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Introduction

Arturo Carsetti

According to molecular Biology, true invariance (life) can exist only within the
framework of ongoing autonomous morphogenesis and vice versa. With respect to
this secret dialectics, life and cognition appear as indissolubly interlinked. In this
sense, for instance, the inner articulation of conceptual spaces appears to be linked
to an inner functional development based on a continuous activity of selection and
“anchorage” realised on semantic grounds. It is the work of “invention” and gen-
eration (in invariance), linked with the “rooting” of meaning, which determines the
evolution, the leaps and punctuated equilibria, the conditions related to the unfold-
ing of new modalities of invariance, an invariance which is never simple repetition
and which springs on each occasion through deep-level processes of renewal and
recovery. The selection perpetrated by meaning reveals its autonomy above all in its
underpinning, in an objective way, the ongoing choice of these new modalities. As
such it is not, then, concerned only with the game of “possibles”, offering itself as
a simple channel for pure chance, but with providing a channel for the articulation
of the “file” in the humus of a semantic (and embodied) net in order to prepare the
necessary conditions for a continuous renewal and recovery of original creativity. In
effect, it is this autonomy in inventing new possible modules of incompressibility
which determines the actual emergence of new (and true) creativity, which also takes
place through the “narration” of the effected construction. Pace Kant, at the level of
a biological cognitive system sensibility is not a simple interface between absolute
chance and an invariant intellectual order. On the contrary, the reference procedures,
if successful, are able to modulate canalization and create the basis for the appear-
ance of ever-new frames of incompressibility through morphogenesis. This is not
a question of discovering and exploring (according, for instance, to Putnam’s con-
ception) new “territories”, but of offering ourselves as the matrix and arch through
which they can spring autonomously in accordance with ever increasing levels of
complexity. There is no casual autonomous process already in existence, and no
possible selection and synthesis activity via a possible “remnant” through reference
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procedures considered as a form of simple regimentation. These procedures are in
actual fact functional to the construction and irruption of new incompressibility:
meaning, as Forma formans, offers the possibility of creating a holistic anchorage,
and is exactly what allows the categorial apparatus to emerge and act according to
a coherent “arborization”. The new invention, which is born then shapes and opens
the (new) eyes of the mind: I see as a mind because new meaning is able to articulate
and take root through me.

In this sense, at the human level vision extends within a coupled system charac-
terised by the presence of two different selective forces: the selection linked to the
full expression of the original incompressibility, on the one hand, and the selection
performed within an ambient meaning, on the other hand (this is a point of fact we
are now ready to examine in the light of current achievements in contemporary theo-
retical Biology). Within the process, meaning reveals itself (albeit partially) in (and
through) the effected emergence. Only in this way can a real assimilation process
articulate, on the basis first of all of a coherent construction of possible schemes,
self-organising models, falsification acts, and so on. In self-organising emergence,
then, we find, simultaneously, a process of assimilation, one of growth, one of “in-
scription” and one of stabilisation through fixed points. It is therefore not surprising
that, as soon as the assimilation (and the unfolding by unification at the brain level)
of meaning occurs correctly, vision appears veridical. What this particularly presup-
poses as an essential component of the process is also the articulated presence of
definite capacities of self-reflection and precise replication-mechanisms at the level
of vision by models. If it is, actually, obvious that no thought can exist which has
not first filtered through the senses, it is equally clear that there can be no effec-
tive vision, at the level of the model, unless specific elaboration has taken place
able to “coagulate” the activity of “internal” selection. The outline offered by the
model serves first of all to propose possible integration schemes able to support and
prime the nesting proper to the “internal” selection. At the moment of the complete
realisation of the embodiment, new vision by models emerges, and the outline as
independent instrument is abandoned because superseded. In this sense, it is true
that at the level of the eyes of the mind we finally have visual (and veridical) cog-
nition, and not intellectual reading. Function and meaning articulate together, but in
accordance with the development of a process of adequatio, and not of autonomous
and direct creation. I will be unable to think of vision during emergence, but will
be able to use it, once realised, to construct further forms of embodied cognition.
Growth, modulation, and successive integration thus exist ‘within and among’ the
channels together with specific differentiation processes.

This process can then gradually recognise itself in the realised emergence as an
act of vision concerning the emergence itself. In this way a time of invention can be
assured, but not a time of repetition: a time characterised by a specific process of
renewal and recovery which continuously reveals itself as possible in proportion to
the effective realisation of the “work” performed at the level of teleonomical activ-
ities. What determines the ongoing selection each time (with respect to the primary
informational fluxes) is the new incompressibility which arises. This requires that
the reference procedures posit themselves as an arch between invariance, on the one



Introduction ix

hand, and autonomous morphogenesis on the other. In other words, they are only
able to nurture new incompressibility where there exists a process of nesting of pure
virtuality’s original space. The important aspect is not, then, the remnant in se but
the successful “narration”. It is the effective and embodied inscription giving rise
to new incompressibility which necessarily bypasses me. I will, then, ultimately be
able to think of a new incompressibility which reveals itself as the ongoing fusion
of emergent nuclei of creativity within the unity of an operant meaning.

It is far from easy to determine mathematics for processes of the kind, since it
is clearly impossible to restrict the processes of self-reflection and assimilation to-
tally within the limits of a mechanistic reductionism. Actually, the two involved
selective forces are based on principles and choices which are articulated on a deep,
productive level. Insofar as these principles and choices enter the scene, for exam-
ple, at the second-order level, they cannot be previously determined at the first-order
level; they are produced by the ongoing dialectics, by the symbolic dynamics in
action and are revealed in emergence, i.e. when they really constitute me as the
subject which sees and thinks. As for self-reflection, the space occupied by these
choices, too, cannot be reductively determined: yet the thread must be untangled
and the space explored. The mind has to function as a bridge between the two se-
lective forces. This is the Via-Method, relying on the continuous invention of new
mathematics, new geometry, new formal axioms, etc. Hence the importance of the
eye of the phenomenologist, and in particular of the perceptologist, s/he who lis-
tens to the channels, and hence, at the same time, the importance of the eye of
the mathematician, s/he who explores the thread of simulation as well as the path
of the pure mental constructions. Amodal completion, for instance, in this context
emerges as a privileged window opened on a microcosm which is largely articulated
according to the fibres proper to the architecture of the mind. Objects are identified
through the qualities elaborated and calculated along and through the channels. The
function thus constructed that self-organises together with its meaning (in Atlan’s
words) permits a more coherent integration and articulation of the channels, laying
the foundation for the self-organised synthesis of ever-new neural circuits. Objects,
in their quality of being immersed in the real world, then emerge as related to other
objects possessing different features, and so on. Through and beyond these inter-
relations, holistic properties and dimensions gradually reveal themselves, which I
must grasp in order to see the objects with their meaning, if I am to understand
the meaning of things. Apples exist not in isolation, but as objects on a table, on a
tree: they are, for instance, in Quine’s words, ‘immersed in red’, a reality I can only
grasp by means of a complicated second-order process of analysis, elaboration, and
comparison which can thereafter be reduced, through concatenations of horizontal
and vertical constraints, specific rules and the successive determination of precise
fixed points, to the first-order level. I thus need constant integration of channels and
formal instruments to grasp information of the kind, i.e. to assimilate structural and
holistic relations and relative ties in an adequate way. In other words, I will under-
stand the meaning of things only if I am able to give the correct coagulum recipes
with a view to their being selected so as to grasp and capture not only the superficial
aspects of objects in the world, but their mutual relations as they interact in depth,
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in obedience, in particular, to a specific intensional dimension. Here we can realise,
as we have just said, the importance of the eye of the mathematician, s/he who ex-
plores the thread of simulation and the path of neural constructions in the regions of
pure abstraction. In actual fact, if I want to understand how the assimilation process
of structural relations works, I have first of all to make essential reference, from a
mathematical point of view, to a specific theory of general structures. In the light
of this theory the relations among individuals appear, from a general point of view,
as submitted to a bunch of constraints, specifications and rules having a relational
character, a bunch that is relative to the model which we refer to and which acts
“from the outside” on the successive configurations of the first-order relations. In
other words, as M. Manzano correctly states, in the universes of any second-order
frame W there are only relations among individuals, but it is no longer true that all
the n-ary first-order relations on W are into W.

These hidden relations, these particular “constraints” play a central role with re-
spect to the genesis of our models. In particular, let us remark that as a consequence
of the action performed by these constraints, the function played by the individuals
living in the original universe becomes more and more complex. We are no longer
faced with a form of mono-dimensional relational growth starting from a given set of
individuals and successively exploring all the possible relations among individuals,
according to a pre-established surface unfolding of the relational texture. Besides
this kind of mono-dimensional growth, further growth dimensions reveal themselves
at the second-order level; specific types of development that spring from the succes-
sive articulation of the original growth in accordance with a well defined dialectics.
As aresult of the action of the rules lying at the second-order level, new dimensions
of growth, new dynamic relational textures appear. Contemporarily the original uni-
verse of individuals changes, new elements grow up and the role and nature of the
ancient elements undergo a radical transformation. The aforesaid dialectics reveals
itself as linked to the utilisation of specific conceptual tools: limitation procedures,
identification of fixed points, processes of self-reflection and self-representation,
invention of new frames by “fusion” of previously established structures, coagu-
lum functions etc. The plot of limitation procedures and cancellations of relations
progressively constitutes itself as the gridiron of an intellectual order capable of
allowing for the successive “production” (through the arising-irruption of new in-
compressibility and the successive “inscription”) of specific gestalten, gestalten
which, according to Monod, home the life and which, if enlightened by the truth, re-
ally support the development of rational perception. If we are able to recognise and
follow the secret path of this order, we can finally manage to illuminate the “good”
structures and to “read” (and “play”) the progressive embodiment of that Sinn that
selectively determines the real constitution of the events. Meaningful forms will then
come into play, find reflection in a work, and be seen by an “I” that can thus con-
struct itself and re-emerge, an “I” that can finally reveal itself as autonomous: real
cognition in action. I neither order nor regiment according to principles, nor even
grasp principles, but posit myself as the instrument for their recovery and recreation,
and reflect their sedimentation in my self-transformation and my self-proposing as
Cogito. Actually, I posit my work as the mirror for the new canalisation, in such a
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way that the new emergent work (the self-organising “mirror”), if successful, can
claim to be the work of an “I” which posits itself as an “added” creative observer.
We are faced with a particular form of mental “exploration” that, if successful, “em-
bodies” in an effective construction constraining the paths of our cognitive activity.
As we have said before, this type of cognitive exploration articulates at the second-
order level: it can be reduced however (if successful) at the level of many-sorted
first-order logic, by means of well known logical procedures: hence the possible
realization of an embodiment process.

In a nutshell, the nucleus of this kind of reduction consists in explicitly showing
in many-sorted structures what is implicitly given in second-order or in type theory.
In other words, we establish, via Henkin semantics, a form of reduction of second-
order semantics to first-order semantics. Second-order logic with Henkin semantics
is, in general terms, a many-sorted logic. However, we immediately have to empha-
sise that this kind of reduction does not imply that the secret “reasons” that guide,
from within, the mental activity, the progressive unfolding of the processes of explo-
ration and invention can be completely reduced to a first-order mechanism or to a set
of pre-established rules. As a matter of fact, the first result of this very unfolding is
the birth of specific (and previously unknown) differentiation processes, as well as
the successive appearance of new universes of individuals. In this sense, there must
be proofs that are not fully formalisable at a given stage in our mental experience,
but that are “evident” to us at that stage on the basis of particular arrangements of
limitation procedures, of the successive identification of fixed points, of the utili-
sation of abstract concepts, of the exploration of new universes of individuals, and
so on. At the mental level, there are, for instance, proofs of Con (PA) (primitive
arithmetic) that require abstract concepts as well as the necessary construction of
new elements; concepts, for instance, that are not immediately available to concrete
intuition (Hilbert’s concrete intuition as restricted to finite sign-configurations). We
need, in general, not only rules, but also rules capable of changing the previously
established rules. In Godel’s consistency proof, for example, we can directly see
that the theory of primitive recursive functionals requires the abstract concept of a
“computable function of type ¢”. Thinking in mathematical terms cannot be com-
pletely constrained within the boundaries of the syntax of a specific language. In
fact, we would also need to know that the rules of this particular syntactical system
are consistent. But in order to realise this, we need, by the second incompleteness
theorem, to make reference to mathematics that is not captured by the rules in ques-
tion. We have, in general, to utilise more and more abstract concepts in order to solve
lower-level problems. According to Feferman (2006)', from a logico-mathematical
point of view, and Carsetti (2000)?, from a logico-epistemological point of view, the
realm of mathematics must be considered as an open-ended domain not generated
with respect to rules fixed in advance: we have to invent ever-new rules even if we

! Feferman S. (2006) The impact of Godel’s incompleteness theorems on mathematics, Notices of
AMS 53, n. 4, pp 434-439.

2 Carsetti A. (2000) Randomness, Information and Meaningful Complexity: Some Remarks About
the Emergence of Biological Structures, La Nuova Critica, 36, pp 47-128.
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are obliged, once the schematic principles employed reveal themselves as complete
in a suitable sense, to act in accordance with them. In other words, the mathematical
brain is able to constrain and “capture” the possible unfolding of natural causality
as this is biologically expressed at the level of the newly-arising invariance and its
propagation. The measures and the mathematical structures into play (the grid of
mathematical “constraints” at work) determine how the different “entities” progres-
sively emerge.

The utilisation at the semantic level of abstract concepts, the possibility of re-
ferring to the sense of symbols and not only to their combinatorial properties, the
possibility of picking up the deep information living in mathematical structures open
up new horizons with respect to our understanding of the ultimate nature of cogni-
tive processes. At the mind level, in particular, we are actually dealing with a kind of
categorial intuition (or rational perception) that does not concern simple data (rel-
ative to the inspectable evidence), but complex conceptual constructions. And we
know that, in Husserlian terms, meaning “shapes” the forms creatively. However,
we must immediately remark that categorial intuition appears to be embodied in a
realm that is far beyond the limits of Godel’s primitive suggestions, in particular
of his primitive Platonist approach. At the level of the articulation of mental con-
structions, we are actually faced with the existence of precise forms of co-evolution.
Meaning selection is creative because it determines ever-new symbolic functions,
ever-new processing units which support the effective articulation of new coherence
patterns as well as specific embodiment processes. And it is precisely by means of
these new patterns that we shall be able to “narrate” our inner transformation, to
become aware of our mental development and, at the same time, to ascertain the
objective character of the transformation undergone.

At the brain level and at the level of intuitive categorisation, we can perceive
in turn the objective existence of abstract concepts only insofar as we transform
ourselves into a sort of arch or gridiron for the articulation, at the second-order or
higher-order level and in accordance with specific selective procedures, of a co-
herent series of conceptual plots and fusions, a series that determines a radical
transformation of our intellectual capacities. It is exactly by means of the actual
reflection on the new-generated intuitive constructions that I shall finally be able
to inspect the realisation of my autonomy, the progressive embodiment of my cog-
nitive activities in a “new” unitary system. At the level of Skolem’s conception,
for instance, ideas such as countability and uncountability are inherently relative:
our belief that the power set of the natural numbers, P(w), is uncountable is cor-
rect but must be understood relative to our own current viewpoint; from the point
of view of another “observer”, this set may in fact be considered as countable.
From a more general point of view, we well know that there are some powerful
characterisations of the system of natural numbers within an ambient set theory:
according to Skolem’s point of view, these set-theoretic characterisations are all rel-
ative. An internal observer, for instance, can find that in his/her world there is just
one “system of natural numbers” satisfying Peano’s second-order postulates. An ex-
ternal observer, however, can easily realise that this particular system is in fact non
standard, containing infinite unnatural numbers. What it is important to underline
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in this context, is the role played by the different observers and by the successive
identification of the different ontologies. Things are even more complicated if we
postulate, for instance, the existence of a circular link between the different ob-
servers in a co-evolutive ambient: the ontologies will undergo continuous changes.
Then, according to this line of thought, we can effectively realise the importance
of the progressive constitution at the co-evolutive level of the mind’s eyes and the
role played, with respect to this genesis, by the successive conceptual exploration of
non-standard models. Actually, the complete opening of these eyes coincides both
with the constitution process of an “T” as the “I”” of an observer able to operate the
“transversal identification “(Hintikka 19693; Carsetti 1999*) and with the enlight-
enment on behalf of the truth of the mind proper to this very “T”.

From a general point of view, while Godel’s theorem shows that sufficiently
powerful systems of arithmetic are incomplete, Lowenheim—Skolem theorem (LST)
shows that the real numbers cannot be specified uniquely by any first-order theory:
in this sense, first-order theories with models appear importantly ambiguous: there
can be plural models, plural interpretations in which the theorems come out true.
No first-order system can fully capture the real numbers because of the ambiguity.
Skolem discovered the existence of non-standard models of arithmetic in the 1930s.
At the end of the 1940s Henkin utilised non-standard structures in order to prove his
famous weak completeness theorem for the theory of types and, at the same time,
outlined a non-standard model of N2. When we are in second-order logic, but we
make essential reference to non-standard interpretations and allow structures with
non-full relational universes, quantification only applies for the sets and relations
that are present in the structure. In the general structures of Henkin, for instance,
we put into the universes all sets and relations that are parametrically definable in
the structure by second-order formulas. In this sense, it is not surprising that the
set of standard numbers is not definable by a second-order formula in a structure
having non-standard numbers. If we indicate with P. Def. (¥, L) the set of all para-
metrically W — definable relations on individuals using the language L', we can say
directly that a given frame W is a general structure iff D, = P D" N P. Def. (¥, ).

What it is important to stress once again is the fact that hidden in the struc-
ture some specific relations exist, some “rules” (second-order relations) that cannot
be defined as relations among individuals, but that are utilised to define first-order
relations (i.e., relations among individuals). As a result, we obtain a particular struc-
ture where the n-ary relation universe is a proper subset of the power set of the
n-ary Cartesian product of the universe of individuals. So, whereas in the standard
structures the notion of subset is fixed and an n-ary relation variable refers to any
n-ary relation on the universe of individuals, in the non-standard structures, on the
contrary, the notion of subset is explicitly given with respect to each model. Thus,
in the case of general structures the concept of subset appears directly related to
the definition of a particular kind of constructible universe, a universe that we can

3 Hintikka J. (1969) Models for modalities, Dordrecht, Reidel.

4 Carsetti A. (1999) Mental constructions and non-standard semantics, La Nuova Critica, 33-34
pp 101-126.
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explore utilising, for instance, the suggestions offered by Skolem (cf. his attempt
to introduce the notion of propositional function axiomatically) or by Gédel (cf.
Godel’s notion of constructible universe). In this sense, in accordance for instance
with Németi’s opinion, standard semantics is not logically adequate because it does
not include all logically possible worlds as models. On the contrary, in Henkin’s
general semantics many “hidden” possibilities are progressively taken into consid-
eration as possible models. We can, for instance, have models with or without GCH
(generalised continuum hypothesis). Things are really different in the case of stan-
dard semantics.

In order to take into account and to face such a complex reality: i.e. to go into the
paths of the inner structure of non-standard models and of their ultimate connections
it appears suitable to resort, for instance, to the introduction of non-classical logics,
to “creative” logics in particular, capable of elaborating in a finer-grained way the
problem concerning the logical equivalence as well as the relationships existing be-
tween inductive inference and rational inference. It is according to these theoretical
tools that the “life” existing in possible worlds seems, finally, to have the possibility
of entering the stage of our awareness. If we want, for instance, to give a consis-
tent explication of the meaning of linguistic expressions, of the deep information
canalised by them, we have to situate these expressions within a general theory of
meaning capable of giving an adequate explanation of the actual and global flow of
real information. For the theorists of Situation Semantics, for example, the infor-
mation flow concerns real things, living (and cognitive) entities which interact with
their environment. Meaning lies in the systematic relationships existing or develop-
ing between different kinds of real situations. These crossed relations or constraints
permit a given situation (an emergent phenomenon, in particular) to contain infor-
mation concerning other different situations. The emergent phenomenon, in other
words, is “captured by that which is describable in terms of the basic causal struc-
ture” (cf. S. Barry Cooper 2009, this volume) but with necessary and continuous
reference to the models at work and to the complete unfolding of the canalization
process. In addition we must postulate that, at the meaning level, information is
“distributed” in a holistic way. In this sense, at the morphogenetical level it is the
grid of measures in action that determines the quality of the emergent phenomena.

In this theoretical context the logic proper to a given natural activity as, for in-
stance, visual cognition (and the correlated observational language) finally reveals
itself as anchored to the set of constraints and meaning postulates in action that gov-
ern this very activity. This kind of logic contains, however, much more constraints
and postulates than those of which we are aware as human beings. Within the ex-
isting Reality a deep information exists that partially escapes us, an information
that can express itself only within the dynamic and coupled frame of a universe of
constraints and postulates and that contemporarily appears as linked to a series of
specific and continuous observational acts. As we have just said, seeing is observ-
ing with the mind’s eyes in the light of the “irradiation” of the emergent meaning.
The surfacing of meaning posits itself as an essential support of the government in
action, it expresses itself as (and through) the logic concerning this particular (and
natural) self-organisation process, as the grid of constraints that it co-determines and
as the continuous renewal of this very grid.
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The logical and inferential inquiry is precisely that particular type of cognitive ac-
tivity that aims to explore “facts” in order to extract additional information implicitly
contained in them, i.e. to open, in the first instance, the deep content of the original
informational flow. This certainly does not exclude the validity of the utilisation of
the rules of classical extensional semantics. These rules, however, concern only a
particular sort of constraints, only some of the modalities that are necessary to pick
out deep information. So, in order to collect additional information we have to ex-
plore and introduce further constraints, through the “intelligent” utilization of ever
new methods (in particular, we have to close our flesh with respect to the “wounds”
determined by Nature by means of a guided and meaningful “enumeration”): in a
nutshell, we have to feed meaning in an adequate way. In particular, we have to
feed the genesis of the Form constituting ourselves as prototypes and joining the
emerging and irradiating grid. Hence the importance of a guided “adequatio”. This
adequatio does not concern simple things or given structures but the specific devel-
opment of a capacity: only through an adequate construction of prototypes will it
be possible to realise a more coherent expression of the government in action, only
if we are able to join the secret grid according to a specific replication code, will
we be able to feed meaning in an adequate way. Then truth will possess our minds:
we shall finally be able to open the mind’s eyes but in accordance with the truth,
to constitute ourselves as minds in action. In this sense, we have to feed meaning
in an “intelligent” and guided way, hence the importance of a correct identification
of the Method, of the construction of adequate tools at the logical level. In order
to see more and more I have to support a better canalisation of the original flow
and to feed a more coherent “circumscription” at the meaning level. Hence specific
forms will reveal themselves as natural forms through the progressive realisation of
my embodiment: in order to join meaning and canalise the Sinn I have to “fix” the
emerging flow into the genesis relative to the Form, I have to give life to specific
prototypes and I have to recognise myself by identifying previously my role in and
through them.

But, we may wonder: which paths do we have to follow at the cognitive level for
it to be possible to carry out a conservative extension of the logical and semantical
analysis at the level of a coupled system? In which way can we enter the mysterious
kingdom of non-standard models? What is the role, however, played by the observer
at the level of this particular kingdom? What about, for instance, the link between
the observer’s activity and the unfolding of the “nesting” process? How is it possi-
ble to realise a complete expression of the original zelos considered as a needle in
action outlining the drawing relative to that engraved path of the secret wounds that
identifies the labyrinth and which finally recognise himself in this very path? In a
nutshell: what methods do we have to adopt and follow in order to see and think
more deeply according to the truth?

Chapter 1 aims at a very clear exploration of the role played by the models at
the level of Cognitive Science and in particular at the level of visual cognition. Ac-
cording to Grossberg, the brain is organised in parallel processing streams. These
streams are not independent modules however: as a matter of fact strong interactions
occur between perceptual qualities. Actually, we experience the world as a whole.
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“Although myriad signals relentlessly bombard our senses, we somehow inte-
grate them into unified moments of conscious experience that cohere together de-
spite their diversity. Because of the apparent unity and coherence of our awareness,
we can develop a sense of self that can gradually mature with our experiences of the
world. This capacity lies at the heart of our ability to function as intelligent beings™.’

Each stream can possess multiple processing stages, a fact which, according to
Grossberg, suggests that these stages realize a process of hierarchical resolution
of uncertainty. The computational unity is thus not a single processing stage but a
minimal set of processing stages that interact within and between complementary
processing streams. “The brain thus appears as a self-organising measuring device
in the world and of the world”.®

Starting from the ART Hypothesis: All Conscious States are Resonant States,
Grossberg aims to suggest a possible outline of brain’s global functioning. Such
an analysis is not easy because it requires that one have knowledge of a mul-
tiplicity of disciplines. For example, at the level of brain organization it is the
network that determines behavioral success. However, one needs to properly de-
fine the individual nerve cells and their interactions in order to correctly define the
networks whose interactive, or emergent, properties map onto natural behavior. In
order to realise this difficult program we need a sufficiently powerful theoretical
language. The language of mathematics has proved to be the relevant tool, indeed
a particular kind of mathematics. All of the self-adapting behavioral and brain sys-
tems that Grossberg introduces are nonlinear feedback systems with large numbers
of components operating over multiple spatial and temporal scales. As Grossberg
remarks “The nonlinearity just means that our minds are not the sum of their parts.
The feedback means that interactions occur in both directions within the brain and
between the brain and its environment. The multiple temporal scales are there be-
cause, for example, processes like STM are faster than the processes of learning
and LTM. Multiple spatial scales are there because the brain needs to process parts
as well as wholes”.” With respect to this, a second important metatheoretical con-
straint derives from the fact that no single step of theoretical derivation can derive
a whole brain. One needs to have a method that can evolve with the complexity of
the environmental challenges that the model is forced to face. “This is accomplished
as follows. After introducing a dynamic model of a prescribed set of data, one an-
alyzes its behavioral and brain data implications as well as its formal properties.
The cycle between intuitive derivation and computational analysis goes on until one
finds the most parsimonious and most predictive realization of the organizational
principles that one has already discovered”.® Such a theoretical analysis also dis-
closes the shape of the boundary, within the space of data, beyond which the model

3 Chapter 1, p 3.

6 Grossberg S (2000) Linking mind to brain: the mathematics of biological intelligence, Notices of
AMS, p 1364.

7 Chapter 1,p 7.
8 Chapter 1,p 7.
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no longer has explanatory power. The shape of this boundary between the known
and the unknown can often clarify what design principles have been omitted from
the previous analyses.

The chapter is full of ideas and new methodologies. Let us just remark that, from
an epistemological point of view, simulation models no longer appear, in this theo-
retical context, as “neutral” or purely speculative. True cognition, on the contrary,
appears to be necessarily connected with successful forms of reading, those forms
that permit a specific coherent unfolding of the deep information content of the
Source. Hence the importance of taking into consideration both the interplay be-
tween the observer and the real world and the role played by intentions at the level
of this mysterious and continuous unfolding.

The following two chapters are precisely centered on an in-depth analysis of the
emergence of intentional procedures and goal representations at the level of neural
networks as well as at the level of the cerebral cortex, although according to different
theoretical and modelistic perspectives.

In Chapter 2, Atlan and Y. Louzoun aim to “analyze under which conditions a
positive answer could be given to the following question: can neural networks self-
organize so that not only structures and functions not explicitly programmed emerge
from their dynamics, but also goals for intentional actions, set up and achieved
by themselves? Such mechanistic models of intentional self-organization are use-
ful in that they allow to circumvent the usual circular explanation of intentionality
by causal effects of assumed intentional mental states on bodily movements”.’

The authors take into consideration intentionality in a pragmatic sense as it is
observed in intentional actions to solve two problems of causality: the apparent time
inversion involved in final causes and the “mind—body” causal relationship involved
in the usual picture of a mental state being the case of bodily movements and actions.

The system that they develop is designed to devise new goals by itself and to
reach these goals. According to the authors “The goals are determined by the ca-
pacity of a network to learn a relation between effects and the events that caused
them. The model is a metaphor for the psychophysical goal learning process in cog-
nitive beings. This process involves the ability to predict rapidly the result of a set
of events, so that an initial event is reproduced knowing its expected result. In other
words, prediction (which is knowledge) and intentional action are closely related.
That is why this capacity is modeled using a non-supervised learning network as-
sociated to a recurrent neural network. However, while the prediction capacity is
obviously based on memory of previous experience, this knowledge must be al-
lowed some degrees of freedom, which produce new predictions of new events and
the achievement of new goals™.”

In accordance with the model, intention and action appear to be one and the
same realization, simply represented in different ways. This implies that an intention
to act is always normally associated with its execution. In other words, both the

9 Chapter 2, p 47.
10 Chapter 2, p 47.
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action and the intention are represented by links between initial and final states. The
difference between the action and the intention is actually the difference between
an action actually performed and its initiation, as indicated by neurophysiological
data. “This difference results in our capacity as human beings to stop an action once
initiated. We would call an action interrupted after being initiated, an intention to
do an action and invent a mental state to represent it”.!1 This view, as the authors
correctly remark, is opposed to the usual mentalist assumption that an intention
exists first in the mind as a “pure” mental state, possibly, but not normally associated
to its execution.

One feature of these views is the monist ontology involved in the approach to
the mind—body problem. Spinozist philosophy is certainly the most radical monist
attitude towards this problem. As is well known, Spinoza denies the possibility of
causal relationships between the mind and the body, not because they would pertain
to two different substances, as in Descartes, but precisely because they are “one and
the same thing, though expressed in two ways” (The Ethics, 11, 7, note).

In this sense, according to the authors, the cause of a voluntary bodily movement
must always be some previous bodily (brain) event or set of events, and not a con-
scious decision viewed as a mental event as described by subjective reports about
conscious experiences. The difference from a non-voluntary movement is the nature
and degree of conscious experience accompanying it. But in any case, a conscious
mental event in this context may accompany the brain event but not be its cause,
being in fact identical with it, although not describable in the same language. At the
end of this very incisive chapter, the authors finally remark that results from neu-
rophysiology support this view (cf. Libet 1992): unconscious initiation of voluntary
action precedes the conscious decision to trigger the movement.

In Chapter 3, L. Fogassi outlines how imitation is the first function that comes to
mind when one thinks to the possible use of mirror neurons, because they possess
the property enabling the observer to immediately translate the visual information
on observed action into the motor parameters necessary for reproducing it. In his
opinion, from a general point of view, imitation in humans appears to require the
involvement of the mirror neuron circuit, with the additional activation of prefrontal
areas when recombination of already existing motor representation in novel se-
quences is required.

“It remains to be explained how imitation in monkeys is minimal, in spite of
the presence of a well-developed mirror neuron system. There are probably many
reasons for this apparent contradiction. First, in monkeys a lower percent of mirror
neurons show a strict congruence between observed and executed action, the ma-
jority coding the action goal. Second, as shown above, in humans a crucial role in
imitation learning is played by the prefrontal cortex, a region that is much more
developed in the human brain in respect to that of monkeys”.'?

The mirror neuron mechanism appears to be very close to the mechanism that,
during inter-individual communication, enables the listener/observer to understand

1 Chapter 2, p 50.
12 Chapter 3, p 66.
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the meaning of the message emitted by the sender. The central point is that both
sender and receiver share the same motor programs necessary to produce a message
and the pathway that allows to access these programs. As Fogassi remarks “The pro-
posed homology between F5 and Broca’s area is in favor of the idea that language
can be derived from a system involved in action and, lately, in gesture understand-
ing...... All these data corroborate the idea that an ancient observation/execution
matching system, as that found in monkeys, may have paved the way to the evolution
of human language. This process occurred through many steps, two of which, how-
ever, are assumed to be very important. The first is the transition from a motor sys-
tem coding actions to one with the capacity to encode also intransitive actions, prob-
ably through a process of ritualization of goal-directed actions. ...... The second is
represented by the association between a gesture and a sound. The possibility to use
facial and brachiomanual gestures in association with utterances provides a higher
combinatorial power, allowing to create a richer vocabulary. The presence in mon-
key area F5 of a large population of neurons coding both hand and mouth actions
and its access to auditory input could have been important elements, in evolution,
for facilitating the occurrence of the proposed association gesture/action-sound”."?

According to Fogassi, when we observe somebody else performing goal-directed
action, in most cases we are able to infer the intended goal, even though the action
is not completely accomplished: we really have the capacity to understand the
intention of other individuals. Since mirror neurons provide a mechanism to under-
stand the goal of motor acts performed by others, it is natural to raise the issue of
whether they can also play a role in intention detection. In a recent experiment, the
visual response of parietal mirror neurons was studied in the same conditions that
were used for studying motor properties of IPL (inferior parietal lobule) grasping
neurons.

On the basis of these experimental results, the IPL mirror neurons, in addition to
recognizing the observed motor act, appear also able to discriminate among iden-
tical motor acts according to the context in which they are executed. “Because the
discriminated motor acts are part of chains, each of which leading to a specific final
goal, this capacity allows the monkey to predict what is the goal of the observed ac-
tion and, in this way, to “read” the intention of the acting individual. If grasping neu-
rons belonging to a particular chain fire, the observed acting individual is going to
bring the food to the mouth; if, in contrast, another set of grasping neurons belonging
to another chain fire, the observed acting individual is going to put the food away”.'*

Fogassi lastly affirms, in accordance with his central thesis, that the mirror neuron
system in monkeys provides the first neural substrate for a primitive understanding
of other intentions, that probably paved the way for the evolution of the more so-
phisticated aspects of mind reading present in humans. Thus, once again intentions
and actions appear indissolubly linked. How is it possible, however, to identify new
mathematical languages able to enlighten this mysterious interplay?

13 Chapter 3, p 67.
14 Chapter 3, p 68.
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The second part of the volume is precisely devoted to a thorough analysis of
a number of conceptual and mathematical tools that in the last decades revealed
themselves particularly useful in interpreting cognitive and mental phenomena.
Deterministic chaos, incompleteness results, the genealogical analysis of the math-
ematical structures etc., are extensively utilised in the different chapters in order
to clarify both the mysterious relationships between truth and randomness and the
real interplay between the emergence of intentionality and the self-organisation
processes involved in intuitive categorisation. Actually, in order to outline more so-
phisticated models of cognitive activities (and in particular of that inextricable plot
constituted by the circular link between “rational perception” and “intuitive cate-
gorization”) we have to examine and individuate specific theoretical methods also
capable, for instance, of taking into account the intentional and semantic aspects of
that particular biological (and neural) process linking together growth with differ-
entiation which characterises human cognition.

D. van Dalen in Chapter 4 starts from the analysis of Brouwer’s mathematical
universe. As is well known, according to Brouwer the objects of mathematics come
first in the process of human cognition, and description and systematization (in par-
ticular logic) follow later.

In the final presentation, Consciousness, Philosophy and Mathematics (CPM)
(Brouwer 1949), the great mathematician expresses explicitly his thought in this
way: “ ‘By amove of time a present sensation gives way to another present sensation
in such a way that consciousness retains the former one as a past sensation and
moreover, through this distinction between present and past, recedes from both and
from stillness and becomes mind.” Thus the subject has created a ‘twoity’ of a past
and present sensation. The process evidently can be iterated, and complexes and
strings of sensation become the object of attention. The sensation complexes form a
bewildering mixture, in which a certain order is introduced by the causal attention.
This carries out a process of identification. One may think of the identification of
‘similar’ complexes, or of abstraction”."

In CPM the notion of causal sequence is further refined: “ ‘An iterative complex
of sensations whose elements have an invariable order of succession in time, whilst
if one of its elements occurs, all following elements are expected to occur likewise,
in the right order of succession, is called a causal sequence’. It might be tempting to
explain these, let us say ‘strongly causal sequences’, scs, by a causality, independent
of the will of the subject. This, however, is rejected by Brouwer. On the contrary,
causality is explained by the notion of strong causal sequence. A scs can be put to
use by the subject in order to realize events that are not immediately obtainable.
One only has to realize the first event of a scs, or an intermediate one, in order to
obtain the final event. The procedure of realizing the final (and desirable) event by
realizing a preceding event was called the ‘jump from end to means’, and later the
mathematical or cunning act”.'®

15 Chapter 4, p 77.
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In this way, the basic material of “discrete mathematics” is at the disposition of
the subject. This part of the process of creating is later called the first act of in-
tuitionism. On the contrary, as van Dalen remarks, the continuum is given in the
move-of-time act as the ‘between’. “In his Rome lecture (1908) Brouwer explicitly
points out that ‘the first and the second are thus kept together, and the intuition of
the continuum (continere = keeping together) consists of this keeping together’. And
he adds: “This mathematical ur-intuition is nothing but the contentless abstraction
of the sensation (experience) of time’. Time is thus created by the subject through
the ‘move of time’, together with the continuum and the natural numbers. The sec-
ond act of intuitionism is the creation of ‘more or less freely proceeding infinite
sequences of mathematical entities previously acquired’ and of ‘species’, i.e. ‘prop-
erties supposable for mathematical entities previously acquired’”.!”

On the basis of his deep knowledge of Brouwer’s universe, van Dalen first of all
points out that “In CPM the two acts are tacitly lumped together under the act of
‘unlimited unfolding’”.'® In any case, the process of creation of causal sequences
and complexes does extend beyond the realm of mathematics; indeed the physical
world, as well as the social one is made up of those objects. If we look at the physical
phenomena within the boundaries of a Brouwer’s universe, then we can individuate
the role of mathematics as follows: the objects of the physical world are obtained by
abstraction from sensation complexes, a further abstraction gets the subject to math-
ematical objects and structures. Hence a natural and priviliged connection between
the physical universe and the mathematical one.

As is well known, Weyl adopted Brouwer’s intuitionistic programme, adding
his own interpretations to it. In particular Weyl did not give the same status to
choice sequences Brouwer did. As the author clearly remarks for Weyl choice se-
quences did not belong to mathematics proper; all he accepted was the real status
of initial segments. As a consequence arbitrary reals were replaced by generating
intervals. “......an interval, say (a, b) for rational @ and b, represents for Weyl the
open horizon of ‘the reals that are potentially given by the interval’. Concrete real
numbers are given by lawlike sequences of intervals, and arbitrary ones by choice
sequences, in the representing interpretation. Hence there is on Weyl’s approach a
fundamental distinction between existential quantification (over lawlike reals), and
universal quantification (over choice reals)”.!” Here Brouwer’s and Weyl’s roads
separated. The words by van Dalen about the final difference between Brouwer’s
universe and Weyl’s universe are particularly important in order to understand the
successive development of the concept of extended Turing universe as this concept
is presented in the following chapters. As Chaitin, for instance, points out in his
chapter, there is a precise link between Weyl’s conception and Popper’s first analy-
sis of the concept of simplicity. The first theoretical bases of AIT are envisaged by
Popper by means of the outlining of a new kind of relationship between humans and
Nature that maintains some original Weyl’s suggestions.

17 Chapter 4, p 78.
18 Chapter 4, p 79.
19 Chapter 4, p 80.
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In Chapter 5, G. Longo starts from an in-depth analysis of the link between
randomness, determinism and knowledge in order to discuss, from a logico-
epistemological point of view, Turing’s original contribute. Once again the problem
is represented by the confrontation between the machine and the continuum. As
Turing understands very well, ‘the nervous system is surely not a DSM’: on the
contrary, in Longo’s opinion, we can affirm that the brain rather is a dynamical
system (and Longo correctly remarks that Turing calls these systems “continuous”).
Then, how to compare a DSM with the brain? The comparison is functional and
relative to the only possible access to the machine, during the imitation game: the fi-
nite sequences of a teleprinter’s signs. Under these conditions, according to Turing,
we would be unable to distinguish a continuous system, as the brain, from a DSM,;
if the continuous machine makes its response though a printer, it will be undistin-
guishable from a DSM’s response, even if obtained by different means (continuous
variations instead of discrete steps). Hence the Turing’s central hypothesis: if the
interface with the dynamical system is given by a “discrete access grid”, then it will
be undistinguishable from a DSM.

“In fact, today’s physical DSM, our computers, simulate dynamical systems in
a more than remarkable way. They develop finite approximations of the equations
which model them with great efficiency: nowhere may we better see the “form” of
an attractor than on the screen of a powerful enough machine. Their applications
to aerodynamics (simulation of turbulence), for example, has considerably lowered
the price of airplanes (almost no more need for wind tunnels). But ... what are the
conceptual, mathematical, physical differences?”.”’

From a general point of view, Longo firmly states that a DSM is surely not a
model of the brain, at least if we consider the latter, with Turing, a continuous
system, as opposed to what is pleaded in the field of classical Artificial Intelligence
and by many modern cognitivists. However, the real problem is the following: can
a DSM imitate the brain? According to Longo “Turing is perfectly aware of the dif-
ference between imitation and mathematical modeling for a quite simple reason: he
is already working upon a remarkable mathematical model of morphogenesis in a
field of chemical diffusion .. .. In fact, the most interesting property the equations to
be found in (Turing 1952), is that a very small variation of the boundary conditions,
obviously in a continuous system, can radically change the evolution of the model.
And this property is not the laplacian nondeterminism or randomness, but the sen-
sitivity to the contour conditions and situates itself at the heart of the deterministic
model of morphogenesis a la Turing. One thing is thus the “imitation game”, another
mathematical modeling of physical and physico-chemical or biological phenomena:
the Turingian DSM does not claim to model the brain, in the physico-mathematical
sense — the latter is a continuous system for Turing — it can only attempt to trick an
observer”.?!

As a matter of fact, an abstract, mathematical DSM, such as Turing’s machine,
is not conceived as a physical machine, but as a logical machine, a human in “the

20 Chapter 5, p 90.
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minimal act of thought” — of formal thought. Consequently, its expressivity is me-
chanical yet purely logico-formal: typically, its expressive power is independent of
spatial dimensions, a property absolutely foreign to the physical processes, which
all depend and strongly upon the dimensions of space. “Let’s forget the compari-
son between formal DSMs and living machines, which are physical, obviously, but
are moreover subject to phenomena of integration-regulation which keep them in
an “extended critical state”; this state is unknown by the non-living and its math-
ematics; mathematics which must therefore be extended and adapted to the new
job (dynamical systems are “only” one of the best approximations we have, for the
moment). It is exactly this integration of the brain within a body, their reciprocal
regulation and by such a rich environment that confers it a quite peculiar structural
and functional stability; and when these regulative/integrative linkages by/of/in a
body are weakened — in the course of a dream for example — the brain appears to
be rather unstable (likewise in case of serious deprivation — artificial, for example —
from sensation)”.?>

In spite of the difference between a DSM and the brain, the distinction hinted
by Turing (a distinction that is at the heart of Longo’s analysis) between modeling
(as mathematical proposal of constitutive principles for a physical process) and im-
itation (functional imitation, with no commitment on the “nature” of phenomena)
is a fundamental idea. It should be taken up today, both from a foundational and
practical view point, as discrete-state machines are essential to modern science by
their extraordinary’ modeling/imitation abilities.

Let us underline, however, as Longo correctly points out, that beside the imita-
tion, when we look at brain’s functioning also simulation procedures and intentional
decisions take on a decisive role not only with respect to brain’s functional architec-
ture but also with respect to the continuous growth of its inner complexity, and to
the full expression of its real plasticity.

What about, however, the possibility to model in mathematical terms the role
played by intentionality? It is precisely to this general problem that the successive
chapter is devoted.

From a technical point of view, the main subject of Chapter 6 by S. Galvan is the
w-incompleteness of a formal theory which seeks to formalize finitist arithmetic.
PRA (i.e. primitive recursive arithmetic) is normally considered to be the theory
that formalizes finitist arithmetic. But the arguments which the author illustrates
also hold if one assumes PA (i.e. Peano arithmetic) as the theory formalizing finitist
arithmetic (in a broader sense, of course). Galvan adopts two points of view: one in-
ternal to the theory, and one relative to some suitable non-conservative extension of
it. He seeks to show that (i) with respect to the first point of view, w-incompleteness
entails an irreducible distinction between truth in finitist arithmetic and provability
through methods based on finitist (finitary and concrete) evidence; (ii) with respect
to the second point of view, this irreducible distinction can be overcome, but only if
one accepts a form of evidence (non-finitary with respect to content, finitary in form
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but abstract). Abstract evidence appears thus, in his opinion, as the finite expression
of an intensional relationship between the subject and an infinite reality.

According to Galvan the main problems arising from the attempt to consider
intuition as a way of access to mathematical reality and, therefore, as a modality
of justification of the mathematical sentences themselves, concern, first of all, the
possible examination of two different types of intuition: intuition of an arbitrary or
abstract natural number and intuition that allows to introduce structures with count-
able support, i.e. omega-structures. The main questions regarding these different
types of intuition are: (a) What formal theories are justificable by intuition? (b)
What is the difference between justification by intuition and justification by proof in
the context of more powerful formal theories? (c) How is the assertion to be under-
stood that the hierarchy of induction principles measures the degree of complexity
of the corresponding forms of numerical intuition? Another order of problems con-
cerns intuition of the standard model of numbers. How such an intuition is possible?
Does the use of a second-order language guarantee the possibility of representing
linguistically such a model? But if neither a second-order linguistic dimension is
sufficient to this aim, what characterizes the ‘surplus’ present in intuition? How can
be consistently argued that intuition of the notion of a standard number is emergent
on the syntactic and even on the semantic dimension of numerical theories?

What about, moreover, the connection between intuition and intentionality? In
other words, what does the abstractness of non-finitist evidence have to do with
intentionality? In the final part of his paper Galvan affirms that forms of non-
finitist evidence have a distinctive intentional character in the classical sense. “But
what does intentionality in the classical sense mean? In the contemporary theory of
knowledge, by ‘intentionality’ is normally meant the relation, inherent in every ac-
tivity by a subject, of being oriented to an objectual content. Of course there are very
different opinions on whether some activity or other is oriented to an object and is
therefore intentional. However, intentionality consists in directedness to an objectual
content. ...... What matters in this relation is not so much the identity (which simply
expresses the fact that the subject enters into ‘contact’ with the object) as the fact that
the object is grasped (received) by the subject as something else (aliquid aliud)”.”

Intentionality considered as simple directedness at the object can in fact be in-
terpreted as a causal relation on behalf of the object which exerts a stimulus on the
subject which is then processed by the subject himself/herself. In this case, directed-
ness is determined by the fact that not all stimuli are processed, but only those which
match the structures responsible for stimuli apprehension and processing. Non-
finitist evidence therefore requires the activating of this capacity for intentioning
the mathematical object which is realized in the multiple forms (visual, geometric,
combinatorial, set-theoretic, etc.) of the being present, of the being seen, in a word,
of the appearing. This capacity, in Galvan’s opinion, is to be understood in terms
of intentionality of consciousness, and intentionality — in as much as it is the place
where the object is present to consciousness — is just what mechanical minds lack. In

23 Chapter 6, p 123.
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which way, however, can we find the possibility to hear from a Source which comes
out to dictate at the level of biological structures the message of its wild autonomy?
How can we fix the “code” of this mysterious transmission?

In the third part the central core of the analysis is represented by the definition
of a multiplicity of concepts intersecting many different realms of contemporary
scientific research: Algorithmic Information Theory, Computability Theory, Mea-
surement Theory, Alternative Set Theory and so on. After introducing in the second
part the Brouwer universe and the Turing universe as well as the multiple facets of
intentionality the chapters now focus first of all on the extended Turing universe and
on the link between incomputability and incompleteness. The utilisation of oracles
as well as of specific non Cantorian tools allows for a real enlargement of the analy-
sis and an exploration of the specific power proper to the “mathematical brain”. For
many aspects, the different chapters underline the necessity of introducing a more
subtle analysis of natural causality by means of the tools offered by meaningful
complexity.

In Chapter 7, G. Chaitin starts with a revisitation of some fundamental ideas as
proposed by Weyl and Popper: “Weyl observes that this crucial idea of complex-
ity, the fundamental role of which has been identified by Leibniz, is unfortunately
very hard to pin down. How can we measure the complexity of an equation? Well,
roughly speaking, by its size, but that is highly time-dependent, as mathematical no-
tation changes over the years and it is highly arbitrary which mathematical functions
one takes as given, as primitive operations. Should one accept Bessel functions, for
instance, as part of standard mathematical notation? This train of thought is finally
taken up by Karl Popper in his book The Logic of Scientific Discovery (1959), which
was also originally published in German, and which has an entire chapter on sim-
plicity, Chapter VII. In that chapter Popper reviews Weyl’s remarks, and adds that if
Weyl cannot provide a stable definition of complexity, then this must be very hard
to do. At this point these ideas temporarily disappear from the scene, only to be taken
up again, to reappear, metamorphised, in a field that I call algorithmic information
theory. AIT provides, I believe, an answer to the question of how to give a precise
definition of the complexity of a law. It does this by changing the context. Instead
of considering the experimental data to be points, and a law to be an equation, AIT
makes everything digital, everything becomes Os and 1s. In AIT, a law of nature is a
piece of software, a computer algorithm, and instead of trying to measure the com-
plexity of a law via the size of an equation, we now consider the size of programs,
the number of bits in the software that implements our theory: Law: Equation —
Software, Complexity: Size of equation — Size of program, Bits of software”.>*

According to Chaitin’s model, both the theory and the data are finite strings of
bits. A theory is software for explaining the data, and in the AIT model this means
the software produces or calculates the data exactly, without any mistakes. In other
words, a scientific theory is a program whose output is the data, self-contained soft-
ware, without any input.
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But “what becomes of Leibniz’s fundamental observation about the meaning of
“law?” Before there was always a complicated equation that passes through the data
points. Now there is always a theory with the same number of bits as the data it
explains, because the software can always contain the data it is trying to calculate as
a constant, thus avoiding any calculation. Here we do not have a law; there is no real
theory. Data follows a law, can be understood, only if the program for calculating it
is much smaller than the data it explains”.”

In this sense, understanding is compression, comprehension is compression,
a scientific theory unifies many seemingly disparate phenomena and shows that they
reflect a common underlying mechanism. The best theory, in Chaitin’s opinion, is
the smallest program that produces that data, that precise output. This can be con-
sidered as a variant of Occam’s razor. As the author affirms, this approach enables
us to proceed mathematically, to define complexity precisely and to prove things
about it. There are, however some precise proviso: “once you start down this road,
the first thing you discover is that most finite strings of bits are lawless, algorithmi-
cally irreducible, algorithmically random, because there is no theory substantially
smaller than the data itself. In other words, the smallest program that produces that
output has about the same size as the output. The second thing you discover is that
you can never be sure you have the best theory”.”® As is well known, in Chaitin’s
opinion, €2 is a random real with lots of meaning but this information is stored in 2
in an “irreducible” way, with no redundancy.

What about, however, the ultimate role of meaning at the level of AIT? In which
way can we model the link between incompressibility and irreducibility at the mor-
phogenetical level? How can we explore, in accordance with Leibniz’s original
suggestions, another kind of model: the extended Turing universe?

Some of the fundamental ideas that are at the basis of AIT are revisited, for many
aspects, by S. Barry Cooper exactly by means of a merging of these very ideas in
an extended Turing universe. In particular, the view that Cooper wants to pursue
in Chapter 8 is “that emergent phenomena not only yield up descriptions, using
different language to that used in describing the underlying design; they are actually
determined, constrained, captured by that which is describable in terms of the basic
causal structure”.?’” The intuition that entities exist because of, and according to,
mathematical laws, is not new, of course, as Chaitin extensively shows in his chapter.
One can detect it in the words of Leibniz from 1714 in the The Monadology, section
32: “there can be found no fact that is true or existent, or any true proposition,
without there being a sufficient reason for its being so and not otherwise, although
we cannot know these reasons in most cases”.

According to Cooper, natural phenomena not only generate descriptions, but
arise and derive form from them. So connecting with a useful abstraction, that of
mathematical definability — or, more generally, invariance (under the automorphisms

25 Chapter 7, p 130.
26 Chapter 7, p 130.
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of the appropriate structure). “This gives precision to our experience of emergence
as a potentially non-algorithmic determinant of events. On the one hand one can
attempt to frame criteria for emergence in terms of the complexity of the language
used to describe it, and one can also use the known associations between infor-
mational and computational complexity to constrain the computability-theoretic
character of physical phenomena”.?®

What one would expect from this very clear connection between the under-
lying basic causal structure (the ‘design’ in Cooper’s terms) and the emergent
phenomenon would be a certain level of robustness of the emergence. “What one
is suggesting, via the association with mathematical definability, is a direct causal
relationship between ‘design’ and emergent phenomenon — and one which is unlike
the usual fundamental laws of nature, in that it is more global in respect of the causes
it works with — and potentially, with respect to the effects”.?’

As Cooper remarks, Turing’s approach is largely proof-theoretic, growing out
of his interest in Godel’s incompleteness theorem, and what it tells us about the
extent of the boundaries of the computable world. Turing shows that despite Godel’s
proof that no consistent first-order theory captures arithmetic, we can hierarchically
transcend this barrier, in a quite constructive way — one just iterates the Godel
argument, computably generating new unprovable theorems which are then used
to enlarge the theory. One uses computable ordinal notations to iterate this process
into the transfinite in a constructive way, thus giving the appearance of computably
transcending Godel’s theorem. “But a little thought reveals the snag — identifying
the route to a new theorem involves using an incomputable oracle, so we avoid the
reductionist paradox”.*

Having tried unsuccessfully to ‘compute the incomputable’, Turing introduced
a model of natural causality between real data, which could be incomputable. The
model — now called an oracle Turing machine — was essentially just a Turing ma-
chine which could ask questions of an external ‘oracle’ (usually a set of natural
numbers). The number of questions during a particular computation was finite, of
course. “The result was that instead of getting computable real numbers via the
collating of computational outputs of a machine, one now got real numbers com-
putable relative to an oracle. Considering the oracles to be inputs, a given machine
might capture a particular computable function over the reals, notated as a Turing
functional from reals to reals...... This is not surprising, since such simple basic
transformations are routinely captured via functions over the reals which can be
computed up to any practicable level of approximation by a real-world computer.
Here we have again basic computability leading very quickly via descriptions to a
situation with computational content, but not necessarily computable”.!

With respect to this context, Turing’s oracle machines precisely provide a model
of computable content of structures, based on partial computable functionals over
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the reals. As Cooper remarks, this model — the Turing universe — is really capable of
capturing basic computable causal structure in the real world, with the expectation,
based on experience, that any incomputable causality would be definable in some
natural way from this basic structure.

The general (and thoughtful) intuition underlying Cooper’s considerations is that
the Turing invariant relations are key to pinning down how basic laws and enti-
ties emerge as mathematical constraints on causal structure. “At one time, it was
thought that the structural pathology exhibited by the Turing universe, and the
disproportionate technical difficulty of proofs in the area, was evidence of math-
ematical ugliness, disqualifying the field from serious attention of non-specialists.
It is now understood that the richness of Turing structure discovered so far provides
the raw material for non-trivially defining a multitude of relations. And that the com-
plexity and pathology of the structure is only what one would expect of something
aiming to model global aspects of the real world”.*?

In accordance with the afore mentioned general intuition, in Chapter 9 E. Beggs,
J. F. Costa, and J. V. Tucker develop a mathematical theory about using physical
experiments as oracles to Turing machines. They suppose first of all that an experi-
ment makes measurements according to a physical theory and that the queries to the
oracle allow the Turing machine to read the value being measured bit by bit. Using
this theory of physical oracles, an experimenter performing an experiment can be
modelled as a Turing machine governing an oracle that is the experiment. In par-
ticular, the authors consider this computational model of physical measurement in
terms of the theory of measurement of Hempel and Carnap and finally note that once
a physical quantity is given a real value, Hempel’s axioms of measurement involve
undecidabilities. To solve this problem, they introduce time into Hempel’s axiomati-
zation. Focussing on a dynamical experiment for measuring mass, they finally show
that the outlined computational model of measurement satisfies their generalization
of Hempel’s axioms. This analysis also explains undecidability in measurement and
that quantities are not always measurable.

From a general point of view, the authors develop a methodology and a mathe-
matical theory to examine how data is represented and computations are performed
by physical systems. In particular, as we have just said, they introduce a Princi-
ple which changes the perspective of the mathematical theory of Turing machines
with physical oracles. Instead of viewing the experiment as an oracle boosting the
power of Turing machines, they view the Turing machine as controlling and, in-
deed, performing the experiment. Specifically, this Principle leads to suppose that:
The Turing machine models a human experimenter conducting the experiment.

So the relationship between experimenter and experiment is modelled by the pro-
tocols that apply to the oracle queries. A question, however suddenly arise: To what
extent is this computational model of experimentation general? And, in general,
what is measurement?

32 Chapter 8, p 148.
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In their important paper the authors begin to explore these questions with the
help of the philosophy of physics. They relate their computational model to the
desiderata of Geroch and Hartle for an investigation into computable aspects to mea-
surement. Then they consider the axiomatic theory of measurement established by
Carl G. Hempel and elaborated by Rudolf Carnap and apply it to their computa-
tional models of measurement. In particular they introduce the operational concept
of computational resources, specifically time, into Hempel’s axioms. “The idea of
considering time as a cost in deciding the equality of measurements is suggested by
our previous technical work on the model”.*

But, how does the Turing machine communicate with Nature? The authors
propose “that this interaction is captured by the concept of the continuing evolu-
tion of a physical experiment acting as an oracle.... The measurement apparatus is
taken to be an oracle to a Turing machine. The interaction is achieved through a
protocol which counts time. After each consultation, the oracle may provide one bit
of the measurement. This bit also provides the necessary information to the machine
to proceed with the experimental procedure”.** These technical results can be used
to show that the task of measuring quantities in physics can be classified by well
known complexity classes. In this sense, will a TM model precisely be a human ex-
perimenter only if it is able to calculate the complexity classes in an adequate way.
The chapter opens up new theoretical horizons: in actual fact, according to Calude
a TM with an oracle of quantum random bits has hypercomputational power. But,
how powerful is such a machine?

In Chapter 10 S. Livadas starts from an accurate revisitation of Husserlian doc-
trine. As is well known, Edmund Husserl held the early idea that pure mathematics
belongs to the exact sciences dealing with idealities whereas phenomenology is a
descriptive eidetic science of pure mental processes as viewed in the phenomeno-
logical attitude. They are fundamentally different in that they use both different
cognitive tools and turn their view to essentially different objects. This is Husserl’s
prevalent attitude to which he makes references especially in Ideen I, where he sup-
ports that they can combine though they cannot take the place of one another.

Livadas aims to demonstrate how the phenomenological analysis of time con-
sciousness can not only provide a model of the intuitive continuum, something that
had already attracted, as we have just seen, the theoretical interest of prestigious
mathematical names as that of H. Weyl and L. E. J. Brouwer in early twentieth
century, but can also motivate a new approach to the ontological nature of intu-
itive continuum and its ad hoc axiomatization in the language of non-Cantorian
theories. On a phenomenological level, Livadas starts from the analysis of the phe-
nomenological constitution of time as it is developed in Husserl’s Phdnomenologie
des inneren Zeitbewuftseins (Husserl 1996) and of the work of J. Patocka (1992)
as well as of the more general Husserlian idea of genetic-kinetic constitution. As
is well known, following this analysis Husserl confronts in Phdnomenologie des
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inneren Zeitbewufitseins the issue of a transcendental, non-temporal subjectivity
objectivated in the self-constituting unity of the flux of consciousness which in
a somehow circular turn is successively considered as constituted in accordance
with a kind of transcendental “genesis” constantly generating temporality. Becom-
ing convinced that the transcendental ego is given in temporal profiles — “time is
the universal form of all egological genesis” he professed in the Fourth Cartesian
Meditation — he was inducing an impredicativity in the phenomenology of time, a
kind of radical transcendence.

In Livadas’ opinion, the phenomenological constitution of time provides a model
for the intuitive continuum and its impredicativity, a motive to reflect on its represen-
tation as a kind of essential “extension” within the realm of certain non-Cantorian
mathematical theories that provide an alternative, phenomenologically oriented ver-
sion of standard mathematics by negating conventional infinity and following the
ever shifting horizon of our incorporating life-world (Lebenswelt) as is the case
with Alternative Set Theory (AST) of the Prague School (Vopénka 1979).

“We support in this paper that the adoption of ad hoc extension principles or “ex-
ternal” predicates in non-Cantorian theories with respect to vagueness or fuzziness
(that is, uncountable infinity) reflects on a formal-axiomatical level the impredica-
tivity of the transcendental ego of consciousness in its Husserlian sense meant as
the constituting factor of the continuous unity of the flux of internal time. This is
also the case with respect to the intuitionistic approach to continuum by a choice
sequence modeling, where a strong extension principle is adopted for the elements
of the universal spread C (Van Atten et al. 2002). It should be noted again that in-
tuitionistically oriented H. Weyl had already developed in Das Kontinuum (1918), a
view of the intuitive continuum based largely on the phenomenological description
of the consciousness of internal time (Van Atten et al. 2002)”.33

On the basis of these alternative approaches to continuum, the author lastly points
out its inherent indescribability by means of a first-order formal language. “We hold
that this indescribability manifests itself in the phenomenology of consciousness as
the irreducibility of the continuous unity of the constituting flux of consciousness
in-itself to the discrete mode of appearances of phenomena constituted as immanent
unities in it”.%

In the fourth part of the volume the analysis is centered on the link between
epistemic complexity and causality. As we have just seen, the interface between
causality, incomputability and meaningful complexity represent the secret thread of
the third part. With respect to this, the words by Cooper were illuminating: the Tur-
ing invariant relations are key to pinning down how basic laws and entities emerge
as mathematical constraints on causal structure. Hence the importance of a deep
analysis of this very structure. What methods, however do we have to follow in or-
der to understand the hidden aspects of natural causality? What is the role played by
causality at the level of knowledge construction?

35 Chapter 10, p 186.
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In Chapter 11, J. Nida-Riimelin remarks, first of all, that in order to present
reasons against the possibility of naturalizing reasons it is necessary to present an
account of naturalization. “Naturalism with respect to a domain D is the view that all
entities or properties out of D can be naturalized. There are many different kinds of
characterizing naturalism. The broadest account takes naturalism as being the view
that nature is a coherent whole, and that human beings and all their properties are a
part of nature. This account is not quite clear-cut and I would like to avoid answer-
ing the question “are you for or against naturalism?”” understood in this sense......
There are many and competing accounts of what explanation in the natural sciences
is but there exists an almost unanimous consensus that reference to tele cannot be
a legitimate part of explanation in the natural sciences. Put differently: Teleologi-
cal explanation is different from causal explanation and the natural sciences aim at
causal explanations only. For example, take game theoretic models in evolutionary
theory. Game theory has developed from the analysis of human agents. Utility and
probability functions that one can attribute to these human agents constitute its con-
ceptual frame. But the evolutionary story is exclusively causal. The talk of “selfish
genes” (Dawkins)is merely metaphorical. The causal explanation contains no refer-
ence to intentions, aspirations, reasons, fele. Explanation in the natural sciences is
causal — deterministic or probabilistic — it deduces explananda (natural events) from
causes (antecedent natural events) together with natural laws. The explananda and
the antecedent natural events do not contain intentional states and a fortiori do not
contain reasons”.%’

According to the author “Naturalism” is the view that the methods of natural sci-
ence suffice to describe and explain not only those events that are generally accepted
as natural events in the sense of being adequate objects for scientific explanation, but
also of events that are usually not objects of natural science. In this reading “Nat-
uralism” is the meta-theoretical view that all events can in principle be explained
by natural science. It is obvious that this meta-theoretical view makes sense only
if it is based on a more general naturalistic world view regarding the ontological
constitution of the entities and the range of the laws of Nature.

As Nida-Riimelin remarks, if Naturalism were to be true, epistemic reasons could
be naturalized. On the contrary, the paper aims to introduce three reasons against
the possibility of naturalizing epistemic reasons: the argument from normativity, the
argument from objectivity, the argument from non-computability.

“The non-standard view I am arguing for, rejects this dichotomy between theo-
retical and practical reasons and it rejects the idea of desires as given, desires which
cannot be criticised and modified. In giving up the idea of given desires we reject
foundationalism regarding practical reasons. The non-standard view is coherentist.
The practice of giving and taking reasons is not split into two separate parts with
different rules of inference. A reason to act results in a belief that this act would be
a good one...... Reasons speak for or against a propositional attitude. Some of these
propositional attitudes have practical implications in the sense that a rational person
having this propositional attitude acts accordingly.

37 Chapter 11, p 203.
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This description ...... is compatible with a close linkage between theory and
practice, between propositional attitudes and actions. Propositional attitudes reveal
themselves in acting. Preferences reveal themselves in choices. Wishes reveal them-
selves in motivations for action etc. A person may say that she believes that p, but if
she acts as if p were not the case, we may doubt whether the person indeed has this
belief. Reasons are epistemic. Reasons justify propositional attitudes. Propositional
attitudes represent practices or, to put it more generally, whole forms of live”.*

From a general point of view, all reasons can be transformed into epistemic ones.
Moreover at least in an indirect and implicit way all reasons have some practical
implications taken as a whole. In this sense, in author’s opinion, it is not difficult to
show that it is impossible to naturalize epistemic reasons.

Actually, life world reasoning is usually very complicated. The interplay of
giving and taking reasons is essential for it. At this level epistemic reasoning is
usually not algorithmic “epistemic reasoning cannot be identical with some causal-
deterministic neurophysiological process, because causal deterministic processes in
principle can be produced by Turing machines. This is obviously true for the clas-
sical deductive-nomological model of causal explanation, but it can be extended to
more complex models of causal explanation including probabilistic ones. The valid-
ity of the argument from non-computability depends heavily on theories of causal
relations. Whereas natural scientists stick to the classical model of causality as al-
gorithmic, philosopher of science developed accounts of causality during the last
decades that made causal relations part of epistemic reasoning...... But as far as
causality is understood as a relation between natural, empirically accessible events,
whereas this relation is lawful and this natural law allows producing the sequel of
caused events by a Turing machine, non-computability is a strong argument against
the possibility of naturalizing epistemic reasons”.*

As is well known, simultaneously with the articulated investigation of the initial
concept of information, since the 1960s and in the decades immediately afterwards,
the concept of causality has come to revive through a fruitful and renewed link
with the Theory of processes and the Theory of probability. In the 1980s, in par-
ticular (see W. Salmon’s theoretical investigations), a new conception of causality
emerged with success. It gives an important role to the notion of “invariance”, inso-
far as it explicitly considers causal processes as instruments to propagate invariant
structures. During the 1990s, new theories were hence put forward that directly con-
nect causality with the procedures concerning the transmission and transformation
of information. The link between invariance and information grounds also an-
other fundamental contemporary approach to causation: the so-called “manipulative
approach”, which claims the content of causal assertions takes root in what we know,
as cognitive agents, about how Reality can be modified and manipulated. The causal
asymmetry which characterises such as conception of causality thus appears as a
manifestation of the fact that causal notions originate in our experience as cognitive
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agents. The “projectivism” which inspires this approach essentially appeals to the
cognitive agent’s capability to compress and manipulate information. Hence the
very recovery of the crucial nexus between causality, compression, probability and
scientific explanation, along the lines of what Chaitin originally postulated.

This recovery implies the necessity of an accurate and deep theoretical en-
quiry, and an innovative outlining of new instrument of investigation on a
methodological level. Chapter 12 by R. Campaner and M.C. Galavotti aims to
discuss a number of highly controversial issues, such as the problem of the rela-
tionship between causal models and intentional, goal-directed action, and the more
general problem concerning the clarification of the interconnection between expla-
nation, prediction and causation within a probabilistic framework. As the authors
remark, at the beginning of the twentieth century the role of the category of causa-
tion in the building of scientific knowledge has been strongly challenged, mainly
because of the progress of physics. Since the early 1970s, however, the notion of
cause has been treated jointly with the notion of probability, and has been thus at
the centre of a real revival. The chapter, in particular, intends to analyse, as we have
just said, the theoretical bases of the two different conceptions that characterise
the contemporary debate about the ultimate nature of causality. The first is rep-
resented by the mechanistic conception, which claims causal nexus, physical and
objective, constitute a network which underlies phenomena and is responsible of
their occurrence. This approach centres in the notions of causal process and causal
mechanism, which are defined in different terms in the different mechanistic theo-
ries. The second successful approach taken into consideration is the manipulative
approach, which traces causation back to our fundamental cognitive structures and
to our capacity to manipulate reality: a “cause” is maintained to be something on
which a free agent intentionally intervenes in order to obtain his target, the “effect”.
Therefore, causation is conceived of as a conceptual category we project on the
world from our peculiar structure as cognitive agents. The authors want to consider
the applicability of this conception to various scientific disciplines and to analyse
its relationship with a general pragmatist perspective. Furthermore, they investigate
the relationships between the mechanistic and the manipulative conception and
their intersections: if mechanisms constitute the causal structure which underlies
reality, their main interest for such a structure stems from the possibility to elab-
orate more and more effective manipulative strategies to control it. In the light of
these considerations, in authors’ opinion, among the “keys” to grasp causation the
notions of stability and invariance seem to play a primary role. Actually, causal
nexus, conceived of both in a mechanistic and in a manipulative sense, have to
show a stable functioning, a behaviour that is invariant under intervention. In this
sense, the notions of invariance and intervention allow to intertwine and integrate
the main concepts the literature proposes as tools for the identification of the causal
structures of Reality. The chapter exactly aims at deepen the features of such an
intertwinement. In particular, revisiting Suppes’ original suggestions, the authors
underline the fact that the great American scientist “developed a pluralistic view of
theories based on models, according to which theories are representable by means of
a hierarchy of models characterized by different degrees of abstraction, which range
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from empirical models, or “models of data” describing experimental evidence, to
abstract mathematical models characterizing the theory”.*’ The models linking a
theory to empirical phenomena can be shown to preserve a certain structure under
certain operations. In the authors’ words: * ‘the structure of a set of phenomena un-
der certain empirical operations is the same as the structure of some set of numbers
under arithmetical operations and relations’ (Suppes 1967, p 59). Invariance, taken
as the capacity to preserve structure, is therefore a pivotal feature of this view”.*!
“Suppes does not impose particular requirements on causal chains, and claims that
causality can be defined both in terms of random variables and events, without
specifying in a univocal fashion what counts as an “event”. Remarkably, no “ulti-
mate genuine causes” are contemplated. By contrast, the notion of cause, genuine
or spurious, is strictly linked to the specification of the set of concepts on which the
set of events that can serve as causes in a given context is to be defined. In other
words, both the notion of event and that of cause are linked to the specification of
the set of concepts characterizing a given context”.*> Hence the necessity of a deep
analysis of the Bayesian methods and a more precise definition of what counts as
evidence.

In Chapter 13, J. Williamson precisely focuses on a particular kind of epistemic
complexity, namely complexity of evidence. In particular it looks at the question of
how complex evidence should impact on the strengths of an agent’s beliefs.

As the author affirms: “It is a platitude to say that the strengths of our beliefs
should depend on our available evidence, but it is notoriously hard to say ex-
actly how evidence constrains appropriate degrees of belief. Bayesian epistemology
begins to tackle this question, but typically considers only the simplest kinds of
evidence, e.g., the case in which the evidence consists of a set of atomic proposi-
tions, or the case in which the evidence consists of a large database of good quality
data. Reality, of course, is rarely if ever so simple. Evidence can be structured in a
number of ways — causally, hierarchically, logically, for instance — and tends to be
multifarious, a mixture of different kinds of structure from a mixture of different
sources. In this paper I will show how objective Bayesianism — one particular ver-
sion of Bayesian epistemology — can help shed light on the precise relation between
complex evidence and belief”.**

In particular, the author shows that evidence of empirical probability constrains
degrees of belief in a rather straightforward way: the set of probability functions
compatible with evidence is just the convex hull of the set of functions in which
(according to the evidence) the empirical probability function lies. But evidence
can contain information other than information about empirical probability, and the
question arises as to what constraints £ imposes on degrees of belief in such.
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“Causality is an influence relation in the sense that learning just of new non-
influences provides no grounds for changing degrees of belief. More precisely, if the
language £ is extended to L', which expresses a new proposition, and it is known
that the corresponding variable is not a cause of any of the former variables, and
other information in £ does not indicate otherwise, then the agent’s degrees of belief
over the former language should not change: PEE/ 0) = PéCL (0) for each sentence 6
of £, where £ is the evidence in £ that concerns £. Hence causal evidence imposes
equality constraints on degrees of belief”.**

Causal structure provides one kind of evidential complexity, but according to
the author there are others. For instance, hierarchical structure normally occurs
in descriptions of mechanisms. In describing mechanisms in the human body we
often need to talk simultaneously about processes that occur at the level of the
body as a whole (e.g., the circulation of the blood), those at the level of the cell
(e.g., oxygenation of haemoglobin), and those at the level of the genome (e.g.,
mutation of a single nucleotide of the S-globin gene). Hierarchical structure also
occurs in describing causal relationships, because causal relations can themselves
act as causes and effects. For example, smoking causing cancer causes governments
to restrict tobacco advertising, which prevents smoking and thereby prevents cancer.
This example shows that the same variable can occur at more than one level in the
hierarchy.

In this sense, complexity of evidence is one kind of epistemic complexity. In his
chapter the author aims to show how objective Bayesian epistemology can begin
to take into consideration this kind of epistemic complexity. Objective Bayesian-
ism offers, in his opinion, a unifying framework for integrating and interpreting not
just evidence of empirical probability, but also evidence of causal, hierarchical and
logical structure. Objective Bayesian probability can be defined over predicate lan-
guages as well as propositional languages, and the machinery of objective Bayesian
nets can be used to represent and reason with objective Bayesian degrees of belief.

The fifth part of the volume is devoted to a variegated analysis concerning em-
bodied cognition, the link between mind and brain, the role of creativity in cognitive
activities and lastly the very possibility of doing metaphysics with robots. Actually,
the extent to which the brain succeeds, albeit partially, in encapsulating the secret
cipher of the cognitive abilities of other intelligent beings through a specific chain
of programs determines the brain’s capacity of grasping and reproducing these very
abilities and prepares the possible successive irruption of new patterns of creativity.

In Chapter 14, W. Leinfellner remarks first of all that genetic algorithms demon-
strate that a higher organism in its environment or society can modify its behavior
(humans their societal decisions) by a selective and adaptive learning process which
is regimented by ad-hoc game-theoretical and statistical societal default rules. These
rules may change even genetically fixed rules; their use can generate new ones which
our brain evaluates and the organism must store all of them in its memory system.
Thus, evolutionary processing by learning, rule generation, and rules of innovations
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can totally describe the evolutionary and evolutive dynamics into play. “It is charac-
teristic for mental evolutive processing after randomizations to progress gradually
by using default rules, step by step, beyond the established knowledge. The use of
default rules by humans can lead, as we will show, to mental innovations and the cre-
ation of entirely new solutions of conflicts between different mentifacts, sociofacts,
artifacts, and technifacts”.®

According to the author’s view, the protosemantic function of the human brain,
the representation of the external happenings of the world onto our brain’s mem-
ory represents one of the fundamental pillars of human cognition. As is well known,
P. Churchland rejects the traditional direct representations of the external world unto
our language as a mere dogma of analytic “philosophy without brain” and calls it
“sentence crunching”. The protosemantics proposed by the author, on the contrary,
may serve as the missing cognitive link which can fill the gap between the external
world and its internal representation (mapping) onto our language. “From the so-
cietal, historical evolution of the human brain and from the most recent cognitive,
brain-physiological, and linguistic research, we know that cognition, evaluations;
memory storing, decision making, problem solving, and the realization of deci-
sions and solutions of societal conflicts include a brain-based, evolutive, mental
neuronal processing which involves the entire body as well (Damasio 1994; Basar
1988). The direct representation onto memory; presupposes a non-linguistic, brain-
physiological, physical, cognitive protosemantics. There is no direct representation
onto linguistic memory, (Churchland 1989)”.4

In this sense, according to the author we have to go back to the physical
grass roots of the cognitive and evaluative protosemantic functions of our neu-
ronal brain. “Memory storing of happenings, of empirical causal networks be-
gins in each case with the cognitive representation of the external, sensed, causal
episodes, of the statistico-causal pairs of events .... and their statistico-causal
concatenations in our memory system;. These primitive, causally ordered tuples
(basic causal pairs = CEP’s) are represented and stored unconsciously into neuronal
brain-wave patterns, they permit the recognition and afterwards the retrieval from
memory; as internally sensitized episodes at our sense organs, without language.
We become aware, but not fully conscious, of the neuronally stored and sensed im-
ages when the stored neuronal wave patterns, e.g., sound waves, are retrieved”.*’

In author’s opinion, chance alone is the origin of every innovation, of all creation
in the biosphere. This central concept of modern biology is no longer one among
other conceivable hypotheses. It is today the sole conceivable hypothesis — the only
one that squares with observed and tested facts. According to Leinfellner, nothing
warrants the supposition or the hope that on this score our position is likely ever to
be revised (Monod 1970).

But how does creativity function when societal conflicts have to be solved,
for example by creating new culturefacts (mentifacts, sociofacts, artifacts, and
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technifacts)? The same holds for innovations, or partial creations and improvements,
of culturefacts or methods. Here, like in all creative mental processes, mental ran-
domizers and our simultaneous evaluations of the outcomes of mental lotteries play
a leading role. They enable a new way of expected evaluations in case we don’t
know anything and have to search for a solution never used before; they also en-
able the realization of new solutions of social conflicts. According to Leinfellner
(as well as to Penrose, Kauffman, Ruelle, Basar, and Freeman), internal neuronal
randomizers are strange attractors, since they produce a vast number of expected
and possible solutions, each of them with a certain value for us, in short: a lottery.

“These mental, neuronal randomizers are strange combinatorial or chaotic attrac-
tors (Ruelle 91, p 64; Kauffman 93, p 178); but only they can initiate the creation
of new mentifacts in a way that is similar to, but more complex than, the biological
creation of species. ... There are no counterarguments to the explanation of self-
organization as an evolutionary, and creativity as an evolutive, process; they differ
just as to their empirical interpretation. Internal randomizers function often within
immense populations, for example neurons, as Minsky has said. Here they are seen
as the primordial, initial, and blind source, possible prestages of any mental cre-
ations”.*® In this sense, we have continuously to confront ourselves with chaos in
order to construct by self-organisation our intellectual tools.

A. Corradini in Chapter 15 aims to show that emergentism in the philosophy of
mind should be understood as a dualistic position. In order to achieve this goal she
first of all revisits and analyses some of T. O’Connor’s fundamental theses.

As is well known, in order to outline a strong ontological concept of emergence
Timothy O’ Connor characterizes emergent properties as ‘“non structural” properties.
In his opinion, an emergent property is defined as the property of a composite system
that is wholly nonstructural, and emergentism is defined as the view according to
which there are basic, non structural properties had by composite individuals. In
this sense, we have to distinguish structural properties from the non structural ones.

“But, how to figure out the relationship between these two different sorts of prop-
erties? O’Connor complains that the relationship is often conceived as synchronic,
static and formal, due to the contemporary tendency to assimilate emergentism
to non-reductive physicalism and, as a consequence, emergence to the concept of
synchronical supervenience. Rather, the relationship of micro-level structures and
macro-level emergent properties should be viewed as dynamic and causal. In fact,
the causal action of the underlying properties is needed to explain the occurrence
of emergent properties at a given level of complexity. Yet, emergent properties have
causal powers which are irreducible to those of the micro-level structure and which
exert at their turn an influence on lower-level and/or same-level entities”.*’

According to Corradini, O’Connor’s claims about the causal relationship be-
tween macro- and micro-level are the most critical aspects of his proposal. On

48 Chapter 14, p 259.
49 Chapter 15, p 269.
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the one hand, he defends the typical emergentistic doctrine of the existence of a
downward causation. On the other hand, however, O’Connor also maintains that
emergent properties, as everything that occurs, depend on the causal dispositions
of the fundamental physical properties. So, he emphasizes that an emergent sys-
tem is not causally closed as regards its purely physical aspects and that emergent
properties are thus not epiphenomenal. But, immediately after making this claim,
he states that it is true in an emergentistic scenario that everything that occurs rests
on the complete dispositional profile of the physical properties prior to the onset of
emergent features. At the end of her analysis Corradini can lastly remark that an
unambiguous reading of O’Connor’s reasoning brings us to a more explicit form of
dualism than that allowed by the author himself.

“Yet, however strong O’Connor’s objection may be, it does not affect my own
position. Substance dualism with ontological independence of the mind implies an
impossible creatio ex nihilo only under the condition that the processes from which
the mind emerges are merely material processes. Thus, this criticism can be coun-
tered if the development of the mental substance is traced back not only to material
components, but also to a distinctive, non-material dimension of reality, endowed
with ontological independence and existing from the very beginning of the emer-
gent process. Such a dimension is the origin of the potentiality of development of
the mental substance, which becomes actualized at the moment in which the bi-
ological structure reaches the necessary degree of complexity. Emergent dualism
champions the idea of a co-evolution of mind and body, at the ontogenetic as well
as at the phylogenetic level, on whose basis the realisation of non-biological po-
tentialities is induced by the development of the biological structure, which, in its
turn, is afterwards affected by the causal activity of the conscious mind (see on this
Hasker 2008). Moreover, it is worth mentioning that the process of actualization
of the mental substance also implies its particularization, its being the mind of a
specific human individual. As we have just seen, the actualization of the mind is in-
duced by a biological process of high complexity, but increasing complexity is also
a sign of increasing individualization, so that my position does not face the prob-
lem of having to explain why a certain mental substance exerts its causal powers
exclusively on its brain and not on somebody’s else brain”.>

D. Parisi in Chapter 16 remarks first of all that science and philosophy are both
rational attempts at understanding reality but they are attempts of a different nature.
A crucial difference is that scientific theories are supposed to generate specific pre-
dictions that match reality as we systematically, and possibly quantitatively, observe
it with our naked senses or aided by instruments, whereas philosophical theories
are normally supported only by arguments and are evaluated only through analy-
sis and discussion. But he immediately underlines that the advent of the computer
is likely to change this traditional conception. “Until now science has studied re-
ality using two ‘arms’: the empirical observation of reality and the formulation of
theories that try to explain what is observed. The computer makes it possible to

30 Chapter 15, p 271.
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use a third ‘arm’: the reproduction of reality in artefacts. The artefacts are simula-
tions and robots or collections of robots. If an artefact behaves like some aspect or
phenomenon of reality, we can claim that the principles we have followed in con-
structing the artefact are the same principles that govern that aspect or phenomenon
of reality, and therefore we have understood that aspect or phenomenon of reality.
Simulations and robots are a new way of expressing scientific theories. Traditionally,
scientific theories are expressed either in words or using the symbols of mathemat-
ics. A computer simulation or the control system of a robot is a theory expressed as
a computer program. This forces the researcher to formulate his or her theory in a
precise and unambiguous way because, otherwise, the theory cannot be expressed
in a computer program or in the control system of a functioning robot”.”!

According to Parisi, philosophers do metaphysics through conceptual analysis,
reasoning, imagination, the proposition of ideas and theories, and discussion with
colleagues. Their work, as always in philosophy, takes place entirely through the
medium of language: all they do is speak and listen, write and read. The new cog-
nitive and social scientists, on the contrary, will do metaphysics in a different way:
by constructing robots. The metaphysics described by them will be the metaphysics
of the robots that they will construct, reality as the robots know and understand it.
“Robots are physical artefacts, whether they are simulated in a computer or physi-
cally realized, and this is very important because the knowledge that any organism
has of reality depends on the organism’s body, its external morphology of size and
shape and its internal structure of organs and systems, and on the nature of its sen-
sory and motor organs. A robot is a simulation of the body of an organism and of
its sensory and motor organs. By constructing robots, and by comparing robots with
different bodies and different sensory and motor organs, one can do “comparative
metaphysics”, trying to identify what general view of reality develops in each type
of robot and comparing these different views...... since simulations and robots can
be used to study not only real “reality” but also possible “reality”, we can construct
robots that do not resemble any animal that actually exists or has existed on Earth,
or robots that live in an artificial environment which in different from the environ-
ment which exists on Earth, and determine what is their general view of reality. In
other words, we can do not only “comparative metaphysics” but also “experimen-
tal metaphysics”, determining how the metaphysics of an organism changes as we
manipulate the organism’s various properties”.>”

In this way, a new sort of evolution finally appears: by constructing robots we
can more easily see how we put different objects in the same category not because
they are similar from a sensory point of view but because we respond to them with
the same action(s), how knowledge of where things are in space is knowledge on
how to reach things with our eyes, hands, or feet, how counting is always counting
only our actions, how time is counting our actions in time, etc. Unless we recognize
the crucial role of our actions, and of the body that accomplishes these actions, in
the definition of reality, we will describe an imaginary or superficial metaphysics.

5! Chapter 16, p 276.
32 Chapter 16, p 277.
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“When we do metaphysics what we actually do is describe the particular adap-
tive pattern of a particular species of organisms, Homo sapiens. Doing metaphysics
by constructing robots makes this entirely clear. A robotic metaphysics is a scien-
tific metaphysics. It is metaphysics as done by science. And this is advantageous
because it introduces a useful comparative approach that considers different species
of organisms and different views of reality and because it creates a relativistic atti-
tude towards our conception of reality. It shows us that what we call “metaphysics”
is only one among many existing conceptions of reality, those possessed by other
species of animals, while this is normally not recognized because the conception of
reality that we try to describe when we do metaphysics is the conception of reality
of the species that does the description”.”?

The view of reality possessed by the organism is entirely objective in that it is
the only one that allows the organism to survive and reproduce and, therefore, it is
“forced” on the organism, not chosen by the organism. Let us just remark that this
sort of reality also depends (with respect first of all to its inner evolution) on the
tools offered by the organisms in order to fix the path of their self-organisation.

In Chapter 17 A. Carsetti remarks first of all that, from an informational point of
view, “the world which comes to “dance” at the level of the eyes of the mind is es-
sentially impregnated with meaning. The “I” which perceives it realises itself as the
fixed point of the interwoven “garland” with respect to the “capturing” of the thread
inside the file and the genealogically-modulated articulation of the file itself which
manages to express its invariance and become “vision” (visual thinking which is
also able to inspect itself ), anchoring its generativity at a deep semantic dimension.
The model can shape itself as such and succeed in opening the eyes of the mind in
proportion to its ability to permit the categorial to anchor itself to (and be filled by)
intuition (which is not, however, static, but emerges as linked to a continuous pro-
cess of metamorphosis). And it is exactly in relation to the adequate constitution of
the channel that a sieve can effectively articulate itself and cogently realise its se-
lective work at the informational level...... It is the (anchoring) rhythm-scanning of
the labyrinth by the thread of meaning which allows for the opening of the eyes, and
it is the truth, then, which determines and possesses them. Hence the construction
of an “T” as a fixed point: the “I” of those eyes (an “T” which perceives and which
exists in proportion to its ability to perceive according to the truth). What they see
is a generativity in action, its surfacing rhythm being dictated intuitively. What this
also produces, however, is a file that is incarnated in a body that posits itself as “my”
body, or more precisely, as the body of “my” mind: hence the progressive outlining
of a meaning, “my” meaning which is gradually pervaded by life”.>*

“Vision as emergence aims first of all to grasp (and “play”) the paths and
the modalities that determine the selective action, the modalities specifically rel-
ative to the revelation of the afore-mentioned semantic apparatus at the surface
level according to different and successive phases of generality. These paths and
modalities thus manage to “speak” through my own fibres. It is exactly through a

33 Chapter 16, p 280.
>4 Chapter 17, p 284.
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similar self-organising process, characterised by the presence of a double-selection
mechanism, that the mind can partially manage to perceive (and assimilate) depth
information in an objective way. The extent to which the network-model succeeds,
albeit partially, in encapsulating the secret cipher of this articulation through a spe-
cific chain of programs determines the model’s ability to see with the eyes of the
mind as well as the successive irruption of new patterns of creativity. To assimilate
and see, the system must first “think” internally (at the iterative level) the secret
structures of the possible, and then posit itself as a channel (through the precise in-
dication of forms of potential coagulum) for the process of opening and anchoring
of depth information. This process then works itself gradually into the system’s fi-
bres, via possible selection, in accordance with the coagulum possibilities and the
meaningful connections offered successively by the system itself”.>

This “I” as incarnated, embodied mind, gradually becoming ‘“occupied” by
meaning while it articulates as life, ultimately reveals itself as the “I” of a body
(“my body”), a body that articulates as an autonomous production of forms, the
achieved extension of the meaning within the file, and as the world of virtual pos-
sibility in the guise and limits of necessity. “It acts as the “I” of a body-meaning
which, in articulating as “my” body, can posit itself as the source of new creativ-
ity. In actual fact, it is this body, intended as an operant form-production allowing
for the inscription of the file within itself, which finally articulates as a guide and
support for the activity of ring-threading by conceptual schemata proper to the file
itself, which determines the rising and the extended articulation of the neural con-
nections at the level of the brain. This is the drawing which is ultimately donated:
a drawing for the Other, however. The abstract frame in accordance with which the
body progressively disincarnates itself, and which outlines the contours of cerebral
connections, is related to the Other and is for the Other. While the body in which the
mind is incarnated is my body, the brain through which the body is disincarnated
(through simulation) is a brain which serves the intentionality of the Other, progres-
sively inhabited by the meaning of the Other: indeed, it is the Other’s brain in that I,
as body, simulate it. Its constituting itself as autonomous unit marks and identifies
my body-brain’s constitution as an objective measuring device in the world and of
the world”.%

In conclusion of this short and incomplete presentation of the main guidelines of
the book, let us now make just a few final remarks.

According to the suggestions presented by the authors in the different chapters
(and in spite of the obvious difference in theoretical approaches), true cognition
appears as constrained by the continuous reference to a number of specific an-
alytical tools: computability and the Turing universe, incompressibility and the
oracles in action, self-organising nets, deterministic chaos, non-linear mathematics,
second-order structures and so on. With respect to this particular framework, the
simulation activity, the construction, for instance, of an adequate semantics for
natural language, presents itself as a form of interactive knowledge of the complex

35 Chapter 17, p 284.
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chain of biological realisations through which Nature reveals itself to our brains in
a consistent way (by means, for example, of the intelligent design of specific ex-
periments at the level of the extended Turing universe). To simulate, in this sense,
is not only a form of self-reflection or a kind of simple recovery performed by a
complex cognitive net in order to represent itself at the surface level and “join” the
government in action. The simulation work, in effect, offers the semantic net real
instruments in order to perform a self-description process and to outline specific
procedures of control as well as a possible map of an entire series of imagination
paths. The progressive (and selective) exploration of these paths will allow, then, ex-
ternal information to canalise in an emergent way, and to exploit new and even more
complex patterns of interactive expression and action. It is exactly the framing of
this particular kind of laboratory of possible emergence that will assure the succes-
sive revelation of ever new portions of deep information: that particular “irruption”
of the Other (the Source) which can express itself only within those particular fibres
of the imagination and within that variant geometrical tissue of the forms which
characterise, in an ultimate way, at the symbolic level, the cognitive activity of the
subject. With respect to this frame of reference, we are no longer only faced with
an observation activity that directly identifies itself as vision according to the truth
but also with a simulation activity and a metamorphosis of meaning which express
themselves by means of use and interaction, by the continuous surfacing of new
forms of intentionality. When we pass from a world of objects to a world of con-
structions we are no longer exclusively faced, for instance, with boolean algebras,
first-order structures and observational acts, we are really faced with a dynamic and
functional universe characterised by inner circularity, by self-organisation and by
the presence of specific categorisation processes as well as of evolutive differentia-
tion patterns. Moreover, at the level of this particular world, as we have just said, the
role played by meaning is different; meaning is now characterised in terms of a sym-
bolic dynamics in action and with reference to a precise simulation language. As a
consequence of this particular articulation, specific limitation facts can arise at the
level of the progressive unfolding of this very language. New theoretical perspec-
tives will reveal themselves with respect, in particular, to the inner self-organising
aspects of the emerging structure and to the specific constitution of the individuals
inhabiting this very structure considered as individuals essentially characterised not
only in terms of their properties but also in terms of their relations (and their secret
“affordances” at the symbolic level).

In a self-organising net the successive bifurcations, the recurrent delimitations
imposed on the primitive predicate-inputs, actually appear as temporal and con-
nected determinations of information fluxes. In this sense, such determinations
(differently from Hintikka’s appraisal of Kant’s primitive intuitions), appear to con-
cern not the (direct) successive presentation-construction of individuals, but the
(previous) construction of patterns of constraints, of clusters of selective choices.
Hence the essential link both with the traditional contemporary definitions of
complexity at the propositional (and monadic) level, and with the revisitation of
some Leibniz’s (and Spinoza’s) original intuitions as presented, for example, by
Chaitin and other authors in their respective chapters.
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In this sense, insofar as the aforesaid determinations of time articulate modulat-
ing, in a recurrent way, the action of the generators, the self-organizing nets present
themselves progressively as frozen surface images of the originary informational
Source and as a tool for the further construction-unfolding of its inner creativity, as
a sort of arch and gridiron for the construction (and the recovery) of the “Other”
through the constraints of an intended “sacrifice”.

According to this frame of reference, the deep meaning appears first of all as
relative to the action performed by precise semantic fixed-points, to a manifold, in
particular, of subtended circumscription functions and to the progressive expres-
sion of specific postulates. The fixed-points of the resulting dynamics represent the
“true” revelation of that specific tuning that characterises and identifies the predi-
cates at work. Thus, at the monadic and polyadic level, we are obliged to outline
a new, and specific kind of model: a self-organising (and coupled) structure not
bound to sets and individuals, (with relative attributes) but to generators and fluxes
of tuned information. In this new theoretical framework, the simple reference to
possible worlds (as in Frege or Hintikka, for instance) in order to take into account
the structure of intensionality is no longer sufficient, One has also to resort, in the
first instance, to the dynamics of the constraints, to the identification of the indices
and of the recurrent paths of the informational flow as well as of the role played by
the observer, i.e. to the interplay existing between intervening and change.

Moreover, when we enter the polyadic realm and come to use, for instance,
primitive binary relations, we must immediately make a series of choices (and as-
sumptions) which are relative to the structural properties of such relations. Actually,
in consequence of the structural properties that characterise, precisely, the dyadic
predicates (i.e. which such predicates possess in a exclusively conceptual way),
some specific conjunctions of these same predicates will be shown to be inconsis-
tent. This means that what must be joined together will no longer consist of simple
entities or sets of properties but of configurations and graphs. The conjunction, at the
level of generators, should thus be realised respecting precise constraints of a “ge-
ometric” nature, connected, in particular, to the successive gain of configurations
of “points-patches” which possess determined characteristics. The role of compat-
ibility factors becomes particularly essential. From there both the birth of complex
cancellation procedures and the introduction by construction of new individuals, in
a potentially unlimited way, arise. Likewise, we would have, in a correlated way, the
introduction of nested quantifiers. Thus, the role played by meaning really assumes
a specific and deep relevance. As a matter of fact, at the level of this type of struc-
ture, we can individuate the existence of an essential plot between the successive
“presentation” of the constraints and the action of the meaning postulates, on the
one hand, and the articulated design of mutations, cancellations and contractions of
the predicates-inputs that characterise the higher layers of formal constructions, on
the other hand.

When, finally, we take into consideration the second-order structures and the
general structures, things appear even more complex. As we have just said, what it
is important to stress, in this particular case, is the fact that hidden in the structure
some specific relations exist, some “rules” (second-order relations) that cannot be
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defined as relations among individuals, but are utilised to define first-order relations
(i.e., relations among individuals). It is, precisely, at the level of these tools that the
action performed by meaning reveals all its subtleties.

Within the realm of general structures the original self-organising “glove” that
imposes shape on itself acts contemporarily as a real support for the code inscrip-
tion and, through the nesting process, for the complete unfolding of the limitation
procedures: linkage operated by the felos allows an abstract design-frame to emerge,
connected with an emergent nucleus of creativity through which other nuclei will
manage to perceive and recognise themselves. What is presented, then, is a vision by
principles, a process of concrete abstraction allowing for a new flame of invention
which self-ignites. The file which inscribes itself as a code providing the support
for the nesting process, permits a progressive and genealogical unification at the
level of the activity of form-production. Hence a vision which can reflect itself as
thought, and which can ultimately see by principles according to specific unification
procedures. A new nucleus of individual creativity can emerge through which new
postulates and axiomatic principles manage to find concrete self-expression: hence
the unfolding of a production of forms which disincarnates itself in pure abstraction.
In this sense, the embedding at work, in conjunction with the inscription, allows op-
erative abstraction, and a meaning can finally to be embodied, a meaning which is
able to posit itself as the source of new and pure vision by principles.

It is in the framework of this mysterious path, in itself already complicated
enough, that we can individuate the progressive emergence, at the co-evolutive level,
of the processes of rational perception proper to the human mind as well as of the
categorisation processes that underlie the simulation language. It is with reference
to this same framework that a precise dynamics of graphs will finally enter the stage
with the subsequent introduction of cycles, attractors, fixed points etc. as well as
the revelation of further constraints relative to problems of fitting, consistency etc.
Precise forms of classification and therefore precise contexts of sense will appear.
In this way, specific intensional structures will begin to emerge: in particular, inten-
sional grammars defined with reference to orders and spaces of higher level. Thus,
meaning can show its immense power at the selective level.

From here comes the necessity of outlining, in the case of dyadic structures (and,
in general, of second-order structures), the sophisticated dynamism of a great book
of Language that presents itself at the level of the conscious representation, like
an effective reality in action. A reality which also emerges through our thinking
and which, at the same time, determines, first of all at the genetic level, this same
thinking. We no longer have before us a static book of Reality written in linguis-
tic and mathematical characters. We have, on the contrary, a language in action
which makes itself the Word of reality, the book in progress of linguistic construc-
tions and which by reflecting the original pure generativity in a simulation space
(of which, what is more, as human beings we are the support) assumes its primary
forms and represents itself to itself by means of the tools of a precise symbolic dy-
namics. We are no longer faced, therefore, with concrete signs-symbols but rather
with complex conceptual structures which are fitted into the effective articulation of
a coupled process, a process into which, alongside the aforesaid dynamics relative to
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configurations and graphs specific informational evaluations proper to the subject,
to the structures of reflection and cognition that characterise his activity, will also
be inserted.

We have seen how, for Putnam, the invention of new language represents the
main tool to open up reality, to discover new horizons of meaning. The awareness
that comes out from the intensional analysis of the semantic structures of natural
language and of the cognitive functions that subtend these same structures, leads us
to clearly understand that the problem is not only that of extracting the information
living deeply within things. It is in addition that of building simulation models able
to bring out the information contained in the fibres of reality in such a way that this
same information irrupting into the neural circuits of elaboration proper to the sub-
ject can, finally, induce and determine the emergence of new forms of conceptual
order and linguistic construction. The problem is, likewise, that of supplying coag-
ulum functions which are capable of leading the Source to nest deeply, according
to stronger and more powerful moduli. The emergence process and the same cre-
ativity that has been progressively realised, will present themselves as the “story”
of the performed irruption and of the nesting carried out. They will articulate as
forms of conceptual insight which spread out into a story, the story, in particular, of
a biological realisation. In order to “open” reality, language must be embodied as an
autonomous growth so that it will be possible, in perspective, to coagulate new lin-
guistic constructions. Hence the importance of resorting to the outlining of recurrent
processes and coupled processes in order to model the brain’s functions. Likewise,
this is the importance of that vertical (and intensional) dimension which grows upon
itself, according to the exponential coefficients introduced and presented in the first
part of the volume, and which appear indissolubly linked to the appearance and the
definition of ever new forms of meaning. Forms which necessarily spring up through
the successive discovery-construction of new substrata and of new dependency links
according to Husserl’s primitive intuitions.

Genealogical processes, recurrent processes, coupled structures, new measure
spaces, new orders of acting imagination: such is the scenario within which the new
information can, finally, emerge. This is Language in action. Here we may recognise
the birth of new forms of seeing. Herein we can find the possibility to hear from a
Source which comes forth to dictate from the interior of biological structures, like a
new “daimon”, the message of its self-representation, of its “wild” autonomy and of
its renewed creativity. Cognitive activity, in this sense, is rooted in reality, but at the
same time represents the necessary means whereby reality can embody itself in an
objective way: i.e., in accordance with an in-depth nesting process and a continuous
surface unfolding of operational causality.
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Part I
Consciousness, Intentionality and
Self-Organization



Chapter 1
The Link Between Brain Learning,
Attention, and Consciousness

Stephen Grossberg

1.1 How Do We Continue to Learn Throughout Life?

We experience the world as a whole. Although myriad signals relentlessly bombard
our senses, we somehow integrate them into unified moments of conscious experi-
ence that cohere together despite their diversity. Because of the apparent unity and
coherence of our awareness, we can develop a sense of self that can gradually ma-
ture with our experiences of the world. This capacity lies at the heart of our ability
to function as intelligent beings.

The apparent unity and coherence of our experiences is all the more remarkable
when we consider several properties of how the brain copes with the environmental
events that it processes. First and foremost, these events are highly context sensitive.
When we look at a complex picture or scene as a whole, we can often recognize its
objects and its meaning at a glance, as in the picture of a familiar face. However, if
we process the face piece-by-piece, as through a small aperture, then its significance
may be greatly degraded. To cope with this context sensitivity, the brain typically
processes pictures and other sense data in parallel, as patterns of activation across
a large number of feature-sensitive nerve cells, or neurons. The same is true for
senses other than vision, such as audition. If the sound of the word GO is altered by
clipping off the vowel O, then the consonant G may sound like a chirp, quite unlike
its sound as part of GO.

During vision, all the signals from a scene typically reach the photosensitive
retinas of the eyes at essentially the same time, so parallel processing of all the
scene’s parts begins at the retina itself. During audition, each successive sound
reaches the ear at a later time. Before an entire pattern of sounds, such as the
word GO, can be processed as a whole, it needs to be recoded, at a later processing
stage, into a simultaneously available spatial pattern of activation. Such a processing
stage is often called a working memory, and the activations that it stores are often
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called short-term memory (STM) traces. For example, when you hear an unfamiliar
telephone number, you can temporarily store it in working memory while you walk
over to the telephone and dial the number.

In order to determine which of these patterns represents familiar events and
which do not, the brain matches these patterns against stored representations of
previous experiences that have been acquired through learning. Unlike the STM
traces that are stored in a working memory, the learned experiences are stored in
long-term memory (LTM) traces. One difference between STM and LTM traces
concerns how they react to distractions. For example, if you are distracted by a loud
noise before you dial a new telephone number, its STM representation can be rapidly
reset so that you forget it. On the other hand, if you are distracted by a loud noise,
you (hopefully) will not forget the LTM representation of your own name.

The problem of learning makes the unity of conscious experience particularly
hard to understand, if only because we are able to rapidly learn such enormous
amounts of new information, on our own, throughout life. For example, after seeing
an exciting movie, we can tell our friends many details about it later on, even though
the individual scenes flashed by very quickly. More generally, we can quickly learn
about new environments, even if no one tells us how the rules of each environment
differ. To a surprising degree, we can rapidly learn new facts without being forced to
just as rapidly forget what we already know. As a result, we do not need to avoid
going out into the world for fear that, in learning to recognize a new friend’s face,
we will suddenly forget our parents’ faces.

Many contemporary learning algorithms would not be so lucky. Speaking tech-
nically, the brain solves a very hard problem that many current approaches to
technology have not solved. It is a self-organizing system that is capable of rapid
yet stable autonomous learning of huge amounts of data in a nonstationary envi-
ronment. Discovering the brain’s solution to this key problem is as important for
understanding ourselves as it is for developing new pattern recognition and predic-
tion applications in technology.

I have called the problem whereby the brain learns quickly and stably with-
out catastrophically forgetting its past knowledge the stability—plasticity dilemma.
The stability—plasticity dilemma must be solved by every brain system that needs to
rapidly and adaptively respond to the flood of signals that subserves even the most
ordinary experiences. If the brain’s design is parsimonious, then we should expect
to find similar design principles operating in all the brain systems that can stably
learn an accumulating knowledge base in response to changing conditions through-
out life. The discovery of such principles should clarify how the brain unifies diverse
sources of information into coherent moments of conscious experience.

This article reviews evidence that the brain does operate in this way. It sum-
marizes several recent brain modeling studies that illustrate, and further develop,
a theory called Adaptive Resonance Theory, or ART, that I introduced in 1976
(Grossberg 1976a,b, 1978, 1980, 1982). In the present article, I briefly summa-
rize results selected from four areas where ART principles have been used to
explain challenging behavioral and brain data. These areas are visual percep-
tion, visual object recognition, auditory source identification, and variable-rate
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speech recognition. On first inspection, the behavioral properties of these visual and
auditory phenomena may seem to be entirely unrelated. On a deeper computational
level, their governing neural circuits are proposed to incorporate a similar set of
computational principles.

I should also say right away, however, that ART principles do not seem to be used
in all brain learning systems. Whereas ART learning designs help to explain sensory
and cognitive processes such as perception, recognition, attention, reinforcement,
recall, working memory, and memory search, other types of learning seem to govern
spatial and motor processes. In these latter task domains, it is adaptive to forget old
coordinate transformations as the brain’s control systems adjust to a growing body
and to other changes in the body’s sensory—motor endowment throughout life.

Sensory and cognitive processes are often associated with the What cortical pro-
cessing stream that passes from the visual cortex through the inferotemporal cortex,
whereas spatial and motor processes are associated with the Where (or How) corti-
cal processing stream that passes from the visual cortex through the parietal cortex
(Goodale and Milner 1992; Mishkin et al. 1983; Ungerleider and Mishkin 1982).
Our research over the years has concluded that many processes in the two dis-
tinct streams, notably their matching and learning processes, obey different, and
even complementary, laws. This fact bears heavily on questions of consciousness
and helps to explain why procedural memories are not conscious (Cohen and
Squire 1980; Mishkin 1982; Scoville and Milner 1957; Squire and Cohen 1984).
Indeed, a central hypothesis of ART since its inception is:

ART Hypothesis: All Conscious States Are Resonant States

As noted in greater detail below, many spatial and motor processes involve a form
of inhibitory matching and mismatchbased learning that does not support reso-
nant states. Hence, by the ART Hypothesis, they cannot support a conscious state.
Although ART predicts that all conscious states are resonant states, the converse
statement, that all resonant states are conscious states, is not asserted.

It might be worthwhile to note immediately that various other models of
cognitive learning and recognition, such as the popular backpropagation model
(Parker 1982; Rumelhart et al. 1986; Werbos 1974), are based on a form of
mismatch-based learning. They cannot, therefore, generate resonant states and,
in fact, are well known to experience catastrophic forgetting under real-time learn-
ing conditions. A comparative survey of ART vs backpropagation computational
properties is provided in Grossberg (1988).

1.2 The Theoretical Method

Another point worth noting is how one arrives at a psychophysiological theory such
as ART which attempts to link behavioral properties to the brain mechanisms which
generate them. Such a linkage between brain and behavior is, I believe, crucial in
any mature theory of consciousness, since a theory of consciousness that cannot
explain behavioral data has failed to deal with the contents of consciousness, and
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a theory of consciousness that cannot link behaviors to the brain mechanisms from
which they emerge must remain, at best, a metaphor.

A particular type of theoretical method has been elaborated over the past 40 years
with which to approach such complex behavioral and brain phenomena. The key is
to begin with behavioral data, typically scores or even hundreds of parametrically
structured behavioral experiments in a particular problem domain. One begins with
behavioral data because the brain has evolved in order to achieve behavioral success.
Any theory that hopes to link brain to behavior thus needs to discover the compu-
tational level on which brain dynamics control behavioral success. One works with
large amounts of data because otherwise too many seemingly plausible hypotheses
cannot be ruled out. A crucial metatheoretical constraint is to insist upon under-
standing the behavioral data — which comes to us as static numbers or curves on
a page — as the emergent properties of a dynamical process which is taking place
moment-by-moment in an individual mind. One also needs to respect the fact that
our minds can adapt on their own to changing environmental conditions without be-
ing told that these conditions have changed. One thus needs to frontally attack the
problem of how an intelligent being can autonomously adapt to a changing world.
Knowing how to do this is presently an art form. There are no known algorithms
with which to point the way.

Whenever we have attempted this task in the past, we have resisted every tempta-
tion to use homunculi or else the crucial constraint on autonomous adaptation would
be violated. The result has regularly been the discovery of new organizational prin-
ciples and mechanisms, which we have then realized as a minimal model operating
according to only locally defined laws that are capable of operating on their own in
real time. The remarkable fact is that, when such a model has been written down,
it has always been interpretable as a neural network. These neural networks have
always included known brain mechanisms. The functional interpretation of these
mechanisms has, however, often been novel because of the light thrown upon them
by the behavioral analysis. The networks have also typically predicted the existence
of unknown neural mechanisms, and many of these predictions have been supported
by subsequent neurophysiological, anatomical, and even biochemical experiments
over the years.

Once this neural connection has been established by a top-down analysis, one
can work both top-down from behavior and bottom-up from brain to exert a tremen-
dous amount of conceptual pressure with which to better characterize and refine the
model. A fundamental empirical conclusion can be drawn from many experiences
of this type; namely, the brain as we know it can be successfully understood as an
organ that is designed to achieve successful autonomous adaptation to a changing
world. I like to say that, although I am known as one of the founders of the field
of neural networks, I have never tried to derive a neural network. They are there
because they provide a natural computational framework with which to control au-
tonomous behavioral adaptation to a changing world.

Such a real-time analysis is not easy because it requires that one have knowledge,
and even mastery, of several disciplines. For example, it has always proved to be
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the case that the level of brain organization that computes behavioral success is
the network or system level. Does this mean that individual nerve cells, or even
smaller components, are unimportant? Not at all. One needs to properly define the
individual nerve cells and their interactions in order to correctly define the networks
and systems whose interactive, or emergent, properties map onto behavior as we
know it. Thus one must be able to freely move between (at least) the three levels of
Neuron, Network, and Behavior in order to complete such a theoretical cycle.

Doing this requires that one has a sufficiently powerful theoretical language.
The language of mathematics has proved to be the relevant tool, indeed a partic-
ular kind of mathematics. All of the self-adapting behavioral and brain systems
that I have ever derived are nonlinear feedback systems with large numbers of
components operating over multiple spatial and temporal scales. The nonlinearity
just means that our minds are not the sum of their parts. The feedback means
that interactions occur in both directions within the brain and between the brain
and its environment. The multiple temporal scales are there because, for example,
processes like STM are faster than the processes of learning and LTM. Multiple
spatial scales are there because the brain needs to process parts as well as wholes.
All of this is very easy to say intuitively. But when one needs to work within the
tough honesty of mathematics, things are not so easy. Most of the difficulties that
people seem to have in understanding what is already theoretically known about
such systems derives from a literacy problem in which at least one, but often more
than one, of the ingredients of neuron, network, behavior, and nonlinear feedback
mathematics are not familiar to them.

A second important metatheoretical constraint derives from the fact that no single
step of theoretical derivation can derive a whole brain. One needs to have a method
that can evolve with the complexity of the environmental challenges that the model
is forced to face. This is accomplished as follows. After introducing a dynamic
model of a prescribed set of data, one analyzes its behavioral and brain data impli-
cations as well as its formal properties. The cycle between intuitive derivation and
computational analysis goes on until one finds the most parsimonious and most pre-
dictive realization of the organizational principles that one has already discovered.
Through this analysis, one can also identify various “species-specific variations” of
such a prototypical model and apply them to different types of data. Such a theo-
retical analysis also discloses the shape of the boundary, within the space of data,
beyond which the model no longer has explanatory power. The shape of this bound-
ary between the known and the unknown then often clarifies what design principles
have been omitted from the previous analyses. The next step is to show how these
additional design principles can be incorporated into a more powerful model that
can explain even more behavioral and neural data. In this way, the model undergoes
a type of evolutionary development, as it tries to cope behaviorally with environ-
mental constraints of ever increasing subtlety and complexity.

The metatheoretical constraint that comes into view here is an embedding con-
straint; in other words, one needs to be able to embed the previous model into the
new model. Otherwise expressed, the previous model needs to be “unlumpable”
as it evolves into an increasingly complex “brain.” This is a type of correspon-
dence principle that places a surprisingly severe test on the adequacy of the previ-
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ously discovered theoretical principles. Many models regularly fail the embedding
constraint. That is why they come and go with surprisingly rapidity and do not get
integrated into burgeoning theories of ever greater predictive power.

The crucial importance of being able to derive behavioral mechanisms as emer-
gent properties of real-time brain mechanisms, and being able to embed a previous
model into a more mature model that is capable of adapting to more complex envi-
ronments, led me to the name Embedding Fields for my earliest models of brain and
behavior (Grossberg 1964). The word “fields” is a short-hand for the neural network
as a computational unit whose interactions generate behavioral emergent proper-
ties; the word “embedding” refers to the unlumpability constraint. Many stages of
model evolution have occurred since the mid-1960s and all of them have success-
fully built a foundation for their progeny. The present article will necessarily omit
these modeling cycles and will instead discuss some of its results from the viewpoint
of consciousness research.

1.3 How Do We Perceive Illusory Contours and Brightness?

Let me start by providing several examples of the diverse phenomena that ART
clarifies. Consider the images in Fig. 1.1. Figure 1.1a shows an image called an
Ehrenstein figure in which some radial black lines are drawn on a uniformly white
paper. Remarkably, our minds construct a circular illusory contour that touches
each line end at a perpendicular orientation. This illusory contour is a collective,
emergent property of all the lines that only occurs when their positions relative
to each other are suitable. For example, no illusory contour forms at the line ends in
Fig. 1.1b even though they end at the same positions as the lines. Note also that the
illusory contour in Fig. 1.1a surrounds a disk that seems uniformly brighter than its
surround. Where does the brightness enhancement come from? It certainly does not
always happen when illusory contours form, as can be seen by inspecting Fig. 1.1c.
Here a vertical illusory contour can be recognized as interpolating the two sets
of offset horizontal lines, even though neither side of the contour seems brighter

NN ==
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Fig. 1.1 (a) The Ehrenstein pattern generates a circular illusory contour that encloses a circular
disk of enhanced illusory brightness. (b) If the endpoints of the Ehrenstein pattern remain fixed
while their orientations are tilted, then both the illusory contour and the brightness vanish. (c¢) The
offset pattern generates a vertical boundary that can be recognized even though it cannot be seen
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than the other. How we can consciously recognize something that we cannot see
and is thus perceptually invisible is a fascinating aspect of our conscious aware-
ness about which quite a bit is now known. Such percepts are known as amodal
percepts (Michotte et al. 1964) in order to distinguish them from modal, or visible,
percepts. Amodal percepts are experienced in response to many naturalistic scenes,
notably in response to scenes in which some objects are partially occluded by other
objects. How both modal and amodal percepts can occur will be discussed below.
Of particular interest from the viewpoint of ART processing is why the Ehrenstein
disk looks bright, despite the fact that there are no local contrasts within the image
itself that describe a disk-like object.

1.4 How Do We Learn to Recognize Visually Perceived Objects?

The Ehrenstein example concerns the process of visual perception. The next
example concerns a process that goes on at a higher level of the visual system.
It is the process whereby we visually recognize objects. A key part of this pro-
cess concerns how we learn to categorize specific instances of an object, or set
of objects, into a more general concept. For example, how do we learn that many
different printed or script letter fonts can all represent the same letter A? Or how
do we learn that several different combinations of patient symptoms are all due to
the same disease? Moreover, how do we control how general our categories will
become? For some purposes, like recognizing a particular face, we need highly spe-
cific categories. For others, like knowing that every person has a face, the categories
are much more general. Finally, how does our learning and memory break down
when something goes wrong in our brain? For example, it is known that lesions
to the human hippocampal system can cause a form of amnesia whereby, among
other properties, patients find it very hard to learn new information and hard to
remember recently learned information, but previously learned information about
which their memory has “consolidated” can readily be retrieved. Thus, an amnesic
patient can typically carry out a perfectly intelligent conversation about experiences
that occurred a significant time before the lesion that caused the amnesia occurred.

What computational properties do the phenomena of bright illusory disks and
amnesic memory have in common? I will suggest below that their apparent differ-
ences conceal the workings of a general unifying principle.

1.5 How Do We Solve the Cocktail Party Problem?

To continue with our list, let us now consider a different modality entirely; namely,
audition. When we talk to a friend in a crowded noisy room, we can usually
keep track of our conversation above the hubbub, even though the sounds emit-
ted by the friendly voice may be substantially overlapped by the sounds emitted by
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other speakers. How do we separate this jumbled mixture of sounds into distinct
voices? This is often called the cocktail party problem. The same problem is solved
whenever we listen to a symphony or other music wherein overlapping harmonic
components are emitted by several instruments. If we could not separate the instru-
ments or voices into distinct sources, or auditory streams, then we could not hear
the music as music or intelligently recognize a speaker’s sounds. A striking and
ubiquitous property of such percepts, and one which has not yet been understood
by alternative modeling approaches, is how future events can alter our conscious
percepts of past events in a context-sensitive manner.

A simple version of this competence is illustrated by the auditory continuity il-
lusion (Bregman 1990). Suppose that a steady tone shuts off just as a broadband
noise turns on. Suppose, moreover, that the noise shuts off just as the tone turns
on once again; see Fig. 1.2a. When this happens under appropriate conditions, the
tone seems to continue right through the noise, which seems to occur in a separate
auditory “stream.” This example shows that the auditory system can actively extract
those components of the noise that are consistent with the tone and use them to track
the “voice” of the tone right through the hubbub of the noise.

In order to appreciate how remarkable this property is, let us compare it with
what happens when the tone does not turn on again for a second time, as in Fig. 1.2b.
Then the first tone does not seem to continue through the noise. It is perceived to
stop before the noise. How does the brain know that the second tone will turn on
after the noise shuts off so that it can continue the tone through the noise, yet not
continue the tone through the noise if the second tone does not eventually occur?
Does this not seem to require that the brain can operate “backward in time” to alter
its decision as to whether to continue a past tone through the noise based on future
events?

Fig. 1.2 (a) Auditory continuity illusion: When a steady tone occurs both before and after a burst
of noise, then under appropriate temporal and amplitude conditions, the tone is perceived to con-
tinue through the noise. (b) This does not occur if the noise is not followed by a tone
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Many philosophers and scientists have puzzled about this sort of problem. I argue
that the process whereby we consciously hear the first tone takes some time to unfold
so that, by the time we hear it, the second tone has already begun. To make this
argument, we need to ask why does conscious audition take so long to occur after
the actual sound energy reaches our brain? Just as important, why can the second
tone influence the conscious percept so quickly, given that the first tone could not?
Finally, I indicate what these auditory phenomena have to do with bright Ehrenstein
disks and amnesia.

1.6 How Do We Consciously Perceive Speech?

The final examples also involve the auditory system, but at a higher level of
processing. They concern how we understand speech. In these examples, too, the
process whereby conscious awareness occurs takes a long time, on the order of
100 ms or more. An analysis of these percepts will also give us more clues about the
nature of the underlying process. The first example is called phonemic restoration.
Suppose that a listener hears a noise followed immediately by the words “eel is on
the...” If this string of words is followed by the word “orange,” then “noise-eel”
sounds like “peel.” If the word “wagon” completes the sentence, then “noise-eel”
sounds like “wheel.” If the final word is “shoe,” then “noise-eel” sounds like “heel.”
This marvelous example, which was developed by Richard Warren and his col-
leagues more than 20 years ago (Warren 1984; Warren and Sherman 1974), vividly
shows that the bottom-up occurrence of the noise is not sufficient for us to hear it.
Somehow the sound that we expect to hear based upon our previous language expe-
riences influences what we do hear, at least if the sentence is said quickly enough. As
in the auditory continuity illusion, it would appear that the brain is working “back-
ward in time” to allow the meaning imparted by a later word to alter the sounds that
we consciously perceive in an earlier word.

I suggest that this happens because, as the individual words occur, they are stored
temporarily via STM traces in a working memory. As the words are stored, they
activate LTM traces which attempt to categorize the stored sound stream into famil-
iar language units like words at a higher processing level. These list categories, in
turn, activate learned top-down expectations that are matched against the contents of
working memory to verify that the information expected from previous learning ex-
periences is really there. This concept of bottom-up activation of learned categories
by a working memory, followed by readout of learned top-down expectations, is
illustrated in Fig. 1.3a.

What is the nature of this matching, or verification, process? Its properties have
been clarified by experiments of Arthur Samuel (Samuel 1981a,b) and others in
which the spectral content of the noise was varied. If the noise includes all the for-
mants of the expected sound, then that is what the subject hears, and other spectral
components of the noise are suppressed. If some formants of the expected sound
are missing from the noise, then only a partial reconstruction is heard. If silence
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Fig. 1.3 (a) Auditory items activate STM traces in a working memory, which send bottom-up
signals toward a level at which list categories, or chunks, are activated in STM. These bottom-up
signals are multiplied by learned LTM traces which influence the selection of the list categories
that are stored in STM. The list categories, in turn, activate LTM-modulated top-down expectation
signals that are matched against the active STM pattern in working memory. (b) This matching
process confirms and amplifies STM activations that are supported by contiguous LTM traces and
suppresses those that are not

replaces the noise, then only silence is heard. The matching process thus cannot
“create something out of nothing.” It can, however, selectively amplify the expected
features in the bottom-up signal and suppress the rest, as in Fig. 1.3b.

The process whereby the top-down expectation selectively amplifies some fea-
tures while suppressing others helps to “focus attention” upon information that
matches our momentary expectations. This focusing process helps to filter out the
flood of sensory signals that would otherwise overwhelm us and to prevent them
from destabilizing our previously learned memories. Learned top-down expecta-
tions hereby help to solve the stability—plasticity dilemma by focusing attention and
preventing spurious signals from accidentally eroding our previously learned mem-
ories. In fact, Gail Carpenter and I proved mathematically in 1987 that such an
ART matching rule assures stable learning of an ART model in response to rapidly
changing environments wherein learning becomes unstable if the matching rule is
removed (Carpenter and Grossberg 1987a).

What does all this have to do with our conscious percepts of speech? This can be
seen by asking: If top-down expectations can select consistent bottom-up signals,
then what keeps the selected bottom-up signals from reactivating their top-down
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expectations in a continuing cycle of bottom-up and top-down feedback? Nothing
does. In fact, this reciprocal feedback process takes awhile to equilibrate, and when
it does, the bottom-up and top-down signals lock the STM activity patterns of the
interacting levels into a resonant state that lasts much longer and is more energetic
than any individual activation. ART hereby suggests how only resonant states of the
brain can achieve consciousness and that the time needed for a bottom-up/top-down
resonance to develop helps to explain why a conscious percept of an event takes so
long to occur after its bottom-up input is delivered.

The example of phonemic restoration also clarifies another key point about the
conscious perception of speech. If noise precedes “eel is on the shoe,” we hear and
understand the meaning of the sentence “heel is on the shoe.” If, however, noise is
replaced by silence, we hear and understand the meaning of the sentence “eel is on
the shoe” which has a quite different, and rather disgusting, meaning. This example
shows that the process of resonance binds together information about both meaning
and phonetics. Meaning is not some higher-order process that is processed inde-
pendently from the process of conscious phonetic hearing. Meaning and phonetics
are bound together via resonant feedback into a global emergent state in which the
phonetics that we hear are linked to the meaning that we understand.

1.7 ART Matching and Resonance: the Link Between
Attention, Intention, and Consciousness

Adaptive resonance theory claims that, in order to solve the stability—plasticity
dilemma, only resonant states can drive new fast learning. That is why the the-
ory is called adaptive resonance theory. I explain how this works more completely
below. Before doing so, let me emphasize some implications of the previous discus-
sion that are worth reflecting about. The first implication provides a novel answer
as to why, as philosophers have asked for many years, humans are “intentional” be-
ings who are always anticipating or planning their next behaviors and their expected
consequences. ART suggests that “stability implies intentionality.” That is, stable
learning requires that we have expectations about the world that are continually
matched against world data. Otherwise expressed, without stable learning, we could
learn very little about the world. Having an active top-down matching mechanism
greatly amplifies the amount of information that we can stably learn about the world.
Thus the mechanisms which enable us to know a changing external world, through
the use of learned expectations, set the stage for achieving internal self-awareness.
It should be noted here that the word “intentionality” is being used, at once, in
two different senses. One sense concerns the role of expectations in the anticipation
of events that may or may not occur. The second sense concerns the ability of ex-
pectations to read-out planned sequences of behaviors aimed at achieving definite
behavioral goals. The former sense will be emphasized first; the latter toward the
end of the article. My main point in lumping them together is that ART provides a
unified mechanistic perspective with which to understand both uses of the word.
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The second implication is that “intention implies attention and consciousness.”
That is, expectations start to focus attention on data worthy of learning, and these
attentional foci are confirmed when the system as a whole incorporates them into
resonant states that include (I claim) conscious states of mind. Implicit in the con-
cept of intentionality is the idea that we can get ready to experience an expected
event so that, when it finally occurs, we can react to it more quickly and vigorously,
and until it occurs, we are able to ignore other, less desired, events. This prop-
erty is called priming. It implies that, when a top-down expectation is read out in
the absence of a bottom-up input, it can subliminally sensitize the cells that would
ordinarily respond to the bottom-up input, but not actually fire them, while it sup-
presses cells whose activity is not expected. Correspondingly, the ART matching
rule computationally realizes the following properties at any processing level where
bottom-up and top-down signals are matched: (1) bottom-up automatic activation:
A cell, or node, can become active enough to generate output signals if it receives
a large enough bottom-up input, other things being equal; (2) top-down priming:
A cell can become sensitized, or subliminally active, and thus cannot generate out-
put signals if it receives only a large top-down expectation input. Such a top-down
priming signal prepares a cell to react more quickly and vigorously to subsequent
bottom-up input that matches the top-down prime; (3) match: A cell can become ac-
tive if it receives large convergent bottom-up and top-down inputs. Such a matching
process can generate enhanced activation as resonance takes hold; (4) mismatch:
A cell is suppressed even if it receives a large bottom-up input if it also receives
only a small, or zero, top-down expectation input.

I claim that this ART matching rule and the resonance rule that it implies op-
erate in all the examples that I have previously sketched and do so to solve the
stability—plasticity dilemma. All the examples are proposed to illustrate how we
can continue to learn rapidly and stably about new experiences throughout life by
matching bottom-up signal patterns from more peripheral to more central brain pro-
cessing stages against top-down signal patterns from more central to more peripheral
processing stages. These top-down signals represent the brain’s learned expecta-
tions of what the bottom-up signal patterns should be based upon past experience.
The matching process is designed to reinforce and amplify those combinations of
features in the bottom-up pattern that are consistent with the top-down expectations
and to suppress those features that are inconsistent. This top-down matching step
initiates the process whereby the brain selectively pays attention to experiences that
it expects, and binds them into coherent internal representations through resonant
knowledge about the world.

Given that such a resonant matching process occurs in the brain, how does the
brain react when there is a mismatch situation? The ART matching rule suggests
that a big enough mismatch between a bottom-up input and a top-down expectation
can rapidly attenuate activity at the matching level. This collapse of bottom-up ac-
tivation can initiate a rapid reset of activity at both the matching level itself and at
the subsequent levels that it feeds, thereby initiating a memory search for a more
appropriate recognition category or creating a new one.
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1.8 Resonant Dynamics During Speech Categorization

Many examples of such a reset event occur during variable-rate speech perception.
As one example, consider how people hear combinations of vowels (V) and conso-
nants (C) in VC-CV sequences. Bruno Repp at Haskins Laboratories has studied
perception of the sequences [ib]—-[ga] and [ib]-[ba] when the silence interval be-
tween the initial VC syllable and the terminal CV syllable is varied (Repp 1980).
If the silence interval is short enough, then [ib]-[ga] sounds like [iga] and [ib]—[ba]
sounds like [iba]. Repp ran a number of conditions, leading to the several data curves
displayed in Fig. 1.4. The main point for present purposes is that the transition from
a percept of [iba] to one of [ib]-[ba] occurs after 100-150ms more silence than
the transition from [iga] to [ib]-[ga]. One hundred milliseconds is a very long time
relative to the time scale at which individual neurons can be activated. Why is this
shift so large?

My colleagues Ian Boardman and Michael Cohen and I have quantitatively sim-
ulated these data using a model, called the ARTPHONE model, of how a resonant
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Fig. 1.4 The left-hand curves represent the probability, under several experimental conditions, that
the subject will hear [ib]-[ga] rather than [iga]. The right-hand curves do the same for [ib]-[ba]
rather than the fused percept [iba]. Note that the perception of [iba] can occur at a silence interval
between [ib] and [ba] that is up to 150 ms longer than the one that leads to the percept [iga] instead
of [ib]-[ga] (data are reprinted with permission from Repp BH (1980) Haskins Laboratories Status
Report on Speech Research, SR-61, 151-165)
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wave develops due to bottom-up and top-down signal exchanges between a working
memory that represents the individual speech items and a list categorization net-
work that groups them together into learned language units, or chunks (Grossberg
et al. 1997a). We have shown how a mismatch between [g] and [b] rapidly resets the
working memory if the silence between them is short enough, thereby preventing
the [b] sound from reaching resonance and consciousness, as in Fig. 1.5. We have
also shown how the development of a previous resonance involving [b] can reso-
nantly fuse with a subsequent [b] sound to greatly extend the perceived duration
of [iba] across a silence interval between [ib] and [ba]. Figure 1.6a illustrates this
property by suggesting how the second presentation of [b] can quickly reactivate
the resonance in response to the first presentation of [b] before the resonance stops.
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This phenomenon uses the property that it takes longer for the first presentation of
[b] to reach resonance than it does for the second presentation of [b] to influence the
maintenance of this resonance.

If, however, [ib] can fuse across time with [ba], then how do we ever hear distinct
[ib]-[ba] sounds when the silence gets long enough? Much evidence suggests that
after a resonance fully develops, it spontaneously collapses after awhile due to a
habituative process that goes on in the pathways that maintain the resonance via
bottom-up and top-down signals. Thus, if the silence is long enough for resonant
collapse of [ib] to occur, then a distinguishable [ba] resonance can subsequently
develop and be heard, as in Fig. 1.6b.

Such a habituative process has also been used to explain many other data about
perception, learning, and recognition, notably data about the reset of visual, cog-
nitive, or motor representations in response to rapidly changing events. Relevant
visual data include properties of light adaptation, visual persistence, aftereffects,
residual traces, and apparent motion (Carpenter and Grossberg 1981; Francis and
Grossberg 1996a,b; Francis et al. 1994). Abbott et al. (1997) have recently reported
data from the visual cortex that they modeled using the same habituative law that
was used in all of these applications. At bottom, such a habituative law is predicted
to be found so ubiquitously across brain systems because it helps to rapidly adapt,
reset, and rebalance neural circuits in response to rapidly changing input conditions,
notably as part of an opponent process (Grossberg 1980).

The Repp (1980) data illustrate the important fact that the duration of a con-
sciously perceived interval of silence is sensitive to the phonetic context into which
the silence is placed. These data show that the phonetic context can generate a con-
scious percept of continuous sound across 150 ms of silence — that can be heard
as silence in a different phonetic context. Our explanation of these data in terms
of the maintenance of resonance in one case, but its rapid reset in another, is con-
sistent with a simple, but revolutionary, definition of silence: Silence is a temporal
discontinuity in the rate with which the auditory resonance evolves in time. Various
other models of speech perception, having no concept like resonance on which to
build, cannot begin to explain data of this type. Several such models are reviewed in
Grossberg et al. (1997a).

1.9 Resonant Dynamics During Auditory Streaming

A similar type of resonant processing helps to explain cocktail party separation
of distinct voices into auditory streams, as in the auditory continuity illusion of
Fig. 1.2. This process goes on, however, at earlier stages of auditory processing than
speech categorization. My colleagues Krishna Govindarajan, Lonce Wyse, Michael
Cohen, and I have developed a model, called the ARTSTREAM model, of how
distinguishable auditory streams are resonantly formed and separated (Grossberg
1999b; Grossberg et al. 2004). Here the two main processing levels (Fig. 1.7) are
a spectral stream level at which the frequencies of the sound spectrum are repre-
sented across a spatial map, and a pitch stream level at which pitch nodes respond
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Fig. 1.7 Block diagram of the ARTSTREAM auditory streaming model. Note the nonspecific
topdown inhibitory signals from the pitch level to the spectral level that realize ART matching
within the network

to the harmonics at the spectral stream level that comprise a given pitch. After the
auditory signal is preprocessed, its spectral, or frequency, components are redun-
dantly represented in multiple spectral streams; that is, the sound’s preprocessed
frequency components are represented in multiple spatial maps, each one of which
can subserve the percept of a particular auditory stream. Otherwise expressed, each
frequency is represented by a strip of cells that can be cut into multiple streams by
the network’s cooperative-competitive interactions.

Each of these spectral streams is filtered by bottom-up signals that activate its
own pitch stream representation at the pitch stream level; that is, there are multiple
pitch streams, one corresponding to every spectral stream. This multiple representa-
tion of a sound’s spectral components and pitch interact to break up the entire sound
stream that is entering the system into distinct acoustic sources or voices. This hap-
pens as follows. A given sound spectrum is multiply represented at all the spectral
streams and then redundantly activates all of the pitch nodes that are consistent with
these sounds. These pitch representations compete to select a winner, which inhibits
the representations of the same pitch across streams, while also sending top-down
matching signals back to the spectral stream level. By the ART matching rule, the
frequency components that are consistent with the winning pitch node are ampli-
fied, and all others are suppressed, thereby leading to a spectral-pitch resonance
within the stream of the winning pitch node. In this way, the pitch layer coherently
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binds together the harmonically related frequency components that correspond to
a prescribed auditory source. All the frequency components that are suppressed by
ART matching in this stream are freed to activate and resonate with a different pitch
in a different stream. The net result is multiple resonances, each selectively grouping
together into pitches those frequencies that correspond to distinct auditory sources.

Using the ARTSTREAM model, we have simulated many of basic streaming
percepts, including the auditory continuity illusion of Fig. 1.2. It occurs, I contend,
because the spectral stream resonance takes a time to develop that is commensu-
rate to the duration of the subsequent noise. Once the tone resonance develops, the
second tone can quickly act to support and maintain it throughout the duration of
the noise, much as [ba] fuses with [ib] during perception of [iba]. Of course, for this
to make sense, one needs to accept the fact that the tone resonance does not start to
get consciously heard until just about when the second tone occurs.

1.10 A Circuit for ART Matching

Figure 1.7 incorporates one of the possible ways that Gail Carpenter and I proposed
in the mid-1980s for how the ART matching rule can be realized (Carpenter and
Grossberg 1987a). This matching circuit is redrawn in Fig. 1.8 for clarity. It is per-
haps the simplest such circuit, and I have found it in subsequent studies to be the
one that is implicated by data time and time again.

In this circuit, bottom-up signals to the spectral stream level can excite their tar-
get nodes if top-down signals are not active. Top-down signals try to excite those
spectral, or frequency component, nodes that are consistent with the pitch node
that activates them. By themselves, top-down signals fail to activate spectral nodes
because the pitch node also activates a pitch summation layer that nonspecifically
inhibits all spectral nodes in its stream. The nonspecific top-down inhibition hereby
prevents the specific top-down excitation from supraliminally activating any spec-
tral nodes. On the other hand, when excitatory bottom-up and top-down signals
occur together, then those spectral nodes that receive both types of signals can be
fully activated. All other nodes in that stream are inhibited, including spectral nodes

Act
of will

Fig. 1.8 One way to realize
the ART matching rule using = =1 = =
top-down modulatory

on-center, off-surround

network. See Carpenter and 3
Grossberg (1987a)
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that were previously activated by bottom-up signals but received no subsequent top-
down pitch support. Attention hereby selectively activates consistent nodes while
nonselectively inhibiting all other nodes in a stream.

1.11 Resonant Dynamics During Brightness Perception

Having come this far, let us review how ART matching and resonance help to ex-
plain the enhanced brightness of the Ehrenstein disk in Fig. 1.1a. This apparently
simple percept has attracted a great deal of attention from vision scientists be-
cause one could imagine many reasons why no brightness difference or the reverse
brightness difference might have been seen instead. John Kennedy (1979, 1988) has
attempted to explain this percept by positing that “brightness buttons” occur at the
ends of dark (low luminance) lines. The textbook mechanism for explaining these
brightness buttons has, in turn, for decades been an appeal to the on-center, off-
surround receptive fields of early visual processing. A cell that possesses such a
receptive field is excited by inputs near the cell’s location (the on-center) but inhib-
ited by inputs to more distant locations (the off-surround).

An analysis of how such cells respond to dark lines shows, however, that they
cannot, by themselves, explain brightness buttons. I show below why neither on-
center off-surround cells (called ON cells below) nor off-center on-surround cells
(called OFF cells below) can explain this phenomenon. Such ON and OFF cells
occur in the lateral geniculate nucleus (or LGN), which is a way-station from the
photosensitive retina in the eye to the visual cortex. Thus the ON and OFF cells that
occur in the LGN, and that are the source of cortical brightness percepts, cannot ex-
plain brightness buttons without further processing. Figure 1.9 shows that whatever
contribution to area contrast is generated at the ends of thin lines by ON or OFF
cells must be less in magnitude than that generated along their sides. As explained
below, this should make the Ehrenstein disk appear darker, rather than brighter, than
its surround.

To see why this is so, assume, as in Fig. 1.9b, that the thin line is black (low lu-
minance) and surrounded by a white (high luminance) background. Since OFF cells
respond best to low luminance in their receptive field center and high luminance in
their surround, OFF cells whose centers lie inside the line will be activated. Further-
more, OFF cells near the line end (but still inside the line) will be more strongly
activated than OFF cells in the middle of the line because the line end is more like
a black disk surrounded by a white background than the line middle is (Fig. 1.9b).
That is, an OFF cell whose center lies in the line end receives less inhibition from
its surround than does a cell centered in the middle of the line because a larger area
of the former cell’s surround lies in the white background.

A similar analysis can be applied to the ON cells. An ON cell is excited by high
luminance in the center of its receptive field and low luminance in its surround.
The ON cells that are active, then, are those centered outside the bar. An ON cell
whose center is just outside the side of the line will respond more strongly than an
ON cell centered just outside the end of the line (Fig. 1.9¢).
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Fig. 1.9 Retinal center-surround cells and their optimal stimuli (a). The ON cell, on the left,
responds best to a high-luminance disk surrounded by a low-luminance annulus. The OFF cell, on
the right, responds best to a low-luminance disk surrounded by a high-luminance annulus (b). OFF
cells respond to the inside of a black line. The OFF cell centered at the line end responds more
strongly than the OFF cell centered in the middle because the surround region of the former cell is
closer to optimal. In (¢), ON cells respond to the white background just outside the black line. The
amount of overlap of each ON cell’s surround with the black line affects the strength of the cell’s
response. As seen in the ON cell’s optimal stimulus (a), the more of the surround that is stimulated
by a black region, the better the ON cell will respond. Thus, an ON cell centered just outside the
side of the line will respond better than a cell centered just outside the end of the line because more
of the off-surround is activated at the end of the line than along its side

Given that LGN ON and OFF cells, by themselves, cannot explain brightness
buttons, an additional explanation needs to be found for how a brighter Ehrenstein
disk could be generated. Clues were provided by John Kennedy, who analyzed a
number of illusory contour stimuli. He argued that the effect of brightness but-
tons could often go unnoticed for isolated line segments, but could somehow
be pooled and amplified in perceptual salience when several brightness buttons
occurred in proximity or within a figurally complete region. In the mid-1980s,
I worked with several colleagues to develop an analysis and interpretation of
Kennedy’s remarks by developing a neural model of visual boundary and surface
representation (Cohen and Grossberg 1984; Grossberg and Mingolla 1985a,b;
Grossberg and Todorovic’ 1988).

In this model, the crucial mechanistic support for perceptually noticeable
brightness buttons is a boundary segmentation that separates the region containing
the buttons from other regions of a scene. Such a boundary segmentation may
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be generated by image edges, textures, or shading and may give rise to illusory
contours such as the Ehrenstein circle. We suggested how brightness buttons could,
at a later processing stage, activate a diffusion process that could “fill-in” a uniform
level of brightness within the bounding illusory contour. The model successfully
explained and predicted many facts about illusory contours and brightness percepts,
among other phenomena, but it incorrectly predicted that the Ehrenstein disk should
look darker than its surround. Given that so many brightness data had been correctly
predicted by the model, including data collected after its publication, the question
arose of how the model’s description was incomplete or incorrect. Such an analysis
was recently carried out with Alan Gove and Ennio Mingolla (Gove et al. 1995).
We showed how the addition of a feedback loop from the visual cortex to the
LGN helps to explain brightness buttons without disturbing the model’s previous
explanations of other brightness phenomena.

The gist of this analysis can be summarized as follows. Brightness buttons are,
by definition, an effect of an oriented structure such as a line or, more generally, a
corner or sharp bend in a contour, on perceived brightness. Within the prior model,
the computations leading to brightness perception were unoriented in the sense that
they were initiated by ON and OFF cells with circularly symmetric receptive fields.
How then could the effects of oriented filtering be used to modulate the inputs to the
process that produces brightness buttons? Indeed, oriented filtering alone could not
suffice. Interactions must exist among the oriented filters to determine the location
of the ends of the lines at which the brightness buttons occur. A natural candidate for
the latter interactions is the cortical endstopping process that has been known, since
the Nobel-prize winning work of David Hubel and Thorstein Wiesel, to convert
cortical complex cells into endstopped complex, or hypercomplex, cells (Hubel and
Wiesel 1977). These oriented cells are selectively activated at and near the ends of
lines. Where should the results of this endstopped processing have their effect on
brightness processing?

Having come this far, it is plausible to propose that the cortex influences LGN
cells via top-down feedback, which it is well known to do. It is not plausible, how-
ever, that this massive feedback pathway exists just to make Ehrenstein disks appear
bright. I had, however, earlier predicted that corticogeniculate feedback exists for
a potentially important functional reason; namely, to enhance the activity of LGN
cells that support the activity of presently active cortical cells and to suppress the
activity of LGN cells that do not (Grossberg, 1976a,b, 1980). In addition, bottom-
up retinal input, by itself, was hypothesized to supraliminally activate LGN cells,
but top-down corticogeniculate feedback, by itself, was not. In other words, cortico-
geniculate feedback was predicted to realize an ART matching and resonance rule
in order to control and stabilize learned changes in cortical LTM traces in response
to the flood of visual experience.

Figure 1.10 summarizes how this type of corticogeniculate feedback can produce
brightness buttons. Figure 1.11b summarizes a computer simulation of brightness
buttons. The model’s boundary completion network generates the circular illusory
contour of Fig. 1.11c. The brightness button activation pattern in Fig. 1.11b gener-
ates a topographic input to a filling-in domain, wherein the inputs diffuse freely
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Fig.1.10 Schematic diagram of brightness button formation in the model. In (a) the distribution of
model LGN cell activities prior to receiving any feedback in response to a black bar is illustrated.
Open circles code ON cell activity; filled circles code OFF cell activity. (b) The effect of feedback
on bottom-up LGN activations. The plus (minus) signs designate the excitatory (inhibitory) top-
down influence of an oriented endstopped cortical cell. (¢) The LGN activity distribution after
endstopped feedback, such as that in (b), combines with the direct effect of ON and OFF cell
processing, such as that in (a). A brightness button is formed outside both ends of the line

Fig. 1.11 (a) The Ehrenstein figure. (b) The LGN stage response. Both ON and OFF cell activ-
ities are coded as rectified deflections from a neutral gray. Note the brightness buttons at the line
ends. (¢) The equilibrium boundaries. (d) In the filled-in surface brightness, the central disk con-
tains larger activities than the background, corresponding to the perception of increased brightness
(reprinted with permission from Gove, Grossberg, Mingolla 1995)
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in all directions until they hit a barrier to filling-in that is imposed by the circular
boundary signals in Fig. 1.11c. The result is an Ehrenstein disk with uniformly en-
hanced brightness relative to its surround in Fig. 1.11d.

Is there direct experimental evidence that corticogeniculate feedback can alter
LGN cell properties as desired? Murphy and Sillito (1987) showed that cortical
feedback causes significant length-tuning in cat LGN cells. As in cortical endstop-
ping, the response to a line grows rapidly as a function of line length and then
abruptly declines for longer lines. The response to long lines is hereby depressed.
Redies et al. (1986) found that cat dorsal LGN cells and strongly endstopped cor-
tical complex cells responded best at line ends. In other words, the response of the
LGN cells to line ends was enhanced relative to the response to line sides.

Is there direct experimental evidence for the prediction that corticogeniculate
feedback supports ART matching and resonance? In a remarkable 1994 Nature ar-
ticle, Sillito et al. (1994) published neurophysiological data that strikingly support
this prediction. They wrote in particular that “cortically induced correlation of relay
cell activity produces coherent firing in those groups of relay cells with receptive
field alignments appropriate to signal the particular orientation of the moving con-
tour to the cortex. .. this increases the gain of the input for featurelinked events
detected by the cortex. .. the cortico-thalamic input is only strong enough to exert
an effect on those dLGN cells that are additionally polarized by their retinal in-
put...the feedback circuit searches for correlations that support the ‘hypothesis’
represented by a particular pattern of cortical activity.” In short, Sillito verified all
the properties of the ART matching rule.

1.12 How Early Does Attention Act in the Brain?

If we take these results at face value, then it would appear that corticogeniculate
feedback helps to “focus attention” upon expected patterns of LGN activity. How-
ever, it is typically argued that visual attention first acts at much higher levels of
cortical organization, starting with the extrastriate visual cortex. Is there a contra-
diction here? The answer depends upon how you define attention. If attention refers
only to processes that can be controlled voluntarily, then corticogeniculate feedback,
being automatic, may not qualify. On the other hand, corticogeniculate feedback
does appear to have the selective properties of an “automatic” attention process.

1.13 Attention at All Stages of Sensory
and Cognitive Neocortex?

It has, in fact, been suggested how similar automatic attentional processes are in-
tegrated within the laminar circuits of visual cortex, notably the circuits of cortical
areas V1 and V2 that are used to generate perceptual groupings, such as the illusory
contours in Fig. 1.1 (Grossberg 1999a). In this proposal, the ART matching rule is
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realized as follows. Top-down attentional feedback from cortical area V2 to V1 is
predicted to be mediated by signals from layer 6 of cortical area V2. These top-down
signals attentionally prime layer 4 of cortical area V1 via an on-center off-surround
network within V1 from layer 6 to layer 4. In this conception, layer 6 of V2 acti-
vates layer 6 of V1, possibly via a multisynaptic pathway, which in turn activates
layer 4 of V1 via an on-center off-surround network from layer 6 to layer 4. This
analysis predicts that the layer-6-to-layer-4 on-center off-surround circuit can mod-
ulate layer 4 cells, but cannot fully activate them because the top-down attentional
prime, acting by itself, is subliminal. Such a modulatory effect is achieved by ap-
propriately balancing the strength of the on-center and off-surround signals within
the layer-6-to-layer-4 network.

Related modeling work has shown how such balanced on-center off-surround
signals can lead to self-stabilizing development of the horizontal connections
within layer 2/3 of V1 and V2 that subserve perceptual grouping (Grossberg
and Williamson 2001). It has also been shown how the top-down on-center off-
surround circuit from area V1 to LGN can self-stabilize the development of
disparity-sensitive complex cells in area V1 (Grunewald and Grossberg 1998).
Other modeling work has suggested how a similar top-down on-center off-surround
automatical attentional circuit from cortical area MST to MT can be used to gen-
erate coherent representations of the direction and speed with which objects move
(Chey et al. 1997). Taken together, these studies show how the ART Matching Rule
may be realized in known cortical circuits, and how it can self-stabilize development
of these circuits as a precursor to its role in self-stabilizing later learning throughout
life. Grossberg (1999a) has predicted that the same ART matching circuit exists
within the laminar organization that is found universally in all sensory and cog-
nitive neocortex, including the various examples of auditory processing that are
reviewed above. This prediction does not, of course, deny that these circuits may be
specialized in various ways to process the different types of information with which
they are confronted.

Given that the cortical organization of top-down on-center off-surround atten-
tional priming circuits seems to be ubiquitous in visual cortex, and by extension in
other types of cortex, it is important to ask: What more does the brain need to add
in order to generate a more flexible, task-dependent type of attention switching?
This question leads us to our last example, that of visual object recognition, and
how it breaks down during medial temporal amnesia. Various other models of ob-
ject recognition, and their conceptual and explanatory weaknesses relative to ART,
are reviewed in Grossberg and Merrill (1996).

1.14 Self-Organizing Feature Maps for Learned
Object Recognition

Let us begin with a two-level network that illustrates some of the main ideas in
the simplest possible way. Level F; in Fig. 1.12 contains a network of nodes, or
cell populations, each of which is activated by a particular combination of sensory
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Fig. 1.12 An example of a model ART circuit in which attentional and orienting circuits interact.
Level F; encodes a distributed representation of an event by a short-term memory (STM) activation
pattern across a network of feature detectors. Level F, encodes the event using a compressed
STM representation of the F; pattern. Learning of these recognition codes occurs at the long term
memory (LTM) traces within the bottom-up and top-down pathways between levels F; and F,. The
top-down pathways read-out learned expectations whose prototypes are matched against bottom-up
input patterns at F. The size of mismatches in response to novel events are evaluated relative to the
vigilance parameter r of the orienting subsystem A. A large enough mismatch resets the recognition
code that is active in STM at F, and initiates a memory search for a more appropriate recognition
code. Output from subsystem A can also trigger an orienting response

features via inputs. Level F, contains a network of nodes that represent recogni-
tion codes, or categories, which are selectively activated by the activation patterns
across F;. Each F; node sends output signals to a subset of F, nodes. Each F, node
thus receives inputs from many F; nodes. The thick bottom-up pathway from F;
to F» in Fig. 1.12 represents in a concise way an array of diverging and converging
pathways. Let learning take place at the synapses denoted by semicircular endings
in the F; — F; pathways. Pathways that end in arrowheads do not undergo learning.
This bottom-up learning enables F, category nodes to become selectively tuned to
particular combinations of activation patterns across F; feature detectors by chang-
ing their LTM traces.

Why is not bottom-up learning sufficient in a system that can autonomously
solve the stability—plasticity dilemma? Why are learned top-down expectations also
needed? To understand this, we consider a type of model that is often called a
self-organizing feature map, competitive learning, or learned vector quantization.
This type of model shows how to combine associative learning and lateral inhibi-
tion for purposes of learned categorization.

In such a model, as shown in Fig. 1.13a, an input pattern registers itself as a
pattern of activity, or STM, across the feature detectors of level F;. Each F; output
signal is multiplied, or gated, by the adaptive weight, or LTM trace, in its respective
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Fig. 1.13 ART search for a recognition code: (a) The input pattern I is instated across the feature
detectors at level F; as a short-term memory (STM) activity pattern X. Input I also nonspecifically
activates the orienting subsystem Aj; see Fig. 1.12. STM pattern X is represented by the hatched
pattern across Fj. Pattern X both inhibits A and generates the output pattern S. Pattern S is multi-
plied by longterm memory (LTM) traces and added at F, nodes to form the input pattern T, which
activates the STM pattern Y across the recognition categories coded at level F,. (b) Pattern Y gen-
erates the top-down output pattern U, which is multiplied by top-down LTM traces and added at F;
nodes to form the prototype pattern V that encodes the learned expectation of the active F, nodes.
If V mismatches I at Fy, then a new STM activity pattern X* is generated at F;. X™* is represented
by the hatched pattern. It includes the features of I that are confirmed by V. Inactivated nodes cor-
responding to unconfirmed features of X are unhatched. The reduction in total STM activity which
occurs when X is transformed into X* causes a decrease in the total inhibition from F; to A. (¢) If
inhibition decreases sufficiently, A releases a nonspecific arousal wave to F, which resets the STM
pattern Y at F,. (d) After Y is inhibited, its top-down prototype signal is eliminated, and X can be
reinstated at F. Enduring traces of the prior reset lead X to activate a different STM pattern Y™
at F,. If the top-down prototype due to Y* also mismatches I at Fy, then the search for an appro-
priate F, code continues until a more appropriate F, representation is selected. Then an attentive
resonance develops and learning of the attended data is initiated (reprinted with permission from
Carpenter and Grossberg (1987a)

pathway. All these LTM-gated inputs are added up at their target F» nodes. The LTM
traces hereby filter the STM signal pattern and generate larger inputs to those F;
nodes whose LTM patterns are most similar to the STM pattern. Lateral inhibitory,
or competitive, interactions within F, contrast-enhance this input pattern. Whereas
many F, nodes may receive inputs from Fy, lateral inhibition allows a much smaller
set of F» nodes to store their activation in STM. These are the F> nodes whose LTM
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patterns are most similar to the STM pattern. These inhibitory interactions also tend
to conserve the total activity that is stored in STM (Grossberg 1980, 1982), thereby
realizing an interference-based capacity limitation in STM.

Only the F, nodes that win the competition and store their activity in STM can
influence the learning process. STM activity opens a learning gate at the LTM traces
that abut the winning nodes. These LTM traces can then approach, or track, the in-
put signals in their pathways, a process called steepest descent. Such a learning law
is thus often called gated steepest descent, or instar learning. This type of learning
tunes the winning LTM patterns to become even more similar to the STM pattern
and to thereby enable the STM pattern to more effectively activate the correspond-
ing F» nodes. I introduced this learning law into neural network models in the 1960s
(e.g., Grossberg 1969) and into ART models in the 1970s (Grossberg 1976a,b,
1978, 1980). Such an LTM trace can either increase (Hebbian) or decrease (anti-
Hebbian) to track the signals in its pathway (Table 1.1). It has been used to model
neurophysiological data about learning in the hippocampus (also called long-term
potentiation and long-term depression) and about adaptive tuning of cortical fea-
ture detectors during early visual development (Artola and Singer 1993; Levy 1985;
Levy and Desmond 1985; Rauschecker and Singer 1979; Singer 1983), thereby
lending support to ART predictions that these systems would employ this type of
learning.

Self-organizing feature map models were introduced and computationally char-
acterized by Christoph von der Malsburg and me during the 1970s (Grossberg 1972,
1976a, 1978; von der Malsburg et al. 1973; Willshaw et al. 1976). These models
were subsequently applied and further developed by many authors, notably Teuvo
Kohonen (1984). They exhibit many useful properties, especially if not too many
input patterns, or clusters of input patterns, perturb level F; relative to the number

Stephen Grossberg

TABLE 1.1

The Instar Learning, or Gated Steepest Descent
Learning Rule, Embodies both Hebbian (LTP)
and anti-Hebbian (LTD) Properties within a Single

Process®
S Wi X
Case ] Case2 Case3 Case4
State of Si + — + —
State of x. + + - —
State of ), 0 N VRN YRS
Note. Symbols: + = active; — = inactive; T =

increase; J, = decrease; <> = no change.
@ Reprinted with permission from Grossberg and
Merrill (1996).
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of categorizing nodes in level F,. I proved that, under these sparse environmental
conditions, category learning is stable in the sense that its LTM traces converge
to fixed values as learning trials proceed. In addition, the LTM traces track the
statistics of the environment, are self-normalizing, and oscillate a minimum num-
ber of times (Grossberg 1976a). Also, the category selection rule, like a Bayesian
classifier, tends to minimize error. I also proved, however, that under arbitrary envi-
ronmental conditions, learning becomes unstable (Grossberg 1976b). Such a model
could forget your parents’ faces when it learns a new face. Although a gradual
switching off of plasticity can partially overcome this problem, such a mecha-
nism cannot work in a learning system whose plasticity is maintained throughout
adulthood.

This memory instability is due to basic properties of associative learning and
lateral inhibition, which are two processes that occur ubiquitously in the brain.
An analysis of this instability, together with data about human and animal cate-
gorization, conditioning, and attention, led me to introduce ART models to stabilize
the memory of self-organizing feature maps in response to an arbitrary stream of
input patterns.

1.15 How Does ART Stabilize Learning of a Self-Organizing
Feature Map?

How does an ART model prevent such instabilities from developing? As noted
above, in an ART model, learning does not occur when some winning F; activities
are stored in STM. Instead, activation of F, nodes may be interpreted as “making a
hypothesis” about an input at F;. When F; is activated, it quickly generates an out-
put pattern that is transmitted along the top-down adaptive pathways from F, to F.
These top-down signals are multiplied in their respective pathways by LTM traces
at the semicircular synaptic knobs of Fig. 1.13b. The LTM-gated signals from all
the active F, nodes are added to generate the total topdown feedback pattern from
F, to F;. It is this pattern that plays the role of a learned expectation. Activation
of this expectation may be interpreted as “testing the hypothesis,” or “reading out
the prototype,” of the active F, category. As shown in Fig. 1.13b, ART networks are
designed to match the “expected prototype” of the category against the bottom-up
input pattern, or exemplar, to F;. Nodes that are activated by this exemplar are sup-
pressed if they do not correspond to large LTM traces in the top-down prototype
pattern. The resultant F; pattern encodes the cluster of input features that the net-
work deems relevant to the hypothesis based upon its past experience. This resultant
activity pattern, called X* in Fig. 1.13b, encodes the pattern of features to which the
network “pays attention.”

If the expectation is close enough to the input exemplar, then a state of resonance
develops as the attentional focus takes hold. The pattern X* of attended features
reactivates the F, category Y which, in turn, reactivates X*. The network locks into
a resonant state through a positive feedback loop that dynamically links, or binds,
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X* with Y. The resonance binds spatially distributed features into either a stable
equilibrium or a synchronous oscillation, much like the synchronous feature binding
in visual cortex that has recently attracted so much interest after the experiments of
Reinhard Eckhorn and Wolf Singer and their colleagues (Eckhorn et al. 1988; Gray
and Singer 1989); also see Grossberg and Grunewald (1997).

In ART, the resonant state, rather than bottom-up activation, is predicted to drive
the learning process. The resonant state persists long enough, at a high enough
activity level, to activate the slower learning processes in the LTM traces. This helps
to explain how the LTM traces can regulate the brain’s fast information processing
without necessarily learning about the signals that they process. Through resonance
as a mediating event, the combination of top-down matching and attentional focus-
ing helps to stabilize ART learning and memory in response to an arbitrary input
environment. The stabilizing properties of top-down matching may be one reason
for the ubiquitous occurrence of reciprocal bottom-up and top-down corticocortical
and corticothalamic interactions in the brain.

1.16 How Is the Generality of Knowledge Controlled?

A key problem about consciousness concerns what combinations of features or other
information are bound together into object or event representations. ART provides
a new answer to this question that overcomes problems faced by earlier models.
In particular, ART systems learn prototypes, rather than exemplars, because the at-
tended feature vector X*, rather than the input exemplar itself, is learned. Both the
bottom-up LTM traces that tune the category nodes and the top-down LTM traces
that filter the learned expectation learn to correlate activation of F, nodes with the
set of all attended X* vectors that they have ever experienced. These attended STM
vectors assign less STM activity to features in the input vector I that mismatch the
learned top-down prototype V than to features that match V.

Given that ART systems learn prototypes, how can they also learn to recognize
unique experiences, such as a particular view of a friend’s face? The prototypes
learned by ART systems accomplish this by realizing a qualitatively different con-
cept of prototype than that offered by previous models. In particular, Gail Carpenter
and I have shown with our students how ART prototypes form in a way that is
designed to conjointly maximize category generalization while minimizing pre-
dictive error (Bradski and Grossberg 1995; Carpenter and Grossberg 1987a,b;
Carpenter et al. 1991, 1992). As a result, ART prototypes can automatically learn
individual exemplars when environmental conditions require highly selective dis-
criminations to be made. How the matching process achieves this is discussed
below.

Before describing how this is achieved, let us note what happens if the mis-
match between bottom-up and top-down information is too great for a resonance to
develop. Then the F, category is quickly reset and a memory search for a better cat-
egory is initiated. This combination of top-down matching, attention focusing, and
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memory search is what stabilizes ART learning and memory in an arbitrary input
environment. The attentional focusing by top-down matching prevents inputs that
represent irrelevant features at F; from eroding the memory of previously learned
LTM prototypes. In addition, the memory search resets F, categories so quickly
when their prototype V mismatches the input vector I that the more slowly varying
LTM traces do not have an opportunity to correlate the attended F; activity vector
X* with them. Conversely, the resonant event, when it does occur, maintains, am-
plifies, and synchronizes the matched STM activities for long enough and at high
enough amplitudes for learning to occur in the LTM traces.

Whether a resonance occurs depends upon the level of mismatch, or novelty,
that the network is prepared to tolerate. Novelty is measured by how well a given
exemplar matches the prototype that its presentation evokes. The criterion of an ac-
ceptable match is defined by an internally controlled parameter p that Carpenter and
I have called vigilance (Carpenter and Grossberg 1987a). The vigilance parameter
is computed in the orienting subsystem A; see Fig. 1.12. Vigilance weighs how sim-
ilar an input exemplar I must be to a top-down prototype V in order for resonance
to occur. Resonance occurs if p|I| — |X*| < 0. This inequality says that the F; atten-
tional focus X* inhibits A more than the input I excites it. If A remains quiet, then
an F; < F, resonance can develop.

Either a larger value of p or a smaller match ratio |[X*||I|~' makes it harder to
satisfy the resonance inequality. When p grows so large or [X*|[I|™! is so small
that p|I| — |[X*| > 0, then A generates an arousal burst, or novelty wave, that resets
the STM pattern across F, and initiates a bout of hypothesis testing, or memory
search. During search, the orienting subsystem interacts with the attentional sub-
system (Fig. 1.13c and 1.13d) to rapidly reset mismatched categories and to select
better F, representations with which to categorize novel events at F;, without risking
unselective forgetting of previous knowledge. Search may select a familiar category
if its prototype is similar enough to the input to satisfy the resonance criterion. The
prototype may then be refined by attentional focusing. If the input is too different
from any previously learned prototype, then an uncommitted population of F; cells
is selected and learning of a new category is initiated.

Because vigilance can vary across learning trials, recognition categories capable
of encoding widely differing degrees of generalization or abstraction can be learned
by a single ART system. Low vigilance leads to broad generalization and abstract
prototypes. High vigilance leads to narrow generalization and to prototypes that
represent fewer input exemplars, even a single exemplar. Thus a single ART sys-
tem may be used, say, to learn abstract prototypes with which to recognize abstract
categories of faces and dogs, as well as “exemplar prototypes” with which to recog-
nize individual faces and dogs. A single system can learn both, as the need arises,
by increasing vigilance just enough to activate A if a previous categorization leads
to a predictive error. Thus the contents of a conscious percept can be modified by
environmentally sensitive vigilance control.

Vigilance control hereby allows ART to overcome some fundamental difficul-
ties that have been faced by classical exemplar and prototype theories of learning
and recognition. Classical exemplar models face a serious combinatorial explosion,

|—l
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since they need to suppose that all experienced exemplars are somehow stored in
memory and searched during performance. Classical prototype theories face the
problem that they find it hard to explain how individual exemplars are learned, such
as a particular view of a familiar face. Vigilance control enables ART to achieve the
best of both types of model by selecting the most general category that is consistent
with environmental feedback. If that category is an exemplar, then a “very vigilant”
ART model can learn it. If the category is at an intermediate level of generalization,
then the ART model can learn it by having the vigilance value track the level of
match between the current exemplar and the prototype that it activates. In every in-
stance, the model tries to learn the most general category that is consistent with the
data. This tendency can, for example, lead to the type of overgeneralization that is
seen in young children until further learning leads to category refinement (Chapman
et al. 1986; Clark 1973; Smith et al. 1985; Smith and Kemler 1978; Ward 1983).
Many benchmark studies of how ART uses vigilance control to classify complex
data bases have shown that the number of ART categories that is learned scales well
with the complexity of the input data; see Carpenter and Grossberg (1994) for a list
of illustrative benchmark studies.

1.17 Corticohippocampal Interactions and Medial
Temporal Amnesia

As sequences of inputs are practiced over learning trials, the search process even-
tually converges upon stable categories. Carpenter and I mathematically proved
(Carpenter and Grossberg 1987a) that familiar inputs directly access the category
whose prototype provides the globally best match, while unfamiliar inputs en-
gage the orienting subsystem to trigger memory searches for better categories until
they become familiar. This process continues until the memory capacity, which
can be chosen arbitrarily large, is fully utilized. The process whereby search is
automatically disengaged is a form of memory consolidation that emerges from
network interactions. Emergent consolidation does not preclude structural consoli-
dation at individual cells, since the amplified and prolonged activities that subserve
a resonance may be a trigger for learning-dependent cellular processes, such as pro-
tein synthesis and transmitter production. It has also been shown that the adaptive
weights which are learned by an ART model at any stage of learning can be trans-
lated into IF-THEN rules (e.g., Carpenter et al. 1992). Thus the ART model is a
self-organizing rule-discovering production system as well as a neural network.
The attentional subsystem of ART has been used to model aspects of infer-
otemporal (IT) cortex, and the orienting subsystem models part of the hippocampal
system. The interpretation of ART dynamics in terms of IT cortex led Miller, Li, and
Desimone (1991) to successfully test the prediction that cells in monkey IT cortex
are reset after each trial in a working memory task. To illustrate the implications of
an ART interpretation of IT-hippocampal interactions, I review how a lesion of the
ART model’s orienting subsystem creates a formal memory disorder with symptoms
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much like the medial temporal amnesia that is caused in animals and human patients
after hippocampal system lesions (Carpenter and Grossberg 1993; Grossberg and
Merrill 1996). In particular, such a lesion in vivo causes unlimited anterograde
amnesia; limited retrograde amnesia; failure of consolidation; tendency to learn
the first event in a series; abnormal reactions to novelty, including perseverative
reactions; normal priming; and normal information processing of familiar events
(Cohen 1984; Graf et al. 1984; Lynch et al. 1984; Squire and Butters 1984; Squire
and Cohen 1984; Warrington and Weiskrantz 1974; Zola-Morgan and Squire 1990).

Unlimited anterograde amnesia occurs because the network cannot carry out the
memory search to learn a new recognition code. Limited retrograde amnesia oc-
curs because familiar events can directly access correct recognition codes. Before
events become familiar, memory consolidation occurs which utilizes the orienting
subsystem (Fig. 1.13c). This failure of consolidation does not necessarily prevent
learning per se. Instead, learning influences the first recognition category activated
by bottom-up processing, much as amnesics are particularly strongly wedded to
the first response they learn. Perseverative reactions can occur because the orient-
ing subsystem cannot reset sensory representations or top-down expectations that
may be persistently mismatched by bottom-up cues. The inability to search memory
prevents ART from discovering more appropriate stimulus combinations to attend.
Normal priming occurs because it is mediated by the attentional subsystem.

Similar behavioral problems have been identified in hippocampectomized
monkeys. Gaffan (1985) noted that fornix transection “impairs ability to change
an established habit. . . in a different set of circumstances that is similar to the first
and therefore liable to be confused with it.” In ART, a defective orienting subsystem
prevents the memory search whereby different representations could be learned
for similar events. Pribram (1986) called such a process a “competence for re-
combinant context-sensitive processing.” These ART mechanisms illustrate how, as
Zola-Morgan and Squire (1990) have reported, memory consolidation and novelty
detection may be mediated by the same neural structures. Why hippocampec-
tomized rats have difficulty orienting to novel cues and why there is a progressive
reduction in novelty-related hippocampal potentials as learning proceeds in normal
rats is also clarified (Deadwyler et al. 1979, 1981). In ART, the orienting system
is automatically disengaged as events become familiar during the memory con-
solidation process. The ART model of normal and abnormal recognition learning
and memory is compared with several other recent models of these phenomena in
Grossberg and Merrill (1996).

At this point, it might also be useful to note that the processes of automatic and
task-selective attention may not be independent in vivo. This is because higher-
order attentional constraints that may be under task-selective control can in principle
propagate downward through successive cortical levels via layer-6-to-layer-6 link-
ages. For example, recent modeling work has suggested how prestriate cortical areas
may separate visual objects from one another and from their backgrounds dur-
ing the process of figure—ground separation (Grossberg 1994, 1997; Grossberg and
McLoughlin 1997). Such constraints may propagate top-down toward earlier corti-
cal levels, possibly even area V1, to modulate the cells that get active there to be
consistent with these figure—ground constraints. Still higher cortical processes, such
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as those involved in learned categorization, may also propagate their modulatory
constraints to lower levels. How the strength of such top-down modulatory influ-
ences depends upon the source cortical area and on the number of synaptic steps to
the target cortical area is a topic that has yet to be systematically studied.

1.18 How Universal Are ART Processes in the Brain?

In all the examples discussed above — from early vision, visual object recognition,
auditory streaming, and speech recognition — ART matching and resonance have
played a central role in models that help to explain how the brain stabilizes its
learned adaptations in response to changing environmental conditions. This type
of matching can be achieved using a top-down nonspecific inhibitory gain control
that downregulates all target cells except those that also receive top-down specific
excitatory signals, as in Fig. 1.8. Are there yet other brain processes that utilize
these mechanisms? John Reynolds and colleagues in Bob Desimone’s laboratory
(Reynolds et al. 1995) have reported neurophysiological data from cells in cortical
areas V2 and V4 that are consistent with the ART attentional mechanism sum-
marized in Fig. 1.8. Taken together with studies of the V1—LGN attention circuit
and of attentional control by frontal and inferotemporal cortex during visual object
recognition, it may be concluded that ART-like top-down matching occurs through-
out the brain’s visual system.

With my colleagues Mario Aguilar, Dan Bullock, and Karen Roberts, a neural
model has been developed to explain how the superior colliculus learns to use vi-
sual, auditory, somatosensory, and planned movement signals to control saccadic
eye movements (Grossberg et al. 1997b). This model uses ART matching and res-
onance to help explain behavioral and neural data about multimodal eye movement
control. The model clarifies how visual, auditory, and planned movement signals
use learning to form a mutually consistent movement map and how attention gets
focused on a movement target location after all these signals compete to determine
where the eyes will move.

Experiments from Marcus Raichle’s lab at Washington University using positron
emission tomography (PET) support the idea that ART top-down priming also oc-
curs in human somatosensory cortex (Drevets et al. 1995). In their experiments,
attending to an impending stimulus to the fingers caused inhibition of nearly corti-
cal cells that code for the face, but not cells that code the fingers. Likewise, priming
of the toes produced inhibition of nearby cells that code for the fingers and face, but
not cells that code for the toes.

ART models have also been used to explain a great deal of data about cognitive—
emotional interactions, notably about classical and instrumental conditioning
(Grossberg 1987b) and about human decision making under risk (Grossberg and
Gutowski 1987). In these examples, the resonances are between cognitive and emo-
tional circuits and help to focus attention upon, and release actions toward, valued
events and objects in the world.



1 The Link Between Brain Learning, Attention, and Consciousness 35

Thus all levels of vision, visual object recognition, auditory streaming, speech
recognition, attentive selection of eye movement targets, somatosensory represen-
tation, and cognitive—emotional interactions may incorporate variants of the circuit
depicted in Fig. 1.8. These results suggest that a type of “automatic” attention oper-
ates even at early levels of brain processing, such as the lateral geniculate, but that
higher processing levels benefit from an orienting subsystem that can be used to
flexibly reset attention and to facilitate voluntary control of top-down expectations.

1.19 Internal Fantasy, Planned Movement,
and Volitional Gating

Given this type of circuit, how could top-down priming be released from inhibition
to enable us to voluntarily experience internal thinking and fantasies? This can be
achieved through an “act of will” that activates inhibitory cells which inhibit the
nonspecific inhibitory interneurons in the top-down on-center off-surround network
of Fig. 1.8. This operation disinhibits the cells receiving the excitatory top-down
signals in the on-center of the network. These cells are then free to generate supral-
iminal resonances. Such self-initiated resonances can, for example, be initiated by
the read-out of top-down expectations from higher-order planning nodes into tem-
porally organized working memories, say in the prefrontal cortex (Fuster 1996). It
is, for example, well known that the basal ganglia can use such a disinhibitory ac-
tion to gate the release of individual movements, sequences of movements, and even
cognitive processes (Hikosaka 1994; Middleton and Strick 1994; Sakai et al. 1998).

These examples also help to understand how top-down expectations can be used
for the control of planned (viz., intentional) behavioral sequences. For example,
once such planning nodes read-out their top-down expectations into working mem-
ory, the contents of working memory can be read-out and modified by on-line
changes in “acts of will.” These volitional signals enable invariant representations
of an intentional behavior to rapidly adapt themselves to changing environmental
conditions. For example, Bullock et al. (1993b) have modeled how such a work-
ing memory can control the intentional performance of handwriting whose size
and speed can be modified by acts of will, without a change of handwritten form.
Bullock et al. (1993a) have shown how a visual target that is stored in working
memory can be reached with a novel tool that has never been used before. The latter
study shows how a such a model can learn its own parameters through a type of
Piagetian perform-and-test developmental cycle.

Thus we arrive at an emerging picture of how the adaptive brain works wherein
the core issue of how a brain can learn quickly and stably about a changing
world throughout life leads toward a mechanistic understanding of attention, in-
tention, thinking, fantasy, and consciousness. The mediating events are adaptive
resonances that effect a dynamic balance between the complementary demands of
stability and plasticity and of expectation and novelty and which are a necessary
condition for consciousness.
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1.20 What vs Where: Why Are Procedural
Memories Unconscious?

Although the type of ART matching, learning, and resonance that have been
reviewed above seem to occur in many sensory and cognitive processes, they are not
the only types of matching and learning to occur in the brain. In fact, there seems
to be a major difference between the types of learning that occur in sensory and
cognitive processes versus those that occur in spatial and motor processes. In partic-
ular, sensory and cognitive processes are carried out in the What processing stream
that passes through the inferotemporal cortex, whereas spatial and motor processes
are carried out in the Where processing stream that passes through the parietal
cortex. What processing includes object recognition and event prediction. Where
processing includes spatial navigation and motor control. I suggest that the types
of matching and learning that go on in the What and Where streams are different,
indeed complementary, and that this difference is appropriate to their different roles.

First, consider how we use a sensory expectation. Suppose, for example, that I
ask you to “Look for the yellow ball, and if you find it within three hundred mil-
liseconds, I will give you a million dollars.” If you believed me, you could activate a
sensory expectation of “yellow balls” that would make you much more sensitive to
yellow and round objects in your environment. As in ART matching, once you de-
tected a yellow ball, you could then react to it much more quickly and with a much
more energetic response than if you were not looking for it. In other words, sensory
and cognitive expectations lead to a type of excitatory matching.

Now consider how we use a motor expectation. Such an expectation represents
where we want to move (Bullock and Grossberg 1988). For example, it could repre-
sent a desired position for the hand to pick up an object. Such a motor expectation
is matched against where the hand is now. After the hand actually moves to the
desired position, no further movement is required to satisfy the motor expectation.
In this sense, motor expectations lead to a type of inhibitory matching. In summary,
although the sensory and cognitive matching process is excitatory, the spatial and
motor matching process is inhibitory. These are complementary properties. Models
such as ART quantify how excitatory matching is accomplished. A different type of
model, called a Vector Associative Map, or VAM, model, suggests how inhibitory
matching is accomplished (Gaudiano and Grossberg 1991; Grossberg et al. 1993;
Guenther et al. 1994).

As shown in the discussions of ART above, learning within the sensory and cog-
nitive domain is often a type of match learning. It takes place only if there is a
good enough match of top-down expectations with bottom-up data to risk altering
previously stored knowledge within the system, or it can trigger learning of a new
representation if a good enough match is not available. In contrast, learning within
spatial and motor processes, such as VAM processes, is mismatch learning that is
used to either learn new sensory-motor, as in maps (e.g., Grossberg et al. (1993) or
to adjust the gains of sensory-motor commands (e.g., Fiala et al. 1996). These types
of learning are also complementary.
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Why are the types of learning that go into spatial and motor processes
complementary to those that are used for sensory and cognitive processing? My
answer is that ART-like learning allows the brain to solve the stability—plasticity
dilemma. It enables us to continue learning more about the world in a stable fashion
throughout life without forcing catastrophic forgetting of our previous memories.
On the other hand, catastrophic forgetting is a good property when it takes place
during spatial and motor learning. We have no need to remember all the spatial and
motor maps that we used when we were infants or children. In fact, those maps
would cause us a lot of trouble if they were used to control our adult limbs. We want
our spatial and motor processes to continuously adapt to changes in our motor
apparatus. These complementary types of learning allow our sensory and cogni-
tive systems to stably learn about the world and to thereby be able to effectively
control spatial and motor processes that continually update themselves to deal with
changing conditions in our limbs.

Why, then, are procedural memories unconscious? The difference between cog-
nitive memories and procedural, or motor, memories has gone by a number of
different names, including the distinction between declarative memory and proce-
dural memory, knowing that and knowing how, memory and habit, or memory with
record and memory without record (Bruner 1969; Miskin 1982, 1993; Ryle 1949;
Squire and Cohen 1984). The amnesic patient HM dramatically illustrated this dis-
tinction by learning and remembering motor skills like assembly of the Tower of
Hanoi without being able to recall ever having done so (Bruner 1969; Scoville
and Milner 1957; Squire and Cohen 1984). We can now give a very short answer
to the question of why procedural memories are unconscious: The matching that
takes place during spatial and motor processing is often inhibitory matching. Such a
matching process cannot support an excitatory resonance. Hence, it cannot support
consciousness.

In this regard, Goodale and Milner (1992) have described a patient whose brain
lesion has prevented accurate visual discrimination of object orientation, yet whose
visually guided reaching behaviors toward objects are oriented and sized correctly.
We have shown, in a series of articles, how head-centered and body-centered rep-
resentations of an object’s spatial location and orientation may be learned and used
to control reaches of the hand—arm system that can continuously adapt to changes
in the sensory and motor apparatus that is used to plan and execute reaching be-
haviors (Bullock et al. 1993; Carpenter et al. 1998; Gaudiano and Grossberg 1991;
Grossberg et al. 1993; Guenther et al. 1994). None of these model circuits has reso-
nant loops; hence, they do not support consciousness.

When these models are combined into a more comprehensive system architec-
ture for intelligent behavior, the sensory and cognitive match-based networks in the
What processing stream through the inferotemporal cortex provide self-stabilizing
representations with which to continually learn more about the world without under-
going catastrophic forgetting, while the Where/How processing stream’s spatial and
motor mismatch-based maps and gains can continually forget their old parameters
in order to instate the new parameters that are needed to control our bodies in their
present form. This larger architecture illustrates how circuits in the self-stabilizing
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match-based sensory and cognitive parts of the brain can resonate into conscious-
ness, even while they are helping to direct the contextually appropriate activation of
spatial and motor circuits that cannot.

1.21 Some Comments About Amodal and Modal
Visual Percepts

There are many other aspects of perception and cognition, notably of vision and
visual object recognition, which can be discussed in the light of recent model-
ing advances to shed light on consciousness. Here I make some summarizing
remarks whose detailed analysis and justification can be found in the original ar-
ticles. One issue of interest concerns the distinction between modal and amodal
percepts. An amodal percept, such as the percept of a vertical boundary between
the offset grating in Fig. 1.1c, is one which does not carry a visible perceptual sign.
As noted above, it can be recognized without being seen; we are conscious of it even
though it is perceptually invisible. A modal percept, such as a percept of brightness
or color, does carry a visible perceptual sign. I believe that all theories of conscious-
ness need to deal with how amodal percepts can occur because such percepts sharply
distinguish between our consciously “knowing” that an event has occurred even
though we do not consciously “perceive” it.

The FACADE theory of biological vision has provided an extensive analysis of
some of the conditions that determine whether a percept will be modal or amodal
(e.g., Francis et al. 1994; Grossberg 1994, 1997; Grossberg and McLoughlin 1997;
Grossberg and Mingolla 1985b; Gove et al. 1995). A key contribution of this the-
ory is to suggest how visual scenes are processed in parallel by cortical boundary
and surface systems, which are proposed to be realized by the interblob and blob
processing streams from the LGN to cortical area V4. Boundaries include illusory
contours (Fig. 1.1), as well as the boundaries that are formed in response to texture,
shading, and stereo cues.

A key insight of this theory is that “all boundaries are invisible” (i.e., amodal)
within the boundary processing stream, and that visibility is a property of the surface
processing stream. Boundaries are invisible within the boundary processing stream
because like-oriented signals from cortical simple cells that are sensitive to opposite
contrast polarities are pooled at complex cells. Complex cells can hereby respond
to contrasts that are either dark/light or light/dark, as can all subsequent stages of
the boundary system. As a result of this pooling process, a boundary can be formed
around an object whose relative contrasts with respect to its background may re-
verse along its perimeter. A secondary consequence is that a perceptual boundary,
by pooling across opposite contrast polarities (as well as all opponent colors), can-
not represent any visible property that depends upon knowing the direction of a
brightness or color change.

Modal percepts are predicted to occur within the surface processing stream.
Surface representations arise through interactions with the boundaries. First, the
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surface stream “discounts the illuminant,” or compensates for variable illumination
(Helmholtz 1962; Land 1977, 1986). This discounting process eliminates bright-
ness or color signals within homogeneously bright or colored regions of a scene,
which could otherwise cause serious confusions between variable lighting condi-
tions and the surface properties of objects in the world. At subsequent processing
stages, the boundaries interact with the discounted surface signals. Here, the bound-
aries suppress surface signals that are not spatially coincident with them. Boundaries
select surface signals that are spatially coincident with them and initiate a pro-
cess of filling-in whereby these selected signals can diffuse within the controlling
boundaries.

FACADE theory predicts that the boundaries which exercise this control occur
subsequent to the cortical processing stage at which visual inputs from both eyes are
binocularly fused. It was suggested in Grossberg (1987a) that, although the binocu-
lar matching process is initiated in cortical area V1, the stage at which the binocular
boundaries are completed occurs no earlier than cortical area V2.

During binocular rivalry, the inputs to the two eyes are mismatched in such a
way that image regions from only one eye at a time can be consciously perceived.
FACADE theory suggests how boundary signals from the two eyes compete in a
cyclical fashion through time, with the boundaries from one eye winning at any time
in each position. Such competition has been traced to the mechanisms whereby a
winning boundary is selected from among many possible boundary groupings, even
when the inputs to both eyes represent the same scene. The cyclicity of the percept
was traced to the habituative mechanisms whereby boundaries are rapidly reset in
response to rapidly changing imagery in order to prevent them from persisting too
long (see Francis et al. 1994) for an analysis of how long perceptual boundaries do
persist). Then the winning boundaries select those surface signals from the domi-
nant eye which are spatially coincident with them while suppressing the spatially
discordant surface signals from the losing eye. The first stage of such surface cap-
ture selects the surface properties from each eye separately. The selected surface
representations are predicted to be amodal. These selected surface properties are
then binocularly matched at a subsequent processing stage at which the modal, or
visible, surface representation is predicted to form. This is also the processing stage
at which visual figures are fully separated from one another and from their back-
grounds.

Grossberg (1987a) predicted that this binocular modal, or visible, representation
of the winning surface percept arises in cortical area V4, which resonates with in-
ferotemporal cortex during consciousness. Logothetis et al. (1996) have reported
consistent data on binocular rivalry from awake behaving monkeys. Schiller (1994)
has reported data from awake behaving monkeys that is consistent with the predic-
tion that figure—ground separation is completed in cortical area V4.

These results support the FACADE theory prediction that amodal percepts may
form in cortical areas V2 or before and that modal representations of surfaces may
first occur in cortical area V4. In further support of this hypothesis, Grossberg (1994)
explained many data about 3D figure—ground separation in which, say, amodal
representations of occluded object parts may be formed in cortical area V2 and
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used to recognize these occluded objects, even though they are not seen. Modal
representations of both occluding objects and the unoccluded parts of the objects
that they occlude may not be formed until cortical area V4. This is proposed despite
the fact that all of these cortical processing stages may incorporate the ART match-
ing rule within their laminar circuits and may resonate using both the intercortical
and intracortical feedback pathways that activate the layer-6-to-layer-4 on-center
off-surround networks, the former during attentional priming and the latter during
the selection of winning perceptual groupings.

Grossberg (1997) proposed that the modally conscious surface representations
in V4 may be used to recognize and to control reaching toward physically accessi-
ble objects, especially in infants, whereas the amodally conscious representations —
both of boundaries and of surfaces — in V2 may be used to recognize partially
occluded objects and to reach toward them via more indirect motor planning and
control circuits. This proposal provides a functional reason for making some visual
representations visible and others not visible; in particular, being able to distinguish
between modal (e.g., occluding) and amodal (e.g., occluded) representations helps
to prevent efforts to reach through an occluding object to the object that it is occlud-
ing. On the other hand, the proposal does not explain how the property of visibility is
achieved by one type of representation but not the other, particularly since both types
of representation may be assumed to be resonant. This fact does not contradict the
hypothesis that all conscious states are resonant states. It does show, however, that
further mechanisms are needed to explain why some of these resonant representa-
tions are modal whereas others are merely amodal.

The need for further mechanisms is well-illustrated by the following model-
ing prediction. It was predicted in Grossberg (1987a), and then used extensively
to explain much more perceptual data in Grossberg (1994, 1997), that a network
of double-opponent cells forms an important mechanism in the process whereby
boundaries select only those surface brightness and color signals that are spatially
coincident with them. Double-opponent cells are often cited as a key mechanism
of color perception (e.g., Livingstone and Hubel 1984). FACADE theory suggests
that such networks are used to form both amodal and modal surface representations.
In the amodal surface representations, double-opponent networks are predicted not
to generate a percept of visible color. Some other factor must be sought, to whose
discovery future research would be profitably directed.
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Chapter 2
Emergence of Intentional Procedures
in Self-Organizing Neural Networks

Henri Atlan and Yoram Louzoun

We have used a neural network formalism in order to analyze under which
conditions a positive answer could be given to the following question: can neu-
ral networks self-organize so that not only structures and functions not explicitly
programmed emerge from their dynamics, but also goals for intentional actions, set
up and achieved by themselves?

Such mechanistic models of intentional self-organization are useful in that they
allow to circumvent the usual circular explanation of intentionality by causal effects
of assumed intentional mental states on bodily movements.

From a mathematical and modeling point of view, we have presented a simula-
tion model for the analysis of intentionality through the study of intentional actions
(Louzoun and Atlan 2007). We limit ourselves in this paper to the cognitive inter-
pretation and the philosophical analysis of the obtained results. Intentionality in the
psycholinguistic sense of “meaning” — where there is no “goal” except for the con-
tent of a thought in an internal deliberation of a sentence meant to say something —
is left outside the scope of this work. We have limited ourselves to intentionality in
a pragmatic sense as it is observed in intentional actions to solve two problems of
causality: the apparent time inversion involved in final causes and the “mind—body”
causal relationship involved in the usual picture of a mental state being the case of
bodily movements and actions.

The system we have developed is designed to devise new goals by itself and to
reach these goals. The goals are determined by the capacity of a network to learn a
relation between effects and the events that caused them. The model is a metaphor
for the psychophysical goal learning process in cognitive beings. This process in-
volves the ability to predict rapidly the result of a set of events, so that an initial
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event is reproduced knowing its expected result. In other words, prediction (which
is knowledge) and intentional action are closely related. That is why this capacity is
modeled using a non-supervised learning network associated to a recurrent neural
network. However, while the prediction capacity is obviously based on memory of
previous experience, this knowledge must be allowed some degrees of freedom,
which produce new predictions of new events and the achievement of new goals.
In our model, this capacity is simply the result of network dynamics where closely
related but different states are associated in basins of attraction.

To summarize, the recurrent network represents a mechanistic causal process that
develops from a random initial state to a steady state. There is no trivial relation be-
tween the steady state and the initial state of the network. The very indirect relation
between initial and steady state represents the complexity of the causal relation in
real environments.

The feed-forward learning network creates a link between final and initial states,
allowing the time inversion occurring in goal-directed action. The input to the net-
work is the steady state of the recurrent network, and the output of the feed-forward
network is an initial state of the recurrent network, which is equivalent to a dy-
namic memory.

The selection mechanism chooses which final states are defined as goals, and
works like a non-programmed satisfaction function, emerging from the partially
random history of the system in its environment.

Our model is obviously not directly related to mental processes in its details.
It only represents a plausibility analysis to show that the self emergence of mean-
ingful actions is possible and can be explained by a relatively simple mechanism.
The model allows us to study, which mechanisms are essential to have such a
representation. The same question can also be addressed from the point of view of
Spinozist monism as will be further discussed. The combination of a simple model
and Spinoza’s propositions enable us to provide plausible answers to shed new light
on experimental results and propose ways to treat some of the most basic questions
in cognition.

2.1 Minimal Necessary Requirements

Goals emerge in our simulation from a combination of four elements: A seemingly
random process relating the initial and final states (which is actually a deterministic
process too complex to be directly deduced from the initial and final states), a limited
memory capable of remembering the relation between some initial and final states, a
learning algorithm that invents a systematic relation between final and initial states,
and an evolving set of required final states selected semi-randomly according to the
frequencies of their appearance. Note that goals would not emerge in the absence
of any of these elements. Thus, we think that our networks represent a minimal
structure where such goals can be obtained. Obviously one can extensively alter
the details and even completely replace the mechanistic aspect of each component.
However the same general elements must prevail in order for goals to emerge.
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e The first element required is an indirect dynamical link between initial and final
states. Learning the relation between a state and its direct result is not defined as
goal emergence. We define a learnt goal as a relation between an initial state and
a final state that cannot be directly guessed from the initial state. Another aspect
of the required dynamics is a difference between the probabilities to reach dif-
ferent final states. If all final states are reached with equal probabilities, the goal
emerging would only be a mirror of the network history and would not represent
an inherent property of the network.

e Memory is obviously required; it actually is the most important element of the
network. The seemingly minor role of remembering a relation during the learning
process is actually essential. In the absence of memory, the network would not
be able to retrieve an initial state from a final state. This “time inversion” is
the element giving the network a future prediction capacity. In other words, the
network is able to predict the future in certain conditions, since it has seen similar
evolutions and has learnt (either “erroneously” or “correctly”) a relation between
an initial state and the final state it led to. A similar conclusion can be drawn
for human behavior. Humans predict the future, since they have seen similar
evolutions in the past and have learnt (either erroneously or correctly) a relation
between a situation and its results.

e The learning algorithm is required since the capacity to attain goals depends
on the ability to find a “simple” rule relating some of the initial states to the
appropriate final states. Again one can infer from the network to human behavior,
one can predict the future, only in cases similar to past events. These past events
and their results were learnt and a time inversion mechanism is used to relate new
situations to their future.

¢ Finally, the evolving set of goals allowing for both stability and newness is re-
quired in order to distinguish between goals that can and cannot be learnt, and
goals for which no simple rule can be obtained. A specific aspect of the goals
that we have requested in the current application is stability (i.e. we required that
goals should change slowly compared to the network dynamics). This request is
not essential. One could imagine rapidly changing goals (e.g. the mind of a small
child). However, most aspects of human behavior are based on a set of relatively
long term goals. The emergence of these “long term goals” is equivalent to the
emergence of stable goals in the current application. This element is thus not
required for the goal emergence per-se, but it adds an aspect of meaning to the
goals. In addition, the possibility of newness is embedded into the role of small
random variations in the definition of goals.

2.2 Externally Versus Internally Defined Goals

In the current application, we minimized the model and merged together two differ-
ent tasks. The memory device which allows for goal directed action and the learning
device which allows for goal definition by the system itself are merged into the op-
eration of the feed-forward, perceptron-like, network.
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Of course, the two different tasks performed by the feed-forward network can be
separated, especially if the model is designed in a more trivial fashion to achieve
predefined goals, assigned from outside the system. Contrary to a goal defined from
outside, a self-generated, internally defined goal is not a goal because it has some
inherent value from the beginning. It is a goal because it represents a properly learnt
and stable link between initial and final states. A set of such goals is an emerg-
ing and stable property of the network’s structure and the history it underwent.
Dependence on history represents how the system adapts itself and generates new
goals accordingly. On the other hand, externally predefined goals can be learnt more
simply. Each of them must be coded into an attractor state of the recurrent network;
and then kept in memory as one of the final states to be eventually retrieved with an
initial state leading to it from its basin of attraction. (It is clear that only attractor
states of the recurrent network can be established as goals, either by external im-
position or by non-supervised learning, since a state can be stored as a goal only if
the system can reach it with a high enough probability.)

2.2.1 Atthe Beginning

For example, one could consider that the initiation of the learning process needs
not start from scratch, as in the present model. Before learning, a basic set of goals
may have been stored as an initial set of “instinctual” goals with which to start.
This may be the result, in the real world, of long term evolutionary processes, which
may be simulated, for example, by genetic algorithms driven by selection for sur-
vival. Such processes must be distinguished from the mechanisms of setting oneself
cognitive goals that is studied in the present work. Such a priori goals may produce
built in, basic drives to start with, like biochemical signals for hunger, sexual drive,
tissue damage repair and so on. These signals would affect only the initial set up of
goals, but not the general mechanism of goal development. One can even set a per-
manent “vital” set of goals selected through a long evolutionary process. These goals
can be hard wired not to change. Another possibility would be that some goals have
an inherent higher score than others. We have tested models to include such initial
goals or preferred goals, and the subsequent picture emerging from these models is
similar to what we currently report.

According to our model, intention and action appear to be one and the same re-
alization, simply represented in different ways. This implies that an intention to act
is always normally associated with its execution. In other words, both the action
and the intention are represented by links between initial and final states. The dif-
ference between the action and the intention is actually the difference between an
action actually performed and its initiation, as indicated by neurophysiological data
discussed further. This difference results in our capacity to stop an action once ini-
tiated. We would call an action interrupted after being initiated, an intention to do
an action and invent a mental state to represent it. This view is opposed to the usual
mentalist assumption that an intention exists first in the mind as a “pure” mental
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state, possibly, but not normally associated to its execution. In our model, as in the
work of Anscombe (1957), intentions are not defined as pure subjective states of
the mind, but as properties of some sets of actions, which make them intentional
and different from non-intentional ones. The fact that a subjective intention to act
may not be followed by its execution is not to be seen as the normal flow. Rather,
it must be related to an external obstacle to the execution or to any other kind of
superimposed inhibition preventing the iterative process to reach completion.

One does not need to invent intentional mental states as causes of teleological
actions. This is of course in contrast with common sense or folk psychology based
on our initial insight of the causal relation between will and action. However, neuro-
physiology data on voluntary movements contradict this commonly accepted picture
as well and support our model in showing that the conscious will to trigger an action
does not necessarily precede the action.

2.3 Neurophysiology of Voluntary Movements

Following observations by Benjamin Libet and his co-workers (Libet et al. 1983;
Libet 1985, 1992), recently confirmed and expanded (Haggard and Eimer 1999;
Haggard et al. 2002), spontaneous short-term conscious decision to act with no pre-
planning does not precede but follows by approximately 300 ms the initiation of
movement, as measured by the Readiness Potential cortical activity. Thus, initiation
of a voluntary action is triggered by some unconscious activity, and the following
awareness is interpreted as its cause. When asked about the timing of their decision,
subjects perceive it, by antedating, before the initiation of the action. However, the
motor activity itself follows by 150-200 ms the conscious decision to act, which
means that a conscious “veto” is possible, as an inhibition of the movement af-
ter its inhibition.

Most of the controversy around this work was triggered by the difficulties to
reconcile these data with the traditional Cartesian concept of free will and to inte-
grate these data within the commonly accepted mentalist causal theories of action.
The model presented in our work contributes to make these data intelligible within
an alternative monist theory of action. Mentalist theories of action, based on the
idea that mental representations described as subjective states of the mind, can
cause objective brain states able to trigger physical movements, were extensively
analyzed and criticized already in 1957 in a philosophical and psychological context
(Anscombe 1957). This criticism, as well as our model, contradicts our common
sense representation of free will as a direct cause of voluntary actions. However,
the general question of free will as an illusion or a reality remains open, because
the model, as do Libet’s data, allows believers in free will to relate it in an indirect
way, to a possibility of vetoing a movement after its initiation, rather than to the
initiation itself.

Antedating the conscious decision to act may be thought of as a temporal illu-
sion (analogous to a spatial visual illusion), with a possible adaptive value whereby



52 H. Atlan and Y. Louzoun

voluntary actions are linked to our memory-based capacity of prediction and self-
awareness (e.g. (Llinas 2001)). As in our model, inhibition of movement completion
after initiation explains intentional action with no execution. However, this does not
necessary infer that the problem of free will is solved in one way or another: if one
can relate it to vetoing the execution of a movement, one cannot exclude, on the
other hand, that vetoing itself would be caused by a non-conscious event, in spite of
our spontaneous subjective conscious experience.

Thus, the question of whether free will is an illusion or not is definitely left
outside the scope of this study. Similarly, long-term deliberation leading to inten-
tions to do something in principle with no specific timing for the actual decision
to act, are left outside Libet’s observation. In the experimental setting, the patients
were asked to perform some movement and to decide upon the timing. It is clear that
their very participation in the experiment indicates their agreement and intention to
do it before their decision.

2.4 Philosophical Interpretation

One feature of the views presented here is the monist ontology involved in the ap-
proach to the mind-body problem. Spinozist philosophy is certainly the most radical
monist attitude towards this problem. This is apparent, for example, in propositions
such as
“Body cannot determine mind to think, neither can mind determine body to motion or rest or
any state different from these, if such there be” (The Ethics, 111, 2), where Spinoza denies the
possibility of causal relationships between the mind and the body, not because they would

pertain to two different substances, as in Descartes, but precisely because they are “one and
the same thing, though expressed in two ways” (Ibid. II, 7, note).

The analysis of some aspects of this psycho-physical monism will help to better
understand the philosophical counterintuitive implications of our model, as well
as of the neurophysiological data on voluntary movements briefly reported in the
previous section.

Let us first note that this Spinozist denial of a causal relationship between mind
and body states, just mentioned, implies that the cause of a voluntary bodily move-
ment must always be some previous bodily (brain) event or set of events, and not a
conscious decision viewed as a mental event as described by subjective reports about
conscious experiences. The difference from a non-voluntary movement is the nature
and degree of conscious experience accompanying it. But in any case, a conscious
mental event in this context may accompany the brain event but not be its cause,
being in fact identical with it, although not describable in the same language. Re-
sults from neurophysiology support this view: unconscious initiation of voluntary
action precedes the conscious decision to trigger the movement. Thus, our model
may provide Spinozist monism, however counterintuitive, with some theoretical and
philosophical interpretation.

This kind of counterintuitive identity between different properties or events,
identical but not describable by synonymous enunciations, was called a “synthetic
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identity of properties” (Putnam 1981), to be distinguished from the usual analytical
identity, where synonymous descriptions can replace one another. Hilary Putnam
found an example of synthetic identity in the notion of physical magnitudes, which
we employ in physics, such as “temperature” and “mean molecular kinetic energy”
being synthetically, but not analytically, identical. In the same context, Putnam ex-
plicitly related the Spinozist psycho-physical identity to such a synthetic identity, as
a way to overcome many well known difficulties in understanding this approach to
the mind—body problem (see also (Atlan 1998a)).

Similar results on affects and emotions, indicating a lack of causality between
body and mind, have been proposed by A. Damasio, with the same reference to
Spinozist monism as its philosophical interpretation (Damasio 2003).

This stance, as well as the elaborated Wittgensteinian view of intentional descrip-
tions (Wittgenstein 1953), has been neglected by most philosophers and cognitive
scientists, mostly because it contradicts our common sense experiences and the com-
monly accepted ethical implications of free will which go with them. Thus, under
the influence of mentalist theories in psychology (for analysis and criticism see e.g.
Anscombe 1957; Davidson 1970; Fodor 1981; Shanon 1993; Chalmers 1995), in-
tentions are viewed as some kinds of conscious mental states, able to cause bodily
movements whenever an intentional action is executed. These theories raise several
difficult questions, such as:

1. How can a mental state be the cause of a physical movement?
2. More generally, what is the conscious intentional experience made of?

The first question has been addressed, more or less successfully, by several philoso-
phers. Among them, Donald Davidson’s theory of action may be the most compre-
hensive (Davidson 1970, 1999), especially in view of his definite monist attitude,
which he explicitly relates to The Ethics of Spinoza. However, his willingness to
stick to common sense conscious subjective and ethical experiences does not allow
him to overcome serious difficulties in trying to reconcile the Spinozist explicit de-
nial of causal relationship between subjective states of mind as such and objective
bodily movements, with his “anomalous monism” (Davidson 1991; Atlan 1998a).

The second question covers several problems related with different aspects of
what we call consciousness. According to David Chalmers (1995), some of these
problems are ‘“easy”, although not trivial: they deal with specific cognitive as-
pects of consciousness, related with objective mechanisms accounting for cognitive
properties, such as memory, learning, adaptation, etc. However, what he calls the
“hard problem” is the “question of how physical processes in the brain give rise
to subjective experience”. This question is the same in the opposite direction as
that of intentional actions, where subjective intentions are supposed to cause physi-
cal movements.

In our work, we depart from mentalist causal theories of action and we try to
come back to a more objective approach to the question of causality (Atlan 1998b).
The model presented here exhibits one of the main features outlined by Anscombe in
order to circumscribe the logical difficulties of these theories, namely the approach
of intentionality through the study of intentional actions. As mentioned above, this
implies that intentions and actions are not dissociated to start with, and that the
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normal state of affairs is the execution of the intention. Such a dissociation, which
may occur when an intention is not accompanied by an action, is the result of an
obstacle or inhibition of the execution.

In this view, the “hard problem” of causality between the mental and the physical
is eliminated: there is no causal relationship between an intention as a mental state
and action as a bodily movement, because “roughly speaking, a man intends to do
what he does” (Anscombe 1957). Because this view seems counter-intuitive and
raises new questions, following the quest initiated by Wittgenstein about the status
of intentional statements language games, Anscombe feels compelled to add: “But
of course that is very roughly speaking. It is right to formulate it, however, as an anti-
dote against the absurd thesis which is sometimes maintained: that a man’s intended
action is only described by describing his objective”. In many instances the objec-
tive of the agent is a description after the fact, aiming at answering the question:
“Why did you do it?”.

Let us conclude with several features of the non-mentalist model of intentions
presented in this work, which appear almost literally in Spinoza’s writings, at the
point that one could speak of a “Spinozist neurophysiology”.

1. Decision to act and previous knowledge allowing prediction are two different as-
pects of the same process associated with voluntary actions, although the former
seems directed towards the future and the latter towards the past. That is the case
because intentions are described by means of intentional actions and not of in-
tentional mental states as causes of the actions. “Will and understanding are one
and the same” ((Spinoza 1677),11, 49, corollary) seems to be an abrupt statement
of this counterintuitive concept.

2. In our model, general sets of goals are memorized from learning by experience.
The aquired knowledge results from the interaction between the internal structure
of the network and the history of its most frequent encounters with classes of
stimuli from its environment.

In the context of the classical controversy about the reality of “Universals”, we read:

... these general notions (called Universals) are not formed by all men in the same way,
but vary in each individual according as the point varies, whereby the body has been most
frequently affected and which the mind most easily imagines or remembers. For instance,
those who have most often regarded with admiration the stature of man, will by the name
of man understand an animal of erect stature; those who have been accustiomed to regard
some other attribute, will form a different general image of man, for instance, that man is a
laughing animal, a two-footed animal without feathers, a rational animal, and thus, in other
cases, everyone will form general images of things according to the habit (disposition) of
his body ((Spinoza 1677), 11, 40, note).

Thus, this “disposition of the body” is made by the way the cognitive system
(mind-body) is assembled and also by the way it has been most frequently affected.

3. According to the neurophysiological data on voluntary movements reported be-
fore, as well as in our model, voluntary action is triggered by some unconscious
stimulus, accompanied but not caused by a conscious state of the mind. A con-
scious observation with an understanding of our action accompanies that action
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but is not its cause. And we can interpret it as a decision of our will which de-
termines the action, because we do not know the unconscious events in our body
which are the real causes.

Now all these things clearly show that the decision of the mind and the desire or decision of
the body are simultaneous in nature, or rather one and the same thing, which when consid-
ered under the attribute of Thought and explained through the same we call a decision, and
when considered under the attribute of Extension and deduced from the laws of motion and
rest we call determination ((Spinoza 1677), 111, 2, note).

4. Asnoted in Libet’s observations there is a slight delay between the triggering of
action and our being conscious of it, because consciousness and understanding
take time: as in our model, they need to be retrieved from memory. In other
words,

we can do nothing by a decision of the mind unless we recollect having done so before
((Spinoza 1677), 111, 2, note).

5. In the stance adopted here, we obviously /ose something, namely common sense
about free will and causation of actions by decisions of a non-bodily mind. How-
ever, we gain understanding of intentional actions without resorting to hidden
causal properties of mental states. Let us note that the reality of free will is not
necessarily denied, although its content is modified. According to Libet, it can be
located in a kind of veto function, i.e. a possible inhibition of movement after it
has been initiated. In addition, nothing is said here about the possible effects of
long term deliberations and decisions to act “in principle”, with a more or less
extended period of time until the decision is made to start the action. Spinoza’s
stance about free will is more radical:

...men think themselves free on account of this alone, that they are conscious of their
actions and ignorant of the causes of them; and, moreover, that the decisions of the mind are
nothing save their desires, which are accordingly various according to various dispositions
of their and other interacting bodies ((Spinoza 1677), note on proposition III, 2, mentioned
above).

6. At last, the picture of intentional actions presented in this work helps to better
understand what “desire” in the practical syllogism is about': an unconscious
drive with awareness of the goal which one is driven to.

! Let us recall the classical description of intentional actions by the practical syllogysm:

- Agent A desires to be in state S.
- A knows or believe that C is a cause for S.
- Therefore A performs C.

This description assumes intentional mental states from the beginning, such as desire, knowledge,
belief. In our model, knowledge or belief are just retrieved memories of previous causal events. In
addition, as Elizabeth Anscombe rightfully noticed, the first proposition of the syllogism may be
conflated with the third. Contrary to the usual demonstrative syllogism (Men are mortal, Socrates is
a man, etc.), the first proposition here does not add information: it is contained in the “therefore” of
the third proposition. Our model may be seen as a computer simulation of this modified syllogism,
where intentional mental states causing intentional actions and different from them are not needed.
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This definition of desire has been extended further by Spinoza to the realm of moral
judgements:

Desire is appetite with consciousness thereof. It is thus plain from what has been said, that
in nocase do we strive for, wish for, long for, or desire anything, because we deem it to be
good, but on the other hand we deem a thing to be good, because we strive for it, wish for
it, long for ir, or desire it ((Spinoza 1677), 111, 9, note).
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Chapter 3
Action Goal Representation and Action
Understanding in the Cerebral Cortex

Leonardo Fogassi

3.1 Introductory Remarks

Classically it has been assumed that the sector of frontal cortex devoted to motor
control has the main aim of coding movements, that is the parameters necessary
to accomplish joints displacements such as amplitude and direction. More recently,
another view has been proposed, that maintains that the main function of the motor
cortex is that of coding goal directed actions (see Rizzolatti et al. 2000, 2004). Ac-
cording to this view, motor neurons would define a limited number of motor goals,
instead of computing an exponential number of movements. Once these goals are
coded, their implementation, including movement parameters, would be performed
by areas with more executive functions, such as MI. The neurophysiological data
of the last twenty years show that the goal interpretation can be applied to many
areas of the motor cortex. Actions are indeed coded in several premotor areas and,
more extensively, in the parieto-frontal circuits linking specific premotor and pari-
etal areas (see Rizzolatti et al. 1988, 1998, 2000, see also below). In particular,
several studies carried out in the ventral premotor cortex of the macaque monkey
(areas F4 and F5) showed that area F4 code axial and proximal actions toward three-
dimensional objects in space (Gentilucci et al. 1988; Fogassi et al. 1996), while area
F5 code different types of hand and mouth actions (Gentilucci et al. 1988; Rizzolatti
et al. 1988; Ferrari et al. 2003).

3.2 Perception and Action Are Strictly Inter-Related

In the classical view of the motor cortex, and in general of cortical functioning,
it was maintained that the flow of information was directed from parietal to frontal
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cortex, where the parietal cortex represented the higher stage of sensory elaboration,
the outcome of which (the percept) was considered to be fed to motor cortex that,
passively receiving this outcome, would have used it in order to execute movements
in relation to sensory stimuli (see Goodale and Milner 1992). The discover that mo-
tor cortex contains a mosaic areas, many of which coding goal-directed actions, and
the demonstration that each of these areas is reciprocally connected to a specific
area of the parietal cortex, challenged this concept. There is now good consensus
that different parieto-premotor circuits are involved in specific types of sensorimotor
transformations, each dependent on a specific effector (arm, hand, eye) (Rizzolatti
et al. 1998; Rizzolatti and Luppino 2001; Rizzolatti and Matelli 2003). The reci-
procity of the connections between the parietal and the frontal area constituting each
circuit is against a rigid separation between perceptual and motor properties, but
rather points to a sharing of these functions inside each circuit. Moreover, as it will
be discussed in the next chapters, these circuits are not only used for sensorimotor
transformations, but provide the basis for the emergence of different types of cogni-
tive functions, such as space perception, action understanding, coding of intention.

In the next chapter I will show how actions are coded by single neurons in ven-
tral premotor and inferior parietal cortex of the monkey and how action coding can
be exploited for understanding actions made by others. Then I will present evi-
dence that also in humans there are circuits for action coding and understanding
similar to those found in monkeys. Finally, I will suggest, based on experimental
evidence, that these cortical circuits and the mechanisms conveyed by the neurons
belonging to them provide the basis for higher cognitive functions such as imitation
and intention understanding.

3.3 A Vocabulary of Actions in Ventral Premotor Area F5

Area F5 is located in the rostral part of ventral premotor cortex. This area, anatom-
ically identified by means of the cytochrome oxidase staining technique (Matelli
et al. 1985), when microstimulated evokes hand and mouth movements (Gentilucci
et al. 1988) Single neurons recording experiments demonstrated that neurons in
this area discharge when a monkey executes goal-related hand and mouth actions
(Rizzolatti et al. 1988) such as grasping, manipulating, holding, tearing objects.
Most of them discharge during grasping actions. Some of them discharge, for exam-
ple, when the monkey grasps food with the hand or with the mouth, thus coding the
action “grasp” in an abstract way, independently of the effector used for executing
that action. Other F5 motor neurons code actions in a more specific way discharg-
ing, for example, when the monkey grasps a small object using a precision grip and
not when it grasps food using a whole hand prehension.

Beyond purely motor neurons, which constitute overall the majority of all F5
neurons, area F5 contains also two categories of visuomotor neurons, the mo-
tor properties of which are indistinguishable from those of the former category.
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However, their visual properties are peculiar. The first category of visuomotor
neurons is formed by neurons responding to the presentation of objects of partic-
ular size, shape and orientation. The size or the shape of the object effective in
triggering the neurons discharge is very often congruent with the specific type of
action they code (Rizzolatti et al. 1988). These neurons were named ‘““canonical”
neurons (Rizzolatti and Fadiga 1998; Rizzolatti et al. 2000, 2004). Recently we in-
vestigated in detail the properties of these neurons (Murata et al. 1997; Raos et al.
2006), by using a behavioral task in which the monkey was presented with several
objects of different shape and size, and it had to observe the object and, after a vari-
able delay, to grasp it (Movement in light condition). In another condition of the
same task the monkey had only to observe the presented object, without grasping it
(Object fixation condition). The results confirmed that the motor properties of purely
motor and canonical neurons are specific for the type of grip used for grasping the
different objects. During object observation performed in the “Movement in light”
condition and in “Object fixation” condition canonical neurons presented a visual
response, the specificity of which was congruent with that found during movement
execution. Very interestingly, a cluster analysis revealed that the visual responses of
canonical neurons grouped according to the type of prehension, and not according
to the objects visual properties. For example, a typical cluster was constituted by
cone, cube and sphere that, although different in their shape, were grasped in the
same way. This suggests that the visual response of canonical neurons can be better
interpreted as a kind of motor representation of the object. In other words, while the
pictorial object description necessary for recognizing and discriminating objects is
represented in the inferior temporal cortex, the premotor cortex codes a pragmatic
object description. This object motor representation can be used for executing the
type of grip necessary to grasp it or can remain in the status of a potential motor act,
thus subserving a more cognitive function, that of object knowledge.

The second category of F5 visuomotor neurons is constituted by “mirror” neu-
rons, that will be described in a later section.

3.4 Goal Representation in the Inferior Parietal Cortex

The inferior parietal cortex has been traditionally considered as an associa-
tion cortex, in which polymodality would subserve cognitive functions, such
as, for example, space coding. However, the single neuron recording studies of
Mountcastle et al. (1975) and Hyvarinen et al. (1982) showed that the inferior pari-
etal cortex is endowed also with the fundamental property of coding eye, hand and
arm movements. These pioneering studies were confirmed by other more recent
studies showing that areas belonging to these regions are crucial for sensorimotor
transformation for visually guided hand actions (see for example Taira et al. 1990;
Murata et al. 2000) and for visually guided eye movements (see for example
Andersen et al. 1990). Furthermore, lesion and inactivation studies clearly demon-



60 L. Fogassi

strated the occurrence of specific motor deficits after damage to posterior parietal
cortex, including misreaching, ocular dysmetria and disruption of hand shaping
in monkeys (Faugier-Grimaud et al. 1978; Gallese et al. 1994; Li et al. 1999;
see Hyvarinen et al. 1982). Note that also lesions of posterior parietal cortex
in humans determine motor deficits, such as optic ataxia, impairment in grasping
movements, apraxia, motor neglect and directional hypokinesia in humans (Perenin
and Vighetto 1988; Binkofski et al. 1998; see De Renzi and Faglioni 1999).

Recently Rozzi et al. (2008) explored the functional properties of the inferior
parietal lobule (IPL), and found that a large percent of neurons respond during ex-
ecution of motor acts. The representation of these acts in the lobule follows a gross
somatotopy, with the mouth motor field located rostrally, the hand and arm motor
fields in an intermediate position and, finally, the eye field located caudally. Very in-
terestingly, the responses of most IPL motor neurons code the goal of the motor acts
and not specific movement parameters. For example, there are neurons responding
when the monkey grasps a piece of food with the hand or with the mouth; other
neurons respond during reaching for grasping, but not during reaching for moving
away, although a similar arm extension is performed in both conditions.

3.5 Motor Organization in the Inferior Parietal Lobule

Before describing the motor organization found in IPL, it is necessary to define
more strictly what is a motor act and what is an action. By motor acts we mean
movements that have a goal, but whose goal is only partial (e.g. grasping a piece of
food). By motor action we mean a series of motor acts that, as their final outcome,
lead to areward (e.g., eating a piece of food after reaching it, grasping it and bringing
it to the mouth).

Recently, we recorded motor neurons from the hand representation of IPL in or-
der to assess whether grasping neurons were equally active when grasping is part of
different actions leading to different goals (Fogassi et al. 2005). The recorded neu-
rons were tested while the monkey performed a task involving two main conditions.
In one, the monkey reached and grasped a piece of food located in front of it and
brought it to its mouth. In the other, the monkey reached and grasped an object and
placed it into a container. In the second condition the experimenter gave the monkey
a reward if it performed correctly the task. Note that in this task the first motor act
of both conditions is the same (grasping).

The results showed that the majority of grasping neurons discharged differently
according to the intended goal of the action in which grasping was embedded.
Neurons coding grasping for eating discharged strongly when grasping preceded
bringing to the mouth than when it preceded placing in the container. Neurons cod-
ing grasping for placing showed the opposite behavior. These data suggest that:
(a) the IPL contains pre-wired or learned chains of motor neurons, each coding a
specific final goal; (b) the discharge of IPL grasping neurons reflects the intention
of the performing agent.
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This organization of IPL appears to be appropriate for providing fluidity in ac-
tion execution. Each neuron codes a specific motor act, but at the same time (being
embedded into a specific action) is linked, and possibly facilitates, the next motor
act according to the action goal. In addition, this motor organization includes also
the concept of intention. This does not mean that intention is directly coded by IPL
motor neurons, because other areas, for example prefrontal cortex, could have a
major role in this function.

3.6 Mirror Neurons

Mirror neurons constitute the second category of F5 visuomotor neurons.
They discharge when a monkey observes another individual (a human being or
another monkey) performing a hand action in front of it (here the term ‘“‘action”
will be used in a more general sense, not as strictly defined in the previous chapter)
Differently from canonical neurons, they do not discharge to the simple presenta-
tion of food or of other interesting objects. They also do not discharge, or discharge
much less, when the observed action is mimicked without the target object. The re-
sponse is generally weaker or absent when the effective action is executed by using
a tool instead of the hand. Thus, the only visual stimulus effective in triggering
mirror neurons response is a hand-object interaction (Gallese et al. 1996; Rizzolatti
et al. 1996a).

By using the coded observed action as a classification criterion, it appears that
mirror neurons code actions that generally coincide with or are very similar to those
“motorically” coded by F5 motor neurons, e.g. grasping, manipulating, tearing,
holding objects. More than half of F5 mirror neurons responds to the observation
of only one action, while the remaining neurons respond to the observation of two
or more actions. Among neurons responding to the observation of grasping action
(by far the most effective in driving the visual response of mirror neurons) there
are some very specific, since they code also the type of observed grip. Thus, mirror
neurons can present different types of visual selectivity: selectivity for the observed
action, and selectivity for the way in which the observed action is performed.

3.6.1 Mouth Mirror Neurons

After the discovery of mirror neurons that discharge to the observation and execution
of hand actions, another category of mirror neurons, activated by the observation
and execution of mouth actions were described (“mouth mirror neurons”, Ferrari
et al. 2003). Most mouth mirror neurons respond to observation of ingestive ac-
tions such as biting, tearing with the teeth, sucking, licking, etc., showing a high
specificity, similarly to hand mirror neurons. They do not respond to simple object
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presentation or to mouth mimed actions. When the congruence between the visual
and the motor response is analysed, most of these neurons (about 90%) show a very
good congruence. A smaller but significant percent of mouth mirror neurons re-
spond specifically to the observation of mouth communicative actions belonging to
the monkey repertoire, such as lips-smacking, lips protrusion or tongue protrusion.
Mouth mirror neurons of this sub-category do not respond, or respond very weakly,
to the observation of ingestive actions.

3.6.2 Motor Properties of F5 Mirror Neurons

The most important property of mirror neurons is that their “visual” responses are
matched, at the single neuron level, with motor responses which, as emphasized
above, are virtually indistinguishable from that of F5 purely motor or canonical
neurons.

Most mirror neurons show a good congruence between visual and motor re-
sponses. However there are two major categories: “strictly congruent” neurons, in
which observed and executed actions coincide (about 30% of all F5 mirror neurons),
and “broadly congruent” neurons, in which the coded observed action and the coded
executed action are similar but not identical (60%). In some cases the congruence
could be defined according to a logical or “causal” sense: for example a neuron
could respond when the monkey observed an experimenter placing a piece of food
on a tray and when the monkey grasped the same piece of food. The two actions can
be considered to be part of a logical sequence.

The congruence found between the visual and motor responses of mirror neu-
rons suggests that every time an action is observed, there is an activation of the
motor circuits of the observer coding a similar action. Strictly congruent mirror
neurons could be more involved in a detailed analysis of the observed action.
These neurons could be suitable for imitation (see below). In contrast, broadly
congruent neurons could have the capacity to generalize across different ways of
achieving the same goal, thus probably enabling a more abstract type of action cod-
ing. Moreover, these neurons could be very important for appropriately react within
a social environment and for communicating, by responding with gestures to other
individuals gestures. In fact, these neurons “recognize” one or more observed ac-
tions, and produce an output that can be ethologically related to them.

3.7 Mirror Neurons and Action Understanding

An important property of mirror neurons is that when the agent mimics the action
in absence of the target, the response of mirror neurons is much weaker or absent.
We can suppose that as monkeys do not act in absence of a target, they do not inter-
pret observed mimicking as a goal-directed action. These observations suggest that
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mirror neurons may play a crucial role in understanding the goal of another indi-
vidual action. This understanding occurs because of the activation, in the observer,
of his/her own motor representation of the goal.

In everyday life we can understand the goal of an action made by another person
also when visual information about the observed action is incomplete, for example
when part of the observed action occurs out of sight. A series of experiments was re-
cently carried out to address the issue of whether mirror neurons become active also
during the observation of partially hidden actions (Umilta et al. 2001). The experi-
ments consisted of two basic experimental conditions. In one the monkey observed
a fully visible action directed toward an object (“Full vision” condition). In the other
it observed the same action, but its final crucial part (hand—object interaction) was
hidden behind an occluding screen (“Hidden” condition). Note that in this condition
the monkey knew that an object was present behind the screen. In two control con-
ditions (“Mimicking in Full vision”, and “Hidden mimicking”) the same action was
mimed without object, both in full vision and behind the occluding screen. Note that
in ‘Hidden mimicking’ condition the monkey knew that there was no object behind
the screen.

The results showed that the majority of tested F5 mirror neurons responded to
the observation of hand actions even when the final part of the action, i.e. the
part triggering the response in full vision, was hidden from the monkey’s vision.
However, when the hidden action was mimed, with no object present behind the oc-
cluding screen, there was no response. It appears therefore that the mirror neurons
responsive in the Hidden condition are able to generate a motor representation of
an observed action, not only when the monkey sees that action, but also when it
“knows” its outcome without seeing its most crucial part (i.e. hand—object interac-
tion). These results corroborate the hypothesis, previously suggested, that the mirror
neurons mechanism is at the basis of action understanding (Gallese et al. 1996;
Rizzolatti et al. 1996, 2004).

Another demonstration of the involvement of the mirror neuron system in ac-
tion understanding is represented by the presence of another category of mirror
neurons, named audio-visual mirror neurons. These neurons become active when
monkeys not only observe, but also hear the sound of an action (Kohler et al. 2002).
The response of these neurons are specific for the type of action seen and heard.
For example, they respond to peanut breaking when the action is only observed,
only heard or both heard and observed, and do not respond to the vision and sound
of another action, or to unspecific sounds. Note that often the neuron discharge to the
simultaneous presentation of both the visual and the acoustic inputs is higher than
the response to either of the inputs, when presented alone. These data show that the
acoustic input has access to the motor cortex of a listener allowing him to retrieve
the action representation present in this area, thus accessing to the action content.
This content is coded by audiovisual mirror neurons, independently of whether these
actions are observed, listened or executed. Interestingly enough, the capacity of rep-
resenting action content independently of the modality used to access this content is
typical of language.
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3.8 The Mirror Neuron Circuit

Mirror neurons are endowed with both visual and motor properties. What is the ori-
gin of their visual input? Data from Perrett and coworkers (Perrett et al. 1989, 1990)
show that in the anterior part of the superior temporal sulcus (STSa) there are neu-
rons responding to the sight of biological motion, that is to the observation of other
individuals’ movements, performed with different body parts, such as head, legs,
body. One category of these neurons is specific for the observation of hand-object
interactions but, differently from mirror neurons, apparently do not discharge when
the monkey executes the same hand actions. These neurons could provide the visual
information to the cortical circuit involved in matching action observation with
action execution. STSa has no direct connections with ventral premotor cortex,
where area F5 is located. Thus, a functional connection between STSa and F5 could
be possibly established only indirectly by means of two pathways: one throughout
the prefrontal cortex, the other through the inferior parietal lobule, since STSa
is connected with both these cortical regions (Cavada and Goldman-Rakic 1989;
Seltzer and Pandya 1994; Rozzi et al. 2006). Of these two pathways the first one
seems the most unlike, since the connections between area F5 and prefrontal cortex
are present but very weak (Matelli et al. 1986). In contrast, the connections between
the inferior parietal lobule and ventral premotor cortex are very strong (Matsumura
and Kubota 1979; Muakkassa and Strick 1979; Petrides and Pandya 1994; Matelli
et al. 1986; Cavada and Goldman-Rakic 1989; Rozzi et al. 2006).

On the basis of this anatomical evidence, we recently re-investigated the proper-
ties of the inferior parietal lobule (IPL), looking for the possible presence of mirror
properties. First of all we could confirm that in this area, in particular in its ros-
tral half, there are neurons responding to visual or somatosensory stimulation or
both (see Hyvirinen 1981; Graziano and Gross 1995). As described in a previous
chapter, we also found many neurons responding during arm, hand and mouth ac-
tions (Gallese et al. 2002; Rozzi et al. 2008). In addition, we found, very likely in
area PFG, also neurons responding to the sight of hand-object interactions (Fogassi
etal. 1998, 2005; Gallese et al. 2002; Rozzi et al. 2008). Of them, 70% had also mo-
tor properties, being activated when the monkey performed mouth or hand actions
or both. These neurons were called “parietal mirror neurons” (Gallese et al. 2002;
Fogassi et al. 2005).

Parietal mirror neurons, similarly to F5 mirror neurons, respond to the obser-
vation of several types of single or combined actions. Grasping action, alone or
in combination with other actions, is the most represented one. Differently from
F5 mirror neurons, a high number of parietal mirror neurons are activated by the
observations of two hands interacting with an object. Parietal mirror neurons re-
sponded during the execution of hand, mouth, or hand and mouth actions and the
vast majority of them present either a strict or a broad congruence between ob-
served and executed action, accordingly to the same criterion used for analyzing
the congruence of F5 mirror neurons. Among broadly congruent neurons, a signif-
icant number entered in the category “logically related”, i.e. neurons discharging
during the execution of an action that could be seen as the logical prolongation of
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the effective observed one. For example, the effective observed action could be plac-
ing a piece of food on a tray, while the effective executed action could be grasping
the piece of food. The possible role of these neurons will be discussed below, in the
section concerning intention understanding.

Finally, in IPL there are neurons that respond only to the observation of hand ac-
tions, but are devoid of motor properties. These neurons, similar to those described
in STSa, confirm that parietal cortex could be the link necessary for matching ob-
served and executed actions.

Summing up, the presence of mirror neurons in both parietal and ventral
premotor cortex strongly suggests that the mirror neuron system is formed through
the anatomical temporo-parieto-premotor circuit. As it will be described below, a
similar circuit is also present in humans.

3.9 The Mirror System in Humans

The first evidence that a mirror system exists also in humans was provided by a
transcranial magnetic stimulation experiment (Fadiga et al. 1995), showing that in
subjects observing hand actions made by an experimenter there was an enhance-
ment of motor evoked potentials in those muscles that subjects normally used to
execute the observed actions. Subsequent TMS, electroencephalographic (EEG)
and magnetoencephalographic (MEG) investigations confirmed this finding (Hari
et al. 1998; Cochin et al. 1999; Strafella and Paus 2000; Nishitani and Hari 2000,
2002; Gangitano et al. 2004). Brain imaging experiments (Rizzolatti et al. 1996b;
Grafton et al. 1996; Grezes et al. 1998, 2003; Iacoboni et al. 1999, 2001; Buccino
et al. 2001; Koski et al. 2002, 2003; Manthey et al. 2003; Johnson-Frey et al. 2003)
showed that action observation activates a temporo-parieto-frontal circuit, namely
the STS region, the inferior parietal lobule and the lower part of the precentral gyrus
(ventral premotor cortex) plus the posterior part of the inferior frontal gyrus (IFG)
The parietal and frontal regions form the core of the mirror neuron system in hu-
mans. It is important to note that the activation of IFG involves the Broca’s region,
previously conceived as a “speech” area. This region becomes active not only dur-
ing action observation, but also during the execution of hand-related tasks (Parsons
et al. 1995; Grafton et al. 1996; Binkofski et al. 1999; Iacoboni et al. 1999; Buccino
et al. 2004a). The posterior part of it, Brodmann’s area 44, is considered to be ho-
mologue of monkey’s F5 (see Rizzolatti and Arbib 1998).

3.10 Possible Functions Derived from the Mirror Neuron
System: Imitation, Language, Intention Understanding

The properties of mirror neurons reported above show that they have a crucial
role in action understanding. The next important question to address is whether
they can also constitute the neural circuit for other functions. The functions most
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likely related to the mirror system are imitation, intention understanding, commu-
nication/language. Some of these functions, such as imitation and language, are
exclusively or mainly present in humans, others appears already in monkeys. I will
examine briefly the involvement of the mirror system in all these functions.

3.11 Imitation

Imitation is the first function that comes to mind when one thinks to the possible
use of mirror neurons, because they possess the property enabling the observer to
immediately translate the visual information on observed action into the motor pa-
rameters necessary for reproducing it. However, in monkeys, the capacity to imitate
is weak or even absent. Thus, mirror neurons cannot be primarily tools for imitation,
although they could represent the building blocks on which imitation takes place in
humans. Indeed, experiments in humans confirm this suggestion.

In an fMRI experiment, lacoboni et al. (1999) showed that in volunteers required
to observe and imitate a finger lifting, there was an activation of the left inferior
frontal gyrus (IFG) during observation and, more strongly, during imitation. The
importance of IFG for imitation was also shown by Nishitani and Hari (2000) using
the event-related neuromagnetic (MEG) technique. In these experiments individuals
were asked to repeat highly practiced actions done by another individual. Buccino
et al. (2004b) recently addressed the issue of which cortical areas become active
when individuals are required to learn, on the basis of action observation, a novel
motor pattern. Naive participants were required to imitate guitar chords played by
an expert guitarist. By using an event-related fMRI paradigm, cortical activations
were mapped during the following events: (a) observation of the chords made by the
expert player, (b) pause, (c) execution of the observed chords, and (d) rest. Control
conditions involved pure observation and non imitative motor activity. The results
showed that during observation for imitation there was activation of the inferior
parietal lobule and the dorsal part of ventral premotor cortex plus the pars opercu-
laris of IFG. It is interesting to note that during the pause in imitation condition,
when subjects are preparing a program to reproduce the observed chord, there was a
strong activation of the middle frontal cortex (area 46). It has been hypothesized that
the role of this area is that of re-combining the motor representations corresponding
to the different motor acts, in order to fit the observed model.

Summing up, imitation in humans appears to require the involvement of the
mirror neuron circuit, with the additional activation of prefrontal areas when recom-
bination of already existing motor representation in novel sequences is required.

It remains to be explained how imitation in monkeys is minimal, inspite of the
presence of a well-developed mirror neuron system? There are probably many rea-
sons for this apparent contradiction. First, in monkeys a lower percent of mirror
neurons show a strict congruence between observed and executed action, the ma-
jority coding the action goal. Second, as shown above, in humans a crucial role in
imitation learning is played by the prefrontal cortex, a region that is much more
developed in the human brain in respect to that of monkeys.
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3.12 A Pathway from Monkey F5 to Human Broca’s
for Language Evolution

The mirror neuron mechanism appears to be very close to the mechanism that,
during inter-individual communication, enables the listener/observer to understand
the meaning of the message emitted by the sender. The central point here is that
both sender and receiver share the same motor programs necessary to produce a
message and the pathway that allows to access these programs. The proposed ho-
mology between F5 and Broca’s area is in favor of the idea that language can be
derived from a system involved in action and, lately, in gesture understanding.
This homology is based on several data. (1) Cytoarchitectonically, both area 44
(part of Broca’s area) and area F5 are dysgranular (see Petrides and Pandya 1994;
Rizzolatti and Arbib 1998; Nelissen et al. 2005). (2) Both Broca’s area and F5 have a
mouth and hand representation. Many brain imaging experiments demonstrated that
Broca’s area, beyond its classical role in speech production, is also involved in hand
movement tasks. For example it is activated by the execution of hand movements,
mental imagery of grasping actions, hand mental rotation and imitation tasks (Par-
sons et al. 1995; Grafton et al. 1996; Iacoboni et al. 1999; Buccino et al. 2004). (3)
Area F5 is endowed with a system for the control of laryngeal muscles and of oro-
facial synergisms (Hast et al. 1974). (4) Both area F5 and Broca’s area are activated
during observation of hand and mouth actions (see for refs. Rizzolatti et al. 2001;
Rizzolatti et al. 2004). In particular, recent fMRI experiments demonstrated that
the inferior frontal gyrus is activated both when subjects observe biting action
(Buccino et al. 2001) and when they observe other individuals performing silent
speech (Campbell et al. 2001; Calvert and Campbell 2003; Buccino et al. 2004a), in
agreement with the presence in F5 of mouth mirror neurons for ingestive and com-
municative actions (Ferrari et al. 2003). (5) Both F5 and Broca’s area are reached by
an acoustic input related to action semantic content. As described above, there are in
FS5 mirror neurons responding both to the sight and the sound of actions. In humans
it has been recently demonstrated that (a) listening to sentences related to actions
made with different effectors activate Broca’s area and premotor cortex (Tettamanti
et al. 2005) and (b) listening to words and pseudo-words containing a consonant
requiring a marked tongue muscles involvement to be pronounced determines a sig-
nificant increase of the amplitude of motor evoked potentials (MEPs) recorded from
the tongue muscles with respect to listening to words and pseudo-words containing
consonants not requiring such tongue involvement (Fadiga et al. 2002).

All these data corroborate the idea that an ancient observation/execution match-
ing system, as that found in monkeys, may have paved the way to the evolution of
human language. This process occurred through many steps, two of which, how-
ever, are assumed to be very important (see Rizzolatti and Arbib 1998; Fogassi and
Ferrari 2004; Arbib 2005). The first is the transition from a motor system coding ac-
tions to one with the capacity to encode also intransitive actions, probably through
a process of ritualization of goal-directed actions (Van Hoof 1967). This transition,
probably in its primitive form, could be found in communicative mirror neurons,
that respond to observation of communicative actions and during execution not only
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of the same actions, but also of ingestive actions. The second is represented by the
association between a gesture and a sound. The possibility to use facial and bra-
chiomanual gestures in association with utterances provides a higher combinatorial
power, allowing to create a richer vocabulary. The presence in monkey area F5 of a
large population of neurons coding both hand and mouth actions and its access to
auditory input could have been important elements, in evolution, for facilitating the
occurrence of the proposed association gesture/action-sound.

3.13 Intention Understanding

When we observe somebody else performing goal-directed action, in most cases
we are able to infer his/her intended goal, even though the action is not completely
accomplished. In other words we have the capacity to understand the intention of
other individuals. Since mirror neurons provide a mechanism to understand the goal
of motor acts performed by others, it is natural to raise the issue of whether they can
also play a role in intention detection. In a recent experiment, the visual response
of parietal mirror neurons was studied in the same conditions, described in a previ-
ous section, that were used for studying motor properties of IPL grasping neurons.
Briefly, in one condition the experimenter grasped a piece of food and brought it to
the mouth, in the other he grasped the same piece of food and placed it into a con-
tainer. Mirror neuron activity was recorded while the monkey observed the two con-
ditions. The crucial part of the activity was that related to observation of grasping.

The results showed that the majority of IPL mirror neurons were differently acti-
vated when the observed grasping motor act was followed by bringing to the mouth
or by placing. The remaining mirror neurons did not show any selectivity.

A characterizing property of all mirror neurons is the congruence of their motor
and visual responses. The data just described show a further level of congruence.
Mirror neurons that discharged more intensely during grasping for eating than dur-
ing grasping for placing discharged more intensely also during the observation of
grasping for eating. Conversely, neurons selective for grasping to place discharged
strongly during the observation of this motor act.

Thus, IPL mirror neurons, in addition to recognizing the observed motor act, are
able to discriminate among identical motor acts according to the context in which it
is executed. Because the discriminated motor acts are part of chains, each of which
leading to a specific final goal, this capacity allows the monkey to predict what is
the goal of the observed action and, in this way, to “read” the intention of the acting
individual. If grasping neurons belonging to a particular chain fire, the observed
acting individual is going to bring the food to the mouth; if, in contrast, another set
of grasping neurons belonging to another chain fire, the observed acting individual
is going to put the food away.

The selection of a particular group of grasping mirror neurons may be determined
by many factors. One of these is the type of object grasped. The sight of food
very likely would trigger neurons coding grasping for eating than grasping for other
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purposes. However, if food is near a container, this different context could trigger
neurons coding grasping for placing.

Another factor that can be very important for discriminating between different
intentions is the previous action made by the observed agent. For example, if the
trials are run in blocks, very soon the monkey can guess that the next trial, very
likely, will be the same as the previous one, so the neuron discharge during grasping
observation will reflect the higher probability of occurrence of an action instead of
the other one.

In agreement with the monkey data suggesting that the mirror system can pro-
vide the mechanism for intention understanding, a recent fMRI study in humans
(Tacoboni et al. 2005) indicates that also our species uses the mirror neuron sys-
tem in order to understand the intention of others. In this study subjects had to
observe hand actions performed in two different contexts The results showed that
hand actions performed in contexts, compared with other two control conditions (ac-
tions without context or context only), produced a higher activation of the inferior
frontal gyrus.

Summing up, the mirror neuron system in monkeys provides the first neural sub-
strate for a primitive understanding of others’ intentions, that probably paved the
way for the evolution of the more sophisticated aspects of mind reading present in
humans. Probably many of these aspects still rely on the automatic activation of the
parieto-frontal mirror neuron circuit.

3.14 Conclusions

In this article it has been shown that a vocabulary of actions coded in the motor
system form the core of an internal, “first person” knowledge on the top of which
many cognitive functions, such as action understanding, intention understanding,
imitation and language can be built. The possibility to show in humans mechanisms
similar to those studied in details in monkeys will allow, in the future, to assess more
in depth which cognitive functions can emerge from the motor circuits and which
other cortical and subcortical structures can be added to these basic substrates, in
order to have a more complete picture of the anatomo-functional network involved
in each function. Language is a good example of one of these complex functions
that probably originated from motor cortical structures.
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Part 11
Truth, Randomness and Impredicativity



Chapter 4
The Genesis of Mathematical Objects, Following
Weyl and Brouwer

Dirk van Dalen

Almost a century ago, Brouwer launched his first intuitionistic programme for math-
ematics. He did so in his dissertation of 1907, where he formulated the basic act of
creation of mathematical objects, known as the ur-intuition of mathematics. Math-
ematics, in Brouwer’s view, was an intellectual activity of men (of the subject),
independent of language and logic. The objects of mathematics come first in the pro-
cess of human cognition, and description and systematization (in particular logic)
follow later. The formulation of the ur-intuition is somewhat hermetic, but in view
of its fundamental role, let us reproduce it here.

Ur-intuition of mathematics (and every intellectual activity) as the substratum, divested of
all quality, of any perception of change, a unity of continuity and discreteness, a possibility
of thinking together several entities, connected by a ‘between’ that by the interpolation of
new entities never gets exhausted.

As we see, Brouwer sees the ur-intuition as the genesis of both the discrete part of
mathematics, let us say, the natural numbers, and of the continuous part, i.e., the
continuum. Neither of these can be reduced to the other.

A more refined analysis was given in the Vienna lectures (although it is fore-
shadowed in the so-called ‘rejected parts’ of the thesis), where the notion of the
falling apart of a moment of life is introduced. In the final presentation, Conscious-
ness, Philosophy and Mathematics (CPM) [Brouwer 1949a], this phenomenon is
described as the move of time: ‘By a move of time a present sensation gives way to
another present sensation in such a way that consciousness retains the former one
as a past sensation and moreover, through this distinction between present and past,
recedes from both and from stillness and becomes mind.” Thus the subject has cre-
ated a ‘twoity’ of a past and present sensation. The process evidently can be iterated,
and complexes and strings of sensation become the object of attention.The sensation
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complexes form a bewildering mixture, in which a certain order is introduced by the
causal attention. This carries out a process of identification. One may think of the
identification of ‘similar’ complexes, or of abstraction.

In CPM the notion of causal sequence is further refined: ‘An iterative complex
of sensations whose elements have an invariable order of succession in time, whilst
if one of its elements occurs, all following elements are expected to occur likewise,
in the right order of succession, is called a causal sequence’. It might be tempting to
explain these, let us say ‘strongly causal sequences’, scs, by a causality, independent
of the will of the subject. This, however, is rejected by Brouwer. On the contrary,
causality is explained by the notion of strong causal sequence. A scs can be put to
use by the subject in order to realize events that are not immediately obtainable.
One only has to realize the first event of a scs, or an intermediate one, in order to
obtain the final event. The procedure of realizing the final (and desirable) event by
realizing a preceding event was called the ‘jump from end to means’, and later the
mathematical or cunning act. The jump from end to means is a useful and conve-
nient tool for the subject to dominate nature and for the protection of his personal
sphere.

Assuming that in a scs ay, ..., dk, ..., a, the realization of all stages is indeed
of a fixed determined nature, one may recognize in the jump from end to means the
germ of the constructive implication. The transition from, say, ay to a, is completely
lawlike and thus the proof interpretation of A — B is foreshadowed by the auto-
matic and algorithmic transition from (the building for) A4 to (the building for) B.
Of course, the subject may and will add much more regularity to causal sequences
than the primitive spontaneous sequence of sensations offers.

By abstracting from all accidental features of twoities, the empty twoity is ob-
tained. In other words, by identifying all twoities one obtains the object where only
order and distinction are recognized. This empty twoity then can take the place of
the number 2. From there it is not difficult to generalize to the individual natural
numbers, and the next step — the recognition of the iteration of the ‘next number’
step as a legitimate mental construction, together with the corollary, the (potentially
infinite) set of natural numbers — is mentioned in passing by Brouwer. He speaks of
‘unlimited unfolding’ (CPM, p. 1237), see also [van Dalen 2008].

Thus the basic material of ‘discrete mathematics’ is at the disposition of the sub-
ject. This part of the process of creating is later called the first act of intuitionism.
We should note that the aspect of simultaneous creation of discrete and continu-
ous, is played down, but as late as the Vienna lectures (1928) Brouwer pointed out
that both acts of intuitionism are grounded in the ur-intuition. The continuum is
given in the move-of-time act as the ‘between’. In his Rome lecture (1908) Brouwer
explicitly points out that ‘the first and the second are thus kept together, and the
intuition of the continuous (continere = keeping together) consists of this keeping to-
gether’. And he adds: ‘This mathematical ur-intuition is nothing but the contentless
abstraction of the sensation (experience) of time’. Time is thus created by the subject
through the ‘move of time’, together with the continuum and the natural numbers.
The second act of intuitionism is the creation of ‘more or less freely proceeding in-
finite sequences of mathematical entities previously acquired’ and of ‘species’, i.e.,
‘properties supposable for mathematical entities previously acquired’.
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In CPM the two acts are tacitly lumped together under the act of ‘unlimited
unfolding’. The process of creation of causal sequences and complexes does extend
beyond the realm of mathematics; indeed the physical world, as well as the social
one is made up of those objects. If we look for a minute at the physical phenom-
ena, then we can see the role of mathematics as follows. The objects of the physical
world are obtained by abstraction from sensation complexes, a further abstraction
gets the subject to mathematical objects and structures. And hence there is a natu-
ral connection between the physical universe and the mathematical, something like
a projection. Although this does not explain the success of mathematics in full, it
shows that the connections do not come out of the blue.

By and large, the above sketches the genesis of Brouwer’s mathematical universe.
In the dissertation Brouwer goes to great lengths to determine the possible sets in
mathematics on the basis that there are no sets but those we can create ourselves.
After the introduction of choice sequences (cf. the second act) he revised his views.
The extent of the mathematical universe is modest compared to the traditional Can-
torian universe, from a classical point of view, Brouwer’s universe does not get
beyond w;. But what it lacks in ‘height’ is compensated by the extra fine structure
which is inherent to the intuitionistic approach (and its logic).

The most spectacular part of the universe is the second-order part, let us say
second-order arithmetic with sequences, species, or both. Where the first-order part
yields more-or-less a subtheory of classical arithmetic, the second-order part has
certain specific properties that are incompatible with classical mathematics.

We will look at a few of these principles. The first and most striking princi-
ple was introduced by Brouwer in his courses on pointset theory of 1915-1917.
The principle appeared in print in 1918; in modern formulation it reads ‘A mapping
F from choice sequences to natural numbers has the property that each F () is
determined by an initial segment ak(= («0,al,a2,...,a(k — 1)) Formalized:
VadxVp(@x = fx — F(x) = F(B))

The principle finds a more general form in the Principle of weak continuity

wcC VadxA(a, x) = Yadx3dyVB(ay = By — A(B, x))

Brouwer formulated his functional version in a proof, giving no argument for it.
A first attempt at a justification could run as follows: in order to compute the natural
number F(«) a finite number of steps is required, when the computation is finished
only finitely many members of the sequence o have been generated, and so only
this initial segment enters into the computation. Hence any sequence B with the
same initial segment yields the same value under F. This argument only works in the
case that only numerical information of « is used. In general, however, information
of a different kind may be used.

Here is an example, formulated as a game (Brouwer introduced game formula-
tions in his Groningen Lectures, 1930). There are two players, I and II. I provides
successively information about o and II has an algorithm for computing F(«).
At each step II may ask for more information or show the output. In our example II
simply takes F(«) = 100
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I II
0 7 ?
1 2 ?
2 301

13(5 and o becomes stationary| F () = 5

Note that I may (and perhaps must) give more information than just the numerical
values of «. Indeed, if one accepts the idea of mathematics as a solitary play of the
subject, then I and II are no more than puppets controlled by the subject. Thus the
availability of full information is obvious. _

Now there obviously are 8’s with the same initial segment f14 = «l4 =
(7,2,301,...,5) with F(8) # 5. This failure of the simple argument is caused
by the fact that suddenly a condition of a higher order is put on «. And higher order
condition cannot be avoided, if only because one wants to allow lawlike sequences
(think of the difference between the decimals of 7 and those determined by flip-
ping a coin). Hence a better argument is required. One was provided by Mark van
Atten in a setting which slightly, but justifiably, extended Brouwer’s framework.
Brouwer demanded that once one has introduced a condition on future choices (of
values or conditions), one sticks to it. However, it is fairly clear that his main stipu-
lation was that each finite sequence of choices has at least one immediate successor.
By allowing higher order conditions to be repealed, the extendibility condition is
observed, and the extra flexibility certainly does not restrict the practical aspects of
choice sequences. Now the possible ephemeral nature of higher order conditions,
disqualifies them for use in the computation of the output of F on input ¢, see
[van Atten—van Dalen 2002]. The analysis lays down certain conditions on the class
of sequences for the validity of the continuity principle. The principle is in fact
justified for the holistic universe, but we can see that there is a new problem for
research: for which universes does WC hold? A simple example of a universes that
violates the continuity principle is the one in which each sequence eventually be-
comes constant. The function F assigns this constant value to «; F' is obviously not
continuous. There is a rich literature on the continuity principle, see for example
[van Dalen—Troelstra 1988a, van Dalen—Troelstra 1988b]. The continuity princi-
ple has striking consequences in everyday mathematics e.g., Brouwer’s continuity
theorem — all real functions are continuous and the indecomposability of the contin-
uum — R cannot be split into two non-empty parts. Both results confirm the above
mentioned incompatibility, in particular the latter shows that the principle of the
excluded middle is false: =Vx € R(x =0V x # 0).

Weyl, in his basic paper, On the new foundational crisis in mathematics [Weyl
1921], adopted Brouwer’s intuitionistic programme, adding his own interpretations
to it. In particular Weyl did not give the same status to choice sequences Brouwer
did. For Weyl choice sequences did not belong to mathematics proper; all he ac-
cepted was the real status of initial segments. As a consequence arbitrary reals were
replaced by generating intervals. Such an interval, say (a, b) for rational a and b,
represents for Weyl the open horizon of ‘the reals that are potentially given by the
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interval’. Concrete real numbers are given by lawlike sequences of intervals, and
arbitrary ones by choice sequences, in the representing interpretation. Hence there
is on Weyl’s approach a fundamental distinction between existential quantification
(over lawlike reals), and universal quantification (over choice reals). Apart from
everything else, this destroys the hope of salvaging the principle of the excluded
middle. Here Brouwer’s and Weyl’s roads separated. For Weyl quantified state-
ments were ‘judgement abstracts’, not to be taken for real judgements, whereas
Brouwer recognized quantified statements as ordinary statements with ordinary
proof conditions. Hence for Weyl the continuity of all real functions was an ob-
vious consequence of the notion of arbitrary real number (approximations follow
from approximations), whereas for Brouwer there was a hard theorem to be proved.
For more on the Brouwer-Weyl views, see [van Atten—van Dalen—Tieszen 2002].

A further analysis, making use of transfinite principles (the principle of Bar
Induction, established the bar theorem, the fan theorem, and the locally uniform con-
tinuity theorems (real functions on intuitionistically compact subsets of R are uni-
formly continuous). For the practical consequences of these properties of Brouwer’s
universe see [van Dalen—Troelstra; van Dalen—Troelstra 1988a; 1988b].

So far the treatment of the universe was completely uniform, but in the twenties
Brouwer started to make the distinction between the lawlike and the full continuum.
Equivalently, between the set of lawlike sequences and the set of (all) choice se-
quences. Historically speaking, there was a perfect reason to do so. When dealing
with infinite processes algorithms are the first things that come to mind, for the law
is the thing that guarantees infinite continuation. The first Brouwerian counterex-
amples, were, not surprisingly, based on an algorithm: the decimal expansion of .
However, once choice sequences were recognized by him as legitimate objects (the
subject is free to make choices), it was natural to look for a counterpart of the (law-
like) Brouwerian counter examples where one uses a decidable property of a lawlike
sequence, which has neither been proved, nor rejected. One should fully exploit the
choice-character of sequences in the hope of exploiting the properties of the full
Brouwerian universe. In 1927 there are the first signs of the new method, which was
published some 20 years later, and which goes by the name of the ‘creating subject’.
The underlying idea is that the subject investigates some particular property, while
he carries out a convenient bookkeeping at the same time: if at moment n A has
not yet been established, put down a 0, otherwise a 1. Brouwer uses the expression
‘the creating subject experiences the truth of A’. Here it is tacitly assumed that ‘the
creating subject experiences the truth or he does not’, the simple argument being
that ‘in doubt, one does not experience the truth’. A reasonable assumption. In view
of the fact that the ur-intuition, in its function as a time-measuring and -introducing
principle, provides the subject with a sequence of moments ordered like the natu-
ral numbers, the time parameter n is a natural one. The effect of the activity of the
creating subject is that a choice sequence « is in the following way associated to a
proposition A:

Ju(A < Ix(ax # 0))
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This formalization of Brouwer’s argument is due to Kripke and is called Kripke’s
Schema, KS. Note that K.S is an extra condition on the richness of the Brouwerian
universe. It asserts the existence of particular sequences, compare the role of the
axiom of choice. Thus it is not automatically seen that the old principles still hold.
It has in fact been shown that K S is consistent with most principles. Kreisel formu-
lated an interesting ‘tensed modal’ extension of the existing theories which captures
the properties of the creating subject, and which is equivalent to the extension by
KS (Kreisel 1967; van Dalen 1978).

The classically inclined logician will note that K S is a very weak comprehension
principle, which is provable in the classical setting. So whatever strength one can
expect from K S, it has to come from suitable extra principles, such as the continuity
principle.

We will now proceed to show a number of consequences of K S in practical math-
ematics, consequences which are not mere curiosities, but which make manifest
certain features of the universe one would expect, and some unexpected phenomena
to boot. The proofs are carried out under the assumption of the continuity principle
and Kripke’s Schema. It turns out to be convenient to reformulate Kripke’s Schema,
such that there is at most one 1 in the sequence o : Vx (Zysx a(y) < 1). Let us
call such a sequence satisfying A <> Ix(ax = 1), a Kripke sequence for A.

(1) =Vxy € R(x # y — x#y)

(2) =Vxy e R(=x <y =>x <)
(2) was shown by Brouwer in [Brouwer 1949b], and (1) follows by a com-
pletely similar argument.

(3) The Principle of Ya3aB-continuity fails (Myhill 1966).
Proof: consider the statement € R. We apply K .S to Vx(a(x) = 0):

B(Vx(a(x) =0« y(B(y) =1))

Hence Ya3f(. . .); by Va3 B-continuity there should be a continuous functional
G: NN — NN such that Va((Vx(a(x) = 0 < 3y(G(a)(y) = 1)). Hence we
have a continuous functional G testing if an « is the zero-sequence 0. L.e. G is
0 on all sequences distinct from 0, and non-zero on 0. This functional is clearly
discontinuous.

Note that therefore there is a real foundational choice to be made here: adopt
K S or Va3B-continuity, but not both.

(4) All negative dense subsets of R are indecomposable.

By a negative subset X we mean one for which X = X¢¢ (in particular the
complement of a set is negative).

Proof. This theorem follows from two lemmas. Let X be negative and dense
in R.

@4.D)If X = AU B, with A N B = @, then converging sequences (a;) and (b;)
in respectively A and B cannot have the same limit.
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®)

(6)

Assume VkImVn(|amin — bman| < 27%). We consider the Kripke sequences
o forr € Q and B for r € Q, where r is an arbitrary real number.
We define new sequences y and c; by

y(2n) = a(n)
and
{ y(2n + 1) = B(n) Cont+1 = by
Now we introduce a new sequence (d;)
_enif Yk <n(y(k) =0)
" erifk<nandy(k) =1

Con = dp

Claim: d € X.

Ifd ¢ X,thend ¢ A;hence (d,) does not become stationary in A. Soa(n) = 0
for all n. And by the definition of Kripke sequence we get r & Q.

Similarly d ¢ B; hence (d,) does not become stationary in B. Therefore
B(n) = 0 for all n, and thus r & Q°. Contradiction.

So —=—d € X.Butsince X is negative, we find d € X.

As X = AUB,d € Avd € B.1f d € A then (d,) does not become stationary
in B, hence Vnf(n) = 0. By the definition of § this implies =—r € Q. A
similar argument shows that —r € Q if d € B. As a result we get —r €
Q v ——=r € Q. As r was en arbitrary real, we have established Vr € R(—r €
Q v ==r € Q) , which contradicts the indecomposability of R. Therefore
lim(a,) # lim(by).

(4.2) If the above sets A and B are inhabited (i.e., contain an element), then
there are sequences in A and B converging to the same point. The proof is a
piece of elementary analysis, see [van Dalen 1999].

Conclusion: X is indecomposable.

This theorem shows that there are lots of indecomposable subsets of the
continuum, for example the irrationals, Q¢, and the not-not-rationals, Q.
The continuum is clearly extremely ‘connected’; even if we punch holes in it,
it still remains indecomposable. Note that classically Q¢ is not topologically
connected. It is even zero-dimensional. Intuitionistically it has dimension 1.
The moral is that the intuitionistic continuum is very tight, and that its topology
will offer unknown surprises and difficulties.

The powerset of N exists.

More precisely: each subset of N can be represented by a suitable 0 — 1 choice
sequence.

The basic idea of the proof is that, given a subset X there is for each n a Kripke
sequence o, such thatn € X < 3x (o, (x) = 1) All these «,,’s can be glued
together to form one « that tests membership for X. For the technical details,
see [van Dalen 1977].

If R is indecomposable, then there are no discontinuous functions (van Dalen
2001).
The converse is obvious, and it allows one to conclude the indecomposability on
the basis of Brouwer’s negative version of the continuity theorem (cf. [Brouwer
1927).
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Proof: Let f be discontinuous, say in 0. It is no restriction to assume f(0) = 0.
Then 3kVn3Ix(|x| < 27" A | f(x)| > 275)
After determining k we can find a sequence (x,) with | f(x,)| > 27 and
|xn| < 277",
Let @ and B again be Kripke sequences for r € Q and r € Q. Put
y(2n) = a(n) xp if Vi < n(y(k) = 0)

y2n + 1) = B(n) xgifk <mand y(k) =1
(cn) converges, say to c. As 0 < 275 we get f(c) < 27% v f(c) > 0. If
f(c) < 27% then f(c) = 0, so Vp(y(p) = 0), which is impossible. So
f(c) > 0, and therefore r € Q vV r ¢ Q. As before we see that this yields a
non-trivial decomposition of the continuum. Contradiction.

and ¢, =

This result establishes an equivalence between a certain characteristic of a
function and the nature of its domains. Results of this kind are familiar from
recursion theory and descriptive set theory.

In our description of Brouwer’s universe we have discusses a few basic principles
which have unusual consequences in practical mathematics. One of the challenges
of constructive mathematics, is to find new principles that embody certain specific
phenomena that shed new and unexpected light on the universe. Markov’s principle
is one of those principles, but unfortunately, one cannot justify it on the basis of
a strong notion of ‘constructive’. Kripke’s schema is a good candidate. What we
need is more experience with its applications, furthermore it would be desirable to
find a realistic mathematical principle equivalent to K .S, in the tradition of reverse
mathematics.
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Chapter 5
Randomness, Determinism and Programs
in Turing’s Test*

Giuseppe Longo

5.1 Introduction

In a famous 1950 article, Alan Turing proposes, in order to operate a functional
comparison between brain and machine, a game he calls “imitation game”. This
text is, in many respects, as fundamental as his other writings, but in a completely
different field since this time it consists of an article in philosophy and human cog-
nition. These philosophical musings divide Turing’s intellectual trajectory into two
parts: the first moment of it being devoted to the modeling of the action executed by
calculating thought, the “Human Computer” by means of the machine that tradition
has endowed with Turing’s own name' the second moment is devoted to the anal-
ysis, from 1950 on, of the morphogenetic potentialities of phenomena of chemical
diffusion ((Turing 1952). From as early as his first article of 1936, Turing had thus
described his computing/deducting machine, a discrete-state machine, as he him-
self rightfully reminds: a record/playback head moves right or left, writes 1 or 0 on
the tape, erases them. The fundamental idea: the machine consists of software (the
instructions) and hardware (the material: the read/write head and the tape). This dis-
tinction, purely conceptual at the time, is the true beginning of modem Computer
Science (you may recognize your Macintosh). This abstract machine can compute
anything; there lies the extraordinary result of the years 1936-1937.

In fact, Turing himself, Kleene, and a few other pioneers demonstrate that all
formalisms for computability, since the works of Herbrand and Godel (1930-1931),
are equivalent to Turing’s machine: using lambda-calculus (Church 1932; another
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fundamental formalism for computability, see (Barendregt 1984) and Section 5.4
below), they translate the various processes of arithmetic calculus the ones into the
others. Consequently, all systems calculate the same class of functions on integers.
That “we have an absolute” was clamored at the time (see the comment Godel makes
in 1963 on the re-edition of his 1931 article, reappearing in ((Godel et al. 1989)): this
absolute is the class of calculable (partial) functions, of integers into integers, as lo-
cus of all which is effective, calculable, in fact thinkable (“... the laws of arithmetic
govern all which is enumerable. This one is the vastest of all disciplines, since it con-
tains nor only the actual and the intuitive, but all which is thinkable.” (Frege 1884)).
The lambda-calculus, its types, their semantic categories are extremely rich syntac-
tical and mathematical structures (see Hindley and Seldin 1986; Girard et al. 1990;
Krivine 1990; Asperti and Longo 1991; Amadio and Curien 1998): they are still at
the heart of contemporary logic and theoretical Computer Science, although there
are other problems today. These formalisms have indeed been the result of a remark-
able conceptual and mathematical journey, the notion of logico-formal system and
language, a pillar of the mathematics of the twentieth century. In fact, a project of
foundations of mathematics and of human knowledge.

Among the pioneers of this “formalist-linguistic turn” one must include the math-
ematicians Peano and Padoa: for them, mathematical certainty, in fact the certainty
of thought and therefore thought itself, would situate itself among the “potentially
mechanisable”. So the first thing needing to be done was to reduce mathematics to
a formal calculus, a numerical calculus that a machine should be capable of com-
pletely reproducing (hence the preliminary step: to encode mathematics in Peano’s
arithmetic). But which is this machine? One may also find a first intuition of it with
Hilbert: he refers to “finite sequences of signs, constructed according to a finite
number of rules”, or to “laws of formal deduction” also written under the form of
finite series of signs and, therefore, under the form of integers (and Hilbert knows
what he’s talking about, since he encodes, in his 1899 book, all the geometries,
Euclidean and non-Euclidean, within Arithmetic by analytic means). Between 1930
and 1936, at last the intuition of these great pioneers will be formalized and, modulo
aremarkable idea, goedelization,2 extended to an arithmetical encoding of all which
is finite, Turing’s machine replaces Vaucanson’s and Diderot’s automatons: poten-
tially, it is able to simulate any human function, thought in particular (or primarily)
(Gandy 1988).

5.2 The Game, the Machine and the Continuum

In 1950, Turing had the courage to submit Peano’s and Padoa’s program to a sort of
scientific-mental experiment: to demonstrate that a discrete-state machine, a DSM
(his universal machine), is undistinguishable from a human brain, or, at least, that
it is able to play and win what he calls the “imitation game”, by playing against

2 Crucial technical aspect of Godel’s proof, 1931: it allows the encoding of the formal-deductive
meta theory of Arithmetic in Arithmetic itself (see Godel et al. 1989).
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a man (are, rather, a woman?). In this text, we shall not discuss the specific ques-
tion raised by this game between a man, a woman and a machine, but its general
and dominant interpretation: as alleged proof of a “functional equivalence” between
digital machine and human brain. And we shall address the issue within a purely
physico-mathematical conceptual framework.

Turing’s proof is cautious: it is based on mathematical hypotheses carefully made
explicit, as shall be seen. Also to be noted is a capital difference from the modem
claimants of “all is program”, this “all” being replaced depending of the author by
evolution, the genome, the brain, etc. (in fact, in this slogan, no hypothesis is formu-
lated, it consists solely of a description of “reality”, of the Universe, itself identified
to a Discrete-State Machine). Turing is to the contrary aware of the strong hypothe-
ses that are necessary to his reasoning. The conclusion, the success of the machine in
the imitation game, is also very cautious. However, the central hypothesis as well as
the conclusion is not corroborated. And, today, it can be proved for this great math-
ematician had well exhibited hypotheses and conclusions. There lies the interest of
the article: explicit premises and rich arguments. We shall therefore play Turing’s
game from a mathematical viewpoint, with its hypotheses, without engaging into
any discussion in Philosophy of Mind: it is not necessary in order to be certain of
winning against any DSM.

In a DSM, Turing observes, “... it is always possible to predict all future states”.
And he continues: “This is reminiscent of Laplace’s view... The prediction which
we are considering is, however, rather nearer to practicability than that consid-
ered by Laplace” (Turing 1950; p 47). In fact, he explains, the Universe and its
processes are “‘sensitive to initial conditions”, should we say in modern terminol-
ogy. (Turing uses the following example: “The displacement of a single electron
by a billionth of a centimeter at one moment might make the difference between
a man being killed by an avalanche a year later, or escaping”.) To the contrary,
and there lies the greatest effectiveness of his approach, “It is an essential property
of... (DSMs) that this phenomenon does not occur. Even when we consider the
actual physical machines instead of the idealized machines,” prediction is possible
(Turing 1950; p 47). Thus Turing has no doubt: his machine is an ideal machine,
indeed a logical. one, as he called it, with a laplacian behavior. And he is absolutely
right: the notion of program and the mathematical structure of its implementation
are deterministic in Laplace’s sense, that is, the determination, by a finite number of
rules (or equations, for laplacian mechanics), implies predictability. Of course, there
may be some endowed indeterminacy (the machine can make steps which lead to
an arbitrary element of a finite set of possible discrete states, instead of leading to
a single one — we are then dealing with an indeterministic DSM), but it consists of
probabilistic type of abstract indeterminacy already well studied by Laplace, and
which is not the same mathematical concept as the unpredictability of deterministic
dynamical systems, in the modern sense which we shall discuss in length.

Though, as Turing understands well, “the nervous system is surely not a DSM”
(ah, if only everyone would at least agree with that!). And he specifies: “a small error
in the information about the size of the nervous impulse ...” (p 57). Once again, and
in modem terminology, the brain rather is a dynamical system (Turing calls these
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systems “continuous”). Then how to compare a DSM with the brain? The compari-
son is functional and relative to the only possible access to the machine, during the
imitation game: the finite sequences of a teleprinter’s signs (your keyboard in front
of your screen today, or mouse clicks, which start off a small program, a finite se-
quence of signs). Under these conditions, according to Turing, we would be unable
to distinguish a continuous system, as the brain, or “... a more simple one, a dif-
ferential analyzer...”, from a DSM; if the continuous machine makes its response
though a printer, it will be undistinguishable from a DSM’s response, even if ob-
tained by different means (continuous variations instead of discrete steps). So there
is Turing’s central hypothesis: if the interface with the dynamical system is given by
a “discrete access grid”, then it will be undistinguishable from a DSM.

In fact, today’s physical DSM, our computers, simulate dynamical systems in
a more than remarkable way! They develop finite approximations of the equations
which model them with great efficiency: now here may we better see the “form” of
an attractor than on the screen of a powerful enough machine. Their applications
to aerodynamics (simulation of turbulence), for example, has considerably lowered
the price of airplanes (almost no more need for wind tunnels). But... what are the
conceptual, mathematical, physical differences?

Let’s first evacuate any confusion between mathematical modeling and imita-
tion, in Turing’s sense. Take the discrete logistic equation x,4+1 = kxp(1 — Xy),
where 2 < k < 4. Many physical systems (and even biological ones) are very well
modeled by this function: typically in presence of an antagonist coupling, such as
an X, action coupled to a symmetric reaction (1 — x;,). For some values of k this
obviously deterministic transformation from [0, 1] to [0, 1], has a chaotic behavior.
A slightest variation of X, and the evolution will radically differ moreover, except
for a countable subset of initial points xg(or a subset of “measure 0), when k = 4
and n goes to infinity the sequence {x,} is dense in [0, 1]: its behavior is thus said to
be ergodic (or quasi ergodic, to be precise, as it is so with respect to a non-standard
measure — not with respect to Lebesgue-measure). However, if you start your ma-
chine a second time on the same numerical value for xg, you will obtain the same
sequence, that is what a DSM is. Conversely, in a physical (classical!) system, it
makes no sense to say: “start with the exact same initial situation”, for the physical
measurement will always be an interval. And the dynamic is such that, as it happens,
a perturbation beneath the possible measure, that is, within the interval, can shift the
system towards very different evolutions.

In short, the trajectories, the portrait of the attractors (their geometrical struc-
tures), caused by variations beneath the finite grid measurement, can be very
different. Now that is the complexity, from the Santa Fe’ Institute to the CenECC of
the ENS: it is in the possible bifurcations, in the richness of the attractors’ geometri-
cal structures, in their various forms of structural stability, up to the synchronization
phenomena (in an epileptic’s brain, for example) of which they might be the origin.
The stakes are of geometrical Nature.

So here we are with a first approximation of the winning strategy, if we endow
“imitation”, the word used by Turing, with a strong meaning, usually restricted to
the notion of simulation: computational model or, more precisely, computational
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realization of the physico-mathematical modeling. In this case, a true physical dy-
namical system always wins the imitation game against a DSM, because it needs
only to say: “let’s start over with the same initial conditions and then let’s compare
the evolution of our phase portraits”.

Measurement by interval and sensitivity to the initial conditions will mark the
difference between the DSM and the physical system. If the system is a turbulent
river, for example, it will win at its first turn and in few instants. A forced or double
pendulum needs only a little more time. Start off, for example, your double pen-
duium? and the computer on, say, the values 3 and 7, twice in a row: the latter will
use these exact values for the numerical simulation, each time. It will then obtain the
same rounded values and, except in quite exceptional cases that shall be discussed, it
will describe the same trajectory. However, there is no way of starting off the physi-
cal pendulum on 3 and 7, exactly: it can only be launched upon an interval, however
small it may be, around those values. After a sufficiently long moment, the physi-
cal system shall follow a second different trajectory, very different indeed, from the
first with regards to its phase space (the structure engendered by all the positions and
speeds compatible with the system’s data). Thus “more geometrico”, a continuous
system shows the unpredictability of its evolution in comparison to a DSM, even
for an observer of the “linguistic turn”, who swears but by a teleprinter, because no
discrete reading grid, however fine it may be, allows to stabilize a system with an
unstable dynamic.

For now, we have only applied Turing’s statement concerning the sensitivity of
dynamical systems to initial conditions, which is at the origin of the unpredictability,
and his observation that “one of the essential properties of the... DSM is that this
phenomenon does not occur”. Obviously, this game strategy is only a first mathe-
matical response to what has been called, quite beyond Turing’s thinking, “Turing’s
test”, and to the myth of the machine as brain’s model; it consists of a response
within the framework Turing’s mathematical hypotheses, which defines in several
instances the brain as being “a continuous system” and his DSM, a discrete state
machine, as a “laplacian machine”.

Before refining the game strategy and thoroughly discussing functional imitation,
let’s briefly sum up the terms of this first confrontation between the machine and a
physical system. We have thus supposed, as first approximation, that the machine
attempts to simulate at best a dynamical system, by using a mathematical model de-
signed on the basis of its deterministic nature (thus described by a finite number of
equations, or formal rules of deduction for a logicist who wants to model thought*).
At the first turn, it may be impossible to distinguish between the evolution of the

3 A mathematical description of a forced pendulum can be found in Lighthill (1986).

4 A system is deterministic, if we know to (or think we can) write a finite number of equations or
rules of inference that will determine its evolution. In classical physics, determinism is inherent to
the construction of scientific objectivity: the possibility to “determine” a system by a finite number
of equations or of rules is intrinsic to its theoretical approach. Within this classical framework,
Poincaré has demonstrated that equational determinism does not imply the predictability of the
physical system. But we will come back to this, during an intermission.
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DSM and that of the physical system, of which a teleprinter or a screen’s pixels in-
form us of the numerical measurements: of course, the two evolutions are in general
different, but neither is more realistic than the other (in physics, at least). However,
the iteration of the simulation-modeling from the same initial conditions reveals the
machine: if a DSM restarts upon the same numerical values, necessarily discrete, it
will describe. the exact same evolution in the phase space; however, the dynamical
instability of a physical system, necessarily restarted within an approximating in-
terval, will cause the second trajectory to differ from the first, after a sufficiently
long time, and, moreover (see Section 5.3 for more details), even the discrete read-
ing of the physical measurements will display this difference. To conclude, we have
shown that a DSM is surely not a model of the brain, at least if we consider the
latter, with Turing, a continuous system, as opposed to what is pleaded in the field
of classical Artificial Intelligence and by many modern cognitivists. But can a DSM
imitate the brain? And what does this word mean, exactly, when referring to model-
ing? Turing’s game allows to clarify these important concepts.

So let’s continue with our game. In order to thwart this first sketch of the iteration
strategy that has just been proposed, the machine (the programmer) could in fact use
the trick suggested by a comment by Turing on p 58; he proposes to trick a continu-
ous system’s and a DSM’s observer—comparator by having the latter produce a series
of random numbers. This idea is at the center of a difference that demonstrates the
philosophical and mathematical depth of the imitation game. In the concerned com-
ment, Turing displays this radical difference which is of interest to us, and of which
he is aware (see Section 5.4 below), between his “imitation game” and the math-
ematical modeling of physical phenomena. Of course, by applying our strategy of
iteration against ergodic simulation, we would find ourselves with four trajectories
all differing from one another and, in some cases, being all as realistic as one an-
other. But we had to renounce simulation as such, as modeling of the deterministic
system by a system of equations or of formal rules of inference implemented on a
computer, and we have gone towards a weaker notion, that of equivalence as indis-
tinguishably modulo a finite interface, without engaging ourselves upon the identity
of the laws of behavior (the machine’s program is not supposed to implement the
same laws which “determine” the physical system). In fact, that is what the imi-
tation game is and it brings us directly to the high stakes of the “simulation” of a
deterministic system by ergodic method: a simulation which is in fact an imitation,
to put it — like Turing — in a quite appropriate but uncommon manner.

The precisions we shall add in the next section require somewhat more compe-
tence or mathematical attention: the humanist reader who has grasped this first dif-
ference between a DSM and a dynamical system may directly jump to Section 5.4.°

5This reader, while the others read the §.2, could consult the following page
http://www~~cse.ucsc.edu/-charlie/3body/ for about ten extraordinary examples of mechani-
cal iteration of perfectly regular orbits, for 3, 6, ..., 19, 99 bodies (crossed 8s, fantastical flowers

. absolutely no chaos). Once found, the exact initial conditions that generate these periodical
orbits, thanks to very difficult mathematics, the machine, at each click of the observer, starts over
with the exact same trajectories, as perfect as unreal. Unreal, because these orbits are critical: the
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5.3 Between Randomness and Deterministic Chaos

Two questions are raised at this point. The first is quite general: from a
computational viewpoint, may randomness be distinguished, in practice, from
chaotic determinism? And if, during our game, in order to trick the observer of the
strategy of iteration, we first accepted to simulate the dynamical system (to develop
the computation of an equational model), but, at the second turn, the computer
added small random perturbations to the initial data or to each step of the discrete
evolution?

So we have two phases. During the first (single-turn game), we observe a physical
system, of which we know the discrete measurements via a teleprinter (or by screen
pixels), and a computer which generates a random trajectory. Now, there exists de-
terministic systems, maximally unstable, such that no known method allows us to
distinguish between their evolutions, reproduced upon a screen, and the generation
of arandom sequence: these are the “Bernoulli systems”.® For these systems, knowl-
edge of the past does not allow to determine the future evolution; we then say that the
flow is random. Draws at lottery or dice are typical examples of this: these systems
are deterministic, yet perfectly chaotic. In the two cases, the number of parameters
and of equations may be quite great, yet finite, and sensitivity to the initial condi-
tions is such that it is absolutely not worth it to attempt to write these equations: it is
preferable to analyze the phenomenon in terms of laws of probability (“limit laws”,
for ‘large numbers”). On the other hand, there exists very simple Bernoulli systems,
described by one or two equations. It is thanks to these systems that we program
a computer to generate random series: techniques based upon simple trigonometric
properties and the multiplication of angles around 0, for example, will produce ran-
dom series of 4 and — signs. Also the logistic equation of Section 5.2, for k = 4,
generates, and in a quite economic and deterministic fashion, series of which the
“global geometry” is (pseudo-) random.’

gravitational field of a small comet at 10 billion kilometers would topple these “planets” far away
from their periodical trajectories. Some of these images give rise to laughter (and the admiration
for the mathematicians who worked on them), so much are they physically absurd: even in physics,
some sense of humor can help us distinguish between real world and virtual reality.

6 For an introduction to the determinism of chaotic systems (see Dahan et al. 1992). For an increas-
ing technicity (see Alligood et al. 2000; Lighthill 1986; Devaney 1989).

71In these two last cases of programmable ergodicity, it is the global knowledge of the past which
says nothing about the future (the series have the appearance of globally random sequences — they
can concentrate for a long time near certain values, change suddenly of attraction zone, topple a
group of values very far, with no apparent regularities), but, locally, we perfectly know the next
step — we have explicitly described (programmed) the laws of determination, conversely to dice
and Lottery. It is the similar geometry of trajectories that allow to call ergodic all these series,
physical or programmable: they show no visible regularities.
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5.3.1 INTERMEZZO I (Determinism and Knowledge)

The question to which Turing brings us becomes in fact quite delicate and
interesting: we do not know of “proper random” systems, in classical! Physics.
More precisely, in the discrete realm, we have an excellent concept, or even a
mathematical definition, of random sequence (Kolmogorov, Martin-Loef, Chaitin:
“the shortest program that generates it is the sequence itself” or... “wait and see”),
but all examples of natural or artificial sequences, that we know of, come from a
physical deterministic system (chaotic) or from a deterministic computer program,
in fact, laplacian. These programs, written in two lines, produce long “random”
series: as generated by a DSM, Turing would soundly consider those sequences as
being predictable (as a matter of fact, these sequences, called pseudo-random, are
periodic, since they are generated by functions f as x,4+; = f(x,): on a concrete
DSM, the finite decimal representation on a finite data base forces them to go
back, soon or late, to the same number value, thus to the same sub-sequence. And,
periodicity is the opposite of randomness, yet. .. the period may be very very long).

In a note, we have already observed that determinism is essential to the construc-
tion of scientific objectivity in classical Physics (it is “objective”); we can now add
that the classical randomness is epistemic (it is a matter of “perspective” and of
knowledge, it is not inherent to theoretical construction; even a gas obeys determin-
istic laws of local interaction between particles). Shortly, the classical randomness
which we know, is nothing but highly unstable determinism or of unstable appear-
ance (the computer which calculates the logistic ergodic sequence, for a fixed xo,
remains, simply and permanently, upon a trajectory which is critical, but dense in
the phase space - there is the purely epistemic chaos) or with a very great yet fi-
nite number of parameters (dice, a gas), these “or” not being exclusive. Once again,
the sequences generated by the logistic function or by a game of dice, Bernoulli’s
fluxes, are deterministic and ergodic. However, there is a great difference between
the number of laws and of degree of freedom which will determine them and, more-
over, in the logistic equation, once x, determined, we can compute and determine
Xn+1, as opposed to dice where a draw in no manner determines the next (see pre-
ceding note). In this sense, their common ergodicity is epistemic, for, on one hand,
the observer writes the equations (the logistic equation) or knows the pertinent laws
of evolution (dice) and, on the other hand, he observes a total lack of regularity in
the two evolutions. It is the visible total irregularity, the geometry of the attractors
if they exist, which is similar: the logistic series, just like the series of draws at dice,
jumps from one end to the other of possible values, with no visible pattern. Through
differing modalities, the objective determinism (or in principle) generates epistemic
chaos and the phenomenal unpredictability associated to it.

But God, the perfect and infinite being who masters all laws of the Universe and
who measures exactly, without approximation, without intervals, knows perfectly
well the evolution of dice games and of the lottery — and of the Universe, as right-
fully stated by Laplace, in a very famous and often misinterpreted page. By those
words, Laplace merely lays the right absolute definition of deterministic system,
outside of any construction of knowledge and of scientific objectivity, based upon
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strong and well-explicated hypotheses on God, and he is right. In classical Physics,
we write the same equations as God, as soon as we are capable of it, so had Galileo
already claimed. But we, men (and women), we have a few problems concerning
physical measurement and a different on-look than His regarding the geometry of
trajectories determined by these equations: and all this becomes very important
for dynamical systems, as Poincaré proved, because they may be sensitive to ini-
tial (contour) conditions and, thus, to perturbations/ fluctuations below the possible
measure interval. Laplace’s erroneous conjecture lies elsewhere and consists within
the central hypothesis at the origin of the “calculus of perturbations” to which it
has greatly contributed: from small perturbations will follow small consequences.
The determinism would therefore imply the predictability modulo the inevitable
approximation of the physical measurement, of which he is well aware. The inval-
idation of Laplace’s conjecture by Poincaré will then make us understand classical
randomness as particular case of deterministic chaos. And all this is very important
to grasp Turing’s attempt to imitate, and not to model, a continuous system by a
laplacian DSM.

Now, if we want non-deterministic randomness, we can but recourse to quantum
physics, thus beyond of our rather classical game: the indeterminism then, at least
for the Heisenberg-type interpretation, is not epistemic, but becomes “inherent” to
the construction of scientific objectivity: the probabilities are “intrinsic” to the the-
ory and... aneedle, positioned with care upon its tip, falls, classically, upon a value
or another of the green mat upon which it was, after an inherently random quantum
fluctuation (God, himself, really knows to play dice, but only beneath Plank’s /).

So there are the stakes which are the object of such debate: classical determin-
ism does not know, in fact, proper randomness, but only the more or less chaotic
evolutions, according to various modes of determination. On the other hand, for an
important trend in physical thought, quantum indeterminism is inherent to the the-
ory. Sometimes; the latter manifests itself to our classical observation, on the tip of
a needle.

Let’s go back to the first phase of our game (single turn game): without God’s
help, we would be unable to distinguish a Bernoulli physical system from an ergodic
imitation by the machine. However, there exists a continuum of classical dynamical
systems which range from stable systems to Bernoulli’s fluxes: in intermediary sit-
uations, the future may be predicted for the more or less long term and, particularly,
the past has a greater or lesser global influence upon future trajectories. Now there
are measurements, of which some are based upon the notion of entropy (topological,
see (Adler 1979)), which allow to decide a deterministic system’s degree of insta-
bility: on one hand, systems with nil entropy are predictable: on the other, in very
high entropy systems, no observables are predictable. Between the two, numerous
physical systems may be finely analyzed and, in certain cases, but there exists no
general method, a partition of phase space (a topological covering by small cells),
allows to conjecture the dynamics. That is, the experimental observation of a dis-
crete trajectory allows the proposition of a deterministic law for the evolution; in
these cases, different trajectories allow to guess different dynamics (in technical
terms, the partitions have “generating series”). It therefore suffices to propose one
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of these moderately unstable systems for a good mathematician observer to be able
to recognize the random imitation made by the computer. We shall further discuss
this, below, to make sure that, in this case, the strategy is in fact a winning one.

Second Phase In order to thwart this latest strategy as well as that of iteration
(the two-turn game of Section 5.2) the computer implements an equational model
of the physical system. However, at the second turn, in order to not fall into the
trap of the genesis of an evolution identical to the first, it randomly introduces
small perturbations, which may have huge consequences, of course. This second
turn thus bases itself on the computation of a new deterministic system, that which
adds the first to a random sequence’s mechanical generator. The situation becomes
delicate. If the system would admit generating series and if we were to fall upon,
at the second turn, on two series which allow to guess out two differing dynamics,
the distinction between the dynamical system and the DSM would be made: the
series engendered by the computer would no longer be derived from the equations
that modified the physical system, but a variant due to the addition of a perturbation
generator. And the mathematician who knows how to reconstruct equations from
generating series, once again recognizes the formal machine. But, however. .. even
if we were to choose a system with the right level of entropy to play this game, it is
not certain that we would fall upon generating series nor that we could use the rare
applicable techniques to reconstruct the dynamics from these series: the machine,
then, by this astute mix of modeling and ergodic imitation, would risk winning.
We would then need to play the tough game of turbulence.

As of 1941, Kolmogorov and his school in fact proposed a stochastic approach
to turbulence (see, with regards to this and more on turbulence, M. Farge’s article in
(Dahan et al. 1992)). Kolmogorov’s idea was that certain random systems could ade-
quately model turbulent phenomena. This approach, still greatly studied today, bases
itself upon a quite strong hypothesis, the ergodic hypothesis. It supposes, among
others, the homogeneity, the isotropy and the self-similarity of the system’s evolu-
tion. Lacking of something better, the ergodic methods represent an important tool
for the analysis, but it is increasingly obvious that, in certain cases, the hypothe-
ses upon which they base themselves are not corroborated and that, to the contrary,
what is important, with turbulence, is exactly the complex mixture between rela-
tively stable structures and strong instabilities (non homogeneity, non isotropy.. . ).
Generally speaking, one does not propose meteorological previsions using ergodic
methods; likewise, these methods are strongly unrecommended for the modeling of
turbulence generated by a plane’s wing; it would be like to trust the lottery as for
the conception and the security of flight structures. In mathematical physics and in
Computer Science, normally and as early as possible, one would model, meaning
that one would propose and program deterministic laws which reproduce at best the
natural phenomenon in question. The turingian distinction between imitation and
modeling then becomes crucial: stochastic imitation a la Kolmogorv vs. modeling,
for example by the Navier-Stokes equations, in our case (see (Cannone 2003) for
these classical equations, today).
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Now the ergodic hypothesis is invalidated by the presence of movement
invariants, a sort of coherent structure, whirlpools for example, where rotation
wins over deformation and who remain stable quite beyond what any statistical
theory could predict. R. Thom in his work often considers these structures where,
despite a highly unstable dynamic, there is a certain bearing of geometrical forms
(structural stability); but that does not prevent - as Prigogine would state it - this in-
terplay between locality stable structures and global system, of which the equations
determine the range of possible regimes, from being based upon small fluctuations
which, amplified, induce the choice of one of these regimes.8

So, on one hand, thanks to the very specific geometry of the zones of stability
and of fluctuations, we know today that pure ergodicity cannot trick the expert ob-
server (according to (Farge, 1992), Kolmogorov had understood already in 1949
the theoretical shortcomings of the ergodic hypothesis). On the other hand, we al-
ready observed that pure modeling is defeated, in the imitation game between a
machine and a physical dynamical system (including a turbulent one), by iteration
(Section 5.2). Finally, if the programmer mixes both strategies (modeling + ergod-
icity) in order to play a second turn against a well-chosen turbulent system, the
coherent structures, the movement invariants, can be broken in an unnatural way and
allow to distinguish the machine: there lies our thesis, based upon an anterior experi-
ence of digital techniques, by finite elements methods, for the solution of differential
equations. In fact, if we fix equations for turbulence (Navier—Stokes, typically, but
others are beginning to be proposed) and we implement them in a machine, the

8 Thom’s and Prigogine’s points of view have enormously enriched our knowledge and, de-
spite important differences, they are mathematically and physically compatible: the analysis in
(Petitot 1990) shows it quite well. Unfortunately, the trap of ontologizing Platonism gives rise to
inescapable quarrels, because it leads to confound the mathematical construction of scientific ob-
jectivity that constitutes itself between us and the world, with preexisting ontologies. An objectivity
constituted between us and this reality which canalizes and causes friction upon our organisative
propositions, propositions that are in no way arbitrary because they are the result of our action
in this world and they are embedded in our cognitive practices and structures (Longo 2003a,b).
In effect, the mathematical concepts require a conceptor who draws them on the phenomenal veil
starting upon regularities that impose themselves upon his/her cognitive structure (those he/she
“manages to see”); the mathematical explicitation of these regularities are part of the very process
of the construction of mathematical knowledge and objectivity. To put it in husserlian terms, Pla-
tonism reduces and confounds transcendental constitution and transcendence. How much damage
has this understandable reaction, in foundational reflections, of numerous great mathematicians
(Godel, Thom, Connes ... caused by the dominating formalist philosophies, which are technically
difficult, but conceptually poor (those of foundations in meaningless logico-formal calculations,
see next intermission). For example, in the quarrel about determinism, we even get to a dualis-
tic separation that gives a different ontological status to fluctuation, a material cause, than to the
global mathematical structure (the equations of a dynamic), efficient or formal cause, in the aris-
totelian terminology so dear to Thom. This latter would be the “in-itself” or the platonic idea and
would precede the phenomenal appearance (Petitot 1990). The revitalization of Aristotle’s fine
causal analysis is very interesting (but one must not forget the “final cause”, see (Stewart 2002));
there is, however, no need of an ontological (platonician) distinction among these four different
causes. To the contrary, their interplay and temporal and conceptual simultaneity, within physical
and biological phenomena, with their ‘teleonomy’, is the scientific challenge of today.
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addition of random perturbations during the computation will not allow to choose a
priori (to program) the consequences of the perturbation. Meaning that the pertur-
bation of a step of the digital computation might, in certain instants, not limit itself
to the modification of incoherent residual flows (vorticity filaments, for example),
nor to redirect the regime towards other possible ones, but may break structures
which have all the macroscopic characteristics of coherence and of a long stability.
In short, a pebble that is thrown in a whirlpool is visible, as foreign to the turbu-
lence: it breaks it beyond what would be, from an internal view point, the physically
(geometrically) plausible. And the physical world wins again against virtual Reality.

By this, we hope to have answered to Turing’s remark which proposes to imitate a
continuous system, by a random system. In fact, we have taken it in a strong sense, of
which he does not talk of explicitly: the possibility of a mix of strategies, modeling
and ergodic imitation. Of course, we have not responded to the other great question
that bothers Turing: which is the difference between a man and a woman? How to
distinguish them if the man tries to imitate the woman? And if we replaced the man
by a computer? Can we grasp the difference by the intermediary of a teleprinter,
without seeing, without touching? (What a limitation of our material, visual and
caressing humanity, but that’s what the linguistic turn is).’

5.4 Logical, Physical and Biological Machines

In our opinion, Turing is perfectly aware of the difference between imitation and
mathematical modeling for a quite simple reason: he is already working upon a
remarkable mathematical model of morphogenesis in a field of chemical diffu-
sion (a fundamental article, one of the departing points, with the work of D’ Arcy
Thompson, of the modem analyses of morphogenesis). In fact, the, most interesting
property the equations to be found in (Turing 1952), is that a very small variation
of the boundary conditions, obviously in a continuous system, can radically change
the evolution of the model. And this property is not the laplacian nondeterminism
or randomness, but the sensitivity to the contour conditions and situates itself at the
heart of the deterministic model of morphogenesis a la Turing. One thing is thus the
“imitation game”, another mathematical modeling of physical and physico-chemical
or biological phenomena: the turingian DSM does not claim to model the brain, in
the physico-mathematical sense — the latter is a continuous system for Turing —
it can only attempt to trick an observer (for this reason, maybe and quite rightly

9 “[The game] is played with three people, a man (A), a woman (B), and an interrogator (C) who

may be of either sex. The interrogator stays in a room apart from the other two. The object of
the game for the interrogator is to determine which of the other two is the man and which is the
woman. [...] We now ask the question, ‘“What will happen when a machine takes the part of A in
this game?” Will the interrogator decide wrongly as often when the game is played like this as he
does when the game is played between a man and a woman? These questions replace our original,
‘Can machines think?”” (Turing 1950).
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so, some mark the beginning of classical Artificial Intelligence with this article by
Turing). In the Section 5.3 we have seen that even the imitation can be revealed:
in general, imitation of a dynamical system cannot be accomplished in an indistin-
guishable, read satisfactory manner by ergodic means, in particular if it is somewhat
turbulent, but not too much. Second important precision to analyze in Turing’s hy-
potheses. At page 47, he continues: “Even when we consider the actual physical
machines instead of the idealized machines. .. “they are laplacian machines, as any
DSM. True and false: true, the real (sequential) computer, as a DSM’s realization,
is by principle condemned to always make the same computation, from the same
pool of discrete data and of programs, that is its logico-formal architecture (its logi-
cal gates and its programs, as formal languages). False, because it is also a physical
machine, subject to variations below of its digital approximations, due to the possi-
ble small defects of its electronic circuits, to the cosmic rays that would befall upon
it... It’s extremely rare, but it happens. Evidently, these are sensitivities to limit
conditions which have nothing to do with those, intrinsic, of continuous systems
which happen to be simulated (and enormously more rare, therefore easy to detect
by statistic means, by iterating the process a few times).

As a matter of fact, an abstract, mathematical DSM, such as Turing’s machine,
is not conceived as a physical machine, but a logical machine, a human in “the
minimal act of thought” — of formal thought.!” Consequently, its expressivity is
mechanical yet purely logico-formal: typically, its expressive power is independent
of spatial dimensions — of the tape, of the read/write head — a property absolutely
foreign to the physical processes, which all depend and strongly upon the dimen-
sions of space. However, when we physically bring a DSM into being, it poses
new physical problems — from cosmic radiation to the synchronicity, sometimes
even relativistic, of modern concurrent systems, distributed in space. Let’s forget
the comparison between formal DSMs and living machines, which are physical,
obviously, but are moreover subject to phenomena of integration-regulation which

keep them in an “extended critical state''”; this state is unknown by the non-living

10A man provided with paper, pencil, and rubber, and subject to a strict discipline, is in effect
a universal machine!... LCMs (logical computing machines, see note 1) can do anything that
could be described as ‘rule of thumb’ or ‘purely mechanical’ ” (Turing 1948). And Wittgenstein
continues: “Turing’s ‘Machines’. These machines are humans who calculate.” (Wittgenstein 1980).
“No insight or ingenuity on the part of the human being carrying out the computation”: the LCM
is the breaking down of formal thought into the simplest mechanical gesture, but as a human
abstraction, upon a finite sequence of meaningless signs, outside of the world.

' Turing refers to the brain as, at least, a dynamical physical system. To stay within his image,
take a turbulent system that is at the same time very stable and very unstable, very ordinate and
very inordinate; insert it sandwich style between different levels of organization that regulate it
and that it integrates. You will then have a very pale physical image of a biological entity. Among
these entities, quite material, soulless and without software distinct from the hardware (the modern
dualism of the cognitivism of the formal rule and of the program), you will also find bodies with
nervous systems that integrate and regulate them (as networks of exchange and communication),
within which they integrate themselves (as organs) and by which they are regulated (by hormonal
cascades. for example). These systems organize the action of the body by keeping it in a state
that is physically critical, yet extended (it subsists in time and following relatively spaced out rails
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and its mathematics; mathematics which must therefore be extended and adapted
to the new job (dynamical systems are “only” one of the best approximations we
have, for the moment). It is exactly this integration of the brain within a body, their
reciprocal regulation and by such a rich environment that confers it a quite pecu-
liar structure and functional stability; and when these regulative/integrative linkages
by/of/in a body are weakened — in the course of a dream for example — the brain
appears to be rather unstable (likewise in case of serious deprivation - artificial, for
example — from sensation). A stability in the change (homeorhesis), anchored upon
self-organization and being a feature of the living which appears extraordinarily apt
to constitute invariants, from the invariants and stabilities of action to the cognitive,
indeed conceptual invariants (at the heart of thought). In short, despite that we too
never repeat the “same thing”, in the sense of a DSM, we stabilize instabilities and
critical states in a way still very ill understood, from the mathematical viewpoint.
Some will then exchange the brain for a DSM: to the contrary, it is a dynamical
system enormously more complex than anybody physical system or turbulent stream
(... think that the banks “regulate” a stream and, there the Navier-Stokes equations
tell us very little of the turbulence close to the edges; and this is nothing compared to
the complexity of a brain’s friction with its environment, by way of its interactions
with the different levels of organization of the body to which it belongs).'?

5.4.1 INTERMEZZO II (Machines and Deductions)

Inter 11.1 The equivalence theorems of Turing-Kleene et al. 19361937 (see
introduction) should be considered as the second great negative result for logical
formalisms, after Godel’s incompleteness theorem, 1931. That any formal deduc-
tive system, endowed with a notion of decidable proof (so any hilbertian system),
can be completely simulated by a machine that goes “right, left, write/erase 0, 17, is

(see Bailly, Longo, 2010); within the limits of this state, we can find both stability and instability,
variance and invariance, integration and differentiation, see Bailly, Longo 2003b). And all this in
a dynamic ecosystem and in the changing history of a community of bodies-brains that interact by
gestures and language (ulterior levels of organization, external to, but generated by the biological
objects, this time).

12May it be said between us that the winning strategy proposed above for a dynamical system
also applies to a man (or a woman): ask a thousand questions that require a few lines of answers
each, to the human and to the machine, via a teleprinter as Turing would want. Ask the same
questions the next day: you will not obtain the same responses from the human, only a continuity
of meaning. In this case, the random mechanical genesis of variants is more of an attempt to
trick than a mathematical counter-strategy like those of which we speak above, because there is
the vexed question of meaning as well as the dynamic stability of the biological object’s identity,
which would show the difference. But that goes beyond the modest ambitions of this article: here
we are only talking about digital machines and Physics.
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a true catastrophe: what a conceptual misery these systems! (The difficulty is
concealed within the monstrosity of the encoding). This philosophical shortcoming
was already clear to Poincaré:

“Hilbert and Peano think that mathematics is like Chicago’s sausage machine:
porks and axioms go in, theorems and sausages come out” (and there comes mathe-
matics reduced to the “manipulations of concrete signs” of which some philosophers
still talk today, logic conceived as “purely formal” and mathematics — an enor-
mous logico-analytical tautology — ready to be entirely computer generated). In fact,
DSMs are generalized sausage machines (and are absolutely tremendous, for their
specific uses — but sausage machines too are quite useful!). Let’s not forget, how-
ever, to appreciate the full half of the glass: what an idea that of Turing who, by
inventing the notion of programmable machine, manages to compute all the partial
recursive functions (an enormous class of functions on {0, 1}, the integers) by a
man/machine which goes “right, left, write/erase 0, 1”. Quite obviously, this idea,
with its notion of program, is the true beginning of Computer Science.

Inter 11.2 The typed lambda-calculus (Church 1940) is the only system which
allows to see with equilibrium the half-full glass: the formal deductions, with
all their limits and their expressivity, directly become computations, without cod-
ing (this property is called “Curry-Howard isomorphism”, see (Howard 1980)).
The “human computer” of Peano, Hilbert and Turing, this alienation of human ra-
tionality in a laplacian mechanism, instead of going “left, right, 0, 17, applies a little
bit more complex basic formal rules — “implication—introduction”, “implication—
elimination” and a few others, by replacement of a sequence of signs by another and
by sequence-matching (identification by mechanical superposition of signs without
meaning). With recursion, the system is also a good (or paradigmatic functional)
programming language. No miracle, only a very elegant constructive representa-
tion of formal proofs as programs, which placed this system at the center of the
mathematics - Logic and Category Theory — for sequential calculi and languages
(see Girard et al. 1990; Asperti and Longo 1991). Quite recently, it has been pro-
posed to cognitivists to stop searching, in the brain, for a Turing Machine, but for
a typed Lambda-machine (at last!): this DSM, at least, applies sequence-matching
directly to rules for deduction. The lambda-calculus, “at last”, because if, quite be-
yond of the Turing imitation game’s objectives, one would obstinate oneself to seek
the implementation of universal-formal rules of thought (the Laws of Thought) in
the brain, one must know at least that the encoding of these laws is very important,
just as under Unix or Mac-OS. In fact, the choice of the programming style (func-
tional, logical, imperative, object oriented ..., for example) and the conception of
a language with its own method for its specific coding-representation of the world
and its actual expressivity, are at the heart of Computer Science, as a science, quite
difficult and important, of DSMs. The computational equivalence proclaimed by the
“Church thesis”, is of no interest for Computer Science, since long (see the intro-
duction at (Aceto et al. 2003)): a good share of the work happens to consist of the
explicitation and use of the expressiveness of the language proposed or analyzed.
Now, the terms-programs of the lambda-calculus, contrarily to the Turing Machines
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and to the other formalisms, encode a great part of “the architecture” of deduction in
formal systems: and, in general, “a proof has an architecture”, Poincaré had already
exclaimed against Hilbert and his rather flat arithmetic encodings.

It should be clear, that the limits of lambda-calculus are those of any computa-
tional formalism: it proceeds by mechanical replacement of meaningless sequences
of signs and by sequence-matching. To the contrary we, when saying “if... then...
else...”, are not performing sequence-matching: we are displacing mountains of
significations. That is the mathematical incompleteness of formalisms and the great,
monist, cognitive stake for knowledge, well beyond the software/hardware/meaning
distinction, quite convenient for machines and post-turigian functionalistic models
of the mind, outside of this world.'?

Let’s return a last time to our game, in order to reflect. How is it possible that a
great mathematician such as Turing would believe that a discrete access grid, fixed
once and for all (the letters of a teleprinter, the pixels of a screen), could conceal
the geometrical difference between a dynamical system (very complex, the brain)
and a laplacian mechanical machine? In fact, until the results by Kolmogorov—
Arnold-Moser and Ruelle in the 1960s and 1970s, the complexity (geometrical!)
of continuous systems was not entirely clear, particularly the idea that the “critical”
points can be dense. But the possible philosophy existed. Let’s explain ourselves.

Laplace already knew well that there are critical points: the summit of a mountain
of potential, for example. It is Poincaré who, thanks to his work in celestial Me-
chanics, will understand that the problem is “global”, that it is proper to dynamical
systems and to their geometry and not to a few isolated points. There is the meaning
of his famous remark on sensitivity to the initial conditions: these critical points are
“a bit everywhere”, even though he did not exactly have the theorem which demon-
strates it. It is also this attention to the physico-mathematical complexity that makes
him also... conjectures the incompleteness of formal set theory, pretended universal
sausage machine for mathematics (independence of the Continuum Hypothesis, in
a letter to Zermelo: the theorems will come 34 and 60 years later). Just as Weyl con-
jectures the incompleteness of arithmetic in 1918 (Weyl 1918). Despite logicism, the
philosophy of physics and that of mathematics must be profoundly linked, in order
to better understand at least, as demonstrated by Poincaré and Weyl. In short, there
are those who grasp the “secret darkness of milk” and its importance to knowledge
and science and those who see the world through a laplacian DSM. Turing beings to
the first group, except that he pushes as far as possible, within the limits of the math-
ematical knowledge of his times, his genius idea, the modern DSM and its notion of
program, last great invention of logic-formal mechanics. Others to the contrary will
follow, claiming that a DSM is a model of the brain, or even that the brain is a DSM
itself (even stronger). Their motivations are often based upon this article by Turing
or upon the formal Set Theory and/or Type Theory: the first is a bad reading and
the second is a mathematical error (that follows from the mathematical, concrete,
incompleteness of formalisms, see, for example (Longo 2002)).

13 The mathematical incompleteness of formalisms is a theme strongly related to what we discuss
here, see (Longo, 1999a and 2002; Bailly, Longo , 2003a) for analyses based upon recent results.
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5.5 Predictability and Decidability

In a very brief text (“Laplace”, downloadable, author’s web) we argue the
conceptual equivalence of Laplace’s key hypothesis for the analysis of perturbations
(the predictability of deterministic systems — as decidability of the evolution) and of
the hypothesis of completeness (decidability of deducibility) of hilbertian systems,
an analogy also hinted by Girard in his introduction to Turing’s article. But with
“Laplace” we also observed that the deterministic unpredictability a la Poincaré
(the three bodies theorem 1891) is the analog and the precursor of goedelian in-
completeness (undecidability) for any Hilbert-like formalism. One must however
add a nuance to this analogy between the two great respective limitative results:
unpredictability a la Poincaré and Godel-like incompleteness (which corresponds
to the undecidability of the halting problem, demonstrated by Turing in 1936 for
his logical machine, see Girard’s introduction to (Turing 1950)). The first appears
“at a finite level”, and very early (cf. the growth of Liapounov’s coefficients in the
Lindstedt—Fourier series), the latter is a problem “at infinity” (the halting problem
or the non-termination of computations... forever). For example, it cannot be de-
cided where a double pendulum will be, after 10 oscillations, nor the evolution
of the solar system beyond 1 million years (Laskar 1990), a short astronomical
time. So unpredictability is a “stronger” result, within the framework of an essen-
tial philosophical equivalence of the two approaches to knowledge (Laplacian in
physics and formalist in logic) and of their limitative results (Poincaré and Godel).
The unpredictability of a physical dynamical system is related, in particular, to
the impossibility in principle to travel the same path in the phase space, from the
same initial conditions (measured by interval), whereas a DSM obstinate itself to
do so. It must be observed that also Turing speaks of the unpredictability of a DSM
with a large memory and very long programs (p 59), a daily experience for any
computer scientist, but he is clear in these regards: we are dealing with a practical
unpredictability and not one of principle, mathematical (see Turing 1950; p 47),
already quoted above). We should call this unpredictability “by incompetence”, like
the “unpredictability” of pseudo-random mechanical generators: it has little to do
with the epistemic unpredictability of the dice or of the solar system in 100 billion
years. By iteration, as for pseudo-random generators, one gets the same evolution
or sequence — just iterate, then you may predict. This doesn’t work with dice, nor
any sufficiently unstable physical systems (and a better definition of classically
random process would be: if iterated under the same conditions, in general, it does
not follow the same path).

The analysis we are sketching here differs from many writings, in The-
ory of Mind and Artificial Intelligence, regarding the “Turing test”.'* In fact,

“But why change the name given by Turing to the imitation game between a machine and a
man/woman? The slip of scientific vision, implicit in this change of name, is very well underlined
by Lassegue (1998). But would have these authors failed to grasp the profound and dramatic irony
of this improbable game in which to make a computer participate: to play the difference between
man and woman? Would have they ignored the evolution and the mathematical stakes of Turing’s
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our comparison develops itself between predictability and decidability and it is
philosophical, in the sense of the theory of knowledge, but it must be reconstructed
from mathematics. By this, we could understand why “imitation”, such as defined
by Turing, is detectable. Its mathematical (geometrical!) limit finds itself exactly
in the difference between the unpredictability/undecidability results. DSMs have
properties of undecidability at infinity, but are predictable in the finite realm: by
looking at the program and the discrete databases one can perfectly predict the next
computation step and, above all, they are predictable with regards to the iteration
of the process, as described in Section5.2. In a turingian DSM, all the laws of
evolution/behavior of its own universe are explicitly and fully given (programmed)
and measurement, as access to a digital database, is perfect; exactly as for God,
who perfectly knows the laws and the exact measures in his universe, ours (first
Intermezzo). The myth of formal machine and of absolute divinity meet and, both,
their ways, detach the analysis of knowledge from its constitutive interface, between
us and reality. Their counterparts in the foundations of mathematics have quartered
the century between mechanistic formalism and ontologizing Platonism.

Note that Turing is so firmly convinced that his DSM is laplacian that he makes
a mistake: he explicitly claims that sensitivity to initial conditions does not apply
to DSMs (he stresses “discrete-state machines”, p. 47), even in the sense that “rea-
sonably accurate knowledge of the state (of the machine) at one moment yields
reasonably accurate knowledge any number of steps later” (p 47). That is, DSMs
would satisfy also Laplace’s erroneous conjecture concerning approximations. Now,
this happens to be false, since if the machine starts on very close but different values
(reasonably accurate — but not exact — knowledge of the discrete state of the ma-
chine) for, say, X¢ in the computation of the logistic sequence, this leads, on a set
of measure 1, to very different evolutions and, thus, it suffices to make the trajec-
tory eventually unpredictable for the observer. But digital data bases are exact and
the machine is laplacian, since, as for Laplace’s God, the access to and use of data
base, which are discrete and definite, is meant to be exact: the machine computes
over a precise Xg, and not over an inevitably inexact physical measure. Moreover,
the laws, organized as programs, are all given. This minor mistake by Turing is un-
derstandable, as there was little computational! experience at the time on discrete
sequences engendered by non-linear equations (a rare exception is (von Neumann
and Ulam 1947)); the topic came to the limelight only during the 1970s). However,
this is the same mistake that lies at the hearth of his attempted undetectable imita-
tion: the idea that a discrete grid of access, would allow to control/predict also an
unstable evolution. No, control and prediction, such as made explicit by perfect iter-
ation, are due to the exact nature of digital data bases and of formally programmed
dynamics, within a DSM.

scientific project, at the same time as the tragedy of the “game” lived by this man of genius who
first projected himself into a machine (human computer), then condemned for his homosexuality
and soon to commit suicide; would they have so badly understood his mathematics as much as
ignored his suffering between being and imitation: man/woman/machine?



5 Randomness, Determinism and Programs in Turing’s Test 105

It is modern mathematics then that makes us understand the extent to which
logico-computational philosophy in cognition and foundations of mathematics
stems from this newtonian-laplacian culture which has endured for too long in
science, to the point of even inhibiting physico-mathematical work (and of stimu-
lating the platonic response in philosophy of mathematics). In classical mechanics,
after Poincaré, and with the exception of Hadamard and of one or two great russian
mathematicians, we needed to wait for the 1960s and 1970s for his philosophies and
his mathematics to be taken up. In philosophy, classical! cognitivism, stuck in the
“linguistic turn”, suffered the consequences of it, since it has lost first of all, in the
Boole and Frege mouvance and against the philosophy of Riemann and Poincaré,
the “sense of space” and of geometrical complexity. Turing, in 1950, situates him-
self between the two cultures, as his article in philosophy proves, jointly to his
subsequent paper on morphogenesis: one must grasp the mathematical subtleties of
his imitation game in order to appreciate it and to not proclaim, against Turing, that
the brain is — or can be modeled by — a Turing machine, meaning a “programmable
laplacian machine”, all while adding... “in the end”, the fateful sentence of all
simplistic reductions ever promised and never accomplished.

In fact, in cognition (but also in classical Artificial Intelligence and in — for-
malist — philosophy of mathematics, the loci of the discrete-arithmetic modeling of
the world and of thought, along the lines of. Hilbert’s laplacian conjectures), we
still await for a conscious reflection on paradigms comparable to the one explicitly
made by Sir James Lighthill, during his chairman period at the International Asso-
ciation for Mechanics: “Here I have to pause and speak once again on the behalf
of the broad global fraternity of practitioners of mechanics. We are deeply con-
scious today that the enthusiasm of the forebears for the marvelous achievements of
Newtonian mechanics led them to make generalizations in this area of predictability
which, indeed, we may have generally tended to believe before 1960, but which we
now recognize to be false. We collectively whish to apologize for having mislead
the general educated public by spreading ideas about the determinism of systems
satisfying Newton’s laws of motion that after 1960, were to be proved incorrect”
(Lightill 1986).

In short, in Physics, Laplacian philosophy has played its part about two cen-
turies ago; in logic, almost a century eater, it suggested an elegant formalism which
engendered the Computer Science of sequentiality and its beautiful mathematics
(but also a philosophy of knowledge anchored upon the physics of the nineteenth
century); yet, all this is over, even in Computer Science. Quite obviously, some
of its great concepts remain pillars of the modem analyses of computer program-
ming — the structures of types, polymorphism, for example — just as the notions of
hamiltonian and of lagrangian in classical mechanics have diffused into the differ-
ent branches of the physics of the twentieth century, but the conceptual framework
and its philosophy are radically changing. In fact, in Computer Science, the time
has come for the cornputability of “data flows”, of synchrony and of concurrency
in (spatially) distributed systems, as opposed to that of “input—output” calculations,
outside of the world — because beyond space and physical time (their time is se-
creted by the clock, sec (Bailly and Longo 2003a)) — typical of Laplace-Turing
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sequential machines. These concurrent machines remain DSMs, so they are quite
different from any dynamical system (continuous, said Turing), but they pose physi-
cal problems, as any real system, so also of spatio-temporal nature (synchronization,
connectivity — as homotopy, for example (Goubault et al. 2000)). Their mathematics
are in the process of realization and are about to give us a novel theory of discrete
computations which greatly enriches that of Turing, Church, and of the other greats
of the 1930s, because it responds to other questions than those of computability a la
Turing (see Aceto et al. 2003).

5.6 Conclusion: Irreversible vs Unrepeatable

We have briefly mentioned the essential, constitutive, role of determinism in the
classical Physical theories: a role confirmed by the great turning point of Poincaré,
who has distinguished, mathematically, determinism from predictability. By this
way, he has led us to understand randomness as epistemic, within the framework
of deterministic theories (later, we even managed to say that a programmed se-
quence is random, if we do not know the laplacian program which generates it and
if it has a behavior, a geometry, that is ergodic). On the other hand, an important
trend in modern physics considers indeterminism as inherent to quantum theories
and probabilities as intrinsic to this approach to microphysics.

Dynamical systems (thermodynamical and of critical type) have introduced, in
modern fashion, “the arrow of time”, following the essential irreversibility of their
processes. But there is another concept which Computer Science places at the center
of its own scientific construction: that of the repeatability of the process. In fact, it
is inherent to the notion of program, the possibility of repeating the unfolding of the
computation in time. That is, to start over from the same initials conditions and to
follow the exact same evolution: the discrete nature of the system allows to avoid the
consequences of a possible sensitivity to initial conditions, even when they are im-
plicit in the equations implemented. There lies an essential, constitutive component
of the laplacian nature of DSMs, to which Turing so clearly refers: “It is an essen-
tial property of... (DSMs) that this phenomenon does not occur”. In summary, if a
system is stable or if it is a DSM (discrete state machine!), its trajectories are repeat-
able, because it is not sensitive to the initial conditions or the eventual sensitivity
does not manage to deploy its “destabilizing” effects, for re-initialization is perfect,
and the unpredictability is “pushed to infinity” (the undecidability of the halting
problem, Turing-style, see the beginning of Section5.5). As does a simple pendu-
lum, as does a clock, the computer iterates without difficulty: in fact, iteration is their
job. And iteration, in Computability Theory, begins by primitive recursion, charac-
teristic of the functions of Herbrand and Go6del Arithmetic, goes through general
recursion of this same formal system and of lambda-calculus, and arrives to a very
important global property of programs: the portability of software (would you buy a
piece of software if it was not transferable onto any compatible machine and iterat-
able at will?). In short, the repeatability, along the discrete processes, is inherent to
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the Theory of Computability and to its remarkable practical development, Computer
Science. Specifically, it tells us that one thing is the physico-mathematical modeling,
by equations with their solutions, continuous or analytical for example and if possi-
ble; and another, an ulterior step, is the implementation of these on a DSM: the latter
will give us an absolutely remarkable imitation (though detectable), which is indis-
pensable to modern science, but essentially different from (our understanding of)
the physical process, for it is a discrete realization of the continuous mathematical
modeling. It is necessary to grasp this point in order to develop and apply at best this
talent for imitation and iteration characteristic of DSMs. Galileo would have enor-
mously envied our possibility to iterate without limit virtual physical experiences:
he had to make do with throwing and throwing again his simple pendulum and its
weight, in order to propose to us the first great laws of classical physics.

On the other hand, the dynamical processes, just slightly more complex — which
interest us today, are not repeatable: a double pendulum or a turbulent river do not
manage to follow again and exactly the same evolution. Moreover, for some dy-
namical systems, recurrence theorems confirm the difference: while a continuous
system only goes very close to a previously explored state, its discrete implementa-
tion eventually forces identical iterations, when the recurrence interval is below the
intended decimal approximation. Thus, sequences which are recurrent or ergodic,
thus dense in the phase space, become... periodic and start repeating themselves
over and over again. More generally, any sequence generated by an iterated function
system (Xp+1 = f(Xp)) is periodic on a concrete DSM, as much as any pseudo-
random generator, since they can take only a finite number of values. And, as already
observed, periodicity is the opposite of density and ergodicity (but the period may
be very long).

Unrepeatability is a concept to add to irreversibly: it does not coincide with the
latter, because one can iterate the irreversible evolution of a gas, for example, as
a global statistic, evolution of the system. It is the local behaviour of a particle
or the series of couplings (fluctuation, bifurcation) which are unrepeatable. Simi-
larly, it is easy to describe a reversible process, which is unrepeatable. Conjointly
with determination, the (fluctuation, bifurcation) coupe is constitutive of classical
dynamics and even more of biological processes: with structural stability, it partic-
ipates in morphogenesis a la Turing and in the variability which is at the heart of
evolution, phylogenetic and ontogenetic; it contributes to the dynamics of cognitive
phenomena.

There are the stakes proposed by our response to Turing, based upon the re-
peatability of certain “continuous” processes, within the physical framework that
he suggests herself for his game. A framework which constitutes a displacement of
scientific attention from his behalf: his first works and his formal machine are part of
the great ideas in Logic and in the foundations of the mathematics of the 1930s; his
reflections, in the 1950 article, enrich themselves with an on-look upon contempo-
rary mathematical physics. He thus goes beyond the limits of laplacian philosophy
that had characterized the first years of work in Logic. But how is it possible that a
whole branch of scientific reflection, so important technically, Mathematical Logic,
could have taken such a backlog, in philosophy of nature and of knowledge, in com-
parison with other disciplines, Physics particularly?
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The weighty, historical, responsibility of the philosophies attached to laicism and
to formalism was first to isolate the problem of the mathematical foundations of our
relationship to phenomenal space (we discuss this in (Longo 2003a, b)). This choice
originally had good motivations, very well explicated by the two great founders,
who were soundly worried for the upheaval of non-Euclidean geometries: it was
urgent to abandon any reference to physical space and to base the foundational
analysis upon pure logic and/or formal coherence (Frege 1884; Hilbert 1891).%
This theoretical breakage gave us remarkable logico-formal machine, as perfect as
out of this world (at least, until the arrival of today’s networks and of concurrency).
But, at the same time, it separated the analysis of the foundations of mathematics
and, worse, of cognition, from that of Physics, because exactly at that time, between
the nineteenth and twentieth centuries, new theories emerged strictly related to the
problem of the mathematical intelligibility of space and time (geometry of dynam-
ical systems and of relativistic spaces). Consequently, it separated them from our
efforts in the construction of modern scientific knowledge, so strongly correlated to
the constitution of mathematical concepts and structures, as well as from the ma-
jor change in the philosophies of Nature proposed by the new physical theories.
For example, symmetries and symmetry-breaking, at the heart of modem Physics,
appear only in (Weyl (1952) as a component of the foundation (as genesis) of math-
ematical structures, and, more recently, in Proof Theory, by the work of Girard.

By consequence, the Platonism/formalism scholastic dominant in the philosophy
of mathematics (do triangles and real numbers really exist?... “the Scylla of ontol-
ogism,... the Charybdi of nominalism... from both sides I see the emergence of
the ghost of a new scholastic” (Enriques 1935) missed out on the great foundational
debates in Physics, about the structure of space, about determinism, ‘“non-locality”
etc. (relativistic, dynamic, quantum systems), which marked the century. And it left
us with formalisms, technically marvelous to invent and work on DSMs, but lapla-
cian in their conception of the world — or in the organization of their own universe;
a universe subdivided into small discrete boxes, well localized and perfectly stable,
such as the bits of computer’s memory. Turing was in the process of grasping this
point, as pointed out by his imitation game between deterministic systems with dif-
fering spatio-temporal evolution (“morphogenesis”), a game between the discrete
and the continuum; but he died, at age 42.

15 This issue of well explicating the hypotheses must be a feature of the Greats (Laplace, Frege,
Hilbert, Turing, ...): probably because they understand the novelty of the original conceptual
framework they are proposing. If not, one may find, even quite recently, people who say they
have “demonstrated” Church Thesis; small implicit hypothesis: the Universe, with all of its sub-
systems, is an enormous laplacian machine. But, Church Thesis is an implication, which goes from
all informal definition, that of potentially mechanizable deductive calculus a la Hilbert, to specific
formal systems (Church, Turing, ...). As an implication, today one could say that it is certainly
within the limits of truth, in Thom’s sense: “the limit of the true is not the false, but the insignifi-
cant” (see for a modem appreciation (Aceto et al. 2003)). Quite obviously the ultimate goal of these
“proofs” is to talk of the brain, finite sub-systems of the Universe (for a brief history of Church’s
Thesis — Church-Turing’s, more specifically — and of its physical and cognitive caricatures (see
Copeland 2002).
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Let’s try to not reach the same stalemate with Biology, of which cognitive
sciences cannot do without, because the living makes even less sense without its
space, its action within an ecosystem, its dynamic of forms. A dialogue with these
rapidly growing sciences, within which mathematics cannot pretend to any hege-
mony, nor to ontological priority, and which would be at the same time technical and
foundational, is essential to mathematics and to their foundation, because there can-
not be a philosophy of mathematics without a philosophy of nature. There lies one of
the great teachings of this article by Turing, and, long before, also of Poincaré and of
H. Weyl (Weyl 1918 1927); another “lone wolf” — according to his own definition —
at a time when it was still being tried to demonstrate the laplacian completude of
logico-formal potentially mechanizable systems. Deductive systems of which some
seek, even today, the implementation in the brain and, sometimes, claiming to speak
in Turing’s name; and they go from imitation to model, up to the discreet seduction
of the metaphor.'®

The distinction hinted by Turing, and at the heart of our analysis, between
modeling (as mathematical proposal of constitutive principles for a physical pro-
cess) and imitation (functional imitation, with no commitment on the “nature” of
phenomena) is a fundamental idea. It should be taken up today, both from a foun-
dational and practical view point, as discrete-state machines are essential to modern
science by their extraordinary modeling/imitation abilities.

A recent project, see the team “Morphological Complexity and Informa-
tion,”!” attempts to propose a foundational dialogue with the natural sciences
(see Longo 2003a,b; Bailly and Longo 2010) as well as a few alternatives, modest
and specific, to the stalemate of the arithmetic encoding of the world - a coding
which is changing this very world by the descendants of Turing’s DSM and their ex-
traordinary networks, but which, transformed into a philosophy of knowledge, may
prevent us of grasping its complexity and. .. to start thinking to the next machine.
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Chapter 6
2-Incompleteness, Truth, Intentionality

Sergio Galvan

The subject of the paper is the w-incompleteness of a formal theory which seeks
to formalize finitist arithmetic. PRA (i.e. primitive recursive arithmetic) is normally
considered to be the theory that formalizes finitist arithmetic.' But the arguments
which follow also hold if one assumes PA (i.e. Peano arithmetic) as the theory for-
malizing finitist arithmetic (in a broader sense, of course). I take two points of view:
one internal to the theory, and one relative to some suitable non-conservative ex-
tension of it. I shall seek to show that: (i) with respect to the first point of view,
w-incompleteness entails an irreducible distinction between truth in finitist arith-
metic and provability through methods based on finitist (finitary and concrete)
evidence; (ii) with respect to the second point of view, this irreducible distinction
can be overcome, but only if one accepts a form of evidence (non-finitary with
respect to content, finitary in form but abstract). Abstract evidence is thus the fi-
nite expression of an intensional relationship between the subject and an infinite
reality.

Point (ii) will be subsequently confirmed by analysis of certain kinds of
prototypical proof.

My thesis is developed on the basis of detailed formal analysis of the
w-incompleteness of first-order numerical theories (PRA in particular), and of
certain kinds of prototypical proof: (1) the Euclidean proposition concerning
the relationship between lowest common multiple and greatest common divi-
sor; (2) the Euclidean algorithm of the remainders; (3) Friedman’s finite form of
Kruskal’s theorem. The analysis of the forms of prototypical proof is conducted in
Section 6.2.2.
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6.1 Irreducible Distinction Between Truth
and Provability Within T

Consider the following three statements (where T can be considered coincident with
PRA):

(a) (omn)(T- F a(m)),ie. T- Fa)andT- + a(l)and....?
(b) T- F VxPrr (Ta(X)7).
(¢) T- F Vxa(x).

Firstly, (a) = (c) expresses the usual property of omega-completeness (in
short omega-3), and its falsity is well-known. The formalization of (a) = (c)
also enables one to show that omega-3 entails the inconsistency of T. In fact, the
formalization of (a) = (c) is:

omega-3 VxPrr(Ta(x)”) = Prr(TVxa(x)7)

Now, for a specific ¢ we have:
VxPrr(" —Provr(x, L7)") = Prp(" Vx—Provr(x,” L7)7)
hence:

VxPrr(T—Provr(x,” L7)7) — Prp("Const ) def. Const
VxPrr(T—Provr(x,” L7)7)7) — —Const by G2

3
—Const by Feferman’s Lemma

The non-validity of omega-3 shows immediately that the derivability predi-
cate does not behave like the truth predicate. If Tr(a(0)) and Tr(a(1))... then
Tr(Vxa(x)), whilst the derivability of a(n) for all n, (om n)(T- F a(n)), does not
guarantee the derivability of Vxa(x). If we say: truth consists in derivability in T,
then we cannot say that Tr(Vxa(x)) even if Tr(a(0)), Tr(a(1)), etc.

But why is it not possible to pass from (a) to (c)? The passage from (a) to (c)
would require two critical steps which keep the extremes (a) and (c) detached.
Each of these critical steps is a reason for omega-incompleteness. I begin with the
first, which consists in the fact that it is not generally the case that (a) implies (b)
(i.e. omega-1).

Let (a) be the starting-point. We want to see why it is not always possible to reach
(b). To show why this is not the case, I consider the moves by which one usually
goes from (a) to (b).

2 “om” is the metatheoretical universal quantifier. It means “for all”.

3 Smorinski (1977), p 847.
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(a) i.e. (om n)(T- F a(n)), is an abbreviation for the following metatheoretical
infinite conjunction:

T- Fa(0)and T- Fa(l)and T- F a(2) and ...

Now, from the usual perspective of proof theory, a theory is constructed in order to
obtain all the propositions that are true in the standard interpretation of the theory.
But if (omn)a(n) (i.e., a(0) and a(1) and a(2) and ...) is true in the standard
interpretation of T, then also Vxa(x) is true, at least in the standard interpretation of
T. It is therefore to be expected that also T- F Vxa(x), i.e. the theorem relative to
Vxa(x), follows from the infinite conjunction of the theorems relative to each of the
numerical examples (om n)(T - F a(n)).

How can this infinitary relation be translated into a finitary relation of derivabil-
ity? The usual arithmetical practice in cases like this is to find a proof of a(k) (for
a certain k) which does not depend on the specific nature of k but only on the fact
that k is a numeral. If the proof satisfies this requirement, it coincides with a partic-
ular exemplification of a uniform structural scheme which is invariant in the proof
of the other cases, with the sole difference that other numerals take the place of k.
As well-known, this is the notion of prototype-proof proposed by Herbrand: ...
when we say that a theorem is true for all x, we mean that for each x individually it
is possible to iterate it as proof, which may just be considered a prototype of each
individual proof.” How can a prototype-proof be translated within the context of a
purely formal standard language? The translation is performed by identifying a term
t(n) which describes uniformly for all n the proof of a(n) in T and by proving this
in T. For T to be able to do this, however, the proof in T must be carried out with
respect to the open code for the closure of a(x) under substitution of numerals. In
symbolic terms, this requires establishing the following:

T- F VxProvr(t(x),” a(X)7)

Whence:
(b) T- F VxPrr(Ta(x)7)

Note the essential presence of the variable x in the above formula. This guar-
antees that t(x) is the description of the invariant proof schema underlying the
proof for each single numeral. If this were not a free variable, the empty structure
of the schema would not be expressible in T. T would thus express only instances of
the schema and this would entail the impossibility of the finitary translation of (a).
Yet the passage from (a) to (b) is not always guaranteed. It is possible that the
theory T does not know (om n)a(n), even though it does know that o holds individu-
ally for each numeral: a(0), a(1), a(2), .... The non-validity of omega-1 expresses
the general non-validity of (a) = (b). The formalization of (a) = (b), in fact, is:

omega-1 VxPrr(Ta(X)”) = Prr(TVxPrr(Ta(X)7)7)

which is incompatible with the scheme of uniform omega-consistency restricted
to the PR-formulas (see Galvan 1994).
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Hence, with respect to the context fixed by a numerical theory T, it is not al-
ways possible to prove in T that a particular property is provable in T for all
numerals. Sometimes, the existence of the proof for each individual numeral may
not be brought to evidence. To conclude: this is the first reason that explains the
phenomenon of omega-incompleteness. It is not possible for (om n)(T- F «a(n))
to imply T- F Vxa(x) (that is, (a) = (c)), because this would also imply T- F
VxPrr(Ta(X)7) (that is, (a) = (b)).

But let us suppose for a moment that T- = VxPrr(To(Xx) ™) holds. Does this nec-
essarily guarantee also T - F Vxo(x)? No, it does not, because this is the step
when the second reason for omega-incompleteness comes into play, and the second
critical juncture arises. To assume that T- - VxPrp(Ta(x)™) implies T- F Vxa(x)
is in fact to hold that (b) = (c), which can be formalized as follows:

omega-2 Prr(TVxPrr(Ta(x)7)7) — Prr(TVxa(x)7)
And yet, as above, considering a specific o, we have:
Prr (" VxPrr (T —Provr(X,” L7)7)7) — Prp (" Vx—Provr)(x,” L7)7)
then:

Prr (" VxPrr (T —Provr(X, ~L7)7)") — Prr(" Const ™) def. Consy
Pry (T VxPrp (T —Provr(x, “L7)7)") — —Consy by G2

—Const by Feferman’s Lemma and D1

The result thus obtained is the same one that follows from assuming the valid-
ity of omega-3 (the derivation is also the same, with the sole difference that D1
is applied to Feferman’s Lemma): the assumption of omega-2 implies the non-
consistency of T.

To conclude: the non-validity of omega-2 tells us that even if T- VxPrp(Ta(%) ™),
that is, even if it is provable in T that all the numerical instances of a(x) are deriv-
able in T (and it is not only true that all the numerical instances of a(x) are derivable
in T), Vxa(x) is not provable in T. In other words, the non-validity of omega-2 tells
us that — at least regarding formulae a(x) like —Provr(x,” L) — the fact that the
truth that all the numerical instances of o(x) are derivable in T does not guarantee
the derivability of Vxa(x) in T, depends not on the underivability of that truth in
T but on the fact that the derivability of that truth is not sufficient to guarantee the
derivability of Vxa(x) as well.

We may now ask why also omega-2 fails. If, at least in certain cases, incomplete-
ness is due not to the fact that T is unaware that all the numerical cases of a(x)
are demonstrable, but to the fact that this does not enable the theory to be aware of
the truth of Vxa(x), what is the reason for this inability? The fact is that the the-
ory’s knowledge is closed only under the formal relation of logical consequence.
However, the truth of (om n)a(n) necessarily implies the truth of Vxo(x) only in the
standard model, and it is well known that a first-order numerical theory is unable
to characterize the standard model of natural numbers. For this reason, the theory
knows (om n)a(n) without knowing Vxa(x).
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All three forms of omega-incompleteness express the distance between truth
and provability As said, omega-3-incompleteness immediately shows that the
derivability predicate does not behave like the truth predicate. If Tr(a(0))
and Tr(a(1))... then Tr(Vxa(x)), while the derivability of a(n) for all n,
(om n)(T— I a(n)), does not guarantee the derivability of Vxa(x).

Omega-1-incompleteness confirms the distance and increases it by extending it
or deepening it. Here the difference resides not in the fact that although T - F «(0)
and T-Fa(l)and T-F a(2)and ..., T- ¥ Vxa(x), but in the fact that although
T-Fa@) andT-F a(l)and T-+ a(2) and ..., T - ¥ VxPrp(~a(x)”), which
means that the zruth of the infinite conjunction of the derivability assertions for each
of the numerical instances is not substitutable by the derivability in T of the finitary
assertion which expresses that conjunction. The gap between truth and derivability
is increased even further in this case by the fact that the truth — which cannot be
replaced with derivability — has a syntactic content (it concerns, that is to say, facts
of derivability). Moreover, particular forms of formulae a(x) determining omega-
1-incompleteness have the complexity of PR-formulae — that is, they are decidable
formulae. The truth of the infinite conjunction therefore cannot be disputed even
from a constructivist point of view. It is already established by the way in which
the n-th case must be decided, although the time of the decision may be distant.
(In other words, the proofs potentially already exist although they have not yet been
actualized). Yet, although the series has already been determined, it is not possible
to prove the statement that describes it in finitary terms.

Omega-2-incompleteness manifests another aspect of the irreducibility of truth to
derivability. This consists in the fact that certain truths — for example, the truth of
Vxa(x) with respect to the standard model of arithmetic — are not derivable from
the axioms of the theory because they are not their logical consequences. Moreover,
there are no axioms able to restrict the structures to the standard ones — like the
above-mentioned standard model of natural numbers — so that the said truths could
be transformed into logical consequences.

6.2 External Point of View and Non-finitist Evidence

6.2.1 Platonism versus Constructivism

The above observations on the relationship between truth and derivability are
conclusive only if one remains within the framework of a particular theory.
What changes if the point of view is extended to the perspective of some higher
theory? It is well known that truth relative to the language of a theory T can be con-
sidered as derivability in a higher theory T, so that truths which are non-derivable
in T become derivable if the theory considered is the stronger theory T'. This may
induce the belief that the separation between truth and derivability is only a ques-
tion of point of view. If the point of view is internal to the theory, then the split
between truth and derivability exists; if instead the point of view is external, the
split disappears.
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However, this conclusion is based on the naive idea that the passage to the
higher level is unproblematic, that is to say, that it can be accomplished without
paying a price. In other words, non-derivable truths in T can indeed be derived in
a higher theory, but unless one wishes to assume a pragmatist view which simply
eliminates the question of justification, it is necessary to provide the reasons that
underpin the higher theory. Now, what is relevant in justifying the passage from
T to T’ is the justification of axioms of T’. But this justification cannot be assured
by the finitist evidence because T’ is essentially more powerful than T. Alternative
forms of non-finitist evidence will therefore be necessary. But what distinguishes
between finitist and infinitary evidence? The answer requires one to reflect on the
fact that T formalizes finitist procedures. This means that the syntactic notion of
derivability in PRA is synonymous with that of finitist evidentiability, that is to
say, with the evidentiability of contentual features of the finite concrete linguistic
objects of which a formal theory is constituted. On the contrary, the non-finitist
evidence is differently characterized. The difference lies maily in content: the con-
tent of finitary evidence consists of concrete and finite objects*; the content of
non-finitist evidence consists of non-finite and non-concrete objects.’ In respect to
the first aspect (non-finite), infinitary objects may be actually infinite objects. In
respect to the second (non-concrete) they are abstract objects. Those who accept
an infinitary objectuality in the first sense are inclined to accept a Platonist position
on the mathematical universe. Those who instead insist on the second characteristic
to the exclusion of all others are clearly inclined towards a constructivist view of
mathematical entities. In this sense, evidence concerns constructive possibilities
which extend beyond those implicit in finitist procedures of construction and cal-
culation, and which therefore require more complex forms of semanticization and
conceptual explicitation. There are obviously profound differences between the
realistic and constructivist options. Nevertheless, they have one point in common:
the role performed by abstract non-concrete notions in both approaches and which
can be briefly described as follows. The abstract is the category which allows one
to contemplate the infinite (according to the Platonist approach) and perhaps to
constitute it (according to the constructivist approach).

The role of the abstract in constructivism is obvious. However, the category of
the abstract plays an essential role in the Platonist approach as well. Although in the
latter approach (formalism + non-finitist semantics) it makes sense, for example, to
view truth in the standard model of the natural numbers as the infinite conjunction of
every numerical instance, knowledge of this truth consists in the derivability of the
general formula. As we have seen, this is not generally possible within the theory it-
self, with the consequence that it is necessary to resort to an adequate higher theory.
In the case of (the formal expression) of the consistency of PRA, for example, al-
though it is possible to demonstrate in PRA of every single numeral that it is not (the

4 Cfr. Tieszen (2005), p. 152: “Objects or concepts that can be completely represented in space-
time as finitary, concrete, real, and immediately intuitable”.

5 Cfr. Tieszen (2005), p 152: “Objects or concepts that are in some sense infinitary, ideal or abstract,
and not immediately intuitable”.
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code of) a proof of contradiction, the consistency of PRA cannot be obtained within
PRA itself, but in some non-conservative extension like PA or ZF. Yet, that this latter
is the derivation of the formula that, semantically understood, describes the general
fact of the non-derivation for each single numerical instance (i.e. that it corresponds
to the truth in the standard model of the infinite conjunction of all numerical cases)
follows only on condition that the axioms of PA or ZF are taken to be true axioms
on their corresponding domains, and that the theory as a whole is correct.® But if
there are reasons evidencing that this is so (i.e. it is not a mere assumption), they
cannot but be reasons based on evidence concerning abstract concepts. Indeed, the
still partial grasp of the infinite is granted to the finite human mind only in the guise
of the abstract. Hence, the Platonist approach is the infinitary semantic counterpart
of a formalistic apparatus whose finite signs convey abstract meanings exemplified
in the structures of the semantic dimension.

The constructivist approach, by contrast, eliminates the distance between se-
mantic object and linguistic instrument. Consequently, it does not give rise to the
phenomenon just described, in which the abstract mediates between the finite-
linguistic and the set-theoretical infinite. Constructivism identifies the two moments,
relinquishing on the one hand the requirement of pure formality of the linguis-
tic guise, and on the other the set-theoretical universe characterized by the notion
of actual infinity. How is this possible? By contentually extending the concept of
derivation and by eliminating the sharp separation between the formal plane and the
semantic one. The essential difference consists in the rejection of the plane of pure
formality and the assumption of precise meanings in the conceptual construction
and in the proof-theoretic practice. And the central category in all this is always
abstractness.’

6 Of course, the formalists claim that the truth of the axioms of ZF, or PA about the correspondent
abstract structure of sets is not required. Indeed, considering only the case of ZF, it follows from
Kreisel’s conservation theorem that if o is a I1,-formula and ZF- F o then PRA- Conszr F a.
As a consequence, in order to obtain the consistency of PRA we just need to assume the truth of
Consgp, i.e. of a sentence regarding a concrete syntactical fact, and we must not committ ourselves
to assume the truth of the ZF axioms about the abstract structure of sets. Actually, it is (trivially)
true that the consistency of PRA may be obtained from the consistency of ZF, but the problem is
precisely to justify the latter assertion. To require the existence of an abstract model is a way of so-
lution. Another way consists in elaborating a constructive proof (that, of course, can be carried out
with less difficulty for the included theory). In this case, however, to prove the truth of consistency
means to show the truth of the syntactical fact of consistency by means of the abstract structural
properties of the proof itself. This is typical of the constructivistic approch, about which we are
going to speak below.

7 Cfr. Godel (1972), pp 271-273: “P. Bernays has pointed out on several occasions that, in view
of the fact that the consistency of a formal system cannot be proved by any deduction procedures
available in the system itself, it is necessary to go beyond the framework of finitary mathematics
in Hilbert’s sense in order to prove the consistency of classical mathematics or even of classical
number theory. Since finitary mathematics is defined as the mathematics of concrete intuition, this
seem to imply that abstract concepts are needed for the proof of consistency of number theory
... By abstract concepts, in this context, are meant concepts wich are essentially of the second or
higher level, i.e. which do not have as their content properties or relations of concrete objects (such
as combinations of symbols), but rather of thought structures or thought contents (e.g., proofs,
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6.2.2 Non-finitary Evidence and Prototypical Proofs

This subsection furnishes some examples of mathematical arguments based on
abstract and infinitary forms of evidence. These are prototypical proofs. The ex-
amples are taken from arithmetical mathematics. I shall seek to show their close
connection with the phenomenon of w-incompleteness.

If a(x) is evident because of the general and abstract structure of x as a stan-
dard natural number (its intension), then it is evident that every individual standard
number x is a. The evidence of the generality rests on the evidence of an abstract in-
tension. This is the important aspect of prototypical arguments (in Herbrand’s sense
as illustrated above). There are numerous examples of universalizing arguments of
this type in mathematical practice. Let us look at some of them.

1. The Euclidean theorem on the relationship between the greatest common divi-
sor and the lowest common multiple (proposition 34 in Book VII of Euclid’s
Elements). According to this theorem, the product of two numbers a and b is
equal to the product of their greatest common divisor (MCD(a,b)) and their low-
est common multiple (mcm(a,b)). Its intuitive proof proceeds in the following
‘concrete’ manner.

Let M be a common multiple of the integers a and b. That is, let M = a - k (for a
certain integer k). But M is also a multiple of b, so that

a-k

b
Now setting a = a;- MCD(a,b) and b = b;- MCD(a,b) one obtains:

= h (for another integer h).

a1 -MCD(a,b)-k  a;-k
"~ b;-MCD(a,b) by

On the other hand, MCD(aj,b;) = 1, so that k must be divisible by b;. Thus one
has:

b
k =b; -t = ———— - t (where t is an integer)
MCD(a, b)
whence
b
M=a ————-t.
MCD(a, b)

However, the argument holds for any multiple of a and b, so that all common mul-
tiples of a and b can be represented in the above standard form. What, therefore,

meaningful propositions, and so on), where in the proofs of propositions about these mental ob-
jects insights are needed which are not derived from a reflection upon the combinatorial (space
time) properties of the symbols representing them, but rather from a reflection upon the meanings
involved.”
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is the lowest common multiple? It is the one that results from setting t = 1 in the
standard formula. Thus b
a .

mcm(a, b) = W(ab)

and therefore
a-b = mcm(a, b)-MCD(a, b).

Now consider the type of argument used to obtain the Euclidean result. This is an ar-
gument conducted for any numeral. In fact, the proof starts from a certain common
multiple and shows that it can be transformed into a standard form. The transforma-
tion procedure is general, with the consequence that the result holds for all numerals.
The result is therefore generalized.

2. Theorem according to which the greatest common divisor of the two positive
integers coincides with the last remainder different from O in Euclid’s algorithm.
The theorem is usually proved in the following manner.

Let a and b be two positive integers. Given that any integer a is univocally repre-
sentable in the forma = b-q + r (for 0 < r < b), it is possible to construct the
following sequence of equations:

a=b-q +11 0<r; <b.
b=r1-q@+nmn 0<ry <ry.
rp =r2-qs +13 0<r3<r;.
In—2 = TIy—1-Qn +1n 0 <1y <1p—1.

In—1 = In " Qn+1-
Which necessarily terminates with r, 1 = 0, given that the sequence b, ry, 13, ... is
a decreasing succession of integers starting from b and consequently cannot contain
more than positive b integers. Now, we know thatif a = b-q 4 ¢, then MCD(a,b) =

MCD(b,c).
Therefore
MCD(a,b) = MCD(b, 1) = ... = MCD(rp—1,13) = Iy,
whence
MCD(a,b) = r,.

That is to say, the greatest common divisor of a and b coincides with the last re-
mainder different from zero in Euclid’s theorem.

Note the use made of Euclid’s algorithm in the above proof. One deduces from it
that the greatest common divisor is the final remainder different from zero generated
by the Euclidean computation. The algorithm is therefore used as a computational
scheme applicable to any two numbers a and b and able to show, after a finite num-
ber of steps in calculation of the remainders, that the final remainder different from
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zero is the greatest common divisor of a and b. The computation is performed on
‘concrete’ values of a and b. Otherwise it would not make sense to say that the
sequence b, r, 13, ... cannot contain more than positive b integers. And yet the
result is generalized owing to the fact that the algorithm is executable for each of
these values. Here too, therefore, we have a deductive procedure structurally analo-
gous to the one illustrated by the above example: the proof is performed on concrete
example, but in principle it can be conducted for each of them. Therefore the result
is generalizable.

Let us now make explicit the argument common to the two above examples.
Let the expression a(x) denote the (open) statement corresponding to any one of
the above results, for example a-b = mcm(a, b)-MCD(a, b) (one parameter for this
statement has been omitted for the sake of simplicity). What is the content of the re-
sult obtained? It has been proved for any natural n that a(n). This has been done
by identifying the prototypical scheme transferable to each of the natural num-
bers. In other words, it has been obtained for a certain t(x) Provy(t(x),” a(X)7),
from which it is possible to derive also VxPrr(Ta(X)™). Now, considering that in
the standard interpretation the arithmetical predicate Prr represents the syntactic
predicate of provability in T, and considering that in T are formalized certain evi-
dence contents, the expression VxPrr(~o(X) ™) can be translated into the expression
VxEa(x) (where E is the evidence operator relative to (certain contents of ) the stan-
dard model). VXEa(x) therefore states that it is evident for every standard natural x,
owing to the relative abstract intension mediated by the syntactic concept of any nu-
meral, that a.(x). But with respect to the standard model of natural numbers, if a(x)
is evident for every natural x image of some numeral, then also Vxo(x). In other
words, with respect to the standard model, the evidence operator satisfies the fol-
lowing principle of w-completeness: YxEa(x) — EVxa(x). It is for this reason that
a prototypical argument is a rigorous and secure form of proof. However, it is not
a purely formal proof. It is formal until the derivation of VxPrp(Ta(X)7), i.e. as a
transferable procedure restricted to numerals. Thereafter, because it relies on the re-
striction of arithmetical models to the standard model alone, it is no longer formal
but requires acceptance of a form of abstract intensional evidence.

To conclude, a prototypical procedure comprises a formalizable part but does
not consist solely in this. It is constituted by the formal procedure restricted to nu-
merals (entirely realizable in a system) plus the passage ad omnes based on the
(non-formal) consideration that the procedure can be performed for every standard
element (image of a numeral). This passage presupposes a capacity to grasp the
abstract meaning (the intension) of a standard natural number.

3. A final observation concerns the proof of Friedman’s theorem (the finitary form
of Kruskal’s theorem).

As said, prototypical proofs do not guarantee the entirely formal proof of state-
ments in generalized form. However, this does not signify that theorems are not
provable in an entirely formal manner if use is made of principles different from,
or more powerful than, those employed for the proof restricted to numerals. This is
the case of both the theorems set out above. These can be derived within the same
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system — PA for example® — but by arguing in a broader manner (that is, following
a longer route) and using complex instances of induction axiom. However, there are
elementary arithmetical theorems provable with prototypical procedures that are not
formally obtainable within PA. This is the case of Friedman’s theorem (the finitary
form of Kruskal’s theorem), which can be obtained in PA for any standard integer n
but cannot be formally generalized within PA. The fact is that the proof depends on
the type of n, in that it expressly uses n as a standard integer in the finite ramification
of Koenig’s tree.’

The fact that Friedman’s theorem is not derivable within PA, whereas derivable
in PA is every example of it restricted to numerals, clearly confirms the infinitary
and intensional nature of the shift to generalization implicit in the prototypical pro-
cedure. Just as recourse to principles extending beyond PA is an appeal to forms of
evidence more complex and abstract than those formalizable in PA, so generaliza-
tion from every numeral example is only justified by intensional evidence showing
that the argument restricted to numbers holds for each of them, and that the set of ob-
jects to which the universally quantified expression refers is constituted exclusively
by the domain of standard natural numbers.

6.3 Concluding Remarks on Intentionality

What is the connection between the conclusions just reached and intentionality?
In other words, what does the abstractness of non-finitist evidence have to do with
intentionality? In this final part of the paper I shall argue that forms of non-finitist ev-
idence have a distinctive intentional character in the classical sense. But what does
intentionality in the classical sense mean? In the contemporary theory of knowl-
edge, by ‘intentionality’ is normally meant the relation, inherent in some activity by
a subject, of being oriented to an objectual content. Of course there are very different
opinions on whether some activity or other is oriented to an object and it is therefore
intentional. However, intentionality consists in directedness to an objectual content.
Yet the classical notion of intentionality, as rigorously yet innovatively propounded
by Brentano, contains a component that goes beyond simple directedness to an ob-
ject. It consists in the relation whereby an objectual content appears to the subject
or is present to the subject. In Scholastic philosophy, this relation is termed an ‘iden-
tity’ — an identity, that is, which is intentional. What matters in this relation is not
so much the identity (which simply expresses the fact that the subject enters into
‘contact’ with the object) as the fact that the object is grasped (received) by the sub-
ject as something else (aliquid aliud). The grasping by the subject of the object as
something else signifies that the object appears or is present to the subject.

8 Cfr. Galvan (1983), section 2, pp 255-375.
9 On this see Longo (2002).
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Now, my concluding thesis is that an abstract content can only be apprehended
by a subject in the form of intentional presentness. Intentionality as simple direct-
edness at the object can in fact be interpreted as a causal relation on the part of the
object which exerts a stimulus on the subject and which is then processed by the
subject himself (herself). In this case, directedness is determined by the fact that not
all stimuli are processed, but only those which match the structures responsible for
stimuli apprehension and processing. An abstract concept, not being reducible to
concrete contents, cannot exert this influence. It can only exert an influence if it ap-
pears to the subject, i.e. is present to his or her consciousness. Non-finitist evidence
therefore requires the activating of this capacity for intentioning the mathematical
object which is realized in the multiple forms (visual, geometric, combinatorial, set-
theoretic, etc.) of the being present, of the being seen, in a word, of the appearing.
This capacity, in conclusion, is to be understood in terms of intentionality of con-
sciousness, and intentionality — in as much as it is the place where the object is
present to consciousness — is just what mechanical minds lack.
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Chapter 7
Leibniz, Complexity and Incompleteness

Gregory Chaitin

I want to tell you about the ideas of Leibniz, Weyl and Popper on conceptual
complexity or complexity of ideas, and then about more recent developments de-
riving from that. But first of all I'd like to thank Professor Carsetti for inviting me
here to give this talk after I failed to appear when he invited me to give a talk 25
years ago. It’s not often that life gives one a second chance.

I’d also like to say that I'm particularly pleased to be here in Italy because at the
moment two books of mine are available in Italian: Alla ricerca di omega published
by Adelphi in Milan, and available in the UK as Meta Maths and in the US as
Meta Math!, and Teoria algoritmica della complessita published by Giappichelli
in Turin. The Giappichelli volume is a collection of essays translated into Italian
by Professor Ugo Pagallo of the University of Turin, who himself has two other
volumes on complexity published by Giappichelli.

Also in May 2006 I had an article in Le Scienze on “I limiti della ragione,” which
is an Italian translation of my Gdodel centenary piece on “The limits of reason” in
the March 2006 issue of Scientific American.

Furthermore, I lived for many years in Buenos Aires, where many waves of im-
migration were Italian and where Spanish is spoken as if it were Italian, so I feel
very much at home in Italy. Also, I get the impression that on the whole my work
is regarded with sympathy in Italy, which perhaps reflects an anarchic element deep
within the Italian soul.

Actually, let me start with Hermann Weyl, who was a fine mathematician and
mathematical physicist. He wrote books on quantum mechanics and general relativ-
ity. He also wrote two books on philosophy: The Open World: Three Lectures on
the Metaphysical Implications of Science (1932), a small book with three lectures
that Weyl gave at Yale University in New Haven, and Philosophy of Mathematics
and Natural Science, published by Princeton University Press in 1949, an expanded
version of a book he originally published in German.

G. Chaitin (=)

G. J. Chaitin, IBM T. J. Watson Research Center, P. O. Box 218, Yorktown Heights,
NY 10598, USA

e-mail: gjchaitin@gmail.com

A. Carsetti (ed.), Causality, Meaningful Complexity and Embodied Cognition, 127
Theory and Decision Library A 46, DOI 10.1007/978-90-481-3529-5_7,
© Springer Science+Business Media B.V. 2010


gjchaitin@gmail.com

128 G. Chaitin

In these two books Weyl emphasizes the importance for the philosophy of science
of an idea that Leibniz had about complexity, a very fundamental idea. The question
is what is a law of nature, what does it mean to say that nature follows laws? Here
is how Weyl explains Leibniz’s idea in The Open World, pp 40—41: The concept of
a law becomes vacuous if arbitrarily complicated laws are permitted, for then there
is always a law. In other words, given any set of experimental data, there is always
a complicated ad hoc law. That is valueless; simplicity is an intrinsic part of the
concept of a law of nature.

What did Leibniz actually say about complexity? Well, I have been able to find
three or perhaps four places where Leibniz says something important about com-
plexity. Let me run through them before I return to Weyl and Popper and more
modern developments.

First of all, Leibniz refers to complexity in Sections V and VI of his 1686 Dis-
cours de métaphysique, notes he wrote when his attempt to improve the pumps
removing water from the silver mines in the Harz mountains was interrupted by
a snow storm. These notes were not published until more than a century after
Leibniz’s death. In fact, most of Leibniz’s best ideas were expressed in letters to the
leading European intellectuals of his time, or were found many years after Leibniz’s
death in his private papers. You must remember that at that time there were not
many scientific journals. Instead European intellectuals were joined in what was re-
ferred to as the Republic of Letters. Indeed, publishing could be risky. Leibniz sent
a summary of the Discours de métaphysique to the philosophe Arnauld, himself a
Jansenist fugitive from Louis XTIV, who was so horrified at the possible heretical
implications, that Leibniz never sent the Discours to anyone else. Also, the title of
the Discours was supplied by the editor who found it among Leibniz’s papers, not
by Leibniz.

I should add that Leibniz’s papers were preserved by chance, because most of
them dealt with affairs of state. When Leibniz died, his patron, the Duke of Hanover,
by then the King of England, ordered that they be preserved, sealed, in the Hanover
royal archives, not given to Leibniz’s relatives. Furthermore, Leibniz produced no
definitive summary of his views. His ideas are always in a constant state of develop-
ment, and he flies like a butterfly from subject to subject, throwing out fundamental
ideas, but rarely, except in the case of the calculus, pausing to develop them.

In Section V of the Discours, Leibniz states that God has created the best of all
possible worlds, in that all the richness and diversity that we observe in the universe
is the product of a simple, elegant, beautiful set of ideas. God simultaneously max-
imizes the richness of the world, and minimizes the complexity of the laws which
determine this world. In modern terminology, the world is understandable, compre-
hensible, science is possible. You see, the Discours was written in 1686, the year
before Leibniz’s nemesis Newton published his Principia, when medieval theology
and modern science, then called mechanical philosophy, still coexisted. At that time
the question of why science is possible was still a serious one. Modern science was
still young and had not yet obliterated all opposition.

The deeper idea, the one that so impressed Weyl, is in Section VI of the Discours.
There Leibniz considers “experimental data” obtained by scattering spots of ink on
a piece of paper by shaking a quill pen. Consider the finite set of data points thus
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obtained, and let us ask what it means to say that they obey a law of nature. Well,
says Leibniz, that cannot just mean that there is a mathematical equation passing
through that set of points, because there is always such an equation! The set of
points obey a law only if there is a simple equation passing through them, not if
the equation is “fort composée” = very complex, because then there is always an
equation.

Another place where Leibniz refers to complexity is in Section 7 of his Principles
of Nature and Grace (1714), where he asks why is there something rather than
nothing, why is the world non-empty, because “nothing is simpler and easier than
something!” In modern terms, where does the complexity in the world come from?
In Leibniz’s view, from God; in modern terminology, from the choice of the laws
of nature and the initial conditions that determine the world. Here I should mention
a remarkable contemporary development: Max Tegmark’s amazing idea that the
ensemble of all possible laws, all possible universes, is simpler than picking any
individual universe. In other words, the multiverse is more fundamental than the
question of the laws of our particular universe, which merely happens to be our
postal address in the multiverse of all possible worlds! To illustrate this idea, the set
of all positive integers 1, 2, 3, ... is very simple, even though particular positive
integers such as 9859436643312312 can be arbitrarily complex.

A third place where Leibniz refers to complexity is in Sections 33-35 of his
Monadology (1714), where he discusses what it means to provide a mathematical
proof. He observes that to prove a complicated statement we break it up into simpler
statements, until we reach statements that are so simple that they are self-evident and
don’t need to be proved. In other words, a proof reduces something complicated to
a consequence of simpler statements, with an infinite regress avoided by stopping
when our analysis reduces things to a consequence of principles that are so simple
that no proof is required.

There may be yet another interesting remark by Leibniz on complexity, but I have
not been able to discover the original source and verify this. It seems that Leibniz
was once asked why he had avoided crushing a spider, whereupon he replied that
is was a shame to destroy such an intricate mechanism. If we take “intricate” to
be a synonym for “complex,” then this perhaps shows that Leibniz appreciated that
biological organisms are extremely complex.

These are the four most interesting texts by Leibniz on complexity that I've
discovered. As my friend Stephen Wolfram has remarked, the vast Leibniz Nachlass
may well conceal other treasures, because editors publish only what they can under-
stand. This happens only when an age has independently developed an idea to the
point that they can appreciate its value plus the fact that Leibniz captured the essen-
tial concept.

Having told you about what I think are the most interesting observations that
Leibniz makes about simplicity and complexity, let me get back to Weyl and Popper.
Weyl observes that this crucial idea of complexity, the fundamental role of which
has been identified by Leibniz, is unfortunately very hard to pin down. How can
we measure the complexity of an equation? Well, roughly speaking, by its size, but
that is highly time-dependent, as mathematical notation changes over the years and
it is highly arbitrary which mathematical functions one takes as given, as primitive
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operations. Should one accept Bessel functions, for instance, as part of standard
mathematical notation?

This train of thought is finally taken up by Karl Popper in his book The Logic
of Scientific Discovery (1959), which was also originally published in German, and
which has an entire chapter on simplicity, Chapter VII. In that chapter Popper re-
views Weyl’s remarks, and adds that if Weyl cannot provide a stable definition of
complexity, then this must be very hard to do.

At this point these ideas temporarily disappear from the scene, only to be taken
up again, to reappear, metamorphised, in a field that I call algorithmic information
theory. AIT provides, I believe, an answer to the question of how to give a precise
definition of the complexity of a law. It does this by changing the context. Instead
of considering the experimental data to be points, and a law to be an equation, AIT
makes everything digital, everything becomes Os and 1s. In AIT, a law of nature is a
piece of software, a computer algorithm, and instead of trying to measure the com-
plexity of a law via the size of an equation, we now consider the size of programs,
the number of bits in the software that implements our theory:

Law: Equation — Software,
Complexity: Size of equation — Size of program, Bits of software.

The following diagram illustrates the central idea of AIT, which is a very simple toy
model of the scientific enterprise:

Theory (01100...11) - COMPUTER — Experimental Data (110...0).

In this model, both the theory and the data are finite strings of bits. A theory is
software for explaining the data, and in the AIT model this means the software
produces or calculates the data exactly, without any mistakes. In other words, in
our model a scientific theory is a program whose output is the data, self-contained
software, without any input.

And what becomes of Leibniz’s fundamental observation about the meaning of
“law?” Before there was always a complicated equation that passes through the data
points. Now there is always a theory with the same number of bits as the data it
explains, because the software can always contain the data it is trying to calculate as
a constant, thus avoiding any calculation. Here we do not have a law; there is no real
theory. Data follows a law, can be understood, only if the program for calculating it
is much smaller than the data it explains.

In other words, understanding is compression, comprehension is compression, a
scientific theory unifies many seemingly disparate phenomena and shows that they
reflect a common underlying mechanism.

To repeat, we consider a computer program to be a theory for its output, that is
the essential idea, and both theory and output are finite strings of bits whose size can
be compared. And the best theory is the smallest program that produces that data,
that precise output. That’s our version of what some people call Occam’s razor.
This approach enables us to proceed mathematically, to define complexity precisely
and to prove things about it. And once you start down this road, the first thing you
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discover is that most finite strings of bits are lawless, algorithmically irreducible,
algorithmically random, because there is no theory substantially smaller than the
data itself. In other words, the smallest program that produces that output has about
the same size as the output. The second thing you discover is that you can never be
sure you have the best theory.

Before I discuss this, perhaps I should mention that AIT was originally proposed,
independently, by three people, Ray Solomonoff, A.N. Kolmogorov, and myself,
in the 1960s. But the original theory was not quite right. A decade later, in the
mid 1970s, what I believe to be the definitive version of the theory emerged, this
time independently due to me and to Leonid Levin, although Levin did not get the
definition of relative complexity precisely right. I will say more about the 1970s
version of AIT, which employs what I call “self-delimiting programs,” later, when I
discuss the halting probability 2.

But for now, let me get back to the question of proving that you have the best
theory, that you have the smallest program that produces the output it does. Is this
easy to do? It turns out this is extremely difficult to do, and this provides a new
complexity-based view of incompleteness that is very different from the classical
incompleteness results of Godel (1931) and Turing (1936). Let me show you why.

First of all, I’ll call a program “elegant” if it’s the best theory for its output, if
it is the smallest program in your programming language that produces the output
it does. We fix the programming language under discussion, and we consider the
problem of using a formal axiomatic theory, a mathematical theory with a finite
number of axioms written in an artificial formal language and employing the rules
of mathematical logic, to prove that individual programs are elegant. Let’s show that
this is hard to do by considering the following program P:

P produces the output of the first provably
elegant program that is larger than P.

In other words, P systematically searches through the tree of all possible proofs in
the formal theory until it finds a proof that a program Q, that is larger than P, is
elegant, then P runs this program Q and produces the same output that Q does. But
this is impossible, because P is too small to produce that output! P cannot produce
the same output as a provably elegant program Q that is larger than P, not by the
definition of elegant, not if we assume that all provably elegant programs are in fact
actually elegant. Hence, if our formal theory only proves that elegant programs are
elegant, then it can only prove that finitely many individual programs are elegant.
This is a rather different way to get incompleteness, not at all like Godel’s
“This statement is unprovable” or Turing’s observation that no formal theory can
enable you to always solve individual instances of the halting problem. It’s differ-
ent because it involves complexity. It shows that the world of mathematical ideas
is infinitely complex, while our formal theories necessarily have finite complexity.
Indeed, just proving that individual programs are elegant requires infinite complex-
ity. And what precisely do I mean by the complexity of a formal mathematical
theory? Well, if you take a close look at the paradoxical program P above, whose
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size gives an upper bound on what can be proved, that upper bound is essentially
just the size in bits of a program for running through the tree of all possible proofs
using mathematical logic to produce all the theorems, all the consequences of our
axioms. In other words, in AIT the complexity of a math theory is just the size of
the smallest program for generating all the theorems of the theory.

And what we just proved is that if a program Q is more complicated than your
theory T, T can’t enable you to prove that Q is elegant. In other words, it takes
an N-bit theory to prove that an N-bit program is elegant. The Platonic world of
mathematical ideas is infinitely complex, but what we can know is only a finite part
of this infinite complexity, depending on the complexity of our theories.

Let’s now compare math with biology. Biology deals with very complicated
systems. There are no simple equations for your spouse, or for a human society.
But math is even more complicated than biology. The human genome consists of
3 x 10 bases, which is 6 x 10° bits, which is large, but which is only finite. Math,
however, is infinitely complicated, provably so.

An even more dramatic illustration of these ideas is provided by the halting prob-
ability €2, which is defined to be the probability that a program generated by coin
tossing eventually halts. In other words, each K-bit program that halts contributes 1
over 2X to the halting probability Q. To show that Q is a well-defined probability
between zero and one it is essential to use the 1970s version of AIT with self-
delimiting programs. With the 1960s version of AIT, the halting probability cannot
be defined, because the sum of the relevant probabilities diverges, which is one of
the reasons it was necessary to change AIT.

Anyway, 2 is a kind of DNA for pure math, because it tells you the answer
to every individual instance of the halting problem. Furthermore, if you write ©2’s
numerical value out in binary, in base-two, what you get is an infinite string of
irreducible mathematical facts:

Q =.11011...

Each of these bits, each bit of €2, has to be a 0 or a 1, but it’s so delicately bal-
anced, that we will never know. More precisely, it takes an N-bit theory to be able
to determine N bits of 2.

Employing Leibnizian terminology, we can restate this as follows: The bits of 2
are mathematical facts that refute the principle of sufficient reason, because there
is no reason they have the values they do, no reason simpler than themselves. The
bits of 2 are in the Platonic world of ideas and therefore necessary truths, but they
look very much like contingent truths, like accidents. And that’s the surprising
place where Leibniz’s ideas on complexity lead, to a place where math seems to
have no structure, none that we will ever be able to perceive. How would Leibniz
react to this?

First of all, I think that he would instantly be able to understand everything.
He knew all about Os and 1s, and had even proposed that the Duke of Hanover
cast a silver medal in honor of base-two arithmetic, in honor of the fact that every-
thing can be represented by Os and 1s. Several designs for this medal were found
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among Leibniz’s papers, but they were never cast, until Stephen Wolfram took one
and had it made in silver and gave it to me last year as a 60th birthday present.
And Leibniz also understood very well the idea of a formal theory as one in which
we can mechanically deduce all the consequences. In fact, the calculus was just one
case of this. Christian Huygens, who taught Leibniz mathematics in Paris, hated
the calculus, because it was mechanical and automatically gave answers, merely
with formal manipulations, without any understanding of what the formulas meant.
But that was precisely the idea, and how Leibniz’s version of the calculus differed
from Newton’s. Leibniz invented a notation which led you automatically, mechani-
cally, to the answer, just by following certain formal rules.

And the idea of computing by machine was certainly not foreign to Leibniz.
He was elected to the London Royal Society, before the priority dispute with Newton
soured everything, on the basis of his design for a machine to multiply. (Pascal’s
original calculating machine could only add.)

So I do not think that Leibniz would have been shocked; I think that he would
have liked 2 and its paradoxical properties. Leibniz was open to all systemes
du monde, he found good in every philosophy, ancient, scholastic, mechanical,
Kabbalah, alchemy, Chinese, Catholic, Protestant. He delighted in showing that
apparently contradictory philosophical systems were in fact compatible. This was
at the heart of his effort to reunify Catholicism and Protestantism. And I be-
lieve it explains the fantastic character of his Monadology, which complicated as
it was, showed that certain apparently contradictory ideas were in fact not totally
irreconcilable.

I think we need ideas to inspire us. And one way to do this is to pick heroes who
exemplify the best that mankind can produce. We could do much worse than pick
Leibniz as one of these exemplifying heroes.

For more on such themes, please see the collection of my philosophical papers,
Chaitin, Thinking about Godel and Turing: Essays on Complexity, 1970-2007, just
published by World Scientific in Singapore. World Scientific also published my 60th
birthday festschrift volume, Calude, Randomness and Complexity, from Leibniz to
Chaitin. See also Pagallo, Introduzione alla filosofia digitale, da Leibniz a Chaitin,
published by Giappichelli.



Chapter 8
Incomputability, Emergence
and the Turing Universe

S. Barry Cooper*

The theme of this article concerns the way in which mathematics can structure
everyday discussions around a range of important issues — and can also re-
inforce intuitions about theoretical links between different aspects of the real
world. This fits with the widespread sense of excitement and expectation felt in
many fields — and of a corresponding confusion — and of a tension characteris-
tic of a Kuhnian paradigm shift. What we have below can be seen as tentative
steps towards the sort of mathematical modelling needed for such a shift to be
completed.

In Section 8.1, we outline the decisive role mathematics played in the birth of
modern science; and how, more recently, it has helped us towards a better under-
standing of the nature and limitations of the scientific enterprise. In Section 8.2,
we review how the mathematics brings out inherent contradictions in the Laplacian
model of scientific activity. And we look at some of the approaches to dealing with
these contradictions. All this leads us back in Section 8.3 to a closer examination
of those aspects of the real world which most obviously test the Laplacian model.
In particular, we take a close look at the phenomenon of emergence, and learn from
attempts to extract the mathematical content of emergent phenomena. Most impor-
tant here is the exploration of the close relationship between emergence, definability,
and invariance.

Section 8.4 involves a step back from placing too much explanatory burden on
emergence and its mathematics. The need for this becomes particularly clear from an
excursion into the philosophy of mind, and from some complementary input from
neuroscience. In Section 8.5, we finally introduce and exercise our mathematical
model, and in Section 8.6, give it what we call a ‘physics road test’.
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8.1 The Laplacian Model Becomes More of a Model

Newton’s successful prediction of planetary motions assembled the important
ingredients that have become the features of scientific achievement over more
than 300 years. To the powerful combination of theoretical speculation and real-
world observational data, he added the computational facilitation of mathematics.
As White (1997, p. 93) describes in Isaac Newton — The Last Sorcerer:

If the mathematics had not been developed during the 1660s, Newton’s intuitive grasp of the
nature of planetary motion would have remained little more than a good idea. Without his
in-depth knowledge of alchemy (which he practised during the 1670s and’80s), he would
almost certainly never have expanded the limited notion of planetary motion as he saw it
in 1665/6 into the grand concepts of universal gravitation, of attraction and repulsion, and
of action at a distance. Finally, if the experimental evidence had not been gathered, then
Newton’s theories, even if substantiated by mathematics, would not have carried the weight
they did in his Principia, nor would they have so readily inspired the practical application
of mechanics and the laws of motion which led, a century later, to the Industrial Revolution.

And the essential underlying product of this coming together was the emergence
into the light of day — the conscious recognition — of the computational content of
the world and its amenability to capture in mathematical predictions.

Looking more closely at the nature of Newton’s scientific revolution, one sees
how computable prediction became part of the subsequent scientific benchmark.
Going back to Aristotle and before, observation and speculation had had a close
relationship. But the modern empiricism associated with Bacon, and Galileo before
him, further emphasised the role of data, and of measurement, with its mathematical
focus on real numbers. While Bacon’s view of the inductive establishment of form
in nature tied theory and observation even closer: Quoting from Francis Bacon’s
Novum Organum (Bacon 1901, p. 50):

There are and can be only two ways of searching into and discovering truth. The one flies
from the senses and particulars to the most general axioms, and from these principles, the
truth of which it takes for settled and immovable, proceeds to judgment and to the discovery
of middle axioms. And this way is now in fashion. The other derives axioms from the senses
and particulars, rising by a gradual and unbroken ascent, so that it arrives at the most general
axioms at last. This is the true way, but as yet untried.

It was in this context that Newton’s work laid the basis for a model of scientific prac-
tice and theory which was to fit well with the Baconian agenda, and set constraints
on science which, in retrospect, would be impossible to respect in the longer term.
Twentieth century science would both expose a glaring philosophical gap in the
Newtonian picture — it is a background dependent theory, which gives no explana-
tion of the structure of space-time it incorporated — and demand new kinds of theory
from which computable predictions would be harder to extract and verify. Relativity
and quantum theory are successful theories even by Newtonian standards, allowing
the extraction of computable content of a high order of predictive usefulness. But
collectively these have deficiencies necessitating a bizarre range of conjectural
proposals, string theoretical ones being best known (of which more later).
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With the benefit of our better understanding of the nature of the relationship of
theory, computation and observation, one does not need to be a philosopher to recog-
nise the inevitability of this. There is no rigid division between theories concerned
with making computable predictions, and ones which are pure metaphysics. Logical
analysis of the language in which theories are framed leads us to a detailed analysis
of definability in the real world, connecting with well-known hierarchies, and what
is known about their computational content — more of this in Section 8.3. The point
is that one cannot be surprised that reality needs a richer language than that which
delivers purely computable predictions. Or, for that matter, that some mathematics
capturing so-called ‘causal’ relationships might not be reducible to the mechanistic
models sought by the good Newtonian.

Anyway, the overarching aim of science, since the time of Galileo, Bacon and
Newton, became the extraction of the computational content of the world, at what-
ever level this might occur. The process of discovery might not have a simple model,
but the outcomes should have computational content with predictive utility, and
scientific experiments and mathematical proofs should be reproducible and com-
municable to fellow scientists. This is what Einstein (1969, p. 54) is referring to
when he says:

When we say that we understand a group of natural phenomena, we mean that we have
found a constructive theory which embraces them.

Why not apply this approach to science itself? Just as Quine, Hilbert, Godel and
others provided us with a model of mathematical proof, and a better understanding
of the constraints on the working mathematician, can one similarly model science
and its deliverables? In a sense Laplace provide scientists with an aspirational model
with his ‘predictive demon’ (de Laplace 1951):

Given for one instant an intelligence which could comprehend all the forces by which na-
ture is animated and the respective situations of the beings who compose it — an intelligence
sufficiently vast to submit these data to analysis — it would embrace in the same formula
the movements of the greatest bodies and those of the lightest atom; for it, nothing would
be uncertain and the future, as the past, would be present to its eyes.

And over the centuries many have duly internalised this model in a relatively simple
form. The aim for them was to emulate the Newtonian successes on which Laplace’s
conception was based in ever broader contexts. For Europeans, the late nineteenth
century expansionism, such as the ‘scramble for Africa’, gave an appropriate social
backdrop to the final throes of this ‘onwards and upwards’ view of science. In math-
ematics, Hilbert looked for a mathematical counterpart of the predictive demon.
Here is the celebrated declaration from his opening address to the Society of German
Scientists and Physicians, in Kénigsberg, September 1930:

For the mathematician there is no Ignorabimus, and, in my opinion, not at all for natural
science either ... The true reason why [no one] has succeeded in finding an unsolvable
problem is, in my opinion, that there is no unsolvable problem. In contrast to the foolish

Ignorabimus, our credo avers:
g > We must know,

‘We shall know.
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Of course, as described in John Dawson’s biography of Godel, on the same day in
another part of the same city, Gddel was announcing his incompleteness theorem
which was to do severe damage to the programme of Hilbert, and usher in a new
world of unsolvability.

The so-called Laplacian model was not a model in the sense that the Hilber-
tian model of mathematical proof was, and so was open to various interpreta-
tions. One had to wait until the 1930s for something more mathematical and
vaguely relevant.

In 1936 Turing’s machines appeared (Turing 1936). This was not the first model
of computability, but the one closest to the mechanistic spirit of Newton’s science,
and certainly the one which is reputed to have persuaded Godel that it did achieve its
modelling aim. In the first instance, the Turing machine gave a model of computabil-
ity of functions over the natural numbers. But given the existence of simple codings,
it essentially provided a model of algorithmic natural processes within structures
which are countably presented. The mathematics of this needs qualifying, but the
wide applicability of the model is generally recognised.

But the Turing’s coding techniques for presenting machines gave a Universal
Turing Machine — and with this came via the simplest of additions to the language
used to describe machines — incomputable objects. Our model of computability ar-
rived, like Sinbad the Sailor bearing the Old Man of the Sea, with a mathematically
simple avatar of incomputability on its back. The Universal Turing Machine now
has a secure place in the history of the computer — see Davis (2000) The Universal
Computer: The Road from Leibniz to Turing. In contrast, incomputability is an ir-
relevance to most people beyond the confines of mathematics, and to many of those
within. Teuscher’s (2004) comprehensive collection Alan Turing: Life and Legacy
of a Great Thinker contains not one article on the mathematical theory of Turing
incomputability.

8.2 Some Uncomfortable Consequences

Since 1936 there has grown up a rich theory of incomputability, complete with hi-
erarchies, fine structure theory, and an analysis of incomputable objects very close
to being computable. The latter include computably enumerable sets, which have
roughly the same relationship to computable sets that computably simulable events
in the real world have to ones in which can be computably predicted. There are
other kinds of sets which while not being computable, have approximations with
computable characteristics, such as the Ag sets of the arithmetical hierarchy, which
have computable approximations to its members in which finitely many mistakes are
allowed before the approximation settles down. Such sets will be dear to the hearts
of those, such as Turing, who recognised the limitations of monotonic reasoning —
here is Turing talking to the London Mathematical Society on February 20, 1947
(quoted by Hodges 1992, p. 361):

...if a machine is expected to be infallible, it cannot also be intelligent. There are several
theorems which say almost exactly that.
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Back in the real world, there was a huge investment in the Laplacian model.
And any evidence to the contrary was seen more as a discipline problem than
glimpse of a new world; a challenge to be soberly put down with reductionist au-
thority. At times this was timely, such as David Deutsch’s influential 1985 Royal
Society paper (Deutsch 1985) bringing the standard model of quantum computa-
tion within the Turing fold. More generally, Davis (2004) writing on The myth of
hypercomputation has argued that:

The great success of modern computers as all-purpose algorithm-executing engines em-
bodying Turing’s universal computer in physical form, makes it extremely plausible that
the abstract theory of computability gives the correct answer to the question ‘What is a
computation?’, and, by itself, makes the existence of any more general form of computation
extremely doubtful.

This should be read as a response to what Davis sees as the inflated hyper-
computationalist claims of Jack Copeland and others. Copeland coined the term
‘hypercomputation’ to describe what an oracle Turing machine might perform.
In his article (Copeland 1998) on Turing’s O-Machines, Penrose, Searle, and the
Brain, Copeland explains what oracle machines are capable of:

Let first-order O-machines be those whose (only) oracle returns the values of Turing’s halt-
ing function H(x, y) ...Similarly, the second-order O-machines are those that possess an
oracle which can say whether or not any given first-order O-machine eventually halts if set
in motion with such-and-such input; and so on for third-order, and in general «-order ...

It is natural to think of the functions, or problems, that are solvable by a first-order oracle
machine as being harder than those solvable by Turing machine, and those solvable by
second-order oracle machine as being harder still, and so forth.

It is the ‘might be’ that so annoys Davis. It is only ‘natural’ in a real-world sense if
one can tell us where these oracles are coming from, otherwise there is no evidence
such machines have any physical existence. In his article, Copeland has already
by-passed this question:

Speculation as to whether there may actually be physical processes that cannot be simu-
lated by Turing machine stretches back over at least four decades (for example Da Costa
and Doria 1991; Doyle 1982; Geroch and Hartle 1986; Komar 1964; Kreisel 1967, 1974;
Penrose 1989, 1994; Pour-El 1974; Pour-El and Richards 1979, 1981; Scarpellini 1963;
Stannett 1990; Vergis et al. 1986). If such processes do exist then perhaps future engineers
will use them to implement the non-classical part of some O-machine.

Of course, Copeland and Davis are applying the perspectives of different disci-
plines, and neither managing to say very much new relating to the nature of physical
computation. Of course, the more speculative proposals for computational models
transcending the so-called ‘Turing barrier’, some of which Davis discusses in his
paper, are a mixed bag. The impression one gets from the debate is that one still
needs to understand more about how the real world computes.

Despite huge advances in our computational capabilities, there persist problems
of predictability in the real world — at the quantum level, in the relationship between
emergence and chaos, regarding relativistic phenomena (see Németi and Andréka
20006), and, of course, with mental phenomena. And increasingly the computational
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capabilities of the physical are seen as relevant to the computing machines we build.
There is renewed interest in analog and hybrid computing machines leading van
Leeuwen and Wiedermann (2000) to consider that:

... the classical Turing paradigm may no longer be fully appropriate to capture all features
of present-day computing.

Despite his 1985 paper (Deutsch 1985) mentioned earlier, Deutsch did not show
that quantum computation cannot transcend the Turing barrier, just that the current
model does not do it. As Andrew Hodges remarks in What would Alan Turing have
done after 19547 (Hodges 2004):

Von Neumann’s axioms distinguished the U (unitary evolution) and R (reduction) rules of
quantum mechanics. Now, quantum computing so far (in the work of Feynman, Deutsch,
Shor, etc.) is based on the U process and so computable. It has not made serious use of the R
process: the unpredictable element that comes in with reduction, measurement, or collapse
of the wave function.

Although measurement does play a role in quantum computation, and the proba-
bilities of a particular outcome of a measurement are computable, there are still
aspects of the physics which are not used which are thought to be in some sense ‘ran-
dom’. Recently, under reasonable assumptions about the basic character of quantum
randomness, Calude and Svozil (2008) have shown that quantum uncertainty does
entail incomputability — though just ~ow random quantum randomness really is still
very much open to question. It may be that despite all the assumptions of physi-
cists, nature is full of incomputability, but does not exhibit any significant level of
mathematical randomness. The challenge is to integrate quantum phenomena into
a general picture of physical computation. This might not entail a useable unified
theory of physics, but would hopefully present quantum uncertainty as a feature of
mathematical constraints operative throughout science.

There are clearly features of the classical world which challenge the Davis dis-
ciplinary regime. As observed by Copeland, some of the earliest (and deepest)
thinking on the question of physical incomputability comes from another distin-
guished source — back in 1970 the mathematician Georg Kreisel was proposing a
collision problem related to the 3-body problem, which might result in “an analog
computation of a non-recursive function”.

One can find detailed accounts of Kreisel’s thinking on extensions to the Church-
Turing thesis in the section of Odifreddi’s first volume of Classical Recursion
Theory (Odifreddi 1989), and in Odifreddi’s article on the topic in his edited volume
Around and About Georg Kreisel.

Another challenge arises from the growth of chaos theory, dealing with the
generation of informational complexity via very simple rules. Features of chaotic
situations include the iteration of simple rules, nonlinearity, and the sort of sen-
sitivity to initial conditions that Lorenz (1963) observed in the development of
weather systems. Another feature is the emergence of systemic formations, such
as the Lorenz attractor, or the strange attractor discovered by Shaw (1981, 1984)
in studying the ostensibly very simple chaos of a dripping tap — by varying the
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flow to the dripping tap, unpredictable irregularities of intervals between drips were
observed, while appropriate plotting of the unpredictable data revealed an interest-
ing 3-dimensional strange attractor.

The special interest of chaos arises not so much from its undeniable novelty
of computational character — there are all sorts of explanations of the apparent
undeterminacy of outcomes, not usually enlisting incomputability — but from the
availability of informative mathematical analogues. It is the link between such struc-
tures in nature, and mathematical objects, such as the Mandelbrot and Julia sets,
which presents an opportunity of getting closer to a mathematical characterisation
of what is happening. At the same time, the mathematical interest and approach-
ability of fractals, with their grounding in the iteration of simple rules paralleling
those in nature, makes their computability-theoretic character accessible to serious
investigation.

The Mandelbrot set has attracted particular attention from high-profile scientists
such as Roger Penrose and Stephen Smale. Its popular appeal is matched by its
mathematical interest. As Penrose (1994) puts it in The Emperor’s New Mind:

Now we witnessed .. .a certain extraordinarily complicated looking set, namely the Man-
delbrot set. Although the rules which provide its definition are surprisingly simple, the set
itself exhibits an endless variety of highly elaborate structures.

And it is not just the observed patterns which are hard to predict. The computability
of the actual point-set is still very much an open problem (despite its incomputabil-
ity in the Blum—Shub—Smale model Blum et al. (1997) of real computation — see
Hertling’s (2005) review article).

We saw earlier that it is just the addition of a quantifier to the language used to
describe a Turing machine which opens the door to the emergence of incomputabil-
ity. Looking at the definition of the Mandelbrot set in terms of limiting behaviour
of applications of the polynomial rule 7 — z? + ¢, we immediately get a two-
quantifier form for the set. But a little extra work gives the complement of the
Mandelbrot set using just one existential quantifier. We need to pursue further the
general phenomenon of emergence observed in the above examples, and to relate it
to the complexity of language needed to describe it.

8.3 What Is Emergence? — Definability, Nonlocality

Emergence is a much over-worked concept. For example, its perceived potential
for undermining determinism makes it specially appealing to those trying to create
room for religion in a scientific world. Here is Kauffman (2008, p. 281) making
some very grand claims in his recent book Reinventing the Sacred: A New View of
Science, Reason and Religion:

We are beyond reductionism: life, agency, meaning, value, and even consciousness and
morality almost certainly arose naturally, and the evolution of the biosphere, economy, and
human culture are stunningly creative often in ways that cannot be foretold, indeed in ways
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that appear to be partially lawless. The latter challenge to current science is radical. It runs
starkly counter to almost 400 years of belief that natural laws will be sufficient to explain
what is real anywhere in the universe, a view I have called the Galilean spell. The new view
of emergence and ceaseless creativity partially beyond natural law is a truly new scientific
worldview in which science itself has limits.

Without saying Kauffman is wrong — his world-view has a lot of appeal — one cannot
help but be nervous at such ambitious conclusions based on such a modest grasp of
what emergence really is. This is Arkin’s (1998, p. 105) comment:

Emergence is often invoked in an almost mystical sense regarding the capabilities of
behavior-based systems. Emergent behavior implies a holistic capability where the sum
is considerably greater than its parts. It is true that what occurs in a behavior-based system
is often a surprise to the system’s designer, but does the surprise come because of a short-
coming of the analysis of the constituent behavioral building blocks and their coordination,
or because of something else?

Ronald et al. (1999) have devised a ‘Test for Convergence’ which usefully clarifies
what we expect of an emergent phenomenon. It follows the example of the Turing
Test for intelligence machinery in being observer dependent, which solves some
problems even if it is not so obviously appropriate. The three criteria they list are
(slightly paraphrased):

(1) Design The system has been constructed by the designer, by describing local
elementary interactions between components (e.g., artificial creatures and ele-
ments of the environment) in a language £4.

(2) Observation The observer is fully aware of the design, but describes global
behaviors and properties of the running system, over a period of time, using a
language £5.

(3) Surprise The language of design £; and the language of observation £, are
distinct, and the causal link between the elementary interactions programmed
in £ and the behaviors observed in £, is non-obvious to the observer — who
therefore experiences surprise. In other words, there is a cognitive dissonance
between the observer’s mental image of the system’s design stated in £; and his
contemporaneous observation of the system’s behavior stated in £5,.

A useful part of the test is the bringing out of the qualitative difference between
the ‘design’ and the observed ‘global behaviours’ via the distinction between the
languages £ and £, used to describe them.

On the other hand, the parallel with the observer-based Turing Test is weak, with
condition (3) of the Emergence Test lacking robustness; how do we evaluate the
origin of the observer’s ‘surprise’? For the Turing Test, the observer’s inability to
discriminate between the intelligence of machine and human comes with far more
weight and relevance. We need to look more closely at the computational content of
emergence, with the aim of extracting a clearer “surprise” criterion.

The view we want to pursue is that emergent phenomena not only yield up de-
scriptions, using different language to that used in describing the underlying design;
they are actually determined, constrained, captured by that which is describable in
terms of the basic causal structure.
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The intuition that entities exist because of, and according to, mathematical laws,
is not new, of course. One can detect it in the words of Leibniz (1999) from 1714 in
the The Monadology, Section 32:

... there can be found no fact that is true or existent, or any true proposition, without there
being a sufficient reason for its being so and not otherwise, although we cannot know these
reasons in most cases.

So natural phenomena not only generate descriptions, but arise and derive form from
them. So connecting with a useful abstraction, that of mathematical definability —
or, more generally, invariance (under the automorphisms of the appropriate struc-
ture). And this gives precision to our experience of emergence as a potentially
non-algorithmic determinant of events. On the one hand one can attempt to frame
criteria for emergence in terms of the complexity of the language used to describe
it, and one can also use the known associations between informational and com-
putational complexity to constrain the computability-theoretic character of physical
phenomena.

For instance, taking this approach, one might identify the halting set of the
Universal Turing Machine as an emergent phenomenon; although it does not have
the visual immediacy of the Mandelbrot set, it is incomputable, and that in itself
qualifies it as a sufficiently surprising global attribute.

What one would expect from this very clear connection between the underly-
ing basic causal structure (the ‘design’) and the emergent phenomenon would be
a certain level of robustness of the emergence. What one is suggesting, via the
association with mathematical definability, is a direct causal relationship between
‘design’ and emergent phenomenon — and one which is unlike the usual fundamen-
tal laws of nature, in that it is more global in respect of the causes it works with —
and potentially, with respect to the effects. This is not so surprising from the point of
view of carefully delineated experimental contexts, such as that presented by Robert
Shaw’s dripping tap. More so with the higher-order emergence being called up by
Stuart Kauffman. If one goes back to Alexander’s (1927) magnum opus from the
nineteen-twenties (another theologically inclined writer, one of the British emer-
gentists described by McLaughlin [1992]) one finds the mystery of connection an
integral part of the argument.

Anyway, it is just this expected robustness that Martin Nowak identified
(as Director of the Program for Evolutionary Dynamics at Harvard University)
in emergent aspects of evolution. This is from the interesting of collection of papers
from leading scientists brought together in John Brockman’s What We Believe But
Cannot Prove (Brockman 2006):

1 believe the following aspects of evolution to be true, without knowing how to turn them
into (respectable) research topics.

Important steps in evolution are robust. Multicellularity evolved at least ten times. There are
several independent origins of eusociality. There were a number of lineages leading from
primates to humans. If our ancestors had not evolved language, somebody else would have.
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8.4 Is That All There Is? — Turing and the Human Brain

We have kept back our third challenge to Davis Discipline until we were clearer on
what we wanted to summon up from it; we are now ready for the complexities of
the human mind as case study. It comes with a number of strengths:

e The human mind is very familiar, at least to the more self-aware. Experience
of its workings is easily got through solving everyday problems, and observing
others.

And the mechanics of the brain are well-documented.
The mind does not feel, or appear to compute, like a Turing machine — given the
role of creativity, consciousness, intuition.

e The case study is relevant — given the importance of copying how humans think
for achieving Al, etc. ... and the intuition that a physical brain reflects processes
in the wider universe, so can help with the modelling new aspects of physical
computation.

So how do the mind and emergence match up? The surprise criterion is certainly
there. Here is a well-known example from Jacques Hadamard’s celebrated 1945
study (Hadamard 1945) of The Psychology of Invention in the Mathematical Field,
based on conversation with Henri Poincaré:

At first Poincaré attacked [a problem] vainly for a fortnight, attempting to prove there could
not be any such function . .. [quoting Poincaré]:

“Having reached Coutances, we entered an omnibus to go some place or other. At the mo-
ment when I put my foot on the step, the idea came to me, without anything in my former
thoughts seeming to have paved the way for it ... I did not verify the idea ...I went on with
a conversation already commenced, but I felt a perfect certainty. On my return to Caen, for
conscience sake, I verified the result at my leisure.”

Apart from the surprise element, the unexpected arrival of a crucial idea by some
unconscious process, there is another important aspect of this story — the robustness
of the surprise solution to the problem that Poincaré had been stuck on. He could
feel enough confidence in his ability to recreate the solution at some later time to
be able to carry on a completely unrelated conversation. The idea, it appears, had
a memetic quality consistent with the existence of a representation of the solution,
such as one might expect from an association of emergence with definability.

So much for part (3) of the Emergence Test. But what about the design?
One needs to bridge the gap between higher mental functionality and ...what
algorithmic context? One might hope to derive this from existing models of neural
functionality. But this is more difficult than one might expect. According to Rodney
Brooks in Nature in 2001:

... neither Al nor Alife has produced artifacts that could be confused with a living organism
for more than an instant.

Another creative participant in the field of AI, Daniel Hillis, Chief Technology
Officer of Applied Minds, Inc. (and ex-Vice President, Research and Develop-
ment at Walt Disney Imagineering), was quoted in April 2001 as doubting whether
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design was even sufficient for the building of intelligent machines. Perhaps getting
intelligent machines themselves would be via emergence:

I used to think we’d do it by engineering. Now I believe we’ll evolve them. We’re likely
to make thinking machines before we understand how the mind works, which is kind of
backwards.

This is not to say that paradigm-stretching features of connectionist models of
computation are lacking. As Smolensky (1988) (recipient of the 2005 David E.
Rumelhart Prize) wrote in 1988:
There is a reasonable chance that connectionist models will lead to the development of new
somewhat-general-purpose self-programming, massively parallel analog computers, and a
new theory of analog parallel computation: they may possibly even challenge the strong

construal of Church’s Thesis as the claim that the class of well-defined computations is
exhausted by those of Turing machines.

And it is certainly true that connectionist models have come a long way since
Turing’s (1948) discussion of ‘unorganised machines’, and McCulloch and Pitts’
(1943) early paper on neural nets.

But for Pinker (1997) “...neural networks alone cannot do the job”. And fo-
cussing on our elusive higher functionality, he points to a “kind of mental fecundity
called recursion”:

We humans can take an entire proposition and give it a role in some larger proposition.

Then we can take the larger proposition and embed it in a still-larger one. Not only did

the baby eat the slug, but the father saw the baby eat the slug, and I wonder whether the

father saw the baby eat the slug, the father knows that I wonder whether he saw the baby eat

the slug, and I can guess that the father knows that I wonder whether he saw the baby eat the
slug, and so on.

Less amusingly, but bringing out even more clearly the role of recycled emergence,
the neuroscientist Damasio makes a similar point. Here is his nice description of the
hierarchical development of a particular instance of consciousness within the brain
(or ‘organism’), interacting with some external ‘object’ (Damasio 1999):

... both organism and object are mapped as neural patterns, in first-order maps; all of these
neural patterns can become images . . . The sensorimotor maps pertaining to the object cause
changes in the maps pertaining to the organism ... [These] changes ... can be re-represented
in yet other maps (second-order maps) which thus represent the relationship of object and
organism ... The neural patterns transiently formed in second-order maps can become men-
tal images, no less so than the neural patterns in first-order maps.

The picture is one of re-representation of neural patterns formed across some region
of the brain, in such a way that they can have a computational relevance in forming
new patterns. There is a key conception of computational loops incorporating, in
a controlled way, these ‘second-order’ aspects of the computation itself. The exact
mechanism for the creation and recycling of emergent outputs is not completely
clear. But the actuality of this is substantiated via our mathematical model of the
definability of emergent phenomena, whereby new entities are created and defined
along with a role in the original structure. It is worth noting in this context that
the basic logic underlying natural language, upon which descriptions/definitions are
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based, does not have an irreducible, and mysterious special status in our scientific
ontology; it arises from the most basic of material algorithms, ones which appear
unavoidable in any viable causal context, and derive their position in human dis-
course via the close relationship (for us) between matter and data.

We are now ready to try and make more explicit our basic computational model.
We have talked a lot about the roles of definability and invariance, without placing
these notions in a specific setting. Key ingredients to be sought in such a model
are those we have been talking about: imaging, parallelism, interconnectivity, and a
counterpart to the second-order recursions pointed to above. And the computational
content familiar from the material universe should appear explicitly in the model.

Connectionist models are strong on parallelism, interconnectivity, imaging, and
can even accommodate recursions — but not in re-integrating the sort of recursions
Pinker is describing into the computational process. And echoing Danny Hillis’
comment above about the role of design, one may have to look for a model of the
fundamental computational structure of the world, without being able to fully model
the functionality. Such a model may not provide the design of an artificial brain, but
it may help us understand the obstacles to doing that.

8.5 The Extended Turing Model

The theme of computation versus description runs through most of Alan Turing’s
work, and never more explicitly than in his long, hard-to-read, and immensely
influential 1939 article (Turing 1939). An important thread, begun in this paper and
running through much of the subsequent history of computability theory, concerns
how the computational content of descriptions can be captured hierarchically — but
in unpredictable ways.

Turing’s approach is largely proof-theoretic, growing out of his interest in
Godel’s incompleteness theorem, and what it tells us about the extent of the bound-
aries of the computable world. Turing shows that despite Godel’s (1931) proof that
no consistent first-order theory captures arithmetic, we can hierarchically transcend
this barrier, in a quite constructive way — one just iterates the Godel argument,
computably generating new unprovable theorems which are then used to enlarge the
theory. One uses computable ordinal notations to iterate this process into the trans-
finite in a constructive way, thus giving the appearance of computably transcending
Godel’s theorem. But a little thought reveals the snag — identifying the route to a
new theorem involves using an incomputable oracle, so we avoid the reductionist
paradox.

This is how Turing explains what he had done:

Mathematical reasoning may be regarded . . . as the exercise of a combination of . .. intuition
and ingenuity . .. In pre-Godel times it was thought by some that all the intuitive judgements
of mathematics could be replaced by a finite number of . . . rules. The necessity for intuition
would then be entirely eliminated. In our discussions, however, we have gone to the opposite
extreme and eliminated not intuition but ingenuity, and this in spite of the fact that our aim
has been in much the same direction.
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So here we have an explanation of why written proofs do not tell us how the proof
was discovered. The ‘intuition’ involved was needed to identify the path to a proof —
in the way Poincaré needed it — but having done that by some incomputable process,
one immediately has a purely algorithmic demonstration (that is the proof) of why
the theorem is true. The result of this process is that one delivers an emergent result
into a developing body of mathematics which has a deceptively algorithmic struc-
tural appearance.

Having tried unsuccessfully to ‘compute the incomputable’, Turing introduced
a model of natural causality between real data, which could be incomputable.
The model — now called an oracle Turing machine — was essentially just a Turing
machine which could ask questions of an external ‘oracle’ (usually a set of natural
numbers). The number of questions during a particular computation was finite, of
course. The result was that instead of getting computable real numbers via the col-
lating of computational outputs of a machine, one now got real numbers computable
relative to an oracle. Considering the oracles to be inputs, a given machine might
capture a particular computable function over the reals, notated as a Turing func-
tional from reals to reals. Given the natural form of this quite general notion, it turns
out to be sufficient to capture most of the functions one extracts from basic laws
of science. For instance, one can easily represent the progress of two given point
masses (whose relative states at a given time are represented as a real) according to
Newtonian dynamics via a Turing functional. This is not surprising, since such sim-
ple basic transformations are routinely captured via functions over the reals which
can be computed up to any practicable level of approximation by a real-world com-
puter. Given more point masses, one can still describe the motion in ferms of that
functional, but this does not allow one to extract a new Turing functional to com-
pletely express the new causal relationship. Here we have again basic computability
leading very quickly via descriptions to a situation with computational content, but
not necessarily computable.

But the bottom line is that in 1939 Turing’s oracle machines appeared, and that
these provided a model of computable content of structures, based on partial com-
putable (p.c.) functionals over the reals. This model — the Turing universe — was
capable of capturing basic computable causal structure in the real world, with the
expectation, based on experience, that any incomputable causality would be defin-
able in some natural way from this basic structure.

This extended model of Turing’s had a very interesting history. Some of this
is described in The Incomputable Alan Turing (Cooper 2008). Around 1948 Post
(1948) tidied up the model by gathering together computably equivalent reals into
equivalence classes called degrees of unsolvability, with an ordering induced by that
of relative Turing computability. This gave a classification of reals in terms of their
relative computability, so giving an informational landscape with a rich structure.

Back in the real world again, we know that we can often describe global relations
in terms of well-understood local structure — so capturing the emergence of large-
scale formations. We can now formalise this mathematically in terms of definability
over structure based on Turing functionals, insofar as we understand the basic causal
structure. Again, if one is concerned about the language dependency of the notion
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of definability — language is a human construct, and not obviously applicable to the
way the universe ‘defines’ its large scale structure and laws — then one can express
things in terms of invariance under automorphisms.

This brings us to Hartley Rogers’ Programme which (see Rogers 1965)
addresses the:

Fundamental Problem Characterise the Turing invariant relations.

The intuition is that these relations are key to pinning down how basic laws and
entities emerge as mathematical constraints on causal structure.

At one time, it was thought that the structural pathology exhibited by the Turing
universe, and the disproportionate technical difficulty of proofs in the area, was
evidence of mathematical ugliness, disqualifying the field from serious attention of
non-specialists. It is now understood that the richness of Turing structure discovered
so far provides the raw material for non-trivially defining a multitude of relations.
And that the complexity and pathology of the structure is only what one would
expect of something aiming to model global aspects of the real world.

8.6 And a Physics Road Test

The Turing model has considerable explanatory power. In Cooper (to appear) we
apply this to the problem of clarifying the connection between the mental and the
physical. Here, we focus on very different problems affecting the standard model of
particle physics. Concern about the current state of physics is comes from a number
of sources. Woit (2006), in the introduction to his 2006 book Not Even Wrong —
The Failure of String Theory and the Continuing Challenge to Unify the Laws of
Physics, describes the situation so:

By 1973, physicists had in place what was to become a fantastically successful theory of
fundamental particles and their interactions, a theory that was soon to acquire the name of
the ‘standard model’. Since that time, the overwhelming triumph of the standard model has
been matched by a similarly overwhelming failure to find any way to make further progress
on fundamental questions.

The success he refers to is in terms of practical prediction. The failure in relation to
fundamental questions relates to lack of recent progress — the problems themselves
have been around in some form or other for a long time. Einstein himself says in his
Autobiographical Notes (Einstein 1950, p. 63):

...I'would like to state a theorem which at present can not be based upon anything more
than upon a faith in the simplicity, i.e., intelligibility, of nature . ..nature is so constituted
that it is possible logically to lay down such strongly determined laws that within these
laws only rationally completely determined constants occur (not constants, therefore, whose
numerical value could be changed without destroying the theory) ...

These may not be quite the same undetermined constants that Peter Woit is point-
ing to (there are more of them now):

One way of thinking about what is unsatisfactory about the standard model is that it leaves
seventeen non-trivial numbers still to be explained, ...
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But the substance of the complaint is the same; one should not need to adjust
elements of the standard model in a seemingly arbitrary way just to get the right
answers delivered. The theory should give a complete explanation of the values of
constants, etc.

This is what it was hoped string theory would do. In a sense string theory was
a departure from the Baconian paradigm, which Einstein himself had initiated, and
demonstrated the power of. But things have not worked out well, and as the fam-
ily of string theories and their offshoots expands, along with the arbitrary choices
needed, the argument is that string theory is “the only game in town”. One-time
string theorist Friedan (2003) is dismissive:

The longstanding crisis of string theory is its complete failure to explain or predict any

large distance physics . .. String theory is incapable of determining the dimension, geometry,

particle spectrum and coupling constants of macroscopic spacetime ... The reliability of

string theory cannot be evaluated, much less established. String theory has no credibility as
a candidate theory of physics.

Lee Smolin’s (2006) 2006 book on The Trouble With Physics is another source of
dissent. In it he lists “Five Great Problems in Theoretical Physics”. What is relevant
for us is that each one can be framed as a problem of definability:

1. Combine general relativity and quantum theory into a single theory that can claim
to be the complete theory of nature.

2. Resolve the problems in the foundations of quantum mechanics

3. The unification of particles and forces problem: Determine whether or not the
various particles and forces can be unified in a theory that explains them all as
manifestations of a single, fundamental entity.

4. Explain how the values of the free constants in the standard model of physics are
chosen in nature.

5. Explain dark matter and dark energy. Or, if they dont exist, determine how and
why gravity is modified on large scales.

An indication of the widespread concern about such problems was the 2005 state-
ment from no less than David Gross (co-discoverer of the asymptotic freedom
affecting the strong nuclear force), quoted in the Dec. 10, 2005, New Scientist, under
the heading Nobel Laureate Admits String Theory Is In Trouble:

The state of physics today is like it was when we were mystified by radioactivity ... They
were missing something absolutely fundamental. We are missing perhaps something as pro-
found as they were back then.

So what is it that is ‘absolutely fundamental’ that is missing? It is worth noting that
Smolin’s thinking is consistent with our own emphasis on the modelling of basic
causal structure. He proclaims that “causality is fundamental”. And while pointing
to early champions of the role of causality, such as Roger Penrose, Rafael Sorkin,
Fay Dowker, and Fotini Markopoulou, he says (Smolin 2006, p. 241):

It is not only the case that the spacetime geometry determines what the causal relations are.
This can be turned around: Causal relations can determine the spacetime geometry ... Its
easy to talk about space or spacetime emerging from something more fundamental, but
those who have tried to develop the idea have found it difficult to realize in practice ... We
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now believe they failed because they ignored the role that causality plays in spacetime.
These days, many of us working on quantum gravity believe that causality itself is funda-
mental — and is thus meaningful even at a level where the notion of space has disappeared.

And we even detect here an implicit searching for a structure in which the defin-
able set of relations on it is rich enough to take in something corresponding to the
spacetime geometry we observe.

Of course, from the point of view of Smolin’s Great Problem number 2, one
might also benefit from a failure of definability corresponding to the quantum am-
biguity we encounter, and which disappears with the collapse of the wave function
during a measurement. Earlier, having noted that quantum uncertainty presented a
particularly strong challenge to Davis’ reductionist programme, we went on to fo-
cus almost entirely on emergence. It is now time to bring quantum phenomena back
into the picture. According to our picture, emergence coincides with an assertion of
definability in some underlying causal structure. The complexity of the definition
gives rise to a related level of surprise and unpredictability.

What we have at the quantum level is something rather different. What is being
defined (or not being defined, as the case may be) is attributes of the basic design.
Following Leibniz, lacking a definition of aspects of a given quantum state, the state
has to exhibit whatever it is allowed to. But an intervention involving a measurement
or whatever may enrich the context sufficiently to remove these various possibili-
ties, and leave us with a well-defined classical reality. And the process involves a
mathematically enforced non-locality, quite in keeping with what is observed. Any-
way, the classical level may not so be so much of a surprise to those of us who
spend all our time there, but it is nevertheless emergent. What is surprising to us is
that there is a level at which not all is unambiguously defined, and the transition be-
tween the two. One would also notice that this is a realistic interpretation, achieved
without anthropic principles, many-worlds interpretations, or any other level of Max
Tegmark’s multiverse hierarchy.

Smolin’s Great Problem number 1 also raises interesting features. Notice that
when we are presented with emergent entities, described in a different language to
the underlying design, they may well determine a whole new level of behaviour,
complete with their own emergent causal relations. This is a picture familiar which
was familiar to the British Emergentists, dealt with in Brian McLaughlin’s book
McLaughlin (1992) mentioned earlier. They used it to explain the irreducibility of
the ‘special sciences’, postulating a hierarchy with physics at the bottom, followed
by chemistry, biology, social science, etc. The emergence, as our model confirms,
is irreversible, imposing the irreducibility of say biology to quantum theory — al-
though the British emergentists experienced their heyday before the great quantum
discoveries of the late 1920s, and as described in McLaughlin (1992), this was in a
sense their undoing.

Now, what would we think of someone who asked for a unified theory of chem-
istry and biology? It may be that it is equally senseless to be looking for a unified
theory of quantum and relativity theory. On the other hand, with the example of the
British emergentists who held that the coming together of hydrogen and oxygen to
form water was an example of emergence, one can never be quite sure about the
extent of application of useful models.
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Smolin’s Great Problem number 3 is perhaps a little too specific to be obviously
within the scope of such a schematic model as we are applying. It may be that
there is something basic about the automorphism group of the Turing universe and
its corresponding invariant relations which tell us something very relevant about
the fundamental structure of the entities making up the universe; we conjectured
something of the sort in Haifa back in 1995 (see Cooper 1998). On the other hand,
the answer may depend on much more specific considerations arising from physics.

Problem 4 is obviously a question of definability. And so may Problem 5 be,
involving levels of failure of definability beyond our observational reach.

What we would look for is solutions to a range of fundamental problems, within
a radically deconstructed universe:

e Described in terms of reals . ..

e With emergent natural laws based on algorithmic relations between reals

e With emergence described in terms of definability/invariance

e ... with failures of definability modelling quantum ambiguity

e ...which gives rise to new levels of algorithmic structure

e ...and a fragmented scientific enterprise.

What the mathematics can deliver is a causality which is different in nature from
that which Newton gave us back at the beginning of the modern scientific era. Alan
Guth (the inventor of cosmic inflation) asks in his book Guth (1997) The Inflationary
Universe — The Quest for a New Theory of Cosmic Origins:

If the creation of the universe can be described as a quantum process, we would be left with
one deep mystery of existence: What is it that determined the laws of physics?

It is important to bring such questions firmly into the scientific domain
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Chapter 9
Computational Models of Measurement
and Hempel’s Axiomatization

Edwin Beggs, José Félix Costa, and John V. Tucker

9.1 Introduction

We are developing a methodology and mathematical theory to examine how data is
represented and computations are performed by physical systems. The research pro-
gramme is shaped by questions about what can be computed by (i) physical systems
in isolation and (ii) physical systems combined with algorithms. The methodology
is formulated using five principles that focus on the role of a physical theory in
formalising experiments. Our theory for isolated physical systems begins in Beggs
and Tucker (2006, 2007, 2008, 2009) and that for physical systems and algorithms
begins in Beggs et al. (2008a,b, 2009, submitted). A central technical idea is to use
a physical experiment as an oracle to a Turing machine. This changes the nature of
oracle queries and introduces new and subtle protocols to manage the time taken
by queries and tolerances in data exchanges. Typically, we use an experiment £ (x)
designed to measure a physical quantity represented by a real number x. The ora-
cle is expected to extend the computing power of the Turing machines. For specific
experiments, we have characterised the class of sets decidable by these machines
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using non-uniform complexity classes and we have shown that the oracles extend
the power of Turing computability substantially.

However, recently in Beggs et al. (submitted, 2009b), we have added a new,
sixth principle which changes the perspective of the mathematical theory of Tur-
ing machines with physical oracles. Instead of viewing the experiment as an oracle
boosting the power of Turing machines, we view the Turing machine as control-
ling and, indeed, performing the experiment. Specifically, Principle 6 leads us to
suppose that:

The Turing machine models a human experimenter conducting the experiment.

The relationship between experimenter and experiment is modelled by the pro-
tocols that apply to the oracle queries. In Beggs et al. (submitted) we study in some
detail a Newtonian experiment to measure mass, which reveals concepts and prop-
erties of wide applicability.

Thus, with Principle 6 of Beggs et al. (submitted, 2009b), we find we are in
possession of a fledgling computational model of the process of doing physical ex-
periments and making measurements. The model accommodates

(i) Logical properties of the process of following an experimental procedure, made
up of instructions specified by a physical theory;

(i) Quantitative constraints of precision and error margins and of the cost in time
and other resources needed to perform experiments

We have looked at several experiments and the questions arise:

To what extent is our computational model of experimentation general? What is
measurement?

In this paper we begin to explore these questions with the help of the philosophy
of physics. We relate our computational model to the desiderata of Geroch and
Hartle (1986) for an investigation into computable aspects to measurement. We con-
sider the axiomatic theory of measurement established by Carl G. Hempel (1952),
and elaborated by Rudolf Carnap (1966), and apply it to our computational models
of measurement. Do our models satisfy Hempel’s axioms? Yes. Do they reveal new
general properties of measurement? Yes. Indeed, we show that the models uncover
some shortcomings in Hempel’s characterisation, which we repair with new axioms.

Hempel’s theory is based on two predicates intended to make comparisons be-
tween some physical attribute: think of an equivalence and ordering applied to
some attribute of a set of objects. On measuring the attribute using real numbers,
the comparison predicates are mirrored by the standard predicates = and <, which
are undecidable on computable real numbers. This is more than an inconvenience
for an axiomatic theory of measurement, where tolerances and accuracy are central
concepts. This undecidability can be ameliorated in different ways. We introduce
the operational concept of computational resources, specifically time, into Hempel’s
axioms; the resulting axiomatisation we believe to be new. The idea of considering
time as a cost in deciding the equality of measurements is suggested by our previous
technical work on the model (e.g., see Beggs et al. (2008a, 2009a)).

Let us consider the impact of adding time to Hempel’s view of measurement.
Hempel uses the experience of measuring mass with a balance scale to introduce his
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axioms. The notions of two objects weighing the same, or one weighing less than
the other, are quite intuitive. However, as the masses of the two objects approach
one another, the measurement becomes more and more troublesome, due to friction
and nature of the balance: two objects in the pans may be in equilibrium one day but
are found no longer to be in equilibrium the next. Hempel (1952), end of Chapter 10
and middle of Chapter 11, develops the following argument:

Hempel 1. The most important — and perhaps the only — type of fundamental measurement used
in the physical sciences is illustrated by the fundamental measurement of mass, length, temporal
duration, and a number of other quantities. It consists of two steps: first, the specification of a
comparative concept, which determines a nonmetrical order; and, second, the metrization of that
order by the introduction of numerical values [...] Now we return to our illustration [of measuring
mass]. In formulating specific criteria for this case, we will use abbreviatory phrases: of any two
objects, x and y [...] we will say that x outweights y if, when the objects are placed into opposite
pans of a balance in a vacuum, x sinks and y rises; and we will say that x balances y if under the
conditions described the balance remains in equilibrium.

Hempel is aware of the need of improving accuracy to define metrical properties
for the mass concept (hence the vacuum'). However, there is no awareness, either
in Hempel’s or in Carnap’s theories, that the time to run an experiment is actually a
fundamental concept when allocating numerical values to attributes in a consistent
way. Hempel is conscious of this limitation of his axiomatization of measurement
of quantities that take real values, or even rational values. In a footnote, he declares
the following:

Hempel 2. This account of the fundamental measurement of mass is necessarily schematized with
a view to exhibiting the basic logical structure of the process. We have to disregard such consid-
erations as that the equilibrium of a balance carrying a load in each pan may not be disturbed by
placing into one of the pans an additional object which is relatively light but whose mass is ascer-
tainable by fundamental measurement. This means that fundamental measurement does not assign
exactly one number to every object [.. .]

Measurement is a mapping from objects to numbers. By introducing time
in Hempel’s axiomatization, we establish a more accurate semantical basis for
these maps.

The structure of the paper is this. In Section 9.2, we review the Hempel-Carnap
theory of measurement. In Section 9.3, we recall the computational model of an
experiment to measure mass from Beggs et al. (submitted) Such computational mod-
els are gedankenexperimente. We review the ideas of Geroch and Hartle (1986) in
Section 9.4. In Section 9.5 we look at mass in Newtonian dynamics. In Section 9.6,
we present a new axiomatization of measurement by generalising Hempel’s axioms
in order to introduce the time taken by a measurement process. This is, indeed,
a generalisation, from which we can recover the old axiomatization. Finally, in
Section 9.7, we show how the computational perspective implies that not all quan-
tities are measurable.

! Why should the balance be in a vacuum? It is not because of friction. It is because there are
substances in the atmosphere that have “negative weight” such as hydrogen and helium.
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9.2 Theory of Measurement

9.2.1 The Three Concepts of Measurement

According to Hempel (1952) and Carnap (1966), the construction of a quantitative
concept, based on measurement, involves three phases. For illustration, we use the
quantitative concept of mass as measured by the balance.

The Classificatory Phase Classification is based upon some primitive method of
sorting concepts into groups according to similarities. What aspect is chosen is
termed an attribute. Classification is essentially subjective. To make finer classi-
fications, attention must be paid to details of the objects being classified, which
demands more time of the taxonomist.

The Comparative Phase The attributes that define the classification need to be
compared. A comparative concept is something observable of attributes and what
is observed is termed an event. It constitutes the basis for a quantitative concept;
although the comparative concept seems to be unique, the quantitative one can be
understood and axiomatized in different ways.

For the concept of weight, we introduce the comparative concepts of lighter,
heavier, and equal in weight. These concepts have an empirical procedure by which
we can take any pair of objects and observe.

If the two objects balance, they are of equal weight. If the objects do not balance,
the object on the pan that rises is lighter than the object on the pan that sinks.

Let these observable events define the relations of “equality” £ and “less than”
L, respectively.

The Quantitative Phase The attributes we wish to compare are assigned numerical
values by a map M from objects to numbers. Carnap (1966), says:

Carnap 1. The qualitative language is restricted to predicates (for example, “grass is green”),
while the quantitative language introduces what are called functor symbols, that is, symbols for
functions that have numerical values. This is important, because the view is widespread, especially
among philosophers, that there are two kinds of features in nature, the qualitative and the quan-
titative. Some philosophers maintain that modern science, because it restricts its attention more
and more to quantitative features, neglects the qualitative aspects of nature and so gives an entirely
distorted picture of the world. This view is entirely wrong, and we can see that it is wrong if we
introduce the distinction at the proper place. When we look at nature, we cannot ask: “Are these
phenomena that I see here qualitative phenomena or quantitative?”” That is not the right question.
If someone describes these phenomena in certain terms, defining those terms and giving us rules
for their use, then we can ask: “Are these the terms of a quantitative language, or are they the terms
of a prequantitative, qualitative language?”.

The measurements must preserve the comparisons. For mass, we need to define
the relations between the events associated with the balance scale and the map M :
for any objects a and b, (i) if a€b then M (a) = M(b) and (ii) if a Lb then M (a) <
M(b).
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9.2.2 The Axiomatization of Measurement

In Hempel’s book (1952), Part III, Chapters 9 to 13, we find an axiomatization of
measurement in Physics and other empirical sciences; a discussion of Hempel’s
axiomatization is Carnap (1966).

Consider a class O of physical objects endowed with some attribute (such as
mass, electric charge, or temperature, etc.). A measurement of an attribute in the
sense of Hempel is amap M : O — N, where N is a number system such as the
integers Z, rationals Q, or reals R. For definiteness, we will choose M : O — R.

Hempel’s axiomatization of measurement establishes an ordering of the objects
of O. To have a measurement, we need an instrument or experimental apparatus,
and observations defining events that implement physically the two special compar-
ative predicates £ and £ over the set O:

1. If objects a and b are identical in the observed attribute, then a€b is the case.
2. If object a is less than object b in the observed attribute, then a Lb is the case.

The experimental apparatus works with the objects from O, allowing the experi-
menter to establish a comparison of values of a given attribute.

Definition 1. Given two binary relations £ and L, L is E-irreflexive if, for all ob-
jects aand bin O, if a€b is the case, then aLb does not hold.

Definition 2. Given two binary relations € and L, L is E-connected if, for all ob-
jects aand b in O, if a€b does not hold, then aLb or bLa is the case.

Definition 3. Two binary relations £ and L determine a comparative concept, or a
quasi-series, for the elements of O, if £ is an equivalence relation and L is transi-
tive, E-irreflexive, and E-connected.

Let E be the set of observable events. Let Z : O x O — [ be an abstract
implementation map. In Hempel’s examples in Hempel (1952), the set E of events
can be reduced to the bipolar set {—1, 0, +1}: the outcome of each experiment with
objects a and b will tell us that either aLb (the event denoted by —1), or a€b (the
event denoted by 0), or bLa (the event denoted by +1). The experimenter has to
identify which physical events are to be denoted by —1, 0, +1.

In the example of the balance, if we put objects a and b in the left pan and the
right pan, respectively. Event —1: the left pan rises and the right pan sinks — aLb
is the case. Event +1: the left pan sinks and the right pan rises — bLa is the case.
Event O (or the non-event): the balance remains in equilibrium — a&b is the case.

A careful reading of Chapter 12 of Hempel (1952), on the notion of fundamental
measurement, introduced by Campbell (1928), we find that a detailed sub-structure
of O can be identified, consisting of a standard object, called the unit mass, together
with its multiples and submultiples: this substructure we call the roolbox of stan-
dards.> By reducing the number of axioms in Hempel’s theory (namely, removing

2 This is done by considering a semigroup of objects @ = (O, o; 1), with the distinguished element
1 called the unit, and some internal structure to generate fractions and multiples of the unit.
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the axioms of extensivity, developed by Suppes (1951)), we can provide a first work-
able definition of measurement map for a set of objects:

Definition 4. Let £ and L be comparative relations on the set O of objects
(Definition 3). Suppose there exists an experimental apparatus to witness these
relations and let | be a set of elements denoting physical events.

Suppose {—1,0,+1} C E and whenever the experiment is done with arbitrary
objects a,b € O, if the outcome is event —1, then aLb is the case, if the outcome
event is +1, then bLa is the case, and if the outcome is 0, then a&b is the case.

Then the map M : O — R is a measurement map if

Axiom 1. If aEb, then M(a) = M(b).
Axiom 2. If aLb, then M(a) < M(b).

We think this is a good definition capturing Hempel’s construction of a quantita-
tive concept from a comparative concept, as Hempel (1952) suggests:

Hempel 3. Any function M which assigns to every element x of O exactly one real-number value,
M (x), will be said to constitute a quantitative or metrical concept, or briefly a quantity (with the
domain of application O); and if M meets the conditions just specified, we will say that it accords
with the given quasi-series.

The axiomatization allows to prove simple results such as

Proposition 1. For all a, b in O, one, and only one, of the following statements
holds: (a) aEb, (b) aLb, or (c) bLa.

Proof. First, we show that at least one of the three conditions hold. Suppose a&b.
Then we are done. Suppose that a&£b is not the case. Since £ is £-connected, either
aLlb or bLa. Thus, one of the three relations holds. We show that only one can hold.

a. Suppose that a&b. Since L is E-irreflexive, aLb is not the case. Since £ is an
equivalence, b€a is also the case. Again, since L is E-irreflexive, bLa is not
the case.

b. Suppose that aLbh. Since a€a, we can not have bLa, because by transitivity
we would get aLa and L is E-irreflexive. We can not also have a&b, since
E-irreflexivity implies that aLb, a contradiction.

c. The argument is the same as b. O

The converse of the axioms in Definition 4 hold.

Proposition 2.

If M(a) = M(b), then a&b. 9.1)
If M(a) < M(b), then alh. 9.2)

Proof. We argue by contraposition. (1) Suppose that a€b is not the case. Then
we have either aLb or bLa, that is either M(a) < M(b) or M(b) < M(a), by
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definition. It follows that M (a) # M (b). (2) Suppose now that a Lb is not the case.

Then either a€b or bLa, that is either M(a) = M(b) or M(b) < M(a). O

Proposition 3.
VxVy (xEy & Yu((xLu & yLu) A (ulx & uly))). 9.3)
VxVyVz((xEy AyLz) = xL7). 9.4)

Axioms 1 and 2 in Definition 4, are not far from Hempel’s own theory as stated
in Hempel (1952):

Hempel 4. Let £ and £ be two relations which determine a quasi-serial order for a class O.
We will say that this order has been metricized if criteria have been specified which assign to each
element x of O exactly one real number, M (x), in such a manner that the following conditions are
satisfied for all elements x, y of O: [follows Axioms 1 and 2].

This (first) axiomatization of measurement’ is troubled by the undecidability
of = for quantities ranging over the real numbers. In Section 9.6, we will show how
to generalize Hempel’s axioms in order to have decidable comparison relations, by
the introduction of time complexity to an experiment.

9.3 The Collider Experiment

In this section we describe an example of an experiment about elastic collision for
the purpose of measuring the unknown (inertial) mass of a particle. The experiment
is conducted exactly as described in Beggs et al. (submitted). This type of experi-
ment to measure mass was and still is at the heart of mechanics. A generalization
of the collision experiment can be used to measure the mass of a star or of a planet,
measures that cannot be done with the balance scale.

9.3.1 Theory

As a gedankenexperiment, we consider a very simple situation at the limit of physi-
cal reality: a one dimensional elastic collision of two particles. The elastic collision
between two particles on a line is dictated by two basic laws of Physics: the con-
servation of linear momentum and the conservation of kinetic energy, both of which
can be derived from Newtonian laws of dynamics (see Section 9.5).

3 There can be further structure for the map M, e.g., depending on the fact that the attribute con-
sidered is either extensive (e.g., mass) or intensive (e.g., temperature).
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9.3.2 Experiment

In the one dimensional collision the center of mass of the two particles are in the
same line of motion. Let m and u be the masses of the two particles. We will assume
that the particle of “unknown” mass u is always at rest before the collision, and that
the “proof” particle of mass m is projected along the line towards the particle of
unknown mass p with speed u = 1.0 (&) ms™!, e.g. with 0 < & < 0.1.* After the
collision the particle of mass m acquires the speed v, and the particle of mass u is
projected forward with speed v,,.

By the conservation of momentum and kinetic energy, the collision is described
by the equations:

MU = Mmvp + Uy, 9.5)
1 1 1
S = Smv S (9.6)

that can be solved for vy, and v,;:

m— U
fr— ) 9.7
Vi m_HLu 9.7
2
vy = " 9.8)
m—+

From these formulae we see that after a collision:

a. if m < p, then the proof particle move backwards after the collision.

b. if m > p, then the proof particle will move forward.

c. if m = pu, then the proof particle of mass m comes to rest and the particle of
unknown mass p is projected forward with the previous value of the speed of the
proof particle.

This experiment can be designed to measure the unknown mass w, using proof
particles of known mass m projected at the same speed u.

We establish the convention that the particle of unknown mass is placed at the
origin of coordinates and points P~ = —1m and P = +1m are the flags of the
experimenter’s observations: when the proof particle is seen crossing the points P~
or P the experiment terminates. If the proof mass crosses the flag P~ then we
have m < p (as depicted in Fig. 9.1), and if it crosses the flag P, we have m > u.

For this experiment there are various facts that are largely irrelevant, or where
errors can be tolerated. These include the (finite) distance between the two flags, the
precision of the placement of the flags, the error in placing the particle of the un-
known mass at the origin (let us say approximately 0 m), and the initial speed of the

4 This error margin in the initial speed of the proof particle of mass /7 means that precision in speed
does not matter for this experiment.
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Fig. 9.1 Collider machine experiment

proof particle (let us say approximately 1 ms~!). Note that the observed velocities
of the particles after the collision, after crossing one or both the flags, are irrelevant.

However quantities and facts that are relevant include: the one dimensional
character; that the masses of the unknown particles are continuous variable in the
range (0,1); that the particle of unknown mass p is at rest; and that the collisions
are elastic.

Looking closer to the experiment, we however find an experimental barrier: the
time for the proof particle crossing the distance of 1 m after the collision is given by

1

foxp = - 9.9

m+ W
m—u|’
that, for the values we will take of the masses and initial speed, is of the order of

— = texp < — ), (910)
Im — pl Im — p

for some constants A and B.

9.3.3 CME as Oracle

In the shooting state the machine prepares and fires a proof particle of mass m as
detailed above. The experiment continues until the proof particle crosses one of the
flags P*, and then returns a state m < j or m > p to the Turing machine.

The Turing machine is connected to the collider experiment CME in the same
way as it would be connected to an oracle: we replace the query state with a shooting
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state (¢s), the “yes” state with a lesser state (q;), and the “no” state with a
greater state (qg). The resulting computational device is called the (analogue-
digital) collider machine experiment.

In order to carry out an experiment, the machine will write a word z in the query
tape and enter the shooting state. The word z codes for a dyadic rational mass m
of the “proof” particle. In the shooting state the machine prepares and fires a proof
particle of mass m as detailed above. The experiment continues until the proof par-
ticle crosses one of the flags P¥, and then returns a state m < 1 or m > jui to the
Turing machine.

Technically, this word z will either be “1”, or a binary word beginning with 0.
We will use y ambiguously to denote both a word y; --- y, € {1} U{0s:s€ {0, 1}*}
and the corresponding dyadic rational ) ;_, 27i*+1y. € [0, 1]. In this case, we write
| v| to denote n, i.e., the size of y; -« - y,.

Consider the precision of the experiment. When measuring the output state the
situation is simple: either the proof particle of mass m crosses P~ or it crosses P T
(or, after some timeout, no proof particle is detected). Errors in observation do not
arise. There are different postulates for the precision of the experiment, and we list
some in order of decreasing strength:

Definition 5. The CME is error free if the mass of proof particle can be set exactly
to any given dyadic rational number. The CME is error prone with arbitrary preci-
sion if the mass of proof particle can be set only to within a non-zero, but arbitrarily
small, dyadic precision. The CME is error prone with fixed precision if there is a
value ¢ > 0 such that the mass of proof particle can be set only to within a given
precision ¢.

9.3.4 Bisection Algorithm

Now we can describe the algorithm in full detail. Let 7 : N — N be the time
given for the experiment to take place as a function (total map) of the size of the
sequence of bits setting the value of the mass of the proof particle. The function 7'
can be seen as a schedule, i.e., in each experiment, in order to read the |m|-th bit of
the mass ., T (|m|) gives the amount of time steps that the experimenter is prepared
to wait until resuming the experimental conditions. The function 7" can either be a
computable function or a non-computable function of its argument.

After setting the mass m, the CME will fire a proof particle of mass m, wait
T (|m|) time units, and then check if the particle crossed one of the flags. If the
particle crossed the flag P, then the Turing machine computation will be resumed
in the state g;. If the particle crossed the flag P, then the Turing machine compu-
tation will be resumed in the state g, . Perhaps, after time 7'(|m|), no proof particle
is detected.
Bisection(t) — THE BISECTION ALGORITHM: A PROCEDURE TO READ THE FIRST
n BITS OF A UNKNOWN MASS u
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1. input n — required precision coded by the number of places to the right of the
left leading O;

2. my := 0, my := 1, m := 0 — initial values with no physical significance; note
1| = 0. |ms] =1, and |m| = 0;

3. while |m| <n do

my+my .,
2

(@) m:= ;

(b) place the particle of unknown mass u € [0, 1] at the origin;

(c) project proof particle of mass m to collide with particle of unknown mass;

(d) if proof particle crosses the flag P~ in time 7'(|m|) then m; := m; append
1; — it is known that u €]m, m5]|;

(e) if proof particle crosses the flag P in time 7'(|m|) then m, := m; append
0; — it is known that y €]my, m|;

(f) if no particle crosses the flags in time 7'(|m|) then return time out;

4. end while;
5. output dyadic rational denoted by m.

The bisection method applies to each type of precision.

9.3.5 Notions of Measurable

Definition 6. A mass u is said to be measurable if there exists a schedule T such that
the digits of | can be computed by performing the collision experiment repeatedly.
Otherwise, the mass is said to be non-measurable.

Definition 7. A mass [ is said to be effectively measurable if there exists a com-
putable schedule T such that the digits of u can be computed by performing the
collision experiment repeatedly. Otherwise, the mass is said to be effectively non-
measurable.

To measure time we need to make step counting and time explicit inside the
machine. To introduce a system clock as part of the Turing machine we can employ
the concept of a time constructible function, introduced by Hartmanis in 1965.

Definition 8. A total function f:N — N is said to be time constructible if there is
a Turing machine M such that, for all n € N and all inputs of size n, M halts in
exactly f(n) steps.

Definition 9. A mass p is said to be feasible if there exists a time constructible
computable schedule T such that the digits of |1 can be computed by performing the
collision experiment repeatedly. Otherwise, the mass is said to be non-feasible.
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9.3.6 Notions of Computation

Definition 10. An error free analogue-digital collider machine is a Turing ma-
chine connected to an error prone CME. In a similar way, we define an error
prone analogue-digital collider machine with arbitrary precision, and an error prone
analogue-digital collider machine with fixed precision.

If an error prone analogue-digital collider machine, with unknown mass u €
(0, 1), is triggered by the proof particle with dyadic rational mass z € [0, 1], then we
are certain that the computation will be resumed in the state gl if m < p, and that
it will be resumed in the state gg when m > . We define the following decision
criteria:

Definition 11. Ler A C XY™ be a set of words over X. We say that an error free
analogue-digital collider machine M decides A if there exists a time constructible
schedule t to operate the coupled CME and an oracle | such that, for every input
w e X* wis accepted if w € A and rejected when w ¢ A. We say that M decides
A in polynomial time, if M decides A, and there is a polynomial p such that, for
everyw € X*, the number of steps of the computation is bounded by p(|w|).

Definition 12. Ler A C X* be a set of words over X. We say that an error prone
analogue-digital collider machine M decides A if there exists a time constructible
schedule t to operate the coupled CME with a given oracle . and a number y < %,
such that the error probability of M for any input w is smaller than y. We call
correct to those computations which correctly accept or reject the input. We say that
M decides A in polynomial time, if M decides A, and there is a polynomial p such
that, for every input w € X*, the number of steps in every computation of M on w

is bounded by p(|w)).

We can end this section with some results about questions that are experimentally
undecidable:

Proposition 4. That the proof mass coincides with the given unknown mass cannot
be established experimentally in finite time by the CME.

Proof. According to Eq. 9.10, as m — u through the bisection method, the time the
experimenter has to wait goes to infinity, #,,, — -+o0. If the two masses coincide,
then the experimenter will never know. O

As a trivial consequence of this statement we have the folowing theorem.

Proposition 5. 7o know if the unknown mass is a dyadic rational cannot be estab-
lished experimentally in finite time by the CME.

And, finally, one important statement to keep in memory for the sections to
follow, and its fundamental consequence.
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Proposition 6. At each stage of the bisection algorithm, the lower bounds on the
time of a single experiment with the CME are exponential in the size of the mass of
the proof particle.

Proof. We know that the time taken by a single experiment is given by Eq.9.10 at
step n with |m| = n. Thus p has a pattern of the form . = m + m’ x 277"~ with
m’ € [0, 1] and n’ > n, and ¢,,, has a pattern of the form

K
m—(m£m’ x277'1)

texp ~ | )

that is,’
€ 22",

loxp ~ ——————————
R

Thus, we have the following consequence: O
Proposition 7. The protocol that processes queries between a Turing machine and
the collider takes time that is at least exponential in the size of the mass of the proof
particle specified by the queries.

9.4 Geroch-Hartle on Computability and Measurement

Let us consider the reflections of physicists Geroch and Hartle on computability and
measurement (Geroch and Hartle 1986). Several of their speculations and questions
are analysed formally in our theory.

Geroch and Hartle start by considering the concept of measurable number in
contrast to the concept of computable number:
Geroch-Hartle 1. We propose, in parallel with the notion of a computable number in mathemat-
ics, that of a measurable number in a physical theory. The question of whether there exists an
algorithm for implementing a theory may then be formulated more precisely as the question of
whether the measurable numbers of the theory are computable.

Then they add some considerations on numbers being measurable and/or
computable:

Geroch-Hartle 2. We argue that the measurable numbers are in fact computable in the familiar
theories of physics, but there is no reason why this need be the case in order that a theory have
predictive power. Indeed, in some recent formulations of quantum gravity as a sum over histories,
there are candidates for numbers that are measurable but not computable.

They introduce the notion of a technician measuring physical variables:

Geroch-Hartle 3. Regard number w as measurable if there exists a finite set of instructions for
performing an experiment such that a technician, given an abundance of unprepared raw materials
and an allowed error ¢, is able by following those instructions to perform the experiment, yielding
ultimately a rational number within & of w.

SLet f and g be total maps with signature N — IN. We say that f € £2(g) if there exists a
constant k € R such that, for an infinite number of values of n € N, f(n) > kg(n).
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The accuracy ¢ is to be understood as arbitrarily small. The technician and set
of instructions, together with some memory to take account of intermediate calcu-
lations, we replace by a Turing machine. In our model of measurement embodied
in Principle 6, the Turing machine represents formally the physicist or the experi-
menter. Thus, we propose the assumption:

Thesis 1. The experimenter following his or her instructions is modelled by a Tur-
ing machine. The measuring process is controlled by an algorithm that runs on the
machine, generating the atomic instructions, specified by theory T, to be performed
at each step of the experimental procedure.

This postulate says that the experimenter cannot escape the logic of following a
set of rules as formalised by computability theory; and, of course, that the logic of
experimental procedures can be captured completely by a Turing machine.

A point not considered in Geroch and Hartle (1986) is that not all measurements
are possible. Assuming the physicist to be a Turing machine, then the limits of
Turing machine computation can determine limits on measurements and, therefore,
on the nature of physical experiments.

As we will see in Section 9.6, our work makes the concept of measurable as
precise as the concept of computable. Now this was not the intention of Geroch and
Hartle (1986):

Geroch-Hartle 4. “Measurable” is analogous to, although of course much less precise than,
“computable”. The technician is analogous to the computer, the instructions to the computer pro-
gram, the “abundance of unprepared raw materials” to the infinite number of memory locations,
initially blank. Indeed, one can think of the measurable numbers as those that are “computable”
using an analog, rather than digital, computer.

Geroch and Hartle stress need for a theory to specify a gedanken experiment as
follows:

Geroch-Hartle 5. The notion “measurable” involves a mix of natural phenomena and the theory
by which we describe those phenomena. Imagine that one had access to experiments in the physical
world, but lacked any physical theory whatsoever. Then no number w could be shown to be mea-
surable, for, to demonstrate experimentally that a given instruction set shows w measurable would
require repeating the experiment an infinite number of times, for a succession of es approaching
zero. One could not even demonstrate that a given instruction set shows measurability of any num-
ber at all, for it could turn out that, as ¢ is made smaller, the resulting sequence of experimentally
determined rationals simply fails to converge. It is only a theory that can guarantee otherwise. The
situation is analogous to that of trying to demonstrate that a given Fortran program shows some
number to be computable. There is no general algorithm for deciding this. In particular, it would
not do merely to run the program for a few selected values of ¢.

Now, how does the Turing machine communicate with Nature? We believe that
this interaction is captured by the concept of the continuing evolution of a physical
experiment acting as an oracle.

Thesis 2. The measurement apparatus is taken to be an oracle to a Turing machine.
The interaction is achieved through a protocol which counts time. After each consul-
tation, the oracle may provide one bit of the measurement. This bit also provides the
necessary information to the machine to proceed with the experimental procedure.
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Geroch and Hartle argue that every computable number is measurable. A few
paragraphs further on, Geroch and Hartle provide the flavour of a proof. This proof
is given to the reader by the following:

Geroch-Hartle 6. This is easy to see: Let the instructions direct that the raw materials be assem-
bled into a computer, and that a certain Fortran program — one specified in the instructions — be run
on that computer. That is, every digital computer is at heart an analog computer.

Then the authors ask the following question:

Geroch-Hartle 7. We now ask whether, conversely, every measurable number is computable —
or, in more detail, whether current physical theories are such that their measurable numbers are
computable. This question must be asked with care.

Actually, the question received a very careful answer in our Beggs and Tucker
(2007): the experiment SME demonstrates that there are numbers that are measur-
able in Newtonian dynamics but that are not computable.

9.5 The Laws of Dynamics

In this section we explain how the collider experiment lies at the heart of measur-
ing masses in Classical Mechanics. Our aim is to define formally the measurement
function for (inertial) mass from Newtonian dynamics.

First Law The first law of Newton establishes that a particle not subjected to a
net force will move in a uniform motion in a straight line. Since the motion of a
particle has to be specified with respect to a particular reference frame, the content
of the first law can only be understood if such a reference frame is provided. Also,
looking at the statement of the first law, we see that the concept of force was not
yet defined. The first law should be regarded in the following way: in a region of
space containing the particle, far away from all other matter, we can always define
a reference frame with respect to which that particle will move in a uniform motion
in a straight line. Such a reference frame is the inertial reference frame; an example
is that of the stars — Kepler’s reference frame.°

Second Law Having found a inertial reference frame, the departure from a uniform
motion in a straight line is “measured” by the kinematic concept of acceleration.
The departure from a constant speed in a straight line should be due to a force that is
impressed on the particle by some physical process. If v is the velocity of a particle
in that reference frame, in an arbitrary instant of time ¢, its acceleration a = %
will be nonzero, and this quantity will be a convenient measure of the force f being

applied.

® The reference frame of the stars is a good inertial frame for experiments carried out on Earth.
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In accordance with the Aristotelian principle that causes should be proportional
to their effects, Newton assumed that f is proportional to a, or f = ma, where m is
the coefficient that will depend on the particle under consideration and that we will
call (inertial) mass.”

Third Law According to Newton’s third law, when two particles P and Q interact,
the force applied on P by virtue of Q is equal to the force applied on Q by virtue
of P, but of opposite direction.

Newton defined momentum p of a particle as the product of its inertial mass m
by its velocity v.® Taken together, the second and the third laws give rise to the law
of conservation of momentum that implies that the sum of momenta of two particles
before a collision is equal to the sum of momenta of the same particles after that
collision. If u and 1 are the masses of the two particles a and b, respectively, and
u, and 0 are their respective velocities immediately before the collision, and v, and
v, are their velocities immediately after the collision, then

Hg = UWvg + v 9.11)
that is
Al
= — 9.12)
lwg —vall
and
(g —va) 0 = 1. (9.13)

This last equation implies that the vectors u, —v, and v; are colinear, a result that
constitutes the essence of the third law of Newton. For the unidimensional collider,
Eq. 9.12 can be rewritten with the velocity scalars:

Vi
n=—- 9.14)

Ug — Va

where u, and v; are always positive and v,, speed of the particle of proof mass,
can be either negative or positive depending on its behaviour after the collision —
bouncing back or going forward.

The Determination of Mass These equations show that the third law is also the
way to ascertain the value of the coefficient called mass. Eq. 9.12 gives the mass
of an arbitrary particle using a standard particle (of mass 1kg): this value can be
measured in a collision experiment. Thus, if one of the particles is chosen as unit,
then the masses of all other particles can be determined by making them collide with
the standard particle. Consider a possible measurement map M for mass.

7 To Aristotle the force applied is the cause and in some way the velocity is the effect. Since uniform
motion in a straight line does not need any explanation, Newton searched for the variation of
uniform motion in a straight line as the required effect.

8 In the Principia, Newton defined force as change of momentum, i.e., f = ‘—iﬁ
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The inertial mass M (a) of a particle a, as determined by the collider and velocity
measurements only, is defined by Eq. 9.14 rewritten in the form:
Vi

M(a) = , (9.15)

Ug — Va

where u, and v, are the velocities of particle a before and after the collision, and v;
is the velocity after the collision of the standard reference particle. Here are some
simple consistency theorems:

Proposition 8. M(a) < M(b) if, and only if; the particle a of mass yu bounces back
when projected towards the particle b of mass |’ at rest.

Proof. By Eq. 9.7, we have that

/

K=
A+

Va Ug,

where the sign of v, is decided by the difference u — . Thus, we only have to
prove that u < u’. But, since M(a) < M(b), we conclude

V1 Vi
< k
Ug —Va  Up—Vp

if, and only if,
Hvy < WV
Mitg — jtvg Wy — j1'vp’

and, by conservation of momentum, if, and only if,

15,/
mvy vy
—_— << T

V1 V1

and, finally, if, and only if, u < u’. 0
In a similar way, it is straighforward to prove that:

Proposition 9. M(a) = M (b) if, and only if, the particle a of mass |t becomes at
rest when projected towards the particle b with the same mass at rest.

The basic question is: Does the CME implement a comparative concept sup-
porting a formal measurement M in the sense of Hempel? Does M qualify as a
measurement function? We will see that, indeed, we have both a comparative con-
cept and a measurement.
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9.6 Refinement of the Theory of Measurement

9.6.1 Measuring Quantities

Suppose that we wish to measure an attribute of an object of O using real numbers.
We need a map M : O — R assigning to each object a € O an attribute value
M (a). Such a map cannot be chosen arbitrarily. To qualify as a measurement in an
empirical science, an experiment must be conceived that “validates” or “witnesses”
the definition. The experimental apparatus works with the objects from O, allowing
the experimenter to compare different objects with respect to a given attribute. The
outcome of each experiment is an event that tells us whether or not the attribute
of object a is less than the attribute value of object b. Observing the equipment,
there will be an event for “yes”, an event for “no”, and an event for “don’t know”.
As we will see shortly, in our theory, “don’t know” is an event “experiment timed
out”. With time in mind, we adapt the notation in Section 9.2.2: in the bipolar subset
of events we replace 0 with L (“undefined”) to mark that the binary equivalence £
is true.

Letus assume thereis atime r € N associated to each experiment. A collection of
such times constitute the schedule of the collider protocol. In all measurement pro-
cedures in this paper, the experimenter — the Turing machine — generates a possibly
infinite sequence of binary words {z; };en. If the time schedule of oracle consulta-
tion allows, then this sequence converges into the unknown real ¢ being measured
(in its binary expansion).

For the purpose of what follows, every number ¢ can be seen as an infinite bi-
nary string. We don’t accept infinite suffixes of 1s to denote dyadic rationals. If a
sequence is finite, then we consider an infinite number of Os padded to its right.
The concept of limit induces a topology over the set of finite and infinite binary
sequences {0, 1}¢.

Definition 13. We say that the sequence of binary words {z; }ien converges to ¢ if
(a) foralli € N, z; is a finite sequence, (b) for alli € N, z; is a prefix of {, and
(¢) for each prefix z of £, there is ai € N such that z is a prefix of z;.

Each experimental apparatus .4 we have explored so far is specified by a phys-
ical theory 7 and is designed to measure a real number ¢. Let A(7, ¢) denote the
experimental apparatus together with the quantity. We are able to define precisely
the notion of a measurable number:’

Definition 14. Ler A(7T, ¢) be an experimental apparatus for physical theory T and
physical quantity . The number ¢ is measurable if the Turing machine equipped
with the physical oracle O(T,{) and a time schedule can produce an infinite se-
quence of prefixes of ¢,{zi}ieN, without timing out in any query, such that

9 Compare the context of Geroch and Hartle (1986) and Beggs et al. (2008a, c, 2009a).
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lim z; = ¢. (9.16)

1 —>00
In the bisection method, the infinite sequence of queries is almost such a se-
quence {z; };eN, but not quite since each query may differ in the last bit from a prefix
of the unknown number being measured. We define the meet operation, which al-
lows us to identify the largest common prefix to two given words over the same
alphabet X':

Definition 15. Let o and B be two finite or infinite words over the same alphabet X
We define the meet o« 11 B as the finite word y over X, if it exists, such that (a) y
is prefix of both a and B and (b) if & over X' is prefix of both o and B, then § is a
prefix of y. It such a prefix does not exist we say that the meet is undefined.

Thus, according with our previous analysis of experimental situations, the se-
quence of queries involved in the bisection procedure has the following property: if
¢ is measurable, then the sequence {z; I };en converges to ¢. Notice that, whenever
one of the words over X is finite, the meet is always defined. If the meet is unde-
fined, we say that its size is infinite. The following proposition is straightforward
to prove:

Proposition 10. Let A(7,{) be an experimental apparatus for physical theory T
and physical quantity . The number ¢ is measurable if, and only if, a Turing ma-
chine with physical oracle O(T,{) and a time schedule can produce an infinite
sequence of queries {z; }ieN such that

limzn¢=¢ 9.17)
I —>00

9.6.2 Measurement Axioms with Time

We begin with some properties of abstract binary relations indexed by a real param-
eter “time” ¢t > O on aset O.

Definition 16. A relation & in O x O, for the time bound t > 0, is said to be a
timed equivalence relation if there is a K > 1 so that

(a) & is reflexive,

(b) & is timed symmetric: for every a, b in O, if a&;b, then b&; ka,

(c) & istimed transitive: for every a, b, and c in O, if a&b and b&;c, then a&; ke,
(d) ift <t',thenalyb = a&b.

Definition 17. Two binary relations & and L; (t > 0) determine a timed compar-
ative concept for the elements of O, if

(a) & is a timed equivalence relation,

(b) thereisa K > 1 so that for every a, b, cin O, if aL,;b and bL;c, then aly kc,
(c) forallt > 0anda,b € O, exactly one of a&sb, al:b, bLa holds,

(d) ift <t',thenalib = aLlyb.
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Note that Definition 17(c) summarises the ideas of irreflexivity and
connectedness.

Note also that, although property 16(d) is kept explicitly, it can be omitted, since
it is derivable from the other properties listed in Definition 16 and those listed in
Definition 17.

Proposition 11. Ift < t/, then a&yb = a&;b.

Proof. Suppose that a&b holds. Then aLybh does not hold, due to property
Definition 17(c). We conclude, by Definition 17(d), that a £;b does not hold. Then,
either bL;a or a&;b holds. If bL,a holds, then b L, a holds and a&;b cannot hold,
by Definition 17(c), which is against the hypothesis. Thus a&;b is the case. O

Now suppose we have an experimental apparatus for making measurements. This
takes the form of some form of comparison of two objects in O taking place in a
given time ¢ > 0. (The time ¢ is allowed to vary over real values for convenience, but
there would be no problem in restricting it to rational values, or with slight modifi-
cation to some formulae, integer values.) The possible outcomes for the experiment
are labelled {—1, L, 41}, where | should be thought of as “no answer”. We will
now define, for all # > 0, binary relations & and £; on O by using this experiment.
Later we shall discuss when these relations obey Definition 17.

Definition 18. Whenever the experiment is done with arbitrary objects a, b € O, if
the outcome in time t is event —1, then aL;b is the case, if the outcome in time t is
event is +1, then bL;a is the case, and if the outcome in time t is “no answer” (L),
then a&:b is the case.

Definition 19. Let & and L; be timed comparative relations on the set O of objects
(Definition 17). Suppose there exists an experimental apparatus fo witness these re-
lations, as in Definition 18. Then the map M : O — R is a measurement map if

1. Foralltimet > 0, if al:b holds, then M(a) < M (b).

Considering the real M (a), for the object a € O, as an infinite binary sequence,
we denote by M(a) |', the dyadic rational corresponding to the prefix of size n of
M (a) and by a, an object from O with that measure. Such an object a,, exists due to
the convention of the toolbox of standards: once specified the unit, we have access
to all its multiples 