

Advances in

COMPUTERS
VOLUME 72

This page intentionally left blank

Advances in
COMPUTERS
High Performance Computing

EDITED BY

MARVIN V. ZELKOWITZ
Department of Computer Science
University of Maryland
College Park, Maryland

VOLUME 72

Amsterdam • Boston • Heidelberg • London • New York • Oxford
Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo

Academic Press is an imprint of Elsevier

ACADEMIC
PRESS

Academic Press is an imprint of Elsevier
84 Theobald’s Road, London WC1X 8RR, UK
Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
525 B Street, Suite 1900, San Diego, CA 92101-4495, USA

First edition 2008

Copyright © 2008 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means electronic, mechanical, photocopying,
recording or otherwise without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333;
email: permissions@elsevier.com. Alternatively you can submit your request online by
visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting
Obtaining permission to use Elsevier material.

Notice
No responsibility is assumed by the publisher for any injury and/or damage to persons or
property as a matter of products liability, negligence or otherwise, or from any use or
operation of any methods, products, instructions or ideas contained in the material herein.

ISBN: 978-0-12-374411-1

ISSN: 0065-2458

For information on all Academic Press publications
visit our website at elsevierdirect.com

Printed and bound in USA

08 09 10 11 12 10 9 8 7 6 5 4 3 2 1

Contents

Contributors . ix

Preface . xvii

DARPA’s HPCS Program: History, Models,Tools,
Languages

Jack Dongarra, Robert Graybill, William Harrod, Robert Lucas,
Ewing Lusk, Piotr Luszczek, Janice McMahon, Allan Snavely, Jeffrey

Vetter, KatherineYelick, Sadaf Alam, Roy Campbell, Laura Carrington,
Tzu-Yi Chen, Omid Khalili, Jeremy Meredith and MustafaTikir

1. Historical Background . 3
2. Productivity Systems Modeling . 19
3. Productivity Evaluation on Emerging Architectures 37
4. The DARPA HPCS Language Project 58
5. Research on Defining and Measuring Productivity 69
6. The HPC Challenge Benchmark Suite 86
7. Summary: The DARPA HPCS Program 95

References . 96

Productivity in High-Performance Computing

Thomas Sterling and Chirag Dekate

1. Introduction . 102
2. A General Formulation . 105
3. Factors Determining HPC Productivity 107
4. A Special Theory of Productivity . 121

v

vi CONTENTS

5. A User-based Model of Productivity . 124
6. Software Development & Productivity 129
7. Related Works . 131
8. Conclusions . 133

References . 134

Performance Prediction and Ranking of
Supercomputers

Tzu-Yi Chen, Omid Khalili, Roy L. Campbell, Jr., Laura Carrington,
Mustafa M.Tikir and Allan Snavely

1. Introduction . 137
2. Methods for Predicting Performance . 139
3. A Method for Weighting Benchmarks . 143
4. Examples . 148
5. Using End-to-End Runtimes . 152
6. Using Basic Trace Data . 160
7. Application-Independent Rankings . 163
8. Conclusion . 168

Acknowledgments . 169
References . 170

Sampled Processor Simulation: A Survey

Lieven Eeckhout

1. Introduction . 174
2. Trace-Driven versus Execution-Driven Simulation 176
3. Sampled Simulation . 178
4. Simulation Speed . 180
5. Representative Sampling Units . 182
6. Architecture State . 190
7. Microarchitecture State . 195
8. Case Studies . 214
9. Summary . 217

Acknowledgments . 217
References . 217

CONTENTS vii

Distributed Sparse Matrices for Very High Level
Languages

John R. Gilbert, Steve Reinhardt and Viral B. Shah

1. Introduction . 226
2. Sparse Matrices: A User’s View . 227
3. Data Structures and Storage . 228
4. Operations on Distributed Sparse Matrices 230
5. SSCA #2 Graph Analysis Benchmark 239
6. Looking Forward: A Next-Generation Parallel Sparse Library 248
7. Conclusion . 250

References . 251

Bibliographic Snapshots of
High-Performance/High-Productivity Computing

Myron Ginsberg

1. Introduction . 255
2. Computational Environments in Government, Academia and Industry . . 257

References . 259
3. Computational Science Education (CSE) 260

References . 263
4. Supercomputing Architecture . 264

References . 265
5. Some HPC Issues . 271

References . 272
6. Benchmarking Issues and Concerns . 275

References . 281
7. Acceleration Techniques for HPC Applications 286

References . 287
8. The Race for Petaflop Computing . 292

References . 300
9. Influences of Floating-Point Arithmetic on Computational Results 303

References . 304
10. Industrial HPC Progress . 305

References . 311

viii CONTENTS

11. Access to On-Demand HPC . 314
References . 315

12. A Few HPC Videos . 315
References . 316

Author Index . 319
Subject Index . 329
Contents of Volumes in This Series . 339

Contributors

Sadaf R. Alam is a research staff member in the Future Technologies Group at
Oak Ridge National Laboratory’s Computer Science and Mathematics Division. Her
research interests include scientific high-performance computing and architecture for
high-end computing platforms. She received her PhD in Computer Science from the
University of Edinburgh.

Roy L. Campbell, Jr., received his Ph.D. from Mississippi State University. He is
currently employed by the Army Research Laboratory as a computer engineer and
is a technical advisor to the Deputy Director of the DoD HPC Modernisation Program.

Laura Nett Carrington received her Ph.D. degree in Chemical Engineering from
the University of California, San Diego, and has experience in high-performance
computing benchmarking, programming and linear algebra software. Her engineer-
ing background is in the numerical and experimental investigation of the detailed
kinetics of catalytic reactions through porous medium. She is currently working in
the PMaC lab at SDSC in the areas of performance prediction and benchmarking of
HPC systems.

Tzu-Yi Chen received her Ph.D. in Computer Science from the University of
California at Berkeley. She is currently an Assistant Professor in the Computer
Science Department at Pomona College. Her research interests include sparse matrix
computations and performance modelling.

Chirag Dekate is a Ph.D. candidate at the Department of Computer Science at
Louisiana State University. He received his Masters in System Science and Bachelors
in Computer Science from Louisiana State university in 2004 and 2002, respectively.
His research interests include parallel symbolic computing, parallel algorithms for
solving dynamic graph problems, run-time scheduling and machine intelligence.

Jack Dongarra holds an appointment as University Distinguished Professor of
Computer Science in the Electrical Engineering and Computer Science Department

ix

x CONTRIBUTORS

at the University of Tennessee and holds the title of Distinguished Research Staff in
the Computer Science and Mathematics Division at Oak Ridge National Laboratory
(ORNL), Turing Fellow in the Computer Science and Mathematics Schools at the
University of Manchester, and an Adjunct Professor in the Computer Science Depart-
ment at Rice University. He specialises in numerical algorithms in linear algebra,
parallel computing, use of advanced-computer architectures, programming method-
ology and tools for parallel computers. His research includes the development, testing
and documentation of high-quality mathematical software. He has contributed to the
design and implementation of the following open source software packages and sys-
tems: EISPACK, LINPACK, the BLAS, LAPACK, ScaLAPACK, Netlib, PVM, MPI,
NetSolve, Top500, ATLAS, Open-MPI, and PAPI. He has published approximately
200 articles, papers, reports and technical memoranda and is the co-author of several
books. He is a Fellow of the AAAS, ACM and the IEEE and a member of the National
Academy of Engineering.

Lieven Eeckhout is an Assistant Professor in the Department of Electronics and
Information Systems (ELIS) at Ghent University, Belgium, and a Postdoctoral Fel-
low of the Fund for Scientific Research – Flanders (Belgium) (F.W.O. Vlaanderen).
His research interests include computer architecture, virtual machines, performance
analysis and modelling, and workload characterisation. He obtained his PhD in Com-
puter Science and Engineering from Ghent University in December 2002. He can be
contacted at leeckhou@elis.UGent.be.

John R. Gilbert received his Ph.D. in Computer Science at Stanford University in
1981. From 1981 to 1988, he was a Computer Science faculty at Cornell University. In
1988, he moved to Xerox PARC, where he performed and directed research in parallel
computing, computational geometry, languages and compilers for high-performance
computing and mathematical algorithms and software. In 1997, he founded the Com-
putation and Matter Area at PARC, the projects of which included distributed data
analysis for collaborating sensors, meso-scale MEMS for active surfaces and mod-
ular robotics. In 2002, Dr. Gilbert joined the Computer Science Department and the
Computational Science and Engineering program at the University of California,
Santa Barbara, where he leads research in high-performance computing, interac-
tive supercomputing and combinatorial and sparse matrix algorithms for scientific
computation. Dr. Gilbert has served in the Council of the Society for Industrial
and Applied Mathematics, has chaired the SIAM Activity Group on Supercom-
puting and the ACM Special Interest Group on Numerical Mathematics, and has
served as the editor for several journals in computational science and applied
mathematics.

CONTRIBUTORS xi

Myron Ginsberg is an independent HPC consultant with scientific and engineering
computing expertise in private industry and government research labs as well as exten-
sive faculty experience in academia. He has focused his research and development
efforts on evaluating hardware and software performance for large-scale scientific and
engineering applications in industrial environments. He was significantly involved in
General Motors’ initial and continuing supercomputer efforts and was instrumental
in initiating the first in-house installation of a supercomputer in the world automotive
community at General Motors Research. He was so recognized by the Association for
Computing Machinery (ACM) that honored him as an ACM Fellow. He has served
as a distinguished national lecturer in HPC and computational science for six profes-
sional societies. Myron has a BA and MA in Math and a Ph.D. in Computer Science.
He is a member of The Councils of Advisors in HPC for the Gerson Lehrman Group
which provides collaborative research and consulting to the financial community.

Robert Graybill, representing University of Southern California Information
Sciences Institute (ISI) at the Council of Competitiveness, is leading the formation
of an advanced national high-performance computing (HPC) collaborative system
that will link companies, universities and national laboratories together to share high-
performance computing systems and computational science expertise. Mr. Graybill
has an extensive background in embedded and high-performance computing, with
over 30 years of experience in the defense, government and commercial industry.
Before joining ISI, he spent six years at DARPA, where he designed, developed and
implemented six new transformational programs in high-end computing architectures
and responsive embedded computing hardware, software and network systems. These
programs were coordinated with other government agencies, laboratories, federally
funded research and development centers and non-profit organisations. He was a
member of the Senior Science Team, leading a number of government-sponsored
studies in high-end computing, including the Defense Science Board task force
on DoD Supercomputing Needs and the High-End Computing Revitalisation Task
Force.

Before joining DARPA, Mr. Graybill worked in advanced research, development,
flight testing, and production for radar, sonar, electronic warfare, space surveillance
systems and commercial products in organisations such as Westinghouse, Motorola,
Martin Marietta Naval Systems, Martin Marietta Corporate Laboratories, Sanders
and Lockheed Martin Government Electronic Systems.

William Harrod joined DARPA IPTO in December 2005. His area of interest is
extreme computing, including a current focus on advanced computer architectures
and system productivity. This includes self-monitoring and self-healing processing,

xii CONTRIBUTORS

ExaScale computing systems, highly productive development environments and high-
performance, advanced compilers.

Building on over 20 years of algorithmic, application, and high-performance pro-
cessing computing experience in industry, academics and government, Dr. Harrod
has a broad background in computing challenges. Before he was employed at
DARPA, he was awarded a technical fellowship for the intelligence community while
employed at Silicon Graphics Incorporated (SGI). Before this, at SGI, Dr. Harrod led
technical teams developing specialised processors and advanced algorithms and high-
performance software. Dr. Harrod holds a B.S. in Mathematics from Emory University
and a M.S. and a Ph.D. in Mathematics from the University of Tennessee.

Omid Khalili received his BA in Mathematics–Computer Science from the Univer-
sity of California at San Diego in 2005 followed by his MS in Computer Science in
2007. His interests lie in parallel computing and large-scale systems.

Robert F. Lucas is the Director of the Computational Sciences Division of the Univer-
sity of Southern California’s Information Sciences Institute (ISI). There he manages
research in computer architecture, VLSI, compilers and other software tools. Before
joining ISI, he was the Head of the High-Performance Computing Research Depart-
ment in the National Energy Research Scientific Computing Center (NERSC) at
Lawrence Berkeley National Laboratory. There he oversaw work in scientific data
management, visualisation, numerical algorithms and scientific applications. Before
joining NERSC, Dr. Lucas was the Deputy Director of DARPA’s Information Tech-
nology Office. He also served as DARPA’s Program Manager for Scalable Computing
Systems and Data-Intensive Computing. From 1988 to 1998, he was a member of the
research staff of the Institute for Defense Analyses, Center for Computing Sciences.
From 1979 to 1984, he was a member of the Technical Staff of the Hughes Aircraft
Company. Dr. Lucas received his BS, MS and PhD degrees in Electrical Engineering
from Stanford University in 1980, 1983 and 1988, respectively.

Ewing ‘Rusty’ Lusk is director of the Mathematics and Computer Science Division
at Argonne National Laboratory and an Argonne Distinguished Fellow. He received
his B.A. in mathematics from the University of Notre Dame in 1965 and his Ph.D. in
mathematics from the University of Maryland in 1970. He was a professor of computer
science at Northern Illinois University before joining Argonne in 1982. His cur-
rent research interests include programming models for scalable parallel computing,
implementation issues for the MPI Message-Passing Interface standard, parallel per-
formance analysis tools and system software for large-scale machines. He is the author
of five books and more than a hundred research articles in mathematics, automated
deduction and parallel computing.

CONTRIBUTORS xiii

Piotr Luszczek received his MSc degree from the University of Mining and
Metallurgy in Krakow, Poland, for work on parallel out-of-core libraries. He earned
his doctorate degree for the innovative use of dense matrix computational kernels
in sparse direct and iterative numerical linear algebra algorithms at the University
of Tennessee. He applied this experience to develop fault-tolerant libraries that used
out-of-core techniques. Currently, he is a Research Professor at the University of
Tennessee, Knoxville. His work involves standardisation of benchmarking of large
supercomputer installations. He is an author of self-adapting software libraries that
automatically choose the best algorithm to efficiently utilise available hardware and
can optimally process the input data. He is also involved in high-performance pro-
gramming language design and implementation.

Janice Onanian McMahon received B.S. and M.S. degrees in Computer Science
from MIT in 1989. She has many years of experience in the radar, sonar and
high-performance computing industries. Her specific expertise includes applica-
tion mapping and software development for massively parallel processors. She was
among the first to implement radar processing on large-scale SIMD architectures for
Raytheon Company. She has worked as a system engineer for MasPar Computer
Corporation where she ran high-performance benchmarks in the areas of com-
putational holography, computational biology and database processing as well as
signal processing. She spent 9 years at MIT Lincoln Laboratory, where she con-
tributed to system implementations involving a first-of-its-kind massively parallel
processor for space-time adaptive processing and was also a principal investiga-
tor for DARPA architecture research programs. She is currently a project leader at
USC Information Sciences Institute, where she is overseeing projects that involve
cognitive and multi-core architectures and is specifically interested in issues per-
taining to run-time resource allocation and dynamic code generation for those
architectures.

Jeremy Meredith is a computer scientist in the Future Technologies Group at the
Oak Ridge National Laboratory’s Computer Science and Mathematics Division. His
research interests include high-performance computation on emerging architectures
and scientific visualisation and analysis. He received his MS in computer science
from Stanford University.

Allan Snavely received his Ph.D. from the University of California, San Diego. He
has worked at SDSC in various capacities since 1995. Allan founded the PMaC labo-
ratory in 2001 and is currently the PMaC group leader and the UCSD Primary Inves-
tigator for the DoE PERC project and the DoD HPC Performance Modelling project.
He is an Assistant Adjunct Professor in the Department of Computer Science and

xiv CONTRIBUTORS

Engineering at UCSD. His research interests include hardware multi-threading and
operations research, as well as performance modelling.

Steve Reinhardt leads Interactive Supercomputing’s funded research efforts. He
helped develop the first UNIX-based supercomputers at Cray Research Inc. in the
mid 1980s. Steve has worked on parallel system designs for a number of notable
projects, including as project director for the T3E project – considered by many to
be one of the best parallel systems ever developed. He also played a significant role
in the development of SGI’s Altix systems, which were the first strongly scalable
supercomputers to be built from mass-market components (industry-standard Intel
processors with the Linux operating system) and thereby affordable by a wider range
of customers. Steve’s major interests are in the integration of hardware, software and
application abilities to provide high system performance and in providing easier soft-
ware means to exploit the performance of highly parallel systems.

Viral B. Shah received his Ph.D. in Computer Science, with an emphasis on com-
putational sciences and engineering at the University of California, Santa Barbara, in
2007. He developed the parallel sparse matrix infrastructure in Star-P before it was
commercialised. His research interests include combinatorial and sparse matrix algo-
rithms and language design for high-productivity parallel computing. He is currently
a senior research engineer at Interactive Supercomputing.

Thomas Sterling is the Arnaud & Edwards Professor of Computer Science at
Louisiana State University, a Faculty Associate at California Institute of Techno-
logy, and a Distinguished Visiting Scientist at Oak Ridge National Laboratory.
He received his Ph.D. as a Hertz Fellow from MIT in 1984. He is probably best
known as the father of Beowulf clusters and for his research on Petaflops computing
architecture. His current research is on the ParalleX execution model and its prac-
tical implementation in computer architecture and programming methods. Professor
Sterling is the co-author of six books and holds six patents. He was awarded the
Gordon Bell Prize with collaborators in 1997.

Mustafa M. Tikir received his Ph.D. degree from the University of Maryland,
College Park. He received his BS degree from the Middle East Technical University,
Ankara, and MS degree from the University of Maryland, College Park. His research
interests are in the areas of High-Performance Computing, Programming Languages
and Operating Systems. He is primarily interested in performance prediction and
tuning of HPC applications.

CONTRIBUTORS xv

Jeffrey Vetter is a computer scientist in the Computer Science and Mathematics
Division (CSM) of Oak Ridge National Laboratory (ORNL), where he leads the
Future Technologies Group and directs the Experimental Computing Laboratory. Dr.
Vetter is also a Joint Professor in the College of Computing at the Georgia Institute
of Technology, where he earlier earned his PhD. He joined ORNL in 2003, after four
years at Lawrence Livermore National Laboratory. Vetter’s interests span several
areas of high-end computing (HEC) – encompassing architectures, system software,
and tools for performance and correctness analysis of applications.

Katherine Yelick is the Director of the National Energy Research Scientific Com-
puting Center (NERSC) at Lawrence Berkeley National Laboratory and a Professor
of Electrical Engineering and Computer Sciences at the University of California at
Berkeley. She has received a number of research and teaching awards and is the
author or co-author of two books and more than 85 refereed technical papers on
parallel languages, compilers, algorithms, libraries, architecture and storage. She co-
invented the UPC and Titanium languages and demonstrated their applicability across
architectures. She developed techniques for self-tuning numerical libraries, which
automatically adapt the code to machine properties. Her work includes performance
analysis and modelling as well as optimisation techniques for memory hierarchies,
multi-core processors, communication libraries and processor accelerators. She has
worked with interdisciplinary teams on application scaling and her own applications
work includes parallelisation of a model for blood flow in the heart. She earned her
Ph.D. in Electrical Engineering and Computer Science from MIT and has been a pro-
fessor of Electrical Engineering and Computer Sciences at UC Berkeley since 1991,
with a joint research appointment at Berkeley Lab since 1996.

This page intentionally left blank

Preface

This book is volume 72 of the Advances in Computers, a series that began back in
1960, which is the oldest continuing series, chronicaling the ever-changing landscape
of information technology. Each year three volumes are produced, which present
approximately 20 chapters that describe the latest technology in the use of computers
today. In this volume 72, we present the current status in the development of a new
generation of high-performance computers (HPC).

The computer today has become ubiquitous with millions of machines being sold
(and discarded) annually. Powerful machines are produced for only a few hundred U.S.
dollars, and one of the problems faced by vendors of these machines is that, due to the
continuing adherence to Moore’s law, where the speed of such machines doubles about
every 18 months, we typically have more than enough computer power for our needs
for word processing, surfing the web or playing video games. However, the same
cannot be said for applications that require large powerful machines. Applications
involving weather and climate prediction, fluid flow for designing new airplanes or
automobiles, or nuclear plasma flow require as much computer power as we can
provide, and even that is not enough. Today’s machines operate at the teraflop level
(Trillions of Floating-Point Operations per Second) and this book describes research
into the petaflop region (1015 FLOPS). The six chapters provide an overview of
current activities that will provide the introduction of these machines in the years
2011 through 2015.

The first chapter, by Jack Dongarra and 16 co-authors, ‘DARPA’s HPCS Program:
History, Models, Tools, Languages’, describes the approximately 10 years of effort
by the U.S. Defense Advanced Research Projects Agency (DARPA) to design and
build a petascale computing machine. The chapter gives an overview of the activities
to date in developing the High-Productivity Computing System (HPCS) program and
describes some of the research that is being conducted to build these machines. Issues
discussed include productivity modelling of these new systems, what architecture is
needed to reach petascale levels, what programming languages can be used to program
these machines, how do we measure programmer performance in producing programs
for these machines and how will we eventually measure the actual performance of
these machines, once they are built.

xvii

xviii PREFACE

The next three chapters describe efforts to measure how well these machines
should perform and how well they actually perform. These methods include perfor-
mance modelling and performance evaluation using simulation and benchmarking.
In Chapter 2, ‘Productivity in High-Performance Computing’ by Thomas Sterling
and Chirag Dekate, the authors describe various methods to measure the produc-
tivity in the high-performance domain. For manufactured products such as pencils
or computer (hardware), productivity is a relatively well-understood concept. It is
usually defined as the amount of output per unit of input, as in the case of a factory
that can produce so many objects per year at a total cost of so much money. But for
computer software, the situation is more complex. Is productivity the lines of code a
programmer can produce per day, the number of lines of code a computer can execute
per unit of time or the time it takes to solve a particular problem? When we go to
the HPC domain, where we have thousands of processors working cooperatively to
solve a given problem, the situation is considerably more complex. In this chapter,
Sterling and Dekate present various formal models using which one can measure such
productivity.

In Chapter 3, ‘Performance Prediction and Ranking of Supercomputers’by Tzu-Yi
Chen, Omid Khalili, Roy L. Campbell, Jr., Laura Carrington, Mustafa M. Tikir, and
Allan Snavely, the authors continue with the theme presented in the previous chapter
on productivity. In this case, they look at various ways to benchmark programs in
order to determine their expected performance on other non-benchmarked programs.
Their goal is to address trade-offs in the following two conflicting goals in benchmark-
ing an HPC machine: (1) Performance prediction asks how much time executing an
application is likely to take on a particular machine. (2) Machine ranking asks which
of a set of machines is likely to execute an application most quickly.

Lieven Eeckhout in Chapter 4, ‘Sampled Processor Simulation: A Survey’,
explores the other main aspect of performance prediction – that of computer simu-
lation.As he explains it: ‘Simulating industry-standard benchmarks is extremely time-
consuming. Sampled processor simulation speeds up the simulation by several orders
of magnitude by simulating a limited number of sampling units rather than the entire
program execution’. In this chapter, he explores this approach towards simulating
computers and gives examples of this approach applied to the various architectural
components of modern HPC machines.

In Chapter 5, ‘Distributed Sparse Matrices for Very High-Level Languages’ by
John R. Gilbert, Steve Reinhardt and Viral B. Shah, the authors discuss an important
application that generally requires the use of HPC machines; that is, how to solve
problems that require large space matrices, i.e., matrices where most of the entries are
zero. In this chapter, the authors describe an infrastructure for implementing languages
effective in the solution of these problems. They demonstrate the versatility of their

PREFACE xix

infrastructure by using it to implement a benchmark that creates and manipulates
large graphs.

In case this volume does not provide enough information that you desire on HPC
systems, the final chapter by Myron Ginsberg, ‘Bibliographic Snapshots of High-
Performance/High-Productivity Computing’, provides a comprehensive summary of
the various aspects of HPC systems and a detailed bibliography of hundreds of addi-
tional sources of such information. He covers HPC application domains, architectures,
benchmarking and performance issues, as well as additional comments on the DARPA
HPCS program described by Dongarra in Chapter 1.

I hope this volume meets your needs in the area of high-performance computing.
I am always looking for new and different chapters and volume themes to use for future
volumes. If you know of a topic that has not been covered recently or are interested
in writing such a chapter, please let me know. I am always looking for qualified
authors. I can be contacted at mvz@cs.umd.edu. I hope you like these volumes and
look forward to producing the next one in this long-running series.

Marvin Zelkowitz
University of Maryland
College Park, Maryland

This page intentionally left blank

DARPA’s HPCS Program: History,
Models, Tools, Languages

JACK DONGARRA
University of Tennessee and Oak Ridge National Lab,
Tennessee, USA

ROBERT GRAYBILL
USC Information Sciences Institute

WILLIAM HARROD
DARPA

ROBERT LUCAS
USC Information Sciences Institute

EWING LUSK
Argonne National Laboratory

PIOTR LUSZCZEK
MathWorks Inc.

JANICE MCMAHON
USC Information Sciences Institute

ALLAN SNAVELY
University of California – San Diego

JEFFREY VETTER
Oak Ridge National Laboratory

KATHERINEYELICK
Lawrence Berkeley National Laboratory

SADAF ALAM
Oak Ridge National Laboratory

ROY CAMPBELL
Army Research Laboratory

LAURA CARRINGTON
University of California – San Diego

TZU-YI CHEN
Pomona College

ADVANCES IN COMPUTERS, VOL. 72 1 Copyright © 2008 Elsevier Inc.
ISSN: 0065-2458/DOI: 10.1016/S0065-2458(08)00001-6 All rights reserved.

2 J. DONGARRA ET AL.

OMID KHALILI
University of California – San Diego

JEREMY MEREDITH
Oak Ridge National Laboratory

MUSTAFATIKIR
University of California – San Diego

Abstract
The historical context with regard to the origin of the DARPA High Productiv-
ity Computing Systems (HPCS) program is important for understanding why
federal government agencies launched this new, long-term high-performance
computing program and renewed their commitment to leadership computing in
support of national security, large science and space requirements at the start of the
21st century. In this chapter, we provide an overview of the context for this work
as well as various procedures being undertaken for evaluating the effectiveness
of this activity including such topics as modelling the proposed performance
of the new machines, evaluating the proposed architectures, understanding the
languages used to program these machines as well as understanding program-
mer productivity issues in order to better prepare for the introduction of these
machines in the 2011–2015 timeframe.

1. Historical Background . 3

1.1. HPCS Motivation . 10

1.2. HPCS Vision . 11

1.3. Program Overview . 14

1.4. Cray ‘Cascade’ and IBM ‘PERCS’ Overview 16

1.5. Productivity Initiatives . 17

2. Productivity Systems Modeling . 19

2.1. Problem Definition and Unified Framework 21

2.2. Methods to Solve the Convolution Problem 23

2.3. Performance Prediction . 32

2.4. Related Work . 35

2.5. Conclusions . 36

3. Productivity Evaluation on Emerging Architectures 37

3.1. Architecture Overviews . 38

3.2. Target Workloads . 43

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 3

3.3. Evaluation . 45

3.4. Productivity . 53

4. The DARPA HPCS Language Project 58

4.1. Architectural Developments . 58

4.2. The HPCS Languages as a Group . 62

5. Research on Defining and Measuring Productivity 69

5.1. Software Development Time . 69

5.2. Productivity Metric . 82

5.3. Conclusions . 85

6. The HPC Challenge Benchmark Suite 86

6.1. The TOP500 Influence . 87

6.2. Short History of the Benchmark . 88

6.3. Conclusions . 94

7. Summary: The DARPA HPCS Program 95

References . 96

1. Historical Background

The historical context with regard to the origin of the High Productivity Computing
Systems (HPCS) program is important for understanding why federal government
agencies launched this new, long-term high-performance computing program and
renewed their commitment to leadership computing in support of national security,
large science and space requirements at the start of the 21st century.

The lead agency for this important endeavour, not surprisingly, was DARPA, the
Defense Advance Research Projects Agency. DARPA’s original mission was to pre-
vent technological surprises like the launch of Sputnik, which in 1957 signalled
that the Soviets had beaten the U.S. in space research. Still, DARPA’s mission is
to prevent technological surprises, but over the years it has expanded to include
the creation of technological surprises for America’s adversaries. DARPA conducts
its mission by sponsoring revolutionary, high-payoff research that bridges the gap
between fundamental discoveries and their military use. DARPA is the federal gov-
ernment’s designated ‘technological engine’ for transformation, supplying advanced
capabilities, based on revolutionary technological options.

Back in the 1980s, a number of agencies made major investments in developing
and using supercomputers. The High Performance Computing and Communications
Initiative (HPCCI), conceived in that decade, built on these agency activities and

4 J. DONGARRA ET AL.

in the 1990s evolved into a broad, loosely coupled program of computer science
research. Key investments under the HPCCI and other programs have enabled major
advances in computing technology and helped maintain U.S. leadership in the world
computer market in the recent decades.

In the late 1990s and early 2000s, U.S. government and industry leaders realized
that the trends in high-performance computing were creating technology gaps. If
left unchecked, these trends would threaten continued U.S superiority for important
national security applications and could also erode the nation’s industrial com-
petitiveness. The most alarming trend was the rapid growth of less-innovative,
commodity-based clustered computing systems (‘clusters’), often at the expense of
the leading-edge, capability-class supercomputers with key characteristics supportive
of an important set of applications. As a result of this strong market trend, the entire
ecosystem that needed to maintain leadership in high-end, capability-class supercom-
puters was at risk: the few companies producing high-end supercomputers had less
money to invest in innovative hardware research and development, and firms that cre-
ated high-performance versions of software applications, environments and tools for
high-end supercomputers had a more difficult time making a business case for this spe-
cialized activity. The seemingly inexorable increase in of commodity microprocessor
speeds following Moore’s Law propelled the growth of clusters with hundreds and
then thousands of processors (although this same increasing parallelism also gave
rise to the programming challenge that continues to plague the high-performance
computing industry today).

1.0.0.1 Chronology. The goal of this section is to provide the first com-
prehensive chronology of events related to the HPCS program. The chronology is
based on reports, documents and summaries that have been accumulated over time
by more people than I can mention here. Special credit is due to Charles Holland,
Richard Games and John Grosh for their contributions, especially in the early years
leading up to the HPCS program. In the chronology, events that were part of the HPCS
program, or sponsored by the program, are highlighted in italics.

1992: DARPA funding support focuses on companies developing massively par-
allel processing (MPP) systems based on commodity microprocessors (e.g.,
Thinking Machines’ Connection Machine CM5, Intel’s Paragon system).

1995: The Department of Energy establishes the Accelerated Strategic Comput-
ing Initiative (ASCI) to ensure the safety and reliability of the nation’s nuclear
weapons stockpile through the use of computer simulation rather than nuclear
testing. ASCI adopts commodity HPC strategy.

25 February 1996: Silicon Graphics acquires Cray Research, which becomes a
subsidiary of SGI.

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 5

17 May 1996: The University Corporation for Atmospheric Research (UCAR), a
federally funded agency in Boulder, Colorado, awards a $35 million contract
for a supercomputer purchase to a subsidiary of NEC of Japan. The U.S.-based
subsidiary of NEC outbids two other finalists for the contract – Fujitsu U.S. and
Cray Research of Eagan, Minnesota – to supply a supercomputer to UCAR’s
National Center for Atmospheric Research (NCAR) for modelling weather
patterns.

29 July 1996: Cray (now an SGI subsidiary) petitions the International Trade
Administration (ITA), a division of the U.S. Commerce Department, claiming
that it had been the victim of ‘dumping’. The ITA upholds the dumping charge
and the NCAR purchase of the NEC supercomputer is cancelled.

19 June 1997: Sandia National Laboratories’ ‘ASCI Red’ massive parallel pro-
cessing system uses 9,216 Intel Pentium Pro microprocessors to achieve 1.1
trillion floating-point operations per second on the Linpack benchmark test, mak-
ing it the top supercomputer in the world and the first to break the teraflop/s
barrier.

26 September 1997: The International Trade Commission (ITC) determines that
Cray Research has suffered ‘material injury’ and imposes punitive tariffs of
between 173% and 454% on all supercomputers imported from Japan, a barrier
so high that it effectively bars them from the U.S. market.

22 September 1999: SGI announces that it will be receiving significant financial
aid from several U.S. government agencies to support the development of the
company’s Cray SV2 vector supercomputer system.

15 November 1999: Jacques S. Gansler tasks the Defense Science Board (DSB)
to address DoD supercomputing needs, especially in the field of cryptanalysis.

2 March 2000: Tera Computer Company acquires the Cray vector supercom-
puter business unit and the Cray brand name from SGI. Tera renames itself as
Cray Inc.

11 October 2000: The DSB Task Force on DoD Supercomputing Needs publishes
its report. The Task Force concludes that current commodity-based HPCs are
not meeting the computing requirements of the cryptanalysis mission. The Task
Force recommends that the government:

1. Continue to support the development of the Cray SV2 in the short term.
2. In the mid term, develop an integrated system that combines commodity

microprocessors with a new, high-bandwidth memory system.
3. Invest in research on critical technologies for the long term.

Fall 2000: DARPA Information Technology Office (ITO) sponsors high-perfor-
mance computing technology workshops led by Candy Culhane and Robert
Graybill (ITO).

6 J. DONGARRA ET AL.

23 March 2001: Dave Oliver and Linton Wells, both from the DoD, request a
survey and analysis of national security high-performance computing require-
ments to respond to concerns raised by U.S. Representative Martin Sabo
(D-Minn.) that eliminating the tariffs on Japanese vector supercomputers would
be a bad idea.

April 2001: Survey of DoD HPC requirements concludes that cryptanalysis com-
puting requirements are not being met by commodity-based high-performance
computers, although some DoD applications are being run reasonably well on
commodity systems because of a significant investment by the DoD HPC Mod-
ernization Program to make their software compatible with the new breed of
clusters. But the survey also reveals significant productivity issues with com-
modity clusters in almost all cases. The issues range from reduced scientific
output due to complicated programming environments, to inordinately long run
times for challenge applications.

26 April 2001: Results of the DoD HPC requirements survey are reviewed with
Congressman Sabo. Dave Oliver, Delores Etter, John Landon, Charlie Holland,
and George Cotter were the attendees from the DoD. The DoD commits to
increasing its R&D funding to provide more diversity and increase the usefulness
of high-performance computers for their applications.

3 May 2001: Commerce Department lifts tariffs on vector supercomputers from
Japan.

11 June 2001: Release of the DoD Research and Development Agenda for High-
Productivity Computing Systems White Paper, prepared for Dave Oliver and
Charlie Holland. The white paper team was led by John Grosh (Office of the
Deputy Under Secretary of Defense for Science and Technology) and included
Robert Graybill (DARPA)), Dr. Bill Carlson (Institute for Defense Analysis
Center for Computing Sciences) and Candace Culhane. The review team con-
sisted of Dr. Frank Mello (DoD High-Performance Computing Modernization
Office), Dr. Richard Games (The MITRE Corporation), Dr. Roman Kaluzniacki,
Mr. Mark Norton (Office of the Assistant Secretary of Defense, Command,
Control, Communications, and Intelligence), and Dr. Gary Hughes.

June 2001: DARPA ITO sponsors an IDA Information Science and Technology
(ISAT) summer study, ‘The Last Classical Computer’, chaired by Dr. William J.
Dally from Stanford University.

July 2001: DARPA approves High-Productivity Computing Systems Program
based to a large extent on the HPCS white paper and ISAT studies. Robert Gray-
bill is the DARPA program manger. The major goal is to provide economically
viable high-productivity computing systems by the end of 2010. These innovative
systems will address the inherent difficulties associated with the development and

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 7

use of current high-end systems and applications, especially programmability,
performance, portability and robustness.
To achieve this aggressive goal, three program phases are envisioned: (1) con-
cept study; (2) research and development and (3) design and development of a
petascale prototype system. The program schedule is defined as follows:

I. June 2002–June 2003: Five vendors to develop concept studies for an HPC
system to appear in 2010.

II. July 2003–June 2006: Expected down selection to 2–3 vendors (number
depends on funding level) to develop detailed system designs for the 2010
system and to perform risk-reduction demonstrations.

III. July 2006–December 2010: Down selection to 1–2 vendors (number
depends on funding level) to develop research prototypes and pilot systems.

January 2002: DARPA’s HPCS Phase I Broad Area Announcement (BAA) is
released to industry.

February 2002: Congress directs the DoD to conduct a study and deliver by
1 July 2002 a development and acquisition plan, including budgetary require-
ments for a comprehensive, long-range Integrated High-End Computing (IHEC)
program. NSA is designated as the lead agency. DARPA, the DoD HPC
Modernization Program, NIMA, NRO, DOE/NNSA and NASA are named as
contributing organizations.

8 March 2002: NEC Corporation announces the delivery of its vector parallel
computing system based on the NEC SX-6 architecture to the Japanese Earth
Simulator Center. The system sustains 35.6 Tflop/s on the Linpack benchmark,
making it the fastest computer in the world – approximately 5 times faster than
the previous one, the DOE ‘ASCI White’ computer at the Lawrence Livermore
National Laboratory. Jack Dongarra, who helps compile the Top500 computer
list, compares the event’s shock impact with the Sputnik launch, and dubs it
‘Computenik’.

May–June 2002: The NSA-led Integrated High-End Computing (IHEC) study
commences with a number of focused workshops.

June 2002: Phase I of the DARPA HPCS program begins with one-year study con-
tracts awarded to Cray, HP, IBM, SGI and Sun. NSA provides additional funds
for Phase I awards. The goal of the program is to develop a new revolution-
ary generation of economically viable high-productivity computing systems for
national security and industrial user communities by 2010, in order to ensure
U.S. leadership, dominance and control in this critical technology.

The vendors’ conceptualizing efforts include a high degree of university par-
ticipation (23), resulting in a wealth of novel concepts. In addition, a number

8 J. DONGARRA ET AL.

of innovative technologies from DARPA’s active embedded programs are
considered by the vendors: Data Intensive Systems (DIS), Polymorphous Com-
puting Architectures (PCA) and Power Aware Computing and Communications
(PACC).

21 October 2002: Sandia National Laboratories and Cray Inc. announce that they
have finalized a multi-year contract, valued at approximately $90 million, under
which Cray will collaborate with Sandia to develop and deliver a new super-
computer called Red Storm. The machine will use over 16 000 AMD Opteron
microprocessors and have a peak processing rate of 100 trillion floating-point
operations per second.

21 November 2002: Users of the Japanese Earth Simulator capture three out of
five Gordon Bell prizes awarded at the Supercomputing 2002 conference. In
one case, scientists run a 26.58 Tflop/s simulation of a complex climate system.
This corresponds to 66% of the peak processing rate. Competing commodity
systems in the U.S. deliver 10% or less of peak rates, illustrating one of the
productivity issues that the DARPA HPCS program is proposing to address.

December 2002: The FY03 federal budget includes language proposing the
development of an interagency R&D roadmap for high-end computing core
technologies, along with a federal high-end computing capacity and accessi-
bility improvement plan. In response to this guidance, the White House Office
of Science and Technology Policy (OSTP), in coordination with the National
Science and Technology Council, commissions the creation of the interagency
High-End Computing Revitalization Task Force (HECRTF). The interagency
HECRTF is charged with developing a five-year plan to guide future federal
investments in high-end computing.

June 2003: Computing Research Association leads a workshop, chaired by
Dr. Daniel A. Reed, on ‘The Road for the Revitalization of High-End Com-
puting’, as part of the High-End Computing Revitalization Task Force’s effort
to solicit public comment on the planning process.

July 2003: DARPA HPCS Phase I down-select is completed and Phase II three-
year research and development Other Transactions Authority (OTA) contracts
are awarded to Cray, IBM and Sun.

July 2003: A multi-agency initiative (DARPA, DOE Office of Science, NNSA, NSA,
NSF, and NASA) funds a three-year HPCS productivity team effort led by
Dr. Jeremy Kepner from MIT-Lincoln Laboratory. The productivity team com-
prised universities, laboratories, Federally Funded Research and Development
Centers (FFRDCs) and HPCS Phase II vendors. Bi-annual public productiv-
ity conferences are held on a regular basis throughout the three-year Phase II
program.

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 9

10 May 2004: High-End Computing Revitalization Task Force (HPCRTF) Report
is released by the Office of the Science and Technology policy (OSTP).

May 2004: DARPA sponsors the High Productivity Language System (HPLS)
workshop, which is organized by Dr. Hans P. Zima from JPL to form the basis for
the HPCS experimental language development activity. Experimental languages
discussed include Chapel (Cray), X10 (IBM) and Fortress (Sun).

November 2004: First formal public announcement is made at the Supercomput-
ing Conference (SC2004) of the new HPC Challenge benchmarks, based on the
work done under the HPCS Productivity Team efforts led by the University of
Tennessee.

2004: The National Research Council (NRC) releases a report, ‘The Future of
Supercomputing’, sponsored by the DOE Office of Science.

August 2005: Completion of the report from the Joint UK Defense ScientificAdvi-
sory Council and U.S. Defense Science Board Study on Critical Technologies.
High-Performance Computing is identified as a critical technology and the report
makes key recommendations to maintain U.S./UK HPC superiority.

September 2005: The Army High Performance Computing Research Center
(AHPCRC) and DARPA sponsor the first Parallel Global Address Space (PGAS)
programming models conference in Minneapolis. Based on the interest level in
the first conference, the plan is to turn this event into an annual conference.

November 2005: First HPC Challenge performance and productivity awards are
made at SC2005.

December 2005: Dr. William Harrod becomes the HPCS program manager after
Robert Graybill’s six year DARPA term expires.

November 2006: DARPA HPCS Phase II down-select is completed. Phase III multi-
year prototype development Other Transaction Authority (OTA) cost-sharing
contracts are awarded to Cray and IBM, with petascale prototype demonstrations
planned for the end of 2010. This is a multi-agency effort involving DARPA (lead
agency), NSA, DOE Office of Science, and NNSA (the HPCS mission partners),
each contributing to Phase III funding.

As this chronology suggests, this period represented a tumultuous transition period
for supercomputing, resulting in no shortage of reports, recommendations and ideas
on the roles of public and private sector in maintaining U.S. superiority from the
national security and economic perspectives. There was also growing public aware-
ness that theoretical (‘peak’) performance could no longer be a sufficient measure of
computing leadership. During this period of public/private partnerships, the future of
supercomputing has been altered by new wave of innovations and real sense that the
real value of the computing is in achieving end-users’ business objectives, agency
mission and scientific discovery.

10 J. DONGARRA ET AL.

1.1 HPCS Motivation
As already noted, high-performance computing was at a critical juncture in the

United States in the early 2000s, and the HPCS program was created by DARPA
in partnership with other key government agencies to address HPC technology and
application challenges for the next decade.

A number of DoD studies1,2 stressed that there is a national security requirement
for high-performance computing systems, and that, consistent with this requirement,
DoD historically had provided partial funding support to assist companies with R&D
for HPC systems. Without this government R&D participation, high-end computing
might one day be available only through manufacturers of commodity clusters based
on technologies developed primarily for mass-market consumer and business needs.

While driving U.S. superiority in high-end computing technology, the HPCS
program will also contribute significantly to leadership in these and other
critical DoD and industrial application areas: operational weather and ocean
forecasting; planning for the potential dispersion of airborne contaminants;
cryptanalysis; weapons (warheads and penetrators); survivability/stealth design;
intelligence/surveillance/reconnaissance systems; virtual manufacturing/failure anal-
ysis of large aircraft, ships and structures; and emerging biotechnology applications.
The HPCS program will create new systems and software tools that will lead to
increased productivity of the applications used to solve these critical problems.

The critical mission areas are described below. Some descriptions were derived
from a report submitted to Congress by the Office of the Secretary of Defense (‘High
Performance Computing for the National Security Community’) Others came from
a report created by MITRE3. The list is not exhaustive. HPCS systems are likely to
be used for other missions – both military and commercial – if the systems provide a
balanced architecture and are easy to use.

Operational Weather and Ocean Forecasting. Provides worldwide 24-hour
weather guidance to the military, CIA and Presidential Support Unit for current
operations, weapons of mass destruction contingency planning, etc.

Signals Intelligence. The transformation, cryptanalysis and intelligence analysis
of foreign communications on the intentions and actions of foreign governments,
militaries, espionage, sabotage, assassinations or international terrorism. There are
both research and development and operational aspects of this activity.

1 ‘Task Force on DOD Supercomputing Needs’, Defense Science Board Study, October 11, 2000.
2 ‘Survey and Analysis of the National Security High Performance Computing Architectural Require-

ments’, Presentation by Dr. Richard Games, MITRE, April 26, 2001.
3 ‘DARPA HPCS Application Analysis and Productivity Assessment’, MITRE, October 6, 2002.

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 11

Intelligence, Surveillance and Reconnaissance. Processing the outputs of
various types of sensors to produce battlespace situation awareness or other action-
able intelligence. Includes target cueing, aided target recognition and other special
exploitation products. These operational applications have to meet throughput and
latency requirements as part of a larger system.

Dispersion of Airborne Contaminants. Predicts the dispersion of hazardous
aerosols and gasses in the atmosphere. Supports military operation planning and
execution, intelligence gathering, counter terrorism and treaty monitoring.

Weapons Design. Uses computer models to augment physical experimentation to
reduce costs and explore new concepts that would be difficult to test. Computational
mechanics are used to understand complex projectile – target interactions to develop
advanced survivability and lethality technologies. Computational fluid dynamics is
used for modeling flight dynamics of missiles and projectiles.

Survivability and Stealth. Includes researches that are performed to reduce the
radar signatures of airplanes such as the JSF and F22 and to provide techni-
cal support for acquisition activity. Uses computational electromagnetics for radar
cross-section/signature prediction.

Engineering Design of Large Aircraft, Ship and Structures. Applies com-
putational structural mechanics used to do forensic analysis after terrorist bomb
attacks and predictive analysis for the design of safer military and embassy structures.
Augments aircraft wind tunnel experiments to reduce costs.

Biotechnology. Uses information technology to create, organize, analyze, store,
retrieve and share genomic, proteomic, chemical and clinical data in the life sciences.
This area is not strictly considered a national security mission area, but it is of use to
the military. More important, it is a growing field in private industry. If HPCS meets
biotechnology users’ needs, it may enhance the commercial viability of computer
systems developed under the HPCS program.

1.2 HPCS Vision
The HPCS vision of developing economically viable high-productivity comput-

ing systems, as originally defined in the HPCS white paper, has been maintained
throughout the life of the program. The vision of economically viable – yet revolu-
tionary – petascale high-productivity computing systems led to significant industry
and university partnerships early in the program and a heavy industry focus later in

12 J. DONGARRA ET AL.

the program. To achieve the HPCS vision, DARPA created a three-phase program.
A broad spectrum of innovative technologies and concepts were developed during
Phase I. These were then evaluated and integrated with a balanced, innovative pre-
liminary system design solution during Phase II. Now, in Phase III, the systems are
under development, with prototype petascale demonstrations planned for late 2010.

The end product of the HPCS program will be systems with the ability to efficiently
run a broad spectrum of applications and programming models in support of the
national security and industrial user communities. HPCS is focusing on revolutionary,
productivity-enhancing improvements in the following areas:

• Performance: Computational capability of critical national security applications
improved by 10X to 40X over the 2002 capability.

• Programmability: Reduce time to develop, operate, and maintain HPCS
application solutions to one-tenth of 2002’s cost.

• Portability: Make available research and operational HPCS application software
that is independent of specific hardware and software architectures.

• Robustness (reliability): Continue operating in the presence of localized hard-
ware failure, contain the impact of software defects, and minimize the likelihood
of operator error.

Achieving of the HPCS vision will require an optimum balance between revo-
lutionary system requirements incorporating high-risk technology and features and
functionality needed for a commercial viable computing system. The HPCS strategy
has been to encourage the vendors not only to develop evolutionary systems, but
also to make bold step productivity improvements, with the government helping to
reduce the risks through R&D cost sharing. The assessment of productivity, by its
very nature, is difficult because it depends upon the specifics of the end-user mis-
sion, applications, team composition and end use or workflow as shown in Fig. 1.
A proper assessment requires a mixture of qualitative and quantitative (preferred)
analysis to develop a coherent and convincing argument. The productivity goals of
the HPCS Phase III system can be loosely grouped into execution time and devel-
opment time goals. The goals of the program have been refined over the three phases
as they have gone through this very challenging balancing process. The following
refined goals have emerged from that process.

1.2.0.2 Productivity (DevelopmentTime) Goals.
• Improve development productivity by 10X over 2002 development productivity

for specified government workflows (workflows 1, 2, 4 and 5).

• Improve execution productivity to 2 petaflops sustained performance (scalable
to greater than 4 petaflops) for workflow 3.

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 13

(5) Administration

(4) Porting Code

(1) Writing Large Multi-Module Codes (3) Running Codes

Writing Compact Codes
(2)

Formulate
questions

Develop
Approach

Develop
Code

Production
Runs

Analyze
Results

Decide;
Hypothesize

Identify
Differences

Problem
Resolution

Resource
Management

Security
Management

HW/SW
Upgrade

Change
Code Optimize

V&V

Fig. 1. Level 1 functional workflows. Workflows comprise several steps, with many steps overlapping.
Items in red represent areas with highest HPC-specific interest.

No single productivity number applies to workflows for the 2002 starting point,
or to 2010 workflows. Productivity will vary based on the specific machine, user
and application. DoD and other government agencies will determine 2002 baseline
productivity metrics for their government applications and mission requirements
and will then evaluate the petascale prototype system to demonstrate the 10X
improvement.

The HPCS program must address overarching issues impeding the development
and utilization of high-end computational systems:

• Balanced system performance

• Improved software tools and methodologies

• Robustness strategy

• Performance measurement and prediction

• System tailorability (ability to scale up and out).

The following Table I lists the current and HPCS-targeted capabilities (execution
time) for HPC systems. Note that ‘current’is defined as 2007, rather than the program’s
2002 starting point.

These future HPC systems will also have to operate as major subsystems of the
HPCS mission partners’ computing centers and meet their growing input/output and

14 J. DONGARRA ET AL.

Table I
Performance (Execution Times) Derived from HPC Challenge Benchmarks

Benchmark Description Current HPCS

Global High-Performance LINPACK
(G-HPL) (PF/s)

Sustained execution speed @
local nodes

∼ 0.2 2+

STREAM (PB/s) Data streaming mode – data
processing rate

∼ 0.1 6.5

Global Random Access (GUPS/s) GUPS – random access across
entire memory system

35 64K

Bisection B/W (PB/s) Min bandwidth connecting equal
halves of the system

∼ 0.001 − 0.01 3.2

data storage requirements. The goals listed below represents the mission partners’
requirements.

• 1 trillion files in a single file system

• 10 000 metadata operations per second

• Streaming I/O at 30 GB/sec full duplex

• Support for 30 000 nodes

These objectives cannot be met simply by tracking Moore’s Law and leveraging
evolutionary commercial developments, but will require revolutionary technologies
and close partnerships between vendors and candidate procurement agencies. A fall
back to evolutionary HPC systems with a focus on performance at the expense of
productivity by vendor product organizations is not an acceptable alternative.

1.3 Program Overview
The HPCS acquisition strategy shown in Fig. 2 is designed to enable and encour-

age revolutionary innovation by the selected contractor(s) in close coordination with
government HPC end users.

As Figure 2 illustrates, the DARPA-led HPCS program (denoted by the arrow
labelled ‘Vendor Milestones’) is divided into three phases. Phase I, an industry con-
cept study, was completed in 2003. DARPA awarded 12-month contracts to industry
teams led by Cray, HP, IBM, SGI and Sun. The study provided critical technology
assessments, revolutionary HPCS concept solutions, and new productivity metrics
in order to develop a new class of high-end computers by the end of this decade.
The outputs from Phase I convinced government decision-makers of the merits of
continuing the program.

Phase II was a three-year effort that began with continuous awards to the Cray,
IBM and Sun teams. These teams performed focused research, development and

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 15

DARPA HPCS Program Phases I - III

(Funded Three)
Phase II

R&D

02 05 06 07 08 09 1003

(Funded Two)
Phase III

Development and
Prototype Demonstration

Vendor
Milestones

Productivity
Development

Mission Partner
Petascale
Procurements

Year (CY)

(Funded Five)
Phase I
Concept

Study

Mission Partner
Event

Program
Reviews

Critical
Milestones

Program
Procurements

04

Mission Partner
Petascale
Application Dev

Deliver UnitsMission Partner
System Commitment

System
Design
Review

Concept
Review

PDR Subsystem
DemoCDR

1 2 4 5 6 73

Final
Demo

SW
Rel 1

SCR

Mission Partner
Access to Prototype

Productivity Milestones

SW
Rel 2

SW
Rel 3

11

Fig. 2. HPCS program and acquisition strategy.

risk-reduction engineering activities. The technical challenges and promising solu-
tions identified during the Phase I concept study were explored, developed, and
simulated or prototyped. The work culminated in the contractors’ preliminary HPCS
designs. These designs, along with the vendors’ risk-reduction demonstrations, anal-
yses, lifecycle cost projections and their Phase III proposals were used by the
decision-makers to determine whether it was technically feasible and fiscally prudent
to continue to develop and procure HPCS systems.

Phase III, now under way, is a design, development and prototype demonstration
effort that will last for four and a half years. The Phase III vendors, Cray and IBM,
will complete the detailed design and development of a productive, petascale system
and will provide a proof of out the system by demonstrating a petascale prototype.
They will demonstrate the HPCS performance and productivity goals for an agreed-
upon set of applications by the end of 2010. The Phase III mission partners will
have access to these systems for the first six months in 2011. Fig. 2, in addition, out-
lines the relationship between the HPCS program and agency procurement programs
aimed at addressing the petascale computing challenges of the DOE Office of Sci-
ence, National Nuclear Security Agency, National Security Agency and the National
Science Foundation.

16 J. DONGARRA ET AL.

1.4 Cray ‘Cascade’ and IBM ‘PERCS’ Overview
Cray and IBM have provided summaries of their proposed Phase III systems,

with special emphasis on their revolutionary hardware and software architectures,
resulting in significant improvement in overall user productivity. Detailed descrip-
tions of the Phase III vendors’ innovative architectures are not described here, due
to the proprietary nature of the designs at this time. The authors encourage readers
to inquire directly with Cray and IBM for fuller descriptions of their novel system
architectures.

1.4.0.3 The Cray Cascade System. Cray’s Cascade system is based
on two observations regarding high-performance computing and productivity. The
first is that no one processing technology is best for all applications. Application
requirements and coding paradigms vary widely, and different forms of parallelism
can be best exploited by different processor architectures. Effort spent trying to fit code
onto a particular processing architecture is one of the largest drains on productivity.
The second observation is that programming productivity starts with appropriate sup-
port at the architectural level. Machine characteristics such as the compute/bandwidth
balance, overhead of synchronization and availability of threads and latency tolerance
of processors have a significant impact on software’s ability to efficiently exploit a
variety of code constructs and allow programmers to express problems in the most
natural way.

The cascade system is designed to be highly configurable and extensible. It pro-
vides a high-bandwidth, globally addressable memory and supports multiple types
of compute blades that can be tailored for different application requirements. The
interconnect can be dialed from low to very high local and global bandwidths and
scales to well over 100 000 compute nodes with low network diameter. Compute
blades in cascade use commodity microprocessors provided with both communication
and computational accelerators. The communication accelerators extend the address
space, address translation and communication concurrency of the commodity proces-
sors, and provide global synchronization and efficient message-passing support. The
computational accelerators, based on massively multithreaded and vector technology,
can adapt their mode of operation to the characteristics of the code, and provide sig-
nificant speedup with little programmer intervention. Typical parallel architectures
present numerous barriers to achieving high performance, largely related to mem-
ory access, and communication and synchronization between threads. The Cascade
architecture removes many of these barriers, allowing programmers to write codes
in a straightforward, intuitive manner and still achieve high performance. The key
attributes of the architecture are motivated by a desire to both increased performance
and improved programmability:

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 17

• Cascade provides a large, globally addressable memory and extremely high
global bandwidth. This enables very low-overhead access to shared data, which
allows programmers to express algorithms naturally, rather than labouring to
reduce and lump together inter-processor communication.

To better serve a variety of application requirements and to support more natural
parallel programming idioms, the system provides a set of heterogeneous processing
capabilities, each optimized for executing a different style of computation. Serial and
latency-sensitive computations are executed on commodity microprocessors, data-
parallel computations with regular control flows are accelerated by vector processing
and parallel computations with irregular control flows are accelerated via massive
multi-threading.

The system supports low overhead, heavily pipelined communication and synchro-
nization, allowing fine-grained parallelization and enhancing scalability.

The processor and system architecture support a programming environment that
greatly simplifies the parallel programming task via higher productivity languages and
programming models, and innovative tools that ease debugging and performance tun-
ing at large scales. The Cascade programming environment supports MPI, OpenMP,
pthreads, SHMEM and Global Arrays, as well as the global address space languages
Unified Parallel C and Co-Array Fortran. For the most productive programming expe-
rience, Cascade supports global-view programming models, which provide a parallel
programming experience more similar to uniprocessor programming. The new Chapel
language provides data and controls abstractions that simplify parallel programming
and create a clean separation between high-level algorithms and low-level details
such as data decomposition and layout. This enables a programmer to first focus on
expressing the parallelism inherent in the algorithm being implemented and to later
redefine the critical data structures to exploit locality and processor affinity.

1.4.0.4 The IBM PERC System. Figures 3 and 4 highlight the key fea-
tures of IBM’s PERC system that is under development through the HPCS program.

1.5 Productivity Initiatives
As stated earlier, productivity, by its very nature, is difficult to assess because it

depends upon the specifics of the end-user mission, application, team composition and
end use or workflow. The challenge is to develop a productivity assessment strategy
based on a mixture of qualitative and quantitative (preferred) analysis-based metrics
that will not only be used to evaluate the HPCS vendors but also adopted by the larger
HPC community.

18 J. DONGARRA ET AL.

IBM’s Technical Approach for HPCS
� Unprecedented focus on productivity

– Hardware/software co-design focused on improving system productivity by more than an order of magnitude and
significantly expanding the number of productive users in a petascale environment

– Application development: programming models, languages, tools

– Administrative: automation, simplicity, ease of use

� A holistic approach that encompasses all the critical elements of supercomputer system architecture
 and design (Hardware and Software)

– Processors, Caches, Memory subsystem, networking, storage, Operating systems, parallel/cluster file systems,
programming models, application development environment, compilers, tools for debugging and performance
tuning, libraries, schedulers, checkpoint-restart, high availability software, systems management

– Balanced system architecture and design

� Leverage IBM leadership in UNIX systems to provide petascale systems on commercially viable technology

– POWER, AIX/Linux, ISVs, …

� Focused effort on significantly enhancing the sustained performance experienced by applications at scale

– Maximize compute time spent on productive computation by minimization of overhead

– Cluster network optimized for common communication patterns (collective, overlap of communication and
computation…)

– Tools to identify and correct load imbalance

� General Purpose, flexible operating environment to address a large class of supercomputing applications

� Significant reductions in complexity and cost for large scale supercomputing infrastructure

IBM HPCS

1

Fig. 3. IBM HPCS overview.

IBM Hardware Innovations
� Next generation POWER processor with significant HPCS enhancements

– Leveraged across IBM’s server platforms

� Enhanced POWER Instruction Set Architecture
– Significant extensions for HPCS
– Leverage the existing POWER software eco-system

� Integrated high speed network (very low latency, high bandwidth)

� Multiple hardware innovations to enhance programmer productivity

� Balanced system design to enable scalability

� Significant innovation in system packaging, footprint, power and cooling

IBM HPCS

2

Fig. 4. IBM HPCS overview.

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 19

Figure 2 highlights a multi-year HPCS productivity initiative that was started in
Phase II, funded by DARPA, DOE Office of Science, NNSA, NSA and NSF and
led by Dr. Jeremy Kepner from MIT-Lincoln Laboratory. The Productivity Team
was comprised of universities, laboratories, FFRDCs and HPCS Phase II vendors.
Bi-annual public productivity conferences were held on a regular basis throughout
the three-year Phase II program. The HPCS Phase II Productivity Team projects can
be loosely grouped as execution-time and development-time research elements. The
next sections will delineate an expanded set of productive research elements
and findings resulting from the HPCS Phase II Productivity Team projects. The
representative research elements presented are performance benchmarking, system
architecture modelling, productivity workflows/metrics and new languages.

In summary, the HPCS program represents a very unique partnership between
DARPA, industry and the government end users (mission partners). Since this part-
nership represents a very different model from the past, what ‘it is not’ is just as
important as ‘what it intends’ to be. The items related to what the program is not are
as follows:

• A One-off system. The HPCS system must be a viable commercial product.

• Meeting only one set of requirements. Aside from the varied requirements of
the mission partners, the system must support a spectrum of a applications and
configurations.

• Available only at petascale. The system must scale from a single cabinet to very
large configurations.

• Using only new languages. The HPCS system must also support existing pro-
gramming languages, including C, C++ and Fortran and MPI and existing PGAS
languages.

2. Productivity Systems Modeling

The HPCS vision centers around the notion of computing systems with revolution-
ary hardware-software architectures that will enable substantially higher productivity
than projected continuations of today’s evolutionary system designs. Certainly, a
crucial component of productivity is the actual (‘sustained’) performance the revo-
lutionary computing systems will be able to achieve on applications and workloads.
Because these architectures will incorporate novel technologies to an unusually large
extent, prediction of application performance will be considerably more difficult than
is the case for next-generation systems based on evolutionary architectures. Hence,
the availability of sophisticated performance-modelling techniques will be critically
important for designers of HPCS computing systems and for the success of the HPCS
program as a whole.

20 J. DONGARRA ET AL.

Performance models allow users to predict the running time of an application based
on the attributes of the application, its input and the target machine. Performance
models can be used by system architects to help design supercomputers that will
perform well on assorted applications. Performance models can also inform users
which machines are likely to run their application fastest and alert programmers to
performance bottlenecks which they can then attempt to remove.

The convolution problem in performance modelling addresses the prediction of
the performance of an application on different machines, based on two things:
(1) machine profiles consisting of rates at which a computer can perform various types
of operations as measured by simple benchmarks and (2) an application signature
consisting of counts of various types of operations performed by the application. The
underlying notion is that the performance of an application can be represented by some
combination of simple benchmarks that measure the ability of the target machine to
perform different kinds of operations on the application’s behalf.

There are three different methods for doing performance convolutions, each based
on matrix operations, within the San Diego Supercomputing Center’s Performance
Modelling and Characterization (PmaC) framework for performance prediction. Each
method is appropriate for answering a different set of questions related to correlation of
application performance to simple benchmark results. Each requires a different level
of human insight and intervention. And each, in its own way, can be used to predict
the performance of applications on machines where the real runtime is unknown.

The first method uses Least Squares fitting to determine how good a statistical fit can
be made between observed runtimes of applications on different machines, using a set
of machine profiles (measured by using simple benchmarks); the resulting application
signatures can then be used within the framework for performance prediction. This
method has the virtue of being completely automated.

The second method uses Linear Programming to fit the same input data as those
used by the first method (or similar input data). In addition, however, it can also mark
input machine profiles and/or application runtimes as suspect. This corresponds to
the real-world situation in which one wants to make sense out of benchmarking data
from diverse sources, including some that may be flawed. While potentially generating
more accurate application signatures that are better for performance prediction, this
method requires some user interaction. When the solver flags data as suspect, the user
must either discard the data, correct it, or insist that it is accurate.

Instead of inference from observed application runtimes, the third method relies
on instrumented application tracing to gather application signatures directly. While
arguably the most commonly used and the most accurate of the three methods, it is also
the most labour intensive. The tracing step is expensive compared with the measure-
ment of the un-instrumented application runtimes, as used by the Least Squares and
Linear Programming methods to generate application signatures. Moreover, unlike
the first two methods, formation of the performance model requires substantial expert

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 21

interaction to ‘train’ the convolution framework, though subsequently performance
predictions can be done automatically.

Finally, we demonstrate how a judicious mix of these methods may be appropriate
for large performance-modelling efforts. The first two allow for broad workload and
HPC asset characterizations, such as understanding what system attributes discrimi-
nate performance across a set of applications, while the last may be more appropriate
for very accurate prediction and for guiding tuning efforts. To evaluate these meth-
ods, we tested them on a variety of HPC systems and on applications drawn from the
Department of Defense’s Technical Insertion 2006 (TI-06) application workload [5].

2.1 Problem Definition and Unified Framework
As an example of a simple pedagogical convolution, consider Equation 1. Equa-

tion 1 predicts the runtime of application a on machine m by combining three of
application a’s operation counts (the number of floating-point, memory and commu-
nication operations) with the corresponding rates at which machine m can perform
those operations.

Runtimea,m ≈ FloatOpsa

FloatOpRatem

+ MemoryOpsa

MemoryOpRatem

+ CommOpsa

TransferRatem

(1)

In practice, FloatOpRate, MemoryOpRate and TransferRate could be determined by
running a set of simple synthetic benchmarks such as HPL, STREAM and EFF_BW,
respectively, from the HPC Challenge benchmarks [10]. Likewise, FloatOps, Memo-
ryOps and CommunicationOps could be measured for the application using hardware
and software profiling tools such as the PMaC MetaSim Tracer [3] for floating and
memory operations, and MPIDTrace[1] for communication events.

We could generalize Equation 1 by writing it as in Equation 2, where OpCount
represents a vector containing the three operation counts for application a, Rate is a
vector containing the corresponding three operation rates for machine m and ⊕ repre-
sents a generic operator. This generic operator could, for example, take into account
a machine’s ability to overlap the execution of two different types of operations.

Timea,m ≈ Pa,m = OpCount(1)

Rate(1)
⊕ OpCount(2)

Rate(2)
⊕ OpCount(3)

Rate(3)
(2)

If the number of operation counts used in Equation 2 is expanded to include other
performance factors, such as the bandwidth of strided accesses to L1 cache, the band-
width of random-stride accesses to L1 cache, the bandwidth of strided accesses to
main memory and network bandwidth, we could represent application a’s opera-
tion counts by making OpCount a vector of length c, where c is the total number
of different operation types represented for application a. We could further expand

22 J. DONGARRA ET AL.

OpCount to represent more than one application by making OpCount a matrix of
dimension c × n, where n is the total number of applications that were characterized.
Similar expansion could be done for Rate, making it a k × c matrix, where k is the
total number of machines, each of which is characterized by c operation rates. This
would make P a k × n matrix in which Pij is the predicted runtime of application i on
machine j. That is, the generalized Equation 2 represents the calculation of predicted
runtimes of n different applications on k different machines and can be expressed
as P = Rate ⊗ OpCount. Since each column in OpCount can also be viewed as the
application signature of a specific application, we refer to OpCount as the application
signature matrix, A. Similarly, each row of Rate is the machine profile for a spe-
cific machine, and so we refer to Rate as the machine profile matrix, M. Now the
convolution problem can be written as P = M ⊗ A. In expanded form, this looks like:⎡

⎢⎢⎢⎢⎢⎣

p1,1 . . . p1,n

p2,1 . . . p2,n

p3,1 . . . p3,n

...
. . .

...

pk,1 . . . pk,n

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

m1,1 . . . m1,c

m2,1 . . . m2,c

m3,1 . . . m3,c

...
. . .

...

mk,1 . . . mk,c

⎤
⎥⎥⎥⎥⎥⎦ ⊗

⎡
⎢⎣

a1,1 . . . a1,n

...
. . .

...

ac,1 . . . ac,n

⎤
⎥⎦ (3)

Given Equation 3 as the general convolution problem, the relevant questions are how
to determine the entries of M and A, and what to use for the ⊗ operator to generate
accurate performance predictions in P?

Populating M is fairly straightforward, at least if the machine or a smaller pro-
totype for the machine exists. Traditionally, this has been done by running simple
benchmarks. It should be noted that determinination of c, the smallest number of
benchmarks needed to accurately represent the capabilities of the machine, is gen-
erally considered an open research problem [3]. In this work, for populating M, we
used the netbench and membench synthetic benchmarks from the TI-06 benchmark
suite [22]. These benchmarks can be considered a superset of the HPC Challenge
Benchmarks. For example, Figure 2 plots the results of running membench on an IBM
system. We could then populate M with several memory bandwidths corresponding to
L1 cache bandwidth for strided loads, L1–L2 (an intermediate bandwidth), L2 band-
width, etc., to represent the machine’s capabilities to service strided load requests
from memory; similarly, rates for random access loads, stores of different access pat-
terns, floating-point and communication operations can be included in M. The results
obtained when the STREAM benchmark is run from the HPC Challenge Bench-
marks at different sizes ranging from small to large are shown by the upper curve in
Fig. 2 and the lower curve gives the serial version of the RandomAccess benchmark
run in the same way. (Some implementation details differ between the TI-06 syn-
thetics and HPC Challenge, but the overall concepts and the rates they measure are
the same.)

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 23

Populating of A is less straightforward. While traditionally users have consulted
performance counters to obtain operation counts, this may not reveal important oper-
ation subcategories such as the access pattern or locality of memory operations. For
example, we can see from Fig. 2 that not all memory operations are equal; rates at
which machines can complete memory operations may differ by orders of magnitude,
depending on where in the memory hierarchy they fall. An alternative to performance
counters is application tracing via code instrumentation. Tracing can, for example, dis-
cover memory addresses and locality, but is notoriously expensive [7]. The methods
we propose in this section determine the entries of A using three different methods,
each with different trade-offs in accuracy versus effort.

2.2 Methods to Solve the Convolution Problem
In this work, we investigate three methods for calculating A and determining the

⊗ operator. We classify the first two methods as empirical and the third one as ab
initio. Empirical methods assume that M and some values of P are known, and then
derive the matrix A. Matrix A can then be used to generate more values of P . Ab initio
methods, on the other hand, assume that both M and A are known and then calculate
P from first principles. In addition to this classification, the first two methods may be
considered top down in that they attempt to resolve a large set of performance data for
consistency, while the last may be considered bottom up as it attempts to determine
general rules for performance modelling from a small set of thoroughly characterized
loops and machine characteristics.

2.2.1 Empirical Method
Although traditionally we assume that P is unknown and its entries are to be

predicted by the model, in practice some entries of P are always measured directly
by timing application runs on real machines. This may be done simply to validate a
prediction, although the validation may be done some time in the future, as is the case
when runtimes on proposed machines are predicted. A key observation is that running
an application on an existing machine to find an entry of P is generally significantly
easier than tracing an application to calculate the P entry through a model. This
suggests that we treat some entries of P as known for certain existing systems and M

as also known via ordinary benchmarking effort, rather than treating P as an unknown
and A as a parameter that can be known only via extraordinary tracing effort. This,
combined with assumptions about the structure of the convolution operator ⊗, allows
us to provide a solution A. Once A is known for the applications of interest, it can be
convolved with a new M ′ to predict performance on these other machines, where M ′

24 J. DONGARRA ET AL.

is just M with rows for the new machines, for which simple synthetic benchmarks
may be known or estimated but for which full application running times are unknown.

We refer to the methods that treat A as the unknown as empirical in the sense
that one can deduce the entries of a column of A by observing application runtimes
on a series of machines that differ by known quantities in their ability to perform
operations in each category. As an example, intuitively, if an application has very
different runtimes on two systems that are identical except for their network latency,
we may deduce that the application’s sensitivity to network latency comes from the
fact that it sends numerous small messages.

We formalize this intuition and demonstrate two different techniques for empirical
convolution. In both methods, we assume that there is a set of machines on which
we have gathered not only the synthetic benchmarks used to fill in the matrix M,
but also actual runtimes for n applications of interest in P . We further assume that
the operator ⊗ is the matrix multiplication operator. We now describe two different
approaches for using P and M to solve for entries of the application matrix, A, within
a reasonable range of error.

The first empirical approach uses Least Squares to find the entries of A and is
particularly appropriate when the running times are known on more machines than
those for which we have benchmark data. The second empirical approach uses Linear
Programming to find the entries of A and can be useful in the under-constrained
case where we have real runtimes on fewer machines than those for which we have
benchmark data. In addition to the determination of entries in the application matrix
A, both methods can also be used to address questions such as:

• What is the best fit that can be achieved with a given assumption about the
convolution? (For example, we may assume the convolution operator is a sim-
ple dot-product and operation counts are independent of machine for each
application.)

• Can one automatically detect outliers, as a way to gain insight into the validity
of benchmark and runtime data from various sources?

• Can one calculate application weights for a subset of the systems and use those
weights to accurately predict runtimes on other systems?

• What properties of systems are most important for distinguishing their perfor-
mance?

2.2.2 Solving for A Using Least Squares
Consider solving the matrix equality P = MA for A. We can solve for each column

of A individually (i.e., Pi = MAi), given the (plausible) assumption that the operation
counts of one application do not depend on those of another application. If we further

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 25

decide to compute application operation counts that minimize the 2-norm of the
residual Pi − MAi, then the problem becomes the much studied least squares problem.
Furthermore, because only non-negative application operation counts have meaning,
we can solve Pi = MAi as a non-negative least squares problem. These problems can
be solved by a technique described in [9] and implemented as lsqnonneg in Matlab.
In practice, before applying the non-negative least squares solver, we normalize both
the rows and columns of the equation with respect to the largest entry in each column.
Rescaling of the columns of M so that the largest entry in each column is 1 allows us
to weigh different operations similarly, despite the fact that the cost of different types
of operations can vary by orders of magnitude (e.g., network latency versus time to
access the L1 cache). Rescaling of the rows of M and Pi so that the entries of P are
all 1 allows us to normalize for different runtimes.

The least squares approach has the advantage of being completely automatic, as
there are no parameters that need to be changed or no constraints that may need
to be discarded. Thus, it also partially answers the question: if all the benchmark
and runtime data are correct, how well can we explain the running times within the
convolution framework? However, if some of the data are suspect, the least squares
method will attempt to find a compensating fit rather than identifying the suspect data.

2.2.3 Solving for A Using Linear Programming
Unlike the least squares method that seeks the minimum quadratic error directly,

the linear programming method is more subtle – and it can also be more revealing.
There are various ways to rephrase Equation 3 as a linear programming problem; in
our implementation, for every i and j (1 ≤ i, j ≤ n), Equation 3 is relaxed to yield the
following two inequalities:

pij · (1 − β) ≥ mi ⊕ aj

pij · (1 − β) ≤ mi ⊕ aj

where 0 < β < 1 is an arbitrary constant and each element aj is a non-negative
variable.

Therefore, each pair of inequalities defines a stripe within the solution space, and
the actual solution must lie within the intersection of all n stripes. Should any stripe
fall completely outside the realm of the others, no solution that includes that machine–
application pair exists. Given a simplifying assumption that similar architectures have
similar frequencies of operations per type for a given application, it is expected that
the intersection of the stripes will not be null, since the application execution time pij

will likely be a direct result of synthetic capability mi (when neglecting more com-
plex, possibly non-deterministic execution properties such as overlapping operations,

26 J. DONGARRA ET AL.

pre-fetching, and speculative execution). A null solution, therefore, suggests that
an error may lie in one of the execution times or one of the synthetic capability
measurements.

To determine the ‘optimal’ solution for aj , the intersection of all stripes must result
in a bounded space. In such a case, the intersection vertices are each tested via an
objective function to determine the best solution. For this implementation, a minimum
is sought for

f(aj) =
k∑

i=1

(mi ⊕ aj) (4)

in order to force the estimate for the application times to be inherently faster than the
actual application times. The error for each may then be associated with operation
types such as I/O reads and writes that are not represented in the set of basic operations.

In applying the linear programming method, the value for β was increased until all
stripe widths were sufficiently large, in order to achieve convergence. Estimates for the
application times were then calculated for each machine (1) to determine the overall
extent of the estimation error and (2) to identify any systems with outlying error
values when error percentages were clustered using a nearest-neighbor technique.
Any system identified in (2) was removed from consideration, since an error in its
application or synthetic benchmarks was suspected. This methodology was applied
iteratively until the minimum value for β that achieved convergence and the overall
estimation error were both considered to be small.

2.2.4 Ab Initio Method
Methods that assume P as unknown are referred to here as ab initio, in the sense

that the performance of an application running on a system is to be determined from
its first principles. The assumption, then, is that both M and A is known but the generic
⊗ operator and P are not known.

To separate concerns we split the problem of calculating P into two steps. The
first step is to predict the execution time of the parallel processors between com-
munication events. Following the format of Equation 3, memory and floating-point
operations are gathered by tracing and are further fed through a simulator to propagate
the corresponding entries of a matrix A′. Each column of A′ then holds floating-
point operations and memory operations (but not communication operations), broken
down into different types, access patterns, locality, etc., for a particular applica-
tion. P ′ is obtained by multiplying A′ with M, and thus a row of P ′ represents
the application’s predicted time spent doing work on the processor during execution
on the machines of M. In the second step, the Dimemas [6] simulator processes the

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 27

MPI trace data and P ′ in order to model the full parallel execution time. The output
from Dimemas is then the final calculated execution time for the application(s) on
the target machine(s) (P).

In the remainder of this section, we describe how the trace data is used to determine
the entries of A′ and how A′ is used to calculate the entries of P ′. Since the time spent
doing floating-point operations tends to be small compared with the time spent doing
memory operations in large-scale parallel applications, we focus on describing how
we determine the entries of A′ related to memory performance.

Our approach is to instrument and trace the applications using the PMaC MetaSim
Tracer and then to use the PMaC MetaSim Convolver to process the traces in order
to find the entries in A′. Details of the PMaC MetaSim Tracer and the processing of
the trace by the PMaC MetaSim Convolver can be found in [19].

Before proceeding, it is important to note that the ab initio methods relax two con-
straints of the least squares and linear programming methods. First, an application’s
trace, particularly its memory trace, is fed to a cache simulator for the machine(s)
to be predicted. This means a column of A′ can be different on different machines.
This represents a notable sophistication over the empirical methods: it is no longer
assumed that operation category counts are the same on all machines (for example,
machines with larger caches will get more operations that hit in cache). Second, rather
than assuming a simple combining operator such as a dot product, the convolver can
be trained to find a better operator that predicts performance with much smaller pre-
diction errors. This operator may, for example, allow for overlapping of floating-point
operations with memory operations – again a notable advancement in sophistication
that is more realistic for modern machines.

Since tracing is notoriously expensive, we employ cross-platform tracing in which
the tracing is done only once on a single system, but the cache structure of many
systems is simulated during tracing. Figure 20 shows some of the information that
MetaSim Tracer collects for every basic blocks (a basic block is a straight run of
instructions between branches) of an application. Fields that are assumed under the
cross-platform tracing assumption to be the same across all machines are collected
or computed from direct observation; but fields in the second category are calculated
by feeding the dynamic address stream on-the-fly to a set of cache simulators, unique
to each machine.

The MetaSim Convolver predicts the memory performance of each basic block by
mapping it to some linear combination of synthetic benchmark memory performance
results (entries of M) using the basic block fields, such as simulated cache hit rates
and stride access pattern, as shown in Fig. 5. This convolver mapping is implemented
as a set of conditions to be applied to each basic block to determine the bandwidth
region and curve of Figure 5 that need to be used for its estimated performance. A
sample of one of these conditions for the L2 cache region on the ARL P690 system in

28 J. DONGARRA ET AL.

Fig. 5. The strided (upper) and random (lower) memory bandwidth test from membench taken from
and IBM P690 system at Army research Laboratory (ARL), along with example rules for mapping a
basic-block to its expected memory performance.

shown on Fig. 5. The main advancement of this method described in this work involve
to refining of these conditions to improve prediction accuracy as described in the next
section. The rules in Fig. 5 further exemplify the conditions that were developed for
each region and interpolation area between regions of the membench curves.

In order to determine and validate the best set of conditions for minimizing pre-
diction error, a small experimental Pmeasured = MA′ problem was defined. We chose
several computational loops as a ‘training set’ to develop and validate the convolving
conditions. We chose 40 computational loops from two parallel applications, HYCOM
and AVUS, from the TI-06 application suite; then execution times for these loops on 5
systems were measured to propagate the entries of Pmeasured . The loops were chosen
judiciously, based on their coverage of the trace data space: their constituent basic
blocks contain a range of hit rates, different randomness, etc. We then performed a
human-guided iteration, trying different sets of conditions the MetaSim Convolver
could implement to determine each loop’s A′ and thence entries in Ppredicted . Thus,
we were looking for rules to map basic blocks to expected performance; the rules
were constrained to make sense in terms of first principles’ properties of the target

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 29

processors. For example, a loop’s memory work cannot obtain a performance higher
than the measured L1 memory performance or a performance lower than measured
main memory performance. More subtly, the L1 hit rate value required to assign a
basic block to get L1 cache performance could not be less than the hit rate value that
would assign L3 cache performance.

We sought then to determine conditions in such a way that the generated elements of
A′ would produce the most accurate calculated Ppredicted . In other words, we looked
for conditions to minimize:

Total error =
m,n∑
i,j

∣∣ (Pmeasured
i,j − P

predicted
i,j

)/
Pmeasured

i,j

∣∣ (5)

where m is the number of machines (5) and n is the number of loops (40).
Finally, having developed the conditions for the training set that minimized total

error, we used the same conditions to convolve and to predict the full AVUS and
HYCOM applications, as well as a larger set of applications on a larger set of machines.

2.2.5 Experimental Results
To evaluate the usefulness of the empirical and ab initio methods, we tested both

on several strategic applications run at several processor counts and inputs on the
systems listed in Table II. We chose several applications from the Technical Insertion
2006 (TI-06) application workload that covered an interesting space of computational
properties, such as ratio of computation to communication time, ratio of floating-point
operations to memory operations and memory footprint size. None of these codes on
the inputs given are I/O intensive; thus we do not model I/O in the remainder.

The applications used are AVUS, a code used to determine the fluid flow and turbu-
lence of projectiles and air vehicles; CTH, which models complex multi-dimensional,
multiple-material scenarios involving large deformations or strong shock physics;
HYCOM, which models all of the world’s oceans as one global body of water;
OVERFLOW, which is used for computation of both laminar and turbulent fluid
flows over geometrically complex, non-stationary boundaries; and WRF, which is a
next-generation mesoscale numerical weather prediction system designed to serve
both operational forecasting and atmospheric research needs.

The applications were run on two different inputs each (DoD designations ‘Stan-
dard’ and ‘Large’) and on 3 different processor counts between 32 and 512 for each
input on all 20 of the systems listed. More information on these applications can be
found in [3] and [5]. It should be clear that populating the Pmeasured matrix for the
least squares and linear programming methods required the measurement of about
600 application runtimes in this case (20 systems, 5 applications, 2 inputs each,

30 J. DONGARRA ET AL.

3 cpu counts each). These are full applications that run, on average, about one or two
hours each, depending on input and cpu count. The Pmeasured values were therefore
collected by a team of people from the Department of Defense High Performance
Computing Modernization Program (HPCMP) centers. The authors populated the M

matrix by running the membench and netbench benchmarks on these same systems.
In testing the empirical methods, we tried several variants of the M matrix, in

part to explore the relationship between the number of columns in M (and rows
in A) and the resulting accuracy. This complements investigations in [3], where the
authors studied the smallest number of benchmarks required to accurately represent
the capabilities of machines. For example, we tried 10 and 18-column variants of
the M matrix, both based on the same machine benchmark data. The one with 10
columns had 8 measures pertaining to the memory subsystem from membench (i.e.,
drawn from plots similar to those in Fig. 5) and 2 being the off-node bandwidth and
the latency of the interconnect from netbench, as described above. The set with 18
columns had 14 measures pertaining to the memory subsystem (i.e., taking more
points from the membench curve in Fig. 5) 2 for off-node bandwidth and latency and
2 for on-node bandwidth and latency. From the synthetic measures pertaining to the
memory subsystem, half were chosen from strided membench results and the other
half were chosen from random access membench results.

We now discuss the data in Table II, which summarizes the results of using the
empirical methods to understand our data set.

2.2.6 Fitting the Data Using Least Squares
Because the least squares method computes A to minimize overall error, it can be

used to answer the question of how well can we explain measured entries of P as
a function of measured entries of M, assuming a standard dot-product operator and
machine-independent application signatures? The least squares column (denoted as
LS) in Table II answers this question for our set of data. When averaged over all the
applications and inputs and processor counts, we found that the performance and the
performance differences of the applications on these machines could be represented
within about 10% or 15%. As noted previously, we tested this method with both a
10- and an 18-column M matrix. On looking at the errors averaged for each case
separately, we found that the results were only slightly better than with the latter.

Overall, the LS results demonstrate that one can characterize the observed differ-
ences in performance of many applications on many different machines by using a
small set of benchmark measurements (the M matrix) whose entries pertain to each
machine’s memory and interconnect subsystems. The ERDC Cray X1 is the only
machine where the least squares does not seem to fit well. This is discussed in the
next section.

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 31

2.2.7 Detecting Outliers by Using Linear
Programming

The linear programming method also tries to find the A that best fits the entries in
M and P under the same assumptions as those used in the least squares method, but
linear programming has the advantage of being able to identify entries in M and P

that seem as suspect.
When we first computed the errors given in Table II using the initial measured

entries of M, large errors for the ASC SGI Altix and the ARL IBM Opteron led us
to question the benchmark data on those machines. After rerunning the benchmarks
on those machines and recalculating the errors using the least squares and linear
programming methods, we ended up with the (much improved) results in Table II.
The empirical methods were able to identify suspicious benchmark data. Upon further
investigation, we found that the membench benchmark had originally been run on

Table II
Average Absolute Error for all Applications Tested
on 20 DoD Systems. Format of Column 1 is Acronym

of Department of Defense Computer
Center-computer Manufacturer-processor Type

Error Summary Average Absolute Error

Systems LS LP

ASC_SGI_Altix 4% 8%
SDSC_IBM_IA64 12% —
ARL_IBM_Opteron 12% 8%
ARL_IBM_P3 4% 4%
MHPCC_IBM_P3 6% 6%
NAVO_IBM_P3 9% 6%
NAVO_IBM_p655 (Big) 5% 6%
NAVO_IBM_p655 (Sml) 5% 5%
ARSC_IBM_p655 4% 2%
MHPCC_IBM_p690 8% 7%
NAVO_IBM_p690 7% 9%
ARL_IBM_p690 10% 6%
ERDC_HP_SC40 6% 8%
ASC_HP_SC45 5% 4%
ERDC_HP_SC45 5% 6%
ARSC_Cray_X1 8% 5%
ERDC_Cray_X1 51% 3%
AHPCRC_Cray_X1E 14% —
ARL_LNX_Xeon (3.06) 6% 8%
ARL_LNX_Xeon (3.6) 16% 8%
Overall Error % %

32 J. DONGARRA ET AL.

those two machines with a poor choice of compiler flags, resulting in unrealistically
low bandwidths.

We note that in generating the results in Table II, the linear programming (denoted
as LS) method still flagged the SDSC IBM IA64 and the AHPCRC Cray X1E was
non-conforming (thus these machines are omitted from the LP column), suggesting
that there are inconsistencies in either the benchmark data or the runtime data on
those machines. Unfortunately, recollecting benchmark data on these machines did
not improve the results, leading us to surmise that the problem lies in the application
runtimes rather than in the benchmark. Looking specifically at theAHPCRC Cray X1,
we observe that it was flagged when the ERDC Cray X1 was not. It is possible that
the codes run on the AHPCRC Cray X1 were not properly vectorized. We have not
tested our hypotheses yet, because rerunning the applications is a time-and resource-
intensive process usually done by the teams at each center once in a year (unlike
rerunning the benchmarks, which is much easier) and has not been completed at
this time.

Both these sets of results could be further interpreted as saying that, if one is
allowed to throw out results that may be due to errors in the input data (either bench-
marks or application runtimes), one may attribute as much as 95% of the performance
differences of these applications on these machines to their benchmarked capabili-
ties on less than 20 simple tests. Results like these have implications on how much
benchmarking effort is really required to distinguish the performance capabilities of
machines.

Both these methods, taken together with the earlier results in [3], at least partially
answer the question, ‘what properties of systems are most important to distinguish
performance’? In [3] it was shown that three properties (peak floating-point issue
rate, bandwidth of strided main-memory accesses, and bandwidth of random main-
memory accesses) can account for as much of 80% of observed performance on the
TI-05 applications and machines (a set with substantial similarities to and overlap
with TI-06). The results in this work can be seen as saying that another 10% (for 90%
or more in total) is gained by adding more resolution to the memory hierarchy and
by including communication.

2.3 Performance Prediction
We now describe how the empirical and ab initio convolution methods can be

used to predict overall application performance. In what follows we refer to both
a Pmeasured , which consists of measured runtimes that are used to generate either
A (for the empirical methods) or to improve the convolver conditions (for the ab
initio method), and to a Ppredicted , which consists of runtimes that are subsequently
predicted.

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 33

2.3.1 Empirical Methods
To predict the performance of an application on a machine by using empirical

convolution methods, we first determine the application signature by using runtimes
in Pmeasured that were collected on other machines. We then multiply the application
signature with the characteristics of the new machine in order to arrive at a predicted
runtime, Ppredicted . If we have the actual measured runtime on the new machine, we
can use it to evaluate the accuracy of the predicted time.

Generally, we found this method to be about 90% accurate if the machine being
predicted was architecturally similar to machines in Pmeasured . For example, RISC-
based architectures can be well predicted using an A derived from runtimes and
benchmark results of other RISC machines. As an example, Table III shows the error
in Ppredicted , using both the least squares and linear programming methods, with
sets of 10 and 18 machine characteristics, to predict the performance of AVUS and
HYCOM on the ERDC SC45. (In this case we report signed error, as we are not
averaging, and so no cancellation in the error is possible.) The measured runtimes on
the ERDC SC45 were not included in Pmeasured , but were used to calculate the error
in Ppredicted . We found the predictions using both methods to be generally within
10% of the actual runtimes.

In contrast, Table IV gives an example where Pmeasured does not contain a machine
that is architecturally similar to the machine being predicted. The results of using the
least squares and linear programming methods to predict performance on the ASC
SGI Altix are shown. Unlike almost all of the other machines in Table II, the Altix
is neither a RISC-based machine nor a vector machine. Rather, it uses a VLIW and
has other unique architectural features that are too extensive to be described here. So,
once the ASC SGI Altix is removed from Pmeasured , there is no architecturally similar

Table III
Signed Error in Predicting the Performance of
AVUS and CTH on Different Processor Counts

on the ERDC SC45, Using Application Signatures
Generated Through Empirical Methods

10 Bin 18 Bin

Error Application LS LP LS LP

avus 32 3% 8% −5% 10%
avus 64 1% 7% −6% 6%
avus 128 3% 10% −3% 8%
cth 32 −9% −8% 3% −1%
cth 64 −8% −37% 1% 4%
cth 96 −13% −1% −1% 2%

34 J. DONGARRA ET AL.

Table IV
Signed Error in Predicting the Performance of AVUS
and CTH on Different Processor Counts on the ASC

Altix, Using Application Signatures Generated
Through Empirical Methods

10 Bin 18 Bin

Error Application LS LP LS LP

avus 32 27% 42% −117% −117%
avus 64 18% −27% −135% −100%
avus 128 16% 32% −129% −80%
cth 32 −108% −64% −56% 8%
cth 64 −98% −30% −35% −35%
cth 96 −171% −170% −47% −44%

machine other than the SDSC IA64 (already flagged as suspect). In this case, we see
that the predicted runtime is only rarely within even 20% of the actual runtime. This
seems to suggest that inclusion of an architecturally similar machine in Pmeasured is
crucial for determining a useful A for subsequent prediction.

Tables III and IV demonstrate that empirical methods are particularly useful for
prediction if the new machine has an architecture that is similar to those used in gener-
ating the application signature. However, if the new machine has a unique architecture,
accurate prediction through these methods may be problematic.

2.3.2 Ab Initio Methods
Table V gives the results obtained by applying the convolver, trained against a

40-computational-loop training set, to predict the performance of all of the applica-
tions on all of the machines listed in Table V. So far, 9 RISC-based machines have
been trained in the convolver, and work is ongoing to add additional systems and
architecture classes. Once the convolver is trained for a system, any application trace
can be convolved to produce a prediction. It should be clear from the table that this
involved 270 predictions (5 applications, 2 inputs, 3 cpu counts, 9 machines) at an
average of 92% accuracy. Since measured application runtimes can vary by about 5%
or 10%, accuracy greater than that shown in Table V may not be possible unless per-
formance models take into account contention on shared resources and other sources
of variability.

Although the ab initio method ‘knows’nothing about the performance of any appli-
cation on any real machine, it is more accurate than the empirical methods. Thus, it
seems the power and pure predictive nature of the ab initio approach may some-
times justify its added expense and complexity. Of further note is that the ab initio

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 35

Table V
Absolute Error Averaged Over all
Applications for the Computational

Loop Study

Systems Average Error

ARL_IBM_Opteron 11%
NAVO_IBM_P3 7%
NAVO_IBM_p655 (Big) 6%
ARSC_IBM_p655 4%
MHPCC_IBM_p690 8%
NAVO_IBM_p690 18%
ASC_HP_SC45 7%
ERDC_HP_SC45 9%
ARL_LNX_Xeon (3.6) 5%
Overall Error %

approach actually constructs an overall application performance model from many
small models of each basic block and communications event. This means the models
can be used to understand where most of the time is spent and where tuning efforts
should be directed. The empirical methods do not provide such detailed guidance.

2.4 Related Work
Several benchmarking suites have been proposed to represent the general perfor-

mance of HPC applications. Besides those mentioned previously, the best known are
perhaps the NAS Parallel [2] and the SPEC [20] benchmarking suites, of which the
latter is often used to evaluate micro-architecture features of HPC systems. A contri-
bution of this work is to provide a framework for evaluating the quality of a spanning
set for any benchmark suite (i.e., its ability to attribute application performance to
some combination of its results).

Gustafson and Todi [8] performed seminal work relating ‘mini-application’ per-
formance to that of full applications. They coined the term ‘convolution’ to describe
this general approach, but they did not extend their ideas to large-scale systems and
applications, as this work does. McCalpin [12] showed improved correlation between
simple benchmarks and application performance, but did not extend the results to
parallel applications as this work does.

Marin and Mellor-Crummey [11] show a clever scheme for combining and weigh-
ing the attributes of applications using the results of simple probes, similar to what
is implemented here, but their application studies were focused primarily on ‘mini
application’ benchmarks and were not extended to parallel applications and systems.

36 J. DONGARRA ET AL.

Methods for performance evaluations can be broken down into two areas [21]:
structural models and functional/analytical models. A fairly comprehensive break-
down of the literature in these two areas is provided in the related work section of
Carrington et al. [3], and we direct the reader’s attention to that section for a more
thorough treatment.

Saavedra [15–17] proposed application modelling as a collection of independent
Abstract FORTRAN Machine tasks. Each abstract task was measured on the target
machine and then a linear model was used to predict execution time. In order to
include the effects of memory system, they measured miss penalties and miss rates
for inclusion in the total overhead. These simple models worked well on the simpler
processors and shallower memory hierarchies of the mid to late 1990s.

For parallel system predictions, Mendes [13, 14] proposed a cross-platform
approach. Traces were used to record the explicit communications among nodes and
to build a directed graph based on the trace. Sub-graph isomorphism was then used
to study trace stability and to transform the trace for different machine specifications.
This approach has merit and needs to be integrated with a full system for application
tracing and modelling of deep memory hierarchies in order to be practically useful
today.

2.5 Conclusions
We presented a general framework for the convolution problem in performance

prediction and introduced three different methods that can be described in terms of
this framework. Each method requires different amounts of initial data and user input,
and each reveals different information.

We described two empirical methods which assume that some runtimes are known
and used them to determine application characteristics in different ways. The least
squares method determines how well the existing data can be explained, given that
particular assumptions are made. The linear programming method can additionally
correctly identify systems with erroneous benchmarking data (assuming that the
architectures of the target systems are roughly similar). Both can generate plausible
fits relating the differences in observed application performance to simple perfor-
mance characteristics of a broad range of machines. Quantitatively, it appears they
can attribute around 90% of performance differences to 10 or so simple machine met-
rics. Both empirical methods can also do fairly accurate performance prediction on
machines whose architectures are similar to some of the machines used to determine
application characteristics.

We then addressed the situation where real runtimes of the applications are not avail-
able, but where there is an expert who understands the target systems. We described
how to use an ab initio approach in order to predict the performance of a range

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 37

of applications on RISC machines with good accuracy, using just timings on a set
of representative loops on representative applications (in addition to machine
benchmarks) and a detailed report of the operations of the basic blocks that make
up the loops used to train the convolver. This last method is capable of generating
accurate predictions across a wide set of machines and applications.

It appears that empirical approaches are useful for determining how cohesive a large
quantity of application and benchmarking performance data from various sources is,
and that, further, reasonable effort may attribute 90% or so of observed performance
differences on applications to a few simple machine metrics. The more fully predic-
tive ab initio approach is more suitable for very accurate forecasting of application
performance on machines for which little full application runtime data is available.

3. Productivity Evaluation on Emerging
Architectures

The future systems from DARPA’s High Productivity Computing Systems program
will present a new level of architectural and programming diversity beyond existing
multicore microprocessor designs. In order to prepare for the challenges of measuring
productivity on these new devices, we created a project to study the performance
and productivity of computing devices that will reflect this diversity: the STI Cell
processor, Graphical Processing Units (GPU) and Cray’s MTA multithreaded system.

We believe that these systems represent an architectural diversity more similar
to the HPCS systems than do existing commodity platforms – which have gener-
ally been the focus of evaluations of productivity to date. Homogenous multi-core
systems require coarse-grain, multi-threaded implementations, while GPUs and Cell
systems require users to manage parallelism and orchestrate data movement explicitly.
Taken together, these attributes form the greatest challenge for these architectures in
terms of developer productivity, code portability and performance. In this project, we
have characterized the relative performance improvements and required programming
effort for two diverse workloads across these architectures: contemporary multi-core
processors, Cell, GPU, and MTA-2. Our initial experiences on these alternative archi-
tectures lead us to believe that these evaluations may have to be very intricate and
require a substantial investment of time to port and optimize benchmarks. These archi-
tectures will span the range of the parameters for development and execution time and
will force us to understand the sensitivities of our current measurement methodolo-
gies. For example, consider the complexity of writing code for today’s CELL system
or graphics processors. Initial HPCS systems may be equally challenging.

38 J. DONGARRA ET AL.

Contemporary multi-paradigm, multi-threaded and multi-core computing devices
can provide several orders-of-magnitude performance improvement over traditional
single-core microprocessors. These devices include mainstream homogenous multi-
core processors from Intel and AMD, the STI Cell Broadband Engine (BE) 44,
Graphical Processing Units (GPUs) [30] and the Cray XMT [23] (Eldorado[39]) sys-
tems. These architectures have been developed for a variety of purposes, including
gaming, multimedia and signal processing.

For productivity, our initial evaluations used source lines of code (SLOC) for
the serial version against the target implementations using a tool called sloccount4;
for performance, we measure algorithm time-to-solution. We were unable to use
existing tools to measure many of the other metrics used in the HPCS productivity
effort because they were incompatible with the programming environment or the
architecture we were evaluating. We share the concerns of the entire HPCS community
that the SLOC metric does not fully capture the level of effort involved in porting
and optimizing an algorithm on a new system; however, it does provide a quantitative
metric to compare and contrast different implementations in a high-level language –
C – across the diverse platforms in our study.

3.1 Architecture Overviews

3.1.1 Homogeneous Multi-core Processors
Our target commodity multi-core platforms are the dual-core and quad-core plat-

forms from Intel. Clovertown is a quad-core Xeon 5300 series processor, which
consists of two dual-core 64-bit Xeon processor dies, packaged together in a multi-
chip module (MCM). Although a Level 2 cache is shared within each Xeon dual-core
die, no cache is shared between both dies of an MCM. Like the Intel Xeon 5100
series dual-core processor known as Woodcrest, the Clovertown processor uses Intel’s
next-generation Core 2 microarchitecture [50]. The clock frequencies of our target
platforms are 2.4 GHz for the Clovertown processor and 2.66 GHz for the Woodcrest
processor.

Both Clovertown and Woodcrest systems are based on Intel’s Bensley platform
(shown in Fig. 6) for Xeon processors, which is expected to have sufficient capacity
to handle the overheads of additional cores. The Blackford Memory Controller Hub
(MCH) has dual, independent front-side busses, one for each CPU socket, and those
FSBs run at 1333 MHz when coupled with the fastest Xeons, rated at approximately
10.5 GB/s per socket. Also, four memory channels of the Blackford MCH can host

4 http://www.dwheeler.com/sloccount/.

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 39

Fig. 6. The Bensley platform (Courtesy of Intel).

Fully Buffered DIMMs (FB-DIMMs) at clock speeds up to 667 MHz. The twin chips
inside the Clovertown processor have no real provision for communicating directly
with one another. Instead, the two chips share the front-side bus (FSB) with the Intel
Blackford MCH, or north bridge.

The microarchitecture for both the Woodcrest and Clovertown processors supports
Intel’s Streaming SIMD Extension (SSE) instructions that operate on data values
packed into 128-bit registers (e.g., four 32-bit values or two 64-bit values) in para-
llel. The microarchitecture used in the Clovertown processor can execute these SIMD
instructions at a rate of one per cycle, whereas the previous-generation microarchitec-
ture was limited to half that rate. The microarchitecture includes both a floating-point
multiplication unit and a floating-point addition unit. Using SIMD instructions, each
of these units can operate on two packed double-precision values in each cycle.
Thus, each Clovertown core is capable of producing four double-precision floating-
point results per clock cycle, for a theoretical maximum rate of sixteen double-
precision floating-point results per clock cycle per socket in a Clovertown-based
system.

40 J. DONGARRA ET AL.

3.1.2 Cell Broadband Engine
The Cell Broadband Engine processor is a heterogeneous multicore processor,

with one 64-bit Power Processing Element (PPE) and eight Synergistic Processing
Elements (SPEs), as shown in Fig. 7. The PPE is a dual-threaded Power Archi-
tecture core containing extensions for SIMD instructions (VMX) [41]. The SPEs
are less traditional in that they are lightweight processors with a simple, heavily
SIMD-focused instruction set, with a small (256 KB) fixed-latency local store (LS),
a dual-issue pipeline, no branch prediction, and a uniform 128-bit, 128-entry register
file [43]. The SPEs operate independently from the PPE and from each other, have an
extremely high bandwidth DMA engine for transferring data between main memory
and other SPE local stores and are heavily optimized for single-precision vector arith-
metic. Regrettably, these SPEs are not optimized for double-precision floating-point

Fig. 7. Design components of the Cell BE [http://www.research.ibm.com/cell/heterogeneousCMO.html].
Source: M. Gschwind et al., Hot Chips-17, August 2005.

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 41

calculations, limiting Cell’s applicability for a large number of scientific applications.
The Cell processor architecture enables great flexibility with respect to programming
models [27].

3.1.3 Graphics Processing Units
The origin of Graphics Processing Units, or GPUs, is attributed to the acceler-

ation of the real-time graphics rendering pipeline. As developers demanded more
power and programmability from graphics cards, these cards became appealing for
general-purpose computation, especially as mass markets began to force even high-
end GPUs into low price points [25]. The high number of FLOPS in GPUs comes
from the parallelism in the architecture. Fig. 8 shows an earlier generation high-
end part from NVIDIA, with 16 parallel pixel pipelines. It is these programmable
pipelines that form the basis of general-purpose computation on GPUs. Moreover, in
next-generation devices, the parallelism increased. The subsequent generation from
NVIDIA contained up to 24 pipelines. Typical high-end cards today have 512 MB of
local memory or more, and support from 8-bit integer to 32-bit floating-point data
types, with 1-, 2- or 4-component SIMD operations.

There are several ways to program the parallel pipelines of a GPU. The most
direct way is to use a GPU-oriented assembler or a compiled C-like language with
graphics-related intrinsics, such as Cg from NVIDIA[30]. Accordingly, as GPUs are

Fig. 8. The NVIDIA GeForce 6800 GPU.

42 J. DONGARRA ET AL.

coprocessors, they require interaction from the CPU to handle high-level tasks such as
moving data to and from the card and setting up these ‘shader programs’for execution
on the pixel pipelines.

Inherently, GPUs are stream processors, as a shader program cannot read and write
to the same memory location. Thus, arrays must be designated as either input or output,
but not both. There are technical limitations on the number of input and output arrays
addressable in any shader program. Together, these restrictions form a set of design
challenges for accelerating a variety of algorithms using GPUs.

3.1.4 Cray MTA-2
Cray’s Multi-Threaded Architecture (MTA) uses a high degree of multi-threading

instead of data caches to address the gap between the rate at which modern proces-
sors can execute instructions and the rate at which data can be transferred between
the processor and main memory. An MTA-2 system consists of a collection of
processor modules and a collection of memory modules, connected by an intercon-
nection network. The MTA processors support a high degree of multi-threading when
compared with current commercial off-the-shelf processors (as shown in Fig. 9).
These processors tolerate memory access latency by supporting many concurrent
streams of execution (128 in the MTA-2 system processors). A processor can switch
between each of these streams on each clock cycle. To enable such rapid switch-
ing between streams, each processor maintains a complete thread execution context
in hardware for each of its 128 streams. Unlike conventional designs, an MTA-2
processor module contains no local memory; it does include an instruction stream
shared between all of its hardware streams.

The Cray MTA-2 platform is significantly different from contemporary, cache-
based microprocessor architectures. Its differences are reflected in the MTA-2
programming model and, consequently, its software development environment [24].
The key to obtaining high performance on the MTA-2 is to keep its processors sat-
urated, so that each processor always has a thread whose next instruction can be
executed. If the collection of threads presented to a processor is not large enough to
ensure this condition, then the processor will be under-utilized.

The MTA-2 is no longer an active product in the Cray product line. However, Cray
has announced an extreme multi-threaded system – the Cray XMT system. Although
the XMT system uses multithreaded processors similar to those of the MTA-2, there
are several important differences in the memory and network architecture. The XMT
will not have the MTA-2’s nearly uniform memory access latency, so data place-
ment and access locality will be important considerations when these systems are
programmed.

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 43

i 5 n

i 5 3

i 5 2

i 5 1

.
.
 .

1

Sub-
problem

A

i 5 n

i 5 1

i 5 0

.
.
 .

Subproblem A

Serial
Code

Unused streams

. . . .

Programs
running in
parallel

Concurrent
threads of
computation

Hardware
streams
(128)

Instruction
Ready
Pool;

Pipeline of
executing
instructions

Sub-
problem

B

2 3 4

Fig. 9. Block diagram of the MTA-2 system.

3.2 Target Workloads
We target two algorithms for our initial evaluations: an imaging application and a

floating-point-intensive scientific algorithm.

3.2.1 Hyperspectral Imaging (HSI)
A covariance matrix is created in a number of imaging applications, such as hyper-

spectral imaging (HSI). HSI, or image spectroscopy, can be described as the capture
of imagery either with a large number of wavelengths or across a large number of
pixels. Whereas black and white images are captured at one wavelength and color
images at three (red, green and blue), hyperspectral images are captured in hundreds
of wavelengths simultaneously. If a HSI data cube is N by M pixels, with L wave-
lengths, the covariance matrix is an L× L matrix, where the entry Cova,b at row a

and column b in the covariance matrix can be represented as:

Cova,b =
N∑

i=1

M∑
j=1

inputi,j,a × inputi,j,b.

44 J. DONGARRA ET AL.

3.2.2 Molecular Dynamics
The biological processes within a cell occur at multiple lengths and time scales.

The processing requirements for bio-molecular simulations, particularly at large time
scales, far exceed the available computing capabilities of the most powerful comput-
ing platforms today. Molecular dynamics (MD) is a computer-simulation technique
where the time evolution of a set of interacting atoms is followed by integrating the
equations of motion [45]. In the Newtonian interpretation of dynamics, the trans-
lational motion of a molecule is caused by force exerted by some external agent.
The motion and the applied force are explicitly related through Newton’s second law:

Fi = miai. mi is the atom’s mass, ai = d2ri
dt2

is its acceleration, and Fi is the force acting
upon it due to the interactions with other atoms. MD techniques are extensively used
in many areas of scientific simulations, including biology, chemistry and materials.
MD simulations are computationally very expensive. Typically, the computational
cost is proportional to N2, where N is the number of atoms in the system. In order
to reduce the computational cost, a number of algorithm-oriented techniques such as
a cutoff limit are used. It is assumed that atoms within a cutoff limit contribute to
the force and energy calculations on an atom. As a result, the MD simulations do not
exhibit a cache-friendly memory access pattern.

Our MD kernel contains two important parts of an MD calculation: force evalua-
tion and integration. Calculation of forces between bonded atoms is straightforward
and computationally less intensive, as there are only very small numbers of bonded
interactions as compared with the non-bonded interactions. The effects of non-
bonded interactions are modelled by a 6-12 Lennard-Jones (LJ) potential model:

V(r) = 4ε
[(

σ
r

)12 − (
σ
r

)6
]
.

The Verlet algorithm uses positions and acceleration at time t and positions
from time t + δt to calculate new positions at time t + δt. The pseudo code for our
implementation is given in Fig. 10. Steps are repeated for n simulation time steps.

1. advance velocities
2. calculate forces on each of the N atoms

compute distance with all other N-1 atoms
if(distance within cutoff limits)
compute forces

3. move atoms based on their position,
velocities & forces

4. update positions
5. calculate new kinetic and total energies

Fig. 10. MD kernel implemented on MTA-2.

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 45

The most time-consuming part of the calculation is step 2, in which an atom’s
neighbors are determined using the cutoff distance, and subsequently the calculations
are performed (N2 complexity). We attempt to optimize this calculation on the target
platforms, and we compare the performance to the reference single-core system.
We implement single-precision versions of the calculations on the Cell BE and the
GPU accelerated system, while Intel OpenMP and MTA-2 implementation are in
double-precision versions.

3.3 Evaluation

3.3.1 Homogeneous Multi-core Systems
3.3.1.1 Optimization Strategies. Since there are shared memory
resources in Intel dual- and quad-core processors, we consider OpenMP parallelism
in this study. Note that an additional level of parallelism is also available within indi-
vidual Xeon cores in the form of SSE instructions. The Intel compilers are capable
of identifying this parallelism with optimized flags, such as -fast -msse3 -parallel
(-fast = -O3, -ipo, – static).

3.3.1.2 Molecular Dynamics. We inspected compiler reports and
identified that a number of small loops in the initialization steps and subsequent cal-
culations are automatically vectorized by the compiler. The complex data and control
dependencies in the main phases of the calculation prevented the generation of opti-
mized SSE instruction by the compiler. The next step was to introduce OpenMP par-
allelism in the main calculation phases. Figure 11 shows the results of an experiment
with 8192 atoms. Overall, the performance of the Woodcrest system is higher than that
of the Clovertown system, which could be attributed to the higher clock of the Wood-
crest system, the shared L2 cache between the two cores and shared FSB between the
two sockets in the Clovertown processor. We observe that the speedup increases with
workload size (number of atoms). As a result, the runtime performance of 8 threads
on Clovertown exceeds the performance of 4 threads on the Woodcrest system.

3.3.1.3 HSI Covariance Matrix. The OpenMP optimization applied
for the covariance matrix calculations is similar to the MD optimization. The main
loop is composed of largely data-independent calculations. We modified the innermost
loop where a reduction operation is performed and then applied OpenMP parallel for
construct. Figure 12 shows the results on a covariance matrix creation for a 2563 data
cube. The results are qualitatively similar to those obtained from the molecular dynam-
ics kernel: the Woodcrest system outperforms the Clovertown on the same number of
threads, which is likely due to a higher clock speed and other architectural differences.

46 J. DONGARRA ET AL.

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 8

Number of OpenMP Threads

R
u

n
ti

m
e

(m
se

c)
Woodcrest Clovertown

Fig. 11. MD experiments with 8192 atoms.

0

1000

2000

3000

4000

5000

6000

7000

1 2 4 8
Number of OpenMP Threads

R
u

n
ti

m
e

(m
se

c)

Woodcrest Clovertown

Fig. 12. Experiments with 2563 HSI covariance matrix.

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 47

In this case, the result of the 8-thread Clovertown shows a great improvement over
the 4-thread Clovertown runtime, although it exceeds the performance of the 4-thread
Woodcrest implementation by only a very small margin.

3.3.2 Cell Broadband Engine
3.3.2.1 Molecular Dynamics. Our programming model for the Cell
processor involves the determination of time-consuming functions that map well to the
SPE cores, and instead of calculating these functions on the PPE, we launch ‘threads’
on the SPEs to read the necessary information into their local stores, perform the
calculations, and write the results back into main memory for the next calculation steps
on the PPE. Because of its high percentage of the total runtime, the MD acceleration
function alone was offloaded to SPEs.

The MD calculation deals with three-dimensional positions, velocities and forces,
so the most natural way to make use of the 4-component SIMD operations on
the SPE is to use the first three components of the inherent SIMD data types for
thex,y and zcomponents of each of these arrays.The communication between the PPE
and SPEs is not limited to large asynchronous DMAtransfers; there are other channels
(‘mailboxes’) that can be used for blocking sends or receives of information of the order
of bytes. As we are offloading only a single function, we can launch the SPE threads
only on the first time step and signal them using mailboxes when there is more data to
process. Hence, the thread launch overhead is amortized across all time steps.

Runtime results are listed in Table VI for a 4096-atom experiment that runs for 10
simulation time steps. Due the extensive use of SIMD intrinsics on the SPE, even a
single SPE outperforms the PPE on the Cell processor by a significant margin. Further,
with an efficient parallelization using all 8 SPEs, the total runtime is approximately
10 times faster than the PPE alone.

3.3.2.2 HSI Covariance Matrix. The covariance matrix creation rou-
tine transfers much more data through the SPEs for the amount of computation

Table VI
Performance Comparison

on the Cell Processor

Number of Atoms 4096

Cell, PPE only 4.664 sec
Cell, 1 SPE 2.958 sec
Cell, 8 SPEs 0.448 sec

48 J. DONGARRA ET AL.

Table VII
Performance Comparison on the

Cell Processor

Covariance Matrix 256 × 256 × 256

Cell, PPE only 88.290 sec
Cell, 1 SPE 5.002 sec
Cell, 8 SPEs 0.662 sec

performed than the MD application does. Specifically, the data set and tiling sizes
used resulted in a total of 16 chunks that need to be processed, and this implementation
must still stream the data set through each SPE to create each of the output chunks.
Therefore, the time spent during data transfer has the potential for a noticeable impact
on total performance. In this example, optimization of the thread launching, DMA
overlapping and synchronization resulted in considerable improvement of the routine.

Table VII shows the performance improvement on the Cell processor. The dis-
advantage of the PPE as a computational processor is that it runs 18x slower than a
single SPE. In addition, parallelization across SPEs was very effective, providing a
7.5x speedup on 8 SPEs.

3.3.3 GPU
3.3.3.1 Molecular Dynamics. As with the Cell, implementation for
the GPU focused on the part of the algorithm that calculates new accelerations from
only the locations of the atoms and several constants. For our streaming processor,
then, the obvious choice is to have one input array comprising the positions and one
output array comprising the new accelerations. The constants were compiled into the
shader program source using the provided JIT compiler at program initialization.

We set up the GPU to execute our shader program exactly once for each location in
the output array. That is, each shader program calculates the acceleration for one atom
by checking for interaction with all other atoms and by accumulating forces into a
single acceleration value for the target atom. Instruction length limits prevent us from
searching more than a few thousand input atoms in a single pass, and so with 4096
atoms or more, the algorithm switches to use multiple passes through the input array.
After the GPU is completeded, the resulting accelerations are read back into main
memory, where the host CPU proceeds with the current time step.At the next time step,
the updated positions are re-sent to the GPU and new accelerations computed again.

Figure 13 shows performance using an NVIDIA GeForce 7900GTX GPU. This
figure includes results from the GPU’s host CPU (a 2-GHz Opteron) as a reference
for scaling comparisons. The readily apparent change in slope for the GPU below
1024 atoms shows the point at which the overheads associated with offloading this

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 49

0.001

0.01

0.1

1

10

100

1000

128 256 512 1 k 2 k 4 k 8 k 16 k 32 k
Number of atoms

R
u

n
tim

e
(s

ec
)

AMD Opteron, 1 thread

NVIDIA 7900GTX GPU

Fig. 13. Performance scaling results on GPU with CPU scaling for comparison.

acceleration computation to the GPU become a more significant fraction of the total
runtime than the O(N2) calculation itself. These constant and O(N) costs for each
time step include sending the position array and reading the acceleration array across
the PCIe bus at every time step, and these results show that there is a lower bound
on problem size where a GPU will not be faster than a CPU. However, the massive
parallelism of the GPU helps it maintain a consistent speedup above 1000 atoms.

3.3.3.2 HSI Covariance Matrix. The GPU architecture is generally
well suited to image operations, and to some degree this extends to hyperspectral
image data. However, as the SIMD nature of the pipelines in a GPU is well oriented
toward 4-component images, this is not a direct match with an image with more than
four components. However, the regular nature of the data does have an impact, and
the SIMD nature of the GPU can be exploited to take advantage of the operations
in the covariance matrix creation routine. Figure 14 shows the runtime of the GPU on
the 2563 covariance matrix creation benchmark under several implementations. The
implementation exploiting none of the SIMD instructions on the GPU naturally shows
the worst performance. The fully SIMDized implementation is a drastic improvement,
running several times faster than the unoptimized implementation.

Figure 14 also shows the effect of tile size on total runtime. With larger tile sizes,
fewer passes need to be made over the same data. However, the larger the tile size,
the longer is the stream program which needs to be run, and this can adversely impact
memory access patterns. The competing effects lead to a moderate value for the ideal
streaming tile size.

50 J. DONGARRA ET AL.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

1 2 4 8 16 32 64 128

Streaming Tile Size

R
u

n
ti

m
e

(s
ec

)
No SIMD

SIMD Input/Output

SIMD Input only

Fig. 14. Performance of the GPU on the 2563 covariance matrix creation under a variety of SIMDization
optimizations and streaming tile sizes.

3.3.4 MTA-II
3.3.4.1 Molecular Dynamics. The MTA-2 architecture provides an
optimal mapping to the MD algorithm because of its uniform memory latency archi-
tecture. In other words, there is no penalty for accessing atoms outside the cutoff limit
or the cache boundaries, in an irregular fashion, as is the case in the microprocessor-
based systems. In order to parallelize calculations in step 2, we moved the reduction
operation inside the loop body. Figure 15 shows the performance difference before
and after adding several pragmas to the code to remove phantom dependencies from
this loop.

In order to explore the impact of the uniform memory hierarchy of the
MTA-2 architecture, we compare its performance with the OpenMP multi-threaded
implementation on the Intel quad-core Clovertown processor. Figure 16 shows
runtime in milliseconds on the two systems when the number of OpenMP threads
(number of Clovertown cores) and the number of MTA-2 processors for three work-
load sizes are increased. Although the performance of the Clovertown processor

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 51

0

20

40

60

80

100

120

140

160

180

200

256 512 1024 2048
Number of atoms

R
u

n
ti

m
e

(s
ec

)
Fully Multithreaded Partially Multithreaded

Fig. 15. Performance comparison of fully vs. partially multi-threaded versions of the MD kernel for
the MTA-2.

1

10

100

1000

10000

100000

1 2 4 8 16 32
Number of OpenMP threads/MTA-2 processors

R
u

n
ti

m
e

(m
se

c)

Clovertown (2048 atoms)

Clovertown (4096 atoms)

Clovertown (8192 atoms)

MTA-2 (2048 atoms)

MTA-2 (4096 atoms)

MTA-2 (8192 atoms)

Fig. 16. Runtime in milli-seconds with multi-threaded implementation.

52 J. DONGARRA ET AL.

(released in November 2006) is significantly higher than that of the MTA-2 system
(released in early 2002) for the same number of cores/MTA-2 processors, the MD
workload scales almost linearly on the MTA-2 processor. Note that the clock fre-
quency of MTA-2 is 200 MHz, while the Clovertown operates at 2.4 GHz clock
frequency. Speedup (runtime on a single execution unit/runtime on n execution units)
shown in Fig. 17 confirms that the fine-grain multi-threading on the MTA-2 system
provides relatively high scaling compared with the OpenMP implementation.

3.3.4.2 HSI Covariance Matrix. Similar to the MD application, the
covariance matrix calculation was only partially optimized by the MTA-2 compiler.
To enable full multi-threading, we moved the reduction operation outside the inner
loop and introduced an array element. A full multi-threaded version of the application
is then produced by the MTA-2 compiler. Figure 18 and 19 compare performance
and relative speedup of the OpenMP multi-threaded implementation and MTA-2

0

5

10

15

20

25

30

35

2 4 8 16 32

Number of OpenMP Threads/MTA-2 Processors

S
p

ee
d

u
p

Clovertown (2048 atoms)

Clovertown (4096 atoms)

Clovertown (8192 atoms)

MTA-2 (2048 atoms)

MTA-2 (4096 atoms)

MTA-2 (8192 atoms)

Fig. 17. Parallel efficiency on Clovertown cores (2 sockets) and MTA-2 processors.

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 53

120
Clover
town100

80

60

40

20

0
1 2 4 8 16 32

R
u

n
ti

m
e

(s
ec

)

Number of OpenMP Threads

Fig. 18. Runtime in milli-seconds with multi-threaded implementation (HSI).

10

8

6

4

2

0
2 4 8 16 32

S
p

ee
d

u
p

Number of OpenMP Threads

Clover
town

Fig. 19. Parallel efficiency on Clovertown cores and MTA-2 processors (HSI).

multi-threaded implementation, respectively. We observe that although the time-to-
solution is much faster on the recent quad-core Clovertown system, the MTA-2 system
provides high parallel efficiency on up to 16 threads.

3.4 Productivity
The preceding section reviewed a crucial aspect of the HPCS program’s product-

ivity goal – sustained performance on real-world codes – and presented performance
and scaling results in terms of runtimes and parallel speedups. But another critical
contributor to HPC productivity occurs before the codes are ever run. In this section,

54 J. DONGARRA ET AL.

we discuss and compare relative performance improvement, and performance-to-
productivity ratios, by taking into account the level of effort involved in optimizing
the same molecular dynamics (MD) algorithm on the target architectures. Since it
is not trivial to quantify the code development effort, which depends on a number
of factors including the level of experience of the code developer, the degree of
familiarity with the programming model and the attributes of the target system, we
measure a quantifiable value called Source Lines of Code (SLOC). We recognize that
SLOC does not encapsulate and fully represent the code optimization effort, but it
has been extensively used and reported in a large number of productivity studies on
parallel and high-performance computing systems. We further divide the SLOC into
effective SLOC and boilerplate SLOC. The distinction is intended to quantify the
learning curve associated with the unique architectures investigated here, as there is
some amount of boilerplate code that one must write to get any application working
and can typically be re-used on further applications. For example, code for SPE thread
launches and DMA transfers on the Cell is highly reusable, and on the GPU this might
include initialization of OpenGL and other graphics primitives. So the ‘total’ SLOC
is close to what one might expect when presented with the architecture for the first
time, and the ‘effective’ SLOC (with boilerplate code discounted) approximates to
what one might expect with the platform.

We measure the relative performance of the optimized, SSE-enabled micropro-
cessor (single-core Intel Woodcrest) version and the optimized implementation
as Performanceratio = RuntimeWoodcrest−core

Runtimeemerging−architecure
, and we measure the productivity by

comparing the SLOC ratio of the test suite as SLOCratio = SLOCoptimised−implementation

SLOCserial−implementation
.

Although no code modification is performed in the serial version, we extensively
studied the impact of various compile-time and runtime optimization flags offered
by the Intel C compiler (version 9.1). These optimizations included operations such
as Inter Procedural Optimization (IPO), auto-parallelization and SSE-enabled code
generation/vectorization. Hence, our reference runtime results are optimal for the
single-core Woodcrest platform. In order to quantify the trade-offs between time
spent tuning a code versus the benefit seen via shorter runtimes, we introduce the
concept of ‘Relative Productivity’, in the form of the relative development time pro-
ductivity (RDTP) metric, defined as speedup divided by relative effort, i.e., the ratio
of the first two metrics [42].

Some might observe that additional optimization can often result in fewer lines
of code, and thus suggest that it is misleading to use SLOC as a productivity met-
ric. While potentially true, that effect is greatly mitigated in this study. First, these
devices ostensibly require adding code, not subtracting it, simply to get these devices
to function as accelerators. Hence, an increase in the lines of code, when compared
with the single-threaded CPU version, almost certainly requires an increase in the

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 55

amount of effort. This is in dramatic contrast to other kinds of optimizations, such as
within homogeneous CPU code and loop reordering, which can entail considerable
effort with no increase in SLOC. Secondly, the fact that the added code was sub-
ject to these kinds of statement-level-optimizations, which have a non-linear impact
on SLOC, does not invalidate the comparison, because the original single-threaded
code was subject to these same transformations. In other words, because we are com-
paring optimized code with optimized code, SLOC remains a useful metric for the
optimization effort.

In Table VIII, we list the ratio of source lines of code (SLOC), both in terms of
effective SLOC and total SLOC, and the relative improvement in performance on
our target platforms. The ‘Performance Ratio’ column in Table VIII is the speedup
relative to the reference single-threaded implementation running on a 2.67-GHz
Woodcrest Xeon compiled with the Intel 9.1 compiler, using the flags that achieved
the best performance, including SSE3 instructions and inter-procedural optimization.
The final column, ‘Relative Productivity’, is the relative development time producti-
vity (RDTP) metric defined above, where a higher number indicates more benefit for
less code development effort. The RDTP metric presented in Table VIII is calculated
using effective SLOC, as the boilerplate code required no additional development
effort.

First, we calculate RDTP for the OpenMP implementation on the Intel multi-core
platforms. Since there is very little boilerplate code for the OpenMP implementation,
the SLOC ratio compared with that of the serial implementation is not high. Perfor-
mance is measured for 32K-atoms runs on the reference Woodcrest core against the
4 OpenMP thread and 8 OpenMP thread runs on Woodcrest and Clovertown, respec-
tively. The RDTP for the Woodcrest is well over one and for the 8 cores, the ratio
is greater than 2. We therefore conclude that the OpenMP implementation does not

Table VIII
Performance and Productivity of an MD Calculation on the Emerging

Architectures Relative to the Single-Core, SSE-Enabled Woodcrest
Implementation. Note that the Performances of OpenMP and MTA

Implementations are Gathered on Multiple Cores/processors

SLOC Ratio SLOC Ratio Performance Relative
(Total) (Effective) Ratio Productivity

OpenMP (Woodcrest, 4 cores) 1.07 1.059 1.713 1.618
OpenMP (Clovertown, 8 cores) 1.07 1.059 2.706 2.556
Cell (8 SPEs) 2.27 1.890 2.531 1.339
GPU (NVIDIA 7900GTX) 3.63 2.020 2.502 1.239
MTA-2 (32 processors) 1.054 1.054 1.852 1.757

56 J. DONGARRA ET AL.

Table IX
Performance and Productivity of a Covariance Matrix Creation on the Emerging

Architectures Relative to the Single-Core, SSE-Enabled Woodcrest
Implementation. Note that the Performances of OpenMP and MTA

Implementations are Gathered on Multiple Cores/Processors

SLOC Ratio SLOC Ratio Performance Relative
(Total) (Effective) Ratio Productivity

OpenMP (Woodcrest, 4 cores) 1.070 1.047 2.746 2.624
OpenMP (Clovertown, 8 cores) 1.070 1.047 2.859 2.732
Cell (8 SPEs) 5.605 3.442 8.586 2.495
GPU (NVIDIA 7900GTX) 11.302 1.977 4.705 2.380
MTA-2 (32 processors) 1.093 1.093 0.481 0.440

have a negative performance-to-productivity ratio, as this implementation can utilize
the target system resources effectively.

For the Cell processor, our final performance numbers were obtained using the
latest XLC compiler. Our implementation limited us to a comparison at 4 K atoms,
but effective parallelization and use of SIMD instructions nevertheless resulted in
good performance, even when the problem was smaller. However, manual handling
of the decomposition and the various aspects of SPE coding did result in a notice-
able increase in SLOC, and as such the RDTP for the Cell processor was approxi-
mately 1.3.

The GPU had comparable performance to the Cell – though the parallelization is
handled at a finer granularity, the SIMD instructions were utilized in a similar fashion.
Though we rely on the GPU to handle the distribution of the parallel work among the
shader units, collection of the results and setting up of the graphics primitives in a way
the GPU can process still takes some coding effort, even after most boilerplate routines
are discounted. As such, the effective SLOC ratio is the highest of all platforms, and
the RDTP, though still greater than one, is the lowest among the platforms.

Finally, we compare the fine-grain multi-threaded implementation on the MTA-2
system. Due to a highly optimizing compiler, very few code modifications are required
to optimize the time-critical loop explicitly; the remaining loops were automatically
optimized by the compiler, resulting in very low code development overheads. We
compare performance of a 32 K-atoms run on 32 MTA-2 processors. Note that the
uniform memory hierarchy for 32 processors provides for good scaling and somewhat
compensates for the difference in the clock rates of the two systems. Like the OpenMP
implementation, the RDTP for the fine-grain multi-threading on MTA-2 is greater
than 1; in fact, it is close to the dual-core (4 cores in total) Woodcrest system’s RDTP.

Note that we have not utilized multiple sockets and processors for all our target
devices. However, it is possible to utilize more than one Cell processor in parallel, as

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 57

blade systems have two sockets on the board, and similarly one can place two GPUs
in a node with more than one PCI-Express slot. So, with additional effort one could
include an additional level of parallelism for these platforms. As such, we introduce
Table X to show the comparison of performance and productivity when limited to
a single ‘socket’ or ‘processor’, with as much inherent parallelism (cores, shaders,
SPEs) as this implies. For Woodcrest, this means we are limited to one socket and
thus two cores; for Clovertown, four cores; and for MTA-2, 128 streams. In these
comparisons, only the Clovertown, Cell and GPU sustained RDTP metrics greater
than one. The Cell and the GPU implementation, on the other hand, provide over 2x
speedup over the reference optimized serial implementation.

We would like to emphasize that the results presented in Tables VIII, IX, X, and XI
should not be considered the absolute performance measures of the targeted devices.
First, the level of maturity in the software stack for scientific code development is not
consistent across all platforms. Second, some target devices presented in the paper
do not represent the state-of-the-art devices in the field, while others were released
very recently. For instance, the Clovertown and Woodcrest systems are the most recent
releases among all the platforms. In contrast, the 2.4-GHz Cell processor used here is
over one year old, the 7900GTX has already been supplanted by its successor GPU

Table X
Performance and Productivity of a 4K-atom MD Calculation (Single

Socket/Processor Comparisons)

Performance Ratio Relative Productivity

OpenMP (Woodcrest, 2 cores) 1.031 0.973
OpenMP (Clovertown, 4 cores) 1.407 1.329
Cell (8 SPEs) 2.531 1.339
GPU (NVIDIA 7900GTX) 2.367 1.172
MTA-2 (1 processor, 128 streams) 0.0669 0.063

Table XI
Performance and Productivity for a 2563 HSI Data Cube (Single

Socket/Processor Comparisons)

Performance Ratio Relative Productivity

OpenMP (Woodcrest, 2 cores) 1.794 1.714
OpenMP (Clovertown, 4 cores) 1.823 1.742
Cell (8 SPEs) 8.586 2.495
GPU (NVIDIA 7900GTX) 4.705 2.380
MTA-2 (1 processor, 128 streams) 0.054 0.050

58 J. DONGARRA ET AL.

from NVIDIA and the MTA-2 system was released in early 2002 and is not an active
product from Cray.

4. The DARPA HPCS Language Project

Another important goal of the HPCS project has been to improve the productivity
of software designers and implementers by inventing new languages that facilitate the
creation of parallel, scalable software. Each of the three Phase II vendors proposed a
language – Chapel from Cray, X10 from IBM, Fortress from Sun – for this purpose.
(Sun was not funded in Phase III, so Fortress is no longer being supported by DARPA.
Nonetheless, it remains a significant contribution to the HPCS goals, and we include
it here.) Before we consider these ‘HPCS languages’ themselves, we provide the
context in which this development has taken place. Specifically, we discuss current
practice, compare some early production languages with the HPCS languages, and
comment on previous efforts to introduce new programming languages for improved
productivity and parallelism.

4.1 Architectural Developments
Language development for productivity is taking place at a time when the archi-

tecture of large-scale machines is still an area of active change. Innovative network
interfaces and multi-processor nodes are challenging the ability of current program-
ming model implementations to exploit the best performance the hardware can
provide, and multicore chips are adding another level to the processing hierarchy. The
HPCS hardware efforts are at the leading edge of these innovations. By combining
hardware and languages in one program, DARPA is allowing language designs that
may take advantage of unique features of one system, although this design freedom is
tempered by the desire for language ubiquity. It is expected that the new HPCS pro-
gramming models and languages will exploit the full power of the new architectures,
while still providing reasonable performance on more conventional systems.

4.1.0.3 Current Practice. Most parallel programs for large-scale paral-
lel machines are currently written in a conventional sequential language (Fortran-77,
Fortran-90, C or C++) with calls to the MPI message-passing library. The MPI stan-
dard [63, 64] defines bindings for these languages. Bindings for other languages
(particularly Java) have been developed and are in occasional use but are not part
of the MPI standard. MPI is a realization of the message-passing model, in which
processes with completely separate address spaces communicate with explicit calls

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 59

to send and receive functions. MPI-2 extended this model in several ways (parallel
I/O, remote memory access and dynamic process management), but the bulk of MPI
programming utilizes only the MPI-1 functions. The use of the MPI-2 extensions is
more limited, but usage is increasing, especially for parallel I/O.

4.1.0.4 The PGAS Languages. In contrast to the message-passing
model, the Partitioned GlobalAddress Space (PGAS) languages provide each process
direct access to a single globally addressable space. Each process has local memory
and access to the shared memory.5 This model is distinguishable from a symmetric
shared-memory model in that shared memory is logically partitioned, so there is a
notion of near and far memory explicit in each of the languages. This allows pro-
grammers to control the layout of shared arrays and of more complex pointer-based
structures.

The PGAS model is realized in three existing languages, each presented as
an extension to a familiar base language: UPC (Unified Parallel C) [58] for C;
Co-Array Fortran (CAF) [65] for Fortran, and Titanium [68] for Java. The three PGAS
languages make references to shared memory explicit in the type system, which means
that a pointer or reference to shared memory has a type that is distinct from references
to local memory. These mechanisms differ across the languages in subtle ways, but in
all three cases the ability to statically separate local and global references has proven
important in performance tuning. On machines lacking hardware support for global
memory, a global pointer encodes a node identifier along with a memory address,
and when the pointer is dereferenced, the runtime must deconstruct this pointer rep-
resentation and test whether the node is the local one. This overhead is significant
for local references and is avoided in all three languages due to expressions that are
statically known to be local. This allows the compiler to generate code that uses a
simpler (address-only) representation and avoids the test on dereference.

These three PGAS languages share with the strict message-passing model a num-
ber of processes fixed at job start time, with identifiers for each process. This results
in a one-to-one mapping between processes and memory partitions and allows for
very simple runtime support, since the runtime has only a fixed number of processes
to manage and these typically correspond to the underlying hardware processors.
The languages run on shared memory hardware, distributed memory clusters and
hybrid architectures. Each of these languages is the focus of current compiler research
and implementation activities, and a number of applications rely on them. All three
languages continue to evolve based on application demand and implementation
experience, a history that is useful in understanding requirements for the HPCS

5 Because they access shared memory, some languages use the term ‘thread’ rather than ‘process’.

60 J. DONGARRA ET AL.

languages. UPC and Titanium have a set of collective communication operations
that gang the processes together to perform reductions, broadcasts and other global
operations, and there is a proposal to add such support to CAF. UPC and Titanium
do not allow collectives or barrier synchronization to be done on subsets of pro-
cesses, but this feature is often requested by users. UPC has parallel I/O support
modelled after MPIs, and Titanium has bulk I/O facilities as well as support to check-
point data structures, based on Java’s serialization interface. All three languages also
have support for critical regions and there are experimental efforts to provide atomic
operations.

The distributed array support in all three languages is fairly rigid, a reaction to the
implementation challenges that plagued the High Performance Fortran (HPF) effort.
In UPC, distributed arrays may be blocked, but there is only a single blocking factor
that must be a compile-time constant; in CAF, the blocking factors appear in separate
‘co-dimensions’; and Titanium does not have built-in support for distributed arrays,
but they are programmed in libraries and applications using global pointers and a
built-in all-to-all operation for exchanging pointers. There is an ongoing tension in
this area of language design, most visible in the active UPC community, between
the generality of distributed array support and the desire to avoid significant runtime
overhead.

4.1.0.5 The HPCS Languages. As part of Phase II of the DARPA
HPCS Project, three vendors – Cray, IBM, and Sun – were commissioned to develop
new languages that would optimize software development time as well as perfor-
mance on each vendor’s HPCS hardware, which was being developed at the same
time. Each of the languages – Cray’s Chapel [57], IBM’s X10 [66] and Sun’s Fortress
[53] – provides a global view of data (similar to the PGAS languages), together with
a more dynamic model of processes and sophisticated synchronization mechanisms.

The original intent of these languages was to exploit the advanced hardware archi-
tectures being developed by the three vendors and in turn to be particularly well
supported by these architectures. However, in order for these languages to be adopted
by a broad sector of the community, they will also have to perform reasonably well on
other parallel architectures, including the commodity clusters on which much para-
llel software development takes place. (The advanced architectures will also have
to run ‘legacy’ MPI programs well in order to facilitate the migration of existing
applications.)

Until recently, the HPCS languages were being developed quite independently
by the vendors; however, DARPA also funded a small, academically based effort to
consider the languages together, in order to foster vendor cooperation and perhaps
eventually to develop a framework for convergence to a single high-productivity
language [61]. (Recent activities on this front are described below.)

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 61

4.1.0.6 Cautionary Experiences. The introduction of a new
programming language for more than research purposes is a speculative activity.
Much effort can be expended without creating a permanent impact. We mention two
well-known cases.

In the late 1970s and early 1980s, an extensive community effort was mounted to
produce a complete, general-purpose language expected to replace both Fortran and
COBOL, the two languages in most widespread use at the time. The result, calledAda,
was a large, full-featured language and even had constructs to support parallelism. It
was required for many U.S. Department of Defense software contracts, and a large
community of programmers eventually developed it. Today, Ada is used within the
defense and embedded systems community, but it did not supplant the established
languages. A project with several similarities to the DARPA HPCS program was the
Japanese ‘5th Generation’ project of the 1980s. Like the DARPA program, it was a
ten-year project involving both a new programming model, presented as a more pro-
ductive approach to software development and new hardware architectures designed
by multiple vendors to execute the programming model efficiently and in parallel.
The language realizing the model, called CLP (Concurrent Logic Programming),
was a dialect of Prolog and was specifically engineered for parallelism and high
performance. The project was a success in training a generation of young Japanese
computer scientists, but it has had no lasting influence on the parallel computing
landscape.

4.1.0.7 Lessons. Programmers do value productivity, but reserve the right
to define it. Portability, performance and incrementality seem to have mattered more
in the recent past than did elegance of language design, power of expression or
even ease of use, at least when it came to programming large scientific applications.
Successful new sequential languages have been adopted in the past twenty-five years,
but each has been a modest step beyond an already established language (from C to
C++, from C++ to Java). While the differences between each successful language
have been significant, both timing of the language introduction and judicious use of
familiar syntax and semantics were important. New ‘productivity’ languages have
also emerged (Perl, Python, and Ruby); but some of their productivity comes from
the interpreted nature, and they neither show high performance nor show specific
suitability to parallelism.

The PGAS languages, being smaller steps beyond established languages, thus
present serious competition for the HPCS languages, despite the advanced, and even
elegant, features exhibited by Chapel, Fortress and X10. The most serious compe-
tition, however, comes from the more established message-passing interface, MPI,
which has been widely adopted and provides a base against which any new language

62 J. DONGARRA ET AL.

must compete. In the next section, we describe some of the ‘productive’ features of
MPI, as a way of setting the bar for the HPCS languages and providing some opportu-
nities for improvement over MPI as we progress. New approaches to scalable parallel
programming must offer a significant advantage over MPI and must not omit critical
features that have proven useful in the MPI experience.

4.2 The HPCS Languages as a Group
The detailed, separate specifications for the HPCS languages can be found in [60].

In this section, we consider the languages together and compare them along several
axes in order to present a coherent view of them as a group.

Base Language. The HPCS languages use different sequential bases. X10 uses an
existing object-oriented language, Java, inheriting both good and bad features. It gains
Java support for multi-dimensional arrays, value types and parallelism and gains tool
support from IBM’s extensive Java environment. Chapel and Fortress use their own,
new object-oriented languages. An advantage of this approach is that the language
can be tailored to science (Fortress even explores new, mathematical character sets),
but the fact that a great intellectual effort is required in order to get the base language
right has slowed development and may deter users.

Creating Parallelism. Any parallel programming model must specify how the
parallelism is initiated. All three HPCS languages have parallel semantics; that is,
there is no reliance on automatic parallelism, nor are the languages purely data parallel
with serial semantics, like the core of HPF. All of them have dynamic parallelism for
loops as well as tasks and encourage the programmer to express as much parallelism
as possible, with the idea that the compiler and runtime system will control how much
is actually executed in parallel. There are various mechanisms for expressing different
forms of task parallelism, including explicit spawn, asynchronous method invocation
and futures. Fortress is unusual in that it makes parallelism the default semantics
for both loops and for argument evaluation; this encourages programmers to ‘think
in parallel’, which may result in very highly parallel code, but it could also prove
surprising to programmers. The dynamic parallelism exhibits the most significant
semantic difference between the HPCS language and the existing PGAS languages
with their static parallelism model. It presents the greatest opportunity to improve
performance and ease of use relative to these PGAS languages and MPI. Having
dynamic thread support along with data, parallel operators may encourage a higher
degree of parallelism in the applications and may allow for simply expressing this
parallelism directly rather than mapping it to a fixed process model in the application.
The fine-grained parallelism can be used to mask communication latency, reduce

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 63

stalls at synchronization points and take advantage of hardware extensions such as
SIMD units and hyperthreading within a processor.

The dynamic parallelism is also the largest implementation challenge for the
HPCS languages, since it requires significant runtime support to manage. The expe-
rience with Charm++ shows the feasibility of such runtime support for a class of
very dynamic applications with limited dependencies [62]. A recent UPC project that
involved the application of multi-threading to a matrix factorization problem reveals
some of the challenges that arise from more complex dependencies between tasks.
In that UPC code, the application-level scheduler manages user-level threads on top
of UPC’s static process model: it must select tasks on the critical path to avoid idle
time, delay allocating memory for non-critical tasks to avoid running out of memory
and ensure that tasks run long enough to gain locality benefits in the memory hierar-
chy. The scheduler uses application-level knowledge to meet all of these constraints,
and performance depends critically on the quality of that information; it is not clear
as to how such information would be communicated to one of the HPCS language
runtimes.

Communication and Data Sharing. All three of the HPCS languages use a global
address space for sharing state, rather than an explicit message-passing model. They
all support shared multi-dimensional arrays as well as pointer-based data structures.
X10 originally allowed only remote method invocations rather than direct reads and
writes to remote values, but this restriction has been relaxed with the introduction
of ‘implicit syntax’, which is syntactic sugar for a remote read or write method
invocation.

Global operations such as reductions and broadcasts are common in scientific
codes, and while their functionality can be expressed easily in shared memory using a
loop, they are often provided as libraries or intrinsics in parallel programming models.
This allows for tree-based implementations and the use of specialized hardware that
exists on some machines. In MPI and some of the existing PGAS languages, these
operations are performed as ‘collectives’: all processes invoke the global operation
together so that each process can perform the local work associated with the operation.
In data parallel languages, global operations may be converted to collective operations
by the compiler. The HPCS languages provide global reductions without explicitly
involving any of the other threads as a collective: a single thread can execute a
reduction on a shared array. This type of one-sided global operation fits nicely in the
PGAS semantics, as it avoids some of the issues related to processes modifying the
data involved in a collective while others are performing the collective [58]. However,
the performance implications are not clear. To provide tree-based implementation and
to allow work to be performed locally, a likely implementation will be to spawn a
remote thread to reduce the values associated with each process. Since that thread may

64 J. DONGARRA ET AL.

not run immediately, there could be a substantial delay in waiting for the completion
of such global operations.

Locality. The HPCS languages use a variation of the PGAS model to support locality
optimizations in shared data structures. X10’s ‘places’ and Chapel’s ‘locales’ provide
a logical notion of memory partitions. A typical scenario maps each memory partition
at program startup to a given physical compute node with one or more processors
and its own shared memory. Other mappings are possible, such as one partition per
processor or per core. Extensions to allow for dynamic creation of logical memory
partitions have been discussed, although the idea is not fully developed. Fortress has
a similar notion of a ‘region’, but regions are explicitly tied to the machine structure
rather than being virtualized, and regions are hierarchical to reflect the design of many
current machines.

All three languages support distributed data structures, in particular distributed
arrays that include user-defined distributions. These are much more general than
those in the existing PGAS languages. In Fortress, the distribution support is based
on the machine-dependent region hierarchy and is delegated to libraries rather than
being in the language itself.

Synchronization Among Threads and Processes. The most common syn-
chronization primitives used in parallel applications today are locks and barriers.
Barriers are incompatible with the dynamic parallelism model in the HPCS lan-
guages, although their effect can be obtained by waiting for the completion of a set of
threads. X10 has a sophisticated synchronization mechanism called ‘clocks’, which
can be thought of as barriers with attached tasks. Clocks provide a very general form
of global synchronization that can be applied to subsets of threads.

In place of locks, which are viewed by many as cumbersome and error prone, all
three languages support atomic blocks. Atomic blocks are semantically more elegant
than locks, because the syntactic structure forces a matching ‘begin’ and ‘end’ to
each critical region, and the block of code is guaranteed to be atomic with respect to
all other operations in the program (avoiding the problems of acquiring the wrong
lock or deadlock). Atomic blocks place a larger burden on runtime support: one sim-
ple legal implementation involves a single lock to protect all atomic blocks6, but
the performance resulting from such an implementation is probably unacceptable.
More aggressive implementations will use speculative execution and rollback, pos-
sibly relying on hardware support within shared memory systems. The challenge
comes from the use of a single global notion of atomicity, whereas locks may provide

6 This assumes atomic blocks are atomic only with respect to each other, not with respect to individual
reads and writes performed outside an atomic block.

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 65

atomicity on two separate data structures using two separate locks. The information
that the two data structures are unaliased must be discovered dynamically in a setting
that relies on atomics. The support for atomics is not the same across the three HPCS
languages. Fortress has abortable atomic sections, and X10 limits atomic blocks to a
single place, which allows for a lock-per-place implementation.

The languages also have some form of a ‘future’ construct that can be used for
producer–consumer parallelism. In Fortress, if one thread tries to access the result of
another spawned thread, it will automatically stall until the value is available. In X10,
there is a distinct type for the variable on which one waits and its contents, so the
point of potential stalls is more explicit. Chapel has the capability to declare variables
as ‘single’ (single writer) or ‘sync’ (multiple readers and writers).

4.2.0.8 Moving Forward. Recently, a workshop was held at Oak Ridge
National Laboratory, bringing together the three HPCS language vendors, computer
science researchers representing the PGAS languages and MPI, potential users from
the application community and program managers from DARPA and the Department
of Energy’s Office of Advanced Scientific Computing. In this section, we describe
some of the findings of the workshop at a high level and present the tentative plan for
further progress that evolved there.

The workshop was organized in order to explore the possibility of converging
the HPCS languages to a single language. Briefings were presented on the status of
each of the three languages and an effort was made to identify the common issues
involved in completing the specifications and initiating the implementations. Potential
users offered requirements for adoption, and computer science researchers described
recent work in compilation and runtime issues for PGAS languages. One high-level
finding of the workshop was the considerable diversity in the overall approaches being
taken by the vendors, the computer science research relevant to the HPCS language
development and the application requirements.

Diversity in Vendor Approaches. Although the three vendors are all well along
the path towards the completion of designs and prototype implementations of these
languages that are intended to increase the productivity of software developers, they
are not designing three versions of the same type of object. X10, for example, is clearly
intended to fit into IBM’s extensive Java programming environment. As described
earlier, it uses Java as a base language, allowing multiple existing tools for parsing,
compiling and debugging to be extended to the new parallel language. Cray’s approach
is more revolutionary, with the attendant risks and potential benefits; Chapel is an
attempt to design a parallel programming language from the basic language. Sun is
taking a third approach, providing a framework for experimentation with parallel
language design, in which many aspects of the language are to be defined by the user

66 J. DONGARRA ET AL.

and many of the features are expected to be provided by libraries instead of by the
language itself. One novel feature is the option of writing code with symbols that,
when displayed, can be typeset as classical mathematical symbols, improving the
readability of the ‘code’.

Diversity in Application Requirements. Different application communities have
different expectations and requirements for a new language. Although only a small
fraction of potential HPC applications were represented at the workshop, there was
sufficient diversity to represent a wide range of positions with respect to the new
languages.

One extreme is represented by those applications for which the current program-
ming model – MPI together with a conventional sequential language – is working
well. In many cases, MPI is being used as the MPI Forum intended: the MPI calls are
in libraries written by specialists, and the application programmer sees these library
interfaces rather than MPI itself, thus bypassing MPI’s ease-of-use issues. In many
of the applications content with the status quo, the fact that the application may have
a long life (measured in decades) amortizes the code development effort and makes
development convenience less of an issue.

The opposite extreme is represented by those for whom rapidity of application
development is the critical issue. Some of these codes are written in a day or two
for a special purpose and then discarded. For such applications, the MPI model is
too cumbersome and error prone, and the lack of a better model is a genuine barrier
to development. Such applications cannot be deployed at all without a significant
advancement in the productivity of programmers.

Between these extremes is, of course, a continuously variable range of applications.
Such applications would welcome progress in the ease of application development and
would adopt a new language in order to obtain it, but any new approach must not come
at the expense of qualities that are essential in the status quo: portability, completeness,
support for modularity and at least some degree of performance transparency.

Diversity in Relevant Computer Science Research. The computer science
research most relevant to the HPCS language development is the one that is being
carried out related to the various PGAS language. Similar to the HPCS languages,
PGAS languages offer a global view of data, with explicit control of locality in order
to provide performance. Their successful implementation has involved research on
compilation techniques that are likely to be useful as the language design is finalized
for the HPCS languages and as production compilers, or at least serious prototypes,
are beginning to be developed. The PGAS languages, and associated research, also
share with the HPCS languages the need for runtime systems that support lightweight

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 67

communication of small amounts of data. Such portable runtime libraries are being
developed in both the PGAS and MPI implementation research projects [55, 56].

The PGAS languages are being used in applications to a limited extent, while the
HPCS languages are still being tested for expressiveness on a number of example
kernels and benchmarks.

The issue of the runtime system is of particular interest, because its standardiza-
tion would bring multiple benefits. A standard syntax and semantics for a low-level
communication library that could be efficiently implemented on a variety of current
communication hardware and firmware would benefit the entire programming model
implementation community: HPCS languages, PGAS languages, MPI implementa-
tions and others.Anumber of such portable communications exist now (GASNet [54],
ADI-3, ARMCI), although most have been developed with a particular language or
library implementation in mind.

Immediate Needs. Despite the diverse approaches to the languages being taken by
the vendors, some common deficiencies were identified in the workshop. These are
areas were not focused up on while the initial language designs were being formulated,
but at present there is really a need to address these areas if the HPCS languages need
to attract the attention of the application community.

4.2.0.9 Performance. The Fortress [59] and X10 [67] implementations
are publicly available and an implementation of Chapel exists, but is not yet released.
So far these prototype implementations have focused on expressivity rather than per-
formance. This direction has been appropriate up to this point, but now that one can
see how various benchmarks and kernels can be expressed in these languages, one
wants to see how they can be compiled for performance competitive with the perfor-
mance of existing approaches, especially for scalable machines. While the languages
may not reach their full potential without the HPCS hardware being developed by
the same vendors, the community needs some assurance that the elegant language
constructs, such as those used to express data distributions, can indeed be compiled
into efficient programs for current scalable architectures.

4.2.0.10 Completeness. The second deficiency involves completeness
of the models being presented. At this point, none of the three languages has an
embedded parallel I/O model. At the very least, the languages should define how to
read and write distributed data structures from and into single files, and the syntax
for doing so should enable an efficient implementation that can take advantage of
parallel file systems.

Another feature that is important in multi-physics applications is modularity in
the parallelism model, which allows subsets of processors to act independently. MPI

68 J. DONGARRA ET AL.

has ‘communicators’ to provide isolation among separate libraries or separate physics
models. The PGAS languages are in the process of introducing ‘teams’ of processes
to accomplish the same goals. Because the HPCS languages have a dynamic paral-
lel operator combined with data parallel operators, this form of parallelism should
be expressible, but more work is needed to understand the interactions between
the abstraction mechanisms used to create library interfaces and the parallelism
features.

A Plan for Convergence. On the last day of the workshop, a plan for the near
future emerged. It was considered too early to force a convergence on one language
in the near term, given that the current level of diversity seemed to be beneficial to the
long-term goals of the HPCS project, rather than harmful. The level of community
and research involvement could be increased by holding a number of workshops over
the next few years in specific areas, such as memory models, data distributions, task
parallelism, parallel I/O, types, tools and interactions with other libraries. Preliminary
plans were made to initiate a series of meetings, loosely modelled on the MPI process,
to explore the creation of a common runtime library specification.

An approximate schedule was proposed at the workshop. In the next eigh-
teen months (i.e., by the end of the calendar year 2007), the vendors should be
able to freeze the syntax of their respective languages. In the same time frame,
workshops should be held to address the research issues described above. Vendors
should be encouraged to establish ‘performance credibility’ by demonstrating the
competitive performance of some benchmark on some high-performance architec-
ture. This would not necessarily involve the entire language, nor would it necessa-
rily demand better performance of current versions of the benchmark. The intent
would be to put to rest the notion that a high-productivity language precludes
high performance. Also during this time, a series of meetings should be held
to determine whether a common communication subsystem specification can be
agreed upon.

The following three years should see the vendors improve performance of all parts
of their languages. Inevitably, during this period the languages will continue to evolve
independently with experience. At the same time, aggressive applications should get
some experience with the languages. After this period, when the languages have
had an opportunity to evolve in both design and implementations while applications
have had the chance to identify strengths and weaknesses of each, the consolidation
period would begin. At this point (2010–2011), an MPI forum-like activity could be
organized to take advantage of the experience now gained, in order to cooperatively
design a single HPCS language with the DARPA HPCS languages as input (much
as the MPI Forum built on, but did not adopt any of, the message-passing library
interfaces of its time).

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 69

By 2013, then, we could have a new language, well vetted by the application
community, well implemented by HPCS vendors and even open-source developers,
which could truly accelerate productivity in the development of scientific applications.

4.2.0.11 Conclusion. The DARPA HPCS language project has resulted in
exciting experimental language research. Excellent work is being carried out by each
of the vendor language teams, and it is to be hoped that Sun’s language effort will not
suffer from the end of Sun’s hardware development contract with DARPA. Now is
the time to get the larger community involved in the high-productivity programming
model and language development effort, through workshops targeted at outstanding
relevant research issues and through experimentation with early implementations of
all the ‘productivity’ languages. In the long run, acceptance of any new language
for HPC is a speculative proposition, but there is much energy and enthusiasm for
the project, and a reasonable plan is in place by which progress can be made. The
challenge involves a transition of the HPCS language progress made to-date into the
future community efforts.

5. Research on Defining and Measuring
Productivity

Productivity research under the HPCS program has explored better ways to define
and measure productivity. The work that was performed under Phase 1 and Phase 2 of
the HPCS program had two major thrusts. The first thrust was in the study and analysis
of software development time. Tools for accomplishing this thrust included surveys,
case studies and software evaluation tools. The second thrust was the development of
a productivity figure of merit, or metric. In this section, we will present the research
that occurred in Phase 1 and Phase 2 of the HPCS program in these areas. This research
has been described in depth in [69] and [70]. This section will provide an overview of
the research documented in those publications and will provide pointers to specific
articles for each topic.

5.1 Software Development Time
Much of the architectural development in the past decades has focused on raw

hardware performance and the technologies responsible for it, including faster clock
speeds, higher transistor densities, and advanced architectural structures for exploi-
ting instruction-level parallelism. Performance metrics, such as GFLOPS/second and

70 J. DONGARRA ET AL.

MOPS/watt, were exclusively employed to evaluate new architectures, and to reflect
this focus on hardware performance.

A key, revolutionary aspect of the HPCS program is its insistence that software
be included in any performance metric used to evaluate systems. The program par-
ticipants realized early that true time for achieving a solution on any HPC system is
not just the execution time, but is in fact the sum of development time and execution
time. Not only are both important, but the piece of the puzzle that has always been
ignored, development time, has always dominated time-to-solution – usually by orders
of magnitude. This section describes the ground-breaking research done in under-
standing and quantifying development time and its contribution to the productivity
puzzle.

5.1.1 Understanding the Users7

Attempts to evaluate the productivity of an HPC system require an understanding of
what productivity means to all its users. For example, researchers in computer science
work to push the boundaries of computational power, while computational scientists
use those advances to achieve increasingly detailed and accurate simulations and
analysis. Staffs at shared resource centers enable broad access to cutting-edge sys-
tems while maintaining high system utilization. While each of these groups use HPC
resources, their differing needs and experiences affect their definitions of productivity.

Computational scientists and engineers face many challenges when writing codes
for high-end computing systems. The HPCS program is developing new machine
architectures, programming languages and software tools to improve the productivity
of scientists and engineers.Although the existence of these new technologies is impor-
tant for improving productivity, they will not achieve their stated goals if individual
scientists and engineers are not able to effectively use them to solve their problems.
A necessary first step in determining the usefulness of new architectures, languages
and tools is to gain a better understanding of what the scientists and engineers do, how
they do it and what problems they face in the current high-end computing develop-
ment environment. Because the community is very diverse, it is necessary to sample
different application domains to be able to draw any meaningful conclusions about
the commonalities and trends in software development in this community.

Two important studies were carried out during Phases 1 and 2 of the HPCS program
to better identify the needs and characteristics of the user and application spaces that
are the targets for these new architectures. The first team worked with the San Diego
Supercomputer Center (SDSC) and its user community [73]. This team analyzed

7 Material taken from [73] and [76].

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 71

data from a variety of sources, including SDSC support tickets, system logs, HPC
developer interviews and productivity surveys distributed to HPC users, to better
understand how HPC systems are being used, and where the best opportunities for
productivity improvements are. The second team analyzed 10 large software projects
from different application domains to gain deeper insight into the nature of software
development for scientific and engineering software [76]. This team worked with
ASC-Alliance projects, which are DOE-sponsored computational science centers
based at five universities across the country, as well as codes from the HPCS mission
partners.

Although the perspectives and details of the two studies were quite different, a
number of common conclusions emerged with major relevance for the community of
HPCS tool developers. Table XII and Table XIII summarize the conclusions of the
two studies.

Common themes from these two studies are that end results are more important
than machine performance (we’re interested in the engine, but we drive the car!);
visualization and easy-to-use tools are key; and HPC programmers are primarily
domain experts driven by application needs, not computer scientists interested in fast
computers. The implications for HPCS affect both the types of tools that should be
developed and how productivity should ultimately be measured on HPCS systems
from the user’s perspective.

5.1.2 Focusing the Inquiry8

Given the difficulty in deriving an accurate general characterization of HPC pro-
grammers and their productivity characteristics, developing a scientific process for

Table XII
SDSC Study Conclusions

HPC users have diverse concerns and difficulties with productivity.

Users with the largest allocations and most expertise are not necessarily the most productive.

Time to solution is the limiting factor for productivity on HPC systems, not computational
performance.

Lack of publicity and education are not the main roadblocks to adoption of performance and
parallel debugging tools–ease of use is more significant.

HPC programmers do not require dramatic performance improvements to consider making
structural changes to their codes.

A computer science background is not crucial to success in performance optimization.

Visualization is the key to achieving high productivity in HPC in most cases.

8 Material taken from [79] and [88].

72 J. DONGARRA ET AL.

Table XIII
ASC/HPCS Project Survey

Goals and drivers of code development

• Code performance is not the driving force for developers or users; the science and
portability are of primary concern.

• Code success depends on customer satisfaction.

Actions and characteristics of code developers

• Most developers are domain scientists or engineers, not computer scientists.

• The distinction between developer and user is blurry.

• There is high turnover in the development team.

Software engineering process and development workflow

• There is minimal but consistent use of software engineering practices.

• Development is evolutionary at multiple levels.

• Tuning for a specific system architecture is rarely done, if ever.

• There is little reuse of MPI frameworks.

• Most development effort is focused on implementation rather than maintenance.

Programming languages

• Once selected, the primary languages does not change.

• Higher level languages (e.g., Matlab) are not widely adopted for the core of applications.

Verification and validation

• Verification and validation are very difficult in this domain.

• Visualization is the most common tool for validation.

Use of support tools during code development

• Overall, tool use in lower than in other software development domains.

• Third party (externally developed) software and tools are viewed as a major risk factor.

evaluating productivity is even more difficult. One team of researchers responded
with two broad commitments that could serve more generally to represent the aims
of the productivity research team as a whole: [79]

1. Embrace the broadest possible view of productivity, including not only machine
characteristics but also human tasks, skills, motivations, organizations and
culture, to name just a few; and

2. Put the investigation of these phenomena on the soundest scientific basis possi-
ble, drawing on well-established research methodologies from relevant fields,
many of which are unfamiliar within the HPC community.

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 73

STAGE

GOALS

METHODS Qualitative
Qualitative and

Quantitative
Quantitative

Develop
Hypotheses

Test and Refine
Models

Replicate and
Validate
Findings

Explore and
Discover

Test and Define Evaluate and
Validate

Fig. 20. Research framework.

This team of researchers outlined a three-stage research design shown in Fig. 20. For
the first stage, exploration and discovery, case studies and other qualitative methods
are used to produce the insights necessary for hypothesis generation. For the second
stage, qualitative and quantitative methods are combined to test and refine models. The
quantitative tool used by this team in the second stage was HackyStat, an in-process
software engineering measurement and analysis tool. Patterns of activity were used
to generate a representative workflow for HPC code development. In the third stage,
the workflows were validated via quantitative models that were then used to draw
conclusions about the process of software development for HPC systems.

A number of case studies were produced in the spirit of the same framework, with
the goal of defining a workflow that is specific to large-scale computational scientific
and engineering projects in the HPC community [88]. These case studies identified
seven development stages for a computational science project:

1. Formulate questions and issues
2. Develop computational and project approach
3. Develop the program
4. Perform verification and validation
5. Make production runs
6. Analyze computational results
7. Make decisions.

These tasks strongly overlap with each other, with a lot of iteration among the
steps and within each step. Life cycles for these projects are very long, in some cases
30–40 years or more, far longer than typical IT projects. Development teams are large
and diverse, and individual team members often do not have working experience with
the modules and codes being developed by other module sub-teams, making software
engineering challenges much greater than those of typical IT projects.Atypical project
workflow is shown in Fig. 21.

74 J. DONGARRA ET AL.

Fig. 21. Comprehensive workflow for large-scale CSE project.

With these projects, we begin to see the development of frameworks and repre-
sentations to guide the productivity evaluation process. The derivation of workflows
is the key to understanding any process, and a disciplined understanding is neces-
sary before any improvements can be made or assessed. The workflows for software
development could be as complex as the projects they reflect and as diverse as the
programmers who implement them. In the next section, we will see some examples of
the types of tools that can be used once formal representations, specific measurements,
and quantifiable metrics have been defined.

5.1.3 Developing the EvaluationTools9

Apre-requisite for the scientific and quantified study of productivity in HPC systems
is the development of tools and protocols to study productivity.As a way to understand
the particular needs of HPC programmers, prototype tools were developed in Phases
1 and 2 of the HPCS program to study productivity in the HPC community. The initial
focus has been on understanding the effort involved in coding for HPC systems and

9 Material taken from [75], [78], and [82].

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 75

the defects that occur in developing programs. Models of workflows that accurately
explain the process that HPC programmers use to build their codes were developed.
Issues such as time involved in developing serial and parallel versions of a program,
testing and debugging of the code, optimizing the code for a specific parallelization
model (e.g., MPI, OpenMP) and tuning for specific machine architectures were all
topics of the study. Once those models are developed, the HPCS system developers
can then work on the more crucial problems of what tools and techniques will better
optimize a programmer’s ability to produce quality code more efficiently.

Since 2004, studies of programmer productivity have been conducted, in the form
of human-subject experiments, at various universities across the U.S. in graduate-
level HPC courses. [75] Graduate students in HPC classes are fairly typical of novice
HPC programmers who may have years of experience in their application domain but
very little experience in HPC-style programming. In the university studies, multiple
students were routinely given the same assignment to perform, and experiments were
conducted to control for the skills of specific programmers (e.g., experimental meta-
analysis) in different environments. Due to their relatively low cost, student studies
are an excellent environment for debugging protocols that might be later used on
practising HPC programmers. Limitations of student studies include the relatively
short programming assignments, due to the limited time in a semester, and the fact
that these assignments must be picked for their educational value to the students as
well as their investigative value to the research team.

Using the experimental environment developed under this research, various
hypotheses about HPC code development can be tested and validated (or disproven!).
Table XIV shows some sample hypotheses and how they would be tested using the

Table XIV
HPC Code Development Hypotheses

Hypothesis Test Measurement

The average time to fix a defect due to race conditions
will be longer in a shared memory program compared
with a message-passing program.

Time to fix defects due to race conditions

On average, shared memory programs will require less
effort than message-passing models, but the shared
memory outliers will be greater than the message-
passing outliers.

Total development time

There will be more students who submit incorrect
shared memory programs compared with message-
passing programs.

Number of students who submit incorrect
solutions

An MPI implementation will require more code than an
OpenMP implementation.

Size of code for each implementation

76 J. DONGARRA ET AL.

various tools that have been developed. In addition to the verification of hypothe-
ses about code development, the classroom experiments have moved beyond effort
analysis and started to look at the impact of defects (e.g., incorrect or excessive
synchronization, incorrect data decomposition) on the development process. By
understanding how, when, and what kinds of defects appear in HPC codes, tools
and techniques can be developed to mitigate these risks and to improve the over-
all workflow. Automatic determination of workflow is not precise, so these studies
involved a mixture of process activity (e.g., coding, compiling, executing) and source
code analysis techniques.

Some of the key results of this effort include:

• Productivity measurements of various workflows, where productivity is defined
as relative speedup divided by relative effort. Relative speedup is reference
(sequential) execution time divided by parallel execution time, and relative effort
is parallel effort divided by reference (sequential effort). The results of student
measurements for various codes show that this metric behaves as expected, i.e.,
good productivity means lower total effort, lower execution time and higher
speedup.

• Comparison of XMT-C (a PRAM-like execution model) with MPI-based codes
in which, on average, students required less effort to solve the problem using
XMT-C compared with MPI. The reduction in mean effort was approximately
50%, which was statistically significant according to the parameters of the study.

• Comparison of OpenMP and MPI defects did not yield statistically signifi-
cant results, which contradicts a common belief that shared memory programs
are harder to debug. Since defect data collection was based on programmer-
supplied effort forms, which are not accurate, more extensive defect analysis is
required.

• Collection of low-level behavioral data from developers in order to under-
stand the workflows that exist during HPC software development. A useful rep-
resentation of HPC workflow could help both characterize the bottlenecks that
occur during development and support a comparative analysis of the impact
of different tools and technologies upon workflow. A sample workflow would
consist of five states: serial coding, parallel coding, testing, debugging and
optimization.

Figure 22 presents results of the relative development-time productivity metric,
using the HPCChallenge benchmark described in the next section in this chapter.
With the exception of Random Access (the implementation of which does not scale
well on distributed memory computing clusters), the MPI implementations all fall
into the upper-right quadrant of the graph, indicating that they deliver some level of

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 77

Fig. 22. Speedup vs. relative effort and RDTP for the HPC challenge.

parallel speedup, while requiring greater effort than the serial code. As expected, the
serial Matlab implementations do not deliver any speedup, but all require less effort
than the serial code. The pMatlab implementations (except Random Access) fall into
the upper-left quadrant of the graph, delivering parallel speedup while at the same
time requiring less effort.

In another pilot study [78], students worked on a key HPC code using C and
PThreads in a development environment that included automated collection of editing,
testing and commanding line data using Hackystat. The ‘serial coding’workflow state
was automatically inferred as the editing of a file not containing any parallel constru-
cts (such as MPI, OpenMP or PThread calls) and the ‘parallel coding’ workflow state
as the editing of a file containing these constructs. The ‘testing’ state was inferred as
the occurrence of unit test invocation using the CUTest tool. In the pilot study, the
debugging or optimization workflow states could not be inferred, as students were
not provided with tools to support either of these activities that we could instrument.
On the basis of these results, researchers concluded that inference of workflow may
be possible in an HPC context and hypothesize that it may actually be easier to infer
these kinds of workflow states in a professional setting, since more sophisticated
tool support that can help support conclusions regarding the intent of a development
activity is often available. It is also possible that a professional setting may reveal that
the five states initially selected are appropriate for all HPC development contexts.
There may be no ‘one size fits all’ set of workflow states and that custom sets of

78 J. DONGARRA ET AL.

states for different HPC organizations will be required in order to achieve the goal of
accurately modelling the HPC software development process.

To support the tools and conclusions described in this section, an Experiment Man-
ager was developed to more easily collect and analyze data during the development
process. It includes effort, defect and workflow data, as well as copies of every source
program used during development. Tracking effort and defects should provide a good
data set for building models of productivity and reliability of high-end computing
(HEC) codes. Fig. 23 shows the components of the Experiment Manager and how
they interact.

Another key modelling tool developed in Phases 1 and 2 of the HPCS program
involves the analysis of an HPC development workflow using sophisticated mathe-
matical models. [82] This work is based on the observation that programmers go
through an identifiable, repeated process when developing programs, which can be
characterized by a directed graph workflow. Timed Markov Models (TMMs) are one
way to quantify such directed graphs . A simple TMM that captures the workflows
of programmers working alone on a specific problem was developed. An experimen-
tal setup was constructed in which the student’s homework in a parallel computing
class was instrumented. Tools were developed for instrumentation, modelling, and
simulating different what-if scenarios in the modelled data. Using our model and tools,
the workflows of graduate students programming the same assignment in C/MPI4 and

Fig. 23. Experiment manager structure.

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 79

Fig. 24. Lone programmer workflow.

UPC5 were compared – something that is not possible without a quantitative model
and measurement tools. Figure 24 shows the workflow used, where:

• Tf represents the time taken to formulate the new algorithmic approach.

• Tp is the time necessary to implement the new algorithm in a program.

• Tc is the compile time.

• Tt is the time necessary to run a test case during the debugging phase.

• Td is the time the programmer takes to diagnose and correct the bug.

• Tr is the execution time for the performance-tuning runs. This is the most obvi-
ous candidate for a constant that should be replaced by a random variable.

• To is the time the programmer takes to identify the performance bottleneck and
to program an intended improvement.

• Pp is the probability that debugging will reveal a necessity to redesign the
program.

• Pd is the probability that more debugging will be necessary.

• Po is the probability that more performance optimization will be necessary.

• qp, qd and qo are 1 − Pp, 1 − Pd and 1 − Po, respectively.

80 J. DONGARRA ET AL.

Using the TMM, the workflow of UPC programs was compared to that of C/MPI
programs on the same problem. The data collection process gathers enough data at
compile time and run time so that programmer experience can be accurately recreated
offline. A tool for automatic TMM generation from collected data, as well as a tool
for representing and simulating TMMs was built. This allowed replay of the sequence
of events (every compile and run) and collection-specific data that may be required
by the modelling process but was not captured while the experiment was in progress.
The resulting data showed that a ‘test’ run is successful 8% of the time for C/MPI
and 5% of the time for UPC; however, in the optimization cycle, 28% of C/MPI runs
introduced new bugs compared to only 24% in case of UPC runs. It is not clear whether
these differences are significant, given this small sample size. A programmer spends
much longer to attempt an optimization (763 seconds for UPC and 883 seconds for
C/MPI) than to attempt to remove a bug (270–271 seconds). The time to optimize
UPC (763 seconds) is smaller that for MPI (883 seconds), suggesting perhaps that
UPC optimization is carried out in a more small-granularity, rapid-feedback way.

The research presented in this section takes the formalisms and representations
developed under productivity research and begins the scientific process of gathering
measurements, building and verifying models, and then using those models to gain
insight into a process, either via human analysis or via formal, mathematical meth-
ods. This is where the leap from conjecture to scientific assertion begins, and the
measurements and insights presented here represent a breakthrough in software engi-
neering research. The immediate goal for the HPCS program is to use these analytical
tools to compare current HPC systems with those that are being developed for HPCS.
However, we see a broader applicability for these types of methods in the computing
industry. Future work in this area has the potential to take these models and use them
not only to gain insight, but also to predict the performance of a given process. If
we can build predictive models and tailor those models to a particular user base or
application class, the gains in productivity could eventually outstrip the capability to
build faster machines and may have a more lasting impact on software engineering
for HPC as a whole.

5.1.4 Advanced Tools for Engineers
Several advanced tools were developed under HPCS productivity research that

should be mentioned here but cannot be described in detail because of space con-
straints. These are briefly described in the following paragraphs; more detailed
information can be found in [70].

Performance complexity (PC) metric: [81] an execution-time metric that cap-
tures how complex it is to achieve performance and how transparent are the
performance results. PC is based on performance results from a set of benchmark

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 81

experiments and related performance models that reflect the behavior of a pro-
gram. Residual modelling errors are used to derive PC as a measure for how
transparent program performance is and how complex the performance appears
to the programmer. A detailed description for calculating compatible P and PC
values is presented and uses results from a parametric benchmark to illustrate
the utility of PC for analyzing systems and programming paradigms.

Compiler-guided instrumentation for application behavior understanding:
[83] an integrated compiler and runtime approach that allows the extraction
of relevant program behavior information by judiciously instrumenting the
source code and deriving performance metrics such as range of array refer-
ence addresses, array access stride information or data reuse characteristics.
This information ultimately allows programmers to understand the performance
of a given machine in relation to rational program constructs. The overall orga-
nization of the compiler and run-time instrumentation system is described and
preliminary results for a selected set of kernel codes are presented. This approach
allows programmers to derive a wealth of information about the program behav-
ior with a run-time overhead of less than 15% of the original code’s execution
time, making this approach attractive for instrumenting and analyzing codes
with extremely long running times where binary-level approaches are simply
impractical.

Symbolic performance modelling of HPCS: [84] a new approach to performance
model construction, called modelling assertions (MA), which borrows advan-
tages from both the empirical and analytical modelling techniques. This strategy
has many advantages over traditional methods: isomorphism with the application
structure; easy incremental validation of the model with empirical data; uncom-
plicated sensitivity analysis; and straightforward error bounding on individual
model terms. The use of MA is demonstrated by designing a prototype frame-
work, which allows construction, validation and analysis of models of parallel
applications written in FORTRAN or C with the MPI communication library.
The prototype is used to construct models of NAS CG, SP benchmarks and a
production-level scientific application called Parallel Ocean Program (POP).

Compiler approaches to performance prediction and sensitivity analysis:
[86] the Source Level Open64 Performance Evaluator (SLOPE) approaches per-
formance prediction and architecture sensitivity analysis by using source-level
program analysis and scheduling techniques. In this approach, the compiler
extracts the computation’s high-level data-flow-graph information by inspec-
tion of the source code. Taking into account the data access patterns of the
various references in the code, the tool uses a list-scheduling algorithm to derive
performance bounds for the program under various architectural scenarios. The
end result is a very fast prediction of what the performance could be and, more

82 J. DONGARRA ET AL.

importantly, why the predicted performance is what it is. This research exper-
imented with a real code that engineers and scientists use. The results yield
important qualitative performance sensitivity information. This can be used to
allocate computing resources to the computation in a judicious fashion, for
maximum resource efficiency and to help guide the application of compiler
transformations such as loop unrolling.

5.2 Productivity Metric10

Another key activity in the HPCS productivity research was the development of
productivity metrics that can be used to evaluate both current and future HPCS sys-
tems. The former is necessary to establish a productivity baseline against which to
compare the projected improvements of the latter. In either case, the metric must be
quantifiable, measurable and demonstrable over the range of machines competing in
the program.

Establishing a single, reasonably objective quantitative framework to compare
competing high-productivity computing systems has been difficult to accomplish.
There are many reasons for this, not the least of which is the inevitable subjective
component of the concept of productivity. Compounding the difficulty, there are
many elements that make up productivity and these are weighted and interrelated
differently in the wide range of contexts into which a computer may be placed. But
because significantly improved productivity for high-performance government and
scientific computing is the key goal of the HPCS program, evaluation of this critical
characteristic across these contexts is clearly essential.

This is not entirely a new phenomenon. Anyone who has driven a large-scale com-
puting budget request and procurement has had to address the problem of turning a
set of preferences and criteria, newly defined by management, into a budget justifica-
tion and a procurement figure of merit that will pass muster with agency (and OMB)
auditors. The process of creating such a procurement figure of merit helps to focus
the mind and cut through the complexity of competing user demands and computing
options. The development of productivity metrics was addressed from both a business
and a system-level perspective in Phase 1 and Phase 2 research. The results of both
phases are summarized in the following sections.

5.2.1 Business Perspective11

High performance computing (HPC), also known as supercomputing, makes
enormous contributions not only to science and national security, but also to business

10 Material drawn from [72], [77] and [80].
11 Material drawn from [72] and [77].

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 83

innovation and competitiveness – yet senior executives often view HPC as a cost,
rather than as a value investment. This is largely due to the difficulty businesses and
other organizations have had in determining the return on investment (ROI) of HPC
systems.

Traditionally, HPC systems have been valued according to how fully they are uti-
lized (i.e., the aggregate percentage of time that each of the processors of the HPC
system is busy); but this valuation method treats all problems equally and does not
give adequate weight to the problems that are most important to the organization.
Due to inability to properly assess problems having the greatest potential for driv-
ing innovation and competitive advantage, organizations risk purchasing inadequate
HPC systems or, in some cases, forego purchases altogether because they cannot be
satisfactorily justified.

This stifles innovation within individual organizations and, in the aggregate, pre-
vents the U.S. business sector from being as globally competitive as it could and
should be. The groundbreaking July 2004 ‘Council on Competitiveness Study of
U.S. Industrial HPC Users’, sponsored by the Defense Advanced Research Projects
Agency (DARPA) and conducted by market research firm IDC, found that 97% of the
U.S. businesses surveyed could not exist, or could not compete effectively, without
the use of HPC. Recent Council on Competitiveness studies reaffirmed that HPC
typically is indispensable for companies that exploit it.

It is increasingly true that to out-compete, companies need to out-compute. With-
out a more pragmatic method for determining the ROI of HPC hardware systems,
however, U.S. companies already using HPC may lose ground in the global competi-
tiveness pack. Equally important, companies that have never used HPC may continue
to miss out on its benefits for driving innovation and competitiveness.

To help address this issue, we present an alternative to relying on system utilization
as a measure of system valuation, namely, capturing the ROI by starting with a benefit
– cost ratio (BCR) calculation. This calculation is already in use at the Massachusetts
Institute of Technology, where it has been proven to be effective in other contexts.

As part of the HPCS productivity research, two versions of the productivity metric
were developed based on benefit-to-cost ratios. Numerical examples were provided
to illustrate their use. The goal is to use these examples to show that HPC assets are
not just cost items, but that they can contribute to healthy earnings reports as well as
more productive and efficient staff. Detailed results are described in [72].

Another important barrier preventing greater HPC use is the scarcity of application
software capable of fully exploiting current and planned HPC hardware systems.
U.S. businesses rely on a diverse range of commercially available software from
independent software vendors (ISVs). At the same time, experienced HPC business
users want to exploit the problem-solving power of contemporary HPC hardware
systems with hundreds, thousands or (soon) tens of thousands of processors to boost

84 J. DONGARRA ET AL.

innovation and competitive advantage. Yet few ISV applications today can exploit
(‘scale to’) even 100 processors, and many of the most popular applications scale to
only a few processors in practice.

Market forces and technical challenges in recent years have caused the ISVs to
pull away from creating new and innovative HPC applications, and no other source
has arisen to satisfy this market need. For business reasons, ISVs focus primarily
on the desktop computing markets, which are much larger and therefore promise
a better return on R&D investments. ISVs can sometimes afford to make modest
enhancements to their application software so that it can run faster on HPC systems,
but substantially revising existing applications or creating new ones typically does not
pay off. As a result, the software that is available for HPC systems is often outdated
and incapable of scaling to the level needed to meet industry’s needs for boosting
problem-solving performance. In some cases, the applications that companies want
simply do not exist.

This need for production-quality application software and middleware has become
a soft spot in the U.S. competitiveness armor; a pacing item in the private sector’s
ability to harness the full potential of HPC. Without the necessary application soft-
ware, American companies are losing their ability to aggressively use HPC to solve
their most challenging problems and risk ceding leadership in the global marketplace.
Market and resource barriers are described in detail in [77].

5.2.2 System Perspective12

Imagining that we were initiating a procurement in which the primary criterion
would be productivity, defined as utility/cost, we developed figure of merit for total
productivity. This framework includes such system measurables as machine per-
formance and reliability, developer productivity and administration overhead and
effectiveness of resource allocation. These are all applied using information from
the particular computing site that is proposing and procuring the HPCS computer.
This framework is applicable across the broad range of environments represented by
HPCS mission partners and others with science and enterprise missions that are can-
didates for such systems. The productivity figure of merit derived under this research
is shown in Fig. 25. As a convention, the letters U, E, A, R, C are used to denote
the variables of utility, efficiency, availability, resources and cost, respectively. The
subscripts indicate the variables that address system-level (including administrative
and utility) and job-level factors.

As is evident from this formulation, some aspects of the system-level efficiency
will never be amenable to measurement and will always require subjective evaluation.

12 Material drawn from [80].

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 85

P �
C

U sys E proj E adm E job A sys R

Fig. 25. System-wide productivity figure of merit.

Only subjective evaluation processes can address the first two variables in the utility
numerator, for example. In principle, one can measure the last four variables, and the
HPCS research program is addressing such measurements. A description of the steps
required for using the overall system-level productivity figure of merit can be found
in [80].

5.3 Conclusions
In this section, we have given a broad overview of the activities performed under

Phase 1 and Phase 2 HPCS Productivity Research, in enough detail to communicate
substantial results without misrepresenting the inherent complexity of the subject
matter. In reality, the productivity of HPC users intrinsically deals with some of the
brightest people on the planet, solving very complex problems, using the most com-
plex computers in the world. The HPCS program has performed ground-breaking
research into understanding, modelling, quantifying, representing and analyzing this
complex and difficult arena; and although much has been accomplished, the surface of
productivity research has barely been scratched. The tools and methodologies deve-
loped under the HPCS program are an excellent base on which a full understanding
of HPC productivity can be built; but in the final analysis, those tools and method-
ologies must be applied to an area of human endeavour that is as diverse, specialized,
individualistic, inconsistent, and even eccentric as the people who are its authors and
creators. If HPCS productivity research is to have a hand in transforming the world of
high-performance computing, it must evolve from a set of tools, equations and experi-
ments into a comprehensive understanding of HPC software development in general.
Such understanding will require enlarging its experimental space, both for statisti-
cal reasons and also for the purpose of refining, deepening and making mature the
models and assumptions inherent in the experimental methodologies. It will require
clever engineering of test conditions to isolate factors of interest and demonstrate true
cause and effect relationships. It will require long-term investment in research, since
experiments are difficult to ‘set up’ and take a long time to produce results. Finally, it
will require a new generation of researchers who grasp the vital importance of under-
standing and improving HPC software productivity and are committed to creating a
legacy for future generations of HPC systems and their users. It is the hope of the
authors and all who participate in HPCS productivity research that such a vision will
come into being.

86 J. DONGARRA ET AL.

6. The HPC Challenge Benchmark Suite

As noted earlier, productivity – the main concern of the DARPA HPCS program
– depends both on the programming effort and other ‘set up’ activities that precede
the running of application codes, and on the sustained, runtime performance of the
codes. Approaches to measuring programming effort were reviewed in a prior section
of this work. This section discusses the HPC Challenge (HPCC) benchmark suite, a
relatively new and still-evolving tool for evaluating the performance of HPC systems
on various types of tasks that form the underpinnings for most HPC applications.

The HPC Challenge13 benchmark suite was initially developed for the DARPA
HPCS program, [89] to provide a set of standardized hardware probes based on
commonly occurring computational software kernels. The HPCS program invol-
ves a fundamental reassessment of how we define and measure performance, pro-
grammability, portability, robustness and, ultimately, productivity across the entire
high-end domain. Consequently, the HPCC suite aimed both to give conceptual
expression to the underlying computations used in this domain and to be appli-
cable to a broad spectrum of computational science fields. Clearly, a number of
compromises needed to be embodied in the current form of the suite, given such
a broad scope of design requirements. HPCC was designed to approximately bound
computations of high and low spatial and temporal locality (see Fig. 26, which

PTRANS
STREAM

CFD

TSP

RandomAccess

S
p

at
ia

l l
o

ca
lit

y

Temporal locality

FFT

RSA DSP

Applications

Radar cross-section

HPL
DGEMM

0

Fig. 26. The application areas targeted by the HPCS program are bound by the HPCC tests in the
memory access locality space.

13 This work was supported in part by the DARPA, NSF and DOE through the DARPA HPCS program
under grant FA8750-04-1-0219 and SCI-0527260.

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 87

Registers

Cache

Local Memory

Remote Memory

Disk

Pages

Messages

Lines

Operands

Benchmarks

HPL

STREAM

FFT
RandomAccess

b_eff

Performance Target

2 Pflop/s

6 Pbyte/s

0.5 Pflop/s
64000 Gups

Required Improvement

800%

4000%

20 000%
200 000%

HPCS Program:

Fig. 27. HPCS program benchmarks and performance targets.

gives the conceptual design space for the HPCC component tests). In addition,
because the HPCC tests consist of simple mathematical operations, HPCC provides
a unique opportunity to look at language and parallel programming model issues.
As such, the benchmark is designed to serve both the system user and designer
communities [90].

Figure 27 shows a generic memory subsystem and how each level of the hierarchy
is tested by the HPCC software, along with the design goals for the future HPCS
system (i.e., the projected target performance numbers that are to come out of the
wining HPCS vendor designs).

6.1 The TOP500 Influence
The most commonly known ranking of supercomputer installations around the

world is the TOP500 list [91]. It uses the equally well-known LINPACK benchmark
[92] as a single figure of merit to rank 500 of the world’s most powerful supercom-
puters. The often-raised question about the relation between the TOP500 list and
HPCC can be addressed by recognizing the positive aspects of the former. In partic-
ular, the longevity of the TOP500 list gives an unprecedented view of the high-end
arena across the turbulent era of Moore’s law [93] rule and the emergence of today’s
prevalent computing paradigms. The predictive power of the TOP500 list is likely
to have a lasting influence in the future, as it has had in the past. HPCC extends the

88 J. DONGARRA ET AL.

Table XV
All of the Top-10 Entries of the 27th TOP500 List that Have Results in the HPCC Database

Rank Name Rmax HPL PTRANS STREAM FFT Random Access Lat. B/w

1 BG/L 280.6 259.2 4665.9 160 2311 35.47 5.92 0.16
2 BG W 91.3 83.9 171.5 50 1235 21.61 4.70 0.16
3 ASC Purple 75.8 57.9 553.0 44 842 1.03 5.11 3.22
4 Columbia 51.9 46.8 91.3 21 230 0.25 4.23 1.39
9 Red Storm 36.2 33.0 1813.1 44 1118 1.02 7.97 1.15

TOP500 list’s concept of exploiting a commonly used kernel and, in the context of the
HPCS goals, incorporates a larger, growing suite of computational kernels. HPCC has
already begun to serve as a valuable tool for performance analysis. Table XV shows an
example of how the data from the HPCC database can augment the TOP500 results.

6.2 Short History of the Benchmark
The first reference implementation of the HPCC suite of codes was released to

the public in 2003. The first optimized submission came in April 2004 from Cray,
using the then-recent X1 installation at Oak Ridge National Lab. Since then, Cray has
championed the list of optimized HPCC submissions. By the time of the first HPCC
birds-of-a-feather session at the Supercomputing conference in 2004 in Pittsburgh, the
public database of results already featured major supercomputer makers – a sign that
vendors were participating in the new benchmark initiative. At the same time, behind
the scenes, the code was also being tried out by government and private institutions
for procurement and marketing purposes. A 2005 milestone was the announcement
of the HPCC Awards contest. The two complementary categories of the competition
emphasized performance and productivity – the same goals as those of the sponsor-
ing HPCS program. The performance-emphasizing Class 1 award drew the attention
of many of the biggest players in the supercomputing industry, which resulted in
populating the HPCC database with most of the top10 entries of the TOP500 list
(some exceeding their performances reported on the TOP500 – a tribute to HPCC’s
continuous results update policy). The contestants competed to achieve the highest
raw performance in one of the four tests: HPL, STREAM, RANDA and FFT. The
Class 2 award, by solely focusing on productivity, introduced a subjectivity factor into
the judging and also into the submission criteria, regarding what was appropriate for
the contest. As a result, a wide range of solutions were submitted, spanning various
programming languages (interpreted and compiled) and paradigms (with explicit and
implicit parallelism). The Class 2 contest featured openly available as well as propri-
etary technologies, some of which were arguably confined to niche markets and some

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 89

of which were widely used. The financial incentives for entry turned out to be all but
needless, as the HPCC seemed to have gained enough recognition within the high-end
community to elicit entries even without the monetary assistance. (HPCwire provided
both press coverage and cash rewards for the four winning contestants in Class 1 and
the single winner in Class 2.) At the HPCCs, second birds-of-a-feather session during
the SC07 conference in Seattle, the former class was dominated by IBM’s BlueGene/L
at Lawrence Livermore National Lab, while the latter class was split among MTA
pragma-decorated C and UPC codes from Cray and IBM, respectively.

6.2.1 The BenchmarkTests’ Details
Extensive discussion and various implementations of the HPCC tests are available

elsewhere [94, 95, 96]. However, for the sake of completeness, this section provides
the most important facts pertaining to the HPCC tests’ definitions.

All calculations use double precision floating-point numbers as described by the
IEEE 754 standard [97], and no mixed precision calculations [98] are allowed. All
the tests are designed so that they will run on an arbitrary number of processors
(usually denoted as p). Figure 28 shows a more detailed definition of each of the
seven tests included in HPCC. In addition, it is possible to run the tests in one of three
testing scenarios to stress various hardware components of the system. The scenarios
are shown in Fig. 29.

6.2.2 Benchmark Submission Procedures
and Results

The reference implementation of the benchmark may be obtained free of charge
at the benchmark’s web site14. The reference implementation should be used for the
base run: it is written in a portable subset of ANSI C [99] using a hybrid programming
model that mixes OpenMP [100, 101] threading with MPI [102, 103, 104] messaging.
The installation of the software requires creating a script file for Unix’s make(1)
utility. The distribution archive comes with script files for many common computer
architectures. Usually, a few changes to any of these files will produce the script
file for a given platform. The HPCC rules allow only standard system compilers and
libraries to be used through their supported and documented interface, and the build
procedure should be described at submission time. This ensures repeatability of the
results and serves as an educational tool for end users who wish to use a similar build
process for their applications.

14 http://icl.cs.utk.edu/hpcc/

90 J. DONGARRA ET AL.

Fig. 28. Detailed description of the HPCC component tests (A, B, C – matrices, a, b, c, x, z – vectors,
α, β- scalars, T -array of 64-bit integers).

After a successful compilation, the benchmark is ready to run. However, it is rec-
ommended that changes be made to the benchmark’s input file that describes the sizes
of data to be used during the run. The sizes should reflect the available memory on
the system and the number of processors available for computations.

There must be one baseline run submitted for each computer system entered in the
archive.An optimized run for each computer system may also be submitted. The base-
line run should use the reference implementation of HPCC, and in a sense it represents
the scenario when an application requires use of legacy code – a code that cannot be

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 91

Fig. 29. Testing scenarios of the HPCC components.

changed. The optimized run allows the submitter to perform more aggressive opti-
mizations and use system-specific programming techniques (languages, messaging
libraries, etc.), but at the same time still includes the verification process enjoyed by
the base run.

All of the submitted results are publicly available after they have been confirmed
by email. In addition to the various displays of results and exportable raw data, the
HPCC web site also offers a kiviat chart display for visual comparison systems using
multiple performance numbers at once. A sample chart that uses actual HPCC results
data is shown in Fig. 30.

Figure 31 show performance results of some currently operating clusters and
supercomputer installations. Most of the results come from the HPCC public
database.

6.2.3 Scalability Considerations
There are a number of issues to be considered for benchmarks such as HPCC

that have scalable input data. These benchmarks need to allow for proper stressing
of arbitrary sized systems in the benchmark run. The time to run the entire suite
is a major concern for institutions with limited resource allocation budgets. With
these considerations in mind, each component of HPCC has been analyzed from the

92 J. DONGARRA ET AL.

Fig. 30. Sample Kiviat diagram of results for three different interconnects that connect the same
processors.

scalability standpoint, and Table XVI shows the major time complexity results. In the
following tables, it is assumed that:

• M is the total size of memory,

• m is the size of the test vector,

• n is the size of the test matrix,

• p is the number of processors,

• t is the time to run the test.

Clearly, any complexity formula that shows a growth faster than linear growth for
any system size raises concerns about the time-scalability issue. The following HPCC
tests have had to be looked at with this concern in mind:

• HPL, because it has computational complexity O(n3).

• DGEMM, because it has computational complexity O(n3).

• b_eff, because it has communication complexity O(p2).

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 93

D
e

ll
G

ig
E

 P
1

 (
M

IT
L

L
)

D
e

ll
G

ig
E

 P
2

 (
M

IT
L

L
)

D
e

ll
G

ig
E

 P
4

 (
M

IT
L

L
)

D
e

ll
G

ig
E

 P
8

 (
M

IT
L

L
)

D
e

ll
G

ig
E

 P
1

6
 (

M
IT

L
L

)

D
e

ll
G

ig
E

 P
3

2
 (

M
IT

L
L

)

D
e

ll
G

ig
E

 P
6

4
 (

M
IT

L
L

)

O
p

te
ro

n
 (

A
M

D
)

C
ra

y
 X

1
E

 (
A

H
P

C
R

C
)

S
G

I
A

lt
ix

 (
N

A
S

A
)

N
E

C
 S

X
-8

 (
H

L
R

S
)

C
ra

y
 X

1
 (

O
R

N
L

)

C
ra

y
 X

1
 (

O
R

N
L

)
O

p
t

C
ra

y
 X

T
3

 (
E

R
D

C
)

C
ra

y
 X

T
3

 (
O

R
N

L
)

IB
M

 P
o

w
e

r5
 (

L
L

N
L

)

IB
M

 B
G

/L
 (

L
L

N
L

)

IB
M

 B
G

/L
 (

L
L

N
L

)
O

p
t

D
A

R
P

A
 H

P
C

S
 G

o
a

ls

1E+0

1E+2

1E+4

1E+6

1E+8

1E+10

1E+12

1E+14

1E+16

HPL

STREAM

FFT

Random Access

E
ff

e
c
ti
v
e

 b
a

n
d

w
id

th
 [

w
o

rd
s
/s

]

Fig. 31. Sample interpretation of the HPCC results.

Table XVI
Time Complexity Formulas for Various Phases of the HPCC Tests (m and n Correspond to
the Appropriate Vector and Matrix Sizes, Respectively; p is the Number of Processors.)

Name Generation Computation Communication Verification Per-processor data

HPL n2 n3 n2 n2 p−1

DGEMM n2 n3 n2 1 p−1

STREAM m m 1 m p−1

PTRANS n2 n2 n2 n2 p−1

RandomAccess m m m m p−1

FFT m m log2m m m log2 m p−1

b_eff 1 1 p2 1 1

94 J. DONGARRA ET AL.

The computational complexity of HPL of order O(n3) may cause excessive running
time because the time will grow proportionately to a high power of total memory size:

Equation 1 tHPL ∼ n3 = (n2)3/2 ∼ M3/2 = √
M3

To resolve this problem, we have turned to the past TOP500 data and analyzed the
ratio of Rpeak to the number of bytes for the factorized matrix for the first entry on
all the lists. It turns out that there are on average 6±3 Gflop/s for each matrix byte.
We can thus conclude that the performance rate of HPL remains constant over time
(rHPL ∼ M), which leads to a formula that is much better than Equation 1:

Equation 2 tHPL ∼ n3/rHPL ∼ √
M3/M = √

M

There seems to be a similar problem with the DGEMM, as it has the same com-
putational complexity as HPL; but fortunately, the n in the formula is related to a
single process memory size rather than the global one, and thus there is no scaling
problem.

The b_eff test has a different type of problem: its communication complexity is
O(p2), which is already prohibitive today as the number of processes of the largest
system in the HPCC database is 131072. This complexity comes from the ping-pong
component of b_eff that attempts to find the weakest link among all nodes and thus,
theoretically, needs to look at all possible process pairs. The solution to the problem
was made in the reference implementation by adapting the runtime of the test to the
size of the system tested.

6.3 Conclusions
No single test can accurately compare the performance of any of today’s high-end

systems, let alone those envisioned by the HPCS program in the future. Thus, the
HPCC suite stresses not only the processors, but the memory system and the inter-
connect. It is a better indicator of how a supercomputing system will perform across a
spectrum of real-world applications. Now that the more comprehensive HPCC suite
is available, it can be used in preference to comparisons and rankings based on single
tests. The real utility of the HPCC benchmarks is that it can describe architectures
with a wider range of metrics than just flop/s from HPL. When only HPL performance
and the TOP500 list are considered, inexpensive build-your-own clusters appear to be
much more cost-effective than more sophisticated parallel architectures. But the tests
indicate that even a small percentage of random memory accesses in real applications
can significantly affect the overall performance of that application on architectures
not designed to minimize or hide memory latency. The HPCC tests provide users
with additional information to justify policy and purchasing decisions. We expect to

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 95

expand the HPCC suite (and perhaps remove some existing components) as we learn
more about the collection and its fit with evolving architectural trends.

7. Summary: The DARPA HPCS Program

This document reviews the historical context surrounding the birth of the High Pro-
ductivity Computing Systems (HPCS) program, including DARPA’s motivation for
launching this long-term high-performance computing initiative. It discusses HPCS-
related technical innovations, productivity research and the renewed commitment by
key government agencies to advancing leadership computing in support of national
security and large science and space requirements at the start of the 21st century.

To date, the HPCS vision of developing economically viable high-productivity
computing systems, as originally defined in the HPCS white paper, has been care-
fully maintained. The vision of economically viable – yet revolutionary – petascale
high-productivity computing systems led to significant industry and university part-
nerships early in the program and to a heavier industry focus later in the program. The
HPCS strategy has been to encourage the vendors to not simply develop evolution-
ary systems, but to attempt bold productivity improvements, with the government
helping to reduce the risks through R&D cost sharing. Productivity, by its very
nature, is difficult to assess because its definition depends upon the specifics of the
end-user mission, applications, team composition and end use. On the basis of the
productivity definition outlined in this work, specific research results, performed
by multi-agency/university HPCS productivity team, that address the challenge of
providing some means of predicting, modeling and quantifying the end value ‘produc-
tivity’ of complex computing systems to end users were presented. The productivity
research to date represents the beginning and not the end of this challenging research
activity.

History will ultimately judge the progress made under HPCS during this period,
but will no doubt concede that these years produced renewed public/private support
and recognition for the importance of supercomputing and the need for a better path
forward. It has become abundantly clear that theoretical (‘peak’) performance can no
longer suffice for measuring computing leadership. The ability to use supercomputing
to improve a company’s bottom line, enhance national security, or accelerate scientific
discovery has emerged as the true standard for technical leadership and national
competitiveness. However, the battle for leadership is far from over. Programming
large-scale supercomputers has never been easy, and the near-term prospect of systems
routinely having 100 000 or more processors has made the programming challenge
even more daunting.

96 J. DONGARRA ET AL.

A number of agencies, including the DOE Office of Science, National Nuclear
Security Agency (NNSA), National Security Agency (NSA) and National Science
Foundation (NSF) now have active programs in place to establish and maintain
leadership-class computing facilities. These facilities are preparing to meet the
challenges of running applications at sustained petaflop speeds (one quadrillion cal-
culations per second) in areas ranging from national security to data analysis and
scientific discovery.

The challenge through this decade and beyond is to continue the renewed momen-
tum in high-end computing and to develop new strategies to extend the benefits of
this technology to many new users, including the tens of thousands of companies
and other organizations that have not moved beyond desktop computers to embrace
HPC. Meeting this challenge would not only boost the innovation and competitive-
ness of these companies and organizations, but in the aggregate would lead to the
advancement of the economic standing of the nation.

References

[1] Badia R., Rodriguez G., and Labarta J. 2003. Deriving analytical models from a limited number
of runs. In Parallel Computing: Software Technology, Algorithms, Architectures, and Applications
(PARCO 2003), pp. 769–776, Dresden, Germany.

[2] Bailey D. H., Barszcz E., Barton J. T., Browning D. S., Carter R. L., Dagum D., Fatoohi R. A.,
Frederickson P. O., Lasinski T. A., Schreiber R. S., Simon H. D., Venkatakrishnan V., and Weer-
atunga S. K., Fall 1991. The NAS parallel benchmarks. The International Journal of Supercomputer
Applications, 5(3):63–73.

[3] Carrington L., Laurenzano M., Snavely A., Campbell R., and Davis L., November 2005. How well
can simple metrics predict the performance of real applications? In Proceedings of Supercomputing
(SCé05).

[4] Carrington L., Snavely A., Wolter N., and Gao X., June 2003. A performance prediction framework
for scientific applications. In Proceedings of the International Conference on Computational Science
(ICCS 2003), Melbourne, Australia.

[5] Department of Defense High Performance Computing Modernization Program. Technology
Insertion-06 (TI-06). http://www.hpcmo.hpc.mil/Htdocs/TI/TI06, May 2005.

[6] European Center for Parallelism of Barcelona. Dimemas. http://www.cepba.upc.es/dimemas.
[7] Gao X., Laurenzano M., Simon B., and Snavely A., September 2005. Reducing overheads for

acquiring dynamic traces. In International Symposium on Workload Characterization (ISWC05).
[8] Gustafson J. L., and Todi R., 1999. Conventional benchmarks as a sample of the performance

spectrum. The Journal of Supercomputing, 13(3):321–342.
[9] Lawson C. L., and Hanson R. J., 1974. Solving least squares problems, volume 15 of Classics in

Applied Mathematics. SIAM, Philadelphia, PA, 1995. An unabridged, revised republication of the
original work published by Prentice-Hall, Englewood Cliffs, NJ.

[10] Luszczek P., Dongarra J., Koester D., Rabenseifner R., Lucas B., Kepner J., McCalpin J.,
Bailey D., and Takahashi D., March 2005. Introduction to the HPC challenge benchmark suite.
Available at http://www.hpccchallenge.org/pubs/.

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 97

[11] Marin G., and Mellor-Crummey J., June 2004. Crossarchitecture performance predictions for sci-
entific applications using parameterized models. In Proceedings of SIGMETRICS/Performance’04,
New York, NY.

[12] McCalpin J. D., December 1995. Memory bandwidth and machine balance in current high
performance computers. IEEE Technical Committee on Computer Architecture Newsletter.

[13] Mendes C. L., and Reed D.A., 1994. Performance stability and prediction. In IEEE/USP International
Workshop on High Performance Computing.

[14] Mendes C. L., and Reed D. A., 1998. Integrated compilation and scalability analysis for parallel
systems. In IEEE PACT.

[15] Saavedra R. H., and Smith A. J., 1995. Measuring cache and tlb performance and their effect on
benchmark run times. In IEEE Transactions on Computers, 44(10):1223–1235.

[16] Saavedra R. H., and Smith A. J., 1995. Performance characterization of optimizing compilers. In
TSE21, vol. 7, pp. 615–628.

[17] Saavedra R. H., and Smith A. J., 1996. Analysis of benchmark characteristics and benchmark
performance prediction. In TOCS14, vol. 4, pp. 344–384.

[18] Simon J., and Wierum J., August 1996. Accurate performance prediction for massively parallel
systems and its applications. In Proceedings of 2nd International Euro-Par Conference, Lyon,
France.

[19] Snavely A., Carrington L., Wolter N., Labarta J., Badia R., and Purkayastha A., November 2002. A
framework for application performance modeling and prediction. In Proceedings of Supercomputing
(SC2002), Baltimore, MD.

[20] SPEC: Standard Performance Evaluation Corporation. http://www.spec.org, 2005.
[21] Svobodova L., 1976. Computer system performance measurement and evaluation methods: analysis

and applications. In Elsevier N.Y.
[22] TI-06 benchmarking: rules & operational instructions. Department of defense high performance

computing modernization program. http://www.hpcmo.hpc.mil/Htdocs/TI/TI06/ti06 benchmark inst.
May 2005.

[23] Cray Inc., Cray XMT Platform, available at http://www.cray.com/products/xmt/index.html.
[24] Cray Inc., Cray MTA-2 Programmer’s Guide, Cray Inc. S-2320-10, 2005.
[25] GPGPU, General Purpose computation using GPU hardware, http://www.gpgpu.org/.
[26] GROMACS, http://www.gromacs.org/.
[27] International Business Machines Corporation, Cell Broadband Engine Programming Tutorial Version

1.0, 2005.
[28] LAMMPS, http://lammps.sandia.gov/.
[29] NAMD, http://www.ks.uiuc.edu/Research/namd/.
[30] NIVDIA, http://www.nvidia.com.
[31] OpenMP specifications, version 2.5, http://www.openmp.org/drupal/mp-documents/spec25.pdf.
[32] Alam S. R., et al., 2006. Performance characterization of bio-molecular simulations using molecular

dynamics, ACM Symposium of Principle and Practices of Parallel Programming.
[33] Bader D. A., et al., 2007. On the design and analysis of irregular algorithms on the cell processor: a

case study of list ranking, IEEE Int. Parallel and Distributed Processing Symp. (IPDPS).
[34] Bokhari S., and Sauer J., 2004. Sequence alignment on the Cray MTA-2, Concurrency and Com-

putation: Practice and Experience (Special issue on High Performance Computational Biology),
16(9):823–39.

[35] Bower J., et al., 2006. Scalable algorithms for molecular dynamics: simulations on commodity
clusters, ACM/IEEE Supercomputing Conference.

[36] Blagojevic F., et al., 2007. RAxML-cell: parallel phylogenetic tree inference on the cell broadband
engine, IPDPS.

98 J. DONGARRA ET AL.

[37] Buck I., 2003. Brook-data parallel computation on graphics hardware, Workshop on Parallel
Visualization and Graphics.

[38] Faulk S., et al., 2004. Measuring HPC productivity, International Journal of High Performance
Computing Applications, 18(4):459–473.

[39] Feo J., et al., 2005. ELDORADO, Conference on Computing Frontiers. ACM Press, Italy.
[40] Fitch B. J., et al., 2006. Blue Matter: Approaching the limits of concurrency for classical molecular

dynamics, ACM/IEEE Supercomputing Conference.
[41] Flachs B., et al., 2006. The microarchitecture of the synergistic processor for a cell processor.

Italy:IEEE Journal of Solid-State Circuits, 41(1):63–70.
[42] Funk A., et al., 2006. Analysis of parallel software development using the relative development time

productivity metric, CTWatch Quarterly, 2(4A).
[43] Hwa-Joon, Mueller S. M., et al., 2006. A fully pipelined single-precision floating-point unit in the

synergistic processor element of a CELL processor. IEEE Journal of Solid-State Circuits, 41(4):
759–771.

[44] Kahle J. A., et al., 2005. Introduction to the Cell Microprocessor, IBM J. of Research and
Development, 49(4/5):589–604.

[45] Leach A. R., 2001. Molecular modeling: Principles and Applications, 2nd edn, Prentice Hall.
[46] Liu W., et al., 2006. Bio-sequence database scanning on a GPU, IEEE Int. Workshop on High

Performance Computational Biology.
[47] Liu Y., et al., 2006. GPU accelerated Smith-Waterman. International Conference on Computational

Science.
[48] Oliver S., et al., 2007. Porting the GROMACS molecular dynamics code to the cell processor,

Proc. of 8th IEEE Intl. Workshop on Parallel and Distributed Scientific and Engineering Computing
(PDSEC-07).

[49] Petrini F., et al., 2007. Multicore surprises: lessons learned from optimizing Sweep3D on the cell
broadband engine, IPDPS.

[50] Ramanthan R. M., Intel Multi-core processors: Making the move to quad-core and beyond, white
paper available at http://www.intel.com/technology/architecture/downloads/quad-core-06.pdf

[51] Villa et al., 2007. Challenges in mapping graph exploration algorithms on advanced multi-core
processors, IPDPS.

[52] Zelkowitz M., et al., 2005. Measuring productivity on high performance computers, 11th IEEE
International Symposium on Software Metric.

[53] Allen E., Chase D., Hallett J., Luchangco V., Maessen J.-W., Ryu S., Steele G., and Tobin- Hochstadt
S., The Fortress Language Specification. Available at http://research.sun.com/projects/plrg/.

[54] Bonachea D., GASNet specification. Technical Report CSD-02-1207, University of California,
Berkeley, October 2002. Instructions for Typesetting Camera-Ready Manuscripts.

[55] Buntinas D., and Gropp W., Designing a common communication subsystem. In Beniamino Di
Martino, Dieter Kranzlu¨uller, and Jack Dongarra, editors, Recent Advances in Parallel Virtual
Machine and Message Passing Interface, volume LNCS 3666 of Lecture Notes in Computer Sci-
ence, pp. 156–166. Springer, September 2005. 12th European PVM/MPI User’s Group Meeting,
Sorrento, Italy.

[56] Buntinas D., and Gropp W., 2005. Understanding the requirements imposed by programming
model middleware on a common communication subsystem. Technical Report ANL/MCS-TM-284,
Argonne National Laboratory.

[57] Chapel: The Cascade High Productivity Language. http://chapel.cs.washington.edu/.
[58] UPC Consortium. UPC language specifications v1.2. Technical Report, Lawrence Berkeley National

Lab, 2005.
[59] Project Fortress code.

DARPA’S HPCS PROGRAM: HISTORY, MODELS, TOOLS, LANGUAGES 99

[60] HPCS Language Project Web Site. http://hpls.lbl.gov/.
[61] HPLS. http://hpls.lbl.gov.
[62] Kale L. V., and Krishnan S., CHARM++: a portable concurrent object oriented system based on

C++. In Proceedings of the Conference on Object Oriented Programming Systems, Languages and
Applications, September–October 1993. ACM Sigplan Notes, 28(10):91–108.

[63] Message passing interface forum. MPI: A message-passing interface standard. International Journal
of Supercomputer Applications, 8(3/4):165–414, 1994.

[64] Message passing interface forum. MPI2: a message passing interface standard. International Journal
of High Performance Computing Applications, 12(1–2):1–299, 1998.

[65] Numrich R., and Reid J., 1998. Co-Array Fortran for parallel programming. In ACM Fortran Forum
17(2):1–31.

[66] The X10 programming language. http://www.research.ibm.com/x10.
[67] The X10 compiler. http://x10.sf.net.
[68] Yelick K., Semenzato L., Pike G., Miyamoto C., Liblit B., Krishnamurthy A., Hilfinger P.,

Graham S., Gay D., Colella P., and Aiken A., 1998. Titanium: a high-performance Java dialect.
Concurrency: Practice and Experience, 10:825–836.

[69] Cyberinfrastructure Technology Watch (CTWatch) Quarterly, http://www.ctwatch.org, Volume 2,
Number 4A, November 2006: High Productivity Computing Systems and the Path Towards Usable
Petascale Computing, Part A: User Productivity Challenges, Jeremy Kepner, guest editor.

[70] Cyberinfrastructure Technology Watch (CTWatch) Quarterly, http://www.ctwatch.org, Volume 2,
Number 4B, November 2006: High Productivity Computing Systems and the Path Towards Usable
Petascale Computing, Part B: System Productivity Technologies, Jeremy Kepner, guest editor.

[71] Kepner J., Introduction: High Productivity Computing Systems and the Path Towards Usable
Petascale Computing, MIT Lincoln Laboratory, in [69] p. 1.

[72] Making the Business Case for High Performance Computing: A Benefit-Cost Analysis Methodology
Suzy Tichenor (Council on Competitiveness) and Albert Reuther (MIT Lincoln Laboratory), in [69],
pp. 2–8.

[73] Wolter N., McCraacken M. O., SnavelyA., Hochstein L., Nakamura T., and Basili V., What’s Working
in HPC: Investigating HPC User Behavior and Productivity, in [69] pp. 9–17

[74] Luszczek P., Dongarra J., and Kepner J., Design and Implementation of the HPC Challenge
Benchmark Suite, in [69] pp. 18–23.

[75] Hochstein L., Nakamura T., Basili V. R., Asgari S., Zelkowitz M. V., Hollingsworth J. K.,
Shull F., Carver J., Voelp M., Zazworka N., and Johnson P., Experiments to Understand HPC Time
to Development, in [69] pp. 24–32.

[76] Carver J., Hochstein L. M., Kendall R. P., Nakamura T., Zelkowitz M. V., Basili V. R., and Post D.
E., Observations about Software Development for High End Computing, in [69] pp. 33–38.

[77] Tichenor S., Application Software for High Performance Computers: A Soft Spot for U.S. Business
Competitiveness, in [69] pp. 39–45.

[78] Funk A., Basili V., Hochstein L., and Kepner J., Analysis of Parallel Software Development using
the Relative Development Time Productivity Metric, in [69] pp. 46–51.

[79] Squires S., Van de Vanter M. L., and Votta L. G., Software Productivity Research in High Performance
Computing, in [69] pp. 52–61.

[80] Murphy D., Nash T., Votta L., and Kepner J., A System-wide Productivity Figure of Merit, in [70]
pp. 1–9.

[81] Stromaier E., Performance Complexity: An Execution Time Metric to Characterize the Transparency
and Complexity of Performance, in [70] pp. 10–18.

[82] Funk A., Gilbert J. R., Mizell D., and Shah V., Modelling Programmer Workflows with Timed
Markov Models, in [70] pp. 19–26.

100 J. DONGARRA ET AL.

[83] Diniz P. C., and Krishna T., A Compiler-guided Instrumentation for Application Behavior Under-
standing, in [70] pp. 27–34.

[84] Alam S. R., Bhatia N., and Vetter J. S., Symbolic Performance Modeling of HPCS Applications, in
[70] pp. 35–40.

[85] Bader D.A., Madduri K., Gilbert J. R., Shah V., Kepner J., Meuse T., and KrishnamurthyA., Designing
Scalable Synthetic Compact Applications for Benchmarking High Productivity Computing Systems,
in [70] pp. 41–51.

[86] Diniz P. C., and Abramson J., SLOPE – A Compiler Approach to Performance Prediction and
Performance Sensitivity Analysis for Scientific Codes, in [70] pp. 52–48.

[87] Chen T.-Y., Gunn M., Simon B., Carrington L., and Snavely A., Metrics for Ranking the Performance
of Supercomputers, in [70] pp. 46–67.

[88] Post D. E., and Kendell R. P., Large-Scale Computational Scientific and Engineering Project
Development and Production Workflows, in [70] pp. 68–76.

[89] Kepner J., HPC productivity: an overarching view. International Journal of High Performance
Computing Applications, 18(4), November 2004.

[90] Kahan W., 1997. The baleful effect of computer benchmarks upon applied mathematics, physics and
chemistry. The John von Neumann Lecture at the 45thAnnual Meeting of SIAM, Stanford University.

[91] Meuer H. W., Strohmaier E., Dongarra J. J., and Simon H. D., TOP500 Supercomputer Sites,
28th edition, November 2006. (The report can be downloaded from http://www.netlib.org/
benchmark/top500.html).

[92] Dongarra J. J., Luszczek P., and Petitet A., 2003. The LINPACK benchmark: past, present, and
future. Concurrency and Computation: Practice and Experience, 15:1–18.

[93] Moore G. E.,April 19, 1965. Cramming more components onto integrated circuits. Electronics, 38(8).
[94] Dongarra J., and Luszczek P., 2005. Introduction to the HPC challenge benchmark suite. Technical

Report UT-CS-05-544, University of Tennessee.
[95] Luszczek P., and Dongarra J., 2006. High performance development for high end computing

with Python Language Wrapper (PLW). International Journal of High Perfomance Computing
Applications, Accepted to Special Issue on High Productivity Languages and Models.

[96] Travinin N., and Kepner J., 2006. pMatlab parallel Matlab library. International Journal of High
Perfomance Computing Applications, Submitted to Special Issue on High Productivity Languages
and Models.

[97] ANSI/IEEE Standard 754–1985. Standard for binary floating point arithmetic. Technical report,
Institute of Electrical and Electronics Engineers, 1985.

[98] Langou J., Langou J., Luszczek P., Kurzak J., Buttari A., and Dongarra J., Exploiting the performance
of 32 bit floating point arithmetic in obtaining 64 bit accuracy. In Proceedings of SC06,Tampa, Florida,
November 11–17 2006. See http://icl.cs.utk.edu/iter-ref.

[99] Kernighan B. W., and Ritchie D. M., The C Programming Language. Prentice-Hall, Upper Saddle
River, New Jersey, 1978.

[100] OpenMP: Simple, portable, scalable SMP programming. http://www.openmp.org/.
[101] Chandra R., Dagum L., Kohr D., Maydan D., McDonald J., and Menon R., 2001. Parallel

Programming in OpenMP. Morgan Kaufmann Publishers.
[102] Message Passing Interface Forum. MPI: a message-passing interface standard. The International

Journal of Supercomputer Applications and High Performance Computing, 8, 1994.
[103] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard (version 1.1), 1995.

Available at: http://www.mpi-forum.org/.
[104] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface, 18 July

1997. Available at http://www.mpi-forum.org/docs/mpi-20.ps.

Productivity in
High-Performance Computing

THOMAS STERLING

CHIRAG DEKATE

Department of Computer Science
Louisiana State University, Baton Rouge, LA 70803, USA

Abstract
Productivity is an emerging measure of merit for high-performance computing.
While pervasive in application, conventional metrics such as flops fail to reflect
the complex interrelationships of diverse factors that determine the overall
effectiveness of the use of a computing system. As a consequence, comparative
analysis of design and procurement decisions based on such parameters is
insufficient to deliver highly reliable conclusions and often demands detailed
benchmarking to augment the more broad system specifications. Even these
assessment methodologies tend to exclude important usage factors such as pro-
grammability, software portability and cost. In recent years, the HPC community
has been seeking more advanced means of assessing the overall value of high-end
computing systems. One approach has been to extend the suite of benchmarks
typically employed for comparative examination to exercise more aspects of
system operational behavior. Another strategy is to devise a richer metric for
evaluation that more accurately reflects the relationship of a system class to the
demands of the real-world user workflow. One such measure of quality of
computing is ‘productivity’, a parameter that is sensitive to a wide range of
factors that describe the usage experience and effectiveness of a computational
workflow. Beyond flops count or equivalent metrics, productivity reflects ele-
ments of programmability, availability, system and usage cost and the utility of
the results achieved, which may be time critical. In contrast to a single measure,
productivity is a class of quantifiable predictors that may be adjusted to reveal
best understanding of system merit and sensitivity to configuration choices. This
chapter will discuss the set of issues leading to one or more formulations of
the productivity, describe such basic formulations and their specific application
and consider the wealth of system and usage parameters that may contribute to

ADVANCES IN COMPUTERS, VOL. 72 101 Copyright © 2008 Elsevier Inc.
ISSN: 0065-2458/DOI: 10.1016/S0065-2458(08)00002-8 All rights reserved.

102 T. STERLING AND C. DEKATE

ultimate evaluation. The paper will conclude with a discussion of open issues that
still need to be resolved in order to enable productivity to serve as a final arbiter
in comparative analysis of design choices for system hardware and software.

1. Introduction . 102

2. A General Formulation . 105

3. Factors Determining HPC Productivity 107

3.1. Dominant Factors . 107

3.2. Performance . 108

3.3. Efficiency . 110

3.4. Availability . 114

3.5. Programmability . 116

3.6. Utility . 120

4. A Special Theory of Productivity . 121

4.1. A Work-based Model of Utility . 121

4.2. Machine Throughput Utility . 123

4.3. Cost . 124

4.4. Productivity for the Machine Model . 124

5. A User-based Model of Productivity . 124

5.1. A Workflow for a User-based Productivity Model 125

5.2. Cost for User-based Model . 127

5.3. User-based Productivity . 128

5.4. Limiting Properties . 129

6. Software Development & Productivity 129

7. Related Works . 131

8. Conclusions . 133

References . 134

1. Introduction

Productivity is emerging as a new metric which can be used to evaluate the
effectiveness of high-performance computing systems. Conventionally, the measure
of quality for such systems is given in terms of some metric of performance such as
peak floating-point operations per second (flops) or the sustained performance for a
given benchmark program (e.g., Linpack) also quantified as flops. But such simplis-
tic parameters fail to provide useful tools for assessing the real value of a system for

PRODUCTIVITY IN HIGH-PERFORMANCE COMPUTING 103

the end purpose of its application to an individual or institution and do not provide
the basis for devising a method of comparing and contrasting alternative systems for
possible application or procurement. In the most extreme case, these traditional met-
rics are insufficient to determine realisability of some critical strategic goal within
finite time and cost. Other challenges to conventional methods also dictate a need
for transition to a more meaningful criterion of comparative evaluation. One among
these challenges is that increased measured flops rates may not actually correlate with
improved operation. There are a number of means (tricks when done by intent) by
which the flops rate is increased, whereas the actual rate at which a given application
or workload is accomplished decreases. Hence, performance as typically determined
fails to reveal real worth in terms of getting the computing work done. Productivity is
being considered as a valid replacement for previous flawed performance metrics to
provide a means of deriving higher confidence in decision-making related to choices
in high-performance computing.

Perhaps more importantly than its inconsistency as a measure of quality, perfor-
mance does not reflect all of the key factors that must influence difficult choices in
procurement and application. Among these are total cost and total time to deliver
a solution to a given problem. In particular, time and costs required for developing
software are not considered, while experience shows that software can contribute
the greatest component of getting a final answer. The ease of programming can vary
dramatically among system classes such that the fastest machine may not be the best
machine for a given purpose or place. In the real sense, this is made more challenging
by the wide variance of the skills of different programmers and the inadequate means
by which the rate of program development is measured. Measurement of costs, too, is
non-trivial although this is better understood by the related professions of accounting
and economics.

The final challenge to establishing a useful measure of productivity is the strong
degree of subjectivity applied to the assessment of the value of the outcome
(i.e., getting a particular result) and how quickly such a result is obtained through
computational means. Such worth can be as insignificant as one of convenience, to
the other extreme of blocking an entire domain of science without it. In some cases
in the financial market or interactive services (e.g., web servers), competitive pro-
duction of answers may result in major financial gain or loss. In other cases such
as those found in the military context or those of emergency services, it may mean
something even worse: literally life or death. Thus in the broadest sense, there can
be no absolute measures but rather only qualitative measures sensitive to subjective
relative importance.

This complicated interplay of uncertain factors and formulation is the subject of
current exploration by a community of researchers motivated, in part, by the basic
needs for an improved means of assessing value to high-performance computing

104 T. STERLING AND C. DEKATE

systems and also through the DARPAHPCS (High-Productivity Computing Systems)
program [9]. This ambitious program was established more than five years ago to
sponsor the development of a class of innovative Petascale system architectures by the
end of this decade.As a consequence of this program and complimenting programs by
other Federal agencies, most notably the Department of Energy, a series of studies in
benchmarking, software development and productivity modeling has been undertaken
to achieve a fundamental understanding of the nature of productivity, its determination
and its application for the purposes of measurement, comparative evaluation and
trade-off decisions. At this time, there is no single codification of productivity as a
formal method but rather a collection of partial models that provide insight but no
single complete representation definition. In fact, not even the units of measure for
productivity as a metric are defined. Nonetheless, productivity provides a rich trade-
off space to consider procurement, allocation, and application decisions and in so
doing justifies its study in spite of its current limitations.

This treatise will examine the issues defining productivity and will provide some
practical guidance with respect to its determination and use. In so doing, while
acknowledging the broadest scope of interpretation of the term and citing the worthy
work of other contributors in this new field, this discussion will focus on a more
narrow specification that may be more readily applied to high-performance comput-
ing. Where possible, specific observable metrics will be employed in all aspects of
the discussion, and where not, quantifiable parameters will be considered. In certain
cases, not even this relaxed degree of explicit quantification will be readily appar-
ent, in which cases the basic contributing factors will be described, recognizing their
qualitative nature.

The goal of an effective model of productivity is to provide a useful framework
for performing comparative quantitative analysis between alternative systems, the
combination of hardware and software, in a repeatable manner that relates all key
elements of the workflow, yielding a final solution to an initial question. Such a
productivity model can be used to perform trade-off studies among alternative choices
of such systems to produce an ordered set of preferences among available alternatives.
It is recognized that software development is an important part of such a workflow
and therefore must be represented in a productivity model.

This paper will discuss the principal factors that contribute to productivity in
high-performance computing including key quantifiable parameters, some of which
are observable metrics. A distinction will be made between the perspective of the
productivity of a system and the perspective of the user’s productivity in the deriva-
tion of an answer via computation. Relationships for both will be derived within the
context of assumed measure of value in achieving the results. This will constitute a
Special Theory of Productivity that eliminates many of the uncertainties of a broader
interpretation at the cost of generality.

PRODUCTIVITY IN HIGH-PERFORMANCE COMPUTING 105

2. A General Formulation

Performance is the rate at which computational work is performed with such metrics
as Giga instructions per second (Gips), Tera floating point operations per second
(Tflops) and Million instructions per second (Mips) as representative units. But two
systems with the same performance for a given application with significant differences
in cost cannot be distinguished by these measures alone.And how would one compare
one system that is 20% slower but 50% lower in cost to a second system? If one
extends the comparison between two systems, one system having a running time that
is one-tenth of the other but taking ten times as long to program, how would these two
systems be compared as well? Productivity is intended to provide at least a framework
to consider these issues and in restricted favourable cases to give a direct quantitative
comparison.

With the assumption that a positive shift in productivity is a reflection of an improve-
ment in the state of the total system, several qualitative observations can be made
concerning the formulation of productivity as a formal predictor of system value:

1. Productivity is a positive function of the value (to the user) of the results pro-
duced. The value may vary depending on the time required to produce the
results.

2. It is a function of the effective rate of producing such results; that is, it is inversely
proportional to the time required to produce the results.

3. It is a function of the cost-effectiveness of producing such results; that is, it is
inversely proportional to the cost required to produce the results.

A relationship that satisfies these conditions is:

� = U(T)

C × T

where:

� ≡ productivity

C ≡ cost

T ≡ time

U(T) ≡ utility

The value ofU is the utility function which is subjective and therefore its quantification
is the most difficult aspect of this relation. Often, it is a function of time, either having
some positive value for a bounded time and no value at a later stage or having some
more complicated function with respect to time, which may not even be monotoni-
cally decreasing in certain cases. It should be noted that this relation for productivity is

106 T. STERLING AND C. DEKATE

a more restricted case of the more general definition derived from the field of
economics which is generally given as:

� = U(T)/C,

where the selected equation previously given is derived through a redefinition of the
utility function to incorporate the inverse time factor. This is made explicit in this
more applied formulation to emphasize the role of performance, the rate at achieving
an end goal, in the definition of productivity for high-performance computing.

There are two perspectives with which productivity may be considered for
high-performance computing. The first is with regards to the system. This examines
how useful a given system is in performing the total workload, likely to comprise
many different user applications over the lifetime of the machine. Here cost includes
that of the machine, its programming and its operation, whereas time relates to the
lifetime of the machine. Time may also play a role in establishing the utility function
for each of the application programs supported by the machine.

The second perspective is with regards to a specific application or user program
that is created, run, and analyzed by a group of users working together. In this case,
there is a single utility function related to the specific application. Time relates to the
total workflow for the user group from problem definition, through program creation
and testing, to one or more execution runs, to produce the desired computed results,
culminating in a final stage of data analysis to derive the final answers to the original
question posed. Cost in this scenario relates to some amortized fraction of the total
machine cost and its operation for the period of usage, as well as the cost of the
code development. There is a subtlety in that the cost and time of software develop-
ment are interrelated. But this is important. Imagine two programmers that work at
exactly the same rate on a code that is conveniently partitioned into two separate and
clearly delineated pieces of equal size. One of the programmers can write the entire
code or both programmers can work on it together. For both cases, the cost of code
development is the same (assuming one programmer takes twice as long to write the
program as the two programmers together) while the time differs by a factor of two.
This would not affect the evaluation of productivity for the system perspective but
will have a potentially profound effect on the evaluation of productivity for the user
program perspective.

It is interesting to consider the actual units of measure for productivity. The chal-
lenge is (as suggested earlier) that the utility function is highly subjective and its units
can vary dramatically among different cases. Therefore, there can be no single metric
for productivity. On the other hand, if we abstract the utility value function, we could
define an artificial unit: UDDS (utility divided by dollar seconds). The issue of units
of measure will be considered in greater and more accurate detail when a special
model of productivity is considered for high-performance computing.

PRODUCTIVITY IN HIGH-PERFORMANCE COMPUTING 107

3. Factors Determining HPC Productivity

Many aspects of the workflow leading to a final outcome of a computation deter-
mine the overall productivity experienced. In this section, the dominant factors that
influence the observed productivity are considered. As previously stated, practical
considerations and limitations on our understanding require that we distinguish among
three levels of such factors: 1) metrics – which are factors that are both quantifiable
and can be directly measured, 2) parameters – which are quantifiable, but may not
be observable, and 3) factors – which influence productivity but may be limited to
qualitative description being neither measurable or quantifiable. For convenience, it
is assumed that metrics are a special case of parameters and likewise that parameters
are a special case of factors.

3.1 Dominant Factors
Here four principal factors that dominate the determination of productivity are

introduced. Each contributes to the time to solution, the cost of solution, or both.
They can be represented as an expanding tree with Productivity the root node at the
far left and the dominant factors at the next level of the tree as shown in Fig. 1. But
each of these in turn can be further subdivided into contributing factors and minor
factors, yet another level (to the right). Nor is this characterization of productivity a
true tree because some factors influence multiple superior factors forming a directed
graph. However, we will examine only the primary relationships.

Performance of a system represents the peak capability of a machine in a number of
respects. It specifies the peak number of operations that it can perform at any one time
and reflects the best (not to be exceeded) ability that is available to a user program.
Inversely, it determines the minimum time that a user program requires, given the

Performance
(Peak Performance or

Max Capability)

Efficiency

Utility

Programmability

Availability

Productivity

Fig. 1. Dominant factors of productivity.

108 T. STERLING AND C. DEKATE

total workload requirement and intrinsic parallelism of the applications. Performance
is a metric. An array of factors contributing to performance will be discussed in the
next section.

Efficiency is that portion (between 0.0 and 1.0) of the peak performance that is
actually achieved as the sustained performance for a given system for a given user
application program. Efficiency is measured with respect to assumed peak perfor-
mance parameters which itself may vary in terms of the kind of operations of interest.
For example, the efficiency of a floating-point-intensive application may be deter-
mined with respect to peak flops rate, whereas a problem with little or no floating-point
operations would be measured against its peak integer operation rate (ips), or in the
case of a data-intensive application its updates per second (ups). Efficiency is a metric.
Factors influencing a system’s efficiency will be discussed in Section 3.3.

Availability is that portion of time or duty cycle (between 0.0 and 1.0) of the full
life of a machine or bounded epoch during which a system can be applied to a given
user problem. While some representations of productivity would highlight robustness
or reliability as dominant factors, in this study, these and other important issues are
integrated within this one measurable quality. Availability is insensitive to the details
of the application program as it would be to efficiency except where problem resource
requirements influence resource-allocation policy decisions concerning scheduling.
Availability is a measurable metric although all the factors influencing it are not
measurable. Availability will be considered in greater detail in Section 3.5.

Programmability is the fourth dominant factor determining overall productivity
of a system and application workflow. Programmability is neither a metric nor a
parameter. But it is a critical factor; some would say that it is the critical factor in
determining the overall productivity of system performance applications.

Finally, Utility is the subjective factor that establishes the relative value to a cus-
tomer of the outcome of a computational process. Utility addresses the question of
how significant the successful result is and its sensitivity to the amount of time it takes
to get that result or sequence of results. Real-time control systems and theater-of-war
contexts have highly time-sensitive utility functions, while there is broad latitude
when a cosmology application such as the simulation of two spiral galaxies (e.g., the
Milky Way with Andromeda in approximately 5 billion years) is considered. Utility
will be discussed in more detail in Section 3.6.

3.2 Performance
The specification and quantification of peak performance of a system is among

the easiest because it is a function of the physical elements and their attributes that
comprise the system. However, peak performance may be established with respect to
one or more parameters including floating-point performance, integer performance,
memory-access performance, global-data-movement performance such as a global

PRODUCTIVITY IN HIGH-PERFORMANCE COMPUTING 109

matrix transpose, and other more obscure measures (e.g., peak logical inferences
per second). Conventionally, the high-performance-computing community uses peak
floating-point operations per second or flops as the measure of choice. However,
other attributes of system organization also falls into the broadest definition such as
memory capacity which defines the size of problem that may be performed by a given
system. The factors that have the highest influence on the determination of the peak
capability of a system are illustrated in Fig. 2.

It is noted that the vast majority of HPC systems are organized in a hierarchy with
an intermediate building block, the node, being integrated by one or more System-
wide Area Network (SAN) and each containing the combination of processing and
memory resources that in the aggregate determine the total system capability and
capacity. Therefore, a metric contributing to the peak performance of the system is
the ‘number of nodes’. The primary computing resource of the system is provided by
the multiplicity of processors in the system. With the advent of multicore systems, this
will be referred to as the ‘processor cores’ or simply ‘core’. Another emerging term
is the ‘socket’. Together, the following metrics determine the number of computing
elements in a system: 1) ‘number of cores per socket’, 2) ‘number of sockets per
node’, and 3) ‘number of nodes’ (as before). To determine the peak performance, the
product of these is combined with the ‘peak performance per core’, which may be a
short vector based on operation type (e.g., a two-tuple of floating point and integer
operation types). With the gaining popularity of heterogeneous system structures into
which accelerators such as graphical processing units (GPU) have been incorporated,
the ‘number of cores’ metric may be a vector based on types of cores so that a node
may have one or more of each of one or more type.

Performance
(Peak Performance or

Max Capability)

Efficiency

Utility

Programmability

Availability

Productivity

Peak Processor
Performance

Processors

Memory
Capacity

Constraints

Bisection
BW

Clock rate

Ops/cycle

nodes

Processors
per node

Floor Space

Power/cooling

Cost

Fig. 2. Performance factors of productivity.

110 T. STERLING AND C. DEKATE

Other critical factors that influence both the value of a system and indirectly its
performance are memory capacity and bandwidth as well as system bi-section network
bandwidth. These are peak capabilities in their own right and suggest that performance
is also a short n-tuple vector. Peak memory capacity is determined by the product
of ‘number of nodes per system’ and the ‘memory capacity per node’. Similarly, a
measure of peak bandwidth is derived from the product of the factors ‘number of
nodes per system’, ‘number of network ports per node’ and the ‘peak bandwidth per
network port’. It should be noted that there can be more than one type of network and
multiple ports of each per node.

Practical constraints are factors that contribute to the determination of peak perfor-
mance of a system. These include size, power and cost. System size is literally limited
by the available floor space area in an organization’s machine room. Machines may
require thousands of square feet, with the largest machine rooms exceeding 20,000
square feet and some facilities having more than one such machine room. National
laboratories have been known to build entirely new buildings for the express pur-
pose of housing new machines. Equally constraining is power consumption. Some
user agencies consider power consumption and the need to remove the waste heat,
demanding even more power for cooling to be their number one constraint in fixing
the scale of their future systems. Finally, cost is a determining factor. Government
funding is usually based on bounded cost for specific procurements. Thus, all these
practical constraints limit the peak performance and capacity of a new system. An
interesting trade-off involves balancing of the number of processors with the amount
of memory: less memory means that more processors can be afforded, but this has
an effect on the ultimate user utility. No effective formulation of these subtle interre-
lationships is available. But the exchange of funding for different resources is a real
part of the equation.

3.3 Efficiency

3.3.1 Efficiency Factors
Efficiency can be deceptively simply defined, can be relatively directly measured,

but its diagnosis id difficult. This section offers one possible model of efficiency
through a delineation of factors that contribute to efficiency as shown in Fig. 3. Other
models are also possible. In its most simple form, ‘efficiency’ is defined as the ratio
of observed sustained performance to specified peak performance for some metric of
performance such as, but not limited to, flops. Efficiency can be measured by deter-
mining the number of operations performed by the application of the type considered
and by averaging these across the measured execution time of the application. The
ratio of this to the peak performance of the system is a measure of the efficiency.

PRODUCTIVITY IN HIGH-PERFORMANCE COMPUTING 111

Performance
(Peak Performance or

Max Capability)

Efficiency

Utility

Programmability

Availability

Latency

Overhead

Starvation

Contention

Productivity

Memory Access
Communication
Execution Pipeline

Memory Management
Context Switching
Synchronization
Scheduling

Parallelism
Load balance
Scalability

Communication
Memory Bank
I/O Channel
Execution Resource

Fig. 3. Efficiency factors of productivity.

A set of four factors that determine (or at least appreciatively contribute to) the
observed system efficiency is identified: latency, overhead, starvation and contention.

3.3.2 Latency
Latency is the distance measured in processor cycles that is required for rela-

tively remote services such as remote (other node) memory accesses and remote
procedure calls. Remote is relative to the synchronous register and registers execu-
tion times that are ordinarily pipelined and therefore ideally provides that level of
latency hiding. Latency can be experienced even within a single node. Accessing
main memory in a node may require hundreds of cycles. Efficiency in the presence
of latency can be achieved through a number of strategies for locality management
and latency hiding. System latency is typically addressed by ensuring that most of the
computation is performed in coarse grained blocks, each almost entirely performed
on its respective resident node. Memory latency on most processors is countered
through the use of cache hierarchies which exploit temporal locality to manage auto-
matically useful copies of data close to the processor, thus significantly reducing
the average observed latency. When temporal locality is poor and cache miss rate
is high, alternative methods come to play. Prefetching, both hardware and software
driven, can result in the overlapping of memory accesses with computation when
the right accesses can be guessed ahead of time. More arcane techniques include
vector processing and multi-threading, among others. To some degree, latency to
remote nodes can be addressed by the aforementioned methods. However, beyond
a certain size, these methods may prove inadequate and the user once again may be
required to resort to explicit locality management from the application code.Advanced

112 T. STERLING AND C. DEKATE

concepts in message-driven computation are being pursued to hide the effects of
system-wide latency but these are of an experimental nature and not embodied in
programming tools and environments readily available to the programmer. Latency-
hiding techniques exploit parallelism, which is therefore not available to additional
hardware resources to further reduce time to execution. Ultimately, latency limits
scalability.

3.3.3 Overhead
Overhead is the critical time required to manage the parallel resources and the

concurrent tasks of a parallel computing system. This is the work that would not be
required in a sequential execution of the same problem, so it is referred to as wasted
work. Examples include such functions as memory management, context switching,
synchronization and scheduling; the last three being interrelated. Memory manage-
ment controls the virtualization of the user namespace and its mapping to the physical
namespace. On a single processor, this is done with a translation lookaside buffer
(TLB) when there is good access behavior. Otherwise, it is performed by the operat-
ing system. For large parallel computing systems, there should be a combination of
middleware with user-explicit intervention to decide the allocation, mapping and load
balancing of objects in physical memory. This work is a form of overhead. Context
switching changes the attention of a processor from one task to another. The work
required to do this is overhead. In many systems, a single process or thread is assigned
to each processor (or hardware thread) so that no context switching is required, thus
avoiding the overhead cost, at least for this cause. Specialty multithreaded hardware
architectures such as the Cray XT3 and the Sun Niagara have hardware support for
single-cycle context switching that minimized the overhead. Processes and Pthreads
in Unix-like operating systems leave the context switching to the operating system.
This is relatively costly with regards to the number of cycles, but it is not conducted
frequently, so the overall overhead experienced is low on an average. Synchroniza-
tion when performed by a global barrier can be costly, essentially stopping the entire
machine (or assigned subsection) based on the slowest sub-process. This can be
a costly overhead and limits the granularity of parallelism that can be effectively
exploited. Even finer grained synchronization methods, if they block other actions,
can have a serious impact on efficiency. Scheduling, if done by software and if done
dynamically, say for load-balancing purposes, can be an expensive overhead function
offsetting the advantage of the scheduling policy. Many other forms of overhead can
be encountered in parallel processing. But the effect is not simply that of wasted
work. Because it can be in the critical path of the useful work, overhead actually
imposes an upper bound on scalability of fixed-sized problems (strict scaling), which

PRODUCTIVITY IN HIGH-PERFORMANCE COMPUTING 113

is independent of the amount of hardware one throws at the problem. Thus, overhead
is a fundamental limitation on efficiency and ultimately on productivity.

3.3.4 Starvation
Starvation is the phenomenon of an execution unit experiencing idle cycles, cycles

in which it performs no useful action and hence is wasted, because there is no pending
work to be performed. This is distinct from idle cycles caused by latency or over-
head. Starvation occurs because of an inadequacy of the amount of useful work at an
execution site. This is generally caused by an overall insufficiency of parallel work,
an issue of scalability or an insufficiency of work local to the execution site while
there is an abundance of pending work elsewhere in the system. This latter form of
starvation is a product of inadequate load balancing. Starvation is addressed within a
core by hardware support for out-of-order execution using reservation stations and the
Tomasulo algorithm. Like overhead, starvation imposes an upper bound on scalability
of a fixed-sized problem (strict scaling, again). Vector architectures employ dense-
matrix operations to expose fine grain parallelism. Multithreaded architectures support
an additional level of parallelism to maintain multiple threads per core. But often the
issue of sufficient parallelism is as much a software issue. Either the programmer has
the means to expose algorithm parallelism through the programming language being
used. Or the compiler is able to analyze an apparently sequential code and extracts
parallelism from it. In extreme cases, the application algorithm is intrinsically and
fundamentally sequential, permitting no exploitation of parallelism. Here, Amdahl’s
Law [11] takes hold and efficiency drops precipitately. The most general method of
reducing starvation by increasing parallelism is to increase the problem size, avail-
ability of memory-capacity permitting. This is a form of weak scaling. Resources are
more efficiently used and the measured performance increases, but the response time
of the original problem (fixed size) is not reduced. Much of the successful usage of
ensemble systems comprising large collections of microprocessors in MPP or com-
modity cluster (e.g., Beowulf [8, 10]) structures are achieved through weak scaling
and the avoidance of starvation (or at least reduction) through increased problem size.

3.3.5 Contention
Contention is the idle time, measured in processor cycles, incurred due to waiting

for shared resources. The two classical examples of contention are bank conflicts of
two requesting agents for the same memory bank, and network contention. In the
latter case, the network bandwidth is insufficient to handle all of the demand for
remote access to other nodes. Contention is often handled by increasing a particular
resource when possible. However, contention is usually a ‘bunching’ phenomenon

114 T. STERLING AND C. DEKATE

rather than an average continuous behavior. Increase of a resource may result in a
substantial increase in cost and leads to considerably little improvement in the overall
performance. This is attributed to the fact that such rare peaks in demand for a resource
often greatly exceeds the average usage.

3.4 Availability

3.4.1 Availability Factors
A number of factors restrict the usage of a system 100% of the time. These are

due to mundane operational functions such as planned maintenance and upgrades or
crisis events such as a major hardware failure or power outage. Some such possible
factors are depicted in Fig. 4 and are given in three broad categories: Reliability,
Maintainability and Accessibility.

3.4.2 Reliability
Reliability deals with issues related to failures in hardware and software. MTBF

or mean time between failure is a metric that gives the average time between succes-
sive faults that halts productive use of the system. MTBF is generally proportional
to increase in the number of system components including chips and cables, but is

Performance
(Peak Performance or

Max Capability)

Efficiency

Utility

Programmability Maintainability

Accessibility

Reliability

Availability

Productivity

User Interface

Diagnostics

SW Robusiness

MTBF

Fault Tolerance

Checkpoint Restart

Detection, Diagnosis,
Isolation, Recovery

Serviceability

Job Scheduling

Subscription

Fig. 4. Availability factors of productivity.

PRODUCTIVITY IN HIGH-PERFORMANCE COMPUTING 115

often very sensitive as well to mechanical elements such as fans and disk drives. Even
in the case of a fault, the system need not terminate its operation if it incorporates
mechanisms of immediate self-repair. This is achieved through redundancy of
resources and information. Memories have extra hardware to recover from a cell
or string of cells being damaged, for example, from cosmic rays. Communication
channels employ bit codes that can detect and correct or detect and resend a message
between nodes. There are many other such examples. In the presence of a transient
fault, the system need not terminate operation but the application may have suffered
fatal error as a result and therefore must be restarted. If checkpointing is employed
where intermediate application state is stored usually on secondary storage, then the
application need not be started from the beginning but rather from the last known good
state. How frequently checkpointing is performed will determine how much compu-
tation is lost. But checkpointing itself is a form of overhead and in the extreme can
consume a significant amount of the execution time. Impact of reliability on availabil-
ity is a product of both the MTBF not covered by fault tolerance and the time required
to restart the system. This latter is a function of a number of interrelated mechanisms
that must operate together quickly and effectively. These include detection of the fault,
determination (diagnosis) of its cause, isolating the consequences of the fault to mini-
mize corruption of program (and machine system) state and recovery from the fault.

3.4.3 Maintainability
System maintenance whether scheduled or in response to a failure leads to the

detraction of the availability of the system to perform useful work. Maintainability
breaks down to two basic functions: diagnostics and serviceability. Diagnosis can be
very time-consuming, especially for transient errors where the symptoms of the failure
are not always repeatable. Also, errors may not be a result of a simple single broken
piece of hardware or software but rather may be due to the subtle interplay of multiple
functions coinciding with improper behavior at the same time. Slight variations in
clock or transmission rates may have no serious consequences, except on occasion
when some other aspect is slightly outside margins. Test vectors and other forms
of regression testing are particularly important when changes to a system such as
updates in hardware or software, seemingly benign, elicit these unanticipated effects.
Once a needed system modification is identified, the ease with which the system can
be modified, its serviceability, impacts the overall effect of its maintainability on
productivity. Serviceability can be as mundane as how quickly one can gracefully
power down a system, how easy is it (how much time does it take) to extract a system
module such as a blade, replace it, and power the system back up. With the reinsertion
of water-cooled elements back into high-end systems, plumbing is again proving to
be a challenge both to the design and the serviceability of such systems.

116 T. STERLING AND C. DEKATE

3.4.4 Accessibility
If an application programmer or team owned their own system, and small clus-

ters have made this a reality for many groups, then their accessibility to that system
would be essentially 100%, baring internal usage conflicts. But in the real world of
very large-scale systems, availability to a given user is as much a function of user
demand and scheduling priority policies as it is a consequence of failure rates and
repair times. Accessibility is the third factor that contributes to availability. It is a
function of the degree of subscription or user demand, the job-scheduling policies of
resources in time and space (what partition of the entire machine can one get) and
the ease of getting on the machine itself. The last factor may be trivial or it may
involve travelling to a selected site, entering a special facility or room or waiting in
a queue of other programmers submitting decks of cards (ok, so this has not hap-
pened in thirty years or more, but some of us remember doing so). Together, these
contribute to appreciable delay in getting a job run once it is ready. For real environ-
ments, delays of many days can occur for jobs that might otherwise only take hours
to execute.

3.5 Programmability

3.5.1 Programmability Factors
While the previous dominant factors discussed have all been demonstrated to meet

the criteria of metrics with quantifiable and measurable units, the next and poten-
tially most important factor, ‘programmability’, does not. The ultimate arbiters of
programmability are clear: time and cost as a function of level of effort. Further-
more, the key factors governing programmability are also well understood as shown
in Fig. 5:

1. Parallelism representation,
2. Resource management,
3. Portability and reuse,
4. Debugging, and testing.

However, there is no consistent and comprehensive model of programmability and
no parameter or units to quantify it. This is not due to the fact that there was lack of
any attempt from researchers. Being able to estimate the cost and time do deliver a
major piece of software is an important ability in commerce and government. In a later
section, some of these tentative and empirical results, such as the Constructive Cost

PRODUCTIVITY IN HIGH-PERFORMANCE COMPUTING 117

Performance
(Peak Performance or

Max Capability)

Efficiency

Utility

Programmability

Availability

Parallelism
Representation

Resource
Management

Debugging

Portability
Legacy Codes

Correctness

Locality

Explicity

Implicity

Higher Level
Abstraction

Compiler
Optimization

Scheduling

Performance

Cross platform

Productivity

Fig. 5. Programmability factors of productivity.

model (COCOMO) [7], will be discussed. But while such methods have had some
practical application in the field, they are not robust in building a cohesive productivity
model. Here, these contributing factors are discussed to expose and clarify the issues
related to programmability even if they are not formally defined.

It may appear surprising that a number of issues such as programming languages
and problem formulation are not directly identified. Language is a formalistic way
of controlling essentially all aspects of the above while representing an underlying
programming strategy and model. Thus, how the language does these is an important
methodology. But it is these foundation factors that are the ultimate determinant of
programmability and its contribution to productivity. Problem formulation can be
a significant part of the level of effort in the critical path of achieving the results.
However, the workflow model that is used to investigate the derivation of produc-
tivity presumes this to have been accomplished prior to initiating the procedures of
developing the end programs and performing the necessary computations.

3.5.2 Parallelism Representation
Parallelism representation is critical to the success of high-performance comput-

ing. Historically, machine types could be defined in terms of the primary form of
parallelism that was used to achieve performance gain with respect to sequential exe-
cution. Most recently, process parallelism under user control and instruction-level

118 T. STERLING AND C. DEKATE

parallelism under compiler control has proven the dominant paradigm with some
special-purpose processors using SIMD and systolic structures for higher ALU
density. Currently, rapid migration to multicore and heterogeneous (e.g., general-
purpose computing on graphic processing units (GPGPU) [6]) system structures may
lead to the exploitation of multi-threading and dataflow-like parallelism in future
massively parallel machines. The ease with which such parallelism is expressed
or discovered through automatic means is a critical aspect of programmability and
ultimately impacts efficiency as it addresses starvation as well. The breakthrough
accomplishment of a community-wide standard, MPI, more than ten years ago pro-
vided an accepted semantics and syntax based on the message-passing model for
representing process-oriented parallelism in distributed memory machines. A second
standard, OpenMP, although somewhat less widely, had a similar effect for the multi-
ple thread parallelism in shared-memory multiprocessing (SMP) systems of bounded
scalability. Experimental languages for other forms of parallelism such as Sisal and
Haskel for the dataflow model have also been devised although they have experienced
little usage in standard practice. Exposure of parallelism is made much more difficult
in shared memory contexts where anti-dependencies through aliased variable names
may dictate worst-case scenarios that restrict parallelism. In other cases as discussed
before, even when parallelism can be made explicit, if the overhead to manage it is
too large for the granularity of the concurrent action, then it cannot be effectively
exploited.

3.5.3 Resource Management
Resource management probably should not be part of the responsibility of the

programmer or programming. But during the last two decades, in most practical
cases it has been. This is because the class of machines that have been the mainstream
supercomputer have been ensembles of sequential microprocessors integrated with
COTS (commodity clusters) or custom (MPPs) networks. These system architectures
have had essentially no support for runtime resource management and have had to
rely on the programmer to explicitly manage the allocation of resources to the user
program’s data and computing requirements. This has been a major burden on the
programmer and is a critical factor to programmability. It has also been aggravated by
the need for cross-system platform portability (discussed below), either of different
architectures or of the same architecture but of different scales. The two driving issues
are 1) locality management to minimize impact on communication latency and on
synchronization overheads and 2) scheduling to determine what phases of the total
workload get priority access to the system resources to ensure best overall throughput
and response time.

PRODUCTIVITY IN HIGH-PERFORMANCE COMPUTING 119

3.5.4 Debugging andTesting
In many studies, the single most expensive part of the development of new codes

and to a greater extent the modification of old codes has been proven to be testing and
the consequent debugging when testing fails. Even a small change to a code block may
require a complete retesting of the entire program against test vectors and regression
testing sequences. This can be very time-consuming and is proportional to the size of
the entire code, not to the degree of the change made. Debugging of parallel programs
has never been satisfactorily achieved although tools to facilitate this have been
developed. Debugging of parallel programs has been extended beyond correctness
debugging to relate to performance debugging as well. Again, visualization tools
have been developed and disseminated to let the programmer see what is happening
in time. But it is still a challenge to determine the root causes, sometimes very subtle,
and to figure out how to restructure the code to achieve significant performance
improvements.

3.5.5 Portability and Reuse
Mitigation of the cost and time of code development is related to the portability

of programs or code blocks across platforms and between different applications.
Libraries, templates and frameworks provide varying degrees of portability and
flexibility. Ideally, a piece of code may be directly applied to the needs of a new
program-creation project, eliminating the need to implement at least that piece of
the total code base. But even when this is possible, testing is still required to verify
the results and the correct integration of the old reused code with the new. The two
major constituents to portability are 1) the availability and applicability of existing
legacy codes and 2) the generality of such codes to show correct and effective per-
formance across disparate computing platform types. Libraries make up a large body
of legacy codes defined for ease of use in other programs and optimized for different
computer-system architecture types and scale. Templates allow codes to be built up
by exploiting known patterns and idioms of program structure to reduce the burden
of writing a program entirely from scratch. Cross-platform portability can be read-
ily achieved between target micro-architecture instruction sets but is much harder
to achieve between system classes. Conversion of a code between two clusters, one
using an Intel Xeon and the other using an IBM Power-5 architecture, along with some
refinement and optimization for adjusting certain key parameters such as cache block
size can be achieved with good compiler technology and some judicious recoding at
critical points. But to port a code written for a cluster in MPI to a vector system such
as the NEC SX-8 is a far more challenging task if optimal performance on the latter
target platform is to be achieved and requires a complete rewrite of key code blocks or

120 T. STERLING AND C. DEKATE

the restructuring of the entire program. Therefore, portability is an important factor in
principle, but potentially very difficult to achieve broadly in practice at least without
a substantial level of effort. This is one of the reasons that libraries such as LAPACK
and P are of such importance as their developers over many years have invested the
necessary effort to achieve this goal.

3.6 Utility
The ultimate value of productivity of a workflow must be proportional to the worth

of the computational product derived. In the broadest sense, this is subjective, that is it
is purely determined by the needs of the entity to carrying out the computation series.
The entity can be a person, group of collaborators, an institution, a national agency,
a nation, or all of humanity. In the first case, it could be a spin of a CAD program
seeking a local optima of some engineering design. In the last case, it could be the
need to predict accurately the course of a medium-sized asteroid that is in jeopardy of
impacting the Earth. A Hollywood company may need thousands of hours to do the
special effects for a hundred-million dollar blockbuster movie. In the US typically,
agencies such as DOE or NSA have applications which are critical to their mission,
which is in turn essential for the national security. Clearly, by some undefined metric,
some applications have a net worth far greater than others. But all can be important
in some context.

How utility is measured is the big challenge to any meaningful, quantifiable and
usable model of productivity. Yet in the most general sense, it is beyond current
understanding, although such fields as economics suggest frameworks and methods
for addressing it. One approach is to form a single ordered list of all of the applications
to be run and then order them in terms of the highest value. This can be surprisingly
effective. Pair-wise orders for most elements can be readily achieved through sub-
jective appraisal. Most people would rate saving the planet as more important than
making a movie. But the economic benefit in commerce of such a movie would likely
outweigh that of a particular design point in an optimization trade-off space. Yet such
an advance does not yield even the units of productivity let alone their quantitative
evaluation. In the field of economics, an attempt to put dollar values on the outcome
does provide one possible path for establishing units and in some special cases actual
values. While the value of a Harry Potter movie can be quantified, the measurement
of the dollar value of a mega-death event is more problematic. How much was the
extinction of the dinosaurs worth 65 million years ago, or the loss of the trilobites
250 million years ago?

In a later section, we will take an alternative strategy to quantifying utility based
on the computational work being performed. This does not satisfy the big problem.
But it does provide a rational and justifiable basis for establishing quantifiable units

PRODUCTIVITY IN HIGH-PERFORMANCE COMPUTING 121

and for assessing worth; one which could even be translated to economic value. This
method fails to capture the subtleties of the time domain for degree of urgency other
than to note that there is a timeout associated with each problem; beyond a certain
point, the solution has no value, for example, predicting the weather for the next day
(a result that takes two days to compute is of little but academic interest in this case) or
performing a cosmological simulation (the scientist needs the result at least before the
end of his/her life to be useful). Many actual utility functions can have far richer value
relationships with respect to time other than this simplistic band-bang formulation.
But there is one other aspect to the methodology already imposed (section 2) compared
with the more general case (Snir et al.). Faster is better as implied by the explicit use
of time as part of the denominator; less time means more productivity, all other things
being equal. While this may not be true in the most general case, it is implicit in the
domain of high-performance computing.

In conclusion, at this time the community does not have a single consensus model of
utility as it relates to productivity in high-performance computing. But some progress
has been made in domain-specific cases including the work-based model presented
later in this chapter as a ‘special theory’. Further work is required urgently in this area
before a robust and rigorous conceptual framework can be employed with confidence
by the community. Given its potential importance in decision-making processes that
govern commerce and national defense, it is unfortunate that at the time of this writing,
those US agencies that had been sponsoring research towards this end have now
terminated such support.

4. A SpecialTheory of Productivity

While in the most general case, utility [12, 13] is ill defined other than as a qual-
itative factor reflecting subjective worth or value of a delivered result; more narrow
definitions may be applied that not only clarify the meaning of utility at least for the
domain of high-performance computing, but also permit both quantifiable units to
be applied and its value to be measured. One such example is referred to here as the
‘special theory of HPC productivity’. In this section, one particular instance of the
special theory is presented that reflects the system-based model. This is distinguished
from the user-based model which is presented in the following section.

4.1 A Work-based Model of Utility
It can be argued that, at least in the field of high-performance technical computing,

the value of an outcome of a computation is a function of the amount of resources dedi-
cated to its production. To a first measure, resources include the scale of the system

122 T. STERLING AND C. DEKATE

in memory and processors integrated over the period of execution. In today’s systems
as previously mentioned, the structure of multiple nodes comprising a given system
and the likely allocation of resources through space partitioning along the dimen-
sion of number of nodes and the ratio of memory to peak processor performance is
highly proportional for different scales of the same machine class. Admittedly, across
systems the ratio may vary by some unit (usually a power of two) but this can be
adjusted through a constant of proportionality. Therefore, through this fundamental
assumption, a measure of utility based on resource utilization can be devised.

An application execution can be represented as a trace (a set of multiple connected
sequences) of primitive operations. These operations may be allocated to the basic
work required by any implementation of the algorithm and the additional overhead
work required to perform the application on a specific parallel system. Work will be
defined as the basic algorithm operations that are system independent and excludes
the overhead work including replicated operations that are a consequence of the use
of a specific parallel computer. This work can be defined by post-mortem analysis
of an application run or measured directly through on-chip counters supported by
infrastructure software. There is an expectation that beyond a user specified period of
time, the result is no longer of value. This is a very simple way of incorporating some
time dependence of the worth of the application result into the utility function. But
other than checking for this criterion being satisfied, the special theory of productivity
employs a flat value for the utility of a specific application.

There is a subtle implication of this model which comes from the specific definition
of productivity as previously described. Because time is in the denominator, this
version of the productivity model assumes that faster is better or that the worth
of a result is inversely proportional to the amount of time taken for computation.
While this version is a somewhat more narrow definition of the most general form
of productivity, this model is consistent with the foundations of high-performance
computing and therefore is noted as the HPC productivity model. Utility measured
as the total amount of useful work, then is the special model of HPC productivity.

Let wi represent the basic work of a particular job i, such that the worth of the
result of job I, ui, is equal to wi. Then, U is the sum of u over i and is equal to the
sum of all w.

U =
∑

i

ui

W =
∑

i

wi

U = W

The implications of this definition of utility for HPC productivity will be explored in
the next subsection.

PRODUCTIVITY IN HIGH-PERFORMANCE COMPUTING 123

4.2 MachineThroughput Utility
A simple example of productivity can be formulated in relation to the overall

throughput of the machines during its lifetime. This trivializes certain aspects of the
overall workload, but is valid and in the process gives a rigourous, albeit narrow, for-
mulation of productivity based on the value of the utility function presented above.
i indicates the set of all jobs performed on a machine in its lifetime, TL, and the
total utility function for this duration is W according to definitions from the previous
subsection. The third fundamental factor in conjunction with utility and time reflects
the cost of both the program development and the machine that performs the com-
putation. However, this is the only factor that represents the impact of programming;
there is no time aspect in the machine throughput model.

For each program run, i, the work wi performed in time ti is a fraction of the
maximum work that could have been accomplished, given the system’s peak per-
formance, S. This fraction is assessed as the efficiency of system operation for the
program, ei.

wi = S × ei × ti

W =
∑

i

wi =
∑

i

(S × ei × ti) = S ×
∑

(ei × ti)

The time that is available to execution of the user program is less than the lifetime of
the machine. Scheduled maintenance, servicing of failures, upgrades and reserved sys-
tems usage all contribute to lower than 100% system availability. This total available
time then is given as:

TA = A × TL =
∑

i

ti

Average system efficiency, E, is defined as the ratio of the useful work or the utility,
W , previously specified to be the peak work for the available time:

W = S × E × TA = S × E × A × TL

E =
∑

i

(
ei × ti

TA

)
=

(
1

TA

)
×

∑
i

ei × ti

E × A × TL =
∑

i

ei × ti

This confirms that the average efficiency over the lifetime of the system is equivalent
to the sum of the individual job efficiencies weighted by the ratio of their respective
execution times and available time for user programs.

124 T. STERLING AND C. DEKATE

4.3 Cost
The cost, C, of achieving the computational results is the sum of the costs of

developing the programs, CP, and performing the computations on the system, CS.
Without proof, it will be asserted that the costs of the individual programs, amortized
over the cost of the partition in space and time per program of the machine does sum
to the cost of machine deployment, CM, and operation, CO, over its lifetime. Thus:

C = CP + CS

CS = CM + CO

Later, one possible breakdown of cost of programming will be considered. But for
the system model of productivity, it is sufficient to note that all software-development
costs in the denominator are additive.

4.4 Productivity for the Machine Model
Here the elements of the formulation for the machine-based special theory of HPC

productivity are brought together in a single relationship, starting with the original
definition of productivity.

� = U

C × T

Substituting for each of these over the lifetime of the machine:

� = U

C × T
= W

C × TL
= S × E × A × TL

(CP + CS) × TL
= S × E × A

CP + CM + CO

This model is a function of a set of quantifiable parameters. If, as is typically done,
peak performance for HPC systems is specified in flops, then the units for productivity
are flops/$ for the special theory of productivity for the case of the machine model.

5. A User-based Model of Productivity

The system-based model described in the previous section provided a precise
representation of productivity as viewed from the perspective of the machine and
within the narrow measure of utility based on work. It is encouraging that a model of
productivity, albeit so constrained, can be formulated rigorously to yield quantifiable
measures. However, productivity beyond performance is motivated by the need to
reflect the programmer and system workflow factors into a single viable representation

PRODUCTIVITY IN HIGH-PERFORMANCE COMPUTING 125

from the user perspective as well. In particular, the time to obtain the solution of a
posed question must incur the effects related to program development time, not just
its cost as was the case in the machine-based model. Under specific conditions, the
time to implement a new program can take years while the execution time may
take hours, days or weeks, with some runs lasting for several months. But even
in these extreme execution times, the program development time may dominate.
Programming is also much harder to measure than are machine operational properties.
As will be further discussed in a later section, just quantifying the size of a program
is challenging due to non-robust measures such as the popular SLOC or source lines
of code. For a given execution program, its source code may vary substantially in
terms of the SLOC measure depending on the programmers involved, the language
being used, the degree of resource management optimization incorporated explicitly
in the code and simple style issues. Yet, the result values may be equivalent. Finally,
the length of time to derive a code for execution can vary dramatically independent
of length by the original source material chosen as a starting point. Most programs
are not written from scratch, at least not entirely, but rather are based on other related
codes, libraries and system services. Construction of a final program usually involves
a mix of methods and sources and the means to integrate them. Ironically, the hardest
part about creating a complete, robust, performance-tuned code is not its writing
but its testing. Even the smallest change to a user program may require extensive
testing to verify that the program will run without faults and validate the correctness
of the results delivered. For codes incorporating highly non-linear relationships, this
is actually impossible with the degree of confidence in a code, a function of the
degree of testing applied. In this section, another simple model is devised founded
on many of the previous assumptions but reflects the user perspective. While correct
within the narrow scope of its formulation, many subtleties at the detailed level are
abstracted away. These are areas of active research within the community.

5.1 A Workflow for a User-based Productivity Model
The machine-based model assumed a ‘throughput’ workflow where the resource

being utilized was driven by a non-empty queue of pending tasks. This is a multi-task
workflow. The time was infinite, or more precisely, the lifetime of the system and only
the costs of program development was considered, not their time. A user-based model
of productivity reflects a single-task workflow, although the task may comprise many
iterations or runs of the same program to deliver a sequence of results rather than a
single result. The principal distinction between the two models is that the machine-
based model does not reflect program development time, except implicitly as a factor
in determining cost, whereas the user-based model makes program development time

126 T. STERLING AND C. DEKATE

explicit. A second distinction between the two models is that the user-based model is
a ‘response time’ oriented model rather than a throughput model. The time domain
is finite over the duration of a single task rather than quasi infinite normalized over
the lifetime of the machine. Time starts with the specification of the problem to be
resolved or the question to be answered through computational means and ends when
the results contributing to the answer is delivered by the computation. This workflow
is illustrated in Fig. 6.

While somewhat simplified from real-world experience, this workflow captures
the major constituent factors contributing to the time domain of the model. TD is the
time taken to develop the program code. The sub-factors contributing to the program
development time will be discussed in greater detail in the following section. TQi is
the initialization or setup time required for a particular run i of the application code.
For some applications requiring complex input data sets, such as a 3-D data grid for
a variable geometry airframe of a fighter aircraft, this can be a very time-consuming
(and computation-consuming) aspect of the total workflow. For other problems, it may

User-level Program Cycle

HPC System Level (Multiuser/Multiprogram) View

Construct Setup Execute
Archieve
Results

T

Execute
Archieve
Results

Ti

P1

P2

P3

Fig. 6. User-based productivity model & cost.

PRODUCTIVITY IN HIGH-PERFORMANCE COMPUTING 127

amount to little more than a handful of initialization parameters and take essentially
no time at all. TRi is the execution time for a given run i of the application code. If
there are a total of K runs of the application code for the user task, then the total time
for the task is given as:

T = TD +
K∑
i

(
TQi + TRi

)
Note that in the workflow described, the setup time is put in the critical timeline of
the workflow. This is valid when the setup of one run is dependent on the results
of the previous run. However, there are valid situations when the setup times can be
overlapped with the execution times, minimizing their impact on the critical workflow
time, although still contributing to the cost (see below).

5.2 Cost for User-based Model
The cost factor for the user-based model is similar to that of each task in the

machine-based model. It combines the cost of program development, CD, with the
cost of the execution of the task, CRi, over the number of K runs. In addition,
the cost must also reflect the level of effort applied to the input data initialization,
i.e., the setup cost, CQi. Similar to the total time, T , the total cost C can be derived
from the workflow.

C = CD +
K∑
i

(
CQi + CRi

)
It is clear that cost is not an independent factor but is strongly related to time. For
example, the cost of the task execution is proportional to the length of time that the
machine platform is employed by the application. For the labour-intensive aspects
of the program development (there are also ancillary costs related to machine usage
for debugging and testing), the cost of program development is a direct function of
the average number of programmers and the time for completion of the application.
Similarly, setup cost is related to the number of computational scientists involved
(these may be different from the code developers) and the time required for assembling
the input data set.

CD = cd × nd × TD

CQi = cq × nq × TQi

CRi = cr × TRi

128 T. STERLING AND C. DEKATE

Here cd and cq are coefficients in units of dollars per person-time (e.g., manhour) for
code development and input setup time, respectively. Also, nd and nq are the average
number of persons for code development and input setup, respectively. The coefficient
c is that parameter that specifies cost per unit time of system usage which combines
the amortized cost of the machine deployment combined with the per-unit-time cost
of operation. A simplification that has been assumed in this discussion is that the
entire machine is used for each program. Typically, the largest machines are space
partitioned so that more than one program is run at one time with different subsets of
system nodes employed for each concurrent application.

5.3 User-based Productivity
Combination of these results provides an initial formulation of a relation for user-

based productivity. As mentioned before, the utility function is equated to useful work
performed over the K runs of the single application.

� = U

C × T

� =

K∑
i

wi[
CD +

K∑
i

(
CQi + CRi

)] ×
[
TD +

K∑
i

(
TQi + TRi

)]

� =

K∑
i

wi[
cd × nd × TD +

K∑
i

(
cq × nq × TQi + cr × TRi

)] ×
[
TD +

K∑
i

(
TQi + TRi

)]

Using similar conversions as was done with the earlier machine model, the useful
work can be translated to efficiency measures.

K∑
i

w =
K∑
i

(S × ei × TRi) = S × eA × K × TRA

� = S × eA × K × TRA[
cd × nd × TD +

K∑
i

(
cq × nq × TQi + cr × TRi

)] ×
[
TD +

K∑
i

(
TQi + TRi

)]

In this formulation, the subscript ‘A’ indicates the average values of the efficiencies
per run and the execution times per run.

PRODUCTIVITY IN HIGH-PERFORMANCE COMPUTING 129

5.4 Limiting Properties
The formulation of the user-based model while reflecting the dominant factors at

least within the HPC utility function adopted does not lend itself to easy analysis or
interpretation in closed form. If we were to carry out the product in the denominator,
there would be nine separate product elements. This does not lend itself to intuitive
understanding. To better understand the user-based model, we will examine the limits
of the formulation with respect to the two most critical time parameters: TD and TR.

For many tasks, existing codes are used whenever possible. For this class of work-
flow, it is assumed that TR is much greater than TD and TQ. In this case, the machine
execution time dominates the workflow and an approximate measure of productivity
is given by:

�TR = S × e × K × TRA(
cr ×

K∑
i

TRi

)
×

K∑
i

TRi

= S × e × K × TRA

(cr × K × TRA) × (K × TRA)

= S × e

(cr × K × TRA)

This simple relation shows that in the limit for execution-dominated workflows,
productivity is inversely proportional to the runtime. A somewhat more compli-
cated expression captures the productivity for those workflows that are dominated
by program development time. In this case, TD is much greater than TR.

�TD = S × e × K × TRA

(cd × nd × TD) × TD
=

[
S × e

cd × nd

]
×

[
K × TRA

T 2
D

]

This shows the importance of program development time to productivity. When code
development dominates, productivity is inversely proportional to the square of the
development time.

6. Software Development & Productivity

Application development for HPC systems affects productivity at several levels
including time and overall cost of the application. Traditionally, significant lines of
code (SLOC) has been used as a metric for measuring software development produc-
tivity. An SLOC-based approach fails to take into account the software development
process (reuse/write from scratch etc.), complexities associated with various parallel
programming and computational models, cost and time associated with debugging and
testing etc. In summary, there are no widely accepted metrics that comprehensively

130 T. STERLING AND C. DEKATE

capture the complexities of software development processes. Earlier section (3.5)
detailed the programmability factors affecting productivity. In this section, we dis-
cuss the process of code development, issues related to programming languages and
tools used to develop complex codes and finally the nature of machines and associated
programming model decisions.

Degree of Reuse. Development of source code for any program usually involves
varying degreeS of reuse of existing codes. A programmer developing source code
to solve a problem could: 1) write the entire application from scratch, 2) reuse parts
of existing codes and write the glue code, and in the scenario of maximum reuse and
3) use existing codes without modification to the source code but with new/varying
parameters during runtime. In practice, programmers use a combination of the above
three methods depending on the case of specific software development use. Each
of these techniques has temporal features associated with it; writing complex HPC
programs from scratch would lead to customized solutions for the problem at hand;
however, such an approach might increase the time to production code and asso-
ciated cost. Reuse of existing codes (such as libraries or frameworks) to provide
parts of the desired functionality could potentially reduce the time to development;
however, the involved developers would require wide range of expertise and hence
increased associated cost. Reuse of existing codes without modification except for
their input parameters requires little or no time for development; however, it requires
expert users who are aware of the intricacies of the code and hence could affect the
overall cost.

Programming Language. Selection of programming language impacts every
aspect of complex program development. Some programming languages, particularly
object-oriented languages, lend themselves naturally to extremely complex problems
involving large teams. Legacy languages that still pervade most of HPC codes require
additional effort to enable code sharing across large teams. Programming language
also affect the degree of reuse of existing codes. High-level languages are extremely
easy to learn and provide fast turn-around of production level code at the expense
of performance. Related research (Ken Kennedy’s research) elucidates the trade-off
between programming language abstraction and performance.

Development and Debugging Tools. Majority of the costs in software engineer-
ing have been known to come from testing and maintenance of software. HPC codes
are particularly large and involve complex interactions between communicating pro-
cesses. In addition, many of these codes run on distributed homogenous systems that
provide unpredictable execution environments. Debugging such complex codes is an
extremely challenging endeavour, hence availability of debugging codes influences,

PRODUCTIVITY IN HIGH-PERFORMANCE COMPUTING 131

to a large extent, the choice of programming language and parallelization techniques.
In addition to debugging tools, compilation tools also have a large role to play in
selection of the right technologies for the problem to be solved. Compilers for lan-
guages such as C and FORTRAN are available by default on most production-scale
supercomputers. In addition, many of these compilers are optimized for the particu-
lar system architecture of the supercomputer, for instance, availability of xlc and xlf
on IBM supercomputers, PGI or Intel compilers on production supercomputers etc.
Wider selection of compilers allows developers to utilize the supercomputing system
efficiently while ensuring faster time to provide solution for their applications.

7. Related Works

Emerging discipline of productivity is being studied across by large number of
research groups. In this section, we briefly highlight the works that provide other
approaches to productivity and have helped us better understand the problem space

Snir Model. Snir’s [2] model defines supercomputing productivity as the ratio
between the utility of the output computed by the system to the overall cost of the
system. This productivity model is represented using:

�(P, S, T, U) = U(P, T)

C(P, S, T)

where �(P, S, T, U) represents the productivity of the supercomputing system S used;
P the problem solved in time T and the corresponding utility function U representing
the preferences controlling the outcomes. Each time to solution T is associated with
a utility function U(P, T). Overall cost of computing the solution on a system S for a
problem P in time T is captured using the cost function C(P, S, T). The utility function
U(P, T) is characterized as a decreasing function of T . The overall cost function
C(P, S, T) is characterized as a combination of development cost CD(P, S, TD) and
execution cost CE(P, S, TE) where the overall time to solution is T = TD + TE.

Ken Kennedy Model. Kennedy’s [1] attempts to define the productivity of pro-
gramming interfaces using two dimensionless ratios: relative power and relative
efficiency. In doing so, the model exposes the trade-offs between abstraction and per-
formance in programming interfaces. This model defines productivity as the problem
of minimizing time to solution T (P), where P is the problem. The time to solution is
defined as T (P) = I(P) + r1C(P) + r2E(P), where I(P) is the implementation time
for the program P , C(P) is the compilation time, r1 is the number of compilations,
E(P) is the execution time per run of the program P and r2 is the number of runs.

132 T. STERLING AND C. DEKATE

The cost to solution for a problem is denoted using c(P) and is defined as the sum of
cost of developing the application code D(P) and average cost of machine time for
one run of the application. Relative power (ρL) of a programming language is defined
as the ratio of implementation time of a given program written (P0) in a standard pro-
gramming language, to the implementation time of the same program written (PL)
using the new programming language. The relative efficiency (εL) of a programming
language is defined as the ratio between the execution times of the programs (standard
vs. new)

ρL = I(P0)

I(PL)

εL = E(P0)

E(PL)

Relative power is inversely proportional to efficiency, highlighting the trade-off
between abstraction and performance for programming languages (for high-level
languages, ρL > 1 and εL < 1). On the basis of these concepts, productivity of a
programming interface is defined as:

productivity = ρ − εX

1 − X

Where X is defined as a problem-dependent parameter that helps combine rel-
ative power and efficiency of a programming language and is defined as X =
rE(PL)/I(PL).

Kepner’s (SK)3 Synthesis Model. Kepner’s [5] model combines prior works (Snir,
Sterling, Ken Kennedy, Charles Koelbel, Rob Schriber) to provide a unified look at
productivity using (SK)3 model. Productivity is expressed as:

� = SPεLEA

CS/ρL + CO + CM

where ρL and εL are described in Kennedy’s model. CS, CO and CM are costs associ-
ated with software on a system, ownership and machine, respectively. SP is the peak
processing speed (operations per unit time), E is efficiency and A is availability of
the system.

Other Works. Post and Kendell [4] present the comprehensive experience of devel-
oping production-level complex high-performance computing programs at National
Labs. Their work also highlights lateral issues such as code development team compo-
sition and software engineering issues. Bob Numrich’s [3] model defines productivity

PRODUCTIVITY IN HIGH-PERFORMANCE COMPUTING 133

as an evolution of work as a function of time. In order to do so, the model uses the
concept of computational action.

8. Conclusions

Productivity is a far richer measure of value of a computing methodology than
are conventional flops or benchmark-based metrics. It reflects the entire workflow
involved in the derivation of computationally derived answers to posed questions. It
captures the utility or worth of the result for the user institution, the time to derive the
answer, and the cost in doing so. With a valid formulation of productivity for a given
context, sensitivity studies may be performed and choices made among alternative
approaches for reaching the end goal. For example, when does it make sense to invest
more time in refining an already working code for performance tuning? Should a
larger system be employed to solve a computational problem? Should more people
be put on a software development project? These and other questions may be consid-
ered within the analytical framework provided by productivity. This chapter, while
introducing the most general definition of productivity, has focused on a narrower
representation targeted to the realm of high-performance computing and its response
time and throughput-oriented bias. The model was further constrained through the
adoption of a specific work-based utility function, asserting that the worth of a result
is proportional to the amount of basic computational work required to derive that
answer independent of the ancillary work performed as a result of the system charac-
teristics employed. This is not to assume this is by any means to only class of utility
function to apply nor necessarily the best for comparative evaluation of alternative
strategies. However, it is relevant to high-performance computing, typical of the major
determining factor in scheduling policies and in enabling a quantifiable productivity
metric. This strategy was applied to two related but distinct perspectives on system
usage and its productivity: the machine-based and user-based models. The machine-
based model allowed us to consider the productivity of a given high-performance
computing platform or system. This is important because institutions make major
commitments in the procurement of such systems and their productivity determines
the ultimate value of such systems to the mission of the deploying organization and
its sponsoring agency (government or corporate). The user-based model allowed us
to consider the productivity of a specific user or team working on a single application.
This is the more common viewpoint in which productivity is considered and looks
at the end-to-end workflow from the point of posing the question to the time that
all of the results required to address it are determined through computational means.
Again, this model of productivity yielded quantitative metrics of productivity and
also exposed distinct modes of operation depending on the dominance of either code

134 T. STERLING AND C. DEKATE

development or execution. This distinction was made with respect to time. A different
limits formulation would have been possible in terms of cost, suggesting somewhat
different trade-offs.

However, as the early discussion on factors demonstrated, there is significant uncer-
tainty on how to characterize the time and cost of software development a priori. How
hard is it to write a program? The use of lines of code is hardly an adequate repre-
sentation of a program in terms of its difficulty of development. Yet, it is the most
widely used metric and there is no good alternative. This is just one of many aspects of
productivity that demand further substantial research. Adoption of productivity as a
valid measure of quality still requires future research. It will be some time when com-
putational scientists will be willing to accept poorer performance in place of reduced
code development time, especially when many such codes achieve less than 10% effi-
ciency measured as floating-point utilization against peak performance as used here.
The issues of scalability and the difference between weak scaling and strict scaling
make the existing issues more complex. When the availability of a larger system
immediately results in the execution of larger programs rather than current programs
with shorter response time, it is hard to compare the productivity of two system of
different sizes. The understanding of productivity and its effective use in the field of
high-performance computing will rely on resolution of these difficult albeit practical
issues.

References

[1] Kennedy K., Koelbel C., and Schreiber R., 2004. International Journal of High Performance
Computing, 18:441.

[2] Snir M., and Bader D. A., 2004. International Journal of High Performance Computing, 18:417.
[3] Numrich R. W., 2004. International Journal of High Performance Computing, 18:449.
[4] Post D. E., and Kendall R. P., 2004. International Journal of High Performance Computing, 18:399.
[5] Kepner J., 2004. International Journal of High Performance Computing, 18:505.
[6] Owens J. D., Luebke D., Govindaraju N., Harris M., Krüger J., Lefohn A. E., and Purcell T., 2007.

Computer Graphics Forum, 26(1):80–113.
[7] Boehm B., Abts, Brown A. W., Chulani C., Clark B. K., Horowitz E., Madachy R., Reifer D.,

and Steece B., 2000. Software Cost Estimation with COCOMO II. Englewood Cliffs, Prentice-Hall,
NJ, ISBN 0-13-026692-2.

[8] Sterling T., 2001. Beowulf Cluster Computing with Linux. MIT Press, Cambridge, MA.
[9] Kepner J., November 2006. High Productivity Computing Systems and the Path towards Usable

Petascale Computing, CTWatch 2(4A).
[10] Sterling T., Becker D., Savarese D., Dorband J. E., Ranawake U. A., and Packer C. V., August

1995. BEOWULF: a parallel workstation for scientific computation. Proceedings of the International
Conference on Parallel Processing (ICPP).

[11] Amdahl G., 1967. Validity of the single processor approach to achieving large-scale computing
capabilities, AFIPS Conference Proceedings, 30, pp. 483–485.

[12] Peter C. F., 1970. Utility Theory for Decision Making, in Robert E (ed.), Huntington, NY, Krieger
Publishing Co.

[13] von Neumann J., and Morgenstern O., 1944. Theory of Games and Economic Behavior, Princeton
University Press, Princeton, NJ, 2nd edition, 1947.

Performance Prediction and
Ranking of Supercomputers

TZU-YI CHEN

Department of Computer Science
Pomona College
Claremont, CA 91711
tzuyi@cs.pomona.edu

OMID KHALILI

Department of Computer Science and Engineering
University of California, San Diego
9500 Gilman Drive, Mail Code 0404
La Jolla, CA 92093-0404
okhalili@cs.ucsd.edu

ROY L. CAMPBELL, JR.

Army Research Laboratory
Major Shared Resource Center
Aberdeen Proving Ground, MD 21005
rcampbell@arl.army.mil

LAURA CARRINGTON, MUSTAFA M.TIKIR, AND
ALLAN SNAVELY

Performance Modeling and Characterization (PMaC) Lab,
UCSD

9500 Gilman Dr
La Jolla, CA 92093-0505
{lcarring,mtikir,allans}@sdsc.edu

ADVANCES IN COMPUTERS, VOL. 72 135 Copyright © 2008 Elsevier Inc.
ISSN: 0065-2458/DOI: 10.1016/S0065-2458(08)00003-X All rights reserved.

136 T.-Y. CHEN ET AL.

Abstract
Performance prediction indicates the time required for execution of an application
on a particular machine. Machine ranking indicates the set of machines that is
likely to execute an application most quickly. These two questions are discussed
within the context of large parallel applications run on on supercomputers. Dif-
ferent techniques are surveyed, including a framework for a general approach that
weighs the results of machine benchmarks run on all systems of interest. Variations
within the framework are described and tested on data from large-scale applica-
tions run on modern supercomputers, helping to illustrate the trade-offs in accu-
racy and effort that are inherent in any method for answering these two questions.

1. Introduction . 137

2. Methods for Predicting Performance . 139

2.1. Benchmarks . 139

2.2. Weighted Benchmarks . 140

2.3. Building Detailed Performance Models . 141

2.4. Simulation . 142

2.5. Other Approaches . 143

3. A Method for Weighting Benchmarks 143

3.1. Machine and Application Characteristics . 143

3.2. General Performance Model . 145

3.3. Evaluating Performance Predictions . 146

3.4. Evaluating Rankings . 146

4. Examples . 148

4.1. Machines . 148

4.2. Applications . 150

5. Using End-to-End Runtimes . 152

5.1. Basic Least Squares . 154

5.2. Least Squares with Basis Reduction . 155

5.3. Linear Programming . 158

5.4. Discussion . 160

6. Using Basic Trace Data . 160

6.1. Predicting Performance . 161

6.2. Ranking . 162

6.3. Discussion . 163

7. Application-Independent Rankings . 163

7.1. Rankings Using Only Machine Metrics . 164

PERFORMANCE PREDICTION AND RANKING OF SUPERCOMPUTERS 137

7.2. Rankings Incorporating Application Characteristics 165

7.3. Discussion . 168

8. Conclusion . 168

Acknowledgments . 169

References . 170

1. Introduction

Given a parallel application, consider answering the following two questions: how
much time is needed for the execution of application on a particular machine, and
which of a set of machines is likely to execute the application most quickly? Answers
to these questions could enable users to tune their applications for specific machines,
or to choose a machine on which to run their applications. Answers could help a
supercomputing center schedule applications across resources more effectively, or
provide them data for decisions regarding machine acquisitions. More subtly, answers
might enable computer architects to design machines on which particular applications
are likely to run quickly.

But it is not easy to get an answer to these questions. Since the performance of
a parallel application is a function of both the application and the machine it runs
on, accurate performance prediction has become increasingly difficult as both appli-
cations and computer architectures have become more complex. Consider Fig. 1,
which plots the normalized relative runtimes of 8 large-scale applications on 6
supercomputers, both described in Section 4.1 The plot shows that across these appli-
cations, no single machine is always the fastest, suggesting that there is no trivial way
to predict even relative performance across a set of machines.

Since different machines can be best for different applications, this chapter
discusses techniques for answering the original two questions:

• How can one accurately predict the running time of a specific application,
on a given input, on a particular number of processors, on a given machine?
(performance prediction)

• How can one accurately predict which of a set of machines is likely to execute
an application fastest? (machine ranking)

1 Since the machines shown are only a subset of those on which each application was run, the highest
bar is not at 1 for every application. In addition, not all applications were run on all machines with the
chosen number of processors.

138 T.-Y. CHEN ET AL.

0.8

0.6

0.4

0.2

0

1

av
us

 (3
2)

cth
7

(3
2)

ga
m

es
s (

32
)

hy
co

m
 (2

4)

lam
m

ps
 (1

6)

oo
co

re
 (1

6)

ov
er

flo
w (4

8)

wrf
(3

2)

ARL_SGI_O3800

ASC_HP_SC45

ARL_LNX_Xeon

ERDC_SGI_O3900

ASC_SGI_O3900

NAVO_IBM_p655_ROM

Fig. 1. This graph shows the relative runtimes of 8 applications on 6 supercomputers. The x-axis gives
the name of the application, with the number of processors on which it was run in parentheses. The y-axis
gives the runtime divided by the maximum time taken by any of a larger set of 14 machines to run the
particular application.

Note that while the ability to do the former gives us a way to do the latter, the
reverse is not true. In practice, however, while any method for predicting performance
(including the many that are described in Section 2) could also be used to rank
machines, users may consider the work required for the initial prediction to be
excessive. Since sometimes the only information desired is that of expected relative
performance across a set of machines, this scenario is also addressed. In addition,
Section 7 considers an even further generalization where the goal is to find an
application-independent machine ranking that is sufficiently accurate for providing
useful information.

The rest of this chapter is laid out as follows. Section 2 surveys some general
approaches for both performance prediction and machine ranking, organized by the
type of information and level of expertise required for each. The trade-offs inherent in
choosing a particular performance prediction technique or a particular ranking tech-
nique are studied in the context of a methodology that attempts to achieve a balance
between accuracy and effort in Sections 3 through 6. The basic framework for the

PERFORMANCE PREDICTION AND RANKING OF SUPERCOMPUTERS 139

methodology is covered in Section 3, details are addressed in Section 4, and examples
of how different techniques fit into this framework are discussed in Sections 5 and 6.
An exploration of how to apply the techniques to generate application-independent
machine rankings is presented in Section 7. The results are given and analyzed in
each section.

2. Methods for Predicting Performance

Methods for predicting the performance of an application on a parallel machine
begin with the assumption that the running time is a function of application and system
characteristics. Currently, the most accurate predictions are made by creating detailed
models of individual applications which describe the running time as a function of
system characteristics. These characteristics can then be carefully measured on all
systems of interest. However, in many situations the time and/or expertise required to
build a detailed model of an individual application are not available, and sometimes
even the system characteristics cannot be measured (for example, when performance
predictions are used to help decide which of a number of proposed supercomputers
to build). And even when data are available, there are situations in which precise
performance prediction is unnecessary: for example, when the question is which of a
set of machines is expected to run a particular application most quickly.

In this section, we give an overview of some of the approaches to performance
prediction, noting connections to ranking as appropriate. The techniques are distin-
guished by the amount of information they use about a system and an application, as
well as by the sophistication of the ways in which they use that information to predict
the performance of an application.

While the focus here is on predicting the performance of large-scale applica-
tions on parallel machines, there has also been considerable work on predicting the
performance of single processor applications (see, for example, [30]).

2.1 Benchmarks
At one extreme are benchmarks, which can be used to predict performance using

only information about the machine. Consider that low-level performance metrics
such as processor speed and peak floating-point issue rate are commonly reported,
even in mass-market computer advertisements. The implication is that these num-
bers can be used to predict how fast applications will run on different machines,
hence faster is better. Of course, manufacturer specifications such as theoretical peak
floating-point issue rates are rarely achieved in practice, so simple benchmarks may
more accurately predict relative application performance on different machines.

140 T.-Y. CHEN ET AL.

A particularly well-known parallel benchmark is described by Linpack [14] and
has been used since 1993 to rank supercomputers for inclusion on the Top 500 list [45].
The Top 500 list is popular partly because it is easy to read, is based on a simple metric
that is easy to measure (essentially peak FLOPS), and is easy to update. Unfortunately,
simple benchmarks such as Linpack may not be sufficient for accurately predicting
runtimes of real applications [7]. This is not surprising, since Linpack gives a single
number for a machine which, at best, allows the execution time to be modelled as
some application-specific number divided by that particular system’s performance on
Linpack.

To better predict the performance of individual applications, two approaches have
been taken. One is to provide benchmarks which more closely mimic actual appli-
cations. The best known of these is perhaps the NAS Parallel Benchmark suite [3],
which consists of scaled-down versions of real applications. The other is to provide
benchmarks which take into consideration the performance of multiple system com-
ponents. An early example of the latter considered the ratio of FLOPS to memory
bandwidth [31], which has the advantage of allowing simple comparisons between
machines since it also gives a single number for each machine.

More recently, benchmark suites that give multiple performance numbers mea-
suring assorted system characteristics have been proposed. These include the IDC
Balanced Rating [20], which has been used to rank machines based on measurements
in the broad areas of processor performance, memory system capability, and scaling
capabilities; and the HPC Challenge (HPCC) benchmark [29], which consists of 7
tests measuring performance on tasks such as dense matrix multiplication and the
Fast Fourier Transform. Of course, with such benchmark suites it becomes incum-
bent on the user to decide which measurements are most relevant for predicting the
performance of a particular application.

Note that a benchmark such as Linpack, which generates a single number for
each machine, produces an application-independent ranking of machines. While their
usefulness is limited, such rankings are still of significant interest, as the use of
Linpack in generating the popular Top 500 list [45] demonstrates.Alternative methods
for generating application-independent rankings are explored in Section 7. In contrast,
a benchmark suite that generates multiple numbers for each machine has the potential
to produce more useful application-specific rankings, but requires a user to interpret
the benchmark numbers meaningfully.

2.2 Weighted Benchmarks
If several benchmarks are run on a machine, a user must determine how to interpret

the collection of results in light of an individual application. With a benchmark such
as the NAS Parallel Benchmarks [3], a user can choose the benchmark that most

PERFORMANCE PREDICTION AND RANKING OF SUPERCOMPUTERS 141

closely resembles their particular application. For lower level benchmark suites such
as HPCC [19], users can turn to research on performance prediction techniques that
consist of weighting the results of simple benchmarks. The amount of information
assumed to be available about the application in generating the weights can range
from end-to-end runtimes on a set of machines to more detailed information.

For example, Gustafson and Todi [16] used the term convolution to describe work
relating “mini-application” performance to that of full applications. McCalpin [31]
showed improved correlation between simple benchmarks and application perfor-
mance, though the focus was on sequential applications rather than the parallel
applications of interest here. Other work focussing on sequential applications includes
that of Marin and Mellor-Crummey [30], who described a clever scheme for combi-
ning and weighting the attributes of applications by the results of simple probes.
Using a full run of an application on a reference system, along with partial appli-
cation runtimes on the reference and a target system, Yang et al. [48] describe a
technique for predicting the full application performance using the relative perfor-
mance of the short runs. While the reported accuracy is quite good, this type of
approach could miss computational behavior that changes over the runtime of the
application; in addition, the accuracy was reduced when the partial runtime was used
to predict the application’s performance on a different problem size or number of
processors.

Section 3 in this chapter discusses another general method for weighting bench-
mark measurements. Sections 4 and 5 discuss the use of a least squares regression to
calculate weights for any set of machine benchmarks and demonstrate their use for
both performance prediction and machine ranking.

2.3 Building Detailed Performance Models
For the most accurate performance predictions, users must employ time and

expertise to build detailed models of individual applications of interest.
With this approach, the user begins with an in-depth understanding of how the appli-

cation works, including details about the computational requirements, the communi-
cation patterns, and so on. This understanding is then used to build a performance
model consisting of a potentially complex equation that describes the running time in
terms of variables that specify, for example, the size of the input, processor characteri-
stics and network characteristics. While this approach can generate highly accurate
predictions, building the model is generally acknowledged to be a time-consuming
and complex task [43]. Nevertheless, if there is significant interest in a critical
application, the investment may be deemed worthwhile.

Other research focusses on highly accurate modelling of specific applications [17,
18, 23, 28]. The very detailed performance models built as a result have been used

142 T.-Y. CHEN ET AL.

both to compare advanced architectures [22, 24] and to guide the performance
optimizations of applications on specific machines [35].

Due to the difficulty of constructing detailed models, an assortment of general
techniques for helping users build useful performance models has also been proposed.

Many of these methods are based on a hierarchical framework that is described
in [1]. First, the application is described at a high level as a set of tasks that communi-
cate with one another in some order determined by the program. The dependencies are
represented as a graph, which is assumed to expose all the parallelism in the applica-
tion. This task graph is then used to predict the overall performance of the application,
using low-level information about how efficiently each task can be executed.

Examples that can be fit into this framework include work on modelling applications
as collections of independent abstract Fortran tasks [36–38], as well as using graphs
that represent the dependencies between processes to create accurate models [32,
33, 39]. Other work describes tools for classifying overhead costs and methods for
building performance models based on an analysis of those overheads [11]. Another
technique that also begins by building graphs that reveal all possible communication
continues by measuring the potential costs on the target machine and uses those partial
measurements for predicting the performance of the overall application [47].

2.4 Simulation
One way to try and approach the accuracy of detailed performance models, but

without the need for human expertise, is through simulation.
For example, one could use cycle accurate simulations of an application [4–6, 27,

34, 44]. Of course, the main drawback of this approach is the time required. Due to
the level of detail in the simulations, it could take several orders of magnitude more
time to simulate an application than to run it. Again, if there is significant interest in
a single application, this expense may be considered acceptable.

A related technique described in detail in [42] and briefly referred to in Section 6
starts by profiling the application to get memory operation counts and information
on network messages. This model is coarser than the detailed models described
previously in that there is no attempt to capture the structure of the application;
rather, the data collected provides a higher level model of what the application does.
This information can later be convolved with the rates of memory operations —
possibly by modelling the cache hierarchy of the target architecture on the application
trace — and combined with a simulation of the network messages in order to predict
the performance of the given application on the specified machine.

Other methods that attempt to avoid the overhead of cycle accurate simulations
include those that instrument the application at a higher level [12, 15] in order to
predict performance.

PERFORMANCE PREDICTION AND RANKING OF SUPERCOMPUTERS 143

2.5 Other Approaches
It is also worth noting other approaches that have been proposed for predicting the

performance of large-scale applications.
For example, attempts have been made to employ machine-learning techniques.

In [10], the authors examine statistical methods for estimating machine parameters
and then describe how to use these random variables in a performance model. Neural
networks are used in [21, 40] to make performance predictions for an application as
a function of its input parameter space, without building performance models. This
methodology can find nonlinear patterns in the training input in order to make accurate
performance predictions; however, first it requires that the target application is run
numerous times (over 10,000 in the example in [21]) with a range of input parameters,
which may not always be practical.

3. A Method for Weighting Benchmarks

The rest of this chapter explores a few methods for predicting performance and for
ranking machines. These methods are unified by their assumption that all knowledge
regarding machine characteristics are obtained from results of simple benchmark
probes. That this is enough to distinguish the machines is demonstrated in Fig. 2,
which shows that different machines are best at different types of operations. For
example, when compared to the other machines, the machine labelled ARL_Xeon_36
has a very high FLOPS rate (as one would expect from its clock speed, shown in Table I
in Section 4.1), but poor network bandwidth.

Almost all of the methods discussed also assume that information about the appli-
cation is limited to end-to-end runtimes (although Sections 6 and 7 consider what can
be done through incorporating the results of lightweight traces). Just as Fig. 2 shows
that different machines are best at different operations, Fig. 3 demonstrates that dif-
ferent applications stress different types of machine operations. As a result, changing
the behavior of a single system component can affect the overall performance of two
applications in very different ways.

3.1 Machine and Application Characteristics
As noted previously, methods for predicting performance and generating machine

rankings typically assume that performance is a function of machine and application
characteristics. The question is then how to get the most accurate predictions and
rankings using data about the machines and applications that is as cheap as possible
to gather.

144 T.-Y. CHEN ET AL.

0.8

0.6

0.4

0.2

0

1

ARL_Xeon_36

ASC_SC45_HPC10_04

ARSC_P655_08

MHPCC_PWR3

ASC_O3900_04

SDSC_IT2_02

L1
 (s

)

L1
 (r

)

L2
 (r

)

M
M

 (s
)

M
M

 (r
)

NW
 b

w

1/
NW

 la
t

FLO
PS

L2
 (s

)

Fig. 2. A plot of machine characteristics for a set of supercomputers. The characteristics along the
x-axis are described in Table II in Section 4.1. The highest count for each characteristic is normalized to 1.

avus (32) lammps (32) overflow (32) wrf (32)

0.8

0.6

0.4

0.2

0

1

FLO
PS

m
em

or
y (

s)

m
em

or
y (

r)

ba

rri
er

s

ot

he
r c

c

by
te

s r
ec

v (
cc

)

nu
m

 se
nt

 (p
2p

)

by
te

s s
en

t (
p2

p)

Fig. 3. A plot of application characteristics for a set of parallel applications. From left to right, the
x-axis refers to the average count over all processors of floating-point operations, strided memory accesses,
random memory accesses, barriers, other collective communications, the total number of bytes received as
a result of those collective communications, the number of point to point messages sent, and the number
of bytes sent as a result of those point-to-point communications. The highest count for each application
characteristic is normalized to 1.

PERFORMANCE PREDICTION AND RANKING OF SUPERCOMPUTERS 145

The examples explored in the rest of this chapter assume that basic benchmark
measurements can be taken on all machines of interest (or, at a minimum, accu-
rately estimated, as in the case where the system of interest has yet to be built). The
same benchmarks must be run across all the machines, although no further assump-
tions are made. In particular, these benchmarks could consist of microbenchmarks
(e.g., a benchmark measuring the network latency between two nodes), or computa-
tional kernels (e.g., the FFTcomponent of the HPC Challenge suite [19]), or something
even closer to full-scale applications (e.g., the NAS Parallel Benchmarks [3]). This
assumption is reasonable since, by their nature, these benchmarks tend to be easy to
acquire and to run.

The examples in this chapter are of two types when it comes to the data needed
regarding the applications. Those discussed in Section 5 require only end-to-end
runtimes on some small number of machines; those discussed in Sections 6 and 7
use simple trace information about the application, including the number of floating-
point operations and/or the number of memory references. Memory and network
trace information can be collected using tools such as the PMaC MetaSim Tracer
[8] and MPIDTrace [2] tools, respectively. All the techniques also assume that the
input parameters to the application during tracing and measurement of runtimes are
the same across all machines. Note that while these techniques could be used even if
the above assumption was not true, the resulting accuracy of the predictions could be
arbitrarily poor.

3.2 General Performance Model
The other, more fundamental, assumption made by the techniques described in this

chapter is that the performance of an application can be modelled to an acceptable
accuracy as a linear combination of the benchmark measurements.As a small example,
say three benchmarks are run on some machine and that the benchmarks take m1,
m2 and m3 seconds, respectively. Then the assumption is that the running time P of
any application (with some specified input data and run on some specific number of
processors) on that machine can be approximated by the following equation:

P ≈ m1w1 + m2w2 + m3w3 = m · w (1)

Here w1, w2 and w3 are constants that may depend on the application, the machine,
the input and the number of processors with which the application was run.

This model helps illustrate the trade-off between expertise/time and accuracy.
While the linear model is appealingly simple, it could have difficulty capturing, say,
the benefits of overlapping communication and computation in an application.

146 T.-Y. CHEN ET AL.

Given application runtimes on a set of machines and benchmark measurements on
those machines, Section 5 describes how to use a least squares regression to obtain
weights w that are optimal in the sense that they minimize the sum of the squares of
the errors in the predicted times over a set of machines.

A less restrictive approach to the performance model can also be taken; an example
is the method briefly summarized in Section 6. Instead of the dot product in Equation 1,
this method combines machine and application characteristics using a more complex
convolution function.

3.3 Evaluating Performance Predictions
To test the methods that are based on linear regression, cross-validation is used.

In other words, each machine in the data set is considered individually as the target
machine for performance prediction. That machine is not included when the weights
w in Equation 1 are calculated. Then, after the weights are calculated using only
the other machines, those weights are used to predict the performance on the target
machine. The absolute value of the relative error in the predicted time (given by
Equation 2) is then calculated.∣∣∣∣predictedR T − actualR T

actualR T

∣∣∣∣ (2)

After repeating this process for each machine in the data set, the average of all the
relative errors is reported. This process becomes clearer when examples in Section 5
is considered.

Note that cross-validation simulates the following real-world usage of the method:
a researcher has run his/her application on different systems, has access to the bench-
mark measurements on both those systems and a target system, and would like to
predict the running time of the application on the target system without having to
actually run the application on that machine.

Sections 5.3 and 6 briefly describe two other methods for performance prediction.
There, again, the absolute value of the relative error is calculated, and the average
over all the machines is reported.

3.4 Evaluating Rankings
The performance prediction models can also be used to rank a set of machines in

order of the predicted runtimes of an application on those systems. Those rankings, or
rankings generated in any other way, can be evaluated using the metric of threshold
inversions, proposed in [9] and summarized here.

PERFORMANCE PREDICTION AND RANKING OF SUPERCOMPUTERS 147

3.4.1 Predicting Runtimes for Ranking
Testing a predicted ranking requires predicting the performance on more than one

machine at a time. So, instead of removing a single target machine as is done with the
cross-validation procedure described previously, now a set of machines is randomly
selected and the performance on all of those machines is predicted using some per-
formance prediction methodology. Once the predicted runtimes are calculated, the
number of threshold inversions between the predictions and the true runtimes can be
determined. This is repeated 5000 times, each time choosing a random set of machines
to rank and to count thresholded inversions, to get a strong mix of randomly selected
validation machines. While some sets may be repeated in the 5000 trials, because they
are chosen at random, this should not greatly affect the average accuracies reported.

3.4.2 Thresholded Inversions
A simple inversion occurs when a machine ranking predicts that machine A will be

faster than machine B on some application, but actual runtimes on the two machines
show that the opposite is true. For example, if machineAhas larger network bandwidth
than machine B, then the ranking based on network bandwidth would contain an
inversion if, in practice, some application runs faster on machine B. The number of
inversions in a ranking, then, is the number of pairs of machines that are inverted.
In the above example, this is the number of pairs of machines for which the inter-
processor network bandwidth incorrectly predicts which machine should execute a
given application faster. Note that if there are n machines, the number of inversions
is at least 0 and is no larger than n(n − 1)/2.

A threshold is added to the concept of an inversion in order to account for variations
in collected application runtimes and/or benchmark measurements. These variations
can be due to several reasons including, for example, system architectural and design
decisions [26].

For evaluating the ranking methods presented here, two thresholds are used. One
(α) accounts for variance in the measured runtimes, while the other (β) accounts for
variance in the benchmark measurements. Both α and β are required to have values
between 0 and 1, inclusive. For example, let the predicted runtimes of A and B be
R̂TA and R̂TB and the measured runtimes be RTA and RTB. If the predicted runtimes
R̂TA < R̂TB, then A would be ranked better than B, and, if the measured runtimes
RTA > RTB, then there is an inversion. Yet, when using threshold inversions with
α, that would only count as an inversion if RTA > (1 + α) × RTB. β is used in a
similar fashion to allow for variance in benchmark measurements and is usually set
to be less than α. The different values for α and β are attributed to the fact that one
generally expects less variance in benchmark times than in full application runtimes

148 T.-Y. CHEN ET AL.

because benchmarks are typically simpler than large-scale real applications and so
their execution times are more consistent.

The examples in this chapter use values of α = .01 (which means that a difference of
up to 1% in the application runtimes is considered insignificant) and β = .001 (which
means a difference of up to .1% in the benchmark times is considered insignificant).
In addition, Table VII in Section 5 demonstrates the effect of changing the threshold
values on the number of inversions for a particular scenario.

This metric based on thresholded inversions is particularly appealing because it is
monotonic in the sense that adding another machine and its associated runtime cannot
decrease the number of inversions in a ranking. Within our context of large parallel
applications, this feature is highly desirable because often only partial runtime data
is available: in other words, rarely have all applications of interest been run with the
same inputs and on the same number of processors on all machines of interest.

4. Examples

While the techniques described in the following sections could be used for any set
of benchmarks in order to study any parallel application, the examples in this chapter
use the following machines, benchmarks and applications. To see the application of
these techniques to other combinations of benchmarks and applications, see [25].

4.1 Machines
Table I summarizes the set of machines on which benchmark timings were collected

and applications were run; the locations are abbreviations for the sites noted in the
Acknowledgements at the end of the chapter. Regarding the benchmarks, information
was collected about the FLOPS, the bandwidth to different levels of the memory
hierarchy, and network bandwidth and latency.

To determine the FLOPS, results from the HPC Challenge benchmarks [19] were
used.Although the HPC Challenge benchmarks were not run directly on the machines
in Table I, results on similar machines (determined based on their processor type, the
processor frequency, and the number of processors) were always available and so
were used instead. In practice, memory accesses always take significantly longer
than floating-point operations and so getting the exact FLOPS measurement on each
machine would unlikely make a significant difference in the results presented in this
chapter.

Because increases in clock speed have far outpaced increases in the bandwidth
between processors and memory, the bottleneck for today’s applications is as,
if not more, likely to be memory bandwidth than FLOPS [46]. As a result, the

PERFORMANCE PREDICTION AND RANKING OF SUPERCOMPUTERS 149

Table I
Systems Used for the Examples in This Chapter

Location Vendor Processor Frequency # Processors

ASC SGI Altix 1.600 GHz 2000
SDSC IBM IA64 1.500 GHz 512
ARL IBM Opteron 2.200 GHz 2304
ARL IBM P3 0.375 GHz 1024
MHPCC IBM P3 0.375 GHz 736
NAVO IBM P3 0.375 GHz 928
NAVO IBM p655 1.700 GHz 2832
NAVO IBM p655 1.700 GHz 464
ARSC IBM p655 1.500 GHz 784
MHPCC IBM p690 1.300 GHz 320
NAVO IBM p690 1.300 GHz 1328
ARL IBM p690 1.700 GHz 128
ERDC HP SC40 0.833 GHz 488
ASC HP SC45 1.000 GHz 768
ERDC HP SC45 1.000 GHz 488
ARSC Cray X1 0.800 GHz 504
ERDC Cray X1 0.800 GHz 240
AHPCRC Cray X1E 1.130 GHz 960
ARL LNX Xeon 3.060 GHz 256
ARL LNX Xeon 3.600 GHz 2048

FLOPS measurement was augmented by the results of the MAPS benchmark in
Membench [7], which measures the bandwidth to different levels of the memory
hierarchy for both strided and random accesses. Note that the fundamental difference
between strided and random memory references is that the former are predictable
and thus prefetchable. Because random memory references are not predictable, the
bandwidth of random accesses actually reflects the latency of an access to some par-
ticular level of the memory hierarchy.As an example, Fig. 4 demonstrates the result of
running MAPS on an IBM p690 node to measure the bandwidth of strided accesses.
As the size of the array increases, eventually it will no longer fit into smaller, faster
caches — as a result, the effective bandwidth drops. A region for a memory level is
defined as a range of data array sizes where the array fits into the level and achievable
bandwidth from the level that is fairly stable (each plateau in the MAPS curve). Once
the regions for L1, L2, L3 caches and those for main memory have been identified
by a human expert, a single point in each region is used as the bandwidth metric for
that level of the memory hierarchy.

Finally, Netbench [7] was used to measure network bandwidth and latency.
The benchmark metrics used for the examples in this chapter are summarized in

Table II.

150 T.-Y. CHEN ET AL.

12

10

8

B
an

d
w

id
th

 (
G

B
/s

ec
)

Array Size (8 byte words)

6

4

2

0

81
92

32
76

8

65
53

6

98
30

4

17
20

32

56
52

48

81
10

08

12
53

37
6

20
39

80
8

36
37

24
8

61
44

00
0

81
83

80
8

11
20

66
56

16
29

38
88

Fig. 4. MAPS bandwidth measurements (in Gigabytes/second) for an IBM p690 node as a function of
array size.

Table II
Benchmark Metrics used for the Examples in This Chapter

Abbreviation Description Benchmark Suite

L1 (s) Bandwidth of strided accesses to L1 cache MAPS
L1 (r) Bandwidth of random accesses to L1 cache MAPS
L2 (s) Bandwidth of strided accesses to L2 cache MAPS
L2 (r) Bandwidth of random accesses to L2 cache MAPS
L3 (s) Bandwidth of strided accesses to L3 cache MAPS
L3 (r) Bandwidth of random accesses to L3 cache MAPS
MM (s) Bandwidth of strided accesses to main memory MAPS
MM (r) Bandwidth of random accesses to main memory MAPS
NW bw Bandwidth across interprocessor network Netbench
NW lat Latency for interprocessor network Netbench
FLOPS Floating point operations per second HPCC

4.2 Applications
The applications used in this chapter are from the Department of Defense’s

Technical Insertion 2006 (TI-06) program [13]. The following are short descriptions
of the eight applications:

AVUS: Developed by the Air Force Research Laboratory, AVUS is used to deter-
mine the fluid flow and turbulence of projectiles and air vehicles. The parameters
used calculate 100 time-steps of fluid flow and turbulence for wing, flap and end
plates using 7 million cells.

PERFORMANCE PREDICTION AND RANKING OF SUPERCOMPUTERS 151

CTH: The CTH application measures the effects of multiple materials, large
deformation, strong shock wake, solid mechanics and was developed by the
Sandia National Laboratories. CTH models multi-phase, elastic viscoplastic,
porous and explosive materials on 3-D and 2-D rectangular grids, as well as 1-D
rectilinear, cylindrical and spherical meshes.

GAMESS: Developed by the Gordon research group at Iowa State University,
GAMESS computes ab initio molecular quantum chemistry.

HYCOM: HYCOM models all of the world’s oceans as one global body of water at
a resolution of one-fourth of a degree measured at the Equator. It was developed
by the Naval Research Laboratory, Los Alamos National Laboratory and the
University of Miami.

LAMMPS: Developed by the Sandia National Laboratories, LAMMPS is gen-
erally used as a parallel particle simulator for particles at the mesoscale or
continuum levels.

OOCORE: An out-of-core matrix solver, OOCORE was developed by the
SCALAPACK group at the University of Tennessee at Knoxville. OOCORE
has been included in past benchmark suites and is typically I/O bound.

OVERFLOW: NASALangley and NASAAmes developed OVERFLOW to solve
CFD equations on a set of overlapped, adaptive grids, so that the resolution
near an obstacle is higher than that near other portions of the scene. With
this approach, computations of both laminar and turbulent fluid flows over
geometrically complex non-stationary boundaries can be solved.

WRF: A weather forecasting model that uses multiple dynamical cores and a 3-D
variational data assimilation system with the ability to scale to many processors.
WRF was developed by a partnership between the National Center for Atmo-
spheric Research, the National Oceanic andAtmosphericAdministration, theAir
Force Weather Agency, the Naval Research Laboratory, Oklahoma University
and the Federal Aviation Administration.

These eight applications were each run multiple times with a variety of processor
counts ranging from 16 to 384 on the HPC systems summarized in Table I. Each
application was run using the DoD ‘standard’ input set. Each application was run on
no fewer than 10, and no more than 19, of the machines. Sometimes applications were
not run on particular machines with particular processor counts either because those
systems lacked the required number of processors or because the amount of main
memory was insufficient. But, more generally, the examples in this chapter were
meant to reflect real-world conditions and, in the real-world, it is not unusual for
timings that have been collected at different times on different machines by different
people to be incomplete in this way.

At a minimum, for each run, the end-to-end runtime was collected. This is the
cheapest data to collect and is the only information used by the methods discussed in

152 T.-Y. CHEN ET AL.

Section 5. However, in some cases trace information was also collected and used, in
varying levels of detail, for the methods described in Sections 6 and 7.

In addition to counting the number of FLOPS and memory accesses, some of
the methods required partitioning the memory accesses between strided and random
accesses. Since there is a standard understanding of what it means to count the total
number of memory accesses in an application, but not of what it means to partition
memory accesses into strided and random accesses, a little more detail is presented
on how this was done.

These examples categorize memory accesses by using the Metasim tracer [8],
which partitions the code for an application into non-overlapping basic blocks. Each
block is then categorized as exhibiting either primarily strided or primarily random
behavior using both dynamic and static analysis techniques. For the examples in
this chapter, if either method classifies the block as containing at least 10% random
accesses, all memory accesses in that block are counted as random. While the number
10% is somewhat arbitrary, it is based on the observation that on many machines the
sustainable bandwidth of random accesses is less than the sustainable bandwidth of
strided accesses by an order of magnitude.

The dynamic method for determining if a block exhibits primarily random or strided
behavior uses a trace of the memory accesses in each basic block and considers each
access to be strided if there has been an access to a sufficiently nearby memory
location within some small number of immediately preceding memory accesses. The
advantage of a dynamic approach is that every memory access is evaluated, so nothing
is overlooked. The disadvantage is that the number of preceding accesses considered
must be chosen carefully. If the size is too small, some strided accesses may be
misclassified as random. If the size is too large, the process becomes too expensive
computationally. In contrast, the static analysis method searches for strided references
based on an analysis of dependencies in the assembly code. Static analysis is less
expensive than dynamic analysis and also avoids the potential for misclassifying
accesses due to a window size that is too small. On the other hand, static analysis
may miss some strided accesses because of the difficulty of analysing some types
of indirect accesses. Since the two types of analysis are predisposed to misclassify
different types of strided accesses as random, both methods are applied and an access
is considered to be strided if either method classifies it as such.

5. Using End-to-End Runtimes

If the only information available for the applications are end-to-end runtimes on
some set of machines, then the weights in Equation 1 can be estimated by find-
ing w in the equation M × w = P, where M is a matrix containing the benchmark

PERFORMANCE PREDICTION AND RANKING OF SUPERCOMPUTERS 153

measurements for a set of machines. Written out in matrix form, the equation looks
as follows:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1,1 ... m1,b

m2,1 ... m2,b

m3,1 ... m3,b

. .

.

. .

mn,1 ... mn,b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎝

w1

w2

w3

...

wb

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1

p2

p3

.

.

.

pn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

Again, the matrix M contains all the benchmark measurements on all the machines.
Each row represents a single machine and each column a particular benchmark. Hence,
for the M in Equation 3, there are benchmark measurements for b resources on n

machines. The vector P contains the end-to-end, measured runtimes for the target
application on the n machines in M. (Note the assumption that each of these times
was gathered running on the same number of processors, on the same input.) Further-
more, in addition to assuming that the linear model described in Section 3.2 holds,
the assumption is also made that the weight vector w varies relatively little across
machines. Obviously, this is a simplifying assumption which affects the accuracy of
the predictions; the techniques in Section 6 relax this assumption.

Some basic preprocessing is done before proceeding with any of the techniques
described here. First, since all measurements must be in the same units, the inverse of
all non-latency measurements (e.g., FLOPS, memory and network bandwidths) must
be used. Next, the measurements in M are normalized by scaling the columns of M so
that the largest entry in each column is 1. This allows us to weigh different operations
similarly, despite the fact that the cost of different types of operations can vary by
orders of magnitude (e.g., network latency versus time to access the L1 cache).

After the preprocessing step, the weights for the benchmark measurements can be
estimated by finding the ‘best’w in M × w = P (Equation 3). If n < b, then the system
is underdetermined and there is not enough data to choose a single ‘best’ value for
w. As a result, this technique assumes that n ≥ b. Since this means that equality in
Equation 3 may not be achievable, the metric for evaluating the quality of any given
value of w must be specified.

Finally, having obtained w, it can be used to make predictions for a new set
of machines which have benchmark measurements captured in a matrix Mnew.
The runtime prediction for the application on the new set of machines is then
Pnew = Mnew × w. Machine ranking can be done on the new machines by sorting
their respective application runtimes in Pnew.

154 T.-Y. CHEN ET AL.

5.1 Basic Least Squares
Perhaps the most natural way to find w is by using a least squares regression, also

known as solving the least squares problem, which computes the w that minimizes
the 2-norm of the residual r = P − M × w.

With this technique, the entire set of machine benchmarks given in Table II, also
referred to here in this chapter as ‘the full basis set’, is used. This set consists of:

< [FLOPS], L1(s), L2(s), L3(s),MM(s), L1(r), L2(r), L3(r),

MM(r), NWbw, NWlat>

FLOPS is given in brackets because sometimes it is included in the full basis set
and sometimes not. The distinction should always be clear from the context.

5.1.1 Results for Performance Prediction
The results shown in Table III were computed using a tool that reads the bench-

mark data and application runtimes for a set of machines and performs the above
analysis [25]. Because of the requirement that the number of machines be no less
than the number of machine benchmarks, some entries in the table could not be
computed.

Using just the MAPS and Netbench measurements, the performance predictions are
worse than those obtained using FLOPS alone. However, using a combination of the
FLOPS, MAPS and Netbench measurements provides generally better performance

Table III
Average Absolute Relative Error for TI-06

Applications Using FLOPS, the Full MAPS +
Netbench Set and the Full FLOP + MAPS +

Netbench Set

FLOPS MAPS + FLOPS + MAPS +
Netbench Netbench

avus 73.9 213.4 –
cth 61.2 64.8 59.2
gamess 72.6 – –
hycomm 67.6 70.8 –
lammps 58.4 54.3 84.8
oocore 62.9 33.3 40.2
overflow 74.8 23.2 28.6
wrf 58.2 69.6 45.2
Average 66.2 72.4 51.6

PERFORMANCE PREDICTION AND RANKING OF SUPERCOMPUTERS 155

Table IV
Average Number of Thresholded Inversions for

TI-06 Applications Using FLOPS, the Full
MAPS + Netbench Set and the Reduced

MAPS + Netbench Set. (α = .01 and β = .001)

FLOPS MAPS + FLOPS + MAPS +
Netbench Netbench

cth 2.9 – –
lammps 2.9 3.6 –
oocore 3.1 3.1 2.9
overflow 3.3 2.2 2.2
wrf 3 3.6 –
Average 3.0 3.2 2.6

predictions than using FLOPS alone. But regardless of the set of benchmarks used,
the performance predictions are poor, with average errors ranging from 51.6% to
72.4%.

5.1.2 Results for Ranking
The least-squares performance prediction method can be extended to make pre-

dictions for several machines at a time and then to rank the machines based on the
predicted performance using the methodology described in Section 3.4.

In Table IV, the average number of thresholded inversions is reported. For each
entry, 5 machines are chosen at random for ranking; hence the maximum number of
inversions is 10.

Use of the MAPS and Netbench measurements provides more thresholded inver-
sions in these tests than the use of the FLOPS alone, similar to the results for
performance prediction, which were worse. However, when FLOPS was included
with the MAPS and Netbench measurements, not only did the accuracy of the perfor-
mance predictions generally improve, but the rankings also became more accurate.
Taken together, this suggests that FLOPS cannot be completely ignored for accurate
performance predictions.

5.2 Least Squares with Basis Reduction
One drawback of applying least squares in such a straightforward way to solve

Equation 3 is that the benchmark measurements may not be orthogonal. In other
words, if M contains several benchmarks whose measurements are highly correlated,

156 T.-Y. CHEN ET AL.

the redundant information may have an unexpected effect on the accuracy of predicted
runtimes on new systems.

This redundant information can be removed using the method of basis
reduction [25]. After computing the correlations of all pairs of benchmark measure-
ments across all the machines in M, highly correlated pairs are identified and one
of each pair is dropped. For the purposes of this chapter, pairs are considered to be
highly correlated if the correlation coefficient between them is greater than 0.8 or
less than −0.8.

In the cross-validation tests, basis reduction is run on M after the inverse of non-
latency measurements is taken, but before the columns are normalized. M is reduced
to Mr, where Mr has equal or fewer columns than M, depending on the correlation
coefficients of the columns in M. From here, Mr is normalized and the cross-validation
tests are conducted in the same way as before, using Mr instead of M.

5.2.1 Results for Prediction
Since the applications were run on subsets of the single set of 20 machines, basis

reduction was run on all machines, instead of for each application’s set of machines.
Recall that the full basis set consisted of the following:

< [FLOPS], L1(s), L2(s), L3(s), MM(s), L1(r), L2(r), L3(r),

MM(r), NWbw, NWlat>

On the machines in Table I, measurements for strided access to L1 and L2 caches
were highly correlated, and only L1-strided bandwidths were kept. In addition, both
strided access to L3 cache and main memory along with random access to L3 cache
and main memory were highly correlated, and only main memory measurements were
kept. The correlation between L3 cache and main memory is not surprising since not
all of the systems have L3 caches. As a result, when the human expert looked at the
MAPS plot (as described in Section 4.1) and had to identify a particular region as
representing the L3 cache, the region chosen tended to have very similar behavior to
that of the region identified for the main memory.

While different combinations of eliminated measurements were tested, in practice
different combinations led to only minor differences in the results. As a result, the first
predictor in each highly correlated pair was always dropped. This led to a reduced
basis set consisting of:

< [FLOPS], L1(s), MM(s), L1(r), L2(r), MM(r), NWbw, NWlat>

Note that, in addition to using just the MAPS and Netbench measurements, the
FLOPS measurement was also included in the full basis set. FLOPS was not correlated

PERFORMANCE PREDICTION AND RANKING OF SUPERCOMPUTERS 157

Table V
Average Absolute Relative Prediction Error for TI-06

Applications Using FLOPS, the Full MAPS + Netbench Set With and
Without FLOPS and the Reduced MAPS + Netbench Set With and

Without FLOPS

FLOPS MAPS + Netbench FLOPS + MAPS + Netbench

Full Reduced Full Reduced

avus 73.9 213.4 43.5 – 60.4
cth 61.2 64.8 36.0 59.2 33.4
gamess 72.6 – 55.0 – 35.2
hycomm 67.6 70.8 60.4 – 58.4
lammps 58.4 54.3 32.4 84.8 34.6
oocore 62.9 33.3 24.0 40.2 27.4
overflow 74.8 23.2 27.9 28.6 31.9
wrf 58.2 69.6 17.4 45.2 16.6
Average 66.2 72.4 37.1 51.6 42.4

with any of the other measurements, and so its inclusion had no effect on whether
other metrics were included in the reduced basis set.

Table V presents the prediction results using the least squares solver (results in bold
are the most accurate predictions in their row). Reducing the full set of measurements
helps provide more accurate performance predictions for all applications with and
without including FLOPS in the basis set.

5.2.2 Results for Ranking
The average number of inversions for each application is presented in Table VI.

The table shows that use of FLOPS alone provides the best ranking only for CTH.
Although the use of the reduced FLOPS, MAPS and Netbench basis set did not
provide better performance predictions, it provides the best rankings, on average, for
the systems. Moreover, whether or not FLOPS is included in the full basis set, after
basis reduction the reduced basis set always provides more accurate rankings than
the full one.

Table VII shows the effects on the number of inversions as α and β are varied.
This is only shown for the case where the MAPS and Netbench measurements, not
including FLOPS, are used. As α and β increases, larger variances in the collected
runtimes and benchmark measurements are considered insignificant. As a result, the
number of thresholded inversions declines. Nonetheless, when averaged over all the
applications, the reduced basis set always provides more accurate rankings compared
with FLOPS alone or the full basis set.

158 T.-Y. CHEN ET AL.

Table VI
Average Number of Thresholded Inversions for TI-06 Applications

Using FLOPS, the Full MAPS + Netbench Set and the Reduced
MAPS + Netbench Set. (α = .01 and β = .001)

FLOPS MAPS + Netbench FLOPS + MAPS + Netbench

Full Reduced Full Reduced

cth 2.9 – 3.2 – 3.4
lammps 2.9 3.6 3.1 – 2.8
oocore 3.1 3.1 2.4 2.9 2.4
overflow 3.3 2.2 2.1 2.2 2.0
wrf 3.0 3.6 1.9 – 1.8
Average 3.0 3.2 2.6 2.6 2.5

Table VII
The Number of Thresholded Inversions, Averaged Over all

Applications, with Different Values of α and β for the TI-06
Applications using the MAPS and Netbench Benchmarks

(α, β) (.01, .001) (.1, .01) (.2, .02) (.5, .05)

FLOPS 3.0 2.5 2.2 1.7
Full basis set 3.2 2.9 2.8 2.3
Reduced basis set 2.6 2.3 2.1 1.6

5.3 Linear Programming
In [41] a method that uses linear programming to solve Equation 1 is described. This

method uses no more benchmark or application information than the least squares
methods described previously, but it adds the ability to incorporate human judgement
and so demonstrates the impact that expert input can have.

The basic idea is to add a parameter γ to Equation 1 so that it is changed from:

P ≈ m1w1 + m2w2 + m3w3, (4)

to:

P(1 − γ) ≥ m1w1 + m2w2 + m3w3 (5)

P(1 + γ) ≤ m1w1 + m2w2 + m3w3. (6)

The goal is to find non-negative weights w that satisfy the above constraints, while
keeping γ small. When some constraints are determined to be difficult to satisfy, a
human expert can decide that either the end-to-end application runtime measurement,
or the benchmark measurements, are suspect and can simply eliminate that machine

PERFORMANCE PREDICTION AND RANKING OF SUPERCOMPUTERS 159

and the corresponding two constraints. Alternatively, the decision could be made
to rerun the application and/or benchmarks in the hopes of getting more accurate
measurements.

5.3.1 Results
The linear programming method tries to find the weights that best fit the entries in

M and P under the same assumptions as with the least squares methods. However,
with human intervention, it can also identify entries in M and P that seem to be
suspect and either ignore or correct them.

On the set of test data used here, a few runtimes and benchmark measurements were
found to be suspect. After correcting those errors, the linear programming method
was run again, giving the overall results presented in Table VIII. The fact that these
predictions are so much more accurate than those in Table V using the least squares

Table VIII
Average Absolute Error Over all

Applications Using Linear Programming
for Performance Prediction. The Systems

are Identified by a Combination of the
Department of Defense Computer Center,

the Computer Manufacturer, and the
Processor Type

Systems Average Error

ASC_SGI_Altix 8%
SDSC_IBM_IA64 –
ARL_IBM_Opteron 8%
ARL_IBM_P3 4%
MHPCC_IBM_P3 6%
NAVO_IBM_P3 6%
NAVO_IBM_p655(Big) 6%
NAVO_IBM_p655 (Sml) 5%
ARSC_IBM_p655 2%
MHPCC_IBM_p690 7%
NAVO_IBM_p690 9%
ARL_IBM_p690 6%
ERDC_HP_SC40 8%
ASC_HP_SC45 4%
ERDC_HP_SC45 6%
ARSC_Cray_X1 5%
ERDC_Cray_X1 3%
AHPCRC_Cray_X1E –
ARL_LNX_Xeon (3.06) 8%
ARL_LNX_Xeon (3.6) 8%
Overall Average Error 6%

160 T.-Y. CHEN ET AL.

method reflects the power of allowing a human expert to examine the results and
to eliminate (or to rerun and recollect) suspicious benchmark measurements and
application runtimes. Significantly more detail and analysis can be found in [41].

5.4 Discussion
A simple approach for obtaining benchmark weights is to use least squares. Using

this method is quick and simple, assuming that end-to-end runtimes of the application
on different machines, along with the results of simple machine benchmarks, are
available. Although the accuracy of the performance prediction (at best a relative
error of 37% averaged over all TI-06 applications) may be insufficient for scenarios
such as a queue scheduler, they are accurate relative to each other and so can be useful
for ranking a set of machines.

Simply using the full set of benchmark measurements is not the best approach for
the least squares method. For example, when using the full set of MAPS and Netbench
measurements, the average relative error for predictions was as high as 72.4%, and
there were an average of 3.2 thresholded inversions when a set of 5 systems was
ranked. But, once the full set of measurements were reduced using basis reduction
to an orthogonal set, the performance predictions improved to an average relative
error of 37% and the thresholded inversions reduced to an average of 2.6. In all cases
but one, use of the reduced set of benchmark measurements for making performance
predictions and ranking systems is better than the use of FLOPS alone. The only
exception to this is ranking systems for CTH.

The combination of MAPS and Netbench measurements with and without FLOPS
show similar performance: the performance predictions are better by 5% when FLOPS
are not included in the set. Although the average number of thresholded inversions
are lower when FLOPS is included in the set, the difference between the two is quite
small.

The linear programming method used exactly the same information about the
machines and the applications as the least squares methods, but added the ability
to factor in human expertise. This improved the results significantly, indicating the
power of having access to human expertise (in this case, the ability to throw out results
judged to be due to errors in either the benchmark measurements or the measured
application runtimes).

6. Using BasicTrace Data

As noted previously, different applications with the same execution time on a given
machine may stress different system components.As a result, applications may derive

PERFORMANCE PREDICTION AND RANKING OF SUPERCOMPUTERS 161

varying levels of benefit from improvements to any single system component. The
techniques described in Section 5 do not take this into consideration.

In contrast, this section discusses some techniques that incorporate more
application-specific information, in particular the lightweight trace data described
in Section 4.2. Note that the types of traces used are considerably cheaper than those
used for the cycle-accurate simulations described in Section 2.4.

6.1 Predicting Performance
In [41] the authors describe methods for performance prediction that assume that

both M and w in Equation 3 are known, but the operation for combining them is
significantly more complex than matrix multiplication. In addition, whereas M is
determined as before, w is determined by tracing the application. Most notably, w

is allowed to vary depending on the system. To keep costs down, the application
is only traced on a single system, but the data collected (summarized in Fig. 5)

Fig. 5. Data collected on each basic block using the MetaSim Tracer.

162 T.-Y. CHEN ET AL.

Table IX
Absolute Error Averaged Over All

Applications

Systems Average Error

ARL_IBM_Opteron 11%
NAVO_IBM_P3 7%
NAVO_IBM_p655 (Big) 6%
ARSC_IBM_p655 4%
MHPCC_IBM_p690 8%
NAVO_IBM_p690 18%
ASC_HP_SC45 7%
ERDC_HP_SC45 9%
ARL_LNX_Xeon (3.6) 5%
Overall Average Error 8%

Table X
Sum of the Number of Thresholded Inversions for All Applications and

Numbers of Processors, for Each of the Nine Performance-Prediction
Strategies Described in [7]

Methodology (case #) 1 2 3 4 5 6 7 8 9
Thresh. inversions 165 86 115 165 76 53 55 44 44

is then simulated on other systems of interest in order to generate w for those
other machines.

A detailed description of the technique can be found in [41]; here it suffices to note
simply that the results they attained (presented in Table IX) are quite accurate, with
an average absolute error of below 10%.

6.2 Ranking
As in Section 5, once performance predictions have been made for each system,

the times can be used to generate a machine ranking. In [7] the quality of performance
predictions using 9 methodologies of different sophistications are evaluated. Using
the methodologies and the data from [7], Table X gives the summed number of
thresholded inversions in the predicted runtimes.

The first 3 cases should produce rankings that are equivalent to rankings based on
only FLOPS, only the bandwidth of strided accesses to main memory and only the
bandwidth of random accesses to main memory, respectively. The ranking based on
the bandwidth of strided access to main memory is the best of these three.As expected
from the description in [7], the first and fourth cases produce equivalent rankings.

PERFORMANCE PREDICTION AND RANKING OF SUPERCOMPUTERS 163

Case 5 is similar to a ranking based on a combination of FLOPS and the bandwidth
of strided and random accesses to memory. Case 6 is similar to Case 5, but with a
different method for partitioning between strided and random accesses. Table X shows
that both of these rankings are significantly better than those produced by the first four
cases. As the rankings in these cases are application dependent, it is not surprising
that they outperform the application-independent rankings discussed in Section 7.

Cases 7 through 9 use more sophisticated performance-prediction techniques.
These calculations consider combinations of FLOPS, MAPS memory bandwidths
(case 7), Netbench network measurements (case 8) and loop and control flow depen-
dencies for memory operations (case 9). As expected, they result in more accurate
rankings.

6.3 Discussion
Although the methods in this section do not use any information about the actual

end-to-end runtimes of an application across a set of machines, the trace information
that these methods employ instead allows them to achieve high accuracy. This repre-
sents another point on the trade-off line between accuracy and expense/complexity.
As with the other, more detailed, model-based methods summarized in Section 2,
this approach constructs an overall application performance model from many
small models of each basic block and communications event. This model can then
be used to understand where most of the time is spent and where tuning efforts
should be directed. The methods described in Section 5 do not provide such detailed
guidance.

Furthermore, generating more accurate predictions using these methods also gives
improved (application dependent) machine rankings.

7. Application-Independent Rankings

Thus far, the techniques discussed have focussed on application-specific perfor-
mance prediction and rankings. When it comes to ranking machines, this means one
is given a set of machines and a specific application, and the goal is to predict which
of those machines will execute the application fastest. However, there is also interest
in application-independent rankings (e.g., the Top 500 list [45]), in which a set of
machines is ranked and the general expectation is that the machine ranked, say, third,
will execute most applications faster than the machine ranked, say, tenth.

The Top 500 list ranks supercomputers based solely on their performance on the
Linpack benchmark, which essentially measures FLOPS. This section studies whether
it is possible to improve on that ranking and what is the cost of doing so.

164 T.-Y. CHEN ET AL.

7.1 Rankings Using Only Machine Metrics
With the metric described in Section 3.4 for evaluating the quality of a ranking,

it is possible to evaluate objectively how FLOPS is compared with other machine
benchmarks as a way for generating machine rankings. All rankings in this section
are tested on the set of applications described in Section 4.2, run on subsets of the
machines described in Section 4.1.

The first experiment considers the quality of rankings generated by the machine
benchmarks summarized in Table II: bandwidth of strided and random accesses to
L1 cache, bandwidth of strided and random accesses to L2 cache, bandwidth of
strided and random accesses to main memory, interprocessor network bandwidth,
interprocessor network latency and peak FLOPS.

Table XI sums the number of thresholded inversions over all the applications and
all the processor counts on which each was run. Because each application is run on
a different set of processor counts and not every application has been run on every
machine, the numbers in Table XI should not be compared across applications, but
only on an application-by-application basis, across the rankings by different machine
characteristics.

The last row of Table XI shows that the bandwidth of strided accesses to main
memory provides the single best overall ranking, with 309 total thresholded inversions
(in contrast, there is also a machine ranking that generates over 2000 thresholded
inversions on this data). The ranking generated by the bandwidth of random accesses
to L1 cache is a close second; however, it is also evident that there is no single ranking
that is optimal for all applications. Although the bandwidth of strided accesses to

Table XI
Sum of the Number of Thresholded Inversions (α = .01 and β = .001) for All Processor
Counts for Each Application. The Smallest Number (Representing the Best Metric) for
Each Application is Given in Bold. The Last Row is a Sum of Each Column and Gives a

Single Number Representing the Overall Quality of the Ranking Produced using that
Machine Characteristic

Metric L1(s) L1(r) L2(s) L2(r) MM(s) MM(r) 1/NW lat NW bw FLOPS

avus 51 26 44 42 1 61 19 30 22
cth 32 18 30 82 21 117 63 37 35
gamess 25 16 40 55 48 76 65 35 25
hycom 26 10 26 83 17 126 65 28 35
lammps 136 107 133 93 80 157 95 116 68
oocore 44 31 56 71 61 91 75 50 52
overflow 71 39 79 91 47 104 108 81 44
wrf 99 63 92 134 34 203 103 83 60
overall sum 484 310 500 651 309 935 593 460 341

PERFORMANCE PREDICTION AND RANKING OF SUPERCOMPUTERS 165

main memory is nearly perfect for avus and does very well on hycom, wrf and
cth, it is outperformed by the bandwidth of both strided and random accesses to
L1 cache for ranking performance on gamess. One interpretation of the data is that
these applications fall into three categories:

• codes dominated by time to perform floating-point operations,

• codes dominated by time to access main memory,

• and codes dominated by time to access L1 cache.

With 20 machines, there are 20! possible distinct rankings. Searching through the
subspace of ‘feasible’ rankings reveals one that gives only 195 inversions (although
this number cannot be directly compared with those in Table XI since the parameter
values used were α = .01 and β = 0). In this optimal ranking the SDSC Itanium
cluster TeraGrid was predicted to be the fastest machine. However, across all of the
benchmarks, the Itanium is only the fastest for the metric of bandwidth of random
access to main memory – and Table XI shows using random access to main memory
alone to be the poorest of the single-characteristic ranking metrics examined. This
conundrum suggests trying more sophisticated ranking heuristics.

Testing various simple combinations of machine metrics — for example, the ratio
of flops to the bandwidth of both strided and random accesses to different levels of
the memory hierarchy — gave rankings that were generally significantly worse than
the ranking based solely on the bandwidth of strided accesses to main memory. This
suggests a need to incorporate more information.

7.2 Rankings Incorporating Application
Characteristics

As in Section 6, one might try improving the rankings by incorporating applica-
tion characteristics and using those characteristics to weight the measured machine
characteristics. However, in order to generate a single application-independent
ranking, this requires either choosing a single representative application, or using
values that represent an ‘average’ application. This section considers the former
approach.

Since the goal is to use as little information as possible, the first example pre-
sented uses only the number of memory accesses m and the number of floating-point
operations f . Recall that the goal is an application-independent ranking, so while we
evaluate the rankings generated by each of the applications, only the best result over
all the applications is reported. In other words, this is the result of taking the charac-
teristics of a single application and using it to generate a ranking of the machines that
is evaluated for all the applications in the test suite.

166 T.-Y. CHEN ET AL.

If a memory reference consists of 8 bytes, m and f can be used in a natural way
by computing the following number for each machine mi:

ri = 8m

bw_mem(i)
+ f

flops(i)
. (7)

Within Equation 7, m (and f) could be either the average number of memory accesses
over all the processors, or the maximum number of memory accesses over all the
processors. In addition, bw_mem can be the strided or random bandwidth of accesses
to any level of the memory hierarchy.

Using the bandwidth of strided accesses to main memory for bw_mem, regardless
of whether the average or the maximum counts for m and f are used, leads to a
ranking that is identical to a ranking based only on the bandwidth of strided accesses
to main memory. Since the increase in memory bandwidth has not kept pace with the
increase in processor speed, it is not surprising that the memory term in Equation 7
overwhelms the processor term. The effect would be even greater if the bandwidth
of random accesses to main memory for bw_mem(i) was used, since the disparity
between the magnitude of the two terms would be even greater. Moreover, using the
measurement that has the fastest access time of all levels of the memory hierarchy,
bandwidth of strided accesses to L1, for bw_mem in Equation 7 results in a ranking
that is independent of f .

This suggests a model that accommodates more detail about the application, per-
haps by partitioning the memory accesses. One possibility would be to partition m

into m = ml1 + ml2 + ml3 + mmm, where ml1 is the number of accesses that hit in
the L1 cache, and so on. Another is to partition m into m = m1 + mr, where m1 is
the number of strided accesses and mr is the number of random accesses to mem-
ory. Partitioning into levels of the hierarchy is dependent on the architecture chosen,
which suggests trying the latter strategy (using the technique described in Section 4
to partition the memory accesses).

Once the m memory accesses are partitioned into random (mr) and strided (m1),
Equation 8 can be used to compute the numbers r1, r2, . . . , rn from which the ranking
is generated:

ri = 8m1

bw_mem1(i)
+ 8mr

bw_memr(i)
+ f

flops(i)
. (8)

Note that there is again a choice to be made regarding what to use for bw_mem1 and
bw_memr. There are several options including: using the bandwidths of strided and
random accesses to main memory; the bandwidths of strided and random accesses
to L1 cache; or considering the data in Table XI, the bandwidth of strided access to
main memory and of random access to L1 cache. Furthermore, since the goal is a
single, fixed ranking that can be applied to all applications, a choice also has to made

PERFORMANCE PREDICTION AND RANKING OF SUPERCOMPUTERS 167

Table XII
Sum of the Number of Thresholded Inversions

for All Numbers of Processors for Each
Application, with α = .01 and β = .001. The
Smallest Number (Representing the Best

Metric) for Each Application is Given in Bold

Metric l1(1,r) mm(1,r) mm(1), l1(r)

avus 12 21 9
cth 14 80 9
gamess 16 77 26
hycom 2 44 2
lamps 107 148 81
oocore 31 100 44
overflow2 34 78 34
wrf 63 158 44
overall sum 279 706 249

about which application’s m1, mr, and f are to be used for generating the ranking. In
theory, one could also ask what processor count of which application to use for the
ranking; in practice, performance of these tasks take time, and so m1 and mr counts
were only gathered for one processor count per application.

Table XII shows the results of these experiments. Each column shows the number
of thresholded inversions for each of the 8 applications using the specified choice of
strided and random access bandwidths. In each column, the results use the application
whose m1, mr, and f led to the smallest number of inversions for all other applications.
When using the random and strided bandwidths to L1 cache, the most accurate ranking
was generated using overflow2; when using the bandwidths to main memory, the best
application was oocore; and when using a combination of L1 and main memory
bandwidths, avus and hycom generated equally good rankings.

Comparison of the results in Table XII with those in Table XI reveals that partiti-
oning of the memory accesses is useful as long as the random accesses are considered
to hit in L1 cache. Using the bandwidth of random access to L1 cache alone did fairly
well, but the ranking is improved by incorporating the bandwidth of strided accesses
to L1 cache and is improved even more by incorporating the bandwidth of strided
accesses to main memory. When we use the bandwidth of accesses to main memory
only, the quality of the resulting order is between those of rankings based on the
bandwidth of random accesses and those based on the bandwidth of strided accesses
to main memory.

In [9] the authors discuss possible reasons why the combined metric based on
mm(1) and l1(r) works so well. One observation is that this may be representa-
tive of a more general fact: applications with a large memory footprint that have

168 T.-Y. CHEN ET AL.

many strided accesses benefit from high bandwidth to main memory because the
whole cache line is used and prefetching further utilizes the full main memory
bandwidth. For many of these codes, main memory bandwidth is thus the limi-
ting performance factor. On the other hand, applications with many random accesses
waste most of the cache line and these accesses do not benefit from prefetching.
The performance of these codes is limited by the latency-hiding capabilities of the
machine’s cache, which is captured by measuring the bandwidth of random accesses to
L1 cache.

7.3 Discussion
Two things that might further improve on the ranking would be partitioning memory

accesses between the different levels of the memory hierarchy and allowing different
rankings based on the processor count. The two possibilities are not entirely indepen-
dent since running the same size problem on a larger number of processors means a
smaller working set on each processor and therefore different cache behaviors. How-
ever, allowing different rankings for different processor counts takes us away from the
original goal of finding a single fixed ranking that can be used as a general guideline.

This leaves partitioning memory accesses between the different levels of the
memory hierarchy. As noted previously, this requires either choosing a represen-
tative system or moving towards a more complex model that allows for predictions
that are specific to individual machines, as is done in [7, 30]. Therefore, given the
level of complexity needed for a ranking method that incorporates so much detail,
we simply observe that we achieved a ranking with about 28% more thresholded
inversions than the brute-force obtainable optimal ranking on our data set, without
resorting to anything more complex than partitioning each application’s memory
accesses into strided and random accesses. This represents a significant improvement
over the ranking based on FLOPS, which was about 75% worse than the optimal
ranking.

8. Conclusion

This chapter addressed two related issues of interest to various parties in the world
of supercomputing: performance prediction and machine ranking. The first is a long-
standing problem that has been studied extensively, reflected in part by the survey
of work in Section 2. The second, while not as well studied, is still of interest both
when the goal is a machine ranking for a particular application, and when the goal is
a more general application-independent ranking.

PERFORMANCE PREDICTION AND RANKING OF SUPERCOMPUTERS 169

To illustrate the trade-offs between accuracy and effort that are inherent in any
approach, one framework for both prediction and ranking is presented. The main
assumption in this framework is that simple benchmarks can be run (or accurately
estimated) on all systems of interest. Then, several variations within the framework
are examined: ones that use only end-to-end runtimes for an application on any set of
machines (Section 5), and those that also employ basic trace data about an application
(Section 6). Using trace data is more expensive and, not surprisingly, gives signifi-
cantly more accurate predictions than a completely automatic method that is based
on least squares and uses only end-to-end runtimes. However, a linear program-
ming method that also only uses end-to-end runtimes can partially compensate by
allowing human expert intervention. Finally, in Section 7 the question of application-
independent machine rankings is addressed, again within the same framework. Once
again, reasonable results can be obtained using only the results of simple benchmark
measurements, but the results can be improved by incorporating limited application
trace information.

Acknowledgments

We would like to thank Michael Laurenzano and Raffy Kaloustian for helping to
collect trace data and Xiaofeng Gao for writing the dynamic analysis tool used in
Section 4.2. The applications benchmarking data used in this study was obtained
by the following members of the Engineering Research and Development Cen-
ter (ERDC), Computational Science and Engineering Group: Mr. Robert W. Alter,
Dr. Paul M. Bennett, Dr. Sam B. Cable, Dr.AlvaroA. Fernandez, Ms. Carrie L. Leach,
Dr. Mahin Mahmoodi, Dr. Thomas C. Oppe and Dr. William A. Ward, Jr. This work
was supported in part by a grant from the DoD High-Performance Computing Modern-
ization Program (HPCMP) along with HPCMP-sponsored computer time at the Army
Research Laboratory (ARL), the Aeronautical Systems Center (ASC), the Engineer-
ing Research and Development Center (ERDC), and the Naval Oceanographic Office
(NAVO), Major Shared Resource Centers (MSRCs) and the Army High Performance
Computing Research Center (AHPCRC), the Artic Region Supercomputing Center
(ARSC), and the Maui High Performance Computing Center (MHPCC). Computer
time was also provided by SDSC. Additional computer time was graciously pro-
vided by the Pittsburgh Supercomputer Center via an NRAC award. This work was
supported in part by a grant from the National Science Foundation entitled ‘The
Cyberinfrastructure Evaluation Center’ and by NSF grant #CCF-0446604. This work
was sponsored in part by the Department of Energy Office of Science through Sci-
DAC award ‘High-End Computer System Performance: Science and Engineering’
and through the award entitled ‘HPCS Execution Time Evaluation.’

170 T.-Y. CHEN ET AL.

References

[1] Adve V., 1993. Analyzing the Behavior and Performance of Parallel Programs. PhD thesis, University
of Wisconsin, Madison.

[2] Badia R., Rodriguez G., and Labarta J., 2003. Deriving analytical models from a limited number
of runs. In Parallel Computing: Software Technology, Algorithms, Architectures, and Applications
(PARCO 2003), pp. 769–776, Dresden, Germany.

[3] Bailey D. H., Barszcz E., Barton J. T., Browning D. S., Carter R. L., Dagum D., Fatoohi R. A.,
Frederickson P. O., Lasinski T. A., Schreiber R. S., Simon H. D., Venkatakrishnan V., and
Weeratunga S. K., Fall 1991. The NAS parallel benchmarks. Intl. J. Supercomp. Appl., 5(3):63–73.

[4] Ballansc R. S., Cocke J. A., and Kolsky H. G., 1962. The Lookahead Unit, Planning a Computer
System. McGraw-Hill, New York, NY.

[5] Boland L. T., Granito G. D., Marcotte A. V., Messina B. V., and Smith J. W., 1967. The IBM system
360/model9: storage system. IBM J. Res. and Dev., 11:54–79.

[6] Burger D., Austin T. M., and Bennett S., 1996. Evaluating future microprocessors: the simplescalar
tool set. Technical Report CS-TR-1996-1308, University of Wisconsin-Madison.

[7] Carrington L., Laurenzano M., Snavely A., Campbell R. L. Jr., and Davis L., November 2005.
How well can simple metrics predict the performance of real applications? In Proceedings of
Supercomputing (SC|05).

[8] Carrington L., Snavely A., Wolter N., and Gao X., June 2003. A performance prediction framework
for scientific applications. In Proceedings of the International Conference on Computational Science
(ICCS 2003), Melbourne, Australia.

[9] Chen T. -Y., Gunn M., Simon B., Carrington L., and Snavely A., November 2006. Metrics for ranking
the performance of supercomputers. CTWatch Quarterly, 2(4B).

[10] Clement M. J., and Quinn M. J., 1995. Multivariate statistical techniques for parallel performance
prediction. In HICSS’95: Proceedings of the 28th Hawaii International Conference on System
Sciences, pp. 446–455.

[11] Crovella M. E., and LeBlanc T. J., 1994. Parallel performance prediction using lost cycles anal-
ysis. In Supercomputing’94: Proceedings of the 1994 ACM/IEEE Conference on Supercomputing,
pp. 600–609, Washington, D.C.

[12] Culler D., Karp R., Patterson D., Sahay A., Schauser K. E., Santos E., Subramonian R., and
von Eicken T., May 1993. LogP: Towards a realistic model of parallel computation. In Proceed-
ings of the Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pp. 1–12, San Diego, CA.

[13] Department of Defense High Performance Computing Modernization Program. May 2005. Techno-
logy Insertion-06 (TI-06). http://www.hpcmo.hpc.mil/Htdocs/TI/TI06.

[14] Dongarra J., Luszczek P., and Petitet A., 2003. The LINPACK benchmark: past, present and future.
Concurr. Comput.: Pract. Exper., 15:1–18.

[15] Faerman M., Su A., Wolski R., and Berman F., 1999. Adaptive performance prediction for distributed
data-intensive applications. In Supercomputing’99: Proceedings of the 1999 ACM/IEEE Conference
on Supercomputing (CDROM), p. 36, Portland, OR.

[16] Gustafson J. L., and Todi R., 1999. Conventional benchmarks as a sample of the performance
spectrum. J. Supercomp., 13(3):321–342.

[17] Hoisie A., Lubeck O. M., and Wasserman H. J., 1999. Performance analysis of wavefront algorithms
on very-large scale distributed systems. In Workshop on Wide Area Networks and High Perfor-
mance Computing, pp. 171–187, London, UK, Springer-Verlag. Also Lecture Notes in Control and
Information Sciences, Vol. 249.

PERFORMANCE PREDICTION AND RANKING OF SUPERCOMPUTERS 171

[18] Hoisie A., Lubeck O. M., and Wasserman H. J., February 1999. Scalability analysis of multidimen-
sional wavefront algorithms on large-scale SMP clusters. In FRONTIERS’99: Proceedings of the The
7th Symposium on the Frontiers of Massively Parallel Computation, pp. 4–15, Annapolis, MD.

[19] HPC Challenge Benchmarks. http://icl.cs.utk.edu/hpcc/.
[20] IDC reports latest supercomputer rankings based on the IDC Balanced Rating test., December 2002.

In EDP Weekly’s IT Monitor.
[21] Ipek E., de Supinski B. R., Schulz M., and McKee S. A., 2005. Euro-Par 2005 Parallel Processing,

volume 3648, chapter An approach to performance prediction for parallel applications, pp. 196–205.
Springer Berlin/Heidelberg.

[22] Kerbyson D. J., Hoisie A., and Wasserman H. J., 2005. A performance comparison between the Earth
Simulator and other terascale systems on a characteristic ASCI workload. Concurr. Comput.: Pract.
Exper., 17(10):1219–1238.

[23] Kerbyson D. J., and Jones P. W., Summer 2005. A performance model of the parallel ocean program.
Intl. J. High Perf. Comput. Appl., 19(3):261–276.

[24] Kerbyson D. J., Wasserman H. J., and HoisieA., 2002. Exploring advanced architectures using perfor-
mance prediction. In IWIA’02: Proceedings of the International Workshop on Innovative Architecture
for Future Generation High-Performance Processors and Systems, pp. 27–40.

[25] Khalili O., June 2007. Performance prediction and ordering of supercomputers using a linear
combination of benchmark measurements. Master’s thesis, University of California at San Diego,
La Jolla, CA.

[26] Kramer W. T. C., and Ryan C., June 2003. Performance variability of highly parallel architectures.
In Proceedings of the International Conference on Computational Science (ICCS 2003), Melbourne,
Australia.

[27] Lo J., Egger S., Emer J., Levy H., Stamm R., and Tullsen D., August 1997. Converting thread-
level parallelism to instruction-level parallelism via simultaneous multithreading. ACM Trans.
Comput. Sys.

[28] Luo Y., Lubeck O. M., Wasserman H., Bassetti F., and Cameron K. W., 1998. Development and
validation of a hierarchical memory model incorporating CPU- and memory-operation overlap
model. In WOSP’98: Proceedings of the 1st International Workshop on Software and Performance,
pp. 152–163, Santa Fe, NM, ACM Press.

[29] Luszczek P., Dongarra J., Koester D., Rabenseifner R., Lucas B., Kepner J., McCalpin J., Bailey D.,
and Takahashi D., March 2005. Introduction to the HPC challenge benchmark suite. Available at
http://www.hpccchallenge.org/pubs/.

[30] Marin G., and Mellor-Crummey J., June 2004. Cross-architecture performance predictions for
scientific applications using parameterized models. In Proceedings of SIGMETRICS/Performance’04,
New York, NY.

[31] McCalpin J. D., December 1995. Memory bandwidth and machine balance in current high
performance computers. IEEE Technical Committee on Computer Architecture Newsletter.

[32] Mendes C. L., and Reed D. A., 1994. Performance stability and prediction. In Proceedings of the
IEEE/USP International Workshop on High Performance Computing.

[33] Mendes C. L., and Reed D. A., 1998. Integrated compilation and scalability analysis for parallel
systems. In PACT’98: Proceedings of the 1998 International Conference on Parallel Architectures
and Compilation Techniques, pp. 385–392.

[34] Murphey J. O., and Wade R. M., 1970. The IBM 360/195. Datamation, 16(4):72–79.
[35] Petrini F., Kerbyson D. J., and Pakin S., November 2003. The case of the missing supercomputer

performance: achieving optimal performance on the 8,192 processors of ASCIQ. In Proceedings of
Supercomputing (SC’03), Phoeniz, AZ.

172 T.-Y. CHEN ET AL.

[36] Saavedra R. H., and Smith A. J., 1995. Measuring cache and TLB performance and their effect on
benchmark runtimes. IEEE Trans. Comput., 44(10):1223–1235.

[37] Saavedra R. H., and Smith A. J., 1995. Performance characterization of optimizing compilers. IEEE
Trans. Softw. Eng., 21(7):615–628.

[38] Saavedra R. H., and Smith A. J., 1996. Analysis of benchmark characteristics and benchmark
performance prediction. ACM Trans. Comput. Sys., 14(4):344–384.

[39] Simon J., and Wierun J.,August 1996.Accurate performance prediction for massively parallel systems
and its applications. In Proceedings of the 2nd International Euro-Par Conference, Lyon, France.

[40] Singh K., Ipek E., McKee S. A., de Supinski B. R., Schulz M., and Caruana R., 2007. Predicting
parallel application performance via machine learning approaches. To appear in Concurrency and
Computation: Practice and Experience.

[41] Snavely A., Carrington L., Tikir M. M., Campbell R. L. Jr., and Chen T. -Y., 2006. Solving the
convolution problem in performance modeling. Unpublished manuscript.

[42] Snavely A., Carrington L., Wolter N., Labarta J., Badia R., and Purkayastha A., November 2002.
A framework for application performance modeling and prediction. In Proceedings of Supercomput-
ing (SC 2002), Baltimore, MD.

[43] Spooner D., and Kerbyson D., June 2003. Identification of performance characteristics from multi-
view trace analysis. In Proceedings of the International Conference on Computational Science (ICCS
2003), Melbourne, Australia.

[44] Tjaden G. S., and Flynn M. J., 1970. Detection and parallel execution of independent instruction.
IEEE Trans. Comput., C-19:889–895.

[45] Top500 supercomputer sites. http://www.top500.org.
[46] Wulf W. A., and McKee S. A., 1995. Hitting the memory wall: implications of the obvious. SIGARCH

Comput. Arch. News, 23(1):20–24.
[47] Xu Z., Zhang X., and Sun L., 1996. Semi-empirical multiprocessor performance predictions.

J. Parallel Distrib. Comput., 39(1):14–28.
[48] Yang L. T., Ma X., and Mueller F., 2005. Cross-platform performance prediction of parallel appli-

cations using partial execution. In SC’05: Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing, p. 40, Seattle, WA.

Sampled Processor
Simulation: A Survey

LIEVEN EECKHOUT∗

Department of Electronics and Information Systems (ELIS),
Ghent University,
Sint-Pietersnieuwstraat 41,
B-9000 Gent, Belgium

Abstract
Simulation of industry-standard benchmarks is extremely time-consuming. Sam-
pled processor simulation speeds up the simulation by several orders of magnitude
by simulating a limited number of sampling units rather than the execution of the
entire program.

This work presents a survey on sampled processor simulation and discusses
solutions to the three major challenges to sampled processor simulation: how
to choose representative sampling units; how to establish efficiently a sampling
unit’s architecture starting image; and how to efficiently establish an accurate
sampling unit’s microarchitecture starting image.

1. Introduction . 174

2. Trace-Driven versus Execution-Driven Simulation 176

3. Sampled Simulation . 178

4. Simulation Speed . 180

5. Representative Sampling Units . 182

5.1. Size and Number of Sampling Units . 182

5.2. Selecting Sampling Units . 183

6. Architecture State . 190

6.1. Fast-Forwarding . 191

6.2. Checkpointing . 192

∗ Corresponding author. Email address: leeckhou@elis.ugent.be (Lieven Eeckhout).

ADVANCES IN COMPUTERS, VOL. 72 173 Copyright © 2008 Elsevier Inc.
ISSN: 0065-2458/DOI: 10.1016/S0065-2458(08)00004-1 All rights reserved.

174 L. EECKHOUT

6.3. Reduced Checkpointing . 192

7. Microarchitecture State . 195

7.1. Cache State Warmup . 195

7.2. Branch Predictor State Warmup . 205

7.3. Processor Core State . 214

8. Case Studies . 214

8.1. SMARTS and TurboSMARTS . 214

8.2. SimPoint . 215

9. Summary . 217

Acknowledgments . 217

References . 217

1. Introduction

Designing of a microprocessor is extremely time-consuming and takes several
years to complete (up to seven years, [72]). This is partly attributed to the fact that
computer designers and architects heavily rely on simulation tools for exploring the
huge microprocessor design space. These simulation tools are at least three or four
orders of magnitude slower than real hardware. In addition, architects and design-
ers use long-running benchmarks that are built after real-life applications; today’s
industry-standard benchmarks such as SPEC CPU have several hundreds of billions
of dynamically executed instructions. The end result is that the simulation of a single
benchmark can take days to weeks, which in this case involves the simulation of only
a single microarchitecture configuration. As a result, the exploration of a huge design
space in order to find an optimal trade-off between design metrics of interest—such as
performance, cost, power consumption, temperature, and reliability—is impossible
through detailed simulation.

This is a well-recognized problem and several researchers have proposed solu-
tions for it. The reduced input sets as proposed by KleinOsowski and Lilja [53] and
Eeckhout et al. [33] strive at reducing simulation time by reducing the dynamic
instruction count of benchmarks by providing reduced inputs. The challenge in build-
ing these reduced inputs is to reduce the dynamic instruction count without affecting
the overall performance characteristics compared to the reference inputs. Analytical
models as proposed by Sorin et al. [99], Karkhanis and Smith [50,51], Lee and Brooks
[65] and Ipek et al. [45] present themselves as a number of simple equations, typically
in an algebraic form. The inputs to these models are program characteristics and a

SAMPLED PROCESSOR SIMULATION: A SURVEY 175

microarchitecture configuration description; the output is a performance prediction.
The main benefit of these analytical models is that they are intuitive, insightful and
extremely fast to use. These models enable chief architects to make high-level design
decisions in a limited amount of time early in the design cycle. Statistical simula-
tion as described by Eeckhout et al. [27, 31], Nussbaum and Smith [81, 82], Oskin
et al. [83], Genbrugge and Eeckhout [37], and Bell, Jr. and John [8] is a recently
proposed approach to make quick performance estimates. Statistical simulation char-
acterizes a benchmark execution in terms of a number of key performance metrics,
and these performance metrics are subsequently used to generate a synthetic trace or
benchmark; the synthetic trace or benchmark then serves as a proxy for the original
program. Another approach is to parallelize the simulator engine and take advantage
by running the parallelized simulator on existing multithreaded and multiprocessor
hardware, as proposed by Reinhardt et al. [91]. Recent work in this area focuses on
speeding up of the simulation through hardware acceleration as proposed by Penry
et al. [85], Chiou et al. [16,17] and the Research Acceleration for Multiple Processor
(RAMP) project by Arvind et al. [2].

Yet another approach, namely, sampled simulation, which is the topic of this survey,
only simulates a limited number of well-chosen sampling units, i.e., instead of simu-
lating the entire instruction stream as executed by the program, only a small number of
sampling units are simulated in full detail. This leads to dramatic simulation speedups
compared to the detailed simulation of entire benchmarks, reducing weeks of simu-
lation to just a few minutes, with performance prediction errors on the order of only
a few percentages compared to entire benchmark simulation.

To achieve these spectacular improvements in simulation speed with high accuracy,
there are three major challenges to be addressed. The sampling units should provide
an accurate and representative picture of the entire program execution. Second, the
architecture state (registers and memory) needs to be established as fast as possible
so that the sampled simulation can quickly jump from one sampling unit to the next.
Third, the microarchitecture state (caches, branch predictor, processor core structures,
etc.) at the beginning of a sampling unit should be as accurate as possible and should
be very close to the microarchitecture state should the whole dynamic instruction
stream prior to the sampling unit be simulated in detail. Addressing all of these
challenges in an accurate and efficient manner is far from trivial. In fact, researchers
have been studying this area for over 15 years, and it is only until recently that
researchers have been capable of achieving dramatic simulation time savings with
high accuracy.

The objective of this work is to provide a survey on sampled processor simulation.
Such a survey is feasible given that it is a well-studied research topic, and in addition,
is a very popular simulation speedup approach; in fact, it probably is the most widely
used simulation acceleration approach to date. This survey paper describes solutions

176 L. EECKHOUT

to the sampled processor simulation challenges as outlined above and could serve as
a work of reference for researchers working in this area, or for practitioners looking
for implementing state-of-the-art sampled simulation techniques.

2. Trace-Driven versus Execution-Driven
Simulation

Before detailing on sampled processor simulation, we first revisit five com-
monly used architectural simulation methodologies: functional simulation, special-
ized trace-driven simulation, trace-driven simulation, execution-driven simulation
and full-system simulation.

Functional simulation is the simplest form of simulation and models the functional
behavior of an instruction set architecture (ISA). This means that instructions are
simulated one at a time by taking input operands and by computing output values.
In other words, a functional simulator basically is an ISA emulator. Functional sim-
ulation is extremely useful for determining whether a software program or operating
system is implemented correctly. Functional simulators are also extremely useful
for architectural simulation since these tools can generate instruction and address
traces which can be used by other tools in the design flow. A trace is a linear
sequence of instructions that a computer program produces when it gets executed.
The length of such a trace is called the dynamic instruction count of the application.
Examples of functional simulators and tracing tools are SimpleScalar’s sim-safe and
sim-fast as described by Burger and Austin [13] and Austin et al. [3], SHADE by
Cmelik and Keppel [18], and QPT by Larus [59].

Specialized cache and branch predictor simulators take instruction and address
traces as input and simulate cache behavior and branch prediction behavior in iso-
lation. The performance metric that these tools typically produce is a miss rate, or
the number of cache misses of branch mispredictions per access to the cache and to
the branch predictor. These tools are widely available, see for example cheetah by
Sugumar and Abraham [100], DineroIV by Edler and Hill [26], and cachesim5 by
Cmelik and Keppel [18].

Trace-driven simulation also takes as input instruction and address traces but sim-
ulates a complete microarchitecture in detail instead of isolated units. Since the
microarchitecture is modeled in a more or less cycle-accurate way, this kind of
simulation is also referred to as timing simulation. A trace-driven simulation method-
ology thus separates functional simulation from timing simulation. This approach
has the important benefit that functional simulation needs to be done only once,
whereas timing simulation has to be done multiple times to evaluate various processor

SAMPLED PROCESSOR SIMULATION: A SURVEY 177

configurations. This can reduce the total simulation time. An important disadvantage
of trace-driven simulation is that the traces need to be stored on disk. These traces can
be very long since the number of instructions that need to be stored in a trace file equals
the dynamic instruction count. For current applications, the dynamic instruction count
can be several hundreds of billions of instructions. For example, the dynamic instruc-
tion count for the industry-strength SPEC CPU2000 benchmark suite is in the range of
several hundreds of billions of instructions per benchmark; for SPEC CPU2006, the
dynamic instruction count is in the range of several trillions of instructions per bench-
mark. Storing these huge trace files might be impractical in some situations. However,
trace compression can reduce the required disk space, see for example Johnson et al.
[49] and Burtscher et al. [15]. Another disadvantage of trace-driven simulation is
of particular interest when contemporary superscalar microprocessors are modelled.
Superscalar microarchitectures predict the outcome of branches and speculatively
execute instructions along the predicted path. In case of a branch misprediction, the
speculatively executed instructions need to be nullified. These speculatively exe-
cuted instructions do not show up in a trace file and as such, do not get simulated in
a trace-driven simulator. These instructions, however, can have an impact on overall
performance because they require resources that need to be shared with instructions
along the correct path. Also, these speculatively executed instructions can result in
prefetching effects or cache contention; see Bechem et al. [6] and Mutlu et al. [77].

Execution-driven simulation is similar to trace-driven simulation but combines
functional simulation with timing simulation.As a consequence, trace files do not need
to be stored and speculatively executed instructions get simulated accurately. In recent
years, execution-driven simulation has become the method of choice. A well-known
and widely used execution-driven simulator is SimpleScalar’s out-of-order simulator
sim-outorder described by Burger andAustin [13] andAustin et al. [3]. This simulator
is widely used in computer architecture research in academia. Other execution-driven
simulators developed in academia are Rsim at Rice University by Hughes et al. [44],
SimOS at Stanford University by Rosenblum et al. [94], fMW at Carnegie Mellon
University by Bechem et al. [6], TFsim at the University of Wisconsin–Madison by
Mauer et al. [73], M5 at the University of Michigan at Ann Arbor by Binkert et al. [9],
Liberty at Princeton University by Vachharajani et al. [102], MicroLib at INRIA by
Perez et al. [89] and PTLsim at the State University of New York at Binghamton by
Yourst [120]. Companies have similar tools, for example, Asim described by Reilly
and Edmondson [90] and Emer et al. [35] and used by DEC, Compaq and Intel
design teams, and MET used by IBM and described by Moudgill [74] and Moudgill
et al. [75]. It should be noted that due to the fact that these simulators do model a
microarchitecture at a high abstraction level, discrepancies might occur when their
performance results are compared to those of real hardware; see for example Black
and Shen [10], Gibson et al. [38] and Desikan et al. [23].

178 L. EECKHOUT

Full-system simulation refers to the simulation of the entire computer system, not
just the processor and the memory subsystem. Full-system simulation also models
input/output (I/O) activity and operating system (OS) activity and enables booting and
running of full-blown commercial operating systems within the simulator. To achieve
this, full-system simulation models processors, memory subsystems, interconnection
buses, network connections, graphics controllers and devices, and peripheral devices
such as disks, printers and SCSI/IDE/FC controllers. Not all workloads require the
complete details of full-system simulation though; for example, compute-intensive
applications such as the SPEC CPU benchmarks do not need full-system simulation
support. For other applications such as database and commercial workloads, it is
extremely important to consider I/O and OS activities. Well-known examples of full-
system simulators are SimOS by Rosenblum et al. [94], SimICs by Magnusson et al.
[71], SimNow by Bedichek [7] and Mambo by Bohrer et al. [11].

John and Eeckhout [48] and Yi and Lilja [119] sketch the broader context of simu-
lation technology and describe how simulation technology relates to benchmarking,
benchmark selection, experimental design, statistically rigorous data analysis, and
performance analysis on real hardware.

3. Sampled Simulation

Figure 1 illustrates the basic idea of sampled simulation: only a limited number
of sampling units from a complete benchmark execution are simulated in full detail.
We collectively refer to the selected sampling units as the sampled execution. The
instructions between two sampling units are part of the pre-sampling unit. Sampled
simulation reports only the performance of the instructions in the sampling units and
discards the instructions in the pre-sampling units, which is the source of the dramatic
improvement in performance: only the sampling units, which constitute only a small

sampling unit

pre-sampling unit

program execution

Fig. 1. Sampled processor simulation.

SAMPLED PROCESSOR SIMULATION: A SURVEY 179

fraction of the total dynamic instruction count, are simulated in a cycle-by-cycle
manner.

There are three major design issues with sampling:

(1) What sampling units to select? The problem is to select sampling units so
that the sampled execution provides an accurate and representative picture
of the complete execution of the program. As such, it is important that the
selection of sampling units is not limited only to the initialization phase of the
program execution. This is a manifestation of the more general observation
that a program goes through various phases of execution. Sampling should
reflect this, or, in other words, sampling units should be chosen in such a way
that all major phases are represented in the sampled execution.

(2) How to initialize the sampling units’architecture starting images?The sam-
pling unit’s Architecture Starting Image (ASI) is the architecture state (register
and memory content) needed to emulate accurately or simulate functionally
the sampling unit’s execution. This is not an issue for trace-driven simulation
because trace-driven simulation separates functional simulation from timing
simulation: there is no functional simulation involved when the timing simu-
lation is executed. In other words, the instructions in the pre-sampling unit can
simply be discarded from the trace, i.e., need not to be stored on disk. However,
for execution-driven simulation, it is not trivial to obtain the correct ASI in an
efficient manner.

(3) How to estimate accurately the sampling units’microarchitecture starting
images? The sampling unit’s Microarchitecture Starting Image (MSI) is the
microarchitecture state at the beginning of the sampling unit.This is well known
in the literature as the cold-start problem or the microarchitecture state warmup
problem. At the beginning of a sampling unit, the correct microarchitecture
state is unknown since the instructions preceding the sampling unit are not
simulated through cycle-by-cycle simulation.

All three issues outlined above have an important impact on the sampling
approach’s accuracy: the sampling units collectively should be representative of
the entire program execution; the ASIs should be correct to enable correct functional
simulation; and the MSIs should be as accurate as possible to achieve accurate perfor-
mance numbers per sampling unit. Also, all three issues have a substantial impact on
the sampling approach’s speed: selecting too many sampling units may not increase
accuracy but may unnecessarily prolong the overall simulation time; to obtain the
correct ASIs as well as to construct accurate MSIs under execution-driven simulation
in an efficient manner is a challenging task.

This work surveys approaches proposed by researchers to address these three design
issues. However, before doing so, we first discuss as to how the overall simulation
time is affected in sampled simulation.

180 L. EECKHOUT

4. Simulation Speed

To get better insight into how these issues affect the speed of sampled simula-
tion, we refer to Figure 2. Sampled simulation involves three basic steps. The first
step is cold simulation in which the ASI is constructed. The traditional approach
for constructing the ASI under execution-driven simulation is to fast-forward, i.e.,
functionally simulate updating architecture state without updating microarchitecture
state. In case of trace-driven simulation, the instructions under cold simulation can
be discarded from the trace, i.e., need not be stored on disk. The second step is
warm simulation which, apart from maintaining the ASI, also estimates and estab-
lishes the MSI. This is typically done for large hardware structures such as caches,
TLBs and branch predictors. The warm simulation phase can be very long since
microarchitecture state can have an extremely long history. Under warm simula-
tion, no performance metrics are calculated. The third step is hot simulation which
involves the detailed processor simulation of the sampling unit while computing
performance metrics, e.g., calculating cache and branch predictor miss rates and
number of instructions retired per cycle. These three steps are repeated for each
sampling unit.

Obviously, cold simulation is faster than warm simulation, and warm simulation
is faster than hot simulation. Austin et al. [3] report simulation speeds for the various
simulation tools in the SimpleScalar ToolSet. They report that the functional simulator
sim-fast—to be used during cold simulation for building the ASI—attains a simu-
lation speed of 7 million instructions per second (MIPS). Warm simulation which is
a combination of functional simulation with specialized branch predictor and cache
hierarchy simulation, sim-bpred and sim-cache, attains a speed of approximately 3
MIPS. Hot simulation is the slowest form of simulation with a speed of 0.3 MIPS

sampling unit

ho
t

w
ar

m

co
ld

ho
t

w
ar

m

co
ld

ho
t

w
ar

m

co
ld

pre-sampling unit

program execution

Fig. 2. Sampled processor simulation.

SAMPLED PROCESSOR SIMULATION: A SURVEY 181

using sim-outorder. Bose [12] reports similar (relative) simulation speed numbers
for the IBM design tools: functional simulation is at least one order of magnitude
faster than timing simulation.

These simulation speed numbers give us some insight into how sampled simula-
tion improves simulation speed compared with the simulation of entire benchmark
executions. The sampling units collectively represent a very small fraction of the
entire program execution, typically less than 1% or even around 0.1%. As such, only
a very small fraction of the entire program execution is simulated in full detail, at
the slowest simulation speed; the pre-sampling units are simulated at much faster
speeds. This results in simulation time speedups of at least one order of magnitude
compared with the detailed cycle-by-cycle processor simulation of entire benchmark
executions.

Although sampled simulation as outlined above achieves a simulation speedup
of one order of magnitude compared with entire benchmark simulation, this may
still not be fast enough to be used during design space exploration where multiple
design points of interest need to be simulated. For example, an entire benchmark
simulation that takes multiple weeks, still takes hours under sampled simulation.
Exploration of a huge design space for multiple benchmarks is still not feasible if a
single simulation takes hours. As such, it is important to further reduce the simulation
time under sampled simulation. This can be done by shortening the simulation time
spent in the cold and warm simulation phases, because under sampled simulation,
a considerable portion of the total simulation time is consumed in these simulation
phases.

ASI and MSI techniques further reduce the simulation time by shortening the time
spent during cold and warm simulations. The most efficient ASI and MSI techniques
completely eliminate the cold and warm simulation phases between sampling units
by replacing them with architecture and microarchitecture state checkpointing tech-
niques. This results in dramatic simulation-time savings of two or three orders of
magnitude.

Besides that, to further cut down on the overall simulation time, one could also
employ parallel sampled simulation by distributing the sampling units across a cluster
of machines for parallel simulation, as described by Lauterbach [64], Nguyen et al.
[79], Girbal et al. [39], and Eeckhout and De Bosschere [28].

The end result is that these simulation time savings—made possible through sam-
pled simulation, efficient ASI and MSI techniques and parallel simulation—lead to
a simulation approach that estimates processor performance in the order of min-
utes with high accuracy. This simulation approach results in a dramatic reduction
in simulation time compared with the detailed simulation of entire benchmark exe-
cutions, which requires days to weeks. Simulation times in the order of minutes
enable the exploration of the microprocessor design space both more thoroughly and

182 L. EECKHOUT

more quickly. This leads to a shorter time-to-market as well as an improved overall
design.

The following three sections discuss proposed solutions to the three major sampled
processor simulation design issues in a detailed manner—selecting a representative
sample and constructing the ASI and MSI efficiently.

5. Representative Sampling Units

In the literature, there are several approaches for finding representative sampling
units. There are two major issues in finding representative sampling units. First, what’s
the appropriate size of the sampling units? And how many sampling units need to be
considered? Second, how to find the representative sampling units? We discuss both
the concerns in the following subsections.

5.1 Size and Number of Sampling Units
Different authors have used different sampling unit sizes as well as different num-

bers of sampling units per benchmark. Table I gives an overview of typical values
observed in the literature for the sampling unit size and the number of sampling
units. The table shows that the number of sampling units per benchmark varies from

Table I
Typical Values as Observed in the Literature for the Number of

Sampling Units per Benchmark and the Sampling Unit Size

Paper Number of sampling units Sampling unit size L

Skadron et al. [98] 1 50,000,000
Sherwood et al. [97] 1 to 10 100,000,000
Perelman et al. [86] up to 300 1,000,000
Wood et al. [114] 19 to 35 10,000 to 5,000,000
Laha et al. [58] 35 60,000
Conte et al. [19] 40 100,000
Haskins Jr. and Skadron [42] 50 1,000,000
Nguyen et al. [79] 8 to 64 30,000 to 380,000
Lauterbach [64] at least 50 250,000
Martonosi et al. [72] 10 to 100 500,000
Kessler et al. [52] 20 to 200 100,000 to 1,000,000
Crowley and Baer [21] 20 to 300 500,000
Conte et al. [20] 2,000 1,000 to 10,000
Wunderlich et al. [115] 10,000 1,000

SAMPLED PROCESSOR SIMULATION: A SURVEY 183

1 to 10000. The sampling unit size varies between 1000 instructions and 100 mil-
lion instructions. It should be noted that in general a small number of sampling units
coexists with a large sampling unit size and vice versa. For example, on the one
hand, Sherwood et al. [97] use 1 to 10 sampling units of 100 million instructions
each. Wunderlich et al. [115], on the other hand, use 10000 sampling units of 1000
instructions each. As will be obvious later, the number of sampling units and their
sizes have an impact on the selection of representative sampling units, as well as ASI
and MSI constructions.

5.2 Selecting Sampling Units
Sampling can be broadly categorized into two major types, namely (i) probability

sampling or statistical sampling and (ii) non-probability sampling or representative
sampling. We discuss both types in this study.

5.2.1 Statistical Sampling
In statistical sampling, a number of sampling units is considered across the whole

execution of the program. These sampling units are chosen randomly or periodi-
cally in an attempt to provide a representative cross-cut of the application being
simulated.

5.2.1.1 Statistical Foundation. Statistical sampling has a rigorous
mathematical foundation based on the central limit theorem, which enables the com-
putation of confidence bounds, see Lilja [66]. In other words, it is possible to compute
a confidence interval based on the sample which meaningfully extrapolates the sam-
pled result to provide an estimate for the whole population. In particular, computation
of a confidence interval requires that we have a number of measurements, xi,1 ≤ i ≤ n,
from a population with mean μ and variance σ2. These measurements are the metrics
of interest for the various sampling units. The mean of these measurements x is
computed as

x =
∑n

i = 1 xi

n
.

The actual true value μ is approximated by the mean of the measurements x and
a range of values [c1, c2] that defines the confidence interval at a given probability
(called the confidence level) is computed around x. The confidence interval [c1, c2]
is defined such that the probability of μ being between c1 and c2 equals 1 − α; α is
called the significance level and (1 − α) is called the confidence level.

184 L. EECKHOUT

Computation of the confidence interval is based on the central limit theory. The
central limit theory states that, for large values of n (typically n ≥ 30), the values of
x shows an approximate Gaussian distribution, with mean μ and standard deviation
σ/

√
n, provided that the samples xi, 1 ≤ i ≤ n, are (i) independent and (ii) are from

the same population with mean μ and finite standard deviation σ (the population does
not need to show a Gaussian distribution).

Because the significance level α is chosen a priori, we need to determine c1 and
c2 such that Pr[c1 ≤ μ ≤ c2] = 1 − α holds. Typically, c1 and c2 are chosen to form
a symmetric interval around x, i.e., Pr[μ < c1] = Pr[μ > c2] = α/2. Applying the
central-limit theorem, we find that

c1 = x − z1−α/2
s√
n

c2 = x + z1−α/2
s√
n
,

where x is the sample mean, n the number of measurements, and s the sample standard
deviation computed as follows:

s =
√∑n

i=1(xi − x)2

n − 1
.

The value z1−α/2 is defined such that a random variable Z that shows a Gaussian
distribution with mean μ = 0 and variance σ2 = 1 obeys the following property:

Pr[Z ≤ z1−α/2] = 1 − α/2.

The value z1−α/2 is typically obtained from a precomputed table. For a 95% confidence
level, z1−α/2 equals 1.96.

This statistics background can now be employed to compute a confidence interval
and to determine the number of sampling units required to achieve a desired confidence
interval at a given confidence level. To determine the amount of sampling units to be
considered, the user determines a particular accuracy level (i.e., a confidence interval
size) for estimating the metric of interest. The benchmark is then simulated and n

sampling units are collected, n being an initial value for the number of sampling
units. Error and confidence bounds are computed for the sample and, if they satisfy
the accuracy limit, this estimate is good. Otherwise, more sampling units (> n) must
be collected, and the error and confidence bounds must be recomputed for each
collected sample until the accuracy threshold is satisfied. The SMARTS framework
by Wunderlich et al. [115, 117] proposes an automated approach for applying this
sampling technique.

SAMPLED PROCESSOR SIMULATION: A SURVEY 185

5.2.1.2 Example Statistical Sampling Approaches. Laha
et al. [58] propose random sampling for evaluating cache performance. They select
multiple sampling units by randomly picking intervals of execution.

Conte et al. [20] pioneered the use of statistical sampling in processor simulation.
They made a distinction between sampling bias and non-sampling bias. Non-sampling
bias results from improperly constructing the MSI prior to each sampling unit, which
will be discussed later. Sampling bias refers to the accuracy of the sample with respect
to the overall average. Sampling bias is fundamental to the selection of sampling units
and is affected by two primary factors for random sampling, namely, the number of
sampling units and the sampling unit size.

The SMARTS (Sampling Microarchitecture Simulation) approach by Wunderlich
et al. [115, 117] proposes systematic sampling, which selects sampling units peri-
odically across the entire program execution: the pre-sampling unit size is fixed, as
opposed to random sampling. The potential pitfall of systematic or periodic sampling
compared with random sampling is that the sampling units may give a skewed view in
case the periodicity of the program execution under measurement equals the sampling
periodicity or its higher harmonics. However, this does not seem to be a concern in
practice as SMARTS achieves highly accurate performance estimates compared with
detailed entire-program simulation. We discuss the SMARTS sampling approach in
more detail in Section 8.1.

Stratified sampling uses prior knowledge about the population that is to be sampled.
The population is classified into groups, so-called strata, and each group is sampled.
Stratified sampling is more efficient than random or systematic sampling because
typically fewer sampling units are required to provide an overall accurate picture
because of the lower variance within a strata. Wunderlich et al. [116] explore stratified
sampling as an approach to sampled processor simulation and select fewer sampling
units in low-variance program phases.

5.2.2 Representative Sampling
Representative sampling differs from statistical sampling in that it first analyses the

program’s execution to pick a representative sampling unit for each unique behavior
in the program’s execution. The key advantage of this approach is that the presence
of fewer sampling units can further reduce simulation time.

Dubey and Nair [24] propose a profile-driven sampling technique that is based on
basic block execution profiles. A basic block execution profile measures the number
of times each basic block is executed during a program execution. They subsequently
scale this basic block execution profile with the simulation speedup they want to
attain through sampled simulation. For example, if a 10X simulation speedup is
the goal, the basic block execution profile is scaled by a factor 10. Subsequently, a

186 L. EECKHOUT

sampled trace is generated using this rescaled basic block execution profile, i.e., the
occurrence of each basic block in the sampled trace is smaller by a factor 10 as it is in
the original program execution. The scaling factor is chosen arbitrarily based on the
simulation time reduction that researchers want to achieve. Although this approach
is defendable from a simulation-time perspective, it may be not from the perspective
of the representativeness of the sampled execution.

Lauterbach [64] evaluates the representativeness of a sampled program execu-
tion using the instruction mix, the function execution frequency and cache statistics.
His approach works as follows: he starts by taking short sampling units and subse-
quently measures the program characteristics mentioned above to evaluate the quality
of the sampled execution. If the sampled execution is not representative, sampling
units are added to the sampled execution until the sampled execution is representative
of the entire program execution.

Iyengar and Trevillyan [46] and Iyengar et al. [47] propose the R-metric to quan-
tify the quality of a sampled execution. The R-metric is based on the notion of fully
qualified instructions. A fully qualified instruction is an instruction that is given along
with its context. The context of a fully qualified instruction consists of its n preceding
singly qualified instructions. A singly qualified instruction is an instruction along with
its instruction type, I-cache behavior, TLB behavior, and if applicable, its branch-
ing behavior and D-cache behavior. The R-metric quantifies the similar/dissimilar
dynamic code sequences, and makes a distinction between two fully qualified instruc-
tions that have the same history of preceding instructions; however, they differ in a
single singly qualified instruction, which can be a cache miss in one case and a hit in
another case. The R-metric for the sampled execution that is close to the R-metric of
the entire program execution designates a representative sampled execution. Iyengar
et al. also propose a heuristic algorithm to generate sampled executions based on this
R-metric. However, a limitation of this method is the huge amount of memory that
is required to keep track of all the fully-qualified basic blocks for large applications.
The authors report that they were unable to keep track of all the fully-qualified basic
blocks for gcc.

Skadron et al. [98] select a single representative sampling unit of 50 million instruc-
tions for their microarchitectural simulations. To this end, they first measure branch
misprediction rates, data cache miss rates and instruction cache miss rates for each
interval of 1 million instructions. By plotting these measurements as a function of
the number of instructions simulated, they observe the time-varying program execu-
tion behavior, i.e., they can identify the initialization phase and/or periodic behavior
in a program execution. On the basis of these plots, they manually select a con-
tiguous sampling unit of 50 million instructions. Obviously, this sampling unit is
chosen after the initialization phase. The validation of the 50 million instruction sam-
pling unit is done by comparing the performance characteristics (obtained through

SAMPLED PROCESSOR SIMULATION: A SURVEY 187

detailed architectural simulations) of this sampling unit to 250 million instruction
sampling units. The selection and validation of a representative sampling unit is done
manually.

Lafage and Seznec [57] use cluster analysis to detect and select sampling units that
exhibit similar behavior. In their approach, they first measure two microarchitecture-
independent metrics for each instruction interval of 1 million instructions. These
metrics quantify the temporal and spatial behaviors of the data reference stream in
each instruction interval. Subsequently, they perform cluster analysis and group inter-
vals that exhibit similar temporal and spatial behaviors into so-called clusters. For
each cluster, the instruction interval that is closest to the center of the cluster is chosen
as the representative sampling unit for that cluster. Only the representative sampling
unit is simulated in detail under hot simulation. The performance characteristics per
representative sampling unit are then weighted with the number of sampling units
it represents, i.e., the weight is proportional to the number of intervals grouped in
the cluster that the sampling unit represents. The microarchitecture-independent met-
rics proposed by Lafage and Seznec are limited to the quantification of data stream
locality. Eeckhout et al. [32] extend this approach and consider a much broader set of
microarchitecture-independent metrics, such as instruction mix, branch predictabil-
ity, amount of ILP, register traffic characteristics, working set sizes and memory
access patterns. They use this approach to find representative sampling units both
within programs and across programs; in other words, rather than selecting repre-
sentative sampling units per benchmark, they select representative sampling units
across a set of benchmarks. They find that when this approach is applied to the SPEC
CPU2000 benchmark suite, approximately one-third of all representative sampling
units represent a single benchmark with a single input, approximately one-third rep-
resents a single benchmark with multiple inputs, and one-third represents multiple
benchmarks.

SimPoint proposed by Sherwood et al. [97] is a very popular sampling approach
that picks a small number of sampling units, which when simulated, accurately cre-
ate a representation of the complete execution of the program. To do so, they break
a program’s execution into intervals, and for each interval they create a code sig-
nature. The code signature is a so-called Basic Block Vector (BBV), by Sherwood
et al. [96], which counts the number of times each basic block is executed in the inter-
val, weighted with the number of instructions per basic block. They then perform
clustering on the code signatures, grouping intervals with similar code signatures
into so-called phases. The notion is that intervals of execution with similar code
signatures have similar architecture behavior, and this has been shown to be the
case by Lau et al. [62]. Therefore, only one interval from each phase needs to
be simulated in order to recreate a complete picture of the program’s execution.
They then choose a representative sampling unit from each phase and perform

188 L. EECKHOUT

detailed simulation on that interval. Taken together, these sampling units (along
with their respective weights) can represent the complete execution of a program.
The sampling units are called simulation points, and each simulation point is an
interval of the order of millions, or tens to hundreds of millions of instructions.
The simulation points were found by examining only a profile of the code exe-
cuted by a program. In other words, the profile is microarchitecture-independent
and the selected simulation points can be used across microarchitectures. Several
variations have been proposed on the SimPoint approach by the SimPoint research
group, which we will discuss in Section 8.2, as well as by other researchers, such
as Liu and Huang [67] and Perez et al. [88].

5.2.3 Matched-pair Comparisons
In research and development on computer architecture, comparison of design

alternatives, i.e., the difference in relative performance between design alternatives,
is often more important than the determination of absolute performance. Luo and
John [68] and Ekman and Stenström [34] propose the use of the well-established
matched-pair comparison for reducing the sample size when design alternatives are
compared. Matched-pair comparison exploits the phenomenon that the difference in
performance between two designs tends to be much smaller than the variability within
a single design. In other words, the variability in performance between the sampling
units for a given design is likely to be higher than the difference in performance
between design alternatives for a given sampling unit. As a result, as the variability
is smaller than the difference in performance, we need to evaluate fewer sampling
units to get an accurate performance estimate for the relative difference in perfor-
mance between design alternatives. Luo and John [68] and Ekman and Stenström [34]
experimentally verify that matched-pair comparisons can reduce simulation time by
an order of magnitude.

5.2.4 Multi-processor and Multi-threaded Processor
Simulation

Simulation of multiprocessors and multithreaded processor systems poses a num-
ber of additional challenges to simulation technology. One particularly important
challenge is the management of simulation time. Increasing the number of proces-
sors to be simulated, or increasing the number of hardware threads per processor,
increases the simulation time dramatically: simulating a highly parallel machine on
single-threaded hardware increases the simulation time by more than a factor N,
with N being the number of hardware threads being simulated. As such, simulation
speedup techniques are even more important for multithreaded and multiprocessor

SAMPLED PROCESSOR SIMULATION: A SURVEY 189

hardware than for single processor systems. Given the recent trend toward multi-core
and multi-threaded processor hardware, accurate and fast sampled simulation will be
the key for research and development on computer architecture.

Ekman and Stenström [34] observed that overall system throughput variability
when multiple independent threads are run concurrently is smaller than per-thread
performance variability—there is a smoothening effect of different threads that exe-
cute high-IPC and low-IPC phases simultaneously. As such, if one is interested in the
overall system throughput, a relatively small sample size will be enough to obtain
accurate average performance estimates and performance bounds; on the other hand,
if one is interested in per-thread performance, a larger sample size will be needed
for achieving the same accuracy. The reduction in sample size is proportional to
the number of hardware threads in the system. This smoothening effect assumes
that the various threads are independent. This is the case, for example, in com-
mercial transaction-based workloads where transactions, queries and requests arrive
randomly, as demonstrated by Wenisch et al. [112]. This is also the case, for exam-
ple, when independent threads, or different programs, are run concurrently on the
parallel hardware. This assumes that the various threads do not interact through the
microarchitecture, for example, through hardware resource sharing.

Addressing the latter assumption is a difficult problem. When two or more programs
or threads share a processor’s resource such as a shared L2 cache or bus—as is
the case in many contemporary multi-core processors—or even issue queues and
functional units—as is the case in Simultaneous Multithreading (SMT) processors—
the performance of both threads becomes entangled. As such, co-executing programs
affect each other’s performance. And, changing a hardware parameter may result in
a change in the parts of the program that are executed together, thereby changing
overall system performance.

To address this problem, Van Biesbrouck et al. [107] proposed the co-phase matrix
approach which enables modeling and estimation of the impact of resource sharing on
per-thread and overall system performance when independent threads (multi-program
workloads) are run on multithreaded hardware. The basic idea is to first use SimPoint
to identify program phases in each of the co-executing threads and keep track of the
performance data of previously executed co-phases in a so-called co-phase matrix;
whenever a co-phase gets executed again, the performance data is easily picked from
the co-phase matrix. By doing so, each unique co-phase gets simulated only once,
which greatly reduces the overall simulation time. The co-phase matrix is an accurate
and fast approach for estimating multithreaded processor performance both when the
co-executing threads start at a given starting point, as well as when multiple starting
points are considered for the co-executing threads, as demonstrated by Van Biesbrouck
et al. [105]. Once the co-phase matrix is populated with performance numbers, the
evaluation of the performance impact of multiple starting points is done in the order

190 L. EECKHOUT

of minutes through analytical simulation. The multiple starting points approach pro-
vides a much more representative overall performance estimate than a single starting
point. Whereas the original co-phase matrix work focuses on two or four independent
programs co-executed on a multithreaded processor, Van Biesbrouck et al. [106] in
their most recent work study how to select a limited number of representative co-phase
combinations across multiple benchmarks within a benchmark suite.

Another important challenge is to overcome the variability that occurs when
multithreaded workloads are simulated, as pointed out by Alameldeen and Wood
[1]. Variability refers to the differences between multiple estimates of a workload’s
performance on a given system configuration. If not properly addressed, computer
architects can draw incorrect conclusions from their simulation experiments. In real
systems, the performance variability comes from a variety of sources such as the
operating system making different scheduling decisions, or threads acquiring locks
in a different order; and the cause for these variations may be small variations in
timing. These divergent paths may result in different combinations and/or orders of
threads being executed, which may substantially affect overall performance. Microar-
chitecture configuration changes, such as a more aggressive processor core, a larger
cache or a better prefetching algorithm, can also introduce timing variations even dur-
ing deterministic architectural simulation. Inclusion of system-level behavior when
modeling multi-threaded workloads only broaden these effects. Small variations in
timing (due to microarchitectural changes) can lead to different scheduling decisions,
which by consequence can result in some thread(s) to spend more (or less) time exe-
cuting idle-loop instructions, spin-lock wait instructions, or system-level privileged
code, such as the TLB miss handler. To address the performance variability prob-
lem when simulating multithreaded workloads, Alameldeen and Wood [1] propose a
simulation methodology that uses multiple simulations while adding small artificial
perturbations to the memory subsystem timing and subsequently analyze the data
from these multiple simulations using statistically rigorous data analysis techniques
such as confidence intervals and hypothesis testing.

6. Architecture State

The second issue to be dealt with in sampled processor simulation is how to provide
accurately a sampling unit’s architecture starting image. The Architecture Starting
Image (ASI) is the architecture state needed to functionally simulate the sampling
unit’s execution to achieve the correct output for that sampling unit. This means that
the register state and memory state need to be established at the beginning of the
sampling unit just as if all preceding instructions in the dynamic instruction stream
would have been executed.

SAMPLED PROCESSOR SIMULATION: A SURVEY 191

The two traditional approaches for providing the ASI are fast-forwarding and
checkpointing. Fast-forwarding quickly emulates the program’s execution from the
start of execution or from the last sampling unit to the current sampling unit.
The advantage of this approach is that this is trivial to implement. The disadvan-
tage is that it serializes the simulation of all of the sampling units for a program,
and it is non-trivial to have a low-overhead fast-forwarding implementation—most
fast-forwarding implementations in current simulators are fairly slow.

Checkpointing is the process of storing the ASI right before the commencement of
the sampling unit. This is similar to the storage of a core dump of a program so that
it can be replayed at that point in execution. A checkpoint stores the register contents
and the memory state prior to a sampling unit. The advantage of checkpointing is that
it allows for efficient parallel simulation, i.e., checkpoints are independent of each
other. The disadvantage is that if a full checkpoint is taken, it can be huge and consume
too much disk space and take too long to load. To address the latter concern, recent
work has proposed reduced checkpointing techniques, which reduce the overhead of
storing and loading checkpoints.

We will now discuss all three ASI approaches; fast-forwarding, full checkpointing
and reduced checkpointing.

6.1 Fast-Forwarding
As mentioned above, establishing the ASI of a sampling unit under fast-forwarding

can be fairly time-consuming, especially when the sampling unit is located deep
in the program’s execution trace. Various researchers have proposed efficient fast-
forwarding approaches.

Szwed et al. [101], for example, propose to fast-forward between sampling units
through native hardware execution, called direct execution, and to use checkpoint-
ing to communicate the architecture state to the simulator. The simulator then runs
the detailed processor simulation of the sampling unit using this checkpoint. When
the end of the sampling unit is reached, native hardware execution comes into play
again to fast-forward to the next simulation point, etc. Many ways to incorporate
direct hardware execution into simulators for speeding up simulation and emulation
systems have been proposed; see for example the approaches by Durbhakula et al.
[25], Fujimoto and Campbel [36], Reinhardt et al. [91], Schnarr and Larus [95] and
Krishnan and Torrellas [56].

One requirement for fast-forwarding through direct execution is that the simula-
tion needs to be run on a machine with the same ISA as the program that is to be
simulated—this may be a limitation when research is performed on ISA extensions.
One possibility to overcome this limitation for cross-platform simulation would be
to employ techniques from dynamic binary translation methods such as just-in-time

192 L. EECKHOUT

(JIT) compilation and caching of translated code, as is done in Embra by Witchell
and Rosenblum [113], or through compiled instruction-set simulation as proposed by
Nohl et al. [80], Reshadi et al. [92], and Burtscher and Ganusov [14]. Addition of a
dynamic binary compiler to a simulator is a viable solution, but doing this is quite
an endeavor, which is why most contemporary architecture simulators do not include
such functionality. In addition, the introduction of JIT compilation into a simulator
also makes the simulator less portable to host machines with different ISAs.

Related to this is the approach presented by Ringenberg et al. [93]. They present
intrinsic checkpointing, which takes the ASI from the previous sampling unit and
uses binary modification to bring the image up to state for the current sampling unit.
The image is brought up to state for the current simulation interval by comparing the
current ASI against the previous ASI and by providing fix-up checkpointing code for
the loads in the simulation interval where different values are observed for the current
ASI versus the previous ASI. The fix-up code for the current ASI then executes stores
to put the correct data values in memory and executes instructions to put the correct
data values in registers. Checkpointing as will be discussed subsequently is easier
to implement as it does not require binary modification. In addition, when intrinsic
checkpointing is implemented, one needs to be careful to ensure that the fix-up code
is not simulated so that it does not affect the cache contents and branch predictor state
for warmup.

6.2 Checkpointing
A checkpoint stores the architecture state, i.e., register and memory contents, prior

to a sampling unit. There is one major disadvantage to checkpointing compared with
fast-forwarding and direct execution, namely large checkpoint files need to be stored
on disk. The use of many sampling units could be prohibitively costly in terms of disk
space. In addition, the large checkpoint file size also affects total simulation time due
to loading of the checkpoint file from disk when the simulation of a sampling unit is
started and transferred over a network during parallel simulation.

6.3 Reduced Checkpointing
Reduced checkpointing addresses the large checkpoint concern by limiting the

amount of information stored in the checkpoint. Particularly, the storage of memory
state in an efficient way is challenging. We describe two efficient approaches for
storing the ASI. One is a reduced checkpoint where we only store the words of
memory that are to be accessed in the sampling unit we are going to simulate. The
second approach is very similar, but is represented differently. For this approach,
we store a sequence of executed load values for the sampling unit. Both of these

SAMPLED PROCESSOR SIMULATION: A SURVEY 193

approaches use approximately the same disk space, which is significantly smaller than
that used in a full checkpoint. Since they are small, they also load instantaneously
and are significantly faster than using fast-forwarding and full checkpoints.

Similar checkpointing techniques can also capture system interactions to provide
application-level simulation without having to provide any emulation support for the
system calls in the simulator. Narayanasamy et al. [78] present such an approach that
creates a system effect log to capture automatically all system effects in a simulation.
This approach automatically determines when a system effect has modified an appli-
cation’s memory location and uses techniques, similar to what is described below, to
capture these changes due to external events such as system calls and interrupts. The
important benefits of this approach are that (i) it enables deterministic re-executions of
an application providing reproducible simulation results and (ii) there is no necessity
for the simulation environment to support and maintain system call emulation.

6.3.1 Touched Memory Image
The Touched Memory Image (TMI) proposed by Van Biesbrouck et al. [103, 105]

and the live-points approach used in TurboSMARTS by Wenisch et al. [110, 111]
only store the blocks of memory that are accessed in the sampling unit that is to
be simulated. The TMI is a collection of chunks of memory (touched during the
sampling unit) with their corresponding memory addresses. The TMI contains only
the chunks of memory that are read during the sampling unit. At simulation time,
prior to simulating the given sampling unit, the TMI is loaded from disk and the
chunks of memory in the TMI are written to their corresponding memory addresses.
This guarantees a correct ASI when the simulation of the sampling unit is begun.
A small file size is further achieved by using a sparse image representation, so regions
of memory that consist of consecutive zeros are not stored in the TMI. In addition,
large regions of non-zero sections of memory are combined and stored as one chunk.
This saves storage space in terms of memory addresses in the TMI, since only one
memory address needs to be stored for a large consecutive data region.

An optimization to the TMI approach, called the Reduced Touched Memory Image
(RTMI), only contains chunks of memory for addresses that are read before they are
written. There is no need to store a chunk of memory in the reduced checkpoint in
case that chunk of memory is written prior to being read. A TMI, on the other hand,
contains chunks of memory for all reads in the sampling unit.

6.3.2 Load Value Sequence
The Load Value Sequence (LVS), also proposed by Van Biesbrouck et al. [105],

involves the creation of a log of load values that are loaded into memory during

194 L. EECKHOUT

the execution of the sampling unit. Collection of an LVS can be done with a func-
tional simulator or binary instrumentation tool, which simply collects all data values
loaded from memory during sampling unit execution (excluding those from instruc-
tion memory and speculative memory accesses). When the sampling unit is simulated,
the load log sequence is read concurrently with the simulation to provide correct data
values for non-speculative loads. The result of each load is written to memory so
that, potentially, speculative loads accessing that memory location will find the cor-
rect value. The LVS is stored in a compressed format to minimize the required disk
space. Unlike TMI, LVS does not require the storage of the addresses of load values.
However, programs often contain many loads from the same memory addresses and
loads with value 0, both of which increase the size of LVS without affecting TMI.

In order to further reduce the size of the LVS, Van Biesbrouck et al. [105] also
propose the Reduced Load Value Sequence (RLVS). For each load from data memory,
the RLVS contains one bit, indicating whether or not the data needs to be read from the
RLVS. If necessary, the bit is followed by the data value, and the data value is written to
the simulator’s memory image at the load address so that it can be found by subsequent
loads; otherwise, the value is not included in the RLVS and is read from the memory
image. Thus the RLVS does not contain load values when a load is preceded by a load
or store for the same address or when the value would be zero (the initial value for
memory in the simulator). This yields a significant additional reduction in checkpoint
file sizes.

6.3.3 Discussion
Van Biesbrouck et al. [103, 105] and Wenisch et al. [111] provide a comprehen-

sive evaluation of the impact of reduced ASI checkpointing on simulation accuracy,
storage requirements, and simulation time. These studies conclude that the impact
on error is marginal (less than 0.2%)—the reason for the inaccuracy due to ASI
checkpointing is that the data values for loads along mispredicted paths may be
incorrect. Reduced ASI checkpointing reduces storage requirements by two orders
of magnitude compared with full ASI checkpointing. For example, for SimPoint
using one-million instruction sampling units, an average (compressed) full ASI
checkpoint takes 49.3 MB, whereas a reduced ASI checkpoint takes only 365 KB.
Finally, reduced ASI checkpointing reduces the simulation time by an order of mag-
nitude (20X) compared with fast-forwarding and by a factor 4X compared with
full checkpointing. Again, for SimPoint, the average simulation time per bench-
mark under reduced ASI checkpointing in combination with the MHS MSI approach
(which will be discussed later) equals 14 minutes on a single processor, compared
to 55 minutes under full checkpointing, compared to more than 5 hours under
fast-forwarding.

SAMPLED PROCESSOR SIMULATION: A SURVEY 195

7. Microarchitecture State

The third issue in sampled simulation is to establish an accurate microarchitecture
starting image (MSI) for the sampling unit to be simulated. The MSI for the sampling
unit should be as accurate as possible compared with the MSI that would be achieved in
the case where all instructions preceding the sampling unit would have been simulated
in full detail. It should be noted that there is a subtle but important difference between
the MSI and the ASI. On the one hand, the ASI concerns the architecture state and
should be 100% correct to enable the correct functional simulation of the sampling
unit. The MSI, on the other hand, concerns the microarchitecture state and does not
need to be 100% correct; however, the better the MSI under sampled simulation
resembles the MSI under full benchmark simulation, the more accurate the sampled
simulation will be.

The following subsections describe MSI approaches related to cache structures,
branch predictors and processor core structures such as the reorder buffer, issue
queues, store buffers and functional units.

7.1 Cache State Warmup
Cache state is probably the most critical aspect of the MSI since cache structures

can be very large (up to several MBs) and can introduce a very long history. In
this section, we use the term ‘cache’ to collectively refer to a cache, a Translation
Lookaside Buffers (TLB) and a Branch Target Buffers (BTB) because all of these
structures have a cache-like structure.

A number of cache state warmup strategies have been proposed over the past 15
years.

No warmup. The cold or no warmup scheme used by Crowley and Baer [21, 22]
and Kessler et al. [52] assumes an empty cache at the beginning of each sampling
unit. Obviously, this scheme will overestimate the cache miss rate. However, the bias
can be small for large sampling unit sizes. Intel’s PinPoint approach, for example, as
described by Patil et al. [84], considers a fairly large sampling unit size, namely, 250
million instructions and does not employ any warmup approach because the bias due
to an inaccurate MSI is small.

Continuous warmup. Continuous warmup, as the name indicates, continuously
warms cache state between sampling units. In other words, there is no cold simulation;
there is only warm simulation. This is a very accurate approach, but increases the time
spent between sampling units. This approach is employed in the SMARTS approach
by Wunderlich et al. [115, 117]: the tiny sampling units of 1000 instructions used in
SMARTS require a very accurate MSI, which is achieved through continuous warmup
called functional warming in the SMARTS approach.

196 L. EECKHOUT

Stitch. Stitch or stale state proposed by Kessler et al. [52] approximates the microar-
chitecture state at the beginning of a sampling unit with the hardware state at the end
of the previous sampling unit. An important disadvantage of the stitch approach is
that it cannot be employed for parallel sampled simulation.

Prime. The prime-xx% method proposed by Kessler et al. [52] assumes an empty
hardware state at the beginning of each sampling unit and uses xx% of each sampling
unit to warmup the cache. Actual simulation then starts after these xx% instructions.
The warmup scheme prime-50% is also called half in the literature.

Stitch/prime.Acombination of the two previous approaches was proposed by Conte
et al. [20]: the hardware state at the beginning of each sampling is the state at the end
of the previous sampling unit plus warming-up using a fraction of the sampling unit.

Cache miss-rate estimation. Another approach proposed by Kessler et al. [52] and
Wood et al. [114] involves the assumption of an empty cache at the beginning of
each sampling unit and the estimation of the cold-start misses that would have been
missed if the cache state at the beginning of the sampling unit was known. This is
a so-called cache miss rate estimator approach. A simple example of the cache miss
estimation approach is hit-on-cold or assume-hit. Hit-on-cold assumes that the first
access to a cache line is always a hit. This is an easy-to-implement technique which
is fairly accurate for programs with a low cache miss rate.

Warmup length estimation. Nguyen et al. [79] use W instructions to warmup the
cache, which is calculated as follows:

W = C/L

m · r
,

where C is the cache capacity, L the line size, m the cache miss rate and r the memory
reference ratio. The idea is that W instructions need to be simulated to warmup the
cache, assuming that each cache miss refers to one cache line. The problem with this
approach is that the cache miss rate m is unknown—this is exactly what we are trying
to approximate through sampling.

Minimal subset evaluation. Minimal Subset Evaluation (MSE) proposed by
Haskins Jr. and Skadron [41, 43] determines the warmup length as follows. First,
the user specifies the desired probability that the cache state at the beginning of
the sample under warmup equals the cache state under perfect warmup. Second, the
MSE formulas are used to determine the number of unique references required during
warmup. Third, using a memory reference profile of the pre-sampling unit, the exact
point in the pre-sampling unit where the warmup should get started is estimated in
order to cover these unique references.

Self-monitored adaptive (SMA) warmup. Luo et al. [69, 70] propose a self-
monitored adaptive cache warmup scheme in which the simulator monitors the
warmup process of the caches and decides when the caches are warmed up. This

SAMPLED PROCESSOR SIMULATION: A SURVEY 197

warmup scheme is adaptive to the program being simulated as well as to the cache
being simulated—the smaller the application’s working set size, or the smaller the
cache, the shorter the warmup phase. One limitation of SMA is that it is not known
beforehand as to when the caches will be warmed up and thus when the full detail
simulation should get started. This is not a problem for random statistical sampling,
but it is a problem for periodic sampling and representative sampling.

We now discuss a number of warmup strategies in more detail, namely MRRL
and BLRL, a number of hardware-state checkpointing techniques, as well as a hybrid
warmup/checkpointing approach. And we subsequently evaluate the accuracy and
efficacy of these MSI strategies.

7.1.1 Memory Reference Reuse Latency (MRRL)
Haskins Jr. and Skadron [42, 43] propose Memory Reference Reuse Latency

(MRRL) for accurately warming up hardware state at the beginning of each sampling
unit. As suggested, MRRL refers to the number of instructions between consecutive
references to the same memory location, i.e., the number of instructions between a
reference to address A and the next reference to A. For their purpose, they divide
the pre-sampling/sampling unit into NB non-overlapping buckets each containing
LB contiguous instructions; in other words, a pre-sampling/sampling unit consists
of NB · LB instructions; see also Figure 3. The buckets receive an index from 0 to
NB − 1, in which index 0 is the first bucket in the pre-sampling unit. The first NB,P

buckets constitute the pre-sampling unit and the remaining NB,S buckets constitute
the sampling unit; obviously, NB = NB,P + NB,S.

The MRRL warmup strategy also maintains NB counters ci(0 ≤ i < NB). These
counters ci will be used to build the histogram of MRRLs. Through profiling, the
MRRL is calculated for each reference and the associated counter is updated accord-
ingly. For example, for a bucket size LB = 10, 000 (as is used by Haskins Jr.
and Skadron [42]) an MRRL of 124, 534 will increase counter c12. When a pre-
sampling/sampling unit is profiled, the MRRLhistogram pi, 0 ≤ i < NB is computed.
This is done by dividing the bucket counters with the total number of references in

pre-sampling unit sampling unit

0 LB insns NB � 1NB,P � 1 � k NB,P � 1

warmup

Fig. 3. Determination of warmup using MRRL.

198 L. EECKHOUT

the pre-sampling/sampling unit, i.e., pi = ci∑NB−1
j=0 cj

. As such, pi = Prob [i · LB <

MRRL ≤ (i + 1) · LB − 1]. Not surprisingly, the largest pi’s are observed for small
values of i due to the notion of temporal locality in computer program address streams.
Using the histogram pi, MMRL calculates the bucket corresponding to a given per-
centile K%, i.e., bucket k for which

∑k−1
m=0 pm < K% and

∑k
m=0 pm ≥ K%. This

means that of all the references in the current pre-sampling/sampling unit, K% have
a reuse latency that is smaller than k · LB. As such, MRRL defines these k buckets
as warmup buckets. In other words, warm simulation is started k · LB instructions
before the sampling unit.

An important disadvantage of MRRL is that a mismatch in the MRRL behavior in
the pre-sampling unit versus the sampling unit may result in a suboptimal warmup
strategy in which the warmup is either too short to be accurate, or too long for the
attained level of accuracy. For example, if the reuse latencies are larger in the sampling
unit than in the pre-sampling unit, the warmup will be too short and consequently,
the accuracy might be poor. Whereas if the reuse latencies are shorter in the sampling
unit than in the pre-sampling unit, the warmup will be too long for the attained level
of accuracy. One way of solving this problem is to choose the percentile K% to be
large enough. The result is that the warmup will be longer than needed for the attained
level of accuracy.

7.1.2 Boundary Line Reuse Latency (BLRL)
Boundary Line Reuse Latency (BLRL) described by Eeckhout et al. [29] and

Eeckhout et al. [30] is quite different from MRRL although it is also based on reuse
latencies. In BLRL, the sample is scanned for reuse latencies that cross the pre-
sampling/sampling unit boundary line, i.e., a memory location is referenced in the
pre-sampling unit and the next reference to the same memory location is in the sam-
pling unit. For each of these cross-boundary line reuse latencies, the pre-sampling
unit reuse latency is calculated. This is done by subtracting the distance in the sam-
pling unit from the memory reference reuse latency. For example, if instruction i has
a cross-boundary line reuse latency x, then the pre-sampling unit reuse latency is
x − (i − NB,P · LB); see Figure 4. A histogram is built up using these pre-sampling
unit reuse latencies. As is the case for MRRL, BLRL uses NB,P buckets of size LB to
limit the size of the histogram. This histogram is then normalized to the number of
reuse latencies crossing the pre-sampling/sampling unit boundary line. The required
warmup length is computed to include a given percentile K% of all reuse latencies
that cross the pre-sampling/sampling unit boundary line. There are three key differ-
ences between BLRL and MRRL. First, BLRL considers reuse latencies for memory
references originating from instructions in the sampling unit only, whereas MRRL

SAMPLED PROCESSOR SIMULATION: A SURVEY 199

pre-sampling unit sampling unit

0 LB insns

boundary line

reuse latency x

pre-sampling unit reuse latency

NB,P � 1 � k NB � 1NB,P � 1

instruction i

Fig. 4. Determination of warmup using BLRL.

considers reuse latencies for memory references originating from instructions in both
the pre-sampling unit and the sampling unit. Second, BLRL only considers reuse
latencies that cross the pre-sampling/sampling unit boundary line; MRRL considers
all reuse latencies. Third, in contrast to MRRL which uses the reuse latency to update
the histogram, BLRL uses the pre-sampling unit reuse latency.

7.1.3 MSI Checkpointing
Another approach to the cold-start problem is to checkpoint or to store the MSI at the

beginning of each sampling unit and impose this state during sampled simulation. This
approach yields perfectly warmed-up microarchitecture state. However, the storage
needed to store these checkpoints can explode in case many sampling units need to
be checkpointed. In addition, the MSI checkpoint needs to be stored for each specific
hardware configuration. For example, a checkpoint needs to be made for each cache
and for branch predictor configuration of interest. Obviously, the latter constraint
implies that the complete program execution needs to be simulated for these various
hardware structures.

Since this is practically infeasible, researchers have proposed more efficient
approaches for MSI checkpointing. One example is the No-State-Loss (NSL)
approach proposed by Conte et al. [19] and Lauterbach [64]. NSL scans the pre-
sampling unit and records the latest reference to each unique memory location in the
pre-sampling unit. This is the stream of unique memory references as they occur in the
memory reference stream sorted by their least recent use. In fact, NSL keeps track of
all the memory references in the pre-sampling unit and then retains the last occurrence
of each unique memory reference. We will name the obtained stream the least recently

200 L. EECKHOUT

used (LRU) stream. For example, the LRU stream of the following reference stream
‘ABAACDABA’ is ‘CDBA’. The LRU stream can be computed by building the LRU
stack for the given reference stream. An LRU stack operates as follows: when, on the
one hand, address A is not present on the stack, it is pushed onto the stack. When,
on the other hand, address A is present on the stack, it is removed from the stack
and repushed onto the stack. As such, it is easily understandable that both reference
streams, the original reference stream as well as the LRU stream, yield the same
state when applied to an LRU stack. The no-state-loss warmup method exploits this
property by computing the LRU stream of the pre-sampling unit and by applying this
stream to the cache during the warm simulation phase. By consequence, the no-state-
loss warmup strategy yields perfect warmup for caches with an LRU replacement
policy.

Barr et al. [5] extended this approach for reconstructing the cache and directory
state during sampled multiprocessor simulation using a so-called Memory Timestamp
Record (MTR). In order to do so, they keep track of a timestamp per unique memory
location that is referenced. In addition, they keep track of whether the source of
access of the memory location originates from a load or from a store operation. This
information allows them to quickly build the cache and directory state at the beginning
of each sampling unit, similar to reconstruction of the cache content using an LRU
stream.

Van Biesbrouck et al. [104] proposed the Memory Hierarchy State (MHS) approach.
Wenisch et al. [111] proposed a similar approach, called live-points, in Tur-
boSMARTS. In MHS, the largest cache of interest is simulated once for the entire
program execution. At the beginning of each sampling unit, the cache content is
then stored on disk as a checkpoint. The content of smaller sized caches can then be
derived from the MHS checkpoint. Reduction in the associativity of the cache is trivial
to model using MHS—the most recently accessed cache lines need to be retained per
set. Reduction in the number of sets in the cache is slightly more complicated: the new
cache set retains the most recently used cache lines from the merging cache sets—this
requires that access times to cache lines during MHS construction be kept track of.
The disadvantage of the MHS approach compared with NSL is that MHS requires that
the cache line size be fixed. Whenever a cache needs to be simulated with a different
cache line size, the warmup info needs to be recomputed. NSL does not have this dis-
advantage. However, the advantage of MHS over NSL is that it is more efficient with
respect to disk space, i.e., less disk space is required for storing the warmup info. The
reason is that NSL stores all unique pre-sampling unit memory references; whereas
MHS discards conflicting memory references from the warmup info for a given max-
imum cache size. A second advantage of MHS over NSL is that the computation of
the MHS warmup is faster than that of the NSL warmup info; NSL does an LRU stack
simulation, whereas MHS only simulates one particular cache configuration.

SAMPLED PROCESSOR SIMULATION: A SURVEY 201

The major advantage of MSI checkpointing is that it is an extremely efficient
warmup strategy, particularly in combination with ASI checkpointing. MSI check-
pointing replaces the warm simulation phase by loading the MSI checkpoint, which
is much more efficient in terms of simulation time. Use of ASI checkpointing in
combination with MSI checkpointing leads to highly efficient sampled simulation
approaches that can simulate entire benchmarks in minutes as demonstrated by Van
Biesbrouck et al. [103, 104] and Wenisch et al. [110, 111]. In addition, MSI and ASI
checkpointing is the preferred method for parallel sampled simulation where the
simulation of sampling units is distributed across a cluster of machines.

7.1.4 NSL-BLRL: Combining NSL and BLRL
This section discusses a hybrid cache state warmup approach that combines MSI

checkpointing through NSL with BLRL into NSL-BLRL, as presented by Van
Ertvelde et al. [108,109]. This is done by computing both the LRU stream as well as
the BLRL warmup buckets corresponding to a given percentile K%. Only the unique
references (identified through NSL) that are within the warmup buckets (determined
through BLRL) will be used to warm up the caches. This could be viewed of as prun-
ing of the LRU stream with BLRL information. This method could also be viewed of
as computing the LRU stream from the BLRL warmup buckets. Using NSL-BLRL as
a warmup approach, the subsequent operation is as follows. The reduced LRU stream
as it is obtained through NSL-BLRL is to be stored on disk as an MSI checkpoint.
Upon simulation of a sampling unit, the reduced LRU stream is loaded from disk, the
cache state is warmed up and finally, the simulation of the sampling unit commences.

The advantage over NSL is that NSL-BLRL requires less disk space to store the
warmup memory references; in addition, the smaller size of the reduced LRU stream
results in faster warmup processing. The advantage over BLRL is that loading of the
reduced LRU stream from the disk is more efficient than the warm simulation needed
for BLRL. According to the results reported by Van Ertvelde et al. [108], the warmup
length for BLRL is at least two orders of magnitude longer than that for NSL-BLRL.
As such, significant speedups are to be obtained compared with BLRL. It should be
noted that NSL-BLRL inherits the limitation from NSL of only guaranteeing perfect
warmup for caches with LRU replacement. Caches with other replacement policies
such as random, first-in first-out (FIFO) and not-most-recently-used (NMRU) are
not guaranteed to get a perfectly warmed-up cache state under NSL-BLRL (as is the
case for NSL)—however, the difference in warmed up hardware state is very small,
as experimentally verified by Van Ertvelde et al. [108]. On the other hand, NSL-
BLRL is more broadly applicable during design space exploration than are MHS and
the TurboSMARTS’ live-points approaches because the NSL-BLRL warmup info is
independent of the cache block size.

202 L. EECKHOUT

7.1.5 Discussion
We now compare the accuracy and efficacy of a number of cache-state warmup

approaches, namely, MRRL, BLRL, NSL, and NSL-BLRL. We consider 9 SPEC
CPU2000 integer benchmarks1. The binaries, which were compiled and optimized
for the Alpha 21264 processor, were accessed from the SimpleScalar website2.
All measurements presented in this paper are obtained using the modified MRRL
software3 which, in turn, is based on the SimpleScalar software by Burger and Austin
[13]. The baseline processor simulation model is a contemporary 4-wide superscalar
out-of-order processor with a 16-KB L1 I-cache, 32-KB L1 D-cache, and a unified
1MB L2 cache. We consider 50 sampling units (1M instructions each) and select a
sampling unit for every 100M instructions. These sampling units were taken from the
beginning of the program execution to limit the simulation time while evaluating the
various warmup strategies. For a more detailed description of the methodology, we
refer to Van Ertvelde et al. [108].

7.1.5.1 Accuracy. The first criterion to evaluate a warmup strategy is its
accuracy. Figure 5 shows the IPC prediction error for MRRL, BLRL, NSL and
NSL-BLRL for various benchmarks. (Note that NSL yields the same accuracy as
NSL-BLRL 100%.) The IPC prediction error is the relative error compared with a
full warmup run, i.e., all instructions prior to the sample are simulated in full detail.
A positive error means an IPC overestimation of the warmup approach compared
with the perfect warmup case. In the IPC prediction errors that we present here,

�0.5%

�1.0%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

bzip2 crafty eon gcc gzip parser twolf vortex vpr avg

IP
C

 p
re

d
ic

ti
o

n
 e

rr
o

r MRRL 99.9%

BLRL 90%

NSL-BLRL 90%

NSL-BLRL 100%

NSL

Fig. 5. Evaluation of the accuracy for the MRRL, BLRL, NSL-BLRL and NSL cache state warmup
strategies: IPC prediction error is shown on the vertical axis compared with full warmup.

1 http://www.spec.org
2 http://www.simplescalar.com
3 http://www.cs.virginia.edu/∼jwh6q/mrrl-web/

SAMPLED PROCESSOR SIMULATION: A SURVEY 203

we assume that there is no stale state (no stitch) when the hardware state is warmed
up before simulating a sample. This is to stress the warmup techniques; in addition,
this is also the error that one would observe under checkpointed parallel sampled
simulation.

We observe that all warmup strategies are fairly accurate. The average IPC pre-
diction error is less than 1%, with a maximum error of around 3%. (As a point of
comparison, the cold or no warmup strategy, results in an average of 30% IPC pre-
diction error.) The NSL and NSL-BLRL 100% are the most accurate strategies with
an average IPC prediction error of less than 0.1%.

7.1.5.2 Warmup Length. We now compare the number of warm simu-
lation instructions that need to be processed, see Figure 6 which shows the number
of warm simulation instructions (for 50 1 M instruction sampling units). It should be
noted that the vertical axis is on a logarithmic scale. The most striking observation
from this graph is that the continuous warmup approaches, BLRL and MRRL, require
a much longer warmup length than checkpoint-based MSI strategies. The number of
warm simulation instructions is one to two orders of magnitude smaller for NSL-
BLRL and NSL compared with MRRL and BLRL. Also, NSL-BLRL 100% results
in around 46% shorter warmup lengths than NSL.

7.1.5.3 SimulationTime. The number of warm simulation instructions
only gives a rough idea about the impact of the warmup strategies on overall simulation
time. Figure 7 quantifies the overall simulation time for the various warmup strategies
under checkpointed ASI. Checkpointed cache state warmup through NSL and NSL-
BLRL reduces the overall simulation time by more than one order of magnitude (14X)

1.E � 05

1.E � 06

1.E � 07

1.E � 08

1.E � 09

1.E � 10

bzip2 crafty eon gcc gzip parser twolf vortex vpr avgn
u

m
b

er
 o

f
w

ar
m

 s
im

u
la

ti
o

n
 in

st
ru

ct
io

n
s

MRRL 99.9%

BLRL 90%

NSL-BLRL 90%

NSL-BLRL 100%

NSL

Fig. 6. Evaluation of the warmup length: the number of warm simulation instructions for MRRL,
BLRL, NSL-BLRL and NSL.

204 L. EECKHOUT

0

200

400

600

800

1000

1200

bzip2 crafty eon gcc gzip parser twolf vortex vpr avg

ti
m

e
(s

ec
o

n
d

s)

full warmup

MRRL 99.9%

BLRL 90%

NSL-BLRL 90%

NSL-BLRL 100%

NSL

no warmup

Fig. 7. Evaluation of the simulation time under sampled simulation considering various warmup
strategies, assuming checkpointed ASI.

0

0.5

1

1.5

2

2.5

3

bzip2 crafty eon gcc gzip parser twolf vortex vpr avg

ch
ec

kp
o

in
t

fi
le

 s
iz

e
(M

B
)

NSL-BLRL 90% NSL-BLRL 100% NSL

Fig. 8. Storage requirements for NSL-BLRL compared with NSL: average number of MBs of disk
storage needed for storing one hardware state checkpoint in compressed format.

compared with full warmup, and by 3X to 4X compared with continuous warmup
such as MRRL and BLRL, up to the point wherein the checkpointed warmup is nearly
as fast as no warmup.

7.1.5.4 Storage Requirements. We now quantify the storage
requirements of checkpointed cache MSI approaches for storing the hardware state
checkpoints on disk. Figure 8 shows the storage requirements for NSL-BLRL

SAMPLED PROCESSOR SIMULATION: A SURVEY 205

compared with NSL. (Note that MRRL and BLRL do not require any significant stor-
age.) The numbers shown in Figure 8 represent the number of MBs of storage needed
to store one hardware-state checkpoint in compressed format. For NSL, the average
compressed storage requirement per sample is 810 KB; the maximum observed is for
bzip2, 2.5 MB. For NSL-BLRL, the storage requirements are greatly reduced com-
pared with NSL. For example, for K = 100%, the average storage requirement is
553 KB (32% reduction); for K = 90%, the average storage requirement is 370 KB
(54% reduction). As such, we conclude that the real benefit of NSL-BLRL compared
with NSL lies in reducing storage requirements by 30% while achieving the same
accuracy and comparable simulation times.

7.2 Branch Predictor State Warmup
Compared to the amount of work done on cache state warmup, very little work has

been done on branch predictor warmup. Before discussing existing branch predictor
warmup approaches, we first illustrate the need for accurate branch predictor warmup
during sampled simulation—which is often being overlooked.

7.2.1 The Need for Branch Predictor Warmup
Branch predictors need to be warmed up during sampled simulation. This is illus-

trated in Figs. 9 and 10 where the number of branch mispredictions per thousand
instructions (MPKI) is shown for gcc and mcf, respectively, for four sampling unit
sizes: 10 K, 100 K, 1 M and 10 M instruction sampling unit sizes. Each graph shows
the MPKI for four (fairly aggressive) branch predictors: a 128-Kbit gshare predic-
tor, a 256-Kbit local predictor, a 128-Kbit bimodal predictor, and a 192-Kbit hybrid
predictor—we refer to Kluyskens and Eeckhout [54, 55] for more details about the
experimental setup. The various bars correspond to various branch predictor warmup
strategies: no warmup, stale state and perfect warmup. The no-warmup approach
assumes an initialized branch predictor at the beginning of a sampling unit, i.e., the
branch predictor content is flushed at the beginning of the sampling unit—two-bit sat-
urating counters in adjacent entries are initialized in alternate ‘01’and ‘10’ states. The
stale-state approach assumes that the branch predictor at the beginning of the sam-
pling unit equals the branch predictor state at the end of the previous sampling
unit. It should be noted that the stale-state approach assumes that sampling units
are simulated sequentially—this excludes parallel sampled simulation. The perfect
warmup approach is an idealized warmup scenario where the branch predictor is per-
fectly warmed up, i.e., the branch predictor state at the beginning of the sampling
unit is the state in which it is assumed that all instructions prior to the sampling unit
were simulated.

206 L. EECKHOUT

10 K insn sampling unit

0

2

4

6

8

10

12

gshare local bimodal hybrid

M
P

K
I

no warmup

stale state

perfect warmup

100 K insn sampling unit

0

1

2

3

4

5

6

gshare local bimodal hybrid

M
P

K
I

no warmup

stale state

perfect warmup

1 M insn sampling unit

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

gshare local bimodal hybrid

M
P

K
I

no warmup
stale state
perfect warmup

10 M insn sampling unit

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

gshare local bimodal hybrid

M
P

K
I

no warmup

stale state

perfect warmup

Fig. 9. No warmup, stale state and perfect warmup MPKI results for gcc and 4 branch predictors
(gshare, local, bimodal and hybrid) and 4 sampling unit sizes (10 K, 100 K, 1 M and 10 M).

Figures 9 and 10 clearly show that the no-warmup and stale-state approaches are not
accurate, particularly for small sampling unit sizes. For example for 10 K instruction
sampling units, the
MPKI can be very high for both the no-warmup and stale-state
approaches. Even for 1 M instruction sampling units, the error can be significant,
more than 1.5
MPKI for gcc and more than 3
MPKI for mcf. It should be noted
that the error varies across branch predictors. The error is typically higher for the
gshare and local predictors than for the bimodal predictor, which is to be understood
intuitively, the reason being that the hashing in the gshare and local predictor tables
typically results in more entries being accessed in the branch predictor table than the
bimodal predictor does.

As a result of the non-uniform warmup error across branch predictors, incorrect
design decisions may be taken. For example, for gcc, using the no-warmup approach,
a computer architect would conclude that the local predictor achieves a better accuracy
(a lower MPKI) than the gshare predictor. This is the case for 10 K, 100 K and even
1 M instruction sampling units. For mcf, using the no-warmup approach, it would be
concluded that the hybrid branch predictor outperforms all the other branch predictors;

SAMPLED PROCESSOR SIMULATION: A SURVEY 207

10 K insn sampling unit

8

10

12

14

16

18

20

22

24

gshare local bimodal hybrid

M
P

K
I

no warmup

stale state
perfect warmup

100 K insn sampling unit

8

10

12

14

16

18

20

gshare local bimodal hybrid

M
P

K
I

no warmup

stale state

perfect warmup

1 M insn sampling unit

10

11

12

13

14

15

16

17

18

gshare local bimodal hybrid

M
P

K
I

no warmup
stale state
perfect warmup

10 M insn sampling unit

10

11

12

13

14

15

16

17

18

gshare local bimodal hybrid

M
P

K
I

no warmup

stale state

perfect warmup

Fig. 10. No warmup, stale state and perfect warmup MPKI results for mcf and 4 branch predictors
(gshare, local, bimodal and hybrid) and 4 sampling unit sizes (10 K, 100 K, 1 M and 10 M).

this is the case for all sampling unit sizes considered here (including the 10 M sampling
unit size). However, these incorrect conclusions are just an artifact of the inadequate
warmup approach. For gcc, perfect warmup shows that the gshare predictor outper-
forms the local predictor; for mcf, perfect warmup shows that the gshare predictor
outperforms all other branch predictors. As a conclusion, no warmup may lead to
incorrect design decisions for sampled branch predictor simulation. The stale-state
warmup approach only solves this problem for the 1 M and 10 M instruction sampling
unit sizes; however, it does not solve the problem for smaller sampling unit sizes and
it cannot be used for parallel sampled simulation. As such, there is a need for accurate
warmup strategies for sampled branch predictor simulation.

7.2.2 Branch Predictor WarmupTechniques
Only a few branch predictor warmup techniques have been proposed so far, which

we discuss in this section; a more accurate and most recently introduced approach,
Branch History Matching, is discussed in the next section.

208 L. EECKHOUT

Stale state and fixed-length warmup. The paper by Conte et al. [20] was the first to
deal with branch predictor warmup. They proposed two approaches to branch predic-
tor warmup, namely, stale state and fixed-length warmup. Stale state (or stitch) means
that the branch predictor state at the end of the previous sampling unit serves as an
approximation for the branch predictor state at the beginning of the current sampling
unit. An important disadvantage of stale state is that it serializes the simulation of
the various sampling units, i.e., it is impossible to simulate the current sampling unit
without having finalized the simulation of the previous sampling unit. Fixed-length
warmup is a simple-to-implement method that achieves good accuracy if sufficiently
long warmup lengths are chosen.

Memory reference reuse latency. The second paper that deals with branch predictor
warmup is by Haskins Jr. and Skadron [42, 43], in which they propose memory ref-
erence reuse latency (MRRL). The idea of MRRL, as described in Section 7.1.1, is
to look at the distribution of reuse distances between occurrences of the same static
branch in the pre-sampling and in the sampling units. MRRL computes the reuse
latency, i.e., the number of instructions between the branch instance in the pre-
sampling unit and the one in the sampling unit, for all branch instances in the
pre-sampling unit and in the sampling unit. For a given target cumulative proba-
bility, for example, 99.5%, it is then determined as to where warmup should start in
the pre-sampling unit. During this warmup period, the branch predictor is warmed
up, but no misprediction rates are computed.

Checkpointed warming. A number of papers have proposed MSI checkpointing to
warm up cache state, as discussed above in Section 7.1.3. They suggest storing the
branch predictor state as part of the microarchitecture state for the various branch
predictors one may be interested in during design space exploration. This can be
costly in terms of disk space in case multiple branch predictors need to be stored, and
in addition, it prevents the simulation of a branch predictor that is not contained in
the microarchitecture warmup.

Branch trace compression. For addressing this problem, Barr and Asanovic [4]
propose branch trace compression. They store a compressed branch trace on disk
and upon branch predictor warming, they simply decompress the compressed branch
trace and use the decompressed trace for branch predictor warming. This approach
is independent of branch predictor and can be used to warm any branch predictor
during sampled simulation. However, the branch trace compression scheme by Barr
and Asanovic [4] does not address the issue of how far one needs to go back in the
pre-sampling unit. They assume that the entire branch trace from the beginning of
the benchmark execution up to the current sampling unit needs to be compressed and
decompressed. This can be time-consuming in practice, particularly for sampling units
deep down the benchmark execution. BHM, as discussed in the following section,
can be used to cut down the branch traces that need to be compressed. This saves both

SAMPLED PROCESSOR SIMULATION: A SURVEY 209

disk space and simulation time, while keeping the benefit of the warmup approach to
be branch predictor independent.

7.2.3 Branch History Matching
Branch history matching (BHM) by Kluyskens and Eeckhout [54,55] is a recently

proposed branch predictor warmup approach that computes the branch predictor
warmup length in two steps. First, the BHM distribution is computed for all sampling
units. Second, the warmup length is determined for each sampling unit for a given
total warmup length budget using the BHM distributions for all sampling units.

7.2.3.1 Computation of the BHM Distribution. Computation
of the BHM distribution for a given sampling unit is illustrated in Fig. 11. At the top of
Fig. 11, a sampling unit along with its pre-sampling unit is shown.The bullets represent
a single static branch that is being executed multiple times in the pre-sampling unit
as well as in the sampling unit. Instructions with labels ‘1’ thru ‘6’ are part of the
pre-sampling unit; instructions labeled ‘7’, ‘8’ and ‘9’ are part of the sampling unit.
A white bullet represents a non-taken branch; a black bullet shows a taken branch.

sampling unit

100 011 100
010 101 010

global history

d � 0

1/3

2/3

1
BHM cumulative distribution

d 2

d2d1 0d

B
H

M
S

 �
 5

B
H

M
S

�
 6

B
H

M
S

�
 0

B
H

M
S

�
 0

B
H

M
S

�
 0

B
H

M
S

�
 4

B
H

M
S

�
 4

B
H

M
S

�
 0

B
H

M
S

�
 2

B
H

M
S

�
 3

B
H

M
S

�
 0

d 1

pre-sampling unit

001 011 100 111 100 111
101010001110011 100

B
H

M
S

�
 2

1 2 3 4 5 6 7 8 9

local history

Fig. 11. An example illustrating as to how the cumulative BHM distribution is computed.

210 L. EECKHOUT

Figure 11 also shows the global and local history for each dynamic instance of the
given static branch; the example assumes three global history bits and three local
history bits. It should be noted that the most recent branch outcome is shifted in on
the right-hand side of the history register; for example, a non-taken branch changes
the local history from ‘011’ to ‘110’.

The BHM histogram is computed by scanning all the branch instances in the
sampling unit and proceeds as follows.

• Searching the sampling unit. It is first determined whether there is a perfect match
for the local and global histories of the given branch instance in the sampling unit
versus the local and global histories of all the preceding branch instances of the
same static branch in the sampling unit. A perfect match means that both the local
and global histories are identical for the two respective branch instances. For the
example, as given in Fig. 11, the local and global histories of branch instance ‘9’
in the sampling unit show a perfect match with the local and global histories of
branch instance ‘7’ in the sampling unit. This case increases the count for d = 0
in the BHM histogram.

• Searching the pre-sampling unit. In case there is no perfect match with a preceding
branch instance in the sampling unit, the pre-sampling unit is searched for the
most recent branch instance that shows the highest match with the local and
global histories for the given branch instance. This is done by computing the
Branch History Matching Score (BHMS) between the given branch instance in
the sampling unit and all the branch instances of the same static branch in the
pre-sampling unit. The BHMS between two branch instances is computed as the
number of bit positions that are identical between the local and global histories
of the respective branch instances. When the number of identical bit positions
is computed, we count from the most recent bit to the least recent bit and stop
counting as soon as there is disagreement for a given bit, i.e., we count the most
matching recent history bits. This is done for both the global and local histories;
the overall BHMS then is the sum of the global and local BHMSs. Computed
BHMSs are shown in Fig. 11 for the first and second branch instances of the
sampling unit. For example, the BHMS for branch instance ‘8’ with relation to
branch instance ‘4’ equals 4, i.e., 2 (compare global histories ‘011’ versus ‘111’)
plus 2 (compare local histories ‘101’ versus ‘001’).

The first branch instance (with label ‘7’) achieves a perfect match (BHMS
equals 6) for the branch instance with label ‘5’. The idea is then to update the
BHM histogram, reflecting the fact that in order to have an accurate warmup for
instruction ‘7’, we need to go back to instruction ‘5’ in the pre-sampling unit.
For this purpose, the BHM histogram is incremented at distance d1, with ‘d1’
being the number of instructions between the branch instance with label ‘5’ and

SAMPLED PROCESSOR SIMULATION: A SURVEY 211

the beginning of the sampling unit—this is to say that branch predictor warmup
should start at branch instruction ‘5’. For the second branch instance (with label
‘8’) in the sampling unit, the highest BHMS is obtained for the branch instance
with label ‘6’; the number of instructions between that branch instance and the
starting point of the sampling unit is denoted as d2 in Fig. 11. We then increase
the BHM histogram at distance d2.

By dividing the BHM histogram with the number of branch instances in the samp-
ling unit, we then obtain the BHM distribution. Figure 11 shows the cumulative BHM
distribution for the given sampling unit: since there are three branch instances in our
sampling unit that is given as an example, the cumulative distribution starts at 1/3
for distance d = 0, reaches 2/3 at distance d = d2, and finally reaches 1 at distance
d = d1.

7.2.3.2 Determination of Warmup Length. Once the BHM
distribution is computed for each sampling unit, we determine the warmup length
per sampling unit for a given total warmup length budget. The goal is to partition
a given warmup length budget over a number of sampling units so that accuracy is
maximized. In other words, sampling units that do not require much warmup are
given a small warmup length; sampling units that require much more warmup are
given a much larger warmup length.

The algorithm for determining the appropriate warmup length per sampling unit
works as follows; see also Fig. 12 for the pseudocode of the algorithm. We start from
n BHM distributions, with n being the number of sampling units. In each iteration,
we determine the sampling unit i out of the n sampling units that faces the maximum
slope in the BHM distribution. This means that the sampling unit i (called max_i in
the pseudocode in Fig. 12) that maximizes the slope Pi(di+b)−Pi(di)

b
, is determined,

with Pi(d) being the probability for distance d in the cumulative BHM distribution
for sampling unit i and di being the warmup length given to sampling unit i in the
current state of the algorithm. For the sampling unit i that maximizes the slope, we
increase the granted warmup length di to di + b. This algorithm is iterated until the
total warmup length over all sampling units equals a user-defined maximum warmup
length Lw, i.e.,

∑n
i=1 di = Lw. By doing so, we effectively budget warmup to samples

that benefit the most from the granted warmup.
It should be noted that this algorithm is only one possible design point in BHM

warmup. In particular, this algorithm heuristically increases the warmup length for the
sampling unit that faces the maximum slope in the BHM distribution. The algorithm
does not take into account the distance over which this slope is observed; however,
taking this distance into account for the determination of appropriate warmup lengths
would be an interesting study in the future.

212 L. EECKHOUT

/* this function computes the current warmup
length */

int current_warmup_length (int* d) {
for (i = 0; i < n; i++)
sum += d[i];

return sum;
}

/* main algorithm */

/* initialize warmup length for each sampling
unit */

for (i = 0; i < n; i++)
d[i] = 0;

/* iterate as long as the user defined total
warmup length L_w is not reached */ while
(current_warmup_length (d) < L_w) {

/* find the sampling unit max_j that
faces the maximum slope */

max_prob = 0.0;
max_i = -1;
for (i = 0; i < n; i++) {
if ((P[i][d[i] + b] - P[i][d[i]])/b > max_prob){
max_prob = (P[i][d[i] + b] - P[i][d[i]])/b;
max_i = i;

}
}

/* update warmup length for sampling unit facing
the maximum slope */ d[max_i] += d[max_i] + b;

}

Fig. 12. The algorithm in pseudocode for determining the warmup length per sampling unit using BHM
distributions.

7.2.3.3 Discussion. We now demonstrate the accuracy of BHM compared
with MRRL. In order to do so, we consider four fairly aggressive branch predictors:
a gshare predictor, a local predictor, a bimodal predictor and a hybrid predictor;
and we consider 50 sampling units of 10 K instructions each; see Kluyskens and
Eeckhout [54, 55] for a detailed description on the experimental setup. Our primary
metric for quantifying the accuracy of the branch predictor warmup approaches is

SAMPLED PROCESSOR SIMULATION: A SURVEY 213

MPKI, which is defined as the absolute difference between the number of misses
per thousand instructions under perfect warmup, MPKIperfect, versus the number of
misses per thousand instructions under the given branch predictor warmup approach,
MPKIwarmup. In other words,
MPKI = ‖MPKIwarmup − MPKIperfect‖ and thus
the smaller the
MPKI, the better will be the results obtained. Our second metric,
next to accuracy, is warmup length which is defined as the number of instructions
required by the given warmup technique. The smaller the warmup length and the
smaller the total simulation time, the better will be the results obtained.

Figure 13 compares BHM against MRRL. As mentioned before, MRRL looks how
far one needs to go back in the pre-sampling unit for encountering branch instances
of the same static branch appearing in the sampling unit. The results in Fig. 13 show
that BHM clearly outperforms MRRL. Across all four branch predictors, the average

MPKI decreases from 2.13 (under MRRL) to 0.29 (under BHM). The important
difference between MRRL and BHM is that BHM, in contrast to MRRL, takes into
account branch histories; this results in significantly more accurate branch predictor
state warmup for BHM compared with MRRL. This is attributed to the fact that

0
1
2
3
4
5
6
7
8
9

10

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol

f

vo
rt

ex vp
r

av
g

D
M

P
K

I

MRRL 100%
BHM 1 M

gshare predictor

0

1

2

3

4

5

6

vp
r

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol

f

vo
rt

ex av
g

D
M

P
K

I

MRRL 100%
BHM 1 M

local predictor

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol

f

vo
rt

ex vp
r

av
g

D
M

P
K

I

MRRL 100%
BHM 100 K

bimodal predictor

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol

f

vo
rt

ex vp
r

av
g

D
M

P
K

I

MRRL 100%
BHM 1 M

hybrid predictor

Fig. 13.
MPKI results for MRRL and BHM for the gshare, local, bimodal and hybrid branch
predictors. For MRRL, we consider all branch instances in the sampling unit, hence the name ‘MRRL
100%’ labels.

214 L. EECKHOUT

MRRL does not take into account branch history and MRRL is unable to come up
with warmup lengths that are long enough for accurately warming up the branch
predictors. The average warmup length through MRRL is only 200 K instructions per
sampling unit; whereas BHM achieves longer warmup lengths of 1 M instructions on
average.

7.3 Processor Core State
So far, we discussed MSI techniques for cache and branch predictor structures. The

processor core consists of a reorder buffer, issue queues, store buffers, functional units,
etc., which also need to be warmed up. This is not a major concern for large sampling
units because events in the processor core do not incur an as long history as that in
the cache hierarchy and branch predictors. However, for small sampling units, it is
crucial to warmup accurately the processor core. SMARTS as proposed by Wunderlich
et al. [115, 117], which considers very small sampling units of 1000 instructions,
involves fixed-length warming of the processor core prior to each sampling unit. The
fixed-length warmup is limited to 2000 or 4000 instructions.

8. Case Studies

There are two well-known approaches to sampled processor simulation, namely,
SMARTS and SimPoint, which we discuss in this section. Yi et al. [118] compared
both approaches and conclude that SMARTS is slightly more accurate than SimPoint,
whereas SimPoint provides a better speed versus accuracy trade-off.

8.1 SMARTS andTurboSMARTS
Wunderlich et al. [115, 117] propose SMARTS, or Sampling Microarchitecture

Simulation, which uses systematic sampling. SMARTS selects sampling units periodi-
cally and considers around 10 000 sampling units per benchmark, with each sampling
unit containing 1000 instructions each. And they use statistical sampling theory to
compute confidence bounds on the performance estimate obtained from the sample.
A critical issue when very tiny sampling units are employed is the establishment of
an accurate hardware state at the beginning of each sampling unit. SMARTS builds
the ASI and MSI through what they call functional warming, or by doing a functional
simulation while warming the caches, TLBs and branch predictors; and they do a brief
detailed warming prior to each sampling unit to warm the processor core state. They
implemented the SMARTS approach in SimpleScalar and evaluated it with the SPEC
CPU2000 benchmarks and reported a 0.64% CPI prediction error while simulating

SAMPLED PROCESSOR SIMULATION: A SURVEY 215

less than 50 million instructions in detail per benchmark. The SMARTS approach
reduces the overall simulation time by a factor 35X to 60X.

A limitation of the SMARTS approach is that it requires functional simulation
of the entire benchmark execution for building the ASI and MSI. To address this
limitation, they developed TurboSMARTS as described by Wenisch et al. [110,111].
They employ efficient ASI and MSI checkpointing techniques as described earlier in
this survey: their ASI checkpointing technique is similar to TMI, and their cache MSI
checkpointing technique is similar to MHS. They refer to an ASI/MSI checkpoint as
a live-point. The end result is a 250X speedup for TurboSMARTS compared with
SMARTS, while the same level of accuracy is maintained. This dramatic speedup
results in very fast simulation turnaround times, 91 seconds on average per benchmark.
Live-points for SPEC CPU2000 require 12 GBytes of storage.

Wenisch et al. [112] demonstrate that the SMARTS/TurboSMARTS is also feasible
for multiprocessor throughput applications. They built an approach called SimFlex,
which applies sampling to the full-system simulation of commercial applications run
on multiprocessor hardware.

8.2 SimPoint
Sherwood et al. [97] propose SimPoint. SimPoint differs from SMARTS in a

number of ways. SimPoint employs representative sampling using machine learn-
ing techniques to select sampling units and considers a relatively small number of
fairly large sampling units. The sampling unit size varies between 1M instructions
and hundreds of millions of instructions; the number of sampling units varies with
their size: no more than 10 sampling units are selected for large sampling unit sizes
of 100 M instructions, and a couple hundred sampling units are considered for small
sampling unit sizes of 1M instructions.

SimPoint builds on the Basic Block Vector (BBV) concept proposed by Sherwood
et al. [96] to identify a program’s time-varying behavior. A basic block is a linear
sequence of instructions with one entry and one exit point. A Basic Block Vector
(BBV) is a one-dimensional array with one element per static basic block in the
program binary. Each BBV element captures the number of times its corresponding
basic block has been executed. This is done on an interval basis, i.e., one BBV is com-
puted per (fixed-length) instruction interval in the dynamic instruction stream. Each
BBV element is also multiplied with the number of instructions in the corresponding
basic block. This gives a higher weight to basic blocks containing more instructions.
A BBV thus provides a picture of what portions of code are executed and also how
frequently those portions of code are executed. Lau et al. [62] have shown that there
exists a strong correlation between the code being executed—this is what a BBV
captures—and actual performance. The intuition is that if two instruction intervals
execute roughly the same code and if the frequency of the portions of code executed is

216 L. EECKHOUT

roughly the same, these two intervals should exhibit roughly the same performance.
Once the BBVs are collected per interval, clustering groups these intervals into phases
with similar code signatures. SimPoint then selects one interval from each phase to
recreate a complete picture of the program’s execution. The detailed simulation of
these representatives, called simulation points, then represents the complete execution
of a program.

The ASI and MSI techniques proposed for enhancing the overall simulation
turnaround time for SimPoint are checkpointed ASI and MSI: Van Biesbrouck et
al. [103, 104] proposed the ASI checkpointing techniques described in this survey
(TMI, RTMI, LVS and RLVS), as well as MHS cache MSI checkpointing. The end
result when these efficient ASI and MSI checkpointing techniques are applied to
SimPoint is that a benchmark can be simulated in less than 14 minutes on aver-
age on a single processor. The storage requirements are limited to 52.6 MB per
benchmark, assuming a 1 M instruction sampling unit size. A comparison of Tur-
boSMARTS versus SimPoint provides some interesting insights in terms of speed
versus storage trade-off as described by Van Biesbrouck et al. [104]. The storage
requirements are smaller for SimPoint than for TurboSMARTS: the ASI/MSI check-
points for TurboSMARTS are dominated by MSI checkpointing—ASI checkpointing
is very efficient for TurboSMARTS because of the tiny sampling unit sizes, but MSI
checkpointing is expensive because of the numerous sampling units. In terms of sim-
ulation time, TurboSMARTS is faster than SimPoint because of the tiny sampling
units: the detailed simulation needs to be done for a small number of instructions
only.

A fairly large body of work has been done on SimPoint over the recent years.
The UCSD research group extended SimPoint in a number of ways. For example,
Perelman et al. [86] extend the SimPoint clustering technique to find simulation points
earlier in the dynamic instruction stream, thereby reducing the fast-forwarding time
for building the ASI. Lau et al. [60,63] propose and evaluate program characteristics
such as loops and methods that could serve as an alternative for BBVs. Lau et al. [61]
study variable-length simulation points instead of fixed-length simulation points and
construct a hierarchy of phases at different time scales. Perelman et al. [87] build on
the notions of variable-length intervals and software control flow such as loops and
methods to identify phase behavior and propose cross-binary simulation points so
that simulation points can be used by architects and compiler builders when studying
ISA extensions and evaluating compiler and software optimizations. Hamerly et al.
[40] improve the efficiency of the clustering algorithm in SimPoint through a number
of optimizations which enable application of the clustering to very large data sets
containing hundreds of thousands of intervals; the end result is that the SimPoint
procedure for selecting representative simulation points can be applied, in on the
order of minutes.

SAMPLED PROCESSOR SIMULATION: A SURVEY 217

9. Summary

Sampled processor simulation is a practical solution to the simulation time problem
in architectural processor simulation. It selects a limited number of sampling units
and only simulates those sampling units in full detail instead of simulating the entire
dynamic instruction stream. There are three major challenges in sampled processor
simulation: (i) how to select a representative sample; (ii) how to establish the cor-
rect ASI efficiently; and (iii) how to establish an accurate MSI efficiently. Various
researchers have proposed a variety of solutions to each of these challenges. The
selection of representative sampling units can be done through statistical sampling
or representative sampling. The establishment of the ASI can be done through fast-
forwarding, full checkpointing and reduced checkpointing; reduced checkpointing
is faster than both fast-forwarding and full checkpointing, and in addition, requires
less storage than full checkpointing. And the establishment of an as accurate MSI
as possible can be done through cache-state warmup, branch-predictor warmup and
processor-core warmup approaches; MSI checkpointing and branch history matching
are the most efficient and accurate approaches for cache-state and branch-predictor
warmup, respectively. The end result is that sampled processor simulation can esti-
mate performance of full benchmark executions in the order of minutes, with high
accuracy, while requiring modest disk space for storing the (reduced) ASI and MSI
checkpoints.

Acknowledgments

Lieven Eeckhout thanks all of his past and current collaborators on the topics dis-
cussed in this paper: Koen De Bosschere, Stijn Eyerman, Bert Callens, Luk Van
Ertvelde, Filip Hellebaut, from Ghent University; Brad Calder and Michael Van
Biesbrouck, from the University of California, San Diego; and Lizy K. John and
Yue Luo, from the University of Texas at Austin.

References

[1] Alameldeen A., and Wood D., February 2003. Variability in architectural simulations of multi-
threaded workloads. In Proceedings of the Ninth International Symposium on High-Performance
Computer Architecture (HPCA), pp. 7–18.

[2] Arvind,Asanovic K., Chiou D., Hoe J. C., Kozyrakis C., Lu S. -L., Oskin M., Patterson D., Rabaey J.,
and Wawrzynek J., 2005. RAMP: Research accelerator for multiple processors—a community
vision for a shared experimental parallel HW/SW platform. Tech. rep., University of California,
Berkeley.

218 L. EECKHOUT

[3] Austin T., Larson E., and Ernst D., February 2002. SimpleScalar: An infrastructure for computer
system modeling. IEEE Computer, 35(2):59–67.

[4] Barr K. C., and Asanovic K., March 2006. Branch trace compression for snapshot-based simulation.
In Proceedings of the International Symposium on Performance Analysis of Systems and Software
(ISPASS), pp. 25–36.

[5] Barr K. C., Pan H., Zhang M., andAsanovic K., March 2005.Accelerating multiprocessor simulation
with a memory timestamp record. In Proceedings of the 2005 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pp. 66–77.

[6] Bechem C., Combs J., Utamaphetai N., Black B., Blanton R. D. S., and Shen J. P., May/June 1999.
An integrated functional performance simulator. IEEE Micro, 19(3):26–35.

[7] Bedichek R., August 2004. SimNow: Fast platform simulation purely in software. In Proceedings
of the Symposium on High Performance Chips (HOT CHIPS).

[8] Bell R. Jr., and John L. K., June 2005. Improved automatic testcase synthesis for performance
model validation. In Proceedings of the 19th ACM International Conference on Supercomputing
(ICS), pp. 111–120.

[9] Binkert N. L., Dreslinski R. G., Hsu L. R., Lim K. T., Saidi A. G., and Reinhardt S. K., 2006. The
M5 simulator: Modeling networked systems. IEEE Micro, 26(4):52–60.

[10] Black B., and Shen J. P., May 1998. Calibration of microprocessor performance models. IEEE
Computer, 31(5):59–65.

[11] Bohrer P., Peterson J., Elnozahy M., Rajamony R., Gheith A., Rockhold R., Lefurgy C., Shafi H.,
Nakra T., Simpson R., Speight E., Sudeep K., Hensbergen and E. V., and Zhang L., March 2004.
Mambo: A full system simulator for the PowerPC architecture. ACM SIGMETRICS Performance
Evaluation Review, 31(4):8–12.

[12] Bose P., May 1999. Performance evaluation and validation of microprocessors. In Proceedings of the
ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems,
pp. 226–227.

[13] Burger D. C., and Austin T. M., 1997. The SimpleScalar Tool Set. Computer Architecture News,
see also http://www.simplescalar.com for more information.

[14] Burtscher M., and Ganusov I., December 2004. Automatic synthesis of high-speed processor
simulators. In Proceedings of the 37th IEEE/ACM Symposium on Microarchitecture (MICRO),
pp. 55–66.

[15] Burtscher M., Ganusov I., Jackson S. J., Ke J., Ratanaworabhan P., and Sam N. B., November 2005.
The VPC trace-compression algorithms. IEEE Transactions on Computers, 54(11):1329–1344.

[16] Chiou D., Sanjeliwala H., Sunwoo D., Xu Z., and Patil N., February 2006. FPGA-based fast, cycle-
accurate, full-system simulators. In Proceedings of the Second Workshop on Architectural Research
using FPGA Platforms (WARFP), held in conjunction with HPCA.

[17] Chiou D., Sunwoo D., Kim J., Patil N. A., Reinhart W., Johnson D. E., Keefe J., and Angepat H.,
December 2007. FPGA-accelerated simulation technologies (FAST): Fast, full-system, cycle-
accurate simulators. In Proceedings of the Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO) (forthcoming).

[18] Cmelik B., and Keppel D., May 1994. SHADE: A fast instruction-set simulator for execution pro-
filing. In Proceedings of the 1994 ACM SIGMETRICS Conference on Measurement and Modeling
of Computer Systems, pp. 128–137.

[19] Conte T. M., Hirsch M. A., and Hwu W. W., June 1998. Combining trace sampling with single pass
methods for efficient cache simulation. IEEE Transactions on Computers, 47(6):714–720.

[20] Conte T. M., Hirsch M. A., and Menezes K. N., October 1996. Reducing state loss for effective
trace sampling of superscalar processors. In Proceedings of the 1996 International Conference on
Computer Design (ICCD), pp. 468–477.

SAMPLED PROCESSOR SIMULATION: A SURVEY 219

[21] Crowley P., and Baer J.-L., November 1998. Trace sampling for desktop applications on Windows
NT. In Proceedings of the First Workshop on Workload Characterization (WWC) held in conjunction
with the 31st ACM/IEEE Annual International Symposium on Microarchitecture (MICRO).

[22] Crowley P., and Baer J.-L., June 1999. On the use of trace sampling for architectural studies of
desktop applications. In Proceedings of the 1999 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, pp. 208–209.

[23] Desikan R., Burger D., and Keckler S. W., July 2001. Measuring experimental error in micro-
processor simulation. In Proceedings of the 28th Annual International Symposium on Computer
Architecture (ISCA), pp. 266–277.

[24] Dubey P. K., and Nair R.,April 1995. Profile-driven sampled trace generation. Tech. Rep. RC 20041,
IBM Research Division, T. J. Watson Research Center. Yorktown Heights, NY.

[25] Durbhakula M., Pai V. S., and Adve S. V., January 1999. Improving the accuracy vs. speed tradeoff
for simulating shared-memory multiprocessors with ILP processors. In Proceedings of the Fifth
International Symposium on High-Performance Computer Architecture (HPCA), pp. 23–32.

[26] Edler J., and Hill M. D., 1998. Dinero IV trace-driven uniprocessor cache simulator. Available at
http://www.cs.wisc.edu/∼markhill/DineroIV.

[27] Eeckhout L., Bell R. H. Jr., Stougie B., De Bosschere K., and John L. K., June 2004. Control flow
modeling in statistical simulation for accurate and efficient processor design studies. In Proceedings
of the 31st Annual International Symposium on Computer Architecture (ISCA), pp. 350–361.

[28] Eeckhout L., and De Bosschere K., 2004. Efficient simulation of trace samples on parallel machines.
Parallel Computing, 30:317–335.

[29] Eeckhout L., Eyerman S., Callens B., and De Bosschere K., April 2003a. Accurately warmed-up
trace samples for the evaluation of cache memories. In Proceedings of the 2003 High Performance
Computing Symposium (HPC), pp. 267–274.

[30] Eeckhout L., Luo Y., De Bosschere K., and John L. K., May 2005a. BLRL: Accurate and efficient
warmup for sampled processor simulation. The Computer Journal 48(4):451–459.

[31] Eeckhout L., Nussbaum S., Smith J. E., and De Bosschere K., Sept/Oct 2003b. Statistical simulation:
Adding efficiency to the computer designer’s toolbox. IEEE Micro, 23(5):26–38.

[32] Eeckhout L., Sampson J., and Calder B., October 2005b. Exploiting program microarchitecture inde-
pendent characteristics and phase behavior for reduced benchmark suite simulation. In Proceedings
of the 2005 IEEE International Symposium on Workload Characterization (IISWC), pp. 2–12.

[33] Eeckhout L., Vandierendonck H., and De Bosschere K., February 2003c. Designing workloads for
computer architecture research. IEEE Computer, 36(2):65–71.

[34] Ekman M., and Stenström P., March 2005. Enhancing multiprocessor architecture simulation speed
using matched-pair comparison. In Proceedings of the 2005 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pp. 89–99.

[35] Emer J., Ahuja P., Borch E., Klauser A., Luk C.-K., Manne S., Mukherjee S. S., Patil H., Wallace S.,
Binkert N., Espasa R., and Juan T., February 2002. Asim: A performance model framework. IEEE
Computer, 35(2):68–76.

[36] Fujimoto R. M., and Campbell W. B., December 1987. Direct execution models of processor behavior
and performance. In Proceedings of the 19th Winter Simulation Conference, pp. 751–758.

[37] Genbrugge D., and Eeckhout L., 2007. Memory data flow modeling in statistical simulation for the
efficient exploration of microprocessor design spaces. IEEE Transactions on Computers (Accepted
for publication).

[38] Gibson J., Kunz R., Ofelt D., Horowitz M., Hennessy J., and Heinrich M., November 2000. FLASH
vs. (simulated) FLASH: Closing the simulation loop. In Proceedings of the 9th International Con-
ference on Architectural Support for Programming Languages and Operating Systems (ASPLOS),
pp. 49–58.

220 L. EECKHOUT

[39] Girbal S., Mouchard G., Cohen A., and Temam O., June 2003. DiST: A simple, reliable and scalable
method to significantly reduce processor architecture simulation time. In Proceedings of the 2003
ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems,
pp. 1–12.

[40] Hamerly G., Perelman E., Lau J., and Calder B., September 2005. SimPoint 3.0: Faster and more
flexible program analysis. Journal of Instruction-Level Parallelism, 7.

[41] Haskins J. W. Jr., and Skadron K., September 2001. Minimal subset evaluation: Rapid warm-up
for simulated hardware state. In Proceedings of the 2001 International Conference on Computer
Design (ICCD), pp. 32–39.

[42] Haskins J. W. Jr., and Skadron K., March 2003. Memory reference reuse latency: accelerated warmup
for sampled microarchitecture simulation. In Proceedings of the 2003 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pp. 195–203.

[43] Haskins J. W. Jr., and Skadron K., March 2005. Accelerated warmup for sampled microarchitecture
simulation. ACM Transactions on Architecture and Code Optimization (TACO), 2(1):78–108.

[44] Hughes C. J., Pai V. S., Ranganathan P., and Adve S. V., February 2002. Rsim: simulating shared-
memory multiprocessors with ILP processors. IEEE Computer, 35(2):40–49.

[45] Ipek E., McKee, S. A., de Supinski B. R., Schulz M., and Caruana R., October 2006. Efficiently
exploring architectural design spaces via predictive modeling. In Proceedings of the Twelfth Inter-
national Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pp. 195–206.

[46] Iyengar V. S., and Trevillyan L. H., October 1996. Evaluation and generation of reduced traces for
benchmarks. Tech. Rep. RC 20610, IBM Research Division, T. J. Watson Research Center. Yorktown
Heights, NY.

[47] Iyengar V. S., Trevillyan L. H., and Bose P., February 1996. Representative traces for processor mod-
els with infinite cache. In Proceedings of the Second International Symposium on High-Performance
Computer Architecture (HPCA), pp. 62–73.

[48] John L. K., and Eeckhout L. (Eds.), 2006. Performance Evaluation and Benchmarking. CRC Press.
Boca Rota, FL.

[49] Johnson E. E., Ha J., and Zaidi M. B., February 2001. Lossless trace compression. IEEE Transac-
tions on Computers, 50(2):158–173.

[50] Karkhanis T., and Smith J. E., June 2007. Automated design of application specific superscalar
processors: An analytical approach. In Proceedings of the 34th Annual International Symposium on
Computer Architecture (ISCA), pp. 402–411.

[51] Karkhanis T. S., and Smith J. E., June 2004.Afirst-order superscalar processor model. In Proceedings
of the 31st Annual International Symposium on Computer Architecture (ISCA), pp. 338–349.

[52] Kessler R. E., Hill M. D., and Wood D. A., June 1994. A comparison of trace-sampling techniques
for multi-megabyte caches. IEEE Transactions on Computers, 43(6):664–675.

[53] KleinOsowski A. J., and Lilja D. J., June 2002. MinneSPEC: A new SPEC benchmark workload for
simulation-based computer architecture research. Computer Architecture Letters, 1(2):10–13.

[54] Kluyskens S., and Eeckhout L., January 2007a. Branch history matching: Branch predictor warmup
for sampled simulation. In Proceedings of the Second International Conference on High Performance
Embedded Architectures and Compilation (HiPEAC), pp. 153–167.

[55] Kluyskens S., and Eeckhout L., January 2007b. Branch predictor warmup for sampled simulation
through branch history matching. Transactions on High-Performance Embedded Architectures and
Compilers (HiPEAC), 2(1):42–61.

[56] Krishnan V., and Torrellas J., October 1998. A direct-execution framework for fast and accurate sim-
ulation of superscalar processors. In Proceedings of the 1998 International Conference on Parallel
Architectures and Compilation Techniques (PACT), pp. 286–293.

SAMPLED PROCESSOR SIMULATION: A SURVEY 221

[57] Lafage T., and Seznec A., September 2000. Choosing representative slices of program execution
for microarchitecture simulations: A preliminary application to the data stream. In IEEE 3rd Annual
Workshop on Workload Characterization (WWC-2000) held in conjunction with the International
Conference on Computer Design (ICCD).

[58] Laha S., Patel J. H., and Iyer R. K., November 1988. Accurate low-cost methods for performance
evaluation of cache memory systems. IEEE Transactions on Computers, 37(11):1325–1336.

[59] Larus J. R., May 1993. Efficient program tracing. IEEE Computer, 26(5):52–61.
[60] Lau J., Perelman E., and Calder B., March 2006. Selecting software phase markers with code struc-

ture analysis. In Proceedings of the International Symposium on Code Generation and Optimization
(CGO), pp. 135–146.

[61] Lau J., Perelman E., Hamerly G., Sherwood T., and Calder B., March 2005a. Motivation for variable
length intervals and hierarchical phase behavior. In Proceedings of the International Symposium on
Performance Analysis of Systems and Software (ISPASS), pp. 135–146.

[62] Lau J., Sampson J., Perelman E., Hamerly G., and Calder B., March 2005b. The strong correla-
tion between code signatures and performance. In Proceedings of the International Symposium on
Performance Analysis of Systems and Software (ISPASS), pp. 236–247.

[63] Lau J., Schoenmackers S., and Calder B., March 2004. Structures for phase classification. In Pro-
ceedings of the 2004 International Symposium on Performance Analysis of Systems and Software
(ISPASS), pp. 57–67.

[64] Lauterbach G., December 1993. Accelerating architectural simulation by parallel execution of trace
samples. Tech. Rep. SMLI TR-93-22, Sun Microsystems Laboratories Inc., Palo Alto.

[65] Lee B., and Brooks D., October 2006. Accurate and efficient regression modeling for microarchitec-
tural performance and power prediction. In Proceedings of the Twelfth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS), pp. 185–194.

[66] Lilja D. J., 2000. Measuring computer performance: A Practitioner’s Guide. Cambridge University
Press, Cambridge, UK, p. 278.

[67] Liu W., and Huang M. C., June 2004. EXPERT: Expedited simulation exploiting program behavior
repetition. In Proceedings of the 18th Annual International Conference on Supercomputing (ICS),
pp. 126–135.

[68] Luo Y., and John L. K., January 2004. Efficiently evaluating speedup using sampled processor
simulation. Computer Architecture Letters, 4(1):6.

[69] Luo Y., John L. K., and Eeckhout L., October 2004. Self-monitored adaptive cache warm-up for
microprocessor simulation. In Proceedings of the 16th Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD), pp. 10–17.

[70] LuoY., John L. K., and Eeckhout L., October 2005. SMA:Aself-monitored adaptive warmup scheme
for microprocessor simulation. International Journal on Parallel Programming, 33(5):561–581.

[71] Magnusson P. S., Christensson M., Eskilson J., Forsgren D., Hallberg G., Hogberg J., Larsson F.,
Moestedt A., and Werner B., February 2002. Simics: A full system simulation platform. IEEE
Computer, 35(2):50–58.

[72] Martonosi M., Gupta A., and Anderson T., May 1993. Effectiveness of trace sampling for perfor-
mance debugging tools. In Proceedings of the 1993 ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems pp. 248–259.

[73] Mauer C. J., Hill M. D., and Wood D. A., June 2002. Full-system timing-first simulation. In Pro-
ceedings of the 2002 ACM SIGMETRICS Conference on Measurement and Modeling of Computer
Systems, pp. 108–116.

[74] Moudgill M., April 1998. Techniques for implementing fast processor simulators. In Proceedings
of the 31st Annual Simulation Symposium, pp. 83–90.

222 L. EECKHOUT

[75] Moudgill M., Wellman J.-D., and Moreno J. H., May/June 1999. Environment for PowerPC
microarchitecture exploration. IEEE Micro, 19(3):15–25.

[76] Mukherjee S. S., Adve S. V., Austin T., Emer J., and Magnusson, P. S., February 2002. Performance
simulation tools: Guest editors’ introduction. IEEE Computer, Special Issue on High Performance
Simulators, 35(2):38–39.

[77] Mutlu O., Kim H., Armstrong D. N., and Patt Y. N., June 2005. Understanding the effects of wrong-
path memory references on processor performance. In Proceedings of the 3rd Workshop on Memory
Performance Issues (WMPI) held in conjunction with the 31st International Symposium on Computer
Architecture (ISCA), pp. 56–64.

[78] Narayanasamy S., Pereira C., Patil H., Cohn R., and Calder B., June 2006. Automatic logging of
operating system effects to guide application level architecture simulation. In Proceedings of the
ACM Sigmetrics International Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS), pp. 216–227.

[79] Nguyen A.-T., Bose P., Ekanadham K., Nanda A., and Michael M., April 1997. Accuracy and speed-
up of parallel trace-driven architectural simulation. In Proceedings of the 11th International Parallel
Processing Symposium (IPPS), pp. 39–44.

[80] NohlA., Braun G., Schliebusch O., Leupers R., and Meyr H., June 2002.Auniversal technique for fast
and flexible instruction-set architecture simulation. In Proceedings of the 39th Design Automation
Conference (DAC), pp. 22–27.

[81] Nussbaum S., and Smith J. E., September 2001. Modeling superscalar processors via statistical
simulation. In Proceedings of the 2001 International Conference on Parallel Architectures and
Compilation Techniques (PACT), pp. 15–24.

[82] Nussbaum S., and Smith J. E., April 2002. Statistical simulation of symmetric multiprocessor
systems. In Proceedings of the 35th Annual Simulation Symposium 2002, pp. 89–97.

[83] Oskin M., Chong F. T., and Farrens M., June 2000. HLS: Combining statistical and symbolic simula-
tion to guide microprocessor design. In Proceedings of the 27th Annual International Symposium
on Computer Architecture (ISCA), pp. 71–82.

[84] Patil H., Cohn R., Charney M., Kapoor R., Sun A., and Karunanidhi A., December 2004. Pin-
pointing representative portions of large Intel Itanium programs with dynamic instrumentation. In
Proceedings of the 37th Annual International Symposium on Microarchitecture (MICRO), pp. 81–93.

[85] Penry D. A., Fay D., Hodgdon D., Wells R., Schelle G., August D. I., and Connors D., February
2006. Exploiting parallelism and structure to accelerate the simulation of chip multi-processors. In
Proceedings of the Twelfth International Symposium on High Performance Computer Architecture
(HPCA), pp. 27–38.

[86] Perelman E., Hamerly G., and Calder B., September 2003. Picking statistically valid and early
simulation points. In Proceedings of the 12th International Conference on Parallel Architectures
and Compilation Techniques (PACT), pp. 244–256.

[87] Perelman E., Lau J., Patil H., Jaleel A., Hamerly G., and Calder B., March 2007. Cross binary
simulation points. In Proceedings of the Annual International Symposium on Performance Analysis
of Systems and Software (ISPASS), pp. 179–189.

[88] Perez D. G., Berry H., and Temam O., December 2006. A sampling method focusing on practicality.
IEEE Micro, 26(6):14–28.

[89] Perez D. G., Mouchard G., and Temam O., December 2004. MicroLib: A case for the quantitative
comparison of micro-architecture mechanisms. In Proceedings of the 37th Annual International
Symposium on Microarchitecture (MICRO), pp. 43–54.

[90] Reilly M., and Edmondson J., May 1998. Performance simulation of an alpha microprocessor. IEEE
Computer, 31(5):50–58.

SAMPLED PROCESSOR SIMULATION: A SURVEY 223

[91] Reinhardt S. K., Hill M. D., Larus J. R., Lebeck A. R., Lewis, J. C., and Wood, D. A., May
1993. The wisconsin wind tunnel: Virtual prototyping of parallel computers. In Proceedings
of the ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems,
pp. 48–60.

[92] Reshadi M., Mishra P., and Dutt N. D., June 2003. Instruction set compiled simulation: A tech-
nique for fast and flexible instruction set simulation. In Proceedings of the 40th Design Automation
Conference (DAC), pp. 758–763.

[93] Ringenberg J., Pelosi C., Oehmke D., and Mudge T., March 2005. Intrinsic checkpointing: A metho-
dology for decreasing simulation time through binary modification. In Proceedings of the IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 78–88.

[94] Rosenblum M., Bugnion E., Devine S., and Herrod S. A., January 1997. Using the SimOS machine
simulator to study complex computer systems. ACM Transactions on Modeling and Computer
Simulation (TOMACS), 7(1):78–103.

[95] Schnarr E., and Larus J. R., October 1998. Fast out-of-order processor simulation using memoization.
In Proceedings of the Eighth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pp. 283–294.

[96] Sherwood T., Perelman E., and Calder B., September 2001. Basic block distribution analysis to find
periodic behavior and simulation points in applications. In Proceedings of the 2001 International
Conference on Parallel Architectures and Compilation Techniques (PACT), pp. 3–14.

[97] Sherwood T., Perelman E., Hamerly G., and Calder B., October 2002. Automatically characterizing
large scale program behavior. In Proceedings of the Tenth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), pp. 45–57.

[98] Skadron K., Ahuja P. S., Martonosi M., and Clark D. W., November 1999. Branch prediction,
instruction-window size, and cache size: Performance tradeoffs and simulation techniques. IEEE
Transactions on Computers, 48(11):1260–1281.

[99] Sorin D. J., Pai V. S., Adve S. V., Vernon M. K., and Wood D. A., June 1998. Analytic evaluation
of shared-memory systems with ILP processors. In Proceedings of the 25th Annual International
Symposium on Computer Architecture (ISCA), pp. 380–391.

[100] Sugumar R. A., and Abraham S. G., 1993. Efficient simulation of caches under optimal replace-
ment with applications to miss characterization. In Proceedings of the 1993 ACM Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS), pp. 24–35.

[101] Szwed P. K., Marques D., Buels R. B., McKee S. A., and Schulz M., February 2004. SimSnap:
Fast-forwarding via native execution and application-level checkpointing. In Proceedings of the
Workshop on the Interaction between Compilers and Computer Architectures (INTERACT), held in
conjunction with HPCA.

[102] Vachharajani M., Vachharajani N., Penry D. A., Blome J. A., and August D. I., November 2002.
Microarchitectural exploration with Liberty. In Proceedings of the 35th International Symposium
on Microarchitecture (MICRO), pp. 271–282.

[103] Van Biesbrouck M., Calder B., and Eeckhout L., July 2006a. Efficient sampling startup for SimPoint.
IEEE Micro, 26(4):32–42.

[104] Van Biesbrouck M., Eeckhout L., and Calder B., November 2005. Efficient sampling startup for
sampled processor simulation. In 2005 International Conference on High Performance Embedded
Architectures and Compilation (HiPEAC), pp. 47–67.

[105] Van Biesbrouck M., Eeckhout L., and Calder B., March 2006b. Considering all starting points
for simultaneous multithreading simulation. In Proceedings of the International Symposium on
Performance Analysis of Systems and Software (ISPASS), pp. 143–153.

224 L. EECKHOUT

[106] Van Biesbrouck M., Eeckhout L., and Calder B., October 2007. Representative multiprogram work-
loads for multithreaded processor simulation. In Proceedings of the IEEE International Symposium
on Workload Characterization (IISWC), pp. 193–203.

[107] Van Biesbrouck M., Sherwood T., and Calder B., March 2004. A co-phase matrix to guide simulta-
neous multithreading simulation. In Proceedings of the International Symposium on Performance
Analysis of Systems and Software (ISPASS), pp. 45–56.

[108] Van Ertvelde L., Hellebaut F., and Eeckhout L., 2007. Accurate and efficient cache warmup for sam-
pled processor simulation through NSL-BLRL. Computer Journal (Accepted for publication).

[109] Van Ertvelde L., Hellebaut F., Eeckhout L., and De Bosschere, K., April 2006. NSL-BLRL: Efficient
cache warmup for sampled processor simulation. In Proceedings of the 29th Annual International
Simulation Symposium (ANSS), pp. 168–175.

[110] Wenisch T., Wunderlich R., Falsafi B., and Hoe J., June 2005. TurboSMARTS: accurate microar-
chitecture simulation in minutes. In Proceedings of the 2005 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, pp. 408–409.

[111] Wenisch T. F., Wunderlich R. E., Falsafi B., and Hoe J. C., March 2006a. Simulation sampling
with live-points. In Proceedings of the Annual International Symposium on Performance Analysis
of Systems and Software (ISPASS), pp. 2–12.

[112] Wenisch T. F., Wunderlich R. E., Ferdman M., Ailamaki A., Falsafi B., and Hoe J. C., July 2006b.
SimFlex: Statistical sampling of computer system simulation. IEEE Micro, 26(4):18–31.

[113] Witchell E., and Rosenblum M., June 1996. Embra: Fast and flexible machine simulation. In Proce-
edings of the ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems,
pp. 68–79.

[114] Wood D. A., Hill M. D., and Kessler R. E., May 1991. A model for estimating trace-sample miss
ratios. In Proceedings of the 1991 SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, pp. 79–89.

[115] Wunderlich R. E., Wenisch T. F., Falsafi B., and Hoe J. C., June 2003. SMARTS: Accelerating
microarchitecture simulation via rigorous statistical sampling. In Proceedings of the 30th Annual
International Symposium on Computer Architecture (ISCA), pp. 84–95.

[116] Wunderlich R. E., Wenisch T. F., Falsafi B., and Hoe J. C., June 2004. An evaluation of strati-
fied sampling of microarchitecture simulations. In Proceedings of the Third Annual Workshop on
Duplicating, Deconstructing and Debunking (WDDD), held in conjunction with ISCA.

[117] Wunderlich R. E., Wenisch T. F., Falsafi B., and Hoe J. C., July 2006. Statistical sampling of
microarchitecture simulation. ACM Transactions on Modeling and Computer Simulation, 16(3):
197–224.

[118] Yi J. J., Kodakara S. V., Sendag R., Lilja D. J., and Hawkins D. M., February 2005. Characterizing and
comparing prevailing simulation techniques. In Proceedings of the 11th International Symposium
on High-Performance Computer Architecture (HPCA), pp. 266–277.

[119] Yi J. J., and Lilja D. J., March 2006. Simulation of computer architectures: Simulators, benchmarks,
methodologies, and recommendations. IEEE Transactions on Computers, 55(3):268–280.

[120] Yourst M. T., April 2007. PTLsim: A cycle accurate full system x86-64 microarchitectural simulator.
In Proceedings of the International Symposium on Performance Analysis of Systems and Software
(ISPASS), pp. 23–34.

Distributed Sparse Matrices
for Very High Level Languages

JOHN R. GILBERT

Department of Computer Science,
University of California, Santa Barbara, CA, USA

STEVE REINHARDT

Interactive Supercomputing

VIRAL B. SHAH

Department of Computer Science,
University of California, Santa Barbara, CA, USA
and
Interactive Supercomputing

Abstract
Sparse matrices are first-class objects in many VHLLs (very high-level languages)
that are used for scientific computing. They are a basic building block for vari-
ous numerical and combinatorial algorithms. Parallel computing is becoming
ubiquitous, specifically due to the advent of multi-core architectures. As exis-
ting VHLLs are adapted to emerging architectures, and new ones are conceived,
one must rethink about trade-offs in language design. We describe the design and
implementation of a sparse matrix infrastructure for Star-P, a parallel implemen-
tation of the Matlab® programming language. We demonstrate the versatility
of our infrastructure by using it to implement a benchmark that creates and mani-
pulates large graphs. Our design is by no means specific to Star-P—we hope it
will influence the design of sparse matrix infrastructures in other languages.

1. Introduction . 226

2. Sparse Matrices: A User’s View . 227

3. Data Structures and Storage . 228

ADVANCES IN COMPUTERS, VOL. 72 225 Copyright © 2008 Elsevier Inc.
ISSN: 0065-2458/DOI: 10.1016/S0065-2458(08)00005-3 All rights reserved.

226 J.R. GILBERT ET AL.

4. Operations on Distributed Sparse Matrices 230

4.1. Constructors . 230

4.2. Element-Wise Matrix Arithmetic . 231

4.3. Matrix Multiplication . 231

4.4. Sparse Matrix Indexing, Assignment and Concatenation 235

4.5. Sparse Matrix Transpose . 236

4.6. Direct Solvers for Sparse Linear Systems . 236

4.7. Iterative Solvers for Sparse Linear Systems 237

4.8. Eigenvalues and Singular Values . 238

4.9. Visualization of Sparse Matrices . 238

5. SSCA #2 Graph Analysis Benchmark 239

5.1. Scalable Data Generator . 240

5.2. Kernel 1 . 241

5.3. Kernel 2 . 241

5.4. Kernel 3 . 241

5.5. Kernel 4 . 242

5.6. Visualization of Large Graphs . 245

5.7. Experimental Results . 245

6. Looking Forward: A Next-Generation
Parallel Sparse Library . 248

7. Conclusion . 250

References . 251

1. Introduction

Of late, two trends have emerged in scientific computing. The first one is the
adoption of high-level interactive programming environments such as Matlab® [28],
R [23] and Python [34]. This is largely due to diverse communities in physical
sciences, engineering and social sciences using simulations to supplement results
from theory and experiments.

Computations on graphs combined with numerical simulation is the other trend in
scientific computing. High-performance applications in data mining, computational
biology, and multi-scale modeling, among others, combine numerics and combina-
torics in several ways. Relationships between individual elements in complex systems
are typically modeled as graphs. Links between webpages, chemical bonds in com-
plex molecules, and connectivity in social networks are some examples of such
relationships.

DISTRIBUTED SPARSE MATRICES FOR VERY HIGH LEVEL LANGUAGES 227

Scientific programmers want to combine numerical and combinatorial techniques
in interactive VHLLs, while keeping up with the increasing ubiquity of parallel
computing. A distributed sparse matrix infrastructure is one way to address these
challenges. We describe the design and implementation of distributed sparse matrices
in Star-P, a parallel implementation of the Matlab® programming language.

Sparse matrix computations allow for the structured representation of irregular
data structures and access patterns in parallel applications. Sparse matrices are also a
convenient way to represent graphs. Since sparse matrices are first-class citizens
in modern programming languages for scientific computing, it is natural to take
advantage of the duality between sparse matrices and graphs to develop a unified
infrastructure for numerical and combinatorial computing.

The distributed sparse matrix implementation in Star-P provides a set of well-
tested primitives with which graph algorithms can be built. Parallelism is derived
from operations on parallel sparse matrices. The efficiency of our graph algorithms
depends upon the efficiency of the underlying sparse matrix infrastructure.

We restrict our discussion to the design and implementation of the sparse matrix
infrastructure in Star-P, trade-offs made, and lessons learnt. We also describe our
implementation of a graph analysis benchmark, using Gilbert, Reinhardt and Shah’s
‘Graph and Pattern Discovery Toolbox (GAPDT)’. The graph toolbox is built on top
of the sparse matrix infrastructure in Star-P [16, 17, 32, 33].

2. Sparse Matrices: A User’s View

The basic design of Star-P and operations on dense matrices have been discussed in
earlier work [8,21,22]. In addition to Matlab®’s sparse and dense matrices, Star-P
provides support for distributed sparse (dsparse) and distributed dense (ddense)
matrices.

The p operator provides for parallelism in Star-P. For example, a random parallel
dense matrix (ddense) distributed by rows across processors is created as follows:

>> A = rand (1e4*p, 1e4)

Similarly, a random parallel sparse matrix (dsparse) also distributed across pro-
cessors by rows is created as follows (The third argument specifies the density of
non-zeros.):

>> S = sprand (1e6*p, 1e6, 1/1e6)

We use the overloading facilities in Matlab® to define a dsparse object. The
Star-P language requires that almost all (meaningful) operations that can be

228 J.R. GILBERT ET AL.

performed in Matlab® are possible with Star-P. Our implementation provides
a working basis, but is not quite a drop-in replacement for existing Matlab®

programs.
Star-P achieves parallelism through polymorphism. Operations on ddense

matrices produce ddense matrices. But, once initiated, sparsity propagates. Opera-
tions on dsparse matrices produce dsparse matrices. An operation on a mixture of
dsparse and ddense matrices produces a dsparse matrix unless the operator destroys
sparsity. The user can explicitly convert a ddense matrix to a dsparse matrix using
sparse(A). Similarly, a dsparse matrix can be converted to a ddense matrix
using full(S). A dsparse matrix can also be converted into a front-end sparse matrix
using ppfront(S).

3. Data Structures and Storage

It is true in Matlab®, as well as in Star-P, that many key operations are
provided by public domain software (linear algebra, solvers, fft, etc.). Apart from
simple operations such as array arithmetic, Matlab® allows for matrix multipli-
cation, array indexing, array assignment and concatenation of arrays, among other
things. These operations form extremely powerful primitives upon which other func-
tions, toolboxes, and libraries are built. The challenge in the implementation lies
in selecting the right data structures and algorithms that implement all operations
efficiently, allowing them to be combined in any number of ways.

Compressed row and column data structures have been shown to be efficient for
sparse linear algebra [19]. Matlab® stores sparse matrices on a single processor
in a Compressed Sparse Column (CSC) data structure [15]. The Star-P language
allows for distribution of ddense matrices by block rows or block columns [8, 21].
Our implementation supports only the block-row distribution for dsparse matrices.
This is a design of choice for preventing the combinatorial explosion of argument
types. Block layout by rows makes the Compressed Sparse Row data structure a
logical choice to store the sparse matrix slice on each processor. The choice to use a
block-row layout was not arbitrary, but the reasoning was as follows:

• The iterative methods community largely uses row-based storage. Since we
believe that iterative methods will be the methods of choice for large sparse
matrices, we want to ensure maximum compatibility with existing libraries.

• A row-based data structure also allows for efficient implementation of ‘matvec’
(sparse matrix dense vector product), the workhorse of several iterative methods
such as Conjugate Gradient and Generalized Minimal Residual.

DISTRIBUTED SPARSE MATRICES FOR VERY HIGH LEVEL LANGUAGES 229

For the expert user, storing sparse matrices by rows instead of by columns changes
the programming model. For instance, high-performance sparse matrix codes in
Matlab® are often carefully written so that all accesses into sparse matrices are
by columns. When run in Star-P, such codes may display different performance
characteristics, since dsparse matrices are stored by rows. This may be considered by
some to be a negative impact of our decision to use compressed sparse rows instead
of compressed sparse columns.

This boils down to a question of design goals. We set out to design a high-
performance parallel sparse matrix infrastructure and concluded that row-based
storage was the way to go. Had our goal been to ensure maximum performance
on existing Matlab® codes, we might have chosen a column-based storage. Given
all that we have learnt from our implementation, we might reconsider this decision in
the light of 1-D distributions. However, it is much more likely that for a redesign, a
2-D distribution will be considered, to allow for scaling to thousands of processors.
We describe some of these issues in detail in the Section 6.

The CSR data structure stores whole rows contiguously in a single array on each
processor. If a processor has nnz non-zeros, CSR uses an array of length nnz to
store the non-zeros and another array of length nnz to store column indices, as shown
in Fig. 1. Row boundaries are specified by an array of length m + 1, where m is the
number of rows on that processor.

Using double-precision floating-point values for the non-zeros on 32-bit archi-
tectures, an m × n real sparse matrix with nnz non-zeros uses 12nnz + 4(m + 1)

bytes of memory. On 64-bit architectures, it uses 16nnz + 8(m + 1) bytes. Star-P
supports complex sparse matrices as well. In the 32-bit case, the storage required
is 20nnz + 4(m + 1) bytes, whereas it is 24nnz + 8(m + 1) bytes on 64-bit
architectures.

0 a01 a02 0

0 a11 0 a13

a20 0 0 0

0 2

0

4 5

1 2 1 3

a20a01 a02 a11 a13

Row Pointers

Column Indices

Non-zeros

Fig. 1. The matrix is shown in its dense representation on the left, and its compressed sparse rows (CSR)
representation is shown on the right. In the CSR data structure, non-zeros are stored in three vectors. Two
vectors of length nnz store the non-zero elements and their column indices. A vector of row pointers marks
the beginning of each new row in the non-zero and column index vectors.

230 J.R. GILBERT ET AL.

Consider the example described earlier: A sparse matrix with a million rows and
columns, with a density of approximately one nonzero per row or column. The mem-
ory required for a dense representation would be 106 × 106 × 8 bytes = 8 terabytes.
The CSR data structure, on the other hand, would use 16 × 106 + 8 × 106 bytes =
24 megabytes.

4. Operations on Distributed Sparse Matrices

The design of sparse matrix algorithms in Star-P follows the same design
principles as in Matlab® [15].

1. Storage required for a sparse matrix should be O(nnz), proportional to the
number of non-zero elements.

2. Running time for a sparse matrix algorithm should be O(flops). It should be
proportional to the number of floating-point operations required to obtain the
result.

The data structure described in the previous section satisfies the requirement for
storage. It is difficult to apply exactly the second principle in practice. Typically,
most implementations achieve running time close to O(flops) for commonly used
sparse matrix operations. For example, accessing a single element of a sparse matrix
should be a constant-time operation. With a CSR data structure, the time taken is
proportional to the logarithm of the length of the row to access a single element.
Similarly, insertion of single elements into a CSR data structure generates extensive
data movement. Such operations can be performed efficiently with the sparse/find
routines (described in the next section), which work with triples rather than individual
elements.

4.1 Constructors
There are several ways to construct distributed sparse matrices in Star-P:

1. ppback converts a sequential Matlab® matrix to a distributed Star-P matrix.
If the input is a sparse matrix, the result is a dsparse matrix.

2. sparse creates a sparse matrix from dense vectors giving a list of non-zero
values. A distributed sparse matrix is automatically created, if the dense vectors
are distributed. find is the dual of sparse; it extracts the non-zeros from a
sparse matrix.

3. speye creates a sparse identity matrix.
4. spdiags constructs a sparse matrix by specifying the values on diagonals.

DISTRIBUTED SPARSE MATRICES FOR VERY HIGH LEVEL LANGUAGES 231

5. sprand and sprandn construct random sparse matrices with specified
density.

6. spones creates a sparse matrix with the same non-zero structure as a given
sparse matrix, where all the non-zero values are 1.

4.2 Element-Wise Matrix Arithmetic
Sparse matrix arithmetic is implemented using a sparse accumulator (SPA).

Gilbert, Moler and Schreiber [15] discuss the design of the SPA in detail. In brief,
a SPA uses a dense vector as intermediate storage. The key to making a SPA work is
to maintain auxiliary data structures that allow for direct ordered access to only the
non-zero elements in the SPA. Star-P uses a separate SPA for each processor.

4.3 Matrix Multiplication

4.3.1 Multiplication of Sparse Matrix with
Dense Vector

A sparse matrix can be multiplied by a dense vector, either on the right or on
the left. The CSR data structure used in Star-P is efficient for multiplying a sparse
matrix by a dense vector: y = A∗x. It is efficient for communication and shows
good cache behavior for the sequential part of the computation. Our choice of the
CSR data structure was strongly influenced by our desire to have good matvec
performance, since matvec forms the core computational kernel for many iterative
methods.

The matrix A and vector x are distributed across processors by rows. The subma-
trix of A on each processor will need some subset of x depending upon its sparsity
structure. When matvec is invoked for the first time on a dsparse matrix A, Star-P
computes a communication schedule for A and caches it. Later, when matvecs are
performed using the same A, this communication schedule does not need to be recom-
puted, which saves some computing and communication overhead, at the cost of extra
space required to save the schedule. We experimented with overlapping computation
and communication in matvec. It turns out in many cases that this is less effi-
cient than simply performing the communication first, followed by the computation.
As computer architectures evolve, this decision may need to be revisited.

Communication in matvec can be reduced by graph partitioning. Lesser commu-
nication is required during matvec, if fewer edges cross processor. Star-P can use
several of the available tools for graph partitioning [6,18,29]. However, Star-P does
not perform graph partitioning automatically during matvec. The philosophy behind
this decision is similar to that in Matlab®: user should be able to reorganize data to
make later operations more efficient, but not automatic.

232 J.R. GILBERT ET AL.

When multiplying from the left, y = x′ ∗ A, instead of communicating just the
required parts of the source vector, each processor computes its own destination
vector. All partial destination vectors are then summed up into the final destination
vector. This require O(n) communication. The choice of the CSR data structure which
allows for efficient communication when multiplying from the right makes it more
difficult to multiply on the left.

Multiplication of sparse matrix with dense-matrix in Star-P is implemented as
a series of matvecs. Such operations although not very common, do often show up
in practice. It is tempting to simply convert the sparse matrix to a dense matrix
and perform dense-matrix multiplication; the reasoning being that the result will be
dense in any case. However, such action requires extra floating-point operations.
Such a scheme may also be inefficient in storage if the resulting matrix is smaller in
dimensions than the sparse argument.

4.3.2 Multiplication of Sparse Matrix with
Sparse Matrix

The multiplication of two sparse matrices is an important operation in Star-P.
It is a common operation for operation on large graphs. Its application to graph
manipulation and numerical solvers is described by Shah [33]. Our implementa-
tion of multiplication of two sparse matrices is described by Robertson [30] and
Shah [33].

The computation for matrix multiplication can be organized in several ways,
leading to different formulations. One common formulation is the inner product for-
mulation, as shown in code fragment 2. In this case, every element of the product Cij

is computed as a dot product of a row i in A and a column j in B.

01 function C = mult_inner_prod (A, B)
02 % Inner product formulation of matrix

multiplication
03
04 for i = 1:n % For each row of A
05 for j = 1:n % For each col of B
06 C(i, j) = A(i, :) * B(:, j);
07 end
08 end

Fig. 2. Inner product formulation of matrix multiplication. Every element of C is computed as a dot
product of a row of A and a column of B.

DISTRIBUTED SPARSE MATRICES FOR VERY HIGH LEVEL LANGUAGES 233

Another formulation of matrix multiplication is the outer product formulation (code
fragment 3). The product is computed as a sum of n rank-one matrices. Each rank-one
matrix is computed as the outer product of column k of A and row k of B.

Matlab® stores its matrices in the CSC format. Clearly, computation of inner
products (code fragment 2) is inefficient, since rows of A cannot be efficiently acc-
essed without searching. Similarly, in the case of computation of outer products (code
fragment 3), rows of B have to be extracted. The process of accumulating successive
rank-one updates is also inefficient, as the structure of the result changes with each
successive update.

The computation can be set up so that A and B are accessed by columns, computing
one column of the product C at a time. Code fragment 4 shows how column j of C is
computed as a linear combination of the columns of A as specified by the non-zeros
in column j of B. Figure 5 shows the same concept graphically.

Star-P stores its matrices in CSR form. As a result, the computation is setup so
that only rows of A and B are accessed, producing a row of C at a time. Each row i

of C is computed as a linear combination of the rows of B specified by non-zeros in
row i of A (code fragment 6).

01 function C = mult_outer_prod (A, B)
02 % Outer product formulation of matrix

multiplication
03
04 for k = 1:n
05 C = C + A(:, k) * B(k, :);
06 end

Fig. 3. Outer product formulation of matrix multiplication. C is computed as a sum of n rank-one
matrices.

01 function C = mult csc (A, B)
02 % Multiply matrices stored in compressed sparse

column format
03
04 for j = 1:n
05 for k where B(k, j) ~= 0
06 C(:, j) = C(:, j) + A(:, k) * B(k, j);
07 end
08 end

Fig. 4. The column-wise formulation of matrix multiplication accesses all matrices A, B and C by
columns only.

234 J.R. GILBERT ET AL.

Fig. 5. Multiplication of sparse matrices stored by columns. Columns of A are accumulated as specified
by the non-zero entries in a column of B using a SPA. The contents of the SPA are stored in a column of
C once all required columns are accumulated.

01 function C = mult csr (A, B)
02 % Multiply matrices stored in compressed sparse

row format
03
04 for i = 1:n
05 for k where A(i, k) ~= 0
06 C(i, :) = C(i, :) + A(i, k) * B(k, :);
07 end
08 end

Fig. 6. The row-wise formulation of matrix multiplication accesses all matrices A, B and C by rows
only.

The performance of sparse matrix multiplication in parallel depends upon the
non-zero structures of A and B. A well-tuned implementation may use a polyalgo-
rithm. Such a polyalgorithm may use different communication schemes for different
matrices. For example, it may be efficient to broadcast the local part of a matrix to
all processors, but in other cases, it may be efficient to send only the required rows.
On large clusters, it may be efficient to interleave communication and computation.
On shared memory architectures, however, most of the time is spent in accumulating
updates, rather than in communication. In such cases, it may be more efficient to

DISTRIBUTED SPARSE MATRICES FOR VERY HIGH LEVEL LANGUAGES 235

schedule the communication before the computation. In the general case, the space
required to store C cannot be determined quickly, and Cohen’s algorithm [9] may be
used in such cases.

4.4 Sparse Matrix Indexing, Assignment and
Concatenation

Several choices are available to the implementor to design primitives upon which
a sparse matrix library is built. One has to decide early on in the design phase as to
which operations will form the primitives and how other operations will be derived
from them.

The syntax of matrix indexing in Star-P is the same as that in Matlab®. It is of
the form A(p, q), where p and q are vectors of indices.

>> B = A(p,q)

In this case, the indexing is done on the right side of ‘=’, which specifies that B is
assigned a submatrix of A. This is the subsref operation in Matlab®.

>> B(p,q) = A

On the other hand, indexing on the left side of ‘=’ specifies that A should be stored
as a submatrix of B. This is the subsasgn operation in Matlab®. Repeated indices
in subsref cause replication of rows and columns. However, subsasgn with repeated
indices is not well defined.

Matlab® supports horizontal and vertical concatenation of matrices. The follow-
ing code, for example, concatenates A and B horizontally, C and D horizontally, and
finally concatenates the results of these two operations vertically.

>> S = [A B; C D]

All of these operations are widely used, and users often do not give second thought
to the way they use indexing operations. The operations have to accept any sparse
matrix and return a result in the same form with reasonable performance. Commu-
nication adds another dimension of complexity in a parallel implementation such
as Star-P. Performance of sparse-indexing operations depends upon the underlying
data structure, the indexing scheme being used, the non-zero structure of the matrix,
and the speed of the communication network.

Our implementation uses sparse and find as primitives to implement sparse index-
ing. The idea is actually quite simple. First, find all elements that match the selection
criteria on each processor. Depending on the operation being performed, rows and

236 J.R. GILBERT ET AL.

columns may need to be renumbered. Once all processors have picked the non-zero
tuples which will contribute to the result, call sparse will assemble the matrix.

Such a scheme is elegant because all the complexity of communication is hidden
in the call to sparse. This simplifies the implementor’s job, who can then focus on
simply developing an efficient sparse routine.

4.5 Sparse MatrixTranspose
Matrix transpose exchanges the rows and columns of all elements of the matrix.

Transpose is an important operation and has been widely studied in the dense case. In
a sparse transpose, apart from communication, the communicated elements have to be
re-inserted into the sparse data structure. The Matlab® syntax for matrix transpose
is as follows:

>> S = A’

Sparse matrix transpose can be easily implemented using the sparse and find
primitives. First, find all non-zero elements in the sparse matrix with find. Then
construct the transpose with sparse, exchanging the vectors for rows and columns.

[I, J, V] = find (S);
St = sparse (J, I, V);

4.6 Direct Solvers for Sparse Linear Systems
Matlab® solves the linear system Ax = b with the matrix division operator,

x = A\b. In sequential Matlab®, A\b is implemented as a polyalgorithm [15],
where every test in the polyalgorithm is cheaper than the next one.

1. If A is not square, solve the least squares problem.
2. Otherwise, if A is triangular, perform a triangular solve.
3. Otherwise, test whether A is a permutation of a triangular matrix (a ‘morally

triangular’ matrix), permute it, and solve it if so.
4. Otherwise, if A is Hermitian and has positive real diagonal elements, find a sym-

metric approximate minimum degree ordering p of A and perform the Cholesky
factorization of A(p, p). If successful, finish with two sparse triangular solves.

5. Otherwise, find a column minimum degree order p and perform the LU
factorization of A(:, p). Finish with two sparse triangular solves.

The current version of Matlab® uses CHOLMOD [7] in step 4 and UMF-
PACK [10] in step 5. Matlab® also uses LAPACK [2] band solvers for banded
matrices in its current polyalgorithm.

DISTRIBUTED SPARSE MATRICES FOR VERY HIGH LEVEL LANGUAGES 237

Different issues arise in parallel polyalgorithms. For example, morally triangular
matrices and symmetric matrices are harder to detect in parallel. In the next section,
we present a probabilistic approach to test for matrix symmetry. Design of the best
polyalgorithm for ‘backslash’ in parallel is an active research problem. For now,
Star-P offers the user a choice between two existing message-passing parallel sparse
solvers: MUMPS [1] and SuperLU_Dist [25].

Sparse solvers are extremely complex pieces of software, often taking several years
to develop. They use subtle techniques to extract locality and parallelism and have
complex data structures. Most sparse solvers provide an interface only to solve linear
systems, x = A b. They often do not provide an interface for the user to obtain the
factors from the solution, [L, U] = lu(A). Matlab® uses UMFPACK only when
backslash or the four output version of lu is used, [L, U, P, Q] = lu(A). Many
Matlab® codes store the results of LU factorization for later use. Since Star-P
does not yet provide a sparse lu implementation, it may not be able to run certain
Matlab® codes in parallel.

4.7 Iterative Solvers for Sparse Linear Systems
Iterative solvers for sparse linear systems include a wide variety of algorithms that

use successive approximations at each step. Stationary methods are older, simpler, but
usually not very effective. These include methods such as Jacobi, Gauss–Seidel and
successive over-relaxation. Non-stationary methods, also known as Krylov subspace
methods, are relatively modern and are based on the idea of sequences of orthogo-
nal vectors. Their convergence typically depends upon the condition number of the
matrix. Often, a preconditioner is used to transform a given matrix into one with a
more favorable spectrum, accelerating convergence.

Iterative methods are not used by default for solving linear systems in Star-P. This
is mainly due to the fact that efficient methods are not yet available for all classes
of problems. Conjugate Gradient (CG) works well for matrices which are symme-
tric and positive definite (SPD). Methods such as Generalized Minimal Residual
(GMRES) or Biconjugate gradient (BiCG, BiCGStab) are used for unsymmetric
matrices. However, convergence may be irregular, and it is also possible that the
methods may break.

Even when using CG, a preconditioner is required for fast convergence. Precon-
ditioners are often problem specific; their construction often requires knowledge
of the problem at hand. An exciting new area of research is that of combinatorial
preconditioners. The graph toolbox in Star-P provides tools for users to build such
preconditioners [33].

Although Star-P does not use iterative methods by default, it provides several tools
for users to use them when suitable. Preconditioned iterative methods from software

238 J.R. GILBERT ET AL.

such as Aztec [31] and Hypre [14] may also be used in Star-P through the Star-P
SDK [24].

4.8 Eigenvalues and Singular Values
Star-P provides eigensolvers for sparse matrices through PARPACK [27].

PARPACK uses a reverse communication interface, in which it provides the essential
routines for the Arnoldi factorization, and requires the user to provide routines for
matvec and linear solutions. Star-P implementations of matvec and linear solvers
were discussed in earlier sections.

Star-P retains the same calling sequence as the Matlab® eigs function.
Star-P can also provide singular values in a similar fashion, and retains the same
calling sequence for svds.

4.9 Visualization of Sparse Matrices
We have experimented with a few different methods to visualize sparse matrices in

Star-P. A Matlab® spy plot of a sparse matrix shows the positions of all non-zeros.
For extremely large sparse matrices, this approach does not work very well since each
pixel on the screen represents a fairly large part of a matrix. Figure 7 shows a Matlab®

spy plot of a web-crawl matrix. It also shows a colored spy plot, with a different color
for each processor. The row-wise distribution of the matrix is clearly observed in the

Fig. 7. Matlab® and Star-P spy plots of a web-crawl sparse matrix. The Star-P plot also exposes
the underlying block-row distribution of the sparse matrix. The matrix was constructed by running a
breadth-first web crawl from www.mit.edu.

DISTRIBUTED SPARSE MATRICES FOR VERY HIGH LEVEL LANGUAGES 239

Matrix nr 5 1024, nc 5 1024, nnz 5 7144
Bucket nnz: max 5 120, min 5 0, avg 5 1.74414, total 5 7144, max/avg 5 69

10 20 30 40 50 60

10

20

30

40

50

60

0

30

60

90

120

Fig. 8. A density spy plot. For large matrices, spy may not display the underlying structure. A density
plot colors each pixel according to the density of the area of the sparse matrix it represents.

colored spy plot. Another approach is to use a 2-D histogram or a density spy plot,
such as the one in Fig. 8, which uses different colors for different non-zero densities.
spyy uses sparse matrix multiplication to produce density spy plots. It is similar to the
cspy routine in CSparse [11], with the exception that cspy is implemented in C and
cannot be used in Star-P. spyy operates on large dsparse matrices on the backend,
but the resulting images are small, which are easily communicated to the frontend.

5. SSCA #2 Graph Analysis Benchmark

We now describe our implementation of a graph analysis benchmark, which builds
upon the sparse matrix infrastructure in Star-P.

240 J.R. GILBERT ET AL.

Fig. 9. The left image shows the conceptual SSCA #2 graph (Kepner). The image on the right is an
SSCA #2 graph generated with scale 8 (256 nodes) and plotted with Fiedler co-ordinates.

The SSCAs (Scalable Synthetic Compact Applications) are a set of benchmarks
designed to complement existing benchmarks such as the HPL [13] and the NAS
parallel benchmarks [5]. Specifically, SSCA #2 [3] is a compact application that
has multiple kernels accessing a single data structure (a directed multigraph with
weighted edges). We describe our implementation of version 1.1 of the bench-
mark. Version 2.0 [4], which differs significantly from version 1.1, has since been
released.

The data generator generates an edge list in random order for a multi-graph of
sparsely connected cliques as shown in Fig. 9. The four kernels are as follows:

1. Kernel 1: Create a data structure for further kernels.
2. Kernel 2: Search graph for a maximum weight edge.
3. Kernel 3: Perform breadth-first searches from a set of start nodes.
4. Kernel 4: Recover the underlying clique structure from the undirected graph.

5.1 Scalable Data Generator
The data generator is the most complex part of our implementation. It generates

edge tuples for subsequent kernels. No graph operations are performed at this stage.
The input to the data generator is a scale parameter, which indicates the size of the
graph being generated. The resulting graph has 2scale nodes, with a maximum clique
size of 2scale/3�, a maximum of 3 edges with the same endpoints, and a probability
of 0.2 that an edge is uni-directional. Table I shows the statistics for graphs generated
with this data generator at different scales.

DISTRIBUTED SPARSE MATRICES FOR VERY HIGH LEVEL LANGUAGES 241

Table I
Statistics for the SSCA#2 Graph (Version 1.1). The Directed Edges Column Counts the
Number of Edges in the Directed Multi-graph. The Undirected Edges Column Counts
the Number of Edges in the Undirected Graph Used for Kernel 4. The Statistics are

Generated by Simulating the Data Generator

Scale #Vertices #Cliques #Edges (directed) #Edges (undirected)

10 1024 186 13,212 3,670
15 32,768 2,020 1,238,815 344,116
20 1,048,576 20,643 126,188,649 35,052,403
25 33,554,432 207,082 12,951,350,000 3,597,598,000
30 1,073,741,824 2,096,264 1,317,613,000,000 366,003,600,000

The vertex numbers are randomized, and a randomized ordering of the edge tuples
is presented to the subsequent kernels. Our implementation of the data generator
closely follows the pseudocode published in the spec [3].

5.2 Kernel 1
Kernel 1 creates a read-only data structure that is used by subsequent kernels. We

create a sparse matrix corresponding to each layer of the multi-graph. The multi-graph
has three layers, since there is a maximum of three parallel edges between any two
nodes in the graph. Matlab® provides several ways of constructing sparse matrices,
sparse, which takes as its input a list of three tuples: (i, j, wij). Its output is a sparse
matrix with a non-zero wij in every location (i, j) specified in the input. Figure 10
shows a spy plot of one layer of the input graph.

5.3 Kernel 2
In kernel 2, we search the graph for edges with maximum weight. find is the inverse

of sparse. It returns all non-zeros from a sparse matrix as a list of three tuples. We
then use max to find the maximum weight edge.

5.4 Kernel 3
In kernel 3, we perform breadth-first searches from a given set of starting points.

We use sparse matrix matrix multiplication to perform all breadth-first searches simul-
taneously from the given starting points. Let G be the adjacency matrix representing
the graph and S be a matrix corresponding to the starting points. S has one col-
umn for each starting point and one non-zero in each column. Breadth-first search is

242 J.R. GILBERT ET AL.

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

nz 5 7464

Fig. 10. Matlab® spy plot of the input graph. The input graph is randomized, as evidenced by no
observed patterns in the spy plot.

performed by repeatedly multiplying G by S: Y = G ∗ S. We perform several breadth-
first searches simultaneously by using sparse matrix matrix multiplication. Star-P
stores sparse matrices by rows, and parallelism is achieved computation of some rows
in the product [30, 32] by each processor.

5.5 Kernel 4
Kernel 4 is the most interesting part of the benchmark. It can be considered to be

a partitioning problem or a clustering problem. We have several implementations of
kernel 4 based on spectral partitioning (Fig. 9), ‘seed growing’ (Fig. 11) and ‘peer
pressure’ algorithms. The peer pressure and seed-growing implementations scale bet-
ter than the spectral methods, as expected. We now demonstrate how we use the
infrastructure described above to implement kernel 4 in a few lines of Matlab®

or Star-P. Figure 11 shows a spy plot of the undirected graph after clustering. The
clusters show up as dense blocks along the diagonal.

Our seed-growing algorithm (Fig. 12) starts by picking a small set of seeds (about
2% of the total number of nodes) randomly. The seeds are then grown so that each
seed claims that all nodes are reachable by at least k paths of length 1 or 2, where
k is the size of the largest clique. This may cause some ambiguity, since some
nodes might be claimed by multiple seeds. We tried picking an independent set of
nodes from the graph by performing one round of Luby’s algorithm [26] to keep the
number of such ambiguities as low as possible. However, the quality of clustering

DISTRIBUTED SPARSE MATRICES FOR VERY HIGH LEVEL LANGUAGES 243

0 50 100 150 200 250 300

0

50

100

150

200

250

300

nz 5 1934
0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

nz 5 8488

Fig. 11. The image on the left is a spy plot of the graph, reordered after clustering. The image on the
right magnifies a portion around the diagonal. Cliques are revealed as dense blocks on the diagonal.

01 function J = seedgrow (seeds)
02 % Clustering by breadth first searches
03
04 % J is a sparse matrix with one seed per column.
05 J = sparse (seeds, 1:nseeds, 1, n, nseeds);
06
07 % Vertices reachable with 1 hop.
08 J = G * J;
09 % Vertices reachable with 1 or 2 hops.
10 J = J + G*J;
11 % Vertices reachable with at least k

paths of 1 or 2 hops.
12 J = J >= k;

Fig. 12. Breadth-first parallel clustering by seed growing.

remains unchanged when we use random sampling. We use a simple approach for
disambiguation: the lowest numbered cluster claiming a vertex claims it. We also
experimented by attaching singleton nodes to nearby clusters to improve the quality of
clustering.

Our peer pressure algorithm (Fig. 13) starts with a subset of nodes designated as
leaders. There has to be at least one leader neighboring every vertex in the graph.
This is followed by a round of voting where every vertex in the graph selects a

244 J.R. GILBERT ET AL.

01 function cluster = peerpressure (G)
02 % Clustering by peer pressure
03
04 % Use maximal independent set routine from GAPDT
05 IS = mis (G);
06
07 % Find all neighbors in the independent set.
08 neighbors = G * sparse(IS, IS, 1, length(G),

length(G));
09
10 % Each vertex chooses a random neighbor in the

independent set.
11 R = sprand (neighbors);
12 [ignore, vote] = max (R, [], 2);
13
14 % Collect neighbor votes and join the most

popular cluster.
15 [I, J] = find (G);
16 S = sparse (I, vote(J), 1, n, n);
17 [ignore, cluster] = max (S, [], 2);

Fig. 13. Parallel clustering by peer pressure.

Fig. 14. The first graph is the input to the peer pressure algorithm. Every node then picks its largest
numbered neighbor as a leader, as shown in the second graph. Finally, all nodes change their votes to the
most popular vote amongst their neighbors, as shown in the third graph.

leader, selecting a cluster to join. This does not yet yield good clustering. Each vertex
now looks at its neighbors and switches its vote to the most popular leader in its
neighborhood. This last step is crucial, and in this case, it recovers more than 95% of
the original clique structure of the graph. Figure 14 shows the different stages of the
peer pressure algorithm on an example graph.

DISTRIBUTED SPARSE MATRICES FOR VERY HIGH LEVEL LANGUAGES 245

We experimented with different approaches to select leaders. At first, it seemed
that a maximal independent set of nodes from the graph was a natural way to pick
leaders. In practice, it turns out that simple heuristics (such as the highest numbered
neighbor) gave equally good clustering. We also experimented with more than one
round of voting. The marginal improvement in the quality of clustering was not worth
the additional computation time.

5.6 Visualization of Large Graphs
Graphics and visualization are a key part of an interactive system such as Matlab®.

The question of how to effectively visualize large datasets in general, especially large
graphs, is still unsolved. We successfully applied methods from numerical computing
to come up with meaningful visualizations of the SSCA #2 graph.

One way to compute geometric co-ordinates for the nodes of a connected graph is
to use Fiedler co-ordinates [20] for the graph. Figure 9 shows the Fiedler embedding
of the SSCA #2 graph. In the 2-D case, we use the eigenvectors (Fiedler vectors)
corresponding to the first two non-zero eigenvalues of the Laplacian matrix of the
graph as co-ordinates for nodes of the graph in a plane.

For 3-D visualization of the SSCA #2 graph, we start with 3-D Fiedler co-ordinates
projected onto the surface of a sphere. We model nodes of the graph as particles on
the surface of a sphere. There is a repulsive force between all particles, inversely
proportional to the distance between them. Since these particles repel each other
on the surface of a sphere, we expect them to spread around and occupy the entire
surface of the sphere. Since there are cliques in the original graph, we expect clusters
of particles to form on the surface of the sphere. At each timestep, we compute a force
vector between all pairs of particles. Each particle is then displaced by some distance
based on its force vector. All displaced particles are projected back onto the sphere at
the end of each time step.

This algorithm was used to generate Fig. 15. In this case, we simulated 256 particles
and the system was evolved for 20 time steps. It is important to first calculate the
Fiedler co-ordinates. Beginning with random co-ordinates results in a meaningless
picture. We used PyMOL [12] to render the graph.

5.7 Experimental Results
We ran our implementation of SSCA #2 (ver 1.1, integer only) in Star-P. The

Matlab® client was run on a generic PC. The Star-P server was run on an SGI
Altix with 128 Itanium II processors with 128G RAM (total, non-uniform memory
access). We used a graph generated with scale 21. This graph has 2 million nodes.

246 J.R. GILBERT ET AL.

10 20 30 40 50 60

10

20

30

40

50

60
0

30

60

90

120

Matrix nr 5 1024, nc 5 1024, nnz 5 7144
Bucket nnz: max 5 120, min 5 0, avg 5 1.74414,

total 5 7144, max/avg 5 69

Fig. 15. The 3-D visualization of the SSCA #2 graph on the left is produced by relaxing the Fiedler
co-ordinates projected onto the surface of a sphere. The right figure shows a density spy plot of the SSCA
#2 graph.

Fig. 16. SSCA #2 version 1.1 execution times (Star-P, Scale = 21).

The multi-graph has 321 million directed edges; the undirected graph corresponding
to the multi-graph has 89 million edges. There are 32 thousand cliques in the graph,
the largest having 128 nodes. There are 89 million undirected edges within cliques,
and 212 thousand undirected edges between cliques in the input graph for kernel 4.
The results are presented in Fig. 16.

DISTRIBUTED SPARSE MATRICES FOR VERY HIGH LEVEL LANGUAGES 247

Our data generator scales well; the benchmark specification does not require the
data generator to be timed. A considerable amount of time is spent in kernel 1, where
data structures for the subsequent kernels are created. The majority of this time is
spent in searching the input triples for duplicates, since the input graph is a multi-
graph. Kernel 1 creates several sparse matrices using sparse, each corresponding to a
layer in the multi-graph. Time spent in kernel 1 also scales very well with the number
of processors. Time spent in Kernel 2 also scales as expected.

Kernel 3 does not show speedups at all. Although all the breadth-first searches
are performed in parallel, the process of subgraph extraction for each starting point
creates a lot of traffic between the Star-P client and the Star-P server, which are
physically in different states. This client-server communication time dominates the
computation time. This overhead can be minimized by vectorizing kernel 3 more
aggressively.

Kernel 4, the non-trivial part of the benchmark, actually scales very well. We
show results for our best performing implementation of kernel 4, which uses the
seed-growing algorithm.

The evaluation criteria for the SSCAs also include software engineering metrics
such as code size, readability and maintainability. Our implementation is extremely
concise. We show the source lines of code (SLOC) for our implementation in Table II.
We also show absolute line counts, which include blank lines and comments, as we
believe these to be crucial for code readability and maintainability. Our implemen-
tation runs without modification in sequential Matlab®, making it easy to develop
and debug on the desktop before deploying on a parallel platform.

We have run the full SSCA #2 benchmark (version 0.9, integer only) on graphs
with 227 = 134 million nodes on the SGI Altix. Scaling results for the full benchmark
(version 1.1, integer only) are presented in Fig. 16. We have also generated and

Table II
Line Counts for Star-P Implementation of SSCA #2. The
‘Source LOC’ Column Counts Only Executable Lines of

Code, Whereas the ‘Total line counts’ Column Counts the
Total Number of Lines Including Comments and White

Space

Operation Source LOC Total Line Counts

Data generator 176 348
Kernel 1 25 63
Kernel 2 11 34
Kernel 3 23 48
Kernel 4 (spectral) 22 70
Kernel 4 (seed growing) 55 108
Kernel 4 (peer pressure) 6 29

248 J.R. GILBERT ET AL.

manipulated extremely large graphs (1 billion nodes and 8 billion edges) on an SGI
Altix with 256 processors using Star-P.

This demonstrates that the sparse matrix representation is a scalable and efficient
way to manipulate large graphs. It should be noted that the codes in Fig. 12 and Fig. 13
are not pseudocodes, but actual code excerpts from our implementation. Although
the code fragments look very simple and structured, the computation manipulates
sparse matrices, resulting in highly irregular communication patterns on irregular
data structures.

6. Looking Forward: A Next-Generation
Parallel Sparse Library

We now discuss the design goals of a next-generation parallel sparse library, based
on our current experience.

Our initial goal was to develop a parallel sparse library for Star-P similar to the one
in Matlab®. We wanted it to be robust, scalable, efficient and simple. Hence, all the
design decisions we made always favored robustness and simplicity. For instance, we
decided early on to support only the CSR data structure to store sparse matrices and
to use a 1-D block layout by rows. A 2-D layout may be more efficient, and it would
definitely be nice to support other data structures for storage. However, these would
complicate the implementation to a point where it may not be possible to implement
all the operations we currently support for all combinations of data structures and
layouts.

There are some crucial differences between Matlab® and Star-P’s sparse
libraries. First, Matlab®’s focus is solely on numerical computing. However, sparse
matrices are increasingly lending themselves to more than just numerical computing.
Second, parallel computing is still not as easy as sequential computing. Parallel sparse
matrices provide an elegant way for a user to represent large sparse datasets as matri-
ces without using complex data structures to store and query them. Operations on
such large datasets often require irregular communication and irregular data access.
Sparse matrix computations allow this to be done in a concise and systematic way,
without worrying about low-level details. The use of distributed sparse matrices to
represent graphs for combinatorial computing is one such example [33].

We have learnt some lessons from our experience with the Star-P sparse matrix
library, which might be helpful for the development of a next-generation parallel
sparse library.

Although the CSR data structure has served us well, it does cause some problems.
Matlab® codes written to specifically take advantage of the column storage of sparse

DISTRIBUTED SPARSE MATRICES FOR VERY HIGH LEVEL LANGUAGES 249

matrices must be rewritten to use row storage. Although it is not yet clear as to how
much may be the performance difference for a real-life application, it is inconvenient
for a user writing highly tuned codes using sparse matrices. Such a code will also
have different performance characteristics in Matlab® and Star-P.

We propose adding a third design principle to the two stated in Section 4. The
difference in performance between accessing a sparse matrix by rows or columns
must be minimal. Users writing sparse matrix codes should not have to worry about
organizing their sparse matrix accesses by rows or columns, just as they do not worry
about how dense matrices are stored.

For an example of the third principle, consider the operation below. It is much
simpler to extract the submatrix specified by p from a matrix stored in the CSR
format than from a matrix stored in the CSC format. In the latter case, a binary search
is required for every column, making the operation slower.

>> A = S(p, :) % p is a vector

A parallel sparse library that needs to scale to hundreds or thousands of processors
will not work well with a one-dimensional block layout. A two-dimensional block
layout is essential for scalability of several sparse matrix operations. The benefits of
2-D layouts are well known at this point, and we will not reiterate them. It is important
to note that compressed row/column data structures are not efficient for storing sparse
matrices in a 2-D layout.

Another point of departure is a different primitive for indexing operations.
Currently, we use the ‘sparse-find’ method to perform all the indexing operations
such as submatrix indexing, assignment, concatenation and transpose. We used the
concept of the sparse function as a primitive, using which we built the rest of the
operations. We propose that a next-generation sparse matrix library should use sparse
matrix multiplication as the basic primitive in the library.

We illustrate the case of submatrix indexing using matrix multiplication. Suppose
A is a matrix, and we wish to extract the submatrix B = A(I, J). Multiplying from
the left picks out the rows, whereas multiplying from the right picks out the columns,
as shown in code fragment 17.

We believe that it will be possible to implement sparse matrix multiplication more
efficiently with a 2-D block distribution than with a 1-D block distribution for large
numbers of processors. Indexing operations may then be implemented using sparse
matrix multiplication as a primitive. An efficient sparse matrix multiplication imple-
mentation might actually use a polyalgorithm to simplify the implementation for
special cases when more information is available about the structure of matrices
being multiplied, as is the case for indexing operations.

The choice of a suitable data structure to store sparse matrices in a 2-D block
layout and to allow for efficient matrix multiplication still remains an open question

250 J.R. GILBERT ET AL.

01 function B = index_by_mult (A, I, J)
02 % Index a matrix with matrix multiplication
03
04 [nrows, nccols] = size(A);
05 nI = length(I);
06 nJ = length(J);
07
08 % Multiply on the left to pick the required rows
09 row_select = sparse(1:nI, I, 1, nI, nr);
10
11 % Multiply on the right to pick the required

columns
12 col_select = sparse(J, 1:nJ, 1, nc, nJ);
13
14 % Compute B with sparse matrix multiplication
15 B = row_select * A * col_select;

Fig. 17. Matrix indexing and concatenation can be implemented using sparse matrix–matrix multipli-
cation as a primitive. Multiplication from the left picks the necessary rows, whereas multiplication from
the right picks the necessary columns.

for future research. We believe that once the right data structure is selected, there
will not be a large difference in performance when multiplying from the left or the
right. This directly translates into symmetric performance for all indexing operations
when accessing a matrix either by rows or by columns. We believe that this will
lead to higher programmer productivity, freeing users from tuning their codes in
specific ways that depend on knowledge of the underlying implementation of indexing
operations.

7. Conclusion

We described the design and implementation of a distributed sparse matrix infra-
structure in Star-P. This infrastructure was used to build the ‘Graph Algorithms
and Pattern Discovery Toolbox (GAPDT)’. We demonstrated the effectiveness of our
tools by implementing a graph analysis benchmark in Star-P, which scales to large
problem sizes on large processor counts.

We conclude that distributed sparse matrices provide a powerful set of primitives
for numerical and combinatorial computing. We hope that our experiences will shape
the design of future parallel sparse matrix infrastructures in other languages.

DISTRIBUTED SPARSE MATRICES FOR VERY HIGH LEVEL LANGUAGES 251

References

[1] Amestoy P., Duff I. S., and L’Excellent J.-Y., 1998. Multifrontal solvers within the PARASOL
environment. In PARA, pp. 7–11.

[2] Anderson E., Bai Z., Bischof C., Blackford S., Demmel J., Dongarra J., Du Croz J., Greenbaum A.,
Hammarling S., McKenney A., and Sorensen D., 1999. LAPACK Users’Guide, third edition Society
for Industrial and Applied Mathematics, Philadelphia, PA.

[3] Bader D., Feo J., Gilbert J., Kepner J., Koester D., Loh E., Madduri K., Mann B., and Meuse T.,
HPCS scalable synthetic compact applications #2. Version 1.1.

[4] Bader D. A., Madduri K., Gilbert J. R., Shah V., Kepner J., Meuse T., and Krishnamurthy A.,
November 2006. Designing scalable synthetic compact applications for benchmarking high pro-
ductivity computing systems. Cyberinfrastructure Technology Watch.

[5] Bailey D. H., Barszcz E., Barton J. T., Browning D. S., Carter R. L., Dagum D., Fatoohi
R. A., Frederickson P. O., Lasinski T. A., Schreiber R. S., Simon H. D., Venkatakrishnan V., and
Weeratunga S. K., Fall 1991. The NAS parallel benchmarks. The International Journal of
Supercomputer Applications, 5(3):63–73.

[6] Chan T. F., Gilbert J. R., and Teng S.-H., 1994. Geometric spectral partitioning. Technical Report
CSL-94-15, Palo Alto Research Center, Xerox Corporation.

[7] Chen Y., Davis T.A., Hager W. W., and Rajamanickam S., 2006.Algorithm 8xx: Cholmod, supernodal
sparse cholesky factorization and update/downdate. Technical Report TR-2006-005, University of
Florida. Submitted to ACM Transactions on Mathematical Software.

[8] Choy R., and EdelmanA., February 2005. Parallel MATLAB: doing it right. Proceedings of the IEEE,
93:331–341.

[9] Cohen E., 1998. Structure prediction and computation of sparse matrix products. Journal of
Combinatorial Optimization, 2(4):307–332.

[10] Davis T. A., 2004. Algorithm 832: Umfpack v4.3—an unsymmetric-pattern multifrontal method.
ACM Transactions on Mathematical Software, 30(2):196–199.

[11] Davis T.A., 2006. Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms 2). Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA.

[12] DeLano W. L., and Bromberg S., 2004. The PyMOL User’s Manual. DeLano Scientific LLC,
San Carlos, CA, USA.

[13] Dongarra J. J., 1998. Performance of various computers using standard linear equations software in
a FORTRAN environment. SIGARCH Computer Architecture News, 16(1):47–69.

[14] Falgout R. D., Jones J. E., and Yang U. M., The design and implementation of hypre, a library of
parallel high performance preconditioners. Design document from the hypre homepage.

[15] Gilbert J. R., Moler C., and Schreiber R., 1992. Sparse matrices in MATLAB: design and
implementation. SIAM Journal on Matrix Analysis and Applications, 13(1):333–356.

[16] Gilbert J. R., Reinhardt S., and Shah V., April 2007. An interactive environment to manipulate large
graphs. In Proceedings of the 2007 IEEE International Conference on Acoustics, Speech, and Signal
Processing.

[17] Gilbert J. R., Reinhardt S., and Shah V. B., 2006. High performance graph algorithms from par-
allel sparse matrices. In Proceedings of the Workshop on state of the art in scientific and parallel
computing.

[18] Gilbert J. R., and Teng S.-H., 2002. Matlab mesh partitioning and graph separator toolbox.
http://www.cerfacs.fr/algor/Softs/MESHPART/index.html.

[19] Gustavson F. G., 1978. Two fast algorithms for sparse matrices: multiplication and permuted
transposition. ACM Transactions on Mathematical Software, 4(3):250–269.

252 J.R. GILBERT ET AL.

[20] Hall K., November 1970. An r-dimensional quadratic placement algorithm. Management Science,
17(3):219–229.

[21] Husbands P., 1999. Interactive Supercomputing. PhD thesis, Massachussetts Institute of Technology.
[22] Husbands P., Isbell C., and Edelman A., 1999. MITMatlab: A tool for interactive supercomputing. In

SIAM Conference on Parallel Processing for Scientific Computing.
[23] Ihaka R., and Gentleman R., 1996. R: a language for data analysis and graphics. Journal of

Computational and Graphical Statistics, 5(3):299–314.
[24] Interactive Supercomputing LLC. 2007. Star-P Software Development Kit (SDK): Tutorial and

Reference Guide. Version 2.5.
[25] Li X. S., and Demmel J. W., 2003. SuperLU_DIST: a scalable distributed memory sparse direct solver

for unsymmetric linear systems. ACM Transactions on Mathematical Software, 29(2):110–140.
[26] Luby M., 1985. A simple parallel algorithm for the maximal independent set problem. In: STOC ’85:

Proceedings of the seventeenth annual ACM symposium on Theory of computing, pp. 1–10, ACM
Press, New York, NY, USA.

[27] Maschhoff K., and Sorensen D., April 1996. A portable implementation of ARPACK for distributed
memory parallel architectures. Proceedings of Copper Mountain Conference on Iterative Methods.

[28] Mathworks Inc. 2007. MATLAB User’s Guide. Version 2007a.
[29] Pothen A., Simon H. D., and Liou K.-P., 1990. Partitioning sparse matrices with eigenvectors of

graphs. SIAM Journal of Matrix Analysis and Applications, 11(3):430–452.
[30] Robertson C., 2005. Sparse parallel matrix multiplication. Master’s thesis, University of California,

Santa Barbara, CA, USA.
[31] Shadid J. N., and Tuminaro R. S., 1992. Sparse iterative algorithm software for large-scale

MIMD machines: an initial discussion and implementation. Concurrency: Practice and Experience,
4(6):481–497.

[32] Shah V., and Gilbert J. R., 2004. Sparse matrices in Matlab*P: design and implementation. In L. Bougé
and V. K. Prasanna, editors, HiPC, volume 3296 of Lecture Notes in Computer Science, pp. 144–155.
Springer.

[33] Shah V. B., June 2007. An Interactive System for Combinatorial Scientific Computing with an
Emphasis on Programmer Productivity. PhD thesis, University of California, Santa Barbara.

[34] van Rossum G., 2006. Python Reference Manual. Python Software Foundation. Version 2.5.

Bibliographic Snapshots of
High-Performance/High-
Productivity Computing

MYRON GINSBERG

HPC Research & Education,
Farmington Hills, MI,
USA
m.ginsberg@ieee.org

Abstract
This chapter is intended to acquaint the reader with some of the important topics in
high performance, or what is now being referred to as, ‘high productivity comput-
ing’ (HPC). The target audience is technical professionals who are not specialist
in HPC. Some of the topics covered include: HPC benchmarking concerns and
sample results in government research labs, private industry and academia; HPC
environments in private industry vs. government labs/research sectors; emerging
acceleration techniques to speed up scientific and engineering applications; the
move to petaflop class hardware and software by 2010–2011; computational
science programs to train future computer support staffs to exploit effectively
and efficiently the emerging class of petaflop supercomputers; lists of some avail-
able HPC videos; studies by the U.S. Council on Competitiveness and others to
improve U.S. global competitiveness. The emphasis is to provide mostly easily
accessible internet references to these topics and at a level that enables the reader
to discern possible relationships between his or her own specialty and the potential
impact of HPC.

1. Introduction . 255

2. Computational Environments in Government, Academia and Industry . . . 257
2.1. Overview of Computational Environments 257

References . 259

3. Computational Science Education (CSE) 260
3.1. The Academic Origins of CSE . 260
3.2. A Sampling of CSE Programs in the U.S. 261

ADVANCES IN COMPUTERS, VOL. 72 253 Copyright © 2008 Elsevier Inc.
ISSN: 0065-2458/DOI: 10.1016/S0065-2458(08)00006-5 All rights reserved.

254 M. GINSBERG

3.3. Impediments to the Growth of CSE Programs 261

3.4. Content Needs in CSE Programs . 262

3.5. Comments on Section References . 263

References . 263

4. Supercomputing Architecture . 264

4.1. Distinguishing Differences Among the Content of Sections 4 through
8 Inclusive . 264

4.2. Differentiating References for Specific Architectures 265

References . 265

5. Some HPC Issues . 271

5.1. Actual HPC Performance . 271

5.2. Software Needs with Current and Future Supercomputers 271

5.3. U.S. Government Roadmaps . 272

References . 272

6. Benchmarking Issues and Concerns . 275

6.1. HPC Pitfalls and Difficulty in Testing . 275

6.2. Benchmarking Approaches in Government/Academic Research vs. Industry . 276

6.3. The One Number Syndrome for Industrial Benchmarking 276

6.4. My Personal View of Industrial Benchmarking 277

6.5. Pros and Cons of Various Types of Benchmarking 278

6.6. The HPC Challenge Benchmarks (HPCC) 279

6.7. Predictive Benchmarks . 281

References . 281

7. Acceleration Techniques for HPC Applications 286

7.1. There is no “One Size/type Fits all” Mentality for Selecting
the Ideal Accelerator . 286

7.2. Categories of Accelerators in this Section 287

References . 287

8. The Race for Petaflop Computing . 292

8.1. DARPA’s Competition for a Petaflop Class Supercomputer 292

8.2. Petaflop Programming Language Concerns 292

8.3. Speed Nomenclature . 293

8.4. Some Candidate Petaflop Class Applications 294

8.5. Some Foreign Petaflop Chasers . 295

8.6. Adaptive Supercomputing: the Good, the Bad, and the Ugly Reality 295

8.7. Influence of Optimizing Compiler . 297

8.8. Cray vs. IBM Supercomputing Philosophy 298

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 255

8.9. Discussion of Algorithms . 299

References . 300

9. Influences of Floating-Point Arithmetic on Computational Results 303

9.1. The Need for Creating a Floating-Point Standard 303

9.2. Coping with Accuracy Problems on Petaflop Computers 304

References . 304

10. Industrial HPC Progress . 305

10.1. HPC in the U.S. Automotive Industry . 305

10.2. Formula 1 Auto Racing HPC Usage . 308

10.3. Boeing Corporation is Beneficiary of HPC Technology 308

10.4. Stimulus for Future Expansion of Industrial HPC Usage 309

10.5. Blue Collar Computing . 309

10.6. U.S. Council on Competitive Case Studies 310

10.7. The Flavors of HPC . 310

References . 311

11. Access to On-Demand HPC . 314

11.1. Need for Industrial On-Demand HPC Services 314

11.2. Sample of On-Demand HPC Services . 314

References . 315

12. A Few HPC Videos . 315

12.1. A Brief History of HPC . 315

12.2. Comments about the References in Section 12 316

References . 316

1. Introduction

The motivation for writing this chapter came from my desire to keep undergraduate
and graduate students aware of HPC activities which could have direct or indi-
rect influence on their academic studies and career objectives in a wide variety of
computer-related disciplines. HPC issues are usually at the leading technological
edge, but gradually filter down to impact larger and larger groups of people with very
diverse computer interests. Unfortunately, the textbooks and faculty do not always
provide early student awareness of such topics. Often exposure to such developments
occurs after graduation and/or via emerging summer jobs or technical workshops. In
my own case I started at the end of my junior year as a math major and continued

256 M. GINSBERG

throughout graduate school to spend many summers working in government research
labs where I acquired significant insight into HPC. In college, I maintained a ‘for-
bidden desk draw’, which included technical articles which aroused my curiosity but
which I sadly realized were very unlikely to ever be discussed in any of my formal
courses. Thus, when I became a full-time faculty member I vowed that I would start
exposing my students to some of those topics and attempt to relate them to various
aspects of their formal computer science studies.

When I left full-time academia to work in private industry, I still maintained my
desire to stimulate students with the excitement of HPC. For over 35 years I have con-
tinued to introduce HPC to students, faculty and a myriad of technical professionals
while serving as a national and international HPC lecturer for ACM, SIAM, IEEE,
ASME, SAE and Sigma Xi. I started to evolve what I euphemistically referred to as
‘Bedtime Readings’ in various HPC areas and distributed these guides whenever and
wherever I gave lectures to both academic and city chapters of the aforementioned
professional organizations. Since HPC tends to change very rapidly, so did the con-
tents of my Bedtime Reading Lists, which also served as a means for me to keep up
to date. This chapter has evolved from such reading lists. I hope it will be helpful to
many of you who are not yet acquainted with numerous aspects of HPC.

My intent is NOT to provide an exhaustive compendium of all HPC references but
rather to offer you snapshots of some interesting issues and concerns in the hope that
many of you will be stimulated to explore these topics even if some of them are not
explicitly mentioned in formal academic studies and/or textbooks. I have attempted
to select recent (often very brief) references, most of which are available on the
Internet with the URLs provided; for convenience, the references for each subsection
are listed at the end of that subsection rather than at the end of the entire chapter.
Content wise, these articles should be easily comprehendible and accessible to non-
HPC scientific and engineering specialists in government labs, academia and private
industry. No attempt is made to review in-depth details of advanced HPC issues or to
review the computer science academic literature. Rather than paraphrase the content
of the numerous references that I have compiled, I have tried to provide some brief
commentary about the topics in each section and make a few remarks about what
issues readers should keep in mind as they peruse many of the given articles. The
natural bias in some of my remarks reflects my thoughts about many of these issues
primarily from the viewpoint of an HPC person in private industry but also from
the perspective of any scientist/engineer in private industry, a government research
facility and/or in academia across a broad spectrum of computer-related disciplines.
Most of the references come from vendor press releases, government and university
research reports, abstracting services fromACM, SIAM, IEEE, HPCWIRE, EETimes,
reports from U.S. Council on Competitiveness, etc. as well as from some of my own
HPC papers.

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 257

Warning: The views expressed in this chapter are those of the author and do NOT
necessarily reflect the perspective of any of the author’s previous employers. I wel-
come any comments or suggestions from the readers about the content of this chapter;
please send such remarks to m.ginsberg@ieee.org.

2. Computational Environments in
Government, Academia and Industry

2.1 Overview of Computational Environments
There are some very distinct differences between the computational environments

that exist in government research/academic centers and those in private industry.
For example, the former tends to have large multidisciplinary support staffs to assist
scientists and engineers with the details of their computational applications so that
users can focus on details of their specific application. The support staff concentrates
on fine-tuning the system’s software and hardware as well as determining the optimal
algorithms needed for high-speed performance on the given problem. Such centers
also tend to have the very latest state-of-the-art HPC hardware and software techno-
logies to support a myriad of applications. It is important to note that most government
research/academic centers are using primarily in-house developed and/or open-source
application softwares rather than commercial codes.

In sharp contrast, the industrial sector tends to have very small support staffs,
often with little or no in-house in-depth multidisciplinary application expertise. Fur-
thermore, the priority in most industrial facilities favors a very stable production
environment which often excludes extensive access to leading-edge HPC hardware
and software. The use of the latest research techniques is sometimes viewed by
management as a risk to stability of their production environment.

In the typical industrial facility, most applications are solved using commercial
independent software-based (ISVs) products which unfortunately often results in the
accumulated use of lots of legacy code, which in turn makes it increasingly difficult
to port industrial applications to the latest HPC environments. When a faster, more
efficient HPC hardware/software solution exists, it may not be readily embraced
unless it is already included in the ISV code in use in that specific industrial location.
According to comments in several U.S. Counsel on Competitiveness supported studies
(see [13–16]), most ISVs derive only a small percentage of their total revenue from
HPC usage and thus tend to lack sufficient incentives to promote HPC, especially for
larger industrial applications.

Fortunately, this situation is beginning to improve with widespread introduction
of Windows-based HPC via MS CCS2003 [11]. Products such as MATLAB [10]

258 M. GINSBERG

and Star-P [12] combined with CCS2003 now empower users to generate from the
desktop parallel application solutions interfaced with commodity cluster support.

It is very rare indeed for the technical people who would directly use HPC tech-
nology to also control the corporate resources to finance such equipment. At present,
it is very rare indeed to find an industrial site which has successfully performed a
return on investment (ROI) [18, 19] analysis for new HPC technology. This process
is absolutely essential in order to cost justify rapidly to upper industrial management
that a new and better approach for important applications is a financial benefit to
corporate earnings. Even if upper management is convinced of the better solution,
the financial resources may not be available within the company to expedite the use
of the new HPC technology in a timely manner.

I personally witnessed an interesting example of this while working at a U.S. auto
company during the 1980s. At that time, it took almost four years to convince upper
management to obtain an in-house supercomputer because no other auto company
had one, and management was not convinced of its immediate need. It then took
another 7 years for auto companies in the rest of the world to acquire supercomputers.
In contrast to this situation at a U.S. auto manufacturer, it only required about six
months at a Japanese car company to accomplish this task after lower level technical
people reached consensus on the need for an internal supercomputer. Then, upper
management gave final corporate approval. The main difference is that in Japanese
auto companies, technical professionals often attain high-level corporate positions and
then mentor the low-level technical people; this promotes very good communications
with those who control the corporate purse strings. In contrast, in U.S. auto companies,
it is very rare for a technical professional to attain a very high-level corporate position;
consequently dialogue with upper management does not tend to be as effective as with
their Japanese counterpart.

The gap between the use of HPC in government/research sectors and private
industry is still growing and is measured in as many as four to five years in some
application areas. Action is being taken through a few government programs to nar-
row this chasm. Considerably more massive action must be taken to improve U.S.
global competitiveness in the private sector; see [5–7] for more details. The issues in
Fig. 1 summarize the major reasons why faster industrial HPC adoption has not yet
occurred. Some current improvements in HPC in the industrial sector are given in
Section 10.

Reference [20] based on Congressional testimony in 2003 by a Ford engineer,
Vince Scarafino, indicates that since the mid 1990s, the use of commodity-based
supercomputers as opposed to custom vector supercomputers (such as those made
by Cray and NEC) have not really been as productive as possible with respect to a
significant segment of the large automotive modeling applications.

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 259

Dr. Myron Ginsberg • HPC Research & Education •

Government vs. Industrial HPC Environments

� Leading-edge
hardware

� In-house
applications

 software

� Large, diverse in-
 house support

� Research mindset

� Stable commercial
 hardware

� Commercial ISV-
 based application
 software

� Small in-house
 support staff

� Production mindset

Fig. 1. Government vs. industrial HPC environments.

References

[1] The Council on Competitiveness, 2004 HPC Users Conference: Supercharging U.S. Innovation
& Competitiveness, Report and DVD available, The Council on Competitiveness, http://www.
compete.org/hpc/hpc_conf_report.asp, 2005.

[2] Council on Competitiveness, High Performance Computing Software Workshop Report: Accelerating
Innovation for Competitive Advantage: The Need for HPC Application Software Solutions, July 13,
2005, Council on Competitiveness, Washington, D.C. 20005, January 2006.

[3] Council on Competitiveness, Second Annual High Performance Computing Users Conference Report,
Report and DVD available, Council on Competitiveness, Washington, D.C. 20005, March 2006.

[4] Curns T., June 17, 2005. Improving ISV Applications to Advance HPC, HPCWIRE, Vol. 14, No. 24,
http://www.hpcwire.com/hpc/397415.html.

[5] Ginsberg M., 2001. Influences on the Solution Process for Large, Numeric-Intensive Automotive
Simulations, Lecture Notes in Computer Science Series, Vol. 2073, Springer, pp. 1189–1198.

[6] Ginsberg M., May 2005. Impediments to Future Use of Petaflop Class Computers for Large-
Scale Scientific/Engineering Applications in U.S. Private Industry, Proc., International Conference
on Computational Science (ICCS 2005) Lecture Notes in Computer Science Series, Vol. 3514,
Springer-Verlag, Berlin, pp. 1059–1066.

[7] Ginsberg M., June 2007. Challenges and Opportunities for U.S. Private Industry Utilization of HPC
Technology, Proc., International Conference on Scientific Computing, World Congress in Computer
Science, Computer Engineering, and Applied Computing, WORLDCOMP07, Monte Carlo Hotel
and Resort, Las Vegas, NV, 25–28.

[8] Graham S. L., Snir M., and Patterson C. A. (eds.), 2004. Getting Up to Speed: The Future
of Supercomputing, U.S. National Academy of Sciences CSTB Report, see http://www.cstb.org/
project_supercomputing.html prepublication on-line version at http://books.nap.edu/catalog/
11148.html executive summary, http://www.nap.edu/catalog/11148.html.

[9] HECRTF, Federal Plan for High-End Computing: Report of the High-End Computing Revitali-
zation Task Force (HECRTF), Executive Office of the President, Office of Science and Technology
Policy, Washington, D.C., May 10, 2004 (second printing – July 2004), available at http://www.ostp.
gov/nstc/html/HECRTF-FINAL_051004.pdf.

260 M. GINSBERG

[10] HPCWIRE, The MathWorks Announces Support for Microsoft CCS, HPCWIRE, Vol. 15, No. 24,
http://www.hpcwire.com/hpc/687944.html, June 16, 2006.

[11] HPCWIRE, Microsoft Releases Windows Compute Cluster Server 2003, HPCWIRE, Vol. 15,
No. 24, http://www.hpcwire.com/hpc/692814.html, June 16, 2006.

[12] ISC, The Star-P Platform: Delivering Interactive Parallel Computing Power to the Desktop,
White paper, ISC, Waltham, MA, 2006, http://www.interactivesupercomputing.com/downloads/
ISCwhitepaper.pdf.

[13] Joseph E., Snell A., and Willard C. G., July 2004. Council on Competitiveness Study of U.S. Indus-
trial HPC Users, White paper, IDC, Framingham, MA, paper available at http://www.compete.
org/pdf/HPC_Users_Survey.pdf.

[14] Joseph E., et al., July 2005. Study of ISVs Serving the High Performance Computing Market: The
Need for Better Application Software, Council on Competitiveness Initiative, White paper, IDC,
Framingham, MA, http://www.compete.org/pdf/HPC_Software_Survey.pdf.

[15] Joseph E., et al., May 2006. Council on Competitiveness Study of Industrial Partnerships with the
National Science Foundation (NSF) IDC White Paper on Council of Competitiveness Study of
Industrial Partnerships with The National Science Foundation (NSF), Council of Competitiveness,
Washington, D.C., http://www.compete.org/pdf/Council_NSF_Partnership_Study.pdf.

[16] Joseph E., et al., June 2006. Industrial Partnerships through the NNSA Academic Strategic
Alliance Program IDC White paper on Council on Competitiveness Study of Industrial Partner-
ships with the U.S. Department of Energy NNSA, Council on Competitiveness, Washington, D.C.
http://www.compete.org/pdf/Council_NNSA_Partnership_Study.pdf.

[17] President’s Information Technology Advisory Committee, Computational Science: Ensuring
America’s Competitiveness, PITAC, Office of the President, Washington, D.C., http://www.nitrd.
gov/pitac/reports/20050609_computational/computational.pdf, June 2005.

[18] Reuther A., and Tichenor S., November 2006. Making the Business Case for High Perfor-
mance Computing: A Benefit-Cost Analysis Methodology, CTWatch Quarterly, Vol. 2, No.
4A, pp. 2–8, http://www.ctwatch.org/quarterly/articles/2006/11/making-the-business-case-for-high-
performance-computing-a-benefit-cost-analysis-methodology.

[19] Tichenor S., November 2006. Application Software for High Performance Computers: A Soft
Spot for U.S. Business Competitiveness, CTWatch Quarterly, Vol. 2, No. 4A, pp. 39–45, http://
www.ctwatch.org/quarterly/articles/2006/11/application-software-for-high-performance-computers-
a-soft-spot-for-us-business-competitiveness.

[20] Scarafino V., July 16, 2003. The National Needs for Advanced Scientific Computing and
Industrial Applications, Statement of The Ford Motor Company, Committee on Science, U.S.
House of Representatives, http://www.house.gov/science/hearings/full03/jul16/scarafino.htm, see
http://www.techlawjournal.com/home/newsbriefs/2003/07d.asp under 7/16. The House Science
Committee Holds Hearing on Supercomputing titled Supercomputing: Is the U.S. on the Right Path?,
paragraphs 4–7 inclusive.

3. Computational Science Education (CSE)

3.1 The Academic Origins of CSE
The early computer science departments started in the late 1960s. Initially, many had

origins in mathematical science departments. In attempts to gain academic legitimacy,
many such departments strongly believed that they must focus on a very theoretical

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 261

foundation which is indeed a necessity for a new academic discipline. Several early
computer science departments had strong roots in numerical analysis, which had a
long and distinguished history in math departments. Soon other areas developed to
enhance the theoretical landscape. This was great for producing academic faculty
members, but was not so effective for producing graduates who desired to be ‘users’
of computing technology. At the other extreme, some computer science departments
thought that the focus should be on learning multiple programming languages or
systems programming and still others thought the emphasis should be on computer
hardware. What tended to evolve are computer science departments that were very
good at creating people for academic positions but tended to neglect the training
of those who wanted to be users of computers in industry. Eventually, electrical
engineering departments started developing computer science programs. The people
who ended up working in computing in industry tended to learn what they needed via
on-the-job training; for example even now (in 2007), few computer science program
graduates have any exposure to use of commercial computer applications software
such as those used in industry.As the industrial problems became more complex, some
visionary computer science people realized that applied computer science needed to
focus in a new direction. This recognition has now led to the creation of upwards of
over 50 computational science programs (CSE) in the U.S. and abroad.

3.2 A Sampling of CSE Programs in the U.S.
Figure 2 lists some of the current U.S. educational institutions which have an

undergraduate and/or graduate program in Computational Science. I am not aware of
any comprehensive, up-to-date list of all such programs in the U.S. and elsewhere in
the world. The references [11–14] offer some details about these initiatives and other
such Computational Science programs. Such academic offerings can be centered in
math, computer science, electrical engineering, or physics departments or even in a
nuclear engineering program. Some newer programs are going one step further and
establishing systems or informational science programs.

3.3 Impediments to the Growth of CSE Programs
Unfortunately, a prominent barrier to further expansion of CSE programs is the

‘academic turf wars’, which often seem to be overly concerned about which academic
department should be the recipient of the semester credit hours for CSE courses!!
CSE is inherently multidisciplinary in nature, involving theory, experimentation, and
computer simulations. Graduates of CSE programs must have exposure to a variety of
physical problems, mathematics that can be used as tools to analyze such problems,
combined with insight from computer simulations in order to determine an optimal
solution to the problem.

262 M. GINSBERG

Dr. Myron Ginsberg • HPC Research & Education •

U.S. Computational Science Programs

� Clark University
� George Mason University
� George Washington U (VA)
� Georgia State University
� Indiana U (Bloomington)
� Mississippi State University
� MIT
� New York University
� Ohio University
� Old Dominion University
� Oregon State University
� Penn State University
� Princeton University
� Purdue University
� Rensselaer Polytechnic
� Rice University
� San Diego State University
� Stanford University

� SUNY Brockport
� SUNY Stony Brook
� Syracuse University
� U of California, Berkeley
� U of California, Santa Barbara
� U of Colorado (Denver)
� U of Delaware
� U of Houston
� U of Illinois (Chicago)
� U of Illinois (Urbana)
� U of Iowa
� U of Maryland (College Park)
� U of Michigan
� U of Minnesota
� U of Texas (Austin)
� U of Utah
� Wittenberg University
� College of William and Mary

Fig. 2. U.S. computational science programs.

I have visited many of the existing CSE programs in the U.S. and Canada as well
as institutions considering the creation of such a program. A simple litmus test to
estimate if such a program is likely to succeed is to ask the existing faculty members
the following three questions: 1. Do you frequently eat and/or socialize with other
members of your own department regardless of their area of specialization? 2. Do you
frequently eat and/or socialize with other faculty members in other departments of the
same college in the university? 3. Do you frequently eat and/or socialize with faculty
members in other departments in other colleges of the university? If the responses
are generally affirmative, then there is a likely chance that a CSE program will be
successful. Warning: This is not a foolproof test.

3.4 Content Needs in CSE Programs
It is very difficult to provide adequate exposure to all aspects of computational

science in an undergraduate program because of the existing number of required

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 263

courses already contained in such programs. Any attempt to do so must include one
or more large student projects within the program and/or supplemented by apprentice-
ships offered in government labs and/or private industry. In most current industrial
situations, the personnel working on a specific application usually could be charac-
terized as having expertise in the problem discipline or in the computer science area.
A crucial ingredient for success of a CSE program is the inclusion of a large variety
of techniques which can be readily applied to a vast spectrum of problems across a
vast expanse of disciplines.

For industrial success, at present and in the future, U.S. private industry must recruit
a large number of trained personnel in computational science to fill in all the gaps
between the discipline specialists and the computer science support people, especially
as the HPC hardware and software demands grow with the introduction of petaflop
class machines by 2010–2011. Most current computational scientists are working in
government labs or in federally funded academic research centers. There is thus a
severe scarcity of such people in U.S. private industry. The net effect is impeding of
the growth of industrial HPC usage.

3.5 Comments on Section References
The references in this section fall into several categories: representative examples

of a few recent CSE textbooks [6, 10, 16], examples of undergraduate and graduate
CSE curricula including some vignettes about participating students [11–14], loss of
computer science students and how to attract more students into CSE [2, 7–9, 17],
leadership training [15].

I also want to direct your attention to an evolving course on ‘HPC Concepts,
Methods, and Means’ created under the direction of Dr. Thomas Sterling at LSU;
by the time you read this, the second iteration of the course should be in progress
on the Internet at several colleges during the 2008 Spring semester. A textbook
and several support documents should be available on the LSU web site by then.
For more information, contact Dr. Sterling (mailto: tron@cct.lsu.edu) or look at
http://www.cct.lsu.edu/csc7600/index.html. This web site has a recorded message
from Dr. Sterling that briefly describes the HPC course and contains a complete class
syllabus, a history of HPC, course info and a list of people involved including affi-
liates. I strongly encourage you to check out this course if you have any interest in
learning more about HPC.

References

[1] HPCWIRE, Economic Benefits of HPC Discussed at LSU, HPCWIRE, Vol. 16, No. 23,
http://www.hpcwire.com/hpc/1601590.html, June 8, 2007.

264 M. GINSBERG

[2] HPCWIRE, Encouraging More Women in Science & Technology, HPCWIRE, Article 461928,
http://news.taborcommunications.com/msgget.jsp?mid=461928&xsl, August 26, 2005.

[3] HPCWIRE, George Mason Announces New Type of IT Degree, HPCWIRE, Vol. 16, No. 23,
http://www.hpcwire.com/hpc/1601630.html, June 8, 2007.

[4] HPCWIRE, IBM, SHARE to Build Network of Mainframe Experts, HPCWIRE. Article 461061,
http://news.taborcommunications.com/msgget.jsp?mid=461061&xsl=story.xsl., August 26, 2005.

[5] HPCWIRE, LSU Offers Distance Learning Course in HPC, HPCWIRE, Vol. 16, No. 4,
http://www.hpcwire.com/hpc/1225496.html, January 26, 2007.

[6] Landau R. H., 2005. A First Course in Scientific Computing: Symbolic, Graphic, and Numeric
Modeling Using Maple, Java, Mathematica, and Fortran 90, Princeton University Press,
Princeton, NJ.

[7] Madhavan K. P. C., Goasguen S., and Bertoline G. R., September 16, 2005. Talk Xanga: Capturing
Gen-Zs Computational Imagination, HPCWIRE, http://news.taborcommunications.com/msgget.jsp?
mid=471717&xsl=story.xsl.

[8] Murphy T., Gray P., Peck C., and Joiner D., August 26, 2005. New Directions for Computational
Science Education, HPCWIRE, http://news.taborcommunications.com/msgget.jsp?mid=461139&
xsl=story.xsl.

[9] Oblinger D. G., and Oblinger J. L. (eds.), 2005. Educating the Net Generation, educause.edu,
http://www.educause.edu/ir/library/pdf/pub7101.pdf.

[10] Scott L. R., Clark T., and Bagheri B., 2005. Scientific Parallel Computing, Princeton University Press,
Princeton, NJ.

[11] SIAM Working Group on CSE Education, Graduate Education in Computational Science and
Engineering, March 2001. SIAM Rev., Vol. 43, No. 1, pp. 163–177.

[12] SIAM Working Group on CSE Education, Graduate Education for Computational Science and
Engineering, http://www.siam.org/students/resources/report.php, 2007.

[13] SIAM Working Group on CSE Undergraduate Education, Undergraduate Computational Science
and Engineering Education, SIAM, Philadelphia, http://www.siam.org/about/pdf/CSE_Report.pdf,
September 2006.

[14] Swanson C. D., November 2003. Computational Science Education, Krell Institute, http://
www.krellinst.org/services/technology/CSE_survey/index.html.

[15] West J. E., September 15, 2006. Leading for the Trenches HPCWIRE, http://www.hpcwire.com/hpc/
890169.html, http://www.onlytraitofaleader.com.

[16] Shiflet A. B., and Shiflet G. W., 2006. Introduction to Computational: Modeling and Simulation for
the Sciences, Princeton University Press, Princeton, NJ.

[17] Committee on Science, Engineering, and Public Policy (COSEPUP). Rising Above the Gathering
Storm: Energizing and Employing America for a Brighter Economic Future, NationalAcademy Press,
http://www.nap.edu/catalog/11463.html, 2007.

4. Supercomputing Architecture

4.1 Distinguishing Differences Among the Content of
Sections 4 through 8 Inclusive

Sections 4 through 8 inclusive overlap somewhat, but the focus is different in each
of these: Section 4 spotlights specific architecture, while Section 5 presents HPC

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 265

issues across these diverse architectures. Section 6 examines specific scientific and
engineering application performance on many of the computers discussed in previous
sections. Section 7 concentrates on specific heterogeneous components to enhance
speed on one or more of the aforementioned architectures. Section 8 spotlights the
initial attempts to create several petaflop systems developed within and external to the
U.S. and to do so by the end of the first decade of the 21st century. For those readers
with little or no computer architecture background, I have intentionally avoided the
inclusion of detailed hardware discussions and have provided mostly general layman-
level articles in all these sections. For those desiring more information about the
evolution of these machines, I recommend perusing a few recent publications of
Hennessy and Patterson including in this section, [56, 89, 90], as well as several
overviews provided in [86, 106] as well as in the two videos [20, 100].

4.2 Differentiating References for Specific
Architectures

For specific architectures, see the following: for IBM Blue Gene/L, see the entire
special issue [102] as well as [3–6, 10–12, 41, 48, 54, 64, 77, 102]; for the new
BlueGene/P, see [5, 47, 69]; for the Sony PS3 as a potential supercomputer using the
IBM Cell architecture, see [15, 16, 85A]; for the Cray Red Storm and its descendents
XT3, XT4, see [2A, 2B, 14, 17, 32–36, 79, 82, 102A]; for the Cray X1 and X1E, see
[26–30, 72, 84, 88, 92] for Cray XMT, see [38A, 38B]; for vector computers, see the
Cray X1 and Cray X1E references above as well as NEC [59,73,78]. For instructional-
level parallelism, see Chapters 2 and 3 in [56]; for multi-processor parallelism, see
chapter 4 of [56] and for vector processors, see appendix F of [56]. For new low-
energy computer, see [47B]. See [106] for more details of recent supercomputers not
explicitly mentioned in this section.

References

[1] Abts D., November 2004.Achieving a Balanced System Design, http://www.cray.com/downloads/
sc2004/sc2004_dabts_balance.pdf SC2004, Pittsburgh, PA.

[2] Abts D., November 2004. Why Scalability and Reliability Are Inseparable, http://www.cray.com/
downloads/sc2004/SC2004_dabts_ras2.pdf SC2004, Pittsburgh, PA.

[2A] Abts D., November 2004. The Cray BlackWidow: A Highly Scalable Vector Multiprocessor,
http://sc07.supercomputing.org/schedule/pdf/pap392.pdf, SC07, Reno, NV.

[2B] Alam S. R., et al., November 2007. Cray XT4: An Early Evaluation for Petascale Scientific
Simulation, http://sc07.supercomputing.org/schedule/pdf/pap201.pdf, SC07, Reno, NV.

[3] Almasi G., et al., August 2003. An Overview of the BlueGene/L System Software Organiza-
tion, Proc., Euro-Par 2003 Conference, Lecture Notes in Computer Science, Springer-Verlag,
http://www.llnl.gov/asci/platforms/bluegenel/pdf/software.pdf.

266 M. GINSBERG

[4] Almasi G., et al., November 2004. Unlocking the Performance of the BlueGene/L Supercomputer,
Preliminary version submitted to SC2004: High Performance Computing, Networking and Storage
Conference, 6–12.

[5] Argonne National Laboratory, First IBM BlueGene/P Supercomputer Will Go to Argonne.
HPCWIRE, Vol. 16, No. 26, http://www.hpcwire.com/hpc/1633752.html, June 29, 2007.

[6] ASCII BlueGene/L Computing Platform, http://www.llnl.gov/asc/computing_resources/
bluegenel/.

[7] ASCI Red Homepage, http://www.sandia.gov/ASCI/Red/.
[8] ASCI Purple Benchmark Page, http://www.llnl.gov/asc/computing_resources/purple/.
[9] ASCI White Homepage, http://www.llnl.gov/asci/platforms/white.

[9A] Banks M., September 4, 2007. Get Ready for HPC in the Mainstream, ITPRO,
http://www.itpro.co.uk/features/123256/ get-ready-for-hpc-in-the-mainstream.html.

[10] The BlueGene/L Team, An Overview of the BlueGene/L Supercomputer, SC2002, paper available
at http://sc-2002.org/paperpdfs/pap.pap207.pdf, November 2002.

[11] BlueGene/L: Applications, Architecture and Software Workshop Papers, Reno, NV,
http://www.llnl.gov/asci/platforms/bluegene/agenda.html#links, October 2003.

[12] BlueGene/L Resources, http://www.llnl.gov/asc/computing_resources/bluegenel/.
[13] Brown D. H., October 2004. Associates, Inc., Cray XD1 Brings High-Bandwidth Supercom-

puting to the Mid-Market, White paper, Brown D. H., Associates, Inc., paper available at
http://www.cray.com/downloads/dhbrown_crayxd1_oct2004.pdf.

[14] Brown D. H., January 19, 2005. Associates, Inc., Cray XT3 MPP Delivers Scalable Perfor-
mance, White paper, Brown D. H., Associates, Inc., http://www.cray.com/downloads/05.01.19.
CrayXT3.pdf.

[15] ButtariA., et al., May 2007. Limitations of the Playstation 3 for High Performance Cluster Comput-
ing, UTK Knoxville, TN, Computer Science Technical Report CS-07-594, http://www.netlib.org/
utk/people/JackDongarra/PAPERS/ps3-summa-2007.pdf.

[16] Buttari A., et al., April 17, 2007. SCOP3: A Rough Guide to Scientific Computing on
the Playstation 3, UTK, Knoxville, TN, Computer Science Technical Report UT-CS-07-595,
http://www.netlib.org/utk/people/JackDongarra/PAPERS/scop3.pdf.

[17] Camp W. J., and Tomkins J. L., 2003. The Design Specification and Initial Implementation of the
Red Storm Architecture – in partnership with Cray Inc., CCIM, Sandia National Laboratories,
Albuquerque, NM.

[18] Chamberlain B., September 14, 2005. An Introduction to Chapel – Cray Cascade’s High-
Productivity Language, AHPCRC/DARPA PGAS Conference, http://chapel.cs.washington.edu/
ChapelForAHPCRC.pdf.

[18A] Chamberlain R. D., et al., November 2007. Application Development on Hybrid Systems,
http://sc07.supercomputing.org/schedule/pdf/pap442.pdf, SC07, Reno, NV.

[19] A collection of FPGA references, http://www.openfpga.org/web_resource.shtml.
[20] Computer Museum, The Cray-1 Supercomputer: 30th Anniversary Event-Celebrating the Man

and the Machine, September 21, 2006, http://www.computerhistory.org/events/index.
php?id=1157047505 or http://archive.computerhistory.org/lectures/the_Cray_1_supercomputer_
celebrating_the_man_and_the_machine.lecture.2006.09.21.wmv available for purchase from the
Computer History Museum, 1401 N. Shoreline Blvd., Mountain View, CA 94043.

[21] Cray, Inc., Chapel – The Cascade High-Productivity Language, Chapel Programming Language
Homepage, http://chapel.cs.washington.edu/.

[22] Cray, Inc., July 9, 2003. DARPA HPCS Cray Cascade Project, http://www.cray.com/cascade/.
[23] Cray, Inc., CAE Strategy: The XD1 Supercomputer, http://www.cray.com/downloads/sc2004/

SC2004-CAE_nov4_pp.pdf.

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 267

[24] Cray, Inc., Technical Specifications, http://www.cray.com/products/xt3/specifications.html.
[25] Cray, Inc., 2004. The Cray XD1 High Performance Computer: Closing the gap between peak

and achievable performance in high performance computing, White paper, WP-0020404, Cray
Inc., Seattle, WA, paper available at http://www.cray.com/downloads/whitepaper_closing_the_
gap.pdf.

[26] Cray, Inc., Cray X1E Datasheet, http://www.cray.com/downloads/X1E_datasheet.pdf.
[27] Cray, Inc., Cray X1E Technical Specifications, http://www.cray.com/products/x1e/specifications.

html.
[28] Cray, Inc., Cray X1E Supercomputer Sample Configurations, http://www.cray.com/products/

x1e/configurations.html.
[29] Cray, Inc., Cray X1E Supercomputer, http://www.cray.com/products/x1e/index.html.
[30] Cray, Inc., Cray X1E System Architecture, http://www.cray.com/products/x1e/architecture.html.
[31] Cray, Inc., Cray XT3 Scalability, http://www.cray.com/products/xt3/scalability.html.
[32] Cray, Inc., 2004. Cray XT3 Datasheet, http://www.cray.com/downloads/Cray_XT3_

Datasheet.pdf.
[32A] Cray, Inc., September 14, 2007. Cray to Deliver Quad-Core Opteron Supers by the End of Year,

HPCWIRE, Vol. 16, No. 37, http://www.hpcwire.com/hpc/1771434.html.
[33] Cray, Inc., Cray Inc. Begins Shipping Cray XT3 Massively Parallel Supercomputer Based on San-

dia ‘Red Storm’ Design, http://investors.cray.com/phoenix.zhtml?c=98390&p=irol-newsArticle
&ID=634922&highlight=.

[34] Cray, Inc., Cray XT3 Supercomputer Overview, http://www.cray.com/products/xt3/index.html.
[35] Cray, Inc., Cray XT3 System Sample Configurations, http://www.cray.com/products/xt3/

configurations.html.
[36] Cray, Inc., Cray XT3 3D Torus Direct Connected Processor Architecture, http://www.cray.com/

products/xt3/architecture.html.
[37] Cray, Inc., System Balance – an HPC Performance Metric, http://www.cray.com/products/

xd1/balance.html.
[38] Cray, Inc., February 26–28, 2007. Cray Technical Workshop, Gaylord Opryland Hotel, Nashville,

TN, http://nccs.gov/news/workshops/cray/cray_agenda.pdf.
[38A] Cray, Inc., September 21, 2007. Pacific Northwest National Lab Acquires Cray XMT Super,

HPCWIRE, Vol. 16, No. 38, http://www.hpcwire.com/hpc/1789165.html.
[38B] Cray, Inc., Cray XMT Datasheet, http://www.cray.com/downloads/Cray_XMT_Datasheet.pdf.

[39] Curns T., June 3, 2005. Japan: Poised for a Supercomputings Comeback? HPCWIRE,
http://news.taborcommunications.com/msgget.jsp?mid=391555&xsl=story.xsl.

[40] DARPA, DARPA Selects Three High Productivity Computing Systems (HPCS) Projects,
http://www.darpa.mil/body/NewsItems/pdf/hpcs_phii_4.pdf, July 8, 2003.

[41] Davis K., et al., November 2004. A Performance and Scalability Analysis of the BlueGene/L
Architecture, SC2004, Pittsburgh, PA, http://www.sc-conference.org/sc2004/schedule/pdfs/
pap302.pdf.

[42] Deitz S., October 21, 2005. Chapel: Compiler Challenges, LCPC, http://chapel.cs.washington.edu/
ChapelForLCPC.pdf.

[43] DeRose L., November 2004. Performance Analysis and Visualization with Cray Apprentice2,
http://www.cray.com/downloads/sc2004/SC04-Apprentice2.pdf SC2004, Pittsburgh, PA.

[44] Elnozahy M., April 7, 2006. IBM Has Its PERCS, HPCWIRE, http://www.hpcwire.com/hpc/
614724.html.

[45] Earth Simulator Homepage, http://www.es.jamstec.go.jp/esc/eng/index.html.
[46] Feldman M., November 24, 2006. DARPA Selects Cray and IBM for Final Phase of HPCS, Vol.

15, No. 4, http://www.hpcwire.com/hpc/1119092.html.

268 M. GINSBERG

[47] Feldman M., June 29, 2007. IBM Enters Petascale Era with Blue Gene/P, HPCWIRE, Vol. 16, No.
26, http://www.hpcwire.com/hpc/1636039.html.

[47A] Feldman M., September 14, 2007. New Opterons Headed for Supercomputing Stardom,
HPCWIRE, Vol. 16, No. 37, http://www.hpcwire.com/hpc/1778857.html.

[47B] Feldman M., October 19, 2007. SiCortex Machine Gets Warm Reception at Argonne, HPCWIRE,
Vol. 16, No. 42, http://www.hpcwire.com/hpc/1842713.html.

[48] Gara A., et al., March/May 2005. Overview of the BlueGene/L System Architecture, IBM J. Res.
& Dev., Vol. 49, No. 2/3, http://www.research.ibm.com/journal/rd/492/gara.pdf.

[49] Goedecker S., and Hoisie A., 2001. Performance Optimization of Numerically Intensive Codes,
SIAM, Philadelphia.

[50] Goh E. L., July 2004. SGI Project Ultraviolet: Our Next Generation HEC Architecture: Multi-
ParadigmComputing, http://www.sgi.com/features/2004/july/project_ultraviolet/.

[51] Gokhale M. B., and Graham P. S., 2005. Reconfigurable Computing: Accelerating Computation
with Field-Programmable Gate Arrays, Springer-Verlag.

[52] Gustafson J. L., August 7, 2003. DARPA HPCS Sun Hero Project, http://www.ncsc.org/casc/
meetings/CASC2.pdf.

[53] Gustafson J. L., November 14, 2006. Understanding the Different Acceleration Technologies,
HPCWIRE, Vol. 13, No. 2, http://www.hpcwire.com/hpc/1091512.html.

[54] Haff G., August 22, 2005. Blue Gene’s Teraflop Attack, Illuminata, Inc., Nashua, NH, http://www-
03.ibm.com/servers/deepcomputing/pdf/teraflopattackilluminata.pdf.

[55] Harbaugh L. G., June 2004. Building High-Performance Linux Clusters (Sponsored by Appro),
White paper, paper available at http://www.appro.com/whitepaper/whitepaper.pdf.

[56] Hennessy J., and Patterson D. A., October 2006. Computer Architecture: A Quantitative Approach,
4th Edition, Morgan Kauffman, San Francisco, CA.

[57] Hester P., June 29, 2007. Peta-Scale x86: Heterogeneous Processing Comes of Age, Hot Seat
Session, Part 1, International Supercomputing Conference, Dresden, Germany. For additional
information, please contact mailto: Rob.Keosheyan@amd.com.

[58] High-End Crusader, Petascale Computer Architecture: HEC Interviews Sterling, HPCWIRE, Vol.
14, No. 18. http://news.taborcommunications.com/msgget.jsp?mid=377690&xsl=story.xsl., May
6, 2005.

[59] HPCWIRE, NEC Unveils New Fastest Supercomputer – 65 TFLOPS, HPCWIRE, Vol. 13,
No. 42, http://www.taborcommunications.com/hpcwire/hpcwireWWW/04/1022/108601.html,
October 21, 2004.

[60] HPCWIRE, Research Labs Tap Star-P, HPCWIRE, Vol. 15, No. 43, http://www.hpcwire.com/hpc/
1017010.html, October 27, 2006.

[61] HPCWIRE, Cluster Computing: MSC. Software Delivers MD Nastran for Windows
CCS, HPCWIRE, Vol. 15, No. 44, http://www.hpcwire.com/hpc/1045404.html, November 3,
2006.

[62] HPCWIRE, Vendor Spotlight: Interactive Supercomputing Awarded NSF Grant, HPCWIRE, Vol.
15, No. 47, http://www.hpcwire.com/hpc/1131808.html, December 1, 2006.

[63] HPCWIRE, Researchers Unveil New Parallel Processing Technology, HPCWIRE, Vol. 16,
No. 26, http://www.hpcwire.com/hpc/1630525.html and see http://www.umiacs.umd.edu/users/
vishkin/XMT/spaa07paper.pdf and http://www.umiacs.umd.edu/users/vishkin/XMT/spaa07
talk.pdf, June 29, 2007.

[64] IBM’s Web Site on BlueGene, http://www.research.ibm.com/bluegene/ and http://www-03.ibm.
com/servers/deepcomputing/bluegenel.html.

[65] IBM, Inc., DARPA HPCS IBM PERCS Project, http://www.research.ibm.com/resources/
news/20030710_darpa.shtml, July 10, 2003.

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 269

[66] IBM, Inc., IBM to Build Cell-Based Supercomputer for Los Alamos, HPCWIRE, Vol. 15, No. 36,
http://www.hpcwire.com/hpc/872363.html, September 8, 2006.

[67] IBM, Inc., The X10 Programming Language, http://domino.research.ibm.com/comm/
research_projects.nsf/pages/x10.index.html, March 17, 2006.

[68] IBM, Inc., Report on the Experimental Language X10, Draft v 0.41, http://domino.research.ibm.
com/comm/research_projects.nsf/pages/x10.index.html/$FILE/ ATTH4YZ5.pdf, February 7,
2006.

[69] IBM, Inc., June 26, 2007. IBM Triples Performance of World’s Fastest, Most Energy-Efficient
Supercomputer: New BlueGene/P Designed to Break the ‘Quadrillion’ Barrier, see the following
three references about BlueGene/P: http://www-03.ibm.com/press/us/en/pressrelease/21791. wss,
http://www-03.ibm.com/servers/deepcomputing/bluegene.html, and http://www-03.ibm.com/
servers/deepcomputing/bluegene/bgpfaq.html.

[70] Japan /Asia HPC Digest, High Performance Computing in Japan &Asia, Japan / Asia HPC Digest,
http://www.atip.org/NEWS/182.pdf, October 2004.

[71] Joseph E., Conway S., and Wu J., June 2007. Improving HPC Performance, Scalability, and
Availability with Blades: Introducing SGI Altix ICE, White paper # 207401, IDC, 5 Speen Street,
Framingham, MA, http://www.sgi.com/pdfs/4015.pdf.

[72] Joseph E., II et al., November 2002. A New High Bandwidth Supercomputer: The Cray X1, Tech-
nology Assessment, IDC, Framingham, MA, paper available at http://www.cray.com/downloads/
crayx1_idc.pdf.

[73] Joseph E., Snell A., and Willard C. G., October 2004. NEC Launches Next-Generation Vector
Supercomputer: The SX-8, IDC White paper #4290, IDC, Framingham, MA 01701.

[74] Kindratenko V., and Pointer D., A Case Study in Porting a Production Scientific Supercomputing
Application to a Reconfigurable Computer, submitted to IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM’06).

[75] Kindratenko V., Pointer D., and Caliga D., January 10, 2006. High-Performance Reconfigurable
Computing Application Programming in C, https://netfiles.uiuc.edu/dpointer/www/whitepapers/
hprc_v1_0.pdf.

[76] Kindratenko V., Pointer D., Raila D., and Steffen C., February 21, 2006. Comparing CPU and
FPGA Application Performance, NCSA, U of Illinois, Urbana-Champaign, IL, https://netfiles.
uiuc.edu/dpointer/www/whitepapers/perf.pdf.

[77] Kissel L., Nowak D. A., Seager M., and Yates K., November 18, 2002. BlueGene/L: the next gen-
eration of scalable supercomputer, SC2002, paper available at http://www.llnl.gov/asci/platforms/
bluegenel/images/BGL.pdf.

[78] Lazou C., June 18, 2004. Watanabe Discusses NEC’s Position in HPC Industry, HPCWIRE, Vol. 13,
No. 24, http://www.taborcommunications.com/hpcwire/hpcwireWWW/04/0618/107850.html.

[79] Lazou C., July 8, 2005. Cray: ‘100 Percent Focused on HPC’, HPCWIRE, Vol. 14, No. 27,
http://www.hpcwire.com/hpc/414962.html.

[80] Lazou C., July 6, 2007. A European’s View on ISC2007, HPCWIRE, Vol. 16, No. 27, 2007,
http://www.hpcwire.com/hpc/1648193.html.

[81] Lazou C., February 24, 2006. Are FPGAs a Disruptive Technology for HPC? HPCWIRE, Vol. 15,
No. 8, http://www.hpcwire.com/hpc/570738.html.

[82] Leland R., June 16–18 2004. Red Storm Architecture and Applications, Proceedings, Cray
Advanced Technical Workshop, Bologna, Italy.

[82A] Makino J., et al., November 2007. GRAPE-DR: 2 Pflops Massively Parallel Computer with
512 Core, 512 Gflops Processor Chips for Scientific Computing, http://sc07.supercomputing.org/
schedule/pdf/pap247.pdf SC07, Reno, NV.

[83] Moore S. K., Winner: Multimedia Monster, http://www.spectrum.ieee.org/jan06/2609.

270 M. GINSBERG

[84] Network Computing Services, The AHPCRC Cray X1 Primer, Network Computing Services,
available at http://www.ahpcrc.org/publications/Primer.pdf, 2003.

[85] New Scientist News Service, NEC Strikes Blow in Supercomputer Battle, http://www.newscientist.
com/news/news.jsp?id=ns99996562, October 21, 2004.

[85A] North Carolina State University, March 20, 2007. Engineer Creates First Academic Playstation3
Computer Cluster, ScienceDaily, http://www.sciencedaily.com/releases/2007/03/070319205733.
htm.

[86] Owens J. D., et al., August 29–September 2, 2005. A Survey of General-Purpose Compu-
tation on Graphics Hardware, Proceedings, Eurographics 2005, Dublin, Ireland, pp. 21–51,
http://graphics.idav.ucdavis.edu/graphics/publications/func/return_pdf?pub_id=844.

[87] Parsons M., November 14, 2006. Programming FPGAs for Real Applications: Understanding the
Challenges, HPCWIRE, http://www.hpcwire.com/hpc/1091371.html.

[88] Partridge R., November 14, 2002. Cray Launches X1 for Extreme Super computing, D. H.,
Brown Associates, Inc., Port Chester, NY, paper available at http://www.cray.com/downloads/
crayx1_dhbrown.pdf.

[89] Patterson D. A., and Hennessy J., 2004. Computer Organization and Design: The Hard-
ware/Software Interface, Morgan Kauffman, San Francisco, CA.

[90] Patterson D. A., October 2004. Latency Lags Bandwidth, Comm. ACM, Vol. 47, No. 10, pp. 71–75.
[91] Resch M., May 2004. Vector Computing: The Key to Sustained Performance? NEC User Group,

NUG-25, available at mail to: resch@hlrs.de.
[92] Schwarzmeier L., November 2002. Cray X1 Architecture and Hardware Overview, Oak Ridge

National Lab Cray X1 Tutorial, Oak Ridge, TN, available at mail to: jads@cray.com.
[93] Scott S., April 7, 2006. In Cray’s ‘Cascade’ The Computer Will Adapt to the Codes, HPCWIRE,

http://www.hpcwire.com/hpc/614695.html.
[94] Scott S., June 28, 2007. Cray’s Cascade System and the Roadmap to Sustained Petascale Com-

puting, Exhibitor Forum, International Supercomputing Conference (ISC07), Dresden, Germany,
For additional information, please contact Kathy Kurtz, mail to: ksk@cray.com.

[95] Seminerio J., and Terry P., 2004. The XD1, Proceedings, Cray Advanced Technical Workshop,
Bologna, Italy, June 16–18.

[96] SGI, Inc., November 17, 2003. SGI Unveils Plans for the Supercomputer of the Future, http://
www.sgi.com/company_info/newsroom/press_releases/2003/november/sc_future.html.

[97] SGI, Inc., July 13, 2007. SGI Altix Cluster Tapped for Sikorsky Airflow Simulations, HPCWIRE,
Vol. 16, No. 28, http://www.hpcwire.com/hpc/1653015.html.

[98] Shan A., November 2004. Cray XD1-FPGA, http://www.cray.com/downloads/sc2004/SC-
FPGABoothTheatre_pp_nov4.pdf SC2004, Pittsburgh, PA.

[99] Shankland S., October 25, 2004. IBM Supercomputing Goes Retro, CNET News.com, http://news.
com.com/IBM+supercomputing+goes+retro/2100-1010_3-5425551.html.

[100] Simon H., June 22, 2005. Progress in Supercomputing: The Top Three Breakthroughs of the Last
Twenty Years and the Top Three Challenges for the Next Twenty Years, ISC 2005, Heidelberg,
video at mms://netshow01.eecs.berkeley.edu/Horst_Simon.

[101] Snell A., and Willard C. G., March 2006. Bridging the Capability Gap: Cray Pursues ‘Adap-
tive Supercomputing’ Vision, White paper No. 200808, IDC, Framingham, MA. http://www.cray.
com/downloads/IDC-AdaptiveSC.pdf.

[102] Special Issue on BlueGene/L, IBM J. of Res. & Dev, Vol. 49, No. 2/3, 2005, http://www.
research.ibm.com/journal/rd49-23.html.

[102A] Swiss National Supercomputer Centre, New Cray XT Supercomputer Inaugurated at CSCS,
HPCWIRE, Vol. 16, No. 38, http://www.hpcwire.com/hpc/1783938.html, September 21,
2007.

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 271

[103] Steele Jr. G. L., Programming Language Research: Exploration of programming languages
constructs and principles, http://research.sun.com/projects/plrg/.

[104] Tom’s Hardware Guide Business Reports, Dueling Multicores: Intel andAMD Fight for the Future,
Part 1 – Update, http://www.tomshardware.com/business/20050330/index.html, 2005.

[105] Underwood K., FPGAs vs. CPUs: Trends in Peak Floating-Point Performance. February 22–24,
2004. Proc., ACM/SIGDA 12th International symposium on Field Programmable Gate Arrays,
Monterey, CA, pp. 171–180.

[106] van der Steen A. J., and Dongarra J. J., Overview of Recent Supercomputers, http://www.
netlib.org/utk/papers/advanced-computers/.

[107] Vildibill M., April 7, 2006. Sun’s Hero Program: Changing the Productivity Game, HPCWIRE,
http://www.hpcwire.com/hpc/614805.html.

5. Some HPC Issues

5.1 Actual HPC Performance
When using HPC technology, it is extremely important to verify the accuracy of

your computer results and explicitly indicate the conditions under which the perfor-
mance tests were conducted. Unfortunately, that does not always happen. It can be
caused by deceptive practices used during the performance tests and/or over zealous-
ness by a vendor marketing person or even by ignorance of the persons conducting the
performance tests. The Bailey references [1–3] reveal many such misleading prac-
tices and I strongly recommend that you scrutinize those papers. Sometimes vendor
personnel with a strong desire not to reveal any bad attributes of their company’s
computer product may suffer from a disease I prefer to politely refer to as ‘selective
amnesia’; in such cases no major poor results will be reported or will be explained
only by the use of marketing HYPE. This practice was obviously learned by observ-
ing the behavior patterns of many politicians. The best way to avoid such practices
is to have several experts present before, during, and after the performance tests to
try to verify that there is a very accurate written record which discloses all significant
factors which could impact the reported performance outcomes.

5.2 Software Needs with Current and Future
Supercomputers

For many years, there has been considerably more effort to develop HPC
hardware rather than focus on expansion of HPC software needs. Now we are directly
headed for a crisis in the latter area because of growing heat and energy concerns in
the development of faster HPC performance. More and improved forms of soft-
ware parallelism must be created to solve this problem if petaflop computing is to
be successful between now and 2011. Solutions will involve the creation of new

272 M. GINSBERG

performance-enhancing techniques. See references [8A, 9, 10, 12, 21, 26, 26A, 27,
35, 36A, 38, 41, 42, 43, 44, 45].

5.3 U.S. Government Roadmaps
The federal government so far has failed to provide long-term implemented

solutions to meet HPC needs, especially in industry. This has been the case despite
many government initiatives that have been inadequate in meeting long-term HPC
needs. The current software HPC crisis is an example of ineffective long-term plans.
There have been several federal initiatives but few long-term implemented initiatives.
See [14–16, 19, 22–26, 28, 30, 34–36].

References

[1] Bailey D. H., 1998. Challenges of Future High-End Computers, in High Performance
Computer Systems and Applications, edited by Schaeffer J., Kluwer Academic Press, Boston, MA;
http://crd.lbl.gov/∼dhbailey/dhbpapers/future.pdf.

[2] Bailey D. H., Misleading Performance Reporting in the Supercomputing Field, Scientific Pro-
gramming, Vol. 1, No. 2 (Winter 1992), pp. 141–151, http://crd.lbl.gov/∼dhbailey/dhbpapers/
mislead.pdf.

[3] Bailey D. H., June 23–25, 2004. Twelve Ways to Fool the Masses: Scientific Malpractice in High-
Performance Computing, paper, International Supercomputing Conference (ISC04), Heidelberg,
Germany, http://crd.lbl.gov/∼dhbailey/dhbtalks/dhb-12ways.pdf.

[4] Bartling B., Increasing the Expert ‘Bandwidth’, http://www.sgi.com/features/2004/oct/landmark/.
[5] The Council on Competitiveness, 2004 HPC Users Conference: Supercharging U.S. Innova-

tion & Competitiveness, Report and DVD available, The Council on Competitiveness, 2005,
http://www.compete.org/hpc/hpc_conf_report.asp.

[6] Council on Competitiveness, High Performance Computing Software Workshop Report: Acceler-
ating Innovation for Competitive Advantage: The Need for HPC Application Software Solutions,
July 13, 2005, Council on Competitiveness, Washington, D.C.20005, January 2006.

[7] Council on Competitiveness, Second Annual High Performance Computing Users Conference
Report, Report and DVD available, Council on Competitiveness,Washington D.C.20005, March
2006.

[8] Curns T., ed., January 13, 2005. Sun’s Gustafson on Envisioning HPC Roadmaps for the Future,
HPCWIRE, Vol. 14, No. 2, http://www.hpcwire.com/hpc/324428.html.

[8A] Daniilidi C., September 28, 2007. Virginia Tech Explores Thermal-Aware Computing, HPCWIRE,
Vol. 16, No. 39, http://www.hpcwire.com/hpc/1802228.html.

[9] Dongarra J., February 2007. (Guest Editor), The Promise and Perils of the Coming Multicore Revo-
lution and Its Impact, CTWatch Quarterly, Vol. 3, No. 1, http://www.ctwatch.org/quarterly/pdf/
ctwatchquarterly-10.pdf.

[10] Dongarra J., Gannon D., Fox G., and Kennedy K., February 2007. The Impact of Multicore
on Computational Science Software, CTWatch Quarterly, Vol. 3, No. 1, http://www.ctwatch.org/
quarterly/articles/2007/02/the-impact-of-multicore-on-computational-science-software/.

[11] Ebisuzaki T., Germain R., and Taiji M., November 2004. PetaFLOPS Computing, Comm. ACM,
Vol. 47, No. 11, pp. 42–45.

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 273

[12] Feldman M.,August 3, 2007. Parallel Vision, HPCWIRE, Vol. 16, No. 31, http://www.hpcwire.com/
hpc/1703560.html.

[13] Ginsberg M., 2001. Influences on the Solution Process for Large, Numeric-Intensive Automotive
Simulations, Lecture Notes in Computer Science Series, Vol. 2073, Springer, pp. 1189–1198.

[14] Ginsberg M., May 2005. Impediments to Future Use of Petaflop Class Computers for Large-Scale
Scientific/Engineering Applications in U.S. Private Industry, Proc. of International Conference
on Computational Science (ICCS 2005) Lecture Notes in Computer Science Series, Vol. 3514,
Springer-Verlag, Berlin, pp. 1059–1066.

[15] Ginsberg M., June 25–28, 2007. Challenges and Opportunities for U.S. Private Industry Utilization
of HPC Technology, Proceedings, International Conference on Scientific Computing, CSREAPress,
Las Vegas, NV, pp. 17–23.

[16] Graham S. L., Snir M., and Patterson C. A. (eds.), 2004. Getting Up to Speed: The Future of
Supercomputing, U.S. National Academy of Sciences CSTB Report, see http://www.cstb.org/
project_supercomputing.html prepublication on-line version at http://books.nap.edu/catalog/
11148.html executive summary, http://www.nap.edu/catalog/11148.html.

[17] Gustafson J. L., April 6, 2007. Algorithm Leadership, HPCWIRE, Vol. 16, No. 14, http://www.
hpcwire.com/hpc/1347145.html.

[18] Gustafson J. L., 2006. Understanding the Different Acceleration Technologies, HPCWIRE, Vol. 13,
No. 2, November 14, http://www.hpcwire.com/hpc/1091512.html.

[19] HECRTF, Federal Plan for High-End Computing: Report of the High-End Computing Revi-
talization Task Force (HECRTF), Executive Office of the President, Office of Science and
Technology Policy, Washington, D.C., May 10, 2004 (second printing – July 2004); available
at http://www.ostp.gov/nstc/html/HECRTF-FINAL_051004.pdf.

[20] HPC User Forum, IDC Analyst Briefing, Technical Computing Market Update, Supercomput-
ing 2004, Pittsburgh, PA, http://www.hpcwire.com/sponsors/idc/IDC_at_SC04.pdf, November 10,
2004.

[21] Joseph E., Conway S., and Wu J., June 2007. Improving HPC Performance, Scalability, and Avail-
ability with Blades: Introducing SGI Altix ICE, White paper # 207401, IDC, 5 Speen Street,
Framingham, MA, http://www.sgi.com/pdfs/4015.pdf.

[22] Joseph E., Snell A., and Willard C. G., July 2004. Council on Competitiveness Study of U. S.
Industrial HPC Users, White Paper, IDC, Framingham, MA, paper available at http://www.
compete.org/pdf/HPC_Users_Survey.pdf.

[23] Joseph E., et al., July 2005. Study of ISVs Serving the High Performance Computing Market: The
Need for Better Application Software, Council on Competitiveness Initiative, White Paper, IDC,
Framingham, MA, http://www.compete.org/pdf/HPC_Software_Survey.pdf.

[24] Joseph E., et al., May 2006. Council on Competitiveness Study of Industrial Partnerships with
the National Science Foundation (NSF) IDC White Paper on Council of Competitiveness Study
of Industrial Partnerships with The National Science Foundation (NSF), May 2006, Council of Com-
petitiveness,Washington, D.C., http://www.compete.org/pdf/Council_NSF_Partnership_Study.pdf.

[25] Joseph E., et al., June 2006. Industrial Partnerships through the NNSA Academic Strategic
Alliance Program IDC White Paper on Council on Competitiveness Study of Industrial Partner-
ships with the U.S. Department of Energy NNSA, Council on Competitiveness, Washington, D.C.
http://www.compete.org/pdf/Council_NNSA_Partnership_Study.pdf.

[26] Jeremy Kepner, (Guest Editor), High Productivity Computing Systems and the Path Towards Usable
Petascale Computing, Part A: User Productivity Challenges, CTWatch Quarterly, Vol. 2, No. 4A,
November 2006, http://www.ctwatch.org/quarterly/pdf/ctwatchquarterly-8.pdf.

[26A] Lazou C., September 21, 2007. A Global Climate of Change, HPCWIRE, Vol. 16, No. 38,
http://www.hpcwire.com/hpc/1792077.html.

274 M. GINSBERG

[27] Manferdelli J., February 2007. The Many-Core Inflection Point for Mass Market Computer Systems,
CTWatch Quarterly, Vol. 3, No. 1, http://www.ctwatch.org/quarterly/articles/2007/02/the-many-
core-inflection-point-for-mass-market-computer-systems.

[28] Mark R., November 18, 2004. Congress OKs Funding U.S. Supercomputers, Internet News,
http://www.internetnews.com/bus-news/article.php/3438081.

[29] McCalpin J., February 2007. The Role of Multicore Processors in the Evolution of General-Purpose
Computing, CTWatch Quarterly, Vol. 3, No. 1, http://www.ctwatch.org/quarterly/articles/2007/02/
the-role-of-multicore-processors-in-the-evolution-of-general-purpose-computing.

[30] Merritt R., July 14, 2003. DARPA Seeds a Petaflops Push, EE Times, http://www.eet.com/article/
showArticle.jhtml?articleId=18308889.

[31] Merritt R., and Mokhoff N., November 15, 2004. High and Dry at High End, EE Times,
http://www.eet.com/article/showArticle.jhtml?articleId=52601292.

[32] National Coordination Office for Information Technology and Development (NITRD); http://
www.itrd.gov.

[33] Patt Y. N., June 23–25, 2004. The Processor in 2014: What are the challenges? How do we meet
them? Presentation, ISC2004, Heidelberg, Germany, paper available from patt@ece.utexas.edu.

[34] President’s Information Technology Advisory Committee, Computational Science: Ensuring
America’s Competitiveness, PITAC, Office of the President, Washington D.C., http://www.nitrd.
gov/pitac/reports/20050609_computational/computational.pdf, June 2005.

[35] Ricadela A., June 21, 2004. Petaflop Imperative, Information Week,http://www.information
week.com/story/ showArticle.jhtml?articleID=22100641.

[36] Scarafino V., July 16, 2003. The National Needs for Advanced Scientific Computing and Indus-
trial Applications, Statement of The Ford Motor Company, Committee on Science, U.S. House of
Representatives, http://www.house.gov/science/hearings/full03/jul16/scarafino.html.

[36A] Sceales T., October 5, 2007. Talking the Green Talk, but Not Walking the Green Walk, HPCWIRE,
Vol. 16, No. 40, http://www.hpcwire.com/hpc/1815340.html.

[37] Scott S., June 28, 2007. Effective Scalable Computing, Hot Seat Session, Part II, International Super-
computing Conference (ISC07), Dresden, Germany, For additional information, please contact
Kathy Kurtz, ksk@cray.com.

[37A] SiCortex, SiCortex Demos Human-Powered Supercomputer, HPCWIRE, Vol. 16, No. 38, http://
www.hpcwire.com/hpc/1789175.html, September 21, 2007.

[37B] SiCortex, SiCortex Marches to a Different Drummer, HPCWIRE, Vol. 15, No. 49, http://
www.hpcwire.com/hpc/1158993.html, December 15, 2006.

[38] Simon Management Group (SMG), The Development of Custom Parallel Comput-
ing Applications, Interactive Supercomputing, Corporation, Cambridge, MA, http://www.
interactivesupercomputing.com/downloads/developcustompar2006.pdf, September 2006.

[39] Sterling T., June 27, 2007. HPC Achievement and Impact – 2007: A Personal Perspective Interna-
tional Supercomputing Conference (ISC07), Dresden, Germany. For additional information, please
contact Terrie Bordelon, tbordelon@cct.lsu.edu.

[40] Sterling T., June 28, 2007. Multicore – The Next Moore’s Law, International Supercomputing
Conference (ISC07), Dresden, Germany. For additional information, please contact Terrie Bordelon,
tbordelon@cct.lsu.edu.

[41] Tally S., May 25, 2007. Not So Fast, Supercomputers, Say Software Programmers, HPCWIRE, Vol.
16, No. 21, http://www.hpcwire.com/hpc/1579050.html.

[42] Turek D., February 2007. High Performance Computing and the Implications of Multi-core
Architectures, Vol. 3, No. 1, http://www.ctwatch.org/quarterly/articles/2007/02/high-performance-
computing-and-the-implications-of-multi-core-architectures.

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 275

[43] Ulfelder S., March 6, 2006. SupercomputerArchitectures Battle for Hearts and Minds of Users, Com-
puterworld, http://computerworld.com/hardwaretopics/hardware/story/0,10801,109177,00.html.

[44] U.S. Department of Energy-Office of Science, Overture Plays on Methods for Faster, MoreAccurate
Models, http://ascr-discovery.science.doe.gov/kernels/henshaw_print.html, July 16, 2007.

[45] Wallach S., June 23, 2004. Searching for the SOFTRON: Will We Be Able to Develop Soft-
ware for Petaflop Computing? Keynote Talk, International Supercomputing Conference (ISC2004),
Heidelberg, Germany, paper available at wallach@cpventures.com.

6. Benchmarking Issues and Concerns

6.1 HPC Pitfalls and Difficulty inTesting
It is an extremely difficult task to create a comprehensive, unbiased, and rele-

vant set of benchmark tests to assess accurately the performance of a particular user
application. Scrutinizing the issues in Fig. 3 should convince the reader of the daun-
ting nature of this task. It is very easy to be deceived when attempting to discern
just exactly what a particular benchmark reveals about the inherent nature of a user

Dr. Myron Ginsberg • HPC Research & Education •

High Performance Computing Pitfalls

� Best performance often achieved in cases with minimal
 dependencies and/or strong locality of reference
� Large numbers of processors does NOT necessarily guarantee
 highest speed (Amdahl’s Law) especially if interconnection
 network cannot move data sufficiently fast
� For high speed, must maintain a very high ratio of
 computations to communications, i.e., balance should be > 1
� Program with highest mflop/s does NOT necessarily have
 shortest wallclock time
� Do NOT be impressed by raw peak speed because sustained
 speed is often much less than peak for real industrial
 applications
� Amount of parallelism and/ or speedup may be impressive but
 wallclock time may be greater than for a machine with less
 parallelism
� Mflop/$ is a deceptive metric and can vary considerably

Fig. 3. High-performance computing pitfalls.

276 M. GINSBERG

application. Just exactly what hardware, software, and/or algorithmic features signifi-
cantly impacted the observed performance of a user application? Examine [5, 6] for
examples of performance deceptions.

6.2 Benchmarking Approaches in
Government/Academic Research vs. Industry

The differences in these two environments were discussed in Section 2. Those
same factors affect the means by which benchmarking is performed in these two
very different surroundings. For example, it is usually more difficult to benchmark
industrial ISV-based codes on a new architecture because of dependencies in the ISV-
based codes and because the ISV-based codes may have not been ported to the new
environment. Even though some of the same applications are run in a government lab
and in industry, it is difficult to compare performance because again the ISV-based
code may produce different results than the in-house code even though both codes
solve the same problem. The ISV problem makes it more difficult for an industrial
person to assess if the government lab code would perform better than his ISV code.

In most academic research centers as well as in most government labs, relatively
few, if any, commercial ISV-based codes are in extensive use. This helps contribute
to the continuing lag between government and industrial uses of leading-edge HPC
architectures. For example, the Cray X1 vector computer entered the marketplace
in late 2002, yet by 2006 only one such machine was in use in U.S. industry. The
commercial ISVs considered porting their codes to that machine but concluded that
it would not be cost-effective even though extensive benchmark tests at Oak Ridge
National Lab (ORNL) demonstrated superior performance on the Cray X1 for vector-
oriented applications.

6.3 The One Number Syndrome for Industrial
Benchmarking

Because benchmarking is so difficult, some industrial managers have jumped to
the pragmatic conclusion that an effective shortcut is to find a single number that
would totally characterize application performance and thereby avoid extensive and
costly performance testing. From the factors discussed in this section so far, it should
be obvious to the reader that such a single number might only be found in the mind
of a computer vendor marketing person. Many such people look to the Top500 List
[56] for such one number ‘guidance’. Perhaps some of those individuals should read
[22] and also reflect on the fact that the Top500 list is solely based upon the speed

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 277

of solving a dense linear system which is not necessarily indicative of the overall
performance for most scientific/engineering applications.

6.4 My Personal View of Industrial Benchmarking
I do not have the panacea for perfect application performance testing, but I do

have a few ideas on how to improve industrial benchmarking. Even though most
companies do not have large computer support staffs, benchmarking should not be
left totally in the hands of a computer vendor; there is too much danger of undue
marketing influence on any ‘objective testing’.

The company should form an internal committee which includes those computer
users whose programs are to be benchmarked as well as some financial people of
the company who can assess the necessary costs of acquiring the HPC equipment
being benchmarked vs. leasing the machine as well as estimate return on investment
to the company. This latter exercise could produce useful information to provide
to upper management to justify acquisition of the HPC equipment. If there are no
sufficient people within the company to perform the evaluation, then certainly a
reputable external consultant should be considered as well as some feedback can be
obtained from computer vendor organizations. It is the responsibility of the evaluation
committee to ensure that they do not accept unsubstantiated vendor claims and that
all benchmark procedures are properly documented in written documents given to
the internal company evaluation committee. This committee should also have good
and complete performance data for the benchmarked user application run on current
company computers for comparison with the benchmarked results.

Ideally, companies should seriously consider establishing a small full-time internal
computer evaluation team that could continuously monitor application performance
and maintain internal data, which could assist in evaluating new architectures as the
organization contemplates future HPC acquisitions. Such an internal evaluation group
exists in many government labs in order to collect their own independent performance
data from both internal and external sources. Such activity helps to monitor closely
vendor claims and recommendations.

The benchmarked tests should reflect both current and immediate future application
use (say within the following 18 months). Also, in this connection it could be very
helpful to perform some parameterized tests to observe any possible performance
degradation as problem size of the application increases.

I tend to favor government lab benchmarking of new HPC architectures rather than
rely solely on vendor tests. I have been particularly impressed with the objectivity
and thoroughness of such tests performed at Oak Ridge National Lab (ORNL) as well
as at Los Alamos National Lab (LANL). The only downside of those tests as far as
industry is concerned is the lack of performance data on ISV-based codes which tend

278 M. GINSBERG

to be ubiquitous in U.S. private industry. What I greatly appreciate is that ORNL tends
to report the Good, Bad, and the Ugly aspects of new HPC architecture benchmarks
and displays many of the resulting unclassified reports on their web site. This has been
contrary to my experience with some computer vendors who tend to have a case of
selective amnesia when it comes to reporting any negative aspects of their computer
products.

I have listed many benchmark results in the references for Section 6. Take a
look at ORNL benchmark reports [2, 9–11, 15–20, 24, 41, 43, 47, 55, 58–62, 65].
Also, examine some of the benchmarks performed at LANL [25, 33, 34]. Other
interesting benchmarks have been performed by personnel at Lawrence Berkeley
Lab (LBL) [49–51] and by the Army High Performance Research Center (AHPCRC)
[31, 42, 44, 45].

6.5 Pros and Cons of VariousTypes of Benchmarking
Figure 4 indicates certain categories of benchmark tests. Note that the first two

types can often lead to deception. Peak speed is meaningless if your application
(or for that matter anyone’s application) cannot even approach that peak. The $/mflop
is deceptive because if there are two or more flop rates, which one should be used to
measure that ratio? The speedup ratios could seem to be high when the processors in
use are slow. The standard benchmarks listed in this figure tend to be too specialized
for general use. The Bait and switch approach tends to look at fast performance for a
small-sized problem and then just extrapolate it to a larger problem, even though in
reality such increase in speed might not happen. The HPC Challenge benchmark will

Dr. Myron Ginsberg • HPC Research & Education •

HPC Benchmarks

� Peak speed
� $/mflop
� Standard benchmarks (Linpack, NAS, PARKBENCH,
 SPEC, PmaC, IDC Balanced, etc.)
� % of parallelism and/or speedup
� Bait and switch (used car salesman approach)
� HPC Challenge Benchmark
� IDC Balanced Rating
� ORNL benchmarks
� Actual performance

Fig. 4. HPC benchmarks.

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 279

be discussed in the following Section (6.6). The ORNL benchmarks were discussed
in Section 6.4. The private industry preference is for actual wall clock time.

A few industrial managers ‘reason’ that maximum performance on any HPC
machine is within 15% of the best performance of any other supercomputer, so why
‘waste time’ benchmarking? Some computer vendors try to convince unsuspecting
potential customers that machine selection should be based on the maximum number
of processors that can be acquired for X$, but such a metric ignores the possibility
that a few expensive processors may produce far better overall results than a very
large number of less expensive processors; this is a good reason why a user should be
aware of the attributes of his/her application and know if certain types of processors
can produce better results for his/her problem.

Another important consideration is how important is it to solve a specific application
fast and is the customer willing to pay a premium for such performance? I hope
my comments in this subsection are helpful in assessing benchmarking concerns.
Unfortunately, there are some predatory vendors in the HPC marketplace. Remember,
Caveat Emptor-let the buyer beware. This is a wise advice in HPC acquisition as well
as in other facets of life.

6.6 The HPC Challenge Benchmarks (HPCC)
The HPC Challenge Benchmarks (HPCC) (see Fig. 5 and [14, 26–28, 37–40]) are

worthy of your attention even if you are not specializing in the HPC area. I suggest
you look at least a few of the aforementioned references. HPCC is an attempt to create
a canonical set of benchmarks that can effectively be used to characterize the super-
computer attributes, which most likely have significant impact on total performance
of a user’s application. The current tests in HPCC are listed in Fig. 5. These tests
are in progress, so some of the current tests may be eventually modified or removed
and new tests could be possibly added. The introduction of petaflop-class machine
architecture may stimulate some changes in HPCC content, but the goal mentioned
above shall remain. Please note that the criterion that is the basis for the Top 500 List
[56] is also included in HPCC along with the other tests in Fig. 5. The complete cur-
rent results for machines tested with HPCC are given in [28]. This will be constantly
updated as new machines are tested.

One tool used to characterize results from HPCC is a Kiviat diagram. It is ‘similar to
radar plots in Excel’. A Kiviat diagram (see Fig. 6) is a two-dimensional graph of radi-
ally extending lines in which each line corresponds to a test. To create such a diagram,
each score is first transformed into a per processor metric. Scores are then normalized
with respect to the highest score in each category.An enclosed geometric region is then
generated by connecting all the points for a given supercomputer. The shape of the
enclosed region can provide the user with an intuitive assessment of how balanced a

280 M. GINSBERG

Dr. Myron Ginsberg • HPC Research & Education •

HPC Challenge Benchmark

� HPL : the LINPACK TPP benchmark which measures the floating-point rate of
 execution (tflops/s) for solving a dense linear system of equations

� DGEMM : measures the floating-point rate of execution of double precision real
 matrix-matrix multiplication

� STREAM : a simple synthetic benchmark program that measures sustainable
 memory bandwidth (in GB/s) and the corresponding computation rate for
 simple vector kernel

� PTRANS (parallel matrix transpose) : exercises the communications where pairs
 of processors communicate with each other simultaneously. It is a useful test of
 the total communications capacity of the network (GB/s); is rate of transfer for
 large arrays of data from multiprocessor’s memory

� RandomAccessMPI (per CPU) : measures the rate of integer random updates of
 memory (Gup/s)

� FFTE : measures the floating-point rate of execution of double precision complex
 one-dimensional Discrete Fourier Transform (DFT)

� B_eff(effective bandwidth benchmark) : a set of tests to measure latency (per
 CPU) (in microsecs) and bandwidth (per CPU) of a number of simultaneous
 communication patterns (GB/s)

Fig. 5. HPC challenge benchmarks.

� HPCC website allows each computer to be plotted on
 a Kiviat diagram

� A Kiviat diagram is a two dimensional graph of
 radially extending lines where each line corresponds
 to an HPCC test

� To create such a diagram, each score is first turned
 into a per processor metric

� Scores are then normalized to the best score in each
 category

� A perimeter is then drawn connecting all the points
 for a given machine

Using Kiviat Diagrams

Dr. Myron Ginsberg • HPC Research & Education •

Fig. 6. Using Kiviat diagrams.

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 281

given machine is with respect to all the plotted machine attributes, i.e., out-of-balanced
machines will not produce a symmetrical enclosed region. A single Kiviat diagram
can be automatically created for up to six supercomputers currently tested with HPCC.
This information is located at http://icl.cs.utk.edu/hpcc/hpcc_results_kiviat.cgi. For
additional information about Kiviat diagrams, see [21A] that includes a Kiviat dia-
gram (Figure 1) which can be enlarged by the reader if he goes to the website reference
and clicks on that Figure 1. The Kiviat diagram is not necessarily unique for a given
computer. For example, variations in a specific configuration could result in the pro-
duction of different Kiviat diagrams for the same machine. Thus, it is wise to consider
a Kiviat diagram as an intuitive estimate for each computer tested with HPCC.

6.7 Predictive Benchmarks
It would be extremely helpful to HPC users (especially in industry) if bench-

mark tests could accurately predict performance on a new HPC architecture even
before the new machine is benchmarked. Two such approaches are emerging from Los
Alamos National Lab (LANL) and University of California at San Diego (UCSD). At
LANL,Adolfy Hoisie is the leader of the Performance andArchitecture Group (PAL).
His team has access to a wide variety of HPC hardware both at government labs
and from the hardware vendors. Hoisie and his people create models of many such
machines and then refine those models with actual tests on the machine that was
the subject for their benchmark. With such information, they continue to create new
machines, utilizing what they have learned from previous machines. For additional
information about PAL, see [21, 25, 33, 34].

Allan Snavely of UCSD has been involved with another predictive benchmark
effort in the Performance Modeling and Characterization Group (PMaC) (see.
http://www.sdsc.edu/PMaC/). The process proceeds as follows: (1) a Machine Profile
is created; (2) an Application Profile is created based upon ‘detailed summaries of
the fundamental operations carried out by the application independent of any par-
ticular machine.’ [52] Then ‘algebraic mappings’ (via ‘convolution methods’) map
the Application Profile onto the Machine Profile ‘to arrive at a performance predic-
tion.’ (See http://www.sdsc.edu/PMaC/projects/index.html and [52] for details.) For
additional information about the methodology, see [7].

References

[1] Agarwal P. A., et al., January 29, 2004. Cray X1 Status Report, ORNL TM-2004/13, http://www.
csm.ornl.gov/evaluation/PHOENIX/PDF/CRAYEvaluationTM2004-15.pdf.

282 M. GINSBERG

[2] Agarwal P. A., et al., May 17–21, 2004. Cray X1 Evaluation Status Report, Proc., 46th Cray
User Group Conference, Oak Ridge, TN, http://www.csm.ornl.gov/∼worley/papers/CUG04_
X1eval.pdf.

[3] Akkerman A., and Strenski D., May 12–16, 2003. Porting FCRASH to the Cray X1 Archi-
tecture, Proc., 45th Cray User Group Conference, Columbus, OH, presentation available at
aakkerma@ford.com.

[4] Akkerman A., et al., May 17–21, 2004. Performance Evaluation of Radioss-CFD on the Cray X1,
Proc., 46th Cray User Group Conference, Oak Ridge, TN, paper available at aakkerma@ford.com.

[4A] Alam S. R., et al., November 10–16, 2007. Cray XT4: An Early Evaluation for Petascale Scientific
Simulation, SC07, http://www.csm.ornl.gov/∼worley/papers/SC07_XT4.pdf.

[4B] Alam S. R., et al., 2007. An Evaluation of the ORNL Cray XT3, IJHPCA07, http://www.csm.
ornl.gov/∼worley/papers/ornl_xt3_ijhpca07.pdf.

[5] Bailey D. H., Winter 1992. Misleading Performance Reporting in the Supercomputing Field,
Scientific Programming, Vol. 1, No. 2, pp. 141–151, http://crd.lbl.gov/∼dhbailey/dhbpapers/
mislead.pdf.

[6] Bailey D. H., June 23–25, 2004. Twelve Ways to Fool the Masses: Scientific Malpractice in
High-Performance Computing, Proc. of ISC, Heidelberg, Germany, http://crd.lbl.gov/∼dhbailey/
dhbtalks/dhb-12ways.pdf.

[7] Bailey D. H., and Snavely A., August 30–September 2, 2005. Performance Modeling: Under-
standing the Present and Predicting the Future, Proceedings of Euro-Par, Lisbon, Portugal,
http://www.sdsc.edu/PMaC/publications/pubs/bailey05modeling.pdf.

[8] Baring T. J., May 17–21, 2004. X1 Porting, Proceedings, 46th Cray User Group Conference, Oak
Ridge, TN, paper available at baring@arsc.edu.

[9] Bland A. S., et al., March 2003. Cray X1 Evaluation, Oak Ridge Technical Report, ORNL/TM-
2003/67, http://www.csm.ornl.gov/evaluation/PHOENIX/PDF/CrayX1-Evaluation-Plan.pdf.

[10] Bland A. S., Alexander R., Carter S. M., and Matney K. D., Sr., May 12–16, 2003. Early Operations
Experience with the Cray X1 at the Oak Ridge National Laboratory Center for Computational
Sciences, Proc., 45th Cray User Group Conference, Columbus, OH, http://www.csm.ornl.gov/
evaluation/PHOENIX/PDF/CUG2003-Paper-Bland-pdf.

[11] Candy J., and Fahey M., May 16–19, 2005. GYRO Performance on aVariety of MPPSystems, Proc.,
47th Cray User Group Conference,Albuquerque, NM, paper available at http://web.gat.com/comp/
parallel/physics_results.html.

[12] Carrington L. C., et al., November 12–18, 2005. How Well Can Simple Metrics Represent the Per-
formance of HPCApplications? SC05, Seattle,WA, http://www.sdsc.edu/PMaC/publications/pubs/
carrington05metrics.pdf.

[13] Carter J., Oliker L., and Shalf J., July 10–13, 2006. Performance Evaluation of Scientific
Applications on Modern Parallel Vector Systems, VECPAR, 7th International Meeting on High Per-
formance Computing for Computational Science, Rio de Janeiro, Brazil, http://www.crd.lbl.gov/
∼oliker/papers/vecpar-2006.pdf.

[14] Dongarra J., June 23–26, 2006. The HPC Challenge Benchmark: A Candidate for Replac-
ing LINPACK in the TOP500? ISC06, Dresden, Germany, http://www.netlib.org/utk/people/
JackDongarra/SLIDES/isc-talk-2006.pdf.

[14A] Drake J. B., 2007. Software Design for Petascale Climate Science, Chapter 16, Software
Design for Petascale Climate Science, CRC Press, http://www.csm.ornl.gov/∼worley/papers/
petaflop_climate.pdf.

[15] Drake J. B., et al., May 17–21, 2004. Experience with the Full CCSM, Proc., 46th Cray User Group
Conference, Oak Ridge, TN, http://www.csm.ornl.gov/∼worley/papers/CUG04_CCSM.pdf.

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 283

[16] Dunigan Jr. T. H., Fahey M. R., White J. B., III, and Worley P. H., November 15–21, 2003.
Early Evaluation of the Cray X1, Proc. of the ACM/IEEE Conference on High Performance Net-
working and Computing (SC03), Phoenix, AZ, http://www.csm.ornl.gov/∼worley/papers/SC2003.
Worley.CrayX1.pdf.

[17] Dunigan Jr. T. H., Vetter J. S., and Worley P. H., 2005. Performance Evaluation of the SGI
Altix 3700, Proc., 2005 Intl. Conference on Parallel Processing, http://www.csm.ornl.gov/
∼worley/papers/2005-06-16_icpp_sgi-altix-evaluation.pdf.

[18] Fahey M. R., and White J. B., III, May 12–16, 2003. DOE Ultrascale Evaluation Plan of the
Cray X1, Proc., 45th Cray User Group Conference, Columbus, OH, http://www.csm.ornl.gov/
evaluation/PHOENIX/PDF/CUG2003-Paper-Fahey.pdf.

[19] Fahey M. R., and Candy J., May 17–21, 2004, GYRO: Analyzing New Physics in Record Time,
Proc., 46th Cray User Group Conference, Oak Ridge, TN, paper available at http://www.csm.
ornl.gov/evaluation/PHOENIX/PDF/fahey-CUG04-paper.pdf talk at http://www.csm.ornl.gov/
evaluation/PHOENIX/PDF/fahey-CUG04-slides.pdf.

[20] Fahey M. R., et al., May 16–19, 2005. Early Evaluation of the Cray XD1, Proc., 47th Cray User
Group Conference, Albuquerque, NM, contact mail to: faheymr@ornl.gov to get a copy of the
paper.

[21A] Farber R., HPC Balance and Common Sense, 2007, http://www.scientificcomputing.com/
ShowPR_Print∼PUBCODE∼030∼ACCT∼3000000100∼ISSUE∼0702∼RELTYPE∼PR∼OR-
IGRELTYPE∼HPCC∼PRODCODE∼00000000∼PRODLETT∼E∼CommonCount∼0∼Comp-
Name∼Scientific%20Computing.html.

[21] Feldman M., March 17, 2006. Beyond Benchmarking HPCWIRE, Vol. 15, No. 11, http://
www.hpcwire.com/hpc/593744.html.

[22] Feldman M., July 13, 2007. What the Top500 Doesn’t Tell Us, HPCWIRE, Vol. 16, No. 28,
http://www.hpcwire.com/hpc/1660478.html.

[23] Garrick S. C. and Settumba N., May 12–16, 2003. Implementing Finite Difference Codes on the
Cray X1, Proc., 45th Cray User Group Conference, Columbus, OH, presentation available at
http://www.ahpcrc.org/publications/X1CaseStudies/Finite_Diff_Codes.pdf.

[24] Hoffman F. M., et al., May 17–21, 2004. Adventures in Vectorizing the Community Land Model,
Proc., 46th Cray User Group Conference, Oak Ridge, TN, http://www.csm.ornl.gov/∼worley/
papers/CUG04_CLM.pdf.

[25] Hoisie A., et al., November 2006. A Performance Comparison through Benchmarking and Mod-
eling of Three Leading Supercomputers: BlueGene/L, Red Storm, and Purple, SC06, Tampa, FL,
http://sc06.supercomp.org/schedule/pdf/pap240.pdf.

[26] HPC Challenge Award Competition, http://www.hpcchallenge.org.
[27] ICL, HPC Challenge Benchmark Tests, The Innovative Computing Laboratory, Center for Infor-

mation Technology Research, University of Tennessee, Knoxville, TN; available at http://icl.cs.
utk.edu/hpcc/index.html.

[28] ICL, HPCC Challenge Benchmark Results, http://icl.cs.utk.edu/hpcc/hpcc_results.cgi
M-C Sawley, CSCS Benefits from HPC Challenge Benchmarks, HPCWIRE, October 7, 2005,
http://news.taborcommunications.com/msgget.jsp?mid=464623&xsAcomplete listing of the envi-
ronment for each HPCC benchmark run can be found at http://icl.cs.utk.edu/hpcc/export/hpcc.xls.

[29] IDC Balanced HPC Benchmark Ratings, http://www.hpcuserforum.com/benchmark/.
[30] Joseph E., Williard C. G., and Kaufmann N. J., June 2003. Market Analysis: A Look at the HPC

Server Market: A New Approach to the IDC HPC Balanced Rating, IDC #29617, Vol. 1.
[31] Johnson A., May 12–16, 2003. Computational Fluid Dynamics Applications on the Cray X1

Architecture: Experiences, Algorithms, and Performance Analysis, Proc., 45th Cray User Group

284 M. GINSBERG

Conference, Columbus, OH, paper available at http://www.ahpcrc.org/publications/X1CaseStudies/
CFD_Paper_05152003.pdf Presentation at http://www.ahpcrc.org/publications/X1CaseStudies/
CFD_Presentation_05152003.pdf.

[32] Kahney L., October 26, 2004. System X Faster, but Falls Behind, Wired Magazine, http://
www.wired.com/news/mac/0,2125,65476,00.html.

[33] Kerbyson D. J., Hoisie A., and Wasserman H. J., 2003. Verifying Large-Scale System Per-
formance during Installation Using Modeling, http://www.c3.lanl.gov/pal/publications/papers/
kerbyson03:Qinstallation.pdf.

[34] Kerbyson D. J., Wasserman H. J., and Hoisie A., September 2002. Exploring Advanced Archi-
tectures Using Performance Prediction, in Innovative Architecture for Future Generation High-
Performance Processors and Systems, IEEE Computer Society Press, http://www.c3.lanl.gov/
pal/publications/papers/kerbyson02:AdvancedArchitectures.pdf.

[35] Kiefer D., 2004. Cray Product Roadmap: Hardware and Software (including X1E), Proc., 46th

Cray User Group Conference, Oak Ridge, TN, May 17–21.
[36] Krishnan M., Nieplocha J., and Tipparaju V., May 17–21, 2004. Exploiting Architectural Support

for Shared Memory Communication on the Cray X1 to Optimize Bandwidth-Intensive Computa-
tions, Proceedings, 46th Cray User Group Conference, Oak Ridge, TN, available from mail to:
jarek.nieplocha@pnl.gov.

[37] Lazou C., January 20, 2005. Benchmarks: Going for Gold in a Computer Olympiad? HPCWIRE,
Article 109098.

[38] Lazou C., September 2, 2005. Sending out an SOS: HPCC Rescue Coming HPCWIRE, Article
464623, http://news.taborcommunications.com/msgget.jsp?mid=464623&xsl.

[39] Luszczek P., et al., March 2005. Introduction to the HPC Challenge Benchmark Suite, SC05,
http://www.netlib.org/utk/people/JackDongarra/PAPERS/hpcc-sc05.pdf.

[40] Luszczek P., Dongarra J., and Kepner J., November 2006. Design and Implementation of the
HPC Challenge Benchmark Suite, CTWatch Quarterly, A, http://www.ctwatch.org/quarterly/
print.php?p=48.

[41] G. (Kumar) Mahinthakumar et al., 2004. Performance Evaluation and Modeling of a Parallel
Astrophysics Application, Proceedings of the High Performance Computing Symposium, pp. 27–
33, Ed. Meyer J., The Society for Modeling and Symulation International, ISBN 1-56555-278-4,
Arlington, VA, http://www.csm.ornl.gov/∼worley/papers/hpc2004_kumar.pdf.

[42] Mays T., May 12–16, 2003. Modeling the Weather on a Cray X1, Proc., 45th Cray User Group Con-
ference, Columbus, OH, paper available at http://www.ahpcrc.org/publications/X1CaseStudies/
MM5_Paper_05152003.pdf, presentation at http://www.ahpcrc.org/publications/X1CaseStudies/
MM5_Presentation_05152003.pdf.

[43] Mills R. T., D’Azevedo E., and Fahey M., May 16–19, 2005. Progress Towards Optimizing the
PETSC Numerical Toolkit on the Cray X-1, Proc., 47th Cray User Group Conference,Albuquerque,
NM, paper available at http://www.ccs.ornl.gov/∼rmills/pubs/cug2005.pdf, slides at http://
www.ccs.ornl.gov/∼rmills/pubs/cug2005_slides.pdf.

[44] Muzio P., and Johnson A., June 2003. Early Cray X1 Experience at the Army High Perfor-
mance Computing Research Center, presentation available at http://www.ahpcrc.org/publications/
X1CaseStudies/X1_Overview_06092003.pdf.

[45] Muzio P., and Walsh R., May 12–16, 2003. Total Life Cycle Cost Comparison: Cray X1 and
Pentium 4 Cluster, Proc., 45th Cray User Group Conference, Columbus, OH, paper available
at http://www.ahpcrc.org/publications/X1CaseStudies/Cluster_CrayX1_Comparison_Paper.pdf,
presentation available at http://www.ahpcrc.org/publications/X1CaseStudies/Cluster_CrayX1_
Comparison_Presentation.pdf.

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 285

[46] NAS Parallel Benchmarks, http://www.nas.nasa.gov/Software/NPB/.
[47] Oak Ridge National Laboratory, Papers and Presentations on Cray X1 Evaluation, http://www.

csm.ornl.gov/evaluation/PHOENIX/index.html.
[48] PMaC HPC Benchmark Suite, http://www.sdsc.edu/PMaC/Benchmark/.
[49] Oliker L., et al., 2004. A Performance Evaluation of the Cray X1 for Scientific Applications, Proc.,

VECPAR: 6th International Meeting on High Performance Computing for Computational Science,
http://www.crd.lbl.gov/∼oliker/papers/vecpar_2004.pdf.

[50] Oliker L., et al., November 6–12, 2004. Scientific Computations on Modern Parallel Vec-
tor Systems, SC2004: High Performance Computing, Networking and Storage Conference,
http://www.crd.lbl.gov/∼oliker/papers/SC04.pdf.

[51] Oliker L., et al., November 12–18, 2005. Leading Computational Methods on Scalar and Vector
HEC Platforms, SC05, http://www.csm.ornl.gov/∼worley/papers/SC05_Oliker_Etal.pdf.

[51A] Oliker L., et al., March 24–30, 2007. Scientific Application Performance on Candidate PetaScale
Platforms, IPDPS, http://crd.lbl.gov/∼oliker/papers/ipdps07.pdf.

[52] SDSC, PMaC Prediction Framework, http://www.sdsc.edu/PMaC/projects/index.html.
[53] Shan H., Strohmaier E., and Oliker L., May 17–21, 2004. Optimizing Performance of Superscalar

Codes for a Single Cray X1 MSP Processor, Proc., 46th Cray User Group Conference, Oak Ridge,
TN, available from estrohmaier@lbl.gov.

[54] Standard Performance Evaluation Corporation, SPEC Benchmark, http://www.specbench.org/.
[55] Studham R. S., et al., May 16–19, 2005. Leadership Computing at Oak Ridge National Laboratory,

Proc., 47th Cray User Group Conference, Albuquerque, NM, http://www.studham.com/scott/files/
Leadership_CUG.pdf.

[56] Top500 Supercomputer Sites; http://www.top500.org.
[57] van der Steen A. A., June 2004. Benchmarking for Architectural Knowledge: How to Get to Know

a Machine, 19th International Supercomputer Conference, ISC2004, Heidelberg, Germany, slides
available from mail to: steen@phys.uu.nl.

[58] Vetter J. S., May 18, 2004. A Progress Report on the Cray X1 Evaluation by CCS at ORNL,
Proc., 46th Cray User Group Conference, Oak Ridge, TN, http://www.csm.ornl.gov/evaluation/
PHOENIX/PDF/CUG04-Vetter-talk.pdf.

[59] Vetter J. S., et al., May 16–19, 2005. Early Evaluation of the Cray XT3 at ORNL, Proc., 47th

Cray User Group Conference, Albuquerque, NM, paper available at http://www.csm.ornl.gov/
∼worley/papers/2005-05-17_cug-ornl-xt3-eval.pdf.

[60] Wayland V., May 17–21, 2004, Porting and Performance of PCM on the Cray X1, Proc., 46th Cray
User Group Conference, Oak Ridge, TN, available from wayland@ucar.edu.

[61] White J. B., III, May 12–16, 2003. An Optimization Experiment with the Community
Land Model on the Cray X1, Proc., 45th Cray User Group Conference, Columbus, OH,
http://www.csm.ornl.gov/evaluation/PHOENIX/PDF/CUG2003-Presentation-White.pdf.

[62] White J. B., III, May 17–21, 2004. Dangerously Clever X1 Application Tricks, Proc., 46th Cray
User Group Conference, Oak Ridge, TN, available from mail to: trey@ornl.gov.

[63] Wichmann N., May 16–18, 2005. Cray and HPCC: Benchmark Developments and Results from
the Past Year, Proc., 47th Cray User Group Conference, Albuquerque, NM, paper available from
wichmann@cray.com.

[64] Wichmann N., May 17–21, 2004. HPCC Performance on the Cray X1, Proc., 46th Cray User
Group Conference, Oak Ridge, TN, available from mail to: wichmann@cray.com.

[65] Worley P. H., May 7–10, 2007. Comparison of Cray XT3 and XT4 Scalability, Proc., 49th

Cray Users Group Conference, Seattle,WA, http://www.csm.ornl.gov/∼worley/papers/CUG2007_
Worley.pdf.

286 M. GINSBERG

[66] Worley P. H., February 26, 2004. Cray X1 Evaluation: Overview and Scalability Analysis, SIAM
Conference on Parallel Processing for Scientific Computing, San Francisco, CA, http://www.
csm.ornl.gov/∼worley/talks/SIAMPP2004/SIAMPP04.Worley.htm.

[67] Worley P. H., May 17–21, 2004. Cray X1 Optimization: A Customer’s Perspective, Proc.,
46th Cray User Group Conference, Oak Ridge, TN, http://www.csm.ornl.gov/∼worley/talks/
CUG2004.OPT/CUG2004.OPT.Worley.htm.

[67A] Worley P. H., 2007. Comparison of Cray XT3 and XT4 Scalability, Proc., Cray Users Group,
http://www.csm.ornl.gov/∼worley/papers/CUG2007_Worley.pdf.

[68] Worley P. H., and Dunigan T. H., May 12–16, 2003. Early Evaluation of the Cray X1 at Oak Ridge
National laboratory, Proc., 45th Cray User Group Conference, Columbus, OH, http://www.csm.
ornl.gov/∼worley/papers/CUG03.WorleyDunigan.X1.pdf.

[69] Worley P. H., and Foster I. T., 1994. PSTSWM: A Parallel Algorithm Testbed and Benchmark Code
for Spectral General Circulation Models, Tech Report, TM-12393, Oak Ridge, TN.

[70] Worley P. H., and Levesque J., May 17–21, 2004. The Performance Evaluation of the Parallel Ocean
Program on the Cray X1, Proc., 46th Cray User Group Conference, Oak Ridge, TN, paper available
at http://www.csm.ornl.gov/∼worley/papers/CUG04_Worley_POP.pdf, presentation available at
http://www.csm.ornl.gov/∼worley/talks/CUG2004.POP/CUG2004.POP.pdf.

7. AccelerationTechniques for HPC
Applications

7.1 There is no “One Size/type Fits all” Mentality for
Selecting the Ideal Accelerator

In the past, computer acceleration was most often achieved by speeding up the clock
and/or increasing the number of computer processors, but this simplistic approach is
no longer a panacea because of increasing heat and energy concerns, which impact
the entire range of computers from laptop to supercomputers. There are several
approaches to deal with this dilemma: use of field programmable gate arrays (FPGAs);
use of graphics processors; use of combined cpus and gpus (gpcpus); special acceler-
ator boards; and heterogeneous processors such as Cell BE, multicore processors and
several combinations of the aforementioned approaches. None of these options are
without negative repercussions. Often times, improved performance is achieved for
a specific class or classes of applications, while at the same time these options have
deleterious effects on other application problem types. Unfortunately, in wild pursuit
of increased market share, many vendors are willing to make unsubstantiated perfor-
mance claims. Although some dramatic performance improvements can be achieved
with one or more of these approaches, the warning ‘Caveat Emptor’ should be heeded
by all potential users; check out performance claims vs. your specific application type
and problem size. Some of the options will only work well for certain problem sizes
and may not easily scale up or down with the same positive or negative effects.

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 287

Performance improvements on application kernels may not be extrapolated upward
when applied to the entire problem. Some articles on various aspects of acceleration
approaches employed in HPC are described here.

7.2 Categories of Accelerators in this Section
FPGAs: 4, 6, 8B, 11, 11A, 12, 14A, 18, 22, 31B, 33, 34, 40, 45, 46, 50, 62, 64, 65,

66, 72
GPGPUs: 13, 15, 23, 28
Multicore: 2, 2A, 5, 9, 10, 13A, 17, 19, 29, 41, 41A, 42, 43, 44, 49, 51, 52, 55, 61,

67, 71
GPU: 15A, 20, 24, 26A, 30, 30A, 36, 51A, 56, 57, 58, 62, 62A
CELL BE: 21, 26A, 37, 41A, 53, 54, 61A, 61B, 70 and see references [15, 16] in

Section 4
Software Considerations: references 8D, 60, 63, 68, 74,74A, 75
Convergence of CPUs and GPUs: reference 59
Heterogenous processors: reference 27
Vector processors: reference 48
Algorithms and trade-offs among accelerators: references 25 and 26
Threads issues: reference 47
Accelerators for financial analysis: references 2A, 8A,15B,18, 31A, 41B and 50
Accelerator boards: references 8C,70A

References

[1] AMD, AMD to Ship Quad-Core Processors in August, HPCWIRE, Vol. 16, No. 27,
http://www.hpcwire.com/hpc/1642830.html, July 6, 2007.

[2] AMD, AMD Spec to Enable Real-Time Performance Optimization, GRID today, http://
www.gridtoday.com/grid/1725696.html, August 14, 2007.

[2A] AMD, AMD Highlights Expansion of Torrenza Solutions, HPCWIRE, Vol. 16, No. 38,
http://www.hpcwire.com/hpc/1786269.html, September 21, 2007.

[3] Arizona Daily Star, New Generation of Processors Presents Big Problems, Potential Payoffs for
Software Industry, Arizona Daily Star, http://www.azstarnet.com/news/192914, July 23, 2007.

[4] Baxter R., et al., July 18–20, 2007. Maxwell – A 64 FPGA Supercomputer, http://rssi.ncsa.uiuc.edu/
docs/academic/Baxter_presentation.pdf, reconfigurable Systems Summer Institute, RSSI, NCSA,
University of Illinois, Urbana, IL.

[5] Buttari A., et al., The Impact of Multicore on Math Software, Para 2006, Umea Sweden, June 2006,
http://www.netlib.org/utk/people/JackDongarra/PAPERS/para-multicore-2006.pdf.

[6] D’Amour M., July 13, 2007. Standards-based Reconfigurable Computing for HPC, HPCWIRE,
Vol. 16, No. 28, http://www.hpcwire.com/hpc/1653583.html.

288 M. GINSBERG

[7] Baetke F., June 29, 2007. Addressing New Trends and Challenges in High Performance Computing,
Hot Seat Session, Part 1, International Supercomputing Conference (ISC07), Dresden, Germany,
For additional information, please contact mail to: frank.baetke@hp.com.

[8] Baetke F., July 2, 2007. Towards Peta-scale Computing: Trends and Challenges for Designers
and Vendors, Third Erlangen High-End Computing Symposium, University of Erlangen, Erlangen,
Germany, see http://www10.informatik.uni-erlangen.de/Misc/EIHECS3/Baetke.pdf.

[8A] Blake B., September 14, 2007. Credit Modeling with Supercomputing, HPCWIRE, Vol. 16, No. 37,
http://www.hpcwire.com/hpc/1768656.html.

[8B] Cantle A., July 17–20, 2007. Why FPGAs Will Win the Accelerator Battle: Building Computers
That Minimize Date Movement, http://rssi.ncsa.uiuc.edu/docs/industry/Nallatech_presentation.pdf
reconfigurable Systems Summer Institute, University of Illinois, Urbana, IL.

[8C] ClearSpeed Technology, ClearSpeed Demos Ultra-Dense Computing at IDF, HPCWIRE, Vol. 16,
No. 38, September 21, 2007, http://hpcwire.com/hpc/1789146.html.

[8D] Dabiilidi C., September 28, 2007. Virginia Tech Explores Thermal-Aware Computing, HPCWIRE,
Vol. 16, No. 39, http://www.hpcwire.com/hpc/1802228.html.

[9] Dongarra J., (Guest Editor), February 2007. The Promise and Perils of the Coming Multicore
Revolution and Its Impact, CTWatch Quarterly, Vol. 3, No. 1, http://www.ctwatch.org/quarterly/pdf/
ctwatchquarterly-10.pdf.

[10] Dongarra J., Gannon D., Fox G., and Kennedy K., February 2007. The Impact of Multicore on Com-
putational Science Software, CTWatch Quarterly, Vol. 3, No. 1, pp. 3–10, http://www.ctwatch.org/
quarterly/articles/2007/02/the-impact-of-multicore-on-computational-science-software/

[11] DRC Computer Corp., DRC Computer Ships Reconfigurable Processor Unit, HPCWIRE. Vol. 16,
No. 28, July 13, 2007, http://www.hpcwire.com/hpc/1652992.html.

[11A] E. El-Araby et al., July 18–20, 2007. Portable Library Development for Reconfigurable Comput-
ing Systems, http://rssi.ncsa.uiuc.edu/docs/academic//El-Araby_presentation.pdf, Reconfigurable
Systems Summer Institute, RSSI, NCSA, University of Illinois, Urbana, IL.

[12] T. El-Ghazawi et al., November 2006. Is High-Performance Reconfigurable Computing the Next
Supercomputing Paradigm, sc06, Tampa, FL, http://sc06.supercomp.org/schedule/pdf/pan102.pdf.

[13] Feldman M., April 13, 2007. Another Look at GPGPU, HPCWIRE, Vol. 16, Issue 15,
http://www.hpcwire.com/hpc/1385786.html.

[13A] Feldman M., September 7, 2007. As the Chip Turns, HPCWIRE, Vol. 16, No. 36, http://www.
hpcwire.com/hpc/1766373.html.

[14] Feldman M., July 20, 2007. Because It’s There?, HPCWIRE, Vol. 16, No. 29, http://www.
hpcwire.com/hpc/1673201.html.

[14A] Feldman M., September 21, 2007. FPGAAcceleration Gets a Boost from HP, Intel HPCWIRE, Vol.
16, No. 38, http://www.hpcwire.com/hpc/1791479.html.

[15] Feldman M., May 25, 2007. GPGPU Looks for Respect, HPCWIRE, Vol. 16, No. 21,
http://www.hpcwire.com/hpc/1582455.html.

[15A] Feldman M., September 28, 2007. Supercharging Seismic Processing with GPUs HPCWIRE,
Vol. 16, No. 39, http://www.hpcwire.com/hpc/1803161.html.

[15B] Feldman M., September 21, 2007. Wall Street-HPC Lovefest; Intel’s Fall Classic, HPCWIRE,
Vol. 16, No. 38, http://www.hpcwire.com/hpc/1791855.html.

[16] Feldman M., July 20, 2007. HP Looks to Bring HPC Applications Up to Speed, HPCWIRE, Vol. 16,
No. 29, http://www.hpcwire.com/hpc/1673152.html.

[17] Feldman M., May 11, 2007. RapidMind Looks to Tame the Multicore Beast, HPCWIRE, Vol. 16,
Issue 19, http://www.hpcwire.com/hpc/1560982.html.

[18] Feldman M., June 8, 2007. High Frequency Traders Get Boost from FPGAAcceleration, HPCWIRE,
Vol. 16, No. 23, http://www.hpcwire.com/hpc/1600113.html.

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 289

[19] Feldman M., July 27, 2007. Intel Opens Up Multicore Development Library, HPCWIRE, Vol. 16,
No. 30, http://www.hpcwire.com/hpc/1688555.html.

[20] Feldman M., June 22, 2007. NVIDIA Takes Direct Aim at High Performance Computing,
HPCWIRE, Vol. 16, No. 25, http://www.hpcwire.com/hpc/1625213.html.

[21] Georgia Tech, Georgia Tech ‘CellBuzz’ Cluster in Production Use, HPCWIRE, Vol. 16, No. 28,
July 13, 2007, http://www.hpcwire.com/hpc/1657876.html.

[22] Gokhale M. B. and Graham P. S., 2005. Reconfigurable Computing: Accelerating Computation
with Field-Programmable Gate Arrays, Springer-Verlag.

[23] GPGPU: General-Purpose Computation Using Graphics Hardware, http://www.gpgpu.org/.
[24] GPUBench: a benchmark suite for assessing the performance of programmable graphics processors

in areas of particular importance to general-purpose computations, http://graphics.stanford.edu/
projects/gpubench/.

[25] Gustafson J. L., November 14, 2006. Understanding the Different Acceleration Technologies,
HPCWIRE, Vol. 13, No.14, http://www.hpcwire.com/hpc/1091512.html.

[26] Gustafson J. L., April 6, 2007. Algorithm Leadership, HPCWIRE, Vol. 16, No. 14, http://www.
hpcwire.com/hpc/1347145.html.

[26A] Hall S. G., April 27, 2007. Using Gaming Technology to Save Lives, with Medical Imaging, medic-
exchange.com, http://www.medicexchange.com/mall/departmentpage.cfm/MedicExchangeUSA/
_81675/1378/departments-contentview.

[27] Hester P., June 29, 2007. Peta-Scale x86: Heterogeneous Processing Comes of Age, Hot Seat Ses-
sion, Part 1, International Supercomputing Conference (ISC07), Dresden, Germany. For additional
information, please contact Rob.Keosheyan@amd.com.

[28] Houston M., 2005. General Purpose Computation on Graphics Processors (GPGPU), Stanford Uni-
versity Graphics Lab, http://graphics.stanford.edu/∼mhouston/public_talks/R520-mhouston.pdf.

[29] HP, HP Announces Multi-core Optimization Program for HPC, HPCWIRE, Vol. 16, No. 26,
http://www.hpcwire.com/hpc/1635207.html, June 29, 2007.

[30] HPCWIRE, Acceleware Intros Four-GPU System for Technical Computing, HPCWIRE, Vol. 16,
No. 23, http://hpcwire.com/hpc/1597780.html, June 8, 2007.

[30A] HPCWIRE, Acceleware to Demo Pre-Stack Time Migration Software at SEG, HPCWIRE, Vol. 16,
No. 38, http://hpcwire.com/hpc/1792141.html, September 21, 2007.

[31] HPCWIRE, CEES, Maxeler to explore Seismic Processing Acceleration, HPCWIRE, Vol. 16,
No. 23, http://www.hpcwire.com/hpc/1599684.html, June 8, 2007.

[31A] HPCWIRE, Cisco, Reuters, Sun Create Low-Latency Trading Solution, HPCWIRE, Vol. 16,
No. 38, http://www.hpcwire.com/hpc/1789804.html, September 21, 2007.

[31B] HPCWIRE, DRC Stakes Claim in Reconfigurable Computing, HPCWIRE, Vol. 16, No. 36,
http://www.hpcwire.com/hpc/1763516.html, September 7, 2007,

[32] HPCWIRE, Europe Unites to Foster HP Technologies with the Launch of ParMA, HPCWIRE,
Vol. 16, No. 26, http://www.hpcwire.com/hpc/1635828.html, June 29, 2007.

[33] HPCWIRE, FPGAs in HPC Mark ‘Beginning of a New Era, HPCWIRE, Vol. 15, No. 26,
http://www.hpcwire.com/hpc/709193.html, June 29, 2006.

[34] HPCWIRE, FPGA Video Imaging Acceleration Spotlighted at IFSEC, HPCWIRE, Vol. 16, No. 21,
http://www.hpcwire.com/hpc/1577633.html, May 25, 2007.

[35] HPCWIRE, Google Acquires PeakStream, HPCWIRE, Vol. 16, No. 23, http://www.hpcwire.com/
hpc/1599723.html, June 8, 2007.

[36] HPCWIRE, GPU-Tech Delivers GPU Technical Computing Libraries, HPCWIRE, Vol. 16,
No. 24, http://www.hpcwire.com/hpc/1611290.html, June 15, 2007.

[37] HPCWIRE, IBM to Build Cell-Based Supercomputer for Los Alamos, HPCWIRE, Vol. 15,
No. 36, http://www.hpcwire.com/hpc/872363.html, September 6, 2006.

290 M. GINSBERG

[38] HPCWIRE, PeakStream Dissolution Shines Spotlight on Stream Computing, HPCWIRE, Vol. 16,
No. 24, http://www.hpcwire.com/hpc/1613242.html, June 15, 2007.

[39] HPCWIRE, PeakStream Unveils HPC Software Platform, HPCWIRE, Vol. 15, No. 38, http://
www.hpcwire.com/hpc/905530.html, September 22, 2006.

[40] HPCWIRE, Shanghai Scientists Use SGI, Mitrionics HPC Technology, HPCWIRE, Vol. 16,
No. 30, http://www.hpcwire.com/hpc/1682211.html, July 27, 2007.

[41] HPCWIRE, Quad-Core Opteron Servers Previewed at Computex Taipei, HPCWIRE, Vol. 16,
No. 23, http://www.hpcwire.com/hpc/1597784.html, June 8, 2007.

[41A] IBM, IBM Claims Power6 Dominance Across Range of Applications, HPCWIRE, Vol. 16, No. 36,
http://www.hpcwire.com/hpc/1763261.html, September 7, 2007.

[41B] IBM, IBM, Red Hat Deliver Financial Trading Platform, HPCWIRE, Vol. 16, No. 38,
http://www.hpcwire.com/hpc/1783890.html, September 21, 2007.

[42] Intel Corp., New Intel Software Products Target Multicore Environments, HPCWIRE, Vol. 16,
No. 23, http://www.hpcwire.com/hpc/1597779.html, June 8, 2007.

[43] Intel Corp., Intel Introduces Multi-core Software Training Curriculum, HPCWIRE, Vol. 16,
No. 26, http://www.hpcwire.com/hpc/1635685.html, June 29, 2007.

[44] Kale L., June 22–23, 2007. PetaScale and Multicore Programming Models: What Is
Needed, Petascale Applications Symposium, Pittsburgh Supercomputer Center, Pittsburgh, PA,
http://www.psc.edu/seminars/PAS/Kale.pdf.

[45] Koehler S., et al., July 18–20, 2007. Challenges for Performance Analysis in High-Performance
Reconfigurable Computing, http://rssi.ncsa.uiuc.edu/docs/academic/Koehler_presentation.pdf,
Reconfigurable Systems Summer Institute, RSSI, NCSA, University of Illinois, Urbana, IL.

[46] Lazou C., June 15, 2007. Mitrionics CEO Details Company Vision, HPCWIRE, Vol. 16, No. 24,
http://www.hpcwire.com/hpc/1606919.html.

[47] Lee E. A., May 2006. The Problem with Threads, IEEE Computer, Vol. 39, No. 5, pp. 33–42,
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf.

[48] Lemuet C., et al., November 2006. The Potential Energy Efficiency of Vector Acceleration, sc06,
Tampa, FL, http://sc06.supercomp.org/schedule/pdf/pap247.pdf.

[49] Lowney G., June 22–23, 2007. Software for Multi-core Processors, Petascale Applications
Symposium, Pittsburgh Supercomputer Center, Pittsburgh, PA, http://www.psc.edu/seminars/PAS/
Lowney.pdf.

[50] Mackin B., May 25, 2007. A New Engine for Financial Analysis, HPCWIRE, Vol. 16, No. 21,
http://www.hpcwire.com/hpc/1578042.html.

[51] Manferdelli J., February 2007. The Many-Core Inflection Point for Mass Market Computer Systems,
CTWatch Quarterly, Vol. 3, No. 1, pp. 11–17, http://www.ctwatch.org/quarterly/articles/2007/02/
the-many-core-inflection-point-for-mass-market-computer-systems.

[51A] Mason C., November 21, 2007. Minding the Gap: Learn How Hardware Acceleration Can
Outperform Your Existing PC Architecture, Acceleware, register to access archived version at
http://acceleware.webex.com/acceleware/onstage/g.php?t=a&d=921610329.

[52] McCalpin J., Moore C., and Hester P., February 2007. The Role of Multicore Processors in the
Evolution of General-Purpose Computing, CTWatch Quarterly, Vol. 3, No. 1, pp. 18–30, http://
www.ctwatch.org/quarterly/articles/2007/02/the-role-of-multicore-processors-in-the-evolution-of-
general-purpose-computing.

[53] Mercury Computer Systems, Inc., Algorithm Performance on the Cell Broadband Proces-
sor, Mercury Computer Systems, Inc., Chelmsford, MA, Revision 1.1.2, http://www.mc.com/
uploadedFiles/Cell-Perf-Simple.pdf, June 28, 2006.

[54] Mercury Computer Systems, Inc., Cell Architecture Advantages for Computationally Intensive
Applications, Mercury White Paper, Mercury Computer Systems, Inc., Chelmsford, MA, 2005,
http://www.mc.com/uploadedFiles/Cell-WP.pdf.

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 291

[55] MIT Lincoln Laboratory, Lincoln Lab Releases PVTOL Multicore Software, HPCWIRE, Vol. 16,
No. 26, http://www.hpcwire.com/hpc/1630587.html, June 29, 2007.

[56] NVIDIA Corp., NVIDIA Releases CUDA 1.0 for GPU Computing, HPCWIRE, Vol. 16, No. 28,
http://www.hpcwire.com/hpc/1660214.html, July 13, 2007.

[57] NVIDIA Corp., NVIDIA CUDA Slashes Compute Times for MATLAB Users, HPCWIRE,
Vol. 16, No. 29, http://www.hpcwire.com/hpc/1667977.html, July 20, 2007.

[58] Owens J. D., et al., August 29–September 2, 2005. A Survey of General-Purpose Computation on
Graphics Hardware, Proc., Eurographics 2005, Dublin, Ireland, pp. 21–51, http://graphics.idav.
ucdavis.edu/graphics/publications/func/return_pdf?pub_id=844.

[59] Papakipos M., January 19, 2007. Converging Features in CPUs and GPUs, HPCWIRE, Vol. 16, No.
3, http://www.hpcwire.com/hpc/1209133.html.

[60] Patterson D. A., et al., December 18, 2006. The Landscape of Parallel Computing Research: A
View from Berkeley, Tech Report No. UCB/EECS-2006-183, http://www.eecs.berkeley.edu/Pubs/
TechRpts/2006/EECS-2006-183.pdf.

[61] Patterson D. A., et al., November 24, 2006. RAMP: A Research Accelerator for Multi-
ple Processors, UCB, EECS, http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-158.
pdf.

[61A] Perez J. M., et al., September 2007. Cells: Making It Easier to Program the Cell Broadband Engine
Processor, IBM J Res & Dev, Vol. 51, No. 5, pp. 593–604.

[61B] RapidMind, Inc., Cell BE Porting and Tuning with RapidMind: A Case Study, White paper
http://www.rapidmind.net/case-cell.php.

[62] Schneider R., May 15, 2007. How GPU Computing Can Benefit Your High Performance Com-
puting Tasks, Acceleware, register to see archived event at http://events.onlinebroadcasting.com/
acceleware/051507/index.php?page=launch.

[62A] Schneider R., October 31, 2007. Accelerators Unveiled: Your Guide to Accelerators Available in
the Market and How They Compare, Acceleware, register for archived event at http://acceleware.
webex.com/acceleware/onstage/g.php?t=a&d=923377828.

[63] Schoenauer W., July 27, 2007. A Remark About Petascale Computing, HPCWIRE, Vol. 16, No. 30,
http://www.hpcwire.com/hpc/1688404.html.

[64] Steffen C. P., July 18–20, 2007. Parametrization of Algorithms and FPGA Accelerators to Pre-
dict Performance, http://rssi.ncsa.uiuc.edu/docs/academic/Steffen_presentation.pdf Reconfigurable
Systems Summer Institute, RSSI, NCSA, University of Illinois, Urbana, IL.

[65] Storaasli O. O., et al., May 2007. Performance Evaluation of FPGA-Based Biological Applications,
Proceedings, Cray User’s Group, Seattle, WA, http://ft.ornl.gov/∼olaf/pubs/CUG07Olaf17M07.
pdf.

[66] Strenski D., July 18–20, 2007. Accelerators in Cray’s Adaptive Supercomputing, http://
rssi.ncsa.uiuc.edu/docs/industry/Cray_presentation.pdf, Reconfigurable Systems Summer Institute,
RSSI, NCSA, University of Illinois, Urbana, IL.

[67] Sun Microsystems, Sun Adds Multicore Enhancements to Solaris Development Suite, HPCWIRE,
Vol. 16, No. 24, http://www.hpcwire.com/hpc/1611110.html, June 15, 2007.

[68] Tally S., May 25, 2007. ‘Not So Fast, Supercomputers,’ Say Software Programmers, HPCWIRE,
Vol. 16, No. 21, http://www.hpcwire.com/hpc/1579050.html.

[69] Tan L., July 10, 2007. Will Supercomputer Speed Hit a Plateau? ZDNETASIA, http://www.
zdnetasia.com/news/hardware/0,39042972,62028027,00.htm.

[70] TotalView Technologies, Totalview Adds Debugger Support for Cell Broadband Engine,
HPCWIRE, Vol. 16, No. 26, http://www.hpcwire.com/hpc/1633105.html, June 29, 2007.

[70A] Trader T., September 7, 2007. ClearSpeed Technology Takes Flight, HPCWIRE, Vol. 16, No. 36,
http://www.hpcwire.com/hpc/1766576.html.

292 M. GINSBERG

[71] Turek D., February 2007. High Performance Computing and the Implications of Multi-core
Architectures, CTWatch Quarterly, Vol. 3, No. 1, pp. 31–33, http://www.ctwatch.org/quarterly/
articles/2007/02/high-performance-computing-and-the-implications-of-multi-core-architectures.

[72] Underwood K. D., Hemmert H. S., and Ulmer C., November 2006. Architectures and APIs:
Assessing Requirements for Delivering FPGA Performance to Applications, SC06, Tampa, FL,
http://sc06.supercomp.org/schedule/pdf/pap213.pdf.

[73] Wheat S. R., June 28, 2007. High Performance Intel Clusters Made Easy, Hot Seat Session 2,
International Supercomputing Conference (ISC’07), Dresden, Germany. For details or questions,
please contact stephan.gillich@intel.com.

[74] Wolfe M., July 27, 2007. Compilers and More: Productivity and Compilers, HPCWIRE, Vol. 16,
No. 30, http://www.hpcwire.com/hpc/1679143.html.

[74A] Wolfe M., October 19, 2007. Compilers and More: Are Optimizing Compilers Important?
HPCWIRE, Vol. 16, No. 42, http://www.hpcwire.com/hpc/1838764.html.

[75] Yelick K., November 10, 2006. The Software Challenges of Petascale, HPCWIRE, Vol. 15, No. 45,
http://www.hpcwire.com/hpc/1071362.html.

8. The Race for Petaflop Computing

The current U.S. government’s concerted effort for petaflop computing is focused
on the U.S. DefenseAdvanced Research ProjectsAgency (DARPA) activity discussed
below.

8.1 DARPA’s Competition for a Petaflop Class
Supercomputer

DARPA decided to initiate a long-term, multiple-year project to create one or more
petaflop class machines. Phase 1 in 2002 was a one-year concept study for a trans
petaflop machine. The selected vendors were IBM, Cray, Sun, SGI and HP. Each
of these vendors was awarded 3 million dollars; Phase 2 selection was in mid 2003
and funding was provided for three years to IBM (53.3 million dollars), Cray (43.1
million dollars) and Sun (49.7 million dollars). Phase 3 winners were announced in
late 2006 to create one or more prototype petaflop systems. The winners of Phase 3
were IBM and Cray, which are each supposed to produce a petaflop class machine
by 2010–2011. Both vendors are also partnering with several government labs and
academic institutions and are also expected to cost share the total project with their
DARPA stipends. Both IBM and Cray are likely to introduce several intermediate
machines on their way to producing a petaflop class machine.

8.2 Petaflop Programming Language Concerns
Both IBM and Cray as well as Sun (from Phase 2 DARPA competition) are propos-

ing new computer languages for these petaflop class machines; IBM has proposed

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 293

X10 [23, 24], Cray has proposed Chapel [3, 6, 13], and Sun has proposed Fortress
[41]. More information about all three of these languages is given in the references
in this section. Some readers may be old enough to remember a failed international
artificial language effort called ‘Esperanto’ If X10, Chapel, and/or Fortress are to
avoid similar extinction, then more than use on petaflop class machines is needed.
What is most likely to happen is that the best attributes of all three language proposals
(as well as others) will form the basis of one of more software libraries which will
be ported to multiple vendor machines and made compatible with current program-
ming languages such as FORTRAN, C and C++. Once such libraries are widely used
in the HPC community, it may then be an easier task to gain acceptance for a new
HPC language incorporating those extensions. For more discussion of this issue, see
reference [27A].

8.3 Speed Nomenclature
Figure 7 defines the nomenclature used to define supercomputer speed classes and

usually refers to floating-point operations. Current top-end supercomputers (circa
2007) are in the teraflop range so that the petaflop machines could be up to three
orders of magnitude faster than current supercomputers. Please closely distinguish
between peak speed defined for each such machine and sustained speed. In most
cases, computer vendors prefer to quote a peak speed for their computer even when
in reality such a performance is rarely, if ever, approached on real, complete industrial
applications or may only be approached on small segments of a large problem. Also

Supercomputer Speed Terminology

� million mega 1,000,000 5 1 3 E6 ops

� billion giga 1,000,000,000 5 1 3 E9 ops

� trillion tera 1,000,000,000,000 5 1 3 E12 ops

� quadrillion peta 1,000,000,000,000,000 5 1 3 E15 ops

� quintillion exa 1,000,000,000,000,000,000 5 1 3 E18 ops

� sextillion zetta 1,000,000,000,000,000,000,000 5 1 3 E21 ops

� septillion yotta 1,000,000,000,000,000,000,000,000 5 1 3 E24 ops

� 1 PFLOPS 5 1000 TFLOPS 5 1,000,000 GFLOPS

Dr. Myron Ginsberg • HPC Research & Education •

Fig. 7. Supercomputer speed terminology.

294 M. GINSBERG

keep in mind that the number of floating-point operations just defines one of several
metrics for characterizing supercomputer performance; please see Section 6 for more
details about assessing actual supercomputer performance.

8.4 Some Candidate Petaflop Class Applications
The reader may wonder if there are existing applications that could benefit from use

of petaflop class machines. The answer is an emphatic yes. Many physical modeling
problems that currently require lots of computing time even on large, fast machines
today would be candidates for use on the petaflop class machines mentioned above.
Figure 8 lists several petaflop class applications that may be the beneficiaries of such
machines that may offer one or more orders of magnitude speed up over performance
on current computers.

Applications for Petaflops Computers

� Weather forecasting
� Business data mining
� DNA sequence analysis
� Protein folding simulations
� Inter-species DNA analyses
� Medical imaging and analysis such as virtual surgery planning
� Nuclear weapons stewardship
� Multi-user immersive virtual reality
� National-scale economic modeling
� Climate and environmental modeling including rapid detection of wildfires
� Molecular nanotechnology design tools
� Cryptography and digital signal processing
� Complete simulation of an automotive design including interactions of all

subsystems and biological human occupant models, I.e., full-fidelity automotive
crash testing as well as advanced aircraft and spacecraft design

� Combating pandemics and bioterrorism
� Improving electrical power generation and distribution

Dr. Myron Ginsberg • HPC Research & Education •

Fig. 8. Applications for petaflops computers.

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 295

8.5 Some Foreign Petaflop Chasers
Other countries also recognize potential advantages for producing a petaflop class

machine in the 2010–2011 time frame. For example, in Japan, NEC, Fujitsu, and
Hitachi [10, 32, 40] are involved in a national plan to build such a machine; the
director of the project is Tadashi Watanabe who led the development of the Earth
Simulator (ES) built by NEC and was also honored with the Seymour Cray Award
in 2006 at SC06. The ES project really stimulated increased U.S. efforts to produce
a faster supercomputer. At the time of introduction of the Earth Simulator, the fastest
U.S. supercomputer had a peak speed of about 7 teraflops but the Earth Simulator had
a peak speed of about 40 teraflops. Ironically, the ES is a vector machine, whereas
the U.S. had more or less abandoned vector machines (with the exception of Cray)
as their construction was very expensive and had opted for use of commodity scalar
processors as the basis of supercomputers for both business and scientific/engineering
computations.

Also, China joined the petaflop race [31] with three companies hoping to build a
1, 2 or possibly 3 petaflop machine by 2010. The three Chinese companies are Lenovo
(who took over IBM’s personnel computer business a few years ago), Dawning and
Galactic Computing. The latter company was established by Steve Chen who earlier
worked for Cray Research under Seymour Cray.

Most recently, France has joined the petaflop computing race [2B, 27D, 34A].
SYSTEM@TIC Paris-Region global competitiveness cluster and POPS (PetaOpera-
tions Per Second) (December 2007) are being led by computer hardware company,
Bull, working with 260 major French science and industry organizations focusing on
hardware as well as systems and applications software issues to build a petaflop class
supercomputer by 2013.

8.6 Adaptive Supercomputing: the Good, the Bad,
and the Ugly Reality

Cray (and IBM to a lesser extent) has been advocating the idea of ‘adaptive super-
computing’ [37, 41A] (see Fig. 9) in which supposedly user-application optimization
would be performed primarily by smart compiler technology, delegating individual
heterogeneous computer components to focus on those parts of the user problem that
it can best improve. It is a great idea because most users do not want to become
amateur computer scientists in order to maximize the performance of their applica-
tion. Figure 10 indicates the initial heterogeneous components from previous Cray
machines; in Section 7 we discussed some of the types of accelerators which could
be used to create heterogeneous components.

296 M. GINSBERG

Concept of Adaptive Supercomputing:
Adapt the Computer to the Application – not the Application to the Computer

Up to now we mapped our problem to the
components of the computer

Application ----------------------� Computer

Responsibility is on the user to optimize

With Adaptive Supercomputing

Computer ----------------------� Application

Responsibility is on the computer to optimize

Dr. Myron Ginsberg • HPC Research & Education •

Fig. 9. Concept of adaptive supercomputing.

Cray Roadmap to Adaptive Supercomputing:
“Adapt the system to the application – not the application to the system”

� Phase 0: Current generation with individual architectures

� Cray XT3 – MPP scalar

� Cray X1E – Vector

� Cray MTA – Multithreaded

� Cray XD1 – AMD Opteron plus FPGA accelerators

Dr. Myron Ginsberg • HPC Research & Education •

Fig. 10. Cray roadmap to adaptive supercomputing.

The real challenge to the degree of effectiveness of an adaptive supercomput-
ing strategy is to create the ‘smart’ compiler technology (and support software) to
orchestrate this process efficiently and at the same time produce the best possible
optimal performance for the user’s problem. Another challenge is to make this pro-
cess easily transportable to other supercomputers. Considering that the supercomputer
application may be defined by several hundred thousand lines of code, then adaptive
supercomputing could be an extremely daunting task. Unless the necessary software

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 297

is developed in that time frame, I would suspect that initial adaptive supercomputing
efforts will be somewhat modest, working best on applications which are essen-
tially embarrassingly parallel. See [41A] for some interesting thoughts expressed by
a compiler expert.

8.7 Influence of Optimizing Compiler
In the past, HPC users shouldered most of the burden to optimize their applica-

tion code. In large government/academic research labs, this responsibility has been
shared with a multidisciplinary support staff. In most of the private industries, espe-
cially where such diversified support personnel are often not readily available on
site, commercial software vendors take on this task. On the leading edge of HPC, the
early software is often inadequate to optimize effectively user-application code. For
example, with the introduction of vector supercomputers in the 1970s, it was very
difficult to achieve optimal performance from applications code written strictly in a
high-level language such as Fortran or C; compiler directives, software libraries and
assembly language code were used to improve performance. Often early optimizing
compilers could not achieve significantly better performance than that obtained by
an experienced hand coder working with assembly language. Eventually, the opti-
mizing compilers produced much better performance and thereby trained users how
to achieve improved performance by emulating the compiler patterns that tended to
produce high-speed results. The same exercise will have to be repeated with new
languages and application codes on petaflop class machines. Given this situation,
of course, HPC users would prefer to use an adaptive supercomputing approach as
briefly described above. Initially, the complexity of petaflop class computers with het-
erogeneous processing elements on multicore chips is unlikely to achieve the desired
adaptive supercomputing for complex application code.

Intelligent optimizing compiler decisions sometimes can only be made at run-time
because the critical information to make the best selection may not be available at
compilation time. The example in Fig. 11 is a simple illustration of this. Suppose
you have the simple Do loop shown in that figure and each iteration is totally inde-
pendent of all other iterations. With vector hardware, the elements of a participating
vector are moved from main memory to fast pipelined vector registers from which
the vector elements are directly sent to vector processing functional units via a strip-
mining strategy. If the vector length is expressed as N and that value is not known
at compilation time, how can the compiler determine if the vector length is too short
to benefit from vector processing? If hardware vector facilities are non-existent on
the machine, then the user, compiler and /or the operating system have to take on
this responsibility, if indeed, hardware vectors are ‘dead’. Such a decision has to take
into account the actual vector length at run-time and whether the vector elements

298 M. GINSBERG

Are Vectors Dead?!

Forest Baskett (SGI) said “Vectors are dead.”
(circa 1996)

BUT chunking needs to be done by
hardware, OS, compiler, and/or user

Do 10 I 5 1, N
A(I) 5 B(I) 1 C(I)

10 Continue

Dr. Myron Ginsberg • HPC Research & Education •

Fig. 11. Are vectors dead?

are in contiguous or non-contiguous storage locations in memory. Given the number
of available functional units for the vector operation, some entity (hardware, soft-
ware, or user) must determine the best distribution of vector elements among the
available processors. Of course, an optimizing compiler can handle such a situation
if the user has available vector directives and can use them to provide the neces-
sary information to the compiler at run-time; however, in a long complex program,
a user may not actually readily know the necessary information to alert the com-
piler. This is just the situation for a simple loop with no iteration dependencies. So I
hope you can envisage in the initial era of petaflop class machines that the use of an
adaptive supercomputing strategy could easily produce disappointing performance
results.

8.8 Cray vs. IBM Supercomputing Philosophy
Cray and IBM have been selected by DARPA to produce viable petaflop class

machines. Readers should note some of the distinguishing attributes of these two
companies. IBM is a huge corporate monolith compared to Cray Inc. which has well
under a thousand employees. Computers at IBM are essentially designed by a com-
mittee approach, i.e., a very large number of people are involved with the necessary
hardware and software for each machine and these people are present at IBM loca-
tions all over the world. Cray currently has facilities in Washington State and in
Minnesota. Most of the early Cray machines were designed by Seymour Cray with
a very small support staff. These days at Cray, Inc, Steve Scott has inherited the
Seymour Cray designer position. Upper level IBM executives have never understood
as to how effective supercomputers could be created by such a small staff as that
at Cray.

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 299

IBM has a very large marketing staff whose presence is felt throughout the entire
corporation. IBM dominates the supercomputer market with slightly less than 50%
of the total machines. When IBM creates a large supercomputer such as IBM Blue
Gene/L (with approximately 131072 processors and located at Lawrence Livermore
National Laboratory), it very wisely offers many smaller versions (such as a one-
cabinet version) to satisfy needs at lower price points. IBM is very adept in covering
all price points in its target markets and usually prefers to use its own computer chips
although it does make computers with other non-IBM chips. It also offers on demand
services to those companies that have fluctuating needs.

In contrast, Cray tends to target a relatively small segment of the total super-
computer market, mainly at the very high end where many of the customers are
government labs or large research organizations. It makes no attempt (so far) to pro-
duce smaller versions of its high-end products and does not offer on-demand services
such as those offered by IBM. Cray at present has little representation in most of U.S.
industries. Cray tends not to make its own computer chips and has to depend on other
companies such as IBM or Texas Instruments for fabricating application-specific inte-
grated circuits. Current Cray computers are using AMD Opteron chips and Cray has
made a long-term commitment to AMD for future chips for its upcoming products.

Cray and IBM seem to prefer different metrics for measuring supercomputer per-
formance. IBM marketing likes to point out the number of IBM machines that are
on the Top 500 List (http://www.top500.org) even though the metric for ranking
on that list is based solely upon speed of solving a dense linear system of equa-
tions and does not directly reflect total performance on a real industrial strength
application. Cray prefers to look at the HPC Challenge Benchmark Tests (. . . .
http://icl.cs.utk.edu/hpcc/index.html) which measures many other attributes of total
computer performance in addition to the Peak LINPACK numbers used in the Top
500 list. For supercomputers IBM prefers to state peak performance rather than sus-
tained performance for a real application even when actual sustained performance is
significantly below peak performance and cannot be even closely approached in real
industrial applications. Cray prefers to look at sustained problem performance. Given
these differences, it will be interesting to observe how performance on the Cray and
IBM DARPA petaflop machines is measured.

8.9 Discussion of Algorithms
With the introduction of the petaflop era, users should be reminded that they can

sometimes be misled about performance. For example, it will be easy to be enchanted
about flop rates for applications on a petaflop machine. Consider two algorithms to
solve the same problem and one has a higher flop rate than the other one. Does this

300 M. GINSBERG

imply that the algorithm with the higher flop rate is to be preferred? The answer is
not necessarily because it is possible that the algorithm with the higher flop rate could
actually require more wall-clock time for execution and/or have more accumulated
roundoff error. In an industrial environment, wall-clock time to execute is far more
important than flop rate. An algorithm could have very good flop rates but more time
may be consumed in the solution process and thus may require more wall-clock time
than that for the algorithm with the lesser flop rate.

Furthermore, the overall performance could be hindered by using certain types of
operations on one architecture which are not necessarily efficient on that machine.
Some interesting ideas about this situation can be found in [18A]. Gustafson makes
some observations which may seem counter-intuitive to those working with dense and
sparse algorithm solvers. It is very rewarding for users to be aware of the hardware
and software effects, which can contribute to algorithm error propagation and/or
performance inefficiency [2A].

References

[1] Bailey D. H., 1998. Challenges of Future High-End Computers, in High Performance Com-
puter Systems and Applications, edited by Schaeffer J., Kluwer Academic Press, Boston, MA,
http://crd.lbl.gov/∼dhbailey/dhbpapers/future.pdf.

[2] Bailey D. H., et al., 1989. Floating Point Arithmetic in Future Supercomputers, Int’l J. of Supercom-
puting Applications, Vol. 3, No. 3, pp. 86–90, http://crd.lbl.gov/∼dhbailey/dhbpapers/fpafs.pdf.

[2A] Bader D., ed., 2008. Petascale Computing: Algorithms and Applications, CRC Press, Atlanta, GA.
[2B] Bull, March 7, 2008. Bull Highlights Commitment to HPC, HPCWIRE, Vol. 17, No. 10,

http://www.hpcwire.com/hpc/2190661.html.
[3] Chamberlain B., September 14, 2005. An Introduction to Chapel – Cray Cascade’s High-

Productivity Language, AHPCRC/DARPA PGAS Conference, http://chapel.cs.washington.edu/
ChapelForAHPCRC.pdf.

[4] Council on Competitiveness, High Performance Computing Software Workshop Report: Acceler-
ating Innovation for Competitive Advantage: The Need for HPC Application Software Solutions,
July 13, 2005, Council on Competitiveness, Washington, D.C.20005, January 2006.

[5] Council on Competitiveness, Second Annual High Performance Computing Users Conference
Report, Report and DVD available, Council on Competitiveness,Washington D.C.20005, March
2006.

[6] Cray, Inc., Chapel – The Cascade High-Productivity Language, Chapel Programming Language
Homepage, http://chapel.cs.washington.edu/.

[7] Cray, Inc., July 9, 2003. DARPA HPCS Cray Cascade Project, http://www.cray.com/cascade/.
[8] Cray, Inc., July 13, 2007. Two Cray Supercomputers Surpass 100 Teraflops Mark, HPCWIRE, Vol.

16, No. 28, http://www.hpcwire.com/hpc/1655656.html.
[9] Curns T., ed., Sun’s Gustafson on Envisioning HPC Roadmaps for the Future, HPCWIRE, Vol. 14,

No. 2, http://www.hpcwire.com/hpc/324428.html.
[10] Curns T., ed., June 3, 2005. Japan: Poised for a Supercomputings Comeback? HPCWIRE, Vol. 14,

No. 22, http://news.taborcommunications.com/msgget.jsp?mid=391555&xsl=story.xsl.

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 301

[11] Curns T., ed., January 13, 2005. Sun’s Gustafson on Envisioning HPC Roadmap for the Future,
HPCWIRE, Vol. 14, No. 2, http://www.hpcwire.com/hpc/324428.html.

[12] DARPA, DARPA Selects Three High Productivity Computing Systems (HPCS) Projects,
http://www.darpa.mil/body/NewsItems/pdf/hpcs_phii_4.pdf, July 8, 2003.

[13] Deitz S., October 21, 2005. Chapel: Compiler Challenges, LCPC, http://chapel.cs.washington.edu/
ChapelForLCPC.pdf.

[14] Ebisuzaki T., Germain R., and Taiji M., November 2004. PetaFLOPS Computing, Comm. ACM,
Vol. 47, No. 11, pp. 42–45.

[15] Elnozahy M., April 7, 2006. IBM Has Its PERCS, HPCWIRE, Vol. 15, No. 14, http://www.
hpcwire.com/hpc/614724.html.

[16] Feldman M., November 24, 2006. DARPA Selects Cray and IBM for Final Phase of HPCS,
HPCWIRE, Vol. 15, No. 4, http://www.hpcwire.com/hpc/1119092.html.

[16A] Feldman M., September 28, 2007. Parallel Thoughts, HPCWIRE, Vol. 16, No. 39, http://
www.hpcwire.com/hpc/1805039.html.

[16B] Fragalla J., September 13, 2007. Sun Constellation System: The Open Petascale Computing Archi-
tecture, 8th Biennial Session of Computing in Atmospheric Sciences (CAS2K7), NCAR Workshop,
Annecy, France, http://www.cisl.ucar.edu/dir/CAS2K7/Presentations/ThuAM/fragalla.pdf.

[17] Ginsberg M., May 2005. Impediments to Future Use of Petaflop Class Computers for Large-Scale
Scientific/Engineering Applications in U.S. Private Industry, Proceedings of International Confer-
ence on Computational Science (ICCS 2005) Lecture Notes in Computer Science Series, Vol. 3514,
Springer-Verlag, Berlin, pp. 1059–1066.

[18] Ginsberg M., June 25–28, 2007. Challenges and Opportunities for U.S. Private Industry Utilization
of HPC Technology, Proc., International Conference on Scientific Computing, World Congress in
Computer Science, Computer Engineering, and Applied Computing, WORLDCOMP07, Monte
Carlo Hotel and Resort, Las Vegas, NV.

[18A] Gustafson J., April 6, 2007. Algorithm Leadership, HPCWIRE, Vol. 16, No. 14, http://
www.hpcwire.com/hpc/1347145.html.

[19] HECRTF, Federal Plan for High-End Computing: Report of the High-End Computing Revi-
talization Task Force (HECRTF), Executive Office of the President, Office of Science and
Technology Policy, Washington, D.C., May 10, 2004 (second printing – July 2004), available
at http://www.ostp.gov/nstc/html/HECRTF-FINAL_051004.pdf.

[19A] Heinzel S., September 10, 2007. Towards Petascale Computing: A Challenge for the Applica-
tion Developers and the Hardware Vendors, 8th Biennial Session of Computing in Atmospheric
Sciences (CAS2K7), NCAR Workshop, Annecy, France, http://www.cisl.ucar.edu/dir/CAS2K7/
Presentations/MonAM/heinzel.pdf.

[20] Henkel M., July 13, 2007. Computers Keep Pace with Climate Change, HPCWIRE, Vol. 16, No.
28, http://www.hpcwire.com/hpc/1655890.html.

[21] HPCWIRE, ORNL Closes in on Petascale Computing, HPCWIRE, Vol. 16, No. 28, http://
www.hpcwire.com/hpc/1660201.html, July 13, 2007.

[22] IBM, Inc., DARPA HPCS IBM PERCS Project, http://www.research.ibm.com/resources/
news/20030710_darpa.html, July 10, 2003.

[23] IBM, Inc., Report on the Experimental Language X10, Draft v 0.41, http://domino.research.ibm.com
/comm/research_projects.nsf/pages/x10.index.html/$FILE/ATTH4YZ5. pdf, February 7, 2006.

[24] IBM, Inc., The X10 Programming Language, http://domino.research.ibm.com/comm/
research_projects.nsf/pages/x10.index.html, March 17, 2006.

[25] Joseph E., et al., May 2006. Council on Competitiveness Study of Industrial Partnerships with
the National Science Foundation (NSF), IDC White Paper on Council of Competitiveness Study of

302 M. GINSBERG

Industrial Partnerships with The National Science Foundation (NSF), Council of Competitiveness,
Washington, D.C., May 2006, http://www.compete.org/pdf/Council_NSF_Partnership_Study.pdf.

[26] Joseph E., et al., June 2006. Industrial Partnerships through the NNSA Academic Strategic
Alliance Program, IDC White Paper on Council on Competitiveness Study of Industrial Partner-
ships with the U.S. Department of Energy NNSA, Council on Competitiveness, Washington D.C.,
http://www.compete.org/pdf/Council_NNSA_Partnership_Study.pdf.

[27] Joseph E., et al., July 2005. Study of ISVs Serving the High Performance Computing Market: The
Need for Better Application Software, Council on Competitiveness Initiative, White paper, IDC,
Framingham, MA, http://www.compete.org/pdf/HPC_Software_Survey.pdf.

[27A] Kepner J., (Guest Editor), November 2006. High Productivity Computing Systems and the Path
Towards Usable Petascale Computing, Part A: User Productivity Challenges, CTWatch Quarterly,
Vol. 2, No. 4A, http://www.ctwatch.org/quarterly/pdf/ctwatchquarterly-8.pdf.

[27B] Leite T., September 28, 2007. Avoiding Application Porting Pitfalls, HPCWIRE, Vol. 16, No. 39,
http://www.hpcwire.com/hpc/1800677.html.

[27C] Lurie R., September 28, 2007. Language Design for an Uncertain Hardware Future, HPCWIRE,
Vol. 16, No. 39, http://www.hpcwire.com/hpc/1796964.html.

[27D] Markoff, J., August 19, 2005. A New Arms Race to Build the World’s Mightiest Computer,
http://www.mindfully.org/Technology/2005/Computer-Arms-Race19aug05.htm.

[27E] McCool M. D., September 28, 2007. Programming Models for Scalable Multicore Programming,
HPCWIRE, Vol. 16, No. 39, http://www.hpcwire.com/hpc/1798054.html.

[28] Merritt R., July 14, 2003. DARPA Seeds a Petaflops Push, EE Times, http://www.eet.com/article/
showArticle.jhtml?articleId=18308889.

[29] Merritt R., and Mokhoff N., November 15, 2004. High and Dry at High End, EE Times, http://
www.eet.com/article/showArticle.jhtml?articleId=52601292.

[30] National Coordination Office for Information Technology and Development (NITRD), http://
www.itrd.gov.

[31] Novakovic N., April 24, 2007. China Gunning for Three Petaflop Systems,inquirerinside.com,
http://www.inquirerinside.com/Default.aspx?article=39142.

[32] Nozawa T., June 14, 2007. Next-Generation Supercomputer to be Scalar/Vector Multi-
System Developed by Hitachi, NEC, and Fujitsu, Tech-On, http://techon.nikkeibp.co.jp/english/
NEWS_EN/20070614/134244/?ST=english_PRINT.

[33] Patt Y. N., June 23–25, 2004. The Processor in 2014: What are the challenges? How do we meet
them? Presentation, ISC2004, Heidelberg, Germany, paper available from patt@ece.utexas.edu.

[34] President’s Information TechnologyAdvisory Committee, Computational Science: EnsuringAmer-
ica’s Competitiveness, PITAC, Office of the President,Washington D.C., http://www.nitrd.gov/pitac/
reports/20050609_computational/computational.pdf, June 2005.

[34A] Primeur Monthly, December 6, 2007. Bull and Partners from SYSTEM@TIC Paris-Region Global
Competitiveness Cluster Announces Launch of the POPS Project, http://enterthegrid.com/primeur/
08/articles/monthly/AE-PR-01-08-46.html.

[35] Probst D., September 22, 2006. Another Perspective on Petascale, HPCWIRE, Vol. 15, No. 38,
http://www.hpcwire.com/hpc/906848.html.

[36] Ricadela A., June 21, 2004. Petaflop Imperative, Information Week, http://www.informationweek.
com/story/showArticle.jhtml?articleID=22100641.

[37] Scott S., April 7, 2006. In Cray’s ‘Cascade’ The Computer Will Adapt to the Codes, HPCWIRE,
http://www.hpcwire.com/hpc/614695.html.

[38] Sexton J., July 20, 2007. Petascale Era Will Force Software Rethink, HPCWIRE, Vol. 16, No. 29,
http://www.hpcwire.com/hpc/1670733.html.

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 303

[39] Snell A., and Willard C. G., March 2006. Bridging the Capability Gap: Cray Pur-
sues ‘Adaptive Supercomputing’ Vision, White paper No. 200808, IDC, Framingham, MA,
http://www.cray.com/downloads/IDC-AdaptiveSC.pdf.

[40] Springboard Research, Japan’s Next-Generation Supercomputer Project Springboard Research,
http://www.springboardresearch.com/content/sampleresearch/hpc_focuspoint.pdf, May 15, 2007.

[41] Steele Jr. G. L., Programming Language Research: Exploration of programming languages
constructs and principles, http://research.sun.com/projects/plrg/.

[41A] Strenski D., July 17–20, 2007.Accelerators in Cray’sAdaptive Supercomputing, http://rssi.ncsa.uiuc.
edu/docs/industry/Cray_presentation.pdf, Reconfigurable Systems Summer Institute, University of
Illinois, Urbana, IL.

[42] Vildibill M., April 7, 2006. Sun’s Hero Program: Changing the Productivity Game, HPCWIRE,
http://www.hpcwire.com/hpc/614805.html.

[43] Wallach S., June 23, 2004. Searching for the SOFTRON: Will We Be Able to Develop Soft-
ware for PetaFlop Computing? Keynote Talk, ISC2004, Heidelberg, Germany, paper available from
wallach@cpventures.com.

9. Influences of Floating-Point Arithmetic on
Computational Results

9.1 The Need for Creating a Floating-Point Standard
This section is included because floating-point computations could face some

additional challenges with respect to accuracy with the introduction of petaflop
class supercomputers. In the 1970s, there was a move to standardize floating-point
arithmetic for all computers performing extensive non-integer arithmetic. Until that
time, users could experience significant variations in their numerical results from one
computer platform to another.

For those readers not familiar with such problems, I remind you that the real-
line is continuous but the representation of the real line in a computer is not
and is instead represented by a finite number of discrete data points. Thus, some
points on the real line will not necessarily be exactly representable in a com-
puter. Furthermore, the internal representation may differ from one computer to
another with respect to total accumulated roundoff error encountered in solving a
problem. This is due to algorithm, hardware, and software influences on the host
machine. IEEE Floating-Point standard 754 [4] was created to improve the situation
by introducing more accuracy in computing intermediate results so that the results
of the final problem will have the best possible internal representation. Comprehend-
ing all the details of the standard can be difficult, but the intent of the standard
is to protect the average user from encountering serious inaccuracies. The stan-
dard has generally worked very well, but of course it cannot prevent all possible
discrepancies.

304 M. GINSBERG

9.2 Coping with Accuracy Problems
on Petaflop Computers

Now with the impending introduction of petaflop machines, there is renewed con-
cern that increased precision will be necessary. This brings up several issues. How
much more precision is needed? Should it be accomplished by hardware, software or
both? How will the user reliably and efficiently assess the accuracy of final computed
results?

Many petaflop class machines are likely to have 100,000 or more processors.
Although with the exception of the very largest models run on such machines,
some applications will use far fewer processors, but it should be remembered that
a petaflop processor performing floating-point arithmetic could be as much as three
orders of magnitude faster than teraflop class units and thus the total application
accumulated roundoff error could overwhelm the accuracy of 64 bit floating-point
arithmetic. Such difficulties are discussed in several articles by Bailey [1–3] and
Kahan [13–18]. There are several additional available floating-point discussions in
Hennessy and Patterson [11] in Appendix I written by D. Goldberg as well as given in
[6,7,10,19–21,23]. A very interesting interview with W. Kahan (‘Father of the IEEE
Floating-Point Standards’) is given in [22] and reveals many of the difficulties in defin-
ing those standards and gaining industrial compliance from hardware and software
vendors.

It is interesting to note that of all the U.S. hardware vendors competing in the
DARPAProgram to produce one or more Petaflop machines by 2010 (see discussion in
Section 8), only one vendor (Sun) seems to have considered the potential floating-point
inadequacy of 64-bit floating-point arithmetic for the target machines [5].

References

[1] Bailey D. H., June 23–25, 2004, Twelve Ways to Fool the Masses: 10 Years Later, paper, ISC2004,
Heidelberg, Germany, paper available at http://crd.lbl.gov/∼dhbailey/dhbtalks/dhb-12ways.pdf.

[2] Bailey D. H., 1998. Performance of Future High-End Computers, in High Performance Com-
puter Systems and Applications, edited by Schaeffer, J., Kluwer Academic Press, Boston, MA,
http://crd.lbl.gov/∼dhbailey/dhbpapers/future.pdf.

[3] Bailey D. H. et al., 1989. Floating PointArithmetic in Future Supercomputers, Int’l J of Supercomputer
Applications, Vol. 3, No. 3, pp. 86–90, http://crd.lbl.gov/∼dhbailey/dhbpapers/fpafs.pdf.

[4] Cody W. J. et al., August 1984. IEEE Standards 754 and 854 for Floating-Point Arithmetic, IEEE
Micro Magazine, pp. 84–100.

[5] Curns T., ed., 2005. Sun’s Gustafson on Envisioning HPC Roadmap for the Future, HPCWIRE, Vol.
14, No. 2, January 13, http://www.hpcwire.com/hpc/324428.html

[6] Demmel J. W., December 1984. The Effects of Underflow on Numerical Computation, SIAM Jl.
Scientific & Statistical Computing, Vol. 5, No. 4, pp. 887–919.

[7] Einarsson B. (ed.), 2005. Accuracy and Reliability in Scientific Computing, SIAM, Philadelphia, PA.

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 305

[8] Goedecker S. and HoisieA., 2001. Performance Optimization of Numerically Intensive Codes, SIAM,
Philadelphia, PA.

[9] Goldberg D., 2007. ComputerArithmetic, inAppendix I of ComputerArchitecture:A Quantitative
Approach, 4th Edition, Morgan Kaufmann Publishers, San Francisco, CA.

[10] Hauser J. R., March 1996. Handling Floating-Point Exceptions in Numeric Programs, ACM Trans.
On Prog. Lang and Syst, Vol. 8, No. 2.

[11] Hennessy J. L., and Patterson D. A., 2007. Computer Architecture: A Quantitative Approach, 4th
Edition, Morgan Kaufmann Publishers, San Francisco, CA.

[12] Higham N. J., 2002. Accuracy and Stability of Numerical Algorithms, 2nd edition.
[13] Kahan W., October 1, 1997. Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-

Point Arithmetic, http://www.cs.berkeley.edu/∼wkahan/ieee754status/IEEE754.PDF.
[14] Kahan W., August 15, 2000. Marketing versus Mathematics and Other Ruminations on the Design

of Floating-Point Arithmetic, Presentation upon receiving the IEEE’s Emanuel R. Piore Award,
http://www.cs.berkeley.edu/∼wkahan/MktgMath.pdf.

[15] Kahan W., July 31, 2004. Matlab’s Loss Is Nobody’s Gain, August. 1998 with revision,
http://www.cs.berkeley.edu/∼wkahan/MxMulEps.pdf.

[16] Kahan W., September 5, 2002. The Numerical Analyst as Computer Science Curmudgeon, Presenta-
tion to the EE & CS Dept. Research Fair, University of California at Berkeley, http://www.cs.berkeley.
edu/∼wkahan/Curmudge.pdf.

[17] Kahan W., November 20, 2004. On the Cost of Floating-Point Computation Without Extra-Precise
Arithmetic, Work in Progress, http://www.cs.berkeley.edu/∼wkahan/Qdrtcs.pdf.

[18] Kahan W., and Darcy J. D., How Java’s Floating-Point Hurts Everyone Everywhere, ACM 1998
Workshop on Java for High-Performance Network Computing, Stanford University, Palo Alto, CA,
http://www.cs.berkeley.edu/∼wkahan/JAVAhurt.pdf.

[19] Langou J. et al., April 2006. Exploiting the Performance of 32 bit Floating Point Arithmetic
in Obtaining 64 bit Accuracy, Utk CS Tech Report CS-06-574, LAPACK Working Note #175,
http://www.netlib.org/utk/people/JackDongarra/PAPERS/iter-refine-2006.pdf.

[20] Overton M. L., 2001. Numerical Computing with IEEE Floating-Point Arithmetic, SIAM, Philadel-
phia, PA.

[21] Patterson D.A., and Hennessy, J., 2004. Computer Organization and Design: The Hardware/Software
Interface, Morgan Kauffman, San Francisco, CA.

[22] Severance C., February 20, 1998. An Interview with the Old Man of Floating-Point Reminiscences
elicited from William Kahan, http://www.cs.berkeley.edu/∼wkahan/ieee754status/754story.html.

[23] Sterbenz P. H., 1974. Floating-Point Computation, Prentice-Hall, Englewood Cliffs, NJ.

10. Industrial HPC Progress

10.1 HPC in the U.S. Automotive Industry
Until the early 1980s all automotive design and prototyping was performed

exclusively via the construction of a series of physical prototype vehicles. The lead
time from design of a new vehicle to the beginning of actual production was on
the order of 60 months or approximately five years. With such a long time interval,
it was very difficult to make significant design changes and/or rapidly respond to

306 M. GINSBERG

competitive action from both foreign and domestic car makers once the process was
initiated.

To reduce this lead time, in the early 1980s some of the physical prototyping was
replaced by math-based modeling using computer simulation. Initially such math
modeling and computer simulation were only performed on small sub-assemblies
of the total vehicle, still relying on physical prototyping for the bulk of the design
process. The math modeling was executed primarily on large mainframe computers
because sophisticated desktop computers were not in existence at that time, were
too slow, and/or the necessary application software was not readily available to most
auto manufacturers. In a sense at that time, mainframe computers were the super-
computers of that era. As more time was required for processing math modeling on
such mainframes, bottlenecks arose as such activity competed with other computa-
tional work, also vying for time on the same computers. As supercomputers became
available in government labs in the 1970s and early 1980s, it seemed only natural to
move the math modeling simulations to these much faster machines. Consequently,
the amount of physical prototyping steadily decreased as more and more of the entire
vehicle began to be created using math modeling and computer simulations. The net
effect with respect to General Motors as well as that with respect to the automotive
industries world wide has been a drastic decrease in new vehicle lead time from 60
months in the early 1980s to under 18 months in 2007, with cost savings of well over
a billion dollars or more with respect to General Motors alone [24]. For additional
information about HPC at GM, please examine [16–21].

GM acquired the first in-house supercomputer in the world auto industry in late
1983 [16, 17], but the same vintage supercomputer had been installed at LANL in
1976. Within seven years following the GM supercomputer acquisition, most of the
rest of the world automotive industry also obtained supercomputers. The main rea-
sons for this major time lag are as follows: (1) lack of sufficient and diverse in-house
computational science support staffs; (2) failure of automotive company personnel
to convince upper management of the immediate need of innovative HPC hardware
and software technology to improve global competitiveness via the production of
more cost-effective, superior quality vehicles; (3) The burden of dependence on a
number of ISV-based commercial legacy codes which made it very difficult if not
impossible for quick and effective transition to newer HPC technology; (4) lack of
in-house definitive application benchmarks and predictive benchmarking techniques
to provide the necessary insight to guarantee accurately that any new HPC techno-
logy would necessarily improve product quality and further reduce lead time; (5)
lack of sufficient in-house access to the latest HPC technology to even run mean-
ingful tests to determine benefits of using the new HPC technology; (6) inability to
define larger accurate math models and HPC-optimized algorithms that are needed to
assess properly the creation of near-future product needs; (7) too much dependence

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 307

upon computer vendor marketing hype of unverified claims of actual computer perfor-
mance on total realistic industrial-sized applications; (8) lack of sufficient financial
resources, appropriate personnel, visionary management, and insufficient interac-
tion with the government and academic research communities to compensate for
the inherent industrial weaknesses. Clearly, it would be unfair to blame solely the
industrial community because many of the underlying causes were beyond their
control.

Now, most of the car designs rely on a diverse collection of HPC technologies. The
sophistication of the math modeling has dramatically increased from the early 1980s
when it was difficult to perform even simple 3-D car modeling on a supercomputer.
Today much more realistic 3-D structural simulations can routinely be performed as
well as a variety of interactions among automotive subsystems including increasing
realistic modeling of human passengers beyond what had previously been achieved
with sophisticated instrumented physical dummies. It is still estimated that it could
require an increase of three orders of magnitude in current computer power in order to
model completely all possible structural and human interactions with all automotive
subsystems and to do so in real time or faster in order to make cars much safer.
Unfortunately, at present (mid 2007) the poor financial condition of the U.S. auto
industry makes it difficult at times to focus on the use of appropriate leading-edge
HPC. Over the years, however, the U.S. car industry has been able to benefit from
HPC-related activities in academia and at U.S. government research labs [4].

Despite several financial downturns throughout the U.S. auto industry, there has
been sporadic activities that continue to help advance the U.S. automotive industry.
Recently, for example, General Motors has won two DOE INCITE awards [26, 37].
GM partnering with one of its ISVs (Fluent) was awarded 166,000 hours to use
the FLUENT off the shelf engine simulation product with DOE HPC resources
at NERSC [37] ‘for CAE simulation of full vehicle wind noise and other CFD
phenomena.’ In this DOE INCITE Project, HPC supercomputer resources will be
utilized with the FLUENT CFD code to ‘illustrate the competitive benefits of large
scale engineering simulation early in the design phase of automotive production
[37]’. The project will explore the use of FLUENT software to perform emerging
CFD and thermal calculations on high-end parallel processing computers in order
to determine the hardware resources and behavior of software systems required to
deliver results in time frames that significantly impact GM’s Global Vehicle Devel-
opment Process (GVDP). Five specific application areas will be investigated: (1)
Full vehicle open-sunroof wind buffeting calculations; (2) Full vehicle transient ther-
mal calculations; (3) Simulations of semi-trucks passing stationary vehicles with
raised hoods; (4) Vehicle underhood buoyancy convection airflow and thermal simu-
lations; (5) Vehicle component and sub-assembly fluid immersion and drainage
calculations.

308 M. GINSBERG

Another GM Team is using the DOE ORNL Leadership Computing Facility’s
Jaguar supercomputer (Cray XT3) to ‘perform first-principles calculations of ther-
moelectric materials capable of turning waste heat into electricity’. The goal of this
project is to help GM and other automakers to capture the ‘60% of the energy gener-
ated by a car’s engine that is currently lost through waste heat and to use it to boost
fuel economy. These calculations would not have been possible if the scientists had
not have access to the Leadership computing resources of DOE’. ‘This is another
example of how computational simulation can contribute to scientific advances and
energy security [26]’.

At the International Supercomputing Conference (ISC07) in Dresden, Germany, it
was apparent in their Automotive Day presentations, that German and European auto
companies also embrace HPC usage; for example, see references [1, 3, 12, 39].

10.2 Formula 1 Auto Racing HPC Usage
Another automotive segment quickly learned the advantages of adopting HPC

modeling techniques after observing developments in the commercial passenger car
business. Several papers presented at ISC07 demonstrate very strong interest in using
HPC modeling techniques to improve engine design as well as in employing rac-
ing car aerodynamics (computational fluid dynamics techniques, CFD) to even tune
performance based on certain attributes of specific racing venues. Some examples of
Formula 1 HPC usage are given in references [3, 12, 35, 39, 41].

10.3 Boeing Corporation is Beneficiary
of HPCTechnology

It is interesting to observe that often the same HPC applications are useful in
different industries. The automotive companies discovered that substantial amounts
of physical prototyping could be replaced by accurate computer simulations, i.e.,
math-based modeling could help shorten lead time for the design and production of
new vehicles. Similar reductions have occurred in the aircraft industry. For example,
Boeing physically tested 77 wing designs for the 767 aircraft, but for the new Dream-
liner 787, only 11 wing designs had to be physically tested (a seven-fold reduction
in the needed amount of physical prototyping), mainly because over 800,000 hours
of computer simulations on Cray supercomputers had drastically reduced the amount
of needed physical prototyping. Also, the computer simulations on the Crays very
closely matched the wind tunnel results of the tests that Boeing performed in several
of its facilities around the world [2, 11].

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 309

10.4 Stimulus for Future Expansion of
Industrial HPC Usage

Supercomputer-based math modeling and simulation is far more efficient, cost-
effective, and considerably more practical than physical prototyping for testing and
verifying the effects of large numbers of design variables. While physical prototyping
is still very important for final design validation, accurate supercomputer simulations
enable automotive and aircraft industries as well as other manufacturing organizations
to dramatically reduce lead time from design to implementation of a new product.
In both the automotive and aerospace industries, fuel efficiency can be improved
by paying more attention to aerodynamics via use of computational fluid dynam-
ics (CFD) software; this approach also makes it possible to improve racing car and
boat designs. The CFD modeling for Formula 1 racing cars is now being adopted
by Speedo [15, 30] to produce innovative swimwear, which improves the speed of
swimmers engaged in competitive meets such as in the Olympics. Even Ping, a golf
manufacturer, uses a Cray XD1 to create better clubs [38]. HPC is used to design addi-
tional sport equipment [14A, 35A]. Bioinformatics-related activities are now using
HPC to track infectious diseases as well as to enter a new era in which pharmaceutical
companies will be able to create boutique medicines based upon individual attributes
of a person’s DNA. The videos shown at SC05 and SC06 illustrate some of the afore-
mentioned uses of HPC and are available for viewing; see Section 12, references [2,6].
The U.S. Council on Competitiveness also stimulates uses of HPC in U.S. industry;
see [6–10].

Only a small percentage of industry has yet to initiate HPC usage. The situation
is improving as more companies become aware that an HPC mindset can strengthen
bottom-line finances by increasing global competitiveness, reducing product lead
time, and promoting product innovation. A major barrier to many companies using
HPC is the lack of sufficient internal manpower with expertise in HPC and/or sufficient
access to HPC physical resources. Several alternatives have arisen to cope with such
problems: Blue Collar Computing program [34], on-demand HPC resources [see
Section 11], government-subsidized training efforts [29], and cooperative activities
on large and/or costly projects. The references in this section offer some examples of
these alternatives to help industry utilize HPC.

10.5 Blue Collar Computing
A few large corporations such as General Motors and Boeing seem to have now

discovered the benefits of using HPC technology in their manufacturing operations.
Unfortunately, most small-to medium-sized U.S. companies have had little, if any,
exposure to the direct benefits of utilizing HPC in their day-to-day operations. The

310 M. GINSBERG

initiatives of the Ohio Supercomputer Center (OSC) are now dramatically improv-
ing the situation; see [28, 29, 34]. A partnership between OSC and Edison Welding
Institute (EWI) [28] involves 200 companies; most of those companies have no HPC
expertise. The partnership will offer ‘remote portal access of HPC systems’ and also
provide specific software tools for EWI welding applications. This action will result in
significant cost savings while providing integrated numerical simulation tools acces-
sible to engineers in EWI member companies. They in turn will have online access
using the necessary software through which they can input product dimensions, weld-
ing process parameters, and other specs in order to run online simulations of their
welding procedures. This capability will enable users to assess directly the strength
and viability of their prototypes. It will reduce much trial and error with physical pro-
totypes and allow engineers to investigate ‘what if’ scenario calculations that could
directly lead to improvements in their welding procedures. This approach is analogous
to how automotive and aerospace companies have been able to reduce lead time, cut
production costs, and reduce physical prototyping via use of math-based HPC simu-
lations. Other Blue Collar Computing initiatives will have similar objectives such as
the new STAR initiative at the Texas Advanced Computing Center [41A].

10.6 U.S. Council on Competitive Case Studies
Several case studies of important industrial applications have been defined with

the help of the U.S. Council on Competitiveness. These will be used as the focal
points for further industrial actions. The four case studies deal with automotive crash
analysis [6], ways to increase crude oil yields [7], vehicle design optimization [8],
improvement of oil and gas recovery [9], and speeding up of the fiber spinning process
to help U.S. textile manufacturing to increase global competitiveness [10]. Even if
a few of these goal oriented projects are successful, then U.S. industrial profitability
should significantly improve at the international level.

10.7 The Flavors of HPC
From the above discussion, it should be obvious to the reader that HPC requires

various approaches depending upon the attributes of the user, the nature of the applica-
tion to be solved, and the resources readily available. For large science and engineering
applications, the user must have considerable HPC resources or must utilize a national
grid or seek help from government program resources such as those offered by the
DOE INCITE Program [5].

For more modest applications such as those targeted by the Blue Collar Computing
Projects for small- and medium-sized companies, a good starting point involves the
exploitation of the scientific/engineering HPC desktop tools such as those available

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 311

with MATLAB [23,42] and many commercial ISVs. This is usually referred to as the
‘desktop mainstream HPC approach’ Many industrial people feel comfortable using
such desktop tools. If the applications grow larger, there are now several emerging
alternatives to link the desktop tools to the use of commodity clusters [23] accessed
via use of MATLAB, MS CCS2003 server [42, 42A], Star-P [31, 32, 33, 33A] and/or
Field Programmable Gate Arrays (FPGAs) (see Section 7).

References

[1] Allrutz R., June 26, 2007. Challenges of Design and Operation of Heterogeneous Clusters in Auto-
motive Engineering, Automotive Day presentation, International Supercomputing Conferences
(ISC’07), Dresden, Germany, for more details, please contact mail to: R.Allrutz@science-
computing.de.

[2] Boeing, Boeing Dreamliner Fact Sheet, http://www.boeing.com/commercial/787family/
programfacts.html and Cray Supercomputers Play Key Role in Designing Boeing 787 Dreamliner,
http://www10.mcadcafe.com/nbc/articles/view_article.php?articleid=407552 details available at
http://787premiere.newairplane.com.

[3] Bruder U., and Mayer S., June 26, 2007. Simulation Data and Process Management in HPC
Environments, Automotive Day presentation, International Supercomputing Conferences (ISC’07),
Dresden, Germany, please contact stefan.mayer@mscsoftware.com.

[4] Coalition for Academic Scientific Computation, High Performance Computing Improves Auto-
motive Products, Builds Competitive Edge for U.S. Auto Industry http://www.casc.org/papers/
paper12.html.

[5] Conway S., February 9, 2007. INCITE Program Targets American Competitiveness, HPCWIRE,
Vol. 16, No. 6, http://www.hpcwire.com/hpc/1255558.html.

[6] Council on Competitiveness, Auto Crash Safety: It’s Not Just for Dummies, High Perfor-
mance Computing and Competitiveness Grand Challenge Case Study, U.S. Council on Com-
petitiveness, 1500K Street, NW, Suite 850, Washington, DC 20005, http://www.compete.org/
pdf/HPC_Auto_Safety.pdf, 2005.

[7] Council on Competitiveness, Customized Catalysts to Improve Crude Oil Yields: Getting More
Bang from Each Barrel, High Performance Computing and Competitiveness Grand Challenge Case
Study, U.S. Council on Competitiveness, 1500K Street, NW, Suite 850, Washington, DC 20005,
http://www.compete.org/pdf/HPC_Customized_Catalysts.pdf, 2005.

[8] Council on Competitiveness, Full Vehicle Design Optimization for Global Market Dom-
inance, High Performance Computing and Competitiveness Grand Challenge Case Study,
U.S. Council on Competitiveness, 1500K Street, NW, Suite 850, Washington, DC 20005,
http://www.compete.org/pdf/HPC_Full_Design.pdf, 2005.

[9] Council on Competitiveness, Keeping the Lifeblood Flowing: Boosting Oil and Gas Recov-
ery from the Earth High Performance Computing and Competitiveness Grand Challenge Case
Study, U.S. Council on Competitiveness, 1500K Street, NW, Suite 850, Washington, DC 20005,
http://www.compete.org/pdf/HPC_Keeping_Lifeblood.pdf, 2005.

[10] Council on Competitiveness, Spin Fiber Faster to Gain a Competitive Edge for U.S. Tex-
tile Manufacturing, High Performance Computing and Competitiveness Grand Challenge Case
Study, U.S. Council on Competitiveness, 1500K Street, NW, Suite 850, Washington, DC 20005,
http://www.compete.org/pdf/HPC_Spin_Faster.pdf, 2005.

312 M. GINSBERG

[11] Cray, Inc., July 6, 2007. Cray Supercomputers Play Key Role in Dreamliner Design, HPCWIRE,
Vol. 16, No. 27, http://www.hpcwire.com/hpc/1648048.html.

[12] Diethelm K., and Renner M., June 26, 2007. Numerical Forming Simulation on Cluster Systems in
theAutomotive Industry,Automotive Day presentation, International Supercomputing Conferences
(ISC’07), Dresden, Germany, http://www.gns-systems.de/images/ISC07_Automotive.pdf.

[13] DreamWorks Animation SKG, DreamWorks: Pushing the Limits of HPC, HPCWIRE, Vol. 15,
No. 26, http://www.hpcwire.com/hpc/710286.html, June 29, 2006.

[14] DreamWorks Animation SKG, High Performance Computing: Accelerating Innovation to Enhance
Everyday Life DreamWorks Animation SKG, DVD available for purchase from U.S. Coun-
cil on Competitiveness, Washington D.C.; excerpt preview available at http://www.compete.org/
hpc/WEB_TRAILER_8-30.mov.

[14A] EPSRC Computer Models Raise Bar for Sporting Achievement, HPCWIRE, Vol. 16, No. 37,
http://www.hpcwire.com/hpc/1779188.html, September 14, 2007.

[15] Fluent, Inc., March. 10, 2004. Speedo Brings Formula One Technology to the Pool, Fluent, Inc.,
http://www.fluent.com/news/pr/pr69.htm.

[16] Ginsberg M., 1994. An Overview of Supercomputing at General Motors Corporation, Frontiers of
Supercomputing II: A National Reassessment, edited by Ames K. R., and Brenner A. G., volume
in the Los Alamos Series in Basic and Applied Sciences, University of California Press, Berkeley,
pp. 359–371.

[17] Ginsberg M., 1996. Streamlined Design: Supercomputers Help Auto Manufacturers Decrease Lead
Time, High-Performance Computing Contributions to Society, Tabor Griffin Communications, San
Diego, CA.

[18] Ginsberg M., 1997. AUTOBENCH: A 21st Century Vision for an Automotive Computing Bench-
mark Suite, High Performance Computing in Automotive Design, Engineering, and Manufacturing,
edited by Sheh M., Cray Research, Inc., Eagan, MN, pp. 67–76.

[19] Ginsberg M., 1999. Current and Future Status of HPC in the World Automotive Industry, Object
Oriented Methods for Inter-Operable Scientific and Engineering Computing, edited by Henderson,
M. E. et al., SIAM, Philadelphia, PA, pp. 1–10.

[20] Ginsberg M., December. 1999. Influences, Challenges, and Strategies for Automotive HPC
Benchmarking and Performance Improvement, Parallel Computing J., Vol. 25, No. 12, pp.
1459–1476.

[21] Ginsberg M., 2001. Influences on the Solution Process for Large, Numeric-Intensive Automo-
tive Simulations, Lecture Notes in Computer Science, Vol. 2073, Springer-Verlag, New York, NY,
pp. 1189–1198.

[22] Ginsberg M., May 2005. Impediments to Future Use of Petaflop Class Computers for Large-Scale
Scientific/Engineering Applications in U.S. Private Industry, Lecture Notes in Computer Science,
Vol. 3514, edited by Sunderam, S. V. et al., Springer-Verlag, Berlin, Germany, pp. 1059–1066.

[23] Ginsberg M., June 2007. Challenges and Opportunities for U.S. Private Industry Utilization of
HPC Technology, Proceedings of the International Conference on Scientific Computing, CSC2007,
CSREA Press, Las Vegas, NV, pp. 17–23.

[24] HPCWIRE, Government Expands HPC Giveway Program, HPCWIRE, Vol. 16, No. 2, http://www.
hpcwire.com/hpc/1198276.html, January 12, 2007.

[25] HPCWIRE, IDC’s HPC User Forum Meets in Manchester, HPCWIRE, Vol. 15, No. 44, http://www.
hpcwire.com/hpc/1051123.html, November 3, 2006.

[26] HPCWIRE, ORNL Closes in on Petaflop Computing, HPCWIRE, Vol. 16, No. 28, http://www.
hpcwire.com/hpc/1660201.html, July 13, 2007.

[27] HPCWIRE, ORNL Supercomputer Rises to No. 2 Worldwide, HPCWIRE, Vol. 16, No. 26,
http://www.hpcwire.com/hpc/1635950.html, June 29, 2007.

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 313

[28] HPCWIRE, OSC Announces HPC Partnership with Edison Welding , HPCWIRE, Vol. 15, No. 47,
December 1, 2006, http://www.hpcwire.com/hpc/1129969.html and also see update, EWI Launches
Welding Simulation Tool, HPCWIRE, Vol. 16, No. 36, http://www.hpcwire.com/hpc/1763231.html,
September 7, 2007.

[29] HPCWIRE, Merle Giles to Lead NCSA Private Sector Program, HPCWIRE, Vol. 16, No. 23,
http://www.hpcwire.com/hpc/1601935.html, June 8, 2007.

[30] HPCWIRE, Speedo Dives Into Supercomputing, HPCWIRE, http://www.hpcwire.com/hpc/
671349.html, May 26, 2006.

[31] Interactive Supercomputing Corp., The Star-P Platform: Delivering Interactive Parallel Comput-
ing Power to the Desktop, Whitepaper, Interactive Supercomputing Corp., Waltham, MA 2006,
http://www.interactivesupercomputing.com/downloads/ISCwhitepaper.pdf.

[32] Interactive Supercomputing Corp., New Star-P Software Targets Life Sciences, Interac-
tive Supercomputing Corp., Waltham, MA, HPCWIRE, Vol. 16, No. 23, http://www.
hpcwire.com/hpc/1599717.html, June 8, 2007.

[33] Interactive Supercomputing Corp., Star-P Software Enables High-Definition Ultrasound,
HPCWIRE, Vol. 16, No. 28, http://www.hpcwire.com/hpc/1655648.html, July 13, 2007.

[33A] Interactive Supercomputing Corp., Reverse-Engineering the Brain for Better Computers,
HPCWIRE, Vol. 16, No 38, http://www.hpcwire.com/hpc/1786389.html, September 21, 2007.

[34] Krishnamurthy A., 2006. Blue Collar Computing Update, http://www.bluecollarcomputing.org/
docs/BCC_master.pdf.

[35] Larsson T., January 16, 2007. Supercomputing in Formula One Auto Racing, Automotive Day pre-
sentation, International Supercomputing Conferences (ISC’07), Dresden, Germany. For additional
details see the following five related references about this presentation: abstract of ISC07 presenta-
tion; http://www.supercomp.de/isc2007/index.php5?s=conference&s_nav=speaker&speaker_
id=1261, June 26, 2007. F1 Supercomputing: Unlocking the Power of CFD, (brief writ-
ten version) by Larsson T., Sato T., and Ullbrand B., Fluent News, Summer 2005,
pp. s8–s9; http://www.fluent.com/about/news/newsletters/05v14i2/pdfs/s6.pdf, expanded paper
version with the same title and written by the same authors, Proc., 2nd European Automotive
CFD Conference (EACC2005), Frankfurt, Germany, June 29–30, 2005, pp. 45–54, BMW
Sauber Unveils New Supercomputer for Automotive Design, HPCWIRE, Vol. 15, No. 49,
http://www.hpcwire.com/hpc/1158325.html, December 15, 2006, and BMW Focuses Supercom-
puter on F1 Aerodynamics, gizmag.com, http://www.gizmag.com/go/6734/.

[35A] Loughborough University, Computer Models Help Raise the Bar for Sporting Achieve-
ment, PR Office, Loughborough University, http://www.lboro.ac.uk/service/publicity/news-
releases/2007/117_festival.html, September 13, 2007.

[36] McLane B., October 6, 2006. Computer-on-Demand Drives Efficiencies in Oil and Gas, HPCWIRE,
Vol. 15, No. 40, http://www.hpcwire.com/hpc/948245.html.

[37] NERSC, CAE Simulation of Full Vehicle Wind Noise and Other CFD Phenomena NERSC,
INCITE Award; http://www.nersc.gov/projects/incite/bemis_07.php, January 8, 2007.

[38] PING Inc., PING Shaves Strokes Off Its Golf Club Design Cycle with a Cray, http://www.
wordcrft.com/LinkClick.aspx?link=samples%2FCRAY+Ping.pdf&tabid=136&mid=497, Novem-
ber 7, 2005.

[39] Resch M., June 26, 2007. The Impact of Virtual Reality and High Performance Computing in the
Automotive Industry- A Showcase, Automotive Day presentation, International Supercomputing
Conferences (ISC’07), Dresden, Germany, see resch@hlrs.de for details.

[40] Scarafino V., The National Needs for Advanced Scientific Computing and Industrial Applica-
tions, Statement of The Ford Motor Company, Committee on Science, U.S. House of Rep-
resentatives, http://www.house.gov/science/hearings/full03/jul16/scarafino.htm, July 16, 2003.

314 M. GINSBERG

see http://www.techlawjournal.com/home/newsbriefs/2003/07d.asp, under 7/16 The House Sci-
ence Committee Holds Hearing on Supercomputing titled Supercomputing: Is the U.S. on the
Right Path?, paragraphs 4–7 inclusive.

[41] SGI, Inc., SGI Solutions Underpin Winning Formula at Vodafone McLaren Mercedes, SGI,
July 2007, http://www.sgi.com/company_info/newsroom/press_releases/2007/july/formula.html.

[41A] Texas Advanced Computing Center, TACC Initiates Science and Technology Affiliates Program,
HPCWIRE, Vol. 16, No. 42, http://www.hpcwire.com/hpc/1843062.html, October 19, 2007.

[42] West J. E., July 20, 2007. Windows CCS and the End of *nix in HPC, HPCWIRE, Vol. 16, No. 29,
http://www.hpcwire.com/hpc/1673371.html.

[42A] Milliman Inc., October 15, 2007. Milliman, Microsoft Offer CCS-Based Financial Solutions, GRID
Today, http://www.gridtoday.com/grid/1835069.html.

11. Access to On-Demand HPC

11.1 Need for Industrial On-Demand HPC Services
As has been indicated in several previous sections, advances in use of HPC tech-

nology in industry have significantly lagged behind those in government labs and
university research centers. One of the principle reasons for this situation has been
the lack of significant access to the latest HPC hardware. Many industrial companies
either do not have the internal financial resources to pay for such services and/or need
some flexible arrangement with an external source to provide service as needed, which
can vary extensively over time. This fluctuating demand is now being addressed via
several available services.

The availability of external on-demand services offers an excellent opportunity
for an industrial organization to verify actual need of HPC with relatively little risk,
while at the same time it is able to justify to the top upper management for future
HPC return on investment (ROI).

11.2 Sample of On-Demand HPC Services
Alternatives include sharing use of HPC resources with government labs [2,8], uni-

versity research centers [7, 9, 9A, 10] and a growing number of hardware/software
vendors and service facilities [1, 3, 5, 6, 11, 12, 14]. A representative number of these
sources are listed in this section. Large multi-year HPC resources can be obtained
on a competitive basis from several DOE labs under the INCITE [2] program refer-
enced below. Event-driven science services [13] and computer bandwidth on-demand
service [4] are also beginning to become available.

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 315

References

[1] Altair Engineering, Altair Engineering Unveils New On-Demand Licensing Model, HPCWIRE,
Vol. 16, No. 22, http://www.hpcwire.com/hpc/1589462.html, June 1, 2007.

[2] Conway S., February. 9, 2007. INCITE Program Targets American Competitiveness, HPCWIRE,
Vol. 16, No. 6, http://www.hpcwire.com/hpc/1255558.html.

[3] Harris D., July 16, 2007. Data Solutions Provider Finds Utility-Based Business Model, GRID today,
http://www.gridtoday.com/grid/1663866.html.

[4] HPCWIRE, European NRENs Establish ‘Bandwidth-on-Demand’ HPCWIRE, Vol. 16, No. 28,
http://www.hpcwire.com/hpc/1658441.html, July 13, 2007.

[5] HPCWIRE, Fluent to Showcase New Airflow Modeling Software, HPCWIRE, Vol. 15, No. 44,
http://www.hpcwire.com/hpc/1038004.html, November 3, 2006.

[6] HPCWIRE, IBM Offers Blue Gene On Demand, HPCWIRE, Vol. 14, No. 10, http://www.hpcwire.
com/hpc/350226.html, March 10, 2005.

[7] HPCWIRE, Merle Giles to Lead NCSA Private Sector Program, HPCWIRE, Vol. 16, No. 23,
http://www.hpcwire.com/hpc/1601935.html, June 8, 2007.

[8] HPCWIRE, ORNL Supercomputer Rises to No. 2 Worldwide, HPCWIRE, Vol. 16, No. 26,
http://hpcwire.com/hpc/1635950.html, June 29, 2007.

[9] HPCWIRE, OSC Announces HPC Partnership with Edison Welding , HPCWIRE, Vol. 15, No. 47,
http://www.hpcwire.com/hpc/1129969.html, December 1, 2006.

[9A] Interactive Supercomputing, Inc., SDSC Brings On-Demand Supercomputing to the Masses,
HPCWIRE, Vol. 16, No. 40, http://www.hpcwire.com/hpc/1817666.html, October 5, 2007.

[10] Krishnamurthy A., 2006. Blue Collar Computing Update, http://www.bluecollarcomputing.org/
docs/BCC_master.pdf.

[11] McLane B., October 3, 2006. Computing-on-demand, HPCWIRE, http://www.hpcwire.com/hpc/
948245.html. http://www.cyrusone.com and http://www.appro.com.

[12] Sun Microsystems, Inc., Sun Expands Utility Computing Offering, HPCWIRE, Vol. 16, No. 11,
http://www.hpcwire.com/hpc/1316215.html, March.16, 2007.

[13] Tooby P., July 13, 2007. Supercomputing On Demand: SDSC Enables Event-Driven Science,
HPCWIRE, Vol. 16, No. 28, http://www.hpcwire.com/hpc/1655918.html.

[14] Virtual Compute Corporation, vCompute Reduces Pricing on Supercomputing Services, HPCWIRE,
Vol. 16, No. 42, http://www.hpcwire.com/hpc/1840970.html, October 19, 2007.

12. A Few HPC Videos

12.1 A Brief History of HPC
In the late 1960s and throughout the 1970s and 1980s, one pragmatic definition of

a supercomputer was whatever Seymour Cray was currently building for 10M$. This
was in the golden era of custom vector processor systems. By the mid 1990s, the tide
had turned in favor of commodity-based processors which were supposedly much
more economical and showed high speed performance. The introduction of the Earth
Simulator on the scene in 2002 claimed the title of the fastest supercomputer on the
Top 500 list and demonstrated that vector processing machines had been resurrected

316 M. GINSBERG

from the dead, showing better performance than that of most commodity cluster
systems for at least several important application areas. By 2006, heterogeneous
systems consisting of vector processors, scalar processors, and a host of multicore-
based systems with a variety of accelerators began to enter the market place. This
was a direct consequence of energy and heat concerns, which prevented increase in
processor speed-up improvements. The videos in this section chronicle many of the
events in the aforementioned history of HPC.

12.2 Comments about the References in Section 12
There are many available webcasts on the Internet, but unfortunately many are

marketing pitches to viewers for hardware, software and/or service products. I have
attempted to select a more diverse sample which includes personal HPC historical
perspectives [1,3,5,7,10], academic presentations [4,8,17], some balanced HPC prod-
uct discussions [11–14], two brief HPC applications videos originally shown during
the opening ceremonies at the ACM/IEEE Supercomputing Conferences (SC05 and
SC06), [2, 6], an interesting visualization simulation based on the 9/11 World Trade
Center Towers destruction [9] and a Microsoft view of the future potential applica-
tions of multicore technology [7]. In addition, videos 6A and 6B describe attributes
of IBM Blue Gene/L, and webinars in 6C provide details about the new IBM petaflop
class Blue Gene/P. [18] gives an illustration of how desktop computing can interact
with a computer cluster via the use of automated parallelism with Star-P. [19] directs
you to some Intel webinars focusing on several aspects of multi-core technology.

Videos [15–17] contrast the costs to build three distinctive supercomputers at dif-
ferent price points: The Earth Simulator (a Japanese Government national project)
is a vector processor machine designed and built by NEC with an estimated cost of
the order of 400M$ [15]. In contrast, a PS3 [16] which costs about 600$ can be used
to build a cluster with approximately 10,000 PS3 machines which would have the
potential to create one of the fastest computers in the world with some limited con-
straints with respect to capability; in the middle between the latter two extreme price
points, is a system with 1100 Power Mac G5s [17] at a cost of about 5M$ and which
has been assembled at Virginia Tech and rated No. 3 on the Top 500 list in 2006. The
events and thoughts depicted in all the videos in this section had and are still having
significant impact as the HPC area continues to evolve.

References

[1] Fran Allen, 2006 ACM Turing Award Lecture Video on the Challenges for Software Systems
Designers to Develop New Tools, video released on July 31, 2007, http://beta.acm.org/news/featured/
turing-2006-lecture-webstream.

BIBLIOGRAPHIC SNAPSHOTS OF HIGH-PERFORMANCE 317

[2] ACM/IEEE SC06 Opening video, Powerful beyond Imagination, Tampa, FL, http://sc06.
supercomputing.org/video.php, November 2006.

[3] Computer Museum, The Cray-1 Supercomputer: 30th Anniversary Event- Celebrating the
Man and the Machine, http://www.computerhistory.org/events/index.php?id=1157047505 or
http://archive.computerhistory.org/lectures/the_Cray_1_supercomputer_celebrating _the_man_and_
the_machine.lecture.2006.09.21.wmv available for purchase from the Computer History Museum,
1401 N. Shoreline Blvd., Mountain View, CA 94043, September 21, 2006.

[4] Distinguished Lecture Series in Petascale Simulation, Texas Advanced Computing Center (TACC),
Austin, TX, the following webcasts are available, see http://petascale.theacesbuilding.com and
http://webcast_plugin.theacesbuilding.com includes the following lectures:
David Keyes, Petaflops, Seriously, abstract at http://www.tacc.utexas.edu/petascale/keyes.php, May
23, 2006.
Clint Dawson, Modeling Coastal Hydrodynamics and Hurricanes Katrina and Rita June 22, 2006.
Dimitri Kusnezov, Discovery through Simulation: The Expectations of Frontier Computational
Science October 3, 2006.
Omar Ghattas, Towards Forward and Inverse Earthquake Modeling on Petascale Computers
October 31, 2006.
Chandrajit Bajaj, Computational Drug Diagnostics and Discovery: The Need for Petascale Computing
in the Bio-Sciences November 30, 2006.
John Drake, High Performance Computing and Modeling in Climate Change Science April 12, 2007.
Klaus Schulten, The Computational Microscope May 10, 2007. For a complete list of future and
archived lectures in this series, see the following URL: http://www.tacc.utexas.edu/petascale/.

[5] Jack Dongarra, Supercomputers & Clusters & Grids, Oh My, talk given and recorded at Ohio Super-
computer Center, Columbus, OH, January 11, 2007, for a copy contact Stan Ahalt, OSC Executive
Director (sca@ee.eng.ohio-state.edu).

[6] DreamWorks Animation SKG, High Performance Computing: Accelerating Innovation to Enhance
Everyday Life (shown at SC05) DreamWorks Animation SKG, DVD available for pur-
chase from U.S. Council on Competitiveness, Washington D.C., excerpt preview at http://
www.compete.org/hpc/WEB_TRAILER_8-30.mov.

[6A] IBM, Blue Gene: Unsurpassed Performance, Ultrascale Computing, IBM System Blue Gene Solution,
http://www-03.ibm.com/servers/deepcomputing/bluegenel.html (click on first video, Blue Gene:
Unsurpassed Performance, Ultrascale Computing.)

[6B] IBM, Blue Gene: Unsurpassed Performance, Ultrascale Computing, IBM System Blue Gene Solution,
http://www-03.ibm.com/servers/deepcomputing/bluegenel.html (click on second video, IBM Blue
Gene Enabling Breakthrough Science, Delivering Competitive Advantage. Full gas turbine burners
simulation with AVBP – result of Cerfacs/Turbomeca/IBM collaboration.)

[6C] IBM, View any or all the following four IBM webinars about the new petaflop class IBM Blue Gene/P:
Blue Gene/P Overview, Blue Gene/P Technical Deep Dive, Code Enablement on Blue Gene/P, and
CFD Codes on Blue Gene/P; all presentation slides can be downloaded for each broadcast. Webinars
are archived on line for six months after each live presentation. For more details and to register to
view any of these, see http://www-03.ibm.com/servers/deepcomputing/pdf/bg_webcast.pdf.

[7] Mundie C., July 26, 2007. The Computing Pendulum, Microsoft Financial Analyst Meeting,
http://www.microsoft.com/msft/speech/FY07/MundieFAM2007.mspx.

[8] Mark Parsons, March 23, 2007. FPGA High Performance Computing Alliance (FHPCA), Brief video
of Uses of FPGAs and facilities at University of Edinburgh, video at http://www.fhpca.org/video.html,
additional information in FPGA-based Supercomputer Launched in Edinburgh, HPCWIRE, Vol. 16,
No. 12, http://www.hpcwire.com/hpc/1325618.html.

318 M. GINSBERG

[9] Purdue University, Purdue Creates Visual Simulation of 9/11 Attack, HPCWIRE, Vol. 16, No. 24,
http://www.hpcwire.com/hpc/1609571.html and simulation video at, http://www.cs.purdue.edu/
cgvlab/papers/popescu/popescuWTCVIS07.mov, June 15, 2007.

[10] Horst Simon, June 22, 2005. Lawrence Berkeley National Lab (LBNL) Progress in Supercomput-
ing: The Top Three Breakthroughs of the Last Twenty Years and the Top Three Challenges for
the Next Twenty Years, ISC 2005, Heidelberg, video at mms://netshow01.eecs.berkeley.edu/Horst
_Simon.

[11] Scientific Computing R & D Magazine, Crossing the Chasm with Microsoft Compute Cluster
Edition – HPC Goes Mainstream, One hour panel On-Demand video webcast with Earl Joseph C.
II (Vice President, IDC), Barbara Hutchings (ANSYS), Antonio Zurlo (Microsoft), Saifur Rahman
(Advanced Research Institute, Virginia Tech) and Tim Studt (Scientific Computing R&D Magazine)
serving as Moderator. Register for this free webcast at http://www.scientificcomputing.com/compute.

[12] Scientific Computing R & D Magazine, Emerging Trends in HPC: How HPC Is Joining the
Computing Mainstream, One hour On-Demand video webcast with Earl Joseph C. II Vice
President, IDC), Simon Cox (School of Engineering Sciences, U of Southampton), Tony Hey,
Corporate Vice President for Technical Computing, Microsoft), and Suzanne Tracy (Editor-in-
Chief, Scientific Computing Magazine) serving as Moderator. Register for this free webcast at
http://www.ScientificComputing.com/mainstream.

[13] Scientific Computing R & D Magazine, Scale-Up Linux Goes Mainstream, One hour On-Demand
video webcast with Karthik Prabhakar (HP), John Connolly (Center for Computational Sciences at
U of Kentucky), and Gary Skouson (Pacific Northwest National Lab), and Suzanne Tracy (Editor-in-
Chief, Scientific Computing R & D Magazine) serving as Moderator. Register for this free webcast
at http://www.scientificComputing.com/linux.

[14] Tabor Communications and Microsoft, A Perspective on HPC - 2007 and beyond webcast
recorded at SC06, Tampa FL, http://www.taborcommunications. com/hpcwire/webcasts/microsoft/
sc06/index.html, November 2006.

[15] You Tube, Japan’s Earth Simulator System, Video 31, http://www.youtube.com/watch?
v=hrVS45nuIfs&NR=1&v3, June 18, 2007.

[16] You Tube, How a PS3 Can be Used as a Super Computer (hi res version), Video 88, March 19,
2007, http://www.youtube.com/watch?v=P1G6HP6bH1w&mode=related&search= and see The
Potential of the Cell Processor for Scientific Computing by Williams S. et al., ACM
Intl Conference on Computing Frontiers, available at http://www.cs.berkeley.edu/∼samw/
projects/cell/CF06.pdf, May 2–6, 2006 and see Engineer Creates Academic Playstation 3 Computing
Cluster, http://www.physorg.com/news92674403.html, March 9, 2007.

[17] You Tube, Apple G5 supercomputer at Virginia Tech Amazing, Video 18, http://www.youtube.com/
watch?v=vLujLtgBJC0&NR=1, June 14, 2006.

[18] Wilkins-Diehr, N., Parallel Computing with Star-P at San Diego Supercomputer Center,
http://www.interactivesupercomputing.com/success/sdsc/

[19] Intel, Multi-Core is Mainstream: Are You Ready? Intel Software Developer Webinars are available
online live and archived. For details and to register, visit http://event.on24.com/event/36/88/3/rt/1.

Author Index

Numbers in italics indicate the pages on which complete references are given.

A

Abraham, S.G., 176, 223
Abrahamson, J., 81, 100
Abts, D., 265, 265
Adve, S.V., 142, 170, 174, 177, 191,

219, 220, 223
Agarwal, P.A., 277, 282
Ahuja, P.S., 177, 182, 186, 219, 223
Aiken, A., 59, 99
Ailamaki, A., 189, 215, 224
Alam, S.R., 81, 100, 265, 265
Alameldeen, A., 190, 217
Allen, E., 60, 98
Allen, F., 316, 316
Allrutz, R., 308, 311
Almasi, G., 265, 265
Amdahl, G., 113, 134
Amestoy, P., 237, 251
Anderson, E., 236, 251
Anderson, T., 174, 182, 221
Angepat, H., 175, 218
Armstrong, D.N., 177, 222
Asanovic, K., 175, 200, 208, 217
Asgari, S., 74, 75, 99
August, D.I., 175, 177, 222, 223
Austin, T.M., 142, 170, 176, 177, 180,

202, 217, 218

B

Bader, D.A., 131, 134, 240, 241, 251
Badia, R., 21, 27, 96, 97, 145, 158,

160–162, 170, 172

Baer, J.-L., 182, 195, 219
Bagheri, B., 263, 264
Bai, Z., 236, 251
Bailey, D.H., 21, 35, 96, 140, 145,

170, 171, 240, 251, 271, 272,
275, 281, 282, 304, 304

Ballansc, R.S., 142, 170
Barr, K.C., 200, 208, 218
Barszcz, E., 35, 96, 140, 145, 170, 240, 251
Barton, J.T., 35, 96, 140, 145, 170, 240, 251
Basili, V.R., 70, 71, 74, 75, 77, 99
Bassetti, F., 141, 171
Baxter, R., 287, 287
Bechem, C., 177, 218
Becker, D., 113, 134
Bedichek, R., 178, 218
Bell Jr., R.H., 175, 218, 219
Bennett, S., 142, 170
Berman, F., 142, 170
Berry, H., 188, 222
Bertoline, G.R., 264, 264
Bhatia, N., 81, 100
Binkert, N.L., 177, 218, 219
Bischof, C., 236, 251
Black, B., 177, 218
Blackford, S., 236, 251
Blake, B., 287, 288
Bland, A.S., 277, 282
Blanton, R.D.S., 177, 218
Blome, J.A., 177, 223
Boehm, B., 117, 134
Bohrer, P., 178, 218
Boland, L.T., 142, 170
Bonachea, D., 67, 98

319

320 AUTHOR INDEX

Bose, P., 180–182, 186, 196, 218, 220, 222
Bramonian, R., 142, 170
Braun, G., 191, 222
Bromberg, S., 245, 251
Brooks, D., 164, 221
Brown, D.H., 261, 266
Browning, D.S., 35, 96, 140, 145, 170, 240, 251
Bruder, U., 308, 311
Buels, R.B., 191, 223
Bugnion, E., 177, 178, 223
Buntinas, D., 67, 98
Burger, D.C., 142, 170, 176, 177, 202, 218
Burtscher, M., 177, 192, 218
Buttari, A., 89, 100, 265, 266, 287, 288

C

Calder, B., 177, 182, 187, 189, 192, 193, 194,
200, 215, 216, 219–223

Callens, B., 198, 219
Cambell, W.B., 191, 219
Cameron, K.W., 141, 171
Camp, W.J., 265, 266
Campbell Jr., R.L., 21, 22, 29, 30, 32, 36,

96, 140, 149, 162, 168, 170
Candy, J., 277, 282, 283
Cantle, A., 287, 288
Carrington, L., 21, 22, 27, 29, 30, 32, 36, 96,

97, 140, 145, 146, 149, 152, 158, 160–162,
167, 168, 170, 172

Carter, R.L., 35, 96, 140, 145, 170, 240, 251
Caruana, R., 142, 172, 174, 220
Carver, J., 70, 71, 99
Chamberlain, B., 293, 300
Chan, T.F., 231, 251
Charney, M., 195, 222
Chase, D., 60, 98
Chen, T.-Y., 146, 167, 170
Chen, Y., 236, 251
Chiou, D., 175, 217, 218
Chong, F.T., 175, 222
Choy, R., 227, 228, 251
Christensson, M., 178, 221
Clark, D.W., 182, 186, 223
Clark, T., 263, 264
Clement, M.J., 143, 170
Cmelik, B., 176, 218

Cocke, J.A., 142, 170
Cody, W.J., 303, 304
Cohen, A., 181, 220
Cohen, E., 235, 251
Cohn, R., 193, 195, 222
Colella, P., 59, 99
Combs, J., 177, 218
Connors, D., 175, 222
Conte, T.M., 182, 185, 199, 218
Conway, S., 271, 273, 310, 311, 314, 315
Crovella, M.E., 142, 170
Crowley, P., 182, 195, 219
Culler, D., 142, 170
Curns, T., 295, 300, 304, 304

D

Dabiilidi, C., 287, 288
Dagum, D., 35, 96, 140, 145, 170, 240, 251
D’Amour, M., 287, 288
Daniilidi, C., 271, 272
Davis, K., 265, 267
Davis, L., 21, 22, 29, 30, 32, 36, 96,

140, 149, 162, 168, 170
Davis, T.A., 236, 239, 251
D’Azevedo, E., 277, 284
De Bosschere, K., 174, 175, 181, 198,

201, 219, 224
de Supinski, B.R., 142, 143, 171,

172, 174, 220
Deitz, S., 293, 301
DeLano, W.L., 245, 251
Demmel, J.W., 237, 252, 304, 304
Demmel, S., 236, 251
Desikan, R., 177, 219
Devine, S., 177, 178, 223
Diethelm, K., 308, 312
Diniz, P.C., 81, 100
Dongarra, J.J., 21, 87, 89, 96, 100, 140,

141, 170, 171, 236, 240, 251, 265,
270, 271, 272, 279, 282, 284, 287,
288, 316, 317

Dorband, J.E., 113, 134
Drake, J.B., 277, 282
Dreslinki, R.G., 177, 218
Du Croz, J., 236, 251
Dubey, P.K., 185, 219
Duff, I.S., 237, 251

AUTHOR INDEX 321

Dunigan, T.H., 277, 283
Durbhakula, M., 191, 219
Dutt, N.D., 191, 222

E

Edelman, A., 227, 228, 251
Edler, J., 176, 219
Edmondson, J., 177, 222
Eeckhout, L., 174, 175, 178, 181, 187, 189,

193, 194, 196, 198, 200–202, 206, 208,
211, 215, 216, 219–221, 223

Egger, S., 142, 171
Einarsson, B., 304, 304
Ekanadham, K., 181, 182, 196, 222
Ekman, M., 188, 219
El-Araby, E., 287, 288
El-Ghazawi, T., 287, 288
Elnozahy, M., 178, 218
Emer, J., 142, 171, 177, 219
Ernst, D., 176, 177, 180, 218
Eskilson, J., 178, 221
Espasa, R., 177, 219
Eyerman, S., 198, 219

F

F. Larsson, J.H., 178, 221
Faerman, M., 142, 170
Fahey, M.R., 277, 282–284
Falgout, R.D., 238, 251
Falsafi, B., 173, 174, 182, 184, 185, 189, 193,

195, 201, 209, 210, 214, 215, 218, 224
Farber, R., 280, 283
Farrens, M., 175, 222
Fatoohi, R.A., 35, 96, 140, 145, 170,

240, 251
Fay, D., 175, 222
Feldman, M., 265, 267, 271, 273, 276,

281, 283, 287, 288, 289
Feo, J., 38, 98, 240, 241, 251
Ferdman, M., 189, 215, 224
Flachs, B., 40, 98
Flynn, M.J., 142, 172
Forsgren, D., 178, 221
Fox, G., 287, 288
Frederickson, P.O., 35, 96, 140, 145,

170, 240, 251

Fujumoto, R.M., 191, 219
Funk, A., 54, 74, 77, 78, 98, 99

G

G. Mahinthakumar, 277, 284
Gannon, D., 287, 288
Ganusov, I., 177, 192, 218
Gao, X., 23, 96, 145, 152, 170
Gara, A., 265, 268
Gay, D., 59, 99
Genbrugge, D., 175, 219
Gentleman, R., 226, 252
Gheith, A., 178, 218
Gibson, J., 177, 219
Gilbert, J.R., 74, 78, 99, 227, 228, 231,

236, 240, 241, 251, 252
Ginsberg, M., 258, 259, 272, 272, 306, 312
Girbal, S., 181, 220
Goasguen, S., 264, 264
Goedecker, S., 305, 305
Gokhale, M.B., 287, 289
Govindaraju, N., 118, 134
Graham, P.S., 287, 289
Graham, S.L., 59, 99, 271, 273
Granito, G.D., 142, 170
Gray, P., 263, 264
Greenbaum, A., 236, 251
Gropp, W., 67, 98
Gunn, M., 146, 167, 170
Gupta, A., 174, 182, 221
Gustafson, J.L., 35, 96, 141, 170, 287,

289, 300, 301
Gustavson, F.G., 228, 251

H

Ha, J., 177, 220
Haff, G., 265, 268
Hager, W.W., 236, 251
Hall, K., 245, 252
Hall, S.G., 287, 289
Hallberg, G., 178, 221
Hallett, J., 60, 98
Hamerly, G., 177, 182, 187, 215, 216,

220–223
Hammarling, S., 236, 251
Hanson, R.J., 25, 96

322 AUTHOR INDEX

Harris, D., 314, 315
Harris, M., 118, 134
Haskins Jr., J.W., 182, 196, 197, 208, 219, 220
Hauser, J.R., 305, 305
Hawkins, D.M., 214, 224
Heinrich, M., 177, 219
Hellebaut, F., 201, 202, 223
Hemmert, H.S., 287, 292
Hennessy, J.L., 177, 219, 265, 268, 270,

304, 304, 305
Hensbergen, E.V., 178, 218
Heo, J., 193, 200, 214, 224
Herrod, S.A., 177, 178, 223
Hester, P., 287, 289, 290
Hilfinger, P., 59, 99
Hill, M.D., 175–177, 182, 191, 195, 196,

219–222, 224
Hirsch, M.A., 182, 185, 199, 218
Hochstein, L.M., 70, 71, 74, 75, 77, 99
Hodgdon, D., 175, 222
Hoe, J.C., 173–175, 182–185, 189, 192,

194, 195, 200, 209, 210, 214, 215,
217, 218, 224

Hoffman, F.M., 277, 283
Hoisie, A., 141, 142, 170, 171, 281,

283, 284, 305, 305
Hollingsworth, J.K., 74, 75, 99
Horowitz, M., 177, 219
Houston, M., 287, 289
Hsu, L.R., 177, 218
Huang, M.C., 188, 221
Hughes, C.J., 177, 220
Husbands, P., 227, 228, 252
Hwa-Joon, 40, 98
Hwu, W.W., 182, 218

I

Ikaka, R., 226, 252
Ipek, E., 142, 143, 171, 172, 174, 220
Iyengar, V.S., 186, 220
Iyer, R.K., 182, 185, 221

J

Jackson, S.J., 177, 218
Jaleel, A., 216, 222

John, L.K., 175, 178, 188, 196, 198,
218–221

Johnson, A., 277, 284
Johnson, D.E., 175, 218
Johnson, E.E., 177, 220
Johnson, P., 74, 75, 99
Joiner, D., 263, 264
Jones, J.E., 238, 251
Jones, P.W., 141, 171
Joseph, E., 257, 259, 260, 265, 269,

271, 273
Juan, T., 177, 219

K

Kahan, W., 87, 100, 304, 305
Kale, L.V., 63, 99, 287, 290
Kapoor, R., 195, 222
Karkhanis, T.S., 174, 220
Karp, R., 142, 170
Karunanidhi, A., 195, 222
Ke, J., 177, 218
Keckler, S.W., 177, 219
Keefe, J., 175, 218
Kendall, R.P., 70, 71, 73, 99, 100, 132, 134
Kennedy, K., 131, 134, 287, 288
Kepner, J., 21, 74, 77, 82, 84–86, 89, 96,

99, 100, 104, 132, 134, 140, 171, 240,
241, 251, 271, 273, 279, 284, 293, 302

Keppel, D., 176, 218
Kerbyson, D.J., 141, 142, 171, 172, 281, 284
Kerninghan, B.W., 89, 100
Kessler, R.E., 182, 195, 196, 220, 224
Khalili, O., 148, 154, 156, 171
Kim, H., 177, 222
Kim, J., 175, 218
Kissel, L., 265, 269
Klauser, A., 177, 219
KleinOsowski, A.J., 174, 220
Kluyskens, S., 205, 209, 212, 220
Kodakara, S.V., 214, 224
Koehler, S., 287, 290
Koelbel, C., 131, 134
Koester, D., 21, 96, 140, 171, 241, 251
Kolsky, H.G., 142, 170
Kozyrakis, C., 175, 217
Kramer, W.T.C., 147, 171
Krishna, T., 81, 100

AUTHOR INDEX 323

Krishnamurthy, A., 59, 99, 240, 251,
314, 315

Krishnan, S., 63, 99
Krishnan, V., 191, 220
Krüger, J., 118, 134
Kunz, R., 177, 219
Kurzak, J., 89, 100

L

Labarta, J., 21, 27, 96, 97, 145, 158,
160–162, 170, 172

Lafage, T., 187, 221
Laha, S., 182, 184, 220
Landau, R.H., 264, 264
Langou, J., 89, 100, 304, 305, 316
Larson, E., 176, 177, 180, 217
Larsson, T., 308, 313
Larus, J.R., 175, 176, 191, 221–223
Lasinski, T.A., 35, 96, 140, 145, 170, 240, 251
Lau, J., 177, 215, 216, 219–222
Laurenzano, M., 23, 96, 140, 149, 162, 168, 170
Lauterbach, G., 181, 182, 186, 199, 221
Lawson, C.L., 25, 96
Lazou, C., 265, 269, 271, 273, 279, 284,

287, 290
Leach, A.R., 44, 98
Lebeck, A.R., 175, 191, 223
LeBlanc, T.J., 142, 170
Lee, B., 174, 221
Lee, E.A., 287, 290
Lefohn, A.E., 118, 134
Lefurgy, C., 178, 218
Leland, R., 265, 269
Lemuet, C., 287, 290
Leupers, R., 191, 222
Levy, H., 142, 171
Lewis, J.C., 175, 191, 223
L’Excellent, J.-Y., 237, 251
Li, X.S., 237, 252
Liblit, B., 59, 99
Lilja, D.J., 174, 178, 183, 214, 220, 221, 224
Lim, K.T., 177, 218
Liou, K.-P., 231, 252
Liu, W., 188, 221
Lo, J., 142, 171
Loh, E., 240, 241, 251
Lowney, G., 287, 290

Lu, S.-L., 175, 217
Lubeck, O.M., 141, 170, 171
Luby, M., 242, 252
Lucas, B., 21, 96, 140, 171
Luchangco, V., 60, 98
Luebke, D., 118, 134
Luk, C.-K., 177, 219
Luo, Y., 141, 171, 188, 196, 198, 219, 221
Luszczek, P., 21, 87, 89, 96, 100, 140, 141,

170, 171, 279, 284

M

Ma, X., 141, 172
McCalpin, J.D., 21, 35, 96, 97, 104, 132,

134, 140, 141, 171, 287, 290
McCraacken, M.O., 70, 99
McKee, S.A., 142, 143, 148, 171, 172, 174,

191, 220, 223
McKenney, A., 236, 251
Mackin, B., 287, 290
McLane, B., 313, 315
Madduri, K., 240, 241, 251
Madhavan, K.P.C., 264, 264
Maessen, J.-W., 60, 98
Magnusson, P.S., 178, 221
Manferdelli, J., 271, 273, 287, 290
Mann, B., 240, 241, 251
Manne, S., 177, 219
Marcotte, A.V., 142, 170
Marin, G., 35, 97, 139, 141, 171
Mark, R., 272, 274
Marques, D., 191, 223
Martonosi, M., 174, 182, 186, 221, 223
Maschoff, K., 238, 252
Mason, C., 287, 290
Mauer, C.J., 177, 221
Mayer, S., 308, 311
Mays, T., 278, 284
Mellor-Crummey, J., 35, 97, 139, 141, 171
Mendes, C.L., 36, 97, 142, 171
Menezes, K.N., 182, 184, 199, 218
Merritt, R., 272, 274
Messina, B.V., 142, 170
Meuer, H.W., 87, 100
Meuse, T., 240, 241, 251
Meyr, H., 192, 222
Michael, M., 181, 182, 196, 222

324 AUTHOR INDEX

Mills, R.T., 278, 284
Mishra, P., 192, 223
Miyamoto, C., 59, 99
Mizell, D., 74, 78, 99
Moestedt, A., 178, 221
Moler, C., 228, 231, 236, 240, 251
Moore, C., 287, 290
Moore, G.E., 87, 100
Moreno, J.H., 177, 222
Morgenstern, O., 121, 134
Mouchard, G., 177, 181, 220, 222
Moudgill, M., 177, 221
Mudge, T., 192, 223
Mueller, F., 141, 172
Mueller, S.M., 40, 98
Mukherjee, S.S., 177, 219
Mundie, C., 316, 317
Murphey, J.O., 142, 171
Murphy, D., 82, 84, 99
Murphy, T., 263, 264
Mutlu, O., 177, 221
Muzio, P., 278, 284, 285

N

Nair, R., 185, 219
Nakamura, T., 70, 71, 74, 75, 99
Nakra, T., 178, 218
Nanda, A., 181, 182, 196, 222
Narayanasamy, S., 192, 222
Nash, T., 82, 84, 85, 99
Nguyen, A.-T., 181, 182, 196, 222
Nohl, A., 192, 222
Novakovic, N., 295, 302
Nowak, D.A., 265, 269
Nozawa, T., 295, 302
Numrich, R.W., 59, 99, 132, 134
Nussbaum, S., 175, 219, 222

O

Oblinger, D.G., 263, 264
Oblinger, J.L., 263, 264
Oehmke, D., 192, 223
Ofelt, D., 177, 219
Oliker, L., 278, 285
Oskin, M., 175, 217, 222
Overton, M.L., 304, 305
Owens, J.D., 118, 134, 265, 270, 287, 291

P

Packer, C.V., 113, 134
Pai, V.S., 174, 177, 191, 219, 220, 223
Pakin, S., 142, 171
Pan, H., 200, 217
Papakipos, M., 287, 291
Parsons, M., 316, 317
Partridge, R., 265, 270
Patel, J.H., 182, 185, 221
Patil, H., 177, 192, 195, 216, 219, 222
Patil, N.A., 175, 218
Patt, Y.N., 177, 222
Patterson, C.A., 272, 273
Patterson, D.A., 142, 170, 175, 217, 265,

268, 270, 287, 291, 304, 304, 305
Peck, C., 263, 264
Pelosi, C., 192, 223
Penry, D.A., 175, 177, 222, 223
Pereira, C., 193, 222
Perelman, E., 177, 182, 187, 215, 216,

219–223
Perez, D.G., 177, 188, 222
Perez, J.M., 287, 291
Peter, C.F., 121, 134
Peterson, J., 178, 218
Petitet, A., 87, 100, 140, 170
Petrini, F., 142, 171
Pike, G., 59, 99
Post, D.E., 70, 71, 73, 99, 100, 132, 134
Pothen, A., 231, 252
Purcell, T., 118, 134
Purkayastha, A., 27, 97, 158, 160–162,

172

Q

Quinn, M.J., 143, 170

R

Rabaey, J., 175, 217
Rabenseifner, R., 21, 96, 140, 171
Rajamanickam, S., 236, 251
Rajamony, R., 178, 218
Ramanthan, R.M., 38, 98
Ranawake, U.A., 113, 134
Ranganathan, P., 177, 220

AUTHOR INDEX 325

Ratanaworabhan, P., 177, 218
Reed, D.A., 36, 97, 142, 171
Reid, J., 59, 99
Reilly, M., 177, 222
Reinhardt, S.K., 175, 177, 191, 218,

223, 227, 251
Reinhart, W., 175, 218
Renner, M., 308, 312
Resch, M., 308, 313
Reshadi, M., 192, 223
Reuther, A., 257, 260
Ricadela, A., 271, 274, 302
Ringenberg, J., 192, 223
Ritchie, D.M., 89, 100
Robertson, C., 232, 242, 252
Rockhold, R., 178, 218
Rodriguez, G., 21, 96, 145, 170
Rosenblum, M., 177, 178, 192, 223, 224
Ryan, C., 147, 171
Ryu, S., 60, 98

S

Saavedra, R.H., 36, 97, 142, 172
Sahay, A., 142, 170
Saidi, A.G., 177, 218
Sam, N.B., 177, 218
Sampson, J., 177, 187, 215, 219, 221
Sanjeliwala, H., 175, 218
Santos, E., 142, 170
Savarese, D., 113, 134
Scarafino, V., 258, 260, 274, 313
Sceales, T., 271, 274
Schauser, K.E., 142, 170
Schelle, G., 175, 222
Schliebusch, O., 192, 222
Schnarr, E., 191, 223
Schneider, R., 287, 291
Schoenauer, W., 287, 291
Schoenmackers, S., 216, 221
Schreiber, R.S., 35, 96, 131, 134, 140, 145,

170, 228, 230, 231, 236, 240, 251
Schulz, M., 142, 143, 171, 172, 174,

191, 220, 223
Schwarzmeier, L., 265, 270
Scott, L.R., 263, 264
Scott, S., 270, 274, 295, 302
Seager, M., 265, 269

Semenzato, L., 59, 99
Sendag, R., 214, 224
Severance, C., 304, 305
Seznec, A., 187, 221
Shadid, J.N., 238, 252
Shafi, H., 178, 218
Shah, V.B., 74, 78, 99, 227, 232, 237,

240, 248, 251, 252
Shen, J.P., 177, 218
Sherwood, T., 177, 182, 187, 189, 215,

216, 221, 223
Shull, F., 74, 75, 99
Simon, B., 23, 96, 146, 167, 170
Simon, H.D., 35, 87, 96, 100, 140,

145, 170, 231, 240, 251, 252, 265,
270, 316, 318

Simon, J., 142, 172
Simpson, R., 178, 218
Singh, K., 142, 172
Skadron, K., 182, 186, 196, 197, 208,

220, 223
Smith, A.J., 36, 97, 142, 172
Smith, J.E., 174, 175, 219, 220, 222
Smith, J.W., 142, 170
Snavely, A., 21–23, 27, 29, 30, 32, 36,

70, 96, 97, 99, 140, 145, 146, 149,
152, 158, 160–162, 167, 168, 170,
172, 281, 282

Snell, A., 257, 260, 265, 269, 270, 273
Snir, M., 131, 134, 271, 273
Sorensen, D., 236, 238, 251, 252
Sorin, D.J., 174, 223
Speight, E., 178, 218
Spooner, D., 141, 172
Squires, S., 71, 72, 99
Stamm, R., 142, 171
Steele Jr., G.L., 60, 98, 293, 302
Steffen, C.P., 287, 291
Stenström, P., 188, 219
Sterbenz, P.H., 304, 305
Sterling, T., 113, 134
Storaasli, O.O., 287, 291
Stougie, B., 175, 219
Strenski, D., 287, 291, 295, 303
Strohmaier, E., 80, 87, 99, 100
Studham, R.S., 265, 285
Su, A., 142, 170
Sudeep, K., 178, 218

326 AUTHOR INDEX

Sugumar, R.A., 176, 223
Sun, A., 195, 222
Sun, L., 142, 172
Sunwoo, D., 175, 218
Svobodova, L., 36, 97
Swanson, C.D., 261, 263, 264
Szwed, P.K., 191, 223

T

Takahashi, D., 21, 96, 140, 171
Tally, S., 271, 274, 287, 291
Temam, O., 177, 188, 222
Teng, S.-H., 231, 251
Tenman, O., 181, 219
Tichenor, S., 82, 84, 99, 257, 260
Tjaden, G.S., 142, 172
Tobin-Hochstadt, S., 60, 98
Todi, R., 35, 96, 141, 170
Tomkins, J.L., 265, 266
Tooby, P., 314, 315
Torrellas, J., 191, 220
Trader, T., 288, 291
Travinin, N., 89, 100
Trevillyan, L.H., 186, 220
Tulsen, D., 142, 171
Tuminaro, R.S., 238, 252
Turek, D., 271, 274, 287, 292

U

Ulfelder, S., 271, 275
Ulmer, C., 287, 292
Underwood, K.D., 287, 292
Utamaphetai, N., 177, 218

V

Vachharajani, M., 177, 223
Vachharajani, N., 177, 223
Van Biesbrouck, M., 189, 193, 194, 200,

215, 216, 223
Van de Vanter, M.L., 71, 72, 99
van der Steen, A.J., 265, 271
Van Ertvelde, L., 201, 202, 223
Vandierendonck, H., 174, 219
Venkatakrishnan, V., 35, 96, 140, 145, 170,

240, 251

Vernon, M.K., 174, 223
Vetter, J.S., 81, 100, 277, 283, 285
Voelp, M., 74, 75, 99
von Eicken, T., 142, 170
von Neumann, J., 121, 134
Votta, L.G., 71, 72, 82, 84, 85, 99

W

Wade, R.M., 142, 171
Wallace, S., 177, 219
Wallach, S., 271, 275
Walsh, R., 277, 284
Wasserman, H.J., 141, 142, 170, 171,

281, 284
Wawrzynek, J., 175, 217
Wayland, V., 277, 285
Weeratunga, S.K., 35, 96, 140, 145,

170, 240, 251
Wellman, J.-D., 177, 222
Wells, R., 175, 222
Wenisch, T.F., 173, 174, 182, 184, 185,

189, 193, 195, 200, 209, 210, 214,
215, 218, 224

Werner, B., 178, 221
West, J.E., 263, 264, 310, 311, 314
Wheat, S.R., 287, 292
White, J.B., 277, 283, 285
Wierun, J., 142, 172
Wilkims-Diehr, N., 316, 318
Willard, C.G., 260, 269, 270, 273, 303
Witchell, E., 192, 224
Wolfe, M., 287, 292
Wolsko, R., 142, 170
Wolter, N., 27, 70, 97, 99, 145, 152, 158,

160–162, 170, 172
Wood, D.A., 174, 175, 177, 182, 189–191,

195, 196, 217, 220–224
Worley, P.H., 277, 283, 286
Wu, J., 269, 273
Wulf, W.A., 148, 172
Wunderlich, R.E., 173, 174, 182, 184, 185,

189, 193, 195, 200, 209, 210, 214, 215,
218, 224

X

Xu, Z., 142, 172, 175, 218

AUTHOR INDEX 327

Y

Yang, L.T., 141, 172
Yang, U.M., 238, 251
Yates, K., 265, 269
Yelick, K., 59, 99, 287, 292
Yi, J.J., 178, 214, 224
Yourst, M.T., 177, 224

Z

Zaidi, M.B., 177, 220
Zazworka, N., 74, 75, 99
Zelkowitz, M.V., 70, 71, 74, 75, 99
Zhang, L., 178, 218
Zhang, M., 200, 217
Zhang, X., 142, 172

This page intentionally left blank

Subject Index

A

Acceleration techniques, HPCs, 286–7
Adaptive supercomputing, 295–7
Airborne contaminants dispersion, 11
Algorithm issues, petaflop computing, 299–300
Analytical modelling, 174–5
ASI (Architecture Starting Image), 179, 190–4

about ASI, 190–1, 194
checkpointing, 192
direct execution, 191
fast forwarding, 191–2
just-in-time (JIT) compilation, 191
Load Value Sequence (LVS), 193–4
reduced checkpointing, 192–4
Reduced Load Value Sequence (RLVS), 194
Reduced Touched Memory Image (RTMI),

193
Touched Memory Image (TMI), 193

Auto companies, and HPCs, 257–8, 305–8
Availability see Productivity in HPC: availabil-

ity factors
Avus (fluid flow and turbulence examination),

150

B

Basic trace data, for prediction and ranking,
160–3

BBV (Basic Block Vector) concept, 187, 215
Benchmark methods for performance predic-

tion and ranking, 139–41
IDC Balanced Rating, 140
Linpack method, 140
NAS Parallel Benchmark suite, 140
weighted benchmarks, 140–1

about weighted benchmarks, 143–5
evaluating performance predictions, 146
evaluating rankings, 146
Gustafson and Todi work, 141
HPCC lower level benchmark, 141
McCaplin work, 141
machine and application characteristics,

143–5
performance models, 145–6
predicting runtimes for ranking, 147
threshold inversions, 147–8
Yang et al. technique, 141

Benchmarking issues:
benchmark simulation, 181
in government/academic research, 276
HPC Challenge benchmarks, 279–81
in industry, 276
ISV-based codes, 276
one number syndrome, 276–7
pitfalls, 275–6
predictive benchmarks, 281
types of, comparisons, 277–8

Benchmarks:
membench, 22
netbench, 22
see also HPCC (HPC Challenge) benchmark

suite
BHM (Branch History Matching), 209–11
Biotechnology and HPCS, 11
BLRL (Boundary Line Reuse Latency), 198–9
Blue collar computing, 309–10
Boeing Corporation, HPC usage, 308
Branch predictor simulators, 176
Branch predictor state warmup, 205–13

branch history matching (BHM), 209–11
discussion, 212–13

329

330 SUBJECT INDEX

distribution computation, 209–10
warmup length determination, 211

mispredictions per thousand instructions
(MPKI), 205–7

need for, 205–7
techniques:

branch trace compression, 208
checkpointed warming, 208
memory reference reuse latency, 208
stale state/fixed length, 208

C

Cache-state warmup, 195–205
accuracy/efficiency discussion, 201–5
Boundary Line Reuse Latency (BLRL),

198–9
cache miss-rate estimation approach, 196
cold/no warmup scheme, 195
continuous warmup, 195
Memory Hierarchy State (MHS), 200
Memory Reference Reuse Latency (MRRL),

197–8
Memory Timestamp Record (MTR), 200
minimal subset evaluation, 196
MSI checkpointing, 199–201
no-state loss (NSL) approach, 199, 200
NSL/BLRL combination, 201
prime approach, 196
self-monitored adaptive (SMA) warmup,

196
simulation times, 203–204
stitch/prime approach, 196
stitch/stale state approach, 196
storage requirements, 204–5
warmup length:

comparisons, 203
estimation, 196

CAF (Co-Array Fortran) language, 59–60
Cell Broadband Engine, 40–1, 47–8
CFD (Computational Fluid Dynamics)

software, 309
Checkpointing for ASI, 194

reduced checkpointing, 192–4
China, petaflop computing, 295
Clovertown system, 38–9, 55–7
Co-phase matrix, 189

COCOMO (Constructive Cost model),
116–17

Compiler optimization, petaflop computing,
297–8

Computational environments:
government vs. industry, 257–8
see also CSE …

Computational Science Education see CSE
Convolution problem, 20–37

about the convolution problem, 20
experimental results, 29–30

AVUS application, 29
CTH application, 29
HYCOM application, 29
OVERFLOW application, 29

performance convolution methods, 20–1
ab initio method, 26–9
about empirical methods, 23–4
instrument application tracing, 20
least squares fitting, 20, 24–5, 30
linear programming, 20, 25–6, 31–2
mixing the methods, 21

PMaC MetaSim Tracer and Convolver, 27–8
problem definition, 21–3

membench benchmark, 22
netbench benchmark, 22
pedagogical convolution example, 21–2
STREAM benchmark, 22

see also Performance prediction
Cray:

Cascade System, 16–17
basic concept, 16
Chapel language, 17
configurable and extensible features,

16–17
heterogeneous processing capabilities, 17

MTA-2, 42–3
supercomputing, 298–9

CSC (Compressed Sparse Column) data
structures, 228

CSE (Computational Science Education),
260–2

origins, 260–1
U.S. computational science programs, 261

content needs, 262–3
impediments to growth, 261–2

CSR (Compressed Sparse Row) data structure,
228–30

SUBJECT INDEX 331

CTH (multiple material effects examination),
151

CUTest tool, 77

D

DARPA (Defense Advance Research Projects
Agency) HPCS Program: historical back-
ground, 3–19

about DARPA’s HPCS program, 3–4, 95–6
chronology of HPCS program events, 4–9
Cray Cascade System, 16–17
IBM PERC System, 17–19
motivation, 10–11

biotechnology, 11
dispersion of airborne contaminants, 11
engineering design of aircraft/ships/structures,

11
intelligence, surveillance and

reconnaissance, 11
signals intelligence, 10
survivability and stealth, 11
weapons design, 11
weather and ocean forecasting, 10

phase I: concept study, 14
phase II: three-year effort with IBM, Cray

and Sun, 14–15
phase III: now under way with Cray and Sun,

15
Vision, 11–14

about HPCS Vision, 11–12
end product program, 12
HPCS-targeted capabilities, 13–14
overarching issues, 13
productivity (development time) goals,

12–14
see also HPCC (HPC Challenge) benchmark

suite
DARPA HPCS program: language project,

58–69
about the language project, 58, 69
architectural developments, 58–62

cautionary experiences, 61
current practice, 58–9
HPCS languages, 60
lessons, 61–2
PGAS (Partitioned Global Address Space)

languages, 59–60

completeness aspects, 67–8
plan for convergence, 68–9

diversity issues, 65–7
in application requirements, 66
in relevant computer science research,

66–7
in vendor approaches, 65–6

languages as a group, 62–5
base language, 62
communication and data sharing, 63–4
creating parallelism, 62–3
locality, 64
synchronization issues, 64–5

performance issues, 67
DARPA HPCS program: productivity

evaluation, 37–58
about productivity evaluation, 37–8
architecture overviews, 38–43
Cell Broadband Engine, 40–1, 47–8
Cray MTA-2, 42–3
GPUs (Graphics Processing Units), 41–2,

48–50
homogeneous multi-core systems/processors,

38–9, 45–7
optimization strategies, 45

HSI covariance matrix, 43, 45, 47–8, 49,
52–3

MD (molecular dynamics), 44–5, 47, 48–9,
54

MTA-2, 50–8
productivity/relative performance improve-

ment, 53–8
SLOC (Source Lines of Code), 54, 54–6
target workloads, 43–5

DARPA HPCS program: productivity systems
modelling, 19–37

see also Convolution problem; Performance
prediction and ranking

DARPA HPCS program: research on
productivity, 69–85

about productivity research, 69, 85
advanced tools, 80–2

computer-guided instrumentation for
application behavior, 81

PC (performance complexity) metric,
80–1

performance prediction with compilers,
81–2

332 SUBJECT INDEX

sensitivity analysis with compilers, 81–2
symbolic performance modelling, 81

ASC/HPCS project survey, 72
CSE project workflow, 73–4
developing evaluation tools, 74–80

code analysis workflow studies, 76
CUTest tool, 77
Hackystat, 77
HPC code development hypotheses, 75
HPCChallenge benchmark, 76–7
Matlab implementations, 77
TMMs (Timed Markov Models),

78–80
in universities, 75

focusing the enquiry, 71–4
productivity metric, 82–5

about productivity metrics, 82
business perspective, 82–4
system perspective, 84–5

research framework, 73
SDSC study conclusions, 71
software development time, 69–82
understanding the users, 70–1

DARPA’s petaflop computing competition, 292
Dimemas simulator, 26–7
Direct execution for ASI, 191
Distributed sparse matrices, 225–50

about sparse matrices, 226–8, 250
Compressed Sparse Column (CSC) data

structures, 228
Compressed Sparse Row (CSR) data

structure, 228–30
constructors, 230–1
data structure and storage, 228–30
Eigenvalues, 238
element-wise matrix arithmetic, 231
matrix indexing, assignment and concatena-

tion, 235–6
matrix multiplication, 231–5

with dense vector, 231–2
with sparse matrix, 232–5

next generation parallel sparse library,
248–50

singular values, 238
sparse accumulator (SPA), 231
sparse linear systems:

direct solvers, 236–7
iterative solvers, 237–8

transpose, 236
visualization of sparse matrices, 238–9
see also Sparse matrices; SSCA

(Scalable Synthetic Compact Applica-
tions) #2 benchmark

DOE INCITE projects/software/awards, 307
Dynamic instruction set count, 176–7

E

Efficiency see Productivity in HPC: efficiency
factors

End-to-end runtimes for prediction and ranking,
152–60

about end-to-end runtimes, 152–3, 160
least squares approach:

for prediction, 154–5
for ranking, 155

least squares with basis reduction:
for prediction, 155–7
for ranking, 155–6, 157–8

linear programming method, 158–60
Engineering design of aircraft/ships/structures,

11
Execution-driven simulation, 177

F

Fast forwarding for ASI, 191–2
Floating point issues, 303–4

accumulated roundoff error, 304
IEEE Floating Point standard (754), 303
need for a standard, 304
precision on petaflop computers, 303–4

Formula 1 Auto Racing, HPCs for, 308
Full-system simulation, 177–8
Functional simulation, 176

G

GAMESS (molecular quantum chemistry), 151
GM (General Motors), and HPCs, 306–7

Global Vehicle Development Process
(GVDP), 307

Government, HPCs in, 256–8
GPUs (Graphics Processing Units), 41–2,

48–50
GVDP (Global Vehicle Development Process),

307

SUBJECT INDEX 333

H

Hackystat, 77
Homogeneous multi-core systems, 45–7
HPC (high productivity computing):

acceleration techniques, 286–7
actual performance vs. marketing HYPE,

271
brief history, 315–16
in government vs. industry, 256–8
introduction, 255–6
software needs problems, 271
U.S. government roadmaps, 272
see also DARPA HPCS program: language

project; HPCC (HPC Challenge) bench-
mark suite; Industrial HPCs; Petaflop
computing; Productivity in HPC

HPCC (HPC Challenge) benchmark suite,
86–95, 279–80

about HPCC suite, 86–7, 94–5
application areas, 86
DARPA involvement, 86
history, 88–9
interpretation of results, 93
Kiviat diagram, 279–81
program benchmarks and performance

targets, 87
scalability issues, 91–4
submission procedures, 89–91
tests’ details, 89–90
tests’ outline, 88–9
TOP500 ranking influence, 87–8

HPCC lower level benchmark, 141
HPCCI (High Performance Computing and

Communications Initiative), 3–4
HPCMP (Department of Defense High

Performance Computing Modernization
Program), 30

HPCS see DARPA
HSI (HyperSpectral Imaging) covariance matrix,

43, 45, 47–8, 49, 52–3
HYCOM (ocean modelling), 151

I

IBM:
PERC System, 17–19

as an industry/government partnership, 19

hardware innovations, 18
HPCS productivity initiative, 17–19
HPCS technical approach, 18

supercomputing, 298–9
IDC Balanced Rating, 140
IEEE Floating Point standard (754), 303
Industrial HPCs, 257–8, 305–11

blue collar computing, 309–10
Boeing Corporation usage, 308
computational fluid dynamics (CFD)

software, 309
Formula 1 Auto Racing, 308
future expansion stimulus, 309
on-demand HPC, 314
Texas Advanced Computing Center, 310
U.S. automotive industry, 305–8
U.S Council on Competitive Case Studies,

310
Intelligence, surveillance and reconnaissance,

11
ISA emulators, 176
Isqnonneg, Matlab, 25
ISVs (independent software-based) products,

257, 275–6

J

Japan, petaflop computing, 295
JIT (just-in-time) compilation, 192

K

Ken Kennedy model, 131–2
Kepner’s (SK) synthesis model, 132
Kiviat diagram, 279–81

L

LAMMPS (parallel particle simulator), 151
Languages see DARPA HPCS program:

language project
Least squares approach/fitting, 20, 24–5, 30,

154–7
Linear programming, for prediction and

ranking, 158–60
Linpack benchmark method for performance

prediction, 140
LVS (Load Value Sequence), 193–4

334 SUBJECT INDEX

M

Machine metrics, for machine ranking, 164–5
Matlab:

Isqnonneg, 25
and productivity research, 77

MD (molecular dynamics), 44–5, 47, 48–9, 54
Membench, 22
MetaSim Tracer and Convolver, 27–8, 152
MHS (Memory Hierarchy State), 200
Microarchitecture State, 195–214

see also Branch predictor state warmup;
Cache-state warmup

Microprocessor design issues, 174
Moore’s Law, 4, 14
MPKI (mispredictions per thousand

instructions), 205–7
MRRL (Memory Reference Reuse Latency),

197–8
MSI (Microarchitecture Starting Image), 179,

194–214
about MSI, 194–5
checkpointing, 199–200
processor core state, 214
see also Branch predictor state warmup;

Cache-state warmup
MTA (multi-threaded architecture), Cray, 42–3

MTA-2, 50–8
MTBF, and productivity, 114–15
MTR (Memory Timestamp Record), 200
Multi-processor simulation, 188
Multi-threaded processor simulation,

189–90

N

NAS Parallel Benchmark suite, 35, 140
Netbench, 22
Nomenclature, for speed of HPCs, 293
NSL (No-state loss) approach, 199, 200
NSL/BLRL combination, 201
NVIDIA, 41

O

On-demand HPC, 314
OOCORE (Out-Of-Core matrix solver), 151

Optimizing compilers, petaflop computing,
297–8

OVERFLOW (laminar/turbulent fluid flow),
151

P

PC (Performance Complexity) metric, 80–1
Performance prediction and ranking, 32–5,

137–43
ab initio methods, 34–5
about methods for, 139
about Performance prediction and ranking,

36–7, 137–9, 168–9
applications, 150–2

Avus (fluid flow and turbulence), 150
CTH (multiple material effects), 151
GAMESS (molecular quantum

chemistry), 151
HYCOM (ocean modelling), 151
LAMMPS (parallel particle simulator),

151
OOCORE (out-of-core matrix solver), 151
OVERFLOW (laminar/turbulent fluid

flow), 151
WRF (weather forecasting), 151

benchmark methods, 139–41
with compilers, 81–2
detailed models, use of, 141–2
empirical methods, 33–4
machine learning techniques, 143
machines examined, 148–50
Metasim tracer, 152
neural networks, 143
related work, 35–6
signed error for, 33–4
simulation methods, 142
using basic trace data, 160–3

predicting performance, 161–2
ranking, 162–3

see also Benchmark methods for perfor-
mance prediction and ranking; End-to-end
runtimes for prediction and ranking;
Ranking supercomputers,
application-independent

Petaflop computing, 292–300
accumulated roundoff error, 304
adaptive supercomputing, 295–6

SUBJECT INDEX 335

algorithm issues, 299–300
applications list, 294
Chinese activity, 295
compiler optimization issues, 297–8
Cray vs. IBM, 298–9
DARPA’s competition, 292
Japanese activity, 295
precision issues, 304
programming language concerns, 292–93
speed nomenclature, 293–4

PGAS (Partitioned Global Address Space)
languages, 59–60

PMaC MetaSim Tracer and Convolver, 27–8
Prediction see Benchmark methods for perfor-

mance prediction and ranking; Branch pre-
dictor state warmup; End-to-end runtimes
for prediction and ranking; Performance
prediction and ranking

Predictive benchmarks, 281
Productivity in HPC (high-performance

computing), 101–34
about the dominant factors, 107–8
about productivity in HPC, 101–4, 133–4
application perspectives, 106
cost issues, 106
and the DARPA HPCS, 104
definitions of productivity, 105–6
subjectivity issues, 103
system perspectives, 106
utility, 108, 120–4

cost issues, 124
machine model productivity, 124
machine throughput, 123
special theory of productivity, 121–4
work-based model, 121–2

Productivity in HPC: availability factors,
114–16

accessibility, 116
maintainability, 115
MTBF, 114–15
reliability, 114–15
test vectors, 115

Productivity in HPC: efficiency factors, 110–14
about efficiency, 110–11
contention, 113–14
latency, 111–12
memory management, 112

overheads, 112–13
scheduling, 112
starvation, 113
synchronization overhead, 112

Productivity in HPC: performance factors,
108–10

cost, 110
memory capacity, 110
number of nodes, 109, 110
peak floating point operations, 109
peak performance, 108
power consumption, 110
size issues, 110

Productivity in HPC: programmability factors,
116–20

about programmability, 116–17
COCOMO (Constructive Cost model),

116–17
debugging and testing, 119
parallel representation, 117–18
portability and reuse, 119–20
resource management, 118

Productivity in HPC: related works, 131–3
Bob Numrich’s model, 132–3
Ken Kennedy model, 131–2
Kepner’s (SK) synthesis model, 132
Post and Kendell experience, 132
Snir model, 131

Productivity in HPC: software development
issues, 129–31

degree of reuse, 130
development/debugging tools, 130–1
language selection, 130
traditional approach, 129–30

Productivity in HPC: user-based:
limiting properties, 129
model for, 124–9

about user-based models, 124–5
cost issues, 127–8
workflow, 125–7

productivity relation, 128
Productivity research see DARPA HPCS

program: research on productivity
Productivity systems modelling, DARPAHPCS

program, 19–37
Programmability see Productivity in HPC:

programmability factors

336 SUBJECT INDEX

R

R-metric, 186
Ranking supercomputers, application-independent:

about application-independent rankings, 163,
168

about ranking, 137–9
incorporating application characteristics,

165–8
using machine metrics only, 164–5
see also Benchmark methods for perfor-

mance prediction and ranking; End-to-end
runtimes for prediction and ranking; Per-
formance prediction and ranking

RDTP (Relative Development Time
Productivity), 54–6

Reduced checkpointing for ASI, 192–4
Reduced input sets, 174
Representative sampling units, 182–90

Basic Block Vector (BBV), 187
and cluster analysis, 186–7
co-phase matrix, 189
matched-pair comparisons, 188
microarchitecture-independent metrics, 187
multi-processor simulation, 188–90
multi-threaded processor simulation, 189–90
R-metric, 186
sampling bias, 184–5
scaling factor, 186
SimPoint, 187
Simultaneous Multithreading (SMT)

processors, 189
size and number of units, 182
statistical sampling, 183–5
stratified sampling, 185

RLVS (Reduced Load Value Sequence), 194
RTMI (Reduced Touched Memory Image), 193

S

Sampled processor simulation, 173–217
about sampled simulation, 174–5, 216–17
accuracy issue, 179
benchmark simulation, 181
case studies:

SimPoint, 215–16
SMARTS and TurboSMARTS,

214–15

cold start problem, 179
detailed warming, 214
execution-driven simulation, 177
full-system simulation, 178
functional simulation, 176
functional warming, 214
ISA emulators, 176
miss rates, 176
sampled simulation, 178–9
sampling unit selection, 178–9, 183–90
specialized cache and branch predictor

simulators, 176
speed of simulation, 179–81

cold/warm/hot simulation, 180
statistical sampling, 183–5
statistical simulation, 175
timing simulation, 176–7
trace compression, 177
trace driven simulation, 176–7
see also ASI (Architecture Starting Image);

Branch predictor state warmup; Cache-
state warmup; MSI (Microarchitecture
Starting Image); Representative sampling
units

SDSC (San Diego Supercomputer Center),
70–1

Sensitivity analysis with compilers, 81–2
Signals intelligence, 10
SIMD instructions, 39
SimPoint, 187, 194, 215–16

Basic Block Vector (BBV), 215
Simulation:

for performance prediction, 142
see also Sampled processor simulation

SLOC (Source Lines of Code), 38, 54–6
SMA (Self-Monitored Adaptive) warmup, 196
SMARTS (Sampling Microarchitecture

Simulation), 214
turboSMARTS, 215

SMT (Simultaneous Multithreading)
processors, 189

Snir model, 131
Software needs of supercomputers, 271-2
SPA (SParse Accumulator), 231
Sparse matrices, 226–30

about sparse matrices, 227–8
a user’s view, 227–8
see also Distributed sparse matrices

SUBJECT INDEX 337

SPEC benchmarking suite, 35
Specialized cache and branch predictor simula-

tors, 176
Speed nomenclature for HPCs, 293–4
SSCA (Scalable Synthetic Compact Applica-

tions) #2 benchmark, 239–48
about SSCA #2 benchmark, 239–40
experimental results, 245–8
kernal 1:, 241
kernal 2:, 241
kernal 3:, 241–2
kernal 4:, 242–5
scalable data generator, 240–1
visualization of large graphs, 245

SSE (Streaming SIMD Extension), Intel, 39
STAR-P see Distributed sparse matrices
Statistical simulation, 175
Supercomputing architecture, 264–5
Survivability and stealth (military), 11
Symbolic performance modelling, 81

T

Texas Advanced Computing Center, 310
Timing simulation, 176–7
Titanium (for Java) language, 59–60
TLBs (Translation Lookaside Buffers), 112
TMI (Touched Memory Image), 193

TMMs (Timed Markov Models), 78–80
TOP500 computer performance ranking, 87–8
Trace compression, 177
Trace driven simulation, 176–7

U

UPC (Unified Parallel C) language, 59–60
U.S. automotive industry, 305–8
U.S. Council on Competitive Case Studies, 310
U.S. Government roadmaps, 272
Utility, 108
Utility see Productivity in HPC

V

VHLLs (Very High-Level Languages) see
Distributed sparse matrices

Videos, HPC, 315–16

W

Weapons design, 11
Weather and ocean forecasting, 10
Weighted benchmarks see Benchmark

methods ...
Woodcrest system, 38–9, 55–7
WRF (weather forecasting), 151

This page intentionally left blank

Contents of Volumes inThis Series

Volume 42

Nonfunctional Requirements of Real-Time Systems
Tereza G. Kirner and Alan M. Davis

A Review of Software Inspections
Adam Porter, Harvey Siy, and Lawrence Votta

Advances in Software Reliability Engineering
John D. Musa and Willa Ehrlich

Network Interconnection and Protocol Conversion
Ming T. Liu

A Universal Model of Legged Locomotion Gaits
S. T. Venkataraman

Volume 43

Program Slicing
David W. Binkley and Keith Brian Gallagher

Language Features for the Interconnection of Software Components
Renate Motschnig-Pitrik and Roland T. Mittermeir

Using Model Checking to Analyze Requirements and Designs
Joanne Atlee, Marsha Chechik, and John Gannon

Information Technology and Productivity: A Review of the Literature
Erik Brynjolfsson and Shinkyu Yang

The Complexity of Problems
William Gasarch

3-D Computer Vision Using Structured Light: Design, Calibration, and Implementation Issues
Fred W. DePiero and Mohan M. Trivedi

Volume 44

Managing the Risks in Information Systems and Technology (IT)
Robert N. Charette

Software Cost Estimation: A Review of Models, Process and Practice
Fiona Walkerden and Ross Jeffery

Experimentation in Software Engineering
Shari Lawrence Pfleeger

Parallel Computer Construction Outside the United States
Ralph Duncan

Control of Information Distribution and Access
Ralf Hauser

Asynchronous Transfer Mode: An Engineering Network Standard for High Speed Communications
Ronald J. Vetter

339

340 CONTENTS OF VOLUMES IN THIS SERIES

Communication Complexity
Eyal Kushilevitz

Volume 45

Control in Multi-threaded Information Systems
Pablo A. Straub and Carlos A. Hurtado

Parallelization of DOALL and DOACROSS Loops—a Survey
A. R. Hurson, Joford T. Lim, Krishna M. Kavi, and Ben Lee

Programming Irregular Applications: Runtime Support, Compilation and Tools
Joel Saltz, Gagan Agrawal, Chialin Chang, Raja Das, Guy Edjlali, Paul Havlak,
Yuan-Shin Hwang, Bongki Moon, Ravi Ponnusamy, Shamik Sharma, Alan Sussman, and
Mustafa Uysal

Optimization Via Evolutionary Processes
Srilata Raman and L. M. Patnaik

Software Reliability and Readiness Assessment Based on the Non-homogeneous Poisson Process
Amrit L. Goel and Kune-Zang Yang

Computer-Supported Cooperative Work and Groupware
Jonathan Grudin and Steven E. Poltrock

Technology and Schools
Glen L. Bull

Volume 46

Software Process Appraisal and Improvement: Models and Standards
Mark C. Paulk

A Software Process Engineering Framework
Jyrki Kontio

Gaining Business Value from IT Investments
Pamela Simmons

Reliability Measurement, Analysis, and Improvement for Large Software Systems
Jeff Tian

Role-Based Access Control
Ravi Sandhu

Multithreaded Systems
Krishna M. Kavi, Ben Lee, and Alli R. Hurson

Coordination Models and Language
George A. Papadopoulos and Farhad Arbab

Multidisciplinary Problem Solving Environments for Computational Science
Elias N. Houstis, John R. Rice, and Naren Ramakrishnan

Volume 47

Natural Language Processing: A Human–Computer Interaction Perspective
Bill Manaris

Cognitive Adaptive Computer Help (COACH): A Case Study
Edwin J. Selker

Cellular Automata Models of Self-replicating Systems
James A. Reggia, Hui-Hsien Chou, and Jason D. Lohn

Ultrasound Visualization
Thomas R. Nelson

CONTENTS OF VOLUMES IN THIS SERIES 341

Patterns and System Development
Brandon Goldfedder

High Performance Digital Video Servers: Storage and Retrieval of Compressed Scalable Video
Seungyup Paek and Shih-Fu Chang

Software Acquisition: The Custom/Package and Insource/Outsource Dimensions
Paul Nelson, Abraham Seidmann, and William Richmond

Volume 48

Architectures and Patterns for Developing High-Performance, Real-Time ORB Endsystems
Douglas C. Schmidt, David L. Levine, and Chris Cleeland

Heterogeneous Data Access in a Mobile Environment – Issues and Solutions
J. B. Lim and A. R. Hurson

The World Wide Web
Hal Berghel and Douglas Blank

Progress in Internet Security
Randall J. Atkinson and J. Eric Klinker

Digital Libraries: Social Issues and Technological Advances
Hsinchun Chen and Andrea L. Houston

Architectures for Mobile Robot Control
Julio K. Rosenblatt and James A. Hendler

Volume 49

A Survey of Current Paradigms in Machine Translation
Bonnie J. Dorr, Pamela W. Jordan, and John W. Benoit

Formality in Specification and Modeling: Developments in Software Engineering Practice
J. S. Fitzgerald

3-D Visualization of Software Structure
Mathew L. Staples and James M. Bieman

Using Domain Models for System Testing
A. Von Mayrhauser and R. Mraz

Exception-Handling Design Patterns
William G. Bail

Managing Control Asynchrony on SIMD Machines—a Survey
Nael B. Abu-Ghazaleh and Philip A. Wilsey

A Taxonomy of Distributed Real-time Control Systems
J. R. Acre, L. P. Clare, and S. Sastry

Volume 50

Index Part I
Subject Index, Volumes 1–49

Volume 51

Index Part II
Author Index
Cumulative list of Titles
Table of Contents, Volumes 1–49

342 CONTENTS OF VOLUMES IN THIS SERIES

Volume 52

Eras of Business Computing
Alan R. Hevner and Donald J. Berndt

Numerical Weather Prediction
Ferdinand Baer

Machine Translation
Sergei Nirenburg and Yorick Wilks

The Games Computers (and People) Play
Jonathan Schaeffer

From Single Word to Natural Dialogue
Neils Ole Benson and Laila Dybkjaer

Embedded Microprocessors: Evolution, Trends and Challenges
Manfred Schlett

Volume 53

Shared-Memory Multiprocessing: Current State and Future Directions
Per Steuström, Erik Hagersteu, David I. Lita, Margaret Martonosi, and MadanVerngopal

Shared Memory and Distributed Shared Memory Systems: A Survey
Krishna Kaui, Hyong-Shik Kim, Beu Lee, and A. R. Hurson

Resource-Aware Meta Computing
Jeffrey K. Hollingsworth, Peter J. Kelcher, and Kyung D. Ryu

Knowledge Management
William W. Agresti

A Methodology for Evaluating Predictive Metrics
Jasrett Rosenberg

An Empirical Review of Software Process Assessments
Khaled El Emam and Dennis R. Goldenson

State of the Art in Electronic Payment Systems
N. Asokan, P. Janson, M. Steives, and M. Waidnes

Defective Software: An Overview of Legal Remedies and Technical Measures Available to Consumers
Colleen Kotyk Vossler and Jeffrey Voas

Volume 54

An Overview of Components and Component-Based Development
Alan W. Brown

Working with UML: A Software Design Process Based on Inspections for the Unified Modeling Language
Guilherme H. Travassos, Forrest Shull, and Jeffrey Carver

Enterprise JavaBeans and Microsoft Transaction Server: Frameworks for Distributed Enterprise
Components

Avraham Leff, John Prokopek, James T. Rayfield, and Ignacio Silva-Lepe
Maintenance Process and Product Evaluation Using Reliability, Risk, and Test Metrics

Norman F. Schneidewind
Computer Technology Changes and Purchasing Strategies

Gerald V. Post
Secure Outsourcing of Scientific Computations

Mikhail J. Atallah, K. N. Pantazopoulos, John R. Rice, and Eugene Spafford

CONTENTS OF VOLUMES IN THIS SERIES 343

Volume 55

The Virtual University: A State of the Art
Linda Harasim

The Net, the Web and the Children
W. Neville Holmes

Source Selection and Ranking in the WebSemantics Architecture Using Quality of Data Metadata
George A. Mihaila, Louiqa Raschid, and Maria-Ester Vidal

Mining Scientific Data
Naren Ramakrishnan and Ananth Y. Grama

History and Contributions of Theoretical Computer Science
John E. Savage, Alan L. Salem, and Carl Smith

Security Policies
Ross Anderson, Frank Stajano, and Jong-Hyeon Lee

Transistors and 1C Design
Yuan Taur

Volume 56

Software Evolution and the Staged Model of the Software Lifecycle
Keith H. Bennett, Vaclav T. Rajlich, and Norman Wilde

Embedded Software
Edward A. Lee

Empirical Studies of Quality Models in Object-Oriented Systems
Lionel C. Briand and Jürgen Wüst

Software Fault Prevention by Language Choice: Why C Is Not My Favorite Language
Richard J. Fateman

Quantum Computing and Communication
Paul E. Black, D. Richard Kuhn, and Carl J. Williams

Exception Handling
Peter A. Buhr, Ashif Harji, and W. Y. Russell Mok

Breaking the Robustness Barrier: Recent Progress on the Design of the Robust Multimodal System
Sharon Oviatt

Using Data Mining to Discover the Preferences of Computer Criminals
Donald E. Brown and Louise F. Gunderson

Volume 57

On the Nature and Importance of Archiving in the Digital Age
Helen R. Tibbo

Preserving Digital Records and the Life Cycle of Information
Su-Shing Chen

Managing Historical XML Data
Sudarshan S. Chawathe

Adding Compression to Next-Generation Text Retrieval Systems
Nivio Ziviani and Edleno Silva de Moura

Are Scripting Languages Any Good? A Validation of Perl, Python, Rexx, and Tcl against C, C++, and Java
Lutz Prechelt

344 CONTENTS OF VOLUMES IN THIS SERIES

Issues and Approaches for Developing Learner-Centered Technology
Chris Quintana, Joseph Krajcik, and Elliot Soloway

Personalizing Interactions with Information Systems
Saverio Perugini and Naren Ramakrishnan

Volume 58

Software Development Productivity
Katrina D. Maxwell

Transformation-Oriented Programming: A Development Methodology for High Assurance Software
Victor L. Winter, Steve Roach, and Greg Wickstrom

Bounded Model Checking
Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and

Yunshan Zhu
Advances in GUI Testing

Atif M. Memon
Software Inspections

Marc Roper, Alastair Dunsmore, and Murray Wood
Software Fault Tolerance Forestalls Crashes: To Err Is Human; To Forgive Is Fault Tolerant

Lawrence Bernstein
Advances in the Provisions of System and Software Security—Thirty Years of Progress

Rayford B. Vaughn

Volume 59

Collaborative Development Environments
Grady Booch and Alan W. Brown

Tool Support for Experience-Based Software Development Methodologies
Scott Henninger

Why New Software Processes Are Not Adopted
Stan Rifkin

Impact Analysis in Software Evolution
Mikael Lindvall

Coherence Protocols for Bus-Based and Scalable Multiprocessors, Internet, and Wireless Distributed
Computing Environments: A Survey

John Sustersic and Ali Hurson

Volume 60

Licensing and Certification of Software Professionals
Donald J. Bagert

Cognitive Hacking
George Cybenko, Annarita Giani, and Paul Thompson

The Digital Detective: An Introduction to Digital Forensics
Warren Harrison

Survivability: Synergizing Security and Reliability
Crispin Cowan

Smart Cards
Katherine M. Shelfer, Chris Corum, J. Drew Procaccino, and Joseph Didier

CONTENTS OF VOLUMES IN THIS SERIES 345

Shotgun Sequence Assembly
Mihai Pop

Advances in Large Vocabulary Continuous Speech Recognition
Geoffrey Zweig and Michael Picheny

Volume 61

Evaluating Software Architectures
Roseanne Tesoriero Tvedt, Patricia Costa, and Mikael Lindvall

Efficient Architectural Design of High Performance Microprocessors
Lieven Eeckhout and Koen De Bosschere

Security Issues and Solutions in Distributed Heterogeneous Mobile Database Systems
A. R. Hurson, J. Ploskonka, Y. Jiao, and H. Haridas

Disruptive Technologies and Their Affect on Global Telecommunications
Stan McClellan, Stephen Low, and Wai-Tian Tan

Ions, Atoms, and Bits: An Architectural Approach to Quantum Computing
Dean Copsey, Mark Oskin, and Frederic T. Chong

Volume 62

An Introduction to Agile Methods
David Cohen, Mikael Lindvall, and Patricia Costa

The Timeboxing Process Model for Iterative Software Development
Pankaj Jalote, Aveejeet Palit, and Priya Kurien

A Survey of Empirical Results on Program Slicing
David Binkley and Mark Harman

Challenges in Design and Software Infrastructure for Ubiquitous Computing Applications
Guruduth Banavar and Abraham Bernstein

Introduction to MBASE (Model-Based (System) Architecting and Software Engineering)
David Klappholz and Daniel Port

Software Quality Estimation with Case-Based Reasoning
Taghi M. Khoshgoftaar and Naeem Seliya

Data Management Technology for Decision Support Systems
Surajit Chaudhuri, Umeshwar Dayal, and Venkatesh Ganti

Volume 63

Techniques to Improve Performance Beyond Pipelining: Superpipelining, Superscalar, and VLIW
Jean-Luc Gaudiot, Jung-Yup Kang, and Won Woo Ro

Networks on Chip (NoC): Interconnects of Next Generation Systems on Chip
Theocharis Theocharides, Gregory M. Link, Narayanan Vijaykrishnan, and

Mary Jane Irwin
Characterizing Resource Allocation Heuristics for Heterogeneous Computing Systems

Shoukat Ali, Tracy D. Braun, Howard Jay Siegel, Anthony A. Maciejewski, Noah Beck,
Ladislau Bölöni, Muthucumaru Maheswaran, Albert I. Reuther, James P. Robertson,
Mitchell D. Theys, and Bin Yao

Power Analysis and Optimization Techniques for Energy Efficient Computer Systems
Wissam Chedid, Chansu Yu, and Ben Lee

Flexible and Adaptive Services in Pervasive Computing
Byung Y. Sung, Mohan Kumar, and Behrooz Shirazi

346 CONTENTS OF VOLUMES IN THIS SERIES

Search and Retrieval of Compressed Text
Amar Mukherjee, Nan Zhang, Tao Tao, Ravi Vijaya Satya, and Weifeng Sun

Volume 64

Automatic Evaluation of Web Search Services
Abdur Chowdhury

Web Services
Sang Shin

A Protocol Layer Survey of Network Security
John V. Harrison and Hal Berghel

E-Service: The Revenue Expansion Path to E-Commerce Profitability
Roland T. Rust, P. K. Kannan, and Anupama D. Ramachandran

Pervasive Computing: A Vision to Realize
Debashis Saha

Open Source Software Development: Structural Tension in the American Experiment
Coskun Bayrak and Chad Davis

Disability and Technology: Building Barriers or Creating Opportunities?
Peter Gregor, David Sloan, and Alan F. Newell

Volume 65

The State of Artificial Intelligence
Adrian A. Hopgood

Software Model Checking with SPIN
Gerard J. Holzmann

Early Cognitive Computer Vision
Jan-Mark Geusebroek

Verification and Validation and Artificial Intelligence
Tim Menzies and Charles Pecheur

Indexing, Learning and Content-Based Retrieval for Special Purpose Image Databases
Mark J. Huiskes and Eric J. Pauwels

Defect Analysis: Basic Techniques for Management and Learning
David N. Card

Function Points
Christopher J. Lokan

The Role of Mathematics in Computer Science and Software Engineering Education
Peter B. Henderson

Volume 66

Calculating Software Process Improvement’s Return on Investment
Rini Van Solingen and David F. Rico

Quality Problem in Software Measurement Data
Pierre Rebours and Taghi M. Khoshgoftaar

Requirements Management for Dependable Software Systems
William G. Bail

Mechanics of Managing Software Risk
William G. Bail

CONTENTS OF VOLUMES IN THIS SERIES 347

The PERFECT Approach to Experience-Based Process Evolution
Brian A. Nejmeh and William E. Riddle

The Opportunities, Challenges, and Risks of High Performance Computing in Computational Science and
Engineering

Douglass E. Post, Richard P. Kendall, and Robert F. Lucas

Volume 67

Broadcasting a Means to Disseminate Public Data in a Wireless Environment—Issues and Solutions
A. R. Hurson, Y. Jiao, and B. A. Shirazi

Programming Models and Synchronization Techniques for Disconnected Business Applications
Avraham Leff and James T. Rayfield

Academic Electronic Journals: Past, Present, and Future
Anat Hovav and Paul Gray

Web Testing for Reliability Improvement
Jeff Tian and Li Ma

Wireless Insecurities
Michael Sthultz, Jacob Uecker, and Hal Berghel

The State of the Art in Digital Forensics
Dario Forte

Volume 68

Exposing Phylogenetic Relationships by Genome Rearrangement
Ying Chih Lin and Chuan Yi Tang

Models and Methods in Comparative Genomics
Guillaume Bourque and Louxin Zhang

Translocation Distance: Algorithms and Complexity
Lusheng Wang

Computational Grand Challenges in Assembling the Tree of Life: Problems and Solutions
David A. Bader, Usman Roshan, and Alexandros Stamatakis

Local Structure Comparison of Proteins
Jun Huan, Jan Prins, and Wei Wang

Peptide Identification via Tandem Mass Spectrometry
Xue Wu, Nathan Edwards, and Chau-Wen Tseng

Volume 69

The Architecture of Efficient Multi-Core Processors: A Holistic Approach
Rakesh Kumar and Dean M. Tullsen

Designing Computational Clusters for Performance and Power
Kirk W. Cameron, Rong Ge, and Xizhou Feng

Compiler-Assisted Leakage Energy Reduction for Cache Memories
Wei Zhang

Mobile Games: Challenges and Opportunities
Paul Coulton, Will Bamford, Fadi Chehimi, Reuben Edwards, Paul Gilbertson, and

Omer Rashid
Free/Open Source Software Development: Recent Research Results and Methods

Walt Scacchi

348 CONTENTS OF VOLUMES IN THIS SERIES

Volume 70

Designing Networked Handheld Devices to Enhance School Learning
Jeremy Roschelle, Charles Patton, and Deborah Tatar

Interactive Explanatory and Descriptive Natural-Language Based Dialogue for Intelligent Information
Filtering

John Atkinson and Anita Ferreira
A Tour of Language Customization Concepts

Colin Atkinson and Thomas Kühne
Advances in Business Transformation Technologies

Juhnyoung Lee
Phish Phactors: Offensive and Defensive Strategies

Hal Berghel, James Carpinter, and Ju-Yeon Jo
Reflections on System Trustworthiness

Peter G. Neumann

Volume 71

Programming Nanotechnology: Learning from Nature
Boonserm Kaewkamnerdpong, Peter J. Bentley, and Navneet Bhalla

Nanobiotechnology: An Engineer’s Foray into Biology
Yi Zhao and Xin Zhang

Toward Nanometer-Scale Sensing Systems: Natural and Artificial Noses as Models for Ultra-Small,
Ultra-Dense Sensing Systems

Brigitte M. Rolfe
Simulation of Nanoscale Electronic Systems

Umberto Ravaioli
Identifying Nanotechnology in Society

Charles Tahan
The Convergence of Nanotechnology, Policy, and Ethics

Erik Fisher

	Advances in Computer
	Copyright Page
	Contents
	Contributors
	Preface
	Chapter 1. DARPA’s HPCS Program: History, Models, Tools, Languages
	1. Historical Background
	2. Productivity Systems Modeling
	3. Productivity Evaluation on Emerging Architectures
	4. The DARPA HPCS Language Project
	5. Research on Defining and Measuring Productivity
	6. The HPC Challenge Benchmark Suite
	7. Summary: The DARPA HPCS Program
	References

	Chapter 2. Productivity in High-Performance Computing
	1. Introduction
	2. A General Formulation
	3. Factors Determining HPC Productivity
	4. A SpecialTheory of Productivity
	5. A User-based Model of Productivity
	6. Software Development & Productivity
	7. Related Works
	8. Conclusions
	References

	Chapter 3. Performance Prediction and Ranking of Supercomputers
	1. Introduction
	2. Methods for Predicting Performance
	3. A Method for Weighting Benchmarks
	4. Examples
	5. Using End-to-End Runtimes
	6. Using BasicTrace Data
	7. Application-Independent Rankings
	8. Conclusion
	Acknowledgments
	References

	Chapter 4. Sampled Processor Simulation: A Survey
	1. Introduction
	2. Trace-Driven versus Execution-Driven Simulation
	3. Sampled Simulation
	4. Simulation Speed
	5. Representative Sampling Units
	6. Architecture State
	7. Microarchitecture State
	8. Case Studies
	9. Summary
	Acknowledgments
	References

	Chapter 5. Distributed Sparse Matrices for Very High Level Languages
	1. Introduction
	2. Sparse Matrices: A User’s View
	3. Data Structures and Storage
	4. Operations on Distributed Sparse Matrices
	5. SSCA #2 Graph Analysis Benchmark
	6. Looking Forward: A Next-Generation Parallel Sparse Library
	7. Conclusion
	References

	Chapter 6. Bibliographic Snapshots of High-Performance/High-Productivity Computing
	1. Introduction
	2. Computational Environments in Government, Academia and Industry
	References

	3. Computational Science Education (CSE)
	References

	4. Supercomputing Architecture
	References

	5. Some HPC Issues
	References

	6. Benchmarking Issues and Concerns
	References

	7. AccelerationTechniques for HPC Applications
	References

	8. The Race for Petaflop Computing
	References

	9. Influences of Floating-Point Arithmetic on Computational Results
	References

	10. Industrial HPC Progress
	References

	11. Access to On-Demand HPC
	References

	12. A Few HPC Videos
	References

	Author Index
	Subject Index
	Contents of Volumes inThis Series

