodologies
Scott Henninger

Why New Software Processes Are Not Adopted
Stan Rifkin

Impact Analysis in Software Evolution
Mikael Lindvall

Coherence Protocols for Bus-Based and Scalable Multiprocessors, Internet, and Wireless Distributed
Computing Environments: A Survey

John Sustersic and Ali Hurson

Volume 60

Licensing and Certification of Software Professionals
Donald J. Bagert

Cognitive Hacking
George Cybenko, Annarita Giani, and Paul Thompson

The Digital Detective: An Introduction to Digital Forensics
Warren Harrison

Survivability: Synergizing Security and Reliability
Crispin Cowan

Smart Cards
Katherine M. Shelfer, Chris Corum, J. Drew Procaccino, and Joseph Didier

CONTENTS OF VOLUMES IN THIS SERIES 289

Shotgun Sequence Assembly
Mihai Pop

Advances in Large Vocabulary Continuous Speech Recognition
Geoffrey Zweig and Michael Picheny

Volume 61

Evaluating Software Architectures
Roseanne Tesoriero Tvedt, Patricia Costa, and Mikael Lindvall

Efficient Architectural Design of High Performance Microprocessors
Lieven Eeckhout and Koen De Bosschere

Security Issues and Solutions in Distributed Heterogeneous Mobile Database Systems
A. R. Hurson, J. Ploskonka, Y. Jiao, and H. Haridas

Disruptive Technologies and Their Affect on Global Telecommunications
Stan McClellan, Stephen Low, and Wai-Tian Tan

Ions, Atoms, and Bits: An Architectural Approach to Quantum Computing
Dean Copsey, Mark Oskin, and Frederic T. Chong

Volume 62

An Introduction to Agile Methods
David Cohen, Mikael Lindvall, and Patricia Costa

The Timeboxing Process Model for Iterative Software Development
Pankaj Jalote, Aveejeet Palit, and Priya Kurien

A Survey of Empirical Results on Program Slicing
David Binkley and Mark Harman

Challenges in Design and Software Infrastructure for Ubiquitous Computing Applications
Guruduth Banavar and Abraham Bernstein

Introduction to MBASE (Model-Based (System) Architecting and Software Engineering)
David Klappholz and Daniel Port

Software Quality Estimation with Case-Based Reasoning
Taghi M. Khoshgoftaar and Naeem Seliya

Data Management Technology for Decision Support Systems
Surajit Chaudhuri, Umeshwar Dayal, and Venkatesh Ganti

Volume 63

Techniques to Improve Performance Beyond Pipelining: Superpipelining, Superscalar, and VLIW
Jean-Luc Gaudiot, Jung-Yup Kang, and Won Woo Ro

Networks on Chip (NoC): Interconnects of Next Generation Systems on Chip
Theocharis Theocharides, Gregory M. Link, Narayanan Vijaykrishnan, and

Mary Jane Irwin
Characterizing Resource Allocation Heuristics for Heterogeneous Computing Systems

Shoukat Ali, Tracy D. Braun, Howard Jay Siegel, Anthony A. Maciejewski, Noah Beck,
Ladislau Bölöni, Muthucumaru Maheswaran, Albert I. Reuther, James P. Robertson,
Mitchell D. Theys, and Bin Yao

Power Analysis and Optimization Techniques for Energy Efficient Computer Systems
Wissam Chedid, Chansu Yu, and Ben Lee

Flexible and Adaptive Services in Pervasive Computing
Byung Y. Sung, Mohan Kumar, and Behrooz Shirazi

290 CONTENTS OF VOLUMES IN THIS SERIES

Search and Retrieval of Compressed Text
Amar Mukherjee, Nan Zhang, Tao Tao, Ravi Vijaya Satya, and Weifeng Sun

Volume 64

Automatic Evaluation of Web Search Services
Abdur Chowdhury

Web Services
Sang Shin

A Protocol Layer Survey of Network Security
John V. Harrison and Hal Berghel

E-Service: The Revenue Expansion Path to E-Commerce Profitability
Roland T. Rust, P. K. Kannan, and Anupama D. Ramachandran

Pervasive Computing: A Vision to Realize
Debashis Saha

Open Source Software Development: Structural Tension in the American Experiment
Coskun Bayrak and Chad Davis

Disability and Technology: Building Barriers or Creating Opportunities?
Peter Gregor, David Sloan, and Alan F. Newell

Volume 65

The State of Artificial Intelligence
Adrian A. Hopgood

Software Model Checking with SPIN
Gerard J. Holzmann

Early Cognitive Computer Vision
Jan-Mark Geusebroek

Verification and Validation and Artificial Intelligence
Tim Menzies and Charles Pecheur

Indexing, Learning and Content-Based Retrieval for Special Purpose Image Databases
Mark J. Huiskes and Eric J. Pauwels

Defect Analysis: Basic Techniques for Management and Learning
David N. Card

Function Points
Christopher J. Lokan

The Role of Mathematics in Computer Science and Software Engineering Education
Peter B. Henderson

Volume 66

Calculating Software Process Improvement’s Return on Investment
Rini Van Solingen and David F. Rico

Quality Problem in Software Measurement Data
Pierre Rebours and Taghi M. Khoshgoftaar

Requirements Management for Dependable Software Systems
William G. Bail

Mechanics of Managing Software Risk
William G. Bail

CONTENTS OF VOLUMES IN THIS SERIES 291

The PERFECT Approach to Experience-Based Process Evolution
Brian A. Nejmeh and William E. Riddle

The Opportunities, Challenges, and Risks of High Performance Computing in Computational Science and
Engineering

Douglass E. Post, Richard P. Kendall, and Robert F. Lucas

Volume 67

Broadcasting a Means to Disseminate Public Data in a Wireless Environment—Issues and Solutions
A. R. Hurson, Y. Jiao, and B. A. Shirazi

Programming Models and Synchronization Techniques for Disconnected Business Applications
Avraham Leff and James T. Rayfield

Academic Electronic Journals: Past, Present, and Future
Anat Hovav and Paul Gray

Web Testing for Reliability Improvement
Jeff Tian and Li Ma

Wireless Insecurities
Michael Sthultz, Jacob Uecker, and Hal Berghel

The State of the Art in Digital Forensics
Dario Forte

Volume 68

Exposing Phylogenetic Relationships by Genome Rearrangement
Ying Chih Lin and Chuan Yi Tang

Models and Methods in Comparative Genomics
Guillaume Bourque and Louxin Zhang

Translocation Distance: Algorithms and Complexity
Lusheng Wang

Computational Grand Challenges in Assembling the Tree of Life: Problems and Solutions
David A. Bader, Usman Roshan, and Alexandros Stamatakis

Local Structure Comparison of Proteins
Jun Huan, Jan Prins, and Wei Wang

Peptide Identification via Tandem Mass Spectrometry
Xue Wu, Nathan Edwards, and Chau-Wen Tseng

Volume 69

The Architecture of Efficient Multi-Core Processors: A Holistic Approach
Rakesh Kumar and Dean M. Tullsen

Designing Computational Clusters for Performance and Power
Kirk W. Cameron, Rong Ge, and Xizhou Feng

Compiler-Assisted Leakage Energy Reduction for Cache Memories
Wei Zhang

Mobile Games: Challenges and Opportunities
Paul Coulton, Will Bamford, Fadi Chehimi, Reuben Edwards, Paul Gilbertson, and

Omer Rashid
Free/Open Source Software Development: Recent Research Results and Methods

Walt Scacchi

292 CONTENTS OF VOLUMES IN THIS SERIES

Volume 70

Designing Networked Handheld Devices to Enhance School Learning
Jeremy Roschelle, Charles Patton, and Deborah Tatar

Interactive Explanatory and Descriptive Natural-Language Based Dialogue for Intelligent Information
Filtering

John Atkinson and Anita Ferreira
A Tour of Language Customization Concepts

Colin Atkinson and Thomas Kühne
Advances in Business Transformation Technologies

Juhnyoung Lee
Phish Phactors: Offensive and Defensive Strategies

Hal Berghel, James Carpinter, and Ju-Yeon Jo
Reflections on System Trustworthiness

Peter G. Neumann

Volume 71

Programming Nanotechnology: Learning from Nature
Boonserm Kaewkamnerdpong, Peter J. Bentley, and Navneet Bhalla

Nanobiotechnology: An Engineer’s Foray into Biology
Yi Zhao and Xin Zhang

Toward Nanometer-Scale Sensing Systems: Natural and Artificial Noses as Models for Ultra-Small,
Ultra-Dense Sensing Systems

Brigitte M. Rolfe
Simulation of Nanoscale Electronic Systems

Umberto Ravaioli
Identifying Nanotechnology in Society

Charles Tahan
The Convergence of Nanotechnology, Policy, and Ethics

Erik Fisher

Volume 72

DARPA’s HPCS Program: History, Models, Tools, Languages
Jack Dongarra, Robert Graybill, William Harrod, Robert Lucas, Ewing Lusk,

Piotr Luszczek, Janice McMahon, Allan Snavely, Jeffrey Vetter, Katherine Yelick,
Sadaf Alam, Roy Campbell, Laura Carrington, Tzu-Yi Chen, Omid Khalili, Jeremy
Meredith, and Mustafa Tikir

Productivity in High-Performance Computing
Thomas Sterling and Chirag Dekate

Performance Prediction and Ranking of Supercomputers
Tzu-Yi Chen, Omid Khalili, Roy L. Campbell, Jr., Laura Carrington, Mustafa M. Tikir,

and Allan Snavely
Sampled Processor Simulation: A Survey

Lieven Eeckhout
Distributed Sparse Matrices for Very High Level Languages

John R. Gilbert, Steve Reinhardt, and Viral B. Shah
Bibliographic Snapshots of High-Performance/High-Productivity Computing

Myron Ginsberg

