

Advances in

COMPUTERS

VOLUME 69

This page intentionally left blank

Advances in

COMPUTERS
Architectural Issues

EDITED BY

MARVIN V. ZELKOWITZ
Department of Computer Science
and Institute for Advanced Computer Studies
University of Maryland
College Park, Maryland

VOLUME 69

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD
PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier
84 Theobald’s Road, London WC1X 8RR, UK
Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
525 B Street, Suite 1900, San Diego, CA 92101-4495, USA

First edition 2007

Copyright © 2007 Elsevier Inc. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written
permission of the publisher

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford,
UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@elsevier.com. Alter-
natively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/
permissions, and selecting Obtaining permission to use Elsevier material

Notice
No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a
matter of products liability, negligence or otherwise, or from any use or operation of any methods, products,
instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in
particular, independent verification of diagnoses and drug dosages should be made

ISBN-13: 978-0-12-373745-8

ISSN: 0065-2458

For information on all Academic Press publications
visit our website at books.elsevier.com

Printed and bound in USA

07 08 09 10 11 10 9 8 7 6 5 4 3 2 1

Contents

CONTRIBUTORS . ix
PREFACE . xiii

The Architecture of Efficient Multi-Core Processors: A Holistic
Approach

Rakesh Kumar and Dean M. Tullsen

1. Introduction . 3
2. The Move to Multi-Core Processors . 5
3. Holistic Design for Adaptability: Heterogeneous Architectures 9
4. Amortizing Overprovisioning through Conjoined Core Architectures . . . 45
5. Holistic Design of the Multi-Core Interconnect 62
6. Summary and Conclusions . 81

Acknowledgements . 82
References . 82

Designing Computational Clusters for Performance and Power

Kirk W. Cameron, Rong Ge, and Xizhou Feng

1. Introduction . 90
2. Background . 91
3. Single Processor System Profiling . 96
4. Computational Cluster Power Profiling . 98
5. Low Power Computational Clusters . 112
6. Power-Aware Computational Clusters . 125
7. Conclusions . 149

References . 149

v

vi CONTENTS

Compiler-Assisted Leakage Energy Reduction for Cache Memories

Wei Zhang

1. Introduction . 156
2. Related Work . 159
3. Static Next Sub-Bank Prediction for Drowsy Instruction Caches 161
4. Compiler-Assisted Loop-Based Data Cache Leakage Reduction 170
5. Evaluation Methodology . 172
6. Conclusion . 186

References . 187

Mobile Games: Challenges and Opportunities

Paul Coulton, Will Bamford, Fadi Chehimi, Reuben Edwards, Paul Gilbertson, and
Omer Rashid

1. Introduction . 192
2. Challenges . 193
3. Opportunities . 217
4. Conclusions . 239

Acknowledgements . 239
References . 240

Free/Open Source Software Development: Recent Research Results
and Methods

Walt Scacchi

1. Introduction . 244
2. Individual Participation in FOSSD Projects 248
3. Resources and Capabilities Supporting FOSSD 253
4. Cooperation, Coordination, and Control in FOSS Projects 260
5. Alliance Formation, Inter-project Social Networking and Community De-

velopment . 265
6. FOSS as a Multi-project Software Ecosystem 270
7. FOSS as a Social Movement . 274
8. Research Methods for Studying FOSS . 277
9. Discussion . 284

CONTENTS vii

10. Conclusions . 286
Acknowledgements . 287
References . 287

AUTHOR INDEX . 297
SUBJECT INDEX . 307
CONTENTS OF VOLUMES IN THIS SERIES 319

This page intentionally left blank

Contributors

Will Bamford graduated from Lancaster University in 2005 with a BSc in IT and
Media Communications. Currently in his second year of a PhD at Lancaster Univer-
sity performing research into novel mobile applications, with a focus on harnessing
new mobile technologies such as GPS, RFID, Bluetooth and other mobile sensors
such as 3D accelerometers and combining these with emerging web technologies
and services to create new social/gaming experiences for mobile devices.

Kirk W. Cameron is an associate professor in the Department of Computer Science
and director of the Scalable Performance (SCAPE) Laboratory at Virginia Polytech-
nic Institute and State University. His research interests include high-performance
and grid computing, parallel and distributed systems, computer architecture, power-
aware systems, and performance evaluation and prediction. Cameron received a PhD
in computer science from Louisiana State University. He is a member of the IEEE
and the IEEE Computer Society. Contact him at cameron@vt.edu.

Fadi Chehimi is an experienced Symbian programmer working for Mobica Ltd and
studying part-time for a PhD at Lancaster University. His research interests are based
around novel tools and methodologies for 3-D graphics, imaging and interactive mo-
bile advertising on mobile phones.

Paul Coulton is a Senior Lecturer in Mobile Applications and was one of fifty
mobile developers worldwide, selected from a community of two million, to be a
Forum Nokia Champion. He has been a pioneer of mobile games particularly those
incorporating novel interfaces and location based information and continues to drive
innovation in the sector. Paul is a regular speaker at international conferences, in-
cluding the Mobile GDC, and is highly respected both in the industrial and academic
communities.

Reuben Edwards is Lecturer in games and m-commerce and has been at the fore-
front of innovative multimedia application development for over ten years. He is

ix

x CONTRIBUTORS

renowned for his extensive knowledge of development environments across all plat-
forms and has also pioneered the use of many platforms in technology education and
produced many cutting edge courses.

Xizhou Feng is a Research Associate in the Department of Computer Science at
Virginia Polytechnic Institute and State University. His research interests include
bioinformatics, computational biology, distributed system, high performance com-
puting, and parallel algorithms. He received a PhD in Computer Science and En-
gineering from the University of South Carolina, and MS degree in Engineering
Thermophysics from Tsinghua University, China. He is a member of the IEEE and
the IEEE Computer Society. Contact him at fengx@cs.vt.edu.

Rong Ge is a PhD candidate in the Department of Computer Science and a re-
searcher at the SCAPE Laboratory at Virginia Tech. Her research interests include
performance modeling and analysis, parallel and distributed systems, power-aware
systems, high-performance computing, and computational science. Ge received the
BS degree and MS degree in Fluid Mechanics from Tsinghua University, China, and
the MS degree in computer science from the University of South Carolina. She is a
member of the IEEE, ACM and Upsilon Pi Epsilon. Contact her at ge@cs.vt.edu.

Paul Gilbertson is currently studying for his PhD at the Department of Commu-
nication Systems at Lancaster University in the UK. He has worked with Windows
systems of all sizes, from Active Directory networks, to Windows Mobile phones
and PDAs both as a programmer and whilst at APT in London. Paul is currently de-
veloping location aware software using .NET, Java, and Symbian OS technologies
as part of his PhD.

Rakesh Kumar is an Assistant Professor in the Department of Electrical and Com-
puter Engineering at the University of Illinois, Urbana-Champaign. His research
interests include multicore and multithreaded architectures, low-power architectures,
and on-chip interconnects. Kumar received a PhD in computer engineering from the
University of California at San Diego, and a BS in computer science and engineer-
ing from the Indian Institute of Technology, Kharagpur. He is a member of the ACM.
Contact him at rakeshk@uiuc.edu.

Omer Rashid is a PhD student at Lancaster University with over 3 years experience
in research and mobile application development with Java. His research mainly fo-
cuses on novel networked mobile entertainment applications and his work has gained
accreditation from Nokia and recently ACM. He is also a member of Mobile Radicals
research initiative and the IEEE.

CONTRIBUTORS xi

Walt Scacchi received a PhD in Information and Computer Science at the University
of California, Irvine in 1981. From 1981 until 1998, he was on the faculty at the Uni-
versity of Southern California. In 1999, he joined the Institute for Software Research
at UC Irvine, and in 2002 became associate director for research at the Computer
Game Culture and Technology Laboratory (http://www.ucgamelab.net). His research
interests include open source software development, networked and grid-based com-
puter games, knowledge-based systems for modeling and simulating complex engi-
neering and business processes, developing decentralized heterogeneous information
systems, and electronic commerce/business. Dr. Scacchi is a member of ACM, IEEE,
AAAI, and the Software Process Association (SPA). He is an active researcher with
more than 150 research publications and has directed 45 externally funded research
projects. He also has had numerous consulting and visiting scientist positions with a
variety of firms and research laboratories. In 2007, he serves as General Chair of the
3rd IFIP International Conference on Open Source Systems, Limerick, IE.

Dean Tullsen is a Professor in the Computer Science and Engineering Department
at the University of California, San Diego. He received his PhD from the University
of Washington in 1996, where his dissertation was Simultaneous Multithreading. He
received his BS and MS degrees in Computer Engineering from UCLA. He was a
computer architect for AT&T Bell Labs, and taught Computer Science for a year at a
University in China prior to returning for his PhD. His research interests include the
architecture of multithreading processors of all types (including simultaneous multi-
threading, multi-core, or the gray area in between), compiling for such architectures,
and high performance architectures in general.

Wei Zhang received the BS degree in computer science from the Peking University
in China in 1997, the MS from the Institute of Software, Chinese Academy of Sci-
ences in 2000, and the PhD degree in computer science and engineering from the
Pennsylvania State University in 2003. He is an assistant professor in the Electrical
and Computer Engineering Department at Southern Illinois University Carbondale.
His current research interests are in embedded systems, low-power computing, com-
puter architecture and compiler. His research has been supported by NSF, Altera and
SIUC. He is a member of the IEEE and ACM. He has served as a member of the
technical program committees for several IEEE/ACM conferences and workshops.

This page intentionally left blank

Preface

In volume 69 of the Advances in Computers we present five chapters that discuss
significant changes to both the hardware and software of present day computers.
These chapters in the ever-changing landscape of information technology address
how computers are evolving to address our differing needs for information tech-
nology as the computer becomes more ubiquitous in our everyday life. This series
began back in 1960 and annually we present three volumes that offer approximately
18 chapters that describe the latest technology in the use of computers today.

The first chapter, “The Architecture of Efficient Multi-Core Processors: A Holistic
Approach” by Rakesh Kumar and Dean M. Tullsen discusses the recent development
of multicore processors. Moore’s Law, essentially the doubling of computer power
every 18 months, while not a natural law of the universe, has been amazingly true for
over 30 years. However, as processor speeds have been increasing to clock rates of
over 3 GHz (109 cycles per second), it is not clear how much faster current technol-
ogy can push processors. One way to increase this power is to put multiple processors
on the same chip, thus using each clock cycle to run an instruction in each separate
“core,” and hence double processing power. Kumar and Tullsen discuss how efficient
multicore processors can be developed.

Chapter 2, “Designing Computational Clusters for Performance and Power” by
Kirk W. Cameron, Rong Ge and Xizhou Feng, continues with the development of
high-performance processors discussed in Chapter 1. An important attribute, not of-
ten cited when discussing newer high-speed computers, is the generation of heat.
As machines get faster and their clock rates increase, they generate more heat, thus
requiring more powerful cooling devices like fans to get rid of this heat. This also
means it takes more energy (and hence cost) to run these computers. In this chapter
the authors discuss an architectural process that considers both maximal performance
as well as minimizing power requirements in order to improve on the development
of high speed processors.

In Chapter 3,“Compiler-Assisted Leakage Energy Reduction for Cache Mem-
ories,” Wei Zhang considers the same heat problem discussed in Chapter 2, but
addresses the issue of cache memories. Since processor speeds (on the order of 109

cycles per second) is much faster than the speeds of accessing memory (on the order

xiii

xiv PREFACE

of 108 cycles per second), one way to increase processor performance is to keep a
copy of part of main memory in the processor as a high-speed cache memory. This
cache memory has the same heat generation problem discussed in the previous chap-
ter. Dr. Wei discusses mechanisms to minimize energy (i.e., heat) losses in these
memories by using compilation techniques to control cache accesses.

In “Mobile Games: Challenges and Opportunities” (Chapter 4) by Paul Coulton,
Will Bamford, Fadi Chehimi, Reuben Edwards, Paul Gilbertson, and Omer Rashid,
the authors discuss a new computer technology that is probably the fastest growing
market—that of mobile phones. Phones have grown far beyond the simple concept of
making a telephone call when not tethered by a wire to a land-based telephone net-
work. Phones are powerful miniature computers with tiny console screens and only a
few keys (the digits plus a few others) rather than a full desktop computer keyboard.
Users often have the desire to play a game while waiting for other events to happen.
So the design problem for mobile games is quite different from the established video
game industry. You need a game that works on a small screen, only has a few keys for
input, and can be played in short bursts of time. This chapter discusses these design
constraints and future directions for this growing industry.

In the final chapter of this volume, “Free/Open Source Software Development:
Recent Research Results and Methods” (Chapter 5), Walt Scacchi discusses open
source development. Rather than have software developed and sold by a company,
a group of individuals organize to develop and give away the software for free. The
basic question is “Why?”. In this chapter, the author discusses the sociology of how
such groups form, why they do it, and how companies still make a profit on this form
of development. Open Source is probably the most significant change in building
some complex systems over the past 10 years, and it promises to have a profound
effect on new software development in the future.

I hope that you find these chapters to be of value to you. I am always looking for
new topics to explore. If we have not covered a relevant topic for several years, or if
you wish to contribute a topic you believe you are an expert on, please let me know.
I can be reached at mvz@cs.umd.edu.

Marvin Zelkowitz
University of Maryland and Fraunhofer Center, Maryland

College Park, Maryland

The Architecture of Efficient Multi-Core
Processors: A Holistic Approach

RAKESH KUMAR

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
Urbana, IL 61801
USA
rakeshk@uiuc.edu

DEAN M. TULLSEN

Department of Computer Science and Engineering
University of California, San Diego
La Jolla, CA 92093-0404
USA
tullsen@cs.ucsd.edu

Abstract
The most straightforward methodology for designing a multi-core architecture
is to replicate an off-the-shelf core design multiple times, and then connect
the cores together using an interconnect mechanism. However, this methodol-
ogy is “multi-core oblivious” as subsystems are designed/optimized unaware of
the overall chip-multiprocessing system they would become parts of. The chap-
ter demonstrates that this methodology is inefficient in terms of area/power. It
recommends a holistic approach where the subsystems are designed from the
ground up to be effective components of a complete system.

The inefficiency in “multi-core oblivious” designs comes from many sources.
Having multiple replicated cores results in an inability to adapt to the demands
of execution workloads, and results in either underutilization or overutilization
of processor resources. Single-ISA (instruction-set architecture) heterogeneous
multi-core architectures host cores of varying power/performance characteristics
on the die, but all cores are capable of running the same ISA. Such a processor
can result in significant power savings and performance improvements if the
applications are mapped to cores judiciously. The paper also presents holistic
design methodologies for such architectures. Another source of inefficiency is

ADVANCES IN COMPUTERS, VOL. 69 1 Copyright © 2007 Elsevier Inc.
ISSN: 0065-2458/DOI: 10.1016/S0065-2458(06)69001-3 All rights reserved.

2 R. KUMAR AND D.M. TULLSEN

blind replication of over-provisioned hardware structures. Conjoined-core chip
multiprocessing allows adjacent cores of a multi-core architecture to share some
resources. This can result in significant area savings with little performance
degradation. Yet another source of inefficiency is the interconnect. The intercon-
nection overheads can be very significant for a “multi-core oblivious” multi-core
design—especially as the number of cores increases and the pipelines get deeper.
The paper demonstrates the need to co-design the cores, the memory and the
interconnection to address the inefficiency problem, and also makes several sug-
gestions regarding co-design.

1. Introduction . 3
1.1. A Naive Design Methodology for Multi-Core Processors 3
1.2. A Holistic Approach to Multi-Core Design . 4

2. The Move to Multi-Core Processors . 5
2.1. Early Multi-Core Efforts . 7

3. Holistic Design for Adaptability: Heterogeneous Architectures 9
3.1. Workload Diversity . 10
3.2. Single-ISA Heterogeneous Multi-Core Architectures 10
3.3. Power Advantages of Architectural Heterogeneity 19
3.4. Overview of Other Related Proposals . 31
3.5. Designing Multi-Cores from the Ground Up 32

4. Amortizing Overprovisioning through Conjoined Core Architectures 45
4.1. Baseline Architecture . 46
4.2. Conjoined-Core Architectures . 47
4.3. Simple Sharing . 53
4.4. Intelligent Sharing of Resources . 58
4.5. A Unified Conjoined-Core Architecture . 61

5. Holistic Design of the Multi-Core Interconnect . 62
5.1. Interconnection Mechanisms . 62
5.2. Shared Bus Fabric . 62
5.3. P2P Links . 65
5.4. Crossbar Interconnection System . 66
5.5. Modeling Interconnect Area, Power, and Latency 67
5.6. Modeling the Cores . 69
5.7. Shared Bus Fabric: Overheads and Design Issues 71
5.8. Shared Caches and the Crossbar . 76
5.9. An Example Holistic Approach to Interconnection 79

6. Summary and Conclusions . 81
Acknowledgements . 82
References . 82

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 3

1. Introduction

The microprocessor industry has seen a tremendous performance growth since its
inception. The performance of processors has increased by over 5000 times since the
time Intel introduced the first general-purpose microprocessor [8]. This increase in
processor performance has been fueled by several technology shifts at various levels
of the processor design flow—architecture, tools and techniques, circuits, processes,
and materials. Each of these technology shifts not only provide a jump in perfor-
mance, but also require us to rethink the basic assumptions and processes that govern
how we architect systems.

Specifically, at the architectural level, we have moved from scalar processing,
where a processor executes one instruction every clock cycle, to superscalar process-
ing, to out-of-order instruction execution, to on-chip hardware multithreading (e.g.,
simultaneous multithreading). We are now at the cusp of another major technology
shift at the architectural level. This technology shift is the introduction of multi-core
architectures—i.e., architectures with multiple processing nodes on the same die.
Such processors, also called chip multiprocessors (CMPs), not only support multiple
streams of program execution at the same time, but provide productivity advantages
over monolithic processors due to the relative simplicity of the cores and the shorter
design cycles for the processor core. Such processors can also make better use of
the hardware resources, as the marginal utility of transistors is higher for a smaller
processing node with a smaller number of transistors.

But like many other technological shifts, we must also change the way we design
these architectures to take full advantage of the new technology. How, then, do we
approach the design of such an architecture? What traditional architectural assump-
tions no longer apply? How do we design the components of such a system so that
the whole processor meets our design goals?

This chapter seeks to address these questions.

1.1 A Naive Design Methodology for Multi-Core Processors

One suggested (as well as practiced) methodology for multi-core design is to
take an off-the-shelf core design, perhaps optimize it for power and/or performance,
replicate it multiple times, and then connect the cores together using a good inter-
connection mechanism in a way that maximizes performance for a given area and/or
power budget. This is a clean, relatively easy way to design a multi-core processor
because one design team can work on the core, another can work on the caches, the
third can work on the interconnect, and then there can be a team of chip integrators
who will put them all together to create a multi-core processor. Such a methodology

4 R. KUMAR AND D.M. TULLSEN

encourages modularity as well as reuse, and serves to keep the design costs manage-
able.

However, this methodology is “multi-core oblivious.” This is because each subsys-
tem that constitutes the final chip multiprocessing system is designed and optimized
without any cognizance of the overall system it would become a part of. For exam-
ple, a methodology like the above forces each subsystem to target the entire universe
of applications (i.e., a set of all possible applications that a processor is expected to
run).

This chapter shows that “multi-core oblivious” designs result in inefficient proces-
sors in terms of area and power. This is because the above constraint results in either
overutilization or underutilization of processor resources. For example, Pentium Ex-
treme is a dual-core Intel processor that is constructed by replicating two identical
off-the-shelf cores. While the area and power cost of duplicating cores is 2X (in fact,
even more considering the glue logic required), the performance benefits are signif-
icantly lower [66]. That paper shows that while the costs are superlinear with the
number of cores for all “multi-core oblivious” designs, the benefits tend to be highly
sublinear.

1.2 A Holistic Approach to Multi-Core Design

In the era of uniprocessor microprocessors, each CPU core was expected to pro-
vide high general-purpose performance (that is, provide high performance for a wide
range of application characteristics), high energy efficiency, reliability, and high
availability. In a multi-core processor, the user will have the same expectations,
but they will be applied to the entire processor. In this architecture, then, no sin-
gle component (e.g., processor cores, caches, interconnect components) need meet
any of those constraints, as long as the whole system (the processor) meets those
constraints. This presents a degree of freedom not previously available to architects
of mainstream high-performance processors.

The multi-core oblivious approach, for example, would build a system out of reli-
able processor cores. The holistic approach designs each core to be part of a reliable
system. The difference between these two approaches is significant. The implications
are actually relatively well understood in the realm of reliability. We can build a reli-
able and highly available multi-core system, even if the individual cores are neither.
However, the implications of a holistic approach to delivering high general-purpose
performance and energy efficiency have not been explored, and that is the focus of
this chapter. As an example of our holistic approach to processor design, we show
that a processor composed of general-purpose cores does not deliver the same av-
erage general-purpose performance as a processor composed of specialized cores,
none optimized to run every program well.

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 5

Section 3 discusses how “multi-core oblivious” designs fail to adapt to workload
diversity. It presents single-ISA heterogeneous multi-core architectures as a holis-
tic solution to adapting to diversity. These architectures can provide significantly
higher throughput for a given area or power budget. They can also be used to reduce
processor power dissipation. That section also discusses methodologies for holis-
tic, ground-up design of multi-core architecture and demonstrates their benefits over
processors designed using off-the-shelf components.

Section 4 introduces overprovisioning as another source of inefficiency in multi-
core architectures that are designed by blindly replicating cores. Such architectures
unnecessarily multiply the cost of overprovisioning by the number of compute
nodes. Conjoined-core chip-multiprocessing is a holistic approach to addressing
overprovisioning. Conjoined-core multi-core processors have adjacent cores shar-
ing large, overprovisioned structures. Intelligently scheduling accesses to the shared
resources enables conjoined-core architectures to achieve significantly higher effi-
ciency (throughput/area) than their “multi-core oblivious” counterparts.

Section 5 details the overheads that conventional interconnection mechanisms en-
tail, especially as the number of cores increases and as transistors get faster. It shows
that overheads become unmanageable very soon and require a holistic approach
to designing multi-cores where the interconnect is co-designed with the cores and
the caches. A high-bandwidth interconnect, for example, can actually decrease per-
formance if it takes resources needed for cores and caches. Several examples are
presented for the need to co-design.

2. The Move to Multi-Core Processors

This section provides background information on multi-core architectures and ex-
plains why we are seeing the entire industry now move in this architectural direction.
We also provide an overview of some groundbreaking multi-core efforts.

The processor industry has made giant strides in terms of speed and performance.
The first microprocessor, the Intel 4004 [8], ran at 784 KHz while the microproces-
sors of today run easily in the GHz range due to significantly smaller and faster tran-
sistors. The increase in performance has been historically consistent with Moore’s
law [70] that states that the number of transistors on the processor die doubles every
eighteen months due to shrinking of the transistors every successive process technol-
ogy.

However, the price that one pays for an increment in performance has been go-
ing up rapidly as well. For example, as Horowitz et al. [47] show, the power cost
for squeezing a given amount of performance has been going up linearly with the
performance of the processor. This represents, then, a super-exponential increase in

6 R. KUMAR AND D.M. TULLSEN

power over time (performance has increased exponentially, power/performance in-
creases linearly, and total power is the product of those terms). Similarly, the area
cost for squeezing a given amount of performance has been going up as well.

An alternative way to describe the same phenomenon is that the marginal utility
of each transistor we add to a processor core is decreasing. While area and power
are roughly linear with the number of transistors, performance is highly sublinear
with the number of transistors. Empirically, it has been close to the square root of
the number of transistors [46,45]. The main reason why we are on the wrong side
of the square law is that we have already extracted the easy ILP (instruction-level
parallelism) through techniques like pipelining, superscalar processing, out-of-order
processing, etc. The ILP that is left is difficult to extract. However, technology keeps
making transistors available to us at the rate predicted by Moore’s Law (though it
has slowed down, of late). We have reached a point where we have more transistors
available than we know how to make effective use of in a conventional monolithic
processor environment.

Multi-core computing, however, allows us to cheat the square law. Instead of us-
ing all the transistors to construct a monolithic processor targeting high single-thread
performance, we can use the transistors to construct multiple simpler cores where
each core can execute a program (or a thread of execution). Such cores can col-
lectively provide higher many-thread performance (or throughput) than the baseline
monolithic processor at the expense of single-thread performance.

Consider, for example, the Alpha 21164 and Alpha 21264 cores. Alpha 21164
(also called, and henceforth referred to as, EV5) is an in-order processor that was
originally implemented in 0.5 micron technology [17]. Alpha 21264 (also called,
and henceforth referred to as, EV6) is an out-of-order processor that was originally
implemented in 0.35 micron technology [18]. If we assume both the processors to be
mapped to the same technology, an EV6 core would be roughly five times bigger than
an EV5 core. If one were to take a monolithic processor like EV6, and replace it with
EV5 cores, one could construct a multi-core that can support five streams of execu-
tion for the same area budget (ignoring the cost of interconnection and glue logic).
However, for the same technology, the single-thread performance of an EV6 core is
only roughly 2.0–2.2 times that of an EV5 core (assuming performance is propor-
tional to the square root of the number of transistors). Thus, if we replaced an EV6
monolithic processor by a processor with five EV5 cores, the aggregate throughput
would be more than a factor of two higher than the monolithic design for the same
area budget. Similar throughput gains can be shown even for a fixed power budget.
This potential to get significantly higher aggregate performance for the same budget
is the main motivation for multi-core architectures.

Another advantage of multi-core architectures over monolithic designs is im-
proved design productivity. The more complex the core, the higher the design and

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 7

verification costs in terms of time, opportunity, and money. Several recent monolithic
designs have taken several thousand man years worth of work. A multi-core approach
enables deployment of pre-existing cores, thereby bringing down the design and ver-
ification costs. Even when the cores are designed from scratch, the simplicity of the
cores can keep the costs low. With increasing market competition and declining hard-
ware profit margins, the time-to-market of processors is more important than before,
and multi-cores should improve that metric.

2.1 Early Multi-Core Efforts

This section provides an overview of some of the visible general-purpose multi-
core projects that have been undertaken in academia and industry. It does not describe
all multi-core designs, but is biased towards the first few general-purpose multi-core
processors that broke ground for mainstream multi-core computing.

The first multi-core description was the Hydra [43,44], first described in 1994. Hy-
dra was a 4-way chip multiprocessor that integrated four 250 MHz MIPS cores on
the same die. The cores each had 8 KB private instruction and data caches and shared
a 128 KB level-2 cache. Hydra was focused not only on providing hardware paral-
lelism for throughput-oriented applications, but also on providing high single-thread
performance for applications that can be parallelized into threads by a compiler.
A significant amount of support was also provided in the hardware to enable thread-
level speculation efforts. Hydra was never implemented, but an implementation of
Hydra (0.25 micron technology) was estimated to take up 88 mm2 of area.

One of the earliest commercial multi-core proposals, Piranha [23] (description
published in 2000) was an 8-way chip multiprocessor designed at DEC/Compaq
WRL. It was targeted at commercial, throughput-oriented workloads whose per-
formance is not limited by instruction-level parallelism. It integrated eight simple,
in-order processor cores on the die. Each core contained private 64 KB instruc-
tion and data caches and shared a 1 MB L2 cache. The processor also integrated
on the chip functionality required to support scalability of the processor to large
multiprocessing systems. Piranha also was never implemented.

Around the same time as Piranha, Sun started the design of the MAJC 5200 [86].
It was a two-way chip multiprocessor where each core was a four-issue VLIW (very
large instruction word) processor. The processor was targeted at multimedia and Java
applications. Each core had a private 16 KB L1 instruction cache. The cores shared a
16 KB dual-ported data cache. Small L1 caches and the lack of an on-chip L2 cache
made the processor unsuitable for many commercial workloads. One implementation
of MAJC 5200 (0.22 micron technology) took 15 W of power and 220 mm2 of area.
Sun also later came out with other multi-core products, like UltraSparc-IV [83] and
Niagara [55].

8 R. KUMAR AND D.M. TULLSEN

IBM’s multi-core efforts started with Power4 [49]. Power4, a contemporary of
MAJC 5200 and Piranha, was a dual-core processor running at 1 GHz where each
core was a five-issue out-of-order superscalar processor. Each core consisted of a pri-
vate direct-mapped 32 KB instruction cache and a private 2-way 32 KB data cache.
The cores were connected to a shared triply-banked 8-way set-associative L2 cache.
The connection was through a high-bandwidth crossbar switch (called crossbar-
interface unit). Four Power4 chips could be connected together within a multi-chip
module and made to logically share the L2. One implementation of Power4 (in
0.13 micron technology) consisted of 184 million transistors and took up 267 mm2

in die-area.
IBM also later came up with successors to Power4, like Power5 [50] and Power6.

However, IBM’s most ambitious multi-core offering arguably has been Cell [52].
Cell is a multi-ISA heterogeneous chip multiprocessor that consists of one two-way
simultaneous multithreading (SMT) [90,89] dual-issue Power core and eight dual-
issue SIMD (single instruction, multiple data) style Synergistic Processing Element
(SPE) cores on the same die. While the Power core executes the PowerPC instruction
set (while supporting the vector SIMD instruction set at the same time), the SPEs
execute a variable width SIMD instruction set architecture (ISA). The Power core has
a multi-level storage hierarchy—32 KB instruction and data caches, and a 512 KB
L2. Unlike the Power core, the SPEs operate only on their local memory (local store,
or LS). Code and data must be transferred into the associated LS for an SPE to
operate on. LS addresses have an alias in the Power core address map, and transfers
between an individual LS and the global memory are done through DMAs (direct
memory accesses). An implementation of Cell in 90 nm operates at 3.2 GHz, consists
of 234 million transistors and takes 229 mm2 of die area.

The first x86 multi-core processors were introduced by AMD in 2005. At the time
of writing this chapter, AMD offers Opteron [2], Athlon [3], and Turion [1] dual-
core processors serving different market segments. Intel’s dual-core offerings include
Pentium D [10], Pentium Extreme [11], Xeon [12], and Core Duo [9] processors.
The approach Intel has taken so far is to take last-generation, aggressive designs and
put two on a die when space allows, rather than to target less aggressive cores. The
Pentium Processor Extreme includes designs that are both dual-core and hardware
multithreaded on each core.

One constraint for all the above multi-core designs was that they had to be capable
of running legacy code in their respective ISAs. This restricted the degree of freedom
in architecture and design of these processors. Three academic multi-core projects
that were not bound by such constraints were RAW, TRIPS, and WaveScalar.

The RAW [91] processor consists of sixteen identical tiles spread across the die in
a regular two-dimensional pattern. Each tile consists of communication routers, one
scalar core, an FPU (floating-point unit), a 32 KB DCache, and a software-managed

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 9

96 KB ICache. Tiles are sized such that the latency of communication between two
adjacent tiles is always one cycle. Tiles are connected using on-chip networks that
interface with the tiles through the routers. Hardware resources on a RAW processor
(tiles, pins, and the interconnect) are exposed to the ISA. This enables the compiler
to generate aggressive code that maps more efficiently to the underlying computation
substrate.

The TRIPS [76] processor consists of four large cores that are constructed out
of small decentralized, polymorphous structures. The cores can be partitioned into
small execution nodes when a program with high data-level parallelism needs to
be executed. These execution nodes can also be logically chained when executing
streaming programs. Like RAW, the microarchitecture is exposed to the ISA. Unlike
RAW and other multi-cores discussed above, the unit of execution is a hyperblock.
A hyperblock commits only when all instructions belonging to a hyperblock finish
execution.

WaveScalar [84] attempts to move away from Von-Neumann processing in order
to get the full advantage of parallel hardware. It has a dataflow instruction set ar-
chitecture that allows for traditional memory ordering semantics. Each instruction
executes on an ALU (arithmetic logic unit) that sits inside a cache, and explicitly
forwards the result to the dependent instructions. The ALU + cache is arranged as
regular tiles, thereby allowing the communication overheads to be exposed to hard-
ware. Like RAW and TRIPS, wavescalar also supports all the traditional imperative
languages.

There have been multi-core offerings in non-mainstream computing markets as
well. A few examples are Broadcom SiByte (SB1250, SB1255, SB1455) [5], PA-
RISC (PA-8800) [7], Raza Microelectronics’ XLR processor [13] that has eight
MIPS cores, Cavium Networks’ Octeon [6] processor that has 16 MIPS cores, Arm’s
MPCore processor [4], and Microsoft’s Xbox 360 game console [14] that uses a
triple-core PowerPC microprocessor.

3. Holistic Design for Adaptability: Heterogeneous
Architectures

The rest of this chapter discusses various holistic approaches to multi-core design.
Each of these approaches results in processors that are significantly more efficient
than their “multi-core oblivious” counterparts.

First, we discuss the implication of workload diversity on multi-core design and
present a new class of holistically-designed architectures that deliver significant
gains in efficiency. Section 3.1 discusses the diversity present in computer workloads
and how naively-designed multi-core architectures do not adapt well. Section 3.2

10 R. KUMAR AND D.M. TULLSEN

introduces single-ISA heterogeneous multi-core architectures that can adapt to work-
load diversity. That section also discusses the scheduling policies and mechanisms
that are required to effect adaptability. Section 3.3 discusses the power advantages of
the architecture and the corresponding scheduling policies. Section 3.4 provides an
overview of other work evaluating advantages of heterogeneous multi-core architec-
tures. Section 3.5 discusses a holistic design methodology for such architectures.

3.1 Workload Diversity
The amount of diversity among applications that a typical computer is expected to

run can be considerable. For example, there can often be more than a factor of ten
difference in the average performance of SPEC2000 applications gcc and mcf [79].
Even in the server domain there can be diversity among threads. Here the diversity
can be because of batch processing, different threads processing different inputs, or
threads having different priorities. Even in such a homogeneous workload, if each
thread experiences phased behavior, different phases will typically be active in dif-
ferent threads at the same time.

A multi-core oblivious design (i.e., a homogeneous design that consists of iden-
tical cores) can target only a single point efficiently in the diversity spectrum. For
example, a decision might need to be made beforehand if the core should be de-
signed to target gcc or mcf. In either case, an application whose resource demands
are different from those provided by the core will suffer—the resource mismatch
will either result in underutilization of the resulting processor or it will result in low
program performance.

Similarly, there is diversity within applications [79], as different phases of the
same application often have different execution resource needs. Note that this is the
same problem that a general-purpose uniprocessor faces as well, as the same design
is expected to perform well for the entire universe of applications. There is a new
form of diversity, as well, that uniprocessor architectures did not need to account for.
A general-purpose multi-core should also provide good performance whether there
is one thread (program) running, eight threads running, or one hundred.

3.2 Single-ISA Heterogeneous Multi-Core Architectures
To address the poor adaptability of homogeneous multi-core architectures, we

present single-ISA heterogeneous multi-core architectures. That is, architectures
with multiple core types on the same die. The cores are all capable of execut-
ing the same ISA (instruction-set architecture), but represent different points in the
power/performance continuum—for example, a low-power, low-performance core
and a high-power, high-performance core on the same die.

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 11

The advantages of single-ISA heterogeneous architectures stem from two sources.
The first advantage results from a more efficient adaptation to application diversity.
Given a set of diverse applications and heterogeneous cores, we can assign applica-
tions (or phases of applications) to cores such that those that benefit the most from
complex cores are assigned to them, while those that benefit little from complex cores
are assigned to smaller, simpler cores. This allows us to approach the performance
of an architecture with a larger number of complex cores.

FIG. 1. Exploring the potential of heterogeneity: Comparing the throughput of six-core homogeneous
and heterogeneous architectures for different area budgets.

12 R. KUMAR AND D.M. TULLSEN

The second advantage from heterogeneity results from a more efficient use of die
area for a given thread-level parallelism. Successive generations of microprocessors
have been providing diminishing performance returns per chip area [47] as the per-
formance improvement of many microprocessor structures (e.g., cache memories) is
less than linear with their size. Therefore, in an environment with large amounts of
thread-level parallelism (TLP, the number of programs or threads currently available
to run on the system), higher throughputs could be obtained by building a large num-
ber of small processors, rather than a small number of large processors. However,
in practice the amount of thread level parallelism in most systems will vary with
time. This implies that building chip-level multiprocessors with a mix of cores—
some large cores with high single-thread performance and some small cores with
high throughput per die area—is a potentially attractive approach.

To explore the potential from heterogeneity, we model a number of chip mul-
tiprocessing configurations that can be derived from combinations of two existing
off-the-shelf processors from the Alpha architecture family—the EV5 (21164) and
the EV6 (21264) processors. Figure 1 compares the various combinations in terms
of their performance and their total chip area. In this figure, performance is that ob-
tained from the best static mapping of applications constituting multiprogrammed
SPEC2000 workloads to the processor cores. The solid staircase line represents the
maximum throughput obtainable using a homogeneous configuration for a given
area.

We see from this graph that over a large portion of the graph the highest per-
formance architecture for a given area limit, often by a significant margin, is a
heterogeneous configuration. The increased throughput is due to the increased num-
ber of contexts as well as improved processor utilization.

3.2.1 Methodology to Evaluate Multi-Core Architectures
This section discusses the methodological details for evaluating the benefits of

heterogeneous multi-core architectures over their homogeneous counterparts. It also
details the hardware assumptions made for the evaluation and provides the method-
ology for constructing multiprogrammed workloads for evaluation. We also discuss
the simulation details and the evaluation metrics.

3.2.1.1 Supporting Multi-Programming. The primary issue when us-
ing heterogeneous cores for greater throughput is with the scheduling, or assignment,
of jobs to particular cores. We assume a scheduler at the operating system level that
has the ability to observe coarse-grain program behavior over particular intervals,
and move jobs between cores. Since the phase lengths of applications are typically
large [78], this enables the cost of core switching to be piggybacked with the operat-
ing system context-switch overhead. Core switching overheads are modeled in detail

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 13

for the evaluation of dynamic scheduling policies presented in this chapter—ones
where jobs can move throughout execution.

3.2.1.2 Hardware Assumptions. Table I summarizes the configurations
used for the EV5 and the EV6 cores that we use for our throughput-related evalua-
tions. The cores are assumed to be implemented in 0.10 micron technology and are
clocked at 2.1 GHz.

In addition to the individual L1 caches, all the cores share an on-chip 4 MB, 4-way
set-associative, 16-way L2 cache. The cache line size is 128 bytes. Each bank of the
L2 cache has a memory controller and an associated RDRAM channel. The mem-
ory bus is assumed to be clocked at 533 MHz, with data being transferred on both
edges of the clock for an effective frequency of 1 GHz and an effective bandwidth
of 2 GB/s per bank. A fully-connected matrix crossbar interconnect is assumed be-
tween the cores and the L2 banks. All L2 banks can be accessed simultaneously, and
bank conflicts are modeled. The access time is assumed to be 10 cycles. Memory la-
tency was set to be 150 ns. We assume a snoopy bus-based MESI coherence protocol
and model the writeback of dirty cache lines for every core switch.

Table I also presents the area occupied by the core. These were computed using
a methodology outlined in Section 3.3. As can be seen from the table, a single EV6
core occupies as much area as 5 EV5 cores.

To evaluate the performance of heterogeneous architectures, we perform compar-
isons against homogeneous architectures occupying equivalent area. We assume that
the total area available for cores is around 100 mm2. This area can accommodate
a maximum of 4 EV6 cores or 20 EV5 cores. We expect that while a 4-EV6 ho-
mogeneous configuration would be suitable for low-TLP (thread-level parallelism)
environments, the 20-EV5 configuration would be a better match for the cases where
TLP is high. For studying heterogeneous architectures, we choose a configuration
with 3 EV6 cores and 5 EV5 cores with the expectation that it would perform well

TABLE I
CONFIGURATION AND AREA OF THE EV5 AND EV6 CORES

Processor EV5 EV6

Issue-width 4 6 (OOO)
I-Cache 8 KB, DM 64 KB, 2-way
D-Cache 8 KB, DM 64 KB, 2-way
Branch Pred. 2K-gshare hybrid 2-level
Number of MSHRs 4 8
Number of threads 1 1
Area (in mm2) 5.06 24.5

14 R. KUMAR AND D.M. TULLSEN

over a wide range of available thread-level parallelism. It would also occupy roughly
the same area.

3.2.1.3 Workload Construction. All our evaluations are done for vari-
ous thread counts ranging from one through a maximum number of available proces-
sor contexts. Instead of choosing a large number of benchmarks and then evaluating
each number of threads using workloads with completely unique composition, we
instead choose a relatively small number of SPEC2000 [82] benchmarks (8) and
then construct workloads using these benchmarks. These benchmarks are evenly
distributed between integer benchmarks (crafty, mcf, eon, bzip2) and floating-point
benchmarks (applu, wupwise, art, ammp). Also, half of them (applu, bzip2, mcf,
wupwise) have a large memory footprint (over 175 MB), while the other half (ammp,
art, crafty, eon) have memory footprints of less than 30 MB.

All the data points are generated by evaluating 8 workloads for each case and then
averaging the results. The 8 workloads at each level of threading are generated by
constructing subsets of the workload consistent with the methodology in [90,81].

3.2.1.4 Simulation Approach. Benchmarks are simulated using SMT-
SIM [87], a cycle-accurate execution-driven simulator that simulates an out-of-order,
simultaneous multithreading processor [90]. SMTSIM executes unmodified, stat-
ically linked Alpha binaries. The simulator was modified to simulate the various
multi-core architectures.

The Simpoint tool [78] was used to find good representative fast-forward distances
for each benchmark (how far to advance the program before beginning measured
simulation). Unless otherwise stated, all simulations involving n threads were done
for 500 × n million instructions. All the benchmarks are simulated using the SPEC
ref inputs.

3.2.1.5 Evaluation Metrics. In a study like this, IPC (number of total in-
structions committed per cycle) is not a reliable metric as it would inordinately bias
all the heuristics (and policies) against inherently slow-running threads. Any policy
that favors high-IPC threads boosts the reported IPC by increasing the contribution
from the favored threads. But this does not necessarily represent an improvement.
While the IPC over a particular measurement interval might be higher, in a real sys-
tem the machine would eventually have to run a workload inordinately heavy in
low-IPC threads, and the artificially-generated gains would disappear. Therefore, we
use weighted speedup [81,88] for our evaluations. In this section, weighted speedup
measures the arithmetic sum of the individual IPCs of the threads constituting a
workload divided by their IPC on a baseline configuration when running alone. This

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 15

metric makes it difficult to produce artificial speedups by simply favoring high-IPC
threads.

3.2.2 Scheduling for Throughput: Analysis and Results

In this section, we demonstrate the performance advantage of the heterogeneous
multi-core architectures for multithreaded workloads and demonstrate job-to-core
assignment mechanisms that allow the architecture to deliver on its promise. The
first two subsections focus on the former, and the rest of the section demonstrates the
further gains available from a good job assignment mechanism.

3.2.2.1 Static Scheduling for Inter-thread Diversity. A heteroge-
neous architecture can exploit two dimensions of diversity in an application mix.
The first is diversity between applications. The second is diversity over time within
a single application. Prior work [78,92] has shown that both these dimensions of di-
versity occur in common workloads. In this section, we attempt to separate these two
effects by first looking at the performance of a static assignment of applications to
cores. Note that the static assignment approach may not eliminate the need for core
switching in several cases, because the best assignment of jobs to cores will change
as jobs enter and exit the system.

Figure 2 shows the results comparing one heterogeneous architecture against two
homogeneous architectures all requiring approximately the same area. The hetero-
geneous architecture that we evaluate includes 3 EV6 cores and 5 EV5 cores, while
the two homogeneous architectures that we study have 4 EV6 cores or 20 EV5 cores,

FIG. 2. Benefits from heterogeneity—static scheduling for inter-thread diversity.

16 R. KUMAR AND D.M. TULLSEN

respectively. For each architecture, the graph shows the average weighted speedup
for varying number of threads.

For the homogeneous CMP configuration, we assume a straightforward schedul-
ing policy, where as long as a core is available, any workload can be assigned to
any core. For the heterogeneous case, we use an assignment that seeks to match the
optimal static configuration as closely as possible. The optimal configuration would
factor in both the effect of the performance difference between executing on a differ-
ent core and the potential shared L2 cache interactions. However, determining this
configuration is only possible by running all possible combinations. Instead, as a
simplifying assumption, our scheduling policy assumes no knowledge of L2 inter-
actions (only for determining core assignments—the interactions are still simulated)
when determining the static assignment of workloads to cores. This simplification al-
lows us to find the best configuration (defined as the one which maximizes weighted
speedup) by simply running each job alone on each of our unique cores and using
that to guide our core assignment. This results in consistently good, if not optimal,
assignments. For a few cases, we compared this approach to an exhaustive explo-
ration of all combinations; our results indicated that this results in performance close
to the optimal assignment.

The use of weighted speedup as the metric ensures that those jobs assigned to the
EV5 are those that are least affected (in relative IPC) by the difference between EV6
and EV5. In both the homogeneous and heterogeneous cases, once all the contexts
of a processor get used, we just assume that the weighted speedup will level out as
shown in Fig. 2. The effect when the number of jobs exceeds the number of cores
in the system (e.g., additional context switching) is modeled more exactly in the
following section.

As can be seen from Fig. 2, even with a simple static approach, the results show
a strong advantage for heterogeneity over the homogeneous designs, for most levels
of threading. The heterogeneous architecture attempts to combine the strengths of
both the homogeneous configurations—CMPs of a few powerful processors (EV6
CMP) and CMPs of many less powerful processors (EV5 CMP). While for low
threading levels, the applications can run on powerful EV6 cores resulting in high
performance for each of the few threads, for higher threading levels, more applica-
tions can run on the added EV5 contexts enabled by heterogeneity, resulting in higher
overall throughput.

The results in Fig. 2 show that the heterogeneous configuration achieves perfor-
mance identical to the homogeneous EV6 CMP from 1 to 3 threads. At 4 threads,
the optimum point for the EV6 CMP, that configuration shows a slight advantage
over the heterogeneous case. However, this advantage is very small because with
4 threads, the heterogeneous configuration is nearly always able to find one thread
that is impacted little by having to run on an EV5 instead of EV6. As soon as we

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 17

have more than 4 threads, however, the heterogeneous processor shows clear advan-
tage.

The superior performance of the heterogeneous architecture is directly attribut-
able to the diversity of the workload mix. For example, mcf underutilizes the EV6
pipeline due to its poor memory behavior. On the other hand, benchmarks like crafty
and applu have much higher EV6 utilization. Static scheduling on heterogeneous
architectures enables the mapping of these benchmarks to the cores in such a way
that overall processor utilization (average of individual core utilization values) is
high.

The heterogeneous design remains superior to the EV5 CMP out to 13 threads,
well beyond the point where the heterogeneous architecture runs out of processors
and is forced to queue jobs. Beyond that, the raw throughput of the homogeneous
design with 20 EV5 cores wins out. This is primarily because of the particular het-
erogeneous designs we chose. However, more extensive exploration of the design
space than we show here confirms that we can always come up with a different con-
figuration that is competitive with more threads (e.g., fewer EV6s, more EV5s), if
that is the desired design point.

Compared to a homogeneous processor with 4 EV6 cores, the heterogeneous
processor performs up to 37% better with an average 26% improvement over the
configurations considering 1–20 threads. Relative to 20 EV5 cores, it performs up to
2.3 times better, and averages 23% better over that same range.

These results demonstrate that over a range of threading levels, a heterogeneous
architecture can outperform comparable homogeneous architectures. Although the
results are shown here only for a particular area and two core types, our experiments
with other configurations (at different processor areas and core types) indicate that
these results are representative of other heterogeneous configurations as well.

3.2.2.2 Dynamic Scheduling for Intra-thread Diversity. The pre-
vious section demonstrated the performance advantages of the heterogeneous archi-
tecture when exploiting core diversity for inter-workload variation. However, that
analysis has two weaknesses—it used unimplementable assignment policies in some
cases (e.g., the static assignment oracle) and ignored variations in the resource de-
mands of individual applications. This section solves each of these problems, and
demonstrates the importance of good dynamic job assignment policies.

Prior work has shown that an application’s demand for processor resources varies
across phases of the application. Thus, the best match of applications to cores will
change as those applications transition between phases. In this section, we examine
implementable heuristics that dynamically adjust the mapping to improve perfor-
mance.

18 R. KUMAR AND D.M. TULLSEN

These heuristics are sampling-based. During the execution of a workload, every
so often, a trigger is generated that initiates a sampling phase. In the sampling phase,
the scheduler permutes the assignment of applications to cores. During this phase,
the dynamic execution profiles of the applications being run are gathered by refer-
encing hardware performance counters. These profiles are then used to create a new
assignment, which is then employed during a much longer phase of execution, the
steady phase. The steady phase continues until the next trigger. Note that applica-
tions continue to make forward progress during the sampling phase, albeit perhaps
non-optimally.

In terms of the core sampling strategies, there are a large number of application-
to-core assignment permutations possible. We prune the number of permutations
significantly by assuming that we would never run an application on a less powerful
core when doing so would leave a more powerful core idle (for either the sampling
phase or the steady phase). Thus, with four threads on our 3 EV6/5 EV5 configura-
tion, four possible assignments are possible based on which thread gets allocated to
the EV5. With more threads, the number of permutations increase, up to 56 potential
choices with eight threads. Rather than evaluating all these possible alternatives, our
heuristics only sample a subset of possible assignments. Each of these assignments
are run for 2 million cycles. At the end of the sampling phase, we use the collected
data to make assignments.

We experimented with several dynamic heuristics (more details on those heuris-
tics can be found in [63]). Our best dynamic scheduling policy was what we call
bounded-global-event. With this policy, we sum the absolute values of the percent
changes in IPC for each application constituting a workload, and trigger a sam-
pling phase when this value exceeds 100% (average 25% change for each of the four
threads). The policy also initiates a sampling phase if more than 300 million cycles
has elapsed since the last sampling phase, and avoids sampling if the global event
trigger occurs within 50 million cycles since the last sampling phase. This strategy
guards against oversampling and undersampling.

Figure 3 shows the results for the bounded-global-event dynamic scheduling
heuristic comparing it against random scheduling as well as the best static mapping.
The results presented in Fig. 3 indicate that dynamic heuristics which intelligently
adapt the assignment of applications to cores can better leverage the diversity advan-
tages of a heterogeneous architecture. Compared to the base homogeneous architec-
ture, the best dynamic heuristic achieves close to a 63% improvement in throughput
in the best case (for 8 threads) and an average improvement in throughput of 17%
over configurations running 1–8 threads. Even more interesting, the best dynamic
heuristic achieves a weighted speedup of 6.5 for eight threads, which is close to 80%
of the optimal speedup (8) achievable for this configuration (despite the fact that
over half of our cores have roughly half the raw computation power of the baseline

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 19

FIG. 3. Benefits of dynamic scheduling.

core!). In contrast, the homogeneous configuration achieves only 50% of the optimal
speedup. The heterogeneous configuration, in fact, beats the homogeneous configu-
ration with 20 EV5 cores till the number of threads exceeds thirteen. We have also
demonstrated the importance of the intelligent dynamic assignment, which achieves
up to 31% improvement over a baseline random scheduler.

3.3 Power Advantages of Architectural Heterogeneity

The ability of single-ISA heterogeneous multi-core architectures to adapt to work-
load diversity can also be used for improving the power and energy efficiency of
processors. The approach again relies on a chip-level multiprocessor with multiple,
diverse processor cores. These cores all execute the same instruction set, but include
significantly different resources and achieve different performance and energy ef-
ficiency on the same application. During an application’s execution, the operating
system software tries to match the application to the different cores, attempting to
meet a defined objective function. For example, it may be trying to meet a particular
performance requirement or goal, but doing so with maximum energy efficiency.

3.3.1 Discussion of Core Switching

There are many reasons, some discussed in previous sections, why the best core for
execution may vary over time. The demands of executing code vary widely between
applications; thus, the best core for one application will often not be the best for
the next, given a particular objective function (assumed to be some combination of

20 R. KUMAR AND D.M. TULLSEN

energy and performance). In addition, the demands of a single application can also
vary across phases of the program.

Even the objective function can change over time, as the processor changes power
conditions (e.g., plugged vs. unplugged, full battery vs. low battery, thermal emer-
gencies), as applications switch (e.g., low priority vs. high priority job), or even
within an application (e.g., a real-time application is behind or ahead of sched-
ule).

The experiments in this section explore only a subset of these possible changing
conditions. Specifically, we examine adaptation to phase changes in single applica-
tions. However, by simulating multiple applications and several objective functions,
it also indirectly examines the potential to adapt to changing applications and objec-
tive functions. We believe a real system would see far greater opportunities to switch
cores to adapt to changing execution and environmental conditions than the narrow
set of experiments exhibited here.

3.3.2 Choice of Cores

In this study, we consider a design that takes a series of previously implemented
processor cores with slight changes to their interface—this choice reflects one of
the key advantages of the CMP architecture, namely the effective amortization of
design and verification effort. We include four Alpha cores—EV4 (Alpha 21064),
EV5 (Alpha 21164), EV6 (Alpha 21264) and a single-threaded version of the EV8
(Alpha 21464), referred to as EV8-. These cores demonstrate strict gradation in terms
of complexity and are capable of sharing a single executable. We assume the four

FIG. 4. Relative sizes of the Alpha cores when implemented in 0.10 micron technology.

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 21

cores have private L1 data and instruction caches and share a common L2 cache,
phase-lock loop circuitry, and pins.

We chose the cores of these off-the-shelf processors due to the availability of real
power and area data for these processors, except for the EV8 where we use pro-
jected numbers [30,35,54,69]. All these processors have 64-bit architectures. Note
that technology mapping across a few generations has been shown to be feasi-
ble [57].

Figure 4 shows the relative sizes of the cores used in the study, assuming they are
all implemented in a 0.10 micron technology (the methodology to obtain this figure
is described in the next section). It can be seen that the resulting core is only modestly
(within 15%) larger than the EV8- core by itself.

3.3.3 Switching Applications between Cores
There is a cost to switching cores, so we must restrict the granularity of switching.

One method for doing this would switch only at operating system timeslice intervals,
when execution is in the operating system, with user state already saved to memory.
If the OS decides a switch is in order, it powers up the new core, triggers a cache
flush to save all dirty cache data to the shared L2, and signals the new core to start at
a predefined OS entry point. The new core would then power down the old core and
return from the timer interrupt handler. The user state saved by the old core would
be loaded from memory into the new core at that time, as a normal consequence of
returning from the operating system. Alternatively, we could switch to different cores
at the granularity of the entire application, possibly chosen statically. In this study,
we consider both these options.

In this work, we assume that unused cores are completely powered down, rather
than left idle. Thus, unused cores suffer no static leakage or dynamic switching
power. This does, however, introduce a latency for powering a new core up. We
estimate that a given processor core can be powered up in approximately one thou-
sand cycles of the 2.1 GHz clock. This assumption is based on the observation that
when we power down a processor core we do not power down the phase-lock loop
that generates the clock for the core. Rather, in our multi-core architecture, the same
phase-lock loop generates the clocks for all cores. Consequently, the power-up time
of a core is determined by the time required for the power buses to charge and sta-
bilize. In addition, to avoid injecting excessive noise on the power bus bars of the
multi-core processor, we assume a staged power up would be used.

In addition, our experiments confirm that switching cores at operating-system
timer intervals ensures that the switching overhead has almost no impact on perfor-
mance, even with the most pessimistic assumptions about power-up time, software
overhead, and cache cold start effects. However, these overheads are still modeled in
our experiments.

22 R. KUMAR AND D.M. TULLSEN

3.3.4 Modeling Power, Area, and Performance
This section discusses the various methodological challenges of this study, includ-

ing modeling the power, the real estate, and the performance of the heterogeneous
multi-core architecture.

3.3.4.1 Modeling of CPU Cores. The cores we simulate are roughly
modeled after cores of EV4 (Alpha 21064), EV5 (Alpha 21164), EV6 (Alpha 21264)
and EV8-. EV8- is a hypothetical single-threaded version of EV8 (Alpha 21464).
The data on the resources for EV8 was based on predictions made by Joel Emer [35]
and Artur Klauser [54], conversations with people from the Alpha design team, and
other reported data [30,69]. The data on the resources of the other cores are based on
published literature on these processors [16–18].

The multi-core processor is assumed to be implemented in a 0.10 micron technol-
ogy. The cores have private first-level caches, and share an on-chip 3.5 MB 7-way
set-associative L2 cache. At 0.10 micron, this cache will occupy an area just under
half the die size of the Pentium 4. All the cores are assumed to run at 2.1 GHz. This
is the frequency at which an EV6 core would run if its 600 MHz, 0.35 micron imple-
mentation was scaled to a 0.10 micron technology. In the Alpha design, the amount
of work per pipe stage was relatively constant across processor generations [24,31,
35,40]; therefore, it is reasonable to assume they can all be clocked at the same rate
when implemented in the same technology (if not as designed, processors with sim-
ilar characteristics certainly could). The input voltage for all the cores is assumed to
be 1.2 V.

Table II summarizes the configurations that were modeled for various cores. All
architectures are modeled as accurately as possible, given the parameters in Table II,
on a highly detailed instruction-level simulator. However, we did not faithfully model
every detail of each architecture; we were most concerned with modeling the approx-
imate spaces each core covers in our complexity/performance continuum.

The various miss penalties and L2 cache access latencies for the simulated cores
were determined using CACTI [80]. Memory latency was set to be 150 ns.

TABLE II
CONFIGURATION OF THE CORES USED FOR POWER EVALUATION OF HETEROGENEOUS MULTI-

CORES

Processor EV4 EV5 EV6 EV8-

Issue-width 2 4 6 (OOO) 8 (OOO)
I-Cache 8 KB, DM 8 KB, DM 64 KB, 2-way 64 KB, 4-way
D-Cache 8 KB, DM 8 KB, DM 64 KB, 2-way 64 KB, 4-way
Branch Pred. 2 KB,1-bit 2 K-gshare hybrid 2-level hybrid 2-level (2X EV6 size)
Number of MSHRs 2 4 8 16

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 23

TABLE III
POWER AND AREA STATISTICS OF THE ALPHA CORES

Core Peak-power
(W)

Core-area

(mm2)

Typical-power
(W)

Range
(%)

EV4 4.97 2.87 3.73 92–107
EV5 9.83 5.06 6.88 89–109
EV6 17.80 24.5 10.68 86–113
EV8- 92.88 2.36 46.44 82–128

3.3.4.2 Modeling Power. Modeling power for this type of study is a chal-
lenge. We need to consider cores designed over the time span of more than a decade.
Power depends not only on the configuration of a processor, but also on the circuit
design style and process parameters. Also, actual power dissipation varies with ac-
tivity, though the degree of variability again depends on the technology parameters
as well as the gating style used.

No existing architecture-level power modeling framework accounts for all of these
factors. Current power models like Wattch [25] are primarily meant for activity-
based architectural level power analysis and optimizations within a single processor
generation, not as a tool to compare the absolute power consumption of widely var-
ied architectures. Therefore we use a hybrid power model that uses estimates from
Wattch, along with additional scaling and offset factors to calibrate for technology
factors. This model not only accounts for activity-based dissipation, but also accounts
for the design style and process parameter differences by relying on measured dat-
apoints from the manufacturers. Further details of the power model can be found
in [60].

Table III shows our power and area estimates for the cores. As can be seen from
the table, the EV8- core consumes almost 20 times the peak power and more than 80
times the real estate of the EV4 core. The table also gives the derived typical power
for each of our cores. Also shown, for each core, is the range in power demand for
the actual applications run, expressed as a percentage of typical power.

3.3.4.3 Estimating Chip Area. Table III also summarizes the area occu-
pied by the cores at 0.10 micron (also shown in Fig. 4). The area of the cores (except
EV8-) is derived from published photos of the dies after subtracting the area occu-
pied by I/O pads, interconnection wires, the bus-interface unit, L2 cache, and control
logic. Area of the L2 cache of the multi-core processor is estimated using CACTI.

The die size of EV8 was predicted to be 400 mm2 [75]. To determine the core
size of EV8-, we subtract out the estimated area of the L2 cache (using CACTI). We
also account for reduction in the size of register files, instruction queues, the reorder
buffer, and renaming tables to account for the single-threaded EV8-. For this, we

24 R. KUMAR AND D.M. TULLSEN

use detailed models of the register bit equivalents (rbe) [73] for register files, the
reorder buffer, and renaming tables at the original and reduced sizes. The sizes of
the original and reduced instruction queue sizes were estimated from examination
of MIPS R10000 and HP PA-8000 data [27,59], assuming that the area grows more
than linear with respect to the number of entries (num_entries1.5). The area data is
then scaled for the 0.10 micron process.

3.3.4.4 Modeling Performance. In this study, we simulate the execution
of 14 benchmarks from the SPEC2000 benchmark suite, including 7 from SPECint
(bzip2, crafty, eon, gzip, mcf, twolf, vortex) and 7 from SPECfp (ammp, applu, apsi,
art, equake, fma3d, wupwise).

Benchmarks are again simulated using SMTSIM [87], modified to simulate a
multi-core processor comprising four heterogeneous cores sharing an on-chip L2
cache and the memory subsystem. The simpoint tool [79] is used to determine the
number of committed instructions which need to be fast-forwarded so as to capture
the representative program behavior during simulation. After fast-forwarding, we
simulate 1 billion instructions. All benchmarks are simulated using ref inputs.

3.3.5 Scheduling for Power: Analysis and Results

This section examines the effectiveness of single-ISA heterogeneous multi-core
designs in reducing the power dissipation of processors. We first examine the relative
energy efficiency across cores, and how it varies by application and phase. Later
sections use this variance, demonstrating both oracle and realistic core switching
heuristics to maximize particular objective functions.

3.3.5.1 Variation in Core Performance and Power. As discussed
in Section 3.3.1, this work assumes that the performance ratios between our proces-
sor cores is not constant, but varies across benchmarks, as well as over time on a
single benchmark. This section verifies that premise.

Figure 5(a) shows the performance measured in million instructions committed
per second (IPS) of one representative benchmark, applu. In the figure, a separate
curve is shown for each of the five cores, with each data point representing the IPS
over the preceding 1 million committed instructions.

With applu, there are very clear and distinct phases of performance on each core,
and the relative performance of the cores varies significantly between these phases.
Nearly all programs show clear phased behavior, although the frequency and variety
of phases varies significantly.

If relative performance of the cores varies over time, it follows that energy effi-
ciency will also vary. Figure 6 shows one metric of energy efficiency (defined in this

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 25

FIG. 5. (a) Performance of applu on the four cores; (b) oracle switching for energy; (c) oracle switch-
ing for energy-delay product.

26 R. KUMAR AND D.M. TULLSEN

FIG. 6. applu energy efficiency. IPS2/W varies inversely with energy-delay product.

case as IPS2/W) of the various cores for the same benchmark. IPS2/W is merely the
inverse of Energy-Delay product. As can be seen, the relative value of the energy-
delay product among cores, and even the ordering of the cores, varies from phase to
phase.

3.3.5.2 Oracle Heuristics for Dynamic Core Selection. This sec-
tion examines the limits of power and efficiency improvements possible with a
heterogeneous multi-core architecture. The ideal core-selection algorithm depends
heavily on the particular goals of the architecture or application. This section demon-
strates oracle algorithms that maximize two sample objective functions. The first
optimizes for energy efficiency with a tight performance threshold. The second opti-
mizes for energy-delay product with a looser performance constraint.

These algorithms assume perfect knowledge of the performance and power char-
acteristics at the granularity of intervals of one million instructions (corresponding
roughly to an OS time-slice interval). It should be noted that choosing the core that
minimizes energy or the energy-delay product over each interval subject to per-
formance constraints does not give an optimal solution for the global energy or
energy-delay product; however, the algorithms do produce good results.

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 27

The first oracle that we study seeks to minimize the energy per committed instruc-
tion (and thus, the energy used by the entire program). For each interval, the oracle
chooses the core that has the lowest energy consumption, given the constraint that
performance has always to be maintained within 10% of the EV8- core for each in-
terval. This constraint assumes that we are willing to give up performance to save
energy but only up to a point. Figure 5(b) shows the core selected in each interval for
applu.

For applu, we observe that the oracle chooses to switch to EV6 in several phases
even though EV8- performs better. This is because EV6 is the less power-consuming
core and still performs within the threshold. The oracle even switches to EV4 and
EV5 in a small number of phases. Table IV shows the results for all benchmarks. In
this, and all following results, performance degradation and energy savings are al-
ways given relative to EV8- performance. As can be seen, this heuristic achieves an
average energy reduction of 38% (see column 8) with less than 4% average perfor-
mance degradation (column 9). Five benchmarks (ammp, fma3d, mcf, twolf, crafty)
achieve no gain because switching was denied by the performance constraint. Ex-
cluding these benchmarks, the heuristic achieves an average energy reduction of 60%
with about 5% performance degradation.

Our second oracle utilizes the energy-delay product metric. The energy-delay
product seeks to characterize the importance of both energy and response time in a

TABLE IV
SUMMARY FOR DYNAMIC oracle SWITCHING FOR ENERGY ON HETEROGENEOUS MULTI-CORES

Benchmark Total
switches

% of instructions per core Energy
savings
(%)

ED
savings
(%)

ED2

savings
(%)

Perf.
loss
(%)

EV4 EV5 EV6 EV8-

ammp 0 0 0 0 100 0 0 0 0
applu 27 2.2 0.1 54.5 43.2 42.7 38.6 33.6 7.1
apsi 2 0 0 62.2 37.8 27.6 25.3 22.9 3.1
art 0 0 0 100 0 74.4 73.5 72.6 3.3
equake 20 0 0 97.9 2.1 72.4 71.3 70.1 3.9
fma3d 0 0 0 0 100 0 0 0 0
wupwise 16 0 0 99 1 72.6 69.9 66.2 10.0

bzip 13 0 0.1 84.0 15.9 40.1 38.7 37.2 2.3
crafty 0 0 0 0 100 0 0 0 0
eon 0 0 0 100 0 77.3 76.3 75.3 4.2
gzip 82 0 0 95.9 4.1 74.0 73.0 71.8 3.9
mcf 0 0 0 0 100 0 0 0 0
twolf 0 0 0 0 100 0 0 0 0
vortex 364 0 0 73.8 26.2 56.2 51.9 46.2 9.8

Average 1 (median) 0.2% 0% 54.8% 45.0% 38.5% 37.0% 35.4% 3.4%

28 R. KUMAR AND D.M. TULLSEN

TABLE V
SUMMARY FOR DYNAMIC oracle SWITCHING FOR ENERGY-DELAY ON HETEROGENEOUS MULTI-

CORES

Benchmark Total
switches

% of instructions per core ED
savings
(%)

Energy
savings
(%)

ED2

savings
(%)

Perf.
loss
(%)

EV4 EV5 EV6 EV8-

ammp 0 0 0 100 0 63.7 70.3 55.7 18.1
applu 12 32.3 0 67.7 0 69.8 77.1 59.9 24.4
apsi 0 0 0 100 0 60.1 69.1 48.7 22.4
art 619 65.4 0 34.5 0 78.0 84.0 69.6 27.4
equake 73 55.8 0 44.2 0 72.3 81.0 59.2 31.7
fma3d 0 0 0 100 0 63.2 73.6 48.9 28.1
wupwise 0 0 0 100 0 68.8 73.2 66.9 10.0

bzip 18 0 1.2 98.8 0 60.5 70.3 47.5 24.8
crafty 0 0 0 100 0 55.4 69.9 33.9 32.5
eon 0 0 0 100 0 76.2 77.3 75.3 4.2
gzip 0 0 0 100 0 74.6 75.7 73.5 4.2
mcf 0 0 0 100 0 46.9 62.8 37.2 24.3
twolf 0 0 0 100 0 26.4 59.7 −34.2 45.2
vortex 0 0 0 100 0 68.7 73.0 66.7 9.9

Average 0 (median) 11.0% 0.1% 88.9% 0% 63.2% 72.6% 50.6% 22.0%

single metric, under the assumption that they have equal importance. Our oracle min-
imizes energy-delay product by always selecting the core that maximizes IPS2/W

over an interval. We again impose a performance threshold, but relax it due to the
fact that energy-delay product already accounts for performance degradation. In this
case, we require that each interval maintains performance within 50% of EV8-.

Figure 5(c) shows the cores chosen for applu. Table V shows the results for all
benchmarks. As can be seen, the average reduction in energy-delay is about 63%;
the average energy reductions are 73% and the average performance degradation is
22%. That is nearly a three-fold increase in energy efficiency, powered by a four-fold
reduction in actual expended energy with a relatively small performance loss. All
but one of the fourteen benchmarks have fairly significant (47 to 78%) reductions in
energy-delay savings. The corresponding reductions in performance ranges from 4 to
45%. As before, switching activity and the usage of the cores varies. This time, EV8
never gets used. EV6 emerges as the dominant core. Given our relaxed performance
constraint, there is a greater usage of the lower-power cores compared to the previous
experiment.

Both Tables IV and V also show results for Energy-Delay2 [95] improvements.
Improvements are 35–50% on average. This is instructive because chip-wide volt-
age/frequency scaling can do no better than break even on this metric, demonstrating
that this approach has the potential to go well beyond the capabilities of that tech-

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 29

nique. In other experiments specifically targeting the ED2 metric (again with the
50% performance threshold), we saw 53.3% reduction in energy-delay2 with 14.8%
degradation in performance.

3.3.5.3 Realistic Dynamic Switching Heuristics. This section ex-
amines the extent to which the energy benefits in the earlier sections can be achieved
with a real system implementation that does not depend on oracular future knowl-
edge. We do, however, assume an ability to track both the accumulated performance
and energy over a past interval. This functionality either already exists or is easy to
implement. This section is intended to be an existence proof of effective core selec-
tion algorithms, rather than a complete evaluation of the scheduling design space.
We only demonstrate a few simple heuristics for selecting the core to run on. The
heuristics seek to minimize overall energy-delay product during program execution.

Our previous oracle results were idealized not only with respect to switching algo-
rithms, but also ignored the cost of switching (power-up time, flushing dirty pages to
the L2 cache and experiencing cold-start misses in the new L1 cache and TLB) both
in performance and power. The simulations in this section account for both, although
our switching intervals are long enough and switchings infrequent enough that the
impact of both effects is under 1%.

In this section, we measure the effectiveness of several heuristics for selecting
a core. The common elements of each of the heuristics are these: every 100 time
intervals (one time interval consists of 1 million instructions in these experiments),
one or more cores are sampled for five intervals each (with the results during the
first interval ignored to avoid cold start effects). Based on measurements done during
sampling, the heuristic selects one core. For the case when one other core is sampled,
the switching overhead is incurred once if the new core is selected, or twice if the
old core is chosen. The switching overhead is greater if more cores are sampled. The
dynamic heuristics studied here are:

• Neighbor. One of the two neighboring cores in the performance continuum is
randomly selected for sampling. A switch is made if that core has lower energy-
delay product over the sample interval than the current core over the last run
interval.

• Neighbor-global. Similar to neighbor, except that the selected core is the one
that would be expected to produce the lowest accumulated energy-delay product
to this point in the application’s execution. In some cases this is different than
the core that minimizes the energy-delay product for this interval.

• Random. One other randomly-chosen core is sampled, and a switch is made if
that core has lower energy-delay over the sample interval.

• All. All other cores are sampled.

30 R. KUMAR AND D.M. TULLSEN

FIG. 7. Results for realistic switching heuristics for heterogeneous multi-cores—the last one is a
constraint-less dynamic oracle.

The results are shown in Fig. 7. The results are all normalized to EV8- values. This
figure also includes oracle results for dynamic switching based on the energy-delay
metric when core selection is not hampered with performance constraints. Lower
bars for energy and energy-delay, and higher bars for performance are desirable.

Our heuristics achieve up to 93% of the energy-delay gains achieved by the oracle-
based switcher, despite modeling the switching overhead, sampling overhead, and
non-oracle selection. The performance degradation on applying our dynamic heuris-
tics is, on average, less than the degradation found by the oracle-based scheme. Also,
although not shown in the figure, there is a greater variety in core-usage between ap-
plications.

It should be noted that switching for this particular objective function is not heavy;
thus, heuristics that find the best core quickly, and minimize sampling overhead af-
ter that, tend to work best. The best heuristic for a different objective function, or
a dynamically varying objective function may be different. These results do show,

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 31

however, that for a given objective function, very effective realtime and predictive
core switching heuristics can be found.

3.3.5.4 Practical Heterogeneous Architectures. Although our use
of existing cores limits design and verification overheads, these overheads do scale
with the number of distinct cores supported. Some of our results indicate that in
specific instances, two cores can introduce sufficient heterogeneity to produce sig-
nificant gains. For example the (minimize energy, maintain performance within 10%)
objective function relied heavily on the EV8- and the EV6 cores. The (energy-delay,
performance within 50%) objective function favored the EV6 and EV4. However, if
the objective function is allowed to vary over time, or if the workload is more diverse
than what we model, wider heterogeneity than 2 cores will be useful. Presumably,
other objective functions than those we model may also use more than 2 cores.

3.4 Overview of Other Related Proposals

There have been other proposals studying the advantages of on-chip heterogeneity.
This section provides an overview of other work directly dealing with heterogeneous
multi-core architectures. We also discuss previous work with similar goals—i.e.,
adapting to workload diversity to improve processor efficiency.

Morad et al. [71,72] explore the theoretical advantages of placing asymmetric core
clusters in multiprocessor chips. They show that asymmetric core clusters are ex-
pected to achieve higher performance per area and higher performance for a given
power envelope. Annavaram et al. [20] evaluate the benefits of heterogeneous multi-
processing in minimizing the execution times of multi-threaded programs containing
non-trivial parallel and sequential phases, while keeping the CMP’s total power con-
sumption within a fixed budget. They report significant speedups. Balakrishanan et
al. [22] seek to understand the impact of such an architecture on software. They show,
using a hardware prototype, that asymmetry can have significant impact on the per-
formance, stability, and scalability of a wide range of commercial applications. They
also demonstrate that in addition to heterogeneity-aware kernels, several commer-
cial applications may themselves need to be aware of heterogeneity at the hardware
level.

The energy benefits of heterogeneous multi-core architectures is also explored by
Ghiasi and Grunwald [38]. They consider single-ISA, heterogeneous cores of differ-
ent frequencies belonging to the x86 family for controlling the thermal characteristics
of a system. Applications run simultaneously on multiple cores and the operating
system monitors and directs applications to the appropriate job queues. They report
significantly better thermal and power characteristics for heterogeneous processors.

32 R. KUMAR AND D.M. TULLSEN

Grochowsky et al. [41] compare voltage/frequency scaling, asymmetric (heteroge-
neous) cores, variable-sized cores, and speculation as means to reduce the energy
per instruction (EPI) during the execution of a program. They find that the EPI range
for asymmetric chip-multiprocessors using x86 cores was 4–6X, significantly more
than the next best technique (which was voltage/frequency scaling).

There have also been proposals for multi-ISA heterogeneous multi-core archi-
tectures. The proposed Tarantula processor [36] is one such example of integrated
heterogeneity. It consists of a large vector unit sharing the die with an EV8 core.
The Alpha ISA is extended to include vector instructions that operate on the new
architectural state. The unit is targeted towards applications with high data-level par-
allelism. IBM Cell [52] (see Section 2.1) is another example of a heterogeneous chip
multiprocessor with cores belonging to different ISAs.

3.5 Designing Multi-Cores from the Ground Up

While the previous sections demonstrate the benefits of heterogeneity, they gave
no insight into what constitutes, or how to arrive at, a good heterogeneous design.
Previous work assumed a given heterogeneous architecture. More specifically, those
architectures were composed of existing architectures, either different generations
of the same processor family [63,60,38,41], or voltage and frequency scaled edi-
tions of a single processor [20,22,39,56]. While these architectures surpassed similar
homogeneous designs, they failed to reach the full potential of heterogeneity, for
three reasons. First, the use of pre-existing designs presents low flexibility in choice
of cores. Second, core choices maintain a monotonic relationship, both in design
and performance—for example, the most powerful core is bigger or more com-
plex in every dimension and the performance-ordering of the cores is the same for
every application. Third, all cores considered perform well for a wide variety of
applications—we show in this section that the best heterogeneous designs are com-
posed of specialized core architectures.

Section 3.5.1 describes the approach followed to navigate the design space and
arrive at the best designs for a given set of workloads. Section 3.5.2 discusses the
benefits of customization. Section 3.5.3 discusses the methodology followed for our
evaluations. Section 3.5.4 presents the results of our experiments.

3.5.1 From Workloads to Multi-Core Design

The goal of this research is to identify the characteristics of cores that combine
to form the best heterogeneous architectures, and also demonstrate principles for
designing such an architecture. Because this methodology requires that we accurately
reflect the wide diversity of applications (their parallelism, their memory behavior),

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 33

running on widely varying architectural parameters, there is no real shortcut to using
simulation to characterize these combinations.

The design space for even a single processor is large, given the flexibility to change
various architectural parameters; however, the design space explodes when consider-
ing the combined performance of multiple different cores on arbitrary permutations
of the applications. Hence, we make some simplifying assumptions that make this
problem tractable so that we navigate through the search space faster; however, we
show that the resulting methodology still results in the discovery of very effective
multi-core design points.

First, we assume that the performance of individual cores is separable—that is,
that the performance of a four-core design, running four applications, is the sum (or
the sum divided by a constant factor) of the individual cores running those applica-
tions in isolation. This is an accurate assumption if the cores do not share L2 caches
or memory controllers (which we assume in this study). This assumption dramati-
cally accelerates the search because now the single-thread performance of each core
(found using simulation) can be used to estimate the performance of the processor as
a whole without the need to simulate all 4-thread permutations.

Since we are interested in the highest performance that a processor can offer, we
assume good static scheduling of threads to cores. Thus, the performance of four
particular threads on four particular cores is the performance of the best static map-
ping. However, this actually represents a lower bound on performance. We have
already shown that the ability to migrate threads dynamically during execution only
increases the benefits of heterogeneity as it exploits intra-thread diversity—this con-
tinues to hold true for the best heterogeneous designs that we come up with under
the static scheduling assumption.

To further accelerate the search, we consider only major blocks to be configurable,
and only consider discrete points. For example, we consider 2 instruction queue sizes
(rather than all the intermediate values) and 4 cache configurations (per cache). But
we consider only a single branch predictor, because the area/performance tradeoffs
of different sizes had little effect in our experiments. Values that are expected to
be correlated (e.g., size of re-order buffer and number of physical registers) are
scaled together instead of separately. This methodology might appear to be crude
for an important commercial design, but we believe that even in that environment
this methodology would find a design very much in the neighborhood of the best
design. Then, a more careful analysis could be done of the immediate neighborhood,
considering structure sizes at a finer granularity and considering particular choices
for smaller blocks we did not vary.

We only consider and compare processors with a fixed number (4) of cores. It
would be interesting to also relax that constraint in our designs, but we did not do
so for the following reasons. Accurate comparisons would be more difficult, be-

34 R. KUMAR AND D.M. TULLSEN

cause the interconnect and cache costs would vary. Second, it is shown both in this
work (Section 3.5.4) and in previous work [63] that heterogeneous designs are much
more tolerant than homogeneous when running a different number of threads than
the processor is optimized for (that is, it is less important in a heterogeneous design
to get the number of cores right). However, the methodology shown here need only
be applied multiple times (once for each possible core count) to fully explore the
larger design space, assuming that an accurate model of the off-core resources was
available.

The above assumptions allow us to model performance for various combinations
of cores for various permutations of our benchmarks, and thereby evaluate the ex-
pected performance of all the possible homogeneous and heterogeneous processors
for various area and power budgets.

3.5.2 Customizing Cores to Workloads
One of the biggest advantages of creating a heterogeneous processor as a custom

design is that the cores can be chosen in an unconstrained manner as long as the
processor budgetary constraints are satisfied. We define monotonicity to be a property
of a multi-core architecture where there is a total ordering among the cores in terms
of performance and this ordering remains the same for all applications. For example,
a multiprocessor consisting of EV5 and EV6 cores is a monotonic multiprocessor.
This is because EV6 is strictly superior to EV5 in terms of hardware resources and
virtually always performs better than EV5 for a given application given the same
cycle time and latencies. Similarly, for a multi-core architecture with identical cores,
if the voltage/frequency of a core is set lower than the voltage/frequency of some
other core, it will always provide less performance, regardless of application. Fully
customized monotonic designs represent the upper bound (albeit a high one) on the
benefits possible through previously proposed heterogeneous architectures.

As we show in this section, monotonic multiprocessors may not provide the “best
fit” for various workloads and hence result in inefficient mapping of applications to
cores. For example, in the results shown in Section 3.2.2, mcf, despite having very
low ILP, consistently gets mapped to the EV6 or EV8- core for various energy-related
objective functions, because of the larger caches on these cores. Yet it fails to take
advantage of the complex execution capabilities of these cores, and thus still wastes
energy unnecessarily.

Doing a custom design of a heterogeneous multi-core architecture allows us to
relax the monotonicity constraint and finally take full advantage of our holistic design
approach. That is, it is possible for a particular core of the multiprocessor to be the
highest performing core for some application but not for others. For example, if one
core is in-order, scalar, with 32 KB caches, and another core is out-of-order, dual-
issue, with larger caches, applications will always run best on the latter. However,

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 35

if the scalar core had larger L1 caches, then it might perform better for applications
with low ILP and large working sets, while the other would likely be best for jobs
with high ILP and smaller working sets.

The advantage of non-monotonicity is that now different cores on the same die
can be customized to different classes of applications, which was not the case with
previously studied designs. The holistic approach gives us the freedom to use cores
not well suited for all applications, as long as the processor as a whole can meet the
needs of all applications.

3.5.3 Modeling the Custom Design Process

This section discusses the various methodological challenges of this research,
including modeling power, real estate, and performance of the heterogeneous multi-
core architectures.

3.5.3.1 Modeling of CPU Cores. For all our studies in this paper, we
model 4-core multiprocessors assumed to be implemented in 0.10 micron, 1.2 V
technology. Each core on a multiprocessor, either homogeneous or heterogeneous,
has a private L2 cache and each L2 bank has a corresponding memory controller.

We consider both in-order cores and out-of-order cores for this study. We base
our OOO processor microarchitecture model on the MIPS R10000, and our in-order
cores on the Alpha EV5 (21164). We evaluate 480 cores as possible building blocks
for constructing the multiprocessors. This represents all possible distinct cores that
can be constructed by changing the parameters listed in Table VI. The various values
that were considered are listed in the table as well. We assumed a gshare branch
predictor with 8k entries for all the cores. Out of these 480 cores, there are 96 distinct
in-order cores and 384 distinct out-of-order cores. The number of distinct 4-core
multiprocessors that can be constructed out of 480 distinct cores is over 2.2 billion.

TABLE VI
VARIOUS PARAMETERS AND THEIR POSSIBLE VALUES FOR CONFIGURATION OF THE CORES

Issue-width 1, 2, 4
I-Cache 8 KB-DM, 16 KB 2-way, 32 KB 4-way, 64 KB 4-way
D-Cache 8 KB-DM, 16 KB 2-way, 32 KB 4-way, 64 KB 4-way dual ported
FP-IntMul-ALU units 1-1-2, 2-2-4
IntQ-fpQ (OOO) 32-16, 64-32
Int-FP PhysReg-ROB (OOO) 64-64-32, 128-128-64
L2 Cache 1 MB/core, 4-way, 12 cycle access
Memory Channel 533 MHz, doubly-pumped, RDRAM
ITLB-DTLB 64, 28 entries
Ld/St Queue 32 entries

36 R. KUMAR AND D.M. TULLSEN

Other parameters that are kept fixed for all the cores are also listed in Table VI.
The various miss penalties and L2 cache access latencies for the simulated cores
were determined using CACTI [80].

All evaluations are done for multiprocessors satisfying a given aggregate area and
power budget for the 4 cores. We do not concern ourselves with the area and power
consumption of anything other than the cores for this study.

3.5.3.2 Modeling Power and Area. The area budget refers to the sum
of the area of the 4 cores of a processor (the L1 cache being part of the core), and the
power budget refers to the sum of the worst case power of the cores of a processor.
Specifically, we consider peak activity power, as this is a critical constraint in the
architecture and design phase of a processor. Static power is not considered explicitly
in this paper (though it is typically proportional to area, which we do consider).

We model the peak activity power and area consumption of each of the key struc-
tures in a processor core using a variety of techniques. Table VII lists the method-
ology and assumptions used for estimating area and power overheads for various
structures.

To get total area and power estimates, we assume that the area and power of a core
can be approximated as the sum of its major pieces. In reality, we expect that the
unaccounted-for overheads will scale our estimates by constant factors. In that case,
all our results will still be valid.

Figure 8 shows the area and power of the 480 cores used for this study. As can
be seen, the cores represent a significant range in terms of power (4.1–16.3 W) as
well as area (3.3–22 mm2). For this study, we consider 4-core multiprocessors with
different area and peak power budgets. There is a significant range in the area and

TABLE VII
AREA AND POWER ESTIMATION METHODOLOGY AND RELEVANT ASSUMPTIONS FOR VARIOUS

HARDWARE STRUCTURES

Structure Methodology Assumptions

L1 caches [80] Parallel data/tag access
TLBs [80], [42]
RegFiles [80], [73] 2 × IW RP, IW WP
Execution Units [42]
RenameTables [80], [73] 3 × IW RP, IW WP
ROBs [80] IW RP, IW WP, 20b-entry, 6b-tag
IQs(CAM arrays) [80] IW RP, IW WP, 40b-entry, 8b-tag
Ld/St Queues [80] 64b-addressing, 40b-data

Notes. Renaming for OOO cores is assumed to be done using RAM tables. IW refers to issue-width, WP
to a write-port, and RP to a read-port.

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 37

FIG. 8. Area and power of the cores.

power budget of the 4-core multiprocessors that can be constructed out of these cores.
Area can range from 13.2 to 88 mm2. Power can range from 16.4 to 65.2 W.

3.5.3.3 Modeling Performance. All our evaluations are done for mul-
tiprogrammed workloads. Workloads are construction from a set of ten bench-
marks (ammp, crafty, eon, mcf, twolf, mgrid, and mesa from SPEC2000, and groff,
deltablue, and adpcmc). Every multiprocessor is evaluated on two classes of work-
loads. The all different class consists of all possible 4-threaded combinations that can
be constructed such that each of the 4 threads running at a time is different. The all
same consists of all possible 4-threaded combinations that can be constructed such
that all the 4 threads running at a time are the same. For example, a,b,c,d is an all dif-
ferent workload while a,a,a,a is an all same workload. This effectively brackets the
expected diversity in any workload—including server, parallel, and multithreaded
workloads. Hence, we expect our results to be generalizable across a wide range of
applications.

As discussed before, there are over 2.2 billion distinct 4-core multiprocessors that
can be constructed using our 480 distinct cores. We assume that the performance of
a multiprocessor is the sum of the performance of each core of the multiprocessor,
as described in Section 3.5.1. Note that this is a reasonable assumption because each
core is assumed to have a private L2 cache as well as a memory channel.

38 R. KUMAR AND D.M. TULLSEN

We find the single thread performance of each application on each core by simu-
lating for 250 million cycles, after fast-forwarding an appropriate number of instruc-
tions [77]. This represents 4800 simulations. Simulations use a modified version of
SMTSIM [87]. Scripts are used to calculate the performance of the multiprocessors
using these single-thread performance numbers.

All results are presented for the best (oracular) static mapping of applications to
cores. Note that realistic dynamic mapping can do better, as demonstrated earlier;
in fact, dynamic mapping continues being useful for the best heterogeneous designs
that our methodology produces—this result, and other more detailed results of this
research can be found in [62]. However, evaluating 2.2 billion multiprocessors be-
comes intractable if dynamic mapping is assumed.

3.5.4 Analysis and Results

This section presents the results of our heterogeneous multi-core architecture de-
sign space search. We present these results for a variety of different area and power
constraints, allowing us to observe how the benefits of heterogeneity vary across area
and power domains. We also examine the effect of different levels of thread level par-
allelism and the impact of dynamic thread switching mechanisms. Last, we quantify
the gains observed due to allowing non-monotonic cores on the processor.

3.5.4.1 Fixed Area Budget. This section presents results for fixed area
budgets. For every fixed area limit, a complete design space exploration is done to
find the highest performing 4-core multiprocessor. In fact, for each area budget, we
find the best architectures across a range of power constraints—the best architecture
overall for a given area limit, regardless of power, will always be the highest line on
the graph.

Figure 9 shows the weighted speedup for the highest performing 4-core multi-
processors within an area budget of 40 mm2. The three lines correspond to different
power budgets for the cores. The top line represents the highest performing 4-core
multiprocessors with total power due to cores not exceeding 50 W. The middle line
corresponds to 4-core multiprocessors with total power due to cores not exceeding
40 W. The line at the bottom corresponds to 4-core multiprocessors with total power
due to cores not exceeding 30 W.

Figure 10 shows the results for different area budgets.
The performance of these 4-core multiprocessors is shown for different amounts

of on-chip diversity. One core type, for example, implies that all cores on the die are
of the same type, and refers to a homogeneous multiprocessor. Points that represent
two core types could either have two of each core type or three of one type and
one of another core type. 3 core types refers to multiprocessors with three types of

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 39

FIG. 9. Throughput for all-same (top) and all-different (bottom) workloads, area budget = 40 mm2.

cores on the die and 4 core types refers to multiprocessors with all different cores.
Note that the 4 core types result, for example, only considers processors with four
unique cores. Thus, if the best heterogeneous configuration has two unique cores, the
three-core and four-core results will show as lower.

For each area budget, the results shown assume that all contexts are busy
(TLP = 4).

The results lead to several interesting observations. First, we notice that the ad-
vantages of diversity are lower with all same than the all different workload, but they
do exist. This is non-intuitive for our artificially-homogeneous workload; however,
we find that even these workloads achieve their best performance when at least one
of the cores is well suited for the application—a heterogeneous design ensures that
whatever application is being used for the homogeneous runs, such a core likely ex-
ists. For example, the best homogeneous CMP for all same workloads for an area
budget of 40 mm2 and a power budget of 30 W consists of 4 single-issue OOO cores
with 16 KB L1 caches and double the functional units than the simplest core. This

40 R. KUMAR AND D.M. TULLSEN

(a)

(b)

FIG. 10. Throughput for all-different workloads for an area budget of (a) 20 mm2, (b) 30 mm2,
(c) 50 mm2, and (d) 60 mm2.

multiprocessor does not perform well when running applications with high cache
requirements. On the other hand, the best heterogeneous multiprocessor with 3 core
types for all same workloads for identical budgets consists of two single-issue in-
order cores with 8 KB ICache and 16 KB DCache, one scalar OOO core with 32 KB
ICache, 16 KB DCache and double the functional units, and one scalar OOO core
with 64 KB ICache and 32 KB DCache. The three core types cover the spectrum of
application requirements better and result in outperforming the best homogeneous

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 41

(c)

(d)

FIG. 10. (continued)

CMP by 3.6%. We do not show all of the all same results, but for other area budgets
the results were similar—if there is benefit to be had from heterogeneity (as shown
in the all-different results), it typically also exists in the all same case, but to a lesser
degree.

Second, we observe that the advantages due to heterogeneity for a fixed area bud-
get depend largely on the power budget available—as shown by the shape of the
lines corresponding to different power budgets. In this case (Figure 9), heterogene-
ity buys little additional performance with a generous power budget (50 W), but is

42 R. KUMAR AND D.M. TULLSEN

increasingly important as the budget becomes more tightly constrained. We see this
pattern throughout our results, whenever either power or area is constrained. What
we find is that without constraints, the homogeneous architecture can create “enve-
lope” cores—cores that are over-provisioned for any single application, but able to
run most applications with high performance. For example, for an area budget of
40 mm2, if the power budget is set high (50 W), the “best” homogeneous architec-
tures consists of 4 OOO cores with 64 KB ICache, 32 KB DCache and double the
number of functional units than the simplest core. This architecture is able to run
both the memory-bound as well as processor-bound applications well. When the de-
sign is more constrained, we can only meet the needs of each application through
heterogeneous designs that are customized to subsets of the applications. It is likely
that in the space where homogeneous designs are most effective, a heterogeneous
design that contained more cores would be even better; however, we did not explore
this axis of the design space.

We see these same trends in Fig. 10, which shows results for four other area bud-
gets. There is significant benefit to a diversity of cores as long as either area or power
are reasonably constrained.

The power and area budgets also determine the amount of diversity needed for a
multi-core architecture. In general, the more constrained the budget, the more bene-
fits are accrued due to increased diversity. For example, considering the all different
results in Fig. 9, while having 4 core types results in the best performance when the
power limit is 30 W, two core types (or one) are sufficient to get all the potential
benefits for higher power limits. In some of the regions where moderate diversity is
sufficient, two unique cores not only matches configurations with higher diversity,
but even beats it. In cases where higher diversity is optimal, the gains must still be
compared against the design and test costs of more unique cores. For example, in
the example above, the marginal performance of 4 core types over the best 2-type
result is 2.5%, and probably does not justify the extra effort in this particular exam-
ple.

These results underscore the increasing importance of single-ISA heterogeneous
multi-core architectures for current and future processor designs. As designs become
more aggressive, we will want to place more cores on the die (placing area pressure
on the design), and power budgets per core will likely tighten even more severely.
Our results show that while having two core types is sufficient for getting most of
the potential out of moderately power-limited designs, increased diversity results in
significantly better performance for highly power-limited designs.

Another way to interpret these results is that heterogeneous designs dampen the
effects of constrained power budgets significantly. For example, in the 40 mm2 re-
sults, both homogeneous and heterogeneous solutions provide good performance
with a 50 W budget. However, the homogeneous design loses 9% performance with

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 43

a 40 W budget and 23% with a 30 W budget. Conversely, with a heterogeneous
design, we can drop to 40 W with only a 2% penalty and to 30 W with a 9%
loss.

Perhaps more illuminating than the raw performance of the best designs is what
architectures actually provide the best designs for a given area and power bud-
get. We observe that there can be a significant difference between the cores of the
best heterogeneous multiprocessor and the cores constituting the best homogeneous
CMP. That is, the best heterogeneous multiprocessors cannot be constructed only
by making slight modifications to the best homogeneous CMP design. Rather, they
need to be designed from the ground up. Consider, for example, the best multi-
processors for an area budget of 40 mm2 and a power budget of 30 W. The best
homogeneous CMP consists of single-issue OOO cores with 16 KB L1 caches,
few functional units (1-1-2) and a large number of registers (128). On the other
hand, the best heterogeneous CMP with two types of cores, for all different work-
loads, consists of two single-issue in-order cores with 8 KB L1 caches and two
single-issue OOO cores with 64 KB ICache, 32 KB DCache and double the num-
ber of functional units. Clearly, these cores are significantly different from each
other.

Another interesting observation is the reliance on non-monotonicity. Prior work
on heterogeneous multi-core architectures, including the work described in previ-
ous sections and other research [39,67,41], assumed configurations where every core
was either a subset or superset of every other core (in terms of processor parameters).
However, in several of our best heterogeneous configurations, we see that no core is
a subset of any other core. For example, in the same example as above, the best het-
erogeneous CMP for two core types for all same workloads, consists of superscalar
in-order cores (issue-width = 2) and scalar out-of-order cores (issue-width = 1).
Even when all the cores are different, the “best” multiprocessor for all different
workloads consists of one single-issue in-order core with 16 KB L1 caches, one
single-issue OOO core with 32 KB ICache and 16 KB DCache, one single-issue
in-order core with 32 KB L1 caches and one single-issue OOO core with 64 KB
ICache and 16 KB DCache. Thus, the real power of heterogeneity is not in combin-
ing “big” and “little” cores, but rather in providing cores each well tuned for a class
of applications. This was a common result, and we will explore the importance of
non-monotonic designs further in Section 3.5.4.2.

3.5.4.2 Impact of Non-monotonic Design. As discussed above, we
observed non-monotonicity in several of the highest performing multiprocessors for
various area and power budgets. In this section, we analyze this phenomenon further
and also try to quantify the advantages due to non-monotonic design.

44 R. KUMAR AND D.M. TULLSEN

FIG. 11. Benefits due to non-monotonicity of cores; area budget = 40 mm2, power budget = 30 W.

The reason this feature is particularly interesting is that any design that starts with
pre-existing cores from a given architectural family is likely to be monotonic [63,
60]. Additionally, a heterogeneous design that is achieved with multiple copies of
a single core, but each with separate frequencies, is also by definition monotonic.
Thus, the monotonic results we show in this section serve as a generous upper
bound (given the much greater number of configurations we consider) to what can
be achieved with an architecture constructed from existing same-ISA cores that are
monotonic.

Our results in Fig. 11 show the results for a single set of area and power budgets.
In this case, we see that for the all-same workload, the benefits from non-monotonic
configurations is small, but with the heterogeneous workload, the non-monotonic
designs outperform the monotonic much more significantly. More generally (results
not shown here), we find that the cost of monotonicity in terms of performance is
greater when budgets are constrained. In fact, diversity beyond two core types has
benefits only for non-monotonic designs for very constrained power and area bud-
gets.

With custom design of heterogeneous cores, we have the ability to take full ad-
vantage of the holistic architecture approach. By creating non-monotonic cores, we
are able to specialize each core to a class of applications. In many cases, our best
processor has no truly general-purpose core, yet overall general-purpose perfor-
mance surpasses that available with general-purpose cores.

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 45

4. Amortizing Overprovisioning through Conjoined Core
Architectures

Most modern processors are highly overprovisioned. Designers usually provision
the CPU for a few important applications that stress a particular resource. For exam-
ple, the vector processing unit (VMX) of a processor can often take up more than
10% of the die-area, gets used by only a few applications, but the functionality still
needs to be there.

“Multi-core-oblivious” designs exacerbate the overprovisioning problem because
the blind replication of cores results in multiplying the cost of overprovisioning by
the number of cores. What is really needed is the same level of overprovisioning
for any single thread without multiplying the cost by the number of cores. We can
achieve some of this with a heterogeneous architecture, where some cores might be
overloaded with a particular resource, and others not. However, in this section, we
describe an alternate, more aggressive, solution to the problem.

This section presents a holistic approach to designing chip-multiprocessors where
the adjacent cores of a multi-core processor share large, over-provisioned re-
sources [61]. There are several benefits to sharing hardware between more than one
processor or thread. Time-sharing a lightly-utilized resource saves area, increases ef-
ficiency, and reduces leakage. Dynamically sharing a large resource can also yield
better performance than having distributed small private resources, statically parti-
tioned [90,58,26,29,32].

Topology is a significant factor in determining what resources are feasible to share
and what the area, complexity, and performance costs of sharing are. Take, for exam-
ple, the case of sharing entire floating-point units (FPUs). Since processor floorplans
often have the FPU on one side and the integer datapath on the other side, we can
mirror adjacent processors and FPU sharing would present minimal disruption to
the floorplan. For the design of a resource-sharing core, the floorplan must be co-
designed with the architecture, otherwise the architecture may specify sharings that
are not physically possible or have high communication costs. In general, resources
to be shared should be large enough that the additional wiring needed to share them
does not outweigh the area benefits obtained by sharing.

With these factors in mind we have investigated the possible sharing of FPUs,
crossbar ports, first-level instruction caches, and first-level data caches between ad-
jacent pairs of processors. Resources could potentially be shared among more than
two processors, but this creates more topological problems. Because we primarily in-
vestigate sharing between pairs of processors, we call our approach conjoined-core
chip multiprocessors.

46 R. KUMAR AND D.M. TULLSEN

4.1 Baseline Architecture
Conjoined-core chip multiprocessing deviates from a conventional chip multi-

processor (multi-core) design by sharing selected hardware structures between adja-
cent cores to improve processor efficiency. The choice of the structures to be shared
depends not only on the area occupied by the structures but also whether it is topo-
logically feasible without significant disruption to the floorplan or wiring overheads.
In this section, we discuss the baseline chip multiprocessor architecture and derive a
reasonable floorplan for the processor, estimating area for the various on-chip struc-
tures.

For our evaluations, we assume a processor similar to Piranha [23], with eight
cores sharing a 4 MB, 8-banked, 4-way set-associative, 128 byte line L2 cache. The
cores are modeled after Alpha 21164 (EV5). EV5 is a 4-issue in-order processor.
The various parameters of the processor are given in Table VIII. The processor was
assumed to be implemented in 0.07 micron technology and clocked at 3.0 GHz.

Each core has a private FPU. Floating point divide and square root are non-
pipelined. All other floating point operations are fully pipelined. The latency for
all operations is modeled after EV5 latencies.

Cores are connected to the L2 cache using a point-to-point fully-connected block-
ing matrix crossbar such that each core can issue a request to any of the L2 cache
banks every cycle. However, one bank can entertain a request from only one of the
cores any given cycle. Crossbar link latency is assumed to be 3 cycles, and the data
transfer time is 4 cycles. Links are assumed to be implemented in 4X plane [51] and
are allowed to run over L2 banks.

Each bank of the L2 cache has a memory controller and an associated RDRAM
channel. The memory bus is assumed to be clocked at 750 MHz, with data being

TABLE VIII
SIMULATED BASELINE PROCESSOR FOR STUDYING CONJOINING

2K-gshare branch predictor
Issues 4 integer instrs per cycle, including up to 2 Load/Store
Issues 2 FP instructions per cycle
4 MSHRs
64 B linesize for L1 caches, 128 B linesize for L2 cache
64k 2-way 3 cycle L1 Instruction cache (1 access/cycle)
64k 2-way 3 cycle L1 Data cache (2 access/cycle)
4 MB 4-way set-associative, 8-bank 10 cycle L2 cache (3 cycle/access)
4 cycle L1-L2 data transfer time plus 3 cycle transfer latency
450 cycle memory access time
64 entry DTLB, fully associative, 256 entry L2 DTLB
48 entry ITLB, fully associative
8 KB pages

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 47

FIG. 12. Baseline die floorplan for studying conjoining, with L2 cache banks in the middle of the
cluster, and processor cores (including L1 caches) distributed around the outside.

transferred on both edges of the clock for an effective frequency of 1.5 GHz and an
effective bandwidth of 3 GB/s per bank (considering that each RDRAM memory
channel supports 30 pins and 2 data bytes). Memory latency is set to 150 ns.

Figure 12 shows the die floorplan.

4.2 Conjoined-Core Architectures

For the conjoined-core chip multiprocessor, we consider four optimizations—
instruction cache sharing, data cache sharing, FPU sharing, and crossbar sharing.
For each kind of sharing, two adjacent cores share the hardware structure. In this
section, we investigate the mechanism for each kind of sharing and discuss the area
benefits that they accrue. We talk about the performance impact of sharing in Sec-
tion 4.3. The usage of the shared resource can be based on a policy decided either
statically, such that it can be accessed only during fixed cycles by a certain core, or

48 R. KUMAR AND D.M. TULLSEN

the accesses can be determined based on certain dynamic conditions visible to both
cores (given adequate propagation time). The initial mechanisms discussed in this
section all assume the simplest and most naive static scheduling, where one of the
cores has access to the shared resource during odd cycles while the other core gets ac-
cess during even cycles. More intelligent sharing techniques/policies are discussed
in Section 4.4. All of our sharing policies, however, maintain the assumption that
communication distances between cores are too great to allow any kind of dynamic
cycle-level arbitration for shared resources.

4.2.1 ICache sharing

We implement instruction cache (ICache) sharing between two cores by providing
a shared fetch path from the ICache to both the pipelines. Figure 13 shows a floorplan

FIG. 13. (a) Floorplan of the original core; (b) layout of a conjoined-core pair, both showing FPU
routing. Routing and register files are schematic and not drawn to scale.

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 49

of two adjacent cores sharing a 64 KB, 2-way associative ICache. Because the layout
of memories is a function of the number of rows and columns, we have increased the
number of columns but reduced the number of rows in the shared memory. This gives
a wider aspect ratio that can span two cores.

As mentioned, the ICache is time-shared every other cycle. We investigate two
ICache fetch widths. In the double fetch width case, the fetch width is changed to
8 instructions every other cycle (compared to 4 instructions every cycle in the un-
shared case). The time-averaged effective fetch bandwidth (ignoring branch effects)
remains unchanged in this case. In the original structure fetch width case, we leave
the fetch width to be the same. In this case the effective per-core fetch bandwidth
is halved. Finally, we also investigate a banked architecture, where cores can fetch
4 instructions every cycle, but only if their desired bank is allocated to them that
cycle.

In the double fetch width case, sharing results in a wider instruction fetch path,
wider multiplexors and extra instruction buffers before decode for the instruction
front end. We have modeled this area increase and we also assume that sharing may
increase the access latency by 1 cycle. The double fetch width solution would also
result in higher power consumption per fetch. Furthermore, since longer fetch blocks
are more likely to include taken branches out of the block, the fetch efficiency is
somewhat reduced. We evaluate two latency scenarios—one with the access time
extended by a cycle and another where it remains unchanged.

Based on modeling with CACTI, in the baseline case each ICache takes up
1.15 mm2. In the double fetch width case, the ICache has double the bandwidth
(BITOUT = 256), and requires 1.16 mm2. However, instead of 8 ICaches on the die,
there are just four of them. This results in a core area savings of 9.8%. In the normal
fetch width case (BITOUT = 128), sharing results in core area savings of 9.9%.

4.2.2 DCache sharing

Even though the data caches (DCaches) occupy a significant area, DCache shar-
ing is not an obvious candidate for sharing because of its relatively high utilization.
In our DCache sharing experiments, two adjacent cores share a 64 KB, 2-way set-
associative L1 DCache. Each core can issue memory instructions only every other
cycle.

Sharing entails lengthened wires that increase access latency slightly. This latency
may or may not be able to be hidden in the pipeline. Thus, we again evaluate two
cases—one where the access time is lengthened by one cycle and another where the
access time remains unchanged.

Based on modeling with CACTI, each dual-ported DCache takes up 2.59 mm2 in
the baseline processor. In the shared case, it takes up the area of just one cache for

50 R. KUMAR AND D.M. TULLSEN

every two cores, but with some additional wiring. This results in core area savings of
22.09%.

4.2.3 Crossbar sharing

As shown in Section 4.1, the crossbar occupies a significant fraction (13%) of the
die area. The configuration and complexity of the crossbar is strongly tied to the
number of cores, so we also study how crossbar sharing can be used to free up die
area. We examine the area and performance costs of the crossbar and interconnect in
much greater detail in Section 5.

Crossbar sharing involves two adjacent cores sharing an input port to the L2
cache’s crossbar interconnect. This halves the number of rows (or columns) in the
crossbar matrix resulting in linear area savings. Crossbar sharing means that only
one of the two conjoined cores can issue a request to a particular L2 cache bank in
a given cycle. Again, we assume a baseline implementation where one of the con-
joined cores can issue requests to a bank every odd cycle, while the other conjoined
core can issue requests only on even cycles. There would also be some overhead in
routing signal and data to the shared input port. Hence, we assume the point-to-point

FIG. 14. A die floorplan with crossbar sharing.

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 51

communication latency will be lengthened by one cycle for the conjoined core case.
Figure 14 shows conjoined core pairs sharing input ports to the crossbar.

Crossbar sharing results in halving the area occupied by the interconnect and re-
sults in 6.43% die area savings. This is equivalent to 1.38 times the size of a single
core.

Note that this is not the only way to reduce the area occupied by the crossbar inter-
connect. One can alternatively halve the number of wires for a given point-to-point
link to (approximately) halve the area occupied by that link. This would, though,
double the transfer latency for each connection. In Section 4.3, we compare both
these approaches and show that this performs worse than our port-sharing solution.

Finally, if the DCache and ICache are already shared between two cores, sharing
the crossbar port between the same two cores is very straightforward since the cores
and their accesses have already been joined together before reaching the crossbar.

4.2.4 FPU Sharing

Processor floorplans often have the FPU on one side and the integer datapath on
the other side. So, FPU sharing can be enabled by simply mirroring adjacent proces-
sors without significant disruption to the floorplan. Wires connecting the FPU to
the left core and the right core can be interdigitated, so no additional horizontal
wiring tracks are required (see Fig. 13). This also does not significantly increase the
length of wires in comparison the non-conjoined case. In our baseline FPU sharing
model, each conjoined core can issue floating-point instructions to the fully-pipelined
floating-point sub-units only every other cycle. Based on our design experience, we
believe that there would be no operation latency increase when sharing pipelined
FPU sub-units between the cores. This is because for arithmetic operations the FP
registers remain local to the FPU. For transfers and load/store operations, the routing
distances from the integer datapath and caches to the FPU remain largely unchanged
(see Fig. 13). For the non-pipelined sub-units (e.g., divides and square root) we as-
sume alternating three cycle scheduling windows for each core. If a non-pipelined
unit is available at the start of its three-cycle window, the core may start using it, and
has the remainder of the scheduling window to communicate this to the other core.
Thus, when the non-pipelined units are idle, each core can only start a non-pipelined
operation once every six cycles. However, since operations have a known long la-
tency, there is no additional scheduling overhead needed at the end of non-pipelined
operations. Thus, when a non-pipelined unit is in use, another core waiting for it can
begin using the non-pipelined unit on the first cycle it becomes available.

The FPU area for EV5 is derived from published die photos, scaling the numbers
to 0.07 micron technology and then subtracting the area occupied by the FP register
file. The EV5 FPU takes up 1.05 mm2 including the FP register file. We estimate the

52 R. KUMAR AND D.M. TULLSEN

area taken up by a 5 read port, 4 write port, 32-entry FP register file using register-bit
equivalents (rbe). The total area of the FPU (excluding the register file) is 0.72 mm2.
Sharing results in halving the number of units and results in area savings of 6.1%.

We also consider a case where each core has its own copy of the divide sub-unit,
while the other FPU sub-units are shared. We estimated the area of the divide sub-
unit to be 0.0524 mm2. Total area savings in that case is 5.7%.

To sum up, ICache sharing results in core area savings of 9.9%, DCache sharing
results in core area savings of 22%, FPU sharing saves 6.1% of the core area, and
sharing the input ports to the crossbar can result in a savings equivalent to the area of
1.4 cores. Statically deciding to let each conjoined core access a shared hardware
structure only every other cycle provides an upper-bound on the possible degra-
dation. As our results in Section 4.3 indicate, even these conservative assumptions
lead to relatively small performance degradation and thus reinforce the argument for
conjoined-core chip multiprocessing.

4.2.5 Modeling Conjoined Cores

Benchmarks are simulated using SMTSIM [87]. The simulator was modified to
simulate the various chip multiprocessor (conjoined as well as conventional) archi-
tectures.

Several of our evaluations are done for various numbers of threads ranging from
one through a maximum number of available processor contexts. Each result corre-
sponds to one of three sets of eight benchmarks, where each data point is the average
of several permutations of those benchmarks.

For these experiments, the following SPEC CPU2000 benchmarks were used:
bzip2, crafty, eon, gzip, mcf, perl, twolf, vpr, applu, apsi, art, equake, facerec, fma3d,
mesa, wupwise. The methodology for workload construction is similar to that used
to explore the heterogeneous multi-core design space in the previous sections. More
details can be found in [61].

We also perform evaluations using the parallel benchmark water from the
SPLASH benchmark suite and use the STREAM benchmark for crossbar evalua-
tions. We change the problem size of STREAM to 16,384 elements. At this size,
when running eight copies of STREAM, the working set fits into the L2-cache and
hence it acts as a worst-case test of L1–L2 bandwidth (and hence crossbar intercon-
nect). We also removed the timing statistics collection routines.

The Simpoint tool [78] was used to find good representative fast-forward distances
for each SPEC benchmark. Early simpoints are used. For water, fast-forwarding is
done just enough so that the parallel threads get forked. We do not fast forward for
STREAM.

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 53

All simulations involving n threads are preceded by a warmup of 10 × n million
cycles. Simulation length was 800 million cycles. All the SPEC benchmarks are
simulated using ref inputs. All the performance results are in terms of throughput.

4.3 Simple Sharing
This section examines the performance impact of conjoining cores assuming sim-

ple time-slicing of the shared resources on alternate cycles. More intelligent sharing
techniques are discussed in the next section.

In this section, we show results for various threading levels. We schedule the work-
loads statically and randomly such that two threads are run together on a conjoined-
core pair only if one of them cannot be placed elsewhere. Hence, for the given
architecture, for 1 to 4 threads, there is no other thread that is competing for the
shared resource. If we have 5 runnable threads, one of the threads needs to be put on
a conjoined-core pair that is already running a thread. And so on. However, even if
there is no other thread running on the other core belonging to a conjoined-core pair,
we still assume, in this section, that accesses can be made to the shared resource by
a core only every other cycle.

4.3.1 Sharing the ICache
Results are shown as performance degradation relative to the baseline conventional

CMP architecture. Performance degradation experienced with ICache sharing comes
from three sources: increased access latency, reduced effective fetch bandwidth, and
inter-thread conflicts. Effective fetch bandwidth can be reduced even if the fetch
width is doubled because of the decreased likelihood of filling an eight-wide fetch
with useful instructions, relative to a four-wide fetch.

Figure 15 shows the performance impact of ICache sharing for varied threading
levels for SPEC-based workloads. The results are shown for a fetch width of 8 in-
structions and assuming that there is an extra cycle latency for ICache access due to
sharing. We assume the extra cycle is required since in the worst case the round-trip
distance to read an ICache bit has gone up by two times the original core width,
due to sharing. We observe a performance degradation of 5% for integer workloads,
1.2% for FP workloads and 2.2% for mixed workloads. The performance degrada-
tion does not change significantly when the number of threads is increased from 1
to 8. This indicates that inter-thread conflicts are not a problem for this workload and
these caches. The SPEC benchmarks are known to have relatively small instruction
working sets.

To identify the main cause for performance degradation on ICache sharing, we
also show results assuming that there is no extra cycle increase in the latency. Fig-
ure 16 shows the 8-thread results for both integer and floating-point workloads.

54 R. KUMAR AND D.M. TULLSEN

FIG. 15. Impact of ICache sharing for various threading levels.

Performance degradation becomes less than 0.25%. So the extra latency is the main
reason for degradation on ICache sharing (note that the latency does not introduce
a bubble in the pipeline—the performance degradation comes from the increased
branch mispredict penalty due to the pipeline being extended by a cycle). The inte-
ger benchmarks are most affected by the extra cycle latency, being more sensitive to
the branch mispredict penalty.

Increasing fetch width to 8 instructions ensures that the potential fetch bandwidth
remains the same for the sharing case as the baseline case, but it increases the size of
the ICache (relative to a single ICache in the base case) and results in increased power
consumption per cache. This is because doubling the output width doubles both the
number of sense amps and the data output lines being driven, and these structures ac-
count for much of the power in the original cache. Thus, we also investigate the case
where fetch width is kept the same. Hence, only up to 4 instructions can be fetched
every other cycle (effectively halving the per-core fetch bandwidth). Figure 16 shows
the results for 8-thread workloads. As can be seen, degradation jumps up to 16% for
integer workloads and 10.2% for floating-point workloads. This is because at effec-
tive fetch bandwidth of 2 instructions every cycle (per core), the execution starts
becoming fetch limited.

We also investigate the impact of partitioning the ICache vertically into two equal
sized banks. A core can alternate accesses between the two banks. It can fetch 4 in-
structions every cycle but only if their desired bank is available. A core has access
to bank 0 one cycle, bank 1 the next, etc., with the other core having the opposite
allocation. This allows both threads to access the cache in some cycles. It is also
possible for both threads to be blocked in some cycles. However, bandwidth is guar-

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 55

FIG. 16. ICache sharing when no extra latency overhead is assumed, cache structure bandwidth is not
doubled, and cache is doubly banked.

anteed to exceed the previous case (ignoring cache miss effects) of one 4-instruction
fetch every other cycle, because every cycle that both threads fail to get access will
be immediately followed by a cycle in which they both can access the cache. Fig-
ure 16 shows the results. The degradation of conjoined sharing is reduced by 55%
for integer workloads and 53% for FP workloads (relative the original fetch width
solution), due to an overall improvement in fetch bandwidth.

4.3.2 DCache sharing

Similar to the ICache, performance degradation due to DCache sharing comes
from: increased access latency, reduced cache bandwidth, and inter-thread conflicts.
Unlike the ICache, the DCache latency has a direct effect on performance, as the
latency of the load is effectively increased if it cannot issue on the first cycle it is
ready.

Figure 17 shows the impact on performance due to DCache sharing for SPEC
workloads. The results are shown for various threading levels. We observe a per-
formance degradation of 4–10% for integer workloads, 1–9% for floating point
workloads and 2–13% for mixed workloads. Degradation is higher for integer work-
loads than floating point workloads for small numbers of threads. This is because the
typically higher instruction level parallelism of the FP workloads allows them to hide
a small increase in latency more effectively. Also, inter-thread conflicts are higher,
resulting in increased performance degradation for higher numbers of threads.

We also studied the case where the shared DCache has the same access latency as
the unshared DCache. Figure 18 shows the results for the 8-thread case. Degradation
lessens for both integer workloads as well as floating-point workloads, but less so

56 R. KUMAR AND D.M. TULLSEN

FIG. 17. Impact of DCache sharing for various threading levels.

FIG. 18. DCache sharing when no extra latency overhead is assumed, with eight threads.

in the case of FP workloads as inter-thread conflict misses and cache bandwidth
pressure remain.

4.3.3 FPU Sharing

Floating point units (FPUs) may be the most obvious candidates for sharing. For
SPEC CINT2000 benchmarks only 0.1% of instructions are floating point, while
even for CFP2000 benchmarks, only 32.3% of instructions are floating-point instruc-
tions [19]. Also, FPU bandwidth is a performance bottleneck only for specialized
applications.

We evaluate FPU sharing for integer workloads, FP workloads, and mixed work-
loads, but only present the FP and mixed results (Fig. 19) here. The degradation is
less than 0.5% for all levels of threading, even in these cases.

One reason for these results is that the competition for the non-pipelined units
(divide and square root) is negligible in the SPEC benchmarks. To illustrate code

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 57

FIG. 19. Impact of FPU sharing for various threading levels.

FIG. 20. Impact of private FP divide sub-units.

where non-pipelined units are more heavily used, Fig. 20 shows the performance of
the SPLASH benchmark water (which has a non-trivial number of divides) running
eight threads. It shows performance with a shared FP divide unit vs. unshared FP
divide units. In this case, unless each core has its own copy of the FP divide unit,
performance degradation can be significant.

4.3.4 Crossbar Sharing

We implement the L1–L2 interconnect as a blocking fully-connected matrix cross-
bar, based on the initial Piranha design. As the volume of traffic between L1 and L2
increases, the utilization of the crossbar goes up. Since there is a single path from a
core to a bank, high utilization can result in contention and queuing delays.

58 R. KUMAR AND D.M. TULLSEN

FIG. 21. Reducing crossbar area through width reduction and port sharing.

As discussed in Section 4.2, the area of the crossbar can be reduced by decreasing
the width of the crossbar links or by sharing the ports of the crossbar, thereby reduc-
ing the number of links. We examine both techniques. Crossbar sharing involves the
conjoined cores sharing an input port of the crossbar. Figure 21 shows the results for
eight copies of the STREAM benchmark. It must be noted that this is a component
benchmark we have tuned for worst-case utilization of the crossbar. The results are
shown in terms of performance degradation caused for achieving certain area sav-
ings. For example, for achieving crossbar area savings of 75% (area/4), we assume
that the latency of every crossbar link has been doubled for the crossbar sharing case
while the latency has been quadrupled for the crossbar width reduction case.

We observe that crossbar sharing outperforms crossbar width reduction in all
cases. Even though sharing results in increased contention at the input ports, it is the
latency of the links that is primarily responsible for queuing of requests and hence
overall performance degradation.

We also conducted crossbar exploration experiments using SPEC benchmarks.
However, most of the benchmarks do not exercise L1–L2 bandwidth much, resulting
in relatively low crossbar utilization rates. The performance degradation in the worst
case was less than 5% for an area reduction factor of 2.

4.4 Intelligent Sharing of Resources

The previous section assumed a very basic sharing policy and thus gave an upper
bound on the degradation for each kind of sharing. In this section, we discuss more
advanced techniques for minimizing performance degradation.

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 59

4.4.1 ICache Sharing

This section focuses on that configuration that minimized area, but maximized
slowdown—the four-wide fetch shared ICache, assuming an extra cycle of latency.
In that case, both access latency and fetch bandwidth contribute to the overall degra-
dation. Most of these results would also apply to the other configurations of shared
ICache, taking them even closer to zero degradation.

Section 4.3 evaluated a sharing model where the shared resource gets accessed
evenly irrespective of the access needs of the individual cores. Instead, the control of
a shared resource can be decided assertively based on the resource needs.

We explore assertive ICache access where, whenever there is an L1 miss, the other
core can take control of the cache after miss detection. We assume that a miss can
be detected and communicated to the other core in 3 cycles. Access would become
shared again when the data returns. This does not incur any additional latency since
the arrival cycle of the data is known well in advance of its return.

Figure 22 shows the results for assertive ICache access. We show results for eight
threads, where contention is highest. We observe a 13.7% reduction in the degrada-
tion of integer workloads and an improvement of 22.5% for floating point workloads.
Performance improvement is because of improved effective fetch bandwidth. These
results are for eight threads, so there is no contribution from threads that are not shar-
ing an ICache. A minor tweak to assertive access (for ICache as well as DCache and
FPU) can ensure that the shared resource becomes a private resource when the other
core of the conjoined pair is idle.

FIG. 22. ICache assertive access results when the original structure bandwidth is not doubled.

60 R. KUMAR AND D.M. TULLSEN

4.4.2 DCache Sharing

Performance loss due to DCache sharing is due to three factors—inter-thread con-
flict misses, reduced bandwidth, and potentially increased latency. We present two
techniques for minimizing degradation due to DCache sharing.

Assertive access can also be used for the shared DCaches. Whenever there is an
L1 miss on some data requested by a core, if the load is determined to be on the
right path, the core relinquishes control over the shared DCache. There may be some
delay between detection of an L1 miss and the determination that the load is on the
right path. Once the core relinquishes control, the other core takes over full control
and can then access the DCache whenever it wants. The timings are the same as with
the ICache assertive access. This policy is still somewhat naive, assuming that the
processor will stall for this load (recall, these are in-order cores) before another load
is ready to issue—more sophisticated policies are possible.

Figure 23 shows the results. Assertive access leads to 29.6% reductions in the
degradation for integer workloads and 23.7% improvements for floating point work-
loads. Improvements are due to improved data bandwidth.

The next technique that we study we call static port assignment. The DCache in-
terface consists of two R/W ports. In the basic DCache sharing case, the DCache (and
hence both the ports) can be accessed only every other cycle. Instead, one port can
be statically assigned to each of the cores and that will make the DCache accessible
every cycle.

Figure 23 shows the results comparing the baseline sharing policy against static
port-to-core assignment. We observed a 33.6% reduction in degradation for integer
workloads while the difference for FP workloads was only 3%. This outperforms
the cycle-slicing mechanism for integer benchmarks, for the following reason: when

FIG. 23. Effect of assertive access and static assignment on the data cache.

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 61

load port utilization is not high, the likelihood (with port partitioning) of a port being
available when a load becomes ready is high. However, with cycle-by-cycle slicing,
the likelihood of a port being available that cycle is only 50%.

4.5 A Unified Conjoined-Core Architecture
We have studied various combinations of FPU, crossbar, ICache, and DCache

sharing. We assumed a shared doubly-banked ICache with a fetch width of 16 bytes
(similar to that used in Section 4.3.1), statically port-assigned shared DCache (simi-
lar to that used in Section 4.4.2), a fully-shared FPU and a shared crossbar input port
for every conjoined-core pair. Access to the ICache, DCache, as well as the crossbar
is assumed to incur a one cycle overhead, relative to the non-conjoined configuration.
We assume that each shared structure can be assertively accessed. Assertive access
for the statically port-assigned dual-ported DCache involves accessing the other port
(the one not assigned to the core) assertively. Table IX shows the resulting area sav-
ings and performance for various sharing combinations. We map the applications
to the cores such that “friendly” threads run on the conjoined cores where possi-
ble. All performance numbers are for the worst case when all cores are busy with
threads.

The combination with all four types of sharing results in 38.1% core-area sav-
ings (excluding crossbar savings). In absolute terms, this is equivalent to the area
occupied by 3.76 cores. If crossbar savings are included, then the total area saved
is equivalent to 5.14 times the area of a core. We observed an 11.9% degradation
for integer workloads and 8.5% degradation for floating-point workloads. Note that
the total performance degradation is significantly less than the sum of the individ-
ual degradation values that we observed for each kind of sharing. This is because a
stall due to one bottleneck often either tolerates or obviates a stall due to some other
bottleneck.

Thus, by applying conjoining to all of these structures, we can more than double
the number of cores on the die, at a cost of less than 12% performance per core.

TABLE IX
RESULTS WITH MULTIPLE SHARINGS

Units shared Perf. degradation Core area
savings (%)Int Aps (%) FP Aps (%)

Crossbar+FPU 0.97 1.2 23.1
Crossbar+FPU+ICache 4.7 3.9 33.0
Crossbar+FPU+DCache 6.1 6.8 45.2
ICache+DCache 11.4 7.6 32.0
Crossbar+FPU+ICache+DCache 11.9 8.5 55.1

62 R. KUMAR AND D.M. TULLSEN

5. Holistic Design of the Multi-Core Interconnect

This section examines the area, power, performance, and design issues for the on-
chip interconnects on a chip multiprocessor, attempting to present a comprehensive
view of a class of interconnect architectures. It shows that the design choices for the
interconnect have significant effect on the rest of the chip, potentially consuming a
significant fraction of the real estate and power budget. This research shows that de-
signs that treat interconnect as an entity that can be independently architected and
optimized (“multi-core oblivious”) would not arrive at the best multi-core design.
Several examples are presented showing the need for a holistic approach to design
(e.g., careful co-design). For instance, increasing interconnect bandwidth requires
area that then constrains the number of cores or cache sizes, and does not necessarily
increase performance. Also, shared level-2 caches become significantly less attrac-
tive when the overhead of the resulting crossbar is accounted for. A hierarchical bus
structure is examined which negates some of the performance costs of the assumed
baseline architecture.

5.1 Interconnection Mechanisms
In this section, we detail three interconnection mechanisms that may serve partic-

ular roles in on-chip interconnect hierarchy—a shared bus fabric (SBF) that provides
a shared connection to various modules that can source and sink coherence traffic,
a point-to-point link (P2P link) that connects two SBFs in a system with multiple
SBFs, and a crossbar interconnection system. In the subsequent sections, we will
demonstrate the need for co-design using these mechanisms as our baseline.

Many different modules may be connected to these fabrics, which use them in
different ways. But from the perspective of the core, an L2 miss goes out over the
SBF to be serviced by higher levels of the memory hierarchy, another L2 on the same
SBF, or possibly an L2 on another SBF connected to this one by a P2P link. If the
core shares L2 cache with another core, there is a crossbar between the cores/L1
caches and the shared L2 banks. Our initial discussion of the SBF in this section
assumes private L2 caches.

The results in this section are derived from a detailed model of a complex system,
which are described in the next few sections. The casual reader may want to skim
Sections 5.1 through 5.6 and get to the results in Section 5.7 more quickly.

5.2 Shared Bus Fabric
A Shared Bus Fabric is a high speed link needed to communicate data between

processors, caches, IO, and memory within a CMP system in a coherent fashion. It

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 63

is the on-chip equivalent of the system bus for snoop-based shared memory multi-
processors [37,94,68]. We model a MESI-like snoopy write-invalidate protocol with
write-back L2s for this study [21,49]. Therefore, the SBF needs to support several
coherence transactions (request, snoop, response, data transfer, invalidates, etc.) as
well as arbitrate access to the corresponding buses. Due to large transfer distances
on the chip and high wire delays, all buses must be pipelined, and therefore unidi-
rectional. Thus, these buses appear in pairs; typically, a request traverses from the
requester to the end of one bus, where it is queued up to be re-routed (possibly after
some computation) across a broadcast bus that every node will eventually see, re-
gardless of their position on the bus and distance from the origin. In the following
discussion a bidirectional bus is really a combination of two unidirectional pipelined
buses.

We are assuming, for this discussion, all cores have private L1 and L2 caches, and
that the shared bus fabric connects the L2 caches (along with other units on the chip
and off-chip links) to satisfy memory requests and maintain coherence. Below we
describe a typical transaction on the fabric.

5.2.1 Typical Transaction on the SBF

A load that misses in the L2 cache will enter the shared bus fabric to be serviced.
First, the requester (in this case, one of the cores) will signal the central address
arbiter that it has a request. Upon being granted access, it sends the request over an
address bus (AB in Fig. 24). Requests are taken off the end of the address bus and

FIG. 24. The assumed shared bus fabric for our interconnection study.

64 R. KUMAR AND D.M. TULLSEN

placed in a snoop queue, awaiting access to the snoop bus (SB). Transactions placed
on the snoop bus cause each snooping node to place a response on the response bus
(RB). Logic and queues at the end of the response bus collect these responses and
generate a broadcast message that goes back over the response bus identifying the
action each involved party should take (e.g., source the data, change coherence state).
Finally, the data is sent over a bidirectional data bus (DB) to the original requester. If
there are multiple SBFs (e.g., connected by a P2P link), the address request will be
broadcast to the other SBFs via that link, and a combined response from the remote
SBF returned to the local one, to be merged with the local responses.

Note that the above transactions are quite standard for any shared memory multi-
processor implementing a snoopy write-invalidate coherence protocol [21].

5.2.2 Elements of the SBF

The composition of the SBF allows it to support all the coherence transactions
mentioned above. We now discuss the primary buses, queues and logic that would
typically be required for supporting these transactions. Figure 24 illustrates a typical
SBF. Details of the modeled design are based heavily on the shared bus fabric in the
Power5 multi-core architecture [50].

Each requester on the SBF interfaces with it via request and data queues. It takes
at least one cycle to communicate information about the occupancy of the request
queue to the requester. The request queue must then have at least two entries to
maintain the throughput of one request every cycle. Similarly, all the units that can
source data need to have data queues of at least two entries. Requesters connected
to the SBF include cores, L2 and L3 caches, IO devices, memory controllers, and
non-cacheable instruction units.

All requesters interface to the fabric through an arbiter for the address bus. The
minimum latency through the arbiter depends on (1) the physical distance from the
central arbiter to the most distant unit, and (2) the levels of arbitration. Caches are
typically given higher priority than other units, so arbitration can take multiple levels
based on priority. Distance is determined by the actual floorplan. Since the address
bus is pipelined, the arbiter must account for the location of a requester on the bus
in determining what cycle access is granted. Overhead of the arbiter includes control
signals to/from the requesters, arbitration logic and some latches.

After receiving a grant from the central arbiter, the requester unit puts the address
on the address bus. Each address request goes over the address bus and is then copied
into multiple queues, corresponding to outgoing P2P links (discussed later) and to
off-chip links. There is also a local snoop queue that queues up the requests and
participates in the arbitration for the local snoop bus. Every queue in the fabric incurs
at least one bus cycle of delay. The minimum size of each queue in the interconnect

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 65

(there are typically queues associated with each bus) depends on the delay required
for the arbiter to stall further address requests if the corresponding bus gets stalled.
Thus it depends on the distance and communication protocol to the device or queue
responsible for generating requests that are sinked in the queue, and the latency of
requests already in transit on the bus. We therefore compute queue size based on
floorplan and distance.

The snoop bus can be shared, for example by off-chip links and other SBFs, so it
also must be accessed via an arbiter, with associated delay and area overhead. Since
the snoop queue is at one end of the address bus, the snoop bus must run in the
opposite direction of the address bus, as shown in Fig. 24. Each module connected
to the snoop bus snoops the requests. Snooping involves comparing the request ad-
dress with the address range allocated to that module (e.g., memory controllers) or
checking the directory (tag array) for caches.

A response is generated after a predefined number of cycles by each snooper, and
goes out over the response bus. The delay can be significant, because it can involve
tag-array lookups by the caches, and we must account for possible conflicts with
other accesses to the tag arrays. Logic at one end of the bidirectional response bus
collects all responses and broadcasts a message to all nodes, directing their response
to the access. This may involve sourcing the data, invalidating, changing coherence
state, etc. Some responders can initiate a data transfer on a read request simultane-
ously with generating the snoop response, when the requested data is in appropriate
coherence state. The responses are collected in queues. All units that can source data
to the fabric need to be equipped with a data queue. A central arbiter interfacing with
the data queues is needed to grant one of the sources access to the bus at a time.

Bidirectional data buses source data. They support two different data streams, one
in either direction. Data bandwidth requirements are typically high.

It should be noted that designs are possible with fewer buses, and the various
types of transactions multiplexed onto the same bus. However, that would require
higher bandwidth (e.g., wider) buses to support the same level of traffic at the same
performance, so the overheads are unlikely to change significantly. We assume for
the purpose of this study that only the above queues, logic, and buses form a part of
the SBF and contribute to the interconnection latency, power, and area overheads.

5.3 P2P Links

If there are multiple SBFs in the system, the connection between the SBFs is ac-
complished using P2P links. Multiple SBFs might be required to increase bandwidth,
decrease signal latencies, or to ease floorplanning (all connections to a single SBF
must be on a line). For example, if a processor has 16 cores as shown in Fig. 26, it

66 R. KUMAR AND D.M. TULLSEN

becomes impossible to maintain die aspect ratio close to 1 unless there are two SBFs
each supporting 8 cores.

Each P2P link should be capable of transferring all kinds of transactions (re-
quest/response/data) in both directions. Each P2P link is terminated with multiple
queues at each end. There needs to be a queue and an arbiter for each kind of trans-
action described above.

5.4 Crossbar Interconnection System

The previous section assumed private L2 caches, with communication and coher-
ence only occurring on L2 misses. However, if our architecture allows two or more
cores to share L2 cache banks, a high bandwidth connection is required between the
cores and the cache banks. This is typically accomplished by using a crossbar. It al-
lows multiple core ports to launch operations to the L2 subsystem in the same cycle.
Likewise, multiple L2 banks are able to return data or send invalidates to the various
core ports in the same cycle.

The crossbar interconnection system consists of crossbar links and crossbar inter-
face logic. A crossbar consists of address lines going from each core to all the banks
(required for loads, stores, prefetches, TLB misses), data lines going from each core
to the banks (required for writebacks) and data lines going from every bank to the
cores (required for data reload as well as invalidate addresses). A typical implemen-
tation, shown in Fig. 25, consists of one address bus per core from which all the
banks feed. Each bank has one outgoing data bus from which all the cores feed. Sim-

FIG. 25. A typical crossbar.

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 67

ilarly, corresponding to each write port of a core is an outgoing data bus that feeds
all the banks.

Crossbar interface logic presents a simplified interface to the instruction fetch unit
and the Load Store Unit in the cores. It typically consists of a load queue corre-
sponding to each core sharing the L2. The load queue sends a request to the L2 bank
appropriate to the request, where it is enqueued in a bank load queue (BLQ) (one per
core for each bank to avoid conflict between cores accessing the same bank). The
BLQs must arbitrate for the L2 tags and arrays, both among the BLQs, as well as
with the snoop queue, the writeback queue, and the data reload queue—all of which
may be trying to access the L2 at the same time. After L2 access (on a load request),
the data goes through the reload queue, one per bank, and over the data bus back to
the core. The above description of the crossbar interface logic is based on the cross-
bar implementation (also called core interface unit) in Power4 [49] and Power5 [50].

Note that even when the caches (or cache banks) are shared, an SBF is required to
maintain coherence between various units in the CMP system.

5.5 Modeling Interconnect Area, Power, and Latency

Both wires and logic contribute to interconnect overhead. This section describes
our methodology for computing various overheads for 65 nm technology. The scaling
of these overheads with technology as well as other design parameters is discussed
in more detail in [64].

5.5.1 Wiring Area Overhead

We address the area overheads of wires and logic separately.
The latency, area, and power overhead of a metal wire depends on the metal layer

used for this wire. The technology that we consider facilitates 10 layers of metal, 4
layers in 1X plane and 2 layers in the higher planes (2X, 4X and 8X) [51]. The 1X
metal layers are typically used for macro-level wiring [51]. Wiring tracks in higher
layers of metal are very scarce and only used for time-critical signals running over a
considerable distance (several millimeters of wire).

We evaluate crossbar implementations for 1X, 2X and 4X metal planes where
both data and address lines use the same metal plane. For our SBF evaluations, the
address bus, snoop bus, and control signals always use the 8X plane. Response buses
preferably use the 8X plane, but can use the 4X plane. Data buses can be placed in
the 4X plane (as they have more relaxed latency considerations). All buses for P2P
links are routed in the 8X plane.

Methodological details for computing area overhead for a given number of wires
can be found in [64]. Overheads depend on the pitch of wires, their metal layer,

68 R. KUMAR AND D.M. TULLSEN

TABLE X
DESIGN PARAMETERS FOR WIRES IN DIFFERENT METAL PLANES

Metal
plane

Pitch

(µm)

Signal
wiring pitch
(µm)

Repeater
spacing
(mm)

Repeater
width
(µm)

Latch
spacing
(mm)

Latch
height
(µm)

Channel leakage
per repeater
(µA)

Gate leakage
per repeater
(µA)

1X 0.2 0.5 0.4 0.4 1.5 120 10 2
2X 0.4 1.0 0.8 0.8 3.0 60 20 4
4X 0.8 2.0 1.6 1.6 5.0 30 40 8
8X 1.6 4.0 3.2 3.2 8.0 15 80 10

and the dimensions and spacing of the corresponding repeaters and latches. Table X
shows the signal wiring pitch for wires in different metal planes for 65 nm. These
pitch values are estimated by conforming to the considerations mentioned in [85].
The table also shows the minimum spacing for repeaters and latches as well as their
heights for computing the corresponding area overheads. We model the height of
the repeater macro to be 15 µm. The height of the latch macro given in the table
includes the overhead of the local clock buffer and local clock wiring, but excludes
the overhead of rebuffering the latch output which is counted separately. The values
in Table X are for a bus frequency of 2.5 GHz and a bus voltage of 1.1 V.

5.5.2 Logic Area Overhead

Area overhead due to interconnection-related logic comes primarily from queues.
Queues are assumed to be implemented using latches. We estimate the area of a 1-bit
latch used for implementing the queues to be 115 µm2 for 65 nm technology [93].
This size includes the local clock driver and the area overhead of local clock distri-
bution. We also estimated that there is 30% overhead in area due to logic needed to
maintain the queues (such as head and tail pointers, queue bypass, overflow signal-
ing, request/grant logic, etc.) [28].

The interconnect architecture can typically be designed such that buses run over
interconnection-related logic. The area taken up due to wiring is usually big enough
that it (almost) subsumes the area taken up by the logic.

Because queues overwhelmingly dominate the logic area, we ignore the area (but
not latency) of multiplexors and arbiters. It should be noted that the assumed over-
heads can be reduced by implementing queues using custom arrays instead of latches.

5.5.3 Power

Power overhead comes from wires, repeaters, and latches. For calculating dynamic
dissipation in the wires, we optimistically estimate the capacitance per unit length of
wire (for all planes) to be 0.2 pF/mm [48]. Repeater capacitance is assumed to be

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 69

30% of the wire capacitance [15]. The dynamic power per latch is estimated to be
0.05 mW per latch for 2.5 GHz at 65 nm [93]. This includes the power of the local
clock buffer and the local clock distribution, but does not include rebuffering that
typically follows latches.

Repeater leakage is computed using the parameters given in Table X. For latches,
we estimate channel leakage to be 20 µA per bit in all planes (again not counting the
repeaters following a latch). Gate leakage for a latch is estimated to be 2 µA per bit
in all planes [15]. For computing dynamic and leakage power in the queues, we use
the same assumptions as for the wiring latches.

More details of the power model and how it was derived can be found in [64].

5.5.4 Latency

The latency of a signal traveling through the interconnect is primarily due to wire
latencies, wait time in the queues for access to a bus, arbitration latencies, and latch-
ing that is required between stages of interconnection logic. Latency of wires is
determined by the spacing of latches. Spacing between latches for wires is given
in Table X.

Arbitration can take place in multiple stages (where each stage involves arbitra-
tion among the same priority units) and latching needs to be done between every
two stages. For 65 nm technology, we estimate that no more than four units can
be arbitrated in a cycle. The latency of arbitration also comes from the travel of
control between a central arbiter and the interfaces corresponding to request/data
queues. Other than arbiters, every time a transaction has to be queued, there is at
least a bus cycle of delay—additional delays depend on the utilization of the out-
bound bus.

5.6 Modeling the Cores

For this study, we consider a stripped version of out-of-order Power4-like
cores [49]. We determine the area taken up by such a core at 65 nm to be 10 mm2.
The area and power determination methodology is similar to the one presented
in [60]. The power taken up by the core is determined to be 10 W, including leak-
age.

For calculating on-chip memory sizes, we use the Power5 cache density, as mea-
sured from die photos [50], scaled to 65 nm. We determine it to be 1 bit per square
micron, or 0.125 MB/mm2. For the purpose of this study, we consider L2 caches as
the only type of on-chip memory (besides the L1 caches associated with each core).
We do not assume off-chip L3 cache, but in 65 nm systems, it is likely that L3 chips
would be present as well (the number of L3 chips would be limited, however, due

70 R. KUMAR AND D.M. TULLSEN

to the large number of pins that every L3 chip would require), but we account for
that effect using somewhat optimistic estimates for effective bandwidth and memory
latency. Off-chip bandwidth was modeled carefully based on pincount [15] and the
number of memory channels (Rambus RDRAM interface was assumed).

We simulate a MESI-like [74,49] coherence protocol, and all transactions required
by that protocol are faithfully modeled in our simulations. We also model weak con-
sistency [33] for the multiprocessor, so there is no impact on CPI due to the latency
of stores and writebacks.

Because our focus is on accurate modeling of the interconnect, including types
of traffic not typically generated by processor simulations, we use a very different
performance simulator than used in the previous sections, making heavy use of cap-
tured commercial traces. We use a combination of detailed functional simulation and
queuing simulation tools [65]. The functional simulator is used for modeling the
memory subsystem as well as the interconnection between modules. It takes instruc-
tion traces from a SMP system as input and generates coherence statistics for the
modeled memory/interconnect sub-system. The queuing simulator takes as input the
modeled subsystem, its latencies, coherence statistics, and the inherent CPI of the
modeled core assuming perfect L2. It then generates the CPI of the entire system,
accounting for real L2 miss rates and real interconnection latencies. Traffic due to
syncs, speculation, and MPL (message passing library) effects is accounted for as
well. The tools and our interconnection models have been validated against a real,
implemented design.

The cache access times are calculated using assumptions similar to those made in
CACTI [80]. Memory latency is set to 500 cycles. The average CPI of the modeled
core over all the workloads that we use, assuming perfect L2, is measured to be 2.65.
Core frequency is assumed to be 5 GHz for the 65 nm studies. Buses as well as the
L2 are assumed to be clocked at half the CPU speed.

More details on the performance model can be found in [64].

5.6.1 Workload

All our performance evaluations have been done using commercial workloads, in-
cluding TPC-C, TPC-W, TPC-H, Notesbench, and others further described in [65].
We use PowerPC instruction and data reference traces of the workloads running un-
der AIX. The traces are taken in a non-intrusive manner by attaching a hardware
monitor to a processor [34,65]. This enables the traces to be gathered while the sys-
tem is fully loaded with the normal number of users, and captures the full effects of
multitasking, data sharing, interrupts, etc. These traces even contain DMA instruc-
tions and non-cacheable accesses.

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 71

5.7 Shared Bus Fabric: Overheads and Design Issues

This section examines the various overheads of the shared bus fabric, and the
implications this has for the entire multi-core architecture. We examine floorplans
for several design points, and characterize the impact of the area, power, and la-
tency overheads on the overall design and performance of the processor. This section
demonstrates that the overheads of the SBF can be quite significant. It also illustrates
the tension between the desire to have more cores, more cache, and more intercon-
nect bandwidth, and how that plays out in total performance.

In this section, we assume private L2 caches and that all the L2s (along with
NCUs, memory controllers, and IO Devices) are connected using a shared bus fab-
ric. We consider architectures with 4, 8, and 16 cores. Total die area is assumed to
be constant at 400 mm2 due to yield considerations. Hence, the amount of L2 per
core decreases with increasing number of cores. For 4, 8 and 16 cores, we evalu-
ate multiple floorplans and choose those that maximized cache size per core while

FIG. 26. Floorplans for 4, 8 and 16 core processors.

72 R. KUMAR AND D.M. TULLSEN

maintaining a die aspect ratio close to 1. In the default case, we consider the width
of the address, snoop, response and data buses of the SBF to be 7, 12, 8, 38 (in each
direction) bytes respectively—these widths are determined such that no more than
0.15 requests are queued up, on average, for the 8 core case. We also evaluate the
effect of varying bandwidths. We can lay out 4 or 8 cores with a single SBF, but
for 16 cores, we need two SBFs connected by a P2P link. In that case, we model
two half-width SBFs and a 76 byte wide P2P link. Figure 26 shows the floorplans
arrived at for the three cases. The amount of L2 cache per core is 8 MB, 3 MB and
0.5 MB for 4, 8 and 16 core processors, respectively. It must be mentioned that the
16-core configuration is somewhat unrealistic for this technology as it would result
in inordinately high power consumption. However, we present the results here for
completeness reasons.

Wires are slow and hence cannot be clocked at very high speeds without insert-
ing an inordinately large number of latches. For our evaluations, the SBF buses are
cycled at half the core frequency.

5.7.1 Area

The area consumed by the shared bus fabric comes from wiring and intercon-
nection-related logic, as described in Section 5.5. Wiring overhead depends on the
architected buses and the control wires that are required for flow control and arbi-
tration. Control wires are needed for each multiplexor connected to the buses and
signals to and from every arbiter. Flow control wires are needed from each queue to
the units that control traffic to the queue.

Figure 27 shows the wiring area overhead for various processors. The graph shows
the area overhead due to architected wires, control wires, and the total. We see that
area overhead due to interconnections in a CMP environment can be significant. For
the assumed die area of 400 mm2, area overhead for the interconnect with 16 cores
is 13%. Area overhead for 8 cores and 4 cores is 8.7% and 7.2% of the die area,
respectively. Considering that each core is 10 mm2, the area taken up by the SBF is
sufficient to place 3–5 extra cores, or 4–6 MB of extra cache.

The graph also shows that area overhead increases quickly with the number of
cores. This result assumes constant width architected buses, even when the number
of cores is increased. If the effective bandwidth per core is kept constant, overhead
would increase even faster.

The overhead due to control wires is high. Control takes up at least 37% of SBF
area for 4 cores and at least 62.8% of the SBF area for 16 cores. This is because the
number of control wires grows linearly with the number of connected units, in addi-
tion to the linear growth in the average length of the wires. Reducing SBF bandwidth
does not reduce the control area overhead, thus it constrains how much area can be

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 73

FIG. 27. Area overhead for shared bus fabric.

regained with narrower buses. Note that this argues against very lightweight (small,
low performance) cores on this type of chip multiprocessor, because the lightweight
core does not amortize the incremental cost to the interconnect of adding each core.
Interconnect area due to logic is primarily due to the various queues, as described in
Section 5.5. This overhead can often be comparable to that of SBF wires. Note, how-
ever, that the logic can typically be placed underneath the SBF wires. Thus, under
these assumptions the SBF area is dominated by wires, but only by a small amount.

5.7.2 Power

The power dissipated by the interconnect is the sum of the power dissipated by
wires and the logic. Figure 28 shows a breakdown of the total power dissipation by
the interconnect.

The graph shows that total power due to the interconnect can be significant. The
interconnect power overhead for the 16-core processor is more than the combined
power of two cores. It is equal to the power dissipation of one full core even for the
8 core processor. Power increases superlinearly with the number of connected units.
This is because of the (at least linear) increase in the number of control wires as
well as the (at least linear) increase in the number of queuing latches. There is also
a considerable increase in the bus traffic with the growing number of cores. Half the
power due to wiring is leakage (mostly from repeaters).

Contrary to popular belief, interconnect power is not always dominated by the
wires. The power due to logic can be, as in this case, more than the power due to
wiring.

74 R. KUMAR AND D.M. TULLSEN

FIG. 28. Power overhead for shared bus fabric.

FIG. 29. Performance overhead due to shared bus fabric.

5.7.3 Performance

Figure 29 shows the per-core performance for 4, 8, and 16 core architectures both
assuming no interconnection overhead (zero latency interconnection) and with inter-
connection overheads modeled carefully. Single-thread performance (even assuming

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 75

FIG. 30. Trading off interconnection bandwidth with area.

no interconnection overhead) goes down as the number of cores increases due to the
reduced cache size per core. If interconnect overhead is considered, then the perfor-
mance decreases much faster. In fact, performance overhead due to interconnection
is more than 10% for 4 cores, more than 13% for 8 cores and more than 26% for 16
cores.

In results to this point, we keep bus bandwidth constant. In Fig. 30, we show the
single-thread performance of a core in the 8 core processor case, when the width of
the architected buses is varied by factors of two. The graph also shows the real estate
saved compared to the baseline. In this figure, performance is relative to an ideal bus,
so even the baseline sees a “degradation.” We see that with wide buses, the area costs
are significant, and the incremental performance is minimal—these interconnects
are dominated by latency, not bandwidth. On the other hand, with narrow buses, the
area saved by small changes in bandwidth is small, but the performance impact is
significant.

There is definitely potential, then, to save real estate with a less aggressive inter-
connect. We could put that saved area to use. We ran simulations that assume that we
put that area back into the caches. We find that over certain ranges, if the bandwidth
is reduced by small factors, the performance degradation can be recovered using
bigger caches. For example, decreasing the bandwidth by a factor of 2 decreases
the performance by 0.57%. But it saves 8.64 mm2. This can be used to increase the
per-core cache size by 135 KB. When we ran simulations using new cache sizes, we
observed a performance improvement of 0.675%. Thus, we can decrease bus band-
width and improve performance (if only by small margins in this example), because

76 R. KUMAR AND D.M. TULLSEN

the resulting bigger caches protect the interconnect from a commensurate increase
in utilization. On the other hand, when bandwidth is decreased by a factor of 8, per-
formance decreases by 31%, while the area it saves is 15.12 mm2. The area savings
is sufficient to increase per core cache size by only 240 KB. The increase in cache
size was not sufficient to offset the performance loss in this case. Similarly, when
doubling interconnect bandwidth over our baseline configuration, total performance
decreased by 1.2% due to the reduced cache sizes.

This demonstrates the importance of co-designing the interconnect and memory
hierarchy. It is neither true that the biggest caches nor the widest interconnect give
the best performance; designing each of these subsystems independently is unlikely
to result in the best design. This is another example of holistic design—not designing
each component for maximum performance, but designing the components together
for maximum whole processor performance.

5.8 Shared Caches and the Crossbar

The previous section presented evaluations with private L1 and L2 caches for
each core, but many proposed chip multiprocessors have featured shared L2 caches,
connected with crossbars. Shared caches allow the cache space to be partitioned dy-
namically rather than statically, typically improving overall hit rates. Also, shared
data does not have to be duplicated. To fully understand the tradeoffs between pri-
vate and shared L2 caches, however, we find that it is absolutely critical that we
account for the impact of the interconnect.

5.8.1 Area and Power Overhead

The crossbar, shown in Fig. 25, connects cores (with L1 caches) to the shared L2
banks. The data buses are 32 bytes while the address bus is 5 bytes. Lower bandwidth
solutions were found to adversely affect performance and render sharing highly un-
fruitful. In this section we focus on an 8-core processor with 8 cache banks, giving
us the options of 2-way, 4-way, and full (8-way) sharing of cache banks. Crossbar
wires can be implemented in the 1X, 2X or 4X plane. For a latency reduction of
nearly a factor of two, the wire thickness doubles every time we go to a higher metal
plane.

Figure 31 shows the area overhead for implementing different mechanisms of
cache sharing. The area overhead is shown for two cases—one where the crossbar
runs between cores and L2 and the other where the crossbar can be routed over L2
(there is one line for the latter case, because the overhead is independent of the degree
of sharing above two). When the crossbar is placed between the L2 and the cores,
interfacing is easy, but all wiring tracks result in area overhead. When the crossbar is

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 77

FIG. 31. Area overhead for cache sharing—results for crossbar routed over L2 assume uniform cache
density.

routed over L2, area overhead is only due to reduced cache density to accommodate
repeaters and latches. However, the implementation is relatively complex as vertical
wires are needed to interface the core with the L2. We show the results assuming
that the L2 density is kept uniform (i.e. even if repeaters/latches are dropped only
over the top region of the cache, sub-arrays are displaced even in the other regions to
maintain uniform density).

Cache sharing carries a heavy area overhead. If the total die area is around
400 mm2, then the area overhead for an acceptable latency (2X) is 11.4% for 2-
way sharing, 22.8% for four-way sharing and 46.8% for full sharing (nearly half the
chip!). Overhead increases as we go to higher metal layers due to increasing signal
pitch values. When we assume that the crossbar can be routed over L2, area over-
head is still substantial; however, in that case it improves as we move up in metal
layers. At low levels the number of repeater/latches, which must displace cache, is
highest.

The point of sharing caches is that it gives the illusion of more cache space, as
threads sharing a larger cache tend to share it more effectively than statically par-
titioning the space among the individual threads. However, in this case, the cores
gain significant real cache space by foregoing sharing, raising doubts about whether
sharing has any benefit.

The high area overhead again suggests that issues of interconnect/cache/core co-
design must be considered. For crossbars sitting between cores and L2, just two-way
sharing results in an area overhead equivalent to more than the area of two cores.
Four-way sharing results in an area overhead of 4 cores. An 8-way sharing results

78 R. KUMAR AND D.M. TULLSEN

in an area overhead of 9 cores. If the same area were devoted to caches, one could
instead put 2.75, 5.5 and 11.6 MB of extra caches, respectively.

Similarly, the power overhead due to crossbars is very significant. The overhead
can be more than the power taken up by three full cores for a completely shared cache
and more than the power of one full core for 4-way sharing. Even for 2-way sharing,
power overhead is more than half the power dissipation of a single core. Hence, even
if power is the primary constraint, the benefits of the shared caches must be weighed
against the possibility of more cores or significantly more cache.

5.8.2 Performance

Because of the high area overhead for cache sharing, the total amount of on-chip
caches decreases with sharing. We performed our evaluations for the most tightly
packed floorplans that we could find for 8-core processors with different levels of
sharing. When the crossbar wires are assumed to be routed in the 2X plane between
cores and L2, total cache size is 20, 14 and 4 MB respectively for 2-way, 4-way
and full sharing. When the crossbar is assumed to be routed over L2 (and assuming
uniform cache density), the total cache size was 22 MB for 4X and 18.2 MB for 2X.
Figure 32 presents the results for a fixed die area and cache sizes varied accordingly
(i.e. taking into account crossbar area overhead).

Figure 32, assumes a constant die area and considers interconnection area over-
head. It shows that performance, even without considering the interconnection la-

FIG. 32. Evaluating cache sharing for a fixed die area—area overhead taken into account.

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 79

tency overhead (and hence purely the effect of cache sharing), either does not
improve or improves only by a slight margin. This is due to the reduced size of
on-chip caches to accommodate the crossbar. If interconnect latencies are accounted
for (higher sharing means longer crossbar latencies), sharing degrades performance
even between two cores. Note that in this case, the conclusion reached ignoring
interconnect area effects is opposite that reached when those effects are consid-
ered.

Note that performance loss due to increased L2 hit latency can possibly be mit-
igated by using L2 latency hiding techniques, like overlapping of L2 accesses or
prefetching. However, our results definitely show that having shared caches becomes
significantly less desirable than previously accepted if interconnection overheads
are considered. We believe that the conclusion holds, in general, for uniform access
time caches and calls for evaluation of caching strategies with careful consideration
of interconnect overheads. Further analysis needs to be done for intelligent NUCA
(non-uniform cache access) caches [53].

These results again demonstrate that a design that does not adequately account for
interconnection costs in the architecture phase will not arrive at the best architecture.

5.9 An Example Holistic Approach to Interconnection

The intent of this section is to apply one lesson learned from the high volume
of data gathered in this research. Our interconnect architectures to this point were
highly driven by layout. The SBF spans the width of the chip, allowing us to connect
as many units as possible in a straight line across the chip. However, the latency
overheads of a long SBF encourage us to consider alternatives. This section de-
scribes a more hierarchical approach to interconnects, which can exploit shorter

FIG. 33. Hierarchical approach (splitting SBFs).

80 R. KUMAR AND D.M. TULLSEN

buses with shorter latencies when traffic remains local. We will be considering the
8-core processor again.

The effectiveness of such an approach will depend on the probability that an L2
miss is serviced on a local cache (an L2 connected to the same SBF), rather than a
cache on a remote SBF. We will refer to this probability as “thread bias.” A workload
with high thread bias means that we can identify and map “clusters” of threads that
principally communicate with each other on the same SBF.

In this section, we split the single SBF that spanned the chip vertically into two
SBFs, with a P2P link between them (see Fig. 33). Local accesses benefit from de-
creased distances. Remote accesses suffer because they travel the same distances as
before, but see additional queuing and arbitration overheads between interconnects.

Figure 34 shows the performance of the split SBF for various thread bias levels.
The SBF is split vertically into two, such that each SBF piece now supports 4 cores,
4 NCUs, 2 memory controllers and 1 IO Device. The X-axis shows the thread bias in
terms of the fraction of misses satisfied by an L2 connected to the same SBF. A 25%
thread bias means that one out of four L2 misses are satisfied by an L2 connected
to the same SBF piece. These results are obtained through statistical simulation by
synthetically skewing the traffic pattern.

The figure also shows the system performance for a single monolithic SBF (the
one used in previous sections). As can be seen, if thread bias is more than 17%, the

FIG. 34. Split vs Monolithic SBF.

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 81

performance of split SBF can overtake performance of a monolithic SBF. Note that
17% is lower than the statistical probability of locally satisfying an L2 miss assuming
uniform distribution (3/7). Hence, the split SBF, in this case, is always a good idea.

6. Summary and Conclusions

The decreasing marginal utility of transistors and the increasing complexity of
processor design has led to the advent of chip multiprocessors. Like other technol-
ogy shifts, the move to multi-core architectures creates an opportunity to change
the way we do, or even think about, architecture. This chapter makes the case that
significant gains in performance and efficiency can be achieved by designing the
processor holistically—designing the components of the processor (cores, caches,
interconnect) to be part of an effective system, rather than designing each component
to be effective on its own. A multi-core oblivious design methodology is one where
the processor subsystems are designed and optimized without any cognizance of the
overall chip multiprocessing systems that they would become parts of. This results
in processors that are inefficient in terms of area and power. The paper shows that
this inefficiency is due to the inability of such processors to react to workload diver-
sity, processor overprovisioning, and the high cost of connecting cores and caches.
This paper recommends a holistic approach to multi-core design where the processor
subsystems are designed from the ground up to be parts of a chip multiprocessing
system.

Specifically, we discuss single-ISA heterogeneous multi-core architectures for
adapting to workload diversity. These architectures consists of multiple types of
processing cores on the same die. These cores can all execute the same ISA, but
represent different points in the power-performance continuum. Applications are
mapped to cores in a way that the resource demands of an application match the
resources provided by the corresponding core. This results in increased computa-
tional efficiency and hence higher throughput for a given area and/or power budget.
A throughput improvement of up to 63% and energy savings of up to four-fold are
shown. We also look at the design of cores for a heterogeneous CMP. We show that
the best way to design a heterogeneous CMP is not to find individual cores that are
well suited for the entire universe of applications, but rather to tune the cores to differ-
ent classes of applications. We find that customizing cores to subsets of the workload
results in processors that have greater performance and power benefits than heteroge-
neous designs with ordered set of cores. An example such design outperformed the
best homogeneous CMP design by 15.4% and the best fully-customized monotonic
design by 7.5%.

82 R. KUMAR AND D.M. TULLSEN

We also present conjoined-core chip multiprocessing architectures. These archi-
tectures consist of multiple cores on the die where the adjacent cores share the
large, overprovisioned structures. Sharing results in reduced area requirement for
such processors at a minimal cost in performance. Reduced area, in turn, results in
higher yield, lower leakage, and potentially higher overall throughput per unit area.
Up to 56% area savings with 10-12% loss in performance are shown.

This chapter also presents conventional interconnection mechanisms for multi-
core architectures and demonstrates that the interconnection overheads are signif-
icant enough that they affect the number, size, and design of cores and caches.
It shows the need to co-design the cores, caches, and the interconnects, and also
presents an example holistic approach to interconnection design for multi-core ar-
chitectures.

ACKNOWLEDGEMENTS

Most of the research described in this chapter was carried out by the authors with
the help of various collaborators, without whom this work would not have been pos-
sible. Those collaborators include Norm Jouppi, Partha Ranganathan, Keith Farkas,
and Victor Zyuban. Research described in this chapter was funded in part by HP
Labs, IBM, Intel, NSF, and the Semiconductor Research Corporation.

REFERENCES

[1] http://www.amd.com/us-en/Processors/ProductInformation/0„30_118_13909,00.html.
[2] http://www.amd.com/us-en/processors/productinformation/0„30_118_8825,00.html.
[3] http://www.amd.com/us-en/Processors/ProductInformation/0„30_118_9485_9484,00.html.
[4] http://www.arm.com/products/cpus/arm11mpcoremultiprocessor.html.
[5] http://www.broadcom.com/products/enterprise-small-office/communications-

processors.
[6] http://www.cavium.com/octeon_mips64.html.
[7] http://www.geek.com/procspec/hp/pa8800.htm.
[8] http://www.intel.com/pressroom/kits/quickreffam.htm.
[9] http://www.intel.com/products/processor/coreduo/.

[10] http://www.intel.com/products/processor/pentium_d/index.htm.
[11] http://www.intel.com/products/processor/pentiumxe/index.htm.
[12] http://www.intel.com/products/processor/xeon/index.htm.
[13] http://www.razamicroelectronics.com/products/xlr.htm.
[14] http://www.xbox.com/en-us/hardware/xbox360/powerplay.htm.
[15] International Technology Roadmap for Semiconductors 2003, http://public.itrs.net.

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 83

[16] Digital Equipment Corporation, Alpha 21064 and Alpha 21064A: Hardware Reference
Manual, Digital Equipment Corporation, 1992.

[17] Digital Equipment Corporation, Alpha 21164 Microprocessor: Hardware Reference
Manual, Digital Equipment Corporation, 1998.

[18] Compaq Corporation, Alpha 21264/EV6 Microprocessor: Hardware Reference Manual,
Compaq Corporation, 1998.

[19] Intel Corporation, Measuring Processor Performance with SPEC2000—A White Paper,
Intel Corporation, 2002.

[20] Annavaram M., Grochowski E., Shen J., “Mitigating Amdahl’s Law through EPI throt-
tling”, in: International Symposium on Computer Architecture, 2005.

[21] Archibald J., Baer J.-L., “Cache coherence protocols: Evaluation using a multiprocessor
simulation model”, ACM Trans. Comput. Syst. 4 (4) (1986) 273–298.

[22] Balakrishnan S., Rajwar R., Upton M., Lai K., “The impact of performance asymmetry
in emerging multicore architectures”, in: International Symposium on Computer Archi-
tecture, June 2005.

[23] Barroso L., Gharachorloo K., McNamara R., Nowatzyk A., Qadeer S., Sano B., Smith
S., Stets R., Verghese B., “Piranha: A scalable architecture based on single-chip multi-
processing”, in: The 27th Annual International Symposium on Computer Architecture,
June 2000.

[24] Bowhill W., “A 300-MHz 64-b quad-issue CMOS microprocessor”, in: ISSCC Digest of
Technical Papers, February 1995.

[25] Brooks D., Tiwari V., Martonosi M., “Wattch: A framework for architectural-level power
analysis and optimizations”, in: International Symposium on Computer Architecture,
June 2000.

[26] Burns J., Gaudiot J.-L., “Area and system clock effects on SMT/CMP processors”, in: The
2001 International Conference on Parallel Architectures and Compilation Techniques,
IEEE Computer Society, 2001, p. 211.

[27] Burns J., Gaudiot J.-L., “SMT layout overhead and scalability”, IEEE Transactions on
Parallel and Distributed Systems 13 (2) (February 2002).

[28] Clabes J., Friedrich J., Sweet M., DiLullo J., Chu S., Plass D., Dawson J., Muench P.,
Powell L., Floyd M., Sinharoy B., Lee M., Goulet M., Wagoner J., Schwartz N., Runyon
S., Gorman G., Restle P., Kalla R., McGill J., Dodson S., “Design and implementation of
the Power5 microprocessor”, in: International Solid-State Circuits Conference, 2004.

[29] Collins J., Tullsen D., “Clustered multithreaded architectures—pursuing both IPC and
cycle time” in: International Parallel and Distributed Processing Symposium, April
2004.

[30] Diefendorff K., “Compaq chooses SMT for Alpha”, Microprocessor Report 13 (16) (De-
cember 1999).

[31] Dobberpuhl D.W., “A 200-MHz 64-b dual-issue CMOS microprocessor”, IEEE Journal
of Solid-State Circuits 27 (11) (November 1992).

[32] Dolbeau R., Seznec A., “CASH: Revisiting hardware sharing in single-chip parallel
processor”, IRISA Report 1491, November 2002.

[33] Dubois M., Scheurich C., Briggs F., “Synchronization, coherence, and event ordering in
multiprocessors”, IEEE Computer 21 (2) (1988).

84 R. KUMAR AND D.M. TULLSEN

[34] Eickemeyer R.J., Johnson R.E., Kunkel S.R., Squillante M.S., Liu S., “Evaluation of
multithreaded uniprocessors for commercial application environments”, in: International
Symposium on Computer Architecture, 1996.

[35] Emer J., “EV8: The post-ultimate Alpha”, in: Conference on Parallel Architectures and
Computing Technologies, September 2001.

[36] Espasa R., Ardanaz F., Emer J., Felix S., Gago J., Gramunt R., Hernandez I., Juan T.,
Lowney G., Mattina M., Seznec A., “Tarantula: A vector extension to the alpha architec-
ture”, in: International Symposium on Computer Architecture, May 2002.

[37] Frank S.J., “Tightly coupled multiprocessor systems speed memory access times”, in:
Electron, January 1984.

[38] Ghiasi S., Grunwald D., “Aide de camp: Asymmetric dual core design for power and
energy reduction”, University of Colorado Technical Report CU-CS-964-03, 2003.

[39] Ghiasi S., Keller T., Rawson F., “Scheduling for heterogeneous processors in server sys-
tems”, in: Computing Frontiers, 2005.

[40] Gieseke B., “A 600-MHz superscalar RISC microprocessor with out-of-order execution”,
in: ISSCC Digest of Technical Papers, February 1997.

[41] Grochowski E., Ronen R., Shen J., Wang H., “Best of both latency and throughput”, in:
IEEE International Conference on Computer Design, 2004.

[42] Gupta S., Keckler S., Burger D., “Technology independent area and delay estimates for
microprocessor building blocks”, University of Texas at Austin Technical Report TR-00-
05, 1998.

[43] Hammond L., Nayfeh B.A., Olukotun K., “A single-chip multiprocessor”, IEEE Com-
puter 30 (9) (1997).

[44] Hammond L., Willey M., Olukotun K., “Data speculation support for a chip multiproces-
sor”, in: The Eighth International Conference on Architectural Support for Programming
Languages and Operating Systems, October 1998.

[45] Hennessy J., Patterson D., Computer Architecture: A Quantitative Approach, Morgan
Kaufmann Publishers, Inc., 2002.

[46] Hennessy J.L., Jouppi N.P., “Computer technology and architecture: An evolving inter-
action”, Computer 24 (9) (September 1991) 18–29.

[47] Horowitz M., Alon E., Patil D., Naffziger S., Kumar R., Bernstein K., “Scaling, power,
and the future of CMOS”, in: IEEE International Electron Devices Meeting, December
2005.

[48] Horowitz M., Ho R., Mai K., “The future of wires”, Invited Workshop Paper for SRC
Conference, May 1999.

[49] IBM, Power4, http://www.research.ibm.com/power4.
[50] IBM, “Power5: Presentation at microprocessor forum”, 2003.
[51] Kaanta C., Cote W., Cronin J., Holland K., Lee P., Wright T., “Submicron wiring tech-

nology with tungsten and planarization”, in: Fifth VLSI Multilevel Interconnection Con-
ference, 1988.

[52] Kahle J.A., Day M.N., Hofstee H.P., Johns C.R., Maeurer T.R., Shippy D., “Introduc-
tion to the Cell multiprocessor”, IBM Journal of Research and Development (September
2005).

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 85

[53] Kim C., Burger D., Keckler S., “An adaptive, non-uniform cache structure for wire-delay
dominated on-chip caches”, in: International Conference on Architectural Support for
Programming Languages and Operating Systems, 2002.

[54] Klauser A., “Trends in high-performance microprocessor design”, in: Telematik-2001,
2001.

[55] Kongetira P., Aingaran K., Olukotun K., “Niagara: A 32-way multithreaded Sparc proces-
sor” in: IEEE MICRO Magazine, March 2005.

[56] Kotla R., Devgan A., Ghiasi S., Keller T., Rawson F., “Characterizing the impact of
different memory-intensity levels”, in: IEEE 7th Annual Workshop on Workload Charac-
terization, 2004.

[57] Kowaleski J., “Implementation of an Alpha microprocessor in SOI”, in: ISSCC Digest of
Technical Papers, February 2003.

[58] Krishnan V., Torrellas J., “A clustered approach to multithreaded processors”, in: Inter-
national Parallel Processing Symposium, March 1998, pp. 627–634.

[59] Kumar A., “The HP PA-8000 RISC CPU”, in: Hot Chips VIII, August 1996.
[60] Kumar R., Farkas K.I., Jouppi N.P., Ranganathan P., Tullsen D.M., “Single-ISA het-

erogeneous multi-core architectures: The potential for processor power reduction”, in:
International Symposium on Microarchitecture, December 2003.

[61] Kumar R., Jouppi N.P., Tullsen D.M., “Conjoined-core chip multiprocessing”, in: Inter-
national Symposium on Microarchitecture, December 2004.

[62] Kumar R., Tullsen D.M., Jouppi N.P., “Core architecture optimization for heterogeneous
chip multiprocessors”, in: 15th International Symposium on Parallel Architectures and
Compilation Techniques, September 2006.

[63] Kumar R., Tullsen D.M., Ranganathan P., Jouppi N.P., Farkas K.I., “Single-ISA hetero-
geneous multi-core architectures for multithreaded workload performance”, in: Interna-
tional Symposium on Computer Architecture, June 2004.

[64] Kumar R., Zyuban V., Tullsen D.M., “Interconnections in multi-core architectures: Un-
derstanding mechanisms, overheads and scaling”, in: Proceedings of International Sym-
posium on Computer Architecture, June 2005.

[65] Kunkel S., Eickemeyer R., Lipasti M., Mullins T., Krafka B., Rosenberg H., VanderWiel
S., Vitale P., Whitley L., “A performance methodology for commercial servers”, IBM
Journal of R&D (November 2000).

[66] Laudon J., “Performance/watt the new server focus”, in: The First Workshop on Design,
Architecture, and Simulation of Chip-Multiprocessors, November 2005.

[67] Li J., Martinez J., “Power-performance implications of thread-level parallelism in chip
multiprocessors”, in: Proceedings of International Symposium on Performance Analysis
of Systems and Software, 2005.

[68] Lovett T., Thakkar S., “The symmetry multiprocessor system”, in: International Confer-
ence on Parallel Processing, August 1988.

[69] Merritt R., “Designers cut fresh paths to parallelism”, in: EE Times, October 1999.
[70] Moore G., “Cramming more components onto integrated circuits”, Electronics 38 (8)

(1965).
[71] Morad T., Weiser U., Kolodny A., “ACCMP—asymmetric cluster chip-multiprocessing”,

CCIT Technical Report 488, 2004.

86 R. KUMAR AND D.M. TULLSEN

[72] Morad T.Y., Weiser U.C., Kolodny A., Valero M., Ayguade E., “Performance, power
efficiency and scalability of asymmetric cluster chip multiprocessors”, Computer Archi-
tecture Letters 4 (2005).

[73] Mulder J.M., Quach N.T., Flynn M.J., “An area model for on-chip memories and its
applications”, IEEE Journal of Solid State Circuits 26 (2) (February 1991).

[74] Papamarcos M., Patel J., “A low overhead coherence solution for multiprocessors with
private cache memories”, in: International Symposium on Computer Architecture, 1988.

[75] Rabaey J.M., “The quest for ultra-low energy computation opportunities for architectures
exploiting low-current devices”, April 2000.

[76] Sankaralingam K., Nagarajan R., Liu H., Kim C., Huh J., Burger D., Keckler S.W., Moore
C.R., “Exploiting ILP, TLP, and DLP with the polymorphous TRIPS architecture”, in:
International Symposium on Computer Architecture, June 2003.

[77] Sherwood T., Perelman E., Hamerly G., Calder B., “Automatically characterizing large
scale program behavior”, in: Tenth International Conference on Architectural Support for
Programming Languages and Operating Systems, October 2002.

[78] Sherwood T., Perelman E., Hamerly G., Sair S., Calder B., “Discovering and exploit-
ing program phases”, in: IEEE Micro: Micro’s Top Picks from Computer Architecture
Conferences, December 2003.

[79] Sherwood T., Perelman E., Hamerly G., Calder B., “Automatically characterizing large-
scale program behavior”, in: International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, October 2002.

[80] Shivakumar P., Jouppi N., “CACTI 3.0: An integrated cache timing, power and area
model”, Technical Report 2001/2, Compaq Computer Corporation, August 2001.

[81] Snavely A., Tullsen D., “Symbiotic jobscheduling for a simultaneous multithreading
architecture”, in: Eighth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, November 2000.

[82] SPEC, Spec cpu2000 documentation, http://www.spec.org/osg/cpu2000/docs/.
[83] Sun, UltrasparcIV, http://siliconvalley.internet.com/news/print.php/3090801.
[84] Swanson S., Michelson K., Schwerin A., Oskin M., “Wavescalar”, in: The 36th Annual

IEEE/ACM International Symposium on Microarchitecture, Washington, DC, USA, IEEE
Computer Society, 2003, p. 291.

[85] Theis T.N., “The future of interconnection technology”, IBM Journal of R&D (May
2000).

[86] Tremblay M., “Majc-5200: A VLIW convergent mpsoc”, in: Microprocessor Forum, Oc-
tober 1999.

[87] Tullsen D., “Simulation and modeling of a simultaneous multithreading processor”, in:
22nd Annual Computer Measurement Group Conference, December 1996.

[88] Tullsen D., Brown J., “Handling long-latency loads in a simultaneous multithreading
processor”, in: 34th International Symposium on Microarchitecture, December 2001.

[89] Tullsen D., Eggers S., Emer J., Levy H., Lo J., Stamm R., “Exploiting choice: Instruction
fetch and issue on an implementable simultaneous multithreading processor”, in: 23rd
Annual International Symposium on Computer Architecture, May 1996.

[90] Tullsen D., Eggers S., Levy H., “Simultaneous multithreading: Maximizing on-chip par-
allelism”, in: 22nd Annual International Symposium on Computer Architecture, June
1995.

THE ARCHITECTURE OF EFFICIENT MULTI-CORE PROCESSORS 87

[91] Waingold E., Taylor M., Srikrishna D., Sarkar V., Lee W., Lee V., Kim J., Frank M.,
Finch P., Barua R., Babb J., Amarasinghe S., Agarwal A., “Baring it all to software: Raw
machines”, Computer 30 (9) (1997) 86–93.

[92] Wall D., “Limits of instruction-level parallelism”, in: International Symposium on Ar-
chitectural Support for Programming Languages and Operating Systems, April 1991,
pp. 176–188.

[93] Warnock J., Keaty J., Petrovick J., Clabes J., Kircher C., Krauter B., Restle P., Zoric
B., Anderson C., “The circuit and physical design of the Power4 microprocessor”, IBM
Journal of R&D (January 2002).

[94] Wilson A., “Hierarchical cache/bus architecture for shared memory multiprocessors”, in:
International Symposium on Computer Architecture, June 1987.

[95] Zyuban V., “Unified architecture level energy-efficiency metric”, in: 2002 Great Lakes
Symposium on VLSI, April 2002.

This page intentionally left blank

Designing Computational Clusters
for Performance and Power

KIRK W. CAMERON, RONG GE, AND XIZHOU FENG

Computer Science
212 Knowledge Works II Building
Corporate Research Center
Virginia Tech
Blackburg, VA 24061
USA
cameron@vt.edu
ge@cs.vt.edu
fengx@cs.vt.edu

Abstract
Power consumption in computational clusters has reached critical levels. High-
end cluster performance improves exponentially while the power consumed and
heat dissipated increase operational costs and failure rates. Yet, the demand for
more powerful machines continues to grow. In this chapter, we motivate the need
to reconsider the traditional performance-at-any-cost cluster design approach.
We propose designs where power and performance are considered critical con-
straints. We describe power-aware and low power techniques to reduce the power
profiles of parallel applications and mitigate the impact on performance.

1. Introduction . 90
1.1. Cluster Design PARADIGM Shift . 91

2. Background . 91
2.1. Computational Clusters . 92
2.2. Performance . 92
2.3. Power . 93
2.4. Power-Aware Computing . 93
2.5. Energy . 94
2.6. Power-Performance Tradeoffs . 95

3. Single Processor System Profiling . 96
3.1. Simulator-Based Power Estimation . 96
3.2. Direct Measurements . 97

ADVANCES IN COMPUTERS, VOL. 69 89 Copyright © 2007 Elsevier Inc.
ISSN: 0065-2458/DOI: 10.1016/S0065-2458(06)69002-5 All rights reserved.

90 K.W. CAMERON ET AL.

3.3. Event-Based Estimation . 98
3.4. Power Reduction and Energy Conservation . 98

4. Computational Cluster Power Profiling . 98
4.1. A Cluster-Wide Power Measurement System 99
4.2. Cluster Power Profiles . 103

5. Low Power Computational Clusters . 112
5.1. Argus: Low Power Cluster Computer . 112

6. Power-Aware Computational Clusters . 125
6.1. Using DVS in High-Performance Clusters . 126
6.2. Distributed DVS Scheduling Strategies . 128
6.3. Experimental Framework . 131
6.4. Analyzing an Energy-Conscious Cluster Design 137
6.5. Lessons from Power-Aware Cluster Design . 148

7. Conclusions . 149
References . 149

1. Introduction

High-end computing systems are a crucial source for scientific discovery and tech-
nological revolution. The unmatched level of computational capability provided by
high-end computers enables scientists to solve challenging problems that are insolv-
able by traditional means and to make breakthroughs in a wide spectrum of fields
such as nanoscience, fusion, climate modeling and astrophysics [40,63].

The designed peak performance for high-end computing systems has increased
rapidly in the last two decades. For example, the peak performance of the No. 1 su-
percomputer in 1993 was below 100 Gflops. This value increased 2800 times within
13 years to 280 TFlops in 2006 [65].

Two facts primarily contribute to the increase in peak performance of high-end
computers. The first is increasing microprocessor speed. The operating frequency of
a microprocessor almost doubled every 2 years in the 1990s [10]. The second is the
increasing size of high-end computers. The No. 1 supercomputer in the 1990s con-
sists of about 1000 processors; today’s No. 1 supercomputer, BlueGene/L, is about
130 times larger, consisting of 131,072 processors [1].

There is an increasing gap between achieved “sustained” performance and the de-
signed peak performance. Empirical data indicates that the sustained performance
achieved by average scientific applications is about 10–15% of the peak perfor-
mance. Gordon Bell prize winning applications [2,59,61] sustain 35 to 65% of peak
performance. Such performance requires the efforts of a team of experts working
collaboratively for years. LINPACK [25], arguably the most scalable and optimized

DESIGNING COMPUTATIONAL CLUSTERS 91

benchmark code suite, averages about 67% of the designed peak performance on
TOP500 machines in the past decade [24].

The power consumption of high-end computers is enormous and increases expo-
nentially. Most high-end systems use tens of thousands of cutting edge components
in clusters of SMPs,1 and the power dissipation of these components increases by
2.7 times every two years [10]. Earth Simulator requires 12 megawatts of power. Fu-
ture petaflop systems may require 100 megawatts of power [4], nearly the output of
a small power plant (300 megawatts). High power consumption causes intolerable
operating cost and failure rates. For example, a petaflop system will cost $10,000
per hour at $100 per megawatt excluding the additional cost of dedicated cooling.
Considering commodity components fail at an annual rate of 2–3% [41], this system
with 12,000 nodes will sustain hardware failure once every twenty-four hours. The
mean time between failures (MTBF) [67] is 6.5 hours for LANL ASCI Q, and 5.0
hours for LLNL ASCI white [23].

1.1 Cluster Design PARADIGM Shift

The traditional performance-at-any-cost cluster design approach produces systems
that make inefficient use of power and energy. Power reduction usually results in per-
formance degradation, which is undesirable for high-end computing. The challenge
is to reduce power consumption without sacrificing cluster performance. Two cat-
egories of approaches are used to reduce power for embedded and mobile systems:
low power and power-aware. The low power approach uses low power components to
reduce power consumption with or without a performance constraint, and the power-
aware approach uses power-aware components to maximize performance subject to a
power budget. We describe the effects of both of these approaches on computational
cluster performance in this chapter.

2. Background

In this section, we provide a brief review of some terms and metrics used in eval-
uating the effects of power and performance in computational clusters.

1 SMP stands for Symmetric Multi-Processing, a computer architecture that provides fast performance
by making multiple CPUs available to complete individual processes simultaneously. SMP uses a single
operating system and shares common memory and disk input/output resources.

92 K.W. CAMERON ET AL.

2.1 Computational Clusters

In this chapter, we use the term computational cluster to refer to any collection
of machines (often SMPs) designed to support parallel scientific applications. Such
clusters differ from commercial server farms that primarily support embarrassingly
parallel client-server applications. Server farms include clusters such as those used
by Google to process web queries. Each of these queries is independent of any other
allowing power-aware process scheduling to leverage this independence. The work-
load on these machines often varies with time, e.g. demand is highest during late
afternoon and lowest in early morning hours.

Computational clusters are designed to accelerate simulation of natural phenom-
ena such as weather modeling or the spread of infectious diseases. These applications
are not typically embarrassingly parallel, that is there are often dependences among
the processing tasks required by the parallel application. These dependencies im-
ply power reduction techniques for server farms that exploit process independence
may not be suitable for computational clusters. Computational cluster workloads are
batch scheduled for full utilization 24 hours a day, 7 days per week.

2.2 Performance

An ultimate measure of system performance is the execution time T or delay D

for one or a set of representative applications [62]. The execution time for an appli-
cation is determined by the CPU speed, memory hierarchy and application execution
pattern.

The sequential execution time T (1) for a program on a single processor consists
of two parts: the time that the processor is busy executing instructions Tcomp, and the
time that the process waits for data from the local memory system Tmemoryaccess [21],
i.e.,

(1)T (1) = Tcomp(1) + Tmemoryaccess(1).

Memory access is expensive: the latency for a single memory access is almost
the same as the time for the CPU to execute one hundred instructions. The term
Tmemoryaccess can consume up to 50% of execution time for an application whose
data accesses reside in cache 99% of the time.

The parallel execution time on n processors T (n) includes three other components
as parallel overhead: the synchronization time due to load imbalance and serial-
ization Tsync(n); the communication time Tcomm(n) that the processor is stalled for
data to be communicated from or to remote processing node; and the time that the
processor is busy executing extra work Textrawork(n) due to decomposition and task

DESIGNING COMPUTATIONAL CLUSTERS 93

assignment. The parallel execution time can be written as

T (n) = Tcomp(n) + Tmemoryaccess(n) + Tsync(n) + Tcomm(n)

(2)+ Textrawork(n).

Parallel overhead Tsync(n), Tcomm(n) and Textrawork(n) are quite expensive. For ex-
ample, the communication time for a single piece of data can be as large as the
computation time for thousands of instructions. Moreover, parallel overhead tends to
increase with the number of processing nodes.

The ratio of sequential execution time to parallel execution time on n processors
is the parallel speedup, i.e.,

(3)speedup(n) = T (1)

T (n)
.

Ideally, the speedup on n processors is equal to n for a fixed-size problem, or
the speedup grows linearly with the number of processors. However, the achieved
speedup for real applications is typically sub-linear due to parallel overhead.

2.3 Power

The power consumption of CMOS logic circuits [58] such as processor and cache
logic is approximated by

(4)P = ACV 2f + Pshort + Pleak.

The power consumption of CMOS logic consists of three components: dynamic
power Pd = ACV 2f which is caused by signal line switching; short circuit power
Pshort which is caused by through-type current within the cell; and leak power Pleak

which is caused by leakage current. Here f is the operating frequency, A is the ac-
tivity of the gates in the system, C is the total capacitance seen by the gate outputs,
and V is the supply voltage. Of these three components, dynamic power dominates
and accounts for 70% or more, Pshort accounts for 10–30%, and Pleak accounts for
about 1% [51]. Therefore, CMOS circuit power consumption is approximately pro-
portional to the operating frequency and the square of supply voltage when ignoring
the effects of short circuit power and leak power.

2.4 Power-Aware Computing

Power-aware computing describes the use of power-aware components to save
energy. Power-aware components come with a set of power-performance modes.
A high performance mode consumes more power than a low performance mode but

94 K.W. CAMERON ET AL.

provides better performance. By scheduling the power-aware components among dif-
ferent power-performance modes according to the processing needs, a power-aware
system can reduce the power consumption while delivering the performance required
by an application.

Power aware components, including processor, memory, disk, and network con-
troller were first available to battery-powered mobile and embedded systems. Similar
technologies have recently emerged in high end server products.

In this chapter, we focus on power-aware computing using power-aware proces-
sors. Several approaches are available for CPU power control. A DVFS (dynamic
voltage frequency scaling) capable processor is equipped with several performance
modes, or operating points. Each operating point is specified by a frequency and core
voltage pair. An operating point with higher frequency provides higher peak perfor-
mance but consumes more power. Many current server processors support DVFS.
For example, Intel Xeon implements SpeedStep, and AMD Opteron supports Pow-
erNow. SpeedStep and PowerNow are trademarked by Intel and AMD respectively;
this marketing language labels a specific DVFS implementation.

For DVFS capable processors, scaling down voltage reduces power quadratically.
However, scaling down the supply voltage often decreases the operating frequency
and causes performance degradation. The maximum operating frequency of the CPU
is roughly linear to its core voltage V , as described by the following equation [58]:

(5)fmax ∝ (V − Vthreshold)
2/V .

Since operating frequency f is usually correlated to execution time of an application,
reducing operating frequency will increase the computation time linearly when the
CPU is busy.

However, the effective sustained performance for most applications is not simply
determined by the CPU speed (i.e. operating frequency). Both application execution
patterns and system hardware characteristics affect performance. For some codes,
the effective performance may be insensitive to CPU speed. Therefore, scaling down
the supply voltage and the operating frequency could reduce power consumption
significantly without incurring noticeable additional execution time. Hence, the op-
portunity for power aware computing lies in appropriate DVFS scheduling which
switches CPU speed to match the application performance characteristics.

2.5 Energy

While power (P) describes consumption at a discrete point in time, energy (E)

specifies the number of joules used for time interval (t1, t2) as a product of the aver-

DESIGNING COMPUTATIONAL CLUSTERS 95

age power and the delay (D = t2 − t1):

(6)E =
t2∫

t1

P dt = Pavg × (t2 − t1) = Pavg × D.

Equation (6) specifies the relation between power, delay and energy. To save
energy, we need to reduce the delay, the average power, or both. Performance
improvements such as code transformation, memory remapping and communica-
tion optimization may decrease the delay. Clever system scheduling among various
power-performance modes may effectively reduce average power without affecting
delay.

In the context of parallel processing, by increasing the number of processors,
we can speedup the application but also increase the total power consumption. De-
pending on the parallel scalability of the application, the energy consumed by an
application may be constant, grow slowly or grow very quickly with the number of
processors.

In power aware cluster computing, both the number of processors and the CPU
speed configuration of each processor affect the power-performance efficiency of the
application.

2.6 Power-Performance Tradeoffs

As discussed earlier, power and performance often conflict with one another. Some
relation between power and performance is needed to define optimal in this context.
To this end, some product forms of delay D (i.e. execution time T) and power P

are used to quantify power-performance efficiency. Smaller products represent better
efficiency. Commonly used metrics include PDP (the P ×D product, i.e. energy E),
PD2P (the P × D2 product), and PD3P (the P × D3 product), respectively. These
metrics can also be represented in the forms of energy and delay products such as
EDP and ED2P.

These metrics put different emphasis on power and performance, and are appropri-
ate for evaluating power-performance efficiency for different systems. PDP or energy
is appropriate for low power portable systems where battery life is the major concern.
PD2P [19] metrics emphasize both performance and power; this metric is appropri-
ate for systems which need to save energy with some allowable performance loss.
PD3P [12] emphasizes performance; this metric is appropriate for high-end systems
where performance is the major concern but energy conservation is desirable.

96 K.W. CAMERON ET AL.

3. Single Processor System Profiling

Three primary approaches: simulators, direct measurements and performance
counter based models, are used to profile power of systems and components.

3.1 Simulator-Based Power Estimation

In this discussion, we focus on architecture level simulators and categorize them
across system components, i.e. microprocessor and memory, disk and network.
These power simulators are largely built upon or used in conjunction with perfor-
mance simulators that provide resource usage counts, and estimate energy consump-
tion using resource power models.

Microprocessor power simulators. Wattch [11] is a microprocessor power sim-
ulator interfaced with a performance simulator, SimpleScalar [13]. Wattch models
power consumption using an analytical formula Pd = CV 2

ddaf for CMOS chips,
where C is the load capacitance, Vdd is the supply voltage, f is the clock frequency,
and a is the activity factor between 0 and 1. Parameters Vdd , f and a are identified
using empirical data. The load capacitance C is estimated using the circuit and the
transistor sizes in four categories: array structure (i.e. caches and register files), CAM
structures (e.g. TLBs), complex logic blocks, and clocking. When the application is
simulated on SimpleScalar, the cycle-accurate hardware access counts are used as
input to the power models to estimate energy consumption.

SimplePower [68] is another microprocessor power simulator built upon Sim-
pleScalar. It estimates both microprocessor and memory power consumption. Unlike
Wattch which estimates circuit and transistor capacitance using their sizes, Simple-
Power uses a capacitance lookup table indexed by input vector transition. Simple-
Power differs with Wattch in two ways. First, it integrates rather than interfaces with
SimpleScalar. Second, it uses the capacitance lookup table rather than empirical es-
timation of capacitance. The capacitance lookup table could lead to more accurate
power simulation. However, this accuracy comes at the expense of flexibility as any
change in circuit and transistor would require changes in the capacitance lookup ta-
ble.

TEM2P2EST [22] and the Cai–Lim model [14] are similar. They both build upon
the SimpleScalar toolset. These two approaches add complexity in power models
and functional unit classification, and differ from Wattch. First these two models use
an empirical mode and an analytical mode. Second, they model both dynamic and
leakage power. Third, they include a temperature model using power dissipation.

Network power simulators. Orion [69] is an interconnection network power sim-
ulator at the architectural-level based on the performance simulator LSE [66]. It

DESIGNING COMPUTATIONAL CLUSTERS 97

models power analytically for CMOS chips using architectural-level parameters, thus
reducing simulation time compared to circuit-level simulators while providing rea-
sonable accuracy.

System power simulators. Softwatt [39] is a complete system power simulator
that models the microprocessor, memory systems and disk based on SimOS [60].
Softwatt calculates the power values for microprocessor and memory systems using
analytical power models and the simulation data from the log-files. The disk energy
consumption is measured during simulation based on assumptions that full power
is consumed if any of the ports of a unit is accessed, otherwise no power is con-
sumed.

Powerscope [34] is a tool for profiling the energy usage of mobile applications.
Powerscope consists of three components: the system monitor samples system activ-
ity by periodically recording the program counter (PC) and process identifier (PID)
of the currently executing process; the energy monitor collects and stores current
samples; and the energy analyzer maps the energy to specific processes and proce-
dures.

3.2 Direct Measurements

There are two basic approaches to measure processor power directly. The first
approach [7,50] inserts a precision resistor into the power supply line using a multi-
meter to measure its voltage drop. The power dissipation by the processor is the
product of power supply voltage and current flow, which is equal to the voltage drop
over the resistor divided by its resistance. The second approach [48,64] uses an am-
meter to measure the current flow of the power supply line directly. This approach is
less intrusive as it does not need to cut wires in the circuits.

Tiwari et al. [64] used ammeters to measure current drawn by a processor while
running programs on an embedded system and developed a power model to estimate
power cost. Isci et al. [48] used ammeters to measure the power for P4 processors to
derive their event-count based power model. Bellosa et al. [7] derived CPU power by
measuring current on a precision resistor inserted between the power line and supply
for a Pentium II CPU; they used this power to validate their event-count based power
model and save energy. Joseph et al. [50] used a precision resistor to measure power
for a Pentium Pro processor.

These approaches can be extended to measure single processor system power.
Flinn et al. [34] used a multimeter to sample the current being drawn by a laptop
from its external power source.

98 K.W. CAMERON ET AL.

3.3 Event-Based Estimation

Most high-end CPUs have a set of hardware counters to count performance events
such as cache hit/miss, memory load, etc. If power is mainly dissipated by these
performance events, power can be estimated based on performance counters. Isci et
al. [48] developed a runtime power monitoring model which correlates performance
event counts with CPU subunit power dissipation on real machines. CASTLE [50]
did similar work on performance simulators (SimpleScalar) instead of real machines.
Joule Watcher [7] also correlates power with performance events, the difference is
that it measures the energy consumption for a single event such as a floating point
operation, L2 cache access, and uses this energy consumption for energy-aware
scheduling.

3.4 Power Reduction and Energy Conservation

Power reduction and energy conservation has been studied for decades, mostly in
the area of energy-constrained, low power, real time and mobile systems [38,54,55,
71]. Generally, this work exploits the multiple performance/power modes available
on components such as processor [38,54,71], memory [27,28], disk [17], and net-
work card [18]. When any component is not fully utilized, it can be set to a lower
power mode or turned off to save energy. The challenge is to sustain application
performance and meet a task deadline in spite of mode switching overhead.

4. Computational Cluster Power Profiling

Previous studies of power consumption on high performance clusters focus on
building-wide power usage [53]. Such studies do not separate measurements by
individual clusters, nodes or components. Other attempts to estimate power con-
sumption for systems such as ASC Terascale facilities use rule-of-thumb estimates
(e.g. 20% peak power) [4]. Based on past experience, this approach could be com-
pletely inaccurate for future systems as power usage increases exponentially for some
components.

There are two compelling reasons for in-depth study of the power usage of clus-
ter applications. First, there is need for a scientific approach to quantify the energy
cost of typical high-performance systems. Such cost estimates could be used to
accurately estimate future machine operation costs for common application types.
Second, a component-level study may reveal opportunities for power and energy
savings. For example, component-level profiles could suggest schedules for power-
ing down equipment not being used over time.

DESIGNING COMPUTATIONAL CLUSTERS 99

Profiling power directly in a distributed system at various granularities is challeng-
ing. First, we must determine a methodology for separating component power after
conversion from AC to DC current in the power supply for a typical server. Next,
we must address the physical limitations of measuring the large number of nodes
found in typical clusters. Third, we must consider storing and filtering the enormous
data sets that result from polling. Fourth, we must synchronize the polling data for
parallel programs to analyze parallel power profiles.

Our measurement system addresses these challenges and provides the capabil-
ity to automatically measure power consumption at component level synchronized
with application phases for power-performance analysis of clusters and applications.
Though we do make some simplifying assumptions in our implementation (e.g. the
type of multimeter), our tools are built to be portable and require only a small amount
of retooling for portability.

4.1 A Cluster-Wide Power Measurement System

Figure 1 shows the prototype system we created for power-performance profil-
ing. We measure the power consumption of the major computing resources (i.e.

FIG. 1. Our system prototype enables measurement of cluster power at component granularity. For
scalability, we assume the nodes are homogeneous. Thus, one node is profiled and software is used to
remap applications when workloads are non-uniform. A separate PC collects data directly from the mul-
timeters and uses time stamps to synchronize measured data to an application.

100 K.W. CAMERON ET AL.

CPU, memory, disk, and NIC) on the slave nodes in a 32-node Beowulf. Each slave
node has one 933 MHz Intel Pentium III processor, 4 256M SDRAM modules, one
15.3 GB IBM DTLA-307015 DeskStar hard drive, and one Intel 82559 Ethernet Pro
100 onboard Ethernet controller.

ATX extension cables connect the tested node to a group of 0.1 ohm sensor resis-
tors on a circuit board. The voltage on each resistor is measured with one RadioShack
46-range digital multi meter 22-812 that has been attached to a multi port RS232 se-
rial adapter plugged into a data collection computer running Linux. We measure 10
power points using 10 independent multi meters between the power supply and com-
ponents simultaneously.

The meters broadcast live measurements to the data collection computer for data
logging and processing through their RS232 connections. Each meter sends 4 sam-
ples per second to the data collection computer.

Currently, this system measures one slave node at a time. The power consumed
by a parallel application requires summation of the power consumption on all nodes
used by the application. Therefore, we first measure a second node to confirm that
power measurements are nearly identical across like systems, and then use node
remapping to study the effective power properties of different nodes in the clus-
ter without requiring additional equipment. To ensure confidence in our results, we
complete each experiment at least 5 times based on our observations of variabil-
ity.

Node remapping works as follows. Suppose we are running a parallel workload on
M nodes, we fix the measurement equipment to one physical node (e.g. node #1) and
repeatedly run the same workload M times. Each time we map the tested physical
node to a different virtual node. Since all slave nodes are identical (as they should be
and we experimentally confirmed), we use the M independent measurements on one
node to emulate one measurement on M nodes.

4.1.1 Isolating Power by Component

For parallel applications, a cluster can be abstracted as a group of identical nodes
consisting of CPU, memory, disk, and network interface. The power consumed by a
parallel application is computed by equations presented in Section 2 with direct or
derived power measurement for each component.

In our prototype system, the mother board and disk on each slave node are con-
nected to a 250 W ATX power supply through one ATX main power connector and
one ATX peripheral power connector respectively. We experimentally deduce the
correspondence between ATX power connectors and node components.

Since disk is connected to a peripheral power connection independently, its power
consumption can be directly measured through +12VDC and +5VDC pins on the

DESIGNING COMPUTATIONAL CLUSTERS 101

peripheral power connect. To map the component on the motherboard with the pins
on the main power connector, we observe the current changes on all non-COM pins
by adding/removing components and running different micro benchmarks which ac-
cess isolated components over time. Finally, we are able to conclude that the CPU is
powered through four +5VDC pins; memory, NIC and others are supplied through
+3.3VDC pins; the +12VDC feeds the CPU fan; and other pins are constant and
small (or zero) current. The CPU power consumption is obtained by measuring all
+5VDC pins directly.

The idle part of memory system power consumption is measured by extrapolation.
Each slave node in the prototype has four 256 MB memory modules. We measure
the power consumptions of the slave node configured with 1, 2, 3, and 4 memory
modules separately, then estimate the idle power consumed by the whole memory
system.

The slave nodes in the prototype are configured with onboard NIC. It is hard to
separate its power consumption from other components directly. After, observing
that the total system power consumption changes slightly when we disable the NIC
or pull out the network cable and consulting the documentation of the NIC (Intel
82559 Ethernet Pro 100), we approximate it with constant value of 0.41 W.

For further verification, we compared our measured power consumption for CPU
and disk with the specifications provided by Intel and IBM separately and they
matched well. Also by running memory access micro benchmarks, we observed that
if accessed data size is located within L1/L2 cache, the memory power consumption
does not change; while once main memory is accessed, the memory power consump-
tion we measured increases correspondingly.

4.1.2 Automating Cluster Power Profiling and Analysis
To automate the entire profiling process we require enough multimeters to measure

directly, in real-time, a single node—10 in our system. Under this constraint, we fully
automate data profiling, measurement and analysis by creating a tool suite named
PowerPack. PowerPack consists of utilities, benchmarks and libraries for controlling,
recording and processing power measurements in clusters. PowerPack’s profiling
software structure is shown in Fig. 2.

In PowerPack, the PowerMeter control thread reads data samples coming from a
group of meter readers which are controlled by globally shared variables. The control
thread modifies the shared variables according to messages received from applica-
tions running on the cluster. Applications trigger message operations through a set
of application level library calls that synchronize the live profiling process with the
application source code. These application level library calls can be inserted into the
source code of the profiled applications. The commonly used subset of the power
profile library API includes:

102 K.W. CAMERON ET AL.

FIG. 2. Automation with software. We created scalable, multi-threaded software to collect and an-
alyze power meter data in real time. An application programmer interface was created to control (i.e.
start/stop/init) multimeters and to enable synchronization with parallel codes.

pmeter_init (char *ip_address, int *port);
pmeter_log (char *log_file, int *option);
pmeter_start_session (char * lable);
pmeter_finalize ();
psyslog_start_session (char *label, int

*interval);
psyslog_pausr ();

The power profile log and the system status log are processed with the PowerAn-
alyzer, a software module that implements functions such as converting DC current
to power, interpolating between sampling points, decomposing pins power to com-
ponent power, computing power and energy consumed by applications and system,
and performing related statistical calculations.

DESIGNING COMPUTATIONAL CLUSTERS 103

4.2 Cluster Power Profiles

4.2.1 Single Node Measurements

To better understand the power consumption of distributed applications and sys-
tems, we first profile the power consumption of a single slave node. Figure 3 provides
power profiles for system idle (Fig. 3(a)) and system under load (Fig. 3(b)) for the
171.swim benchmark included in SPEC CPU2000 [44].

From this figure, we make the following observations.
Whether system is idle or busy, the power supply and cooling fans always consume

∼20 W of power; about 1/2 system power when idle and 1/3 system power when
busy. This means optimal design for power supply and cooling fans could lead to
considerable power savings. This is interesting but beyond the scope of this work, so
in our graphs we typically ignore this power.

During idle time, CPU, memory, disk and other chipset components consume
about 17 W of power in total. When system is under load, CPU power dominates
(e.g. for 171.swim, it is 35% of system power; for 164.gzip, it is 48%).

Additionally, the power consumed by each component varies under different
workloads. Figure 4 illustrates the power consumption of four representative work-
loads. Each workload is bounded by the performance of a single component. For our
prototype, the CPU power consumption ranges from 6 to 28 W; the memory system
power consumption ranges from 3.6 to 9.4 W; the disk power consumption ranges
from 4.2 to 10.8 W. Figure 4 indicates component use affects total power consump-

(a) (b)

FIG. 3. Power profiles for a single node (a) during idle operation, and (b) under load. As the load
increases, CPU and memory power dominate total system power.

104 K.W. CAMERON ET AL.

FIG. 4. Different applications stress different components in a system. Component usage is reflected
in power profiles. When the system is not idle, it is unlikely that the CPU is 100% utilized. During
such periods, reducing power can impact total power consumption significantly. Power-aware techniques
(e.g. DVS) must be studied in clusters to determine if power savings techniques impact performance
significantly.

tion yet it may be possible to conserve power in non-idle cases when the CPU or
memory is not fully utilized.

4.2.2 Cluster-Wide Measurements

We continue illustrating the use of our prototype system by profiling the power-
energy consumption of the NAS parallel benchmarks (Version 2.4.1) on the 32-node
Beowulf cluster. The NAS parallel benchmarks [5] consist of 5 kernels and 3 pseudo-
applications that mimic the computation and data movement characteristics of large
scale CFD applications. We measured CPU, memory, NIC and disk power consump-
tion over time for different applications in the benchmarks at different operating
points. We ignore power consumed by the power supply and the cooling system be-
cause they are constant and machine dependent as mentioned.

4.2.2.1 Nodal Power Profiles Over Time. Figure 5(a) shows the
power profile of NPB FT benchmark (class B) during the first 200 seconds of a run
on 4 nodes. The profile starts with a warm up phase and an initialization phase fol-
lowed by N iterations (for class A, N = 6; for class B, N = 20). The power profiles

DESIGNING COMPUTATIONAL CLUSTERS 105

(a)

FIG. 5. FT power profiles. (a) The first 200 seconds of power use on one node of four for the FT
benchmark, class B workload. Note component results are overlaid along the y-axis for ease of presenta-
tion. Power use for CPU and memory dominate and closely reflect system performance. (b) An expanded
view of the power profile of FT during a single iteration of computation followed by communication.

are identical for all iterations in which spikes and valleys occur with regular patterns
coinciding with the characteristics of different computation stages. The CPU power
consumption varies from 25 W in the computation stage to 6 W in the communication
stage. The memory power consumption varies from 9 W in the computation stage to
4 W in the communication stage. Power trends in the memory during computation
are often the inverse of CPU power. Additionally, the disk uses near constant power
since FT rarely accesses the file system. NIC power probably varies with commu-
nication, but as discussed, we emulate it as a constant since the maximum usage is
quite low (0.4 W) compared to all other components. For simplification, we ignore
the disk and NIC power consumption in succeeding discussions and figures where
they do not change, focusing on CPU and memory behavior. An in-depth view of the
power profile during one (computation + communication) iteration is presented in
Fig. 5(b).

106 K.W. CAMERON ET AL.

(b)

FIG. 5. (continued)

4.2.2.2 Power Profiles for Varying Problem Sizes. Figure 6(a)
shows the power profile of the FT benchmark (using the smaller class A workload)
during the first 50 seconds of a run on 4 nodes. FT has similar patterns for differ-
ent problem sizes (see Fig. 5(a)). However, iterations are shorter in duration for the
smaller (class A) problem set making peaks and values more pronounced; this is ef-
fectively a reduction in the communication to computation ratio when the number of
nodes is fixed.

4.2.2.3 Power Profiles for Heterogeneous Workloads. For the
FT benchmark, workload is distributed evenly across all working nodes. We use our
node remapping technique to provide power profiles for all nodes in the cluster (in
this case just 4 nodes). For FT, there are no significant differences. However, Fig. 6(b)
shows a counter example snapshot for a 10 second interval of SP synchronized across
nodes. For the SP benchmark, class A problem sizes running on 4 nodes result in
varied power profiles for each node.

4.2.2.4 Power Profiles for Varying Node Counts. The power pro-
file of parallel applications also varies with the number of nodes used in the execution
if we fix problem size (i.e. strong scaling). We have profiled the power consump-

DESIGNING COMPUTATIONAL CLUSTERS 107

(a)

(b)

FIG. 6. (a) The first 50 seconds of power use on one node of four for the FT benchmark, class A work-
load. For smaller workloads running this application, trends are the same while data points are slightly
more pronounced since communication to computation ratios have changed significantly with the change
in workload. (b) Power use for code SP that exhibits heterogeneous performance and power behavior
across nodes. Note: x-axis is overlaid for ease of presentation—repeats 20–30 second time interval for
each node.

108 K.W. CAMERON ET AL.

tion for all the NPB benchmarks on all execution nodes with different numbers of
processors (up to 32) and several classes of problem sizes. Figure 7(a–c) provides an
overview of the profile variations on different system scales for benchmarks FT, EP,
and MG. These figures show segments of synchronized power profiles for different
number of nodes; all the power profiles correspond to the same computing phase in
the application on the same node.

These snapshots illustrate profile results for distributed benchmarks using various
numbers of nodes under class A workload. Due to space limitations in a single graph,
here we focus on power amplitude only, so each time interval is simply a fixed length
snapshot (though the x-axis does not appear to scale). For FT and MG, the profiles
are similar for different system scale except the average power decreases with the
number of execution nodes; for EP, the power profile is identical for all execution
nodes.

4.2.3 Cluster Energy-Performance Efficiency

For parallel systems and applications, we would like to use E (see Eq. (6)) to re-
flect energy efficiency, and use D to reflect performance efficiency. To compare the
energy-performance behavior of different parallel applications such as NPB bench-
marks, we use two metrics: (1) normalized delay or the speedup (from Eq. (3)) de-
fined as D# of node =1/D# of node =n; and (2) normalized system energy, or the ratio of

(a)

FIG. 7. Energy performance efficiency. These graphs use normalized values for performance (i.e.
speedup) and energy. Energy reflects total system energy. (a) EP shows linear performance improvement
with no change in total energy consumption. (b) MG is capable of some speedup with the number of nodes
with a corresponding increase in the amount of total system energy necessary. (c) FT shows only minor
improvements in performance for significant increases in total system energy.

DESIGNING COMPUTATIONAL CLUSTERS 109

(b)

(c)

FIG. 7. (continued)

multi-node to single-node energy consumption, defined as E# of node =n/E# of node =1.
Plotting these two metrics on the same graph with x-axis as the number of nodes, we
identify 3 energy-performance categories for the codes measured.

Type I: energy remains constant or approximately constant while performance in-
creases linearly. EP, SP, LU and BT belong to this type (see Fig. 7(a)).

Type II: both energy and performance increase linearly but performance increases
faster. MG and CG belong to this type (see Fig. 7(b)).

Type III: both energy and performance increase linearly but energy consumption
increases faster. FT and IS belong to this type. For small problem sizes, the IS
benchmark gains little in performance speedup using more nodes but consumes
much more energy (see Fig. 7(c)).

110 K.W. CAMERON ET AL.

Since average total system power increases linearly (or approximately linearly)
with the number of nodes, we can express energy efficiency as a function of the
number of nodes and the performance efficiency:

(7)
En

E1
= P n · Dn

P 1 · D1
= P n

P 1
· Dn

D1
≈ n · Dn

D1
.

In this equation, the subscript refers to the number of nodes used by the applica-
tion. Equation (7) shows that energy efficiency of parallel applications on clusters
is strongly tied to parallel speedup (D1/Dn). In other words, as parallel programs
increase in efficiency with the number of nodes (i.e. improved speedup) they make
more efficient use of the additional energy.

4.2.4 Application Characteristics
The power profiles observed are regular and coincide with the computation and

communication characteristics of the codes measured. Patterns may vary by node,
application, component and workload, but the interaction or interdependency among
CPU, memory, disk and NIC have definite patterns. This is particularly obvious in
the FT code illustrated in the t1 through t13 labels in Fig. 5(b). FT phases include
computation (t1), reduce communication (t2), computation (t3:t4) and all-to-all com-
munication (t5:t11). More generally, we also observe the following for all codes:

1. CPU power consumption decreases when memory power increases. This re-
flects the classic memory wall problem where access to memory is slow, in-
evitably causing stalls (low power operations) on the CPU.

2. Both CPU power and memory power decrease with message communication.
This is analogous to the memory wall problem where the CPU stalls while
waiting on communication. This can be alleviated by non-blocking messages,
but this was not observed in the Ethernet-based system under study.

3. For all the codes studied (except EP), the normalized energy consumption in-
creases as the number of nodes increases. In other words, while performance is
gained from application speedup, there is a considerable price paid in increased
total system energy.

4. Communication distance and message size affect the power profile patterns.
For example, LU has short and shallow power profiles while FT phases are sig-
nificantly longer. This highlights possible opportunities for power and energy
savings (discussed next).

4.2.5 Resource Scheduling
We mentioned an application’s energy efficiency is dependent on its speedup or

parallel efficiency. For certain applications such as FT and MG, we can achieve

DESIGNING COMPUTATIONAL CLUSTERS 111

speedup by running on more processors while increasing total energy consumption.
The subjective question remains as to whether the performance gain was worth the
additional resources. Our measurements indicate there are tradeoffs between power,
energy, and performance that should be considered to determine the best resource
“operating points” or the best configuration in number of nodes (NP) based on the
user’s needs.

For performance-constrained systems, the best operating points will be those
that minimize delay (D). For power-constrained systems, the best operating points
will be those that minimize power (P) or energy (E). For systems where power-
performance must be balanced, the choice of appropriate metric is subjective. The
energy-delay product (see Section 2.6) is commonly used as a single metric to weigh
the effects of power and performance.

Figure 8 presents the relationships between four metrics (normalized D and E,
EDP, and ED2P) and the number of nodes for the MG benchmark (class A). To min-
imize energy (E), the system should schedule only one node to run the application
which corresponds in this case to the worst performance. To minimize delay (D),
the system should schedule 32 nodes to run the application or 6 times speedup for
more than 4 times the energy. For power-performance efficiency, a scheduler using
the EDP metric would recommend 8 nodes for a speedup of 2.7 and an energy cost

FIG. 8. To determine the number of nodal resources that provides the best rate of return on energy
usage is a subjective process. Different metrics recommend different configurations. For the MG code
shown here, minimizing delay means using 32 processors; minimizing energy means using 1 processor;
the EDP metric recommends 8 processors while the ED2P metric recommends 16 processors. Note: y-axis
in log.

112 K.W. CAMERON ET AL.

of 1.7 times the energy of 1 node. Using the ED2P metric a smart scheduler would
recommend 16 nodes for a speedup of 4.1 and an energy cost of 2.4 times the energy
of 1 node. For fairness, the average delay and energy consumption obtained from
multiple runs are used in Fig. 8.

For existing cluster systems, power-conscious resource allocation can lead to sig-
nificant energy savings with controllable impact on performance. Of course, there
are more details to consider including how to provide the scheduler with application-
specific information. This is the subject of ongoing research in power-aware cluster
computing.

5. Low Power Computational Clusters

To address operating cost and reliability concerns, large-scale systems are being
developed with low power components. This strategy, used in construction of Green
Destiny [70] and IBM BlueGene/L [8], requires changes in architectural design to
improve performance. For example, Green Destiny relies on driving the Transmeta
Crusoe processor [52] development while BlueGene/L uses a version of the embed-
ded PowerPC chip modified with additional floating point support. In essence, the
resulting high-end machines are no longer strictly composed of commodity parts—
making this approach very expensive to sustain.

To illustrate the pros and cons of a low power computational cluster, we developed
the Argus prototype, a high density, low power supercomputer built from an IXIA
network analyzer chassis and load modules. The prototype is configured as a disk-
less cluster scalable to 128 processors in a single 9U chassis. The entire system has
a footprint of 1/4 m2 (2.5 ft2), a volume of 0.09 m3 (3.3 ft3) and maximum power
consumption of less than 2200 W. In this section, we compare and contrast the char-
acteristics of Argus against various machines including our 32-node Beowulf and
Green Destiny.

5.1 Argus: Low Power Cluster Computer
Computing resources may be special purpose (e.g. Earth Simulator) or general

purpose (e.g. network of workstations). While these high-end systems often pro-
vide unmatched computing power, they are extremely expensive, requiring special
cooling systems, enormous amounts of power and dedicated building space to en-
sure reliability. It is common for a supercomputing resource to encompass an entire
building and consume tens of megawatts of power.

In contrast low-power, high-throughput, high-density systems are typically de-
signed for a single task (e.g. image processing). These machines offer exceptional

DESIGNING COMPUTATIONAL CLUSTERS 113

speed (and often guaranteed performance) for certain applications. However, design
constraints including performance, power, and space make them expensive to de-
velop and difficult to migrate to future generation systems.

We propose an alternative approach augmenting a specialized system (i.e. an Ixia
network analyzer) that is designed for a commodity marketplace under performance,
power, and space constraints. Though the original Ixia machine is designed for a
single task, we have created a configuration that provides general-purpose high-
end parallel processing in a Linux environment. Our system provides computational
power surpassing Green Destiny [30,70] (another low-power supercomputer) while
decreasing volume by a factor of 3.

5.1.1 System Design

Figure 9 is a detailed diagram of the prototype architecture we call Argus. This
architecture consists of four sets of separate components: the IXIA chassis, the IXIA
Load Modules, the multi port fast Ethernet switch and an NFS server.

The chassis contains a power supply and distribution unit, cooling system, and
runs windows and proprietary software (IX server and IX router). Multiple (up to 16)
Load Modules plug into the chassis and communicate with the chassis and each other
via an IX Bus (mainly used for system management, much too slow for message
transfer). Each Load Module provides up to 8 RISC processors (called port proces-

FIG. 9. The hardware architecture Argus. Up to 16 Load Modules are supported in a single IXIA
1600T chassis. A single bus interconnects modules and the chassis PC while external disks and the cluster
front-end are connected via an Ethernet switch. P = processor, C = cache, M = memory.

114 K.W. CAMERON ET AL.

sors) in a dense form factor and each processor has its own operating system, cache
(L1 and L2), main memory and network interface. Additional FPGA elements on
each Load Module aid real-time analysis of network traffic. Though the performance
abilities of these FPGAs have merit, we omit them from consideration for two rea-
sons: (1) reprogramming is difficult and time consuming, and (2) it is likely FPGA
elements will not appear in succeeding generation Load Modules to reduce unit cost.

There is no disk on each Load Module. We allocate a small portion of memory
at each port to store an embedded version of the Linux OS kernel and application
downloaded from the IX Server. An external Linux machine running NFS file server
is used to provide external storage for each node. A possible improvement is to use
networked memory as secondary storage but we did not attempt this in the initial pro-
totype. Due to cost considerations, although the Load Modules support 1000 Mbps
Ethernet on copper, we used a readily available switch operating at 100 Mbps.

The first version of the Argus prototype is implemented with one IXIA 1600T
chassis and 4 LM1000TXS4 Load Modules (see http://www.ixiacom.com/library/
catalog/ for specification) [20] configured as a 16-node distributed memory system,
i.e., each port processor is considered as an individual node.

Another option is to configure each Load Module as an SMP node. This option
requires use of the IxBus between Load Modules. The IxBus bus (and the PowerPC
750CXe processor) does not maintain cache coherence and has limited bandwidth.
Thus, early on we eliminated this option from consideration since software-driven
cache coherence will limit performance drastically. We opted to communicate data
between all processors through the Ethernet connection. Hence one recommendation
for future implementations is to significantly increase the performance and capabili-
ties of the IX Bus. This could result in a cluster of SMPs architecture allowing hybrid
communications for improved performance.

Each LM1000TXS4 Load Module provides four 1392 MIPS PowerPC 750CXe
RISC processors [45] and each processor has one 128 MB memory module and one
network port with auto-negotiating 10/100/1000 Mbps Copper Ethernet interface.
The 1392 MIPS PowerPC 750CXe CPU employs 0.18 micrometer CMOS copper
technology, running at 600 MHz with 6.0 W typical power dissipation. This CPU
has independent on-chip 32 K bytes, eight-way set associative, physically addressed
caches for instructions and data. The 256 KB L2 cache is implemented with on-chip,
two-way set associative memories and synchronous SRAM for data storage. The ex-
ternal SRAM are accessed through a dedicated L2 cache port. The PowerPC 750CXe
processor can complete two instructions per CPU cycle. It incorporates 6 execution
units including one floating-point unit, one branch processing unit, one system reg-
ister unit, one load/store unit and two integer units. Therefore, the theoretical peak
performance of the PowerPC 750CXe is 1200 MIPS for integer operations and 600
MFLOPS for floating-point operations.

DESIGNING COMPUTATIONAL CLUSTERS 115

In Argus, message passing (i.e. MPI) is chosen as the model of parallel com-
putation. We ported gcc3.2.2 and glib for PowerPC 750 CXe to provide a useful
development environment. MPICH 1.2.5 (the MPI implementation from Argonne
National Lab and Michigan State University) and a series of benchmarks have been
built and installed on Argus. Following our augmentation, Argus resembles a stan-
dard Linux-based cluster running existing software packages and compiling new
applications.

5.1.2 Low Power Cluster Metrics
According to design priorities, general-purpose clusters can be classified into four

categories:

Performance: These are traditional high-performance systems (e.g. Earth Simulator)
where performance (GFLOPS) is the absolute priority.

Cost: These are systems built to maximize the performance/cost ratio (GFLOPS/$)
using commercial-off-the-shelf components (e.g. Beowulf).

Power: These systems are designed for reduced power (GFLOPS/W) to improve
reliability (e.g. Green Destiny) using low-power components.

Density: These systems have specific space constraints requiring integration of com-
ponents in a dense form factor with specially designed size and shape (e.g. Green
Destiny) for a high performance/volume ratio (GFLOPS/ft3).

Though high performance systems are still a majority in the HPC community; low
cost, low power, low profile and high density systems are emerging. Blue Gene/L
(IBM) [1] and Green Destiny (LANL) are two examples designed under cost, power
and space constraints.

Argus is most comparable to Green Destiny. Green Destiny prioritizes reliability
(i.e. power consumption) though this results in a relatively small form factor. In con-
trast, the Argus design prioritizes space providing general-purpose functionality not
typical in space-constrained systems. Both Green Destiny and Argus rely on system
components targeted at commodity markets.

Green Destiny uses the Transmeta Crusoe TM5600 CPU for low power and high
density. Each blade of Green Destiny combines server hardware, such as CPU, mem-
ory, and the network controller into a single expansion card. Argus uses the PowerPC
750CXe embedded microprocessor which consumes less power but matches the sus-
tained performance of the Transmeta Crusoe TM5600. Argus’ density comes at the
expense of mechanical parts (namely local disk) and multiple processors on each
load module (or blade). For perspective, 240 nodes in Green Destiny fill a single
rack (about 25 ft3); Argus can fit 128 nodes in 3.3 ft3. This diskless design makes
Argus more dense and mobile yet less suitable for applications requiring significant
storage.

116 K.W. CAMERON ET AL.

5.1.2.1 TCO Metrics. As Argus and Green Destiny are similar, we use the
total cost of ownership (TCO) metrics proposed by Feng et al. [30] as the basis of
evaluation. For completeness, we also evaluate our system using traditional perfor-
mance benchmarks.

(8)TCO = AC + OC,

(9)AC = HWC + SWC,

(10)OC = SAC + PCC + SCC + DTC.

TCO refers to all expenses related to acquisition, maintaining and operating the
computing system within an organization. Equations (8)–(10) provide TCO compo-
nents including acquisition cost (AC), operations cost (OC), hardware cost (HWC),
software cost (SWC), system-administration cost (SAC), power-consumption cost
(PCC), space-consumption cost (SCC) and downtime cost (DTC). The ratio of total
cost of ownership (TCO) and the performance (GFLOPS) is designed to quantify the
effective cost of a distributed system.

According to a formula derived from Arrhenius’ Law,2 component life expectancy
decreases 50% for every 10 ◦C (18 ◦F) temperature increase. Since system operating
temperature is roughly proportional to its power consumption, lower power con-
sumption implies longer component life expectancy and lower system failure rate.
Since both Argus and Green Destiny use low power processors, the performance
to power ratio (GFLOPS/W) can be used to quantify power efficiency. A high
GFLOPS/W implies lower power consumption for the same number of computa-
tions, and hence lower system working temperature and higher system reliability
(i.e. lower component failure rate).

Since both Argus and Green Destiny provide small form factors relative to tradi-
tional high-end systems, the performance to space ratio (GFLOPS/ft2 for footprint
and GFLOPS/ft3 for volume) can be used to quantify computing density. Feng et al.
propose the footprint as the metric of computing density [30]. While Argus performs
well in this regard for a very large system, we argue it is more precise to compare
volume. We provide both measurements in our results.

5.1.2.2 Benchmarks. We use an iterative benchmarking process to deter-
mine the system performance characteristics of the Argus prototype for general
comparison to a performance/cost design (i.e. Beowulf) and to target future design
improvements. Benchmarking is performed at two levels:

2 Reaction rate equation of Swedish physical chemist and Nobel Laureate Svante Arrhenius (1859–

1927) is used to derive time to failure as a function of e−Ea/KT , where Ea is activation energy (eV), K is
Boltzmann’s constant, and T is absolute temperature in Kelvin.

DESIGNING COMPUTATIONAL CLUSTERS 117

Micro-benchmarks: Using several micro benchmarks such as LMBENCH [57],
MPPTEST [37], NSIEVE [49] and Livermore LOOPS [56], we provide detailed
performance measurements of the core components of the prototype CPU, memory
subsystem and communication subsystem.

Kernel application benchmarks: We use LINPACK [25] and the NAS Parallel
Benchmarks [5] to quantify performance of key application kernels in high perfor-
mance scientific computing. Performance bottlenecks in these applications may be
explained by measurements at the micro-benchmark level.

For direct performance comparisons, we use an on-site 32-node Beowulf cluster
called DANIEL. Each node on DANIEL is a 933 MHz Pentium III processor with 1
Gigabyte memory running Red Hat Linux 8.0. The head node and all slave nodes are
connected with two 100M Ethernet switches. We expect DANIEL to out-perform
Argus generally, though our results normalized for clock rate (i.e. using machine
clock cycles instead of seconds) show performance is comparable given DANIEL is
designed for performance/cost and Argus for performance/space.

For direct measurements, we use standard UNIX system calls and timers when
applicable as well as hardware counters if available. Whenever possible, we use
existing, widely-used tools (e.g. LMBENCH) to obtain measurements. All measure-
ments are the average or minimum results over multiple runs at various times of day
to avoid outliers due to local and machine-wide perturbations.

5.1.3 Analyzing a Low Power Cluster Design

5.1.3.1 Measured Cost, Power and Space Metrics. We make
direct comparisons between Argus, Green Destiny and DANIEL based on the afore-
mentioned metrics. The results are given in Table I. Two Argus systems are con-
sidered: Argus64 and Argus128. Argus64 is the 64-node update of our current
prototype with the same Load Module. Argus128 is the 128-node update with the
more advanced IXIA Application Load Module (ALM1000T8) currently available
[20]. Each ALM1000T8 load module has eight 1856 MIPS PowerPC processors
with Gigabit Ethernet interface and 1 GB memory per processor. Space efficiency is
calculated by mounting 4 chassis’ in a single 36U rack (excluding I/O node and Eth-
ernet switches to be comparable to Green Destiny). The LINPACK performance of
Argus64 is extrapolated from direct measurements on 16-nodes and the performance
of Argus128 is predicted using techniques similar to Feng et al. as 2 × 1.3 times the
performance of Argus64.

All data on the 32-node Beowulf, DANIEL is obtained from direct measurements.
There is no direct measurement of LINPACK performance for Green Destiny in the
literature. We use both the Tree Code performance as reported [70] and the estimated

118 K.W. CAMERON ET AL.

TABLE I
COST, POWER, AND SPACE EFFICIENCY

Machine DANIEL Green Destiny ARGUS64 ARGUS128

CPUs 32 240 64 128
Performance (GFLOPS) 17 39 (101) 13 34
Area (foot2) 12 6 2.5 2.5
TCO ($K) 100 350 100∼150 100∼200
Volume (foot3) 50 30 3.3 3.3
Power (kW) 2 5.2 1 2
GFLOPS/proc 0.53 0.16 (0.42) 0.20 0.27
GFLOPS per chassis 0.53 3.9 13 34

TCO efficiency
(GFLOPS/K$) 0.17 0.11 (0.29) 0.08∼0.13 0.17∼0.34

Computing density

(GFLOPS/foot3) 0.34 1.3 (3.3) 3.9 10.3

Space efficiency

(GFLOPS/foot2) 1.4 6.5 (16.8) 20.8 54.4

Power efficiency

(GFLOPS/foot3) 8.5 7.5 (19.4) 13 17

Notes. For Green Destiny, the first value corresponds to its Tree Code performance; the second value in
parenthesis is its estimated LINPACK performance. All other systems use LINPACK performance. The
downtime cost of DANIEL is not included when computing its TCO since it is a research system and often
purposely rebooted before and after experiments. The TCO of the 240-node Green Destiny is estimated
based on the data of its 24-node system.

LINPACK performance by Feng [29] for comparison denoted with parenthesis in
Table I.

We estimated the acquisition cost of Argus using prices published by IBM in June
2003 and industry practice. Each PowerPC 750Cxe costs less than $50. Considering
memory and other components, each ALM Load Module will cost less than $1000.
Including software and system design cost, each Load Module could sell for $5000–
$10,000. Assuming the chassis costs another $10,000, the 128-node Argus may cost
$90K–170K in acquisition cost (AC). Following the same method proposed by Feng
et al., the operating cost (OC) of Argus is less than $10K. Therefore, we estimate the
TCO of Argus128 is below $200K. The downtime cost of DANIEL is not included
when computing its TCO since it is a research system and often purposely rebooted
before and after experiments. The TCO of the 240-node Green Destiny is estimated
based on the data of its 24-node system.

Though TCO is suggested as a better metric than acquisition cost, the estimation
of downtime cost (DTC) is subjective while the acquisition cost is the largest com-
ponent of TCO. Though, these three systems have similar TCO performance, Green

DESIGNING COMPUTATIONAL CLUSTERS 119

Destiny and Argus have larger acquisition cost than DANIEL due to their initial sys-
tem design cost. System design cost is high in both cases since the design cost has not
been amortized over the market size—which would effectively occur as production
matures.

The Argus128 is built with a single IXIA 1600T chassis with 16 blades where each
blade contains 8 CPUs. The chassis occupies 44.5×39.9×52 cm3 (about 0.09 m3 or
3.3 ft3). Green Destiny consists of 10 chassis; each chassis contains 10 blades; and
each blade has only one CPU. DANIEL includes 32 rack-dense server nodes and
each node has one CPU.

Due to the large difference in system footprints (50 ft3 for DANIEL, 30 ft3 for
Green Destiny and 3.3 ft3 for Argus) and relatively small difference in single proces-
sor performance (711 MFLOPS for DANIEL, 600 MFLOPS for Green Destiny and
300 MFLOPS for Argus), Argus has the highest computing density, 30 times higher
than DANIEL, and 3 times higher than Green Destiny.

Table I shows Argus128 is twice as efficient as DANIEL and about the same as
Green Destiny. This observation contradicts our expectations that Argus should fair
better against Green Destiny in power efficiency. However upon further investigation
we suspect either (1) the Argus cooling system is less efficient (or works harder given
the processor density), (2) our use of peak power consumption on Argus compared
to average consumption on Green Destiny is unfair, (3) the Green Destiny LINPACK
projections (not measured directly) provided in the literature are overly optimistic,
or (4) some combination thereof. In any case, our results indicate power efficiency
should be revisited in succeeding designs though the results are respectable particu-
larly given the processor density.

5.1.3.2 Performance Results. A single RLX System 324 chassis with
24 blades from Green Destiny delivers 3.6 GFLOPS computing capability for the
Tree Code benchmark. A single IXIA 1600T with 16 Load Modules achieves 34
GFLOPS for the LINPACK benchmark. Due to the varying number of processors in
each system, the performance per chassis and performance per processor are used
in our performance comparisons. Table I shows DANIEL achieves the best perfor-
mance per processor and Argus achieves the worst. Argus has poor performance on
double MUL operation (discussed in the next section) which dominates operations
in LINPACK. Argus performs better for integer and single precision float operations.
Green Destiny outperforms Argus on multiply operations since designers were able
to work with Transmeta engineers to optimize the floating point translation of the
Transmeta processor.

Memory hierarchy performance (latency and bandwidth) is measured using the
lat_mem_rd and bw_mem_xx tools in the LMBENCH suite. The results are sum-
marized in Table II. DANIEL, using its high-power, high-profile off-the-shelf Intel

120 K.W. CAMERON ET AL.

TABLE II
MEMORY SYSTEM PERFORMANCE

Parameters ARGUS DANIEL

CPU Clock Rate 600 MHz 922 MHz
Clock Cycle Time 1.667 ns 1.085 ns
L1 Data Cache Size 32 KB 16 KB
L1 Data Cache Latency 3.37 ns ≈ 2 cycles 3.26 ns ≈ 3 cycles
L2 Data Cache Size 256 KB 256 KB
L2 Data Cache Latency 19.3 ns ≈ 12 cycles 7.6 ns ≈ 7 cycles
Memory Size 128 MB 1 GB
Memory Latency 220 ns ≈ 132 cycles 153 ns ≈ 141 cycles
Memory Read Bandwidth 146 ∼ 2340 MB/s 514 ∼ 3580 MB/s
Memory Write Bandwidth 98 ∼ 2375 MB/s 162 ∼ 3366 MB/s

technology, outperforms Argus at each level in the memory hierarchy in raw per-
formance (time). Normalizing with respect to cycles however, shows how clock
rate partially explains the disparity. The resulting “relative performance” between
DANIEL and Argus is more promising. Argus performs 50% better than Daniel at
the L1 level, 6% better at the main memory level, but much worse at the L2 level.
Increasing the clock rate of the PowerPC processor and the L2 implementation in
Argus would improve raw performance considerably.

IPC is the number of instructions executed per clock cycle. Throughput is the num-
ber of instructions executed per second (or IPC × clock_cycle). Peak throughput is
the maximum throughput possible on a given architecture. Peak throughput is only
attained when ideal IPC (optimal instruction-level parallelism) is sustained on the
processor. Memory accesses, data dependencies, branching, and other code charac-
teristics limit the achieved throughput on the processor. Using microbenchmarks, we
measured the peak throughput for various instruction types on the machines under
study.

Table III shows the results of our throughput experiments. Integer performance
typically outperforms floating point performance on Argus. For DANIEL (the Intel
architecture) floating point (F-xxx in Table III) and double (D-xxx in Table III) per-
formances are comparable for ADD, MUL, and DIV, respectively. This is not true for
Argus where F-MUL and D-MUL are significantly different as observed in our LIN-
PACK measurements. We expect the modified version of the PowerPC architecture
(with an additional floating point unit) present in IBM BlueGene/L will equalize the
performance difference with the Intel architecture in future systems. CPU throughput
measurements normalized for clock rates (MIPS) show Argus performs better than
DANIEL for integer ADD/DIV/MOD, float ADD/MUL and double ADD instruc-
tions, but worse for integer MUL and double DIV instructions.

DESIGNING COMPUTATIONAL CLUSTERS 121

TABLE III
INSTRUCTION PERFORMANCE

Instruction ARGUS DANIEL

Cycles IPC MIPS Cycles IPC MIPS

I-BIT 1 1.5 900 1 1.93 1771
I-ADD 1 2.0 1200 1 1.56 1393
I-MUL 2 1.0 300 4 3.81 880
I-DIV 20 1.0 30 39 1.08 36
I-MOD 24 1.0 25 42 1.08 24
F-ADD 3 3.0 600 3 2.50 764
F-MUL 3 3.0 600 5 2.50 460
F-DIV 18 1.0 33 23.6 1.08 42
D-ADD 3 3.0 600 3 2.50 764
D-MUL 4 2.0 300 5 2.50 460
D-DIV 32 1.0 19 23.6 1.08 42

Notes. IPC: instructions per clock, MIPS: millions of instructions per second, I: integer, F: single precision
floating point; D: double precision floating point.

The performance of message communication is critical to overall parallel system
performance. We measured memory communication latency and bandwidth with the
MPPTEST tool available in the MPICH distribution. Results show that Argus per-
formance is slightly worse yet comparable to DANIEL. MPI point-to-point latency
is 104 ns (about 62 CPU cycles) on Argus and 87 ns (about 80 CPU cycles) on
DANIEL. Both systems use 10/100 Mbps Ethernet so this is somewhat expected.
However, we observed larger message injection overhead on Argus as message size
approaches typical packet size. This is most likely due to the memory hierarchy dis-
parity already described.

For further comparison, we measured the performance of two additional sequential
benchmarks: NSIEVE and Livermore Loops. NSIEVE is a sieve of Eratosthenes
program that varies array sizes to quantify the performance of integer operations.
Livermore loops is a set of 24 DO-loops extracted from operational code used at
Lawrence Livermore National Laboratory.

The NSIEVE benchmark results show that for small array size, Argus has a higher
MIPS rating (980) than DANIEL (945). However, as array sizes increase, the relative
performance of Argus decreases versus DANIEL. This reflects the differences in L2
cache performance between Argus and DANIEL.

The performance results from Livermore loops are summarized in Table IV. We
observe DANIEL achieves 1.5–2 times higher MFLOPS rating than Argus for most
statistical values, Argus achieves the best, worst-case execution time for this bench-
mark. For instance, in real time codes where worst-case performance must be as-

122 K.W. CAMERON ET AL.

TABLE IV
LIVERMORE LOOPS

ARGUS DANIEL

MFLOPS NORM. MFLOPS NORM.

Maximum Rate 731.5 1.22 1281.9 1.37
Quartile Q3 225.0 0.38 377.6 0.40
Average Rate 174.5 0.29 278.9 0.30
Geometric Mean 135.5 0.23 207.2 0.22
Median Q2 141.6 0.24 222.2 0.24
Harmonic Mean 106.6 0.18 133.6 0.14
Quartile Q1 66.4 0.11 132.6 0.14
Minimum Rate 46.2 0.08 20.0 0.02
Standard Dev 133.8 0.22 208.5 0.22
Average Efficiency 18.52% 16.16%
Mean Precision (digits) 6.24 6.35

Notes. NORM: normalized performance, obtained by dividing MFLOPS by CPU clock rate

sumed, Argus may be a better choice. However, examining performance normalized
for clock rates (NORM) on this benchmark, the two systems perform similarly.

The Argus prototype architecture can execute both commercial and scientific ap-
plications. In this paper, we focus on scientific applications and provide results for
two benchmark suites: LINPACK [25] and the NAS parallel benchmarks [5]. Since
we already established the performance difference between Argus and DANIEL for
single node (see previous section), here we only discuss the parallel performance of
Argus.

LINPACK is arguably the most widely used benchmark for scientific applications
and its measurements form the basis for the Top500 list [63] of fastest supercom-
puters in the world. Our measurements use HPL, a parallel version of the linear
algebra subroutines in LINPACK that solve a (random) dense linear system in dou-
ble precision (64-bit) arithmetic on distributed-memory computers. HPL provides
the ability to scale workloads for better performance by adjusting array sizes. To en-
sure good performance, we compiled and installed the BLAS libraries with the aid
of ATLAS (Automatically Tuned Linear Algebra Software). Table V shows the LIN-
PACK benchmark results on the 16-node Argus prototype. The prototype achieves
3.4 GFLOPS, about 210 MFLOPS each node or 70% peak throughput of “double
MUL” operations.

The NAS Parallel Benchmark (NPB) is a set of 8 programs designed to help evalu-
ate the performance of parallel supercomputers. This benchmark suite consists of five
application kernels and three pseudo-applications derived from computational fluid
dynamics applications. These benchmarks are characterized with different compu-

DESIGNING COMPUTATIONAL CLUSTERS 123

TABLE V
LINPACK RESULTS ON ARGUS

NP Problem size GFLOPS GFLOPS/proc Speedup

1 3000 0.297 0.297 1.00
2 3000 0.496 0.248 1.67
4 5000 0.876 0.219 2.95
8 8000 1.757 0.221 5.91

16 12,000 3.393 0.212 11.42

TABLE VI
PARALLEL BENCHMARK RESULTS ON ARGUS

CODE Performance (MOP/s)

NP = 1 NP = 4 NP = 16

CG 19.61 46.04 88.12
EP 1.69 6.75 24.08
IS 4.06 3.62 18.02
LU 48.66 188.24 674.62
MG 45.50 84.51 233.36
BT 40.04 131.76 436.29
SP 28.72 90.99 299.71

tation/communication ratios described in [5]. The raw performance of NPB 2.4.1
with a problem size of W on Argus is shown in Table VI. To better identify the per-
formance trends, Fig. 10 provides the scalability of Argus under strong scaling (i.e.
fixed problem size and increasing number of processors).

For 16 nodes, EP and LU show the best scalability. The embarrassingly-parallel
code (EP) should achieve linear speedup since little communication is present. LU
achieves super-linear speedup that appears to be levelling off. As working set size
remains fixed with increases in the number of processors, communication is mini-
mal (i.e. strong or fixed-size scaling). Super-linear performance is achieved as the
working set gets smaller and smaller on a per node basis.

The curve of IS initially drops but then grows with the number of nodes. These
codes stress communication performance. The levelling off of performance indi-
cates the communication costs are not saturating the Ethernet interconnect up to 16
nodes.

The other four curves (SP, BT, CG and MG) have similar trends but different
slopes. The performance of these codes reflects the communication to computation
ratio. EP and LU are dominated by computation. IS and FT are dominated by com-
munication. These codes sit somewhere in between. Trends here are similar (though
less pronounced) than the communication-bound codes. These codes (SP, BT, CG,

124 K.W. CAMERON ET AL.

FIG. 10. Argus scalability. These curves show the varying scalability of parallel benchmarks from the
NPB 2.4.1 release (class W). Main limitations on performance in the prototype include memory bandwidth
and FP operation throughput. However, the result is a low power cluster capable of computing scientific
applications.

and MG) are more sensitive to the number of nodes as it affects the number of com-
munications. Performance then is likely to move downward with the number of nodes
until a plateau is reached prior to network saturation (i.e. similar to the plateau in IS
and FT performance). At some later point all of these codes will reach the limits of
either the input data set size (Amdahl’s Law) or the interconnect technology (sat-
uration) where performance will drop drastically again. Our system is too small to
observe these types of problems, so this is the subject of future work.

5.1.4 Lessons From a Low Power Cluster Design

Argus exemplifies an architectural design with trade-offs between performance,
cost, space and power. The Argus prototype is a new approach to cluster computing
that uses the aggregate processing elements on network analysis Load Modules for
parallel computing. The analysis shows this architecture has advantages such as high
scalability, small volumetric footprint, reduced power, high availability, and ultra-
high processor density.

DESIGNING COMPUTATIONAL CLUSTERS 125

Argus achieves higher computing efficiency than Green Destiny, a comparable
system with similar power efficiency. Argus is capable of packing more processors
per blade than Green Destiny at present though future versions of both machines will
undoubtedly address this.

The benchmarking measurements and comparisons with DANIEL indicate that
the current Argus prototype has two major performance limitations due to the ar-
chitectural characteristics of the embedded PowerPC processor: L2 cache latency
and hardware support for double precision. Also the communication overhead on
the processing node should and could be improved through system-specific hard-
ware and software tuning of MPI. Furthermore, results from a larger prototype with
a faster interconnect would allow more comprehensive scalability analyses.

There are two concerns with the low power cluster design approach highlighted
by our experiments with Argus. First, performance is not considered a critical design
constraint. In all low power approaches including Argus, Green Destiny and IBM
BlueGene/L, performance is sacrificed to reduce the power consumption of the ma-
chine. BlueGene/L has been the most successful at overcoming this constraint by (1)
redesign of the PowerPC embedded architecture to support double precision floating
point operations, and (2) custom design of a 130,000+ processor system.

Second, the low power approach is limited since it assumes all applications suf-
fer from poor power efficiency. This contradicts our earlier findings that the power
needs of applications vary significantly over time. Together, these observations moti-
vate the need for power-conscious approaches in high-performance that adapt to the
performance phases of applications.

6. Power-Aware Computational Clusters

Recently, power has become a critical issue for large data centers. Studies of power
consumption and energy conservation on commercial servers have emerged. Bohrer
et al. [9] found dynamic voltage and frequency scaling (DVFS) for processors is
effective for saving energy in web servers. Carrera et al. [17] found multi-speed
disks can save energy up to 23% for network servers. Zhu et al. [72,73] combines
several techniques including multi-speed disks and data migration to reduce energy
consumption while meeting performance goals.

Power reduction becomes critical in high-performance computing to ensure relia-
bility and limit operating cost. Two kinds of systems are now built to accommodate
these goals: systems with low power components (discussed in the previous section
[8,31,32]) and systems with power-aware components [43]. Energy reduction using
power-aware technologies had not been exploited in high-performance computing
until our research was launched in 2004 [15].

126 K.W. CAMERON ET AL.

In contrast to Argus, Green Destiny and BlueGene/L, our power-aware approach
for HPC uses off-the-shelf DVS technologies3 in server-class systems to exploit sci-
entific workload characteristics. Power-aware clusters include components that have
multiple power/performance modes (e.g. CPU’s with DVS). The time spent within
and transitioning to/from these power/performance modes determines the delay (cost
in performance) and energy (cost in power, heat, etc.).

There are two ways to schedule DVS transitions. External distributed DVS
scheduling techniques are autonomous and control DVS power/performance modes
in a cluster as processes separate from the application under study. External sched-
ulers may be system-driven (e.g. the cpuspeed daemon) or user-driven (e.g. setting
DVS from the command line). Internal distributed DVS scheduling techniques use
source-level performance profiling to direct DVS power/performance modes with
source-code instrumentation.

6.1 Using DVS in High-Performance Clusters
Dynamic Voltage Scaling (DVS) is a technology now common in high-perfor-

mance microprocessors [3,46]. DVS works on a very simple principal: decreasing
the supply voltage to the CPU consumes less power.

As shown in Eq. (4), the dynamic power consumption (P) of a CMOS-based mi-
croprocessor is proportional to the product of total capacitance load (C), frequency
(f), the square of the supply voltage (V 2), and percentage of active gates (A) or
P ≈ ACV 2f . As shown in Eq. (6), energy consumption (measured in joules) is
reduced by lowering the average power (Pavg) consumed for some duration or delay
(D) or E = Pavg × D.

There are two reasons for using DVS to conserve energy in HPC server clusters.
The first reason is to exploit the dominance of CPU power consumption on the sys-
tem node (and thus cluster) power consumption. Figure 3(b) shows the breakdown
of system node power obtained using direct measurement [33]. This figure shows
percentage of total system power for a Pentium III CPU (35%) under load. This
percentage is lower (15%) but still significant when the CPU is idle. While the Pen-
tium III can consume nearly 45 W, recent processors such as Itanium 2 consume over
100 W and a growing percentage of total system power. Reducing the average power
consumed by the CPU can result in significant server energy savings magnified in
cluster systems.

The second reason for using DVS to conserve energy in HPC server clusters is
to save energy without increasing execution time. DVS provides the ability to adap-
tively reduce power consumption. By reducing CPU power when peak speed is not

3 DVS capabilities are now available in server-class architectures including Intel Xeon (SE7520 chipset)
and AMD Opteron (Tyan s2882 board) dual processor nodes.

DESIGNING COMPUTATIONAL CLUSTERS 127

FIG. 11. The energy-delay crescendo for swim shows the effect of application-dependent CPU slack-
ness on (node) energy and performance measured at a single NEMO node. For swim, energy conservation
can be achieved with (at times) reasonable performance loss.

needed (e.g. idle or slack periods) a DVS scheduling algorithm can reduce energy
consumption. To minimize the impact on execution time we must ensure (1) sup-
ply voltage is reduced during CPU times when peak speed is not necessary, and (2)
period duration outweighs voltage state transition costs.4

Figure 11 shows the use of DVS on a single node to exploit CPU slack due to
memory stalls. In this example we run swim from the SPEC 2000 benchmark suite
on a DVS-enabled node at various fixed voltages shown as the resulting frequency5

on the x-axis in increasing order. Lower frequency (i.e. lower voltage) means lower
CPU performance. The values plotted on the y-axis are normalized to the highest (i.e.
fastest) frequency respectively for energy and delay (execution time). This energy-
delay “crescendo” for swim shows when reducing CPU frequency (from right to left)
the delay (execution time) increase varies from almost no increase at 1200 MHz to
about 25% increase at 600 MHz. The corresponding total system energy decreases
steadily with lower frequencies. Simply put, the memory stalls in swim produce
enough slack periods for DVS to save energy (e.g. 8% at 1200 MHz) with almost
no impact on execution time (<1%).

In the rest of this section, we will analyze the tradeoffs of various DVS scheduling
techniques designed to exploit CPU slack time in computational clusters. For parallel

4 In our AMD Opteron-based systems transition costs vary from 20–30 µs. Manufacturers set lower
bounds (∼10 µs) to achieve system stability following mode transitions.

5 To be precise, DVS affects both voltage and frequency. Voltage and frequency are not independent
as shown in Table I. However for ease of discussion, we describe measurements in terms of the resulting
frequency.

128 K.W. CAMERON ET AL.

codes, idle CPU periods will be workload dependent and result from both memory
and remote communication stalls.

6.2 Distributed DVS Scheduling Strategies

Now that we have established DVS as a viable approach to conserving energy
while maintaining performance for HPC applications, we turn our attention to de-
scribing several approaches to schedule DVS transitions over the duration of a par-
allel code. Our goal in this section is not to explore every possible alternative in
distributed DVS scheduling, but to provide detail on three techniques that differ in
complexity and efficiency.

The scheduling techniques studied can be characterized as follows: (1) user- or
system-driven, (2) internal or external to the application. The techniques can be eval-
uated by directly measuring the amount of total system energy consumed and the
amount of execution time required to solution. Figure 12 provides an overview of
the three scheduling methods studied.

6.2.1 CPUSPEED Daemon

6.2.1.1 Strategy #1: Using the CPUSPEED Daemon. System-
driven, external control of distributed DVS scheduling can be implemented as a
system process or Daemon. The daemon we study is the CPUSPEED program in-
cluded in the latest Fedora Core releases.6 CPUSPEED schedules the DVS modes
of a single node according to the CPU utilization information recorded by the
system in the /proc directory of Linux. Other operating systems (e.g. Windows

FIG. 12. Illustrations of the usage of three distributed DVS control strategies.

6 See http://carlthompson.net/Software/CPUSpeed.

DESIGNING COMPUTATIONAL CLUSTERS 129

running on a laptop) provide comparable daemons for scheduling CPU, disk, and
monitor power modes when the system is underutilized. These processes run au-
tonomously and typically use saturation-based counters (or thresholds) and simple
history-based information (e.g. CPU utilization) to migrate components between
power modes.

Assuming a power aware node supports m operating points (voltage steps or fre-
quencies) and the current operating point is S, the basic algorithm for CPUSPEED
is as follows:

while(true)
{

poll %CPU-usage from ‘‘/proc/stat’’
if %CPU-usage < minimum-threshold

S = 0
else if %CPU-usage > maximum-threshold

S = m
else if %CPU-usage < CPU-usage-threshold

S = max(S-1, 0)
else

S = min(S+1, m)
set-cpu-speed (speed[S])
sleep (interval)

}

6.2.2 EXTERNAL

6.2.2.1 Strategy #2: Scheduling from the Command-Line.
User-driven, external control can be implemented as a program invocation from the
command line or as a system-call from a process external to the application. This
is the approach used to save energy on a single node for the swim code shown in
Fig. 11. In the distributed version of this approach, the user synchronizes and sets
the frequency for each node statically7 prior to executing the application. For distrib-
uted applications that are memory/communication bound or imbalanced applications
with large amounts of CPU slack or idle time, this approach is simple and effective.
Performance profiling can be used to determine the amount of time the application
spends stalled on the CPU for a given node configuration. Individual nodes can then
be set to different DVS speeds appropriate to their share of the workload.

7 Dynamic settings are more appropriate for internal control from within the application (discussed
next).

130 K.W. CAMERON ET AL.

The process of DVS scheduling using external control is as follows: First we run a
series of microbenchmarks to determine the effect of DVS on common types of code
blocks including computationally intensive, memory intensive and communication
intensive sequences. Next, we profile the performance of the application under study
as a black box. We then determine which power mode settings are appropriate for the
entire application running on a single node. Prior to execution, we set the individual
nodes accordingly.

6.2.3 INTERNAL

6.2.3.1 Strategy #3: Scheduling within Application. User-driven,
internal control can be implemented using an API designed to interface with the
power-aware component in the node. By controlling DVS from within an applica-
tion, we can control the granularity of DVS mode transitions. The appropriate level
of granularity depends on the amount of slack time and the overhead for mode tran-
sitions. For some codes with intensive loop-based computation, transitions between
power modes around basic blocks may be appropriate. For other codes, function-
level granularity may be more useful. At the extreme end, we can resort to external
scheduling at node granularity.

Application-level control requires an API. We created such an API as part of our
PowerPack framework discussed earlier. The insertion of API DVS control com-
mands can be implemented by a compiler, middleware, or manually.

The process of DVS scheduling using internal API control is as follows: First we
run a series of microbenchmarks to determine the effect of DVS on common types of
code blocks including computationally intensive, memory intensive and communica-
tion intensive sequences. Next, we profile the performance of the application under
study at a fine granularity identifying code sequences that share characteristics with
our microbenchmarks. We then determine which power mode settings are appropri-
ate for a given code sequence and insert the appropriate API calls around the code
blocks. For now we do this manually. As part of future work we plan to integrate this
into a compiler or run-time tool.

Figure 12 provides an example using each of the three strategies described. In
the rest of this chapter, we use CPUSPEED DAEMON to refer to strategy #1, EX-
TERNAL to refer to strategy #2, and INTERNAL to refer to strategy #3. Using
CPUSPEED DAEMON, users execute their application after the daemon is running.
Using EXTERNAL, users determine a suitable operating frequency and set all the
nodes to this operating point8 (such as 600 MHz in the example in Fig. 12) before

8 For now we focus on a homogeneous implementation of the EXTERNAL scheduling algorithm. Het-
erogeneous (different nodes at different speeds) is straightforward but requires further profiling which is
actually accomplished by the INTERNAL approach.

DESIGNING COMPUTATIONAL CLUSTERS 131

executing the application. Using INTERNAL, users insert DVS function calls into
the source code, and execute the re-compiled application. When either external or
internal scheduling is used, CPUSPEED must be turned off.

6.3 Experimental Framework

Our experimental framework is composed of five components: experimental plat-
form, performance and energy profiling tools, data collection and analysis software,
microbenchmarks, and metrics for analyzing system power-performance.

6.3.1 NEMO: Power-Aware Cluster

To better understand the impact of DVS technologies on future high performance
computing platforms with DVS, we built a scalable cluster of high-performance,
general purpose CPU’s with DVS capabilities. Our experimental framework is shown
in Fig. 13. It interacts with NEMO, a 16-node DVS-enabled cluster,9 Baytech power
management modules and a data workstation.

FIG. 13. The PowerPack framework. This software framework is used to measure, profile, and con-
trol several power-aware clusters including the cluster under study. Measurements are primarily obtained
from the ACPI interface to the batteries of each node in the cluster and the Baytech Powerstrips for re-
dundancy. The PowerPack libraries provide an API to control the power modes of each CPU from within
the applications. Data is collected and analyzed from the Baytech equipment and the ACPI interface.

9 We use this system prototype to compare and contrast the scheduling policies discussed. Our tech-
niques are general and equally applicable to emergent server-based clusters with DVS enabled dual AMD
Opterons and Intel Xeon processors. This cluster was constructed prior to the availability of such nodes
to the general public.

132 K.W. CAMERON ET AL.

TABLE VII
PENTIUM M 1.4 GHZ OPERATING POINTS

Frequency Supply voltage

1.4 GHz 1.484 V
1.2 GHz 1.436 V
1.0 GHz 1.308 V
800 MHz 1.180 V
600 MHz 0.956 V

NEMO is constructed with 16 Dell Inspiron 8600 laptops connected by 100M
Cisco System Catalyst 2950 switch. Each node is equipped with a 1.4 GHz Intel Pen-
tium M processor using Centrino mobile technology to provide high-performance
with reduced power consumption. The processor includes on-die 32 KB L1 data
cache, on-die 1 MB L2 cache, and each node has 1 GB DDR SDRAM. Enhanced
Intel SpeedStep technology allows the system to dynamically adjust the processor
among five supply voltage and clock frequency settings given by Table VII. The
lower bound on SpeedStep transition latency is approximately 10 microseconds ac-
cording to the manufacturer [47].

We installed open-source Linux Fedora Core 2 (version 2.6) and MPICH (version
1.2.5) on each node and use MPI (message passing interface) for communication. We
use CPUFreq as the interface for application-level control of the operating frequency
and supply voltage of each node.

6.3.2 Power, Energy and Performance Profiling on NEMO

For redundancy and to ensure correctness, we use two independent techniques to
directly measure energy consumption.

The first direct power measurement technique is to poll the battery attached to
the laptop for power consumption information using ACPI. An ACPI smart bat-
tery records battery states to report remaining capacity in mWh (1 mWh = 3.6 J).
This technique provides polling data updated every 15–20 seconds. The energy con-
sumed by an application is the difference of remaining capacity between execution
beginning and ending when the system is running on DC battery power. To ensure
reproducibility in our experiments, we do the following operations prior to all power
measurements:

1. Fully charge all batteries in the cluster.
2. Disconnect (automatically) all laptops from wall outlet power remotely.
3. Discharge batteries for approximately 5 min to ensure accurate measurements.
4. Run parallel applications and record polling data.

DESIGNING COMPUTATIONAL CLUSTERS 133

The second direct power measurement technique uses specialized remote man-
agement hardware available from Bay Technical (Baytech) Associates in Bay St.
Louis, MS. With Baytech proprietary hardware and software (GPML50), power
related polling data is updated each minute for all outlets. Data is reported to a
management unit using the SNMP protocol. We additionally use this equipment to
connect and disconnect building power from the machines as described in the first
technique.

To correlate the energy and performance profile, we also generate profiles of tested
applications automatically by using an instrumented version of MPICH. We do ap-
plication performance and energy profiling separately due to the overhead incurred
by event tracing and recording.

6.3.3 PowerPack Software Enhancements

While direct measurement techniques are collectively quite useful, it was neces-
sary to overcome two inherent problems to use them effectively. First, these tools
may produce large amounts of data for typical scientific application runs. This data
must be collected efficiently and analyzed automatically (if possible). Second, we
must coordinate power profiling across nodes and account for hardware polling rates
within a single application. As in the original PowerPack suite of applications, this
includes correlating energy data to source code.

To overcome these difficulties, we enhanced our PowerPack tool suite. As we
discussed earlier in this chapter, PowerPack automates power measurement data
collection and analysis in clusters. We added portable libraries for (low-overhead)
timestamp-driven coordination of energy measurement data and DVS control at the
application-level using system calls. ACPI data is also obtained and collated using
this new library (libbattery.a). Lastly, we created software to filter and align data
sets from individual nodes for use in energy and performance analysis and optimiza-
tion. The data shown herein is primarily obtained using our ACPI-related libraries;
however all data is verified using the Baytech hardware.

6.3.4 Energy-Performance Microbenchmarks

We measure and analyze results for a series of microbenchmark codes (part of our
PowerPack tool suite) to profile the memory, CPU, and network interface energy be-
havior at various static DVS operating points. These microbenchmarks are grouped
into three categories:

I. Memory-Bound Microbenchmark
II. CPU-bound microbenchmark

III. Communication-bound microbenchmark

134 K.W. CAMERON ET AL.

FIG. 14. Normalized energy and delay for a memory bound microbenchmark. Memory bound code
phases provide opportunities for energy savings without impacting performance.

We leave disk-bounded microbenchmarks for future study, though disk-bound ap-
plications will provide more opportunities for energy saving.

I. Memory-Bound Microbenchmark. Figure 14 presents the energy con-
sumption and delay of memory accesses under different CPU frequencies. The mea-
sured code reads and writes elements from a 32 MB buffer with stride of 128 Bytes,
which assures each data reference is fetched from main memory. At 1.4 GHz, the
energy consumption is at its maximum, while execution time is minimal. The energy
consumption decreases with operating frequency, and it drops to 59.3% at the lowest
operating point 600 MHz. However, execution time is only minimally affected by the
decreases in CPU frequency; the worst performance at 600 MHz shows a decrease
of only 5.4% in performance. The conclusion is memory-bound applications offer
good opportunity for energy savings since memory stalls reduce CPU efficiency.

Using our weighted power-performance efficiency metrics (EDP), we can further
explain this phenomenon. The best energy operating point is 600 MHz which is
40.7% more efficient than the fastest operating point (1.4 GHz). More pointedly, in
our context this memory behavior explains the single node behavior of codes such as
the swim benchmark (see Fig. 11).

II. CPU-Bound Microbenchmark. Figure 15 shows energy consumption
and delay using DVS for a CPU-intensive micro benchmark. This benchmark reads
and writes elements in a buffer of size 256 KB with stride of 128 B, where each
calculation is has an L2 cache access. Since L2 cache is on-die, we can consider this
code CPU-intensive. The energy consumption for a CPU-intensive phase is dramati-
cally different from a memory bound code phase in that the CPU is always busy and
involved in computation.

DESIGNING COMPUTATIONAL CLUSTERS 135

FIG. 15. Normalized energy and delay for a CPU bound microbenchmark. CPU bound code phases
DO NOT provide opportunities for energy savings. To maximize performance, maximum CPU speed is
needed.

As we expect, the results in Fig. 15 do not favor energy conservation. Delay in-
creases with CPU frequency near-linearly. At the lowest operating point, the perfor-
mance loss can be 134%. On the other hand, energy consumption decreases initially,
and then goes up. Minimum energy consumption occurs at 800 MHz (10% decrease).
Energy consumption then actually increases at 600 MHz. The dramatic decrease in
performance by the slow down to 600 MHz cancels out the reduced power consump-
tion. That is, while average power may decrease, the increased execution time causes
total energy to increase. If we limit memory accesses to registers thereby eliminating
the latency associated with L2 hits the results are even more striking. The lowest
operating point consumes the most energy and takes 245% longer to complete. The
computationally bound SPEC code mgrid exhibits behavior that reflects this data.
For the parallel benchmarks we studied we rarely observe this exact behavior. Com-
putational phases for parallel codes are normally bound to some degree by memory
accesses.

III. Communication-Bound Microbenchmark. Figure 16 shows the
normalized energy and execution time for MPI primitives. Figure 16(a) is the round
trip time for sending and receiving 256 KB of data. Figure 16(b) is the round
trip time for a 4 KB message with stride of 64 B. Compared to memory load la-
tency of 110 ns, simple communication primitives MPI_Send and MPI_Recv take
dozens of microseconds, and collective communication takes several hundreds of
microseconds for two nodes, both present more CPU slack time than memory ac-
cess.

136 K.W. CAMERON ET AL.

(a)

(b)

FIG. 16. Normalized energy and delay for a communication bound microbenchmark. Round trip delay
is measured for (a) 256 KB non-strided message, and (b) 4 KB message with 64 B stride. Communication
bound code phases provide opportunities for energy savings.

As we expect, the crescendos in Fig. 16(a) and (b) are favorable to energy con-
servation for both types of communication. For the 256K round trip, energy con-
sumption at 600 MHz decreases 30.1% and execution time increases 6%. For 4 KB
message with stride of 64 B, at 600 MHz the energy consumption decreases 36%
and execution time increases 4%.

The energy gains apparent during communications are related to the communica-
tion to computation ratio of the application. As this ratio decreases, so should the
impact of communication on the effectiveness of DVS strategies.

DESIGNING COMPUTATIONAL CLUSTERS 137

6.3.5 Energy-Performance Efficiency Metrics

When different operating points (i.e. frequency) are used, both energy and delay
vary even for the same benchmark. A fused metric is required to quantify the energy-
performance efficiency. In this section, we use ED2P (E ×D2) and ED3P (E ×D3)

to choose “optimal” operating points (i.e., the CPU frequency that has the minimum
ED2P or ED3P value for given benchmarks) in DVS scheduling for power-aware
clusters. ED2P is proportional to J/MIPS2, and ED3P is proportional to J/MIPS3.
Since the ED3P metric emphasizes performance, smaller performance loss is ex-
pected for scheduling with ED3P in contrast to scheduling with ED2P. As before,
both energy and delay are normalized with the values at the highest frequencies.

6.4 Analyzing an Energy-Conscious Cluster Design

This section presents our experimental results for the NAS parallel benchmarks
(NPB) [6] using three DVS scheduling strategies. The benchmarks, which are derived
from computational fluid applications, consist of five parallel kernels (EP, MG, CG,
FT and IS) and three pseudo-applications (LU, SP and BT). These eight benchmarks
feature different communication patterns and communication to computation ratios.
We note experiments as XX.S.# where XX refers to the code name, S refers to the
problem size, and # refers to the number of nodes. For example, LU.C.8 is the LU
code run using the C sized workload on 8 nodes. In all our figures, energy and delay
values are normalized to the highest CPU speed (i.e. 1400 MHz). This corresponds
to energy and delay values without any DVS activity.

To ensure accuracy in our energy measurements using ACPI, we collected data for
program durations measured in minutes. In some cases we used larger problem sizes
to ensure application run length was long enough to obtain accurate measurements.
In other cases we iterate application execution. This ensures the relatively slow ACPI
refresh rates (e.g. 15–20 s) accurately record the energy consumption of the battery
for each node. Additionally, we repeated each experiment at least 3 times or more to
identify outliers.

6.4.1 CPUSPEED Daemon Scheduling

Figure 17 shows NAS PB results using CPUSPEED daemon to control DVS
scheduling on our distributed power-aware cluster. We evaluate the effect of two
versions of CPUSPEED: one is version 1.1 included in Fedora 2 and the other is
version 1.2.1 included in Fedora 3. In version 1.1, the default minimum CPU speed
transition interval value is 0.1 second; in version 1.2.1, the default interval value has
been changed to 2 seconds. Since we have observed that CPUSPEED version 1.1 al-

138 K.W. CAMERON ET AL.

FIG. 17. Energy-performance efficiency of NPB codes using CPUSPEED version 1.2.1. The results
are sorted by normalized delay. Normalized delay is total application execution time with DVS divided by
total application execution time without DVS. Values < 1 indicate performance loss. Normalized energy
is total system energy with DVS divided by total system energy without DVS. Values < 1 indicate energy
savings.

ways chooses the highest CPU speed for most NPB codes without significant energy
savings [36], only results of the improved CPUSPEED 1.2.1 are shown in Fig. 17.

The effects of CPUSPEED vary with different codes. For LU and EP, it saves
3∼4% energy with 1∼2% delay increase in execution time. For IS and FT, it reduces
25% energy with 1∼4% delay. For SP and CG, it reduces 31∼35% energy with
13∼14% delay increase. However, for MG and BT, it reduces 21% and 23% energy
at the cost of 32% and 36% delay increase.

The original version of CPUSPEED 1.1 was equivalent to no DVS (our 1400
MHz base data point) since threshold values were never achieved. CPUSPEED ver-
sion 1.2.1 improves energy-performance efficiency for scientific codes significantly
by adjusting the thresholds. We intend to study the affects of varying thresholds
for applications that perform poorly even under the improved version in future
work.

Overall, CPUSPEED 1.2.1 does a reasonable job of conserving energy. However,
for energy conservation of significance (>25%) 10% or larger increases in execution
time are necessary, which is not acceptable to the HPC community. The history-
based prediction of CPUSPEED is the main weakness of the CPUSPEED DAEMON
scheduling approach. This motivates a study of scheduling techniques that incorpo-
rate application performance profiling in the prediction of slack states.

DESIGNING COMPUTATIONAL CLUSTERS 139

6.4.2 External Scheduling

We now examine coarse-grain, user-driven external control which assumes users
know the overall energy-performance behavior of an application but treat the inter-
nals of the application as a black box.

We previously described the steps necessary to create a database of microbench-
mark information for use in identifying DVS settings appropriate to an application.
Applications with communication/computation or memory/computation ratios that
match micro-benchmark characteristics allow a priori selection of DVS settings.
Here, our goal is to analyze this DVS scheduling approach for the power mode set-
tings in our system.

Table VIII gives raw figures for energy and delay for all the frequency operating
points available on our system over all the codes in the NAS PB suite. As is evident,
such numbers are a bit overwhelming to the reader. Furthermore, selecting a “good”
frequency operating point is a subjective endeavor. For instance, BT at 1200 MHz
has 2% additional execution time (delay) with 7% energy savings. Is this “better” or

TABLE VIII
ENERGY-PERFORMANCE PROFILES OF NPB BENCHMARKS

Code CPU speed

Auto 600 MHz 800 MHz 1000 MHz 1200 MHz 1400 MHz

BT.C.9 1.36 1.52 1.27 1.14 1.05 1.00
0.89 0.79 0.82 0.87 0.96 1.00

CG.C.8 1.14 1.14 1.08 1.04 1.02 1.00
0.65 0.65 0.72 0.80 0.93 1.00

EP.C.8 1.01 2.35 1.75 1.40 1.17 1.00
0.97 1.15 1.03 1.02 1.03 1.00

FT.C.8 1.04 1.13 1.07 1.04 1.02 1.00
0.76 0.62 0.70 0.80 0.93 1.00

IS.C.8 1.02 1.04 1.01 0.91 1.03 1.00
0.75 0.68 0.73 0.75 0.94 1.00

LU.C.8 1.01 1.58 1.32 1.18 1.07 1.00
0.96 0.79 0.82 0.88 0.95 1.00

MG.C.8 1.32 1.39 1.21 1.10 1.04 1.00
0.87 0.76 0.79 0.85 0.97 1.00

SP.C.9 1.13 1.18 1.08 1.03 0.99 1.00
0.69 0.67 0.74 0.81 0.91 1.00

Notes. Only partial results are shown here. In each cell, the number on the top is the normalized delay
and the number at the bottom is the normalized energy. The column “auto” means scheduling using
CPUSPEED. The columns “XXX MHz” refer to the static external setting of processor frequency.

140 K.W. CAMERON ET AL.

FIG. 18. Energy-performance efficiency of NPB codes using EXTERNAL DVS control. ED3P is
chosen as the energy-performance metric in this figure. The results are sorted by normalized delay.

“worse” than BT at 1000 MHz with 4% additional execution time and 20% energy
savings? Such comparisons require a metric to evaluate.

Figure 18 shows the energy-performance efficiency of NPB benchmarks using
external control with the ED3P (ED3) metric to weight performance significantly
more than energy savings. This figure is obtained as follows: For each benchmark,
compute the ED3 value at each operating point using corresponding normalized delay
and normalized energy, and use the operating point which has the smallest ED3 value
as the scheduling point thereafter. If two points have the same ED3 value, choose
the point with best performance. External DVS scheduling shown reduces energy
with minimum execution time increase and selects an operating frequency that is
application dependent—thus overcoming the weakness of CPUSPEED.

The effects of external DVS scheduling can be classified in three categories:

• Energy reduction with minimal performance impact. For FT, EXTERNAL saves
30% energy with 7% delay increase in execution time. For CG, EXTERNAL
saves 20% energy with 4% delay increase in execution time.

• Energy reduction and performance improvement.10 For SP, EXTERNAL saves
9% energy and also improves execution time by 1%. For IS, EXTERNAL saves
25% energy with 9% performance improvement.

No energy savings and no performance loss. BT, EP, LU, MG fall into this
category.

10 These results are repeatable. Similar phenomena have been observed by other researchers. Our ex-
planation is message communication is not sensitive to frequency above a certain threshold. Higher
communication frequency (common to IS and SP) increases the probability of traffic collisions and longer
waiting times for retransmission.

DESIGNING COMPUTATIONAL CLUSTERS 141

FIG. 19. Energy-performance efficiency of NPB codes using EXTERNAL control. ED2P is chosen
as the energy-performance metric in this figure. The results are sorted by normalized delay.

If users allow slightly larger performance impact for more energy saving, ED2P
(ED2) or EDP (ED) can be used as the energy-performance metric. Figure 19 shows
the effects of ED2P metrics on external DVS scheduling. The trend is the same as
Fig. 18, but the metric may recommend frequency operating points where energy
savings have slightly more weight than execution time delays. For example, ED2P
would recommend different operating points for FT corresponding to energy sav-
ings of 38% with 13% delay increase; for CG, it selects 28% energy with 8% delay
increase. For SP, it selects 19% energy with 3% delay increase.

We can use energy-delay crescendos to observe the effects on delay and energy
visually for comparison to our microbenchmark results (Fig. 20). These figures indi-
cate we can classify the NPB benchmarks as follows:

Type I (EP): near zero energy benefit, linear performance decrease when scaling
down CPU speed. This is similar to the observed effects of CPU bound codes.
The EP code performs very little communication and is basically computationally
bound to the performance of any given node. Thus, reducing the CPU speed hurts
performance and energy conservation for HPC is unlikely.

Type II (BT, MG and LU): near linear energy reduction and near linear delay in-
crease, the rate of delay increase and energy reduction is about same. The results
for these codes fall between CPU bound and memory or communication bound.
The effects overall can lead to some energy savings, but EXTERNAL control
means phases cannot adapt to changes in communication to computation ratio. In
this case the overall effect is performance loss for energy savings, not acceptable
in HPC.

142 K.W. CAMERON ET AL.

FIG. 20. Energy-delay crescendos for the NPB benchmarks. For all diagrams, x-axis is CPU speed,
y-axis is the normalized value (delay and energy). The effects of DVS on delay and energy vary greatly.

DESIGNING COMPUTATIONAL CLUSTERS 143

Type III (FT, CG and SP): near linear energy reduction and linear delay increase,
where the rate of delay increase is smaller than the rate of energy reduction.
These codes can use DVS to conserve energy effectively. Communication or
memory to computation ratio is quite high in many phases of these codes. How-
ever, the EXTERNAL control course granularity means parts of the code suffer
performance loss. In some cases, the performance is minimal, in others it is
not.

Type IV (IS): near zero performance decrease, linear energy saving when scaling
down CPU speed. This code is almost completely communication bound (integer
parallel sort). Thus frequency of the processor has little effect on performance and
running at low frequency will save energy. Codes in this category can be run at
low frequency and meet HPC users’ needs.

This classification reveals the inherent limitations to external control. First, the
energy-performance impact is a function of an application’s performance phases.
Yet, the granularity of EXTERNAL control is to try a best-fit operating point for
the entire application. This causes additional performance delay and does not meet
the dynamic criteria we described as characteristic of a good DVS scheduler for
HPC applications. Second, the homogeneity of setting all processors to the same
frequency limits effectiveness to homogeneous applications. Workload imbalance,
common to scientific application such as adaptive mesh refinement, is not exploited
using external control.

6.4.3 Internal Scheduling

We use FT.C.8 and CG.C.8 as examples to illustrate how to implement internal
scheduling for different workloads. Each example begins with performance profiling
followed by a description of the DVS scheduling strategy derived by analyzing the
profiles.

6.4.3.1 FT Performance. Figure 21 shows the performance profile of FT
generated with the MPICH trace utility by compiling the code with “–mpilog” op-
tion. The following observations are drawn from this profile:

• FT is communication-bound and its communication to computation ratio is
about 2:1.

• Most execution time is consumed by all-to-all type communications.

• The execution time per communication phase is large enough to compensate for
the CPU speed transition overhead (20–30 µs observed).

• The workload is almost homogeneous and balanced across all nodes.

144 K.W. CAMERON ET AL.

FIG. 21. A performance trace of FT.C.8 using the MPI profiling tool (MPE) in MPICH. Traces are
visualized with Jumpshot. x-axis is execution time, y-axis is processor number involved in computation;
graph shows work by processor.

...
call set_cpuspeed(low_speed)
call mpi_alltoall(...)
call set_cpuspeed(high_speed)
...

FIG. 22. INTERNAL control for FT.

6.4.3.2 An Internal DVS Schedule for FT. Based on these observa-
tions, we divide time into all-to-all communication phases and other phases. We will
schedule the CPU for low speed during all-to-all communication phases and high
speed elsewhere. Figure 22 shows how we use our PowerPack API to control DVS
from within the source code of the FT application.

6.4.3.3 Energy Savings for FT. Figure 23 shows the energy and delay
using internal scheduling. We are not limited to using only the highest and lowest

DESIGNING COMPUTATIONAL CLUSTERS 145

FIG. 23. Normalized energy and delay of INTERNAL, EXTERNAL and CPUSPEED scheduling. In
INTERNAL control, high speed and low speed are set as 1400 and 600 MHz respectively. All EXTERNAL
control’s decisions (600–1400 MHz) are given on the x-axis. CPUSPEED is shown as auto in this figure.
Normalized delay is total application execution time with DVS divided by total application execution time
without DVS. Values <1 indicate performance loss. Normalized energy is total system energy with DVS
divided by total system energy without DVS. Values <1 indicate energy savings.

processor frequencies. However, using the highest and lowest frequency settings be-
tween the phases of FT provided better results than all other combinations. Hence, in
INTERNAL results for FT we use 600 MHz for the all-to-all communication phase
and 1400 MHz for all other phases. The best overall result for FT is 36% energy with-
out noticeable delay increase (<1%). This is a significant improvement over both
external control and CPUSPEED. External control at 600 MHz saves 38% energy
but at a cost of 13% delay increase. CPUSPEED saves 24% energy with 4% delay
increase. This shows internal scheduling is preferred when the application contains
obvious CPU-bound phases and non-CPU bounded phases and each phase lasts long
enough to compensate for the CPU speed transition overhead.

6.4.3.4 CG Performance: Figure 24 shows the performance profile of CG
generated with the MPICH trace utility by compiling the code with “–mpilog” op-
tion. The following observations are drawn from this profile:

• CG is communication intensive and synchronizes all nodes between phases.

• Wait and Send are major communication events that dominate execution time.

• The execution time of each phase is relatively small, the message communica-
tions are frequent and CPU speed transition may impact delay significantly.

• Nodes exhibit heterogeneous behavior. Nodes 4–7 have larger communication-
to-computation ratio than nodes 0–3.

146 K.W. CAMERON ET AL.

(a) Profile visualized at iteration granularity

FIG. 24. Performance trace of CG.C.8 using MPE tool provided with MPICH. The traces are visual-
ized with Jumpshot. x-axis is execution time, y-axis is processor number involved in computation; graphs
show work by processor; arrows indicate message source and destination. (a) Iteration granularity shows
the application is regular and can be partitioned into phases. (b) Message granularity reveals different
communication types and workloads on different processors.

6.4.3.5 An Internal Schedule for CG. Based on the performance ob-
servations, we found it challenging to improve power-performance efficiency in CG.
Thus, we implemented two distinct phase-based dynamic scheduling policies within
CG. The first policy (applied to nodes 4–7) scales down the CPU speed during any
communication. The second policy (applied to nodes 0–3) scales down CPU speed
only during the MPI_Wait phases. Both policies increase energy and delay (1∼3%).
Since the performance behavior on each node is asymmetric, we can set different
speeds for each execution node. The DVS controls are applied to CG as shown in
Fig. 25.

6.4.3.6 Energy Savings for CG. Figure 26 shows the energy and delay
using internal scheduling. We provide results for two configurations: internal I which
uses 1200 MHz as high speed and 800 MHz as low speed and internal II which uses
1000 MHz as high speed and 800 MHz as low speed. Experiments show that internal

DESIGNING COMPUTATIONAL CLUSTERS 147

(b) Profile visualized at message granularity

FIG. 24. (continued)

...
if (myrank .ge. 0 .and. myrank .le. 3)
call set_cpuspeed(high_speed)
else
call set_cpuspeed(low_speed)
endif
...

FIG. 25. INTERNAL control for CG.

I saves 23% energy with 8% delay increase and internal II saves 16% energy with 8%
delay increase. Both internal I and II scheduling for CG do not provide significant
advantages over external scheduling at 800 MHz. The frequency of communication
phases in CG requires more transitions per unit time than FT. The overhead for fre-
quency transition is more costly in CG. Thus, while energy savings are possible, the
additional overhead adds to the observable delay for CG. Since external schedul-

148 K.W. CAMERON ET AL.

FIG. 26. Normalized energy and delay of INTERNAL scheduling, EXTERNAL control and CPUS-
PEED scheduling for CG. For INTERNAL I, high speed is 1200, and low speed is 800; for INTERNAL
II, high speed is 1000 and low speed is 800.

ing does not incur overhead after the initial transition, the performance it is able to
perform as well as the internal scheduling.

6.4.3.7 Overall. Internal scheduling provides DVS control with finer gran-
ularity than external scheduling. Internal scheduling achieves better (or at least as
good) energy-performance efficiency. FT shows the benefit of phased-based internal
scheduling; CG shows the benefit of heterogeneous internal scheduling.

6.5 Lessons from Power-Aware Cluster Design

High-performance power-aware distributed computing is viable. DVS schedul-
ing policies are critical to automating middleware that alleviates users from think-
ing about power and energy consumption. Our results indicate given user-defined
energy-performance efficiency metrics, our schedulers can reduce energy and guar-
antee performance. Our experiments all indicate that no single scheduling strategy
fits all scientific codes.

Our contributions to power-aware HPC were the first of their kind [16]. One of
the big hurdles early on was convincing the HPC community that power was indeed
a problem and not something the microarchitecture community would solve single-
handedly. Early work by Rutgers [17] and IBM [26] highlighted the power issues
in commercial servers. However, while the problems were similar, the techniques
used to conserve power and energy in commercial server farms would simply not
work in the 24/7 all-performance-all-the-time systems commonplace in HPC. We’ve
now shown conclusively that the power issue is critical to HPC and power-aware
techniques can be adapted to address power without killing performance.

DESIGNING COMPUTATIONAL CLUSTERS 149

Since the first appearance of our work, others have joined the fray. Our initial tech-
niques were entirely manual. Our colleagues at the University of Georgia and North
Carolina State University showed how to automate DVS transitions by filtering the
MPI communication library functions [35]. Others at Los Alamos National Labo-
ratory use performance prediction to identify slack in parallel codes and set DVS
transitions accordingly [42].

Of course, there is still work to be done. The CPU is but one of many devices
in the system. Depending on the workload, other system components may dominate
the power usage. Disks in particular can consume and enormous amount of power for
applications with extremely large data sets. In the codes we observed, memory was
a significant consumer of power. Since scientific codes often use as much memory
as available, so for large-memories (or fat nodes) power-aware memory could save
significant amounts of power in clusters. Lastly, there has been little work on holistic
approaches to energy conservation. Power-aware techniques are mostly localized and
independent. Little is known about the effects of multiple power-aware components
on total system power.

7. Conclusions

Power is now a critical design constraint in clusters built for high-performance
computing. Profiling techniques pinpoint exactly where power and energy are con-
sumed in clusters. Low-power approaches use hardware design to reduce the power
profiles of cluster systems and applications. Power-aware techniques provide dy-
namic control to reduce power and energy consumption in clusters. For benchmarks
applications, energy savings of 30% are possible with less than 1% performance im-
pact.

REFERENCES

[1] Adiga N., Almasi G., Barik R., et al., “An overview of the BlueGene/L supercomputer”,
in: Proc. of IEEE/ACM SC 2002, Baltimore, MD, 2003.

[2] Allen G., Dramlitsch T., Foster I., et al., “Supporting efficient execution in heterogeneous
distributed computing environments with cactus and globus”, in: Proc. of SC 2001, Denver,
CO, 2001.

[3] AMD, “Mobile AMD Duron Processor Model 7 Data Sheet”, http://www.amd.
com/usen/assets/content_type/white_papers_and_tech_docs/24068.pdf, 2001 (last acces-
sed).

[4] Bailey A.M., “Accelerated Strategic Computing Initiative (ASCI): Driving the need for the
Terascale Simulation Facility (TSF)”, in: Proc. of Energy 2002 Workshop and Exposition,
Palm Springs, CA, 2002.

150 K.W. CAMERON ET AL.

[5] Bailey D., Harris T., Saphir W., et al., “The NAS Parallel Benchmarks 2.0”, NASA Ames
Research Center Technical Report #NAS-95-020, December 1995.

[6] Bailey D.H., Barszcz E., Barton J.T., et al., “The NAS Parallel Benchmarks”, Internat. J.
Supercomputer Applications and High Performance Computing 5 (3) (1991) 63–73.

[7] Bellosa F., “The benefits of event-driven energy accounting in power-sensitive systems”,
in: Proc. of 9th ACM SIGOPS European Workshop, Kolding, Denmark, 2000.

[8] BlueGene/LTeam, “An overview of the BlueGene/L supercomputer”, in: Supercomputing
2002 Technical Papers, 2002.

[9] Bohrer P., Elnozahy E.N., Keller T., et al., “The case for power management in Web
servers”, in: Graybill R., Melhem R. (Eds.), Power Aware Computing, Kluwer Academic,
IBM Research, Austin TX 78758, USA, 2002.

[10] Borkar S., “Low power design challenges for the decade”, in: Proc. of the 2001 Conf. on
Asia South Pacific Design Automation, Yokohama, Japan, 2001.

[11] Brooks D., Tiwari V., Martonosi M., “Wattch: A framework for architectural-level power
analysis and optimizations”, in: Proc. of 27th International Symposium on Computer Archi-
tecture, Vancouver, BC, 2000.

[12] Brooks D.M., Bose P., Schuster S.E., et al., “Power-aware microarchitecture: Design and
modeling challenges for next-generation microprocessors”, IEEE Micro 20 (6) (2000) 26–
44.

[13] Burger D.C., Austin T.M., “The SimpleScalar Toolset, Version 2.0”, Computer Architec-
ture News 25 (3) (1997) 13–25.

[14] Cai G., Lim C., “Architectural level power/performance optimization and dynamic power
optimization”, in: Proc. of Cool Chips Tutorial at 32nd ISCA, 1999.

[15] Cameron K.W., Ge R., Feng X., Varner D., Jones C., “POSTER: High-performance,
power-aware distributed computing framework”, in: Proc. of 2004 ACM/IEEE Conference
on Supercomputing, SC 2004, 2004.

[16] Cameron K.W., Ge R., Feng X., Varner D., Jones C., “[Poster] High-performance, power-
aware distributed computing framework”, in: Proc. of IEEE/ACM SC 2004, Pittsburgh, PA,
2004.

[17] Carrera E.V., Pinheiro E., Bianchini R., “Conserving disk energy in network servers”, in:
Proc. of 17th International Conference on Supercomputing, 2003.

[18] Chandra S., “Wireless network interface energy consumption implications of popular
streaming formats”, in: Multimedia Computing and Networking, MMCN’02, in: Proc. SPIE,
vol. 4673, The International Society of Optical Engineering, San Jose, CA, 2002.

[19] Chaparro P., Gonzalez J., Gonzalez A., “Thermal-effective clustered microarchitectures”,
in: Proc. of First Workshop on Temperature-Aware Computer Systems, Munich, Germany,
2004.

[20] Company I., “IXIA Product Catalog”.
[21] Culler D.E., Singh J.P., Gupta A., Parallel Computer Architecture: A Hardware/Software

Approach, Morgan Kaufmann Publishers, San Francisco, CA, 1999.
[22] Dhodapkar A., Lim C.H., Cai G., Daasch W.R., “TEM2P2EST: A thermal enabled multi-

model power/performance ESTimator”, in: Proc. of the First International Workshop on
Power-Aware Computer Systems, 2000.

DESIGNING COMPUTATIONAL CLUSTERS 151

[23] Dongarra J., “An overview of high performance computing”, http://www.netlib.org/
utk/people/JackDongarra/SLIDES/hpcasia-1105.pdf, 2005 (last accessed).

[24] Dongarra J., “Present and future supercomputer architectures”, http://www.netlib.org/
utk/people/JackDongarra/SLIDES/HK-2004.pdf, 2004 (last accessed).

[25] Dongarra J.J., Bunch J.R., Moller C.B., Stewart G.W., LINPACK User’s Guide, SIAM,
Philadelphia, PA, 1979.

[26] Elnozahy M., Kistler M., Rajamony R., “Energy conservation policies for Web servers”,
in: Proc. of 4th USENIX Symposium on Internet Technologies and Systems, Seattle, WA,
2003.

[27] Fan X., Ellis C.S., Lebeck A.R., “Memory controller policies for DRAM power man-
agement”, in: Proc. of International Symposium on Low Power Electronics and Design,
ISLPED, 2001.

[28] Fan X., Ellis C.S., Lebeck A.R., “The synergy between power-aware memory sys-
tems and processor voltage scaling”, Department of Computer Science, Duke University,
Durham, TR CS-2002-12, 2002.

[29] Feng W., “Making a case for efficient supercomputing”, ACM Queue 1 (7) (2003) 54–64.
[30] Feng W., Warren M., Weigle E., “The bladed Beowulf: A cost-effective alternative to

traditional Beowulfs”, in: Proc. of IEEE International Conference on Cluster Computing,
CLUSTER’02, Chicago, IL, 2002.

[31] Feng W., Warren M., Weigle E., “Honey, I shrunk the Beowulf!”, in: Proc. of 2002 Inter-
national Conference on Parallel Processing, ICPP’02, Vancouver, BC, Canada, 2002.

[32] Feng X., Ge R., Kirk C., “ARGUS: Supercomputing in 1/10 cubic meter”, in: Parallel
and Distributed Computing and Networks, PDCN 2005, 2005.

[33] Feng X., Ge R., Cameron K., “Power and energy profiling of scientific applications on
distributed systems”, in: Proc. of 19th International Parallel and Distributed Processing
Symposium, IPDPS 05, Denver, CO, 2005.

[34] Flinn J., Satyanarayanan M., “Energy-aware adaptation for mobile applications”, in:
Proc. of 17th ACM Symposium on Operating Systems Principles, Kiawah Island Resort,
SC, 1999.

[35] Freeh V.W., Lowenthal D.K., Springer R., Pan F., Kappiah N., “Exploring the energy-
time tradeoff in MPI programs”, in: Proc. of 19th IEEE/ACM International Parallel and
Distributed Processing Symposium, IPDPS, Denver, CO, 2005.

[36] Ge R., Feng X., Cameron K.W., “Improvement of power-performance efficiency for high-
end computing”, in: Proc. of 1st Workshop on High-Performance, Power-Aware Computing,
HPPAC 2005, in conjunction with IPDPS’2005, Denver, CO, 2005.

[37] Gropp W., Lusk E., “Reproducible measurements of MPI performance”, Proc. of
PVM/MPI ’99 User’s Group Meeting, 1999.

[38] Grunwald D., Levis P., Farkas K.I., “Policies for dynamic clock scheduling”, in: Proc. of
4th Symposium on Operating System Design & Implementation, San Diego, CA, 2000.

[39] Gurumurthi S., Sivasubramaniam A., Irwin M.J., Vijaykrishnan N., Kandemir M., “Us-
ing complete machine simulation for software power estimation: The SoftWatt approach”,
in: Proc. of Eighth International Symposium on High-Performance Computer Architecture,
HPCA’02, Boston, MA, 2002.

152 K.W. CAMERON ET AL.

[40] HECRTF, “Federal plan for high-end computing: Report of the high-end computing re-
vitalization task force”, 2004.

[41] J.L. Hennessy, D.A. Patterson, Computer Architecture: A Quantitative Approach, third
ed., Morgan Kaufmann Publishers, San Francisco, CA, 2003.

[42] Hsu C.-H., Feng W.-C., “A power-aware run-time system for high-performance comput-
ing”, in: Proc. of IEEE/ACM Supercomputing, SC|05, Seattle, WA, 2005.

[43] Hsu C.-H., Kremer U., “The design, implementation, and evaluation of a compiler algo-
rithm for CPU energy reduction”, in: Proc. of ACM SIGPLAN Conference on Programming
Languages, Design, and Implementation, PLDI’03, San Diego, CA, 2003.

[44] Standard Performance Evaluation Corporation, “The SPEC benchmark suite”, http://
www.spec.org, 2002.

[45] IBM, PowerPC 604e User’s Manual, IBM, 1998.
[46] Intel, “Developer’s manual: Intel 80200 Processor Based on Intel XScale Microarchitec-

ture”, http://developer.intel.com/design/iio/manuals/273411.htm, 1989 (last accessed).
[47] Intel, “Intel Pentium M Processor datasheet”, 2004.
[48] Isci C., Martonosi M., “Runtime power monitoring in high-end processors: Methodology

and empirical data”, in: Proc. of the 36th annual IEEE/ACM International Symposium on
Microarchitecture, 2003.

[49] J G., “A high-level language benchmark”, BYTE 6 (9) (1981) 180–198.
[50] Joseph R., Brooks D., Martonosi M., “Live, runtime power measurements as a foundation

for evaluating power/performance tradeoffs”, in: Proc. of Workshop on Complexity-Effective
Design, Goteborg, Sweden, 2001.

[51] Kurita T., Takemoto M., “Design of low power-consumption LSI”, Oki Technical Re-
view 68 (4) (2001).

[52] Laird D., “Crusoe processor products and technology”, http://www.transmeta.com/press/
download/pdf/laird.pdf, 2000 (last accessed).

[53] LBNL, Data Center Energy Benchmarking Case Study, LBNL, 2003.
[54] Lorch J.R., Smith A.J., “PACE: A new approach to dynamic voltage scaling”, IEEE

Trans. Comput. 53 (7) (2004) 856–869.
[55] Lorch J.R., Smith A.J., “Software strategies for portable computer energy management”,

IEEE Personal Communications Magazine 5 (1998) 60–73.
[56] McMahon F.H., “The Livermore Fortran Kernels: A computer test of numerical perfor-

mance range”, Lawrence Livermore National Laboratory, UCRL-53745, December 1986.
[57] McVoy L., Staelin C., “lmbench: Portable tools for performance analysis”, in: Proc. of

USENIX 1996 Annual Technical Conference, San Diego, CA, 1996.
[58] Mudge T., “Power: A first class design constraint for future architectures”, Com-

puter 34 (4) (2001) 52–57.
[59] Phillips J.C., Zheng G., Kumar S.. Kale L.V., “NAMD: Biomolecular simulation on

thousands of processors”, in: Proc. of 14th International Conference on High Performance
Computing and Communications, SC 2002, Baltimore, MA, 2002.

[60] Rosenblum M., Herrod S.A., Witchel E., Gupta A., “Complete computer simulation: The
SimOS approach”, in: IEEE Parallel and Distributed Technology, Fall 1995, 1995.

[61] Sakagami H., Murai H., Seo Y., Yokokawa M., “TFLOPS three-dimensional fluid simu-
lation for fusion science with HPF on the Earth Simulator”, in: Proc. of SC2002, 2002.

DESIGNING COMPUTATIONAL CLUSTERS 153

[62] Smith J.E., “Characterizing computer performance with a single number”, Comm.
ACM 32 (10) (1988) 1202–1206.

[63] Tennessee U., Manheim U., NERSC, “Top 500 Supercomputer list”, SC|05, http://
www.top500.org/, 2005 (last accessed (1/6) 2006).

[64] Tiwari V., Singh D., Rajgopal S., et al., “Reducing power in high-performance micro-
processors”, in: Proc. 35th Conference on Design Automation, San Francisco, CA, 1998.

[65] Top500, “27th edition of TOP500 list of world’s fastest supercomputers released:
DOE/LLNL BlueGene/L and IBM gain top positions”, 2006.

[66] Vachharajani M., Vachharajani N., Penry D.A., Blome J.A., August D.I., “Microarchi-
tectural exploration with liberty”, in Proc. of 35th International Symposium on Microarchi-
tecture, Micro-35, 2002.

[67] Vargas E., “High availability fundamentals”, http://www.sun.com/blueprints/1100/
HAFund.pdf, 2000 (last accessed).

[68] Vijaykrishnan N., Kandemir M., Irwin M., Kim, H., Ye W., “Energy-driven integrated
hardware-software optimizations using SimplePower”, in: Proc. of 27th International Sym-
posium on Computer Architecture, Vancouver, BC, 2000.

[69] Wang H.-S., Zhu X., Peh L.-S., Malik S., “Orion: A power-performance simulator for
interconnection networks”, in Proc. of 35th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-35, Istanbul, Turkey, 2002.

[70] Warren M.S., Weigle E.H., Feng W.-C., “High-density computing: A 240-processor Be-
owulf in one cubic meter”, in: Proc. of IEEE/ACM SC 2002, Baltimore, MA, 2002.

[71] Weissel A., Bellosa F., “Process cruise control-event-driven clock scaling for dynamic
power management”, in: Proc. of International Conference on Compilers, Architecture and
Synthesis for Embedded Systems, CASES 2002, Grenoble, France, 2002.

[72] Zhu Q., Chen Z., Tan L., et al., “Hibernator: Helping disk array sleep through the winter”,
in: Proc. of the 20th ACM Symposium on Operating Systems Principles, SOSP’05, 2005.

[73] Zhu Q., Zhou Y., “Power aware storage cache management”, IEEE Transactions on Com-
puters (IEEE-TC) 54 (5) (2005) 587–602.

This page intentionally left blank

Compiler-Assisted Leakage Energy
Reduction for Cache Memories

WEI ZHANG

Department of Electrical and Computer Engineering
Southern Illinois University Carbondale
Carbondale, IL 62901
USA
zhang@engr.siu.edu

Abstract
With the scaling of technology, leakage energy reduction has become increas-
ingly important for microprocessor design. Being the major consumer of the
on-chip transistor budget, it is particularly critical to mitigate cache leakage
energy. In contrast to many recent studies that attempt to minimize cache leak-
age by exploiting architectural-level information, this chapter introduces two
compiler-assisted approaches to manage the cache leakage dissipation without
significant impact on either performance or the dynamic energy consumption.
More specifically, the first approach exploits static and profiling information to
detect the sub-bank transitions at the compilation time, which can improve the
energy efficiency of the drowsy instruction caches. The second approach exploits
the fact that only a small portion of the data caches will be accessed during the
loop execution, the compiler can provide hints to place other non-active cache
blocks into the low power mode during the loop execution to save the data cache
leakage energy. Our experiments on a state-of-the-art VLIW processor indicate
that the proposed compiler-based approaches can improve the energy-efficiency
of both instruction and data caches effectively.

1. Introduction . 156
2. Related Work . 159
3. Static Next Sub-Bank Prediction for Drowsy Instruction Caches 161

3.1. Overview . 161
3.2. The Memory Sub-Bank Prediction Buffer and Its Dynamic Energy Overhead . 162
3.3. Transitional Instructions . 165
3.4. Instruction Cache Addressing Schemes . 167
3.5. Identify Transitional Instructions . 168

ADVANCES IN COMPUTERS, VOL. 69 155 Copyright © 2007 Elsevier Inc.
ISSN: 0065-2458/DOI: 10.1016/S0065-2458(06)69003-7 All rights reserved.

156 W. ZHANG

3.6. ISA and Compiler Support . 169
4. Compiler-Assisted Loop-Based Data Cache Leakage Reduction 170
5. Evaluation Methodology . 172

5.1. Experimental Results for Static Next Sub-Bank Prediction 174
5.2. Experimental Results for Loop-based Data Cache Leakage Reduction 182

6. Conclusion . 186
References . 187

1. Introduction

As transistor counts and clock frequencies increase, power and energy consump-
tion has become an important design constraint for modern microprocessors [1].
While energy-aware design is obviously critical for battery-driven mobile and em-
bedded systems where the battery lifetime is a primary constraint, it has also become
crucial for plugged computing devices such as desktops and servers due to the pack-
aging and cooling requirements where power consumption has grown from a few
watts per chip to over 100 watts [23]. Therefore, in these systems, performance may
be limited by the inability to mitigate the heat dissipation produced by power-hungry
circuits operating at high speeds. Moreover, when circuits work in high temperature,
the reliability of the system decreases.

Power consumed in microprocessors can be classified into dynamic and static
(leakage) power. While dynamic power arises due to signal transitions (i.e., the
switching activities of repeated capacitance charge and discharge on the output of
gates), leakage power is consumed constantly (independent of any activity), which
is mainly due to subthreshold and gate leakage [7]. Dynamic power consumption is
proportional to the square of the supply voltage, thus it can be reduced by scaling
down the supply voltage. However, to maintain high switching speed under reduced
voltage levels, the threshold voltage must also be scaled, making it easier for cur-
rent to leak through the transistors. As a result, the leakage power dissipation will
be increased significantly [12]. Moreover, the increases in device speed and chip
density aggravate the leakage consumption problem. In addition, new techniques for
reducing dynamic power consumption and for improving performance, such as low
threshold voltage [29] and gate-oxide scaling [30], further increase the relative im-
portance of leakage power [28]. Therefore, while dynamic power has been a major
source of power dissipation for current microprocessors, leakage power is expected
to grow exponentially in upcoming generations [1,2]. It is projected that as processor
technology moves below 0.1 micron, static (leakage) power consumption is set on
the path to dominate the total power used by the CPU [8] (see Fig. 1).

While all the on-chip components consume leakage energy, it is particularly im-
portant for optimizing the leakage dissipation of the cache memory subsystem.

COMPILER-ASSISTED LEAKAGE ENERGY REDUCTION 157

FIG. 1. Normalized leakage power through an inverter [8].

Current microprocessors typically use two levels of on-chip caches (including an
L1 instruction cache, an L1 data cache, and a unified L2 cache) to mitigate the
performance gap between the processor and the memory, which consume a large
and growing fraction of on-chip real estate. Since leakage energy will be consumed
no matter the transistors are switching or not, cache memories are a good target to
optimize the leakage energy dissipation. Actually, it has been estimated that leak-
age will amount to more than 70% of energy consumed in caches if left unchecked
for 0.07 micron process [7]. Therefore, it is critical to minimize the cache leakage
energy dissipation without significantly impacting performance, dynamic energy or
cost.

Various techniques have been proposed to reduce the cache leakage energy. Cir-
cuit level techniques include adaptive substrate biasing, dynamic supply scaling and
supply gating [19]. Many of these circuit mechanisms can be exploited at the ar-
chitectural level to control leakage at the cache line and cache bank granularities
[19]. Currently, many leakage optimization approaches rely on employing hardware
counters to monitor and predict the access patterns of the cache lines. In those ap-
proaches, cache lines that are not accessed for a fixed time period are predicted to
be dead and are placed into the leakage control mode for reducing leakage energy
consumption. When the cache lines in the low power mode need to be used, it will be
activated [8,7] or re-fetched from the L2 [5], resulting in performance and dynamic
energy penalties. While the hardware-based approach is simple and reasonably ef-
fective to manage the cache leakage dissipation, it needs to spend both time and
energy in monitoring the cache line access patterns, and to make simple predictions
based on the history cache access information. Unfortunately, the counter-based pre-
diction may not be very accurate due to the limited runtime information available.
Moreover, the counter-based prediction approach is not adaptive to program behav-

158 W. ZHANG

ior, since the time interval to monitor the cache accesses is typically fixed (otherwise
different time intervals must be used for different programs or even different phases
of the same program, which will complicate the counter design). The mis-predictions
of cache access patterns can cause the excessive and late activation of cache lines,
which can impact both performance and energy consumption. On the other hand,
more complex and expensive hardware-based predictors themselves can incur addi-
tional energy and area cost, which may compromise the leakage energy savings of
cache memories.

Due to the deficiencies of hardware-centric approaches, this chapter attempts to
exploit useful compiler information to manage cache leakage more cost-effectively.
It should be noted that while the energy is directly consumed by hardware, software
(and specifically the compiler) can determine how the hardware will be exercised,
and thus can impact the overall energy consumption. Traditionally, compiler opti-
mizations have been studied extensively for optimizing performance [25]; however,
recently compiler-based optimizations have also been used to improve the energy
efficiency [35–39]. In contrast to previous compiler-directed approaches target-
ing reducing the dynamic energy dissipation, this chapter studies compiler-assisted
strategies to optimize the leakage energy consumption. Compared with the hardware-
centric approaches [8,7,5], the compiler-assisted leakage reduction has the following
advantages, including: (1) the compiler-assisted strategies can detect leakage re-
duction opportunities without incurring hardware overhead; (2) since compiler can
analyze a large scope of program and transform the code, it can potentially identify
or create opportunities for conducting leakage control mechanisms profitably. In this
chapter, we propose two compiler-assisted approaches to minimizing the leakage en-
ergy dissipation of the instruction cache and data cache respectively, which are the
two major leakage consumers among on-chip components. The basic ideas of these
two approaches are described below:

• The first approach aims at minimizing the leakage energy of the instruction
cache without significant dynamic energy overhead [10]. Recent research in
drowsy instruction cache shows that the leakage energy of the instruction cache
can be significantly reduced with little performance degradation by exploiting
the instruction spatial locality at the cache sub-bank level [7]. The performance
penalty due to the sub-bank wake-up latency can be dramatically reduced by
using a prediction buffer to pre-activate the next sub-bank at runtime. However,
consulting the prediction buffer at every cache access consumes non-trivial dy-
namical energy, which can compromise the overall energy savings. This chapter
introduces a compiler-assisted approach to capturing the sub-bank transitional
behavior at the compilation time and pre-activating the instruction cache sub-
bank that will be accessed at runtime according to the compiler-directed hints.
We also investigate a hybrid approach to exploiting both the static and dynamic

COMPILER-ASSISTED LEAKAGE ENERGY REDUCTION 159

information for reducing the performance penalty further with little dynamic
energy overhead.

• The second approach targets data cache leakage reduction, which is based on the
observation that typically only a relatively small portion of the data are actively
used during certain program phases and the program often spends a large frac-
tion of execution time in loops [9]. Consequently, a large portion of data cache
lines that are not accessed by the loops can be placed into the leakage control
mode during the loop execution to save the data cache leakage energy consump-
tion. Since loops can be nested, we propose an optimistic approach to placing
the non-active cache lines into the low leakage mode during the execution of
the innermost loop (note that non-nested loop is regarded as innermost loop in
our work). We also investigate the impact of loop transformations such as loop
tiling and loop distribution [25] on the reduction of the active data set accessed
by innermost loops, which can determine the effectiveness of the proposed leak-
age optimization strategy. We find that making use of loop transformations can
reduce the active data set successfully and thus the proposed approach can be
applied or adapted to a wider variety of applications.

Overall, our experimental results indicate that compiler-assisted approaches are
very successful in reducing the leakage of both the instruction cache and the data
cache. Also, the compiler-assisted leakage optimization approaches have minimal
impact on the dynamic energy consumption and the performance.

The rest of the chapter is organized as follows. We discuss related work in Sec-
tion 2. The compiler-assisted approaches for instruction caches and data caches are
introduced in Sections 3 and 4, respectively. The evaluation methodology and ex-
perimental results are presented in Section 5. Finally, we conclude this chapter in
Section 6.

2. Related Work

There have been a great deal of research efforts recently for reducing the cache
leakage energy [3–8,19,11,31,32,27] at different levels, ranging from circuit-level to
architectural and compiler levels. The circuit level leakage control mechanism can be
broadly divided into two categories: the state-destroying mechanisms and the state-
preserving mechanisms. Powell et al. [4] developed the gated Vdd technique to switch
off a cache line for reducing leakage energy. Since the data in the cache line is lost,
the decision to turn off a cache line must be made cautiously. Recently Kaxiras et al.
proposed the use of time-based strategies to turn off cache lines [5], which strike a
balance between leakage energy saved and dynamic energy induced (i.e., due to extra

160 W. ZHANG

cache misses). In contrast, Flautner et al. proposed to use dynamic voltage scaling
(DVS) for reducing the leakage power of cache cells [8]. By scaling the voltage of
the cell to approximately 1.5 times Vt , the state of the memory cell can be retained
and the leakage energy dissipation is reduced dramatically [8]. While voltage scaling
does not reduce leakage as much as gated Vdd , it has an important advantage of
being able to preserve the data in the drowsy mode, and thus extra cache misses can
be avoided. The only performance penalty of the state-preserving mechanism is the
wake-up latency, since it takes time to reinstate the power supply lines of the drowsy
cache lines to the normal voltage level [7]. Without appropriate management of cache
lines power status, however, it is shown that the performance penalty of a 32 KB
direct mapped drowsy instruction cache by using a simple policy—to periodically
put all cache lines into the drowsy mode and to wake up a cache line only when
it is accessed again—can be as high as 5.7% [7]. Recently Kim et al. proposed an
instruction cache leakage energy reduction strategy at the cache sub-bank granularity
by exploiting the spatial locality of instructions [7]. To hide the wake-up delay and
thus to reduce the performance penalty, Kim et al. utilized a sub-bank prediction
buffer to store and predict the transition points and to pre-activate the next sub-bank
at runtime [7].

At the architectural level, Powell et al. proposed the DRI-cache, which uses the
gated-Vdd technique to dynamically adjust the size of the active portion of the cache
by turning off a bank of cache lines according to the miss rates [4]. Zhou et al.
proposed the AMC (Adaptive Mode Control) cache [6] to adjust the cache turn-off
intervals while controlling the performance overhead by keeping the tag array alive
and tracking the miss rate with respect to the ideal miss rate. Velusamy et al. ap-
plied formal feedback-control theory to adjust the cache-decay intervals adaptively
[31]. Li et al. studied several architectural techniques that exploit the data duplica-
tion across the different levels of cache hierarchy and found that the best strategy in
terms of energy and energy-delay product is to place the L2 sub-block into a state-
preserving mode as soon as its contents are moved to L1 and to reactivate it only
when it is accessed [32]. Compared with all the above work that exploits circuit-
level or architecture-level techniques for energy reduction, the approaches studied
in this chapter utilize compiler information intelligently to minimize cache leakage
energy dissipation in a cost-effective fashion.

Recently, there are also a number of research efforts in exploiting compiler infor-
mation for leakage energy optimizations. Zhang et al. [33] investigated a dataflow
analysis to identify large slacks for functional units of statically multi-issued proces-
sors, which can be exploited to mitigate the leakage consumption of functional
units by inserting turn_on and turn_off instructions during the compilation. Rele
et al. [34] studied a compiler-based approach to reducing leakage power dissipa-
tion by functional units for superscalar processors. To optimize the cache leakage,

COMPILER-ASSISTED LEAKAGE ENERGY REDUCTION 161

a compiler-directed strategy was proposed for instruction caches [19], in which the
information of the last usage of instructions obtained by the compiler is encoded and
utilized at runtime to control the instruction cache lines dynamically. For the data
cache, Zhang [27] et al. presented code restructuring techniques for array-based and
pointer-intensive applications to reduce leakage energy. While this approach [27]
can reduce the data cache energy consumption significantly, it may increase the code
size and impact the performance by inserting activate/deactivate instructions at the
cache line granularity. In contrast, in this chapter, we propose a compiler-directed
leakage optimization strategy at the loop granularity (i.e., innermost loops) for L1
data caches. Also, we investigate a compiler-assisted approach to reducing the per-
formance and dynamic energy overheads for drowsy instruction caches.

3. Static Next Sub-Bank Prediction for Drowsy Instruction
Caches

In this section, we introduce a compiler-assisted approach to predicting the next
sub-bank statically and accurately to reduce the performance and dynamic energy
overheads for drowsy instruction caches. The overview of this approach is given in
Section 3.1. In Section 3.2, we provide the background information about the sub-
bank prediction buffer [7] and quantify its dynamic energy overhead. We explain the
transitional instructions and the instruction cache addressing schemes in Sections 3.3
and 3.4, respectively. In Section 3.5, we present the approach to identifying transi-
tional instructions based on static and profiling information. The ISA and compiler
support of the proposed approach are described in Section 3.6.

3.1 Overview

As mentioned in Section 2, the hardware-based next sub-bank prediction [7] is
the state-of-the-art approach to mitigating the run-time overhead of drowsy instruc-
tion caches; however, the downside of this approach is its dynamic energy overhead,
which can compromise the overall energy savings (i.e., the leakage energy savings
minus the dynamic and leakage energy overheads) of the drowsy instruction cache
substantially. Note that in [7], Kim et al. also proposed a less-expensive tag-based
next sub-bank prediction scheme, which extends the tag array to contain the block
address, the next sub-bank address, and a valid bit. Nevertheless, such a scheme
needs to write to the instruction cache for saving the next sub-bank information,
which may raise severe security concerns since I-cache is typically read-only and
protected by the operating system. Moreover, writing to the instruction cache will

162 W. ZHANG

make it much harder to protect I-cache from transient errors, since instruction caches
are often protected by parity bits and the error correction is simply implemented by
re-fetching from L2 under the assumption that the L1 instruction cache is read-only.
Thus, we will not consider the tag-based prediction strategy in this chapter. In order
to reduce the overall energy consumption without significant impact on performance
for drowsy instruction caches, we must develop more energy-efficient sub-bank pre-
diction schemes. In this section, we propose a compiler-assisted sub-bank prediction
and pre-activation strategy to mitigate the dynamic energy overhead while still reduc-
ing the leakage energy substantially. The idea of this approach is to use compilers to
find the transitional points statically and to insert the pre-activation instructions ap-
propriately in the program to pre-activate the next sub-bank promptly and accurately
at runtime. Compared to the hardware-centric next sub-bank prediction approach
(i.e., the next cache sub-bank prediction buffer [7]), which requires additional hard-
ware resources and needs to consult the prediction buffer for every cache access,
the compiler-assisted approach just needs a simple ISA extension (i.e., the hint bits
to annotate the sub-bank prediction information). Our experiments reveal that the
compiler-assisted approach is very successful in capturing the sub-bank transitional
behavior to reduce the performance penalty and the dynamic energy overhead of
drowsy instruction caches. In addition, we propose a hybrid approach to exploiting
both the static and dynamic information efficiently for pre-activating the next cache
sub-bank, and our results show that the hybrid approach is the best strategy for the
drowsy instruction cache to optimally balance leakage energy reduction and high
performance.

3.2 The Memory Sub-Bank Prediction Buffer and Its Dynamic
Energy Overhead

Since the drowsy caches can preserve the data in the drowsy mode, the only cost
of being wrong is an additional delay and energy overhead to wake up a drowsy
cache line. Therefore, simple policies can be used to reduce leakage energy without
much impact on performance. For instance, Flautner et al. proposed a simple policy
to periodically put all cache lines into the drowsy mode and a line is woken up
only when it is accessed again, which was shown to be effective at reducing data
cache leakage energy without affecting performance by more than 1% [8]. However,
Kim et al. also found that such a policy is not as effective for instruction caches
because data caches tend to have better temporal locality while instruction caches
normally exhibit better spatial locality [7]. More precisely, Kim et al. found that such
a simply policy may have a run-time impact of as much as 5.7% and the percentage
of drowsy lines can be as low as 68.5% [7]. Kim et al. then proposed an approach
to managing the drowsy instruction cache at the sub-bank granularity (instead of

COMPILER-ASSISTED LEAKAGE ENERGY REDUCTION 163

FIG. 2. The next sub-bank prediction buffer [7].

cache line granularity) to exploit the spatial locality [7]. In this scheme, only one
sub-bank is active at a time and all other sub-banks are placed into the drowsy mode.
Whenever the processor accesses a cache line in a non-active sub-bank, the pre-
decoder activates the next target sub-bank, and puts the currently active sub-bank
into the drowsy mode [7].

Since there is a wake-up latency to activate the next sub-bank, Kim et al. pro-
posed to use a memory sub-bank prediction buffer to predict and pre-activate the
next sub-bank, and it is shown to be effective at reducing the performance penalty
significantly [7]. Figure 2 illustrates the next sub-bank prediction buffer scheme pre-
sented in [7]. Each entry of the prediction buffer contains an instruction address of
the instruction one before the instruction causing the transition to another sub-bank
(assuming a single cycle wake-up latency). The buffer entry also contains a valid bit
and the index of the next target sub-bank. The buffer is consulted at each cache ac-
cess to determine whether to awake a new sub-bank or not. In case of misprediction
or no prediction, the old entry is updated or a new entry is allocated [7].

The hardware-based sub-bank prediction is not energy-efficient since the predic-
tion buffer needs to be consulted at each cache access, resulting in significant extra
dynamic energy consumption. While Kim et al. presented the area overhead of the
hardware prediction buffer, its dynamic energy overhead is not quantified [7]. In this
work, we use cacti 3.2 [18] to calculate the dynamic energy consumption per ac-
cess to the prediction buffer and compare it with the leakage energy savings of the
drowsy instruction cache for various applications. We model a next sub-bank predic-
tion buffer with 128 entries, which is shown to be effective at reducing performance

164 W. ZHANG

TABLE I
LEAKAGE ENERGY DISSIPATION FOR CACHE SUB-BANKS WITH DIFFERENT SIZES

Leakage per bit Leakage for cache sub-banks

1K 2K 4K 8K

1.63E–15 J 1.19E–11 J 2.39E–11 J 4.78E–11 J 9.56E–11 J

penalty in [7]. The dynamic energy per access reported by cacti is 2.39E–10 J. To
estimate the leakage energy savings for an instruction cache (note that we actually
calculate the total leakage energy consumption of the instruction cache, which is the
upper bound of the leakage energy savings), we refer to the data presented in [8]
under 0.07 um technology. Table I gives the leakage energy consumption results for
an instruction cache sub-bank with different sizes. If we compare the dynamic en-
ergy per access to the prediction buffer with the leakage energy of a cache sub-bank,
we can see that the dynamic energy per access is much larger. For a 1 KB or 2 KB
sub-bank, the dynamic energy overhead is even an order of magnitude larger than
the leakage energy consumption of the cache sub-bank.

Since the prediction buffer is accessed per cache access (not per cycle), we run
experiments to collect the total number of accesses to a 16 KB direct-mapped L1
instruction cache (see Section 5 for the detailed experimental framework and con-
figuration), and the results are presented in Table II. The dynamic energy overhead
in Table II is the extra dynamic energy consumption due to the accesses to the sub-
bank prediction buffer at runtime. The calculation of the I-cache leakage energy is
based on the leakage per bit number listed in Table I. The last column of Table II
gives the ratio of the dynamic energy overhead of the prediction buffer to the total
leakage energy consumption of the instruction cache. As can be seen, the dynamic
energy overhead is in the same order of magnitude as the total I-cache leakage en-
ergy consumption. Specifically, the dynamic energy overhead is equal to 48.6% of
the total I-cache leakage on average. Note that the data listed in Table II is the total
leakage energy consumption of the instruction cache, the total leakage savings of the
instruction cache should be less than it regardless of the drowsy management policy,
since cache lines in the drowsy mode still consume non-zero leakage energy. In other
words, the total leakage energy consumption is the upper bound of the possible leak-
age savings for the drowsy instruction cache. Therefore, the overall energy savings
of the drowsy instruction cache (i.e., the total leakage savings minus the dynamic and
leakage energy overheads) can be substantially compromised by taking the dynamic
energy overhead into account.

It should be noted that the relative ratio of dynamic energy per access and sub-bank
leakage consumption per cycle can vary widely with design style and fabrication
technology [5]. The comparison we made in this chapter is only used to demonstrate

COMPILER-ASSISTED LEAKAGE ENERGY REDUCTION 165

TABLE II
COMPARING THE DYNAMIC ENERGY OVERHEAD OF THE NEXT SUB-BANK PREDICTION BUFFER

AND THE TOTAL LEAKAGE ENERGY CONSUMPTION OF A 16 KB INSTRUCTION CACHE

Benchmark Execution
cycles

I-cache
accesses

I-cache
leakage
(J)

Dynamic energy
overhead
(J)

Ratio

164.GZIP 1292173435 408374714 0.247063561 0.097601557 0.395046345
181.MCF 21663288437 12124968426 4.142020749 2.897867454 0.699626494
256.BZIP2 13942496443 8449023200 2.66580532 2.019316545 0.757488377
MPEG2ENC 598165 49160 0.000114369 1.17492E–05 0.102730985
RAWDAUDIO 21886688 8420938 0.004184735 0.002012604 0.480939458
RAWCAUDIO 40543714 10261086 0.007751958 0.0024524 0.316358726
POLYPHASE 933323 532981 0.000178451 0.000127382 0.713823173
PARAFFINS 362685 177828 6.93E–05 4.25009E–05 0.612886969
DJPEG 11780602 5700216 0.002252451 0.001362352 0.604830748
DES 32820484 2769360 0.006275277 0.000661877 0.105473757
CORDIC 139599 39060 2.67E–05 9.33534E–06 0.349752166
CJPEG 31530629 17505754 0.006028656 0.004183875 0.693998

Notes. The last column is the ratio of the dynamic energy consumption of the prediction buffer to the total
leakage energy consumption of the instruction cache. Note that the total leakage savings of the instruction
cache should be less than its total leakage energy consumption, since cache lines in drowsy mode still
consume non-zero leakage.

quantitatively that one should be very cautious to apply leakage control techniques
that can incur extra dynamic energy, since the dynamic energy overhead can easily
nullify or significantly compromise the leakage energy savings. This motivates us
to develop a compiler-assisted approach for reducing the leakage energy and the
performance penalty without incurring substantial dynamic energy overhead.

3.3 Transitional Instructions

By analyzing the program, we find that most of the instructions triggering tran-
sitions to other sub-banks (called transitional instructions in this chapter) can be
identified statically. Therefore, the compiler can detect those transitional points and
provide hints to the processor to pre-activate the next sub-bank at runtime, thus
eliminating the hardware overhead of recording and re-discovering this knowledge
dynamically. The transitional instructions that can be identified by the compiler are
divided into three categories as follows.

1. Frontier instructions: These are normal instructions (excluding
branches) that cause the transitions from an active sub-bank to another sub-
bank. When the program is executed in the streaming mode, for instance,

166 W. ZHANG

running the instructions within a basic block, the PC (Program Counter) ad-
dress is updated by PC+4 sequentially. If the current instruction address is
mapped to the last cache block of a sub-bank (note that such instructions are
called border instructions in this chapter), the next sequential instruction will
be mapped to the first cache block of another sub-bank if the previous instruc-
tion (i.e., the border instruction) is not a branch instruction, as shown in Fig. 3.
To hide the performance penalty, the compiler can annotate information in the
border instruction to pre-activate the next sub-bank at runtime (note that al-
though frontier instructions can trigger the activation of drowsy cache lines
automatically, it is important to pre-activate the corresponding sub-banks when
executing the border instructions, so that the performance penalty due to the
activation delay can be hidden).

2. Unconditional branches with static target addresses:
Since the target addresses can be identified at the link time, the compiler can
annotate the previous instruction(s) to pre-activate the target sub-bank.

FIG. 3. Example of three types of transitional instructions that can be identified by compilers, in-
cluding: (1) frontier/border instructions, (2) unconditional branches with static target addresses, and (3)
conditional branches with static target addresses.

COMPILER-ASSISTED LEAKAGE ENERGY REDUCTION 167

3. Conditional branches with static target addresses:
While the target addresses of this type of instructions can be computed at link
time, the transitions to other sub-banks are determined by whether the branches
are taken or not (which is not perfectly known at the compilation time). If the
conditional branch is not taken, the next subsequential address may reside in
the same sub-bank and hence does not need the pre-activation. Consequently,
the compiler needs to predict the directions of these conditional branches in
addition to generating the target addresses statically. While there are some ef-
fective approaches to estimating the branch behavior at the compilation time
[21,22], we use a profiling based approach in this chapter. More specifically,
the compiler only selects the dynamic branches with a taken probability larger
than a given threshold (80% in this chapter) as the possible transitional instruc-
tions, and previous instructions of those branches are annotated to pre-activate
the target sub-banks.

3.4 Instruction Cache Addressing Schemes

The L1 instruction cache (also called L1-Icache or iL1 in this chapter) can be
addressed by using different schemes [20], as discussed below.

1. Physically-indexed, physically-tagged iL1: In this scheme,
the physical address must be obtained before the instruction cache is indexed.
Therefore, the TLB (Translation Look-aside Buffer) must be consulted before
retrieving the instruction cache, which can lengthen the critical path of the
processor. In terms of energy consumption, the TLB needs to be consulted
for each instruction access no matter hitting in iL1 or not, thus making it not
energy efficient. Currently, this configuration is not very popular for the L1 in-
struction cache, due to its significant impact on the overall performance and
energy consumption. However, the advantage of this scheme is that it has no
aliasing problems.

∣∣⌊(
(PC mod Scache) ÷ Ssub-bank

)⌋
(1)− ⌊((

(PC − 4) mod Scache
) ÷ Ssub-bank

)⌋∣∣ � 1,∣∣⌊(
(Target mod Scache) ÷ Ssub-bank

)⌋
(2)− ⌊(

(PC mod Scache) ÷ Ssub-bank
)⌋∣∣ � 1,

2. Virtually-indexed, physically-tagged iL1: In this configu-
ration, both the TLB and the iL1 can be accessed simultaneously by using the
virtual address of the instruction. After the physical address is obtained from
the TLB, it can be used for comparison with the tag bits in iL1 to determine

168 W. ZHANG

cache hit or miss. Therefore, the TLB is not on the critical path, but it is still
not energy efficient since the TLB still needs to be accessed for each instruction
fetch. Another disadvantage of this scheme is the aliasing problem, where two
or more virtual addresses are mapped to the same physical address, and thus
multiple copies of the same data can be present in the cache simultaneously.
The solution of this problem is to either limit the size of iL1 (within one page)
or to add a few bits to differentiate between different address spaces. Currently,
many processors use this addressing scheme, such as AMD K6, MIPS R10K
and PowerPC.

3. Virtually-indexed, virtually-tagged iL1: In this configura-
tion, the L1 instruction cache is both indexed and tagged with the virtual
address. Consequently, TLB accesses are not needed at all until an iL1 miss
occurs (depending on the addressing scheme for the L2 cache), which can ben-
efit both the performance and energy consumption. However, the downside is
the aliasing problem.

In this chapter, we assume a virtually-indexed instruction cache (including
virtually-indexed virtually-tagged iL1 and virtually-indexed physically-tagged iL1),
which has been used in some embedded processors, such as MC68030 [16], Stron-
gARM and its descendant the XScale [17]. Built upon this assumption, for each
instruction in the program, the compiler can determine its location in iL1 according
to its virtual address, making it possible to identify transitional instructions statically.

3.5 Identify Transitional Instructions

To determine whether the current instruction will cause a transition to another sub-
bank or not, we use formula (1) for frontier instructions and formula (2) for branch
instructions. In both formulas, the PC is the address of the current instruction, the
Scache is the size of the instruction cache and the Ssub-bank is the size of the sub-bank.
The Target in formula (2) represents the target address of a branch, which can be
calculated at compilation time. In formula (1), if the previous instruction and the
current instruction belong to different sub-banks, the current instruction is predicted
to be the frontier instruction. Similarly, formula (2) calculates the sub-bank index
of the target address and the sub-bank index of the current instruction address. If
they differ, the current branch is predicted to cause the transition to another sub-bank
(note that for conditional branches, we also need to take the profiling information
into account as aforementioned).

COMPILER-ASSISTED LEAKAGE ENERGY REDUCTION 169

3.6 ISA and Compiler Support

To activate the sub-bank at runtime, this chapter assumes the existence of an
ISA extension to annotate the sub-bank pre-activation information at the compila-
tion time. We propose the addition of 4 hint bits to each instruction, as shown in
Fig. 4. The first bit indicates whether the next sub-bank should be pre-activated or
not, and the last three bits represent the next sub-bank index (note that we use 3 bits
because we focus on experiments with an instruction cache of 8 sub-banks. For in-
struction caches with more than 8 sub-banks, more hint bits are needed). The extra
leakage energy due to the hint bits are accounted for estimating the overall leakage
savings compared to the default instruction cache. Note that since only one cache
sub-bank is active at runtime, the leakage overheads due to the extra hint bits are
much smaller than the dynamic energy overhead to access a prediction buffer (see
the leakage per bit data from Table I for an estimation). It should also be noted that
for processors that already provide extra hint bits to encode useful information at the
compilation time, these hint bits can be exploited to eliminate or mitigate the space
overhead.

After identifying the transitional instructions, the compiler then inserts hint bits
one instruction ahead of the transitional instructions in the program. At runtime, the
processor then decodes the hint bits and pre-activates the corresponding sub-banks
for reducing the performance penalty.

It should be noted that the goal of this chapter is to reduce the leakage energy con-
sumed in the instruction cache without compromising performance. The proposed
compiler-directed scheme, however, inevitably has several energy (and performance)
overheads. For instance, the extended hint bits will increase the dynamic energy per
instruction access and also consume leakage energy. Also, there is a dynamic energy
overhead to decode the hint bits and to turn on/off sub-banks at runtime. In this chap-
ter, where significant, we quantify these overheads to examine the energy behaviors
of various schemes. In the rest of this chapter, when we mention energy, we mean
the leakage energy consumed by the instruction cache plus any energy overheads
(dynamic or static) associated with the energy optimization scheme.

FIG. 4. Adding 4 hint bits to each instruction. The first bit indicates whether the next sub-bank should
be pre-activated or not. The last three bits comprise the next sub-bank index for an instruction cache of 8
sub-banks.

170 W. ZHANG

4. Compiler-Assisted Loop-Based Data Cache Leakage
Reduction

Besides the instruction cache, the data cache is another major consumer of the
on-chip transistors, which should also be a main target for on-chip leakage energy
control. While a number of circuit and architectural level techniques have been stud-
ied to mitigate the data cache leakage energy, this section investigates a simple yet
effective compiler-based approach to minimizing the leakage dissipation for data
caches. This approach is based on the observation that only a small portion of the
data are active at certain program phases runtime and the program typically spends
a significant time in loops. Consequently, a large portion of data cache lines, which
are not accessed by the loops, can be placed into the leakage control mode to reduce
the data cache leakage energy. Since loops can be nested, we propose an optimistic
approach to placing the cache lines into low leakage mode during the execution of
the innermost loop (note that non-nested loops are treated as innermost loops without
outermost loops in this work).

It is well known that in general, a program spends a large percentage of time in
executing only a small portion of the program, i.e., loops, which has been the focus
of traditional performance-oriented compiler optimizations [25]. Similarly, compiler
can also exploit the loop behavior to significantly benefit the energy dissipation.
More specifically, if the size of the data accessed by the loop is much less than the
size of the data cache, the rest of the cache lines that are not accessed by the loops can
be placed into the low leakage mode during the loop execution. Since loops typically
take a long period of time to execute, this strategy can potentially lead to substantial
leakage energy savings for data caches. On the other hand, the set of data accessed
by the loops must stay in the active mode in order to not impact performance, since
these cache lines may be accessed repeatedly and activating a cache line from the
low leakage mode incurs performance penalty.

Based on the above observation, we can formalize the loop-based data cache leak-
age problem as follows:

For a given code region R, suppose it takes T cycles to execute and the data it
accesses contains S cache lines. Assume the data cache (L1-Dcache) consists
of D cache lines. In order to save leakage energy, we can place D − S (if
S < D) cache lines into the low leakage mode for T cycles. The leakage energy
savings is proportional to the product of (D − S) ∗ T (we ignore the dynamic
energy penalties due to turn on/off cache lines at this analytic stage, and our
simulation results show that the leakage energy savings dominate).

According to this abstraction, it is obvious that the larger the T and the smaller
the S, the more leakage energy can be potentially reduced (note that D is fixed for

COMPILER-ASSISTED LEAKAGE ENERGY REDUCTION 171

a given cache configuration). The execution time T and the set of active data cache
lines S, however, are conflicting with each other. If a large region of code is chosen,
it may take more time to execute (i.e., T is increased); but also access more data (i.e.,
S is increased). Obviously, if S is equal or larger than D, there will be no leakage
savings no matter how long T is (unless the leakage energy is controlled at a finer
granularity). On the other hand, if a very small region of code is selected, even though
it only accesses a small set of data (i.e., S is small), the execution time is short too
(i.e., T is small); then the leakage energy saving will be insignificant. Consequently,
there is a tradeoff to choose the region of code by considering both the execution
time and the data size so that the leakage energy of data caches can be minimized.

While theoretically, the compiler can partition the program into regions with arbi-
trary sizes to apply the proposed strategy for reducing the data cache leakage energy,
the exploration of the large design space is beyond the scope of this chapter. In
this work, the proposed strategy works on the innermost loop granularity to man-
age leakage energy, since the innermost loops provide a good tradeoff between large
execution time and small data footprint. Specifically, the compiler divides the pro-
gram into two different leakage mode: active mode (also called normal mode) and
non-active mode, based on the loop analysis. The program begins at the active mode.
Just before the execution of the loop, the mode is transitioned into non-active, where
all the cache lines will be placed into the low leakage mode. At the end of the inner-
most loop, the mode is changed back into active again. To reduce the performance
penalty of activating each data cache line that is accessed sequentially, we apply the
just-in-time activation technique proposed in [26] for the drowsy data cache lines.
More specifically, when the current cache line is accessed in the active mode, the
next cache line will be activated to avoid the performance degradation by exploiting
the spatial locality of data accesses (note that for a set-associative data cache, the
next set will be activated).

We assume the existence of an instruction to set the cache lines into different leak-
age modes: active mode and non-active mode. With this abstraction, the compiler’s
job is to insert the instruction statically to set the program into different leakage
modes based on the loop analysis. Precisely, the compiler needs to insert the instruc-
tion to set the program into the non-active mode at the beginning of the innermost
loops, and insert the instruction to set the program into the active mode at the end
of the innermost loops. When the program is executed at runtime, all the data cache
lines will be placed into low leakage mode (deactivate) at the non-active mode. In
contrast, at the active (normal) mode, the just-in-time activation will be employed to
pre-activate the next data cache line.

The idea behind the proposed strategy is illustrated in Fig. 5. D1, D2 and D3
represent the cache lines that are accessed by block B1, B2 and B3, respectively. B2
contains a loop, which may take much longer time to execute than both B1 and B3.

172 W. ZHANG

FIG. 5. A code fragment with three blocks, including a loop (i.e., B2), and the sets of data cache lines
accessed by these blocks.

Compiler inserts the instructions to set the deactive mode at the beginning of loop
blocks (i.e. B2 in this example) and to set the active mode at the end of the loop (see
Fig. 5). At runtime, D1 and D3 will be placed into the low leakage mode when the
deactivate instruction is executed (just before the execution of loop B2); and these
cache lines will stay in the low leakage mode until they are accessed again after B2
is finished. If B2 takes a large fraction of the total execution time, cache lines in D1
and D3 can be placed into the low leakage mode for long time, leading to substantial
leakage energy savings.

5. Evaluation Methodology

We use simulation to evaluate the proposed compiler-assisted leakage reduction
schemes. We target the instruction and data caches for a state-of-the-art VLIW

COMPILER-ASSISTED LEAKAGE ENERGY REDUCTION 173

TABLE III
DEFAULT PARAMETERS USED IN THE PERFORMANCE AND ENERGY SIMULATIONS

Parameter Value

Feature size 0.07 micron
Supply voltage 1.0 V
L1 instruction cache 16 KB direct-mapped, 8 sub-banks
L1 instruction cache latency 1 cycle
L1 data cache 32 KB 2-way cache
L1 data cache latency 1 cycle
Unified L2 cache 512 KB 4-way cache
L2 cache latency 10 cycles
L1 cache line size 32 B
L2 cache line size 64 B
L1 cache line leakage energy 0.33 pJ/cycle
L1 drowsy cache line leakage energy 0.01 pJ/cycle
L1 state-transition (dynamic) energy 2.4 pJ/transition
L1 state-transition latency 1 cycle
L1 dynamic energy per access 0.11 nJ
L2 dynamic energy per access 0.58 nJ

processor, since VLIW architectures1 are not only used in high-performance mi-
croprocessors (e.g., Intel IA-64), but also increasingly used in DSP and embedded
systems [24]. The Trimaran v3.7 [13] was used for the compiler implementation and
architecture simulation. Trimaran is comprised of a front-end compiler IMPACT, a
back-end compiler Elcor, an extensible intermediate representation (IR) Rebel, and
a cycle-level VLIW/EPIC simulator that is configurable by modifying the machine
description file [13]. The virtual/real register allocation algorithm was implemented
as the last optimization phase in Elcor. The machine description file of Trimaran
was configured to simulate VLIW processors with various number of real and virtual
registers. By default, the simulated VLIW processor consists of two IALUs (inte-
ger ALUs), two FPALUs (floating-point ALUs), one LD/ST (load/store) unit and
one branch unit. The compiler-assisted sub-bank prediction and the loop-based data
cache leakage reduction are implemented in Elcor after the instruction scheduling.
The cycle-level simulator was augmented to recognize the ISA extensions. Other
system parameters used for our default setting are provided in Table III. The energy
values reported are based on circuit simulation [19]. We select a diverse set of bench-
marks from the SPEC 2000, SPEC 95 [14], and Mediabench [15] for the energy and
performance evaluation.

1 The EPIC architecture is regarded as an extension of VLIW architectures, which also employ archi-
tectural features of dynamic-issued processors, such as superscalars.

174 W. ZHANG

5.1 Experimental Results for Static Next Sub-Bank Prediction

5.1.1 Performance Overhead Reduction

Accessing an instruction in the drowsy mode has performance penalty, since it
takes time to reinstate the power supply lines of the drowsy cache lines to the normal
voltage level [7]. We assume that it takes one cycle to activate the drowsy cache sub-
bank as in [7]. Figure 6 compares the performance penalty reduction of the hardware-
based approach [7] and the compiler-based approach. We find that on average, the
compiler-based approach reduces 6% more performance penalty than the prediction
buffer approach, illustrating that the compiler-assisted sub-bank prediction is very
effective at detecting the transitional instructions and to instruct the processor for
pre-activating the next sub-banks accurately.

Since the compiler-assisted approach can find and distinguish three types of transi-
tional instructions: the frontier instructions, unconditional branches and conditional
branches without indirect addressing, Table IV lists the number of each type of transi-
tional instructions captured by the compiler. The compiler can identify more than 300
transitional instructions statically for 2/3 applications, and for 164.gzip, mpeg2enc,
djpeg, des and cjpeg, more than 2000 instructions are labeled as transitional instruc-
tions. Such a large number of static transitional instructions make it hard to save
and predict the sub-bank transition behavior by using a prediction buffer, unless the
buffer contains many entries or is fully associative for reducing the number of con-
flict misses. The hint bits are used by the processor to trigger the pre-activations
of the corresponding sub-banks at runtime, which can effectively reduce the perfor-

FIG. 6. Comparison of performance penalty reduction of the next sub-bank prediction buffer and the
compiler-assisted sub-bank prediction approach.

COMPILER-ASSISTED LEAKAGE ENERGY REDUCTION 175

TABLE IV
THE NUMBER OF THREE TYPES OF TRANSITIONAL INSTRUCTIONS IDENTIFIED BY THE COMPILER

Benchmark Frontier instructions Unconditional branches Conditional branches Total instructions

164.GZIP 524 818 858 2200
181.MCF 246 193 275 714
256.BZIP2 192 794 678 1664
MPEG2ENC 800 1371 1173 3344
RAWDAUDIO 23 37 40 100
RAWCAUDIO 22 40 43 105
POLYPHASE 100 141 60 301
PARAFFINS 53 52 77 182
DJPEG 1997 2591 2618 7206
DES 1053 627 414 2094
CORDIC 56 69 48 173
CJPEG 2015 2665 2688 7368

FIG. 7. The breakdown of frontier instructions, unconditional branches and conditional branches with
static target addresses that are pre-activated at runtime to minimize the performance overhead.

mance penalty. Figure 7 provides the breakdown of the three types of transitional
instructions that are pre-activated at runtime. As can be seen, different types of tran-
sitional instructions make various contributions to the overall performance overhead
reduction. An interesting result is that the frontier instructions cause a fairly large
percentage of transitions to other sub-banks, which is quite stable for all the bench-
marks. On average, 39.6% wake-up latencies are reduced by the pre-activation of
frontier instructions. Thus, besides the sub-bank transitions caused by the disrup-
tions of control flows due to branches, the sequential instruction flow can also induce

176 W. ZHANG

a fairly large number of sub-bank transitions, which are appropriate for the compiler
to discover and exploit in a low-cost manner.

5.1.2 Leakage Energy Savings

Both the hardware-centric approach and the compiler-assisted approach can place
the non-active sub-banks into the drowsy mode for saving leakage energy. Figure 8
compares the percentage of time that the cache lines are placed into the drowsy
mode for both approaches, which determines the leakage energy savings that can be
achieved. There is no notable difference between these two approaches since they
only differ in the way to pre-activate the next sub-banks, which implies that the in-
struction cache leakage savings (without considering the dynamic energy overhead)
achieved by both approaches are comparable. However, since the compiler-based ap-
proach eliminates the extra dynamic energy for consulting the prediction buffer, the
overall savings by the compiler-based approach can be larger if we take both the
dynamic and leakage energy overhead into consideration (note that for the compiler-
assisted approach, the dynamic and leakage energy overheads come from the extra
hint bits). Figure 9 compares the overall energy savings for the hardware-based ap-
proach and the compiler-based approach by considering the energy overheads, with
respect to the total L1 I-cache leakage energy consumption as listed in Table II. We
can observe that the compiler-based approach can achieve much more energy sav-
ings than the hardware-based approach, except for mpeg2enc and des, in which
the number of dynamic accesses to the I-cache is significantly low, resulting in small

FIG. 8. Comparison of the percentage of time that the cache lines are placed into the drowsy mode for
the hardware approach and the compiler-assisted approach.

COMPILER-ASSISTED LEAKAGE ENERGY REDUCTION 177

FIG. 9. Comparison of the leakage energy savings for the hardware-based approach and the compiler-
assisted approach. The results are normalized with respect to the total L1 I-cache leakage energy con-
sumption as listed in Table II.

dynamic energy overhead (see Table II). On average, we find that the compiler-based
approach can save 38.2% more overall energy than the hardware-based approach for
the instruction cache.

5.1.3 Sensitivity Analysis
In this section, we examine how the effectiveness of the compiler-assisted ap-

proach is affected by the configuration of the L1 instruction cache. We mainly study
two factors—the size of the cache and the number of sub-banks. For simplicity, we
select one benchmark (i.e., 164.gzip) from SPEC 2000 and another benchmark (i.e.
des) from Mediabench. We run experiments on these two benchmarks by varying
the L1 instruction cache configuration parameters.

Figure 10 illustrates how the performance overhead reduction of the compiler-
based approach is impacted by the size of the instruction cache and the number of
sub-banks respectively. The number of sub-banks is fixed to be 8 in (a) and the size
of the instruction cache is 16 KB in (b). As can be seen, the performance penalty
reduction decreases as the instruction cache size increases. The reason is that each
cache sub-bank can contain more instructions with the increase of the instruction
cache size, so there are less number of transitional instructions to access other sub-
banks. As a result, fewer number of transitional instructions can be identified by the
compiler. In contrast, when the number of sub-banks is increased, the performance
penalty reduction tends to be increased (except for des) when the number of sub-
banks is increased from 4 to 8, as illustrated in Fig. 10(b). With the increase of

178 W. ZHANG

(a) Size of the L1 instruction cache

(b) Number of sub-banks of the L1 instruction cache

FIG. 10. The impact of the L1-Icache size (a) and the number of sub-banks on the performance penalty
reduction for the compiler-assisted approach.The number of sub-banks is fixed to be 8 in (a) and the size
of the instruction cache is 16 KB in (b).

the number of sub-banks, each sub-bank contains less number of instructions, given
a fixed instruction cache size. Therefore more instructions can become transitional
instructions and the performance penalty tends to increase without pre-activating
(however, it should be noted that the performance penalty is also determined by
the program behavior, i.e., the runtime branch behavior and the address mappings).
In general, there is a clear trade-off between performance and leakage reduction
in choosing the size of sub-banks (or the number of the sub-banks given a fixed
instruction cache). The performance penalty is less severe with a larger sub-bank. For
instance, in the extreme case, there will be no performance penalty if the instruction

COMPILER-ASSISTED LEAKAGE ENERGY REDUCTION 179

cache only has one bank. However, the smaller the sub-bank is, the more leakage
energy reduction can be achieved (without considering the energy cost due to sub-
bank transitions). Since the performance penalty can be reduced by employing the
proposed compiler-assisted approach without significant dynamic energy overhead,
an attractive strategy is to select a small sub-bank size to reduce the instruction cache
leakage energy substantially at a finer granularity.

5.1.4 Hybrid Strategy
Although the compiler-assisted sub-bank prediction has the advantage of reduc-

ing the performance degradation of drowsy instruction caches without significant
dynamic energy overhead, it can only annotate those transitional instructions whose
target addresses can be determined statically. In contrast, the hardware-based ap-
proach can exploit the runtime information to capture the behavior of the transitional
instructions, some of which cannot be discovered by the compiler. For instance, the
target addresses of branch instructions with indirect addressing mode or return in-
structions typically cannot be determined statically by the compiler. On the other
hand, the hardware-based approach needs to compare the current instruction address
with the transitional instructions stored in the prediction buffer for every instruction
cache access, which can result in tremendous dynamic energy overhead (compared
to the leakage savings) as aforementioned. To combine the advantages of both ap-
proaches, we propose a hybrid strategy to pre-activate the next sub-bank of drowsy
instruction caches.

The hybrid strategy makes intelligent use of the static information as the compiler-
assisted approach. In addition, the compiler annotates those branch instructions
whose target addresses cannot be calculated at the link time, which will be han-
dled by the hardware-based approach. The proposed hybrid strategy also employs a
next sub-bank prediction buffer similar to the hardware-centric approach, however,
this buffer is not consulted for each cache access, but only for those instructions that
cannot be identified statically by the compiler. Therefore, the transitions caused by
these types of instructions can still be captured by the hybrid approach, while the
dynamic energy overhead associated with the hardware prediction buffer is reduced
significantly by accessing the prediction buffer selectively.

Figure 11 compares the percentage of performance overhead reduction for all three
approaches, i.e., the hardware-based approach, the compiler-based approach and the
hybrid approach. As can be seen, the hybrid approach out-performances both the
hardware and compiler-based approaches in terms of performance. On average, the
hybrid approach reduces the performance overhead by 14.2% and 8.2% more than
the hardware-based approach and the compiler-based approach, respectively.

Besides the performance improvement, the hybrid approach is also capable of
reducing the total number of accesses to the prediction buffer, compared to the

180 W. ZHANG

FIG. 11. The comparison of the performance penalty reduction of the drowsy instruction cache for
the hardware-based approach, the compiler-based approach and the hybrid approach.

TABLE V
COMPARISON OF THE TOTAL NUMBER OF ACCESSES TO THE PREDICTION BUFFER FOR THE

HARDWARE-CENTRIC APPROACH AND THE HYBRID APPROACH THAT ALSO EXPLOITS COMPILER

INFORMATION

BENCHMARK HARDWARE HYBRID Ratio

164.GZIP 408374714 48362123 0.118425851
181.MCF 12124968426 1591420167 0.13125149
256.BZIP2 8449023200 910433789 0.1077561
MPEG2ENC 49160 7989 0.162510171
RAWDAUDIO 8420938 1475648 0.175235585
RAWCAUDIO 10261086 1770081 0.172504255
POLYPHASE 532981 49484 0.092843835
PARAFFINS 177828 13133 0.073852262
DJPEG 5700216 186057 0.032640342
DES 2769360 8894 0.003211572
CORDIC 39060 1703 0.04359959
CJPEG 17505754 2027866 0.115839969

hardware-based approach only. Table V lists the total number of accesses to the pre-
diction buffer for the hardware-based approach and the hybrid approach. The last
column gives the ratio of the number of accesses to the prediction buffer of the hy-
brid approach to that of the hardware-based approach. Due to the selective accesses
to the prediction buffer, the hybrid approach reduces the number of accesses to the
prediction buffer by 89.2%, in comparison to the hardware-based approach. As a re-

COMPILER-ASSISTED LEAKAGE ENERGY REDUCTION 181

FIG. 12. The comparison of the overall energy savings for the hardware-based approach, the compiler-
assisted approach and the hybrid approach.

sult, the dynamic energy overhead of the prediction buffer for the hybrid approach is
much smaller.

Figure 12 presents the overall energy savings for the hardware-based approach, the
compiler-based approach and the hybrid approach. The hybrid approach saves more
energy than the hardware-based approach across all applications, because it reduces
the number of accesses to the prediction buffer without compromising the perfor-
mance. The hybrid approach is very comparable to the compiler-based approach in
the overall energy savings. For 8 out of the 12 benchmarks, the hybrid approach
actually saves more overall energy than the compiler-based approach. On average,
the hybrid approach reduces 1.4% more overall energy than the compiler-based ap-
proach, because it improves the performance by predicting the behavior of those
transitional instructions that are not identifiable by the compiler. In general, the hy-
brid approach shows superior results in both the performance and energy. Therefore,
it is the best strategy for the drowsy instruction cache to balance leakage reduction
and performance.

5.1.5 Energy-Delay Product (EDP) Results

Since both the performance and energy consumption are important design goals,
we use energy-delay product to compare the schemes proposed in this chapter.
Figure 13 gives the energy-delay product for the hardware-based approach, the
compiler-based approach and the hybrid approach, which are normalized with re-
spect to the original scheme without applying any energy control techniques. As

182 W. ZHANG

FIG. 13. Normalized energy-delay product (EDP) for different approaches, which is normalized with
the original scheme without applying any energy reduction techniques.

can be seen, both the compiler-based approach and the hybrid approach can reduce
the EDP significantly, compared with the hardware-based approach. The hybrid ap-
proach is the best among all three schemes, which is better than the hardware-based
approach across all the benchmarks. On average, the hybrid approach can reduce the
EDP by 42.1% more than the hardware-based approach, mainly because it can has
much less dynamic energy overheads than the hardware-based approach by control-
ling the accesses to the prediction buffer.

5.2 Experimental Results for Loop-based Data Cache
Leakage Reduction

We implement the proposed loop-based strategy to reduce the data cache leakage
energy, and compare the results with the pure hardware based approach. We fix the
window size to be 2000 clock cycles for the hardware counter based approach, since
such a window size is shown to be able to maximize the leakage energy savings
effectively [7]. Figure 14 gives the percentage of time that the cache lines can be
placed into the low leakage mode for both the pure hardware based approach and
the loop-based approach. For all the benchmarks except 129.compress, we find that
the proposed loop-based strategy can place cache lines into the low leakage mode
longer than the pure hardware based approach. The reason is that for the loop-based
approach, all the cache lines except those storing the hot data (i.e., the data accessed
by the loops) are placed into the low leakage mode immediately when encounting
loops; while for the pure hardware based approach, it has to wait for a fixed time

COMPILER-ASSISTED LEAKAGE ENERGY REDUCTION 183

FIG. 14. Percentage of times that cache lines are in low leakage mode.

FIG. 15. Percentage of leakage energy savings.

interval (i.e., 2000 cycles in our experiments) before it can put those non-active cache
lines into the leakage-saving mode.

Figure 15 presents the percentage of leakage energy savings for the loop-based
approach and the pure hardware based approach. Except 129.compress, we find the
proposed strategy leads to more leakage energy reduction. For cordic, although the
loop-based approach has a less percentage of time for placing cache lines into the
low leakage mode than the pure hardware based approach; the just-in-time activa-

184 W. ZHANG

FIG. 16. Normalized energy delay product for the loop-based approach. The results are normalized
with the energy delay product of the pure hardware-based approach.

tion can reduce the performance penalties by pre-activating the drowsy cache lines,
which also results in leakage energy savings. In average, the loop-based approach
can save 9.7% more leakage energy for L1 data cache than the pure hardware based
approach.

While energy efficiency is important, in most systems, performance is also an
important goal that can not be compromised. The energy-delay product provides
a metric to evaluate both the energy consumption and the performance behavior.
We present the energy delay product results of the proposed loop-based approach in
Fig. 16. To compare our approach with the pure hardware based approach, the results
are normalized with the energy delay product of pure hardware based approach. We
find that except 129.compress, the loop-based approach has a lower energy delay
product than the pure hardware based approach (the less the better). These results
indicate that the loop-based approach is an effective and comparable approach to
reducing the leakage energy for data caches, by considering both the energy con-
sumption and performance.

We have also studied the effectiveness of the loop-based approach by varying the
size of the L1 data cache, since the set of data cache lines that can be placed into
the low leakage mode is sensitive to the size of the cache. Figure 17 presents the
percentage of time spent in the low leakage mode by varying the size of the L1 data
cache from 16 KB to 32 KB and 64 KB, while fixing other system parameters. In
all these three difference configurations, cache lines can be put into the low leakage
mode for more than 80% of the total execution time. For 130.li, we notice that this
percentage increases slightly by increasing the size of the cache. The reason is that

COMPILER-ASSISTED LEAKAGE ENERGY REDUCTION 185

FIG. 17. Percentage of time spent in the low leakage mode by varying the data cache size.

the hot cache lines accessed by the loop are fixed. Therefore, the larger the data cache
is, the more cache lines can be placed into the low leakage mode.

5.2.1 Impact of Compiler Optimizations

As aforementioned, the leakage energy savings of the loop-based approach is pro-
portional to the product of (D − S) ∗ T , where D is the number of cache lines of
the L1 data cache, S is the active cache lines accessed by the loop and T is the total
execution time of the given code region (it is loop for our approach). If S is a very
large number, for instance, assuming S is close to or even larger than D, there will be
very few or no energy savings. In other words, if the number of cache lines accessed
by the loop is close to the size of the cache, our approach will result in negligible en-
ergy savings. For some array intensive applications, however, we find that the size of
the data accessed by the innermost loop can be very large, sometimes larger than the
size of a typical L1 data cache. Therefore, to apply the loop-based approach to such
programs (we focus on the loop intensive benchmarks in this section), we propose to
utilize loop transformations [25] to create opportunities for leakage energy reduction
of data cache lines.

There are various loop transformation techniques in the literature [25] to enhance
the data locality or extract higher instruction level parallelism (ILP). In this chapter,
we concentrate on applying loop tiling and loop distribution to reduce the data mem-
ory footprints accessed by the innermost loops. The less the number of cache lines
that are accessed by the loop, the more the cache lines that can be placed into the low
leakage mode during the loop execution.

186 W. ZHANG

FIG. 18. Average data footprint accessed by innermost loops in terms of the percentage of data cache
lines. In this experiment, we fix the size of the data cache to be 32 KB. We focus on applying loop tiling
and loop distribution. The loop tile size is varied from 400 to 200, 100 and 50.

Figure 18 shows the impact of the combination of loop tiling and loop distribution
on the average data footprint of innermost loops in terms of the percentage of data
cache lines. The loop tile size is varied from 400 to 200, 100 and 50. We select
one loop intensive benchmark btrix from SPEC FPT 92 [14] for this evaluation.
From Fig. 18 we can see that loop tiling and loop distribution are very successful in
reducing the data footprint of innermost loops. For loop tile size 200 and below, the
average data footprint of innermost loops is less than 24.3% of the data cache lines,
implying a large fraction of cache lines can be placed into low the leakage mode
during the execution of innermost loops. As a result, leakage energy consumption
can be potentially reduced significantly. Thereby applying loop transformations to
array-intensive applications containing innermost loops that access lots of data can
enhance the proposed loop-based approach for mitigating the data cache leakage
dissipation.

6. Conclusion

This chapter presents two novel and cost-effective compiler-assisted approaches to
reducing the leakage energy of the instruction cache and data cache without signifi-
cant performance or dynamic energy overheads. The static next sub-bank prediction
for drowsy instruction caches exploits static and profiling information to identify as
many transitional instructions as possible at the compilation time, and provides use-

COMPILER-ASSISTED LEAKAGE ENERGY REDUCTION 187

ful hints for the processor to pre-activate the next sub-bank at runtime for avoiding
performance degradation and dynamic energy overhead. The loop-based data cache
leakage optimization approach exploits the fact that the program hotspots often only
access a limited number of data during the program phases (i.e., innermost loops in
this work), thus the rest of the “cold” data cache lines can be placed into the low
leakage mode during the loop execution by using compiler-directed loop informa-
tion. Compared to the hardware-based leakage reduction approaches, such as [7,5,
8], the compiler-assisted approaches can exploit application behavior intelligently
with low hardware cost, thereby leading to comparable or even more leakage energy
reduction with less performance and dynamic energy overhead.

It should be noted that the hardware-centric leakage energy reduction techniques
have the advantage of being transparent to the software, and thus re-compilation
is not needed. By comparison, in the compiler-based approaches (for both the in-
struction cache and the data cache), the programs need to be re-compiled in order
to extract and annotate the useful application-specific hints for the leakage energy
management at runtime. While this disadvantage may limit the use of the proposed
approaches for legacy code where recompilation is difficult or impossible, we be-
lieve the compiler-assisted approaches can be effective for embedded systems where
the entire systems (including the code) typically need to be rebuilt for new products.
Moreover, since embedded processors are often constrained by cost and energy, the
lightweighted compiler-based approaches studied in this chapter can be particularly
suitable for these systems to minimize the cache leakage energy dissipation.

REFERENCES

[1] Ronen R., Mendelson A., Lai K., Lu S.-L., Pollack F., Shen J., “Coming challenges in
microarchitecture and architecture”, Proc. IEEE 89 (3) (March 2001).

[2] Semiconductor Industry Association, “The International Technology Roadmap for Semi-
conductors”, http://www.semichips.org, 2005.

[3] Ye Y., Borkar S., De V., “A new technique for standby leakage reduction in high-
performance circuits”, in: Proc. of the Symposium on VLSI Circuits, 1998, pp. 40–41.

[4] Powell M.D., Yang S., Falsafi B., Roy K., Vijaykumar T.N., “Reducing leakage in a
high-performance deep-submicron instruction cache”, IEEE Trans. VLSI 9 (1) (February
2001).

[5] Kaxiras S., Hu Z., Martonosi M., “Cache decay: Exploiting generational behavior to
reduce cache leakage power”, in: Proc. of ISCA, 2001.

[6] Zhou H., Toburen M.C., Rotenberg E., Conte T.M., “Adaptive mode control: A static
power-efficient cache design”, in: Proc. of PACT, 2001.

[7] Kim N.S., Flautner K., Blaauw D., Mudge T., “Drowsy instruction caches”, in: Proc. of
the 35th Annual ACM/IEEE International Symposium on Microarchitecture, 2002.

188 W. ZHANG

[8] Flautner K., Kim N.S., Martin S., Blaauw D., Mudge T., “Drowsy caches: Simple tech-
niques for reducing leakage power”, in: Proc. of ISCA, 2002.

[9] Zhang W., “Compiler-directed data cache leakage reduction”, in: Proc. of the IEEE Com-
puter Society Symposium on VLSI (ISVLSI04), February 2004.

[10] Allu B., Zhang W., “Static next sub-bank prediction for Drowsy instruction cache”, in:
Proc. of the International Conference on Compilers, Architecture, and Synthesis for Em-
bedded Systems (CASES’04), Washington DC, September 2004.

[11] Heo S., Barr K., Hampton M., Asanovic K., “Dynamic fine-grain leakage reduction using
leakage-biased bitlines”, in: Proc. of ISCA, 2002.

[12] Butts J.A., Sohi G., “A static power model for architects”, in: Proc. of the International
Symposium on Microarchitecture, December 2000.

[13] http://www.trimaran.org.
[14] http://www.spec.org.
[15] Lee C., Potkonjak M., Mangione-Smith W.H., “MediaBench: A tool for evaluating and

synthesizing multimedia and communications systems”, in: Proc. of the International
Symposium on Microarchitecture, 1997, pp. 330–335.

[16] Motorola, Motorola MC68030 Enhanced 32-bit Microprocessor User’s Manual, third
ed., Motorola, 1992.

[17] Intel, Intel StrongARM SA-1100 Microprocessor Developer’s Manual, Intel, August
1999.

[18] Shivakumar P., Jouppi N., “CACTI 3.0: An integrated cache timing, power and area
model”, WRL Research Report 2001.

[19] Zhang W., Hu J.S., Degalahal V., Kandemir M., Vijaykrishnan N., Irwin M.J., “Compiler-
directed instruction cache leakage optimization”, in: Proc. of the 35th Annual ACM/IEEE
International Symposium on Microarchitecture, 2002.

[20] M. Cekleov, M. Dubois, “Virtually-address caches. Part 1: problems and solutions in
uniprocessors”, IEEE Micro 17 (5) (1997) 64–71.

[21] Ball T., Larus J.R., “Branch prediction for free”, in: Proc. of SIGPLAN Conference on
Programming Language Design and Implementation, 1993.

[22] Hwu W.W., Conte T.M., Chang P.P., “Comparing software and hardware schemes for
reducing the cost of branches”, in: Proc. of ISCA, 1999.

[23] M. Kandemir, N. Vijaykrishnan, M.J. Irwin, “Compiler optimizations for low power sys-
tems”, in: Power Aware Computing, Kluwer Academic, 2002 (Chapter 10).

[24] J.A. Fisher, P. Faraboschi, C. Young, Embedded Computing: A VLIW Approach to Archi-
tecture, Compilers, and Tools, Morgan Kaufmann Publishers, 2005.

[25] S. Muchnick, Advanced Compiler Design Implementation, Morgan Kaufmann Publish-
ers, San Francisco, CA, 1997.

[26] Hu J.S., Nadgir A., Vijaykrishnan N., Irwin M.J., Kandemir M., “Exploiting program
hotspots and code sequentiality for instruction cache leakage management”, in: Proc.
of the International Symposium on Low Power Electronics and Design, Seoul, Korea,
August 25–27, 2003.

[27] Zhang W., Karakoy M., Kandemir M., Chen G., “A compiler approach for reducing data
cache energy”, in: Proc. of ICS, 2003.

COMPILER-ASSISTED LEAKAGE ENERGY REDUCTION 189

[28] Meng Y., Sherwood T., Kastner R., “Exploring the limits of leakage power reduction
in caches”, ACM Transaction on Architecture and Code Optimization 2 (3) (September
2005) 221–246.

[29] Liu D., Svensson C., “Trading speed for low power by choice of supply and threshold
voltages”, IEEE Journal of Solid State Circuits 18 (1) (January 1993).

[30] Lee D., Blaauw D., Sylvester D., “Gate oxide leakage current analysis and reduction for
VLSI circuits”, in: IEEE Transaction on Very Large Scale Integration.

[31] Velusamy S., Sankaranarayanan K., Parikh D., Abdelzaher T., Skadron K., “Adaptive
cache decay using formal feedback control”, in: Proc. of 2002 Workshop on Memory
Performance Issues in Conjunction with ISCA-29, 2002.

[32] Li L., Kadayif I., Tsai Y., Vijaykrishnan N., Irwin M.J., Sivasubramaniam A., “Managing
leakage energy in cache hierarchies”, J. Instruction-Level Parallelism (2003).

[33] Zhang W., Kandemir M., Vijaykrishnan N., Irwin M.J., De V., “Compiler support for
reducing leakage energy consumption”, in: Proc. of the 6th Design Automation and Test
in Europe Conference (DATE-03), March 2003.

[34] Rele S., Pande S., Onder S., Gupta R., “Optimization of static power dissipation by
functional units in superscalar processors”, in: Proc. of the International Conference on
Compiler Construction, in: Lecture Notes in Comput. Sci., vol. 2304, Springer-Verlag,
April 2002, pp. 261–275.

[35] Tiwari V., Malik S., Wolfe A., “Compilation techniques for low energy: An overview”, in:
Proc. of the International Symposium on Low Power Electronics, October 1994, pp. 38–
39.

[36] Su C.L., Tsui C.-Y., Despain A.M., “Low power architecture design and compilation
techniques for high performance processor”, in: Proc. of IEEE Compcon., 1994, pp. 489–
498.

[37] Hsu C.H., Kremer U., “The design, implementation, and evaluation of a compiler al-
gorithm for CPU energy reduction”, in: Proc. of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’03), San Diego, CA, June
2003.

[38] U. Kremer, “Low power/energy compiler optimizations”, in: Piguet C. (Ed.), Low-Power
Electronics Design, CRC Press, 2005.

[39] Valluri M., John L., “Is compiling for performance = compiling for power?”, in: Lee G.,
Yew P.-C. (Eds.), Interaction Between Compilers and Computer Architectures, Kluwer
Academic Publishers, 2001 (Chapter 6).

This page intentionally left blank

Mobile Games: Challenges
and Opportunities

PAUL COULTON, WILL BAMFORD, FADI CHEHIMI,
REUBEN EDWARDS, PAUL GILBERTSON, AND
OMER RASHID

Lancaster University
Bailrigg, Lancaster,
UK LA1 4YW

Abstract
Mobile games are expected to play significant role in future mobile services by
evolving beyond the largely single player titles that currently dominate the mar-
ket to ones that take advantage expanding mobile phone functionality and the
wide demographic of the mobile phone user. However, because of the fragmented
nature of the mobile software development market, and the restrictions imposed
by the mobile phone hardware, the skills required for games development are
more akin to embedded software development and those used in the game devel-
opment of the early 1980s, rather than those currently practiced amongst console
and PC game developers. In the first half of this chapter we discuss the hardware
restrictions and the different software environments encountered together with
methodologies so that mobile game developers can produce effective designs.

Having discussed the challenges in developing mobile games in the second
half of the chapter we discuss the opportunities for innovation provided by the
mobile phones through both their anywhere connectivity and the ever enhancing
feature set. To this end we present examples using Cameras, RFID, Bluetooth,
and GPS that illustrate how through careful design mobile games do not simply
have to be cut down versions of console games but can provide uniquely mobile
gaming experiences.

1. Introduction . 192
2. Challenges . 193

2.1. Who Plays Mobile Games? . 193
2.2. Physical Constraints . 195
2.3. Software Development Environments . 201

ADVANCES IN COMPUTERS, VOL. 69 191 Copyright © 2007 Elsevier Inc.
ISSN: 0065-2458/DOI: 10.1016/S0065-2458(06)69004-9 All rights reserved.

192 P. COULTON ET AL.

2.4. 3-D Mobile Games . 214
3. Opportunities . 217

3.1. Text Games . 217
3.2. Camera Games . 224
3.3. Location Based Games . 225
3.4. Proximity Games . 231
3.5. IP Multimedia System (IMS) . 237

4. Conclusions . 239
Acknowledgements . 239
References . 240

1. Introduction

As the term mobile has a different meaning when used with respect to commu-
nications rather than computing it is worthwhile providing a clear definition at the
start of this chapter to place the discussions in the correct context. In this chapter
we base our discussions with respect to communications and thus conform to the
International Telecommunications Union (ITU) definition, which states that

“the term mobile can be distinguished as applying to those systems designed to
support terminals that are in motion when being used”.

In other words, unless a game on a cellular device uses a connection as part of the
game, there is a strong argument that it is essentially a hand-held, portable, or no-
madic game. This also means that although some innovative work on game play has
been achieved using Personal Digital Assistants (PDAs) with WiFi access they have
greater limitations in terms of truly mobile connectivity and lack the user penetra-
tion of mobile phones with global mobile subscriptions having reached two billion
users [1].

Mobile games are seen as an important service for many of these consumers by
both the network operators and the games industry. Operators are currently trying to
drive up the Average Revenue Per User (ARPU) by encouraging greater use of data
services and games are seen as a means to achieve this. The games industry also sees
this as an enormous opportunity for increasing sales and customer base, indeed, mo-
bile games already represent 14% of $43 billion total world gaming revenue [2] and
many current predictions would suggest that the mobile platform will become the
dominant force in games. However, the mobile games market is currently dominated
by single player or quasi Peer to Peer (P2P) games [3] (using short range commu-
nications such as Bluetooth) which do little to increase data traffic. Whilst there are
some successful massively multiplayer games which do generate data traffic on the
Internet, the nature of mobile users and their environment means that new design

MOBILE GAMES: CHALLENGES AND OPPORTUNITIES 193

approaches need to be considered. In this chapter we explore the challenges and op-
portunities faced by developers and researchers in this field. The challenges manifest
in a number of aspects from the nature of the mobile gamer to the various software
and hardware capabilities of the mobile phones themselves. In terms of opportuni-
ties the unique nature of the mobile environment and the many new features that
are continually appearing on the mobile phone such as cameras or Radio Frequency
Identification (RFID) readers.

2. Challenges

2.1 Who Plays Mobile Games?

In relation to the demographic of mobile users playing games, Glu Mobile’s 2005
UK survey showed that the classic image of the PC or console gamer as an 18–35
year old male is incorrect for mobile. The main demographic is much more varied
as 16% of all phone users regularly play games on their phone, although this rises to
29% in the 16–24 age group, and just as many women as men play games on their
mobile phones. In terms of ethnicity, where gamers have traditionally been predom-
inantly white, a report from 2005 by NPD group on US mobile gamers indicate that
they are twice as likely to be African-American, Hispanic or Asian. Although the
demographic of mobile gamers is different to that of console gamers, they are often
simply divided into the two traditional broad categories used by the games industry,
that of casual gamer and hardcore gamer [4]. Whilst many in the console games in-
dustry have fairly well established techniques for targeting the hardcore gamer, the
casual gamer has proved more elusive and success stories in this area, such as ‘The
Sims’ by EA Games, have often proved surprising. In fact there is growing criticism,
both inside and outside the games industry, that the very large budgets now required
to produce a game result in creativity being stifled with too few risks taken in rela-
tion to the game play design and that the dominant features are related to improved
graphics and sounds.

Before we consider mobile gamers specifically, it is worthwhile considering the
popular profiles of hardcore and casual gamers [5], as they are undoubtedly influenc-
ing industry expectations about the mobile gamer.

Hardcore Gamers:

• purchase and play many games;

• enjoy longer play sessions and regularly play games for long periods;

• are excited by the challenge presented in the game;

194 P. COULTON ET AL.

• will tolerate high levels of functionality in the user interface and often enjoy
mastering the complexity;

• often play games as a lifestyle preference or priority.

Casual Gamers:

• buy fewer games, buy popular games, or play games recommended to them;

• enjoy shorter play sessions—play in short bursts;

• prefer having fun, or immersing themselves in an atmospheric experience;

• generally require a simple user interface (e.g. puzzle games);

• consider game playing as another time-passing entertainment like TV or films.

It is often assumed within the games industry that casual gamers form the majority
of mobile gamers [6]. We believe this is an over simplification, as the nature of the
mobile environment is a major contributor to the formation of gaming habits. There is
a strong argument that the game industry must establish new definitions specifically
for mobile. In an interview for the Game Daily Biz in February 2006, Jason Ford,
General Manager for Sprint Entertainment, defined two specific types of hardcore
mobile gamer:

“First there are the ‘cardcore’ mobile gamers. These are people who play casual
games in a hardcore fashion. The type that might spend hours and hours trying
to get a Bejewelled high score but don’t own a gaming console.”

“Second is the ‘hard-offs’. These are your more typical hardcore gamers, who
are playing off their normal platform. They’re the type more likely to check out
the mobile version of a hit console title, because they know and like the brand.”

Additionally at the 2006 CES panel discussion ‘Future of Mobile Games’, IDG’s
CEO, Dan Orum, stated:

“We’re seeing an emergence of the ‘social gamer’, they’re like the typical ‘hard-
core gamer’, but with social lives.”

Whilst these definitions form part of the profile of mobile gamers, it further high-
lights that the industry perceives the player demographic for mobile from its experi-
ence of the PC and console market and it is still fixated with the hardcore gamer. We
would advocate the games developers and researchers should seek out newer ways
of both understanding and then attracting mobile gamers rather than trying to pigeon
hole them within the existing system and in the opportunities section of this chapter
we present games specifically aimed at mobile gamers who may not be attracted to
console gaming.

MOBILE GAMES: CHALLENGES AND OPPORTUNITIES 195

2.2 Physical Constraints

Programming mobile phones requires a considerably different approach for de-
veloping applications than those developed for the Personal Computer (PC) market.
These days even the most basic PC has large amounts of memory and huge disk space
relieving the PC developer from the need to minimise the usage of their particular
applications resources. Whereas, mobile phones have limited memory and currently
no disk drive storage meaning that whatever space your application requires is taken
away from your overall data space [7]. Even the most advanced mobile phone has a
significantly more limited screen size compared to that of a PC, which when coupled
with the different way users interact with handheld devices means that developers
must get their ideas across in a very small footprint [7]. In essence this is the skill
set of the real time embedded systems programmer and in the following sections we
will highlight some of the issues, that are independent of the software, that need to
be considered.

2.2.1 Memory

In terms of memory constraints of mobile phones there are two basic constraints:
the first covers the overall size of the application and the second relates to the appli-
cation memory space which is the memory required for the application to run.

2.2.1.1 Application Size. The memory available for a mobile game is of-
ten governed by the distribution mechanism that is to be used to deliver the game to
the end user. For, instance many of the Nokia N-Gage games come on a memory card
that is inserted into the phone once purchased. This means that the size of the appli-
cation can be in many megabytes although it limits the ability for wide scale sales as
the user has to either purchase the game from an outlet or purchase online and wait
for delivery. The most popular means of delivery is installation Over-The-Air (OTA),
where users simply select the application they want to purchase and download it to
their phone. Although most mobile phones, and in particular smart phone, will allow
games to be downloaded and run that are in the multiple of megabytes there are often
limits (64 K or 128 K are typical) defined by the operators. There is also generally an
associated data cost, in this type of delivery, in addition to the game purchase which
can be off putting to the user if the game size is excessive. Overall, there is still a
distinct advantage to utilising efficient programming techniques for games, such as
fixed point arithmetic and tiled graphics, and developers should bear in mind the
distribution mechanism from the outset [8].

2.2.1.2 Application Memory Space. When running an application
more memory is required than the actual application file which is often termed the

196 P. COULTON ET AL.

heap and is used, for example, to store graphics, objects created at run time, etc. [9].
This memory varies with device but normally comes with some limit that is available
to the developer, for example, with Nokia series 60 phones this is currently 2 Mb.
Although, for most environments this usually is not a too big problem for game de-
velopers, in general, developers should ensure that their application can run in the
available heap space for the devices and environments they wish to support.

2.2.2 Processors
Games have always been among the most processor-intensive applications and

typically the majority of processor cycles are spent performing the calculations nec-
essary to modify the game view and update the display. Mobile device manufacturers
rarely state the processing power of the chips their devices contain but they are al-
ways going to be much lower than those of a PC. For example many series 60 phones
typically use a 204 MHz ARM processor which is sufficient to support real-time ren-
dered 3-D graphics, though not with the number of polygons or special effects typical
of high-end console and PC games. However, it is here that the smaller screen size
works in the developers’ favour as fewer pixels on the screen mean fewer pixels to
process [9].

2.2.3 Networking
There are a number of issues relating to networking that are particularly relevant

to mobile game design:

• Mobile games usage tends to be spontaneous rather than planned and is often
used to fill spare moments resulting in short game sessions.

• Users dropping out of games due to either accidental loss of connectivity (such
as loss of signal while going through a tunnel) or deliberate disconnection to
perform another task (such as answering a call).

• The network latency can be as high as a few seconds in mobile, which is too
long for the majority of fast action multiplayer games.

Latency is the amount of time it takes a system to respond and is of particular im-
portance when trying to develop multiplayer games operating over a mobile network.
With a stand-alone PC, latency is normally measured in microseconds while latency
over the conventional Internet is usually in the order of 100 to 200 milliseconds
[10]. Although the advent of Quality of Service (QoS) in 3G systems will address
some aspects of latency it will be variable dependent on customer subscription and
unavailable in regions covered only by the General Packet Radio System (GPRS).

The other significant possibility for networking multiplayer games is to utilise
Bluetooth although that does require the players to be in close proximity and the

MOBILE GAMES: CHALLENGES AND OPPORTUNITIES 197

number of devices that can be supported is typically limited to around 4 or 5 [11].
Over a Bluetooth device the latency is typically on the order of 20 to 50 milliseconds
what is generally sufficient for fast action multiplayer games [11].

2.2.4 Screen Size and Aspect Ratio

Obviously, mobile phones have screens that are tiny compared to those on PCs and
games must therefore be carefully designed to fit in the device’s screen. Generally if
mobile games are to be commercially successful they must sell in very large numbers
which means that they should be capable of running on as many devices, with various
screen sizes and colour capabilities, as possible. For example, an application could
have to cope with a monochrome 128 × 128 pixel screen on an older Nokia series 40
phone and a 12 bit colour 176 × 208 pixel screen Nokia series 60 phone [9]. Further
while PC screens are usually wider than they are high, mobile phone screens are
often either square or higher than they are wide, which can impact on the applications
such as side scrolling games. For instance, a player may not be able to see an enemy
closing on his position until they are right on top of him. Other aspects to good design
are that any information that the users requires regularly, such as life force, should be
clearly visible; generally high contrast colours work best because of variable lighting
conditions.

2.2.5 Phone User Interface

Except for a couple of special examples (e.g. The N-Gage) mobile phone controls
are not optimised for playing games and they are first and foremost a device for voice
telephony. Although keypad layouts vary in general it consists of a standard ITU-T
keypad, two soft keys, and buttons for starting and ending phone calls (although the
latter two cannot be utilised by applications) and developers must limit the number
of ‘actions’ in a game to this limited range of keys [9]. Symbian UIQ mobile phones
have pointing devices although this is likely to be an advantage in only certain types
of games. Other games have utilised more novel approaches using the phone camera
or RFID but we shall save the discussion of these to the forthcoming section on op-
portunities. The main element to bear in mind is that the game interface should be
simple, consistent (i.e. left key positive and right key negative), and intuitive other-
wise players will quickly become frustrated and lose interest in the game.

2.2.6 Sound Support

Sounds in games can be a tricky area as they are a good way of providing feedback
especially when working with a small screen but can consume a lot of memory. There

198 P. COULTON ET AL.

is also the fact that mobile phones have variable capabilities and sound formats differ
from model to model which increases porting issues.

Other considerations relate to the fact that mobile games are often played in sur-
roundings that include non-players and disturbing these individuals can be a real
possibility. It is generally advised [12] that sounds default to ‘off’ at the start of the
game and that sound volume is adjustable within the settings for the game.

2.2.7 Coding Optimisation

Writing efficient code is an important technique for programmers of mobile phone
games and in this section we will present a number of optimizations which have been
split into three categories: (1) memory optimization, (2) object oriented optimization
and (3) coding style optimization. For each category we will describe practices that
can be used to improve execution performance of mobile games [13].

2.2.7.1 Memory. There are certain hidden memory overheads caused by in-
efficient variable usage and allocation. Such practices can often inflate code size
causing slower performance and sub-optimal execution. The following list highlights
some techniques that can be used to combat these effects [13]:

• Use array notation for arrays rather than pointer notation.

• Pass array function parameters as pointers not with array notation ([]).

• Rearrange structure or class members.

2.2.7.2 Object Orientated Optimisation. Object-orientation has in-
troduced to software engineering a collection of practices and methodologies that
make the software production more portable, the code more reusable, and the whole
process less time consuming. The majority of mobile operating systems utilise ob-
ject orientated methods and on mobile phones programmers are required to deal with
objects more cautiously than they would normally do in relation to PC programming.
There are certain hidden memory overheads that may inflate code caused by ineffi-
cient use of objects and in the following points are practices that can alleviate the
situation [13]:

• Initialize objects at declaration time.

• Use constructor initialization lists.

• Declare objects when needed.

• Pass function parameters by reference.

MOBILE GAMES: CHALLENGES AND OPPORTUNITIES 199

2.2.7.3 Coding Style Optimisation. C and C++ are very lean and effi-
cient programming languages as they allow the programmer to get too close to the
hardware as no other programming language can [14]. However, to make best use
of these languages on mobile phones, programmers have to write clean, safe and
well-designed programs. Here we list several coding techniques that can be used to
leverage performance with C/C++ code (although some could equally be applied to
other programming languages) [13]:

• Always decrement the counter in a loop.

• Unroll small fixed-count loops.

• Use registers for loop counters and frequently used variables.

• Use dependency chains rather than single data dependencies in loops.

• A “switch” is generally more efficient than an “if–else”.

• Arrange if-else statements or switch cases with the most common appearing on
top.

• Try to Inline small functions.

• Declare functions as static.

• Declare local variables as static.

2.2.8 Testing

In this respect developing a mobile phone game is the same as any other software
engineering exercise and we do not believe it is necessary to document these within
this chapter. However, there are certain elements in the design of your game that
you should pay attention to in order to ensure that the application is of a sufficient
standard to be released to the general public. The following list has been compiled
from various manufacturers of both phones and software environments and represent
generic recommendations that you should address in your game design, these are:

• The game speed does not compromise the use and purpose of the game.

• The game does not consume the device’s processor power and memory exces-
sively.

• The game does not affect the use of the system features or other applications.

• The game does not cause any harm to the user, other applications, or data.

• Only vital data is saved locally to the phone’s internal memory.

• Communication to and from the device/application is kept within reasonable
limits, i.e. your application does not unnecessarily cost the user extra through
excessive network usage.

200 P. COULTON ET AL.

• Occasional tasks, exceptional tasks (for example, for emergency conditions),
and tasks that cope with errors (for example, caused by the interruption of a
network connection during the application’s use) must be considered and treated
appropriately.

• The game must be able to handle exceptional, illegal, or erroneous actions.

• The game can be installed and uninstalled completely i.e. all files, icons, images,
etc.

• The game must be capable of being installed in either the phone memory or on
the memory card if one is available on the particular phone model.

2.2.9 Distribution

For any mobile games developer one challenge is how to sell any game that you
produce and the most common method is through portals on which there appear to
be three basic operational models.

In the first model, content site providers and content developers (we are con-
sidering games but the same applies to other content e.g. videos, ring tones, etc.)
make use of the operator’s subscriber base and billing capabilities to sell their con-
tent. In practice the content site providers promote and price their content/services
on their own portals and liaise with the operators for charging and collection of
payments. The operators can charge for the use of their billing infrastructure and
also receive traffic revenue from delivering the content. In the case of a content
site provider the onus is on them to source and maintain a large range of con-
tent. An example of this type of operation is used very successfully in the com-
panies such as Handango (www.handango.com), MonsterMob (www.mob.tv), Sym-
bianGear (www.symbiangear.com).

In the second model, the operators act as aggregators, effectively promoting the
content of third party developers/providers on their own portal site. In this model the
content revenue is split between the developers/providers and the operators. Obvi-
ously in this model it is the operators who must source and maintain a large range
of content if their site is to continue to be attractive to their customers. An exam-
ple of this type would be Vodafone live (vodafone-i.co.uk/live/) and Planet three
(www.three.co.uk/planetthree/).

In the final model, the operator brands all the content as their own and must then
pay the content developers either for the content itself or for licenses from them.
In this case there is no revenue sharing and the operator is solely responsible for
marketing, delivery, charging and billing. Although some operators are operating
this model for certain applications, none seem to be operating it exclusively and in
most case it is combined with the second model.

MOBILE GAMES: CHALLENGES AND OPPORTUNITIES 201

At present the downloading business seems to be based on a volume rather than on
a margin. Users are encouraged to try the content even if it is to only play the game
once. Thus the price at which your application is sold should not be seen to deter this
practice. In effect the portals aim for users to download content frequently and erase
it when they get bored so that they can personalise their phone with new content.

2.3 Software Development Environments
Mobile game development spans a wide range of both hardware and software op-

tions and is one of the major challenges for the mobile games developer. Unlike
consoles where there is a clear life cycle between versions of devices, in the mobile
world there are over 250 device platforms plus around 80 different mobile opera-
tors. Just collecting the information and guidelines on these devices and markets
can prove to be overwhelming and very costly task. For example, a game publisher
has 20 games in its portfolio and wants these available globally in 5 languages.
It would have to create close to 5000 different builds (20 games × 5 languages ×
50 top devices).

Whilst we are unable to offer a solution to the porting problem in this section
we discuss the software possibilities for game development and try to highlight the
various advantages and disadvantages of each so that a developer can way these
factors of against the requirements of a particular game.

2.3.1 Symbian
Symbian was founded originally by Psion, Nokia, and Ericsson in July 1998 with

Motorola joining later that year, Matsushita in 1999, and Siemens in 2002. Motorola
sold its stake in the company to Psion and Nokia in September 2003, although they
continue to produce some phones based on Symbian OS. Psion’s stake was then
bought by Nokia, Panasonic, Siemens AG and Sony Ericsson in July 2004 [15].

Symbian OS has its roots in the Psion ‘EPOC’ software and the early versions of
the operating system still carried that name. The first open Symbian OS phone was
based on Version 6.0 of the operating system. ‘Open’ meaning that users of Symbian
OS-based phones were able to install their own software which was an important step
forward for developers. This version appeared in 2001 and was shipped on the Nokia
9210 Communicator. Symbian OS continued to evolve with improved API function-
ality and market-leading features, with the next big change occurring in early 2005
when Symbian OS Version 9.0 was announced. This version is designed principally
to be more secure which has meant that it would not support software compiled for
earlier releases [15].

The major advantage of Symbian OS is that, unlike some of its competitors, it was
specifically designed for mobile phones that have relatively limited resources. There

202 P. COULTON ET AL.

is a strong emphasis on conserving memory through specific programming idioms
and other techniques such that memory usage is low, which reduce the likelihood of
memory leaks. There are similar techniques for conserving disk space. Furthermore,
all Symbian OS programming is event-based, and the CPU is powered down when
applications are not directly dealing with an event. This is achieved with the aid of
a programming idiom called active objects. Correct use of these techniques helps
ensure longer battery life [15].

The different user interfaces available for Symbian OS are designed to allow man-
ufacturers to produce a range of phones in different styles, addressing many different
market segments. They essentially fall into three categories: S60 (formerly known as
Series 60), Series 80, and UIQ. There was a fourth, Series 90, but this has now been
amalgamated into S60.

S60 consists of a suite of libraries and standard applications and is intended to
power fully-featured modern mobile phones with large colour screens, which are
most often referred to as smartphones. S60 is most often associated with Nokia,
which is by far the largest manufacturer of these mobile phones, although it is also
licensed to other major mobile phone manufacturers such as BenQ-Siemens, Sam-
sung and Panasonic. S60 is most often associated with the standard ITU keyboard
layout for one-handed entry, although recent versions also offer support for stylus
entry [15].

S60 supports applications developed in J2ME, native Symbian C++, Python and
Flash Lite. The most important feature of S60 phones from an application developer’s
perspective is that they allow new applications to be installed after purchase.

With the emergence of Symbian OS as the industry standard open operating sys-
tem, there is not only the opportunity to create applications that enhance the phone’s
functionality, but also a risk of poor-quality or malicious applications being devel-
oped that cause the phone to function incorrectly. Symbian Signed was created in
response to this potential for bad practice and effectively uses a verifiable signa-
ture to establish a formal link between an application and its origin. Many operators
and manufacturers (e.g. Nokia, Sony Ericsson, Orange, and T-Mobile) have already
decided that their portals will only feature Symbian Signed applications. There are
changes in the Symbian Signed process for pre and post version 9.0 so it is worth
checking the criteria at the Symbian Signed site (www.symbiansigned.com).

There are a number of major advantages to developing games in Symbian apart
from the fact that it has a 70% share of the smartphone market. As it is a native
OS developers are able to maximise performance particularly for graphically inten-
sive games. Symbian allows developers complete access to incorporate new features
appearing on phones immediately appear and enables greater innovation. The incor-
poration of OpenGL ES means that powerful 3-D games are now possible using a
known standard.

MOBILE GAMES: CHALLENGES AND OPPORTUNITIES 203

The only disadvantage we often here expressed is the alleged ‘steep learning
curve’ associated with Symbian. However, this should not prove significant to any
experienced C++ programmer as Symbian now has a large developer community and
support network. Overall there could be better support for the games developer, in
terms of better support for sprites and tile graphics for instance, Symbian always pro-
vides the earliest access to new phone features on the devices which it installed and
the most comprehensive access to existing phone features, which normally means
some of the most innovative games often appear first on Symbian.

2.3.2 Brew

The Binary Runtime Environment for Wireless (BREW) is an application de-
velopment and execution platform created by Qualcomm specifically for mobile
phones (brew.qualcomm.com). A wide range of content is available for BREW en-
abled handsets, ranging from games and multimedia content through to business
and enterprise applications. Currently, BREW is only implemented on CDMA-
based handsets, although it is technically feasible to port BREW to other chipsets
(Qualcomm have previously demonstrated a limited version running on GSM hand-
sets).

The largest market for BREW is in North America and Japan, although even in
these areas, J2ME represents a more popular platform. Availability in Europe is very
limited due to stronghold of GSM and limited support for CDMA. Qualcomm has
always maintained that J2ME is not a direct competitor to BREW, because it is possi-
ble to create a Java virtual machine (JVM) on top of BREW’s architecture. However,
some manufacturers are beginning to ship devices with a pre-loaded J2ME exten-
sion and it is also possible to integrate the J2ME extension after manufacture using
BREW’s over the air delivery mechanism (known as the BREW Delivery System—
BDS). Other languages such as Flash and XML can also now be supported through
additional BREW extensions.

Qualcomm markets BREW as a complete end-to-end solution. This means that,
unlike most other development platforms such as J2ME and Symbian, the BREW
Solution, as Qualcomm terms it, manages the testing, distribution and billing as well
as development of wireless applications.

In order to develop for BREW handsets, Qualcomm provide a free software de-
veloper kit (the BREW SDK), which includes sample applications, the simulator
(similar to the J2ME and Symbian emulators) and extensive online help. They also
supply a free tools package (BREW SDK Tools) which is a set of utilities which in-
cludes the MIF Editor for editing the MIF files which define a BREW application’s
capabilities, privileges, dependencies as well as the application’s icon, the Resource
Editor and Compiler for editing the resources used in the application (such as text,

204 P. COULTON ET AL.

images, GUI elements and other objects/binaries), and a Visual Studio add-in, for
compiling BREW applications from within Microsoft’s Visual Studio IDE. Other de-
velopment tools are only available to registered BREW developers and these include
the AppSigner Tool, for signing your BREW application with a digital certificate (to
verify your developer credentials) and tools for testing your application prior to it
getting sent away for independent tests (such as the Shaker and Grinder). Different
SDKs are provided for targeting each significant revision of the BREW application
execution environment (AEE), of which there are currently five versions (1.0, 1.1,
2.0, 2.1 and 3.0). If you have a compatible IDE, such as Microsoft Visual Studio,
Qualcomm provide all the necessary tools in order to test your application for free
through the BREW Simulator in Windows. However, unlike J2ME and Symbian,
the process for compiling your application for the simulator is different to compil-
ing your code for a real handset (the simulator cannot load BREW native binaries
and vice versa). The complete process involved in becoming a commercial BREW
developer is fairly convoluted and, unlike J2ME, where applications can essentially
be developed for free, the following cost incurring steps need to be taken in order to
develop a commercial BREW application:

• A developer must pay a yearly subscription for a digital signature from
VeriSign.

• A developer must purchase a C/C++ compiler which can compile to a binary
format compatible with the ARM chipsets used by BREW devices—the Re-
alView ARM compiler for BREW is currently one of the few options although
some developers have had limited success using the free GNU ARM com-
piler.

• In order to verify that your application is suitable for deployment, it must un-
dergo a rigorous independent third-party test procedure known as TRUE BREW
Testing. These tests will try to determine if there are any bugs in the applica-
tion and whether the application responds properly to suspend/resume methods
(which may be invoked if the handset receives an external event such as a
phone call or SMS). Additionally, they will also consider usability issues (look
and feel) and whether the application fulfils its functional requirements. If the
application fails the test, it must be modified and resubmitted for testing (at a
further cost).

• Further costs may be incurred if you chose to seek official help/services from
Qualcomm. For instance, BREW labs.

In order to help pay for the cost of creating and deploying commercial BREW
applications, some developers have sought publishers to help subsidize some of these
costs (who in turn will take a share of the revenue). It is also important to mention

MOBILE GAMES: CHALLENGES AND OPPORTUNITIES 205

that as Qualcomm manages the delivery of your application, and they, together with
the network operator, will also take a percentage of the revenue generated by the
application.

Most modern BREW phones have good support for game operations such as
buffered graphics, sprite handling and transformations, tile-mapping and extensive
sound playback capabilities. There is also good support for multiplayer game fea-
tures such as HTTP or low-level socket communications. Some of the newer high-
end BREW handsets also have 3-D accelerated graphics capabilities which can be
harnessed using a cut down version of OpenGL for limited devices (OpenGL ES).

2.3.3 Windows Mobile

Microsoft’s early forays into the mobile market were largely unsuccessful, but
with the release of Windows Mobile 5.0 they have a platform that developers are
much happier with. Windows Mobile 5 has gained most ground with arguably the
second tier of mobile phone manufacturers like E-ten, HPC and Gigabyte, although
it is beginning to capture some interest from major manufacturers like Samsung and
Motorola.

The major advantage of Windows Mobile 5 is its compatibility with PDAs. Most
applications developed for Windows Mobile 5 will run on previous version of the
OS (Windows Mobile 2003 Phone Edition) and with earlier Microsoft based PDAs
(Pocket PC 2003 and 2003 SE). Windows Mobile devices largely fit into the gap
between PDAs and traditional mobile phones and are typically aimed at business
users. Facilities such as push email which made the Blackberry devices such a
success worldwide are being integrated into Windows Mobile 5, and other third
party developers are providing integration between the mobile device and busi-
ness critical server applications. This makes the target market for games devel-
oped on this platform different from those developed for more mass market mobile
phones.

Compatibility between Windows Mobile 5 and Windows Mobile 2003 PDAs
is due to the fact that both are built upon the same underlying operating sys-
tem (www.microsoft.com/windowsmobile/developers/). Windows CE has been used
for a variety of devices including the failing Gizmondo handheld gaming plat-
form.

Based on a subset of the Win32 API core developed for Microsoft’s desktop op-
erating systems, these OSs share some limited compatibility with desktop operating
systems. Each subsequent version of the OS, however, offers improved functionality
and new APIs. Games written that use these features will not be backward compat-
ible. Games written for Windows Mobile 2003 will however run under Windows
Mobile 5.0.

206 P. COULTON ET AL.

Windows Mobile 5 devices support a minimum level of hardware functionality.
These devices have a limited number of supported form factors. Each form factor
has a specific screen resolution and colour depth which can be easily determined
programmatically. Telephony, Bluetooth, storage and camera support and API ac-
cessibility are all standardized.

Input methods are less standardized across the range of devices. PDA and PDA-
like smartphones rely on stylus input with a virtual keyboard or writing recognition
system. Some will have mini-keyboards and more traditional phones layouts will
only support standard mobile phone keypad. By supporting only stylus input to sim-
ulate mouse clicks will limit titles to the majority of devices that support this input
method. Stylus input is most intuitive for tactical and strategy titles.

One important feature of Windows Mobile 5 is the inclusion of DirectX Mobile
Edition. DirectX is the de facto standard for 3D games development for the Desktop
PC and XBox. Its introduction into the mobile arena enables developers to leverage
their desktop experience onto a new platform.

Programming for Windows Mobile 5 comes in two forms. Native coding uses the
same methods as writing for Win32 systems. Typically done in C++, WM5 presents
a cut down version of the standard Windows APIs. This environment is called eM-
bedded C++ by Microsoft.

A .NET virtual environment is available for Windows Mobile 5 called .NET Com-
pact Framework. This framework provides a rapid development environment using
either C# or VB.Net, and is an excellent method for people approaching mobile de-
vices for the first time. Java Virtual Machines are also available for Windows Mobile
5, but library compatibility is reported to be low.

2.3.4 Linux

There is a growing operator and manufacturer interest in Linux as a mobile phone
operating system and in some quarters it is being viewed as a serious alternative to
market dominant Symbian, Windows Mobile and other proprietary operating sys-
tems. With mobile phones increasing in complexity there is a clear trend towards
off the shelf third party operating systems based upon industry standards and Linux
seems to be a natural choice due to its royalty free nature. The only drawback is the
fact that these attempts so far have not been standardized and each vendor has its
own implementation. Linux is already a popular operating system for mobile phones
in China and is rapidly gaining momentum in Europe. Several device manufacturers
are marketing smart phones running Linux including Motorola, Samsung, Philips,
NEC, Panasonic and Siemens etc. [16]. Motorola is leading this market and the ini-
tiative for a standardized Linux based mobile operating system. Recently a group
of top mobile manufacturers and operators are launching a foundation to create an

MOBILE GAMES: CHALLENGES AND OPPORTUNITIES 207

open Linux-based software platform for mobile devices. The group includes industry
giants such as Motorola, Vodafone, NTT DoCoMo, Samsung, NEC and Panasonic.
Their objective is to create and market an application programming interface (API)
specification, architecture and source reference to fulfil the lack of an open and com-
mon approach that has so far denied Linux handsets their deserved share of the
market. This will be the third group to launch such an initiative following Linux
Phone Standards Forum (LiPS) (www.lipsforum.org) and the Mobile Linux Initia-
tive (MLI) [17].

Further comprehensive attempts to consolidate Linux as a mobile platform
have been from A La Mobile Inc. (www.a-la-mobile.com) and Trolltech (www.
trolltech.com). A La Mobile has announced an open Linux mobile smart phone plat-
form. Their convergent Linux Platform is not just a kernel, middleware or applica-
tions, it is a complete software stack for wireless handsets integrated, tested, certified
and supported. The architecture is open, configurable and scalable. It is designed to
give handset manufacturers the autonomous selection of software components and
functionality. On the other hand it enables network providers to customize the user
interface and experience to suit different requirements.

Trolltech’s Qtopia [18] is a comprehensive application platform and user interface
for Linux-based mobile phones. Qtopia Phone Edition not only allows manufactur-
ers and designers to build feature packed phones but also provides developers with
necessary tools and API’s to create innovative applications. Trolltech have already
got some big names of the industry as their customers. Trolltech provide full access
to a modifiable source code and complete degree of freedom to customize the user
experience and functionality behind it. Qtopia Phone edition offers a fully customiz-
able interface with improved input methods and comes bundled with integral media
features. Supported by an open development environment it is very easy to create
and test for a target device.

The application development in Linux is mainly a C++ framework but so far hand-
sets available in the market only allow downloadable Java applications. Qtopia on
the other hand offers a free SDK to develop application based upon Qt [19] which is
a C++ application development framework. Qtopia has different versions available
to suit the hardware requirements of different handsets. Developers can use several
other tools available for Qt to create and design their applications. One of the key
advantages being the portability from one platform to another. It is possible to port a
game developed with Qt from e.g. KDE to handheld running Qtopia [20].

Mobile Linux market is likely to consolidate, there are clear indications that hand-
set makers and operators will converge around a single mobile Linux platform. This
means that there are loads of opportunities for game developers to create new and
exciting games that harness the power of Linux and OpenGL.

208 P. COULTON ET AL.

2.3.5 J2ME

The Java programming language may be syntactically similar to C++ but differs
from it fundamentally. C++ requires programmers to allocate and reclaim memory
for their applications whilst Java utilises an automated garbage collector to free up
memory. Furthermore Java runs on a virtual machine which means that the Java
virtual machine (JVM) can be implemented to run on top of a range of operating
systems using different hardware configurations. This virtual machine architecture
gives a strict control of binary code being executed which ensures safe execution or
only trusted code to be executed. A comprehensive set of API provides developers
with necessary means to create their applications. Putting it all together a Java plat-
form consists of the language itself, the virtual machine and the set of API’s. In 1999
Sun (www.sun.com) decided to move away from their paradigm of “compile once
and run anywhere” and divided Java into three distinct parts:

• Java 2 Standard Edition (J2SE) to be targeted towards desktop systems.

• Java 2 Enterprise Edition (J2EE) targeted towards multi-user enterprise envi-
ronment as a platform.

• Java 2 Micro Edition (J2ME) a set of specifications targeted for handheld de-
vices like mobile phones, PDA’s and set top boxes. Essentially J2ME is a cut
down version of J2SE and uses a small foot print virtual machine known as
the kilobyte virtual machine (KVM) to suit the needs of a some what resource
constrained device it runs on.

Unlike J2SE, J2ME is not a software or single specification. It can be considered as
a platform, or more specifically as a collection of technologies and specifications that
are specifically designed for different functionalities of a mobile device. The specifi-
cations for all Java platforms are developed under the Java Community Process (JCP)
(jcp.org). An expert group consisting of interested organizations work together to
create the specification which is referred to as the Java Specification Request (JSR).
Each JSR is given a unique numeric identifier. J2ME is a collection of specific JSRs
and are often referred to by their JSR number. Mobile devices are diverse in nature
and it is very difficult to create a platform that will suit the capabilities of each de-
vice. It is this need to support a diverse range of devices that J2ME is divided into
configurations, profiles and optional packages.

2.3.5.1 Configurations. Configurations provide details about a virtual ma-
chine and a basic set of APIs that can be used with a particular range of devices.
These devices are grouped together by similarities in terms of total memory and
processing power available. A configuration supported by a device means that it has
certain virtual machine features and certain minimum libraries that a developer or

MOBILE GAMES: CHALLENGES AND OPPORTUNITIES 209

content provider can expect to be available on the device. So far Sun has introduced
two configurations, namely:

• Connected Device Configuration (CDC): This configuration is designed for
devices that have more processing power, memory and better network connec-
tivity.

• Connected Limited Device Configuration (CLDC): As the name suggests this
configuration is designed for devices with limited network connectivity, rel-
atively slow processors and less memory as compared to the devices falling
under the CDC. Devices likely to fall in this configuration are pagers, mobile
phones and entry level PDAs.

2.3.5.2 Profiles. Whilst a configuration provides the lowest common de-
nominator for a set of devices, profiles, provide an additional layer on top of configu-
rations. This layer provides the APIs for a specific class of device. This combination
of configuration and profiles insures that whilst some devices may have similar func-
tionalities, they do indeed have different requirements in terms of the available APIs
and interfaces to their hardware. There are currently four java profiles:

• Mobile Information Device Profile (MIDP).

• Information Module Profile (IMP).

• Foundation Profile.

• Personal Profile.

Doja is another profile defined by NTT DoCoMo which operates under CLDC in
i-mode devices. In our discussions we shall only focus on MIDP which is targeted
towards mobile phones and PDAs.

2.3.5.3 MIDP. MIDP provides the basic functionality required by a mobile
application such as network connectivity, persistent data storage on device, ap-
plication control, application management and user interface etc. When MIDP is
combined with CLDC it provides a more resolute platform for mobile phones and
PDAs. Two version of MIDP have been released so far, MIDP 1.0 and the current
MIDP 2.0. Current structure of J2ME comprises of CLDC with MIDP 2.0 on top
with a few optional packages running on top which provide functionality and access
to unique features of the phone such as access to Bluetooth radio or access to RFID
etc.

In terms of game development MIDP provides both a set of high level API’s and
low level API’s. The high level API’s allow the creation of user interfaces by keeping
the development time to a minimum whilst low level API’s, as the name suggests,

210 P. COULTON ET AL.

provide low level access at pixel level and facilitate the creation of new graphics ob-
jects on the screen. ‘Canvas’ is the base class for creating low level graphics and is the
most commonly used class in J2ME game development. Graphics can be animated
and there is support provided for to capture the user input, however, a specific Game
API is also available which provides access to specific game related functions such
as animation control, frame and sprite management, collision detection and layers.
The Game API was added as part of MIDP 2.0 and is not available in MIDP 1.0 and
is generally considered to be the most useful addition to MIDP 2.0. Sound support is
provided by Mobile Multimedia API (MMAPI) which is an optional MIDP package
which provides support for audio and video handling on the phone. The availability
of this API varies from device to device, but all new phones being introduced provide
support for MMAPI. There is also a cut down version of MMAPI often referred to
as Media API which provides support for basic tone generation for devices that do
not provide support for MMAPI.

Before we leave game development in J2ME we thought it was worthwhile to
briefly consider multiplayer mobile gaming using the recently introduced Scalable
Network Application Package (SNAP) from Nokia (snapmobile.nokia.com). SNAP
is end to end solution for creating online multiplayer mobile games build with J2ME
and it not only provides support for multiplayer gaming but also the online gaming
community features.

Developers have broad range of tools at their disposal to create and add multi-
player/community features into their games. These include emulators, development
tools and optional access to live development server. Sun have also included support
for SNAP development in their Wireless Toolkit 2.3 Beta which is one of the most
widely used tools for mobile application development.

2.3.6 Python

Python is an object-oriented programming language that is used in a wide va-
riety of application domains. It was devised and created by Guido van Rossum
early in the 1990s and although already well established on PCs, Python was only
introduced as a programming platform for mobile phones in December 2004 by
Nokia for their Series 60 devices. Early in 2006 they declared the project, known
as PyS60, open-source (sourceforge.net/projects/pys60), allowing the mobile devel-
opment community to implement new library modules, fix implementation bugs and
even port the interpreter to new mobile platforms—it is now also being developed
for the Nokia Series 80 platform and a version for UIQ has been reported on the
web.

Python is a developer-friendly platform due to its easy-to-use syntax, highly
dynamic capabilities and its extensive standard library. Further, PyS60 allows for

MOBILE GAMES: CHALLENGES AND OPPORTUNITIES 211

immediate and easy access to powerful phone functionality through the modules
that are provided as standard with the run-time. Often, several lines of complex
native code can be replaced with a single line of Python code. For these reasons,
many developers use Python to develop proof-of-concept or rapid prototype applica-
tions.

You may think that abstracting functionality a layer up from the native layer will
necessarily take away some of the low-level choices that you, as a developer, can
make, but this is not necessarily the case—it is possible to extend the Python run-time
by developing your own dynamically loadable native extensions. These are essen-
tially wrapper classes for compiled C++ code, which provide a special interface with
which your Python code can communicate.

Python scripts are written in plain text, so it is possible to develop applications
using any standard text editor and there are many excellent free Integrated Develop-
ment Environments that provide features to aid the developer. Technically, it is even
possible to edit the scripts on your phone, using a simple phone-based editor.

Nokia provide an emulator that can be used for testing Python scripts before
deploying them to the phone—although there may be some implementation differ-
ences between the real and emulated environment. Although, testing features such as
camera access, Bluetooth communications and messaging is best realized by trying
your application on a real handset. It is possible to compile your code into a stand-
alone Symbian installation file (.sis) using the py2sis application that is provided
with the PyS60 SDK, although you’ll still need the Python run-time installed on the
phone.

In regards to limitations, as Python is a scripted language it means that a phone
user has to install the interpreter in order to execute any Python code. This interpreter
presents an overhead, in terms of processor load and memory consumption, before
any application is even loaded, and in the constrained world of mobile devices, every
last KB/CPU cycle counts. Further, as Python code is not compiled, as is the case
with C++/J2ME, so it is relatively easy for anybody to open up your source code
and see exactly how your application was implemented or share the application with
others. Finally, unlike J2ME, the interpreter is only available for a small proportion
of consumer handsets and because its implementation is closely tied to the underly-
ing Symbian OS, it is unlikely that we will see Python introduced for other mobile
platforms anytime soon (and if it were, the functionality and performance could vary
considerably).

If we consider the use of Python for game development then we are able to develop
games utilising lots of novel features as the latest version of the device installation
package includes modules supporting real-time full screen 2D graphics, networking
over Bluetooth and GPRS, Cell ID access, SMS sending, high and low-level GUI
widgets, file IO, local database support, access to phone’s camera, sound playback

212 P. COULTON ET AL.

and recording, and access to detailed system information such as the phone’s IMEI
number, battery and signal levels, disk space and the free and total memory available
on the device. Further, native threading and exception handling are also supported
in line with the standard language specification on which PyS60 is currently based
(version 2.2.2+). These modules are written at native level, which means that they
are very fast (J2ME will always pay a performance penalty because the source code
is compiled to an intermediate bytecode format, which then has to run on the phone’s
virtual machine).

Unlike the latest version of J2ME (MIDP 2.0), PyS60 does not ship with any
specific game library modules. However, the key to Python’s power is with its object-
orientation and this, together with the high-level modules specified above, allow you
to develop your own set of classes and functions, which support your game opera-
tions, relatively quickly.

The current generation of mobile phones which support Python generally have a
high specification. Typically, they will feature a 220 MHz processor and a 16 or 18-
bit colour screen with a resolution of 176 × 208 or 354 × 416 pixels, at least 2 MB
of RAM and 10 MB of shared memory. However, if you plan on creating a real-time
game, with multiple graphics and/or images moving on screen at a time (a platform
game is an example of one such game), you will need to construct a very careful
design. Despite the fast processor, graphics processing and rendering can still slow
your game to a crawl if too many objects—characters, tiles, HUD elements and other
sprites—are drawn to the screen at a time. As graphics presents the main bottleneck
in the system, the key is to only draw items that are within the screen’s viewport,
and to limit the number of rendering operations which take a long time to process
(transparent images are very problematic). Also, all resources should be compressed
as much as possible, whilst retaining an acceptable level of quality.

2.3.7 Flash Lite
Flash Lite is a version of Adobe’s highly successful Flash technology developed

for mobile phones. The main attraction of Flash is that it allows the significant de-
veloper base that already exists for Flash in the PC community the ability to quickly
develop applications for the mobile environment without having to learn new skills.
Flash Lite players are available for both Symbian and Brew phones and in essence
builds upon the success that Flash gave to NTT DoCoMo’s imode platform, were
it has become the de-facto standard. At the end of 2005 more than 20 million sub-
scribers, which is 45 per cent of imode users, had Flash Lite enabled phones and of
the 4600 official imodes sites 2000 supported Flash Lite [21]. In March 2006 Adobe
estimated that there were already 60 million devices equipped with Flash Lite in the
market and with manufacturers, such as Nokia and Sony Ericsson, shipping their new
devices with Flash Lite pre-installed the market is expanding rapidly.

MOBILE GAMES: CHALLENGES AND OPPORTUNITIES 213

Flash Lite is integrated into Flash Professional 8 which allows the development of
Flash applications for the two current versions of the Flash mobile players, namely
1.1 and 2.0, which are present on mobile phones.

Flash Lite 1.1 is based on Flash version 4, with similar scripting functionality and
media support to the old desk top version. Whilst many developers bemoan the lim-
itations imposed compared to the newer versions of Flash there are ways of working
around such limitations although with a small increase in development effort.

Flash Lite 2.0 is effectively a subset of Flash 7 incorporating approximately 80
per cent of the functions and operations of Flash version 7 [21]. Thus for many de-
velopers Flash Lite 2.0 would be the referred option although few phones have been
shipped thus far with this version installed so 1.1 currently allows greater penetration
into the market.

One noticeable difference in Flash Lite compared with Flash is that some mobile
phone functionality has been built in. Although this is limited compared to the other
software platforms previously discussed it does include the ability to dial a phone
number and send a Short Message Service (SMS) or Multimedia Message Service
(MMS) from within the Flash application.

Flash Lite obviously has great potential for bringing information services onto
phones and producing richer interface, however, in terms of games Flash Lite is
predominantly seen as being most applicable for the casual games market as it will
suffer in terms of operational speed for very complex graphical games. However, as
we have already discussed the fact that casual games are a large proportion of the
mobile games market there is an obvious potential for rapid development of simple
games. The main limitation would come in terms of being able to innovate within the
games by incorporating some of the functionality present on many mobile phones
such as Bluetooth or the camera and if these could be accessed from within Flash
Lite it could make significant in roads within the games sector.

2.3.8 Choosing Your Software Environment

In this section we have discussed many of the software environments available to
the games developer and in essence the final decision is based on the requirements
for the individual game. Some factors that should be considered are:

• target audience for game and what devices are likely to be owned by that group;

• does game use any specific hardware (i.e. Bluetooth) and how well is that sup-
ported;

• ease of development.

Whereas in the console games world we generally design for the latest or next
generation device in mobile it is often desirable to design for the most prevalent

214 P. COULTON ET AL.

and often then simplest device commonly available in the market as current pricing
strategies are volume based.

2.4 3-D Mobile Games

Three dimensional (3D) computer graphics has been an important feature in games
development since it was first introduced in the early 1980s. There is no doubt that
3D-based content is often viewed as more attractive in games than the more abstract
2D graphics [22]. This is because it enables players to become immersed in the game,
as it more closely resembles their vision within the world around them, and when
used in conjunction with large screens and surround sound systems it is particularly
powerful. Immersion is often seen as a key component to the commercial success
of a console game as immersive play encourages longer and often more repeated
game play which is likely to mean the game attracts attention from the game playing
community and often leads to brand loyalty [22]. In terms of the console gamer
demographic there is an obvious need for 3D game titles; however, as we discussed
at the start of this chapter the mobile gamer does conform to these existing models
and it remains to be seen if 3D becomes the dominant style in mobile games. In this
section we will avoid trying to answer this question but rather look at the current
situation in terms of both software and hardware for the development of 3D graphics
on mobile phones.

2.4.1 3-D Mobile Games—Software Support

Until recently, interfaces that enabled 3D graphics on mobile phones were limited
as no standards were available, no common engines were used and developments
made were based on personal implementations of graphics APIs. This limitation has
been rectified with the introduction of OpenGL ES and M3G.

OpenGL ES is a lightweight well-defined subset of desktop OpenGL which is
optimized by removing some classes and APIs that are expensive for the mobile
platform and introducing smaller data types and support for fixed-point arithmetic
[22]. There are three versions of OpenGL ES available currently. The first is v1.0
which was introduced in July 2003 by the Khronos Group and which emphasizes
software rendering and basic hardware acceleration for mobile 3D graphics. The
Khronos Group is the premier global association that strives to stimulate the growth
of OpenGL ES and other graphics technologies for mobile devices.

In mid 2004, Khronos released its newer version of the API, OpenGL ES v1.1,
which emphasizes hardware acceleration. Later in 2005 Khronos introduced the lat-
est version, OpenGL ES version 2.0, which provides the ability to create shaders and
write to vertex using OpenGL ES Shader Language, OpenSL ES [23]. OpenGL ES

MOBILE GAMES: CHALLENGES AND OPPORTUNITIES 215

v1.0 is currently the only version supported by manufacturers. Early 2004, Nokia was
the first to release a mobile phone implementing OpenGL ES, Nokia 6630. Now, all
Symbian- (v8.0 and above) and BREW- (v1.1 and above) based phones implement
this API, in addition to some Mobile Linux phones. However, there is an OpenGL
ES implementation for Windows CE-based Pocket PCs and smartphones. As pre-
viously discussed Microsoft has stripped off its DirectX 3D API (MDX, DirectX
Mobile) to suit devices running its newest mobile operating system: Windows Mo-
bile 5.0.

M3G is the first Java-specific standard for 3D graphics on mobile phones. This
API is an optional package to be used with profiles like the Mobile Information De-
vice Profile (MIDP). It is based on OpenGL ES in low-level and crafted for J2ME
development platform. This implies that any device embedding J2ME interpreter,
given that its profile is aligned with OpenGL ES, will be able to present and ren-
der 3D graphics [24]. Although M3G is based on OpenGL ES, the API does not
implement fixed-point arithmetic. It uses floating-point instead which causes loss
in programming efficiency and resources consumption. The first device to support
M3G in software was Nokia 6630 and the first to accelerate it in hardware is the
W900 Walkman phone by Sony Ericsson released in October 2005 [25].

2.4.2 3-D Mobile Games—Hardware Support

Unlike software APIs and operating systems, hardware architecture for mobile
phones is almost similar. The majority of mobile Central Processing Units (CPU),
and hence processor Instructions Set, are based on the ARM technology. All Sym-
bian OS, Microsoft Windows Mobile, Mobile Linux and Savaje support the ARM
architecture [26].

There is currently a plethora of companies introducing optimized CPUs for the
mobile platforms. In the next subsection we shall mention only those processors that
are dedicated for graphics acceleration in general and 3D graphics in particular.

With the explosion in the demand for high-quality graphics presentation on cell
phones, and the continuous appeal for sophisticated multimedia services, graph-
ics hardware technology providers have leveraged their extensive experience and
knowledge to indulge new solutions to meet users’ and companies’ expectations and
requirements. PowerVR MBX graphics processor by Imagination Technologies, a
leader in system-on-chip intellectual property (SoC IP), is developed to meet the
growing needs of multimedia applications on power-conscious mobile devices like
smartphones. It implements OpenGL ES 1.0/1.1. PowerVR MBX introduces benefits
of low memory bandwidth, high image quality, low power demands, fill rate of 300
million pixels/sec, throughput of 3.7 million triangles/s [26] and refresh rate up to
37 frames/s [26].

216 P. COULTON ET AL.

NVIDIA® GoForce® 3D 4800 handheld graphics processing units on the other
hand delivers dazzling 3D graphics, multi-megapixel digital still images, video cap-
ture and playback, and extended battery life to advanced handheld devices. The
processor is capable of rendering 250 million pixels per second and 5 million tri-
angles per second while a frame rate of 30 frames/s [26]. The Sonny Ericsson W900
Walkman phone mentioned earlier is the first phone to ship with NVIDIA GoForce®

3D 4800 on board.
Other industry leaders like Bitboys, ATI and Qualcomm are emphasizing on devel-

oping hardware solutions to accelerate 3D graphics on mobile handsets in hardware
rather than purely in software.

2.4.3 3-D Mobile Games—Optimisation

To display a 3-D game object on a mobile phone screen requires [27]:

1. Rotation and translation of the vertices of the game object’s polygons to reflect
its orientation and position relative to the camera.

2. The vertices must then be projected onto the camera’s X–Y plane.
3. Each polygon is clipped to remove any regions that lie outside the camera view,

any polygons that lie entirely outside this view are discarded.
4. The resulting polygons are mapped onto the screen.

This sequence of tasks is known as the rendering pipeline and in all four stages
of the rendering pipeline, we run up against variations of the central problem which
is the need to maintain numerical precision without sacrificing speed. Precision and
speed are important factors in making a game world seem real. If we lose precision
in any of the steps of the pipeline, objects will seem to change shape at random from
one display frame to the next, undermining the illusion of solidity. On the other hand,
if we take too long over any of the steps of the pipeline, our frame rate will fall off,
undermining the illusion of smooth movement. Maintaining precision without sac-
rificing speed is difficult on mobile phones, because the data types and arithmetic
operations that make it easy to maintain precision are also the ones that tend to pro-
duce the slowest-executing code [27].

To get the fastest possible 3-D game code we should only use, in order of prefer-
ence:

• integer shift operations (« and »);

• integer add, subtract and Boolean operations (&, | andˆ);
• integer multiplication (∗).

In other words, in speed-critical code we must represent all quantities (coordi-
nates, angles, and so on) by integers, favour shift operations over multiplies, and

MOBILE GAMES: CHALLENGES AND OPPORTUNITIES 217

avoid division completely. This strategy will give us the speed we want, but it will
pose problems in implementing the stages of the rendering pipeline. All four stages
of the pipeline involve calculations on fractional quantities, which we would most
naturally represent with floating-point numbers. Also, the transformation stage in-
volves the trigonometry functions cos and sin, while the other three stages involve
division operations [27]. A typical 3-D game rendering engine implementation will
require programmers to master the two main techniques to solve these implementa-
tion problems: fixed-point arithmetic and pre-calculated look-up tables.

3. Opportunities

Whilst there is no doubt that developing games for mobile phones presents a great
many challenges to the developer it also offers a great many opportunities for inno-
vation over console games. Some of these opportunities are:

• anywhere, anytime entertainment;

• rapid technology advancement;

• high device penetration;

• wide ranging demographics;

• ever changing attitudes and fashion requirements;

• huge untapped market.

In this section we shall examine some of these opportunities together with pro-
viding examples of novel mobile games produced by that authors that will hopefully
stimulate researchers and developers considering mobile games.

3.1 Text Games

With the billions of text messages sent every day text would seem a natural ele-
ment for either a component of a game or as the basis for the game. However, the
small form factor of the mobile phone and the keyboard means that it not as straight
forward as it may appear and there are various methods of text input that have been
tested and integrated into mainstream use.

Entering text with a standard numeric keyboard requires a ‘multi-tap’ functionality
allowing text input with little visual confirmation. T9 predictive text offers the most
commonly-used word for every key sequence you enter by default and then lets you
access other choices with one or more presses of the NEXT key. T9 also learns words
and expressions unique to each user. Touch screens are also becoming common on

218 P. COULTON ET AL.

more business orientated phones; with stylus entry or in some case incorporate full
QWERTY keyboard options [28]. For mobile designers, it is important to keep input
when requested very short to as few characters as possible.

Text input studies at Nokia Research Center [28] show conventional keypad
‘multi-tap’ entry at 8 to 9 words per minute (wpm), predictive text input at 20 wpm,
and QWERTY keyboard input at up to 35 wpm. This is in comparison to 50–80 wpm
on a traditional PC-based keyboard.

In terms of text based games there have been commercial successes such as ‘Dope-
wars’, which is a text based trading game based upon buying and selling various
drugs. One of the most interesting and innovative aspect of the text based games is
demonstrated by ‘Botfighters’, which is a search and destroy combat game, generally
regarded as the first location-based mobile phone game, launched in 2000 using Cell
ID (www.botfighters.com). In the first version of Botfighters, players sent an SMS to
find the location of another player and if that player was in the vicinity, they could
shoot the other player’s robot by sending another SMS message. While gaining some
recognition, Botfighters’ use of SMS and its crude location accuracy means that it
suffers from delay and to limited levels of social interaction as players are physically
distributed over large areas [33].

Although many designers may dismiss text as offering little innovation but in the
following section we present a design that shows this is not the case and there are
still opportunities to provide good gaming experiences with careful design.

3.1.1 The TxT Book

The aim of this project was to create a text based game that would appeal to a
mobile game playing demographic rather than the traditional console gamer. How-
ever, as there is very little research in this area we had to look at studies of console
gamers to see if there were any identifiable traits we felt could be applicable to the
mobile gamer. To this end we looked at the work of International Hobo who pro-
duced a classification for both hardcore and casual gamers based on clusters from
the personality types of the Myers–Briggs Dichotomies, which are used to classify
individuals’ personalities. They called these types [5]:

“The Conqueror is actively interested in winning and ‘beating the game’. In
single-player games, completing the game generally counts as winning, while in
multiplayer the goal is to beat the other players—either way, winning is the most
important factor to these players.”

“The Manager is generally looking for a strategic or tactical challenge. They
are interested in the mastery of the game—that is, the process oriented chal-
lenge of learning how to play well. Winning is to some extent meaningless to the
Manager-type player if they have not earned it.”

MOBILE GAMES: CHALLENGES AND OPPORTUNITIES 219

“The Wanderer is a player in search of a fun experience. They won’t play a game
they aren’t enjoying, and will in fact stop playing the moment it ceases to be fun.”

“The Participants are the largest group in the population. Very little is known
about them except that they are often very story-oriented and will generally only
play games as a social experience. They wish to participate either in the story the
game is offering, or participate with other players in some emotional context.”

International Hobo’s research classification indicates that the majority of game
players actually fall into the class of wanderer. However, more generic Myers-Briggs
based research would indicate that the majority of the rest of the population are
generally considered participants and International Hobo admitted this group was
under represented in their study. Therefore, we have not restricted our design simply
to the hardcore or casual gamer, but rather wanderers and participants that we feel
are likely to be most representative of the average phone user.

Using this as the initial inspiration for the project presented, we have explored a
simple to use and easily understood game that:

• can be played in short bursts;

• avoids repetitiveness and has a strong element of fun;

• is story orientated;

• has a simple user interface and can be played across a wide range of mobile
phones;

• provides a social experience.

The outcome is a novel multiplayer mobile game called ‘thetxtbk’, based on the
surrealist technique of ‘Exquisite Corpses’ and the old Victorian parlour game of
‘Consequences’. The game builds to produce a massively multi-authored book.

The premise for the mobile game is based on Exquisite Corpse which is a word
game developed by surrealists in 1920s Paris as a means of ‘discovering’ acciden-
tal poetry. It has its roots in the parlour game of Consequences which was designed
to be played by five to nine players after dinner by Victorian ladies and gentlemen.
The surrealist version is generally played by four or more people who all have a
pencil and paper. To start, each player writes an adjective, then folds the paper to
hide this word and then passes their paper to the next player. The process continues
until the sequence of adjective, noun, adverb, verb, adjective, noun has been com-
pleted. The sentences are then read out by the players. One of the results from the
first playing of the game was “Le cadavre exquis boira le vin nouveau” (The exquis-
ite corpse will drink the new wine) which is how the technique obtained its name
(www.exquisitecorpse.com).

In this project we build on the game operation previously outlined and have
adapted them to produce a mobile game called ‘thetxtbk’, which is based around

220 P. COULTON ET AL.

the standard SMS message length of 160 characters. Each player takes a turn writing
a contribution to the book based upon only the last 160 characters entered. There are
a number of reasons for basing the system on a SMS message [29]:

• Firstly, although the system is based on Wireless Application Protocol (WAP),
and the length of the message is entirely a design choice, we felt WAP still has
a very negative image with consumers due to the disastrous launch on GSM.
SMS messaging, however, is incredibly popular and well understood, with over
85 million text messages sent everyday in the UK alone (www.textit.com).

• Secondly, allowing a short message, rather than an individual word, allows for
greater creativity, increased sense of individual game play and avoids the need
to control the type of word at each stage.

• Thirdly, SMS messaging is often used to support social groupings and creating
a community relationship is often seen as an important aspect to the success of
multiplayer games.

The system developed to support the game consists of a central server database
written in MySQL, which holds both the entries in the book and names of the con-
tributing authors [29]. To distribute the game we have utilized an SMS message
which contains both an invitation to contribute to the book and the link to the WAP
site as shown in Fig. 1.

The majority of new phones allow links to be opened directly from within the
message itself, whilst on older models the URL link can be entered into phone’s
micro browser. If an SMS message is received from the known number of a friend,

FIG. 1. SMS invitation to contribute to thetxtbk.

MOBILE GAMES: CHALLENGES AND OPPORTUNITIES 221

FIG. 2. Entering a book submission on a mobile phone.

it is more likely to be opened and acted upon. Therefore, we encourage contributors
to personally forward the invitation SMS to their friends.

Once the player uses the link, the system detects that they are accessing the site
from a phone and provides access through a series of WAP pages as shown in
Fig. 2.

The process is very simple. Firstly, the prospective author enters their Nickname
(and pass code if they are a returning author). They are then shown the last entry
to the book from which their own entry should follow. Finally, they make their own
entry. Once they have submitted their entry they are given a pass code to enable
them to make future entries under the same author name. They are also encouraged
to forward on the SMS invitation message to their friends. We have added other
elements to the game to increase both the sense of community and a competitive
element for hardcore gamers. In particular, the website offers both the ability to make
an entry and also gives larger snippets of the book to allow people to identify with
the larger community of authors. There is also a list of contributing players and the

222 P. COULTON ET AL.

number of entries they have made. We felt this was analogous to the high score
tables which are often used to address the competitive desire of hardcore gamers and
encourage greater levels of participation in games. Although we have provided for
entry via the web and have indicated in Fig. 1 that awareness of the game can also be
spread via email, we have not actively encouraged this as our main focus is in mobile
entry and mobile distribution [29].

Whilst the book, which is at the heart of this game, is still evolving it has already
provided some interesting insights into the way the players engage within the game
[30]. In this section we shall explore such interaction and the obvious place to start,
as with all books, is the beginning. For our opening we decided to play homage to
the Philip K Dick classic, ‘Do Androids Dream of Electric Sheep?’, by altering the
opening line of the novel’s hero Rick Deckard (who is listed as an author) to be in
the first person past participle:

“A merry little surge of electricity piped by automatic alarm from the mood organ

beside the bed awakened me.

It is interesting to note that this first line is complete, which is something that
turned out to be unusual in subsequent entries. The second entry, as shown by italics
and highlighting, is indicative of the main feature that dominates the style of entries
in that the current author leaves the line open ended for the next author to follow.
This would indicate that the players have a sense of community and that they are
interested in developing the story—both attributes of the participants.

I felt exhausted from the strange dreams that plagued my sleep. Who was eating

my cheese, I wondered? Did I have mice? Or was there another reason I was a few

crumbs short. It occurred to me that my obsession with cheese had to stop, before I

began to hallucinate with desire

The two passages that follow illustrate another common practice amongst the
players, where the current author follows the story of the previous author but tries
to create a humorous twist in the plot that often sends it off in a completely new
direction. This would indicate it is a fun experience which is desirable from the ex-
pectation of the wanderers. Further, we can also see in the later of the two passages
that the story is now progressing in the second person past participle. This switching
generally occurs after the inclusion of a fairly random (even by the standards of this
book) entry which does occur every so often.

MOBILE GAMES: CHALLENGES AND OPPORTUNITIES 223

a deep fried guinea pig that I had once enjoyed whilst trekking through deepest dar-

kest Peru in search of a lost tribe who were reported to engage in acts so mundane,

that they remained undiscovered for centuries – I didn’t find them. However, I did

meet another tribe who engaged in acts so terrible that

, the Cornish comedian, was not so lucky. The oncoming implement smashed into

his chest, impaling him to a near by bench that marked the spot of the first alien

landing in Lancaster. The day they abducted Phil went down in history for the lon-

gest ever probing session. Eventually the aliens became despondent when he poin-

ted out their futile business model. They started data harvesting

Further, the second and third entries of the second passage were from two known
members of our research group and we were able to identify an obvious in joke
between them. This highlights the potential for social experience, which is another
desirable trait for participants.

Authors tended to use a first person narrative. One of the key reasons for this is
that it is almost impossible to maintain characters; omission of the character name
from a single entry results in the subsequent author having no knowledge of those
characters and these characters simply disappear. This is illustrated in the case of Dr
Forbes in the passage below.

they’d even been shunned by their neighbours, a group of satanic cannibals with a

penchant for random, drawn-out torture. So I turned to Dr Forbes and asked if we

should exterminate them using our latest “death-ray” technology. Dr Forbes sug-

gested an easier method of neutralizing our adversaries, involving the organs of

small tree frog, ear wax, and a large roll of gaffer tape. The result was

Interestingly this was not the last appearance of Dr Forbes and regular contributors
who had come across him in the past often tried to resurrect him, although this is
generally a short lived experience.

the elusive Dr Forbes who seems to appear and disappear like a veritable will o’ the

wisp. We were particularly surprised to see him here as he had vowed to sto ck to-

mato soup only on Saturdays and today was a Tuesday. ’Hey Forbsey’, I whispered,

224 P. COULTON ET AL.

’Got any of your special, out the back?’. Forbes smiled and gestured toward the

trap door leading to his cellar. ”They’re down there mate. Careful though, one of

them nearly bit my arm off the other day”. I began to walk toward the hatch when

There are a many other statistics and patterns developing for this game although
they are beyond the scope of this discussion and will be presented in a future publi-
cation.

3.2 Camera Games

Cameras are now a common feature of even the most basic mobile phone and in-
deed a reported [1] 295.5 million were shipped in 2005 which represented nearly
40 percent of all phones shipped. There is thus a real opportunity for their use
within games and there have been a number of very innovative games that have
used the camera to detect movements of the phone and transferring these two move-
ments within the game. Probably the best known are from game developer Ojom
(www.ojum.com) with its games “Attack of the Killer Virus” and “Mosquitos” for
Symbian S60 mobile phones. In both games, the enemy characters that the player
must shoot at are superimposed on top of a live video stream from the mobile phone’s
camera. The player moves around this mixed reality space by moving their phone and
firing using the centre key of the joy pad. Ojum has also produced a virtual version of
the old children’s games where you directed a marble around a maze avoiding holes
called ‘Action Twister’. There are others in a similar vein that utilise visual codes
in conjunction with the camera to detect movement [2,3] but these appear to offer
no great advantage to those that use the video input or the surroundings directly. Al-
though, the movement detection is fun it does tend to feel ‘jerky’ and with the new
phones emerging with in-built 3-D movement sensors, such as the Nokia 5500, they
provide a much better interface with greater resolution of movement.

Using the camera as a joy pad is not the only possibility and in the following
section we describe a game that utilises the camera to personalise the content.

3.2.1 Buddy Bash

Buddy Bash, shown in Fig. 3, is an addictive reaction testing boxing game with the
added twist that you can add a picture of a ‘friend’ as the face of your opponent. The
game requires a Java MIDP 2.0 enabled phone with a camera and you take a picture
following the simple menu instructions. The game is played in rounds which you
win by scoring a punch before your opponent. The punches are made by hitting the
key number highlighted on the screen as quickly as possible. If you’re fast enough

MOBILE GAMES: CHALLENGES AND OPPORTUNITIES 225

FIG. 3. Buddy Bash screen shots.

you hit your opponent but if your reactions are too slow they hit you. The game
speed increases between rounds and if you reach the high-score it is preserved until
your next big fight. As an added feature your friend face also appears on the ring girl
who announces the new rounds. Although the game is very simple the simple one
button interface and the personalisation do give it an attraction over other games in
the casual mobile market.

3.3 Location Based Games

Although we often consider the requirement for providing the location of a mo-
bile user as a new problem, in fact all mobile phone systems effectively track a user’s
whereabouts at the cellular level. Each cell site has a unique Cell-ID which enables
the system to locate a mobile user so that it can route calls to the correct cell. To en-
able higher degrees of accuracy, other techniques treat location finding as a relative
exercise, in other words the location of the mobile user must be estimated against
some known framework. This framework could be elements such as the locations

226 P. COULTON ET AL.

of the base stations of a mobile phone network or the satellites of the Global Po-
sitioning System (GPS). An alternative approach is to ascertain location from the
user’s interaction with objects of known location where their position can then be
implied. The interaction could be proximity within a physical area using communi-
cation technologies such as WiFi or Bluetooth [31] or down to object level using one
of the various forms of two dimensional (2D) bar codes, such as QR codes [32], or
Radio Frequency Identification (RFID).

Having discussed how the position of the mobile user may be obtained we now
turn our attention to one of the many possible areas in which this technology may
be used which is that of location based games. A location based game is one that
is aware of a user’s location, can perform ‘what’s or who’s near’ queries, and then
deliver information relevant to that position. There have been many innovative ex-
amples of such games reported in the literature [33,34] using all of the techniques
previously described and in the following section we shall consider two specific lo-
cation based games projects.

3.3.1 PAC-LAN

PAC-LAN is a version of the video game PACMAN in which human players play
the game on a maze based around the Alexandra Park accommodation complex at
Lancaster University [35]. Pacman was chosen for a number of reasons:

• it is widely recognized with simple but compelling game play which means that
the concept behind the game can be quickly ascertained by potential players
without a complex explanation;

• the virtual game maze premise transfers readily to a physical location;

• and, the Pacman character interacts with game elements (the game pills) that
can be considered as physical objects at specific locations which is one of the
principle advantages that RFID tags can provide.

This is not the first time Pacman has inspired the development of a location based
games and the most famous is probably Pac-Manhattan (www.pacmanhattan.com).
However, Pac-Manhattan differs significantly from PAC-LAN in that

• it does not incorporate actual physical objects;

• it uses mobile phones simply to provide a voice link (effectively a walkie talkie
arrangement);

• the developers chose not to implement a means of location estimation as it
was played around the streets of Manhattan which would have acted as urban
canyons for systems such as GPS;

• and the game play of each player was controlled by a human central operator.

MOBILE GAMES: CHALLENGES AND OPPORTUNITIES 227

We have specifically chosen to avoid incorporating voice calls or SMS, and hence
human game controllers, as we wanted to keep the game play as fast as possible and
more akin the arcade classic. Although human controllers introduce interesting as-
pects of trust and acceptance, as explored by games such as Uncle Roy All Around
You [36], we felt that their would be a greater possibility of the emergence of spon-
taneous tactics without a controller.

The other significant implementation has been Human Pacman [37] which uses an
innovative combination of virtual reality goggles, GPS receivers, and portable com-
puters with Bluetooth and WiFi access to recreate the game. In terms of differences
from PAC-LAN it:

• is played over much smaller area of approximately 70 meters squared compared
to 300 meters squared;

• only uses one real object used for interaction;

• is played at a much slower pace due to large amounts of equipment being carried
uses human central operators to control the game play of each player.

Obviously this is highly specialized and expensive technology and in an interview
with CNN in November 2004 its creator Dr. Adrian Cheok predicted that:

‘Within two years we’ll be able to see full commercial Pacman-type games on
the mobile phones.’

With the commercial technology presented in this paper this has became a real-
ity in less than a year and an equipment outlay of less than 1500 euros. This will
mean that the system can be tested on large numbers of people without concern over
equipment costs or the practicalities of running wearing virtual reality goggles.

In terms of playing the game one player who takes the role of the main PAC-LAN
character collects game pills (using a Nokia 5140 mobile phone equipped with a
Nokia Xpress-on™ RFID reader shell), which are in the form of yellow plastic discs
fitted with stick-on RFID tags placed around the maze as shown in Fig. 4.

Four other players take the role of the ‘Ghosts’ who attempt to hunt down the
PAC-LAN player. The game uses a Java 2 Platform Micro Edition (J2ME) appli-
cation, running on the mobile phone which is connected to a central server using
a General Packet Radio Service (GPRS) connection. The server relays to the PAC-
LAN character his/her current position along with position of all ghosts based on
the pills collected. The game pills are used by the Ghosts, not to gain points, but
to obtain the PAC-LAN characters last known position and to reset their kill timer
which must be enabled to allow them to kill PAC-LAN. In this way the ghosts must
regularly interact with the server which is then able to relay their position to the
PAC-LAN.

228 P. COULTON ET AL.

FIG. 4. PAC-LAN mixed-reality mobile phone game.

PAC-LAN sees a display with his own position highlighted by a red square around
his animated icon whilst the Ghosts see both a white square highlighting their an-
imated icon and red flashing square around PAC-LAN. These character highlights
were added after pre-trials revealed players wanted a quicker way of identifying the
most important information.

The Ghosts can ‘kill’ the PAC-LAN character by detecting him/her via an RFID
tag fitted on their costume, assuming their kill timer has not run-out. Once PAC-LAN
is killed the game is over and the points for the game are calculated in the form of
game pills collected and time taken to do so. When PAC-LAN eats one of the red
power pills, indicated by all ghost icons turning white on the screen, he/she is then
able to kill the Ghosts, and thus gain extra points, using the same RFID detection
process. ‘Dead’ ghosts must return to the central point of the game maze where they
can be reactivated into the game. Figure 5 shows a number of typical screens the
PAC-LAN character will experience throughout the game.

The following Fig. 6 highlights a simple game scenario for a Ghost player where
he/she enters the game after a controlled delay. The Ghost player then attempts to
kill PAC-LAN but his kill timer has expired and he/she then falls victim to PAC-
LAN who has subsequently obtained a power pill.

The scoring in the game is simple where the PAC-LAN character gets 50 points
for a normal pill, 150 points for a power pill, 1000 points for collecting all the pills,

MOBILE GAMES: CHALLENGES AND OPPORTUNITIES 229

FIG. 5. PAC-LAN phone UI.

and 500 points for a Ghost kill. The Ghosts get 30 points per pill (this is linked to
the length of the kill timer) and 1000 points for killing PAC-LAN. All players lose 1
point per second to ensure they keep tagging.

Overall the game has now be played by over 60 people and we concluded from
feedback taken of the users’ experiences that the tangible objects and the sound and
vibration alerts greatly enhanced game and made the technology less intrusive in the
experience. Overall, the game has been a great success being perceived as fun to play
and easy to use.

3.3.2 They Howl

This is a location based game written in J2ME and utilises GPS to obtain positional
information as shown in Fig. 7. The GPS unit is not an integrated part of the phone
but rather we exploit the proliferation of GPS units that can be accessed via Bluetooth
which is cheaper and more readily available than integrated solutions.

The premise for the game itself builds on our experiences from PAC-LAN where
sounds were perceived to be the best form of feedback. The use of sounds for the

230 P. COULTON ET AL.

FIG. 6. Ghost phone UI.

major feedback also avoids the ‘pervasive game stoop’ were a player becomes com-
pletely fixated by the display on the mobile device screen they effectively ignores
their surroundings, thus diluting any mixed reality experience. The sounds in this
case are the howls of a wolf pack who are hunting down their prey in a mixed re-
ality landscape. The howls from the wolves enable them to co-ordinate their efforts
when following the virtual ‘scent’ trail left by the prey it flees from the approaching
pack.

The prey leaves a trail of virtual scent markers which are automatically generated
every two minutes by the application. The wolves can detect a marker by coming
within 25 m of the scent marker. Once a wolf has found a scent marker they howl
to the rest of the pack. The howl causes the display on the other wolves’ phones
to indicate the direction they must travel to reach that scent marker which appears
at the centre of the screen. The wolves must then work together to find the next
marker and ultimately track down the prey. The prey also gets an update to his dis-
play showing the position of the pack. The prey is caught if two or more wolves
come within 25 m of the prey, having collected all the scent markers, at which point
they all let out a group howl indicating their presence while the prey emits a death

MOBILE GAMES: CHALLENGES AND OPPORTUNITIES 231

FIG. 7. They Howl splash screen and Howl screen.

gurgle. The prey gains points for the length of time within the game and the distance
travelled. Wolves gain points for both finding the scent markers and capturing the
prey.

Whereas PAC-LAN required a pre formed group to be present at a specific location
They Howl is designed for more spontaneous game play using location although it is
not tied to a specific location. To facilitate this we have create a lobby system which
will allow potential players to gather in any location to play the game. The game area
is normally limited to 1 Km square and potential players can be anywhere within that
square. Once there are a least three players the game can begin or they can wait for
others to join up to a maximum of 10. The game server randomly selects a player to
act as prey whilst the remaining players become wolves.

3.4 Proximity Games

In the previous section we discussed location based games and many of them in-
corporate proximity, in the sense that the user’s location is close to either another
player or a real or virtual artefact within the game. However, none rely solely upon
the proximity between either a player and another player, or the player and a game
artefact, irrespective of the physical location. The most notable example of this type
of game play, although not mobile phone based, is that of Pirates [38] which was
an adventure game using Personal Digital Assistants and RF proximity detection.
Players completed piratical missions by interacting with other players and game arte-
facts using RF proximity detection. One of the interesting aspects that emerged was
the stimulated and spontaneous social interaction between the players. One of the

232 P. COULTON ET AL.

research motivators for this project was to produce a game that provided the oppor-
tunity to bring this type of spontaneous social interaction to mobile phone users. We
believe it is best achieved by removing the requirement for a central game server, as
utilized in Pirates, and utilize a proximity detection scheme that initiates a dynamic
peer to peer connection.

In terms of proximity detection the obvious choice is Bluetooth which despite pre-
vious predictions of its demise is in fact increasing its growth, with Nokia predicting
a year-on-year increase of 65% in 2006. In fact there are already a small number of
mobile Bluetooth proximity applications which are often described as Mobile Social
Software (MoSoSo) and can be viewed as evolutions of Bluejacking. This is a phe-
nomenon where people exploit the contacts feature on their mobile phone to send
messages to other Bluetooth enabled devices in their proximity [39]. Bluejacking
evolved into dedicated software applications such as Mobiluck and Nokia Sensor
which provided a simpler interface, and in the case of Nokia Sensor, individual pro-
files that could be used to initiate a social introduction. There are various examples
of using this technology for social interaction such as Nokia Sensor and Serendipity
[40] but the only gaming example of this type is You-Know-Who from the Univer-
sity of Plymouth which provides a simple game premise to help initiate a meeting.
After scanning for other users running the application and ‘inviting’ a person to play
the game, the first player acts as a ‘mystery person’, who then provides clues about
their appearance to the second player, who builds up a picture on their mobile phone
screen. After a set number of clues have been given, the players’ phones alert, reveal-
ing both players’ locations and identities. Obviously, the game play is quite limited
and effectively non-competitive, which is unlikely to result in repeated game play,
therefore, it is closer to the other MoSoSo applications than a game [41].

3.4.1 Mobslinger
The basic game premise is simple to understand and operate, which is an essential

feature in any game [5]. The relatively low cost of mobile phone games means they
are often very quickly discarded by users if they cannot quickly engage with game-
play. Mobslinger runs as a background application on Symbian Series 60 smartphone
which periodically scans for other users in the vicinity who are also running the
mobslinger application. Once detected, a countdown timer is initiated on both phones
which alerts the user by sounding an alarm and vibrating the phone. The user then has
to ‘draw’ their mobile and enter the randomly generated number which has appeared
on the screen as quickly as possible. The person with the fastest time is the winner
and the loser is ‘killed’, which means their application is locked out from game-play
for a set period of time. The game is playable in a number of different modes which
we will discuss in the following paragraphs both in terms of the operation and their
relative merits [41].

MOBILE GAMES: CHALLENGES AND OPPORTUNITIES 233

FIG. 8. Mobslinger Splashscreen, ‘Draw’ screen and ‘Draw’ screen in Outlaws mode.

3.4.1.1 Quick Draw. This is the basic mode of the game for two mob-
slingers at a time. Once the phones have detected each others presence the first
mobslinger to ‘draw’ their mobile and enter the correct code wins, as shown in Fig. 8.
This mode is intended to promote spontaneous social interaction between two play-
ers, who would generally be unknown to each other, in the form of a ludic greeting.
The loser is locked out of the game for a set period of time and is unable to interact
with other players. This may be a disadvantage for larger social groupings and there-
fore has been addressed in a subsequent mode. The optimum length of the lock out is
something that can only truly be ascertained from the large scale user feedback and
at present we have fixed this at 2 hours.

3.4.1.2 Blood Bath. This is the large scale battle mode (often referred to by
the design team as playground mode), in which two or more mobslingers score points
by beating randomly selected targets to the draw over a set time period. After the time
period has expired the game is ended and the mobslingers’ high score is displayed
on the phone. The mobslingers can then compare scores to ascertain the winner and
allows them an element of schadenfreude (amusement at the misfortune of others).
Because of the intensity of the game play the constant noise may be irritating in some
social situations and this mode is probably best played outside or in a regimented
social setting. This mode does not have the spontaneity of Quick Draw and needs to
be initiated by a preformed social grouping.

3.4.1.3 Last Man Standing. This is a less intensive battle mode than
Blood Bath and is for two or more mobslingers. The aim of the game is to be the
‘last man standing’ after a series of quick draw encounters within a group. Duels are
triggered at randomly timed intervals, so are likely to prove less irritating for the gen-
eral public, and create an air of anticipation amongst the mobslingers. The random
time also means that the group can be engaged in the general social proceedings of

234 P. COULTON ET AL.

the evening and the game effectively provides a humorous side. The game play may
be lengthy and players knocked out in the early stages may lose interest, although
players in search of the more intense experience may opt for Blood Bath mode. As
with Blood Bath mode, this requires an initiation by a preformed social grouping.

3.4.1.4 Outlaws. This is the team mode of the game where groups of mob-
slingers join forces to create ‘Outlaw’ gangs who then go out in the hope of com-
bating other teams. The Outlaw gangs are generally comprised of two or more
mobslingers and offer a mode of play where there is a greater opportunity for tactics
to develop. The game play is similar to Last Man Standing, although the random in-
terval between duels is shorter, and only mobslingers of an opposing set of Outlaws
are selected to play against each other. In this mode, challenges are made and ac-
cepted between gangs. In Fig. 8 we show the ‘Draw’ screen for Outlaw mode where
the player rating is replaced by the gang names. In essence this mode can be viewed
as preformed social groups engaging in the spontaneous encounters of the Quick
Draw mode.

3.4.1.5 Top Gun. We have also included a ranking system into the game to
satisfy the desire of some experienced players being able to differentiate themselves
from novices. The basic player starts out with a one star rating and this is increased
in stages until they reach a 5 star rating as shown in Fig. 8. The levels are based
upon games played, kills made and then their kill/die ratio. The levels are built up
from satisfying a defined minimum for each of these criteria for each advancement
level.

In this section we will not provide a highly detailed description of the imple-
mentation of mobslinger but rather than present a mere technical description. We
shall provide an overview of the design and the design challenges faced. Mobslinger
differs from the vast majority of mobile applications in that it is a background ap-
plication that, once activated, requires no user input. The application will continue
executing in the background of the users normal phone activities until another phone,
with mobslinger running on it, is detected. Proximity detection is achieved using the
Bluetooth discovery protocol to search for other Bluetooth devices in the near vicin-
ity (approximately 10 meters).

Although the proximity detection process sounds fairly simple from the game de-
scription, it is actually the most difficult part to implement. Bluetooth is based upon
a client server architecture which means that it must also have a state where it allows
itself to be discovered in addition to being the discoverer.

To achieve this operation the Bluetooth client server architecture has to be initi-
ated, which involves setting one phone to discovery state (server) and the other to
listening (client). One technical problem faced was how best to alternatively set the

MOBILE GAMES: CHALLENGES AND OPPORTUNITIES 235

phones to each of the states, and determine the length of time in which the phone
should remain in that state. The optimum length of time will be dependent upon the
game mode. For example, in Quick Draw mode where you are looking for sponta-
neous interaction you will not want to operate the Bluetooth too often otherwise it
could drain the mobile battery, alternatively, in Blood Bath mode where you are cre-
ating a social event and you will wish the events to occur more quickly. There is also
a need for a random element to be included in the time between switching modes as
a situation could occur where two phones keep missing each other.

Once a Bluetooth device is found, a socket is opened to search for the mobslinger
game. This is known as device and service detection, which plays a fundamental
part in Bluetooth communication [42]. When a service has been detected, a secure
socket can be set up to transfer data between the two Bluetooth devices. The useful
aspect of Bluetooth service detection is that it can be made application specific; in
other words, we can isolate discovery to devices running mobslinger and ignore any
other Bluetooth devices that may be in the vicinity. Once a secure connection has
been established between the devices, the game can generate a random number that
the user has to press to ‘shoot’ the other person. This also activates a timer which
starts recording when the random number is generated and is stopped when the user
hits the correct key. The person with the fastest shoot-out time is the winner and is
allowed to continue in the game, and in Blood Bath mode gain points. However, the
loser dies and as a consequence is locked out of game play for a specified time, which
is variable dependent upon the game mode. This operation is highlighted in the state
diagram for the game shown in Fig. 9.

The different modes of game play are implemented using the client/server Blue-
tooth architecture which is implemented with one client and one server even for the
multiplayer modes of Blood Bath and Last Man Standing. Whilst it would be feasible
to use one phone as the server and all other phones as clients, this piconet structure
would limit game play to 8 players. In reality, we could only ever shoot one person
at once, therefore, a single connection is only ever needed between two phones, thus
allowing many pairs of phones to fight simultaneously.

The server controls the game play by requesting and sending data to the client
devices. The Bluetooth interaction between the two devices can be seen in Fig. 10.
The game play only requires two messages (after detection) to be sent between the
server and client. Firstly, the client sends a message to the server stating the time
taken for the correct key to be pressed. The server then calculates the winner and
returns a message with the result. The two devices are then disconnected to allow
game play with other mobslingers in the area.

While the game is popular amongst our research group there are a number of
different aspects related to each of the modes that can only be answered by trials
involving significant numbers of users, indeed, for the game to work on a commercial

236 P. COULTON ET AL.

FIG. 9. Mobslinger state diagram.

FIG. 10. Mobslinger Bluetooth client/server transfer.

MOBILE GAMES: CHALLENGES AND OPPORTUNITIES 237

level the more players running the application the better. We are therefore trying to
expand the implementation of mobslingers to other mobile platforms such as UIQ,
J2ME, Windows Mobile, and Python so that we can deploy the software across a
wide range of users as possible.

3.5 IP Multimedia System (IMS)

IP Multimedia Subsystem (IMS) aims to merge the two successful paradigms of
Internet and cellular, and provides access to all the Internet services over cellular.
IMS is an architecture that in essence defines how IP networks should handle voice
and data sessions by replacing circuit switched telecommunications. It is a service
oriented architecture and employs a distributed component model for the applications
running on top of it. This means that it aims to separate the services from the under-
lying networks that carry them. It originated from the Third Generation Partnership
Project (3GPP) (www.3gpp.org) as means of providing 3G mobile operators mi-
grating from the Global System for Mobile Communication (GSM) to deliver more
effective data services. Since then it has been adopted by other standards organiza-
tions for both wire and wireless networks. With SIP as the backbone of the system it
is widely gaining backing from services providers, vendors, application developers
and infrastructure vendors.

The architecture of IMS consists of three layers, namely: the transport layer, the
control layer and the application layer. Since IMS can separate the services from the
underlying carrier, a GPRS enabled mobile phone can connect to IMS equally as
well as a PC connected via a Digital Subscriber Line (DSL). More importantly, in
a mobile environment, where a user has ability to roam, the access independence of
IMS can not only allow both the physical roaming of the user but also provide the
ability for his/her device to roam between various connection methods. For example,
WiFi enabled mobile phones could seamlessly switch between using GPRS or WiFi
and users could even switch from using their handset to PC with the same session
and as the same user. Both of these features ensure that the upper layers are saved
from large amounts of data traffic.

IMS is a platform for creating and delivering a wide range of services. It is only
responsible for connection, state management, QoS and mobility while the actual
data transfer takes place directly amongst devices. Figure 11 shows some services
possible with IMS.

Some of these services can now be offered over circuit switched technology and
additional J2ME APIs are available to create these services. The major drawback
is not only related to the inefficiencies of the circuit switched technology but also
the increased size of application and complexity. If an application was to use the
IMS services API (JSR 281) these functionalities can be obtained from IMS domain

238 P. COULTON ET AL.

FIG. 11. P2P mobile services with IMS.

FIG. 12. Mfooty application screen shots.

itself. To illustrate this principal let us consider a networked mobile application called
Mfooty (www.mfooty.com), shown in Fig. 12, as an example. Mfooty is a networked
mobile application that provides live football updates from English Premier league
to mobile users. The application utilizes a unique protocol to keep the cost to the end
user to a bare minimum [8]. The application also provides a Fantasy Football League
which provides an added community feature. The current version built using MIDP
2.0 involves the mobile device to create periodic requests over the network to check
for the availability of new updates. The application is automated to suspend network
connection when there are no live football games and vice versa. All these requests
have to be initiated by mobile device. The following figure shows screen shots of the
current application.

When IMS infrastructure is available for commercial applications in a few years
time this application can be greatly enhanced and we can take advantage of the SIP,
the signalling protocol for IMS, to sync with the backend game server. A SIP mes-

MOBILE GAMES: CHALLENGES AND OPPORTUNITIES 239

sage initiated by the server can send out request to all mobile clients to take certain
actions or wake up from running as a background process and bring updates to the
display.

Since all the user information is available, Instant Messaging (IM) can be added
to the application without major overheads. Presence of a user can initiate better
community features encouraging users to create their own fantasy league and com-
pete against their friends. As soon as a video highlight is available a signal from
the server can prompt the user with the new information without the device or the
user having to do anything. Depending upon the user settings entire application can
be automated to match the schedule of the football games. So a user will probably
never have to exit the application and it can keep running as a backend process, wake
up on server signal and take necessary actions depending upon user settings e.g.
automatically download video highlights for a certain team or all teams etc.

IMS has got some exciting new services or functionalities to offer. Mobile gaming
is an ever growing industry and IMS is a step forward to utilize its potential even
further.

4. Conclusions

For many years mobile games suffered from the stigma of poor functionality and
usability and have been seen as the poor relations to console and PC games. That
is certainly no longer true; the mobile games industry has now come of age and
is creating a vibrant market in its own right built around the inherent strengths of
mobile communications technology. In this chapter we have highlighted many of
the inherent challenges that the mobile games developer faces but we believe theses
challenges will in fact produce great innovation akin to what was seen in the early
games industry. Further, if these challenges alone do not excite the possible develop-
ers, then the opportunities to create new games experiences that are uniquely mobile
will more than compensate for the challenge and should provide the necessary mo-
tivation. Finally, mobile games offer enormous potential for academic research into
a variety of socio-technical perspectives particularly in relation to human computer
interaction and we hope that this chapter provides a useful source of reference and
stimulus for innovation.

ACKNOWLEDGEMENTS

We would like to express our sincere thanks to Nokia for the general provision
of software and hardware, to the Mobile Radicals research group, within the De-
partment of Communication Systems at Lancaster University UK, to whom all the

240 P. COULTON ET AL.

authors belong. In addition we would also like to thank Symbian for provision of
UIQ phones and for their advice in developing the teaching materials used on our
MSc in Mobile Games Design and M-Commerce Systems.

REFERENCES

[1] Nokia, “The mobile device market”, http://www.nokia.com/nokia/0„73210,00.htm, Au-
gust, 2005.

[2] Palmer, “Mobile phone makers eye booming games market”, http://news.ft.com, August,
2005.

[3] Mobile download charts available at www.elspa.com.
[4] Laramee D.F., Secrets of the Game Business, Charles River Media Inc., Massachusetts,

USA, 2005.
[5] Bateman C., Boon R., 21st Century Game Design, Charles River Media, Massachusetts,

USA, 2005.
[6] Kashi N., “Targeting the casual gamer in the wireless world”, IGDA Online Games Quar-

terly, The Demographic 1 (2) (Spring 2005).
[7] Kiely D., “Wanted: Programmers for handheld devices”, IEEE Computer (May 2001)

12–14.
[8] Coulton P., Rashid O., Edwards R., Thompson R., “Creating entertainment applications

for cellular phones”, ACM Computers in Entertainment 3 (3) (July, 2005).
[9] Forum Nokia, “Designing single-player mobile games”, Version 1.01, September 9th

2003; www.forum.nokia.com.
[10] Forum Nokia, “Multi-player mobile game performance over cellular networks”, Version

1.0, January 20th 2004; www.forum.nokia.com.
[11] Forum Nokia, “Overview of multiplayer mobile game design”, Version 1.1, December

17th 2003; www.forum.nokia.com.
[12] Forum Nokia, “Mobile game playing heuristics”, Version 1.0, March 17th 2005;

www.forum.nokia.com.
[13] Chehimi F., Coulton P., Edwards R., “C++ optimisations for mobile applications”, in: The

Tenth IEEE International Symposium on Consumer Electronics, St.Petersburg, Russia,
June 29–July 1, 2006.

[14] Gooliffe P., “Register access in C++”, C/C++ User, Journal, May 2005.
[15] Edwards R., Coulton P., Clemson H., Series 60 Programming: A Tutorial Guide, ISBN:

0470027657.
[16] The Linux Mobile Phones Showcase, www.linuxdevices.com/articles/AT9423084269.

html, 22nd February 2006.
[17] OSDL mobile Linux initiative, www.osdl.org/lab_activities/mobile_linux/mli/.
[18] Qtopia HomePage, Trolltech, www.trolltech.com/products/qtopia.
[19] Qt, www.trolltech.com/products/qt.
[20] Heni M., Beckermann A., Open Source Game Programming: Qt Games for KDE, PDA’s,

and Windows, Charles River Media, 2005.

MOBILE GAMES: CHALLENGES AND OPPORTUNITIES 241

[21] Forum Nokia, “Flash Lite for S60—an emerging global ecosystem”, white paper, May
2006; www.forum.nokia.com.

[22] Chehimi F., Coulton P., Edwards R., “Evolution of 3D games on mobile phones”, in:
Proc. of IEEE Fourth International Conference on Mobile Business, Sydney Australia,
July 2005, pp. 173–179.

[23] The Khronos Group, “The OpenGL graphics system: A specification”, Version 1.3, Au-
gust 14th 2001; www.khronos.org.

[24] Mahmoud Q., “Getting started with the mobile 3D graphics API for J2ME”, September
21, 2004; http://developers.sun.com/techtopics/mobility/apis/articles/3dgraphics/.

[25] “What’s this hype about hardware acceleration?”, Sony Ericsson, News & Events, De-
cember 14, 2005; http://developer.sonyericsson.com.

[26] Chehimi F., Coulton P., Edwards R., “Advances in 3D graphics for Smartphones”, in:
International Conference on Information & Communication Technologies: From Theory
to Applications, Damascus, Syria, 24–28 April 2006.

[27] Forum Nokia, “Introduction to 3-D graphics on series 60 platform”, Version 1.0, Septem-
ber 23rd 2003; www.forum.nokia.com.

[28] Silfverberg M., MacKenzie I.S., Korhonen P., “Predicting text entry speed on mobile
phones”, in: Proc. of the SIGCHI Conference on Human Factors in Computing Systems,
The Hague, The Netherlands, April 01–06, 2000.

[29] Bamford W., Coulton P., Edwards R., “A massively multi-authored mobile surrealist
book”, in: ACM SIGCHI International Conference On Advances In Computer Enter-
tainment Technology, Hollywood, USA, 14–16 June 2006.

[30] Bamford W., Coulton P., Edwards R., “A surrealist inspired mobile multiplayer game:
Fact or fish?”, in: 1st World Conference for Fun ’n Games, Preston, UK, June 26–28,
2006.

[31] Rashid O., Coulton P., Edwards R., “Implementing location based informa-
tion/advertising for existing mobile phone users in indoor/urban environments”, in: IEEE
4th International Conference on Mobile Business, Sydney Australia, 2005, pp. 377–383.

[32] International Organization for Standardization, “Information Technology – Automatic
Identification and Data Capture Techniques – Bar Code Symbology – QR code”, ISO/IEC
18004, 2000.

[33] Rashid O., Mullins I., Coulton P., Edwards R., “Extending cyberspace: Location based
games using cellular phones”, ACM Computers in Entertainment 4 (1) (2006).

[34] Magerkurth C., Cheok A.D., Mandryk R.L., Nilsen T., “Pervasive games: Bringing com-
puter entertainment back to the real world”, ACM Computers in Entertainment 3 (3) (July,
2005).

[35] Rashid O., Bamford W., Coulton P., Edwards R., Scheibel J., “PAC-LAN: Mixed reality
gaming with RFID enabled mobile phones”, ACM CIE, in press.

[36] Benford S., Anastasi R., Flintham M., Drozd A., Crabtree A., Greenhalgh C., Tandavan-
itja N., Adams M., Row-Farr J., “Coping with uncertainty in a location based game”,
IEEE Pervasive Computing (July–September 2003) 34–41.

[37] Cheok A.D., Goh K.H., Liu W., Farbiz F., Fong S.W., Teo S.L., Li Y., Yang X.B., “Hu-
man pacman: A mobile, wide-area entertainment system based on physical, social, and
ubiquitous computing”, Personal Ubiquitous Computing 8 (2004) 71–81.

242 P. COULTON ET AL.

[38] Björk S., Falk J., Hansson R., Ljungstrand P., “Pirates!—Using the physical world as a
game board”, in: Proc. of Interact 2001, IFIP TC, 13 Conference on Human–Computer
Interaction, Tokyo, 2000.

[39] Jamaluddin J., Zotou N., Edwards R., Coulton P., “Mobile phone vulnerabilities: A new
generation of Malware”, in: IEEE International Symposium on Consumer Electronics,
Reading, UK, ISBN 0-7803-8527-6, 2004, pp. 1–4, ISCE_04_124.

[40] Eagle N., Pentland A., “Social serendipity: Mobilizing social software”, IEEE Pervasive
Computing 4 (2) (2005) 28–34.

[41] Clemson H., Coulton P., Edwards R., Chehimi F. “Mobslinger: The fastest mobile in the
West”, in: 1st World Conference for Fun ’n Games, Preston, UK, June 26–28, 2006, in
press.

[42] J. Bray, C. Sturman, Bluetooth: Connect without cables, Prentice Hall Inc., Upper Saddle
River, NJ 07458, 2001.

Free/Open Source Software Development:
Recent Research Results and Methods

WALT SCACCHI

Institute for Software Research
Donald Bren School of Information and Computer Sciences
University of California, Irvine
Irvine, CA 92697-3425
USA
wscacchi@uci.edu

Abstract
The focus of this chapter is to review what is known about free and open source
software development (FOSSD) work practices, development processes, project
and community dynamics, and other socio-technical relationships. It does not fo-
cus on specific properties or technical attributes of different FOSS systems, but it
does seek to explore how FOSS is developed and evolved. The chapter provides
a brief background on what FOSS is and how free software and open source soft-
ware development efforts are similar and different. From there attention shifts to
an extensive review of a set of empirical studies of FOSSD that articulate dif-
ferent levels of analysis. These characterize what has been analyzed in FOSSD
studies across levels that examine why individuals participate; resources and ca-
pabilities supporting development activities; how cooperation, coordination, and
control are realized in projects; alliance formation and inter-project social net-
working; FOSS as a multi-project software ecosystem, and FOSS as a social
movement. Following this, the chapter reviews how different research methods
are employed to examine different issues in FOSSD. These include reflective
practice and industry polls, survey research, ethnographic studies, mining FOSS
repositories, and multi-modal modeling and analysis of FOSSD processes and
socio-technical networks. Finally, there is a discussion of limitations and con-
straints in the FOSSD studies so far, attention to emerging opportunities for
future FOSSD studies, and then conclusions about what is known about FOSSD
through the empirical studies reviewed here.

ADVANCES IN COMPUTERS, VOL. 69 243 Copyright © 2007 Elsevier Inc.
ISSN: 0065-2458/DOI: 10.1016/S0065-2458(06)69005-0 All rights reserved.

244 W. SCACCHI

1. Introduction . 244
1.1. What Is Free/Open Source Software Development? 245
1.2. Results from Recent Studies of FOSSD . 247

2. Individual Participation in FOSSD Projects . 248
3. Resources and Capabilities Supporting FOSSD . 253

3.1. Personal Software Development Tools and Networking Support 253
3.2. Beliefs Supporting FOSS Development . 254
3.3. FOSSD Informalisms . 255
3.4. Competently Skilled, Self-organizing, and Self-managed Software Developers 256
3.5. Discretionary Time and Effort of Developers 258
3.6. Trust and Social Accountability Mechanisms 259

4. Cooperation, Coordination, and Control in FOSS Projects 260
5. Alliance Formation, Inter-project Social Networking and Community Development 265

5.1. Community Development and System Development 268
6. FOSS as a Multi-project Software Ecosystem . 270

6.1. Co-evolving Socio-technical Systems for FOSS 272
7. FOSS as a Social Movement . 274
8. Research Methods for Studying FOSS . 277

8.1. Reflective Practice and Industry Poll Methods 279
8.2. Survey Research Methods . 279
8.3. Ethnographically Informed Methods . 280
8.4. Mining FOSS Artifact Repositories and Artifact Analysis Methods 281
8.5. Multi-modal Modeling and Analysis of FOSS Socio-technical Interaction Net-

works . 283
9. Discussion . 284

9.1. Limitations and Constraints for FOSS Research 284
10. Conclusions . 286

Acknowledgements . 287
References . 287

1. Introduction

This chapter examines and compares practices, patterns, and processes that emerge
in empirical studies of free/open source software development (FOSSD) projects.
FOSSD is a way for building, deploying, and sustaining large software systems on a
global basis, and differs in many interesting ways from the principles and practices
traditionally advocated for software engineering [117]. Hundreds of FOSS systems
are now in use by thousands to millions of end-users, and some of these FOSS sys-
tems entail hundreds-of-thousands to millions of lines of source code. So what is
going on here, and how are FOSSD processes that are being used to build and sus-

FREE/OPEN SOURCE SOFTWARE DEVELOPMENT 245

tain these projects different, and how might differences be employed to explain what
is going on with FOSSD, and why.

One of the more significant features of FOSSD is the formation and enactment
of complex software development processes and practices performed by loosely co-
ordinated software developers and contributors. These people may volunteer their
time and skill to such effort, and may only work at their personal discretion rather
than as assigned and scheduled. However, increasingly, software developers are be-
ing assigned as part of the job to develop or support FOSS systems, and thus to
become involved with FOSSD efforts. Further, FOSS developers are generally ex-
pected (or prefer) to provide their own computing resources (e.g., laptop computers
on the go, or desktop computers at home), and bring their own software develop-
ment tools with them. Similarly, FOSS developers work on software projects that do
not typically have a corporate owner or management staff to organize, direct, moni-
tor, and improve the software development processes being put into practice on such
projects. But how are successful FOSSD projects and processes possible without
regularly employed and scheduled software development staff, or without an explicit
regime for software engineering project management? What motivates software de-
velopers participate in FOSSD projects? Why and how are large FOSSD projects
sustained? How are large FOSSD projects coordinated, controlled or managed with-
out a traditional project management team? Why and how might these answers to
these questions change over time? These are the kinds of questions that will be ad-
dressed in this chapter.

The remainder of this chapter is organized as follows. The next section provides
a brief background on what FOSS is and how free software and open source soft-
ware development efforts are similar and different. From there attention shifts to an
extensive review of a set of empirical studies of FOSSD that articulate different lev-
els of analysis. Following this, the chapter reviews how different research methods
are employed to examine different issues in FOSSD. Finally, there is a discussion of
limitations and constraints in the FOSSD studies so far, attention to emerging oppor-
tunities for future FOSSD studies, and then conclusions about what is known about
FOSSD through the empirical studies reviewed here.

1.1 What Is Free/Open Source Software Development?

Free (as in freedom) software and open source software are often treated as the
same thing [28,29,63]. However, there are differences between them with regards
to the licenses assigned to the respective software. Free software generally appears
licensed with the GNU General Public License (GPL), while OSS may use either
the GPL or some other license that allows for the integration of software that may
not be free software. Free software is a social movement (cf. [24]), whereas OSSD

246 W. SCACCHI

is a software development methodology, according to free software advocates like
Richard Stallman and the Free Software Foundation [36]. Yet some analysts also see
OSS as a social movement distinct from but related to the free software movement.
The hallmark of free software and most OSS is that the source code is available for
remote access, open to study and modification, and available for redistribution to
other with few constraints, except the right to insure these freedoms. OSS sometimes
adds or removes similar freedoms or copyright privileges depending on which OSS
copyright and end-user license agreement is associated with a particular OSS code
base. More simply, free software is always available as OSS, but OSS is not always
free software.1 This is why it often is appropriate to refer to FOSS or FLOSS (L for
Libre, where the alternative term “libre software” has popularity in some parts of the
world) in order to accommodate two similar or often indistinguishable approaches to
software development. Subsequently, for the purposes of this article, focus is directed
at FOSSD practices, processes, and dynamics, rather than to software licenses though
such licenses may impinge on them. However, when appropriate, particular studies
examined in this review may be framed in terms specific to either free software or
OSS when such differentiation is warranted.

FOSSD is mostly not about software engineering, at least not as SE is portrayed
in modern SE textbooks (cf. [117]). FOSSD is not SE done poorly. It is instead a
different approach to the development of software systems where much of the de-
velopment activity is openly visible, and development artifacts are publicly available
over the Web. Furthermore, substantial FOSSD effort is directed at enabling and fa-
cilitating social interaction among developers (and sometimes also end-users), but
generally there is no traditional software engineering project management regime,
budget or schedule. FOSSD is also oriented towards the joint development of an
ongoing community of developers and users concomitant with the FOSS system of
interest.

FOSS developers are typically also end-users of the FOSS they develop, and other
end-users often participate in and contribute to FOSSD efforts (cf. [4,8]). There is
also widespread recognition that FOSSD projects can produce high quality and sus-
tainable software systems that can be used by thousands to millions of end-users
[81]. Thus, it is reasonable to assume that FOSSD processes are not necessarily of
the same type, kind, or form found in modern SE projects (cf. [117]). While such
approaches might be used within an SE project, there is no basis found in the prin-
ciples of SE laid out in textbooks that would suggest SE projects typically adopt or
should practice FOSSD methods. Subsequently, what is known about SE processes,
or modeling and simulating SE processes, may not be equally applicable to FOSSD

1 Thus at times it may be appropriate to distinguish conditions or events that are generally associated or
specific to either free software development or OSSD, but not both.

FREE/OPEN SOURCE SOFTWARE DEVELOPMENT 247

processes without some explicit rationale or empirical justification. Thus, it is appro-
priate to survey what is known so far about FOSSD.

1.2 Results from Recent Studies of FOSSD

There are a growing number of studies that offer some insight or findings on
FOSSD practices each in turn reflects on different kinds of processes that are not
well understood at this time. The focus in this chapter is directed to empirical studies
of FOSSD projects using small/large research samples and analytical methods drawn
from different academic disciplines. Many additional studies of FOSS can be found
within a number of Web portals for research papers that empirically or theoretically
examine FOSSD projects. Among them are those at MIT FOSS research commu-
nity portal (opensource.mit.edu) with 200 or so papers already contributed, and also
at Cork College in Ireland (opensource.ucc.ie) that features links to multiple spe-
cial issue journals and proceedings from international workshops of FOSS research.
Rather than attempt to survey the complete universe of studies in these collections,
the choice instead is to sample a smaller set of studies that raise interesting issues or
challenging problems for understanding what affects how FOSSD efforts are accom-
plished, as well as what kinds of socio-technical relationships emerge along the way
to facilitate these efforts.

One important qualifier to recognize is that the studies below generally examined
carefully identified FOSSD projects or a sample of projects, so the results presented
should not be assumed to apply to all FOSSD projects, or to projects that have not
been studied. Furthermore, it is important to recognize that FOSSD is no silver bul-
let that resolves the software crisis. Instead it is fair to recognize that most of the
nearly 130,000 FOSSD projects associated with Web portals like SourceForce.org
have very small teams of two or less developers [77,78], and many projects are inac-
tive or have yet to release any operational software. However, there are now at least
a few thousand FOSSD projects that are viable and ongoing. Thus, there is a suffi-
cient universe of diverse FOSSD projects to investigate, analyze, and compare in the
course of moving towards an articulate and empirically grounded theory or model of
FOSSD. Consequently, consider the research findings reported or studies cited below
as starting points for further investigation, rather than as defining characteristics of
most or all FOSSD projects or processes.

Attention now shifts to an extensive review of a sample of empirical studies of
FOSSD that are grouped according to different levels of analysis. These charac-
terize what has been analyzed in FOSSD studies across levels that examine why
individuals participate in FOSSD efforts; what resources and capabilities shared by
individuals and groups developing FOSS; projects as organizational form for coop-
erating, coordinating, and controlling FOSS development effort; alliance formation

248 W. SCACCHI

and inter-project social networking; FOSS as a multi-project software ecosystem,
and FOSS as a social movement. These levels thus span the study of FOSSD from
individual participant to social world. Each level is presented in turn, though the re-
sults of some studies span more than one level. Along the way, figures from FOSSD
studies or data exhibits collected from FOSSD projects will be employed to help
illustrate concepts described in the studies under review.

2. Individual Participation in FOSSD Projects

One of the most common questions about FOSSD projects to date is why will soft-
ware developers join and participate in such efforts, often without pay for sustained
periods of time. A number of surveys of FOSS developers [33,42,65,46,45,49] have
posed such questions, and the findings reveal the following.

There are complex motivations for why FOSS developers are willing to allocate
their time, skill, and effort by joining a FOSS project [33,49,122]. Sometimes they
may simply see their effort as something that is fun, personally rewarding, or pro-
vides a venue where they can exercise and improve their technical competence in
a manner that may not be possible within their current job or line of work [12].
However, people who participate, contribute, and join FOSS projects tend to act in
ways where building trust and reputation [118], achieving “geek fame” [92], being
creative [32], as well as giving and being generous with one’s time, expertise, and
source code [3] are valued traits that accrue social capital. In the case of FOSS for
software engineering design systems, participating in such a project is a viable way
to maintain or improve software development skills, as indicated in Exhibit 1 drawn
from the Tigris.org open source software engineering community portal.

Becoming a central actor (or node) in a social network of software developers
that interconnects multiple FOSS projects is also a way to accumulate social capi-
tal and recognition from peers. Hars and Ou [46] report that based on their survey
60% or more FOSS developers participate in two or more projects, and on the order
of 5% participate in 10 or more FOSS projects. Many FOSS developers therefore
participate in and contribute to multiple FOSSD projects. However, a small group
of developers who control the software system architecture and project direction are
typically responsible for developing the majority of source code that becomes part of
FOSS released by a project (cf. [81]). Subsequently, most participants typically con-
tribute to just a single module, though a small minority of modules may be include
patches or modifications contributed by hundreds of contributors [42]. In addition,
participation in FOSS projects as a core developer can realize financial rewards in
terms of higher salaries for conventional software development jobs [45,70]. How-
ever, it also enables the merger of independent FOSS systems into larger composite

FREE/OPEN SOURCE SOFTWARE DEVELOPMENT 249

EXHIBIT 1. An example in the bottom paragraph highlighting career/skill development opportunities
that encourage participation in FOSSD projects. (Source: http://www.tigris.org, June 2006.)

ones that gain the critical mass of core developers to grow more substantially and
attract ever larger user-developer communities [78,103].

People who participate in FOSS projects do so within one or more roles. Classi-
fications of the hierarchy of roles that people take and common tasks they perform

250 W. SCACCHI

EXHIBIT 2. Joining the OGRE FOSS development team by roles/level. (Source: http://www.
ogre3d.org/index.php?option=com_content&task=view&id=333&Itemid=87, June 2005.)

when participating in a FOSS project continue to appear [10,37,59,130]. Exhibit 2
from the Object-Oriented Graphics Rendering Engine (OGRE) project provides a
textual description of the principal roles (or “levels”) in that project community.
Typically, it appears that people join a project and specialize in a role (or multiple
roles) they find personally comfortable and intrinsically motivating [122]. In contrast
to traditional software development projects, there is no explicit assignment of de-
velopers to roles, though individual FOSSD projects often post guidelines or “help
wanted here” for what roles for potential contributors are in greatest need. Exhibit 3
provides an example drawn from popular FOSS mpeg-2 video player, the VideoLAN
Client (VLC).

It is common in FOSS projects to find end-users becoming contributors or devel-
opers, and developers acting as end-users [81,83,101,121]. As most FOSS developers

FREE/OPEN SOURCE SOFTWARE DEVELOPMENT 251

VideoLAN needs your help
2006-06-19
There are many things that we would like to improve in VLC, but that
we don’t, because we simply don’t have enough time. That’s why we
are currently looking for some help. We have identified several small
projects that prospective developers could work on. Knowledge of C
and/or C++ programming will certainly be useful, but you don’t need
to be an expert, nor a video expert. Existing VLC developers will be
able to help you on these projects. You can find the list and some
instructions on the dedicated Wiki page. Don’t hesitate to join us on
IRC or on the mailing-lists. We are waiting for you!

EXHIBIT 3. An example request for new FOSS developers to come forward and contribute their as-
sistance to developing more functionality to the VLC system. (Source: http://www.videolan.org/, June
2006.)

FIG. 1. A visual depiction of role hierarchies within a project community. (Source: Jensen and Scac-
chi [60]. Also see Kim [61].)

are themselves end-users of the software systems they build, they may have an occu-
pational incentive and vested interest in making sure their systems are really useful.
However the vast majority of participants probably simply prefer to be users of FOSS
systems, unless or until their usage motivates them to act through some sort of con-
tribution. Avid users with sufficient technical skills may actually work their way
up (or “level up”) through each of the roles and eventually become a core devel-
oper (or “elder”), as suggested by Fig. 1. As a consequence, participants within
FOSS project often participate in different roles within both technical and social
networks [75,76,96,103,113] in the course of developing, using, and evolving FOSS
systems.

252 W. SCACCHI

Making contributions is often a prerequisite for advancing technically and so-
cially within an ongoing project, as is being recognized by other project members
for having made substantive contributions [30,61]. Most commonly, FOSS project
participants contribute their time, skill and effort to modify or create different types
of software representations or content (source code, bug reports, design diagrams,
execution scripts, code reviews, test case data, Web pages, email comments, online
chat, etc.) to Web sites of the FOSS projects they join. The contribution—the author-
ing, hypertext linking (when needed), and posting/uploading—of different types of
content helps to constitute an ecology of document genres [26,116] that is specific to
a FOSS project, though individual content types are widely used across most FOSS
projects. Similarly, the particular mix of online documents employed by participants
on a FOSS project articulates an information infrastructure for framing and solving
problems that arise in the ongoing development, deployment, use, and support of the
FOSS system at the center of a project.

Administrators of FOSS project Web sites and source code repositories serve as
gatekeepers in the choices they make for what information to post, when and where
within the site to post it, as well as what not to post (cf. [47,51,113]). Similarly, they
may choose to create a site map that constitutes a classification of site and domain
content, as well as outlining community structure and boundaries.

Most frequently, participants in FOSS projects engage in online discussion fo-
rums or threaded email messages as a central way to observe, participate in, and
contribute to public discussions of topics of interest to ongoing project participants
[128]. However, these people also engage in private online or offline discussions that
do not get posted or publicly disclosed, due to their perceived personal or sensitive
content.

FOSS developers generally find the greatest benefit from participation is the op-
portunity to learn and share what they know about software system functionality,
design, methods, tools, and practices associated with specific projects or project
leaders [33,42,65]. FOSSD is a venue for learning by individuals, project groups,
and organizations. Learning organizations are ones that can continuously improve or
adapt their processes and practices [53,130]. However, though much of the develop-
ment work in FOSSD projects is unpaid or volunteer, individual FOSS developers
often benefit with higher average wages and better employment opportunities (at
present), compared to their peers lacking FOSSD experience or skill [45,70].

Consequently, how and why software developers will join, participate in, and con-
tribute to an FOSSD project seems to represent a new kind of process affecting how
FOSS is developed and maintained (cf. [5,59,103,122]). Subsequently, discovering,
observing, modeling, analyzing, and simulating what this process is, how it oper-
ates, and how it affects software development is an open research challenge for the
software process research community.

FREE/OPEN SOURCE SOFTWARE DEVELOPMENT 253

Studies have also observed and identified the many roles that participants in an
FOSSD project perform [37,60,130]. These roles are used to help explain who
does what, which serves as a precursor to explanations of how FOSSD practices or
processes are accomplished and hierarchically arrayed. However such a division of
labor is dynamic, rather than static or fixed. This means that participants can move
through different roles throughout the course of a project over time depending on
their interest, commitment, and technical skill (as suggested in Fig. 1). Typically,
participants start at the periphery of a project in the role of end-user by downloading
and using the FOSS associated with the project. They can then move into roles like
bug-reporter, code reviewer, code/patch contributor, module owner (development co-
ordinator), and eventually to core developer or project leader. Moving through these
roles requires effort, and the passage requires being recognized by other partici-
pants as a trustworthy and accomplished contributor in the progressively advancing
roles.

Role-task migration can and does arise within FOSSD projects, as well as across
projects [60]. Social networking, software sharing, and project internetworking en-
ables this. But how do individual or collective processes or trajectories for role-task
migration facilitate or constrain how FOSSD occurs? Role-task migration does not
appear as a topic addressed in traditional SE textbooks or studies (see [112] for a no-
table exception), yet it seems to be a common observation in FOSSD projects. Thus,
it seems that discovering, modeling, simulating or re-enacting (cf. [59]) how individ-
ual developers participate in a FOSSD effort through a role-task migration process,
and how it affects or contributes to other software development or quality assurance
processes, is an area requiring further investigation.

3. Resources and Capabilities Supporting FOSSD

What kinds of resources or development capabilities are needed to help make
FOSS efforts more likely to succeed? Based on what has been observed and re-
ported across many empirical studies of FOSSD projects, the following kinds of
socio-technical resources enable the development of both FOSS software and ongo-
ing project that is sustaining its evolution, application and refinement, though other
kinds of resources may also be involved [101,103,105].

3.1 Personal Software Development Tools and Networking
Support

FOSS developers, end-users, and other volunteers often provide their own per-
sonal computing resources in order to access or participate in a FOSS development

254 W. SCACCHI

project. They similarly provide their own access to the Internet, and may even host
personal Web sites or information repositories. Furthermore, FOSS developers bring
their own choice of tools and development methods to a project. Sustained com-
mitment of personal resources helps subsidize the emergence and evolution of the
ongoing project, its shared (public) information artifacts, and resulting open source
code. It spreads the cost for creating and maintaining the information infrastructure
of the virtual organization that constitute a FOSSD project [12,23,84]. These in turn
help create recognizable shares of the FOSS commons (cf. [2,41,72,89]) that are
linked (via hardware, software, and Web) to the project’s information infrastructure.

3.2 Beliefs Supporting FOSS Development
Why do software developers and others contribute their skill, time, and effort to

the development of FOSS and related information resources? Though there are prob-
ably many diverse answers to such a question, it seems that one such answer must
account for the belief in the freedom to access, study, modify, redistribute and share
the evolving results from a FOSS development project. Without such belief, it seems
unlikely that there could be “free” and “open source” software development projects
[17,16,35,36,92,127]. However, one important consideration that follows is what the
consequences from such belief are, and how these consequences are realized or put
into action.

In a longitudinal study of the free software project GNUenterprise.org, Elliott
and Scacchi [22–24] identified many kinds of beliefs, values, and social norms that
shaped actions taken and choices made in the development of the GNUe software.
Primary among them were freedom of expression and freedom of choice. Neither of
these freedoms is explicitly declared, assured, or protected by free software copyright
or commons-based intellectual property rights, or end-user license agreements (EU-
LAs).2 However, they are central tenets free or open source modes of production and
culture [2,41,72]. In particular, in FOSS projects like GNUenterprise.org and oth-
ers, these additional freedoms are expressed in choices for what to develop or work
on (e.g., choice of work subject or personal interest over work assignment), how to
develop it (choice of technical method to use instead of a corporate standard), and
what tools to employ (choice over which personal tools to employ versus only using
what is provided by management authorities). They also are expressed in choices for
when to release work products (choice of satisfaction of work quality over schedule
or market imperatives), determining what to review and when (modulated by ongo-
ing project ownership responsibility), and expressing what can be said to whom with

2 EULAs associated with probably all software often seek to declare “freedom from liability” from
people who want to use licensed software for intended or unintended purposes. But a belief in liability
freedom is not the focus here.

FREE/OPEN SOURCE SOFTWARE DEVELOPMENT 255

or without reservation (modulated by trust and accountability mechanisms). Shared
belief and practice in these freedoms of expression and choice are part of the virtual
organizational culture that characterizes a FOSSD project like GNUenterprise.org
[23]. Subsequently, putting these beliefs and cultural resources into action continues
to build and reproduce the socio-technical interactions networks that enable sustained
FOSSD projects and free software.

3.3 FOSSD Informalisms

Software informalisms [101] are the information resources and artifacts that partic-
ipants use to describe, proscribe, or prescribe what’s happening in a FOSSD project.
They are informal narrative resources that coalesce into online document genres (fol-
lowing [64,116]) that are comparatively easy to use, and publicly accessible to those
who want to join the project, or just browse around. Subsequently, Scacchi [101]
demonstrates how software informalisms can take the place of formalisms like “re-
quirement specifications” or software design notations, which traditionally are seen
as necessary to develop high quality software according to the software engineering
community (cf. [117]). Yet these software informalisms often capture the detailed
rationale and debates for why changes were made in particular development activ-
ities, artifacts, or source code files. Nonetheless, the contents these informalisms
embody require extensive review and comprehension by a developer before further
contributions can be made (cf. [66]), and FOSS developers will alert one another
when someone proposes a change that does not cite or acknowledge what has been
previously discussed.

The most common informalisms used in FOSSD projects include (i) communica-
tions and messages within project Email, (ii) threaded message discussion forums,
bulletin boards, or group blogs, (iii) news postings, (iv) project digests, and (v) in-
stant messaging or Internet relay chat. They also include (vi) scenarios of usage as
linked Web pages, (vii) how-to guides, (viii) to-do lists, (ix) FAQs, and other item-
ized lists, and (x) project Wikis, as well as (xi) traditional system documentation
and (xii) external publications. FOSS (xiii) project copyright licenses are docu-
ments that also help to define what software or related project content are protected
resources that can subsequently be shared, examined, modified, and redistributed. Fi-
nally, (xiv) open software architecture diagrams, (xv) intra-application functionality
realized via scripting languages like Perl and PhP, and the ability to either (xvi) in-
corporate plug-in externally developer software modules, or (xvii) integrate software
modules from other OSSD efforts, are all resources that are used informally, where
or when needed according to the interests or actions of project participants.

256 W. SCACCHI

All of the software informalisms are found or accessed from (xix) project related
Web sites or portals. These Web environments where most FOSS software infor-
malisms can be found, accessed, studied, modified, and redistributed [101].

A Web presence helps make visible the project’s information infrastructure and
the array of information resources that populate it. These include FOSSD multi-
project Web sites (e.g., SourgeForge.net, Savanah.org, Freshment.org, Tigris.org,
Apache.org, Mozilla.org), community software Web sites (PhP-Nuke.org), and
project-specific Web sites (e.g., www.GNUenterprise.org), as well as (xx) embed-
ded project source code Webs (directories), (xxi) project repositories (CVS [34]),
and (xxii) software bug reports and (xxiii) issue tracking data base like Bugzilla (see
http://www.bugzilla.org/).

Together, these two-dozen or so types of software informalisms constitute a sub-
stantial yet continually evolving web of informal, semi-structured, or processable
information resources. This web results from the hyperlinking and cross-referencing
that interrelate the contents of different informalisms together. Subsequently, these
FOSS informalisms are produced, used, consumed, or reused within and across
FOSS development projects. They also serve to act as both a distributed virtual repos-
itory of FOSS project assets, as well as the continually adapted distributed knowledge
base through which project participants evolve what they know about the software
systems they develop and use.

3.4 Competently Skilled, Self-organizing, and Self-managed
Software Developers

Developing complex software modules for FOSS applications requires skill and
expertise in a target application domain. For example, contributing to a FOSSD
project like Filezilla3 requires knowledge and skill in handling file transfer condi-
tions, events, and protocols. Developing FOSS modules or applications in a way
that enables an open architecture requires a base of prior experience in construct-
ing open systems. The skilled use of project management tools for tracking and
resolving open issues, and also for bug reporting and resolution, contribute to the
development of a project’s socio-technical system architecture. These are among the
valuable professional skills that are mobilized, brought to, or drawn to FOSS devel-
opment projects (cf. [12,11]). These skills are resources that FOSS developers bring
to their projects.

FOSS developers organize their work as a virtual organizational form that seems
to differ from what is common to in-house, centrally managed software develop-
ment projects, which are commonly assumed in traditional software engineering

3 See http://filezilla.sourceforge.org.

FREE/OPEN SOURCE SOFTWARE DEVELOPMENT 257

textbooks. Within in-house development projects, software application developers
and end-users often are juxtaposed in opposition to one another (cf. [13,62]). Histor-
ically, Danziger [14] referred to this concentration of software development skills,
and the collective ability of an in-house development organization to control or mit-
igate the terms and conditions of system development as a “skill bureaucracy.” Such
a software development skill bureaucracy would seem to be mostly concerned with
rule-following and rationalized decision-making, perhaps as guided by a “software
development methodology” and its corresponding computer-aided software engi-
neering tool suite.

In the decentralized virtual organization of a large ongoing FOSSD project like the
Apache.org or Mozilla.org, a “skill meritocracy” (cf. [30]) appears as an alternative
to the skill bureaucracy. In such a meritocracy, there is no proprietary software de-
velopment methodology or specific tool suite in use. Similarly, there are few explicit
rules about what development tasks should be performed, who should perform them,
when, why, or how. However, this is not to say there are no rules that serve to govern
the project or collective action within it.

The rules of governance and control are informally articulated but readily recog-
nized by project participants. These rules serve to control the rights and privileges
that developers share or delegate to one another in areas such as who can commit
source code to the project’s shared repository for release and redistribution (cf. [34,
35]). Similarly, rules of control are expressed and incorporated into the open source
code itself in terms of how, where, and when to access system-managed data via ap-
plication program interfaces, end-user interfaces, or other features or depictions of
overall system architecture. But these rules may and do get changed through ongoing
project development.

Subsequently, FOSS project participants self-organize around the expertise, repu-
tation, and accomplishments of core developers, secondary contributors, and tertiary
reviewers and other peripheral volunteers [15,67]. This in turn serves to help cre-
ate an easily assimilated basis for their collective action in developing FOSS (cf. [2,
79,86,89]). Thus, there is no assumption of a communal or egalitarian authority nor
utopian spirit. Instead what can be seen is a pragmatic, continuously negotiated order
that tries to minimize the time and effort expended in mitigating decision-making
conflicts while encouraging cooperation through reiterated and shared beliefs, val-
ues, norms, and other mental models [23,27].

Participants nearer the core have greater control and discretionary decision-
making authority, compared to those further from the core (cf. [10,15,67]). However,
realizing such authority comes at the price of higher commitment of personal re-
sources described above. Being able to make a decision stick or to convince other
project participants as to the viability of a decision, advocacy position, issue or bug
report, also requires time, effort, communication, and creation of project content

258 W. SCACCHI

to substantiate such an action. This authority also reflects developer experience as
an interested end-user of the software modules being developed. Thus, developers
possessing and exercising such skill may be intrinsically motivated to sustain the
evolutionary development of their FOSS modules, so long as they are active partici-
pants in their project.

3.5 Discretionary Time and Effort of Developers

Are FOSS developers working for “free” or for advancing their career and profes-
sional development? Following the survey results of Hars and Ou [46] and others [33,
45,49,65,70], there are many personal and professional career oriented reasons for
why participants will contribute their time and effort to the sometimes difficult and
demanding tasks of software development. Results from case studies in free software
projects like GNUenterprise.org appear consistent with these observations [22–24].
These include self-determination, peer recognition, project affiliation or identifica-
tion, and self-promotion, but also belief in the inherent value of free software (cf.
[17,16,35,36,92,127]).

In the practice of self-determination, no one has the administrative authority to
tell a project member what to do, when, how, or why. FOSS developers can choose
to work on what interests them personally. FOSS developers, in general, work on
what they want, when they want. However, they remain somewhat accountable to
the inquiries, reviews, and messages of others in the ongoing project, particularly
with regard to software modules or functions for which they have declared their
responsibility to maintain or manage as a core developer.

In the practice of peer recognition, a developer becomes recognized as an increas-
ingly valued project contributor as a growing number of their contributions make
their way into the core software modules [2,3]. In addition, nearly two-thirds of
OSS developers work on 1–10 additional OSSD projects [46,78], which also reflect
a growing social network of alliances across multiple FOSS development projects
(cf. [82,103]). Project contributors who span multiple FOSS project communities
serve as “social gateways” that increase the ongoing project’s social mass ([cf. [79]),
as well as affording opportunities for inter-project software composition and in-
teroperation [58]. It also enables and empowers their recognition across multiple
communities of FOSSD peers, which in turn reinforces their willingness to con-
tribute their time and effort to FOSSD project communities.

In self-promotion, project participants communicate and share their experiences,
perhaps from other application domains or work situations, about how to accom-
plish some task, or how to develop and advance through one’s career. Being able
to move from the project periphery towards the center or core of the development
effort requires not only the time and effort of a contributor, but also the ability to

FREE/OPEN SOURCE SOFTWARE DEVELOPMENT 259

communicate, learn from, and convince others as to the value or significance of the
contributions made ([cf. [59,67]). This is necessary when a participant’s contribution
is being questioned in open project communications, not incorporated (or “commit-
ted”) within a new build version, or rejected by vote of those already recognized as
core developers (cf. [30]).

The last source of discretionary time and effort that has been reported is found in
the freedoms and beliefs in FOSSD that are shared, reiterated and put into observable
interactions. If a project participant fails to sustain or reiterate the freedoms and be-
liefs codified in the GPL, then it is likely the person’s technical choice in the project
may be called into question [22,23], or the person will leave the project. But under-
standing how these freedoms and beliefs are put into action points to another class of
resources (i.e., sentimental resources) that must be mobilized and brought to bear in
order to both develop FOSS systems and the global communities that surround and
empower them. Social values that reinforce and sustain the ongoing project and tech-
nical norms regarding which software development tools and techniques to use (e.g.,
avoid the use of “non-free” software), are among the sentimental resources that are
employed when participants seek to influence the choices that others in the project
seek to uphold.

3.6 Trust and Social Accountability Mechanisms

Developing complex FOSS source code and applications requires trust and ac-
countability among project participants. Though trust and accountability in a FOSSD
project may be invisible resources, ongoing software and project development work
occur only when these intangible resources and mechanisms for social control are
present ([cf. [38,50]).

These intangible resources (or social capital) arise in many forms. They include
(a) assuming ownership or responsibility of a community software module, (b) vot-
ing on the approval of individual action or contribution to ongoing project software
[30], (c) shared peer reviewing [2,17,16], and (d) contributing gifts [3] that are
reusable and modifiable common goods [86,41,72]. They also exist through the
project’s recognition of a core developer’s status, reputation, and geek fame [92].
Without these attributions, developers may lack the credibility they need to bring
conflicts over how best to proceed to some accommodating resolution. Finally, as a
FOSSD project grows in terms of the number of contributing developers, end-users,
and external sponsors, then project’s socio-technical mass (i.e., web of interacting
resources) becomes sufficient to insure that individual trust and accountability to the
project are sustained and evolving [79].

Thus, FOSSD efforts rely on mechanisms and conditions for gentle but suffi-
cient social control that helps constrain the overall complexity of the project. These

260 W. SCACCHI

constraints act in lieu of an explicit administrative authority or software project
management regime that would schedule, budget, staff, and control the project’s de-
velopment trajectory with varying degrees of administrative authority and technical
competence (cf. [117]).

4. Cooperation, Coordination, and Control in FOSS
Projects

Getting software developers to work together, even when they desire to cooperate
is not without its challenges for coordinating and controlling who does what when,
and to what they do it to. Conflicts arise in both FOSSD [22,23,57] and traditional
software development projects [100], and finding ways to resolve conflicts becomes
part of the cost (in terms of social capital) that must be incurred by FOSS devel-
opers for development progress to occur. Minimizing the occurrence, duration, and
invested effort in such conflicts quickly becomes a goal for the core developers in an
FOSSD project. Similarly, finding tools and project organizational forms that min-
imize or mitigate recurring types of conflicts also becomes a goal for experienced
core developers.

Software version control tools such as the concurrent versions system CVS—
itself an FOSS system and document base [34]—have been widely adopted for use
within FOSS projects (cf. [17,16,29,35,92]). Tools like CVS are being used as both
(a) a centralized mechanism for coordinating and synchronizing FOSS development,
as well as (b) an online venue for mediating control over what software enhance-
ments, extensions, or architectural revisions will be checked-in and made available
for check-out throughout the decentralized project as part of the publicly released
version (cf. [90]).

Software version control, as part of a software configuration management ac-
tivity, is a recurring situation that requires coordination but enables stabilization
and synchronization of dispersed and somewhat invisible development work. This
coordination is required due to the potential tension between centralized decision-
making authority of a project’s core developers and decentralized work activity of
project contributors when two or more autonomously contributed software source
code/content updates are made which overlap, conflict with one another, or generate
unwanted side-effects. It is also practiced as a way to manage, track, and control both
desired and undesired dependencies within the source code [15], as well as among
its surrounding informalisms [101,102]. Tools like CVS thus serve to help manage
or mitigate conflicts over who gets to modify what, at least as far as what changes or
updates get included in the next software release from a project. However, the CVS

FREE/OPEN SOURCE SOFTWARE DEVELOPMENT 261

administrator or configuration control policies provide ultimate authority and control
mediated through such systems.

Each project team, or CVS repository administrator in it, must decide what can be
checked in, and who will or will not be able to check-in new or modified software
source code content. Sometimes these policies are made explicit through a voting
scheme [30], or by reference to coding or data representation standards [55], while
in others they are left informal, implicit, and subject to negotiation as needed. In ei-
ther situation, version updates must be coordinated in order for a new system build
and release to take place. Subsequently, those developers who want to submit updates
to the project’s shared repository rely extensively on online discussions that are sup-
ported using “lean media” such as threaded messages (via discussion forum, bulletin
board, or similar) posted on a Web site [128], rather than through onerous system
configuration control committees. Thus, software version control, system build and
release are a coordination and control process mediated by the joint use of version-
ing, system building, and communication tools [25].

FOSSD projects teams can take the organizational form of a layered or pyramid
meritocracy (cf. [30,61,102]) operating as a dynamically organized virtual enterprise
[12,84]. A layered meritocracy is a hierarchical organizational form that central-
izes and concentrates certain kinds of authority, trust, and respect for experience
and accomplishment within the team (cf. [10]). Such an organizational form also
makes administrative governance more tractable and suitable, especially when a
FOSS project seeks to legally constitute a non-profit foundation to better address
its legal concerns and property rights [87]. However, it does not necessarily imply
the concentration of universal authority into a single individual or directorial board,
since decision-making may be shared among core developers who act as peers at
the top layer, and they may be arrayed into overlapping groups with other project
contributors with different responsibilities and interest areas.

As seen earlier in Fig. 1, there is a layered or pyramidal form of a meritocracy com-
mon to many FOSS projects. In this form, software development work appears to be
logically centralized, while being physically distributed in an autonomous and de-
centralized manner [84]. However, it is neither simply a “cathedral” nor a “bazaar,”
as these terms have been used to describe alternative ways of organizing FOSSD
projects. Instead, when layered meritocracy operates as a virtual enterprise, it relies
on virtual project management (VPM) to mobilize, coordinate, control, build, and
assure the quality of FOSS development activities. It may invite or encourage sys-
tem contributors to come forward and take a shared, individual responsibility that
will serve to benefit the FOSS collective of user-developers. VPM requires multi-
ple people to act in the roles of team leader, sub-system manager, or system module
owner in a manner that may be short-term or long-term, based on their skill, ac-
complishments, availability and belief in ongoing project development. This implied

262 W. SCACCHI

EXHIBIT 4. Description of virtual project management skills implied for a “Team Leader.” (Source:
http://www.planeshift.it/main_01.html, October 2003; also in Scacchi [102].)

requirement for virtual project management can be seen within Exhibit 4, from the
FOSS project developing Planeshift, a free massively multiplayer online role-playing
game.

FREE/OPEN SOURCE SOFTWARE DEVELOPMENT 263

Project participants higher up in the meritocracy have greater perceived authority
than those lower down. But these relationships are only effective as long as everyone
agrees to their makeup and legitimacy. Administrative or coordination conflicts that
cannot be resolved may end up either by splitting or forking a new system version
with the attendant need to henceforth take responsibility for maintaining that version
(cf. [55]), by reducing one’s stake in the ongoing project, or by simply conceding the
position in conflict.

Virtual project management exists within FOSS communities to enable control
via project decision-making, Web site administration, and CVS repository adminis-
tration in an effective manner. Similarly, VPM exists to mobilize and sustain the use
of privately owned resources (e.g., Web servers, network access, site administrator
labor, skill and effort) available for shared use or collective reuse by the ongoing
project. Traditional software project management stresses planning and control ac-
tivities. In contrast, Lessig [71] and others [15,47,66,101] observe that source code
and other online artifacts are an institutional forum for collective action [87,89] that
intentionally or unintentionally realizes a mode of social control on those people who
develop or use it.

In the case of FOSS development, Lessig’s observation would suggest that the
source code controls or constrains end-user and developer interaction, while the code
in software development tools, Web sites, and project assets accessible for download
controls, constrains, or facilitates developer interaction with the evolving FOSS sys-
tem code. CVS is thus a tool that enables some form of social control. However,
the fact that the source code to these systems is available in a free and open source
manner offers the opportunity to examine, revise, and redistribute patterns of social
control and interaction in ways that favor one form of project organization, system
configuration control, and user-developer interaction over others.

Many FOSSD project post guidelines for appropriate and inappropriate ways of
reporting and discussing bugs, unintended features, or flaws in the current FOSS
system release. These guidelines are embodied in online documents/artifacts that
developers choose to follow in ways that suggest these developers have elevated in-
formalisms into community standards that act to control appropriate behavior within
FOSSD projects. Exhibit 5 provides an example of such guidelines and the rules it
suggests for how to best report bugs within Mozilla projects (like the Firefox Web
browser or Thunderbird email client projects) when using the Bugzilla bug reporting
system.

Beyond this, the ability for the eyes of many developers to review or inspect source
code, system build and preliminary test results [94,95], as well as responses to bug
reports, also realizes peer review and the potential for embarrassment as a form of
indirect social control over the timely actions of contributing FOSS developers (cf.
[92]). Thus, FOSSD allows for this dimension of VPM to be open for manipulation

264 W. SCACCHI

EXHIBIT 5. Guidelines for appropriate behavior when reporting bugs in Mozilla.org FOSS
projects when using the Bugzilla bug reporting system. (Source: https://bugzilla.mozilla.org/page.
cgi?id=etiquette.html, June 2006.)

FREE/OPEN SOURCE SOFTWARE DEVELOPMENT 265

by the core developers, so as to encourage certain patterns of software development
and social control, and to discourage others that may not advance the collective needs
of FOSSD project participants. Subsequently, FOSSD projects are managed, coordi-
nated and controlled, though without the roles for traditional software engineering
project managers (cf. [117]).

5. Alliance Formation, Inter-project Social Networking
and Community Development

How does the gathering of FOSS developers give rise to a more persistent self-
sustaining organization or project community? Through choices that developers
make for their participation and contribution to a FOSSD project, they find that there
are like-minded individuals who also choose to participate and contribute to a project.
These software developers find and connect with each other through FOSSD Web
sites and online discourse (e.g., threaded discussions on bulletin boards) [82], and
they find they share many technical competencies, values, and beliefs in common
[12,27,23]. This manifests itself in the emergence of an alliance of FOSSD projects
that share either common interests or development methods, like those for “open
source software engineering” identified in the left column in Exhibit 1, in external
projects that adopt a given FOSS system (e.g., OGRE) as the core system for subse-
quent application development as seen in Exhibit 6, or in an occupational network of
FOSS developers [23].

Becoming a central node in a social network of software developers that inter-
connects multiple FOSS projects is also a way to accumulate social capital and
recognition from peers. However, it also enables the merger of independent FOSS
systems into larger composite ones that gain the critical mass of core developers to
grow more substantially and attract even larger user-developer communities [77,78,
103].

“Linchpin developers” [78] participate in or form gateways between multiple
FOSSD projects. In so doing, they create alliances between otherwise independent
FOSSD projects. Figure 2 depicts an example of a social network that clusters 24
FOSS developers within 5 FOSSD projects interconnected through two linchpin
developers [78]. Multi-project clustering and interconnection enables small FOSS
projects to come together as a larger social network with the critical mass [79]
needed for their independent systems to be merged and experience more growth in
size, functionality, and user base. It also enables shared architectural dependencies
to arise (perhaps unintentionally) in the software components or sub-systems that are
used/reused across projects (cf. [15,55,90]). FOSSD Web sites also serve as hubs that
centralize attention for what is happening with the development of the focal FOSS

266 W. SCACCHI

EXHIBIT 6. A partial view of an alliance of external FOSS game development projects that
use the OGRE system (cf. Exhibit 2). (Source: http://www.ogre3d.org/index.php?set_albumName=
album07&option=com_gallery&Itemid=55&include=view_album.php, June 2006.)

system, its status, participants and contributors, discourse on pending/future needs,
etc.

Sharing beliefs, values, communications, artifacts and tools among FOSS devel-
opers enables not only cooperation, but also provides a basis for shared experience,
camaraderie, and learning (cf. 27,32,65,67]). FOSS developers participate and con-
tribute by choice, rather than by assignment, since they find that conventional soft-
ware development work provides the experience of working with others who are
assigned to a development effort, whether or not they find that share technical ap-
proaches, skills, competencies, beliefs or values. As a result, FOSS developers find
they can choose to work with people that share their many values and beliefs in
common, at least as far as software development. Further, the values and beliefs
associated with free software or open source software are both signaled and insti-
tutionalized in the choice of intellectual property licenses (e.g., GPL) that FOSSD

F
R

E
E

/O
P

E
N

S
O

U
R

C
E

S
O

F
T

W
A

R
E

D
E

V
E

LO
P

M
E

N
T

267

FIG. 2. A social network that clusters 24 developers in five FOSS projects through two key developers into a larger project community. (Source:
Madey et al. [77]).

268 W. SCACCHI

projects adopt and advocate. These licenses in turn help establish norms for devel-
oping free software or open source software, as well as for an alliance with other
FOSSD projects that use the same licenses.

Almost half of the over 120K FOSS projects registered at SourceForce.net Web
portal (as of July 2006—see Exhibit 7 later) employ the GNU General Public License
(GPL) for free (as in freedom) software. The GPL seeks to preserve and reiterate the
beliefs and practices of sharing, examining, modifying and redistributing FOSS sys-
tems and assets as common property rights for collective freedom [36,72,127]. A few
large FOSSD projects that seek to further protect the collective free/open intellectual
property rights do so through the formation of legally constituted non-profit organiza-
tions or foundations (e.g., Free Software Foundation, Apache Software Foundation,
GNOME Foundation) [87]. Other OSS projects, because of the co-mingling of assets
that were not created as free property, have adopted variants that relax or strengthen
the rights and conditions laid out in the GPL. Dozens of these licenses now ex-
ist, with new ones continuing to appear (cf. www.opensource.org). Finally, when
OSSD projects seek to engage or receive corporate sponsorship, and the possible
co-mingling of corporate/proprietary intellectual property, then some variation of a
non-GPL open source license is employed, as a way to signal a “business friendly”
OSSD project, and thus to encourage participation by developers who want to work
in such a business friendly and career enhancing project [45,111,125].

5.1 Community Development and System Development

Developing FOSS systems is a project team building process that must be insti-
tutionalized within a community [111,113,96,124,129] for its software informalisms
(artifacts) and tools to flourish. Downloading, installing, and using FOSS systems
acquired from other FOSS Web sites is also part of a community building process
(cf. [61]), while Exhibit 6 reiterates that many external game development project
use the OGRE free software. Adoption and use of FOSS project Web sites are a
community wide practice for how to publicize and share FOSS project assets. These
Web sites can be built using FOSS Web site content management systems (e.g., PhP-
Nuke) to host project contents that can be served using FOSS Web servers (Apache),
database systems (MySQL) or application servers (JBoss), that are increasingly ac-
cessed via FOSS Web browsers (Firefox). Furthermore, ongoing FOSS projects may
employ dozens of FOSS development tools, whether as standalone systems like the
software version control system CVS, as integrated development environments like
NetBeans or Eclipse, or as sub-system components of their own FOSS application
in development. These projects similarly employ asynchronous systems for project
communications that are persistent, searchable, traceable, public and globally acces-
sible [128].

FREE/OPEN SOURCE SOFTWARE DEVELOPMENT 269

FOSS systems, hyperlinked artifacts and tools, and project Web sites serve as
online venues for socializing, building relationships and trust, sharing and learning
with others. Linchpin developers [78] act as community forming hubs that enable
independent small FOSS projects to come together as a larger social network with
the critical mass [79] needed for their independent systems to be merged and expe-
rience more growth in size, functionality, and user base. Whether this trend is found
in traditional or closed source software projects is unclear. Multi-project FOSS Web
sites (e.g., Tigris.org in Exhibit 1 or SourceForge.org in Exhibit 7) also serve as
hubs or “community cores” that centralize attention for what is happening with the
development of focal FOSS systems, their status, participants and contributors, dis-
course on pending/future needs, etc. Furthermore, by their very nature, these Web
sites are generally global in reach and publicly accessible. This means the potential
exists for contributors to come from multiple remote sites (geographic dispersion)
at different times (24/7), from multiple nations, representing the interests of par-
ticipants from multiple cultures or ethnicity. Thus, multi-project FOSS Web sites
help to make visible online virtual organizations, inter-project alliances, community
and social networks that can share resources, artifacts, interests, and source code
(cf. [32,124]).

All of these conditions point to new kinds of requirements for software develop-
ment projects—for example, community building requirements, community software
requirements, and community information sharing system (Web site and interlinked
communication channels for email, forums, and chat) requirements [101,119]. These
requirements may entail both functional and non-functional requirements, but they
will most typically be expressed using FOSS informalisms, rather than using formal
notations based on some system of mathematical logic known by few.

Community building, alliance forming, and participatory contributing are wide-
spread and recurring activities that enable FOSSD projects to persist without central
corporate authority. Thus, linking people, systems, and projects together through
shared artifacts and sustained online discourse enables a sustained social network
[76–78] and socio-technical community, Web-based information infrastructure [58],
and network of alliances [56,82] to emerge.

Thus interesting problems arise when investigating how best to model or sim-
ulate the FOSSD processes that facilitate and constrain the co-development and
co-evolution of FOSS project communities and the software systems they produce.
The point is not to separate the development and evolution processes of the software
system from its community, since each is co-dependent on the other, and the suc-
cess of one depends on the success of the other. Thus, it appears that should best be
modeled and simulated as integrating and intertwining processes.

270 W. SCACCHI

6. FOSS as a Multi-project Software Ecosystem

As noted above, many FOSSD projects have become interdependent through the
networking of software developers, development artifacts, common tools, shared
Web sites, and computer-mediated communications. What can be seen to emerge
from this is a kind of multi-project software ecosystem, whereby ongoing develop-
ment and evolution of one FOSS system gives rise to propagated effects, architectural
dependencies, or vulnerabilities in one or more of the projects linked to it [58]. For
example, Fig. 3 depicts a software ecosystem primarily consisting of FOSS projects
(each project denoted by a cloud-like shape, and the interrelationship of these project
clouds denoting the ecosystem).

This particular software ecosystem highlights relationships between three large
FOSS projects, the Mozilla.org Web Browser, the Apache.org Web server, and the
NetBeans.org interactive development environment for Web-based Java applications.
It also collectively forms a central part of the software infrastructure for the Web,4

along with other FOSS projects that support each of these three focal projects. It
further highlights examples of integration and conflict issues that have emerged as
these three core Web systems as each has evolved on its own, as well as co-evolved
with the others. Details on the integration and conflict issues are further described
in [58].

Interdependencies are most apparent when FOSSD project share source code mod-
ules, components, or sub-systems. In such situations, the volume of source code of
an individual FOSSD project may appear to grow at a super-linear or exponential rate
[104,108,114] when modules, components, or sub-systems are integrated in whole
into an existing FOSS system [104]. Such an outcome, which economists and po-
litical scientists refer to as a “network externality” [89], may be due to the import
or integration of shared components, or the replication and tailoring of device, plat-
form, or internationalization specific code modules. Such system growth patterns
therefore seem to challenge the well-established laws of software evolution [68,69]
that forecast inverse-square (i.e., sub-linear) growth for software as it evolves. Thus,
software evolution in a multi-project FOSS ecosystem is a process of co-evolution of
interrelated and interdependent FOSSD projects, people, artifacts, tools, code, and
project-specific processes.

4 Figure 3 also indicates the non-FOSS like Microsoft’s Internet Explorer Web browser is a part of the
software ecosystem for the Web software infrastructure. The Java Community Process (JCP) and World
Wide Web Committee (W3C) respectively denote a software application coding compatibility assessment
process, and a committee of diverse parties who collectively act to define Web standards for markup
languages (HTML) and data communication protocols (http), which are central to the interoperation of
Web browsers, Web servers, and Web applications.

F
R

E
E

/O
P

E
N

S
O

U
R

C
E

S
O

F
T

W
A

R
E

D
E

V
E

LO
P

M
E

N
T

271

FIG. 3. Visualizing cooperative integrations and conflicts among an ecosystem of interrelated FOSS projects. (Source: Jensen and Scacchi [58].)

272 W. SCACCHI

It seems reasonable to observe that the world FOSSD is not the only place where
multi-project software ecosystems emerge, as software sharing or reuse within tra-
ditional software development enterprises is fairly common. However, the process
of the co-evolution of software ecosystems found in either traditional or FOSSD
projects in mostly unknown. Thus, co-evolution of interdependent software systems
and standards for interoperation within an FOSS ecosystem represents an opportu-
nity for research that investigates understanding such a software evolution process
through studies supported by modeling and simulation techniques (e.g., [1,114]).

6.1 Co-evolving Socio-technical Systems for FOSS

Software maintenance, in the form of the addition/subtraction of system function-
ality, debugging, restructuring, tuning, conversion (e.g., internationalization), and
migration across platforms, is a widespread, recurring process in FOSS develop-
ment communities. Perhaps this is not surprising since maintenance is generally
viewed as the major cost activity associated with a software system across its life
cycle (cf. 117]). However, this traditional characterization of software maintenance
does not do justice for what can be observed to occur within different FOSS com-
munities. Instead, it may be better to characterize a key evolutionary dynamic of
FOSS as reinvention (cf. [102]). Reinvention is enabled through the sharing, ex-
amination, modification, and redistribution of concepts and techniques that have
appeared in closed source systems, research and textbook publications, conferences,
and the interaction and discourse between developers and users across multiple FOSS
projects. It is also enabled through user-contributed innovations that bring concepts
or methods from other problem domains (cf. [121]). Thus, reinvention is a contin-
ually emerging source of improvement and rediscovery in FOSS functionality and
quality, as well as also a collective approach to organizational learning in FOSS
projects [32,65,67].

Many of the largest and most popular FOSS systems like the Linux Kernel [108],
GNU/Linux distributions [55,87], GNOME user interface [39] and others are grow-
ing at an exponential rate, as is their internal architectural complexity [108]. On
the other hand the vast majority of FOSS projects are small, short-lived, exhibit lit-
tle/no growth, and often only involve the effort of one developer [6,78]. In this way,
the overall trend derived from samples of 400–40K FOSS projects registered at the
SourceForge.net Web portal reveals a power law distribution common to large self-
organizing systems. This means a few large projects have a critical mass of at least
5–15 core FOSS developers [81] that act in or share project leadership roles [30]
that are surrounded by dozens to hundreds of other contributors in secondary or ter-
tiary roles, and hundreds to millions of end users in the distant periphery. The FOSS
projects that attain and sustain such critical mass are those that inevitably garner the

FREE/OPEN SOURCE SOFTWARE DEVELOPMENT 273

most attention, software downloads, and usage. On the other hand, the vast majority
of FOSS projects are small, lacking in critical mass, and thus unlikely to thrive and
grow.

The layered meritocracies that arise in FOSS projects tend to embrace incremen-
tal innovations such as evolutionary mutations to an existing software code base over
radical innovations. Radical change involves the exploration or adoption of untried
or sufficiently different system functionality, architecture, or development methods.
A minority of code contributors who challenge the status quo of the core develop-
ers might advocate radical software system changes. However, their success in such
advocacy usually implies creating and maintaining a separate version of the system,
and the potential loss of a critical mass of other FOSS developers. Thus, incremen-
tal mutation tends to win over time (cf. [102]) and therefore represents another key
dynamic mechanism affecting the evolution of FOSS.

FOSS systems seem to evolve through minor improvements or mutations that are
expressed, recombined, and redistributed across many releases with short duration
life cycles. End-users of FOSS systems who act as contributing developers or main-
tainers continually produce these mutations. These mutations appear to coalesce in
daily system builds. These modifications or updates are then expressed as a tentative
alpha then beta release candidates, or stable release versions that may survive redis-
tribution and review, then subsequently be recombined and re-expressed with other
new mutations in producing a new stable release version. As a result, these mutations
articulate and adapt an FOSS system to what its developer-users want it to do in the
course of evolving and continually reinventing the system.

Last, closed source software systems that were thought to be dead or beyond their
useful product life or maintenance period may be revitalized through the redistribu-
tion and opening of their source code. However, this may only succeed in application
domains where there is a devoted collective of enthusiastic user-developers who are
willing to invest their time and skill to keep the cultural heritage of their former
experience with such systems alive. Scacchi [102] provides an example for vintage
arcade games now numbering in the thousands that are being revitalized, used, and
evolved through FOSS systems like the Multi-Arcade Machine Emulator (MAME).

Overall, FOSS systems co-evolve with their development communities. This
means the evolution of one depends on the evolution of the other. Said differently, a
FOSS project with a small number of developers (most typically one) will not pro-
duce and sustain a viable system unless/until the team reaches a larger critical mass
of 5–15 core developers. However, if and when critical mass is achieved, then it
may be possible for the FOSS system to grow in size and complexity at a sustained
exponential rate, defying the laws of software evolution that have held for decades
[68,69,104]. Furthermore, user-developer communities co-evolve with their systems
in a mutually dependent manner [23,83,87,101], and system architectures and func-

274 W. SCACCHI

tionality grow in discontinuous jumps as independent FOSS projects decide to join
forces (e.g., [83,104]). Whether this trend is found in traditional or closed source
software projects is unclear. But what these findings and trends do indicate is that it
appears that the practice of FOSS development and evolution processes are different
from the processes traditionally advocated for software engineering.

7. FOSS as a Social Movement

Social movements reflect sustained and recurring large-scale collective activities
within a society or social world. Social movements can be characterized by (a) their
recurring structural forms (e.g., boundaries around movement segments or loci of
activity, multiple centers of activity, and social networks that link the segments and
centers) and venues for action, (b) ideological beliefs, and (c) organizations whose
purpose is to advance and mobilize broader interest in the movement [115]. The
OSS movement arose in the 1990s [17,74,105,125] from the smaller, more fervent
free software movement [36] started in the mid 1980s.

The OSS movement is populated with thousands of OSS development projects,
each with its own Web site. Whether the OSS movement is just another computer-
ization movement (cf. [54]), or is better recognized as a counter-movement to the
proprietary or closed source world of commercial software development is unclear.
For example, executives from proprietary software firms have asserted that (a) OSS
is a national security threat to the US [85], or (b) that OSS (specifically that cov-
ered by the GNU Public License) is a “cancer” that attaches itself to intellectual
property [44]. However, other business sources seem to clearly disagree with such
characterizations and see OSS as an area for strategic investment [88], and there
is growing support for recognizing that FOSS has become a matter in support of
national security within the US Department of Defense [80,93]. Nonetheless, more
than 120K projects are registered at OSS portals like SourceForge.org, as seen in Ex-
hibit 7, while other OSS portals like Freshment.org, and Tigris.org contain thousands
more.

The vast majority of these OSS projects at SourceForge appear to be inactive, with
less than two contributing developers, as well as no software available for download,
evaluation, or enhancement. However, at least a few thousand OSS projects seem to
garner most of the attention and community participation, but no one project defines
or leads the OSS movement. The Linux Kernel project is perhaps the most widely
known FOSS project, with its celebrity leaders, like Linus Torvalds. Ironically, it
is also the most studied OSS project. However, there is no basis to indicate that
how things work in this project (which develops and maintains operating system
kernel code for more than a dozen processor architectures or platforms, along with a

FREE/OPEN SOURCE SOFTWARE DEVELOPMENT 275

EXHIBIT 7. Home page of the SourceForge.net OSS Web portal, indicating more than 120K registered
projects, and more than 1.3M registered user. (Source: http://sourceforge.net/, visited 7 June 2006.)

276 W. SCACCHI

large base of device driver code) prescribe or predict what might be found in other
successful OSS projects. Subsequently, it may be more productive to view the OSS
movement as being segmented about the boundaries of each OSS project, though
some of the larger project communities have emerged as a result of smaller OSS
projects coming together. Finally, as already noted, a small set of studies (cf. [46,63])
indicate that upwards of 2/3 OSS developers contributes to two or more OSS projects,
and perhaps as many as 5% contribute to 10 or more OSS projects. The density and
interconnectedness of this social networking characterizes the membership and in-
breeding of the OSS movement, but at the same time, the multiplicity of projects
reflects its segmentation.

According to advocates [36], Richard M. Stallman initiated the free software
movement in 1983. Participants or advocates in the free software movement identify
their affiliation and commitment by openly developing and sharing their software
following the digital civil liberties expressed in the GPL [21,24]. The GPL is a li-
cense agreement that promotes and protects software source code using the GPL
copyright to always be available (always assuring a “copy left”), that the code is
open for study, modification, and redistribution, with these rights preserved indefi-
nitely. Furthermore, any software system that incorporates or integrates free software
covered by the GPL is asserted henceforth to also be treated as free software covered
by the GPL. This so-called “viral” nature of the GPL is seen by some to be an “anti-
business” position, which is the most commonly cited reason for why other projects
have since chose to identify them as open source software, rather than free software
[31]. However, new/pre-existing software that does not integrate GPL source code
is not taken over by the GPL, even if both kinds of software co-exist on the same
computer or operating system, or that access one another through open or standards-
based application program interfaces or some other neutral library interface.

Surveys of OSS projects reveal that about 50% or more of all OSS projects (in-
cluding the Linux Kernel project) employ the GPL [33], even though there are only a
few thousand of self-declared free software projects. Large OSS projects, such as the
Apache Web server, KDE user interface package, Mozilla/Firefox Web browser, have
chosen to not use the GPL, but to use a less restrictive, open source license. As be-
fore, free software is always open source, but open source software is not always free
software. So the free software movement has emerged on its own, but increasingly
it has effectively become subsumed as a segment within the larger, faster growing
and faster spreading OSS movement. Subsequently, OSS licenses have become the
hallmark carrier of the ideological beliefs that helps distinguish members of the free
software movement, from those who share free software beliefs but prefer to be seen
as open source or business-friendly developers (e.g., the Linux Kernel project). Fur-
thermore, the use of non-GPL OSS licenses by corporate-sponsored projects (cf.

FREE/OPEN SOURCE SOFTWARE DEVELOPMENT 277

[87]) also distinguishes those who identify themselves as OSS developers, but not
practitioners or affiliates of the free software movement.

A variety of organizations, enterprises, and foundations participate in encouraging
the advancement and success of OSS [123]. Non-profit foundations have become
one of the most prominent organizational forms founded to protect the common
property rights of OSS projects. The Open Source Initiative (www.opensource.org)
is one such foundation that seeks to maintain the definition of what “open source
software” is, and what software licenses satisfy such a definition. OSI presents
its definition of OSS in a manner that is considered business friendly [31], as
opposed to “free software” which is cast by its advocates as a social move-
ment that expresses civil liberties through software (e.g., source code as a form
of free speech) [36]. The OSI’s Bruce Perens who advocates that OSS is a vi-
able economic and innovative alternative to proprietary software, often is juxta-
posed or compared to Richard M. Stallman, who seeks to “put back the free in
free enterprise” [36]. Beyond this, a sign of success of the largest OSS projects
is their establishment of non-profit foundations or not-for-profit consortia that
serve as the organizational locus and legal entity that can engage in contracts
and intellectual property rights agreements that benefit the project and user com-
munity. A small but growing number of corporations in the IT, Financial Ser-
vices, and other industries have taken on sponsorship of OSS projects, either as
an external competitive strategy (e.g., IBM’s Eclipse project and Sun’s NetBeans
project compete against Microsoft.NET products) or internal cost-reduction strat-
egy [125].

Overall, recognizing that free software and OSS have facilitated the emergence
of global-scale social (or computerization) movements, indicates that FOSS is in-
creasingly permeating society at an industrial, governmental, and international level,
and is doing so in ways that no prior software technology or development method
has come close to achieving. Why this has come about, what consequences it por-
tends for the future of FOSS, and whether corporate or public (government) policy
initiatives will increasingly address the development, adoption, deployment, usage,
and support of FOSS applications and projects, all require further study. But is also
in clear that it is increasingly unlikely the any company, government, or nation can
successfully inhibit the near-term and mid-term societal dispersion of FOSS or the
FOSS movements.

8. Research Methods for Studying FOSS

Based on the survey of studies and results emerging from empirical studies of
FOSSD projects, it becomes clear that there are many promising opportunities in

278 W. SCACCHI

studying, modeling, analyzing, and comparing FOSS development processes, work
practices, and community dynamics, as well as project development artifacts and
source code. New sources of data associated with FOSSD participants, artifacts,
tools used, and development processes are available, and new systematic samples
of FOSSD projects can be articulated. Empirical studies of FOSSD can therefore
be examined of the research methods employed, and that is the purpose of this sec-
tion.

In this chapter, different studies of FOSS development were organized and charac-
terized according to subjects grouped into different level of analysis. Subsequently,
this raises questions about what kinds of research methods have been used in these
studies, or might be used in future studies of FOSS. To answer such questions, it
is necessary and beneficial to review what kinds of research methods and strate-
gies have appeared in FOSS studies, in order to identify possible categories of
FOSS research methods that can be practiced by or taught to future FOSS scholars.
The purpose is not to profess a treatise on how to do research or how to con-
duct an empirical study of FOSS, but instead to highlight which studies of FOSSD
used what research methods to investigate issues at one of more levels of analy-
sis.

As research studies of FOSS can be organized in many ways, level of analysis can
be construed as a constructive element when articulating a research method. A given
study may explore a single or multiple levels of analysis by research study design.
Other elements in the research design include the unit of analysis, terms of analy-
sis, and mode of analysis. The unit of analysis focuses on what or who is being
studied, across some spatio-temporal extent within some work setting. Common foci
include FOSS developer motivations, project teams or workgroup effort, source code,
development or communication artifacts, development processes enacted within a
project’s Web Site(s) across some period of time, or a project’s trajectory or life his-
tory. The choice of the unit of analysis often determines or reflects the researcher’s
choice for the level, terms, and mode of analysis. The terms of analysis refer to the
choice of analytical variables and rhetorical framings that are employed to identify
and describe salient features or aspects of the unit of analysis. When focusing of
FOSS development processes, for example, conceptual variables like process struc-
ture or process control flow may be used to associate the partially ordered sequence
of workflow activities, performed by participants acting in different roles, using tools
to perform different activities that access and update shared resources or artifacts,
may be used to describe observed or discovered FOSS processes. The mode of
analysis identifies what kind of qualitative, quantitative, or triangulated schemes are
employed to collect and analyze data associated with the unit of analysis.

Common FOSS research data collection and analysis modes include reflective
practice and industry polls, surveys, ethnographic study, mining FOSS artifact repos-

FREE/OPEN SOURCE SOFTWARE DEVELOPMENT 279

itories, and multi-modal modeling. As mode of analysis is core to research method,
that becomes the focus here. However, as will become clear, different research meth-
ods involve trade-offs when compared to one another, so that no single research
method will be best in all situations or studies.

8.1 Reflective Practice and Industry Poll Methods
FOSS research studies often focus on the interests, motivations, perceptions, and

experiences of developers or end-user organizations. Typically, the unit of analysis is
the individual agent (most commonly a person, unitary group, or firm, but sometimes
a software system, tool, or artifact type) acting within a larger actor group or commu-
nity. Individual behavior, personal choices, or insider views might best be analyzed,
categorized, and explained in terms of volunteered or elicited statements of their in-
terests, motivations, perceptions, or experiences. Most of the popular treatments of
OSS development (e.g., [17,18,34,92]) and free software development (e.g., [35,36,
127]), provide insight and guidance for how FOSS development occurs, based on the
first-hand experiences of those authors. These authors reflect on their prior experi-
ence and practice as the basis for their research findings.

Other authors informed by such practitioner studies and informal industry/govern-
ment polls (like those reported in CIO Magazine, MITRE [80], OSBC [88], Wheeler
[126], and elsewhere) seek to condense, summarize, and package the experience and
wisdom of these FOSS practices into practical advice that may be offered to business
executives considering when and why to adopt FOSS options [e.g., [31,43]].

As a FOSS research method, reflective practice and industry polls often tend to
(a) be uncritical with respect to prior scholarship or theoretical interpretation, or
(b) employ unsystematic collection of data to substantiate pithy anecdotes or prof-
fered conclusions. Thus, by themselves such studies offer a limited basis for further
research or comparative analysis. Nonetheless, they can (and often do) offer keen
insights and experience reports that may help sensitize future FOSS researchers to
interesting starting points or problems to further explore.

8.2 Survey Research Methods
A focus on perceptions or motivations of individual participants suggests possible

attention to cognitive dimensions of FOSS development or end-user adoption. Here
the quantitative survey studies of Bonaccorsi and Rossi [5], FLOSS [33,42], Hars
and Ou [46], Hertel et al. [49], and Lakhani et al. [65], for example, have been key in
providing broad international coverage (and descriptive statistics) of why software
developers of different ages, skill bases, employment status in different countries
seek to join, participate in, and help sustain FOSS development projects and their
surrounding communities.

280 W. SCACCHI

The survey research studies cited above (a) critically reflect on the data and offer
alternative explanations relative to established scholarship, and (b) rely on reason-
ably articulated questionnaire design, survey samples, and statistical analysis to
plausibly substantiate their findings and conclusions. However, these surveys typ-
ically involve hundreds of individual respondents, and thus require a significant
commitment of research staff expertise, time, effort, and budget to administer the
survey and process the data in the study. Furthermore, most such surveys are stand-
alone studies, though Bonaccorsi and Rossi are one of the first to incorporate a
comparative analysis of prior survey studies of motivations of FOSS developers and
end-user firms who elect to join FOSS projects, while the Ghosh/FLOSS studies
are the most international in their coverage and cross-cultural generalization of find-
ings.

Finally, quantitative data and analyses arising from survey research of FOSS ef-
forts are best suited for describing frequency and distribution of univariate data, as
well as correlation associations among multi-variate data that characterize FOSSD.
However, these data and analyses are often comparatively weak when used to char-
acterize the structure and performance of complex socio-technical processes whose
activities, participant roles, and resources are highly situated and interdependent, yet
occur in relatively low frequency and evolve over time.

8.3 Ethnographically Informed Methods

While survey research methods stress collection and analysis of data that is usu-
ally easy to quantify, not all phenomena operating within or around FOSS work
practices, development processes, or community dynamics are readily captured or
characterized in quantitative form. Thus, qualitative research methods are needed
and often better suited to such discovery-oriented or participant-observer studies of
FOSS development efforts (cf. [109,120]). Central to such studies are ethnographic
or ethnographically informed research methods that are intended for studies where
face-to-face interviews or co-located observation are central, whereas most of the
action and interactions of interest in FOSSD efforts take place online across the
Internet/Web (cf. [47,51,113]) in virtual organizations represented by Web sites or
portals.

Qualitative ethnographic methods are better suited to the study of the structure and
performance of complex work practices, community dynamics, or socio-technical
development processes whose activities and participant roles are highly situated and
interdependent, yet occur in relatively low frequency and evolve over time. Here
there are studies by Scacchi [101], Iannacci [56], Elliott and Scacchi [22–24], Reis
and Fortes [97], Jensen and Scacchi [58–60], Lanzara and Morner [66], Longchamp
[73], Duchenaunt [18], and Sack et al. [99]. A common limitation of such studies

FREE/OPEN SOURCE SOFTWARE DEVELOPMENT 281

is that they tend to focus attention to a single FOSS project setting, though this is
not inherent in the method. For example, Scacchi [101,102] and Jensen and Scac-
chi [103] examine multiple independent FOSS project settings in order to perform
comparative, cross case analyses (cf. [109]). Similarly, these ethnographic studies
tend to entail longitudinal data collection and devote particular attention to collec-
tion of FOSS development and communication artifacts, and thus employ methods
for discourse and document genre analyses (cf. [64,116]), as well as computational
or ethnographic hypermedia analyses [18,58,99,106]. As a result, (virtual) ethno-
graphic studies are well suited to small research groups who are also equipped and
competent with Web-based data mining tools for searching, crawling, indexing, cod-
ing and cross-coding textual data (cf. [109]) found in FOSSD project Web sites (e.g.,
development artifacts or informalisms).

8.4 Mining FOSS Artifact Repositories and Artifact Analysis
Methods

Reflective practice, surveys, and ethnographic studies have been long employed
in empirical studies of software development of all kinds. The world of FOSS does
however provide a new opportunity for study that previously was unavailable or at
least uncommon in the software research community. One such opportunity arises
from the public accessibility of the source code and related development and com-
munication artifacts associated with FOSS project Web sites or FOSS community
repositories or portals like SourceForge.org and others (cf. [48]).

The accessibility of the source code and artifacts means that they can be directly
subjected to various kinds of automated or semi-automated processing techniques,
including text data mining, crawling and indexing, statistical analyses, and machine
learning. These processing techniques give rise to not only new ways and means
for analyzing large textual FOSS data sets, but also to investigate research questions
or problems that heretofore could not be addressed with the established research
methods for studying software development. For example, there are now studies
of FOSS source code that reveal patterns of the growth and evolution of differ-
ent FOSS systems over time, [6,108,91,114]. Common among the findings in these
studies is growing evidence for sustained exponential growth rates for large, highly
successful FOSS systems (cf. [104]), though the majority of FOSS projects fail to
grow at all (cf. [77,78]). Such findings stand in contrast to the established wisdom
from long-standing studies of software evolution in the world of traditional (closed-
source) software, where inverse-square growth rates are more common observed (cf.
[68,69]).

Other studies of FOSS repositories have focused attention to (textual) artifacts as-
sociated with different FOSS projects. For example, in a widely cited study of the

282 W. SCACCHI

development of the Apache Web server and Mozilla Web browser, Mockus, Fielding
and Herbsleb [81] reported that they were able to investigate, extract, and quan-
tify modification requests captured in change logs and bug reporting repositories
associated with each of these two projects. They analyzed and compared their find-
ings on bug frequency and severity over time identified in modification requests for
the browser and server, with those found in commercial (proprietary) telecommu-
nications systems software. Subsequently, they found these FOSS projects produce
comparable or higher quality software, but without the software project management
regimen used in industry.

Elsewhere, Madey et al. [77,78] and Lopez-Fernandez et al. [75,76] employ data
mining techniques to extract and analyzing social network relationships between de-
velopers who communicate with each other in the course of modifying or updating
FOSS project source code in stored in common transactional repositories like CVS
[34]. Figure 3 from Madey and colleagues displays how a small number of FOSS
developer can establish social network links through computer-mediated messaging
that connect developers spanning multiple FOSS projects together. This helps create
critical mass [79] that sustains their collective FOSS development efforts. However,
if the linchpin developers were missing, then the multi-project cluster may dissociate
or fail to link up, resulting in an insufficient collective social mass needed to go crit-
ical and enable network externalities like exponential growth of community source
code. Crowston and Howison [10] similarly demonstrate how FOSS development
teams often self-organize into a team hierarchy, where a small number of core de-
velopers serve as the critical center of gravity for a larger community of contributors
and end-users.

Last, Ripoche and Gasser [98] demonstrate how automated mining of textual and
transaction data entered into a FOSS bug tracking system (e.g., Bugzilla) can be
used to extract and generate a model of the bug management process, and how it
serves to help maintain and evolve the design of a FOSS system like the Mozilla
Web browser.

Overall, FOSS source code and artifact repositories offer a vast array of textual and
transactional data that is just beginning to be explored. For example, FOSS project
meta-data is now being collected with new Web sites emerging (e.g., FLOSSmole
[52] at ossmole.sourceforge.net; also see www.ohloh.net) that organize and provide
access these data. This contributes to an open, shared research infrastructure for
studying FOSS socio-technical characteristics, structures, and dynamics across po-
tentially a very large sample of FOSS projects that can be analyzed quantitatively and
textually. Further, as these studies employ automated tools for data collection, cod-
ing, and analysis, then these methods for mining FOSS repositories become increas-
ingly accessible to small research groups or individual FOSS scholars. However, data
in FOSS repositories like change logs [7] or modification requests associated with

FREE/OPEN SOURCE SOFTWARE DEVELOPMENT 283

source code updates entered into CVS repositories [40] require careful review, clean-
ing, and normalization (e.g., dealing with missing or overloaded data records). Thus,
mining FOSS repositories does require care and attention to both the data and their
analysis, since (a) data quality problems abound which require explicit attention, (b)
researchers may not have first-hand experience in using these repositories as FOSSD
project participants, and (c) these repositories were not conceived or intended to be
used for collecting data on FOSSD practices or processes, and thus cannot be ex-
pected to naturally meet the requirements for statistical sampling, data quality, and
data analysis.

Methods for mining FOSS repositories also offer the potential for either/both in-
depth (e.g., project specific) and in-breadth (scalable to large samples of projects)
empirical studies of FOSS development efforts. Thus, expect to see analysis of FOSS
project source or artifacts increasingly dominating large-scale quantitative studies
of software development of any kind, by research groups that include experts and
emerging scholars (e.g., graduate or post-doctoral students) who are motivated to
develop and apply new textual data or Web mining tools/techniques to established
FOSSD repositories of various kinds supporting different kinds of development ac-
tivities or communities.

8.5 Multi-modal Modeling and Analysis of FOSS
Socio-technical Interaction Networks

One other research method being used to study FOSS projects that is starting to
gain some traction involves use of hybrid schemes involving multiple research meth-
ods. Two such efforts are those of Duchenaunt, Sack and colleagues [18,99], and
Scacchi and associates [58,107]. Both of these efforts focus on collection of ethno-
graphic data of socio-technical interaction networks or processes (cf. [18,103]) they
discover in the FOSS projects identified in their studies, using virtual ethnographic
techniques and computational data mining, modeling, and visualization tools. In a
sense, these multi-modal research methods seek to triangulate the robust qualitative
field study methods used in ethnographic studies together with techniques employ-
ing automated or semi-automated data mining and validation tools in ways that can
be put into action by a small research group. However, these multi-modal methods
have not yet been applied to large samples of FOSS projects, and thus it is unclear
whether such methods can scale up to such challenge, or whether some other mix of
research methods will be needed.

284 W. SCACCHI

9. Discussion

One of the defining characteristics of data about the FOSSD projects is that in
general is it publicly available on a global basis [48,104]. Data about FOSSD prod-
ucts, artifacts, and other resources is kept in repositories associated with a project’s
Web site. This may include the site’s content management system, computer me-
diated communication systems (email, persistent chat facilities, and discussion fo-
rums), software versioning or configuration management systems, and networked
file systems. FOSSD process data is generally either extractable or derivable from
data/content in these artifact repositories. First-person data may also be available to
those who participate in a project, even if just to remotely observe (e.g., through
“lurking” [20]) or to electronically interview other participants about development
activities, tools being used, the status of certain artifacts, and the like. The availability
of such data perhaps suggest that a growing share of empirical software engineering
research will be performed in the domain of FOSSD projects, rather than using tra-
ditional sources of data from in-house or proprietary software development projects.
These traditional non-FOSS projects will continue to have constraints on access and
disclosure via publication. FOSSD process data collection from publicly accessible
artifact repositories may also be found to be more cost-effective compared to studies
of traditional closed-source, proprietary, and in-house software development reposi-
tories (cf. [9]).

9.1 Limitations and Constraints for FOSS Research

FOSSD is certainly not a panacea for developing complex software systems,
nor is it simply software engineering done poorly. Instead, it represents an alter-
native community-intensive socio-technical approach to develop software systems,
artifacts, and social relationships. However, it is not without its limitations and con-
straints. Thus, we should be able to help see these limits as manifest within the level
of analysis or research for empirical FOSSD studies examined above.

First, in terms of participating, joining, and contributing to FOSS projects, an indi-
vidual developer’s interest, motivation, and commitment to a project and its contrib-
utors is dynamic and not indefinite. FOSS developers are loathe to find themselves
contributing to a project that is realizing commercial or financial benefits that are not
available to all contributors, or that are concentrated to benefit a particular company,
again without some share going to the contributors. Some form of reciprocity seems
necessary to sustain participation, whereas a perception of exploitation by others can
quickly dissolve a participant’s commitment to further contribute, or worse to dis-
suade other participants to abandon an open source project that has gone astray. If
linchpin developers lose interest, then unless another contributor comes forward to

FREE/OPEN SOURCE SOFTWARE DEVELOPMENT 285

fill in or take over role and responsibility for the communication and coordination
activities of such key developers, then the FOSS system may quickly become brittle,
fragile, and difficult to maintain. Thus, participation, joining, and contributing must
become sustained activities on an ongoing basis within FOSS projects for them to
succeed.

Second, in terms of cooperation, coordination, and control, FOSS projects do not
escape conflicts in technical decision-making, or in choices of who gets to work
on what, or who gets to modify and update what. As FOSS projects generally lack
traditional project managers, then they must become self-reliant in their ability to
mitigate and resolve outstanding conflicts and disagreements. Beliefs and values that
shape system design choices, as well as choices over which software tools to use,
and which software artifacts to produce or use, are determined through negotiation
rather than administrative assignment. Negotiation and conflict management then
become part of the cost that FOSS developers must bear in order for them to have
their beliefs and values fulfilled. It is also part of the cost they bear in convincing
and negotiating with others often through electronic communications to adopt their
beliefs and values. Time, effort, and attention spent in negotiation and conflict man-
agement are not spent building and improving source code, but they do represent an
investment in building and sustaining a negotiated socio-technical network of depen-
dencies.

Third, in terms of forming alliances and building community through participa-
tion, artifacts, and tools points to a growing dependence on other FOSS projects.
The emergence of non-profit foundations that were established to protect the prop-
erty rights of large multi-component FOSS project creates a demand to sustain and
protect such foundations. If a foundation becomes too bureaucratic, then this may
drive contributors away from a project. So, these foundations need to stay lean, and
not become a source of bureaucratic occupational careers, in order to survive and
evolve. Similarly, as FOSS projects give rise to new types of requirements for com-
munity building, community software, and community information sharing systems,
these requirements need to be addressed and managed by FOSS project contribu-
tors in roles above and beyond those involved in enhancing the source code of a
FOSS project. FOSS alliances and communities depend on a rich and growing web
of socio-technical relations. Thus, if such a web begins to come apart, or if the new
requirements cannot be embraced and satisfied, then the FOSS project community
and its alliances will begin to come apart.

Fourth, in terms of the co-evolution of FOSS systems and community, as already
noted, individual and shared resources of people’s time, effort, attention, skill, sen-
timent (beliefs and values), and computing resources are part of the socio-technical
web of FOSS. Reinventing existing software systems as FOSS coincides with the
emergence or reinvention of a community that seeks to make such system reinvention

286 W. SCACCHI

occur. FOSS systems are common pool resources [89] that require collective action
for their development, mobilization, use, and evolution. Without the collective ac-
tion of the FOSS project community, the common pool will dry up, and without the
common pool, the community begins to fragment and disappear, perhaps to search
for another pool elsewhere.

Last, empirical studies of FOSSD are expanding the scope of what we can ob-
server, discover, analyze, or learn about how large software systems can be or have
been developed. In addition to traditional methods used to investigate FOSSD like
reflective practice, industry polls, survey research, and ethnographic studies, com-
paratively new techniques for mining software repositories and multi-modal model-
ing and analysis of the socio-technical processes and networks found in sustained
FOSSD projects show that the empirical study of FOSSD is growing and expand-
ing. This in turn will contribute to and help advance the empirical science in fields
like software engineering, which previously were limited by restricted access to data
characterizing large, proprietary software development projects. Thus, the future of
empirical studies of software development practices, processes, and projects will in-
creasingly be cast as studies of FOSSD efforts.

10. Conclusions

Free and open source software development is emerging as an alternative ap-
proach for how to develop large software systems. FOSSD employs new types and
new kinds of socio-technical work practices, development processes, and commu-
nity networking when compared to those found in industrial software projects, and
those portrayed in software engineering textbooks [117]. As a result, FOSSD offer
new types and new kinds of practices, processes, and organizational forms to dis-
cover, observe, analyze, model, and simulate. Similarly, understanding how FOSSD
practices, processes, and projects are similar to or different from traditional software
engineering counterparts is an area ripe for further research and comparative study.
Many new research opportunities exist in the empirical examination, modeling, and
simulation of FOSSD activities, efforts, and communities.

FOSSD project source code, artifacts, and online repositories represent and offer
new publicly available data sources of a size, diversity, and complexity not previously
available for research, on a global basis. For example, software process modeling and
simulation research and application has traditionally relied on an empirical basis in
real-world processes for analysis and validation. However, such data has often been
scarce, costly to acquire, and is often not available for sharing or independent re-
analysis for reasons including confidentiality or non-disclosure agreements. FOSSD
projects and project artifact repositories contain process data and product artifacts

FREE/OPEN SOURCE SOFTWARE DEVELOPMENT 287

that can be collected, analyzed, shared, and be re-analyzed in a free and open source
manner. FOSS thus poses the opportunity to favorably alter the costs and constraints
of accessing, analyzing, and sharing software process and product data, metrics, and
data collection instruments. FOSSD is thus poised to alter the calculus of empirical
software engineering [9,48,104]. Software process discovery, modeling, and simu-
lation research (e.g., [59]) is one area that can take advantage of such a historically
new opportunity. Another would be examining the effectiveness and efficiency of
traditional face-to-face-to-artifact software engineering approaches or processes for
software inspections (e.g., [19,110]) compared to the online peer reviews prevalent
in FOSSD efforts.

Last, through a survey of empirical studies of FOSSD projects and other analyses
presented in this article, it should be clear there are an exciting variety and diver-
sity of opportunities for new research into software development processes, work
practices, project/community dynamics, and related socio-technical interaction net-
works. Thus, you are encouraged to consider how your efforts to research or apply
FOSSD concepts, techniques, or tools can be advanced through studies that exam-
ine FOSSD activities, artifacts, and projects. Furthermore, it may also be stimulating
to the larger community of software researchers to engage in free or open source
research practices whereby the source data and analyses are made available for ac-
cess, study, modification or extension, and redistribution (along with citation to prior
results of others), together with the research publications that have helped advance
collective knowledge through open science.

ACKNOWLEDGEMENTS

The research described in this chapter has been supported by grants #0083075,
#0205679, #0205724, #0350754, and #0534771 from the US National Science Foun-
dation. No endorsement implied. Mark Ackerman at University of Michigan, Ann
Arbor; Les Gasser at University of Illinois, Urbana-Champaign; John Noll at Santa
Clara University; Margaret Elliott, Chris Jensen, and others at the UCI Institute for
Software Research are collaborators on the research described here.

REFERENCES

[1] Antoniades I.P., Samoladas I., Stamelos I., Angelis L., Bleris G.L., “Dynamic simu-
lation models of the open source development process”, in: Koch S. (Ed.), Free/Open
Source Software Development, Idea Group Publishing, Hershey, PA, 2005, pp. 174–202.

[2] Benkler Y., The Wealth of Networks: How Social Production Transforms Markets and
Freedom, Yale University Press, New Haven, CT, 2006.

288 W. SCACCHI

[3] Bergquist M., Ljungberg J., “The power of gifts: Organizing social relationships in open
source communities”, Info. Systems J. 11 (2001) 305–320.

[4] Beyer H., Holtzblatt K., Contextual Design: A Customer-Centered Approach to Systems
Designs, Morgan Kaufmann Publishers, San Francisco, CA, 1997.

[5] Bonaccorsi A., Rossi C., “Comparing motivations of individual programmers and firms
to take part in the open source movement: From community to business”, Knowledge
Technology & Policy 18 (4) (Winter 2006) 40–64.

[6] Capiluppi A., Lago P., Morisio M., “Evidences in the evolution of OS projects through
changelog analyses”, in: Proc. 3rd Workshop on Open Source Software Engineering,
Portland, OR, 2003.

[7] Chen K., Schach S.R., Yu L., Offutt J., Heller G., “Open source change logs”, Empirical
Software Engineering 9 (2) (2004) 197–210.

[8] Ciborra C., The Labyrinths of Information: Challenging the Wisdom of Systems, Oxford
University Press, Oxford, UK, 2004.

[9] Cook J.E., Votta L.G., Wolf A.L., “Cost-effective analysis of in-place software
processes”, IEEE Trans. Software Engineering 24 (8) (1998) 650–663.

[10] Crowston K., Howison J., “Hierarchy and centralization in free and open source soft-
ware team communications”, Knowledge Technology & Policy 18 (4) (Winter 2006)
65–85.

[11] Crowston K., Howison J., Annabi H., “Information systems success in free and open
source software development: Theory and measures”, Software Process—Improvement
and Practice 11 (2) (2006) 123–148.

[12] Crowston K., Scozzi B., “Open source software projects as virtual organizations: Com-
petency rallying for software development”, IEE Proceedings—Software 149 (1) (2002)
3–17.

[13] Curtis B., Krasner H., Iscoe N., “A field study of the software design process for large
systems”, Communications ACM 31 (11) (1988) 1268–1287.

[14] Danziger J., “The skill bureaucracy and intraorganizational control: The case of the
data-processing unit”, Sociology of Work and Occupations 21 (3) (1979) 206–218.

[15] De Souza C.R.B., Froehlich J., Dourish P., “Seeking the source: Software source code
as a social and technical artifact”, in: Proc. ACM Intern. Conf. Supporting Group Work
(GROUP 2005), Sanibel Island, FL, 2005, pp. 197–206.

[16] DiBona C., Cooper D., Stone M., Open Sources 2.0, O’Reilly Media, Sebastopol, CA,
2005.

[17] DiBona C., Ockman S., Stone M., Open Sources: Voices from the Open Source Revolu-
tion, O’Reilly Media, Sebastopol, CA, 1999.

[18] Ducheneaut N., “Socialization in an open source software community: A socio-
technical analysis”, Computer Supported Cooperative Work 14 (4) (2005) 323–368.

[19] Ebenau R.G., Strauss S.H., Software Inspection Process, McGraw–Hill, New York,
1994.

[20] Ebner M., Holzinger A., Catarci T., “Lurking: An underestimated human–computer
phenomenon”, IEEE Multimedia 12 (4) (October–December 2005) 70–75.

[21] Elliott M.S., “Examining the success of computerization movements in the ubiquitous
computing era: Free and open source software movements”, in: Kraemer K.L., Elliott

FREE/OPEN SOURCE SOFTWARE DEVELOPMENT 289

M. (Eds.), Computerization Movements and Technology Diffusion: From Mainframes to
Ubiquitous Computing, Information Today, Inc., 2007.

[22] Elliott M., Scacchi W., “Free software developers as an occupational community: Re-
solving conflicts and fostering collaboration”, in: Proc. ACM Intern. Conf. Supporting
Group Work, Sanibel Island, FL, November 2003, pp. 21–30.

[23] Elliott M., Scacchi W., “Free software development: Cooperation and conflict in a
virtual organizational culture”, in: Koch S. (Ed.), Free/Open Source Software Devel-
opment, Idea Group Publishing, Hershey, PA, 2005, pp. 152–172.

[24] Elliott M., Scacchi W., “Mobilization of software developers: The free software move-
ment”, 2006, submitted for publication.

[25] Erenkrantz J., “Release management within open source projects”, in: Proc. 3rd Work-
shop on Open Source Software Engineering, 25th Intern. Conf. Software Engineering,
Portland, OR, May 2003.

[26] Erickson T., “Making sense of computer-mediated communication (CMC): CMC sys-
tems as genre ecologies”, in: Proc. 33rd Hawaii Intern. Conf. Systems Sciences, IEEE
Press, January 2000, pp. 1–10.

[27] Espinosa J.A., Kraut R.E., Slaughter S.A., Lerch J.F., Herbsleb J.D., Mockus A.,
“Shared mental models, familiarity, and coordination: A multi-method study of dis-
tributed software teams”, in: Intern. Conf. Information Systems, Barcelona, Spain, De-
cember 2002, pp. 425–433.

[28] Feller J., Fitzgerald B., Understanding Open Source Software Development, Addison–
Wesley, NY, 2002.

[29] Feller J., Fitzgerald B., Hissam S., Lakhani K. (Eds.), Perspectives on Free and Open
Source Software, MIT Press, Cambridge, MA, 2005.

[30] Fielding R.T., “Shared leadership in the Apache project”, Communications ACM 42 (4)
(1999) 42–43.

[31] Fink M., The Business and Economics of Linux and Open Source, Prentice Hall PTR,
Upper Saddle, NJ, 2003.

[32] Fischer G., “External and shareable artifacts as opportunities for social creativity in
communities of interest”, in: Gero J.S., Maher M.L. (Eds.), Proc. Computational and
Cognitive Models of Creative Design, Heron Island, Australia, December 2001, pp. 67–
89.

[33] FLOSS, “Free/libre and open source software: Survey and study”, FLOSS Final Report,
2002; http://www.flossproject.org/report/ (accessed July 2006).

[34] Fogel K., Open Source Development with CVS, Coriolis Press, Scottsdale, AZ, 1999.
[35] Fogel K., Producing Open Source Software: How to Run a Successful Free Software

Project, O’Reilly Press, Sebastopol, CA, 2005.
[36] Gay J. (Ed.), Free Software Free Society: Selected Essays of Richard M. Stallman, GNU

Press, Free Software Foundation, Boston, MA, 2002.
[37] Gacek C., Arief B., “The many meanings of open source”, IEEE Software 21 (1) (Janu-

ary/February 2004) 34–40.
[38] Gallivan M., “Striking a balance between trust and control in a virtual organization:

A content analysis of open source software case studies”, Information Systems J. 11 (4)
(2001) 277–304.

290 W. SCACCHI

[39] German D., “The GNOME project: A case study of open source, global software devel-
opment”, Software Process—Improvement and Practice 8 (4) (2003) 201–215.

[40] German D., “An empirical study of fine-grained software modifications”, Empirical
Software Engineering 11 (3) (2006) 369–393.

[41] Ghosh R. (Ed.), CODE: Collaborative Ownership and the Digital Economy, MIT Press,
Cambridge, MA, 2005.

[42] Ghosh R., Prakash V.V., “The orbiten free software survey”, First Monday 5 (7) (July
2000), http://www.firstmonday.org/issues/issue5_7/ghosh/index.html, accessed 1 June
2006.

[43] Goldman R., Gabriel R.P., Innovation Happens Elsewhere: Open Source as Business
Strategy, Morgan Kaufmann Publishers, San Francisco, CA, 2005.

[44] Greene T.C., “Ballmer: “Linux is a cancer” ”, The Register, http://www.theregister.
co.uk/2001/06/02/ballmer_linux_is_a_cancer/, 2 June 2001.

[45] Hann I.-H., Roberts J., Slaughter S., Fielding R., “Economic incentives for participat-
ing in open source software projects”, in: Proc. Twenty-Third Intern. Conf. Information
Systems, December 2002, pp. 365–372.

[46] Hars A., Ou S., “Working for free? Motivations for participating in open source
projects”, Intern. J. Electronic Commerce 6 (3) (2002).

[47] Hakken D., Cyborgs@Cyberspace? An Ethnographer Looks at the Future, Routledge,
London, 1999.

[48] Harrison W., “Editorial: Open source and empirical software engineering”, Empirical
Software Engineering 6 (2) (2001) 193–194.

[49] Hertel G., Neidner S., Hermann S., “Motivation of software developers in Open Source
projects: An Internet-based survey of contributors to the Linux kernel”, Research Pol-
icy 32 (7) (July 2003) 1159–1177.

[50] Hertzum M., “The importance of trust in software engineers’ assessment and choice of
information sources”, Information and Organization 12 (1) (2002) 1–18.

[51] Hine C.M., Virtual Ethnography, Sage Publications, Newbury Park, CA, 2000.
[52] Howison J., Conklin M., Crowston K., “FLOSSmole: A collaborative repository for

FLOSS research data and analyses”, Intern. J. Info. Tech. and Web Engineering 1 (3)
(2006) 17–26.

[53] Huntley C.L., “Organizational learning in open-source software projects: An analysis
of debugging data”, IEEE Trans. Engineering Management 50 (4) (2003) 485–493.

[54] Iacono C.S., Kling R., “Computerization movements: The rise of the Internet and dis-
tant forms of work”, in: Yates J.A., Van Maanen J. (Eds.), Information Technology
and Organizational Transformation: History, Rhetoric, and Practice, Sage Publications,
Newbury Park, CA, 2001.

[55] Iannacci F., “Coordination processes in open source software development: The Linux
case study”, Emergence: Complexity & Organization (E:CO) 7 (2) (2005) 21–31.

[56] Iannacci F., “Beyond markets and firms: The emergence of open source networks”, First
Monday 10 (5) (2005).

[57] Jensen C., Scacchi W., “Collaboration, leadership, and conflict negotiation in the Net-
Beans.org community”, in: Proc. 4th Workshop on Open Source Software Engineering,
Edinburgh, UK, May 2004.

FREE/OPEN SOURCE SOFTWARE DEVELOPMENT 291

[58] Jensen C., Scacchi W., “Process modeling across the Web information infrastructure”,
Software Process—Improvement and Practice 10 (3) (July–September 2005) 255–272.

[59] Jensen C., Scacchi W., “Discovering, modeling, and reenacting open source software
development processes”, in: Acuna S.T., Sanchez-Segura M.I. (Eds.), New Trends in
Software Process Modeling, in: Series in Software Engineering and Knowledge Engi-
neering, vol. 18, World Scientific Publishing, Singapore, 2006, pp. 1–20.

[60] Jensen C., Scacchi W., “Role migration and advancement processes in OSSD projects:
A comparative case study”, in: Proc. 29th Intern. Conf. Software Engineering, Min-
neapolis, MN, May 2007.

[61] Kim A.J., Community-Building on the Web: Secret Strategies for Successful Online
Communities, Peachpit Press, 2000.

[62] Kling R., Scacchi W., “The Web of computing: Computer technology as social organi-
zation”, in: Yovits M.C. (Ed.), Advances in Computers 21 (1982) 1–90.

[63] Koch S. (Ed.), Free/Open Source Software Development, Idea Group Publishing, Her-
shey, PA, 2005.

[64] Kwansik B., Crowston K., “Introduction to the special issue: Genres of digital docu-
ments”, Information, Technology and People 18 (2) (2005).

[65] Lakhani K.R., Wolf B., Bates J., DiBona C., “The Boston consulting group
hacker survey”, July 2002; http://www.bcg.com/opensource/BCGHackerSurvey
OSCON24July02v073.pdf.

[66] Lanzara G.F., Morner M., “Artifacts rule! How organizing happens in open source soft-
ware projects”, in: Czarniawska B., Hernes T. (Eds.), Actor–Network Theory and Orga-
nizing, Liber & Copenhagen Business School Press, Malmo, Sweden, 2005, pp. 67–90.

[67] Lave J., Wenger E., Situated Learning: Legitimate Peripheral Participation, Cambridge
University Press, Cambridge, UK, 1991.

[68] Lehman M.M., “Programs, life cycles, and laws of software evolution”, Proc. IEEE 68
(1980) 1060–1078.

[69] Lehman M.M., “Software evolution”, in: Marciniak J. (Ed.), Encyclopedia of Software
Engineering, second ed., John Wiley and Sons, Inc., New York, 2002, pp. 1507–1513;
also see: “Software evolution and software evolution processes”, Annals of Software
Engineering 12 (2002) 275–309.

[70] Lerner J., Tirole J., “Some simple economics of open source”, J. Industrial Eco-
nomics 50 (2) (2002) 197–234.

[71] Lessig L., Code and Other Laws of Cyberspace, Basic Books, New York, 2000.
[72] Lessig L., Free Culture: The Nature and Future of Creativity, Penguin, New York, 2005.
[73] Longman J., “Open source software development process modeling”, in: Acuña S.T.,

Juristo N. (Eds.), Software Process Modeling, Springer Science+Business Media Inc.,
New York, 2005, pp. 29–64.

[74] Ljungberg J., “Open source movements as a model for organizing”, European J. Info.
Sys. 9 (4) (2000) 208–216.

[75] Lopez-Fernandez L., Robles G., Gonzalez-Barahona J.M., “Applying social network
analysis to the information in CVS repositories”, in: Proc. First Intern. Workshop on
Mining Software Repositories, Edinburgh, UK, May 2004, pp. 101–105.

292 W. SCACCHI

[76] Lopez-Fernandez L., Robles G., Gonzalez-Barahona J.M., Herraiz I., “Applying social
network analysis to community-drive libre software projects”, Intern. J. Info. Tech. and
Web Engineering 1 (3) (2006) 27–28.

[77] Madey G., Freeh V., Tynan R., “The open source development phenomenon: An analy-
sis based on social network theory”, in: Proc. Americas Conf. Info. Systems (AM-
CIS2002), Dallas, TX, 2002, pp. 1806–1813.

[78] Madey G., Freeh V., Tynan R., “Modeling the F/OSS community: A quantitative in-
vestigation”, in: Koch S. (Ed.), Free/Open Source Software Development, Idea Group
Publishing, Hershey, PA, 2005, pp. 203–221.

[79] Marwell G., Oliver P., The Critical Mass in Collective Action: A Micro-Social Theory,
Cambridge University Press, Cambridge, England, 1993.

[80] MITRE Corporation, “Use of free and open-source software (FOSS) in the U.S. Depart-
ment of Defense”, http://www.egovos.org/pdf/dodfoss.pdf, January 2003.

[81] Mockus A., Fielding R., Herbsleb J.D., “Two case studies of open source software
development: Apache and Mozilla”, ACM Transactions on Software Engineering and
Methodology 11 (3) (2002) 309–346.

[82] Monge P.R., Fulk J., Kalman M.E., Flanagin A.J., Parnassa C., Rumsey S., “Production
of collective action in alliance-based interorganizational communication and informa-
tion systems”, Organization Science 9 (3) (1998) 411–433.

[83] Nakakoji K., Yamamoto Y., Nishinaka Y., Kishida K., Ye Y., “Evolution patterns of
open-source software systems and communities”, in: Proc. 2002 Intern. Workshop Prin-
ciples of Software Evolution, 2002, pp. 76–85.

[84] Noll J., Scacchi W., “Supporting software development in virtual enterprises”, J. Digital
Information 1 (4) (February 1999), http://jodi.tamu.edu/Articles/v01/i04/Noll/.

[85] O’Dowd D., “No defense for Linux: Inadequate security poses national security threat”,
Design News 19 (July 2004), http://www.designnews.com/article/CA435615.html.

[86] Olson M., The Logic of Collective Action, Harvard University Press, Cambridge, MA,
1971.

[87] O’Mahony S., “Guarding the commons: How community managed software projects
protect their work”, Research Policy 32 (7) (July 2003) 1179–1198.

[88] OSBC, “Open source business conference”, http://www.osbc.com, 2006 (accessed 15
July 2006).

[89] Ostrom E., Calvert R., Eggertsson T. (Eds.), Governing the Commons: The Evolution
of Institutions for Collective Action, Cambridge University Press, Cambridge, England,
1990.

[90] Ovaska P., Rossi M., Marttiin P., “Architecture as a coordination tool in multi-site soft-
ware development”, Software Process—Improvement and Practice 8 (3) (2003) 233–
247.

[91] Paulson J.W., Succi G., Eberlein A., “An empirical study of open-source and closed-
source software products”, IEEE Trans. Software Engineering 30 (4) (April 2004) 246–
256.

[92] Pavelicek R., Embracing Insanity: Open Source Software Development, SAMS Pub-
lishing, Indianapolis, IN, 2000.

FREE/OPEN SOURCE SOFTWARE DEVELOPMENT 293

[93] Payton S., Herz J.C., Lucas M., Scott J., “Open technology development: Roadmap
plan”, Final Report, Advanced Systems & Concepts, Deputy Undersecretary of De-
fense, http://www.acq.osd.mil/asc, April 2006 (accessed 15 August 2006).

[94] Porter A.A., Siy H.P., Toman C.A., Votta L.G., “An experiment to assess the cost-
benefits of code inspections in large scale software development”, IEEE Trans. on
Software Engineering 23 (1997) 329–346.

[95] Porter A.A., Yilmaz C., Memon A.M., Krishna A.S., Schmidt D.C., Gokhale A., “Tech-
niques and processes for improving the quality and performance of open-source soft-
ware”, Software Process—Improvement and Practice 11 (2) (2006) 163–176.

[96] Preece J., Online Communities: Designing Usability, Supporting Sociability, John Wiley
& Sons, Chichester, UK, New York, 2000.

[97] Reis C.R., Fortes R.P.M., “An overview of the software engineering process and tools
in the Mozilla project”, in: Proc. Workshop on Open Source Software Development,
Newcastle, UK, February 2002.

[98] Ripoche G., Gasser L., “Scalable automatic extraction of process models for under-
standing F/OSS bug repair”, in: Proc. 16th Intern. Conf. Software Engineering & Its
Applications (ICSSEA-03), Paris, France, December 2003.

[99] Sack W., Detienne F., Ducheneaut D., Mahendran B., Barcellini F., “A methodological
framework for socio-cognitive analyses of collaborative design of open source soft-
ware”, Computer Supported Cooperative Work 15 (2–3) (June 2006) 229–250.

[100] Sawyer S., “Effects of intra-group conflict on packaged software development team
performance”, Information Systems J. 11 (2001) 155–178.

[101] Scacchi W., “Understanding the requirements for developing open source software sys-
tems”, IEE Proceedings—Software 149 (1) (February 2002) 24–39.

[102] Scacchi W., “Free/open source software development practices in the computer game
community”, IEEE Software 21 (1) (January/February 2004) 59–67.

[103] Scacchi W., “Socio-technical interaction networks in free/open source software develop-
ment processes”, in: Acuña S.T., Juristo N. (Eds.), Software Process Modeling, Springer
Science+Business Media Inc., New York, 2005, pp. 1–27.

[104] Scacchi W., “Understanding free/open source software evolution”, in: Madhavji N.H.,
Ramil J.F., Perry D. (Eds.), Software Evolution and Feedback: Theory and Practice,
John Wiley and Sons Inc., New York, 2006, pp. 181–206.

[105] Scacchi W., “Emerging patterns of intersection and segmentation when computerization
movements interact”, in: Kraemer K.L., Elliott M. (Eds.), Computerization Movements
and Technology Diffusion: From Mainframes to Ubiquitous Computing, Information
Today, Inc., 2007.

[106] Scacchi W., Feller J., Fitzgerald B., Hissam S., Lakhani K., “Understanding free/open
source software development processes”, Software Process—Improvement and Prac-
tice 11 (2) (March/April 2006) 95–105.

[107] Scacchi W., Jensen C., Noll J., Elliott M., “Multimodal modeling, analysis, and valida-
tion of open source software development processes”, Intern. J. Information Technology
and Web Engineering 1 (3) (2006) 49–63.

[108] Schach S.R., Jin B., Wright D.R., Heller G.Z., Offutt A.J., “Maintainability of the Linux
kernel”, IEE Proceedings—Software 149 (1) (February 2002) 18–23.

294 W. SCACCHI

[109] Seaman C.B., “Qualitative methods in empirical studies of software engineering”, IEEE
Trans. Software Engineering 25 (4) (July/August 1999) 557–572.

[110] Seaman C.B., Basili V., “Communication and organization: An empirical study of dis-
cussion in inspection meetings”, IEEE Trans. Software Engineering 24 (6) (July 1998)
559–572.

[111] Sharma S., Sugumaran V., Rajagopalan B., “A framework for creating hybrid open-
source software communities”, Information Systems J. 12 (1) (2002) 7–25.

[112] Sim S.E., Holt R.C., “The ramp-up problem in software projects: A case study of how
software immigrants naturalize”, in: Proc. 20th Intern. Conf. Software Engineering, Ky-
oto, Japan, 19–25 April 1998, pp. 361–370.

[113] Smith M., Kollock P. (Eds.), Communities in Cyberspace, Routledge, London, 1999.
[114] Smith N., Capiluppi A., Ramil J.F., “Qualitative analysis and simulation of open source

software evolution”, in: Proc. 5th Software Process Simulation and Modeling Workshop
(ProSim’04), Edinburgh, Scotland, UK, May 2004.

[115] Snow D.A., Soule S.A., Kriesi H., The Blackwell Companion to Social Movements,
Blackwell Publishers Ltd., Victoria, Australia, 2004.

[116] Spinuzzi C., Tracing Genres through Organizations: A Sociocultural Approach to In-
formation Design, MIT Press, Cambridge, MA, 2003.

[117] Sommerville I., Software Engineering, seventh ed., Addison–Wesley, New York, 2004.
[118] Stewart K.J., Gosain S., “An exploratory study of ideology and trust in open source

development groups”, in: Proc. 22nd Intern. Conf. Information Systems (ICIS-2001),
New Orleans, LA, 2001.

[119] Truex D., Baskerville R., Klein H., “Growing systems in an emergent organization”,
Communications ACM 42 (8) (1999) 117–123.

[120] Viller S., Sommerville I., “Ethnographically informed analysis for software engineers”,
Intern. J. Human–Computer Studies 53 (2000) 169–196.

[121] von Hippel E., von Krogh G., “Open source software and the “private–collective” in-
novation model: Issues for organization science”, Organization Science 14 (2) (2003)
209–223.

[122] von Krogh G., Spaeth S., Lakhani K., “Community, joining, and specialization in open
source software innovation: A case study”, Research Policy 32 (7) (July 2003) 1217–
1241.

[123] Weber S., The Success of Open Source, Harvard University Press, Cambridge, MA,
2004.

[124] West J., O’Mahony S., “Contrasting community building in sponsored and community
founded open source projects”, in: Proc. 38th Hawaii Intern. Conf. Systems Sciences,
Waikola Village, HI, 2005.

[125] West J., Dedrick J., “The effect of computerization movements upon organizational
adoption of open source”, in: Kraemer K.L., Elliott M. (Eds.), Computerization Move-
ments and Technology Diffusion: From Mainframes to Ubiquitous Computing, Informa-
tion Today, Inc., 2007.

[126] Wheeler D.A., “Why open source software/free software (OSS/FS, FLOSS or FOSS)?
Look at the numbers”, http://www.dwheeler.com/oss_fs_why.html, 2005, Accessed 15
November 2005.

FREE/OPEN SOURCE SOFTWARE DEVELOPMENT 295

[127] Williams S., Free as in Freedom: Richard Stallman’s Crusade for Free Software,
O’Reilly Books, Sebastopol, CA, 2002.

[128] Yamauchi Y., Yokozawa M., Shinohara T., Ishida T., “Collaboration with lean media:
How open-source software succeeds”, in: Proc. Computer Supported Cooperative Work
Conf. (CSCW’00), ACM Press, Philadelphia, PA, December 2000, pp. 329–338.

[129] Ye Y., Nakakoji K., Yamamoto Y., Kishida K., “The co-evolution of systems and com-
munities in free and open source software development”, in: Koch S. (Ed.), Free/Open
Source Software Development, Idea Group Publishing, Hershey, PA, 2005, pp. 59–82.

[130] Ye Y., Kishida K., “Towards an understanding of the motivation of open source soft-
ware developers”, in: Proc. 25th Intern. Conf. Software Engineering, IEEE Computer
Society, Portland, OR, May 2003, pp. 419–429.

This page intentionally left blank

Author Index

Numbers in italics indicate the pages on which complete references are given.

A

Abdelzaher, T., 159, 160, 189
Adams, M., 227, 241
Adiga, N., 90, 115, 149
Agarwal, A., 8, 86
Aingaran, K., 7, 85
Allen, G., 90, 149
Allu, B., 158, 188
Almasi, G., 90, 115, 149
Alon, E., 5, 12, 84
Amarasinghe, S., 8, 86
AMD, 126, 149
Anastasi, R., 227, 241
Anderson, C., 68, 69, 87
Angelis, L., 272, 287
Annabi, H., 256, 288
Annavaram, M., 31, 32, 83
Antoniades, I.P., 272, 287
Archibald, J., 63, 64, 83
Ardanaz, F., 32, 84
Arief, B., 250, 253, 289
Asanovic, K., 159, 188
August, D.I., 96, 153
Austin, T.M., 96, 150
Ayguade, E., 31, 85

B

Babb, J., 8, 86
Baer, J.-L., 63, 64, 83
Bailey, A.M., 91, 98, 149
Bailey, D.H., 104, 117, 122, 123, 137, 150
Balakrishnan, S., 31, 32, 83
Ball, T., 167, 188
Bamford, W., 220, 222, 226, 241

Barcellini, F., 280, 281, 283, 293
Barik, R., 90, 115, 149
Barr, K., 159, 188
Barroso, L., 7, 46, 83
Barszcz, E., 137, 150
Barton, J.T., 137, 150
Barua, R., 8, 86
Basili, V., 287, 294
Baskerville, R., 269, 294
Bateman, C., 193, 218, 232, 240
Bates, J., 248, 252, 258, 272, 279, 291
Beckermann, A., 207, 240
Bellosa, F., 97, 98, 150, 153
Benford, S., 227, 241
Benkler, Y., 254, 257–259, 287
Bergquist, M., 248, 258, 259, 288
Bernstein, K., 5, 12, 84
Beyer, H., 288
Bianchini, R., 98, 125, 148, 150
Björk, S., 231, 242
Blaauw, D., 156–164, 174, 182, 187, 187–189
Bleris, G.L., 272, 287
Blome, J.A., 96, 153
BlueGene/LTeam, 112, 125, 150
Bohrer, P., 125, 150
Bonaccorsi, A., 252, 279, 288
Boon, R., 193, 218, 232, 240
Borkar, S., 90, 91, 150, 159, 187
Bose, P., 95, 150
Bowhill, W., 22, 83
Bray, J., 235, 242
Briggs, F., 70, 83
Brooks, D.M., 23, 83, 95–98, 150, 152
Brown, J., 14, 86
Bunch, J.R., 90, 117, 122, 151

297

298 AUTHOR INDEX

Burger, D., 9, 36, 79, 84, 86, 96, 150
Burns, J., 24, 45, 83
Butts, J.A., 188

C

Cai, G., 96, 150
Calder, B., 10, 12, 14, 15, 24, 38, 52, 86
Calvert, R., 254, 257, 263, 270, 286, 292
Cameron, K.W., 125, 126, 138, 148, 150, 151
Capiluppi, A., 270, 272, 281, 288, 294
Carrera, E.V., 98, 125, 148, 150
Catarci, T., 284, 288
Cekleov, M., 167, 188
Chandra, S., 98, 150
Chang, P.P., 167, 188
Chaparro, P., 95, 150
Chehimi, F., 198, 199, 214–216, 232, 240–242
Chen, G., 159, 161, 188
Chen, K., 282, 288
Chen, Z., 125, 153
Cheok, A.D., 226, 227, 241
Chu, S., 68, 83
Ciborra, C., 288
Clabes, J., 68, 69, 83, 87
Clemson, H., 201, 202, 232, 240, 242
Collins, J., 45, 83
Company, I., 114, 117, 150
Compaq Corporation, 6, 22, 83
Conklin, M., 282, 290
Conte, T.M., 159, 160, 167, 187, 188
Cook, J.E., 284, 287, 288
Cooper, D., 254, 258–260, 288
Cote, W., 46, 67, 84
Coulton, P., 195, 198, 199, 201, 202, 214–216,

218, 220, 222, 226, 232, 238, 240–242
Crabtree, A., 227, 241
Cronin, J., 46, 67, 84
Crowston, K., 248, 250, 254–257, 261, 265,

281, 282, 288, 290, 291
Culler, D.E., 92, 150
Curtis, B., 257, 288

D

Daasch, W.R., 96, 150
Danziger, J., 257, 288
Dawson, J., 68, 83

Day, M.N., 8, 32, 84
De, V., 159, 160, 187, 189
De Souza, C.R.B., 257, 260, 263, 265, 288
Dedrick, J., 268, 274, 277, 294
Degalahal, V., 157, 159, 161, 173, 188
Despain, A.M., 158, 189
Detienne, F., 280, 281, 283, 293
Devgan, A., 32, 85
Dhodapkar, A., 96, 150
DiBona, C., 248, 252, 254, 258–260, 272, 274,

279, 288, 291
Diefendorff, K., 21, 22, 83
Digital Equipment Corporation, 6, 22, 83
DiLullo, J., 68, 83
Dobberpuhl, D.W., 22, 83
Dodson, S., 68, 83
Dolbeau, R., 45, 83
Dongarra, J.J., 90, 91, 117, 122, 151
Dourish, P., 257, 260, 263, 265, 288
Dramlitsch, T., 90, 149
Drozd, A., 227, 241
Dubois, M., 70, 83, 167, 188
Ducheneaut, D., 280, 281, 283, 293
Ducheneaut, N., 279–281, 283, 288

E

Eagle, N., 232, 242
Ebenau, R.G., 287, 288
Eberlein, A., 281, 292
Ebner, M., 284, 288
Edwards, R., 195, 198, 199, 201, 202,

214–216, 218, 220, 222, 226, 232, 238,
240–242

Eggers, S., 8, 14, 45, 86
Eggertsson, T., 254, 257, 263, 270, 286, 292
Eickemeyer, R.J., 70, 84, 85
Elliott, M.S., 245, 254, 255, 257–260, 265,

273, 276, 280, 283, 288, 289, 293
Ellis, C.S., 98, 151
Elnozahy, E.N., 125, 150
Elnozahy, M., 148, 151
Emer, J., 8, 21, 22, 32, 84, 86
Erenkrantz, J., 261, 289
Erickson, T., 252, 289
Espasa, R., 32, 84
Espinosa, J.A., 257, 265, 289

AUTHOR INDEX 299

F

Falk, J., 231, 242
Falsafi, B., 159, 160, 187
Fan, X., 98, 151
Faraboschi, P., 173, 188
Farbiz, F., 227, 241
Farkas, K.I., 18, 23, 32, 34, 44, 69, 85, 98, 151
Felix, S., 32, 84
Feller, J., 245, 260, 281, 289, 293
Feng, W.-C., 112, 113, 116–118, 125, 149,

151, 152, 153
Feng, X., 125, 126, 138, 148, 150, 151
Fielding, R.T., 246, 248, 250, 252, 257–259,

261, 268, 272, 282, 289, 290, 292
Finch, P., 8, 86
Fink, M., 276, 277, 279, 289
Fischer, G., 248, 269, 272, 289
Fisher, J.A., 173, 188
Fitzgerald, B., 245, 260, 281, 289, 293
Flanagin, A.J., 258, 265, 269, 292
Flautner, K., 156–164, 174, 182, 187, 187, 188
Flinn, J., 97, 151
Flintham, M., 227, 241
FLOSS, 248, 252, 258, 276, 279, 289
Floyd, M., 68, 83
Flynn, M.J., 24, 36, 86
Fogel, K., 254, 256–258, 260, 279, 282, 289
Fong, S.W., 227, 241
Fortes, R.P.M., 280, 293
Forum Nokia, 196–198, 212, 213, 216, 217,

240, 241
Foster, I., 90, 149
Frank, M., 8, 86
Frank, S.J., 63, 84
Freeh, V., 247, 249, 258, 265, 267, 269, 272,

281, 282, 292
Freeh, V.W., 149, 151
Friedrich, J., 68, 83
Froehlich, J., 257, 260, 263, 265, 288
Fulk, J., 258, 265, 269, 292

G

Gabriel, R.P., 279, 290
Gacek, C., 250, 253, 289
Gago, J., 32, 84
Gallivan, M., 259, 289

Gasser, L., 282, 293
Gaudiot, J.-L., 24, 45, 83
Gay, J., 246, 254, 258, 268, 274, 276, 277,

279, 289
Ge, R., 125, 126, 138, 148, 150, 151
German, D., 272, 283, 290
Gharachorloo, K., 7, 46, 83
Ghiasi, S., 31, 32, 43, 84, 85
Ghosh, R., 248, 252, 254, 259, 279, 290
Gieseke, B., 22, 84
Goh, K.H., 227, 241
Gokhale, A., 263, 293
Goldman, R., 279, 290
Gonzalez, A., 95, 150
Gonzalez, J., 95, 150
Gonzalez-Barahona, J.M., 251, 269, 282, 291
Gooliffe, P., 199, 240
Gorman, G., 68, 83
Gosain, S., 248, 294
Goulet, M., 68, 83
Gramunt, R., 32, 84
Greene, T.C., 274, 290
Greenhalgh, C., 227, 241
Grochowski, E., 31, 32, 43, 83, 84
Gropp, W., 117, 151
Grunwald, D., 31, 32, 84, 98, 151
Gupta, A., 92, 97, 150, 152
Gupta, R., 160, 189
Gupta, S., 36, 84
Gurumurthi, S., 97, 151

H

Hakken, D., 252, 263, 280, 290
Hamerly, G., 10, 12, 14, 15, 24, 38, 52, 86
Hammond, L., 7, 84
Hampton, M., 159, 188
Hann, I.-H., 248, 252, 258, 268, 290
Hansson, R., 231, 242
Harris, T., 104, 117, 122, 123, 150
Harrison, W., 281, 284, 287, 290
Hars, A., 248, 258, 276, 279, 290
HECRTF, 90, 152
Heller, G.Z., 270, 272, 281, 282, 288, 293
Heni, M., 207, 240
Hennessy, J.L., 6, 84, 91, 152
Heo, S., 159, 188
Herbsleb, J.D., 246, 248, 250, 257, 265, 272,

282, 289, 292

300 AUTHOR INDEX

Hermann, S., 248, 258, 279, 290
Hernandez, I., 32, 84
Herraiz, I., 251, 269, 282, 291
Herrod, S.A., 97, 152
Hertel, G., 248, 258, 279, 290
Hertzum, M., 259, 290
Herz, J.C., 274, 292
Hine, C.M., 252, 280, 290
Hissam, S., 245, 260, 281, 289, 293
Ho, R., 68, 84
Hofstee, H.P., 8, 32, 84
Holland, K., 46, 67, 84
Holt, R.C., 253, 294
Holtzblatt, K., 288
Holzinger, A., 284, 288
Horowitz, M., 5, 12, 68, 84
Howison, J., 250, 256, 257, 261, 282, 288, 290
Hsu, C.-H., 125, 149, 152, 158, 189
Hu, J.S., 157, 159, 161, 171, 173, 188
Hu, Z., 157–159, 164, 187, 187
Huh, J., 9, 86
Huntley, C.L., 252, 290
Hwu, W.W., 167, 188

I

Iacono, C.S., 274, 290
Iannacci, F., 261, 263, 265, 269, 272, 280, 290
IBM, 8, 63, 64, 67, 69, 70, 84, 114, 152
Intel, 126, 132, 152, 168, 188
Intel Corporation, 56, 83
International Organization for Standardization,

226, 241
Irwin, M.J., 96, 97, 151, 153, 156, 157,

159–161, 171, 173, 188, 189
Isci, C., 97, 98, 152
Iscoe, N., 257, 288
Ishida, T., 252, 261, 268, 295

J

J, G., 117, 152
Jamaluddin, J., 232, 242
Jensen, C., 250, 252, 253, 258–260, 269–271,

280, 281, 283, 287, 290, 291, 293
Jin, B., 270, 272, 281, 293
John, L., 158, 189

Johns, C.R., 8, 32, 84
Johnson, R.E., 70, 84
Jones, C., 125, 148, 150
Joseph, R., 97, 98, 152
Jouppi, N.P., 6, 18, 22, 23, 32, 34, 36, 38, 44,

45, 52, 69, 70, 84–86, 163, 188
Juan, T., 32, 84

K

Kaanta, C., 46, 67, 84
Kadayif, I., 159, 160, 189
Kahle, J.A., 8, 32, 84
Kale, L.V., 90, 152
Kalla, R., 68, 83
Kalman, M.E., 258, 265, 269, 292
Kandemir, M., 96, 97, 151, 153, 156, 157,

159–161, 171, 173, 188, 189
Kappiah, N., 149, 151
Karakoy, M., 159, 161, 188
Kashi, N., 240
Kastner, R., 156, 189
Kaxiras, S., 157–159, 164, 187, 187
Keaty, J., 68, 69, 87
Keckler, S.W., 9, 36, 79, 84, 86
Keller, T., 32, 43, 84, 85, 125, 150
Kiely, D., 195, 240
Kim, A.J., 251, 252, 261, 268, 291
Kim, C., 9, 79, 84, 86
Kim, H., 96, 153
Kim, J., 8, 86
Kim, N.S., 156–164, 174, 182, 187, 187, 188
Kircher, C., 68, 69, 87
Kirk, C., 125, 151
Kishida, K., 250, 252, 253, 268, 273, 274, 292,

295
Kistler, M., 148, 151
Klauser, A., 21, 22, 85
Klein, H., 269, 294
Kling, R., 257, 274, 290, 291
Koch, S., 245, 276, 291
Kollock, P., 251, 252, 268, 280, 294
Kolodny, A., 31, 85
Kongetira, P., 7, 85
Korhonen, P., 218, 241
Kotla, R., 32, 85
Kowaleski, J., 21, 85

AUTHOR INDEX 301

Krafka, B., 70, 85
Krasner, H., 257, 288
Kraut, R.E., 257, 265, 289
Krauter, B., 68, 69, 87
Kremer, U., 125, 152, 158, 189
Kriesi, H., 274, 294
Krishna, A.S., 263, 293
Krishnan, V., 45, 85
Kumar, A., 24, 85
Kumar, R., 5, 12, 18, 23, 32, 34, 38, 44, 45, 52,

67, 69, 70, 84, 85
Kumar, S., 90, 152
Kunkel, S.R., 70, 84, 85
Kurita, T., 93, 152
Kwansik, B., 255, 281, 291

L

Lago, P., 272, 281, 288
Lai, K., 31, 32, 83, 156, 187
Laird, D., 112, 152
Lakhani, K.R., 245, 250, 252, 258, 260,272,

279, 281, 289, 291, 293, 294
Lanzara, G.F., 255, 263, 280, 291
Laramee, D.F., 193, 240
Larus, J.R., 167, 188
Laudon, J., 4, 85
Lave, J., 257, 259, 272, 291
LBNL, 98, 152
Lebeck, A.R., 98, 151
Lee, C., 173, 188
Lee, D., 156, 189
Lee, M., 68, 83
Lee, P., 46, 67, 84
Lee, V., 8, 86
Lee, W., 8, 86
Lehman, M.M., 270, 273, 281, 291
Lerch, J.F., 257, 265, 289
Lerner, J., 248, 252, 258, 291
Lessig, L., 254, 259, 263, 268, 291
Levis, P., 98, 151
Levy, H., 8, 14, 45, 86
Li, J., 43, 85
Li, L., 159, 160, 189
Li, Y., 227, 241
Lim, C.H., 96, 150
Lipasti, M., 70, 85

Liu, D., 156, 189
Liu, H., 9, 86
Liu, S., 70, 84
Liu, W., 227, 241
Ljungberg, J., 248, 258, 259, 274, 288, 291
Ljungstrand, P., 231, 242
Lo, J., 8, 86
Longman, J., 280, 291
Lopez-Fernandez, L., 251, 269, 282, 291
Lorch, J.R., 98, 152
Lovett, T., 63, 85
Lowenthal, D.K., 149, 151
Lowney, G., 32, 84
Lu, S.-L., 156, 187
Lucas, M., 274, 292
Lusk, E., 117, 151

M

MacKenzie, I.S., 218, 241
Madey, G., 247, 249, 258, 265, 267, 269, 272,

281, 282, 292
Maeurer, T.R., 8, 32, 84
Magerkurth, C., 226, 241
Mahendran, B., 280, 281, 283, 293
Mahmoud, Q., 215, 241
Mai, K., 68, 84
Malik, S., 96, 153, 158, 189
Mandryk, R.L., 226, 241
Mangione-Smith, W.H., 173, 188
Manheim, U., 90, 122, 153
Martin, S., 156–160, 162, 164, 187, 188
Martinez, J., 43, 85
Martonosi, M., 23, 83, 96–98, 150, 152,

157–159, 164, 187, 187
Marttiin, P., 260, 265, 292
Marwell, G., 257–259, 265, 269, 282, 292
Mattina, M., 32, 84
McGill, J., 68, 83
McMahon, F.H., 117, 152
McNamara, R., 7, 46, 83
McVoy, L., 117, 152
Memon, A.M., 263, 293
Mendelson, A., 156, 187
Meng, Y., 156, 189
Merritt, R., 21, 22, 85
Michelson, K., 9, 86
MITRE Corporation, 274, 279, 292

302 AUTHOR INDEX

Mockus, A., 246, 248, 250, 257, 265, 272,
282, 289, 292

Moller, C.B., 90, 117, 122, 151
Monge, P.R., 258, 265, 269, 292
Moore, C.R., 9, 86
Moore, G., 5, 85
Morad, T.Y., 31, 85
Morisio, M., 272, 281, 288
Morner, M., 255, 263, 280, 291
Motorola, 168, 188
Muchnick, S., 158, 159, 170, 185, 188
Mudge, T., 93, 94, 152, 156–164, 174, 182,

187, 187, 188
Muench, P., 68, 83
Mulder, J.M., 24, 36, 86
Mullins, I., 218, 226, 241
Mullins, T., 70, 85
Murai, H., 90, 152

N

Nadgir, A., 171, 188
Naffziger, S., 5, 12, 84
Nagarajan, R., 9, 86
Nakakoji, K., 250, 268, 273, 274, 292, 295
Nayfeh, B.A., 7, 84
Neidner, S., 248, 258, 279, 290
NERSC, 90, 122, 153
Nilsen, T., 226, 241
Nishinaka, Y., 250, 273, 274, 292
Nokia, 192, 224, 240
Noll, J., 254, 261, 283, 292, 293
Nowatzyk, A., 7, 46, 83

O

Ockman, S., 254, 258–260, 274, 279, 288
O’Dowd, D., 274, 292
Offutt, J., 270, 272, 281, 282, 288, 293
Oliver, P., 257–259, 265, 269, 282, 292
Olson, M., 257, 259, 292
Olukotun, K., 7, 84, 85
O’Mahony, S., 261, 263, 268, 272, 273, 277,

292, 294
Onder, S., 160, 189
OSBC, 279, 292
Oskin, M., 9, 86
Ostrom, E., 254, 257, 263, 270, 286, 292
Ou, S., 248, 258, 276, 279, 290

Ovaska, P., 260, 265, 292

P

Palmer, 192, 224, 240
Pan, F., 149, 151
Pande, S., 160, 189
Papamarcos, M., 70, 86
Parikh, D., 159, 160, 189
Parnassa, C., 258, 265, 269, 292
Patel, J., 70, 86
Patil, D., 5, 12, 84
Patterson, D.A., 6, 84, 91, 152
Paulson, J.W., 281, 292
Pavelicek, R., 248, 254, 258–260, 263, 279,

292
Payton, S., 274, 292
Peh, L.-S., 96, 153
Penry, D.A., 96, 153
Pentland, A., 232, 242
Perelman, E., 10, 12, 14, 15, 24, 38, 52, 86
Petrovick, J., 68, 69, 87
Phillips, J.C., 90, 152
Pinheiro, E., 98, 125, 148, 150
Plass, D., 68, 83
Pollack, F., 156, 187
Porter, A.A., 263, 293
Potkonjak, M., 173, 188
Powell, L., 68, 83
Powell, M.D., 159, 160, 187
Prakash, V.V., 248, 252, 279, 290
Preece, J., 251, 268, 293

Q

Qadeer, S., 7, 46, 83
Quach, N.T., 24, 36, 86

R

Rabaey, J.M., 23, 86
Rajagopalan, B., 268, 294
Rajamony, R., 148, 151
Rajgopal, S., 97, 153
Rajwar, R., 31, 32, 83
Ramil, J.F., 270, 272, 281, 294
Ranganathan, P., 18, 23, 32, 34, 44, 69, 85
Rashid, O., 195, 218, 226, 238, 240, 241

AUTHOR INDEX 303

Rawson, F., 32, 43, 84, 85
Reis, C.R., 280, 293
Rele, S., 160, 189
Restle, P., 68, 69, 83, 87
Ripoche, G., 282, 293
Roberts, J., 248, 252, 258, 268, 290
Robles, G., 251, 269, 282, 291
Ronen, R., 32, 43, 84, 156, 187
Rosenberg, H., 70, 85
Rosenblum, M., 97, 152
Rossi, C., 252, 279, 288
Rossi, M., 260, 265, 292
Rotenberg, E., 159, 160, 187
Row-Farr, J., 227, 241
Roy, K., 159, 160, 187
Rumsey, S., 258, 265, 269, 292
Runyon, S., 68, 83

S

Sack, W., 280, 281, 283, 293
Sair, S., 12, 14, 15, 52, 86
Sakagami, H., 90, 152
Samoladas, I., 272, 287
Sankaralingam, K., 9, 86
Sankaranarayanan, K., 159, 160, 189
Sano, B., 7, 46, 83
Saphir, W., 104, 117, 122, 123, 150
Sarkar, V., 8, 86
Satyanarayanan, M., 97, 151
Sawyer, S., 260, 293
Scacchi, W., 245, 249–263, 265, 269–274,

276, 280, 281, 283, 284, 287, 289–293
Schach, S.R., 270, 272, 281, 282, 288, 293
Scheibel, J., 226, 241
Scheurich, C., 70, 83
Schmidt, D.C., 263, 293
Schuster, S.E., 95, 150
Schwartz, N., 68, 83
Schwerin, A., 9, 86
Scott, J., 274, 292
Scozzi, B., 248, 254, 256, 261, 265, 288
Seaman, C.B., 280, 281, 287, 293, 294
Semiconductor Industry Association, 156, 187
Seo, Y., 90, 152
Seznec, A., 32, 45, 83, 84
Sharma, S., 268, 294
Shen, J., 31, 32, 43, 83, 84, 156, 187

Sherwood, T., 10, 12, 14, 15, 24, 38, 52, 86,
156, 189

Shinohara, T., 252, 261, 268, 295
Shippy, D., 8, 32, 84
Shivakumar, P., 22, 36, 70, 86, 163, 188
Silfverberg, M., 218, 241
Sim, S.E., 253, 294
Singh, D., 97, 153
Singh, J.P., 92, 150
Sinharoy, B., 68, 83
Sivasubramaniam, A., 97, 151, 159, 160, 189
Siy, H.P., 263, 293
Skadron, K., 159, 160, 189
Slaughter, S.A., 248, 252, 257, 258, 265, 268,

289, 290
Smith, A.J., 98, 152
Smith, J.E., 92, 153
Smith, M., 251, 252, 268, 280, 294
Smith, N., 270, 272, 281, 294
Smith, S., 7, 46, 83
Snavely, A., 14, 86
Snow, D.A., 274, 294
Sohi, G., 188
Sommerville, I., 244, 246, 255, 260, 265, 280,

286, 294
Soule, S.A., 274, 294
Spaeth, S., 248, 250, 252, 294
SPEC, 14, 86
Spinuzzi, C., 252, 255, 281, 294
Springer, R., 149, 151
Squillante, M.S., 70, 84
Srikrishna, D., 8, 86
Staelin, C., 117, 152
Stamelos, I., 272, 287
Stamm, R., 8, 86
Standard Performance Evaluation Corporation,

103, 152
Stets, R., 7, 46, 83
Stewart, G.W., 90, 117, 122, 151
Stewart, K.J., 248, 294
Stone, M., 254, 258–260, 274, 279, 288
Strauss, S.H., 287, 288
Sturman, C., 235, 242
Su, C.L., 158, 189
Succi, G., 281, 292
Sugumaran, V., 268, 294
Sun, 7, 86
Svensson, C., 156, 189

304 AUTHOR INDEX

Swanson, S., 9, 86
Sweet, M., 68, 83
Sylvester, D., 156, 189

T

Takemoto, M., 93, 152
Tan, L., 125, 153
Tandavanitja, N., 227, 241
Taylor, M., 8, 86
Tennessee, U., 90, 122, 153
Teo, S.L., 227, 241
Thakkar, S., 63, 85
The Khronos Group, 214, 241
Theis, T.N., 68, 86
Thompson, R., 195, 238, 240
Tirole, J., 248, 252, 258, 291
Tiwari, V., 23, 83, 96, 97, 150, 153, 158, 189
Toburen, M.C., 159, 160, 187
Toman, C.A., 263, 293
Top500, 90, 153
Torrellas, J., 45, 85
Tremblay, M., 7, 86
Truex, D., 269, 294
Tsai, Y., 159, 160, 189
Tsui, C.-Y., 158, 189
Tullsen, D.M., 8, 14, 18, 23, 24, 32, 34, 38, 44,

45, 52, 67, 69, 70, 83, 85, 86
Tynan, R., 247, 249, 258, 265, 267, 269, 272,

281, 282, 292

U

Upton, M., 31, 32, 83

V

Vachharajani, M., 96, 153
Vachharajani, N., 96, 153
Valero, M., 31, 85
Valluri, M., 158, 189
VanderWiel, S., 70, 85
Vargas, E., 91, 153
Varner, D., 125, 148, 150
Velusamy, S., 159, 160, 189
Verghese, B., 7, 46, 83
Vijaykrishnan, N., 96, 97, 151, 153, 156, 157,

159–161, 171, 173, 188, 189
Vijaykumar, T.N., 159, 160, 187

Viller, S., 280, 294
Vitale, P., 70, 85
von Hippel, E., 250, 272, 294
von Krogh, G., 248, 250, 252, 272, 294
Votta, L.G., 263, 284, 287, 288, 293

W

Wagoner, J., 68, 83
Waingold, E., 8, 86
Wall, D., 15, 87
Wang, H.-S., 32, 43, 84, 96, 153
Warnock, J., 68, 69, 87
Warren, M.S., 112, 113, 116, 117, 125, 151,

153
Weber, S., 277, 294
Weigle, E.H., 112, 113, 116, 117, 125, 151,

153
Weiser, U.C., 31, 85
Weissel, A., 98, 153
Wenger, E., 257, 259, 272, 291
West, J., 268, 274, 277, 294
Wheeler, D.A., 279, 294
Whitley, L., 70, 85
Willey, M., 7, 84
Williams, S., 254, 258, 268, 279, 294
Wilson, A., 63, 87
Witchel, E., 97, 152
Wolf, A.L., 284, 287, 288
Wolf, B., 248, 252, 258, 272, 279, 291
Wolfe, A., 158, 189
Wright, D.R., 270, 272, 281, 293
Wright, T., 46, 67, 84

Y

Yamamoto, Y., 250, 268, 273, 274, 292, 295
Yamauchi, Y., 252, 261, 268, 295
Yang, S., 159, 160, 187
Yang, X.B., 227, 241
Ye, W., 96, 153
Ye, Y., 159, 187, 250, 252, 253, 268, 273, 274,

292, 295
Yilmaz, C., 263, 293
Yokokawa, M., 90, 152
Yokozawa, M., 252, 261, 268, 295
Young, C., 173, 188
Yu, L., 282, 288

AUTHOR INDEX 305

Z

Zhang, W., 157–161, 173, 188, 189
Zheng, G., 90, 152
Zhou, H., 159, 160, 187
Zhou, Y., 125, 153

Zhu, Q., 125, 153

Zhu, X., 96, 153

Zoric, B., 68, 69, 87

Zotou, N., 232, 242
Zyuban, V., 28, 67, 69, 70, 85, 87

This page intentionally left blank

Subject Index

A

A La Mobile, 207
ACPI, 132, 137
‘Action Twister’, 224
Address bus, 63, 64
Adobe, 212
Alpha cores, 6

see also EV4 core; EV5 core; EV6 core;
EV8- core

AMC cache, 160
AMD, multi-core processors, 8
Amdahl’s Law, 124
ammp, 14, 27
Apache Software Foundation, 268
Apache Web server, 268, 270, 276, 282
Application memory space, 195–6
Application size, mobile game, 195
applu, 14, 24–6, 27, 28
Arbitration, 69
Arcade games, 273
Area budget, 36
Area estimation, 23–4, 36–7
Argus prototype, 112–13

advantages, 124–5
benchmarks, 116–17
cost, power and space metrics, 117–19
low power cluster metrics, 115–17
performance limitations, 125
performance results, 119–24

memory system, 119–20
message communication, 121–2
scientific applications, 122–3
throughput, 120–1

system design, 113–15
ARM architecture, 215

compilers, 204
Arrhenius’ Law, 116

art, 14
Artifact analysis methods, 281–3
Artifact repository mining, 281–3
Assertive access, 61

DCache, 60, 61
ICache, 59

Asymmetric core clusters, 31
Athlon processor, 8
ATI, 216
‘Attack of the Killer Virus’, 224
Average Revenue Per User (ARPU), 192

B

Bank load queues (BLQs), 67
BenQ-Siemens, 202
Beowulf, 115

see also DANIEL
Binary Runtime Environment for Wireless

(BREW), 203–5, 215
Bitboys, 216
BlueGene/L, 90, 112, 115, 120

limitations, 125
Bluejacking, 232
Bluetooth, 229, 232, 234–6

latency, 197
‘Botfighters’, 218
Bounded-global-event, 18–19
BREW, 203–5, 215
‘Buddy Bash’, 224–5
Bugzilla, 256, 263, 264, 282
bzip2, 14

C

C code, performance leverage, 199
C++ code, performance leverage, 199

307

308 SUBJECT INDEX

Cache leakage energy reduction
compiler-assisted, 160–1

evaluation methodology, 172–3
see also Data cache leakage

reduction; Loop-based
data cache leakage
reduction; Static next
sub-bank prediction

research, 159–61
Cache sharing see DCache sharing; ICache

sharing
CACTI, 22, 23, 36, 70, 163–4
Cai–Lim, 96
Camera games, 224–5
CASTLE, 98
Casual gamers, 194
Cell processor, 8, 32
Central address arbiter, 63
Cheok, Adrian, 227
Chip multiprocessors (CMPs), 3
CLDC, 209
Coding optimisation, for mobile games,

198–9
Coding style optimisation, 199
Coherence transactions, 63
Community development, FOSS, 268–9
Compiler-assisted leakage energy reduction

see Cache leakage energy
reduction, compiler-assisted

Component life expectancy, 116
Computational clusters, 92

classification, 115
power profiling, 98–112

application characteristics, 110
automating process, 101–2
cluster energy-performance

efficiency, 108–10
cluster-wide measurements, 104–8
isolating power by component, 100–1
power measurement system, 99–102
resource scheduling, 110–12
single node measurements, 103–4
see also Nodal power profiles

see also Low power computational
clusters; Power-aware
computational clusters

Conditional branches with static target
addresses, 167, 174–5

Configurations, J2ME, 208–9
Conflict management, 260, 285
Conjoined-core chip multiprocessors, 45–61

baseline architecture, 46–7
conjoined-core architectures, 47–53

unified, 61
floorplans

baseline, 47
crossbar sharing, 50
ICache sharing, 48–9

intelligent sharing, 58–61
modeling, 52–3
multiple sharings, 61
simple sharing, 53–8

Connected Device Configuration (CDC), 209
Connected Limited Device Configuration

(CLDC), 209
conquerors, 218
‘Consequences’, 219
Copy left, 276
Core Duo processor, 8
Core switching, 19, 21

oracle heuristics, 26–9
realistic heuristics, 29–31

CPUSPEED daemon, 128–9, 137–8
crafty, 14, 27
Crossbar interconnection systems, 62, 66
Crossbars, 66

design issues, 77–8
overheads, area and power, 76–8
performance, 78–9
sharing, 50–1

simple, 57–8
width reduction, 51, 58

Crusoe TM5600, 115
Current versions system (CVS), 259–60,

263, 268, 283

D

DANIEL, 117
cost, power and space metrics, 117–19
performance results, 119–24

memory system, 119–20
scientific applications, 122–3
throughput, 120–1

Data bus, 64

SUBJECT INDEX 309

Data cache leakage reduction
hardware-based, 157–8, 161

experimental results, 182–4
see also Loop-based data cache leakage

reduction
Data cache sharing see DCache sharing
Data queues, 64
DCache sharing, 49–50

intelligent sharing, 60
overheads, area and power, 76–8
performance, 78–9
simple sharing, 55–6

Delay, 92
normalized, 108

Device and service detection, 235
DirectX Mobile Edition, 206
Distribution, mobile games, 200–1
Doja, 209
‘Dope-wars’, 218
DRI-cache, 160
Drowsy instruction caches, 158

see also Static next sub-bank
prediction

DVFS, 94, 125
in cache cells, 160

DVS
external control, 126

system-driven, 128–9, 137–8
user-driven, 129–30, 139–43

in high-performance clusters, 126–8
internal control, 126, 130–1, 143–8

energy savings, 144–5, 146–8
performance, 143–4, 145–6

scheduling strategies, 126, 128–31
transition automation, 149

Dynamic power, 156
Dynamic voltage and frequency scaling see

DVFS
Dynamic voltage scaling see DVS

E

E-ten, 205
Earth Simulator, 91
Eclipse, 268, 277
ED2P metric, 111–12, 137, 141–3
ED3P metric, 137, 140

EDP metric, 111–12, 134, 141
Elcor, 173
End-user license agreements (EULAs), 254
Energy, 94–5
Energy conservation, 98
Energy-delay product (EDP), 27–8, 181–2,

184
Energy-delay2 metric, 28–9
Energy efficiency optimization, 26–7
Energy per instruction (EPI), reduction, 32
Energy-performance efficiency metrics,

111–12, 137
Energy-performance microbenchmarks, 133–6

communication-bound, 135–6
CPU-bound, 134–5
memory-bound, 134

Energy-performance tradeoffs, 111–12
Energy profiling, 132
eon, 14
EPIC architecture, 173
EPOC software, 201
Ericsson, 201
Ethnographically informed methods, 280–1
EULAs, 254
EV4 core, 20–1

configuration, 22
power and area statistics, 23

EV5 core, 6, 20–1, 35, 46
configuration, 13, 22
FPU area, 51
power and area statistics, 23

EV6 core, 6, 20–1
configurations, 13, 22
power and area statistics, 23

EV8- core, 20–1
configuration, 22
power and area statistics, 23

Event-based power estimation, 98
Execution time

parallel, 92–3
sequential, 92

‘Exquisite Corpses’, 219

F

Fetch width, ICache, 49, 53–5
Filezilla, 256
Firefox, 263, 276

310 SUBJECT INDEX

Flash, 212, 213
Flash Lite, 212–13
Floating-point units see FPUs
Floorplan, co-design with architecture, 45
FLOSS, 246
FLOSSmole, 282
fma3d, 27
FOSS

co-evolving socio-technical systems
for, 272–4, 283, 285–6

development see FOSSD
as multi-project software ecosystem,

270–4
research limitations and constraints,

284–6
research methods for studying, 277–83

artifact analysis methods, 281–3
artifact repository mining, 281–3
ethnographically informed methods,

280–1
industry poll methods, 279
mode of analysis, 278–9
multi-modal analysis of

socio-technical
interaction networks, 283

reflective practice, 279
survey research methods, 279–80
terms of analysis, 278
unit of analysis, 278, 279

as social movement, 274–7
systems growth, 281

FOSS commons, 254
FOSS project property licenses, 255, 266,

268
FOSSD

alliance formation, 265, 269, 285
beliefs supporting, 254–5, 259
bug reporting guidelines, 263, 264
business-friendly OSSD projects, 268
community development, 268–9
coordination and control, 260–5, 285
data availability, 284
description, 245–7
individual participation in projects,

248–53, 284–5
informalisms, 255–6, 269
inter-project social networking, 265–8
networking support, 253–4

personal software development tools,
253–4

project numbers, 247
project roles, 250, 253, 272
research opportunities, 286–7
results from recent studies, 147–8
rules of control, 257
sentimental resources, 259
software development project

requirements, 269
software version control, 260–1
trust and accountability mechanisms,

259–60
Web sites/portals, 256, 265–6, 268,

269, 274
see also FOSS; Software developers,

FOSS
Foundation Profile, 209
Foundations, 268, 276–7, 285
FPUs

sharing, 45, 51–2
simple sharing, 55–6

Free/open source software development see
FOSSD

Free software
licensing, 245, 266, 268
OSS vs, 245–6, 276–7

Free Software Foundation, 246, 268
Free software movement, 274, 276
Freedom

of choice, 254–5
of expression, 254–5

Freshment.org, 274
Frontier instructions, 165–6, 174–5
Functional simulator, 70

G

Game API, 210
Game pills, 226, 227
Gated Vdd , 160–1
gcc, 10
General Packet Radio Service (GPRS), 227
Gigabyte, 205
Gizmondo, 205
GNOME, 272
GNOME Foundation, 268

SUBJECT INDEX 311

GNU General Public License (GPL), 245, 266,
268, 274, 276

GNU/Linux distributions, 272
GNUenterprise.org, 254, 255, 256
GPL, 245, 266, 268, 274, 276
GPML50, 133
GPS, 226, 229
Green Destiny, 112, 113, 115

cost, power and space metrics, 117–19
limitations, 125
performance results, 119

GSM, 237

H

Handango, 200
Hardcore gamers, 193–4

types, 194
Hardware sharing, benefits, 45
Heap, 196
High-end computing systems, 115

peak performance, 90
power consumption, 91

Hint bits, 169
HPC, 205
HPL, 122
HTML, 270
http, 270
‘Human Pacman’, 227
Hydra, 7

I

IBM
BlueGene/L see BlueGene/L
Eclipse project, 268, 277
see also Cell; Power4; Power5; Power6

ICache sharing, 48–9
intelligent sharing, 59
overheads, area and power, 76–8
performance, 78–9
simple sharing, 53–5

ILP, 6, 185
Imagination Technologies, 215
Immersion, 214
IMPACT, 173
IMS, 237–9

In-order cores, 35
Incremental mutation, 273
Industry poll methods, 279
Information Module Profile (IMP), 209
Instant Messaging (IM), 239
Instruction cache addressing schemes, 167–8
Instruction cache sharing see ICache

sharing
Instruction-level parallelism (ILP), 6, 185
Instructions per cycle see IPC
Integrated Development Environments, 211
Intel

4004 microprocessor, 5
dual-core processors, 8

International Hobo, 218–19
Internet

access over cellular, 237–9
see also Web

Internet Explorer, 270
IP Multimedia System (IMS), 237–9
IPC, 14, 120
IX Bus, 113, 114
IXIA chassis, 113–14

J

J2EE, 208
J2ME, 208–10, 215

extension to BREW, 203
in IMS services, 237
in mobile games, 226, 229

J2SE, 208
Java Community Process (JCP), 208, 270
Java Specification Request (JSR), 208
Java Virtual Machine (JVM)

for BREW, 203
for Windows Mobile, 206

JCP, 208, 270
Joule Watcher, 98
JVM see Java Virtual Machine

K

KDE user interface package, 276
Kernel application benchmarks, 117
Keypads, mobile phone, 197
Khronos Group, 214
Kilobyte virtual machine (KVM), 208

312 SUBJECT INDEX

L

Latency, 196
LBoss, 268
Leakage modes, 171
Leakage power, 156

see also Cache leakage energy reduction
Learning organizations, 252
LINPACK, 117, 119, 122
Linux, on mobile phones, 206–7, 215
Linux Kernel, 272, 274–6
Linux Phone Standards Forum (LiPS), 207
Livermore Loops, 117, 121–2
LMBENCH, 117, 119
Location, mobile user, 225–6
Location based games, 225–31
Loop-based data cache leakage reduction,

170–2
experimental results, 182–6

energy-delay product, 184
impact of compiler optimizations,

185–6
leakage energy savings, 183–4
with varying data cache sizes, 184–5

Loop distribution, 185–6
Loop tiling, 185–6
Loops, time spent in, 170
Low power computational clusters, 112–25

design analysis, 117–24
design lessons, 124–5
metrics, 115–17
see also Argus prototype

LSE, 96

M

M3G, 214–15
MAJC 5200 processor, 7
Managers, 218
Matsushita, 201
MC68030, 168
mcf, 10, 14, 27
Mean time between failures (MTBF), 91
Media API, 210
Mediabench, 173

des, 177
Memory optimisation, 198
Memory sub-bank prediction buffer, 162–5

dynamic energy overhead, 163–5
Meritocracy

layered/pyramid, 261–3
skill, 257

Mfooty, 238
mgrid, 135
Micro benchmarks, 117
Microprocessor power simulators, 96
Microsoft, 205–6, 215, 277

Internet Explorer, 270
MIDP, 209–10, 215
MMAPI, 210
Mobile, ITU definition, 192
Mobile games, 192–239

3-D, 214–17
hardware support, 215–16
optimisation, 216–17
software support, 214–15

development see Software development
environments

opportunities, 217
physical constraints, 195–201

coding optimisation, 198–9
distribution, 200–1
memory, 195
networking, 196–7
phone user interface, 197
processors, 196
screen aspect ratio, 197
screen size, 197
sound support, 197–8
testing, 199–200

players, 193–4
personalities, 218–19

see also Camera games; IP Multimedia
System; Location based games;
Proximity games; Text games

Mobile Information Device Profile (MIDP),
209–10, 215

Mobile Linux Initiative (MLI), 207
Mobile Multimedia API (MMAPI), 210
Mobile Social Software (MoSoSo), 232
Mobiluck, 232
‘Mobslinger’, 232–7

Blood Bath, 233, 234, 235
Last Man Standing, 233–4, 235
Outlaws, 234
Quick Draw, 233, 235

SUBJECT INDEX 313

Top Gun, 234
Monotonicity, 34

performance cost, 44
MonsterMob, 200
Moore’s law, 5
‘Mosquitos’, 224
Motorola, 201, 205, 206–7
Mozilla, 268, 270, 276

bug management, 263, 264, 282
MPCore processor, 9
MPICH, 133, 143, 145
MPPTEST, 117, 121
Multi-Arcade Machine Emulator (MAME),

273
Multi-core interconnect

example holistic approach, 79–81
interconnection mechanisms, 62
modeling cores, 69–70

workload, 70
modeling interconnect overhead, 67–9

latency, 69
logic area, 68
power, 68–9
wiring area, 67–8

see also Crossbar interconnection
system; P2P links; Shared bus
fabric

“Multi-core-oblivious” designs, 4
overprovisioning, 45

Multi-core processors, 3
design from ground up, 32–44

customizing cores to workloads,
34–5

design space navigation approach,
32–4

fixed area budget results, 38–43
modeling CPU cores, 35–6
modeling performance, 37–8
modeling power and area, 36–7
non-monotonic design impact, 43–4

early efforts, 7–9
holistic design approach, 4–5
move to, 5–9
naive design methodology, 3–4
see also Conjoined-core chip

multiprocessor; Multi-core
interconnect; Multi-ISA
heterogeneous multi-core

architectures; Single-ISA
heterogeneous multi-core
architectures

Multi-ISA heterogeneous multi-core
architectures, 32

Multi-speed disks, 125
Mutation, incremental, 273
Myers–Briggs Dichotomies, 218–19
MySQL, 220, 268

N

NAS Parallel Benchmarks see NPB
NEC, 206–7
Negotiation, 285
NEMO, 131–2

power, energy and performance
profiling, 132–3

.NET Compact Framework, 206
NetBeans, 268, 270, 277
Network externalities, 270
Network power simulators, 96–7
Networking, issues in mobile game design,

196–7
Next sub-bank prediction

compiler-assisted see Static next sub-
bank prediction

hardware-based, 161–2
experimental results, 174, 176–7,

179–82
hybrid approach, 179–82

Niagara, 7
Nodal power profiles

for heterogeneous workloads, 106
over time, 104–5
for varying node counts, 106–7
for varying problem sizes, 106

Nokia
a05140 phone, 227
a05500 phone, 224
a06630 phone, 215
Bluetooth prediction, 232
Flash Lite and, 212
N-Gage games, 195
OpenGL ES and, 215
Python script testing emulator, 211
S60/Series, 202, 210

314 SUBJECT INDEX

Sensor, 232
Series 80, 210
SNAP, 210
Symbian and, 201, 202

Non-monotonicity, 34–5, 43
impact, 43–4

Normalized delay, 108
Normalized system energy, 108–9
NPB

BT, 109, 123–4, 137–42
CG, 109, 123–4, 137–43, 145–8
EP, 108–10, 123–4, 137–42
FT, 104–9, 110–11, 137–45, 148
IS, 109, 123–4, 137–43
LU, 109, 123–4, 137–42
MG, 108–9, 110–11, 123–4, 137–42
SP, 106, 109, 123–4, 137–43

NSIEVE, 117, 121
NTT DoCoMo, 207, 209, 212
NVIDIA GoForce 3D 4800, 216

O

Object-Oriented Graphics Rendering Engine
(OGRE), 250, 265, 266, 268

Object-oriented optimisation, 198
Octeon processor, 9
OGRE, 250, 265, 266, 268
Ojom, 224
On-chip diversity, 38–9
On-chip interconnect see Multi-core

interconnect
Online document genres, 255
Open Source Initiative (OSI), 276–7
Open source software see OSS
OpenGL ES, 202, 205, 214–15
OpenSL ES, 214
Opteron processor, 8
Orange, 202
Orion, 96–7
OSI, 276–7
OSS

free software vs, 245–6, 276–7
licenses, 276

OSS movement, 274, 276
Out-of-order cores, 35
Over-The-Air (OTA) installation, 195

Overprovisioning, 45

P

P2P links, 62, 65–6
PA-RISC, 9
‘PAC-LAN’, 226–9, 231
‘Pac-Manhattan’, 226
‘Pacman’, 226
Panasonic, 202, 206–7
Parallel Benchmarks see NPB
Parallel speedup, 93

see also Normalized delay
Participants, 219, 222, 223
PD2P metric, 95
PD3P metric, 95
PDAs

entry level, 209
stylus input, 206

Windows Mobile compatibility with,
205

PDP metric, 95
Peak activity power, 36
Peer review, 263, 287
Pentium D processor, 8
Pentium Extreme processor, 4, 8
Pentium M processor, with reduced power

consumption, 132
Perens, Bruce, 277
Performance/cost ratio, 115
Performance efficiency, 108, 110
Performance profiling, 133
Personal Digital Assistants (PDAs), 192
Personal Profile, 209
Philips, 206
PhP-Nuke, 268
Piranha processor, 7, 46, 57
‘Pirates’, 231–2
Planeshift, 262
Planet three, 200
Point-to-point links see P2P links
Port processors, 113–14
Portals, 200–1
Power-aware computational clusters, 125–45

design analysis, 137–45
CPUSPEED daemon scheduling, 137–8
internal scheduling, 143–8
user-driven external scheduling,

SUBJECT INDEX 315

139–43
design lessons, 148–9
experimental framework, 131–7
see also DVS

Power-aware computing, 93–4
Power budget, 36
Power consumption

CMOS circuit, 93
see also Dynamic power; Leakage power

Power measurement, 132–3
Power modeling, 23, 36–7
Power reduction, 98
Power4 processor, 8, 67
Power5 processor, 8, 64, 67

cache density, 69
Power6 processor, 8
PowerAnalyzer, 102
PowerMeter control thread, 101
PowerNow, 94
PowerPack, 101, 130, 131, 144

software enhancements, 133
PowerPC 750CXe, 115
Power-performance modes, 93–4
Power-performance tradeoffs, 95
Powerscope, 97
PowerVR MBX, 215
Processor power, direct measurement, 97–8
Processors, mobile device, 196
Profiles, Java, 209
Proximity games, 231–7
Psion, 201
PyS60, 210–11, 212
Python, 210–12

Q

Qt, 207
Qtopia, 207
Qualcomm, 203–5, 216
Quality of Service (QoS), 196
Queuing simulator, 70

R

R10000 core, 35
RAW processor, 8–9
Rebel, 173

Reflective practice, 279
Register-bit equivalents (rbe), 52
Reinvention, 272, 285
Reliability, multi-core system, 4
Rendering pipeline, 216–17
Request queues, 64
Response bus, 64, 65
Revitalization, software system, 273
RFID tags, 226, 227, 228
Role-task migration, 253

S

S60 (Series 60), 202, 210, 224, 232
Sampling phase, 18
Samsung, 202, 205, 206–7
Savaje, 215
SBF see Shared bus fabric
Scalable Network Application Package

(SNAP), 210
Serendipity, 232
Series 60 see S60
Series 80, 202, 210
Series 90, 202
Shared bus fabric (SBF), 62–5, 79–81

design issues, 75–6
elements, 64–5
overheads, 71–6

area, 72–3
latency, 74–6
power, 73–4

performance, 74–6
split, 80–1
typical transaction, 63–4

Shared memory multiprocessors, 63, 64
SiByte processor, 9
Siemens, 201, 206
SimOS, 97
SimplePower, 96
SimpleScalar, 96
Simpoint tool, 14, 24, 52
Simulator-based power estimation, 96–7
Single-ISA heterogeneous multi-core

architectures, 10–19
advantages, 11–12, 31–2
dynamic scheduling for intra-thread

diversity, 17–19
energy benefits, 31–2

316 SUBJECT INDEX

evaluation methodology, 12–15
hardware assumptions, 13–14
metrics, 14–15
multi-programming support, 12–13
simulation approach, 14
workload construction, 14

power advantages, 19–31
chip area estimation, 23–4
choice of cores, 20
core switching, 19, 21
modeling CPU cores, 22
modeling performance, 24
modeling power, 23
oracle dynamic switching

heuristics, 26–9
practical heterogeneous

architectures, 31
realistic dynamic switching

heuristics, 29–31
variation in core performance and

power, 24–6
static scheduling for inter-thread

diversity, 15–17
Single processor system profiling, 96–8
SIP, 237, 238–9
Skill bureaucracy, 257
Skill meritocracy, 257
SMP, 91
SMS messaging, 220
SMTSIM, 14, 24, 38, 52
SNAP, 210
Snoop bus, 64, 65
Snoop queue, 64
Social capital, 259, 265
Social gamers, 194
Social gateways, 258
Social networking, inter-project, 265–8
Socio-technical interaction, in FOSS

projects, 272–4, 283, 285–6
Software developers, FOSS

community development, 268–9
discretionary time and effort, 258–9
linchpin, 265, 269, 284–5
organization, 256–8
peer recognition, 258, 265
self-determination, 258
self-promotion, 258–9
skills, 256–8

Software development environments, 201–14
BREW, 203–5, 215
choosing, 213–14
Flash Lite, 212–13
J2ME, 208–10, 215
Linux, 206–7, 215
Python, 210–12
Symbian, 201–3, 215
Windows Mobile, 205–6, 215

Software development studies, 283, 286, 287
Software ecosystems, multi-project, 270–4
Software engineering, 246, 256–7
Software informalisms, 255–6
Software inspections, 287
Software maintenance, 272
Software version control, 260–1
Softwatt, 97
Sony Ericsson, 201, 202, 212

W900 Walkman phone, 215, 216
Sounds, in games, 197–8
SourceForge, 269, 274–5, 281

FOSS projects registered at, 247, 268,
272, 274

SPEC 95 benchmarks, 173
SPEC FPT 92 benchmarks, btrix, 186
SPEC2000 benchmarks, 10, 14, 24, 37, 173

164.gzip, 177
CFP2000, 56
CINT2000, 56
CPU2000, 52
SPECfp, 24
SPECint, 24

SpeedStep, 94, 132
Speedup

parallel, 93
see also Normalized delay

weighted, 14–15
SPLASH benchmark, 52, 57
Stallman, Richard M., 246, 276, 277
Static next sub-bank prediction, 161–9

compiler support, 169
experimental results, 174–82

energy-delay product, 181–2
leakage energy savings, 176–7
overall energy savings, 181
performance overhead reduction,

174–6, 179–80

SUBJECT INDEX 317

sensitivity analysis, 177–9
instruction cache addressing schemes,

167–8
ISA support, 169
memory sub-bank prediction buffer,

162–5
dynamic energy overhead, 163–5

transitional instructions, 165–7, 174
identification, 168

Static port assignment, 60–1
Static power see Leakage power
Steady phase, 18
STREAM benchmark, 52, 58
StrongARM, 168
Sun, 208–10

NetBeans, 268, 270, 277
Survey research methods, 279–80
swim, 127
Symbian, 201–3, 215

see also S60; Series 80; Series 90
Symbian Signed, 202
SymbianGear, 200
System development, community development

and, 269
System energy, normalized, 108–9
System performance, 92–3
System power simulators, 97

T

T-Mobile, 202
T9 predictive text, 217
Tarantula processor, 32
TCO metrics, 116, 118–19
TEM2P2EST, 96
Text games, 217–24
‘thetxtbk’, 218–24
‘They Howl’, 229–31
Third Generation Partnership Project

(3GPP), 237
Thread bias, 80
Thread-level parallelism (TLP), 12
Throughput, 120

peak, 120
Thunderbird, 263
Tigris.org, 248, 249, 274
Torvalds, Linus, 274

Total cost of ownership see TCO
Touch screens, 217–18
Transitional instructions, 165–7, 174–5

identification, 168
Tree Code, 119
Trimaran, 173
TRIPS processor, 8, 9
Trolltech, 207
TRUE BREW testing, 204
Turion processor, 8
twolf, 27

U

UIQ, 202, 210
UltraSparc-IV, 7
‘Uncle Roy All Around You’, 227
Unconditional branches with static target

addresses, 166, 174–5

V

Vector processing unit (VMX), 45
VideoLAN Client (VLC), 250–1
Virtual project management (VPM), 261–3
VLIW architectures, 172–3
Vodafone live, 200
VPM, 261–3

W

W900 Walkman phone, 215, 216
wanderers, 219, 222
water, 52, 57
Wattch, 23, 96
WaveScalar processor, 8, 9
Web, software infrastructure for, 270
Web sites, FOSSD, 256, 265–6, 268, 269, 274
Weighted speedup, 14–15
Windows CE, 205
Windows Mobile, 205–6, 215
Wireless Application Protocol (WAP), 220
Wireless Toolkit, 210
Workloads

all different, 37, 39–44
all same, 37, 39–44
commercial, 70
diversity, 10

318 SUBJECT INDEX

World Wide Web Committee (W3C), 270
wupwise, 14

X

Xbox, 9
Xeon processor, 8

XLR processor, 9
XScale, 168

Y

‘You-Know-Who’, 232

Contents of Volumes in This Series

Volume 42

Nonfunctional Requirements of Real-Time Systems
TEREZA G. KIRNER AND ALAN M. DAVIS

A Review of Software Inspections
ADAM PORTER, HARVEY SIY, AND LAWRENCE VOTTA

Advances in Software Reliability Engineering
JOHN D. MUSA AND WILLA EHRLICH

Network Interconnection and Protocol Conversion
MING T. LIU

A Universal Model of Legged Locomotion Gaits
S. T. VENKATARAMAN

Volume 43

Program Slicing
DAVID W. BINKLEY AND KEITH BRIAN GALLAGHER

Language Features for the Interconnection of Software Components
RENATE MOTSCHNIG-PITRIK AND ROLAND T. MITTERMEIR

Using Model Checking to Analyze Requirements and Designs
JOANNE ATLEE, MARSHA CHECHIK, AND JOHN GANNON

Information Technology and Productivity: A Review of the Literature
ERIK BRYNJOLFSSON AND SHINKYU YANG

The Complexity of Problems
WILLIAM GASARCH

3-D Computer Vision Using Structured Light: Design, Calibration, and Implementation Issues
FRED W. DEPIERO AND MOHAN M. TRIVEDI

Volume 44

Managing the Risks in Information Systems and Technology (IT)
ROBERT N. CHARETTE

Software Cost Estimation: A Review of Models, Process and Practice
FIONA WALKERDEN AND ROSS JEFFERY

Experimentation in Software Engineering
SHARI LAWRENCE PFLEEGER

Parallel Computer Construction Outside the United States
RALPH DUNCAN

Control of Information Distribution and Access
RALF HAUSER

Asynchronous Transfer Mode: An Engineering Network Standard for High Speed Communications
RONALD J. VETTER

319

320 CONTENTS OF VOLUMES IN THIS SERIES

Communication Complexity
EYAL KUSHILEVITZ

Volume 45

Control in Multi-threaded Information Systems
PABLO A. STRAUB AND CARLOS A. HURTADO

Parallelization of DOALL and DOACROSS Loops—a Survey
A. R. HURSON, JOFORD T. LIM, KRISHNA M. KAVI, AND BEN LEE

Programming Irregular Applications: Runtime Support, Compilation and Tools
JOEL SALTZ, GAGAN AGRAWAL, CHIALIN CHANG, RAJA DAS, GUY EDJLALI, PAUL HAVLAK,

YUAN-SHIN HWANG, BONGKI MOON, RAVI PONNUSAMY, SHAMIK SHARMA, ALAN

SUSSMAN, AND MUSTAFA UYSAL

Optimization Via Evolutionary Processes
SRILATA RAMAN AND L. M. PATNAIK

Software Reliability and Readiness Assessment Based on the Non-homogeneous Poisson Process
AMRIT L. GOEL AND KUNE-ZANG YANG

Computer-Supported Cooperative Work and Groupware
JONATHAN GRUDIN AND STEVEN E. POLTROCK

Technology and Schools
GLEN L. BULL

Volume 46

Software Process Appraisal and Improvement: Models and Standards
MARK C. PAULK

A Software Process Engineering Framework
JYRKI KONTIO

Gaining Business Value from IT Investments
PAMELA SIMMONS

Reliability Measurement, Analysis, and Improvement for Large Software Systems
JEFF TIAN

Role-Based Access Control
RAVI SANDHU

Multithreaded Systems
KRISHNA M. KAVI, BEN LEE, AND ALLI R. HURSON

Coordination Models and Language
GEORGE A. PAPADOPOULOS AND FARHAD ARBAB

Multidisciplinary Problem Solving Environments for Computational Science
ELIAS N. HOUSTIS, JOHN R. RICE, AND NAREN RAMAKRISHNAN

Volume 47

Natural Language Processing: A Human–Computer Interaction Perspective
BILL MANARIS

Cognitive Adaptive Computer Help (COACH): A Case Study
EDWIN J. SELKER

Cellular Automata Models of Self-replicating Systems
JAMES A. REGGIA, HUI-HSIEN CHOU, AND JASON D. LOHN

Ultrasound Visualization
THOMAS R. NELSON

CONTENTS OF VOLUMES IN THIS SERIES 321

Patterns and System Development
BRANDON GOLDFEDDER

High Performance Digital Video Servers: Storage and Retrieval of Compressed Scalable Video
SEUNGYUP PAEK AND SHIH-FU CHANG

Software Acquisition: The Custom/Package and Insource/Outsource Dimensions
PAUL NELSON, ABRAHAM SEIDMANN, AND WILLIAM RICHMOND

Volume 48

Architectures and Patterns for Developing High-Performance, Real-Time ORB Endsystems
DOUGLAS C. SCHMIDT, DAVID L. LEVINE, AND CHRIS CLEELAND

Heterogeneous Data Access in a Mobile Environment – Issues and Solutions
J. B. LIM AND A. R. HURSON

The World Wide Web
HAL BERGHEL AND DOUGLAS BLANK

Progress in Internet Security
RANDALL J. ATKINSON AND J. ERIC KLINKER

Digital Libraries: Social Issues and Technological Advances
HSINCHUN CHEN AND ANDREA L. HOUSTON

Architectures for Mobile Robot Control
JULIO K. ROSENBLATT AND JAMES A. HENDLER

Volume 49

A Survey of Current Paradigms in Machine Translation
BONNIE J. DORR, PAMELA W. JORDAN, AND JOHN W. BENOIT

Formality in Specification and Modeling: Developments in Software Engineering Practice
J. S. FITZGERALD

3-D Visualization of Software Structure
MATHEW L. STAPLES AND JAMES M. BIEMAN

Using Domain Models for System Testing
A. VON MAYRHAUSER AND R. MRAZ

Exception-Handling Design Patterns
WILLIAM G. BAIL

Managing Control Asynchrony on SIMD Machines—a Survey
NAEL B. ABU-GHAZALEH AND PHILIP A. WILSEY

A Taxonomy of Distributed Real-time Control Systems
J. R. ACRE, L. P. CLARE, AND S. SASTRY

Volume 50

Index Part I
Subject Index, Volumes 1–49

Volume 51

Index Part II
Author Index
Cumulative list of Titles
Table of Contents, Volumes 1–49

322 CONTENTS OF VOLUMES IN THIS SERIES

Volume 52

Eras of Business Computing
ALAN R. HEVNER AND DONALD J. BERNDT

Numerical Weather Prediction
FERDINAND BAER

Machine Translation
SERGEI NIRENBURG AND YORICK WILKS

The Games Computers (and People) Play
JONATHAN SCHAEFFER

From Single Word to Natural Dialogue
NEILS OLE BENSON AND LAILA DYBKJAER

Embedded Microprocessors: Evolution, Trends and Challenges
MANFRED SCHLETT

Volume 53

Shared-Memory Multiprocessing: Current State and Future Directions
PER STEUSTRÖM, ERIK HAGERSTEU, DAVID I. LITA, MARGARET MARTONOSI, AND MADAN

VERNGOPAL

Shared Memory and Distributed Shared Memory Systems: A Survey
KRISHNA KAUI, HYONG-SHIK KIM, BEU LEE, AND A. R. HURSON

Resource-Aware Meta Computing
JEFFREY K. HOLLINGSWORTH, PETER J. KELCHER, AND KYUNG D. RYU

Knowledge Management
WILLIAM W. AGRESTI

A Methodology for Evaluating Predictive Metrics
JASRETT ROSENBERG

An Empirical Review of Software Process Assessments
KHALED EL EMAM AND DENNIS R. GOLDENSON

State of the Art in Electronic Payment Systems
N. ASOKAN, P. JANSON, M. STEIVES, AND M. WAIDNES

Defective Software: An Overview of Legal Remedies and Technical Measures Available to Consumers
COLLEEN KOTYK VOSSLER AND JEFFREY VOAS

Volume 54

An Overview of Components and Component-Based Development
ALAN W. BROWN

Working with UML: A Software Design Process Based on Inspections for the Unified Modeling Language
GUILHERME H. TRAVASSOS, FORREST SHULL, AND JEFFREY CARVER

Enterprise JavaBeans and Microsoft Transaction Server: Frameworks for Distributed Enterprise
Components

AVRAHAM LEFF, JOHN PROKOPEK, JAMES T. RAYFIELD, AND IGNACIO SILVA-LEPE

Maintenance Process and Product Evaluation Using Reliability, Risk, and Test Metrics
NORMAN F. SCHNEIDEWIND

Computer Technology Changes and Purchasing Strategies
GERALD V. POST

Secure Outsourcing of Scientific Computations
MIKHAIL J. ATALLAH, K. N. PANTAZOPOULOS, JOHN R. RICE, AND EUGENE SPAFFORD

CONTENTS OF VOLUMES IN THIS SERIES 323

Volume 55

The Virtual University: A State of the Art
LINDA HARASIM

The Net, the Web and the Children
W. NEVILLE HOLMES

Source Selection and Ranking in the WebSemantics Architecture Using Quality of Data Metadata
GEORGE A. MIHAILA, LOUIQA RASCHID, AND MARIA-ESTER VIDAL

Mining Scientific Data
NAREN RAMAKRISHNAN AND ANANTH Y. GRAMA

History and Contributions of Theoretical Computer Science
JOHN E. SAVAGE, ALAN L. SALEM, AND CARL SMITH

Security Policies
ROSS ANDERSON, FRANK STAJANO, AND JONG-HYEON LEE

Transistors and 1C Design
YUAN TAUR

Volume 56

Software Evolution and the Staged Model of the Software Lifecycle
KEITH H. BENNETT, VACLAV T. RAJLICH, AND NORMAN WILDE

Embedded Software
EDWARD A. LEE

Empirical Studies of Quality Models in Object-Oriented Systems
LIONEL C. BRIAND AND JÜRGEN WÜST

Software Fault Prevention by Language Choice: Why C Is Not My Favorite Language
RICHARD J. FATEMAN

Quantum Computing and Communication
PAUL E. BLACK, D. RICHARD KUHN, AND CARL J. WILLIAMS

Exception Handling
PETER A. BUHR, ASHIF HARJI, AND W. Y. RUSSELL MOK

Breaking the Robustness Barrier: Recent Progress on the Design of the Robust Multimodal System
SHARON OVIATT

Using Data Mining to Discover the Preferences of Computer Criminals
DONALD E. BROWN AND LOUISE F. GUNDERSON

Volume 57

On the Nature and Importance of Archiving in the Digital Age
HELEN R. TIBBO

Preserving Digital Records and the Life Cycle of Information
SU-SHING CHEN

Managing Historical XML Data
SUDARSHAN S. CHAWATHE

Adding Compression to Next-Generation Text Retrieval Systems
NIVIO ZIVIANI AND EDLENO SILVA DE MOURA

Are Scripting Languages Any Good? A Validation of Perl, Python, Rexx, and Tcl against C, C++, and Java
LUTZ PRECHELT

324 CONTENTS OF VOLUMES IN THIS SERIES

Issues and Approaches for Developing Learner-Centered Technology
CHRIS QUINTANA, JOSEPH KRAJCIK, AND ELLIOT SOLOWAY

Personalizing Interactions with Information Systems
SAVERIO PERUGINI AND NAREN RAMAKRISHNAN

Volume 58

Software Development Productivity
KATRINA D. MAXWELL

Transformation-Oriented Programming: A Development Methodology for High Assurance Software
VICTOR L. WINTER, STEVE ROACH, AND GREG WICKSTROM

Bounded Model Checking
ARMIN BIERE, ALESSANDRO CIMATTI, EDMUND M. CLARKE, OFER STRICHMAN, AND

YUNSHAN ZHU

Advances in GUI Testing
ATIF M. MEMON

Software Inspections
MARC ROPER, ALASTAIR DUNSMORE, AND MURRAY WOOD

Software Fault Tolerance Forestalls Crashes: To Err Is Human; To Forgive Is Fault Tolerant
LAWRENCE BERNSTEIN

Advances in the Provisions of System and Software Security—Thirty Years of Progress
RAYFORD B. VAUGHN

Volume 59

Collaborative Development Environments
GRADY BOOCH AND ALAN W. BROWN

Tool Support for Experience-Based Software Development Methodologies
SCOTT HENNINGER

Why New Software Processes Are Not Adopted
STAN RIFKIN

Impact Analysis in Software Evolution
MIKAEL LINDVALL

Coherence Protocols for Bus-Based and Scalable Multiprocessors, Internet, and Wireless Distributed
Computing Environments: A Survey

JOHN SUSTERSIC AND ALI HURSON

Volume 60

Licensing and Certification of Software Professionals
DONALD J. BAGERT

Cognitive Hacking
GEORGE CYBENKO, ANNARITA GIANI, AND PAUL THOMPSON

The Digital Detective: An Introduction to Digital Forensics
WARREN HARRISON

Survivability: Synergizing Security and Reliability
CRISPIN COWAN

Smart Cards
KATHERINE M. SHELFER, CHRIS CORUM, J. DREW PROCACCINO, AND JOSEPH DIDIER

CONTENTS OF VOLUMES IN THIS SERIES 325

Shotgun Sequence Assembly
MIHAI POP

Advances in Large Vocabulary Continuous Speech Recognition
GEOFFREY ZWEIG AND MICHAEL PICHENY

Volume 61

Evaluating Software Architectures
ROSEANNE TESORIERO TVEDT, PATRICIA COSTA, AND MIKAEL LINDVALL

Efficient Architectural Design of High Performance Microprocessors
LIEVEN EECKHOUT AND KOEN DE BOSSCHERE

Security Issues and Solutions in Distributed Heterogeneous Mobile Database Systems
A. R. HURSON, J. PLOSKONKA, Y. JIAO, AND H. HARIDAS

Disruptive Technologies and Their Affect on Global Telecommunications
STAN MCCLELLAN, STEPHEN LOW, AND WAI-TIAN TAN

Ions, Atoms, and Bits: An Architectural Approach to Quantum Computing
DEAN COPSEY, MARK OSKIN, AND FREDERIC T. CHONG

Volume 62

An Introduction to Agile Methods
DAVID COHEN, MIKAEL LINDVALL, AND PATRICIA COSTA

The Timeboxing Process Model for Iterative Software Development
PANKAJ JALOTE, AVEEJEET PALIT, AND PRIYA KURIEN

A Survey of Empirical Results on Program Slicing
DAVID BINKLEY AND MARK HARMAN

Challenges in Design and Software Infrastructure for Ubiquitous Computing Applications
GURUDUTH BANAVAR AND ABRAHAM BERNSTEIN

Introduction to MBASE (Model-Based (System) Architecting and Software Engineering)
DAVID KLAPPHOLZ AND DANIEL PORT

Software Quality Estimation with Case-Based Reasoning
TAGHI M. KHOSHGOFTAAR AND NAEEM SELIYA

Data Management Technology for Decision Support Systems
SURAJIT CHAUDHURI, UMESHWAR DAYAL, AND VENKATESH GANTI

Volume 63

Techniques to Improve Performance Beyond Pipelining: Superpipelining, Superscalar, and VLIW
JEAN-LUC GAUDIOT, JUNG-YUP KANG, AND WON WOO RO

Networks on Chip (NoC): Interconnects of Next Generation Systems on Chip
THEOCHARIS THEOCHARIDES, GREGORY M. LINK, NARAYANAN VIJAYKRISHNAN, AND

MARY JANE IRWIN

Characterizing Resource Allocation Heuristics for Heterogeneous Computing Systems
SHOUKAT ALI, TRACY D. BRAUN, HOWARD JAY SIEGEL, ANTHONY A. MACIEJEWSKI,

NOAH BECK, LADISLAU BÖLÖNI, MUTHUCUMARU MAHESWARAN, ALBERT I. REUTHER,
JAMES P. ROBERTSON, MITCHELL D. THEYS, AND BIN YAO

Power Analysis and Optimization Techniques for Energy Efficient Computer Systems
WISSAM CHEDID, CHANSU YU, AND BEN LEE

Flexible and Adaptive Services in Pervasive Computing
BYUNG Y. SUNG, MOHAN KUMAR, AND BEHROOZ SHIRAZI

326 CONTENTS OF VOLUMES IN THIS SERIES

Search and Retrieval of Compressed Text
AMAR MUKHERJEE, NAN ZHANG, TAO TAO, RAVI VIJAYA SATYA, AND WEIFENG SUN

Volume 64

Automatic Evaluation of Web Search Services
ABDUR CHOWDHURY

Web Services
SANG SHIN

A Protocol Layer Survey of Network Security
JOHN V. HARRISON AND HAL BERGHEL

E-Service: The Revenue Expansion Path to E-Commerce Profitability
ROLAND T. RUST, P.K. KANNAN, AND ANUPAMA D. RAMACHANDRAN

Pervasive Computing: A Vision to Realize
DEBASHIS SAHA

Open Source Software Development: Structural Tension in the American Experiment
COSKUN BAYRAK AND CHAD DAVIS

Disability and Technology: Building Barriers or Creating Opportunities?
PETER GREGOR, DAVID SLOAN, AND ALAN F. NEWELL

Volume 65

The State of Artificial Intelligence
ADRIAN A. HOPGOOD

Software Model Checking with SPIN

GERARD J. HOLZMANN

Early Cognitive Computer Vision
JAN-MARK GEUSEBROEK

Verification and Validation and Artificial Intelligence
TIM MENZIES AND CHARLES PECHEUR

Indexing, Learning and Content-Based Retrieval for Special Purpose Image Databases
MARK J. HUISKES AND ERIC J. PAUWELS

Defect Analysis: Basic Techniques for Management and Learning
DAVID N. CARD

Function Points
CHRISTOPHER J. LOKAN

The Role of Mathematics in Computer Science and Software Engineering Education
PETER B. HENDERSON

Volume 66

Calculating Software Process Improvement’s Return on Investment
RINI VAN SOLINGEN AND DAVID F. RICO

Quality Problem in Software Measurement Data
PIERRE REBOURS AND TAGHI M. KHOSHGOFTAAR

Requirements Management for Dependable Software Systems
WILLIAM G. BAIL

Mechanics of Managing Software Risk
WILLIAM G. BAIL

CONTENTS OF VOLUMES IN THIS SERIES 327

The PERFECT Approach to Experience-Based Process Evolution
BRIAN A. NEJMEH AND WILLIAM E. RIDDLE

The Opportunities, Challenges, and Risks of High Performance Computing in Computational Science and
Engineering

DOUGLASS E. POST, RICHARD P. KENDALL, AND ROBERT F. LUCAS

Volume 67

Broadcasting a Means to Disseminate Public Data in a Wireless Environment—Issues and Solutions
A.R. HURSON, Y. JIAO, AND B.A. SHIRAZI

Programming Models and Synchronization Techniques for Disconnected Business Applications
AVRAHAM LEFF AND JAMES T. RAYFIELD

Academic Electronic Journals: Past, Present, and Future
ANAT HOVAV AND PAUL GRAY

Web Testing for Reliability Improvement
JEFF TIAN AND LI MA

Wireless Insecurities
MICHAEL STHULTZ, JACOB UECKER, AND HAL BERGHEL

The State of the Art in Digital Forensics
DARIO FORTE

Volume 68

Exposing Phylogenetic Relationships by Genome Rearrangement
YING CHIH LIN AND CHUAN YI TANG

Models and Methods in Comparative Genomics
GUILLAUME BOURQUE AND LOUXIN ZHANG

Translocation Distance: Algorithms and Complexity
LUSHENG WANG

Computational Grand Challenges in Assembling the Tree of Life: Problems and Solutions
DAVID A. BADER, USMAN ROSHAN, AND ALEXANDROS STAMATAKIS

Local Structure Comparison of Proteins
JUN HUAN, JAN PRINS, AND WEI WANG

Peptide Identification via Tandem Mass Spectrometry
XUE WU, NATHAN EDWARDS, AND CHAU-WEN TSENG

This page intentionally left blank

	Front cover
	Architectural Issues
	Copyright page
	Contents
	Contributors
	Preface
	Chapter 1. The Architecture of Efficient Multi-Core Processors: A Holistic Approach
	1. Introduction
	2. The Move to Multi-Core Processors
	3. Holistic Design for Adaptability: Heterogeneous Architectures
	4. Amortizing Overprovisioning through Conjoined Core Architectures
	5. Holistic Design of the Multi-Core Interconnect
	6. Summary and Conclusions
	Acknowledgements
	References

	Chapter 2. Designing Computational Clusters for Performance and Power
	1. Introduction
	2. Background
	3. Single Processor System Profiling
	4. Computational Cluster Power Profiling
	5. Low Power Computational Clusters
	6. Power-Aware Computational Clusters
	7. Conclusions
	References

	Chapter 3. Compiler-Assisted Leakage Energy Reduction for Cache Memories
	1. Introduction
	2. Related Work
	3. Static Next Sub-Bank Prediction for Drowsy Instruction Caches
	4. Compiler-Assisted Loop-Based Data Cache Leakage Reduction
	5. Evaluation Methodology
	6. Conclusion
	References

	Chapter 4. Mobile Games: Challenges and Opportunities
	1. Introduction
	2. Challenges
	3. Opportunities
	4. Conclusions
	Acknowledgements
	References

	Chapter 5. Free/Open Source Software Development: Recent Research Results and Methods
	1. Introduction
	2. Individual Participation in FOSSD Projects
	3. Resources and Capabilities Supporting FOSSD
	4. Cooperation, Coordination, and Control in FOSS Projects
	5. Alliance Formation, Inter-project Social Networking and Community Development
	6. FOSS as a Multi-project Software Ecosystem
	7. FOSS as a Social Movement
	8. Research Methods for Studying FOSS
	9. Discussion
	10. Conclusions
	Acknowledgements
	References

	Author Index
	Subject Index
	Contents of Volumes in this Series

