

ADVANCED

6502
PROGRAMMING

RODNAY ZAKS

SYM is a trademark of Synertek Systems, Inc.

KIM is a trademark of MOS Technology, Inc.

AIMSS is a trademark of Rockwell International, Inc.

“COMPUTEACHER” and “GAMES BOARD”’ are trademarks of Sybex, Inc.

Cover design by Daniel Le Noury
Technical illustrations by Guy S. Orcutt and j. trujillo smith

Every effort has been made to supply complete and accurate information. However,
Sybex assumes no responsibility for its use, nor for any infringements of patents or other
rights of third parties which would result. No license is granted by the equipment
manufacturers under any patent or patent rights. Manufacturers reserve the right to
change circuitry at any time without notice.

© 1982 SYBEX Inc., 2344 Sixth Street, Berkeley, CA 94710. World rights reserved. No
part of this publication may be stored in a retrieval system, transmitted, or reproduced in
any way, including but not limited to photocopy, photograph, magnetic or other record,
without the prior agreement and written permission of the publisher.

Based on 6502 Games by Rodnay Zaks, © 1980 SYBEX Inc.

Library of Congress Card Number: 82-160235
ISBN 0-89588-089-X

Printed in the United States of America
10987654321

Contents

Preface
Introduction

vii

Optional Hardware Support 2
Connecting the System 4

Games Board | —
he Keyboard Input Routine | 13

- B

Generating Square Waves (Music Player)

20

Introduction 20
The Rules 20

A Typical Game 22
The Connections 22
The Algorithm 22
The Program 23

Pseudo Random Number Generator (Translate)

41

Introduction 41
The Rules 41

A Typical Game 42
The Algorithm 43
The Program 43

Hardware Random Number Generator
(Hexguess)

59

Introduction 59
The Rules 59

A Typical Game 59
The Algorithm 60
The Program 60

Simultaneous Input/QOutput (Magic Square)

73

Introduction 73
The Rules 73

A Typical Game 76
The Algorithm 78
The Program 80

Simple Real Time Simulation (Spinner)

87

Introduction 87
The Rules 87

The Algorithm 88
The Program 89

10

11

vi

Real Time Simulation (Slot Machine)

Introduction 99

The Rules 99

A Typical Game 100
The Algorithm 101
The Program 112

Real Time Strategies (Echo)

137

Introduction 137
The Rules 137

A Typical Game 139
The Algorithm 141
The Program 144

Using Interrupts (Mindbender)

162

Introduction 162
The Rules 162

A Typical Game 162
The Algorithm 165
The Program 167

Complex Evaluation Technique (Blackjack)

189

Introduction 189
The Rules 189

A Typical Game 190
The Program 194

Artificial Intelligence (Tic-Tac-Toe))

218

Introduction 218
The Rules 218

A Typical Game 218
The Algorithm 224
The Program 247

Appendices

287

A. 6502 Instructions—Alphabetic 287
B. 6502 Instruction Set—Hex and Timing

Index

288

290

Preface

This book has been designed to teach you advanced programming
techniques for the 6502 microprocessor in a systematic and progressive
way. Developing a program involves devising a suitable algorithm and
appropriate data structures, and then coding the algorithm. In the case
of a microprocessor such as the 6502, the design of the algorithm and the
data structures is generally constrained by three conditions:

1. The amount of memory available is often limited or must be
minimized; i.e., the program must be terse.

2. The highest possible execution speed may be required. Efficient
coding of the program into assembly level language instructions
then becomes an essential consideration. In particular, the use of
registers must be optimized.

3. The specific input/output design requires an understanding of the
input and output chips and their programming.

Thus, when evaluating designs for an algorithm and data structures,
the programmer must weigh the merits of the various techniques in terms
of his skill, the memory limitations, the requirec speed of execution,
and the overall probability of success.

Advanced programming for the 6502, therefore, involves knowledge
of all the chips that may be affected by the program, in addition to the usual
programming skills concerned with the algorithm, the data structures,
and the efficient use of internal instructions and registers. This book
provides a comprehensive and complete overview of all the important
techniques required to program a 6502 system efficiently. The book has
been designed as an educational text. Each chapter introduces new con-
cepts, chips, or techniques in turn. In the final chapters more complex
algorithms are presented, which integrate the techniques presented
throughout the book.

For clarity and consistency, this book uses a specific 6502-based
system on which all the programs will run. The details are presented in
Chapter 1. However, the programs and techniques presented here are
applicable to all 6502-based systems. Similarly, all the programs studied
in this book are presented in the form of realistic games involving success-
ively all the techniques described. They cover most types of applications
ranging from simple input/output techniques to sophisticated real-time
simulations, including the handling of interrupts and the design of com-
plex data structures.

vii

ADVANCED 6502 PROGRAMMING

A case study approach s used, and each chapter contains the following:
1. A description of the concepts and techniques to be studied

2. The specifications of the program’s behavior and a typical session
with the program, i.e., the problem to be solved

3. The algorithm(s): theory of operation, design, and trade-offs

4, The actual program: data structures, programming techniques,
specific subroutines, merits of alternative techniques, and a com-
plete program listing.

Variations and exercises are also proposed in each chapter.

Thus, you will first study the definition of the problem, then observe
the expected program behavior, and then learn how to devise a possible
solution (algorithm plus data structures). Finally, you will design a -
complete program for this algorithm in 6502 assembly level language,
paying specific attention to the required data structures, the efficient use
of registers, the input/output chips, and the techniques used for efficient
programming.

You will sharpen your skills at using input/output techniques including
timers and interrupts. But most importantly, you will be consistently
reminded of the trade-offs between ease in programming, use of
memory, efficiency of execution, and algorithmic improvements by use
of specialized hardware or software techniques.

In order to learn the advanced programming techniques presented in
this book, it is not necessary to build any actual hardware. However, it is
necessary to write programs on your own along the ten chapters of
this book. By showing you and explaining in detail the design of many
actual programs, the author hopes to facilitate your next step: actual
programming.

viii

Acknowledgments

The author would like to acknowledge the contributions of Chris Williams
and Eric Novikoff, who thoroughly checked all of the games programs and con-
tributed numerous ideas for improvements.

The author is particularly indebted to Eric Novikoff for his valuable
assistance throughout all phases of the manuscript’s production, and for his
meticulous supervision of the final text.

The author would also like to express his appreciation to Rockwell International
and in particular, to Scotty Maxwell, who made available to him one of the very
first system 65 development systems. The availability of this powerful develop-
ment tool, at the time the first version of this book was being written, was a major
help for the accurate and efficient check-out of all the programs.

2

1. Introduction

In order to learn the techniques and study the program examples
presented in this book, no specific equipment is required. However, the
availability of a 6502-based system is a major advantage to develop and
test 6502 programs on your own. Bear in mind that each 6502-based
system will have a somewhat different input/output configuration. The
techniques presented in this book are applicable to all, and the programs
can be easily adapted once you understand input/output operations.

Toread this book, you should be familiar with the 6502 instruction set
and basic programming techniques on thelevel of Programming the 6502.
A basic knowledge of input/output technigues is also recommended.
(This topic is covered in 6502 Applications.)

The programs presented in Chapters 2 through 11 range from simple
to complex. In order to implement these programs, algorithms will be
devised and data structures will be designed. This is the process any
disciplined computer programmer must go through when designing a

ADVANCED 6502 PROGRAMMING

program solution for a given problem. The ten case studies presented in
this book will also familiarize you with common input/output techni-
ques. Toward the end of the book, you will find that the problems
presented pose increasingly complex intellectual challenges to devising
efficient solutions. All the strategies presented in this book, including
the one used for the Tic-Tac-Toe game in Chapter 1, are believed to be
original. These strategies and the design process will be analyzed in
detail. As an additional design constraint intended to teach you efficient
design, all the algorithms and data structures presented in this book
have been designed to result in a program that can reside within less than
1K of available memory.

The programs presented in this book have been tested on actual
hardware by many users and have been found to be error-free in the con-
ditions under which they were tested. As in any large set of programs,
however, inadequacies or improvements may be found.

OPTIONAL HARDWARE SUPPORT

The programs contained in this book can be developed on any
6502-based system. However, in order to be executed they require a
specific input/output environment. For the sake of simplicity, a
uniform hardware environment has been used throughout this book. It
assumes a 6502-based board, the SYM board (by Synertek Systems),
and an additional input/output board, called the Games Board, which
can be easily built. For completeness, an overview of the SYM board
and a complete description of the Games Board will be provided in this
chapter. However, it is not necessary to purchase or build these boards
to understand the information presented in this book. The Games
Board may also be adapted easily to other 6502-based computers such as
Commodore or Apple computers. The programs remain essentially un-
changed except for input/output device allocations.

The Games Board can also be simulated on a standard terminal by
displaying information on a CRT screen and capturing input from a
normal alphanumeric keyboard.

A photograph of the Games Board is shown in Figure 1.1, The
keyboard on the right is used to provide inputs to the microcomputer
board, while the LEDs on the left are used to display the information
sent by the program. The specific use of the keys and the LEDs will be
explained in each chapter. A speaker is also provided for sound effects.
It can be mounted in an enclosure (box) for improved sound quality (see
Figure 1.2). This input/output board can be easily built at home from a
small number of low cost components.

INTRODUCTION

Fig. 1.2: Enclosure May Be Used for Improved Sound

ADVANCED 6502 PROGRAMMING

CONNECTING THE SYSTEM

If you wish to assemble the actual system and build the input/output
board, read on. If you are not interested in building any actual hard-
ware, proceed to the description of an important program subroutine
that will be used repeatedly in this book: the keyboard input routine.

Four essential components are required to assemble the Games
Board:

1 - the power supply

2 - the SYM board

3 - the Games Board

4 - (preferably) a cassette recorder

The first requirement is to connect the wires to the power supply. If
it is not already so equipped, two sets of wires must be connected to it.
(See Figure 1.3.) First, it must be connected to a power cord. Second,
the ground and plus 5V wires must be connected to the SYM power
connector, as per the manufacturer’s specifications.

Next, the Games Board should be physically connected to the SYM.
Two edge connectors are required for the SYM: both the A connector
and the AA connector are used. (See Figure 1.4.) There is also a power

source connector.
Always be careful to insert the connectors with the proper side up

(usually the printed side). An error in inserting the power connector,
in particular, will have highly unpleasant results. Errors in inserting
the I/0 connectors are usually less damaging.

Finally, if a cassette recorder is to be used (highly recommended),
the SYM board must be connected to a tape recorder. At the
minimum, the ‘“monitor’’ or ‘‘earphone’’ wires should be connected,
and preferably the ‘‘remote’’ wire as well. If new programs are going
to be stored on tape, the ‘‘record’’ or ‘“microphone’’ wire should also
be connected. (See Figure 1.5.) Details for these connections are given
in the SYM manual.

At this point the system is ready to be used. (See Figure 1.6.) If you
have one of the games cassettes (available separately from Sybex),
simply load the cassette into the tape recorder. Press the RST key after
powering up your SYM, and load the appropriate game into your
SYM. You are ready to play.

Otherwise, you should enter the hexadecimal object code of the
game on the SYM keyboard. All games are started by jumping to
location 200 (‘GO 200°").

INTRODUCTION

Fig. 1.4: The Games Board is Connected to the SYM with 2 Connectors
(Note also Power and Cassette Connectors)

ADVANCED 6502 PROGRAMMING

o

e

Fig. 1.6: The System is Ready to be Used

INTRODUCTION

GAMES BOARD INTERCONNECT
The Keyboard

The board’s components are shown in Figure 1.7. The LED ar-
rangement used for the games is shown in Figure 1.8. The keyboard
used here is of the ¢‘line per key’’ type, and does not use a matrix ar-
rangement, Sixteen keys are required for the games, even though more
keys are often provided on a number of ‘‘standard keyboards,’’ such
as the one used in the prototype of Figure 1.7. On this prototype, the
three keys at the bottom right-hand corner are not used (keys H, L,
and “‘shift’*).

Figure 1.9 shows how a 1-to-16 decoder (the 74154) is used to iden-
tify the key which has been pressed, while tying up only four output
lines (PBO to PB3) — four lines allow 16 codes. The keyboard scan-
ning program will send the numbers 0-15 in succession out on lines
PBO-PB3. In response, the 74154 decoder will decode its input (4 bits)
into each one of the 16 outputs in sequence. For example, when the
number ‘‘0000’’ (binary) is output on lines PBO to PB3, the 74154
decoder grounds line 1 corresponding to key ‘‘0”’. This is illustrated in
Figure 1.9. After outputting each four-bit combination, the scanning
program reads the value of PA7. If the key currently grounded was
not pressed, PA7 will be high. If the corresponding key was pressed,
PA7 will be grounded and a logical ¢‘0’’ will be read. For example, in

Fig. 1.7: Games Board Elements (Prototype)

ADVANCED 6502 PROGRAMMING

O O O
O -O -0
‘O -0 -O

PEOOOQ

Fig. 1.8: The LEDs

Figure 1.10, a key closure for key 1 has been detected. As in any scan-
ning algorithm, a good program will debounce the key closures by im-
plementing a delay. For more details on specific keyboard interfacing
techniques, the reader is referred to reference C207 — Microprocessor
Interfacing Techniques.

In the actual design, the four inputs to the 74154 (PBO to PB3) are con-
nected to VIA #3 of the SYM. PA7 is connected to the same VIA. The
3.3 K resistor on the upper right-hand corner of Figure 1.9 pulls up
PA7 and guarantees a logic level ‘‘1’’ as long as no grounding occurs.

The GETKEY program, or a similar routine, is used by all the pro-
grams in this book and will be described below.

The LEDs

The connection of the fifteen LEDs is shown in Figure 1.11. Three
7416 LED drivers are used to supply the necessary current (16 mA).

The LEDs are connected to lines PAO to PA7 and PBO to PB7, ex-
cepting PB6. These ports belong to VIA #1 of the SYM. An LED is lit
by simply selecting the appropriate input pin of the corresponding
driver. The resulting arrangement is shown in Figure 1.12 and Figure
1.13.

INTRODUCTION

+5 3.3K
24 KV S AAM— Y
g | 0
23}...., 2 -
PBO >— 1 1
22]..5. 3
PB1 >— 2 - 2
PB2 > il Py 4 - 3
20]..q.s 5
PB3 > 8 - 4
6 - 5
19 N 7 _ 6
18 DI 8 - 7
121GND 41016 2 - 8
'_?_ DECODER |10 9
1 _ A
12 - B
LK - C
14 D
15 . E
16 _ F
17 [KEY F
PA7 e
Fig. 1.9: Decoder Connection to Keyboard
AN NN~ +5V
0 1 1
—_— 0
74154 2 |
| E—— 1 (CLOSED)
i
S = |
0 — 1
° |
I
1
PA7
(CLOSURE DETECTED)

Fig. 1.10: Detecting a Key Closure

ADVANCED 6502 PROGRAMMING

VIA #1 LED AO
3200 /\/
PAO X1 1 2 AV - LED1
pAl > 3 + FANN———————4 D2
PA2 y—1 5 6 P AVW—K——4¢ Lid3
PA3—9 7416 8 —AANAAA G LED 4
PA4 >—] 11 10 A/ \MVN—G———2¢ 1ED5
PA5 — 13 2 ~FAMAS - LED 6
7 14
___L_— j LED A5
+5 s
LED A6
3300
PA6 ¥ 1 2 MWV — LED7
a7 >— 3 4 /" VWVW\ JF— LED 8
PBO >— 5 , 6 R/ MV K— LED9
Bl o 746 8 " AMAN < LED 10
PB2 }— 1 10 AV VWA — LED 11
PB3 }— 13 2 AN ——9¢LED12
7 14
I —l LED B3
= +5
LED B4
3300
PB4 Y— 1 2 VMV i} LED13
PB5 >—| 3) SaVAVAVAVAYA G— LED 14
PB7 }— 5 6 A/ MAN\—KF——2LED 15
7416 \]\
LED B7
7 14

= +5

Fig. 1.11: LED Connection

10

INTRODUCTION

7 8 9
D-E))-H=)
10 11 12 13 14 15

Fig. 1.12: LED Arrangement on the Board

The resistors shown in Figure 1.11] are 330-ohm resistors designed as
current limiters for the 7416 gates.

The output routines will be described in the context of specific
games.

Required Parts

One 6’ X 9’ vector-board
One 4-t0-16 decoder (74154)
Three inverting hex drivers (7416)
One 24-pin socket
Three 14-pin sockets (for the drivers)
One 16-key keyboard, unencoded
Fifteen 330-ohm resistors
One 3.3 K-ohm resistor
One decoupling capacitor (.1 mF)
Fifteen LEDs
One speaker
One 50-ohm or 110-ohm resistor (for the speaker)
Two 15°-20”’ long 16-conductor ribbon cables
One package of wire-wrap terminal posts
Wire-wrap wire
Solder
A soldering iron and a wire-wrapping tool will also be required.

1n

ADVANCED 6502 PROGRAMMING

VIA NUMBER 1 '
T—0 O
] .
2

PORT 3 @ @ GP

1A
4
5
—0
7
]
je=oJololololo
2

PORT 3

B
4
5
6
7

Fig. 1.13: Detail of LED Connection to the Ports
Asseinbly

A suggested assembly procedure is the following: the keyboard can
be glued directly to the perf board. Sockets and LEDs can be posi-
tioned on the board and held in place temporarily with tape. All con-
nections can then be wire-wrapped. In the case of the prototype, the
connections to the keyboard were soldered in order to provide reliable
connections since they were not designed as wire-wrap leads. Wire-
wrap terminal posts were used for common connections.

Additionally, on the prototype two sockets were provided for con-
venience when attaching the ribbon cable connector to the Games
Board. They are not indispensable, but their use is strongly suggested
in order to be able to conveniently plug and unplug cables. (They ap-
pear in the top left corner of the photograph in Figure 1.14.) A 14-pin
socket and a 16-pin socket are used for this purpose. Wire-wrap ter-
minal posts can be used instead of these sockets to attach the ribbon
cable directly to the perf board. The other end of the ribbon cable is

12

INTRODUCTION

Fig. 1.14: Games Board Detail

simply attached to the edge connectors of the SYM. When connecting
the ribbon cable at either end, always be very careful to connect it to
the appropriate pins (do not connect it upside down). The Games
Board derives its power from the SYM through the ribbon cable con-
nection. Connecting the cable in reverse will definitely have adverse
effects.

The speaker may be connected to any one of the output drivers
PB4, PBS, PB6, or PB7 of VIA #3. Each of these output ports is
equipped with a transistor buffer. A 110-ohm current-limiting resistor
is inserted in series with the speaker.

THE KEYBOARD INPUT ROUTINE

This routine, called ““GETKEY,”’ is a utility routine which will scan
the keyboard and identify the key that was pressed. The correspond-
ing code will be contained in the accumulator. It has provisions for
bounce, repeat, and rollover.

Keyboard bounce is eliminated by implementing a 50 ms delay upon
detection of key closure.

The repeat problem is solved by waiting for the key currently

13

ADVANCED 6502 PROGRAMMING

pressed to be released before a new value is accepted. This cor-
responds to the case in which a key is pressed for an extended period
of time. Upon entering the GETKEY routine, a key might already be
depressed. It will be ignored until the program detects that a key is no
longer pressed. The program will then wait for the next key closure. If
the processing program using the GETKEY routine performs long
computations, there is a possibility that the user may push a new key
on the keyboard before GETKEY is called again. This key closure will
be ignored by GETKEY, and the user will have to press the key again.
Most of the programs described in this book have audible prompts
in the form of a tone which is generated every time the player should
respond. Note that when a tone is being generated or during a delay
loop in a program, pressing a key will have absolutely no effect.

(ACO3) (ACOY)
DDR 3A PORT 3A
0 0
0
0
0
0
0
0
0 7 =
T o—
(INPUT) .
OUTPUT
1 0 -1 []
1 - 74154 °
1 | []
1 3 =1 4TO16
] DECODER
i 15
1
] 7
DDR 3B PORTB
(AC02) (AC00)
VIA #3

Fig. 1.15: VIA Connection to Keyboard Decoder

14

INITIALIZE VIA
DIRECTION REGISTERS

(WAT)

YES

KEY PRESSED?

KEY COUNTER = 15

NO

VY

SELECT KEY

DECREMENT
KEY COUNTER

YES

NO
YES

SAVEKEY INA

Y

SET DELAY COUNT

Fig. 1.16: GETKEY Flowchart

0

INTRODUCTION

B @
YES

DECREMENT COUNT

YES

out

ADVANCED 6502 PROGRAMMING

The hardware configuration for the GETKEY routine is shown in
Figure 1.9. The corresponding input/output chip on the SYM is
shown in Figure 1.15. VIA #3 of the SYM board is used to com-
municate with the keyboard. Port B of the VIA is configured for out-
put and lines 0 through 3 are gated to the 74154 (4-t0-16 decoder),
connected to the keyboard itself. The GETKEY routine will output
the hexadecimal numbers ‘0’ through ““F,” in sequence, to the
74154. This will result in the grounding of the corresponding output
line of the 74154. If a key is pressed, bit 7 of VIA #3 of Port A will be
grounded. The program logic is, therefore, quite simple, and the cor-
responding flowchart is shown in Figure 1.16.

The program is shown in Figure 1.17. Let us examine it. The
GETKEY routine can be relocated, i.e., it may be put anywhere in the
memory. In order to conserve space, it has been located at memory
locations 100 to 12E. It is important to remember that this is the low
stack memory area. Any user programs which might require a full
stack would overwrite this routine and thus destroy it. To prevent this
possibility, it could be located elsewhere. For all of the programs that
will be developed in this book, however, this placement is adequate.
The first four instructions of the routine condition the data direction
registers of VIA #3. The data direction register for Port A is set for in-
put (all zeroes), while the data direction register for Port B is set for
output (all ones). This is illustrated in Figure 1.15.

LDA #0
STA DDR3A
LDA #$FF
STA DDR3B

Two instructions are required to test bit 7 of Port 3A, which in-
dicates whether a key closure has occurred:

START BIT PORT3A
BPL START

The key counter is initially set to the value 15, and will be decremented

until a key closure is encountered. Index register X is used to contain
this value, as it can readily be decremented with the DEX instruction:

RSTART LDX #15

This value (15) is then output to the 74154 and results in the selection

16

INTRODUCTION

0100: A%
0102: 8N
0105: A9
0107: 8It
0104 2C

010D% 10
010F¢ A2
0111% 8E
0114: 2C
0117: 10
0119: CaA
011Aa% 10
011C: 30
011E: 8A
011F¢ AO

0121: A2
01233 2C
01242 30
0128% Ca
012%: DO
012E: B8
012C: DO
O12E: 640

DDR3A
PORT3R
NXTKEY
LFP2
DONE

00
03
FF
02
o1

FR
00
01
05

FS
F1

12
FF
01
E7
F8
F3

SYMBOL TABLE:

+=$100 $NOTE? GETKEY IS IN LOW STACK
DOR3A =$ACO3 $DATA DIRECTION REG A FOR VIA #3
DOR3R =$ACO2 $DATA DIRECTION REG R FOR VIA #3
PORT3A =$ACO1 $VIA%3 FORT A IN/OUT REGS
PORT3B =$AC00 3VIA%3 PORT E IN/OUT REGS
t4
LI'A %0
AC STA DDR3A $SET KEY STROBE PORT FOR INFUT
LDA #$FF
AC STA DDR3R $SET KEY# FORT FOR QUTFUT
AC START RIT PORT3A $SEE IF KEY IS STILL DOWN FROM
7LLAST KEY CLOSURE: KEYSTORE IN ‘N’
$STATUS ERIT.
EPL. START $IF YES» WAIT FOR KEY RELEASE
RSTART LDX #15 $SET KEY# COUNTER TO 15
AC NXTKEY STX FORT3R $OUTFUT KEY & TO 74154
ac RIT PORT3A $SEE IF KEY DOWN:! STROBRE IN ‘N’
BFL. ROUNCE $IF YES» GO DEROUNCE
DEX $DECREMENT KEY #
RFL NXTKEY iNO» DO NEXT KEY
BMI RSTART $START OVER.
ROUNCE TXA $SAVE KEY NUMBER IN A
LOY #$12 $OUTER LLOOF CNT LOAD FOR
sDELAY OF S0 MS.
LF1 LDX #$FF $INNER 11 US. LOOF
AC LP2 BIT FORT3A $SEE IF KEY STILL DOWN
BMI RSTART $IF NOT, KEY NOT VALID, RESTART
LDEX
BNE LF2 #THIS LLOOF USES 2115%5 US
DEY
BNE LF1 JOUTER LOOF: TOTAL IS S0 MS.
RTS FDONES! KEY# IN A.
ACO3 DDR3E ACO2 FORT3A ACO1
ACO00 START 010A RSTART 010F
0111 ROUNCE 011E LF1 0121

0123

GETKEY’ KEYBOARD INFUT ROUTINE

$READS AND DEROUNCES KEYEQARI» RETURNS WITH KEY NUMBER
3 IN ACCUMULATOR IF KEY DOWN.

$OFERATION: SENDS NUMEBERS 0-F TO 74154 (4 TO 16

5LINE DECODER)y WHICH GROUNDS ONE SIDE OF KEYSWITCHES
$ONE AT A TIME. IF A KEY IS DOWNs FA7 OF VIA #3 WILL BRE
5GROUNDEDs AND THE CURRENT VALUE APFPLIED TO THE 74154 W
$BE THE KEY NUMEER. WHEN THE FROGRAM DETECTS A KEY CLOS
$CHECKS FOR KREY CLOSURE FOR 50 MS. TO ELIMINATE BOUNCE.,
$NOTE: IF NO KEY IS FRESSEDN: GETKEY WILL WAIT.

Fig. 1.17: GETKEY Program

of line 17 connected to key 15 (*‘F’’). The BIT instruction above is
used to test the condition of bit 7 of Port 3A to determine whether this
key has been pressed.

NXTKEY

STX PORT3B
BIT PORT3A
BPL BOUNCE

If the key were closed, a branch would occur to “BOUNCE,”’ and a

17

ADVANCED 6502 PROGRAMMING

delay would be implemented to debounce it; otherwise, the counter is
decremented, then tested for underflow. As long as the counter does
not become negative, a branch back occurs to location NXTKEY.
This loop is repeated until a key is found to be depressed or the
counter becomes negative, In that case, the routine loops back to loca-
tion RSTART, restarting the process:

DEX
BPL NXTKEY
BMI RSTART

Note that this will result in the detection of the highest key pressed
in the case in which several keys are pressed simultaneously. In other
words, if keys “‘F”’ and ““3’’ were pressed simultaneously, key ‘“‘F”’
would be identified as depressed, while key ‘“3’’ would be ignored.
Avoiding this problem is called multiple-key rollover protection and
will be suggested as an exercise:

Exercise 1-1: In order to avoid the multiple-key rollover problem,
modify the GETKEY routine so that all 15 key closures are monitored.
If more than one key is pressed, the key closure is to be ignored until
only one key closure is sensed.

Once the key closure has been identified, the corresponding key
number is saved in the accumulator. A delay loop is then implemented
in order to provide a 50 ms debouncing time. During this loop, the key
closure is constantly monitored. If the key is released, the routine is
restarted. The delay itself is implemented using a standard two-level,
nested loop technique.

BOUNCE TXA
LDY #8312
LP1 LDX #$FF
LP2 BIT PORT3A
BMI RSTART
DEX
BNE LP2
DEY
BNE LPI1

Exercise 1-2: The value used for the outer loop counter (““$12,”’ or 12
hexadecimal) may not be quite accurate. Compute the exact duration

18

INTRODUCTION

of the delay implemented by the instructions above, using the tables
showing the duration of each instruction in the Appendix.

SUMMARY

Executing the games programs requires a simple Games Board which
provides the basic input/output facilities. The required hardware and
software interface has been described in this chapter. Photographs of
the assembled board which evolved from the prototype are shown in
Figures 1.18 and 1.19.

Fig. 1.19: Removing the Cover

19

2. Generating Square Waves
(Music Player)

INTRODUCTION

This program will teach you how to synthesize frequencies by
generating square waves. It will use a table-driven algorithm to generate
tones and play music. It will make systematic use of indexed addressing
techniques.

THE RULES

This game allows music to be played directly on the keyboard of a
computer. In addition, the program will simultaneously record the
notes that are played, and then automatically play them back upon re-
quest. Keys ‘0’ through ‘“‘C’’ on the keyboard are used to play the
musical notes. (See Figure 2.1.) Key ‘“D”’ is used to specify a rest. Key
“E”’ is used to play back the musical sequence stored in the memory.
Finally, key “‘F’’ is used to clear the memory, i.e., to start a new
game. The following paragraph will describe the usual sequence of the
game.

KEY | NOTE || Kev | NOTE
A B c D NUMBER NUMBER
(A) (B) (€) (REST)
0 G 8 G
,) 5 . 1 A 9 o#
(A) (B) © (PBK) 2 B A A
3 c B B
4 5 6 F) 5 . c
©) (E) F (RsT)
5 E D REST
7 8 9 0 6 F E | SR
4 © 1 ©h 1 © 7 F# £ | ResTaRT

Fig. 2.1: Playing Musicon the Keyboard

20

GENERATING SQUARE WAVES

9th Symphony:
5~-5—-6—-8-8-6—-5-4-3-3-4-5-5_4—-4—_D—-5—
5~6-—-8-8—-6-—-5-4—-3—-3—-4—-5—-4—-3—-3—-D—4—4—
5—~3—4—-6—-5-83—-4—-6—-5-—-4—-3—-4-D

Clementine:
3-3-3-D-2-D—5_5_5_D—-3_-D—-3—5_-8_-D_—D—
865 4-D—D—D—4—5—6—D—6—~D—5—4—_5_D-—
3-D-3_5_4_D_-D—-2—-3_4--3

Frere Jacques:
3—4—-5-3—-3—-4-5-3-5-6-8-D—-5-6—-8-D—-8—
A—-8-6—-5-D—-3—D—-8-A—-8—-6-5-D—-3—-D—-3—-D—
2-bD—3-D—-D—-D—3—-D—2—-D—-3

Jingle Bells:
.5-5-5-D0-5-5-5-D-5-8-3—-4—-5-D—-D—-D—-6—
6—6-—-6—6—5_5_5_8_8—_6—4—3

London Bridge:
8 A_-8_6-5 68 D—4_-5_6_D—-5-6—-8-D—8—
A-8-6-5-6—-8-D—4-D—8-D—-5_3

Mary Had a Little Lamb:
5 43 4-5-_5_5_D_4—_4_4_D_—5-8-_8—_D_5_
4—3 45 5 _5_5 A4 4 5 43

Row Row Row Your Boat:
3—-D—3-D—-3—-4-5-D—5—-4-5-6—-8-D—-D—-D—-C—
C—8-8-5-5-3-3-8—-6—-5—-4—3

Silent Night:

8- D—_D—-A—-8-D—-5-D—D—D—8—_D—D—_A—_8—_D—5_
0D—-D—D—3—-D—D—3—-D—B—D—D—D—C—~D—D—-C—
D8 D-D_-C-D—-8-5-8-D—-6—-D—-4—_D—3

Twinkle Twinkle Little Star:
3—~3_8-8—A—-A-8 D_6_—6_—5_5_4—4_3_D—8—
8—6_6—_5_5_4-_D_-3_3_8_8—_A—A—_8_D—6—6—
5_5_-4_4_3

Fig. 2.2: Simple Tunes for Computer Music

21

ADVANCED 6502 PROGRAMMING

A TYPICAL GAME

Press key “‘F”’ to start a new game. A three-note warble will be
heard, confirming that the internal memory has been erased. Play the
tune on keys “‘0’’ through *‘D’’ (using the notes and the rest features).
Up to 254 notes may be played and stored in the memory. At any
point, the playback key (‘‘E’’) may be pressed and the notes and rests
that were just played on the keyboard (and simultaneously stored in
the memory) will be reproduced. The musical sequence may be played
as many times as desired by simply pressing key ‘‘E.”’ Examples of
simple tunes or musical sequences that can be played on the computer
are shown in Figure 2.2.

THE CONNECTIONS

This game uses the keyboard plus the speaker. The speaker is con-
nected in series to one of the buffered output lines of PORT B of VIA
#3, via a 110-ohm current limiting resistor. PB4, PB5, PB6, or PB7 of
VIA #3 are used, as they are driven by a transistor buffer on the SYM.
For higher quality music, it is recommended that the speaker be placed
in a small box-type enclosure. The value of the resistor may also be
adjusted for louder volume (without going below 50-ohm) to limit the
current in the transistor.

THE ALGORITHM

A tone (note) is simply generated by sending a square wave of the
appropriate frequency to the speaker, i.e., by turning it on and off at
the required frequency. This is illustrated in Figure 2.3. The length of
time during which the speaker is on or off is known as the half-period.
In this program, the frequency range of 195 to 523 Hertz is provided.
If N is the frequency, the period T is the inverse of the frequency, or:

T = 1/N

Therefore, the half-periods will range from 1/(2 x 195) = .002564 to

S Z _ N=1T
- \\
T/2
SQUARE WAVE SPEAKER

Fig. 2.3: Generating a Tone

22

GENERATING SQUARE WAVES

1/(2 X 523) = .000956 seconds. A classic loop delay will be used to im-
plement the required frequency.

Actual computations for the various program parameters will be
presented below.

THE PROGRAM

The program is located at memory addresses 200 through 2DD, and
the recorded musical sequence or tune is stored starting at memory
location 300. Up to 254 notes may be recorded in 127 bytes.

Data Structures

Three tables are used in this program. They are shown in Figure 2.4.
The recorded tune is stored in a table starting at address 300. The note
constants, used to establish the frequency at which the speaker will be
toggled, are stored in a 16-byte table located at memory address 2C4.
The note durations, i.e., the number of half-cycles required to imple-
ment a uniform note duration of approximately .21 second, are stored
in a 16-byte table starting at memory address 2D1. Within the tune
table, two ““nibble’’-pointers are used: PILEN during input and PTR
during output. (Each 8-bit byte in this table contains two notes.) In
order to obtain the actual table entry from the nibble-pointer, the
pointer is simply shifted one bit position to the right. The remaining
value becomes a byte-pointer, while the bit shifted into the carry flag
specifies the left or the right half of the byte. The two tables called
CONSTANTS and NOTE DURATIONS are simply reference tables
used to determine the half-frequency of a note and the number of
times the speaker should be triggered once a note has been identified
or specified. Both of these tables are accessed indirectly using the X
register,

Some Music Theory

A brief survey of general music conventions is in order before
describing the actual program. The frequencies used to generate the
desired notes are derived from the equally tempered scale, in which the
frequencies of succeeding notes are in the ratio:

1:%/2

The frequencies for the middle C octave are given in Figure 2.5.
When computing the corresponding frequencies of the higher or the

23

ADVANCED 6502 PROGRAMMING

100

AC00

ACO2

lower octave, they are simply obtained by multiplying by two, or
dividing by two, respectively.

GETKEY
ROUTINE

MUSIC
PROGRAM

NOTE
CONSTANTS

RECORDED
TUNE

NOTE
DURATIONS

300
(TABEG)

N
RS

oPB

DDRB

VAN

Fig. 2.4: Memory Map

Generating the Tone

The half-period delay for the square wave sent to the speaker is im-
plemented using a program loop with a basic 10 us cycle time. In the
program, the ‘‘loop index,’’ or iteration counter is used to count the
number of 10 us cycles executed. The loop will result in a total delay

of:

(loop index) x 10 — 1 microseconds

2C4

2D0
2D1

20D

GENERATING SQUARE WAVES

NOTE FREQUENCY (HERTZ)
A 220.00
A# 223.08
B 246.94

261.62
c# 277.18
D 293.66
D# 311.13
E 329.63
F 349.23
Fi 369.99
G 391.99
G# 415.30

Fig. 2.5: Frequencies for the Middle C Octave

On the last iteration of the loop (when the loop index is
decremented to zero), the branch instruction at the end will fail. This
branch instruction will execute faster, so that one microsecond
(assuming a 1 MHz clock) must be subtracted from the total delay
duration. The tone generation routine is shown below:

TONE STA FREQ
LDA #$FF
STA DDRB
LDA #300
LDX DUR
FL2 LDY FREQ
FL1 DEY
‘ CLC INNER
BCC .+2 LOOP
BNE FLI
EOR #$FF
STA OPB
DEX
BNE FL2
RTS

OUTER
LOOP

Note the “‘classic’’ nested loop design. Every time it is entered, the
outer loop adds an additional thirteen microseconds delay: 14
microseconds for the extra instructions (LDY, EOR, STA, DEX, and

25

ADVANCED 6502 PROGRAMMING

BNE), minus one microsecond for responding to the unsuccessful in-
ner loop branch. The total outer loop delay introduced is therefore:

(loop index) x 10 + 13 microseconds
Remember that one pass through the outer loop represents only a half-

period for the note.

Computing the Note Constants

Let ‘ID*’ be the inner loop delay and ‘OD’’ be the outer loop addi-
tional delay. It has been established in the previous paragraph that the
half-period is T/2 = (loop index) x 10 + 13 or,

T/2 = (loop index) X ID + OD

The note constant stored in the table is the value of the ‘‘index’’ re-
quired by the program. It is easily derived from the equation that:

note constant = loopindex = (T — 2 X OD)/2 X ID

The period may be expressed in function of the frequencyas T = 1/N
or, in microseconds:

T = 10¢/N
Finally, the above equation becomes:
note constant = (10/N — 2 x OD)/2 x ID

For example, let us compute the note constant corresponding to the
frequency for middle C. The frequency corresponding to middle C is
shown in Figure 2.5. It is 261.62 Hertz. The ‘“‘OD”’ delay has been
shown above to be 13 microseconds, while ““ID’’ was set to 10
microseconds. The note constant equation becomes:

note constant = (10¢/N — 2 x 13)/2 x 10
1000000/261.62 - 26
20
190 (or BE in hexadecimal)

It can be verified that this corresponds to the fourth entry in the table

26

GENERATING SQUARE WAVES

NOTE NOTE |CONSTANT| NOTE |CONSTANT

c BE

o| a9

E 9%

FE F 8E

NﬁEDLDOL\éVC A E2 MIDDLEC {F#| 86 N’Gggl\fc{c 5E

B 9 G 7E

G| 77

A 70

B 64

Fig. 2.6: Note Constants

at address NOTAB (see Figure 2.9 at the end of the listing, at address
02C4). The note constants are shown in Figure 2.6.

Exercise 2-1: Using the table in Figure 2.6, compute the corresponding
Jrequency, and check to see if the constants have been chosen correctly.

Computing the Note Durations

The DURTAB table stores the note durations expressed in numbers
equivalent to the number of half-cycles for each note. These durations
have been computed to implement a uniform duration of approximately
.2175 second per note. If D is the duration and T is the period, the
following equation holds:

D xT =.2175

where D is expressed as a number of periods. Since, in practice, half-
periods are used, the required number D’ of half-periods is:

D’=2D =2 x.2175 x N
For example, in the case of the middle C:
D =2 x .2175 x 261.62 = 133.8 =2 114 decimal (or 72 hexadecimal)
Exercise 2-2: Compute the note durations using the equation above,
and the frequency table in Figure 2.5 (which needs to be expanded).

Verify that they match the numbers in table DURTAB at address 2D1.
(See Figure 2.9)

27

ADVANCED 6502 PROGRAMMING

Program Implementation

The program has been structured in two logical parts. The cor-
responding flowchart is shown in Figure 2.7. The first part of the pro-
gram is responsible for collecting the notes and begins at label

‘ START ’

PILEN = 0 |
TEMP = PTR SHIFTED
RT. ONE BIT
POSITION
GET KEY NUMBER
YES
CARRY = 0?
KEY NUMBER
=1 NOTE NUMBER =
{ y o | [
(TEMP) SHIFTED (TEMP)
3 BEEPS FOR NO RIGHT 4 PLACES
RESTART

Y
< PLAY NOTE >
NUMBER

Y

KEY NUMBER
=147

BETWEEN—NOTE
DELAY
PIR=0 !
‘ PTR = PIR + 1
CARRY = LOW
ORDER BIT OF PTR
NO YES 0

Fig. 2.7: Music Flowchart

28

GENERATING SQUARE WAVES

NOTE NUMBER
= KEY NUMBER

YES
E NO
3 BEEPS FOR
WARNING
SHIFT PILEN
LOW ORDER BIT
INTO CARRY
TEMP = PILEN
SHIFTED RIGHT ONE
POSITION
YES NO
CARRY = 07
NOTE TABLE (TEMP) SHIFT KEY NUMBER
= KEY NUMBER LEFT 4 PLACES

NOTE TABLE (TEMP)
= [NOTE TABLE(TEMP)|
ORKEY NUMBER]

Y

PILEN = PILEN + 1

Fig. 2.7: Music Flowchart (Continued)

29

ADVANCED 6502 PROGRAMMING

“NUMKEY.’’ (The program is shown in Figure 2.9). The second part
begins at the label ““PLAYEM"’ and its function is to play the stored
notes. Both parts of the program use the PLAYNOTE subroutine
which looks up the note and duration constants, and plays the note.
This routine begins at the label ‘“‘PLAYIT,” and its flowchart is

shown in Figure 2.8.
PLAY NOTE
NUMBER

Y

USE NOTE NUMBER
TO LOOK UP
DURATION

i

USE NOTE NUMBER
TO LOOK UP NOTE
CONSTANT

Yy

LOOP FROM 0 TO
NOTE CONSTANT
TO WASTE TIME

Y

TOGGLE SPEAKER

DURATION =
DURATION —1

DURATION
= 0%

Fig. 2.8: PLAYIT Flowchart

30

GENERATING SQUARE WAVES

i MUSIC FLAYER FROGRAM

H USES 16 - KEY KEYBOARI' AND BUFFERED SFEAKER
$PROGRAM FLAYS STORED MUSICAL NOTES.

$THERE ARE TWO MODES OF OFERATION: INFUT AND FLAY.

$ INFUT MODE IS THE DEFAULT, ANL ALL NON-COMMAND KEYS
$PRESSED (0-D) ARE STORED FOR REPLAY. IF AN OVERFLOW
$}0CCURSy THE USER IS WARNED WITH A THREE-TONE WARNING.
$THE SAME WARBL.ING TONE IS ALSO USEDI! TO SIGNAL A
iRESTART OF THE PROGRAM.

5
GETKEY =$100

PILEN =¢00 sLENGTH OF NOTE LIST

TEMP =801 $ TEMFORARY STORAGE

PTR =$02 $CURRENT LOCATION IN LIST

FREQ =$03 $ TEMPORARY STORAGE FOR FREQUENCY
DUR =$04 FTEMP STORAGE FOR NURATION

TABEG =$300 $TABLE TD STDRE MUSIC

OPB =$AC00 #VIA OUTFUT FORT R

DDRB =$AC02 #VIA PORT B DIRECTION REGISTER

. = $200 SORIGIN

’

sCOMMAND LINE INTERFRETER

¢F AS INPUT MEANS RESET POINTERSs START OVER.
$E MEANS FLAY CURRENTLY STORED NOTES
ANYTHING ELSE IS STORED FOR REFLAY.

;
§
¥
4
S

0200¢ A% 00 TART LDA %0 $}CLEAR NOTE LIST LENGTH
0202¢ 85 00 STA FILEN
0204 18 cLC $CLEAR NIBBLE MARKER
0205¢ 20 00 01 NXKEY JSR GETKEY
0208: C9 OF CMP #15 IS KEY #15%7
020A¢ DO 05 BNE NXTST #NOy DO NEXT TEST
020C: 20 87 02 JSR BEEF3 FTELL USER OF CLEARING
020F¢! 90 EF BCC START #CLEAR FOINTERS ANI START OVER
0211¢ C9 OE NXTST CMP #14 IS KEY #147
0213¢ DO 04 BNE NUMKEY #NOy KEY IS NOTE NUMBER
0215: 20 48 02 JSR PLAYEM #FLAY NOTES
0218 18 cLC
0219¢! 90 EA BCC NXKEY $GET NEXT COMMAND
’
fROUTINE TO LOAD NOTE LIST WITH NOTES
’
021B: 85 01 NUMKEY STA TEMP #SAVE KEY» FREE A
021D 20 70 02 JSR FLAYIT #PLAY NOTE
0220¢ AS 00 LDA PILEN #GET LIST LENGTH
0222¢ C? FF CMF #¢FF $DVERFLOW?
0224% DO 0S5 BNE OK iNOy ADD NOTE TO LIST
0224% 20 87 02 JSR BEEP3 $YES, WARN USER
0229: 90 DA BCC NXKEY FRETURN TO INFUT MOLE
022B¢ 44 OK LSR A §SHIFT LOW EBIT INTO NIRRLE POINTER
022C: A8 TAY #USE SHIFTEDN NIBBLE POINTER AS
#BYTE INDEX
02203 AS 01 LDA TEMP #RESTORE KEY#
022F¢ BO 09 RCS FINBYT #IF BYTE ALREADY HAS 1 NIBRLE»
$FINISH IT ANI STORE
0231¢ 29 OF AND' #200001111 #1ST NIBBLEs MASK HIGH NIRELE
0233: 99 00 03 STA TAREGrY $SAVE UNFINISHED 1/2 RYTE
0234! E& 00 INC PILEN #POINT TO NEXT NIERBLE
0238: 90 CR BCC NXKEY #GET NEXT KEYSTROKE
023At 0A FINBYT ASL A $SHIFT NIBBLE 2 TO HIGH ORDER
023R: 0A ASL A
023C: 0A ASL. A
023N0¢ 0A ASL. A
023E¢ 19 00 03 ORA TABEG»Y $JOIN 2 NIBRLES AS RYTE
0241¢: 99 00 03 STA TABEG»Y #+++ANLII STORE .
0244% E6 00 INC FILEN $POINT TO NEXT NIBELE IN NEXT RYTE
0246% 90 BD BCC NXKEY FRETURN

Fig. 2.9: Music Program

3

ADVANCED 6502 PROGRAMMING

3
SROUTINE TO MAKE TONE

32

FAND 1/2 CYCLE TIME IS IN A.

Fig. 2.9: Music Program (Continued)

ROUTINE TO PLAY NOTES

0248: A2 00 LAYEM LDX #0 . $CLEAR POINTER
02442 86 02 STX PTR
024C: AT 02 LDA PTR $L.0AD ACUM W/CURRENT PTR VAL
024E: 44 LooP LSR A $SHIFT NIBBLE INDICATOR INTO CARRY
Q24F: AA TAaX $USE SHIFTED NIBBLE POINTER
FAS RYTE POINTER
0250¢ BRD 00 03 LDA TABEG:X FLOAD NOTE TO PLAY
0253: BO 04 BCS ENDBYT $LOW NIBBLE USED» GET HIGH
02357 29 OF AND #%00001111 #MASK OUT HIGH BITS
02572 90 06 BCC FINISH §PLAY NOTE
0259 29 FO ENDBRYT AND #%X11110000 $ THROW AWAY LOW NIBBLE
025B! 4A LSR A $SHIFT INTO L.OW
025C: 4A LSR A
025D! 44 LSR A
025E: 4A LSR A
025F: 20 70 02 FINISH JSR PLAYIT $CALCULATE CONSTANTS & PLAY
0262¢ A2 20 LDX #$20 $BETWEEN-NOTE RELAY
0264: 20 9C 02 JSR DELAY
0267¢ E6 02 INC PTR $ONE NIBBLE USED
02469¢ AS 02 LDA PTR
026B! C5 00 CMF PILEN $END OF LIST?
024D: 90 DF BCC LOOP iNO>» GET NEXT NOTE
026F¢: 60 RTS # DONE
4
FROUTINE TO DO TABRLE LOOK UFs SEFARATE REST
1
0270% C% O FLAYIT CMF #13 $}REST?
0272% DO 06 BNE SOUND iNO.,
02748 A2 54 LOX #$54 $DELAY=NOTE LENGTH=,21SEC
0276¢ 20 9C 02 JSR DELAY
0279: 60 RTS
027A¢ AA SOUND TAX fUSE KEY# AS INDEX..
027B! ED D1 02 LDA DURTAR,X §++.TO FIND DURATION.
027E! 85 04 STA DUR $STORE DURATION FOR USE
0280% BD C4 02 LDA NOTAB,X #LOAD NOTE VALUE
0283% 20 AB 02 JSR TONE
02846% 40 RTS
’
FROUTINE TO MAKE 3 TONE SIGNAL
’
0287: A% FF BEEF3 LDA #$FF iDURATION FOR BEEPS
0289: 85 04 STA DUR
02BR! A% 4B L.DA #$4B $CODE FOR E2
0280¢ 20 AB 02 JSR TONE #1ST NOTE
0290¢ A? 38 LIA #$38 #CODE FOR D2
0292: 20 A8 02 JSR TONE
0295: A? 4B LDA #$4B
0297% 20 A8 02 JSR TONE
029A¢ 18 CLC
029B! 60 RTS
¥
SVARTABLE-LENGTH DELAY
’
029C: A0 FF DELAY LDY #$FF
029E: EA DLY NOP
02%9Ft D0 00 BNE .42
02A1: 88 DEY
02A2% DO FA ENE DLY $10 Us LOOF
02A4: CA DEX
02A5! DO FS BNE DELAY FLOOP TIME = 2556%[X1
0247% 60 RTS

{ # OF 1/2 CYCLES IS IN ‘DUR’»
LOOP TIME=20%[CAl+26 US

GENERATING SQUARE WAVES

02A8:
02AA2
Q2ACS
O2AF 3
02B13
02ER3:
02BS?
02R6:
02B7:
O2E9:
02BE?
02BN
02Co:
02C13
02C3:

02C4:
02€C5¢
02C46:
02C7?
02C8:
02092
02CA:
02CE?
02CC:
o2CD:
02CE?
02CF:
02003

0201 ¢
o2n2:
02N3:
02I4¢
025
[eJe) -3
02n73
o2n8:
o209
o2D0A:
O2NR?
02NC:
o2nn:
SYMBOL.
GETKE
PTR
TAREG
START
NUMKE
PLAYE
FINIS
REEF3
TONE
NOTAR

%

$SINCE TWD RUNS THROUGH THE OUTER L.OOF MAKES
$ONE CYCLE OF THE TONE.
H
85 03 TONE STA FREQ sFREQ IS TEMF FOR ¥ OF CYCLES
A9 FF LA #$FF $SET UP DATA DIRECTION REG
80 02 AC STA NIRE
A9 00 L.DA $$00 $A IS SENT TO FORTs START HI
Aé 04 L.IX DUR
A4 03 FL2 LY FREQ
88 FL.1 ney
18 CcLC
90 00 BCC .+2
no FA BNE FL1 $INNER» 10 US LOOF
49 FF EOR #%FF FCOMPFLEMENT I/0 FORT
8n 00 AC $TA OFE $+¢+AND SET IT
ca NEX
Do FoO ENE FL2 $OUTER L.OOF
40 RTS
#TARLE OF NOTE CONSTANTS
$CONTAINS?
$COCTAVE REL.OW MIDDLE C1 ! GrAsE
FCOCTAVE OF MIDOLE CJ ¢ CrIsErFsF#sGrGH#rArE
s LOCTAVE AROVE MIDDLE C1 : C
H .
FE NOTAE LEBYT FEsE2,$C9»$RE»$AP»$74,$8E
E2
ce
BE
A%
?6
8E
8é +BYT $84$7E,877+870r$647$5E
7E
77
70
64
SE
$TARLE OF NOTE DURATIONS IN # OF 1/2 CYCLES
$SET FOR A NOTE LLENGTH OF ABOUT .21 SEC.
y
55 DURTAER (RYT $55,%60s$6R,$72,$80+$8F,$94
60
4R
72
80
aF
?4
Al +RYT $A1,¢AAs$ES $BF 407 8E4
AA
BS
BF
nz
E4
TABLE !
Y 0100 FILEN 0000 TEMF
0002 FREQ 0003 DUk
0300 OFE ACOO ODRE
0200 NXKEY 0205 NXTST
Y 021F [s]: 022F FINBYT
M 0248 L.OOF 024E ENDORYT
H 025F FLAYIT 0270 SOUND
0287 DELAY 0290 oLy
02A8 FL2 02R3 FL.1 O2R3
02C4 DURTAKR o201

Fig. 2.9: Music Program (Continued)

33

ADVANCED 6502 PROGRAMMING

The main routines are called, respectively, NXKEY, NUMKEY,
and BEEP3 for the note-collecting program, and PLAYEM and
DELAY for the note-playing program. Finally, common utility
routines are TONE and PLAYIT.

Let us examine these routines in greater detail. The program resides
at memory addresses 200 and up. Note that the program, like most
others in this book, assumes the availability of the GETKEY routine
described in Chapter 1.

The operation of the NXKEY routine is straightforward. The next
key closure is obtained by calling the GETKEY routine:

START LDA #0
STA PILEN Initialize length of list to 0
CLC

NXKEY JSR GETKEY

The value read is then compared to the constants ‘‘15”’ and ‘14’ for
special action. If no match is found, the constant is stored in the note
list using the NUMKEY routine.

CMP #15

BNE NXTST

JSR BEEP3

BCC START
NXTST CMP #14

BNE NUMKEY

JSR PLAYEM

CLC

BCC NXKEY

Exercise 2-3: Why are the last two instructions in this routine used in-
stead of an unconditional jump? What are the advantages and disad-
vantages of this technique?

Every time key number 15 is pressed, a special three-tone routine
called BEEP3 is played. The BEEP3 routine is shown at address 0287.
It plays three notes in rapid succession to indicate to the user that the
notes in the memory have been erased. The erasure is performed by
resetting the list length PILEN to zero. The corresponding routine ap-
pears below:

34

GENERATING SQUARE WAVES

BEEP3 LDA #$FF Beep duration constant
STA DUR
LDA #$4B Code for E2
JSR TONE 1st note
LDA #$38 Code for D2
JSR TONE 2nd note
LDA #$4B Code for E2
JSR TONE 3rd note
CLC
RTS

Its operation is straightforward.

The NUMKEY routine will save the code corresponding to the note
in the memory. As in the case of a Teletype program, the computer
will echo the character which has been pressed in the form of an audi-
ble sound. In other words, every time a key has been pressed, the pro-
gram will play the corresponding note. This is performed by the next
two instructions:

NUMKEY STA TEMP
JSR PLAYIT

The list length is then checked for overflow. If an overflow situation is
encountered, the player is advised through the use of the three-tone se-
quence of BEEP3:

LDA PILEN Get length of list
CMP #$FF Overflow?

BNE OK No: add note to list
JSR BEEP3 Yes: warn player
BCC NXKEY Read next key

Otherwise, the new nibble (4 bits) corresponding to the note identifica-
tion number is shifted into the list:

OK LSR A Shift low bit into
nibble pointer

TAY Use as byte index
LDA TEMP Restore key #

Note that the nibble-pointer is divided by two and becomes a byte in-
dex. It is then stored in register Y, which will be used later to perform

35

ADVANCED 6502 PROGRAMMING

an indexed access to the appropriate byte location within the table
(STA TABEG,Y).

Depending on the value which has been shifted into the carry bit, the
nibble is stored either in the high end or in the low end of the table’s
entry. Whenever the nibble must be saved in the high-order position of
the byte, a 4-bit shift to the left is necessary, which requires four in-
structions:

BCS FINBYT Test if byte has a nibble
AND #%00001111 Mask high nibble

STA TABEG,Y Save

INC PILEN Next nibble

BCC NXKEY

ASL A

ASL A

ASL A

ASL A

FINBYT

Finally, it can be saved in the appropriate table address,

ORA TABEG,Y
STA TABEG,Y

The pointer is incremented and the next key is examined:

INC PILEN
BCC NXKEY

Let us look at this technique with an example. Assume:

PILEN

9 (length of list)
TEMP = 6

(key pressed)

The effect of the instructions is:

OK LSR A A will contain 4, C will con-
tain 1
TAY Y =4
LDA TEMP A=6
BCS FINBYT Cis 1 and the branch occurs

36

GENERATING SQUARE WAVES

The situation in the list is:

BYTE
7 43 0 DISPLACEMENT
TABEG NOTE NOTE 0
1 0
NOTE NOTE 1
3 2
PILEN ———— EMPTY 2
5 4
7 -] 3
~ A ~ 4
Fig. 2.10: Entering o Note in the List
Shift ‘“6’’ into the high-order position of A:
FINBYT ASL A
ASL A
ASL A
ASL A A = 60 (hex)

Write A into table:

ORATABEG,Y A = 6X (where X is the
previous nibble in the table)

STA TABEG,Y Restore old nibble with new
nibble

The Subroutines

PLAYEM Subroutine

The PLAYEM routine is also straightforward. The PTR memory
location is used as the running nibble-pointer for the note table. As
before, the contents of the running nibble-pointer are shifted to the
right and become a byte pointer. The corresponding table entry is then
loaded using an indexed addressing method:

37

ADVANCED 6502 PROGRAMMING

PLAYEM LDX #0
STX PTR PTR =0
LDAPTR
LOOP LSR A
TAX
LDA TABEG,X
BCSENDBYT
AND #%00001111
BCC FINISH
ENDBYT AND #%11110000
LSRA
LSRA
LSRA
LSRA

Depending upon the value of the bit which has been shifted into the
carry, either the high-order nibble or the low-order nibble will be ex-
tracted and left-justified in the accumulator. The subroutine PLAYIT
described below is used to obtain the appropriate constants and to
play the note:

FINISH JSR PLAY IT Play note

A delay is then implemented between two consecutive notes, the run-
ning pointer is incremented, a check occurs for a possible end of list,
and the loop is reentered:

LDX #320 Delay constant
JSR DELAY Delay between notes
INC PTR One nibble used
LDA PTR
CMP PILEN Check for end of list
BCC LOOP No: get next note
RTS Done

PLAYIT Subroutine

The PLAYIT subroutine plays the note or implements a rest, as
specified by the nibble passed to it in the accumulator. This subroutine
is called “PLAYNOTE’’ on the program flowchart. It merely looks
up the appropriate duration for the note from table DURTAB, and
saves it at address DUR (at memory location 4). It then loads the ap-
propriate half-period value from the table at address NOTAB into the

38

GENERATING SQUARE WAVES

A register, using indexed addressing, and calls subroutine TONE to
play it:

PLAYIT CMP #13 Check for arest
BNE SOUND No
LDX #§54 Delay = .21 sec (note duration)
JSR DELAY If rest was specified
RTS

SOUND TAX Use key # as index
LDA DURTAB,X To look up duration
STA DUR
LDA NOTAB,X
JSR TONE
RTS

TONE Subroutine

The TONE subroutine implements the appropriate wave form
generation procedure described above, and toggles the speaker at the
appropriate frequency to play the specified note. It implements a
traditional two-level, nested loop delay, and toggles the speaker by
complementing the output port after each specified delay has elapsed:

TONE STA FREQ

A contains the half-cycle time on entry. It is stored in FREQ. The loop
timing will result in an output wave-length of:

(20 X A + 26) us
Port B is configured as output:

LDA #$FF
STA DDRB

Registers are then initialized. A is set to contain the pattern to be out-
put. X is the outer loop counter. It is set to the value DUR which
contains the number of half cycles at the time the subroutine is called:
LDA #$00
LDX DUR

39

ADVANCED 6502 PROGRAMMING

The inner loop counter Y is then initialized to FREQ, the frequency
constant:

FL2 LDY FREQ
and the inner loop delay is generated as usual:

FL1 DEY
CLC
BCC.+2
BNE FL1 10 us inner loop

Then the output port is toggled by complementing it:

EOR #$FF
STA OPB

and the outer loop is completed:

DEX
BNE FL2
RTS

The DELAY subroutine is shown in Figure 2.9 at memory location 29C
and is left as an exercise.

SUMMARY

This program uses a simple algorithm to remember and play tunes.
All data and constants are stored in tables. Timing is implemented by
nested loops. Indexed addressing techniques are used to store and
retrieve data. Sound is generated by a square wave.

EXERCISES

Exercise 2-4: Change the note constants to implement a different range
of notes.

Exercise 2-5: Store a tune in memory in advance. Trigger it by pressing
key 0.

Exercise 2-6: Rewrite the program so that it will store the note and
duration constants in memory when they are entered, and will not
need to look them up when the tune is played. What are the disadvan-
tages of this method?

40

3. Pseudo Random Number Generator
(Translate)

INTRODUCTION

This program will use a pseudo random number generator, display
patterns from tables, measure elapsed time, and generate delays. It will
check your knowledge of basic input/output techniques before we proceed
to more complex concepts.

THE RULES

This is a game designed for two competing players. Each player tries to
quickly decipher the computer’s coded numbers. The players are alter-
nately given a turn to guess. Each player attempts to press the hexa-
decimal key corresponding to a 4-bit binary number displayed by the
program. The program keeps track of the total guessing time for each
player, up to a limit of about 17 seconds. When each player has correctly
decoded a number, the players’ response times are compared to deter-
mine who wins the turn. The first player to win ten turns wins the match.

The program signals each player’s turn by displaying an arrow
pointing either to the left or to the right. The player on the right will be
signaled first to initiate the game. The program’s ‘‘prompt’’ is shown
in Figure 3.1.

A random period of time will elapse after this prompt, then the bot-
tom row of LEDs on the Games Board will light up. The left-most
LED (LED #10) signals to the player to proceed. The four right-most
LEDs (LEDs 12, 13, 14, and 15) display the coded binary number.
This is shown in Figure 3.2. In this case, player 1 should clearly press
key number 5. If the player guesses correctly, the program switches to
player 2. Otherwise, player 1 will be given another chance until his or
her turn (17 seconds) is up. It should be noted here that for each
number presented to the player, the total guessing time is accumulated
to a maximum of about 17 seconds. When the maximum is reached,
the bottom row will go blank and a new number will be displayed.

The program signals player 2’s turn (the player on the left) by
displaying a left arrow on the LEDs as shown in Figure 3.3. Once both
players have had a turn to guess a binary digit, the program will signal

41

ADVANCED 6502 PROGRAMMING

0 -0 @
-0 - @ ~O
<0 -@ -0

Fig. 3.1: Prompt Signals the Right Player to Play
10 1 12 13 14 15
. L, —— N m———
GO BINARY NUMBER
Fig. 3.2: Bottom Row of LEDs Displays Number to be Guessed

© Qe

4 5 6
7 8 9

Fig. 3.3: ItisPlayer 2's Turn (Left Player)

the winner by lighting up either the left-most or the right-most three
LEDs of the bottom row. The winner is the player with the shortest
guessing time, The game is continued until one player wins ten times.
He or she then wins the match. The computer signals the match win-
ner by blinking the player’s three LEDs ten times. At the end of the

match, control is returned to the SYM-1 monitor.

A TYPICAL GAME

The right arrow lights up. The following LED pattern appears at the
bottom: 10, 13, 14, 15. The player on the right (player 1) pushes key

42

PSEUDO RANDOM NUMBER GENERATOR

““C,”” and the bottom row of LEDs goes blank, as the answer is incor-
rect. Because player 1 did not guess correctly and he or she still has
time left in this turn, a new number is offered to player 1. LEDs 10,
13, 14, and 15 light up and the player pushes key “7.”’ He or she wins
and now the left arrow lights up, indicating that it is player 2’s turn. This
time the number proposed is 10, 12, 15. The left player pushes key *“9.”
At this point, LEDs 10, 11, and 12 light up, indicating that the player
is the winner for this turn as he/she has used less total time to make a
correct guess than player 1.

Let us try again. The right arrow lights up; the number to translate
appears in LEDs 10, 13, 14, and 15. Player 1 pushes key ‘“7,”’ and a
left arrow appears. The next number lights LEDs 10 and 14. Player 2
pushes key ¢‘2.>’ Again, the left-most three LEDs light up at the bot-
tom, as player 2 was faster than player 1 at providing the correct
answer.

THE ALGORITHM

The flowchart corresponding to the program is shown in Figure 3.4.
A first waiting loop is implemented to measure the time that it takes for
player 1 to guess correctly. Once player 1 has achieved a correct guess,
his or her total time is accumulated in a variable called TEMP. It is
then player 2’s turn, and a similar waiting loop is implemented. Once
both players have submitted their guesses, their respective guessing
times are compared. The player with the least amount of time wins,
and control flows either to the left or to the right, as shown by labels 1
and 2 on the flowchart in Figure 3.4. A secondary variable called
PLYR1 or PLYR2 is used to count the number of games won by a
specific player. This variable is incremented for the player who has
won and tested against the value 10, If the value 10 has not been
reached, a new game is started. If the value 10 has been reached, the
player with this score is declared the winner of the match,

THE PROGRAM

The corresponding program uses only one significant data struc-
ture. It is called NUMTAB and is used to facilitate the display of the
random binary numbers on the LEDs. Remember that LED #10 must
always be lit (it is the “proceed’’ LED). LED #11 must always be off.
LEDs 12, 13, 14, and 15 are used to display the binary number.
Remember also that bit position 6 of Port 1B is not used. As a result,
displaying a ‘“0’’ will be accomplished by outputting the pattern

43

START

Y

WINCOUNT 1 =0
WINCOUNT 2 =0

Y

SHOW THATIT IS
PLAYER 1's TURN

ADVANCED 6502 PROGRAMMING

GET PLAYER 1's
GUESS WHILE
TIMING INPUT
NO
YES ! 2
STORE PLAYER 1's ‘
TIME IN TEMP LIGHT LEDs TO LIGHT LEDs TO
SHOW PLAYER | SHOW PLAYER 2
WINS ROUND WINS ROUND
SHOW THAT IT IS Y \
PLAYER 2's TURN INCREMENT PLAYER INCREMENT PLAYER
s WINCOUNT 2's WINCOUNT
GET PLAYER 2's
HI
T?xfsgmpbﬁ NO PLAYER 1'$ PLAYER 2's NO
WINCOUNT WINCOUNT
=107 =107
NO
SHOW PLAYER SHOW PLAYER
Vs WIN 2sWIN
Yes

Fig. 3.4: Translate Flowchart

PSEUDO RANDOM NUMBER GENERATOR

“00000010.” Outputting a ‘‘1”* will be accomplished with the pattern
€¢10000010.”’” Outputting ‘“2*’ will be accomplished with the pattern
00100010.”’ Qutputting ‘‘3*’ will be accomplished with the pattern

10100010, etc. (See Figure 3.5)

The complete patterns corresponding to all sixteen possibilities are
stored in the NUMTAB table of the program. (See Figure 3.6.) Let us
examine, for example, entry 14 in the NUMTAB (see line 0060 of the

program). It is *“00111010.”’ The corresponding binary number to be

displayed is, therefore: <00111.”’

It is ““1110°’ or 14. Remember that bit 6 on this port is always ‘0.”’

Low Memory Area

Memory locations O to 1D are used to store the temporary variables
and the NUMTAB table. The functions of the variables are:

TEMP
CNTHI,CNTLO

CNTI1H,CNTIL

PLYRI

PLYR2
NUMBER
SCR and following

Storage for random delay-length
Time used by a player to make
his or her move

Time used by player 1 to make
his or her move (permanent
storage)

Score for Player 1(number of
games won so far, uptoa
maximum of ten)

Same for player 2

Random number to be guessed
Scratch area used by the
random number generator

In the assembler listing, the method used to reserve memory loca-
tions in this program is different from the method used in the program
in Chapter 2. In the MUSIC program, memory was reserved for the
variables by simply declaring the value of the symbols representing the

45

ADVANCED 6502 PROGRAMMING

VIA #1 LEDAO
3209
PA0 1 2 VN WWA——G————¢ 1D
PA1 13 YR eaVaAVAVAYAVA +«J LED 2
PA2 1 5 s PAMAVN————4 LED3
A3 —9 7416 8 FAWANAA—K——LED 4
PA4 y— 11 10 A MVWW————4 LED 5
PAS »— 13 12 FAAMASA——IG————4 LD
7 14 \/\
—:_':.-— ——l LED A5
+5 L s
LED A6
3308
PAG6 11 2) LED 7
Pa7 — 3 4 r\/\/\/\/\/\—-ﬁq———-« LED 8
PBO >—{ 5 6 AN G4 D9
B 9 7416 8~ AMA\—F———4LED 10
PB2 — 1 10 /"YW \WAN——————$ LED T
PB3 >— 13 12 —AANANV—G———4 LED 12
7 14
_[- LED B3
= +5
LED B4
3300
PB4 }— 1 2 /"YW ¢——————4 1ED13
PBS »—o{ 3 O VAYAVAVAY, Su— W—— 1 R P
PB7 »— 5 6 A/ MAN—F——S D15
7416
LED B7
7 14

il

Fig. 3.5: LED Connections

PSEUDO RANDOM NUMBER GENERATOR

variable locations with the statement:

{VARIABLE NAME) = {(MEMORY ADDRESS >

In this program, the location counter of the assembler is incremented
with expressions of the form:

*=*4+n

Thus, the symbols for the variable locations in this program are
declared as ‘‘labels,’’ while, in the MUSIC program, they are ‘‘sym-
bols’’ or ‘‘constant symbols.”’

The program in this chapter consists of one main routine, called
MOVE, and five subroutines; PLAY, COUNTER, BLINK, DELAY,
RANDOM. Let us examine them. The data direction registers A and B
for the VIA’s #1 and #3 of the board must first be initialized. DDR1A,
DDRI1B, and DDR3B are configured as outputs:

START LDA #$FF
STA DDRIA
STA DDRIB
STA DDR3B

DDR3A is conditioned as input:

LDA #0
STA DDR3A

Finally, the variables PLYR1 and PLYR2, used to accumulate the
number of wins by each player, are initialized to zero:

STA PLYRI
STA PLYR2

The main body of MOVE is then entered. A right arrow will be
displayed to indicate that it is player 2’s turn. A reminder of the LEDs
connections is shown in Figure 3.5. In order to display a right arrow,
LEDs 1, 4, 5, 6, and 7 must be lit (refer also to Figure 3.1). This is ac-
complished by outputting the appropriate code to Port 1A:

MOVE LDA #%01111001
STA PORTIA Display right arrow

47

ADVANCED 6502 PROGRAMMING

The bottom line of LEDs must be cleared:

LDA #0
STA PORTIB

Finally, the counters measuring elapsed time must be cleared:

STA CNTLO
STA CNTHI

We are ready to play:
JSR PLAY

The PLAY routine will be described below. It returns to the calling
routine with a time-elapsed measurement in locations CNTLO and
CNTHI.

Let us return to the main program (line 0082 in Figure 3.6). The
time-elapsed duration which has been accumulated at locations
CNTLO and CNTHI by the PLAY routine is saved in a set of perma-
nent locations reserved for player 1, called CNTIL, CNT1H:

LDA CNTLO
STA CNTIL
LDA CNTHI
STA CNTI1H

It is then player 2’s turn, and a left arrow is displayed. This is ac-
complished by turning on LEDs 3, 4, 5, and 6:

LDA #%000111100 Display left arrow
STA PORTI1A

Then LED #9 is turned on to complete the left arrow:

LDA #1
STA PORTIB

As before, the time-elapsed counter is reset to zero:

LDA #0
STA CNTLO
STA CNTHI

48

PSEUDO RANDOM NUMBER GENERATOR

LINE # LOC
0002 0000
0003 0000
0004 0000
0005 0000
0006 0000
0007 0000
0008 0000
0009 0000
0010 0000
0011 0000
0012 0000
0013 0000
0014 0000
0015 0000
00146 0000
0017 0000
0018 0000
0019 0000
0020 0000
0021 0000
0022 0000
0023 0000
0024 0000
0025 0000
0026 0000
0027 0000
0028 0000
0029 0000
0030 0000
0031 0000
0032 0000
0033 0001
0034 0002
0035 0002
0036 0003
0037 0004
0038 0005
0039 0006
0040 0007
0041 0000
0042 OOOE
0043 000E
0044 O0OOE
0045 0O0OE
0046 OOOE
0047 OOOF
0048 0010
0049 0011
0050 Q012
0051 0013
0052 0014
0053 0015
0054 0016
0055 0017
0056 0018
0057 0019
0058 001A
0059 001K
0060 001C
0041 001D
0062 O0O01E
0063 O0O1E
0064 O001E
0065 O001E
0066 0200
0067 0200
0068 0202
0069 0205
0070 0208
0071 020H
0072 020D
0073 0210
0074 0212
0075 0214
0076 0216
0077 0219
0078 021F
0079 021E
0080 0220
0081 0222
0082 0225
0083 0227
0084 0229

CODE

AO
AO
AC

ac

AOQ

AQ

LINE

i TRANSLATE

#PROGRAM TO TEST 2 PLAYER’S SFEED

$IN TRANSLATING A BINARY NUMBER TO A SINGLE
$HEXADECIMAL DIGIT. EACH FLAYER IS GIVEN A
FTURN, AS SHOWN EY A LIGHTED LEFT OR RIGHT
FOINTER. THE NUMBER WILL SUDDENLY FLASH ON
SLEDS 12-15, ACCOMPANIED BY THE LIGHTING
$0F LED #10. THE FLAYER MUST THEN

$PUSH THE CORRESFONDING BUTTON. AFTER

$BOTH PLAYERS TAKE TURNSs RESULTS ARE
$SHOWN ON EOTTOM ROW. AFTER 10 WINS»

#iA FLAYER’S RESULTS WILL FLASH»

SHOWING THE EETTER FLAYER. THEN

iTHE GAME RESTARTS.

§
$1/0%

i

PORT1A = $A001 $LEDS 1-8

PORT1B = $A000 $LEDS 9-15

DDR1A = $A003

DDR1B = $A002

PORT3A = $ACO1 $KEY STROBE INPUT.
FORT3B = $ACO0 FKEY # OUTPUT.
DDR3A = $ACO3

DDR3E = $ACO2

H
#VARIABLE STORAGE!
i

* = $0

H

TEMF x=%+1

CNTHI *=Xx11 s TEMFORARY STORAGE FOR AMT. OF
STIME FLYR USES TO GUESS.

CNTLO ¥x=xt1

CNT1H x=Xx+1 $AMT. OF TIME FLYR! USES TO GUESS.
CNTI1L Xx=Xt1

PLYR1 Xx=X+1 $SCORE OF # WON FOR PLYRI1.

PLYR2 x=Xxt1 $FLAYER 2 SCORE.

NUMBER Xx=xX11 $STORES NUMBER TO BE GUESSED.

SCR *=X+é $SCRATCHPAD FOR RNB. & GEN,

i
§TABLE OF 'REVERSELD’ NUMHEERS FOR DISPLAY
#IN BITS 3-8 OF FORT1Es OR LEDS 12-15,

i

NUMTAE .ERYTE X00000010
+BYTE X10000010
+BYTE 700100010
+«BYTE X10100010
«BYTE 200010010
+BYTE X10010010
+«BYTE %00110010
+BYTE X10110010
+BYTE X00001010
+BYTE X10001010
+BYTE 200101010
+BYTE Z10101010
+BYTE 700011010
+HYTE X10011010
+BYTE %00111010
+BYTE %10111010

MAIN FROGRAM

X = $200

START LDA #$FF $SET UF FORTS
STA DORiA
STA DDR1EB
STA DDR3E
LDA %0
STA DDR3A
STA FLYR1 #CLEAR NO. OF WINS.
STA FLYR2
MOVE LDA #201111001
STA FORT1A $SHOW RIGHT ARROW.
LOA #0O
STA FORT1B
STA CNTLO sCLEAR COUNTERS.
STA CNTHI
JSR FLAY $GET FLAYER 1S TIME.
LIOA CNTLO $XFER TEMF COUNT TO FERMANENT STORAGE.
STA CNTI1L
LDA CNTHI

Fig. 3.6: Translate Program

49

ADVANCED 6502 PROGRAMMING

0085
0086
0087
0089
0089
0090
0091
0092
0093
0094
0095
0094
0097
0098
0099
0100
0101
0102
0103
0104
0105
0104
0107
0108
0109
0110
0111
0112
0113
0114
0115
0114
0117
o118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131

0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
Q147
0148
0149
0150
0151

0152
0153
0154
0155
0154
0157
o158
0159
0160
0ls1

0162
0163
01464
0145

022B
022D
022F
0232
0234
0237
0239
023p
0230
0240
0242
0244
0246
0248
0244
024C
024C
024E
0250
0252
0254
0257
0259
025C
025E
0261
0263
0265
0267
0249
024B
026K
026F
0271
0274
0276
0279
027R
027
0280
0282
0294
0286
0288
0288
028C
028C
028C
028c
028C
028C
028C
028c
028F
0292
0295
0297
0299
02%a
029C
029F
0242
0245
0247
02A9
02AB
02AE
02K1
02B4
O2R5
02RS5
02B5
02B5
02E5
02RS
02B7
02Ba
02ED
02BF
02C0
o2c2

A
8C
2C
10
as
10
Eé

AQ

AQ

A0
A0
02

02

A0

02

02

02

02

AD

02

AQ
AQ
02

AC
AC

50

STA CNT1iH

LDA #%000111100 SHOW LEFT ARROW.

STA PORT1A

LDA #1

STA FORT1B

LDA #0

STA CNTLO $CLEAR COUNTERS.

STA CNTHI

JER PLAY $GET FLAYER 2’5 TIME.

LDA CNTHI $BET PLAYER 2’S COUNT AND...

CMP CNT1H #COMPARE TO PLAYER 1°S,

BEQ EQUAL $CHECK LOW ORDER BYTES TO RESOLVE WINNER.
RCC FLR2 §PLAYER 2 HAS SMALLER COUNT, SHOW IT.
BCS PLR1 $PLAYER 1 HAS SMALLER COUNT, SHOW IT.

EQUAL LDA CNTLO FHI BYTES WERE EQUAL, SO

$CHECK LOW BYTES.

CHP CNTIL §COMPARE SCORES.
BCC FLR2 3PLAYER 2 WINS, SHOW IT.
BCS FLR1 sPLAYER 1 WINS, SHOW IT.
FLR1 LOA #X11110000 FLIGHT RIGHT SIDE OF BOTTOM ROW
STA PORT1B iTO SHOW WIN.
LIA #0
STA PORT1A §CLEAR LOW LEDS.
LDA #$40 FWAIT A WHILE TO SHOW WIN.
JSR DELAY
INC FLYR1 FFLAYER 1 WINS ONE MORE,..
LDA #10 #...HAS HE WON 107
CHMF FLYR1
BNE MOVE #IF NOT, PLAY ANOTHER ROUND.
LDA #X%11110000 FYES - GET BLINK PATTERN.
JSR BLINK F#BLINK WINNING SIDE.
RTS FENDGAME! RETURN TO MONITOR.
PLR2 LDA #%1110 LIGNT LEFT SIDE OF BOTTOM,
STA PORTAB
LDA #0
5Ta PORT1A $CLEAR LOW LEDS.
LDA #340 $WAIT A WHILE TO SHOW WIN.
JSR DELAY
INC PLYR2 SPLAYER 2 HAS WON ANOTHER ROUND. 4.+
LDA #10 #.0.HAS HE WON 107
CMF PLYR2
BNE MOVE $IF NOT» PLAY ANOTHER ROUND.
LDA #X1110 $YES-GET PATTERN TO BLINK LEDS.
JSR BLINK FELINK THEM
RTS FJEND.

§
$SUBROUTINE ‘FPLAY’

$GETS TIME COUNT OF EACH PLAYER» AND IF

iBAD GUESSES ARE MADEs THE FLAYER IS

$GIVEN ANOTHER CHANCE, THE NEW TIME ADDED TO
#THE OLD.

§
FLAY JSR RANDOM §GET RANDOM NUMBER.
JSR DELAY $RANDOM - LENGTH DELAY,
JSR RANDOM FGET ANOTHER.
AND #80F #KEEFP UNDER 14 FOR USE AS
STA NUMBER #NUMBER TO GUESS.,
TAX FUSE AS INDEX TOess.,
LDA NUMTABrX #++.6ET REVERSED PATTERN FROM TABLE ...
ORA PORT1EB i...T0 DISPLAY IN LEDS 12-15.
STA PORT1B
JSR CNTSUB $GET KEYSTROKE & DURATION COUNT,
CPY NUMBER 515 KEYSTROKE CORRECT GUESS?
BEQ DONE #IF S50+ DONE.
LDA #01 #NO! CLEAR OLD GUESS FROM LEDS.
ANDI FORT1R
STA FORTIR
JHF PLAY $TRY ABAIN W/ANOTHER NUMEER.
DONE RTS FRETURN W/ DURATION IN CNTLO+CNTHI

§
$SUBROUTINE ‘COUNTER’

3GETS KEYSTROKE WHILE KEEFING TRACK OF AMT OF
$TIME BEFORE KEYPRESS.

i
CNTSUE LDY #$F #SET UP KEY# COUNTER.

KEYLF STY PORT3E $OUTPUT KEY# TO KEYEBOARD MFXR.
BIT PORTIA $KEY DOWN?
BFL FINISH $IF YESy DONE.
DEY 5COUNT DOWN KEY #.
BFL KEYLP s TRY NEXT KEY.
INC CNTLO $ALL KEYS TRIED» INCREMENT COUNT.

Fig. 3.6: Translate Program (Continued)

PSEUDO RANDOM NUMBER GENERATOR

0166
0167
0148
0169
0170
0171
0172
0173
0174
0175
0176
0177
0170
0179
o180
o181
Q182
o183
0184
0185
01846
0187
oiee
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
Q211
0212
0213
0214
0215
0216

SYMBOL
SYMBOL

BLINK
CNTHI
DDR1B
D1
EQUAL
NUMBER
FLR2
PORT1E
RNDLF

END OF

02C4 DO EF BNE CNTSUE $TRY KEYS ABAIN IF NO OVERFLOW.
02C6 Eé 01 INC CNTHI FOVERFLOWr INCREMENT HIGH BYTE.
02C8 DO ER BNE CNTSUB $TRY KEYS ABAIN.
02CA &0 FINISH RTS fDONES TIME RAN OUT OR KEY FRESSED.
02CH 4
02CB $SURROQUTINE ‘BLINK’
02CB FBLINKS LEDS WHOSE BITS ARE SET IN ACCUMULATOR
02CR iON ENTRY.
02CB i
02CB A2 14 BLINK LIX #20 $20 BLINKS.
02CDhh 86 01 STX CNTHI #SET BLINK COUNTER.
02CF B85 02 STA CNTLO $BLINK REGISTER.
0201 A5 02 BLOOP LDA CNTLO FGET BLINK FATTERN.
0203 4D 00 A0 EOR FORT1EF FBLINK LEDS.
0206 8D 00 AO STA PORT1E
0209 A% 0A LDA #10 #SHORT DELAY.
Q2DB 20 E3 Q2 JSR DELAY
02DE Cé 01 DEC CNTHI
02E0 DO EF BNE BLOOP §LOOF IF NOT DONE.
02E2 60 RTS
O2E3 ¥
02E3 §SUBROUTINE ‘DELAY”
02E3 §CONTENTS OF REG. A DETERMINES DELAY LENGTH.
02E3 i
02E3 B5 00 DELAY STA TEMF
O2ES AQ 10 DL1 LDY #s10
Q2E7 A2 FF hL2 LDX #$FF
02E? CA nL3 DEX
Q2EA DO FD BNE DL3
02EC 88 DEY
02ED DO F8 BENE DL2
O2EF Cé6 00 DEC TEMP
02F1 DO F2 BNE DL1
02F3 60 RTS
02F4 3
02F4 #SUBROUTINE ‘RANDOM‘
02F4 $RANDOM NUMBER GENERATOR.
Q2F 4 FRETURNS RANDOM NUMBER IN ACCUM.
02F4 ¥
02F4 38 RANDOM SEC
02F5 AS 09 LDA SCR+1
02F7 65 0OC ADC SCR+4
02F? &5 oD ADC SCR+S
02FR 8BS 08 STA SCR
Q2FD A2 04 LDX #4
Q2FF ES Q8 RNDLF LUA SCRsX
0301 95 09 STA SCR+1:X
0303 Ca DEX
0304 10 F? BFL RNDLP
0306 60 RTS
0307 +END
TABLE
VALUE
02CR BLOOP 0201 CNT1H 0003 CNTIL 0004
0001 CNTLO 0002 CNTSUR 02ES DDR1A AQQ03
A0Q2 DOR3A ACO3 DDR3B ACO2 DELAY 02E3
02ES L2 Q2E7 nL3 02E? DONE 02B4
0244 FINISH 02CA KEYLP 0287 MOVE 0214
0007 NUMTAF 000E PLAY 028C FLR1 0252
026F PLYR1 0005 FLYR2 0006 PORT1A AQO1
A0QO PORT3A ACO1 FORT3EB ACOO0 RANDOM 02F4
02FF SCR 0008 START 0200 TEMP 0000
ASSEMBLY

Fig. 3.6: Translate Program (Continued)

3 |

ADVANCED 6502 PROGRAMMING

and player 2 can play:
JSR PLAY

The time elapsed for player 2 is then compared to the time elapsed for
player 1. If player 2 wins, a branch occurs to PLR2, If player 1 wins, a
branch occurs to PLR1. The high bytes are compared first. If they are
equal, the low bytes are compared in turn:

LDA CNTHI

CMP CNTI1H Compare high bytes

BEQ EQUAL

BCC PLR2 Player 2 has lower time?

BCS PLRI1 Player 1 does
EQUAL LDA CNTLO Compare low bytes

CMP CNTIL

BCC PLR2

CMP CNTIL

BCCPLR2

BCS PLR1

Once the winner has been identified, the bottom row of LEDs on his
or her side will light up, pointing to the winner. Let us follow what
happens when PLR1 wins, for example. Player 1’s right-most three
LEDs (LEDs 13 through 15) are lit up:

PLR1 LDA #%11110000
STA PORTIB

The other LEDs on the Games Board are cleared:

LDA #0
STA PORTIA

A DELAY is then implemented, and we get ready to play another
game, up to a total of 10:

LDA #3%40
JSR DELAY

The score for player 1 is incremented:

INC PLYRI

52

PSEUDO RANDOM NUMBER GENERATOR

It is compared to 10. If it is less than 10, a return occurs to the main
MOVE routine:

LDA #10
CMP PLYRI
BNE MOVE

Otherwise, the maximum score of 10 has been reached and the game is
over. The LEDs on the winner’s side will blink:

LDA #%11110000 Blink pattern
JSR BLINK
RTS

The corresponding sequence for player 2 is listed at address PLR2
(line 117 on Figure 3.6):

PLR2 LDA #%1110
STA PORTIB
LDA #0
STA PORTIA
LDA #8340
JSR DELAY
INC PLYR2
LDA #10
CMP PLYR2
BNE MOVE
LDA #%1110
JSR BLINK
RTS

The Subroutines

PLAY Subroutine

The PLAY subroutine will first wait for a random period of time
before displaying the binary number. This is accomplished by calling
the RANDOM subroutine to obtain the random number, then the
DELAY subroutine to implement the delay:

PLAY JSR RANDOM
JSR DELAY

53

ADVANCED 6502 PROGRAMMING

The RANDOM subroutine will be described below. Another random
number is then obtained. It is trimmed down to a value between 0 and
15, inclusive. This will be the binary number displayed on the LEDs. It
is stored at location NUMBER:

JSR RANDOM
AND #0F Mask off high nibble
STA NUMBER

The NUMTARB table, described at the beginning of this section, is then
accessed to obtain the correct pattern for lighting the LEDs using in-
dexed addressing. Register X contains the number between 0 and 15 to
be displayed:

TAX Use X as index
LDA NUMTAB,X Retrieve pattern

The pattern in the accumulator is then stored in the output register in
order to light the LEDs. Note that the pattern is OR’ed with the
previous contents of the output register so that the status of LED 9 is
not changed:

ORA PORTIB
STA PORTIB

Once the random number has been displayed in binary form on the
LEDs, the subroutine waits until the player presses a key. The
CNTSUB subroutine is used for this purpose:

JSR CNTSUB

It will be described below.

The value returned in register Y by this subroutine is compared to
the number to be guessed, which is stored at memory address
NUMBER. If the comparison succeeds, exit occurs. Otherwise, all
LEDs are cleared using an AND, to prevent changing the status of
LED 9, and the subroutine is reentered. Note that the remaining time
for the player will be decremented every time the CNTSUB subroutine
is called. It will eventually decrement to 0, and this player will be given
another number to guess:

54

PSEUDO RANDOM NUMBER GENERATOR

CPY NUMBER Correct guess?
BEQ DONE
LDA #01 No: clear old guess
AND PORTI1B
STA PORTIB
JMP PLAY Try again

DONE RTS

Exercise 3-1: Modify PLAY and/or CNTSUB so that, upon timeout,
the player loses the current round, as if the maximum amount of time
had been taken to make the guess.

CNTSUB Subroutine

The CNTSUB subroutine is used by the PLAY subroutine previous-
ly described. It monitors a player’s keystroke and records the amount
of time elapsed until the key is pressed. The key scanning is performed
in the usual way:

CNTSUB LDY #$F
KEYLP STY PORT3B
BIT PORT3A
BPL FINISH
DEY Count down key #
BPL KEYLP Next key
FINISH BNE CNTSUB

Each time that all keys have been scanned unsuccessfully, the time
elapsed counter is incremented (CNTLO,CNTHI):

INC CNTLO

BNE CNTSUB

INC CNTHI

BNE CNTSUB
FINISH RTS

Upon return of the subroutine, the number corresponding to the key
which has been pressed is contained in index register Y.

Exercise 3-2: Insert some ‘‘do-nothing’’ instructions into the CNTSUB
subroutine so that the guessing time is longer.

S5

ADVANCED 6502 PROGRAMMING

BLINK Subroutine

The LEDs specified by the accumulator contents are blinked
(turned on and off) ten times by this subroutine. It uses memory loca-
tion CNTHI and CNTLO as scratch registers, and destroys their
previous contents. Since the LEDs must alternately be turned on and
off, an exclusive-OR instruction is used to provide the automatic on/
off feature by performing a complementation. Because two com-
plementations of the LED status must be done to blink the LEDs
once, the loop is executed 20 times. Note also that LEDs must be kept
lit for a minimum amount of time. If the ‘‘on”’ delay was too short,
the LEDs would appear to be continuously lit. The program is shown
below:

BLINK LDX #20 20 blinks
STX CNTHI Blink counter
STA CNTLO . Blink register

BLOOP LDA CNTLO Get blink pattern
EOR PORTIB Blink LEDs
STA PORTIB
LDA #10 Short delay
JSR DELAY
DEC CNTHI
BNE BLOOP Loop if not done
RTS

DELAY Subroutine

The DELAY subroutine implements a classic three-level, nested
loop design. Register X is set to a maximum value of FF
(hexadecimal), and used as the inner loop counter. Register Y is set to
the value of 10 (hexadecimal) and used as the level-2 loop counter.
Location TEMP contains the number used to, adjust the delay and is
the counter for the outermost loop. The subroutine design is
straightforward:

DELAY STA TEMP
DL1 LDY #$10
DL2 LDX #$FF
DL3 DEX
BNE DL3
DEY

56

PSEUDO RANDOM NUMBER GENERATOR

BNE DL2
DEC TEMP
BNE DL1
RTS

Exercise 3-3: Compute the exact duration of the delay implemented by
this subroutine as a function of the number contained in location
TEMP.

RANDOM Subroutine

This simple random number generator returns a semi-random
number into the accumulator. A set of six locations from memory ad-
dress 0008 (‘‘SCR’’) have been set aside as a scratch-pad for this
generator. The random number is computed as 1 plus the contents of
the number in location SCR + 1, plus the contents of the number in
location SCR + 4, plus the contents of the number in location SCR
+ 5

RANDOM SEC
LDA SCR + 1
ADC SCR + 4
ADCSCR + 5
STA SCR

The contents of the scratch area (SCR and following locations) are
then shifted down in anticipation of the next random number genera-
tion:

LDX #4
RNDLP LDA SCR,X

STA SCR+ 1,X

DEX

BPL RNDLP

RTS

The process is illustrated in Figure 3.7. Note that it implements a
seven-location circular shift. The random number which has been
computed is written back in location SCR, and all previous values at
memory locations SCR and following are pushed down by one posi-
tion. The previous contents of SCR + 5 are lost. This ensures that the
numbers will be reasonably random.

57

ADVANCED 6502 PROGRAMMING

SCR

SCR + 1 ;

SCR + 2 '

SCR + 3 p

SCR + 4 4 - _|_
SCR+5

NUMBER A

Fig. 3.7: Random Number Generation

SUMMARY

This game involved two players competing with each other. The
time was kept with nested loops. The random number to be guessed
was generated by a pseudo-random number generator. A special table
was used to display the binary number. LEDs were used on the board
to indicate each player’s turn to display the binary number, and to
indicate the winner.

Exercise 3-4: What happens in the case in which all memory locations
from SCR to SCR + 5 were initially zero?

58

4. Hardware Random Number Generator
(Hexguess)

INTRODUCTION

In this chapter random numbers will be generated using the timer’s
latch on an input/output chip. More complex algorithms will be devised
and simultaneous light and sound effects will be created.

THE RULES

The object of this game is to guess a secret 2-digit number generated
by the computer. This is done by guessing a number, then submitting
this number to the computer and using the computer’s response (in-
dicating the proximity of the guessed number to the secret number) to
narrow down a range of numbers in which the secret number resides.
The program begins by generating a high-pitched beep which signals
to the player that it is ready for a number to be typed. The player must
then type in a two-digit hexadecimal number. The program responds
by signaling a win if the player has guessed the right number. If the
player has guessed incorrectly, the program responds by lighting up
one to nine LEDs, indicating the distance between the player’s guess
and the correct number. One lit LED indicates that the number
guessed is a great distance away from the secret number, and nine lit
LEDs indicate that the number guessed is very close to the secret
number.

If the guess was correct, the program generates a warbling tone and
flashes the LEDs on the board. The player is allowed a maximum of
ten guesses. If he or she fails to guess the correct number in ten tries, a
low tone is heard and a new game is started.

A TYPICAL GAME

The computer beeps, notifying us that we should type in a guess.

Our guess is: *‘40”’
The computer lights 4 LEDs We are somewhat off

59

ADVANCED 6502 PROGRAMMING

Next guess: ‘““C0”’
Computer’s answer: 3 LEDs We are going further away
Next guess: ‘20’

Computer’s response: 3 The number must be between
C0 and 20

Next guess: ““80°’

Response: 5 We are getting closer

Next guess: ‘75’

Response: 5 It’s not just below 80

Next guess: ““90”°

Response: 4 We’re wandering away

Next guess: ‘65’

Response: 7 Now we’re closing in

Next guess: ‘60’

Response: 9

Next guess: ‘‘5F”’

Response: 8

Next guess: ‘61"’
We win!!! All the LEDs flash and a high warbling tone is heard.

THE ALGORITHM

The flowchart for Hexguess is shown in Figure 4.1. The algorithm is
straightforward:

— a random number is generated

— a guess is entered

— the closeness of the number guessed to the secret
number is evaluated. Nine levels of proximity are
available and are displayed by an LED on the board.
A closeness or proximity table is used for this pur-
pose.

— a win or a loss is signaled

— more guesses are allowed, up to a maximum of
ten.

THE PROGRAM
Data Structures

The program consists of one main routine called GETGES, and two
subroutines called LITE and TONE. It uses one simple data structure

60

HARDWARE RANDOM NUMBER GENERATOR

START

Yy

GUESS NBR = 10

NUMBER =
RANDOM VALUE

1y

READ GUESS
FROM KEYBOARD

Y

DECREMENT
GUESS NBR

Y

TEMP = ABS
(NUMBER-GUESS)

}

COUNTER =0

TEMP
< LIMITABLE
COUNTER?

YES

INCREMENT
COUNTER

NO

YES

SIGNALA WIN

|

TURN ON
COUNTER +1
LIGHTS

GUESS NBR = 07,

SIGNAL A LOSE

f

Fig. 4.1: Hexguess Flowchart

61

ADVANCED 6502 PROGRAMMING

— a table called LIMITS. The flowchart is shown in Figure 4.1, and
the program listing appears in Figure 4.2.

The LIMITS table contains a set of nine values against which the
proximity of the guess to the computer’s secret number will be tested.
It is essentially exponential and contains the sequence: 1,2,4,8,16,32
64,128,200.

Program Implementation

Let us examine the program itself. It resides at memory address 200
and may not be relocated. Five variables reside in page zero:

GUESS is used to store the current guess
GUESS# is the number of the current guess
DUR and FREQ are the usual parameters re-
quired to generate a tone (TONE subroutine)
NUMBER is the secret computer number

As usual, the data direction registers VIA #1 and VIA #3 are condi-
tioned in order to drive the LED display and read the keyboard:

LDA #$FF

STA DDRIA OUTPUT
STA DDRIB OUTPUT
STA DDR3B OUTPUT

Memory location DUR is used to store the duration of the tone to be
generated by the TONE subroutine. It is initialized to ‘““FF”’ (hex):

STA DUR

The memory location GUESSH# is used to store the number of guesses.
It is initialized to 10:

START LDA #30A
STA GUESS#

The LEDs on the Games Board are turned off:
LDA #00

STA PORTIA
STA PORTI1B

62

HARDWARE RANDOM NUMBER GENERATOR

A9
8n
an
8n
8%
A9

69

FF
03
(9324
02
02
oA
01
00
01
00
04
04
20

L)
00

00

AQ
AQ
AC

219
Ad
AQ

01

i "HEXGUES
FHEXAD MAL MNUMEBER GUESSING GAME.
FTHE O CT OF THE GAME IS TO GUESS A HEXARECIMAL
FNUMBER THAT THE COMPUTER HAS THOUGHT UF,

: : COHFUTFH "BEEFG": A GU g ..

57

3 PROPDRTlONAL TO rHE C|0qF

§ © GUESS., TEN GUESSES ARE ALLOWEI.

$IF JESS IS CORRECT, THEN THE FUHFU' {

SWILL FLASH THE LEDS AND MAKE A WARRLING

i TONE

$THE ENTRY LOCATION IS $200.

14
GETKEY = %100

6522 VIA #1 ANDRESSES:

= $A004 FLOW LATCH OF TIMER 1

DOR1A +A003 $FORTA DATA DIRECTION REG.
IDR1R $A002 JFPORTR DATA DIRECTION REG.
FDRTIA $A001 $PORT A

FO E = $A000 ORT R

Y UIA #3 ADDRESSES?E
LIRS = $ACOY SFORTR DATA DIRECTION F .
FORTTR $ACOD $FORT R
GU = %00
Gu 01
Uk $02
FREQ +03
NUMEER = %04
¢
. £200

+4FF $SET UP DATA DIRECTION REGIS
IMR1A

DDOR1E

DDR3E

DUR $SET UF TONE DURATIONS.

ERS

START $10 GUESSES ALLOWED
FBLANK LELDS
STA FORTLA
STA FORTLE
LA TIMER FGET RANDOM NUMRER TO GU
STA NUMEER f. e AND SAVE.
GETGES LDA ¥#$30 FSET UP SHORT HIGH TONE TO
FGIGNA R TO INPFUT GUESS.

TONE iMAKE R
* GETKEY $GET HIGH ORDER US
v $GHIFT INTO HIGH OR

FSAVE

Tk yCLT LOW ORDER 1)
#/00001111 $MASK HIG
FADN HIGH ORIE
SFINAL PROYWUCT

$SURTRACT GUESS FROM NUMRER

$TO DETERMINE NEARNESS OF GUES

ALRIGHT SPOSITIVE VALUE I8 NO FIX,

#4111011141 $MARE DISTANCE ARSOLUTE
SMAKE IT A TWO’S COMPLEMENT

. #00 F...NOT JUST A ONES COMPLEMENT.

Fig. 4.2: Hexguess Program

63

ADVANCED 6502 PROGRAMMING

0241 A2 00 ALRIGHT LIX #00
0243 DI ADY 02 LOOF CMF LIMITS X

TH lIbHT
0246 RO 27 RCS SIGNAL

E8

EO 0% CFX #9 !ALL NINE

no F4 BNE LODF Ny TRY 3

AP OR WIN t.nA #11 PYESS WIN! LOAD NUMBFR
85 00 STA GUESS FUSE GUESS AS TEME

A% FF LIA F$FF FLIGHT LEDS

8n 01 AO o

a8y 00 A

AP 32 Wwow & FTONE VaLUE

20 96 02 SR TONE FMAKE WIN SIGNAL

A9 FF L.DA #$FF

An 01 A0 EOR FORTL1A FCOMFLEMENT FORTS

80 01 AC s “ORT1A

an 00 A0 Tik

Cé& 00 IEC 58 FBLINKS/TONES DONE?T

no ec ENE WOW #NOs DO AGAIN

FO 9F REQ START sYES: START NEW GAME.
E8 SIGNAL TNX -INLRFHFNT CLOSENE -LE

O0270F a% 020 FCLEAR HIGH LEDR FORT
2t an 00 AO

20 8E 02

an 01 A0

?0 0%

A% 01

8 00 A

Cé 01 ceC
no 8

A% RE

20 96 02

4C 0D 02

T LED FATTERN
T LEDS
3IF CARRY SET FRO =

$ONE GUESS USER
FGOME LEFTy GET NEXT.

GTAR FNEW GAME.

iROUT INE TO MAKE FATTERN OF LIT LEDS RY 3

TO SEE

85 I8 BTFFFR THAN LIMITe

$COUNTER 50 AT LEAST 1

iLOW TONE SIGNALS LOSE

FSTRING OF ONES TO THE LEFT IN THE ACCUMULATOR
§THE BIT FOSITION CORRESFONDING TO THE NUMEBER IN X

$IS REACHED .

i

A9 00 LITE $0 sCLEAR ACCUMULATOR FOR FATTERN
38 SHIFT C FMAKE LOW BIT HIGH.
2A A FGHIFT IT IN
CA FONE BIT DONE. .«
o Fe = SHIFT ¢ LODF TIF NOT DONE.
£0 TURN
3
s TONE GENERATION ROUNTINE,
H
TONE STa FREQ
LA #$00
LBX DUR
FL2 LIy FREQ
FlL1 nEY
CLC
BCC .42
BNE FL1
EOQR #$FF
STA FORT3E
NEX
ENE FL.2
RTS

TAELE OF LIMITS FOR CLOSENESS LEVELS.

U

Fig. 4.2: Hoxguess Program (Continued)

64

HARDWARE RANDOM NUMBER GENERATOR

0240t C8 LIMITS LBYTE 200:128+64+32+16+8+4+201
0246E: 80
02AF: 40
Q02RO 20
P10
t 08
1 04
o2
02R5G: 01

SYHROL TABLE:
GETKEY 0100 TIMER ADO4 IDR1A AN

LDDR1E AQO2 FORT1A ADOY FORTLER AOOO
DOR3E ACO2 FORTIER ACOQ GUESS 0000
GUESS# 0001 TUR Q002 FR 0003
NUMRER 0004 START Q20N GETGES 021K
ALRIGHT 0241 L.OOF 0243 WIN 1
wou 0259 SIGNAL 026F ce

LITE 028E SHIFT 0290 TONE

FL2 o2e0 FL1 029k LIMITS

4

Fig. 4.2: Hexguess Program (Continued)

The program will generate a random number which must be guessed
by the player. A reasonably random number is obtained here by
reading the value of timerl of VIA #1. It is then stored in memory ad-
dress NUMBER:

LDA TIMER Low latch of timer 1
STA NUMBER

A random number generator is not required because requests for ran-
dom numbers occur at random time intervals, unlike the situation in
most of the other games that will be described. An important observa-
tion on the use of TICL of a 6522 VIA is that it is often called a
“‘latch’ but it is a ‘‘counter’’ when performing a read operation! Its
contents are not frozen during a read as they would be with a latch.
They are continuously decremented. When they decrement to 0, the
counter is reloaded from the ‘‘real’’ latch.

Note that in Figure 4.3 T1L-L is shown twice — at addresses 04 and
06. This is a possible source of confusion and should be clearly
understood. Location 4 corresponds to the counter; location 6 cor-
responds to the latch. Location 4 is read here.

We are ready to go. A high-pitched tone is generated to signal the
player that a guess may be entered. The note duration is stored at

65

ADVANCED 6502 PROGRAMMING

00 ORB (PBO TO PB7) 170 data, port A
)] ORA (PAQ to PA7) Used for control-affects handshoke
02 DDR B
- Data direction

03 DDR A registers
04 TiL-L/TIC-L Counter-low
05 TIC-H Counter-high

Timer 1
06 TiL-L Latch-low
07 TIL-H Latch-high
08 T2L-L/T2C-L L°’°h'*°“|'

Counter-low Timer 2
09 T2C-H Counter-high
0A SR Shift register
0B ACR Auxiliary Function
t

oc| PCR(CA1,CA2,CB2,CBT) Peripheral control
0b IFR Flags Interrupt

Control
OE IER Enable onre
OF ORA Output register A

(does not affect handshake)

Fig. 4.3: 6522 VIA Memory Map

memory location DUR while the note frequency is set by the contents
of the accumulator:

GETGES LDA #320 High pitch
JSR TONE

Two key strokes must be accumulated for each guess. The GETKEY
subroutine is used to obtain the number of the key being pressed,
which is then stored in the accumulator. Once the first character has
been obtained, it is shifted left by four positions into the high nibble
position, and the next character is obtained. (See Figure 4.4.)

HARDWARE RANDOM NUMBER GENERATOR

A

PRESERVE AT ““GUESS"” ‘ SHIFT BY 4

GUESS 1

GUESS 1

Fig. 4.4: Collecting the Player's Guess

JSR GETKEY
ASL A

ASL A

ASL A

ASL A

STA GUESS
JSR GETKEY

Once the second character has been transferred into the accumulator,
the previous character, which had been saved in memory location
GUESS, is retrieved and OR’ed back into the accumulator:

AND #%00001111

ORA GUESS

It is stored back at memory location GUESS:

STA GUESS

67

ADVANCED 6502 PROGRAMMING

Now that the guess has been obtained, it must be compared against the
random number stored by the computer at memory location
NUMBER. A subtraction is performed:

LDA NUMBER
SEC
SBC GUESS

Note that if the difference is negative, it must be complemented:

BCS ALRIGHT Positive?
EOR #%11111111 It is negative: complement
SEC Make it two’s complement
ADC #00 Add one

Once the “‘distance” from the guess to the actual number has been
computed, the ‘‘closeness-counter’’ must be set to a value between 1
and 9 (only nine LEDs are used). This is done by a loop which com-
pares the absolute ‘‘distance’’ of the guess from the correct number to
a bracket value in the LIMITS table. The number of the appropriate
bracket value becomes the value assigned to the proximity or closeness
of the guessed number to the secret number. Index register X is initial-
ly set to 0, and the indexed addressing mode is used to retrieve bracket
values. Comparisons are performed as long as the ‘‘distance’’ is less
than the bracket value, or until X exceeds 9, i.e., until the highest table
value is looked up.

ALRIGHT LDX #00

LOOP CMP LIMITS,X Look up limit value
BCS SIGNAL
INX Closeness is less
CPX #9 Keep trying 10 times
BNE LOOP

At this point, unless a branch has occurred to SIGNAL, the distance
between the guess and the actual number is 0: it is a win. This is sig-
naled by blinking the LEDs and by generating a special win tone:

WIN LDA #11

STA GUESS Scratch storage
LDA #FF

68

HARDWARE RANDOM NUMBER GENERATOR

STA PORTIA
STA PORTIB

wWOow LDA #50 Tone pitch
JSR TONE Generate tone

The blinking is generated by complementing the LEDs repeatedly:

LDA #SFF

EOR PORTI1A Complement ports
STA PORTI1A

STA PORTIB

The loop is executed again:

DEC GUESS
BNE WOW

Finally, when the loop index (GUESS) reaches zero, a branch occurs
back to the beginning of the main program: START:

BEQ START

If, however, the current guess is not correct, a branch to SIGNAL
occurs during bracket comparison, with the contents of the X register
being the proximity value: i.e., the number of LEDs to light. Depend-
ing on the closeness of the guess to the secret number, LEDs #1 to #9
will be turned on:

SIGNAL INX Increment closeness level
LDA #0 Clear high LED port
STA PORTIB
JSR LITE Get LED pattern
STA PORTIA
BCC CC If carry set, PBO = 1
LDA #01
STA PORTIB

The number of LEDs to turn on is in X. It must be converted into the
appropriate pattern to put on the output port. This is done by the
LITE subroutine, described below.

If LED #9 is to be turned on, the carry bit is set by LITE. An ex-

69

ADVANCED 6502 PROGRAMMING

plicit test of the carry for this case is done above (the pattern 01 is then
sent to PORTI1B). The number of the current guess is decremented
next, If it is 0, the player has lost: the lose signal is generated and a

7 0
¥ ¥ T L T Y ¥
A 000 O0O0O0O0OO -
1 Il L I I Il 1
7 0
T v L
A 0000 O0O0 Q01 -
l 1] 1 | -
7 0

7 0
r 1 11
Al—101|ll 1 —
| I I W .
7 0

JUST BEFORE tst ROTATION

BEFORE 2nd ROTATION

BEFORE 3rd ROTATION

BEFORE 8th ROTATION
(CARRY WILL BE 0)

AFTER 9th ROTATION
(CARRY 1S 1)

Fig. 4.5: Obtaining the LED pattern for 8 LED's

70

HARDWARE RANDOM NUMBER GENERATOR

new game is started; otherwise, the next guess is obtained:

CC DEC GUESS#
BNE GETGES Any guesses left?
LDA #$BE Low tone
JSR TONE
JMP START New game

The Subroutines

LITE Subroutine

The LITE subroutine will generate the pattern required to light up
LED:s #1 to #8, depending on the number contained in register X. The
required ‘1>’ bits are merely shifted right in the accumulator as
register X is being decremented. An example is given in Figure 4.5.
4.5.

Upon exit from the subroutine, the accumulator contains the cor-
rect pattern required to light up the specified LEDs. If LED #9 is in-
cluded, the pattern would consist of all ones, and the carry bit would
be set:

LITE LDA #0
SHIFT SEC Starting ‘1’
ROL A Rotate the ‘1’ to position
DEX Done?
BNE SHIFT
RTS

TONE Subroutine

The TONE subroutine will generate a tone for a duration specified
by a constant in memory location DUR, at the frequency specified by
the contents of the accumulator. Index register Y is used as the inner
loop counter. The tone is generated, as usual, by turning the speaker
connected to PORT3B on and off successively during the appropriate
period of time:

TONE STA FREQ
LDA #300
LDX DUR
FL2 LDY FREQ
FL1 DEY

71

ADVANCED 6502 PROGRAMMING

CLC

BCC .+2
BNE FL1
EOR #$FF
STA PORT3B
DEX

BNE

RTS

SUMMARY

This time, the program used the timer’s latch (i.e., a hardware register)
rather than a software routine as a random number generator. A simple
“LITE” routine was used to display a value, and the usual TONE
routine was used to generate a sound.

EXERCISES

Exercise 4-1: Improve the Hexguess program by adding the following
feature to it. At the end of each game, if the player has lost, the pro-
gram will display [the number which the player should have guessed]
for approximately 3 seconds, before starting a new game.

Exercise 4-2: What would happen if the SEC at location 290 hex-
adecimal were left out?

Exercise 4-3: What are the advantages and disadvantages of using the
timer’s value to generate a random number? What about the suc-

cessive numbers? Will they be related? Identical?

Exercise 4-4: How many times does the above program blink the lights
when it signals a win?

Exercise 4-5: Examine the WIN routine (line 24D). Will the win tone
be sounded once or several times?

Exercise 4-6: What is the purpose of the two instructions at addresses
29F and 2A0? (Hint: read Chapter 2.)

Exercise 4-7: Should the program start the timer?
Exercise 4-8: Is the number of LED:s lit in response to a guess linearly

related to the closeness of a guess?

72

S. Simultaneous Input/Output
(Magic Square)

INTRODUCTION

Special visual patterns will be created by this program. Random
numbers will be generated by the hardware source, the timer. Delays,
blinkers, and counters will be used.

THE RULES

The object of the game is to light up a perfect square on the board,
i.e., to light LEDs 1, 2, 3, 6, 9, 8, 7, and 4 but not LED #5 in the
center.

The game is started with a random pattern. The player may modify
the LED pattern on the board through the use of the keyboard, since
each of the keys complements a group of LEDs. For example, each of
the keys corresponding to the corner LED positions (key numbers: 1, 3,
9, and 7) complements the pattern of the square to which it is attached.
Key #1 will complement the pattern formed by LEDs 1, 2, 4, 5.
Assuming that LEDs 1, 2, and 4 are lit, pressing key #1 will result in
the following pattern: 1-off, 2-off, 4-off, 5-on.

'

® 6 O O O] O
® O O O© @ O
O O O O O O

The pattern formed by LEDs 1, 2, 4, and 5 has been complemented
and only LED #5 is lit after pressing key #1. Pressing key #1 again will
result in: 1, 2, and 4-on with 5-off. Pressing a key twice results in two

73

ADVANCED 6502 PROGRAMMING

successive complementations, i.e., it cancels out the first action.
Similarly, key #9 complements the lower right-hand square formed
by LEDs 5, 6, 8, and 9.
Key #3 complements the pattern formed by LEDs 2, 3, §, and 6.
Key #7 complements the pattern formed by LEDs 4, 5, 7, and 8.
The “‘edge keys’’ corresponding to LEDs 2, 4, 6, and 8 complement
the pattern formed by the three LEDs of the outer edge of which they
are a part. For example, pressing key #2 will complement the pattern
for LEDs 1, 2, and 3. Assume an initial pattern with LEDs 1, 2, and 3
lit. Pressing key #2 will result in obtaining the complemented pattern,
i.e., turning off all three LEDs. Similarly, assume an initial pattern
on the left vertical edge where LEDs 4 and 7 are lit.

O O O
® O O
® O O

Pressing key #4 will result in a pattern where LED #1 is lit and LEDs 4
and 7 are turned off,

® O O
— 0O O O
O O O

KEY 4 HAS BEEN PRESSED

Likewise, key #8 will complement the pattern formed by LEDs 7, 8,
and 9, and key #6 will complement the pattern formed by LEDs 3, 6,
and 9.

74

SIMULTANEQUS INPUT/OUTPUT

Finally, pressing key #5 (the center LED position) will result in com-
plementing the pattern formed by LEDs 2, 4, 5, 6, and 8. For exam-
ple, assume the following initial pattern where only LEDs 6 and 8 are
lit:

o O O
O O @
©C @ O

Pressing key #5 will result in lighting up LEDs 2, 4, and 5:

O ® O
e O
O O O

The winning combination in which all LEDs on the edge of the square
are lit is obtained by pressing the appropriate sequence of keys.

® 6 ¢
® O ©
® 0 O

75

ADVANCED 6502 PROGRAMMING

The mathematical proof that it is always possible to achieve a ‘‘win’’
is left as an exercise for the reader. The program confirms that the
player has achieved the winning pattern by flashing the LEDs on and
off,

Key “‘0’’ must be used to start a new game. A new random pattern
of lit LEDs will be displayed on the board. The other keys are ignored.

A TYPICAL GAME

Here is a typical sequence:
The initial pattern is: 1-3-4-6-9.

® O o
® O @
OO0 @

Move: press key #8.
The resulting pattern is: 1-3-4-6-7-8.

® O ©
®
O

0
°
?

Next move: press key #2.
The resulting pattern is: 2-4-6-7-8.

76

SIMULTANEOUS INPUT/OUTPUT

O @ O
® O ©
® 6 O

Next move: press key #3.
The resulting pattern is: 3-4-5-7-8.

O |0 @~
® O
® & O

O

Next move: press key #2.
The resulting pattern is 1-2-4-5-7-8.

® & O
® & & —
o O |O

71

ADVANCED 6502 PROGRAMMING

Next move: press key #6.
The resulting pattern is 1-2-3-4-5-6-7-8-9.

o 0 0 —

Note that this is a “‘classic’’ pattern in which all LEDs on the board
are lit. It is not a winning situation, as LED #5 should be off. Let us
proceed.

Next move: the end of this game is left to the mathematical talent of
the reader. The main purpose was to demonstrate the effect of the
various moves.

Hint: a possible winning sequence is 2-4-6-8-5!

General advice: in order to win this game, try to arrive quickly at a
symmetrical pattern on the board. Once a symmetrical pattern is ob-
tained, it becomes a reasonably simple matter to obtain the perfect
square. Generally speaking, a symmetrical pattern is obtained by hit-
ting the keys corresponding to the LEDs which are off on the board
but which should be ‘‘on’’ to complete the pattern.

THE ALGORITHM

A pattern is generated on the board using random numbers. The
key corresponding to the player’s move is then identified, and the ap-
propriate group of LEDs on the board is complemented.

A table must be used to specify the LEDs forming a group for each
key.

The new pattern is tested against a perfect square. If one exists, the
player wins. Otherwise, the process begins anew.

The detailed flowchart is shown in Figure 5.1.

78

SIMULTANEOUS INPUT/OUTPUT

START
‘ y TEMP = TABLE [(KEY
GET RANDOM NUMBER) X 2]
NUMBER FROM
TIMER
“ PORT A = [(PORT A)
EOR (TEMP)]
STORE IN PORT A ‘
TEMP = TABLE
] [(KEY NUMBER)
X2 +1]
GET RANDOM
NUMBER FROM v
TIMER
PORTB = [(PORT B)
\ EOR (TEMP)]
STORE IN PORT B

NO

PATTERN IN
PORTS = WIN?

1)

Al

GET KEY NUMBER

TEMP = 14

Y

PORT A = (PORT A)
EOR $FF

Y

PORTB = (PORT B}

KEY NUMBER
=0?

EOR $FF
KEY NUMBER
>9? "
TEMP = TEMP — 1
YES NO

Fig. 5.1: Magic Square Flowchart

79

ADVANCED 6502 PROGRAMMING

THE PROGRAM

Data Structures

The main problem here is to devise an efficient way to complement
the correct LED pattern whenever a key is pressed. The complementa-
tion itself may be performed by an Exclusive-OR instruction. In this
case, the pattern used with the EOR instruction should contain a ‘‘1”’
in each LED position which is to be complemented, and ‘‘0’’s
elsewhere. The solution is quite simple: a nine-entry table, called
TABLE, is used. Each table entry corresponds to a key and has 16 bits
of which only nine are used inasmuch as only nine LEDs are used.
Each of the nine bits contains a ‘‘1’’ in the appropriate position, in-
dicating the LED which will be affected by the key.

For example, we have seen that key number 1 will result in com-
plementing LEDs 1, 2, 4, and 5. The corresponding table entry is
therefore: 0,0, 0, 1, 1, 0, 1, 1, where bits 1, 2, 4, and 5 (starting the
numbering at 1, as with the keys) have been set to ‘1.”” Or, more
precisely, using a 16-bit pattern:

0,0,00,00,0,0,0,0,0,1,1,0, 1, 1
The complete table appears below in Figure 5.2.

KEY PATTERN
1 00011011 00000000
2 00000111 00000000
3 00110110 00000000
4 01001001 00000000
5 10111010 00000000
6 00100100 00000001
7 11011000 00000000
8 11000000 00000001
9 10110000 00000001

Fig. 5.2: Complementation Table

Program Implementation

A random pattern of LEDs must be lit on the board at the beginning
of the game. This is done, as in the previous chapter, by reading the
value of the VIA #1 timer, If a timer were not available, a random
number-generating routine could be substituted.

80

SIMULTANEOUS INPUT/OUTPUT

02002
02023
0205
0z208:
020R?
020E¢
02113
0213¢
02163
02193
021E:
oz21D:2
021F3

022F ¢
02328
02353
0237%

023A%
023R:
0230
0240
02422

A
80
80
Al
an
AD
29
8n
20
ce
FO
c?
10

sh

50
29
an

4A
?0
Al
ce
oo

FF
03
0z
04
o1
04
01
00
00
00
ER
0A
FS

01

o1
6K
01
00
4C
01
00

e
01
EF
n2

A0
AQ
AO
AQ
AQ

A0
01

AO
02
A0
AO
o2

A0

A0

§ ‘MAGIC SRUARE’ FPROGRAM

$KEYS 1-9 ON THE HEX KEYEDARD ARE EACH ASSOCIATER
FWITH ONE LED IN THE 3X3 ARRAY. WHEN A KEY I
$IT CHANGES THE PATTERN OF THE LIT LEIY IN THE ARRAY.
THE ORJECT OF THE GAME IS TO CONVERY THE RANDIOM
$PATTERN THE GAME STARTS WITH TO A SQUARE OF LIT
#LEDS RY PRESSING THE KEYS. THE LEDS WILL FLAGH WHEN
$THE WINNING FPATTERN IS ACHIEVED,

JKEY #0 CAN BE LUSED AT ANY TIME TO RESTART

$THE GAME WITH A NEW FPATTERN.

y

GETKEY =%$100

TiCL =$A004 t.0W REGISTER OF TIMER IN 4522 VIA
FORT1 =$A001 6522 VIA PORT A

FORT2 =$A000 6522 VIA FORT B

TEMF =$0000 $ TEMFORARY STORAG

IIIRA =$A003 sDATA DIRECTION REGISTER OF FORT A
NORE =$A002 $SAME. FOR FORT R

+=$200

COMMENTSS THIS FRODRAM USES A TIMER REGISTER FOR A
RANDOM NUMRER SOURCE. IF NONE IS AVAILARLE. A
RANDOM NUMBER GENERATOR COULD RE USEDe BUT
DUE TO ITS REFPEATARILITY. IT WOULD NOT WORK AS
WELL . THIS FROGRAM USES FORT A’S REGISTERS FOR
STORAGE OF THE LED FATTERN. SINCE WHAT 14§ READ
BY THE PROCESSOR IS THE FOLARITY OF T
OUTFUT LINESs AN EXCESSIVE LOAD ON TH
PREVENT THE FROGRAM FROM WORKING CORRE

LINES WOULT
LY

@ wr s wn ME G wh ew s ceb cEw

LDA ¥$FF FSET UF PORTS FOR QUTRUT
STA DDRA
STA NDRE

START LA T1CL FGET 18T RANDOM NUMBER
STA FORT1
L.oA TICL $.4 «ANIL SECONI .
ANDI #01 FMASK OUT ROTTOM ROW LFNS
STA FORTD
KEY JSR GETKEY
CMF %0 FKEY MUST RE 1-9! IS IT 07
KEQ START FYESs R ART GAME WITH NEW ROARI:.
CHF #10 515 IT L THAN 107
RFl. KEY i+ IF KEY =10s S0 GFT ANOTHER
£
FOLLOWING SECTION USES KEY NUMBER AS INDEX TO FIND IN
sTARLE & RIT FATTERN USED TO COMPLEMENT LED‘G
y
SEC $NECREMENT A& FOR TARLE ACCESS
SRC #1
ASL A FMULTIFLY A%2y SINCE EACH ENTRY IN
sTARLLE IS TWO RY
TAX FUSE A AS INDEX
L.0A FORTI1 $GET FORT CONTENTS FOR COMPLEMENT
EOR TARLEsX FEOR FORT CONTENTS W/FATTERN
STa FORT1 FRESTORE FORTL
LI'A FORT2 P10 SAME WITH FORTZ2y
EOR TABLE+1,X §45USING NEXT TAELE ENTRY.
ANDI #01 FMASK OUT BOTTOM ROW LEDS
STA FORT2 ¥ oo ANt RESTORE.,
¥
$THIS SECTION CHECKS FOR WINNING FPATTERN IN LEDS
y
LSRR A FSHIFT RIT O OF FORT 1 INTO CARRY.
BCC KEY FIF NOT WIN FATTERNs GET NEXT MOVE
LA FPORT1 FLOADN FORTL FOR WIN TEST
CHF #Z11101111 FCHECK FOR WIN FATTER
RNE. KEY SNG WIN, GET NEXT MOVE

Fig. 5.3: Magic Square Program

81

ADVANCED 6502 PROGRAMMING

WIN BLINK LEI’S EVERY 1/2 SECy 4 TIMES

w o e

0244: A? OE LDA #14

0246 85 00 STA TEMP sL.OAD NUMEBER OF ELINKS

0248 A2 20 BLINK LDX #%$20 sNELAY CONSTANT FOR ,08 SEC

0244% A0 FF DELAY LIYY #4FF sOUTER LOOF OF VARIAKRLE IIELAY
sROUTINEy WHOSE DELAY TIME
1S 2556 % (CONTENTS OF X ON ENTER

024C: EA oLy NOF 10 MICROSEC LOOF V

0240: 0O 00 BNE 42

024F: 88 DEY

0250: DO FA BNE DLY

0252 CA LEX

0253¢ IO FS ENE DELAY

0255¢ Al 01 AO LA PORT1 sGET FORTS ANI COMPLEMENT THEM

0258 49 FF EOR #$FF

025A% 8D 01 AQ STA PORT1

0250: AD 00 AQ LA FORT2

0260% 49 01 EOR #1

0242¢ BD 00 AO S8TA PORT2

0265¢ C6 00 DEC TEMF sCOUNT TIOWM NUMEBER OF BLINKS

02467% DO DF BNE BLINK sN0 AGAIN IF NOT DONE

0269 FO AR BEQ KEY FGET NEXT MOVE

TARLE OF CODES USED TO COMPLEMENT LEDS

024E: 1R ABLE +BYT %00011011-%00000000
026C3 00
026D¢ 07 SBYT 200000111+%00000000
026E: 00
026F: 36 +BYT X00110110+200000000
0270¢ 00
02713 49 +BYT %01001001y%00000000
02723 00
0273t BA +BYT %10111010+%00000000
0274: 00
0275% 24 SBYT %001001005%00000001
0276% 01
0277: I8 SEYT %11011000+200000000
0278: 00
0279 CO +BYT %11000000,%00000001
0274 01
027B: RO +BYT %10110000:%00000001
027C: 01
SYMEOL TARLE?
GETKEY 0100 TiCL. A004 FORT1 ADCL
FORT2 AQ0O TEMF 0000 DIRA A003
DORE A002 START 0208 KEY 0216
BLINK 0248 DELAY 0244 nLy 024C
TARLE 026R
4

Fig. 5.3: Magic Square Program (Continued)

82

SIMULTANEOUS INPUT/OUTPUT

The data direction registers for Ports A and B of the VIA are con-
figured for output to drive the LEDs:

LDA #$FF
STA DDRA
STA DDRB

The ‘‘random’’ numbers are then obtained by reading the value of
timer 1 of the VIA and are used to provide a random pattern for the
LEDs. (Two numbers provide 16 bits, of which 9 are kept.)

START LDA TICL Get 1st number
STA PORTI Use it
LDA TICL Get 2nd number
AND #01 Keep only position 0
STA PORT2 Use it

An explanation of the use of TICL has been presented in the
previous chapter. The program then monitors the keyboard for the
key stroke of the player. It will accept only inputs *‘0’’ through ‘9”’
and will reject all others:

KEY JSR GETKEY
CMP #0 Is key 0?
BEQ START
CMP #10
BPL KEY If key = 10 get another

If the player has pressed key ‘“0,”’ the program is restarted with a new
LED display. If it is a value between ‘“1°’ and ‘“9”’ that is pressed, the
appropriate change must be performed on the LED pattern. The key
number will be used as an index to the table of complementation
codes. Since the keys are labeled 1 through 9, the key number must
first be decremented by 1 in order to be used as an index. Since the
table contains double-byte entries, the index number must also be
multiplied by 2. This is performed by the following three instructions:

SEC
SBC #1 Subtract 1
ASL A Multiply by 2

83

ADVANCED 6502 PROGRAMMING

Remember that a shift left is equivalent to a multiplication by 2 in the
binary system. The resulting value is used as an index and stored in in-
dex register X:

TAX

The LED pattern is stored in the Port A data registers. It will be com-
plemented by executing an EOR instruction on Port 1, then repeating
the process for Port 2:

LDA PORTI

EOR TABLE,X Complement Portl
STA PORT!1

LDA PORT2 Same for Port2

EOR TABLE + 1,X

AND #01 Mask out unused bits
STA PORT2

Note that assembly-time arithmetic is used to specify the second byte
in the table:

EORTABLE + 1,X

Once the pattern has been complemented, the program checks for a
winning pattern. To do so, the contents of Port 2 and Port 1 must be
matched against the correct LED pattern. For Port 2, this is ‘0, 0, 0,
0,0,0,0,1.” For Port 1, thisis ““1,1,1,0, 1,1, 1, 1.”” Bit 0 of Port 2
happens presently to be contained in the accumulator and can be
tested immediately after a right shift:

LSR A Shift bit 0 of Port 2
BCC KEY

The contents of Port 1 must be explicitly compared to the appropriate
pattern:

LDA PORTI1
CMP #%11101111
BNEKEY

84

SIMULTANEOUS INPUT/OUTPUT

To confirm the win, LEDs are now blinked on the board. TEMP is
used as a counter variable; X is used to set the fixed delay duration. Y
is used as a counter for the innermost loop. Each port is com-
plemented after the delay has elapsed.

BLINK
DELAY

DLY

SUMMARY

LDA #14
STA TEMP
LDX #$20
LDY #$FF

NOP

BNE .+2
DEY

BNE DLY
DEX

BNE DELAY
LDA PORT1

EOR #$FF
STA PORTI
LDA PORT2
EOR #1

STA PORT2
DEC TEMP
BNE BLINK
BEQ KEY

Load number of blinks
Delay constant for .08 sec
Outer loop of variable
delay routine, whose delay
time is 2556 x (Contents
of X on entry) 10 usloop

Get ports and complement
them

Count down number of blinks
Do again if not done
Get next key

This game of skill required a special table to perform the various
complementations. The timer is used directly to provide a pseudo-
random number, rather than a program. The LED pattern is stored

directly in the I/0 chip’s registers.

EXERCISES

Exercise 5-1: Rewrite the end of the program using a delay subroutine.

Exercise 5-2: Will the starting pattern be reasonably random?

85

ADVANCED 6502 PROGRAMMING

Exercise 5-3: Provide sound effects.

Exercise 5-4: Allow the use of key ‘A’ to perform a different change
such as a total complementation.

Exercise 5-5 (more difficult): Write a program which allows the com-
puter to play and win.

Exercise 5-6: Add to the previous exercise the following feature:
record the number of moves played by the computer, then play against
the computer. You must win in fewer moves. You may specify an
identical starting pattern for yourself and the computer. In this case,
you should start, then let the computer “‘show you.’’ If the computer
requires more moves than you do, you are either an excellent player, a
lucky player, or you are a poor programmer. Perhaps you are using
the wrong algorithm!

86

6. Simple Real Time Simulation
(Spinner)

INTRODUCTION

This program will react in real time to an operator input. The game
will operate at multiple levels of difficulty using more complex loop
counters.

THE RULES

A light spins around the square formed by LEDs 1, 2, 3, 6, 9, 8, 7,
and 4, in a counterclockwise fashion.

The object of the game is to stop the light by hitting the key cor-
responding to the LED at the exact time that the LED lights up. Every
time that the spinning light is stopped successfully, it will start spin-
ning at a faster rate. Every time that the player fails to stop the LED
within 32 spins, the light will stop briefly on LED #4, then resume
spinning at a slower pace. The expert player will be able to make the
light spin faster and faster, until the maximum speed is reached. At
this point, all the LEDs on the Games Board (LEDs 1 through 15)
light up simultaneously. It is a win, and a new game is started.

Each win is indicated to the player by a hesitation of the light on the
LED corresponding to the key pressed. When a complete game is won,
all LEDs on the Games Board will be lit.

87

ADVANCED 6502 PROGRAMMING

This game can also be used to sharpen a player’s reflexes, or to test
his or her reaction time. In some cases, a player’s reaction may be too
slow to catch. the rotating LED even at its slowest speed. In such a
case, the player may be authorized to press two;or even three,con-
secutive keys at once. This extends the player’s response time. For ex-
ample, with this program, if the player would press keys 7, 8, and 9
simultaneously, the light would stop if it was at any one of those posi-
tions (7, 8, or 9).

THE ALGORITHM

The flowchart is presented in Figure 6.1. The game may operate at
eight levels of difficulty, corresponding to the successive speeds of the
“‘blip’’ traveling with increased rapidity around the LED square. An
8-bit counter register is used for two functions simultaneously. (See
Figure 6.2.) The lower 3 bits of this register are used as the ‘‘blip-
counter”’ and point to the current position of the light on the LED
square. Three bits will select one of eight LEDs. The left-most 5 bits of
this register are used as a ‘‘loop-counter’’ to indicate how many times
the blip traverses the loop. Five bits allow up to 32 repetitions. LEDs
are lit in succession by incrementing this counter. Whenever the blip-
counter goes from “‘8’’ to °‘0,”” a carry will propagate into the loop-
counter, incrementing it automatically. Allocating the 8 bits of
register Y to two different conceptual counters facilitates program-
ming. Another convention could be used.

Every time that an LED is lit, the keyboard is scanned to determine
whether the corresponding key has been pressed. Note that if the key
was pressed prior to the LED being lit, it will be ignored. This is ac-
complished with an ‘‘invalid flag.”’ Thus, the algorithm checks to see
whether or not a key was initially depressed and then ignores any fur-
ther closures if it was. A delay constant is obtained by multiplying the
difficulty level by four. Then, during the delay while the LED is lit, a
new check is performed for a key closure if no key had been pressed
at the beginning of this routine. If a key had been pressed at the begin-
ning it will be treated as a miss, and the program will not check again
to see if the key was pressed as the ‘‘invalid flag’’ will have been set.

Every time the correct key is pressed during the delay while the LED
is on (left branch of the flowchart in the middle section of Figure
6.1), the value of the difficulty level is decremented (a lower difficulty
number results in a higher rotation speed). For every miss on the part

88

SIMPLE REAL TIME SIMULATION

of the player, the difficuli, -alue is incremented up to 15, resulting in
a slower spin of the light. Once a difficulty level of (has been reached,
if a hit is recorded, all LEDs on the board will light to acknowledge
the situation.

THE PROGRAM

Data Structures

The program uses two tables. The KYTBL table stores the key
numbers corresponding to the circular LED sequence: 1,2,3,6,9,8,7,4.
It is located at memory addresses OB through 12. See the program
listing in Figure 6.3.

The second table, LTABLE, contains the required bit patterns
which must be sent to the VIA’s port to illuminate the LEDs in se-
quence. For example, to illuminate LED #1, bit pattern ‘000000001,
or 01 hexadecimal, must be sent. For LED #2, the bit pattern
‘00000010’ must be sent, or 02 hexadecimal. Similarly, for the other
LEDs, the required pattern is: 04, 20, 00, 80, 40; OB in hexadecimal.

Note that there is an exception for LED #9. The corresponding pat-
tern is ¢‘0’’ for Port 1, and bit O of Port 2 must also be turned on. We
will need to check for this special situation later on.

Program Implementation

Three variables are stored in memory page 0:

DURAT Is the delay between two successive
LED illuminations

DIFCLT Is the ““difficulty level” (reversed)

DNTST Is a flag used to detect an illegal

key closure when scanning the keys

As usual, the program initializes the three required data direction
registers: DDR1 on both Port A and Port B for the LEDs, and
DDR3B for the keyboard:

START LDA #$FF
STA DDRIA
STA DDRIB
STA DDR3B

89

ADVANCED 6502 PROGRAMMING

DIFFICULTY = 8
2 @
11
COUNTER =0

vy C

USEBITS0—2 OF
COUNTER TO LOOK
UP LED PATTERN IN

TABLE, THEN DISPLAY
PATTERN

Y NO

QUTPUT NUMBER OF
KEY TO LOOK FOR '

(BITS 0—2 OF YES
COUNTER) TO

CLEAR INVALID FLAG
KEYBOARD

SET INVALID FLAG

DELAY CONST =
4 X DIFFICULTY

Y

DELAY ACCORDING
TO DELAY CONST

Fig. 6.1: Spinner Flowchart

SIMPLE REAL TIME SIMULATION

NO

INVALID
FLAG SET?

RAT = DURAT — |

DIFFICULTY =
DIFFICULTY — 1
NO
DURAT = 07
NO
YES (MISS)
YES COUNTER =
PAUSE COUNTER + 1
LIGHT ALL LEDs
‘ COUNTER
= 0 (FROM
OVERFLOW)?
PAUSE
é PAUSE

INCREMENT
DIFFICULTY, MAKING
SURE IT BOES NOT
EXCEED 1§

Fig. 6.1: Spinner Flowchart (Continued)

91

ADVANCED 6502 PROGRAMMING

LOOP BLIP
COUNTER COUNTER

Fig. 6.2: Dual Counter
The difficulty level is set to 8, an average value:

LDA #8
STA DFCLT

The keystrobe port is conditioned for input:
STA DDR3A

The Y register, to be used as our generalized loop-plus-blip-counter, is
set to*0”’:

NWGME LDY #0
The key-down indicator is also set to ‘“0”’:

LOOP LDA #0
STA DNTST

LED #9 is cleared:
STA PORTIB

The lower 3 bits of the counter are extracted. They contain the blip-
counter and are used as an index into the LED pattern table:

TYA Y contains counter
AND #$07 Extract lower 3 bits
TAX Use as index

The pattern is obtained from LTABL, using an indexed addressing

92

SIMPLE REAL TIME SIMULATION

LINE # LOC CODE LINE

0002 0000 H “SPINNER

0003 0000 $FROGRAM TO TEST REACTION TIME OF PLAYER.
0004 0000 $BELIP OF LIGHT, SPINS ARQUND EDGE

0005 0000 $0F 3X3 LED MATRIX» AND USER MUST PRESS
0006 0000 §CORRESPONDING KEY, IFy AFTER A NUMBER OF
0007 0000 $SFINSy CORRECT KEY HAS NOT BEEN PRESSEDN,
0008 0000 $BLIP SPINS SLOWER, IF CORRECT KEY HAS BEEN
0009 0000 $PRESSEDy BLIP SPINS FASTER. ALL

0010 0000 FLEDS LIGHT WHEN SUCCESSFUL KEYPRESS

0011 0000 #0CCURS ON MAXIMUM SPEED.

0012 0000]

0013 0000 $1/0 ¢

0014 0000 i

0015 0000 FORT1A = $A001 JLEDS 1-8

00156 0000 PORT1E = $A000 fLEDS 8-15

0017 0000 DDR1A = 3A003

0018 0000 DDR1B = $A002

00192 0000 PORT3A = 34C01 fKEY STROEBE INPUT.
0020 0000 FORT3B = $ACO0 SKEY # OUTFUT.

0021 0000 DDR3A = $ACO3

0022 0000 DDR3B = $ACO2

0023 0000 i

0024 0000 $VARIABLE STORAGE?

0025 0000 H

00256 0000 ¥ = %0

0027 0000 3

0028 0000 DURAT x=x+1 #HURATION OF INTER-MOVEMENT DELAY.
0029 0001 DIFCLT Xx=x%+1 sOIFFICULTY LEVEL.
0030 0002 DNTST x=Xx+1 $SET TO 301 IF KEY DOWN AT START
0031 0003 $0F INTER-MOVEMENT DELAY.

0032 0003 H

0033 0003 " $TABLE OF PATTERNS TO BE SENT TO LED

0034 0003 FMATRIX AT EACH LOOF COUNT.

0035 0003 $SET FOR CLOCKWISE ROTATION STARTING AT LED #1.
0035 0003 §

0037 0003 01 LTABLE .BYTE $01,302,%045$20,%$00,$80,340,%08
0037 0004 02

0037 0005 04

0037 0006 20

0037 0007 00

0037 0008 80

0037 0009 40

0037 000A 08

0038 O000E H

0039 000B #TABLE OF PATTERNS TO BE SENT TO KEYBOARID
0040 O000B #TO TEST IF LEDS ARE ON AT EACH LOOF COUNT.
0041 000B H

0042 000B 01 KYTBL +BYTE 1+2+356s7+877+4

0042 000C 02
0042 000D 03
0042 (Q00E 06
0042 000F 09
0042 0010 o8
0042 0011 07
0042 0012 04

0043 0013 H

0044 0013 sMAIN PROGRAM

0045 0013 H

0046 0013 X = $200

0047 0200 H

0048 0200 A% FF START LDA #$FF $SET I/0 REGISTERS.

0049 0202 80 03 A0 STA DIR1A

0050 0205 8D 02 A0 STA DDR1B

0051 0208 8D 02 AC STa DDR3E

0052 020B A% 08 LDA #8

0053 0200 85 01 STA DIFCLT $SET DIFFICULTY.

0054 020F 8D 03 AC STA DDR3A §SET KEYSTROEE FORT,

0055 0212 A0 00 NWGME LLIY #0 SRESET LOOF/BLIF COUNTER.
0056 0214 A% 00 LOOFP LA #0

0057 0216 85 02 STA DNTST sCLEAR KEYDOWN INDICATOR.
0058 0218 8D 00 A0 STA PORT1B sCLEAR HI LED PORT.

0059 021p 98 TYA SUSE LOWER 3 BITS OF MAIN CUOUNTER
0060 021C 29 07 ANLD #$07 #AS INDEX TO FIND LED FATTERN
00561 O021E- AA . TAX $IN TABLE OF PATTERNS.

0062 021F BRI 03 LDA LTABLE»X #GET PATTERN FOR LED TO

Fig. 6.3: Spinner Program

93

ADVANCED 6502 PROGRAMMING

0063 0221 §BE TURNED ON.

0064 0221 8D 01 A0 STA PORT1A $STORE IN LEDO FORT.

0065 0224 DO 05 BNE CHECK $IF FATTERN <» O» SKIF,.

0066 0226 A9 01 LA #1 $FATTERN=0s SO SET HI RIT.

0067 0228 8D 00 AQ STA PORT1E

00468 022B BS OR CHECK LDA KYTBL»X $GET KEY# TO TEST FOR.

0069 022D 8I' 00 AC STA PORT3E $STORE IN KEYPORT.

0070 0230 2C 01 AC BIT FORT3A §STROBE HI?

0071 0233 30 04 BMI DELAY s IF NOT» SKIF,

0072 0235 49 01 INVALD LDA $01 $STORE HI: SET KEY DNOWN MARKER.
0073 0237 85 02 STA ONTST

0074 0239 A9 80 DELAY LDA #¢80 $GET # OF LOOF CYCLES (DELAY LENGTH)
0075 023 85 00 STA DURAT

0076 0230 AS 01 L1 LDA DIFCLT $MULTIFLY DIFFICULTY COUNTER
0077 023F 0A ASL A $RY FOUR TO DETERMINE DELAY
0078 0240 0A ASL A #LENGTH.

0079 0241 AA TAX

0080 0242 26 02 nL2 ROL DNTST $OELAY ACCORDING TO DIFCLT.
0081 0244 44 02 ROR DINTST

0082 0246 CA DEX

0083 0247 D0 F? ENE DL2 5LO0OP ‘TIL COUNT = O

0084 0249 A5 02 LDA DNTST $GET KEY DOWN FLAG.

0085 0248 00 05 ENE NOTST $IF KEY WAS DOWN AT BEGINNING OF
0086 024D $DELAYy DON‘T TEST IT,

0087 0240 2C 01 AC BIT PORT3A §CHECK KEY STROBE.

0088 0250 10 19 BFL HIT $KEY HAS CLOSED DURING DELAY: HIT.
0089 0252 Cé 00 NOTST DEC DURAT $COUNT DELAY LOOF DOWN.

0090 0254 DO E7 BNE DL1 $LOOF IF NOT 0.

0091 0256 C8 INY 3 INCREMENT MAIN SFIN COUNTER.
0092 0257 1O BE ENE LOQOF 5IF 32 LOOFS NOT DONE» DD NEXT LOOP
0093 0259 Aé 01 LDX DIFCLT $NO HITS THIS TIMEs MAKE NEXT
0094 O025R JEASIER.

0095 025 ES8 INX

0096 025C 8aA TXA $MAKE SURE DIFFICULTY DOES NOT
0097 0250 C? 10 CMF #1464 $EXCEED 15

0098 025F DO 02 BNE OK

0099 0261 A% OF LOA #15

0100 0263 85 01 oK STA DIFCLT

0101 0265 20 80 02 JSR WAIT $FAUSE A EIT,

0102 0268 4C 12 02 JMP NWGME $START NEW ROUND.

0103 026B 20 80 02 HIT JSR WAIT iPAUSE A RIT.

0104 O26E Cé6 01 DEC DIFCLT $MAKE NEXT GAME HARDER.

0105 0270 DO A0 BNE NWGME $IF DIFFICULTY NOT O (HARDEST)»
0106 0272 sFLAY NEXT GAME.

0107 0272 A9 FF LDA #¢FF sPLAYER HAS MADE IT TO TOF
0108 0274 8D 01 A0 S5TA FORT1A sODIFFICULTY LEVELy LIGHT ALL LEDS,
0109 0277 80 00 AQ STA FORT1E

0110 027A 20 80 02 JSR WAIT sPAUSE A BIT.

0111 027D 4AC 00 02 JMP START $PLAY ANOTHER GAME.

0112 0280 4

0113 0280 $SUBROUTINE ‘WAIT”

0114 0280 $SHORT DELAY.

0115 0280 ¥

0116 0280 A0 FF WALT LOY #¢FF

0117 0282 A2 FF LFt LOX #$FF

0118 02B4 446 00 LP2 ROR TLIURAT

0119 0284 26 00 ROL DURAT

0120 0288 &6 00 ROR DURAT

0121 028A 26 00 ROL DURAT

0122 028C CaA DEX

0123 028D DO FS ENE LF2

0124 028F 88 DEY

0125 0290 DO FO ENE LF1

0126 0292 40 RTS

0127 0293 «ENI

SYMBOL TABLE
SYMEOL VALUE

CHECK 022R DDR1A A003 DDR1E AQO2 DOR3A ACO3
DIOR3E ACO2 DELAY 0239 DIFCLT 0001 oL1 0230
L2 0242 DNTST 0002 DURAT 0000 HIT 026K
INVALD 0235 KYTEL Q00R LOOF 0214 LF1 0282
LF2 0284 LTAELE 0003 NOTST 0252 NUWGME 0212
0K 0263 PORT1A A0O01 FORT1E AQQ0 FORT3A ACO1
PORT3R ACO0 START 0200 WAIT 0280

END OF ASSEMBLY

Fig. 6.3: Spinner Program (Continued)

94

SIMPLE REAL TIME SIMULATION

mechanism with register X, and this pattern is output on Port 1A to
light up the appropriate LED:

LDA LTABLE, X Get pattern
STA PORTI1A Use it to light up LED

As we indicated in the previous section, an explicit check must be
made for the pattern ¢‘0,”’ which requires that bit 0 of Port B be
turned on. This corresponds to LED #9:

BNE CHECK Was pattern = 0?7
LDA #1 If not, set LED #9
STA PORTIB

Once the correct LED has been lit, the keyboard must be inspected to
determine whether the player has already pressed the correct key. The
program only checks the key number corresponding to the LED being
lit:

CHECK LDA KYTBL,X X contains correct pointer
STA PORT3B Select correct key
BIT PORT3A Strobe hi?
BMI DELAY If not, skip

If the corresponding key is down (a strobe high on Port 3A is
detected), the key-down flag, DNTST, is set to ““1°’:

INVALD LDA #01
STA DNTST

This is an illegal key closure. It will be ignored. A delay to keep the
LED lit is implemented by loading a value in memory location
DURAT. This location is used as a loop-counter. It will be
decremented later on and will cause a branch back to location DL1 to
occur:

DELAY LDA #8§80
STA DURAT

The difficulty counter, DIFCLT, is then multiplied by four. This is ac-
complished by two successive left shifts:

95

ADVANCED 6502 PROGRAMMING

DLI1 LDA DIFCLT
ASL A
ASL A
TAX

The result is saved in index register X. It will determine the delay
length. The lower the ‘‘difficulty-level,’’ the shorter the delay will be.
The delay loop is then implemented:

DL2 ROL DNTST
ROR DNTST
DEX
BNE DL2 Loop til count = 0

The key-down flag, DNTST, is then retrieved from memory and
tested. If the key was down at the beginning of this routine, the pro-
gram branches to location NOTST. Otherwise, if a closure is detected,
a hit is reported and a branch occurs to location HIT:

LDA DNTST

BNE NOTST

BIT PORT3A Check key strobe
BPL HIT

At NOTST, the external delay loop proceeds: the value of DURAT is
decremented and a branch back to location DL1 occurs, unless
DURAT decrements to “‘0.”” Whenever the delay decrements to ‘0’
without a hit, the main counter (register Y) is incremented by 1. This
results in advancing the blip-counter (lower three bits of register Y) to
the next LED. However, if the blip-counter was pointing to LED #4
(the last one in our sequence), the loop-counter (upper 5 bits of
register Y) will automatically be incremented by 1 when the blip-
counter advances. If the value 32 is reached for the loop-counter, the
value of register Y after incrementation will be ‘0’ (in fact, an
overflow will have occurred into the carry bit). This condition is tested
explicitly:

NOTST DEC DURAT
BNE DLI1 Loopifnot0
INY Increment counter
BNE LOOP 32 loops?

96

SIMPLE REAL TIME SIMULATION

Once the Y register has overflowed, i.e., 32 loops have been executed,
the difficulty value is increased, resulting in a slower spin:

LDX DIFCLT No hits. Make it easier
INX

The maximum difficulty level is 15, and this is tested explicitly:

TXA Only A may be compared
CMP #16
BNE OK
LDA #15 Stay at 15 maximum
OK STA DIFCLT

Finally, a brief pause is implemented:
JSR WAIT
and a new spin is started:
JMP NWGME
In the case of a hit, a pause is also implemented:
HIT JSR WAIT

then the game is made harder by decrementing the difficulty count
(DIFCLT)

DEC DIFCLT

The difficulty value is tested for *‘0’’ (fastest possible spin). If the ‘‘0’’
level has been reached, the player has won the game and all LEDs are
illuminated:

BNE NWGME If not 0, play next game

LDA #SFF It is a win
STA PORTIA Light up
STA PORTIB

The usual pause is implemented, and a new game is started:

97

ADVANCED 6502 PROGRAMMING

JSR WAIT
JMP START

The pause is achieved with the usual delay subroutine called ‘“WAIT.”’
It is a classic, two-level nested loop delay subroutine, with additional
do-nothing instructions inserted at address 0286 to make it last longer:

WAIT LDY #$FF
LP1 LDX #3FF
Lp2 ROR DURAT
ROL DURAT
ROR DURAT
ROL DURAT
DEX
BNE LP2
DEY
BNE LPI
RTS

SUMMARY

This program implemented a game of skill. Multiple levels of diffi-
culty were provided in order to challenge the player. Since human
reaction time is slow, all delays were implemented as delay loops. For
efficiency, a special double-counter was implemented in a single register:
the blip counter—loop counter.

EXERCISES

Exercise 6-1: There are several ways to ‘‘cheat’’ with this program.
Any given key can be vibrated rapidly. Also, it is possible to press any
number of keys simultaneously, thereby massively increasing the
odds. Modify the above program to prevent these two possibilities.

Exercise 6-2: Change the rotation speed of the light around the LEDs
by modifying the appropriate memory location. (Hint: this memory
location has a name indicated at the beginning of the program.)

Exercise 6-3: Add sound effects.

98

7. Real Time Simulation
(Slot Machine)

INTRODUCTION

This program simulates an actual electro-mechanical machine and
operates in real time. It performs a complex score evaluation using indexed
addressing techniques as well as special data structures to facilitate and
expedite the process.

THE RULES

This program simulates a Las Vegas-type slot machine. The rota-
tion of the wheels on a slot machine is simulated by three vertical rows
of lights on LED columns 1-4-7, 2-5-8, and 3-6-9. The lights ‘‘rotate’’
around these three columns, and eventually stop. (See Figure 7.1.) The
final light combination representing the player’s score is formed by
LEDs 4-5-6, i.e., the middle horizontal row.

At the beginning of each game, the player is given eight points. The
player’s score is displayed by the corresponding LED on the Games
Board. At the start of each game, LED #8 is lit, indicating this initial
score of 8.

The player starts the slot machine by pressing any key. The lights
start spinning on the three vertical rows of LEDs. Once they stop, the
combination of lights in LEDs 4, 5, and 6 determines the new score. If
either zero or one LED is lit in this middle row, it is a lose situation,
and the player loses one point. If two LEDs are lit in the middle row,
the player’s score is increased by one point, If three LEDs are lit in the
middle row, three points are added to the player’s score.

Whenever a total score of zero is obtained, the player has lost the
game. The player wins the game when his or her score reaches 16
points. Everything that happens while the game is being played pro-
duces tones from the machine. While the LEDs are spinning, the
speaker crackles, reinforcing the feeling of motion. Whenever the
lights stop rotating, a tone sounds in the speaker, at a high pitch if it is
a win situation, or at a low pitch if it is a lose situation, In particular,
after a player takes his or her turn, if there are three lights in the mid-

99

ADVANCED 6502 PROGRAMMING

I SCORE

- O-l0-|@-

WHEEL WHEEL 2 WHEEL 3

Fig. 7.1: The Slot Machine

dle row (a win situation), the speaker will go beep-beep-beep in a high
pitch, to draw attention to the fact that the score is being incremented
by three points. Whenever the maximum of 16 points is reached, the
player has obtained a ‘‘jackpot.’”’ At this point all the LEDs on the
board will light up simultaneously, and a siren sound will be generated
(in ascending tones). Conversely, whenever a null score is reached, a
siren will be sounded in descending tones.

Note that, unlike the Las Vegas model, this machine will let you win
frequently! Good luck. However, as you know, it is not as much a
matter of luck as it is a matter of programming (as in Las Vegas ma-
chines). You will find that both the scoring and the probabilities can
be easily modified through programming.

A TYPICAL GAME

The Games Board initially displays a lit LED in position 8, in-
dicating a starting score of 8. At this point the player should select and
press a key. For this example let’s press key 0. The lights start spin-
ning. At the end of this spin, LEDs 4, 5, and 9 are lit. (See Figure 7.2.)
This is a win situation and one point will be added to the score. The
high-pitch tone sounds. LED #9 is then lit to indicate the total of the 8
previous points plus the one point obtained on this spin.

100

REAL TIME SIMULATION

O 0 O
® @ O—-~
OO0 @

Fig.7.2: A Win Sitvation

Key 0 is pressed again. This time only LED 5 in the middle row is lit
after the spin. The score reverts back to 8. (Remember, the player
loses 1 point from his or her score if either zero or only one LED in the
middle row is lit after the spin.)

Key 0 is pressed again; this time LEDs 5 and 6 light up resulting in a
score of nine.

Key O is pressed again. LED 4 is lit at the end of the spin, and LED 8
lights up again.

Key 0 is pressed. LED 6 is lit. The score is now 7, etc.

THE ALGORITHM

The basic sequencing for the slot machine program is shown in the
flowchart in Figure 7.3. First, the score is displayed, then the game is
started by the player’s key stroke and the LEDs are spun. After this,
the results are evaluated: the score is correspondingly updated and a
win or lose situation is indicated.

The LED positions in a column are labeled 0, 1, 2, from the top to bot-
tom. LEDs are spun by sequentially lighting positions 0, 1, 2, and then
returning to position 0. The LEDs continue to spin in this manner and
their speed of rotation diminishes until they finally come to a stop.
This effect is achieved by incrementing the delay between each suc-
cessive actuation of an LED within a given column. A counter-register
is associated with each ‘‘wheel,”’ or column of three LEDs. The initial
contents of the three counters for wheels 1, 2, and 3 are obtained from
a random number generator. In order to influence the odds, the ran-
dom number must fit within a programmable bracket called (LOLIM,
HILIM). The value of this counter is transferred to a temporary
memory location. This location is regularly decremented until it
reaches the value ¢‘0.”” When the value O is reached, the next LED on

101

ADVANCED 6502 PROGRAMMING

102

‘ START ’

LA

INITIAL
SCORE=18

V)

DISPLAY SCORE

Y

WAIT FOR
KEY STROKE

Y

SPIN THE LEDs

]

EVALUATE RESULT

Y

DISPLAY SCORE

]

SIGNAL WIN

SIGNAL LOSE

Y

Fig. 7.3: Slots Flowchart

Y

REAL TIME SIMULATION

the “wheel”’ is lit. In addition, the original counter contents are in-
cremented by one, resulting in a longer delay before lighting up the
next LED. Whenever the counter overflows to 0, the process for that
wheel stops. Thus, by using synchronous updating of the temporary
memory locations, the effect of asynchronously moving LED ‘‘blips”’
is achieved. When all LEDs have stopped, the resulting position is
evaluated.

The flowchart corresponding to this DISPLAY routine is shown in
Figure 7.4. Let us analyze it. In steps1, 2, and 3 the LED pointers are
initialized to the top row of LEDs (position 0). The three counters
used to supply the timing interval for each wheel are filled with num-
bers from a random number generator. The random number is selected
between set limits. Finally, the three counters are copied into the tem-
porary locations reserved for decrementing the delay constants.

Let us examine the next steps presented in Figure 7.4:

4. The wheel pointer X is set at the right-most column: X = 3.

5. The corresponding counter for the current column (column 3
this time) is tested for the value O to see if the wheel has stopped.
It is not O the first time around.

6,7. The delay constant for the column of LEDs determined by
the wheel pointer is decremented, then it is tested against the
value 0. If the delay is not 0, nothing else happens for this
column, and we move to the left by one column position:

16. The column pointer X is decremented: X = X ~ 1

17. X is tested against zero. If X is zero, a branch occurs to
step 5. Every time that X reaches the value zero, the same
situation may have occurred in all three columns. All
wheel counters are, therefore, tested for the value zero.

18. If all counters are zero, the spin is finished and exit oc-
curs. If all counters are not zero, a delay is implemented,
and a branch back to (4) occurs.

Back to step 7:

7. If the delay constant has reached the value zero, the next
LED down in the column must be lit.
8. The LED pointer for the wheel whose number is in the wheel

pointer is incremented.

9. The LED pointer is tested against the value 4. If 4 has not
been reached, we proceed; otherwise, it is reset to the value 1.
(LEDs are désignated externally by positions 1, 2, and 3 from

103

ADVANCED 6502 PROGRAMMING

DISPLAY START

Y

1 LED POINTERS = O

Y

FILL COUNTERS WITH
2 | RANDOM NUMBERS
BETWEEN LOLIM

& HILIM

Y

COPY COUNTERS TO

3 CORRESPONDING

DELAY CONSTANT
LOCATIONS

COUNTER {X)

=07

& | DECREMENT DELAY
CONSTANT (X)

DELAY
CONSTANT
(X) =0?

g | INcremenTLED
POINTER (X)

Fig. 7.4: DISPLAY Flowchart

104

10 TEMP = 3XLED

11

12

Y

REAL TIME SIMULATION

LED POINTER (X)

=1

POINTER(X)

Y

LTMSK (X) =
LIGHTABLE (TEMP, X)

Y

INCREMENT
COUNTER (X)

\

COPY COUNTER (X)
INTO DELAY
CONSTANT (X}

Y

OUTPUT [(LTMSK1)
OR (LTMSK2) OR
(LTMSK3)] TO LEDs

1

TOGGLE SPEAKER

)

Y

X=X-1

=07

+
O

DELAY A BIT

ALL COUNTERS

Y

‘ DONE: RETURN ,

Fig. 7.4: DISPLAY Flowchart (Continued)

105

ADVANCED 6502 PROGRAMMING

top to bottom. The next LED to be lit after LED #3 is LED
#1)

10,11. The LED must be lit on the board, and a table LIGHTABLE
is utilized to obtain the proper pattern.

12. The counter for the appropriate wheel is incremented. Note
that it is not tested against the value zero. This will occur only
when the program moves to the left of wheel 1. This is done
at location 18 in the flowchart, where the counters are tested

for the value zero.
13. The new value of the counter is copied into the delay constant

location, resulting in an increased delay before the next LED
actuation.

14. The current lighting patterns of each column are combined
and displayed.

15. As each LED is lit in sequence, the speaker is toggled (ac-

tuated) .
16. As usual, we move to the column on the left and proceed as
before.
Let us go back to the test at step 5 in the flowchart:
5. Note that whenever the counter value for a column is zero,

the LED in that column has stopped moving. No further ac-
tion is required. This is accounted for in the flowchart by the
arrow to the right of the decision box at 5: the branch occurs
to 16 and the column pointer is decremented, resulting in no
change for the column whose counter was zero.
Next, the evaluation algorithm must evaluate the results once all
LEDs have stopped and then it must signal the results to the player.
Let us examine it.

The Evaluation Process

The flowchart for the EVAL algorithm is shown in Figure 7.5. The
evaluation process is also illustrated in Figure 7.6, which shows the
nine LEDs and the corresponding entities associated with them. Refer-
ring to Figure 7.6, X is a row-pointer and Y is a column- or wheel-
pointer. A value counter is associated with each row. It contains the
total number of LED:s lit in that row. This value counter will be con-
verted into a score according to specific rules for each row. So far, we
have only used row 2 and have defined a winning situation as being
one in which two or three LEDs were lit in that row. However, many
other combinations are possible and are allowed by this mechanism.

106

REAL TIME SIMULATION

Exercises will be suggested later for other winning patterns.

The total for all of the scores in each row is added into a total called
SCORE, shown at the bottom right-hand corner of Figure 7.6.

Let us now refer to the flowchart in Figure 7.5. The wheel- or col-
umn pointer Y is set initially to the right-most column: Y = 3.

2. The temporary counters are initialized to the value zero.

3. Within the current column (3), we need only look at the row
which has a lit LED. This row is pointed to by LED-
POINTER. The corresponding row value is stored in:

X = LED POINTER (Y)

4, Since an LED is lit in the row pointed to by X, the value
counter for that row is incremented by one.

Assuming the LED situation of Figure 7.7, the second value counter

has been set to the value 1.

S. The next column is examined: Y = Y — 1.

If Y is not 0, we go back to (3); otherwise the evaluation process

may proceed to its next phase.

Exercise 7-1: Using the flowchart of Figure 7.5, and using the example
of Figure 7.7, show the resulting values contained in the value counters
when we finally exit from the test at (6) in the flowchart of Figure 7.5.

The actual number of LEDs lit in each row must now be trans-
formed into a score. The SCORETABL is used for that purpose.If the
scoring rules contained in this table are changed, they will completely
modify the way the game is played.

The score table contains four byte-long numbers per row. Each
number corresponds to the score to be earned by the player when O, 1,
2, or 3 LED:s are lit in that row. The logical organization of the score
table is shown in Figure 7.8. The entries in the table correspond to the
score values which have been selected for the program presented at
the beginning of this chapter. Any combination of LEDs in rows 1 or
3 scores 0. Any combination of 2 LEDs in row 2 scores 1, but, three
LEDs score 3. Practically, this means that the score value of row 1 is
obtained by merely using an indexed access technique with the number
of LEDs lit as the index. For row 2, a displacement of four must be
added for table access. In row 3, an additional displacement of four
must be added. Mathematically, this translates to:

SCORE = SCORETABL[(X — 1) X 4 + 1 + Y]

107

ADVANCED 6502 PROGRAMMING

108

1 Y=3
2 | VALUE COUNTERS,
SCORTMP =0
3 | X = LED POINTER (Y)
4 | INCREMENT VALUE
COUNTER (X)
3 y=Y-1
6
NO
YES
7 X =3

TEMP =
8 X—-1)xX4+1
Q = SCORTABL
9 | (VALUE COUNTER
(X), TEMP)
1 SCORTMP =
0 SCORTMP + Q
11 X=X—1
12
YES

(12

Fig.7.5: EVAL Flowchart

NO

REAL TIME SIMULATION

NO

14

17

SCORTMP = 07

Y Y Y

INCREMENT SCORE 20 | DECREMENT SCORE

Y

21] sHOW NEW SCORE,
SOUND LOW TONE

Y

16 SIGNAL GAME
WON WITH RISING

WARBLE, LIT LEDs
PLAY HIGH TONE,
SHOW NEW SCORE
Y RETURN:
_ NEW GAME
ssccc?:Tw: 1 RETURN:
NEXT SPIN

\

SOUND
2 FALLING TONE

Y

RETURN: RETURN:
NEXT SPIN NEW GAME

SCORTMP = 0?

Fig. 7.5: EVAL Flowchart (Continued)

109

ADVANCED 6502 PROGRAMMING

VALUE
COUNTER

\ ' / roral =| scoe

Fig. 7.6: Evaluation Process on the Board

SCORE

AN

/

Y =1 y=2 Y=3 VALUE
COUNTER
1O @ Ol

Fig. 7.7: An Evaluation Example

where X is the row number and Y is the number of LED:s lit for that
row. Since this technique allows each of the three rows to generate a
score, the program must test the value counter in each row to obtain
the total score.

This is accomplished by steps 7 and 8: the row pointer is initialized

110

REAL TIME SIMULATION

0 1 2 3 NUMBER LEDs LIT
0 0 0 0 ROW 1
0 0 1 3 ROW 2
0 0 0 0 ROW 3

Fig. 7.8: The Score Table

to 3, and a score table displacement pointer is set up:

9.

TEMP=X-1)x4+1
Next, the value of the score is obtained from the table:

Q = SCORTABL (value counter (X), TEMP)

The value of that row’s score is obtained by accessing the score
table indexed by the number of LEDs lit, contained in the value counter
for that row, plus a displacement equal to TEMP. The intermediate
score is obtained by adding this partial score to any previous value:

10.
11.

12.

13.

.
15.

SCORTMP = SCORTMP + Q

Finally, the row number is decremented, and the process is
repeated until X reaches the value 0.

Whenever X reaches the value 0, the score for this spin has
been computed and stored in location SCORTMP.

At this point, the score computed above (SCORTMP) is ex-
amined by the program, and two possibilities exist: if the
SCORTMP is 0, a branch occurs to 20, where the game score
is decremented. If SCORTMP is not 0, the game score will be
increased by the score for this spin — SCORTMP. Let us
follow this path first.

The total game score is incremented by one.

It is then tested for the maximum value of 16.

11

ADVANCED 6502 PROGRAMMING

16. If the maximum score of 16 is reached in step 15, a special
audible and visual signal is generated to reward the player. A
new game may be started.

17. If 16 is not reached in step 15, the updated game score is
shown to the player, accompanied by a high-pitched tone.

18. The amount by which the game score must be increased,
SCORTMP, is decremented.

19. If SCORTMP is not zero, more points must be added to the
game score, and a branch occurs to 14. Otherwise, the player
may enter the next spin.

Let us now follow the other path from position thirteen on the

flowchart, where the total score had been tested:

20. The score for this spin is 0, so the game score is decremented.

21. It is displayed to the player along with a low tone.

22. - The new score is tested for the minimum value 0. If this
minimum value has been reached, the player has lost. Other-
wise, the player may keep playing.

23. A descending siren-type tone is generated to indicate the loss,
and the game ends.

THE PROGRAM
Data Structures

Two tables are used by this program: 1) the score table is used to
compute a score from the number of LEDs lit in each row — this has
already been described; 2) the LTABLE is used to generate the ap-
propriate code on the I/0 port to light the specified LED. Each entry
within this table contains a pattern to be OR’ed into the 1/0 register to
light the specified LED.

Vertically, in the memory, the table entries correspond to the first
column, the second column, and then the third column of LEDs.
Looking at the program on lines 39, 40, and 41, the rows of digits cor-
respond respectively to the columns of LEDs. For example, the third
entry in the table, i.e., 64 decimal, or 40 hexadecimal (at address
001C) corresponds to the third LED in the first column on the Games
Board, or LED 7.

Page Zero Variables

The following variables are stored in memory:
— TEMP is a scratch location

112

REAL TIME SIMULATION

LINE & LOC CODE LINE

0002 0000 #8LOT MACHINE SIMULATOR PROGRAM.

0003 0000 $PRESS ANY KEY TO START ‘SPIN’.

0004 0000 $§SCORE DETERMINED BY ARRAY ‘SCORTE’.

0005 0000 #8 POINTS INITIAL SCOREs ONE POINT PENALTY

0006 0000 $FOR EACH BAD SPIN,

0007 0000 4

0008 0000 X = $0

0009 0000 TEMP x=x+1 $ TEMPORARY STORAGE .

0010 0001 SCORTP x=x+1 $ TEMPORARY SCORE STORAGE.

0011 0002 SCORE x=x+1 #SCORE .

0012 0003 DUR x=%+1 FDURATION OF TONES.

Q013 0004 FREQ x=k1 #FREQUENCY OF TONES.

0014 0005 SPEEDS *=%+3 $SPEEDS OF REVOLUTION FOR LEDS
0015 0008 #IN COLUMNS

0016 0008 INDX x=N+3 $DELAY COUNTERS FOR LED' REVOLUTIONS.
0017 000R INCR x=%x43 #POINTERS FOR LED POSITIONS:

0018 O0O0OE FUSED TO FETCH PATTERNS OUT OF TABLES.

0019 O0O00E LTMSK X=%x+3 $PATTERNS FOR LIT LEDS

0020 0011 VALUES %x=%+3 #NO, OF LIT LEDS IN EACH ROW.
0021 0014 RNID! x=N+4 $SCRATCHPAD FOR RND # GEN.

0022 001A i

0023 001A #1/0

0024 001A i

0025 001A FORT1A = $A001 #VIA#1 PORT A I/0 REG (LEDS)
0026 001A DDR1A = $A003 #VIA#1 PORT A DATA DNIRECTION REG.
0027 0014 PORT1E = $A000 #VIA#1 PORT B I/0 REG. (LEDS)
0028 001A DDR1E = $A002 iVIA®#1 PORT B DATA DIRECTION REG.
0029 001A PORT3B = $ACO0 iVIA#3 PORT P I/0 REG. (SPKR?
0030 0014 DDR3IE = $ACO2 iVIA#3 PORT B DATA DIRECTION REG.
0031 001A T1iCL = $A004

0032 001A §

0033 001A FARRAYS

0034 001A 4

0035 0014 §ARRAY OF PATTERNS TO LIGHT LEDS.

0035 001A $ARRAY ROWS CORRESFONDI' TO COLUMNS OF LED

0037 001A FARRAYs AND COLUMNS TO ROWS. FOR EXAMPLE, THIRD

0038 001A $BYTE IN ROW ONE WILL LIGHT LED 7.

0039 0014 O1 LTABLE .BYTE 1,8+64

0039 001F 08

0039 001C 40

0040 0013 02 +BYTE 2,516,128
0040 O001E 10

0040 OOiF 80

0041 0020 04 +BYTE 4,432,0
0041 0021 20

0041 0022 00

0042 0023 #ARRAY OF SCORES RECEIVED FOR CERTAIN
0043 0023 #PATTERNS OF LIT LEDS.

0044 0023 #ROWS CORRESPOND TO ROWS IN LED ARRAY.
0045 0023 7COLUMNS CORRESFOND TO NUMBER OF LEDS
00446 0023 SLIT IN THAT ROW.

‘0047 0023 $I.E.» 3 LEDS IN MIDDLE ROW IS 3 PTS.
0048 0023 00 SCORTB .BYTE 05050+0

0048 0024 00

0048 0025 00

0048 0026 00

0049 0027 00 +BYTE 050,1,3
0049 0028 00

0049 0029 01

0049 0024 03

0050 002B 00 +«BYTE 0:0,0+0
0050 002C 00

0050 002D 00

0050 002E 00

0051 002F §

’
0052 002F FRRXXX MAIN PROGRAM XRkkkxk
0053 002F i
0054 002F GETKEY = %100
0055 002F x = $200
00T6 0200 A9 FF LDA #$FF $SET UP FORTS.

Fig. 7.9: Slot Machine Program

113

ADVANCED 6502 PROGRAMMING

0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0083
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
o111
0112
0113
0114
0115
0116
0117
o118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128

0202
0205
0208
0208
020E
0210
0212
0214
0215
0218
0218
021E
0221
0223
0225
0227
0227
0227
0227
0227
0227
0227
0227
0229
0228
022D
022F
0231
0234
0236
0238
023A
023C
023F
0242
0243
0245
0247
0249
0248
024D
024F
024F
0251
0252
0254
0256
0258
025a
025C
025D
025E
025F
0261
0263
0264
0247
0249
026E
024C
024E
0270
0272
0275
0277
0279
0278
027E
0280
0282
0284
0287

00

oC
oD

02

87
F9

FS
08
05

EC
02
05
44
08
40

[0):]

114

A0
A0
AC
AO

03
01
02
02

03

00
00

00

A0

AQ

AQ
AC

Fig. 7.9: Slot Machine Program (Continued)

START

KEY

i
$SUBROUTINE TO DISPLAY

STA DIR1A
8TA DDRI1B
STA DDR3B
LDA TiCL
STA RND+1
LDA 48

STA SCORE
TAY

JSR LIGHT
JSR GETKEY
JSR DISFLY
JSR EVAL
LDA SCORE
BNE KEY
BEQ@ START

$GET SEED FOR RANDOM # GEN.
$INITIAL SCORE IS EIGHT.

$SHOW INITIAL SCORE

$ANY KEY FPRESSELD STARTS PROGRAM.
$SPIN WHEELS

$CHECK SCORE AND SHOW IT

$#IF SCORE <> Oy GET NEXT FLAY.
$IF SCORE = 0» RESTART.

‘SFINNING’ LEDS,

$FIND COMBINATION TO USED TO DETERMINE SCORE.

§
LOLIM
HILIM
SPIPRM
DISPLY

LDRND
GETRND

UFDATE
UFDTLF

NORST

SFOUPD

LEDUPD

OFFLD®

LDA #0

STA INCR
STA INCR+1
STA INCR+2
LDY #2

JSR RANDOM
CMP #HILIM
BCS GETRND
CMP #LOLIM
BCC GETRND
STA INDX»Y
STA SPEENS»Y

BFL GETRND
LDX #2

LOY SPEEDSsX
BEQ NXTUFD
DEC INDX.X
BNE NXTUPD

$RESET POINTERS.

$SET INDEX FOR 3 ITERATIONS.
$GET RANDOM #.

iTOO LARGE?

$IF S0» GET ANOTHER.

$TOOD SMALLT

$IF 50s GET ANOTHER.

$SAVE IN LOOF INDEXES AND
5LOOF SPEED COUNTERS.

$GET NEXT RND #.

$SET INDEX FOR THREE ITERATIONS.
#1S SPEED(X)>=07

#IF SOr DO NEXT UFDATE.
sNECREMENT LOOF INDEX (X3}

#IF LOOFINDEX(X) <« O

#D0 NEXT UFPDATE,

LDY INCRsX
INY

CPY #3

BNE NORST
LDY #0

STY INCR:X
STX TEMP

TXA

ASL A

CLC

ADC TEMP

ADC INCRsX
TAY

LA LTABRLEsY
STA LTMSKeX
LDY SFEEDS,X
INY

STY SFEEDSsX
STY INDXsX
LDA #0

STA PORTI1E
LDA LTMSK+2
BNE OFFLDY
LDA #01

STA PORT1EB
LDA #0

ORA LTMSK
ORA LTHMSK+1
STA PORT1A
LDA PORT3B

7 INCREMENT FOINTER(X).

$POINTER = 37

$IF NOT SKIP...

7+++RESET OF POINTER TO O.
FRESTORE FOINTER(X).

FMULTIFLY X BY 3 FOR ARRAY ACCESS.

$ADD COLUMN# TO FTR(X) FOR ROW#.
$XFER TO Y FOR INDEXING.

$GET PATTERN FOR LED.

§STORE IN LIGHT MASK(X).

INCREMENT SFEED(X).

#RESTORE.

$RESET LOOF INDEX(X).

sUFDATE LIGHTS.

JRESET LED #9

COMBINE PATTERNS FOR OUTFUT.
i IF MASK#3 <> Os LED 9 OFF.
iTURN ON LED 9.

JRESET A S0 PATTERN WON‘T BE RAD.
§COMBINE REST OF FATTERNS.

§SET LIGHTS.
i TOGGLE SFEAKER.

REAL TIME SIMULATION

0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0137
0158
0159
0160
0161
0162
0163
01464
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
o181
0182
0183
Q184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
01946
0197
0198
0199
0200
0201

028A
028C
028F
0290
0292
0294
0295
0297
0299
0299
0298
029D
029F
029F
02A1
02A3
02A6
02A7
02A7
02A7
0247
02A7
02A7
02A7
02A7
0249
02AB
02AD
02AF
02B1
02B3
02B3
02B5S
02B7
02B8
02BA
02BC
02RC
02BD
02BIt
02FE
02BF
02C0
02Cc2
02C3
02Cé
02C7
02C%?
02C9
02CB
02CC
02CE
0200
0202
0204
02DB6
oz2p8
02DA
02D0C
02IE
02E1
02E3
02Eé
02E9
O2ER
02EB
O02ED
02EE
02F0
02F3
02F6
02F8
02FA

FF
00

BS
50
05
06
Ab
FF

30

00

12

13
02

OB
11

F9?
02

E?

FF
o1
00
00
00
02

AC

03

00

03

03
03

AQ
A0

EOR
STA
NXTUPD DEX
BPL
Loy
WAIT DEY
BNE
LDA

#$FF
PORT3E

UPDTLF
#SPOPRM

WAIT
SPEEDS

§LEDS STOFPED.

ORA
ORA
ENE

LDA
STA
JSR
RTS

SPEEDS+1
SPEEDS+2
UPDATE
#0F UPDATES.
#$FF

DUR

DELAY

sDECREMENT X FOR NEXT UFDATE,
$IF X>=0y DO NEXT UFDATE.
$DELAY A BIT TO SLOW
#FLASHING OF LEDS.

$CHECK IF ALL COLUMNS OF

$IF NOT» DO NEXT SEQUENCE

#DELAY TO SHOW USER PATTERN.

$ALL LEDS STOPFPED. LDONE.

H
#SUBROUTINE TO EVALUATE FRODUCT OF SFINy AND

iDISPLAY SCORE W/ TONES FOR WINy LOSEs WIN+ENDGAME,
FAND LOSE+ENDGAME .,

i
HITONE = $20
LOTONE = $FO

EVAL LDA
STA
STA
STA
STA
Loy

CNTLP LDX
INC
DEY
BPL
LDX

SCORLF TXA

ASL
ASL
CLC
ADC
TAY
LA
cLC
ADlC

STA
DEX
BPL
LDA
STA
LDA
EEQ
WIN INC
LpY
CPY
REQ
JSR
LpaA
JSR
JSR
DEC

#0

VALUES
VALUES+1
VALUES+2
SCORTF

42

3TO

INCR»Y
VALUES»s X

CNTLP

#RESET VARIABLES.

$SET INDEX Y FOR I ITERATIONS
COUNT % OF LEDS ON IN EACH ROW.
$CHECK FOINTER(Y),» ADDRNING

jUF # OF LEDS ON IN EACH ROW.

#LOOP IF NOT DONE,

#2 SET INDEX X FOR 3 ITERATIONS.
sOF LOOP TO FIND SCORE.

FROW
A
A
VALUES» X
SCORTE»Y

SCORTF

FMULTIFLY INDEX BY FOUR FOR ARRAY
ACCESS.

sADD # OF LEDS ON IN ROW(X) TO...

7. .ARRIVE AT COLUMN ADDRESS IN ARRAY.
$USE AS INDEX

$GET SCORE FOR THIS SFPIN.

$ADD TO ANY FREVIOUS SCORES

$ACCUMULATEL IN THIS LOOF.

SCORTP

SCORLF
#4660 SET UF
DUR
SCORTF,
LOSE
SCORE
SCORE
#16
WINEND
LIGHT
¥HITONE
TONE
DELAY
SCORTF

$ OVERALL

BNE WIN

RTS
WINEND LDA

STA
STA
STA
LDA
STA

¥$FF
FORT1A
FORT1E
TEMP
¥0
SCORE

Fig. 7.9: Slot Machine Program (Continued)

$RESTORE

#LOOF IF NOT DONE
DURATIONS FOR TONES.

$GET SCORE FOR THIS SFIN.

#IF SCORE IS Oy LOSE A POINT.
$RAISE OVERALL SCORE BY ONE.
iGET SCORE

FWIN W/ 16 FTST

FYES ! WIN+ENDGAME.

#SHOW SCORE,

sFLAY HIGH EEEF.

§SHORT DELAY.

s IECREMENT SCORE TO RE ADRDED TO...
SCORE BY ONE.

#LOOF IF SCORE XFER NOT COMPLETE.
5IIONEs RETURN TO MAIN FROGRAM.
$TURN ALL LEDS ON TO SIGNAL WIN.

$SET FREQ FARM FOR RISING WARELE.

$CLEAR TO FLAG RESTART.

115

ADVANCED 6502 PROGRAMMING

0202 02FC A9 04 LDA #4

0203 O02FE 85 03 STA DUR $SHORT DURATION FOR INDIVIDWAL
0204 0300 FEEEFS IN WARBLE.

0205 0300 AS 00 RISE LDA TEMF $GET FREQUENCY ...

0206 0302 20 64 03 JSR TONE #+¢++..FOR BEEF.,

0207 0305 Cé 00 DEC TEMP $NEXT BEEF WILL BE HIGHER.
0208 0307 DO F?7 ENE RISE DO NEXT BEEF IF NOT DONE.
0209 0309 60 RTS $RETURN FOR RESTART,

0210 030A Cé 02 LOSE DEC SCORE #IF SFIN BAL'y SCORE=SCORE-1
0211 030C A4 02 LIY SCORE i SHOW SCORE

0212 030E 20 3D 03 JSR LIGHT

0213 0311 A9 FO LDA #LOTONE $FLAY LOW LOSE TONE,

0214 0313 20 64 03 JSR TONE

0215 03146 A4 02 LDY SCORE $GET SCORE TO SEE ...

0216 0318 FO 01 BEQ LOSEND $1IF GAME IS OVER.

0217 0314 640 RTS 3IF NOTy RETURN FOR NEXT SFIN.
0218 O031R A9 00 LOSEND LI'A #0 3SET TEMFP FOR USE AS FREQ FARM
0219 03101 85 00 STA TEMF $IN FALLING WARBELE.

0220 031F 8D 01 A0 STA PORT1A $CLEAR LED #t.

0221 0322 A9 04 LIA #4

0222 0324 85 03 STA DUR

0223 0326 AS 00 FALL LDA TEMF

0224 0328 20 64 03 JSR TONE $FLAY BEEF.

0225 032B ES6 00 INC TEMF §NEXT TONE WILL BE LOWER.
0226 032D DO F7 BNE FALL

0227 032F 640 RTS FRETURN FOR RESTART.

0228 0330 H

0229 0330 #VARIABLE LENGTH DELAY SUEROUTINE.

0230 0330 FOELAY LENGTH = (2044%LCONTENTS OF DURJ+10) US.
0231 0330 H

0232 0330 A4 03 DELAY LIDY DUR $GET DELAY LENGTH.

0233 0332 A2 FF L1 LDX $$FF $SET CNTR FOR INNER 2040 US. LOOF
0234 0334 DO 00 DLz BNE %x+2 JWASTE TIME.

0235 03346 CA DEX sDECREMENT INNER LOOF CNTR.
02346 0337 DO FB BNE DL2 #LOOF ‘TILL INNER LOOF DONE.
0237 0339 88 DEY FDECREMENT OQUTER LOOF CNTR.
0238 033A DO Fé BNE DL1 §LOOF ‘TILL DONE.

0239 033C &0 RTS $RETURN.,

0240 033D i

0241 033D #SUBROUNTINE TO LIGHT LEI' CORRESFONDING

0242 033D $TO THE CONTENTS OF REGISTER Y ON ENTERING.

0243 033D H

0244 033D A9 00 LIGHT LI #0 $CLEAR REG. A FOR RIT SHIFT.
0245 033F 85 00 STA TEMF §CLEAR QVERFLOW FLAG.

0244 0341 8D 01 AO STA FORT1A $CLEAR LOW LEDS.

0247 0344 8D 00 AQ STA FORT1E $CLEAR HIGH LEDS,

0248 0347 €O OF CPY #15 $CODE FOR UNCONNECTELD' BIT?
0249 0349 FO 01 BEQ %+3 #IF SOs NO CHNG.

0250 034F 88 DEY FDECREMENT TO MATCH.

0251 034C 38 SEC $SET RIT TO BE SHIFTED HIGH.
0252 034D 2A LTSHFT ROL A $SHIFT RIT LEFT.

0253 034E 90 05 BCC LTCC $1F CARRY SET, OVERFLOW HAS
0254 0350 $0CCURRED! INTO HIGH EYTE.

0255 0350 A2 FF LDX #$FF §SET OVERFLOW FLAG.

0256 0352 86 00 STX TEMF

0257 0354 24 ROL A $MOVE BRIT OUT OF CARRY.

0268 0355 68 LTCC DEY $ONE LESS BIT TO BE SHIFTED.
0259 0356 10 FS BFL LTSHFT $SHIFT AGAIN IF NOT DONE.
0260 0358 A6 00 LDX TEMF $GET OVERFLOW FLAG.

0261 035A DO 04 BNE HIRYTE 5IF FLAG<>0, OVERFLOW: A CONTAINS
0262 035C $HIGH BYTE.

02463 035C 8D 01 A0 LOBRYTE STA FORT1A $STORE A IN LOW ORDER LEDS.
0264 03SF 640 RTS §RETURN.,

0245 0360 8D 00 AO HIBYTE STA FORT1ER $STORE A IN HIGH ORDER LEDS.
0266 03463 640 RTS $RETURN.,

0267 0364 H

0248 0364 $TONE GENERATION SURROUTINE.

0269 0364 H

0270 03464 085 04 TONE STA FREQ

0271 0366 A% FF LDA $$FF

0272 0348 6D 00 AC STA FORT3R

0273 036B A9 00 LA #00

Fig. 7.9: Slot Machine Program (Continued)

116

REAL TIME SIMULATION

0274 036D As6 03 LDX DUR
0275 036F A4 04 FL2 LDY FREQ
0276 0371 88 FL1 DEY

0277 0372 18 cLC

0278 0373 90 00 BCC %+2
0279 0375 DO FA BNE FL1
0280 0377 49 FF EOR #$FF
0281 0379 8D 00 AC STA FORT3B
0282 0372C CA BEX

0283 037D 10 FO BNE FL2
0284 037F 60 RTS

0285 0380 ¥

0286 0380 #RANDOM NUMRER GENERATOR SURROUTINE.
0287 0380 H

0288 0380 38 RANDOM SEC

0289 0381 A5 1S LEA RNLI+H1
0290 0383 65 18 ADC RND+4
0291 0385 65 19 ADC RNID45
0292 0387 85 14 STA RND
0293 038% A2 04 LDX #4
0294 038B RS 14 RNDSH LDA RNIyX
0295 038D 95 15 STA RND+1,X
0296 03BF CA DEX

0297 0390 10 F9 BFPL RNDSH
0298 0392 60 RTS

0299 0393 +END

SYMBOL TAERLE
SYMBOL VALUE

CNTLP 02R3 DDR1A AQ03 DDR1P AQQ2 DDR3E ACO2

DELAY 0330 DISFLY 0227 oLl 0332 L2 0334
DUR 0003 EVAL 02A7 FALL 0326 FL1 0371
FL2 036F FREQ 0004 GETKEY 0100 GETRNIt 0231
HIBYTE 0350 HILIM 0087 HITONE 0020 INCR 000K
INDX 0008 KEY 0218 LDRND 022F LEDUPD 0270
LIGHT 033D LOBYTE 035C LOLIM 005A LOSE 030A
LOSEND 031E LOTONE 00FQ LTARLE Q014 LrCcC Q3355

LTMSK 000E LTSHFT 034p NORST 0258 NXTUFD 028F
OFFLD® 0280 PORT1A A001 FORT1R AQ00 FPORT3R ACOO
RANDOM Q380 RISE Q300 RND 0014 RNDSH 038K
SCORE 0002 SCORLF 02EC SCORTEH 0023 SCORTP 0001
SFPIPRM 0050 SFDUFD 0269 SFEEDS 0005 START 0210
TicL AQO4 TEMP 0000 TONE 0364 UFPDATE 0245
UPDTLP 0247 VALUES 0011 WAIT 0294 WIN ozné
WINEND 02EE

END DF ASSEMBLY

Fig. 7.9: Slot Machine Program (Continued)

— SCORTP is used as a temporary storage for the score gained or
lost on each spin

— SCORE is the game score

— DUR and FREQ specify the usual constants for tone generation

— SPEEDS (3 locations) specify the revolution speeds for the three
columns

— INDX (3 locations): delay counters for LED revolutions

— INCR (3 locations): pointers to the LED positions in each column
used to fetch patterns out of tables

— LTMSK (3 locations): patterns indicating lit LEDs

— VALUES (3 locations): number of LED:s lit in each column

— RND (6 locations): scratch-pad for random number generator.

117

ADVANCED 6502 PROGRAMMING

Program Implementation

The program consists of a main program and two main subroutines:
DISPLY and EVAL. It also contains some utility subroutines: DELAY
for a variable length delay, LIGHT to light the appropriate LED,
TONE to generate a tone, and RANDOM to generate a random
number.

The main program is stored at memory locations 200 and up. As
usual, the three data-direction registers for Ports A and B of VIA#1
and for Port B of VIA#3 must be conditioned as outputs:

LDA #3FF

STA DDRIA
STA DDRIB
STA DDR3B

As in previous chapters, the counter register of timer 1 is used to pro-
vide an initial random number (a seed for the random number generator).
This seed is stored at memory location RND + 1, where it will be used
later by the random number generation subroutine:

LDA TICL
STA RND + 1

On starting a new game, the initial score is set to 8. It is established:

START LDA #8
STA SCORE

and displayed:

TAY Y must contain it
JSR LIGHT

The LIGHT subroutine is used to display the score by lighting up the
LED corresponding to the contents of register Y. It will be described
later.

The slot machine program is now ready to respond to the player.
Any key may be pressed:

KEY JSR GETKEY

118

REAL TIME SIMULATION

As soon as a key has been pressed, the wheels must be spun:
JSR DISPLY

Once the wheels have stopped, the score must be evaluated and
displayed with the accompanying sound:

JSR EVAL

If the final score is not ¢‘0,”’ the process is restarted:

LDA SCORE
BNE KEY

and the user may spin the wheels again. Otherwise, if the score was
““0,” a new game is started:

BEQ START

This completes the body of the main program. It is quite simple
because it has been structured with subroutines.

The Subroutines

The algorithms corresponding to the two main subroutines DISPLY
and EVAL have been described in the previous section. Let us now
consider their program implementation.

DISPLY Subroutine

Three essential subroutine parameters are LOLIM, HILIM, and
SPDPRM. For example, lowering LOLIM will result in a longer spin-
ning time for the LEDs. Various other effects can be obtained by vary-
ing these three parameters. One might be to include a win almost every
time! Here LOLIM = 90, HILIM = 134, SPDPRM = 80.

Memory location INCR is used as a pointer to the current LED
position. It will be used later to fetch the appropriate bit pattern from
the table, and may have the value 0, 1, or 2 (pointing to LED positions
1, 2, or 3). The three pointers for the LEDs in each column are stored
respectively at memory locations INCR, INCR + 1, and INCR + 2.
They are initialized to 0:

119

ADVANCED 6502 PROGRAMMING

DISPLY LDA #0
STA INCR
STA INCR + 1
STA INCR + 2

Note that in the previous examples (such as Figure 7.7), in order to
simplify the explanations, we have used pointers X and Y to repre-
sent the values between 1 and 3. Here, X and Y will have values rang-
ing between 0 and 2 to facilitate indexing. The wheel pointer is set to
the right-most wheel:

LDRND LDY #2
An initial random number is obtained with the RANDOM subroutine:
GETRND JSR RANDOM

The number returned by the subroutine is compared with the accep-
table low limit and the acceptable high limit. If it does not fit within
the specified interval, it is rejected, and a new number is obtained until
one is found which fits the required interval.

CMP #HILIM Too large?
BCS GETRND If so, get another
CMP #LOLIM Too small?
BCC GETRND If so, get another

The valid random number is then stored in the index location INDX
and in the SPEEDS location for the current column. (See Figure 7.10.)

STA INDX,Y
STA SPEEDS,Y

The same process is carried out for column 1 and column 0:

DEY
BPL GETRND Get next random #

Once all three columns have obtained their index and speed, a new
iteration loop is started, using register X as a wheel counter:

120

REAL TIME SIMULATION

O O O]
O O O
O O Of

SPEEDS RANDOM | RANDOM | RANDOM

INDX
INCR 0 0 0
Fig. 7.10: Spinning the Wheels
UPDATE LDX #2 Set counter for 3 iterations

The speed is tested for the value 0O:

UPDTLP LDY SPEEDS,X Is speed (X) = 0?
BEQ NXTUPD If so, update next column

As long as the speed is not 0, the next LED in that column will have to
be lit. The delay count is decremented:

DEC INDX,X Decrement loop, index (X)

121

ADVANCED 6502 PROGRAMMING

If the delay has not decremented to 0, a branch occurs to NXTUPD
which will be described below. Otherwise, if the delay counter INDX
is decremented to 0, the next LED should be lit. The LED pointer is
incremented with a possible wrap-around if it reaches the value 3:

BNE NXTUPD If loop index(X) < >0, do
next update
LDY INCR,X Inc pointer

INY

CPY #3 Pointer = 3?

BNE NORST If not, skip

LDY #0 Reset to 0
NORST STY INCR,X Restore pointer (X)

The new value of the LED pointer is stored back into INCR for the
appropriate column. (Remember that within the UPDATE routine, X
points at the column.) In order to light the appropriate LED, a bit pat-
tern must be obtained from LTABLE. Note that LTABLE (and also
SCORTB) is treated conceptually,as if it was a two-dimensional array,
i.e., having rows and columns. However, both LTABLE and
SCORTB appear in memory as a contiguous series of numbers. Thus,
in order to obtain the address of a particular element, the row number
must be multiplied by the number of columns and then added.to the
column number.

The table will be accessed using the indexed addressing mode, with
register Y used as the index register. In order to access the table, X
must first be multiplied by 3, then the value of INCR (i.e., the LED
pointer) must be added to it,

Multiplication by 3 is accomplished through a left shift followed by
an addition, since a left shift is equivalent to multiplication by 2:

STX TEMP Multiply X by 3
TXA)

ASL A Left shift

CLC

ADC TEMP Plus one

The value of INCR is added, and the total is transferred into register Y
so that indexed addressing may be used. Finally, the entry may be
retrieved from LTABLE:

122

REAL TIME SIMULATION

ADC INCR,X
TAY
LDA LTABLE,Y Get pattern for LED

Once the pattern has been obtained, it is stored in one of three
memory locations at address LTMSK and following. The pattern is
stored at the memory location corresponding to the column currently
being updated, where the LED has ‘“‘moved.’’ The lights will be turned
on only after the complete pattern for all three columns has been im-
plemented. As a result of the LED having moved one position within
that column, the speed constant must be incremented:

STA LTMSK,X
SPDUPD LDY SPEEDS, X

INY '

STY SPEEDS,X

The index is set so that it is equal to the new speed:

STY INDX,X

Note that special handling will now be necessary for LED #9. The
pattern to be displayed on the first eight LEDs was stored in the
LTABLE. The fact that LED #9 must be lit is easily recognized by the
fact that the pattern for column #3 shows all zeroes; since one LED
must be lit at all times within that column, it implies that LED #9 will
be lit:

LEDUPD LDA #0
STA PORTIB Reset LED 9

Next, the pattern for the third column is obtained from the location
where it had been saved at LTMSK + 2. It is tested for the value of 0:

LDA LTMSK + 2
BNE OFFLD9

If this pattern is 0, then LED #9 must be turned on:

LDA #01

123

ADVANCED 6502 PROGRAMMING

STA PORTI1B

Otherwise, a branch occurs to location OFFLD9, and the remaining
LEDs will be turned on. The pattern contained in the accumulator
which was obtained from LTMSK + 2, is successively OR’ed with the
patterns for the second and first columns:

LDA #0
OFFLD9 ORA LTMSK
ORA LTMSK + 1

At this point, A contains the final pattern which must be sent out in
the output port to turn on the required LED pattern. This is exactly
what happens:

STA PORTIA
At the same time, the speaker is toggled:

LDA PORT3B
EOR #$FF
STA PORT3B

It is important to understand that even though only the LED for one
of the three columns has been moved, it is necessary to simultaneously
turn on LEDs in all of the columns or the first and second columns
would go blank!

Once the third column has been taken care of, the next one must be
examined. The column pointer X is therefore decremented, and the
process is continued:

NDTUPD DEX
BPL UPDTLP If X >= 0 do next update

Once the second and the first columns have been handled, a delay is
implemented to avoid flashing the LEDs too fast. This delay is con-
trolled by the speed parameter SPDPRM:

LDY #SPDPRM

WAIT DEY
BNE WAIT

124

REAL TIME SIMULATION

VALUES

ONOR Ik
© @ Ol
!

INCR 1 0 1

Fig. 7.11: Evaluating the End of A Spin

Once this complete cycle has been executed, the speed location for
each column is checked for the value 0. If all columns are 0, the spin is
finished:

LDA SPEEDS
ORA SPEEDS + 1
ORA SPEEDS + 2
BNE UPDATE

Otherwise, a branch occurs at the location UPDATE. If all LEDs
have stopped, a pause must be generated so that the user may see the
pattern:

LDA #SFF
STA DUR
JSR DELAY

and exit occurs:

RTS

125

ADVANCED 6502 PROGRAMMING

Exercise 7-2: Note that the contents of the three SPEEDS locations
have been OR ’ed to test for three zeroes. Would it have been equivalent
to add them together?

EVAL Subroutine

This subroutine is the user output interface. It computes the score
achieved by the player and generates the visual and audio effects. The
constants for frequencies for the high tone generated by a win situation
and the low tone generated by a lose situation are specified at the
beginning of this subroutine:

HITONE = $20
LOTONE = $F0

The method used to compute the number of LEDs lit per row has been
discussed and shown in Figure 7.7. The number of LEDs lit for each
row is initially reset to O:

EVAL LDA #0
STA VALUES
STA VALUES + 1
STA VALUES + 2

The temporary score is also set to 0:

STA SCORTP

Index register Y will be used as a column pointer, and the number of
LED:s lit in each row will be computed. The number of the LED lit for
the current column is obtained by reading the appropriate INCR en-
try. See the example in Figure 7.11. The value contained in each of the
three locations reserved for INCR is a row number. This row number
is stored in register X, and is used as an index to increment the ap-
propriate value in the VALUES table. Notice how this is accomplished
in just two instructions, by cleverly using the indexed addressing feature
of the 6502 twice:

CNTLP LDY #2 3 iterations

LDX INCR,Y
INC VALUES, X

126

REAL TIME SIMULATION

Once this is done for column 2, the process is repeated for columns 1
and 0:

DEY
BPL CNTLP

Now, another iteration will be performed to convert the final numbers
entered in the VALUES table into the actual scores as per the
specifications of the score table, SCORTB. Index register X is used as
a row-pointer for VALUES and SCORTB.

LDX #2

Since the SCORTB table has four one-byte entries per row level, in
order to access the correct byte within the table the row number must
first be multiplied by 4, then the corresponding ‘‘value”’ (number of
LED:s lit) for that row must be added to it. This provides the correct
displacement. The multiplication by 4 is implemented by two suc-
cessive left shifts:

SCORLP TXA
ASL A
ASL A

The number presently contained in the accumulator is equal to 4 times
the value contained in X, i.e., 4 times the value of the row-pointer. To
obtain the final offset within the SCORTB table, we must add to that
the number of LEDs lit for that row, i.e., the number contained in the
VALUES tables. This number is retrieved, as usual, by performing an
indexed addressing operation:

CLC
ADC VALUES,X Column address in array

This results in the correct final offset for accessing SCORTB.

The indexed access of the SCORTB table can now be performed.
Index register Y is used for that purpose, and the contents of the ac-
cumulator are transferred to it:

TAY

127

ADVANCED 6502 PROGRAMMING

The access is performed:

LDA SCORTB,Y Get score for this spin

The correct score for the number of LEDs lit within the row pointed to
by index register X is now contained in the accumulator. The partial
score obtained for the current row is added to the running total for all
rOws:

CLC
ADC SCORTP Total the scores
STA SCORTP Save

The row number is then decremented so that the next row can be ex-
amined. If X decrements from the value 0, i.c., becomes negative, we
are done; otherwise, we loop:

DEX
BPL SCORLP

At this point, a total score has been obtained for the current spin.
Either a win or a lose must be signaled to the player, both visually and
audibly. In anticipation of activating the speaker, the memory loca-
tion DUR is set to the correct tone duration:

LDA #3860
STA DUR

The score is then examined: if 0, a branch occurs to the LOSE routine;

LDA SCORTP
BEQ LOSE

Otherwise, it is a win. Let us examine these two routines.

WIN Routine

The final score for the user (for all spins so far) is contained in
memory location SCORE. This memory location will be incremented
one point at a time and checked every time against the maximum value
16. Let us do it:

128

REAL TIME SIMULATION

WIN INC SCORE
LDY SCORE
CPY #16

If the maximum value of 16 has been reached, it is the end of the game
and a branch occurs to location WINEND:

BEQ WINEND

Otherwise, the score display must be updated and a beep must be
sounded:

JSR LIGHT

The LIGHT routine will be described below. It displays the score to
the player. Next, a beep must be sounded.

LDA #HITONE
JSR TONE

The TONE routine will be described later.
A delay is then implemented:

JSR DELAY

then the score for that spin is decremented:
DEC SCORTP

and checked against the value 0. If it is 0, the scoring operation is com-
plete; otherwise, the loop is reentered:

BNE WIN
RTS

WINEND Routine

This routine is entered whenever a total score of 16 has been
reached. It is the end of the game. All LEDs are turned on
simultaneously, and a siren sound with rising frequencies is activated.
Finally, a restart of the game occurs.

129

ADVANCED 6502 PROGRAMMING

All LEDs are turned on by loading the appropriate pattern into Port
1A and Port 1B:

LDA #$FF
STA PORTIA Turn on all LEDs
STA PORTIB

Variables are reinitialized: the total score becomes 0, which signals to
the main program that a new game must be started, the DUR memory
location is set to 4 to control the duration of time for which the beeps
will be sounded, and the frequency parameter is set to ‘‘FF’’ at loca-
tion TEMP:

STA TEMP Freq. parameter
LDA #0

STA SCORE Clear for restart
LDA #4

STA DUR Beep duration

The TONE subroutine is used to generate a beep:

RISE LDA TEMP Get frequency
JSR TONE Generate beep

The beep frequency constant is then decremented, and the next beep is
sounded at a slightly higher pitch:

DEC TEMP
BNE RISE

Whenever the frequency constant has been decremented to 0, the siren
is complete and the routine exits:

RTS
LOSE Routine

Now let us examine what happens in the case of a lose situation. The
events are essentially symmetrical to those that have been described
for the win.

In the case of a loss, the score needs to be updated only once. It is
decremented by 1:

130

REAL TIME SIMULATION

LOSE DEC SCORE
The lowered score is displayed to the user:

LDY SCORE
JSR LIGHT

An audible tone is generated:

LDA #LOTONE
JSR TONE

The final value of the score is checked to see whether a ‘‘0’’ score has
been reached. If so, the game is over; otherwise, the next spin is
started: '

LDY SCORE
BEQ LOSEND
RTS

Let us look at what happens when a ‘‘0’’ score is reached (LOSEND).
A siren of decreasing frequencies will be generated. All LEDs will go
blank on the board:

LOSEND LDA #0
STA TEMP
STA PORTIA Clear LED #1

The beep duration for each frequency is set to a value of 4, stored at
memory location DUR:

LDA #4
STA DUR

The beep for the correct frequency is then generated:

FALL LDA TEMP
JSR TONE Play beep

Next, the frequency constant is increased by 1, and the process is
restarted until the TMP register overflows.

131

ADVANCED 6502 PROGRAMMING

INC TEMP Next tone will be lower
BNE FALL
RTS

This completes our description of the main program. Let us now ex-
amine the four subroutines that are used. They are: DELAY, LIGHT,
TONE, and RANDOM.

DELAY Subroutine

This subroutine implements a delay; the duration of the delay is set
by the contents of memory location DUR. The resulting delay length
will be equal to (2046 x DUR + 10) microseconds. The delay is im-
plemented using a traditional two-level, nested loop structure. The
inner-loop delay is controlled by index register X, while the outer-loop
delay is controlled by index register Y, which is initialized from the
contents of memory location DUR. Y is therefore initialized:

DELAY LDY DUR

The inner loop delay is then implemented:

DL1 LDX #$FF

DL2 BNE *+2 Waste time
DEX Inner loop counter
BNE DL2 Inner loop

And, finally, the outer loop is implemented:
DEY
BNE DLI
RTS

Exercise 7-3: Verify the exact duration of the delay implemented by
the DELAY subroutine.

LIGHT Subroutine

This subroutine lights the LED corresponding to the number con-
tained in register Y. Remember that the fifteen LEDs on the Games

132

REAL TIME SIMULATION

Board are numbered externally from 1 to 15 but are connected to bits 0
to 7 of Port 1A and 0 to 7 of Port 1B. Thus, if a score of 1 must be
displayed, bit 0 of Port 1A must be turned on. Generally, bit N of Port
1A must be turned on when N is equal to the score minus one. However,
there is one exception. To see this, refer to Figure 1.4 showing the
LED connections. Notice that bit 6 of Port 1B is not connected to any
LEDs. Whenever a score of fifteen must be displayed, bit 7 of Port 1B
must be turned on. This exception will be handled in the routine by
simply not decrementing the score when it adds up to fifteen.

The correct pattern for lighting the appropriate LED will be created
by shifting a ‘‘1”’ into the accumulator at the correct position. Other
methods will be suggested in the exercise below. Let us first initialize:

LIGHT LDA #0
STA TEMP
STA PORTIA
STA PORTIB

We must first look at the situation where the score contained in Y is
15 and where we do nothing (no shift):

CPY #15 Code for uncorrected bit?
BEQ *+3 If so, no change

For any other score, it is first decremented, then the shift is per-
formed: '

DEY Decrement to internal code
SEC Set bit to be shifted
LTSHFT ROL A

The contents of the accumulator were zeroed in the first instruc-
tion of this subroutine. The carry is set to the value 1, then shifted into
the right-most position of A. (See Figure 7.12.) This process will be
repeated as many times as necessary. Since we must count from 1 to
14, or 0 to 13, an overflow will occur whenever the *“1°’ that is rotated
in the accumulator ‘‘falls off’’ the left end. As long as this does not
happen, the shifting process continues, and a branch to location
LTCC is implemented:

BCC LTCC

133

ADVANCED 6502 PROGRAMMING

7

0

-

Q0 Q

4

¥ T T L] v L]
0 00 0 O0OQ0
L i i L

b A

]

T

“—] BEFORE

-
00
L

T T Ty
0 00 0 01
L L A A e

o

AFTER 1 ROTATION

0 0

00001 0
S U S S |

‘.l AFTER 2 ROTATIONS

00

L

L L L L
00 0000

L 'y L A L L

AFTER 9 ROTATIONS

L

(““OVERFLOW"")

]

However, if the ¢“1”’ bit does fall off the left end of the accumulator,
the value *‘FF’’ is loaded at memory location TEMP to signal this oc-
currence. Remember that the value was cleared in the second instruc-

Fig.7.12: Creating the LED Pattern

tion of the LIGHT subroutine.

The ¢‘1”’ bit is then moved from the carry into the right-most position
of the accumulator. Later, the value contained in memory location
TEMP will be checked, and this will determine whether the pattern
contained in the accumulator is to be sent to Port 1A or to Port 1B.

134

LDX #3FF
STX TEMP

REAL TIME SIMULATION

The shifting process continues. The counter is decremented, and, if
it reaches the value ‘0, we are done; otherwise, the process is
repeated:

ROL A
LTCC DEY
BPL LTSHFT

Once the process is completed, the value of memory location TEMP is
examined. If this value is ‘‘0,”’ it indicates that no overflow has oc-
curred and Port 1A must be used. If this value is not “‘0,” i.e., it is
““FF,”’ then Port 1B must be used:

LDX TEMP Get overflow flag
BNE HIBYTE
LOBYTE STA PORTIA A sent to low LEDs
RTS Return
HIBYTE STA PORTIB A sent to high LEDs
RTS
TONE Subroutine

This subroutine generates a beep. The frequency of the beep is
determined by the contents of the accumulator on entry; the duration
of the beep is set by the contents of the memory location DUR. This
has already been described in Chapter 2.

RANDOM Subroutine

This is a simple random number generator. The subroutine has
already been described in Chapter 3.

Exercise 7-4: Suggest another way to generate the correct LED pattern
in the accumulator, without using a sequence of rotations.

Game Variations

The three rows of LEDs supplied on the Games Board may be inter-
preted in a way that is different from the one used at the beginning of
this chapter. Row 1 could be interpreted as, say, cherries. Row 2 could
be interpreted as stars, and row 3 could be interpreted as oranges.
Thus, an LED lit in row 1 at the end of a spin shows a cherry, while

135

ADVANCED 6502 PROGRAMMING

two LEDs in row 3 show two oranges. The resulting combination is
one cherry and two oranges. The scoring table used in this program
can be altered to score a different number of points for each combina-
tion, depending upon the number of cherries, oranges, or stars present
at the end of the spin. It becomes simply a matter of modifying the
values entered into the scoring table. When new values are entered in-
to the scoring table a completely different scoring result will be im-
plemented. No other alterations to the program will be needed.

SUMMARY

This program, although simple in appearance, is relatively complex
and can lead to many different games, depending upon the evaluation
formula used once the lights stop. For clarity, it has been organized into
separate routines that can be studied individually.

136

8. Real Time Strategies
(Echo)

INTRODUCTION

A stack technique is used to accumulate information. It is compared
to the use of scratch locations.

THE RULES

The object of this game is to recognize and duplicate a sequence of
lights and sounds which are generated by the computer. Several varia-
tions of this game, such as ‘‘Simon’’ and ‘‘Follow Me’’ (manufacturer
trademarks*), are sold by toy manufacturers. In this version, the player
must specify, before starting the game, the length of the sequence to be
recognized. The player indicates his or her length preference by press-
ing the appropriate key between 1 and 9. At this point the computer
generates a random sequence of the desired length. It may then be
heard and seen by pressing any of the alphabetic keys (A through F).

When one of the alphabetic keys is pressed, the sequence generated
by the program is displayed on the corresponding LEDs (labeled 1
through 9) on the Games Board, while it is simultaneously played
through the loudspeaker as a sequence of notes. While this is happen-
ing, the player should pay close attention to the sounds and/or lights,
and then enter the sequence of numbers corresponding to the sequence
he or she has identified. Every time that the player presses a correct
key, the corresponding LED on the Games Board lights up, indicating
a success. Every time a mistake is made, a low-pitched tone is heard.

At the end of the game, if the player has guessed successfully, all
LEDs on the board will light up and a rising scale (succession of notes)
is played. If the player has failed to guess correctly, a single LED will
light up on the Games Board indicating the number of errors made,
and a descending scale will be played.

If the player guessed the series correctly, the game will be restarted.
Otherwise, the number of errors will be cleared and the player will be
given another chance to guess the series.

*“Follow Me”’ is a trademark of Atari, Inc., ““Simon’’ is a trademark of Miiton Bradley Co.

137

ADVANCED 6502 PROGRAMMING

At any time during a game, the player may press one of the
alphabetic keys that will allow him or her to hear the sequence again.
All previous guesses are then erased, and the player starts guessing
again from the beginning.

Two LEDs on the bottom row of the LED matrix are used to com-
municate with the player:

LED 10 (the left-most LED) indicates ‘‘computer ready — enter the
length of the sequence desired.”’

LED 11 lights up immediately after the player has specified the
length of the sequence. It will remain lit throughout the game and it
means that you should ‘‘enter your guess.”’

At this point, the player has three options:

1. To press a key corresponding to the number in the sequence that
he or she is attempting to recognize.

2. To press key 0. This will result in restarting the game.

3. To press keys A through F. This will cause the computer to play
the sequence again, and will restart the guessing sequence.

Variations

The program provides a good test for your musical abilities. It is
suggested that you start each new game by just listening to the se-
quence as it is played on the loudspeaker, without looking at the LEDs.
This is because the LEDs on the Games Board are numbered, and it is
fairly easy to remember the light sequence simply by memorizing the
numbers. This would be too simple. The way you should play it is to
start with a one-note sequence. If you are successful, continue with a
two-note sequence, and then with a three-note sequence. Match your
skills with other players. The player able to recognize the longest se-
quence is the winner. Note that some players are capable of recogniz-
ing a nine-note sequence fairly easily.

After a certain number of notes are played (e.g., when more than
five notes are played), in order to facilitate the guessing you may
allow the player to look at the LEDs on the Games Board. Another
approach might be to allow the player to press one of the alphabetic keys
at any time in order to listen to the sequence again. However, you may
want to require that the player pay a penalty for doing this. This could
be achieved by requiring that the player recognize a second sequence
of the same length before trying a longer one. This means that if, for
example, a player attempts to recognize a five-note sequence but
becomes nervous after making a mistake and forgets the sequence,

138

REAL TIME STRATEGIES

that player will be allowed to press one of the alphabetic keys and hear
the sequence again. However, if the player is successful on the second
attempt, he or she must then recognize another five-note sequence
before proceeding to a six-note one.

You can be even tougher and specify that any player is allowed a
replay of the stored pattern a maximum of two, three, or five times
per game. In other words, throughout the games a player may replay
the sequence he or she is attempting to guess by pressing one of the
alphabetic keys, but this resource may be used no more than n times.

An ESP Tester

Another variation of this game is to attempt to recognize the se-
quence without listening to it or seeing it! Clearly, in such a case you
can rely only on your ESP (Extra Sensory Perception) powers to
facilitate guessing. In order to determine whether you have ESP or
not, set the length of the initial sequence to ‘‘1.”” Then, hit the key in
an attempt to guess the note selected by the program. Try this a
number of times. If you do not have ESP your results should be ran-
dom. Statistically, you should win one out of nine times which is only
one-ninth of the time, or 11.11% of the time. Note that this percent-
age is valid only for a large number of guesses.

If you win more than 11% of the time, you may have ESP! If your
score is higher than 50%, you should definitely run for political office
or immediately apply for a top management position in business. If
your score is less than 11%, you have ‘‘negative ESP’’ and you should
consider looking both ways before crossing the street.

The following is an exercise for readers who have a background in
statistics.

Exercise 8-1: Compute the statistical probability of guessing a correct
two-number sequence, and a correct four-number sequence.

A TYPICAL GAME

The program starts at location 200. As usual, LED 10 lights up as
shown in Figure 8.1. We specify a series of length two by pushing key
“2”’ on the keyboard. The LED display as it appears in Figure 8.2,
means ‘‘enter your guess.”’

We want to hear the tunes so we push key “‘F.”’ In response, LEDs §
and 2 light up briefly on the Games Board and corresponding tones

139

ADVANCED 6502 PROGRAMMING

gOOOOO

n 12 13 14 15

Fig. 8.1: Specify Length of Sequence to Duplicate

~O

-O -O
o -0 -0 ~O

5
7 8
15 10 1 12 13 15

&

10 1 12 13 1

Fig. 8.3: Follow Me

are heard through the speaker. This is illustrated in Figure 8.3. We
must now enter the sequence we have recognized. We push *‘5”’ on the
keyboard. In response, LED 11 goes blank and LED 5 lights up briefly.
Simultaneously, the corresponding note is played through the speaker.
It is a successful guess!

Next, we press key “2.>” LED 2 lights up, and the speaker produces
the matching tone indicating that our second guess has also been suc-
cessful. A moment later, all LEDs on the board light up to con-
gratulate us and the rising scale is sounded. It is a sequence of notes of
increasing frequencies meant to confirm that we have guessed suc-

140

REAL TIME STRATEGIES

cessfully. The game is then restarted, and LED 10 lights up, as shown
in Figure 8.1.

Let us now follow a losing sequence: LED 10 is lit at the beginning
of the game, as in Figure 8.1. This time we press key ‘“1°’ in order to
specify a one-note sequence. Led 11 lights up, as shown in Figure 8.2.
We press key ““F,”’ and the note is played on the speaker. (We do not
look at the Games Board to see which LED lights up, as that would be
too easy.) We press key ¢‘3.”” A “‘lose’’ sound is heard, and LED 1
lights up indicating that one mistake has been made. A decreasing
scale is then played (notes of decreasing frequencies) to confirm to the
unfortunate player that he or she has guessed the sequence incor-
rectly. The game is then continued with the same sequence and length,
i.e., the situation is once again the one indicated in Figure 8.2.

If at this point the player wants to change the length of the se-
quence, Or enter a new sequence, he or she must explicitly restart the
game by pressing key 0. After pressing key 0, the situation will be
the one indicated in Figure 8.1, where the length of the sequence can
be specified again.

THE ALGORITHM

The flowchart for this program is shown in Figure 8.4. Let us ex-
amine it, step-by-step:

1. The program tells the player to select a sequence length by

lighting LED 10 on the Games Board.

2. The sequence length is read from the keyboard. (Keys 0 and

A-F are ignored at this point.)

3. The two main variables are initialized to ¢‘0,”’ i.e., the number

of guesses and the number of errors are cleared.

4. A sequence table of the appropriate length must then be
generated using random numbers whose values are between 1
and 9.

Next, LED 11 is lit, and the player’s keystroke is read.

If it is *‘0,”” the game is restarted. Otherwise, we proceed.

7. If the keystroke value is greater than or equal to 10, it is an
alphabetic character and we branch off to the right part of the
flowchart into steps 8 and 9. The recorded sequence is displayed
to the player, all variables are reinitialized to 0, and the guess-
ing process is restarted. If the keystroke was a number between
1 and 9, it must be matched against the stored value. We go to
10 on the flowchart.

[o ¥/}

141

ADVANCED 6502 PROGRAMMING

‘ START ’

Y vy

SIGNAL PLAYER TO
1 ENTER SEQUENCE
LENGTH

|

READ SEQUENCE
2 LENGTH FROM
KEYBOARD

Y

3 | GUESS NUMBER =0
ERRORS =0

Y

FILL SEQUENCE TABLE

4 WITH RANDOM

NUMBERS BETWEEN
1AND9

Yy

5 READ PLAYER
KEYSTROKE

KEYSTROKE = 0?

Fig. 8.4: Echo Flowchart

142

REAL TIME STRATEGIES

KEY NUMBER
<107

!

8 PLAY SEQUENCE

KEY NUMBER =
STORE[’)? VALUE

\

GUESS NUMBER =0
ERRORS =0

[

18 { INCREMENT ERRORS

Y
LIGHT LED (KEY

19| PLAY LOW TONE 11 NUMBER) PLAY
TONE (KEY NUMBER)

R

12 INCREMENT GUESS
NUMBER

13

GUESS

NUMBER =

SEQUENCE

LENGTH
?

Y

DISPLAY NUMBER OF
16 ERRORS, PLAY
DESCENDING TONES

Y

17 | GUESS NUMBER = 0
LIGHT ALL LEDS ERRORS = 0

15 | PLAY ASCENDING
TONES

Fig. 8.4: EchoFlowchart (Continued)

143

ADVANCED 6502 PROGRAMMING

10. If the guess was correct, we branch right on the flowchart to
step 11.

11. Since the key pressed matches the value stored in memory, the
corresponding LED on the Games Board is lit, and the tone
corresponding to the key that has been pressed is played.

12. The guessed number is incremented, and then it is compared to
the maximum length of the sequence to be guessed.

13. A check is made to see if the maximum length of the sequence
has been reached. If it has not, a branch occurs back to step §
on the flowchart, and the next keystroke is obtained. If the
maximum length of the sequence has been reached, we proceed
down the flowchart to the box labeled 14.

14. The total number of errors made by the player is checked. The
variable ERRORS is tested against the value ““0.”’ If it is *‘0”’ it
is a winning situation and a branch occurs to box 15.

15. All LEDs on the board are lit, a sequence of ascending tones is
played, and a branch occurs back to the beginning of the game.

Let us now go back to box 14. If the number of errors was greater
than zero, this is a ‘“lose’’ situation and a branch occurs to box 16.

16. The number of errors is displayed, and a sequence of descend-

ing tones is played.

17. All variables are reset to 0, and a branch occurs to box 5, giving
the player another chance to guess the series.

Now we shall turn our attention back to box 10 on the flowchart,
where the value of the key was being tested against the stored value.
We will assume this time that the guess was wrong, and branch to the
left of box 10.

18. The number of errors made by the player is incremented by

one.

19. A low tone is played to indicate the losing situation. The pro-
gram then branches back to box 12 and proceeds as before.

THE PROGRAM

The complete program appears in Figure 5.1. The program uses two
tables, and several variables. The two tables are NOTAB used to
specify the note frequencies, and DURTAB used to specify the note
durations. Both of these tables were introduced in Chapter 2, and will
not be described here. Essentially, they provide the delay constants re-
quired to implement a note of the appropriate frequency and to play it
for the appropriate length of time. Note that it is possible to modify

144

REAL TIME STRATEGIES

LINE

0002
0003
0004
Q005
0004
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
00264
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
00464
0047
0048
0049
0050
0051
0052
0053
0054
00535
0054
0057
0058
0059
0040
0041
0062
0043
00649
Q065
00664
0047
Q048
0069
0070

$ L0OC

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0200
0200
0202
0205
0208
020R
0200
0210
0212
0214
0217
0219
021R
021D
0220
0223
0225
0227
0229
022R

A9
8o
an

CORE

AQ

? AO
2 AC

AQ

214

O
¢1

L INE

‘ECHQ’

FFATTERN/TOME RECALL AMD ESF TEET FROGRAM,
$THE USER GUESESES A FATTERN OF LIT 4
FTHEIR ASSOCIATED TONES. THE TOME/LIGHY
SCOMBINATION CAN RE FLAYED: S0 THAT THE USER
FMUST REMEMBER IT AND R cTL
i OFERATING THE FRO

$THE STARTING AID 3 3
$THE BROTTOM ROW OF LEDS T AN TMDICATOR
iFOR PROGRAM STATUS! .“F LEFTMOST

FOME (#10) INDICATES THAT THE FR
18 EXFECTING THE USER TO IMFUT THE
FOF THE SEQUENCE TO0O BE GUESSEDR.
$#THE LLED SECONI! FROM THE ($11) INDICATES
$THAT THE FROGRAM FYPFPTQ FYTHEP ~ GU
§THE COMMAND TQ REETART THE GAME (2)» !
$THE COMMAND TO FLAY THE SE L If-FY L
FTHE KEYS 1-9 ARE ASSQCTIATED WITH THE

FLEDS 1~9.

FLOOKING AT THE SECLENCE WRILE IN THE XIDINE
$0F GUESSING IT WILL ERASE ALL FREVIOQUS
FEUESSES (RESET BESND AMIY ERRE TQ).

SAFTER A WINs THE FPROGRAM RESTARTS.

8]
LENGTH

7
FLINKNAGES:
GETKEY = 100

¥
FVARIABLE STORAGES:?
DIGITS = 400 $MUMRER OF HT“
GESNG = 01 FNUMEER OF C
FC(WHERE THE UQER ™
ERRS = $02 FMUMBER 0OF ER
FGUESSING CLRREMT SEQUEMCE.

IUR = $03 s TEMF STORMAGE FOR MQTE T
FREQ = $04 FTEME STORAGE FOR MOTE
TEMF = $05 FTEMFORARY STORNAGE FOR M
TARLE = %04 FSTORAGE FOR

$0F

Ia #¥1 ADDRE

$A001
nDFlﬁ = E$A80032
FORT1E $N00C
DORIE = $A0D2
TiC = $A004

i65‘7 VIA #3 ATNNRESSES

FORT3RE = $ACOC

DNR3E = $ACO2

§
X = $200

§

START LI #$FF $BET HF OATA DIRECTINM RE
ETA DIOR1A
STA UDRRIE
STA INR3
Lnn #0 FCLEAR UARTARLE STORAGES
ST PORTIA §...4MR LEDS

GISTERS.

5TA

gTN

Lon IET SEER FOR RMD £ GEN.
ST FAMD STORE IN RNI' SCRA
5TA

LnA FTURN LED #10 OM TN

STA FDRE FOR LENGTH TMPUT,
DIGKEY .IgR GETKEY $GET LEMGTH OF CER

GMP #0 T8 IT o 7

KEQ DIGKEY $IF YEE: GET AMOTHER.

CMF %10 FLENGTH GREATER THAM 97

RPL DIGKEY $TF.YESy GET ANOTHER.

STA NIGITS $SAVE UALID LENGTH

$NE

Fig. 8.5: Echo Program

145

ADVANCED 6502 PROGRAMMING

0071 022 AaA TaAX FUSE LENGTH-1 NS INDEX FOR FILLIMG...
0072 O22E CA DEX $..SERIES W/RAMNDOM VALUES.
0073 022F 86 03 FILL STX TEMF FSAVE X FROM ‘RANDOM
0074 0231 20 E7 02 JER RANDOM

0075 0234 A6 05 LIX TEMF $RESTORE X

0076 02346 F8 SELD 0 A DEIMAL ADJUST

0077 237 18 cLc

0078 0238 6% 00 ATIC #0

0079 023A I8 CL.I

0080 023B 29 OF AND' #$0F $REMOVE WFFER MYERELE SO

0081 0230 FNUMRER IS <10

0082 0230 FO FO REQ FILL #% CAN’T RE ZEROD,

0083 O0R23IF 95 06 STA TARLEs,X $STORE % IN TARLE

0084 0241 CA TEX sNECREMENT FOR NEXT

0085 0242 10 ER EFL. FILL $L.0OOF IF NOT D'ONE

00846 0244 A9 00 KEY LTIA %0 iLEAR LEDS

0087 0244 8D 01 A0 STA FORT1A

0088 0249 A9 04 LDA #%0100 ;TURN INFUT INDICATOR OM.
008% 024R 8! 00 AQ STa FORTIER

0090 024E 20 00 01 JSR GETKEY FGET GUESS OR FLAY CMIt.
0091 0291 C9 00 CMF %0 318 IT O 7

0092 0253 FO AR STRTJF BREQR START $IF YESy RESTART.

0093 0255 C% 04 CMF #10 iNUMBRER < 10 7

0094 0257 30 22 BMI EVAL $IF YES: EVALUATE GUESE.

0095 0259 H

0094 0259 JROUTINE TD DISFLAY SERIES TD RE GUESSED RY
0097 02359 SLIGHTING LEDS AND PLAYING TONES IN SEQUENCE.
0098 0239 i

0099 02592 A2 00 SHOW LI %0

0100 OR23R 86 01 STX BESND $CLEAR ALL CURRENT GUESSES.
0101 0250 84 02 STX ERRS #CLEAR CURRENT ERRORS.

0102 O025F R3S 06 SHOWL.F LA TARLE,X §GET XTH ENTRY IN SERIES TARLE.
0103 0241 86 05 §TX TEMF ;SaVE X

0104 0263 20 CF 02 JSR LIGHT #LIGHT LETH(TARLE(X))

0105 0266 20 FA 02 JSR FLAY $FLAY TOMER(TARLE(X))

0106 0269 A0 FF LYY #$FF ;SET LOOF CNTR. FOR DELAY
0107 026B 66 03 DELAY ROR DUR FWASTE TIME

0108 0260 26 03 ROL. INUR

0109 OR264F 88 DEY $COUNT DOWN., ..

0110 0270 IO F9 ENE DELAY 3IF NOT DONEs LOOF AGATM.
0111 0272 A6 05 L.IX TEMF SRESTORE X

0112 0274 EB8 INX FINCREMENT TNDEX T SHOW NEXT
0113 0275 E4 00 CEX NIGITS ALl DIGITE SHOWM?

0114 0277 IO Eé ENE SHOWLF $IF NOT, SHOW NEXT.

0115 0279 FO0 C? REQ KEY FIIONE! GET NEXT IMFUT.

0114 OR27R H

0117 027R FROUTINE TO EVALUATE GUESSES OF FLAYER.

0118 O027R §

01192 O027R A6 01 EyYAL LIX GESNO $GET NUMBER OF GUESS.
0120 0270 S 06 CMF TABLE:X $GUESS = CORRESFOMDING DRIGTT?
0121 027F FO On REQ CORECT $IF YESy SHOW PLAYER.

0122 0281 E6 02 WRONG INC ERRS $GUESS WRONG: ANMOTHE RROF.
0122 0283 A% 80 DA $£$80 fDURATION FOR LOW TONE TO IMDICATE
0124 0285 S 03 §TA DUR FBAD GUESS,

0125 0287 A9 FF LIt #$FF 3FREQUENCY CONSTANT

0126 0289 20 04 03 JSR PLYTON §FLAY IT

0127 028C FO 06 REQ ENDRCHK $CHECK FOR ENDGAME

0128 O28E 20 CF 02 CORECY JSR LIGHT $YALIDATE CORRECT GUESE. . .
0129 0291 20 FA 02 JSR

0130 0294 E& 01 ENDNCHK INC FONE MORE GUESE TAKEMN.
0131 0296 5 00 L.Ié z

0132 0298 S 01 CHP ALl IIGITS GUESSEDT

0133 029A DO A8 ENE KEY §IF NOTy GET T.

0134 02%C 5 02 i.IA ERRS §GET NUMBER OF ERRORS.

0135 029E C9% 00 CMF #0 §ANY ERRORS?

01346 0240 FO 15 BEQ WIN §1IF NOTs FLAYER WINS.

0137 02a2 20 CF 02 LOSE JER LIGHT #EHOW NUMERER OF ERRORS.
0138 02A5 A9 09 LA 9 sPLAY 8 DESCENTIING TONES

0139 02a7 48 LOSELF FHA

0140 02A8 20 FA O2 JSR FLAY

0141 02aR 48 FLA

146

Fig. 8.5: Echo Program (Continued)

REAL TIME STRATEGIES

0142 O02AC 138 SEC

0143 02A' E? 01 SRC #1

0144 02AF DO Fé ENE LOSELF

0145 02R1 85 01 STA GESNO $CLEAR VARIAELES

0146 02B3 85 02 STA ERRS

0147 O02E5 FO 8D BEQR KEY $GET NEXT GUESS SERUENCE
0148 O02B7 A9 FF WIN LA #%FF FTURN ALL LEDRS OM FOR WIN
0149 O2E%? 8@ 01 AQ STA FORT1A

0150 02rC 8L 00 AO 6TA FORTLE

0151 O02BF A9 01 LDA #1 SFLAY 8 ASCENDIMNG TONES

0152 02C1 48 WINLF FHA

0153 02C2 20 Fa 02 JSR FLAY

0154 02C5 648 FLA

0155 02Cé 18 Ci.c

0156 02C7 49 01 ADC #01

0157 02C9 C9% OA CHF #10

0158 O02CE IO F4 BNE WINLF

0159 02Ch FO 84 BEQR STRTJF iUSE DOUBLE-~JUMF FOR RESTART
0140 O02CF §

0161 02CF FROUTINE TO LIGHT NTH LEDI'» WHERE N IS

0142 02CF $THE NUMEER FASSED AS A FARAMETER IN

01463 02CF $ THE ACCUMULATOR.

0144 OQ2CF]

01465 02CF 48 LIGHT FHA FiSAVE A

0166 0200 A8 TAY FUSE A AS COUNTER IN Y

0147 0201 A% 00 LDA #0 sCLEAR A FOR RIT SHIFT

Q0148 0203 80 00 AO STA FORT1E $CLEAR HI LEDS.

0149 0206 38 SEC sGENERATE HI RIT TO SHIFT LEFT.
Q170 0207 2A LTSHFT ROL A #MOVE HI BIT LEFT.
0171 0208 88 DEY sDECREMENT COUNTER

0172 020 IO FC BNE LLTSHFT $SHIFTS DONE?

0173 O20F 8O 01 A0 STA FORT1A #STORE CORRECT FATTERN
0174 02DE 90 05 ECC LTCC SEIT 9 NOT HI, DONE.

0175 O02E0 A9 O1 LA #1

0176 O02E2 8D 00 AO STA FORTLE $TURN LED' 2 ON.

0177 OQ2ES 648 LTCC FLA $RESTORE A

0178 O02E6 &0 RTS § IONE .

0179 02E7 i

0180 OQ2E7 #RANDOM NUMBER GENERATOR! RETURNS W/ NEUW
o181 O02E7 FRANDOM NUMEER IN A.

0182 02E7 H

0183 O2E7 38 RANDOM SEC

0184 O02E8 A5 10 1.I'A RND+1

0185 O02EA &5 13 ADNC RND+4

0186 O2EC 45 14 AIC RNIM4S

0187 O2EE 85 OF STA RNI

0188 O02F0 A2 04 LDX #4

0189 02F2 RS OF RNDLF LDA RNDsX

0190 O02F4 935 10 STA RNL+1sX

0191 02Fé6 CA TEX

0192 02F7 10 F9 EFL RNILF

0193 02F9 &0 RTS

0194 0Q2FA §

0195 02FA PROUTINE TO FLAY TONE WHOSE NUMBER I8 FASSED
0196 O02FA FIN RY ACCUM, IF ENTEREDI! AT FLYTONy IT WILIL
0197 O02FA $FLAY TONE WHOSE LENGTH IS IN DUR,» FREQUENCY
0198 O2FA 5 IN ACCUMULATOR.

0199 O02FA i

0200 02FA A8 FLAY TAY $USE TONE# AS TNDEX...
0201 O2FEk 88 DEY $DECREMENT TO MATCH TAERLES
0202 O02FC B? 27 03 LI'A DURTARsY §GET DURATION FOR TOMNE# N,
0203 O2FF 85 03 STA DUR FSAVE IT.

0204 0301 E9 1E 03 LIIA NOTAEsY $GET FRER. CONST FOR TONE# N
0205 0304 85 04 FLYTON STA FREQ $SAVE IT.

0206 0306 A9 00 LDA #0 $SET SFKR FORT LO.

0207 0308 8D 00 AC 8TA FORT3E

0208 O030B A6 03 LIX DUR $GET DURATION IN # OF 1/2 CYCLES.
0209 030D A4 04 FL2 LY FREQ iGET FREQUENCY

0210 030F 88 Fi.1 DEY FCOUNT DIOWN DELAY...
0211 0310 18 Ci.c SWASTE TIME

0212 0311 90 00 RCC *+2

Fig. 8.5: Echo Program (Continued)

147

ADVANCED 6502 PROGRAMMING

0213 0313 10 Fa ENE FL1 $#LOOF FOR DELAY

0214 0315 49 FF EOR #$FF 3 COMFLEMENT FORT

0215 0317 8h 00 AC STA FORT3E

0216 031a CaA mEX SCOUNT DOWN DURATION, ..

0217 031R 1O FO BNE FL2 #LO0OF Tl NOTE OVER,

0218 031D &0 RTS § HONE .

0219 031E §

0220 O031E FTARLE FOR NOTE FREQUENCIES.

0221 031E H

0222 031E C9 NOTAE LRYTE CPrREs$A 3969 BEy7E,$70: 4545 45F

0222 031F BE
0222 0320 A9
0222 0321 96
0222 0322 BE
0222 0323 7E
0222 0324 70
0222 0325 44
0222 0324 BSE

0223 0337 [

0224 0327 FTAELE FOF NOTE DURATIONS.

022% 0327 H

0226 0327 4R DURTAR BYTE $&Es$72:$80:$8Fy 524, 5AA $RF N7y 4E4

0226 0328 72
0226 0329 80
0226 032A 8F
0226 0328 %4
0226 032C AA
0226 032D EF
0226 032E 17
02246 032F E4
0227 0330 +END

SYMBOL TARLE
SYMEOL VALUE

CORECT 028E ROR1A AO03

DELAY 026R nIGITS 0000

OURTAR 0327 ENDCHK 0294

FILL 022F FL1 030F

GESND 0001 GETKEY 0100 KEY

I.0SE 02a2 LLOSELF 02a7 LTCC LTGHFT [s ?
NOTAR 031E FLAY 02Fn FLYTON FORT1A A
FORT1E A0QO FORT3R ACOO RANDIOM RN QOOF
RNDLF 02F2 SHOW 0259 SHOWLF START 0200
STRTJF 0253 T1iCL AQO4 TARLE TEMF 000H
WIN 02RB7 WINLF 0201 WRONG

END' OF ASSEMBLY

Fig. 8.5: Echo Program (Continued)

the difficulty of the game by increasing or decreasing the duration
during which each note is played. Clearly, reducing the duration
makes the game more difficult. Increasing the duration will usually
make it easier, up to a point. You are encouraged to try variations,

The main variables used by the program are the following:

DIGITS contains the number of digits in the sequence to be
recognized.

GESNO indicates the number of the current guess, i.e., which of the
notes in the series the user is attempting to recognize.

ERRS indicates the number of errors made by the player so far.

TABLE is the table containing the sequence to be recognized.

148

REAL TIME STRATEGIES

A few other memory locations are reserved for passing parameters
to subroutines or as scratch-pad storage. They will be described within
the context of the associated routines.

As usual, the program starts by setting the data direction registers
for Port 1A, Port 1B and Port 3B to an output configuration:

START LDA #$FF
STA DDRI1A
STA DDR1B
STA DDR3B
Next, all LEDs on the board are turned off:

LDA #0
STA PORTIA

and the two variables, ERRS and GESNO, are set to 0:

STA ERRS
STA GESNO

The random number generator is primed by obtaining a seed and stor-
ing it at locations RND + 1 and RND + 4:

LDA TICL Read timer counter.
STA RND + 1
STA RND + 4

The game is now ready to start. LED 10 must be turned on to indicate
to the player that the game is ready:

LDA #%010 Pattern for LED 10
STA PORTI1B Specify length

The keyboard is scanned for the player input using the usual GETKEY
subroutine (described in Chapter 1):

DIGKEY JSR GETKEY

It is checked for the value ‘“Q’’;

149

ADVANCED 6502 PROGRAMMING

CMP #0
BEQ DIGKEY If = 0, get another one

If the entry was “‘0,”’ the program waits for another keystroke. Other-
wise, it is compared to the value 10:

CMP #10 Sequence longer than 9
BPL DIGKEY

If the sequence length is greater than 9, it is also rejected. Accepting
only valid inputs, using a bracket is known as ‘‘reasonableness
testing’’ or ‘‘bracket-filtering.”’

If all is fine, the length of the sequence to be recognized is stored at
memory location DIGITS:

STA DIGITS Length of sequence

A running pointer is then computed and stored at location TEMP. It
is equal to the previous length minus 1:

TAX Use X for computation
DEX Decrement
FILL STX TEMP

The RANDOM subroutine is then called to provide a first random
number:

JSR RANDOM

The position pointer in the series of notes now being generated is
retrieved from TEMP, and stored in index register X in anticipation
of storing the new random number in TABLE:

LDX TEMP

The value of the random number contained in the accumulator is then
converted to a decimal value between 0 and 9. This process can be per-
formed in various ways. Here, we take advantage of the special
decimal mode available on the 6502. The decimal mode is set by speci-
fying:

SED Set decimal mode

150

REAL TIME STRATEGIES

Note that the carry flag must be cleared, prior to an addition:
CLC Clear carry

The trick used here is to add ¢‘0’’ to the random number contained in
the accumulator. The result in the right part of A is guaranteed to be a
digit between 0 and 9, since we are operating in the decimal mode.
Naturally, any other number could also be added to A to make its con-
tents ‘‘decimal’’; however, this would change the distribution of the
random numbers, and some numbers in the series such as 0, 1, and 2
might never appear. Once this conversion has been performed, the
decimal mode is simply turned off:

ADC #0 Add ““0”’ in decimal mode
CLD Clear decimal mode

This is a powerful 6502 facility used to a great advantage in this in-
stance. In order to guarantee that the result left in A be a decimal
number between 0 and 9, the upper nibble of the byte is removed by
masking it off:

AND $#0F

Finally, a value of ‘“0’’ is not allowed, and a new number must be ob-
tained if this is the current value of the accumulator:

BEQ FILL

Exercise 8-2: Could we avoid this special case for ‘0°’ by adding a
value other than “°0°’ to A above?

If this is not the current value of the accumulator, we have a decimal
number between 1 and 9 that is reasonably random, which can now
be stored in the table. Remember that index register X has been
preloaded with the current number’s position in the sequence (re-
trieved from memory location TEMP). It can be used, as is, as an in-
dex:

STA TABLE,X Store # in table

The number pointer is then decremented in anticipation of the next
iteration:

151

ADVANCED 6502 PROGRAMMING

DEX

and the loop is reentered until the table of random numbers becomes
full:

BPL FILL

We are now ready to play. LED 12 will be turned on, signaling to the
player that he or she may enter a guess:

KEY LDA #0
STA PORTIA
LDA #%0100
STA PORTIB

The player’s guess is then read from the keyboard:
JSR GETKEY Get guess

It must be tested for ‘0’ or for an alphabetic value. Let us test for
“O”: .

CMP #0 Is it 0?
STRTIJP BEQ START If yes, restart

If it is “0,”” the game is restarted, and a branch occurs to location
START. If it is not ¢‘0,”’ we must check for an alphabetic character:

CMP #10 Number <10?
BMI EVAL If yes, evaluate correctness

If the value of the input keystroke is less than ten, it is a guess and is
evaluated with the EVAL routine. Otherwise, the program executes
the SHOW routine to display the series.

The SHOW Routine

We will assume here that an alphabetic key has been pressed. BMI
fails, and we enter the SHOW routine. This routine plays the
computer-generated tune and lights up the corresponding sequence of
LEDs. Also, whenever this routine is entered, the guessing sequence is

152

REAL TIME STRATEGIES

restarted and the temporary variables are reset to 0:

SHOW LDX #0
STX GESNO
STX ERRS Reset all variables

The first table entry is obtained, the corresponding LED is lit, and the
corresponding tone is played:

SHOWLP LDA TABLE,X Get Xth entry in table

STX TEMP Save X
JSR LIGHT Light LED # TABLE (X)
JSR PLAY Play tone # TABLE (X)

An internote delay is then implemented using Y as the loop counter
and two dummy instructions to extend the delay:

LDY #$FF
DELAY ROR DUR Dummy instruction
ROL DUR Dummy
DEY Count down
BNE DELAY End of loop test

We are now ready to perform the same operation for the next note in
the current table. The index pointer is restored and incremented:

LDX TEMP Restore X
INX Increment it

It is then compared to the maximum number of digits stored in the
table. If the maximum has been reached, the display operation is com-
plete and we go back to label KEY. Otherwise, the next tone is sound-
ed, and we go back to label SHOWLP:

CPX DIGITS All digits shown?
BNE SHOWLP
BEQ KEY Done, get next input

The EVAL Routine

Let us now examine the routine which evaluates the guess of the

153

ADVANCED 6502 PROGRAMMING

player. It is the EVAL routine. The value of the corresponding entry in
TABLE is obtained and compared to the player’s input:

EVAL LDX GESNO Load guess number into X
CMP TABLE, X Compare guess to number
BEQ CORECT If correct, tell player

If there is a match, a branch occurs to location CORECT; otherwise,
the program proceeds to label WRONG. Let us examine this case. If
the guess is wrong, one more error is recorded:

WRONG INC ERRS
A low tone is played:

LDA #380
STA DUR
LDA #$FF
JSR PLYTON Play it

A jump then occurs to location ENDCHK:
BEQ ENDCHK Check for end of game

Exercise 8-3: Examine the BEQ instruction above. Will it always result
in a jump to label ENDCHK? (Hint: determine whether or not the Z
bit will be set at this point.)

Exercise 8-4: What are the merits of using BEQ (above) versus JMP?

Now we shall consider what happens in the case of a correct guess.
If the guess is correct, we light up the corresponding LED and play the
corresponding tone. Both subroutines assume that the accumulator
contains the specified number:

CORECT JSR LIGHT Turn on LED
JSR PLAY Play note to confirm

We must now determine whether we have reached the end of a se-

quence or not, and take the appropriate action. The number of
guesses is incremented and compared to the maximum length of the

154

REAL TIME STRATEGIES

stored tune:

ENDCHK INC GESNO One more guess
LDA DIGITS
CMP GESNO All digits guessed?
BNE KEY If not, get next key closure

If we are not done yet, a branch occurs back to label KEY. Otherwise,
we have reached the end of a game and must signal either a *‘win’’ or a
““lose’’ situation. The number of errors is checked to determine this:

LDA ERRS Get number of errors
CMP #0 No error?
BEQ WIN If not, player wins

If a ““‘win”’ is identified, a branch occurs to label WIN. This will be
described below. Let us examine now what happens in the case of a
“lose’’:

LOSE JSR LIGHT Show number of errors

The number of errors is displayed by lighting up the corresponding
LED. Remember that the accumulator was conditioned prior to enter-
ing this routine and contained the value of ERRS, i.e., the number of
errors so far.

Next, a sequence of eight descending tones is played. The top of the
stack is used to contain the remaining number of tones to be played:

LDA #9 Play 8 descending tones
LOSELP PHA Save A on stack

JSR PLAY Play tone

PLA Restore A

Once a tone has been played, the remaining number of tones to be
played is decremented by one and tested for ‘‘0”’:

SEC Set carry (for subtract)
SBC #1 Subtract one
BNE LOSELP

Exercise 8-5: Note how the top of the stack has been used as a tem-

155

ADVANCED 6502 PROGRAMMING

porary scratch location. Can you suggest an alternative way 10 achieve
the same result without using the stack?

Exercise 8-6: Discuss the relative merits of using the stack versus using
other techniques to provide temporary working locations for the pro-
gram. Are there potential dangers inherent in using the stack?

Eight successive tones are played. Then the two work variables,
GESNO and ERRS, are reset to ‘‘0,’’ and a branch occurs back to the
beginning of the program:

STA GESNO Clear variables
STA ERRS
BEQ KEY Get next guess sequence

Let us examine now what happens in a ““win”’ situation, All LEDs on
the Games Board are turned on simultaneously:

WIN LDA #3FF It is a win: turn all LEDs on
STA PORTIA
STA PORTIB

Next, a sequence of eight ascending tones is played. The tone number
is stored in the accumulator and will be used as an index by the PLAY
subroutine to generate an appropriate note. As before, the top of the
stack is used to provide working storage:

LDA #1 A will be incremented to 9
WINLP PHA Save A on the stack

JSR PLAY

PLA

The number of tones which have been played is then incremented by 1
and compared to the maximum value of 9:

CLC Clear carry for addition
ADC #01
CMP #10

As long as the maximum of 9 has not been reached, a branch occurs
back to label WINLP:

156

REAL TIME STRATEGIES

BNE WINLP
Otherwise, a new game is started:
BEQ STRTIJP Double jump for restart

This completes the description of the main program. Three
subroutines are used by this program. They will now be described.

The Subroutines
LIGHT Subroutine

This subroutine assumes that the accumulator contains the number
of the LED to be lit. The subroutine will light up the appropriate LED
on the Games Board. It will achieve this result by writing a *“1’’ in the
appropriate position in the accumulator and then sending it to the ap-
propriate output port. Either Port 1A will be used (for LEDs 1 through
8) or Port 1B (for LED 9). The ‘“1°’ bit is written in the appropriate
position in the accumulator by performing a sequence of shifts. The
number of shifts is equal to the position of the LED to be lit. Index
register Y is used as a shift-counter. The number of the LED to be lit is
saved in the stack at the beginning of the subroutine and will be
restored upon exit. Note that this is a classic way to preserve the con-
tents of an essential register during subroutine execution so that the
contents of the accumulator will be unchanged upon subroutine exit.
If this was not the case, the calling program would have to explicitly
preserve the contents of the accumulator prior to calling the LIGHT
subroutine. Then it might have to load it back into the accumulator
prior to using another one of the routines, such as the PLAY routine.
Because LIGHT and PLAY are normally used in sequence, it is more
efficient to make it the subroutine’s responsibility to save the contents
of the accumulator. Let us do it:

LIGHT PHA Preserve A
The shift-counter is then set up:
TAY Use Y as shift counter

and the accumulator is initialized to ““0’:

157

ADVANCED 6502 PROGRAMMING
LDA #0 Clear A
LED 9 is turned off in case it was lit:
STA PORTIB
The shifting loop is then implemented. The carry bit is initially set to

““1,”” and it will be shifted left in the accumulator as many times as
necessary:

SEC Set carry
LTSHFT ROL A

DEY

BNE LTSHFT

The correct bit pattern is now contained in the accumulator and dis-
played on the Games Board:

STA PORTIA
However, one special case may arise: if LED 9 has been specified, the

contents of the accumulator are ‘0’ at this point, but the carry bit has
been set to *‘1°’ by the last shift. This case must be explicitly tested for:

BCC LTCC Is bit 9 set?

If this situation exists, the accumulator must be set to the value
“00000001,”’ and output to Port 1B:

LDA #1
STA PORTIB Turn LED 9 on

We finally exit from the routine without forgetting to restore the ac-
cumulator from the stack where it had been saved:

LTCC PLA Restore A
RTS

Exercise 8-7: List the registers destroyed or altered by this subroutine
every time it is executed.

158

REAL TIME STRATEGIES

Exercise 8-8: Assume that register Y must be left unchanged upon
leaving this subroutine. What are the required program changes, if
any?

RANDOM Subroutine

This subroutine generates a new random number and returns its
value in A. Its operation has been described in Chapter 4.

PLAY Subroutine

This subroutine will normally play the tone corresponding to the
number contained in the accumulator. Optionally, it may be entered
at location PLYTON and will then play the tone corresponding to the
frequency set by the accumulator and corresponding to the length
specified by the contents of memory location DUR. Let us examine it.

Index register Y is used as an index to the two tables required to
determine the note duration and the note frequency. In this game, up
to 9 notes may be played, corresponding to LEDs and keys 1 through
9. Index register Y is first conditioned:

PLAY TAY Use tone # as index
DEY Decrement to internal value

Note that the index register must be decremented by one. This is
because key 1 corresponds to entry number 0 in the table, and so on.
The duration and frequencies are obtained from tables DURTAB and
NOTAB using the indexed addressing mode. They are stored respec-
tively at locations DUR and FREQ:

LDA DURTAB,Y Get duration

STA DUR Save it
LDA NOTAB,Y Get frequency
PLYTON STA FREQ Save it

The speaker is then turned off:

LDA #0
STA PORT3B Set speaker Port 3B

Two loops will now be implemented. An inner loop will use register Y
as the delay-counter to implement the correct frequency for the note.

159

ADVANCED 6502 PROGRAMMING

Register X will be used in the outer loop and will generate the tone for
the appropriate duration of time.
Let us condition the two counter registers:

LDX DUR Get duration in # of 2 cycles
FL2 LDY FREQ Get frequency

Next, let us implement the inner loop delay:

FL1 DEY
: CLC Waste time
BCC *+2
BNE FL1 Delay loop

Note that two ‘‘do-nothing’’ instructions have been placed inside the
loop to generate a longer delay. At the end of this inner loop delay the
contents of the output port connected to the loudspeaker are com-
plemented in order to generate a square wave.

EOR #$FF Complement port

Note that, once more, EOR #S$FF is used to complement the contents
of a register.

STA PORT3B
The outer loop can then be completed:

DEX
BNE FL2 Outer loop
RTS

SUMMARY

This program demonstrates how simple it is to implement electronic
keyboard games that sound for input/output and that are challenging
to adult players.

Exercise 8-9: The duration and frequency constants for the nine notes
are shown in Figure 8.6. What are the actual frequencies generated by
the program?

160

REAL TIME STRATEGIES

NOTE FREQUENCY DURATION

CONSTANT CONSTANT
! co 6B
2 BE 72
3 A9 80
4 9% 8F
5 8 94
6 7 AA
7 70 BF
8 64 07
9 5E E4

Fig. 8.6: Frequency and Duration Constants

161

9. Using Interrupts
(Mindbender)

INTRODUCTION

Interrupts are generated by using the programmable interrupt timer
of the 6522 VIA, a common 6502 I/0 chip. The programmable interrupt
timer is used in the free-running mode to generate a wave form.

THE RULES

This game is inspired by the commercial game of MasterMind
(trademarked by the manufacturer, Invicta Plastics, Ltd.). In this
game, one or more players compete against the computer (and against
each other). The computer generates a sequence of digits — for exam-
ple, a sequence of five digits between ‘‘0’’ and ‘‘9’’ — and the player
attempts to guess the sequence of five numbers in the correct order.
The computer responds by telling the player how many of the digits
have been guessed accurately, and how many were guessed in their
correct location in the numerical sequence.

LEDs 1 through 9 on the Games Board are used to display the com-
puter’s response. A blinking LED is used to indicate that the player’s
guess contains a correct digit which is located in the right position in
the sequence. A steadily lit LED is used to indicate a digit correctly
guessed but appearing out of sequence. Several players can match
their skills against each other. For a given complexity level — say, for
guessing a sequence of seven digits—the player that can correctly guess
the number sequence with the fewest guesses is the winner.

The game may also be played with a handicap whereby a given
player has to guess a sequence of n digits while the other player has to
guess a sequence of only n — 1 digits. This is a serious handicap, since
increasing the level of difficulty by one is quite significant.

A TYPICAL GAME

Both audio and visual feedback are used to play this game.

162

USING INTERRUPTS

The Audio Feedback

Every time that a player has entered his or her sequence of guesses,
the computer responds by sounding a specific tone. A low tone in-
dicates an incorrect guess; a high tone indicates that the sequence was
guessed correctly.

The Visual Feedback

At the beginning of each game, LED #10 is lit, requesting the length
of the sequence to be guessed. This is shown in Figure 9.1. The player
then specifies the sequence length as a number from 1 through 9. Any
other input will be ignored.

Fig. 9.1: Enter Length of Sequence

As soon as the length has been specified, for example, let’s say the
length ‘“2’’ has been selected, LED #11 lights up. This means ‘‘Enter
your guess.’’ (See Figure 9.2.) At this point the player enters his or her
guess as a sequence of two digits. Let us now play a game.

J
POQRQRRRQ

11 12

Fig. 9.2: Enter Your Guess

The player types in the sequence ‘“1,2.”” A low tone sounds, LEDs
10 and 11 go out briefly, but nothing else happens. The situation is in-
dicated in Figure 9.3. Since LEDs 1 through 9 are blank, there is no .
correct digit in the guess. Digits ‘‘1”’ and ‘‘2’’ must be eliminated. Let
us try another guess.

We type ““3,4.”” A low tone sounds, but this time LED #1 is steadily
on, as indicated in Figure 9.4. From this we know that either ‘‘3’’ or

163

ADVANCED 6502 PROGRAMMING

~O

® -0 -0 O
:0 <O -0 -0

Q
?
O

15

—
—

10 12 13

Fig. 9.3: Player Enters Wrong Guess

~O

® -O -0 00—
:0 -O O O

@
Q
O

—
—

10 12 13 15

Fig. 9.4: One Correct Digit in the Corract Position

““4” is one of the digits and that it belongs in the other position. Con-
versely, the sequence ¢‘4,3,”” must have one good digit in the right
position, Just to be sure let us perform a test.

We now type ‘‘4,3.”” A low tone sounds, indicating that the se-
quence is not correct, but this time LED #1 is on and blinking.
This proves that our reasoning is correct, and we proceed.

We now try ‘‘4,5.”” A high-pitched sound is heard and LEDs 1 and 2

164

USING INTERRUPTS

light up briefly, indicating that those digits have been guessed correct-
ly and that we have won our first game.

At the end of the game, the situation reverts to the one at the begin-
ning, as indicated in Figure 9.1. Note that typing in a value other than
“¢1>’ through ‘9’ as a guess will restart the game.

There is a peculiarity to the game: if the number to be guessed con-
tains two identical digits, and the player enters this particular digit in
one of its two correct locations, the computer response will indicate
this digit as being both the right digit in the right place and the right
digit in the wrong place!

THE ALGORITHM

The flowchart for Mindbender is shown in Figure 9.5, Interrupts are
used to blink the LEDs. Interrupts will be generated automatically by
the programmable interval timer of VIA #1 at approximately 1/15th-
of-a-second intervals.

Referring to Figure 9.5, all of the required registers and memory loca-
tions will be initialized first. Next (box 2 on the flowchart), the length
of the sequence to be guessed is read from the keyboard. The validity
bracket ‘1’ to ‘9"’ is used to ‘‘filter’’ the player’s input.

Next, a random sequence must be generated. In box 3 of the
flowchart, a sequence of random numbers is generated and stored in a
digit table, starting at address DIGO.

In box 5, the computer’s sequence of numbers is compared — one
number at a time — with the player’s guess. The algorithm takes one
digit from the computer sequence and matches it in order against
every digit of the player sequence. As we have already indicated, this
may result in lighting up two LEDs, if ever there are two or more iden-
tical digits in the number to be guessed and the player has specified
only one digit. One digit may be flagged as being in the right place,
and also as being correct but in the wrong location(s).

Note that, alternatively, another comparison algorithm could be
used in which each digit of the player’s sequence is compared in turn
with each digit of the computer’s sequence.

Once the digits have been compared, the resulting score is displayed
on the LEDs (box 6). Finally, a test is made for a win situation (box 7),
and the appropriate sound is generated (box 8).

165

ADVANCED 6502 PROGRAMMING

‘ MINDBENDER ’

Y

1 INITIALIZE

R

2 READ LENGTH OF
SEQUENCE = DIGITS

Y

GENERATE RANDOM
3 | NUMBERS AND STORE
IN DIGIT TABLE

vy

4] READ USER GUESSES
INTO ENTRY TABLE

Y

COMPARE GUESS
5 WITH CORRECT
NUMBERS

DISPLAY SCORE
6 CORRECT DIGITS
AND CORRECT PLACE

LOSE WIN

LOW SOUND 8 HIGH SOUND

Fig. 9.5: Mindbender Flowchart

166

USING INTERRUPTS

THE PROGRAM
Data Structures

Two tables of nine entries are used to store, respectively, the com-
puter’s sequence and the player’s sequence. They are stored starting at
addresses DIGO and ENTRYO. (See Figure 9.6.)

The Variables

Page 0 is used, as usual, to provide additional working registers,
i.e., to store the working variables. The use of page 0 is indicated as a
““memory map’’ in Figure 9.6. The first nine locations are used for the
program variables. The function of each variable is indicated in the il-
lustration and will be described in detail as we examine the program
below. Locations ‘‘09”’ through ‘“OE’’ are reserved for the random
table used to generate the random numbers. Locations ‘‘OF”’ through
17>’ are used for the DIGO table used to store the computer-
generated sequence of random numbers. Finally, locations ‘18’ and
following are used to contain the sequence of digits typed by the user.

The memory locations used for addressing input/output and for in-
terrupt vectoring are shown in Figure 9.7. Locations ‘‘A000’’ through
““A005’ are used to address Ports A and B of VIA #1 as well as timer
T1. The memory map for a 6522 VIA is shown in Figure 9.8.

Location ““A00B’’ is used to access the auxiliary control register,
while location ‘“‘AOOE’’ accesses the interrupt-enable register. For a
detailed description of these registers the reader is referred to the 6,0.
Applications Book (reference D302).

Memory locations ‘“‘A67E’’ and ““A67F’’ are used to set up the in-
terrupt vector. The starting address of the interrupt-handling routine
will be stored at this memory location. In our program, this will be ad-
dress ‘‘O3EA.”’ This is the routine in charge of blinking the LEDs. It
will be described below. Finally, Port 3 is addressed at memory loca-
tions “AC00’’ and ““AC02.”’

Program Implementation

A detailed flowchart for the Mindbender program is shown in
Figure 9.9. Let us now examine the program itself. (See Figure 9.13.)

The initialization block resides at memory addresses 0200-0239 hex-
adecimal and conditions interrupts and 1/0. First, interrupts are con-
ditioned. Prior to modifying the interrupt vector which resides at ad-

167

ADVANCED 6502 PROGRAMMING

00
01
02
03
04
05
06
07
08
RND V4
0A
08
oC
oD
OE

DIGO OF

ENTRYO 18

168

DIGITS

DUR

XTEMP

YTEMP

CNT

MASKA

MASKB

FREQ

CNT1

7

N N héo bl

/s

2

o T

U

T TN

-
L

Length of Sequence

Tone Duration Constant
Temporary X Register
Temporary Y Register
Number of Matches

Pattern for Blinking LEDs on A
Pattern for Blinking LEDs on B
Tone Frequency Constant

Correct Digits Correct Place
\

L Random Numbers

~ Up to 9 Digits of Numbers to Guess

AMMLIMhiDDUOUD0ID

N NN

Up to 9 Digits

Fig. 9.6: Low Memory Map

AO0O PORTiB
A00} PORT1A
AQ02 DDR1IB
AOO3 DDRTA
A004 TILL
AQ05 TICH
A0O06

A007

AQ08

A009

AOOA

A008 ACR
AQOC

A00D

AOQE IER

N NN
NN

AG7E

IRQVECL

A67F

IRQVECH

AV Ve Ve e\
AN

AC00 PORT3B
ACO1
ACO2 DDR3B

NN

Fig. 9.7: High Memory Map

USING INTERRUPTS

169

ADVANCED 6502 PROGRAMMING

02

03

04

05

07

0A

oB

oC

0D

OE

OF

ORB (PBO TO PB7)

ORA (PAO TO PA7)

DDRB

DDR A

Til-/TIC-L

TIC-H

TIL-L

TiL-H

T2L-L/T2C-L

T2C-H

SR

ACR

PCR (CA1,CA2,CB2,CB1)

IFR

IER

ORA

1/0 dota, port A

Used for control-affects handshake

Data direction registers

Counter-low

Counter-high

Timer 1
Latch-low
Latch-high
Latch-low
Counter-low Timer 2

Counter-high

Shift register

Auxiliary

Function control
Peripheral
Flags

interrupt control
Enable

Output register A
(does not affect handshake)

Fig. 9.8: 6522 VIA Memory Map

dresses ‘“‘A67E’’ and ‘*A67F’ (see Figure 9.7) access to this protected
area of memory must be authorized. This is performed by the AC-
CESS subroutine, which is part of the SYM monitor:

JSR ACCESS

Next, the new interrupt vector can be loaded at the specified location.
The value ‘“03EA”’ is entered at address IRQVEC:

170

LDA #$EA

STA IRQVECL

LDA #$03

STA IRQVECH

Low interrupt vector

High interrupt vector

USING INTERRUPTS

Now the internal registers of the 6522 VIA #1 must be conditioned
to set up the interrupts. The interrupt-enable register (IER) will enable
or disable interrupts. Each bit position in the IER matches the cor-
responding one in the interrupt flag register (IFR). Whenever a bit
position is *‘0,”’ the corresponding interrupt is disabled. Bit 7 of IER
plays a special role. (See Figure 9.10.) When IER bit 7 is ¢‘0,”” each
““1”’ in the remaining bit positions of IER wil ciear the corresponding
enable flag. When IER bit 7 is ““1,’” each ‘‘1”’ written in IER will play
its normal role and set an enable. All interrupts are, therefore, disa-
bled by setting bit 7 to ‘“0’’ and all remaining bits in the IER to ones:

LDA #$7F
STA IER

Next, bit 6, which corresponds to the timer 1 interrupt, is enabled. In
order to do this, bit 7 of IER is set to ‘“1,”” as is bit 6:

LDA #$C0
STA IER

Next, timer 1 will be set in the ‘‘free-running mode.’’ Remember that,
with the 6522, the timer can be used in either the ‘‘one-shot’’ mode or
the “‘free-running mode.”’ Bits 6 and 7 of the auxiliary control
register are used to select timer 1 operating modes. (See Figure 9.11.)
In this instance, bit 7 is set to ‘0’ and bit 6 is set to ““1”’: -

LDA #8$40
STA ACR

Prior to using the timer in the output mode, its counter-register must
be loaded with a 16-bit value. This value specifies the duration of the
square pulse to be generated. The maximum value ‘““FFFF”’ is used
here:

LDA #$FF
STATILL
STA TICH

The actual wave form from timer 1 is shown in Figure 9.12. In order
to compute the exact duration of the pulse, note that the pulse dura-

m

ADVANCED 6502 PROGRAMMING

‘ START ’

INITIALIZE
GET KEY NUMBER
NUMBER DIGITS = TEMP = NUMBER
KEY NUMBER DIGITS
TEMP = NUMBER V})
DIGITS
GET KEY NUMBER
DIGIT (TEMP) = GUESS (TEMP) =
RANDOM NUMBER KEY NUMBER
TEMP = TEMP —1 TEMP = TEMP — |
NO NO
YES YES

Fig. 9.9: Detailed Mindbender Flowchart

172

X =0
B
TEMP = DIGIT(X)
. NO
YES

CNT1 =CNT1 +1

USING INTERRUPTS

-

YES

NO

CNT =CNT +1

Y=Y+1

YVYY

X=X+1

X = NUMBER
DIGITS?

LIGHT LEDs 1
THROUGH CNT1 +
CNT

Y

SET LEDs 1 THROUGH
CNT 1 TO BLINKING

Y

CNT 1
= NUMBER
DIGITS?

Y = NUMBER
DIGITS?

Y

BAD GUESS:
LOW BEEP

WIN: HIGH BEEP

O ©

Fig. 9.9: Detailed Mindbender Flowchart (Continued)

173

ADVANCED 6502 PROGRAMMING

7 6 5 4 3 2 1 0
IFR IRQ
Tt 4+ T2 -+ CBl 4+ CB2 + SR -1 CAl + CA2 o
SET/
IER CLEAR
CONTROL

Fig. 9.10: Interrupt Registers

tion will alternate between n + 1.5 cycles and n + 2 cycles, where n is
the initial value loaded in the counter register.
Next, interrupts are enabled:

CLI

and the three ports used by this program are configured in the ap-
propriate direction:

STA DDRIA Output
STA DDRIB Output
STA DDR3B Output

All LEDs are then cleared:

ACR7 ACR6 MODE

OUTPUT INPUT
ENABLE ENABLE

0
0 (ONE-SHOT)| GENERATE TIME OUT INT WHEN T1 LOADED PB7 DISABLED

1
0 (FREE RUN) GENERATE CONTINUOUS INT PB7 DISABLED

0 GENERATE INT AND OUTPUT PULSE ON PB7 EVERYTIME T1 IS
! (ONE-SHOT)| LOADED = ONE-SHOT AND PROGRAMMABLE WIDTH PULSE

1 GENERATE CONTINUOUS INT AND SQUARE WAVE
1 (FREE RUN) OUTPUT ON PB7

Fig. 9.11: 6522 Auxiliary Control Register Selects Timer 1 Operating Modes

174

USING INTERRUPTS

ottt |
@2
WRITE
N + 1.5 CYCLES , : N + 2 CYCLES

1
ouTt 1 -

Fig.9.12: Timer 1 in Free Running Mode

KEY1 LDA #0
STA PORTIA
STA PORTIB

and the blink masks are initially set to all 0’s:

STA MASKA
STA MASKB

LED 10 is now turned on in order to signal to the player that he or she
should specify the number of digits to be guessed:

LDA #%00000010 Select LED 10
STA PORTIB Turn it on

The key pressed is read using the usual GETKEY routine:
JSR GETKEY Get # digits
A software filter is implemented at this point. The value of the key
read from the keyboard is validated as falling within the range ‘“1”’
through ““9.”’ If it is greater than 9, or less than 1, the entry is ignored:
CMP #10
BPL KEY1

CMP #0
BEQ KEY1

175

ADVANCED 6502 PROGRAMMING

Once validated, the length specified for the sequence is stored at
memory location DIGITS:

STA DIGITS

A sequence of random numbers must now be generated.

Generating a Sequence of Random Numbers

The initial random number is obtained from the counter and used to
start the random number generator. The theory behind this technique
has been described before.

Locations RND + 1, RND + 4, and RND + 5§ are seeded with the
same number:

LDA TILL

STA RND +1
STA RND + 4
STA RND + 5

Then a random number is obtained using the RANDOM subroutine:

LDY DIGITS Get # of digits to guess
DEY Count to 0
RAND JSR RANDOM Filling them with values

The resulting random number is set to a BCD value which guarantees
that the last digit will be between 0 and 9:

SED
ADC #00 Decimal Adjust
CLD
It is then truncated to the lower 4 bits:
AND #$00001111
Once the appropriate random digit has been obtained, it is saved at

the next location of the digit table, using index register Y as a running
pointer:

176

USING INTERRUPTS

STA DIGO,Y

The counter Y is then decremented, and the loop executed until all re-
quired digits have been generated:

DEY
BPL RAND

Collecting the Player’s Guesses

Index register X will serve as a running pointer for the ENTRY
table used to collect the player’s guess. It is initialized to the value
““0,”’ and stored at memory location XTEMP:

EXTRA LDA #0 Clear pointer
STA XTEMP

LEDs 10 and 11 are then turned on to signal the player that he or she
may enter his or her sequence:

LDA #3$00000110
STA PORTIB

The key pressed by the player is read with the usual GETKEY routine:
KEY2 JSR GETKEY

If the key pressed is greater than 9, it is interpreted as a request to
restart the game:

CMP #10
BPL KEY1

Otherwise, the value of the index register X is retrieved from memory
location XTEMP and is used to perform an indexed store of the ac-

cumulator to the appropriate location in the ENTRY table:

LDX XTEMP
STA ENTRY0,X Store guess in table

The running pointer is then incremented, and stored back in memory:

177

ADVANCED 6502 PROGRAMMING

INX
STX XTEMP

Then, the value of the running pointer is compared to the maximum
number of digits to be fetched from the keyboard and, as long as this
number is not reached, a loop occurs back to location KEY2:

CPX DIGITS All numbers fetched?
BNE KEY2 If not, get another

Once the player has entered his or her sequence, the digits must be
compared to the computer-generated sequence. In anticipation of the
display of a possible win the LEDs on the board are blanked and the
masks are cleared:

LDX #0

STX PORTIA
STX PORTIB
STX MASKA
STX MASKB

Two locations in memory will be used to contain the number of cor-
rect digits and the number of correct digits in the correct location.
They are initially cleared:

STX CNT Number of matches
STX CNT1 Number of correct digits

Each entry of the DIGO table will now be compared in turn to all en-
tries of the ENTRYO table. Each digit is loaded from the DIGIT table
and immediately compared to the corresponding ENTRY contents:

DIGLP LDA DIGO,X
‘CMP ENTRYO0,X

If it is not the right digit at the right place, there is no exact match. We
will then check to see if the digit appears at any other place within the
ENTRY table:

BNE ENTRYCMP

178

USING INTERRUPTS

Otherwise, one more exact match is recorded by incrementing location
CNT1, and the next digit is examined:

INC CNT1
BNE NEXTDIG

Let us examine now what happens when no match has occurred. The
digit (of the number to be guessed) which has just been read and is
contained in the accumulator should be compared to every digit within
the ENTRY table. Index register Y is used as a running pointer, and
the contents of the accumulator are compared in turn to each of the
digits in ENTRY:

ENTRYCMP LDY #0
ENTRYLP CMP ENTRYO,Y
BNE NEXTENT

If a match is found, memory location CNT is incremented and the
next digit is examined:

INC CNT
BNE NEXTDIG

Otherwise, index register Y is incremented. If the end of the sequence
is reached, exit occurs to NEXTDIG. Otherwise a branch back occurs
to the beginning of the loop at location ENTRYLP:

NEXTENT INY Increment guess # pointer
CPY DIGITS All tested?
BNE ENTRYLP No: try next one

The next digit in table DIG must then be examined. The running
pointer for DIG is contained in index register X. It is incremented and

compared to its maximum value:

NEXTDIG INX Increment digit # pointer
CPX DIGITS All digits checked

If the limit has not been reached, a branch occurs back to the begin-
ning of the outer loop at location DIGLP:

179

ADVANCED 6502 PROGRAMMING

BNE DIGLP

At this point, we are ready to turn on the LEDs to display the results
to the player.

Displaying the Results to the Player

The total number of LEDs which must be turned on is obtained by
adding the contents of CNT to CNT1:

CLC Get ready for add
LDA CNT
ADC CNT1

The total is contained in the accumulator and transferred into index
register Y where it will be used by the LITE routine:

TAY
JSR LITE

The operation of the LITE routine will be described below, Its effect is
to fill the accumulator with the appropriate number of ones in order
to turn on the appropriate LEDs.

The pattern created by the LITE subroutine is then stored in the
mask:

STA PORTIA

For the special case in which the result is 9, the carry bit will have been
set. This case is explicitly tested:

BCC CC If carry 0, don’t light PBO.

and if the carry had been set to 1, Port B will be set appropriately so
that LED #9 is turned on:

LDA #1 Turn PBO on
STA PORTIB

Recall that once masks A and B have been set up, they will
automatically be used by the interrupt handling routine which will

180

USING INTERRUPTS

cause the appropriate LEDs to blink.

CC "LDY CNTI
JSR LITE
STA MASKA
BCC TEST
LDA #01
STA MASKB

The program must now test for a win or lose situation.

Testing for a Win or Lose Situation

The number of correct digits in the right places is contained in
CNTI1. We will simply compare it to the length of the sequence to be
guessed:

TEST LDX CNTI1
CPX DIGITS

If these numbers are equal, the player has won:
BEQ WIN

Otherwise, a low tone will be sounded. The tone duration constant is
set to *“72,”’ and its frequency value to “‘BE’’:

BAD LDA #3$72
STA DUR
LDA #3BE
The TONE subroutine is then used to generate the tone, as usual:
JSR TONE
Then a return occurs to the beginning of the program:

BEQ ENTER

If a win has occurred, a high-pitched tone will be generated. Its dura-
tion constant is set to ‘“‘FF’’ and its pitch is controlled by setting the

181

ADVANCED 6502 PROGRAMMING

frequency constant to ‘54°’;

WIN LDA #$FF
STA DUR
LDA #$54

As usual, the TONE subroutine is used to generate the tone:
JSR TONE
The game is then restarted:

JMP KEY1

The Subroutines

Four routines are used by this program. They are: LITE, RAN-
DOM, TONE, and INTERRUPT HANDLER. The RANDOM and
TONE routines have been described in previous chapters and will not
be described again here.

LITE Subroutine

When entering this subroutine, index register Y contains the
number of LEDs which should blink. In order to make them blink it
is necessary to load the appropriate pattern into the mask patterns
called MASKA and MASKB. The appropriate number of 1’s has to be
set in these two locations. A test is first made for the value ‘0>’ in Y.
If that value is found, the accumulator is cleared, as well as the carry
bit (the carry bit will be used as an indicator for the fact that Y con-
tained the value ““9”’):

LITE BNE STRTSH Test Y for zero
LDA #0
CLC
RTS

Otherwise, the accumulator is initially cleared, and the appropriate
number of 1’s is shifted left into the accumulator through the carry
bit. They are introduced one at a time by setting the carry bit, then
performing a left shift into A. Each time, index register Y is decre-
mented and the loop is executed again as long as Y is not *‘0’’:

182

USING INTERRUPTS

LDA #0
SHIFT SEC
ROL A Shift into position
DEY
BNE SHIFT Loop
RTS

Note that a rotation to the left is used rather than a shift. If Y did
contain the value ¢*9,”’ the accumulator A would be filled with 1’s and
the carry bit would also contain the value ‘“1”’ upon leaving the
subroutine.

The Interrupt Handler

This subroutine complements the LEDs each time an interrupt is
received, i.e., every time timer 1 runs out. It is located at memory ad-
dresses ‘‘O3EA’’ and following. Since the accumulator is used as a
working register by the subroutine, it must be preserved upon entry
and pushed into the stack:

PHA

The contents of Ports 1A and 1B will be read and then complemented.
Recall that there is no complementation instruction on the 6502, so
an exclusive OR will be used instead. MASKA and MASKB specify
the bits to be complemented:

LDA PORTIA
EOR MASKA
STA PORTIA
LDA PORTIB
EOR MASKB
STA PORTIB

Also recall that the interrupt bit in the 6522 has to be cleared explicitly
after every interrupt. This is done by reading the latch:

LDATILL

Finally, the accumulator is restored, and a return occurs to the main
program:

183

ADVANCED 6502 PROGRAMMING

PLA
RTI

SUMMARY

In this program, we have used two new hardware resources in the
6522 1/0 chip: the interrupt control and the programmable interval
timer. Interrupts have been used to implement simultaneous processing
by blinking the LEDs while the program proceeds, testing for a win or
lose situation.

Exercise 9.1: Could you implement the same without using interrupts?

sMINDBENDER PROGRAM

$FLAYS MINDRENDER GAME: USER SFECIFIES LENGTH OF NUMEER
$TO BE GUESSEDs THEN GUESSES DIGITSs AND COMFUTER TELLS
sFLAYER HOW MANY OF THE DIGITS GUESSED WERE RIGHTs AND
sHOW MANY OF THOSE CORRECT DIGITS WERE IN THE CORRECT
sFLACEy UNTIL THE FLAYER CAN GUESS THE NUMBRER. ON THE
$ROARDy BLINKING LEDRS INDICATE CORRECT VALUE & CORRECT
SDIGITy AND NONBLINKING LEDS SHOW CORRECT DIGIT VALUES
FRUT WRONG FLACE.

s THE BOTTOM ROW OF LEDS IS USED TO SHOW THE MODE OF
$THE FROGRAM! IF THE LEFTMOST LED IS LITs THE

#FROGRAM EXFECTS THE USER TO ENTER THE LENGTH

$0F THE NUMERER TO BE GUESSED. IF THE TWO LEFTMOST
#LEDS ARE LITs THE FROGRAM EXFECTS A GUESS.

$THE FROGRAM REJECTS UNSUITARLE VALUES FOR A NUMEER
SLENGTHs WHICH CAN ONLY BE 1-9. A VALUE OTHER THAN
$0-9 FOR A GUESS RESTARTS THE GAME.

iA LOW TONE DENOTES A EBAD GUESSs A HIGHT TONEs A WIN.
SAFTER A WIN, THE FROGRAM RESTARTS.

FAN INTERRUFPT ROUTINE IS USED TO EBLINK THE LEDS.

’

+=$200
GETKEY =$100
ACCESS =$8E86 #ROUTINE TO UNFROTECT SYS MEM
DIGITS =$00 $NUMERER OF DIGITS TO BE GUESSED
DUr =$01 FTONE DURATION CONSTANT
XTEMF =$02 i TEMF STORAGE FOR X REG.
YTEMF =403 s TEMF STORAGE FOR Y REG.
CNT =$04 $KEEPS TRACK OF # OF MATCHES
MASKA =$05 sCONTAINS FATTERN EOR'ED WITH LER

$STATUS REGISTER A TO CAUSE BLINK

MASKE =$04 #LED FORT B BLINK MASK
FREQ =407 s TEMF STORAGE. FOR TONE FREQUENCY
CNT1 =$08 i% OF CORRECT DIGITS IN RIGHT PLAC
RNI =$0% $FIRST OF RANDOM # LOCATIONS
DIGO =$0F #FIRST OF 9 LIGIT LOCATIONS
ENTRYO =$18 SFIRST OF 9 GUESS LOCATIONS
IRQVECL =$A&47E S INTERRUFT VECTOR LOW ORDER RYTE
IRQVECH =$A&7F §..ANII HIGH ORDER

$6522 VIA #1 REGISTERS!?

Fig. 9.13: Mindbender Program

184

USING INTERRUPTS

IER =$A00E 5 INTERRUPT ENABLE REGISTER

ACR =$A00K FAUXILIARY CONTROL REGISTER

TiLL =$A004 STIMER 1 LATCH LOW

T1CH =$A003 $TIMER 1 COUNTER HIGH

FORT1A =$A001 $VIA 1 FORT A IN/OUT REG

IDR1A =$A003 3VIA 1 PORT A DATA DIRECTION REG.
FORT1R =$A000 #VIA 1 PORT B IN/OUT REG

LIR1E =$A002 iVIA 1 PORT B DATA DIRECTION REG.
FORT 3K =$AC00 $VIA 3 FORT B IN/OUT REG

NDR3E =3$ACO2 $VIA 3 FPORT K DATA DIRECTION REG

’

FROUTINE TO SET UF VARIARLES ANLD INTERRUFT TIMER FOR
fLL.E.D. FLASHING

H

0200¢ 20 86 8B J8R ACCESS §UNFROTECT SYSTEM MEMORY

0203 A? EA LIA #3EA FLOAD LOW INTERRUFT VECTOR

0205¢ 8 7E Ab STA IRQVECL #e0.AND STORE AT VECTOR LOCATION
0208¢ A? 03 LA #$03 $LOAD INTERRUFT VECTOR. ..

020at 8D 7F A6 STA IRQVECH 3.+ AND STORE .

o200 A? 7F LDA #$7F iCLEAR INTERRUFT ENARLE REGISTER
020F: 8\ OE A0 STA IER

02121 A%? CO LDA #$CO $ENABLE TIMER 1 INTERRUFT

0214: 8@ OE A0 STA IER

0217: A% 40 LA #$40 FENABLE TIMER 1 IN FREE-RUN MODE
0219 8D OR A0 STA ACR

Q21C: A9 FF LDA #$FF

021E: 8D 04 A0 STA TILL $SET LOW LATCH ON TIMER 1

0221: 8D 05 A0 STA TICH $SET LATCH HIGH & START COUNT
0224: 58 CLI SENAELE INTERRUFTS

0225¢ 80 03 A0 STA DDR1A $SET VIA 1 FORT A FOR QUTFUT
0228¢ 8D 02 A0 STA DIR1R #SET VIA 1 PORT B FOR OQUTFUT
022R: 80 02 AC STA DNOR3E $SET VIA 3 FORT B FOR OUTFUT
022E! A%? 00 KEY1 LOA #0 $CLEAR LEDS

0230: 8D 01 A0 STA FORT1A

0233¢: 8D 00 A0 STA FORT1R

0236! 85 05 STA MASKA #CLEAR BLINK MASKS

0238: 85 06 STA MASKR

> .

FROUTINE TO GET NUMBER OF DIGITS TO GUESSy THEN
FFILL THE DIGITS WITH RANDOM NUMBERS FROM 0-9
¥

023A: A? 02 L.OA #200000010 #LIGHT LED TO SIGNAL USER TO

023C: 8D 00 A0 STA PORTI1R #INFUT OF # OF DIGITS NEEDED.

Q023F: 20 00 01 JSR GETKEY SGET # OF DIGITS

02421 C? 0A CHF #10 $IF KEY# 9, RESTART GAME

0244: 10 ES8 EFL KEY1

0246% C? 00 CHF %0 FCHECK FOR O DIGITS TO GUESS

0248: FO E4 BEQ KEY1 #4000 DIGITS NOT ALLOWED

024A% 85 00 STA LIGITS JSTORE VALID # OF DRIGITS

024C: al' 04 A0 LA TILL $GET RANDOM %,

024F: 83 0A STA RND+1 SUSE IT TO START RANDOM

0251¢ 85 On STA RND+4 i NUMBER GENERATOR.

0253% 85 OE STA RND+5

0255 A4 00 Loy DIGITS SGET # OF DIGITS TO EBE GUESSED»

0257: 88 nEY #.+AND COUNT TO Oy FILLING
FTHEM WITH VALUES,

0258 20 FF 02 RAND JSR RANDOM #GET RANDOM VALUE FOR DIGIT

Q2SR F8 SED

028C: 69 00 ALC #00 fDECIMAL ADJUST

02SE: D8 cLo

025F: 29 OF AND $700001111 FKEEF DIGIT <10

0261 99 OF 00 STA DRIGO»Y FSAVE IT IN DIGIT TABLE.

0264: 88 LEY

0265: 10 F1 BFL RAND SFILL NEXT DIGIT

Fig. 9.13: Mindbender Program (Continued)

185

ADVANCED 6502 PROGRAMMING

$ROUTINE TO FILL GUESS TABLE W/USERS’S GUESSES

H
0267% A9 00 ENTER LA #0 FCLEAR ENTRY TABLE FOINTER
026%9¢ 85 02 STA XTEMF

024K A? 06 LDA #200000110 SLET USER KNOW THAT GUESSE
02611t Oh 00 AO ORA FORTLR §SHOULDN BE INFUT...

0270% 8D 00 AQ STA FORTILE F++ e WITHOUT CHANGING ARRAY
0273¢ 20 00 01 KEY2 J45R GETKEY §GET GUESS

02761 C? 0A CHMF #10 $IS IT GREATER THAN 27

0278% 10 R4 BFL KEY1 $IF YESs RESTART GAME

027A! A& 02 LOX XTEM# $GET FOINTER FOR INDEXTING

027Ct 95 18 STA ENTRYOsX §STORE GUESS IN TABRLE

027E: E8 INX i INCREMENT FOINTER

027F: 86 02 STX XTEMF

02811 E4 00 CPX DIGITS FCORRECT # OF GUESSES FETCHED?Y
0283: DO EE BNE KEY2 $IF NOTy GET ANOTHER

;THIS ROUTINE FOHPAFF“ USERS ‘S GUESSES WITH DIGITS
FOF NUMERER TO GUE FOR EACH CORRECT DIGLYT IN THE
sCORRECT FPLACE, A BLINKING LED IS LIT» AND FOR EACH
$CORRECT DIGIT IN THE WRONG FLACEs A NONBLINKING
FLED I8 LIT.

0285: A2 00 LOX #0 SCLEAR FOLLOWING STORAG

0287: 8E 01 A0 STX FORTLIA FLEDS

028A% 8E 00 AQ STX FORTAR

0280% 86 05 STX MASKA FBLINK MASKS

028F: 86 06 STX MASKE

02913 86 04 8TX CNT §COUNT OF MATCHES

0293% 86 08 S§TX CNT1 $COUNT OF R I

0295: HS OF LIGLF LOA BIGOSX $L0OAD 18T DI

0297¢ DS 18 CMF ENTRYOsX $RIGHT BUE AL

0299¢ 1O 04 ENE ENTRYCMF $NO? IS GUESS RIGHT DIGIT/
SWRONG FLACE?

029E: E4 0B INC CNT1 FONE MORE RIGHT GUESS/RIGHT PLACE

02908 [0 10 ENE NEXTDIG ~ FEXAMINE NEXT LIGIT OF

029Ft A0 00 ENTRYCHF LIV #0 SRESET GUESS# FTR FOR

0241% 19 18 00 ENTRYLLF CMF ENTRYOsY SRIGHT DIGIT/W .

02A4: DO 04 ENE NEXTENT $NO» SEE IF NEXT DIGT

02A6% E4 04 INGC CNT SONE MORE RIGHT DIGIT/WRONG FL

02A8¢ DO 05 ENE NEXTRIG SEXAMINE NEXT NIGIT OF NUMEE

026At CB NEXTENT INY # INCREMENT BUESS$ FTR

02AE! C4 00 CFY MIGITS iALL G 3

02AD¢ 10 F2 BNE ENTRYLF $NO» TRY NEXT GUESS.

02AF: EB NEXTIIG INX 3 INCREMENT UIGIT# FTR

02B0! E4 00 CFX DIGITS $ALL DIGITS EVALUATED®

02E2: [0 E1 ENE DIGLF $NO» CHECK NEXT BIGIT.

02E4: 18 cLC $GET READY FOR ADNI. ...

O2HS! AS 04 LDA CNT $OF TOTAL MATCHES TO DETERMINE

02R7! 65 08 ADC CNTIL FNUMBER OF LEDS TO LIGHT

02E9: A8 TAY SXFER A TO Y FDR ‘LIGHT’ ROUTINE

02BA! 20 F1 02 JSR LITE $GET FATTERN TO LIGHT LEDS

O2ED: 80 01 A STA FORT1A $TURN LEDS ON

02C0% 90 0% BCC CC $IF CARRY=0, LON’T LIGHT FEO

02C2: A9 01 LDA #1

02C4¢ 8D 00 AO STA FORTIE 3 TURN FEO ON.

02C7: A4 08 ce LDY €NT1 $LOAD # OF LEDS TO FLINK

02C9: 20 F1 02 JSR LITE PGET PATTERN

02CC: 85 0% GTA MASKA $START TO ELINK LEDS

02CE: 90 04 ECC TEST JTF CARRY =0» PEO WON’T BLINK

0200¢ A9 01 LbA #1

0202: 85 06 STA MASKE

?
SROUTINE TD TEST FOR WIN RY CHECKING IF # UF CORRECT

Fig. 9.13: Mindbender Program (Continued)

186

USING INTERRUPTS

0204
02It6:
o2ng:
02DA¢
o2pc:
O2DRE
02E0:
02E3:
O2ES?
02E7?
02E?:
O2EE:
O2EE?

02F1¢
02F 3%
02FS:
02F &3
02F71%
02F9:
02FA:
02FE:

02FC?
O2FE:

Q2FF:
0300
03023
03043
03061%
0308:
030A¢
030C:
030E:
030F 3
0311

03123
0314
0316%
0319:
031K:
0o31D¢

Ab
E4
FoO
A?
835
A
20
FO
A?

AY

4C

noe
A?
18
460
A?
38

88

0o
60

38
AS
&5
65
85
A2

?5
[of2]
10
60

83

8n
A%
Ab
A4

08
00
OR
72

RE
12
82

01
54
12
2F

04
00

00

FE

0A
on
OE
09
04

i 09

0A

F9

07
FF
00
00
01
07

03

03
o2

AL

SDIGITS IN CORRECT FLACES = NUMBER OF DIGITS, YF WIN»
$#A HIGH PITCHED SOUND IS GENERATE AND IF ANY
SODIGIT IS WRONG» A LOW SOUNR IS GENERATEI,

y

TEST LDX CNT1 LOAD NUMBER OF CORRECT DIGITS
CPX DIGITS FALL GUESSES CORRECT?
BEQ WIN $IF YES» FLAYER WINS

BAD LDA ¥$72
STA DUR FSET UF LENGTH OF LOW TONE
LDA #$RE s TONE VALUE FOR LOW TONE
JSR TONE ; SES WA/TONE
EEQ ENTER §GET NEXT BGUESSES

WIN LDA #$FF SDURATION FOR HIGH TONE
STA DUR
LA ¥3$54 $ TONE VALUE FOR HIGH TONE
JSR TONE FSIGNAL WIN
JMP KEYL FRESTART GAME

;

FROUTINE TO FILL ACCUMULATOR WITH ‘17 EBITSy STARTING
FAT THE LOW ORDER ENDy UF TO AND INCLUDING THE

JBIT FOSITION CORRESFONDING TO THE # OF LEDS TQ

SRE LIT OR SET TO BLINKING.

y
LITE ENE STRTSH FIF Y NOT ZEROs SHIFT ONES IN
LDA #0 SSFECTAL CASED RESULTY IS NO ONES.
CLe
RTS
STRTSH LA ¥0 FCLEAR A 50 FATTERN WILL SHOW
SHIFT SEC $MAKE A BIT HIGH
ROL A §SHIFT IT TO CORRECY FOSITION
DEY FRY LOOFPING TO ¥ OF GUESS/DIGIT

sMATCHESy AS FASSED IN Y

BNE. SHIFT FLOOF “TIL DONE

RTS
¥
FRANDOM NUMEBER GENERATOR
JUSES NUMBERS ArRB,C»DrE,F STORELI AS RND THROUGH
FRNEMHS: ADDS BR+E+F+1 AND PLACES RESULT IN Ay THEN
$SHIFTS A TO By B TO C» ETC. THE NEW RANDOM NUMBER
FWHICH IS BETWEEN 0 AND 255 INCLUSIVE IS IN THE
FACCUMULATOR ON EXIT

’
RANDOM SEC sCARRY ARDLS VALUE 1
LA RND+1 #ADDY ArBsE AND CARRY
ADC RNLi+4
ALC RNL+5
STA RND
LIX ¥4 §SHIFT NUMBERS QUER
RFL. LDA RNy X
STA RND+H1+X
DREX
BFL RFL
RTS

r
$ TONE GENERATOR ROUTINE.
sDURATION OF TONE (NUMBER OF CYCLES TO CREATE)
$SHOULD BE IN ‘IUR‘ ON ENTRYs AND THE NOTE VALUE
$ (FREQUENCY) IN THE ACCUMULATOR.
y
TONE STA FREQ
LDA F$FF
STA FORT3R
LBA ¥$00
L.IX TUR
FL2 LY FREQ

Fig. 9.13: Mindbender Program (Continuved)

187

ADVANCED 6502 PROGRAMMING

031F¢
0320¢
0321
03232
0325¢
0327
03242
032R!¢
032D:

03EA!
03EE!?
O3EE:
03F0:
03F3:
03F &3
03F8:
O3FRm:
O3FES
O3FF?

GETKE
DUR
CNT
FREQ
DIGO
IRAQVE
TilL
DDR1A
PORT3
RAND
DIGLP
NEXTE
TEST
LITE
RANDO
FL2
DONE

188

88
18
?0
Do
49
8D
Ca
Do
40

48
ALt
45
8n
AD
45
8n
Al
68
40

Y

CH

B

NT

L}

00
Fa
FF
00

FO

01
0%
01
00
04
00
04

FL1

AC

$COMFLEMENTS LERS AT

Ao

AQ
A0

AO
AQ

SYMROL TAELE?

0100
0001
0004
0007
000F
AL7F
A0O4
A003
ACOO
0258
029%
02AA
0204
02F1
O2FF
0311

LEY
cL.C
RCC
BNE
EOR
STA
DEX
ENE
RTS

o2
FL1
#$FF
PORT3B

FL2

INTERRUPT~HANDLING ROUTINE

.

= $3EA

FHA
LbA
EOR
STA
LA
EOR
STA
LIbA
PLA
RTI

PORT1A
MASKA
FORT1A
FORT1E
MASKE
PORT1R
TiLL

ACCESS
XTEMF
MASKA
CNT1
ENTRYO

IER

TiCH
PORTILE
DPR3R
ENTER
ENTRYCMP
NEXTDIG

RAD

STRTSH

RPL.
FL1

EACH INTERRUFT

#LOCATE ROUTINE IN HIGH MEMORY

#SAVE ACCUMULATOR

$GET PORT FOR COMFLEMENTING
$COMPLEMENT NECESSARY ERITS
$#STORE COMPLEMENTED CONTENTS

$0 SAME WITH PORTILR

FCLEAR INTERRUPT ERIT IN VIA

SRESTORE ACCUMULATOR
#DONEs RESUME FPROGRAM

BR84 DIGITS
0002 YTEMF
0005 MASKE
0008 RND
0018 IRQVECL
AQOE ACR
A00S PORT1A
A000 DDR1R
ACO2 KEY1
0267 KEY2
029F ENTRYLF
O24F cc

02DhA WIN
02F7 SHIFT
0304 TONE
031F

Fig. 9.13: Mindbender Program (Continued)

0000
0003
0006
0009
A4L7E
AQOE
A001
A002
022E
0273
0241
02¢C7
O2EY
02F9
0312

10. Complex Evaluation Technique
(Blackjack)

INTRODUCTION

This problem involves a complex evaluation in a simple input/output
environment and a very small amount of memory. The program
generates light and sound effects and operates in real time.

THE RULES

The standard game of Blackjack or ‘“21,”’ is played in the following
way. A player attempts to beat the dealer by acquiring cards which,
when their face values are added together, total more points than
those in the dealer’s hand but not more than a maximum of 21 points.
If at any time the total of 21 is achieved after only two cards are
played, a win is automatically declared for the player; this is called a
Blackjack (the name of the game). Card values range from 1 through
11. In the standard version of Blackjack the house rules require the
dealer to “‘hit’’ (take a card) if his/her hand equals 16 or fewer points,
but prohibits him/her from taking a ‘‘hit’> when his or her hand totals
17 or more points.

The version of Blackjack played on the Games Board differs slight-
ly from the standard game of Blackjack. The single ‘‘deck of cards’’
used here contains cards with values from 1 through 10 (rather than 1
through 11), and the number of points cannot exceed 13 (as opposed to
21). The dealer in this variation of the game is the computer.

At the beginning of each hand, one card is dealt to the dealer and
one to the player. A steady LED on the Games Board represents the
value of the card dealt to the dealer (the computer). A flashing LED
represents the card dealt to the player. If the player wants to be ‘‘hit”’
(i.e., receive another card) he/she must press key ‘‘C.”” The player
may hit several times. However, if the total of the player’s cards ever
exceeds 13, the player has lost the round (‘‘busted’’) and he/she can
no longer play. It is then the dealer’s turn. Similarly, if the player
decides to pass (‘‘stay’’), it becomes the dealer’s turn. The dealer plays
in the following manner: if the dealer’s hand totals fewer than 10

189

ADVANCED 6502 PROGRAMMING

points, the computer deals itself one more card. As long as the hand
does not exceed 13, the computer will check to see if it needs another
card. Like the situation with the player, once the total of the com-
puter’s cards exceeds 13, it loses. No provision has been made for a
bonus or an automatic win, which occurs whenever the player or the
dealer gets exactly 13 points with only two cards (a Blackjack). This is
left as an exercise for the reader. Once the dealer finishes its turn,
assuming that it does not bust, the values of both hands are compared.
If the dealer’s total is greater than the player’s, the player loses. Other-
wise, the player wins. At the beginning of each series the player is
allocated S chips (5 points). Each loss decreases this total by one chip;
each win increases it by one. The game is over when the player goes
broke and loses, or reaches a score of 10 and wins. After each play the
resulting score is displayed as a number between 0 and 10 on the
appropriate LED. Each time a player wins a hand, the left-most three
LEDs of the bottom row light up. If the dealer wins the hand, the right-
most LEDs light up. (See Figure 10.1.)

000 000
0 90 0

4 5

Q 8 Q Q 9
°

@O ONON

10 11 12 13 14 i5 10 11 12 13
PLAYER WINS COMPUTER WINS

® -O -O

&

15

Fig. 10.1: Indicating the Winner

A TYPICAL GAME

When playing a game against the dealer, the player will press key
““A’’ to be ‘‘hit”’ (receive an additional card) until either a total of 13 is
exceeded (a “‘bust’’), or until the player decides that his or her total is
close enough to 13 that he or she might beat the dealer. When the
player makes this decision to stay, he or she must press key ‘“C.”” This
will start the dealer’s turn, and all other keys will then be ignored.

190

COMPLEX EVALUATION TECHNIQUE

LEDs will light up in succession on the board as the computer deals
itself additional cards until it goes over ten, reaches 13 exactly, or
busts. Once the computer has stopped playing, any key may be
pressed; the player’s score will be displayed and the winner will be in-
dicated through lit LEDs on the winner’s side. The display will appear
for approximately one second, then a new hand will be dealt.

Note that once the value of the computer’s hand has reached a total
greater than or equal to 10, it will do nothing further until a key is
pressed. Let us follow this “‘typical game.”’

The initial display is shown in Figure 10.2. A steady LED is shown
as a black dot, while a blinking LED is shown as a half dot. In the in-
itial hand the computer has dealt itself a 1 and the player a 4. The
player presses key ‘A’ and receives an additional card. It is a 9. The
situation is shown in Figure 10.3. It’s a Blackjack and the player has
won. The best the dealer can hope for at this point is to also reach 13.

® 00

0 90
® 00
O

5

?

O -@
@ O

Fig. 10.3: Player Receives A Second Card: Blackjack

191

ADVANCED 6502 PROGRAMMING

Let us examine its response. To do this we must pass by hitting ““C.”’
A moment later LED #3 lights up. The total of the computer’s hand
now is 1 + 3 = 4. It will deal itself another card. A moment later,
LED #7 lights up. The computer’s total is now 4 + 7 = 11. It stops.
Having a lower total than the player, it has lost. Let us verify it. We
press any key on the keyboard (for example, ‘0’’). The result appears
on the display: LEDs 10, 11 and 12 light up indicating a player win,
and LED #6 lights up, indicating that the player’s score has been in-
crease from 5 to 6 points. This information is shown in Figure 10.4. The

@ Q9

o o
O

® -O -0

QS
°

10

12 13 14 15

Fig. 10.4: End of Turn: Dealer Loses

LED display then goes blank and a new hand is displayed. When there
is a draw, none of the LEDs in the bottom row light up and the score
is not changed. A new hand is dealt. (If the player busts, the dealer
wins immediately and a computer win is displayed.)

Let us play one more game. At the beginning of this hand the com-
puter has dealt itself a 5, and the player has a 6. The situation is shown
in Figure 10.5. Let us ask for another card. We hit key ‘“A’’ and are
given a 7. This is almost unbelievable. We have thirteen again!! The
situation is shown in Figure 10.6 It is now the computer’s turn. Let us
hit ““C.”” LED #10 lights up. The computer has 15. It has busted. The
situation is shown in Figure 10.7. Let us verify it. We press any key on
the keyboard. The three left-most LEDs on the bottom row (LED 10,
11, and 12) light up and a score of 7 is displayed. This is shown in
Figure 10.8. A moment later the display goes blank and a new hand is
started.

192

COMPLEX EVALUATION TECHNIQUE

O- &- O-
O~ @ O-
O- O~ O~

nd Ha

Fig. 10.5: Seco

O- &- O-
O~ @ O-
O- O- @

Fig. 10.6: Blackjack Again

Fig. 10.7: Dealer Busts

193

ADVANCED 6502 PROGRAMMING

® ¢ -0 -0
°
-0 +O =0
o O O
<0 -0 -0

15

N
w
N

10
Fig. 10.8: Final Scorels?7

THE PROGRAM

The detailed flowchart for the Blackjack program is shown in
Figure 10.9, and the program is listed at the end of the chapter. As
usual, a portion of page 0 has been reserved for the variables and flags
which cannot be held in the internal registers of the 6502. This area is
shown in Figure 10.10 as a ‘‘memory map.’’ These variables or flags
are:

DONE: This flag is set to the value ‘0’ at the beginning of the
game. If the player goes broke, it will be set to the value ‘“11111111.°" If
the player scores 10 (the maximum), it will be set to the value *‘1.”
This flag will be tested at the end of the game by the ENDER routine
which will display the final result of the game on the board and light
up either a solid row of LEDs or a blinking square.

CHIPS: This variable is used to store the player’s score. It is initial-
ly set to the value *‘5.”” Every time the player wins a hand it will be in-
cremented by 1. Likewise, every time the player loses a hand, it will be
decremented by 1. The game terminates whenever this variable reaches
the value ‘0’ or the value ¢‘10.”’

MASKA, MASKB: These two variables are used to hold the masks
or patterns used to blink the LEDs connected respectively to Port A
and Port B on the Games Board.

PHAND: It holds the current hand total for the player. It is incre-
mented every time the player hits (i.e., requests an additional card).
card).

CHAND: This variable holds the current hand total for the com-
puter (the dealer).

194

INITIALIZE

A

CLEAR LEDs
DRAW FIRST CARDS
FOR EACH HAND

'y

GETKEY

NO

YES

GIVE PLAYER
ANOTHER CARD

IS TOTAL
OVER 13?

DECREMENT SCORE
SET END FLAG IF
SCORE = 0

COMPLEX EVALUATION TECHNIQUE

COMPUTER’'S
TOTAL OVER
10?

COMPARE HANDS

BRANCH
ON RESULTS?

\

HIT COMPUTER'S
HAND

IS COMPUTER'S
HAND 3»13?

p=C INCREMENT
SCORE SET
END FLAG iF
SCORE 50
CLEAR LEDs
DISPLAY SCORE AND
RESULTS OF HAND
YES
NO

END

Fig. 10.9: Blackjack Flowchart

195

ADVANCED 6502 PROGRAMMING

TEMP: This is a temporary variable used by the RANDOM routine
to deal the next card to either player.

RND through RND + 5: These six locations are reserved for the
random number generating routine called RANDER.

WHOWON: This status flag is used to indicate the current winner
of the hand. It is initially set to ¢‘0,”’ then decremented if the player
loses or incremented if the player wins. '

At the high end of memory the program uses VIA #1, the ACCESS
subroutine provided by the SYM monitor, and the interrupt-vector at
address A67E, as shown in Figure 10.11.

Let us now examine the program operation. For clarity it should be
followed on the flowchart in Figure 10.9.

co DONE Status flag for end of game
Cl CHIPS Player score
Cc2 MASKA
Masks used to flash the LEDs

c3 MASKB
C4 PHAND Total for player
Cc5 CHAND Total for computer
Ccé TEMP

\
c7 RND
cs
Cc9

> Random numbers

CA
cB
cc

/
(»] WHOWON Status for current winner

Fig. 10.10: Low Memory Map

196

8B86

A00Q

A001

A002

A003

A004

AQ06

A007

A008

A009

AOQA

A0OC

A00D

AOQE

AOOQF

A67E

A67F

COMPLEX EVALUATION TECHNIQUE

NN

ACCESS SYM Subroutine

N NN
NN NN

PORTB)

PORTA

DORB

DDBA

TILL

TICH

//é/ o

> Lk

A ?Vic Control

-
AR/~ /
UNUSED ‘ /
.

2 e e\
0 50 Vg Ve

INTVECL
Interrupt Vector
INTVECH

AN

Fig. 10.11: High Memory Map

197

ADVANCED 6502 PROGRAMMING

Program Initialization

The timer on 6522 VIA #1 will be used to generate the interrupts
which blink the LEDs. These interrupts will cause a branch to location
03EA where the interrupt-handling routine is located. The first step is,
therefore, to load the new value into the interrupt vector, i.e.,
““03EA,”’ at the appropriate memory location:

BLJACK JSR ACCESS Unprotect system memory
LDA #SEA Load low interrupt vector
STA INTVECL
LDA #3$03 High vector

STA INTVECH

As described previously, the interrupt-enable register is first loaded
with the value ‘01111111, and then with the value ‘11000000’ in
order to enable the interrupt for timer 1:

LDA #$7F Clear timer interrupt-enable
STA IER

LDA #$CO0 Enable timer 1 interrupt
STA IER

Loading the value ““7F”’ clears bits O through 6, thereby disabling all
interrupts. Then, loading the value *‘C0O>’ sets bit 6, which is the
interrupt-bit corresponding to timer 1. (See Figure 9.10.) As in the
previous chapter, timer 1 is put in the free-running mode. It will then
automatically generate interrupts which will be used to blink the
LEDs. In order to set it to the free-running mode, bit 6 of the ACR
must be set to ‘‘1°7:

LDA #%$40 Put timer 1
STA ACR In free run mode

The latches for timer 1 are initialized to the highest possible value, i.e.,
FFFF:

LDA #$FF
STA TILL Low latch of timer 1
STA TICH High latch and start timer

198

COMPLEX EVALUATION TECHNIQUE

Finally, now that the timer has been correctly initialized, interrupts
are enabled on the processor:

CLI Enable interrupts

LED Ports A and B configured as outputs (remember that the ac-
cumulator still contains the value ‘‘FF’’):

STA DDRA
STA DDRB

As a precaution, the decimal flag is cleared:

CLD
The player’s score is initialized to the value 5:

LDA #5 Set player’s score to 5
STA CHIPS

The DONE flag is initialized to the value ¢‘0’’:

LDA #0 Clear done flag
STA DONE

The LEDs on the board are cleared:

STA MASKA
STA MASKB
STA PORTA Clear LEDs
STA PORTB

And the WHOWON flag is also initialized to “0”’:

STA WHOWON Clear flag

Dealing the First Hand

We are now ready to play. Let us deal one card to both the dealer
and the player. The LIGHTR and the BLINKR subroutines will be
used for that purpose. Each of these subroutines obtains a random

199

ADVANCED 6502 PROGRAMMING

number and lights the corresponding LED. LIGHTR lights up a
steady LED while BLINKR blinks the LED. These two subroutines
will be described later. We set one LED blinking for the player:

JSR BLINKR Set random blinking LED
and we save the first total for the current player’s hand:

STA PHAND Store player’s hand
then we do the same for the computer:

JSR LIGHTR Set random steady LED
STA CHAND Store computer’s hand

Hit or Stay?

We will now read the keyboard. If the player presses ‘A,”’ this in-
dicates a requested hit and one additional card must be dealt to the
player. If ““C”’ is pressed, the player ‘‘stays’’ (passes) and it becomes
the computer’s turn to play. All other keys are ignored. Let us first ob-
tain the key closure from the keyboard:

ASK JSR GETKEY
The key value must now be compared to ““A’’ and to ““C’’;

CMP #3$0A

BEQ HITPLR

CMP #30C Is it computer’s turn?
BEQ DEALER

If any other key has been pressed, it will be ignored and a new key will
be read:

JMP ASK Invalid key, try again
At this point in the program, we will assume the situation warrants
a “‘hit.”” One more card must be dealt to the player. Let us set one

more LED blinking. Naturally, the BLINKR subroutine, as well as the
LIGHTR subrqutine, are careful not to deal a card that has already

200

COMPLEX EVALUATION TECHNIQUE

been dealt. How this is achieved will be described later (this is the pur-
pose of the SETBIT subroutine).

HITPLR JSR BLINKR Set random LED

As soon as a new card has been dealt to the player, we compute the
player’s new total for the current hand:

CLC
ADC PHAND Tally player’s hand
STA PHAND

The new total must be checked against the value ‘“13.”’ As long as the
player has 13 or less, he or she may play again, i.e., either be hit or
stay. However, if the player’s score exceeds ‘“13,”’ he or she busts and
loses the play. Let us check:

CMP #14 Check for 13
BCC ASK Ask if<= 13
JMP LOSE Busted

It is now the dealer’s turn. Since the computer is much faster than the
player in deciding whether it wants to hit or to stay, we will first slow it
down to provide more suspense to the game:

DEALER JSR DELAY

The delay subroutine also extends the period of time between the suc-
cessive decisions made by the computer to make the computer appear
more ‘‘human-like.”’

Before dealing another card to the computer (the dealer), let us ex-
amine its total. The house rule is that the dealer’s total cannot exceed
“10.”’ (Naturally, other algorithms are available from Blackjack ex-
perts.) The computer hand is therefore checked against the value
¢¢10.” If this value is exceeded, a branch occurs to location WINNER
where the winner will be decided. Otherwise, a new card will be dealt
to the computer:

LDA CHAND

CMP #10 Check hand for limit
BCS WINNER Yes. Decide winner.

201

ADVANCED 6502 PROGRAMMING

As long as the hand totals less than ‘“10,’’ the dealer requests a hit. A
new card is dealt to the dealer in exactly the same way that it was dealt
previously to the player:

JSR LIGHTR Set random LED
The dealer’s new total is computed:

CLC
ADC CHAND Tally computer’s hand
STA CHAND

Just as in the case of the player before, it is compared against the value
“13”’ to determine whether or not the dealer has busted:

CMP #14 Is hand <= 13?
BCC DEALER Yes: another hit?
JMP WIN Busted: player wins

If the computer has busted, a jump occurs to location WIN which in-
dicates a ‘‘win’’ by the player. Otherwise, a branch back to location
DEALER occurs, where the computer will determine whether or not it
wants to receive an additional card. Let us now determine the winner.
Both hands are compared:

WINNER LDA CHAND
CMP PHAND Compare hands

There are three possible cases: equal scores, player wins, and player
loses.

BEQ SCORER
BCC WIN

In the case that both scores are equal, a jump occurs to location
SCORER which will display the current status. If the player wins, a
branch occurs to location WIN and the sequence will be described
below. First, let us examine what happens when the player loses.

The Player Loses

A special flag, called WHOWON, is used to store the status at the

202

COMPLEX EVALUATION TECHNIQUE

end of each play. It is decremented to indicate a loss by the player:
LOSE DEC WHOWON
The player’s score is decremented:
DEC CHIPS

The player’s score must be compared to the value ¢‘0.”’ If the player’s
score has reached ‘‘0,”” he or she is broke and has lost the game. In
this case, the DONE flag is set to ““11111111;”’ otherwise, it is not
changed. Finally a jump occurs to SCORER where the final score will
be displayed:

BNE SCORER Player broke?
DEC DONE Yes: set lose flag
JMP SCORER Finish game

Player Has Won
Similarly, when the player wins, the WHOWON flag is set to ““1°’:

WIN INC WHOWON
The score is incremented:
INC CHIPS
It is then compared to the value ““10’’:

LDA CHIPS
CMP #10 Chips = 10?

If the maximum score of ‘“10’’ has been reached, the DONE flag is set.

BNE SCORER
INC DONE Set done flag

Displaying the final status is accomplished by the SCORER routine.

Remember that the final status will be displayed only at the player’s
request — when any key is pressed on the keyboard. Let us wait for

203

ADVANCED 6502 PROGRAMMING

this:
SCORER JSR GETKEY
Before displaying the status, all LEDs on the board are turned off:

LDA #0

STA MASKA
STA MASKB
STA PORTA
STA PORTB

The player’s score must now be displayed on the board. Let us read it:

LDX CHIPS
BEQ ENDER

If the player has no more chips, a branch occurs to location ENDER
and the game will be terminated. Otherwise, the score is displayed.
Unfortunately, LEDs are numbered internally ‘‘0’’ through ¢7,”’ even
though they are labeled externally ‘“1°’ through ¢‘8.”’ In order to light
up the proper LED, the score must therefore first be decremented:

DEX

then a special subroutine called SETMASK is used to display the ap-
propriate LED. On entry to the SETMASK routine, it is assumed that
the accumulator contains the number of the LED to be displayed.

TXA
JSR SETMASK

Now that the proper mask has been created to display the score, we
must indicate the winner. If the player won, the three left-most LEDs
in the bottom row will be lit; if the computer won, the three right-most
LEDs will be lit. If it was a tie, no LEDs will be lit on the bottom row,
Let us see who won:

LDA WHOWON

BEQ ENDER Tie: do not change LEDs
BMI SC

204

COMPLEX EVALUATION TECHNIQUE

If the player lost, a branch occurs to address SC. If, on the other
hand, the player won, the three left-most LEDs in the bottom row are
lit:

LDA #3$0E Player won: set left LEDs
JMP SCO

If the player lost, the three right-most LEDs are lit;
SC LDA #3$B0 Player lost: set right LEDs

Contained in the accumulator is the appropriate pattern to light the
bottom row of LEDs, and this is sent to the Games Board:

SCo ORA PORTB
STA PORTB

End of a Play

The ENDER routine is used to terminate each play. If the score was
neither ‘0’ nor ‘“10,”’ a new hand will be dealt:

ENDER JSR DELAY2
LDA DONE
BNE ENO
JMP START

Otherwise, we check the DONE flag for either a player win or a player
loss. If the player lost the game, the bottom row of LEDs is lit and the
program ends:

ENO BPL ENI $01: Jump on win condition
LDA #$BE Solid row of LEDs
STA PORTB
RTS . Return to monitor

In the case of a player win, a blinking square is displayed and the pro-
gram is terminated:

EN1 LDA #$FF
STA MASKA

205

ADVANCED 6502 PROGRAMMING

LDA #$01
STA MASKB
RTS
Subroutines
SETBIT Subroutine

The purpose of this subroutine is to create the pattern required to
light a given LED. Upon entering the subroutine, the accumulator
contains a number between ‘‘0’’ and ‘9’ which specifies which LED
must be lit. Upon exiting the subroutine, the correct bit is positioned
in the accumulator. If the logical LED number was greater than “7,”’
the carry bit is set to indicate that output should occur on Port B
rather than on Port A, Additionally, Y will contain the external value
of the LED to be lit (1 to 10).

Let us examine the subroutine in detail. The LED number is saved
in index register Y:

SETBIT TAY Save logical number
It is then compared to the limit value ‘“7.”’

CMP #8
BCC SBO

If the value was greater than 7, we subtract 8 from it:

SBC #8 Subtract if >7

Exercise 10-1: Recall that SBC requires the carry to be set. Is this the
case?

Now we can be assured that the number in the accumulator is be-
tween ‘0’ and ‘“7.”” Let us save it in X:

SBO TAX

A bit will now be shifted into the correct position of the accumulator.
Let us first set the carry to ““1°’:

SEC Prepare to roll

206

COMPLEX EVALUATION TECHNIQUE

We clear the accumulator:
LDA #0
then we roll in the bit to the correct position:

SBLOOP ROL A
DEX
BPL SBLOOP

Note that index register X is used as a bit-counter. The accumulator is
now correctly conditioned. The external number of the LED to be lit is
equal to the initial value which was stored in the accumulator plus
one:

INY Make Y the external #

If LEDs 9 or 10 must be lit, the carry bit must be set to indicate this
fact. Port B will have to be used rather than Port A:

CPY #9 Set carry for Port B
RTS

Exercise 10-2: Compare this subroutine to the LIGHT subroutine in
the previous chapter.

Exercise 10-3: How was the carry set for LED #9 at the end?
LIGHTR Subroutine

This subroutine deals the next card to the dealer (computer). It must
obtain a random number, then make sure that this card has not
already been dealt, i.e., that it does not correspond to a card which
has already been displayed on the board. If it has not already been
displayed, the random number can be used as the value of the next
card to be dealt. A steady LED will then be lit on the board.

Let us first get a random number:

LIGHTR JSR RANDOM

It will be shown below that the RANDOM routine does not just ob-

207

ADVANCED 6502 PROGRAMMING

tain a random number but also makes sure that it does not correspond
to a card already used. All we have to do then is position the correct
bit in the accumulator and display it. Let us use the SETBIT routine
we have just described in order to position the bit in the accumulator:

JSR SETBIT
We must determine whether Port A or Port B must be used. This is
done by testing the carry bit which has been conditioned by the SET-
BIT subroutine:

BCS LLO

We will assume that P‘orf A must be used. The new bit will be added to
the display by ORing it into Port A:

ORA PORTA
STA PORTA

The value of the card must be restored into the accumulator. It had
been saved in the Y register by the SETBIT routine:

TYA
RTS

In case Port B is used, the sequence is identical:

LLO ORA PORTB
STA PORTB
TYA Restore value
RTS
BLINKER Subroutine

This subroutine operates exactly like LIGHTR above except that it
sets an LED flashing. Note that it contains the SETMASK subroutine
which will set the proper LED flashing and exit with a numerical value
of the LED in the accumulator:

BLINKR JSR RANDOM Get random number
SETMASK JSR SETBIT

208

COMPLEX EVALUATION TECHNIQUE

BCS BLO Branch if Port B
ORA MASKA '
STA MASKA
TYA Restore value
RTS

BLO ORA MASKB
STA MASKB
TYA
RTS

RANDOM Subroutine

This subroutine will generate a random number between ‘‘0’’ and
‘9’” which has not already been used, i.e., which does not correspond
to the internal number of an LED that is already lit on the Games
Board. The value of this number will be left in the accumulator upon
exit, Let us obtain a random number:

RANDOM JSR RANDER Get 0-255 number

The RANDER subroutine is the usual random number generator
which has been described in previous chapters. As usual, we must re-
tain only a number between ‘0>’ and ‘“9.”” We will use a different
strategy here by simply rejecting any number greater than ‘‘9’’ and
asking for a new random number if this occurs:

AND #$0F
CMP #10
BCS RANDOM

Exercise 10-4: Can you suggest an alternative method for obtaining a
number between *0°’ and *°9°°? (Hint: such a method has been described
in previous chapters.)

A random number between ‘0’ and ‘9’ has now been obtained.
Let us obtain the corresponding bit position which must be lit and save
it in location TEMP:

JSR SETBIT Set bit in position
STA TEMP

We will now check to see if the corresponding bit is already lit on either

209

ADVANCED 6502 PROGRAMMING

Port A or Port B. Let us first check to seeif it is Port A or Port B:

BCS RNO Determine Port A or B

Assuming that it is Port A, we must now find which LEDs in Port A
are lit. This is done by combining the patterns for the blinking and
steady LEDs, which are, respectively, in Mask A and Port A:

LDA MASKA
ORA PORTA Combine Port and Mask

Then a check is made to see whether or not the bit we want to turn on
is already on:

JMP RNI1

If it is on, we must obtain a new random number between ‘“0’’ and
“9)).

RNI1 AND TEMP
BNE RANDOM

If the bit was not already on, we simply exit with the internal value of
the LED in the accumulator:

DEY
TYA
RTS

Similarly, if an LED on Port B had to be turned on, the sequence is:

RNO LDA MASKB
ORA PORTB
AND TEMP
BNE RANDOM
DEY
TYA
RTS

RANDER Subroutine

This subroutine generates a random number between ¢‘0’’ and
€“255.”’ It has already been described in previous chapters.

210

COMPLEX EVALUATION TECHNIQUE

DELAY Subroutines

Two delay loops are used by this program: DELAY, which provides
approximately a half-second delay and DELAY2, which provides
twice this delay or approximately one second. Index registers X and Y
are each loaded with the value ““FF.”” A two-level nested loop is then
implemented:

DELAY2 JSR DELAY

DELAY LDA #$FF
TAY

DO TAX

D1 DEX
LDA #$FF
BNE D1
DEY
BNE DO
RTS

Exercise 10-5: Compute the exact duration of the DELAY subroutines.

Interrupt Handler

The interrupt routine is used to blink LEDs on the board, using
MASKA and MASKB, every time that the timer generates an inter-
rupt. No registers are changed. The operation of this routine has been
described in the preceding chapter:

PHA

LDA PORTA
EOR MASKA
STA PORTA
LDA PORTB
EOR MASKB
STA PORTB
LDA TILL
PLA

RTI

SUMMARY

This program was more complex than most, despite the simple strategy

211

ADVANCED 6502 PROGRAMMING

used by the dealer. Most of the logical steps of the algorithm were
accompanied by sound and light effects. Note how little memory is re-
quired to play an apparently complex game.

Exercise 10-6: Note that this program assumes that the contents of
memory location RND are reasonably random at the beginning of the
game. If you would like to have a moare random value in RND at the
beginning of the game, can you suggest an additional instruction to be
placed in the initialization phase of this program? (Hint: this has been
done in previous programs.)

Exercise 10-7: In the ENDER routine are the instructions ‘“BNE
ENO”’ and “JMP START”’ both needed? If they are not, under what
conditions would they be needed?

Exercise 10-8: ‘““Recursion’’ describes a routine which calls itself. Is
DELAY 2 recursive?

i = BLJACK FROGRAM -
ACCESS = $BEBS
INTVECL = $A67E
INTVECH = $A&7F
IER = $A00E
ACR = $A00R
TiLlL = $A004
TiCH = $A005
DIRA = $A003
LIRE = $A002
FORTA = $A001
FORTE = $A000
MASKA = $C2
MASKE = $C3
CHIFS = $01
LONE = $00
FHAND = $04
CHAND = $05
TEMF- = $06
RND = $C7
WHOWON = $CD
GETKEY = $100
B = $200

¥
FBLACKJACK GAME?! USES A ‘DECKY OF 10 CARDS. CARDS LREALT
’ FLAYER ARE FLASHING LED’S. ONES IN THE COM-
S HAND ARE STEARY. CARDS ARE LDEALT RY A RANNOM
R GENERATOR WHICH IS NON-REFETITVE. NUMERICAL
FTOTALS ARE KEFT IN ZERO FAGE LOCATIONS ‘FPHANDY AND
CHANDY . FORTA ANDI FORTE ARE THE OUTFUT FORTS TQ THE
sLED DISPLAY. MAGSKA AND MASKR ARE USED RY THE INTERRUFT
FROUTINE TO FLASH SELECTED LED‘S. ‘DONE’ AND
P WHOWON” ARE STATUS FILAGS TO DETERMINE END OF GAME AND
FWHO WON THE CURRENT HAND.

Fig. 10.12: Blackjack Program

212

COMPLEX EVALUATION TECHNIQUE

0200:
02032
02032
02082
020A8
02001
Q20F 2
Q2123
0214¢
0217¢
02193

e
R

COOCOCOOCCO

02341

02431
02453
0248¢

02443
024D

02732

20
A9
8n
A9

86

7E

8n 7F

A

20
AT
co
EO
20
18

Q0
cn
OF

i (04

F7

00
0A

5n
cS
0A
OF
F7

8Kk
Ab
Ad
AQ
AQ
ad

A
A

[210]
Ad

MO

03

o1

‘ (044

03

02

§
H

AN THE STATUS FLAGS ARE

H
EL JACK

¥
SNEW HANLZ DISFLAY IS CL
FARE SET WITH

FROGRAM START
s INTERRUFT VECTOR.

JBR
L.hA
5TA
L.DA
aTA

ACCESS
#5EA
INTVECL.
#$03
INTVECH

LDA #$7F

STA
L.ba
STaA
L.oA
STA

LA #

DIRA
LGRE

#5
CHIFS
$#0
LONE

FLED’S ARE SEY
¥

START

JREY I

STé
STA
STA
STA
STA
JER
STA
JBR
aTa

NFUT:

iALL OTHERS

ASK

HITFLR

LEALER

JSR
CMF
EEQ
[

JSk
L.DA
CMF
RCS
JSR
CLC

MASKA
MASKE
FORTA
FORTER
WHOWON
BLINKR
FHAND
LIGHTR
CHAND

‘A’ IS
ARE TGN
GETKEY
$$0A
HITFLR

ELINKR

FHAND
FHANID

CHANR
$10

WINNER
LIGHTR

b———————Fig. 10.12: Blackjack Program (Continued)

G RY INITIALIZING THE TIMER AND THE
THE OUTF RTS ARE TURNED ONvy

SUNFROTECT SYSTEM MEMORY
FLOAD LOW INTERUFT VECTOR

FLOAD HIGH INTERUFT VECTOR

sCLEAR TIMER INTERUFT ENARLE

FENABLE TIMER 1 INTERUPT

sFUT TIMER 1 IN FREE RUN MODE

OW LATCH ON TIMER 1
A1GH L SH & START Y1
S0R INTE
TO QUTFUTS

$SGET FLAYER’S SCORE TO 5
sCLEAR DONE FLAG

ARED s ROTH HANDS ARE

val AN THE CORE FONIING

JCLEAR BLINKER MASKS: IT IS
FASSUMED THAT ACC. CONTAINS ZERO
JCLEAR LED’S

sCLEAR FLAG FOR HAND
$SET RANIOM RLINKING LED
§STORE FLAYER’S HAND
SSET & STEAIY RANDOM LEX
sSTORE COMFUTER’S HAND
v
A HIT, ‘C’ IS COMFUTER‘ TURN
ORETL

JGET A KEY INFUT
$DOES FLAYER WANT & HIT®

SYESy BRANCH
$IS IT “COMP TURN‘ KEY?
FYES

sEAN KEYs TRY AGAIN
¥

FSET A RANDOM LED
$TALLY FLAYER‘S HAND

fCHECK HAND

3L vy OK

FRUSTEDy GO TO LOSE ROUTINE
¥

FNELAY - ROUTINE

316 CE

SYESy FIGURE WINNER
SNO»SET RANDOM LED

213

ADVANCED 6502 PROGRAMMING

0274¢ &5 (5 ADC CHANI sTALLY COMFUTER‘S HAND
0274% 85 CS STA CHAND

02781 C9? OE CHF #14 $IS HAND =137

027A4¢ 90 ER ECC DEALER $YESs ANOTHER HIT?
027Ct 4L 92 02 JMFP WIN FRUSTEDs PLAYER WINS

¥
FFIGURE WINNER: ‘WIN‘ ANDl ‘LOSE’ TALLY SCORE»
$AND DETERMINE IF THE FLAYER HAS WON OR LOST
$THE GAME. THE ‘WHOWON’ FLAG IS SET TO SHOW WHO
$WON THE PARTICULAR HAND. IF THE HANDS ARE EQUAL»
$NDTHING IS AFFECTELD,

¥
027F% AS CS WINNER (DA CHAND 3 COMFARE HANDG
0281: £SO C4 CHMF FHAND
Q283! FO 19 BEQ SCORER FARE EQUAL s NO CHANGE
-028%5¢ 90 OR BCC WIN sPLAYER’S HANI' GREATER
0287¢ €6 CD 1.OSE IEC WHOWON sLOSE ROUTINE
0289 €46 C1 DEC CHIFS $TALLY SCORE
028E: DO 11 ENE SCORER 3IS PLAYER RROKE?
028nt: Cé €0 DEC DONE FYESy SET END OF GAME FLAG! LOSE
028F: 4C Q£ 02 JMF SCORER
Q292! E& CIt WIN INC WHOWON FWIN ROUTINE
0294% E6 C1 INC CHIFS sTALLY SCORE
02963 A5 C1 LDA CHIFS FANI WINNINGS
0298: C? 0A CHF ¥10 #IF CHIFS=10, SET END OF GAME FLAG
029a¢ DO 02 ENE SCORER
Q29C: E6& (O INC DONE #SET END OF GAME FLAG: WIN

¥
FRISPLAY SCORE BY LIGHTING 1 OF 10 LED’S, THE
FBOTTOM ROW OF LED‘S IS SET TO SHOW WHETHER THE FLAYER
#OR THE COMFUTER WON THE HAMD. THE IISFLAY IS HELD
FTHUS, THEN A TEST IS MALE FOR AN END OF GAME CONDITION
PIF SUCH A CONDITION EXISTSy THE LEL‘ES ARE
SSET ACCORDINGLY» ANDI THE FROGRAM IS TERMINATED.
$IT IS ASSUMEIN THAT THE ADDRESS OF THE MONITOR IS
FON THE STACK.

y
0Z9E¢! 20 00 01 SCORER JSR GETKEY FHOLL LAST STANDINGS OF CaARDS

02418 A9 00 LoA #0 sCLEAR LEDS
0243% 85 C2 STA MASKA
02A5: 83 C3 STA MASKE
02Aa7% 8@ 01 AO STA FORTA
024A¢ 80 00 AC S57A FPORTE
0240t A6 C1 LIXX CHIFS §OISFLAY NUMBER OF CHIFS
O02AF: FO 18 EEQ ENDER FARJUST S50 SUBRROUTINE SETS
02R1! CA DEX § THE RIGHT LED
O2R2! BA TXA
Q2B3: 20 12 03 JER O SETMASK
i
02ré6t AT CI L.OA WHOWON FSEE WHO WON HAND
0ZR8¢ FO OF BEQ ENIER FTIE- DO NOT AFFECT LERS
02pA! 30 05 EMI SC
02BC! A? OF L.OA #$0E $FLAYER WON- SET THREE LEFT LED‘S
OZRE! 4C C3 02 JMF SCO
02Ci: A9 RO sC LOA #$B0 sPLAYER LOST~ SET THREE RIGHT LED-
0203 O 00 A0 SCO ORA PORTE $SET LED FORT
0243 8l 00 AQ STA FORTE
02C9: 20 5A 03 ENDER JSR DELAY2 FHOLDY DISFLAY
’
02CE: AS CO LIA DONE sCHECK FOR ENI OF GAME CONDITION
02CE! DO 03 ENE ENO
O200! 4C 34 02 JMF START $ZEROYy START NEW HAND
0203 10 06 ENO BFL EN1 §%01ly WIN CONDITION
02058 A9 RE LOA #$RE JSET SOLIN ROW LEUS
02n7: 8D 00 A0 STA FORTR
02DhAt &0 RTS SRETURN TO MONITOR

L———— Fig. 10.12: Blackjack Program (Continued)

214

COMPLEX EVALUATION TECHNIQUE

020R:
020D:
02DF ¢
02E1:
02E3¢

02E4!
O2ES!?
02E7¢
02E?:
02ER?
O2EC:
O2ED?
02EF 3
02F03
02F1:
02F 32
02F 43
02F &

02F7%
02FA:
Q2FL:
02FF¢
03022
03051+
03048
0307¢
030A3
o30n:
030E ¢

030F ¢
03122
031513
0317¢
03193
031R:
031c:
031D:
034F 3

A9
85
A9
85
60

AB
ce
?0
E?
AA
38
A9
24
ca
10
c8
co
60

asn
98
40
or
an
?8
60

20
20
RO
05
85
?8
60
0S
85

FF
cz
01
3

08
02
08

00

FC

09

23

08
o1
01

00
00

23
E4
04
c2
c2

c3
C3

03
02

A0
AQ

AQ
AQ

02

EN1 LDA #$FF $SET BLINKING $QUARE
STA MASKA
L.IA #%01
STA MASKE
RTS RETURN TO HMONITOR

o e

~=SUBROUTINESG -~

- w e

H
FSET A RIT IN ACCUMULATOR? ENTER WITH A LOGICAL VALUE.,
$I1.E+ 0~?sy IN ACC., EXITS WITH A NUMERICAL VALUE(1~-10)
$IN Yy AND THE RBIT FOSITINNETD IN ACC. THE CARRY FLAG

’
SETRIT TAY §SAVE LOGICAL NUMEER
CHMF #8 $BRACKET 0-7 VALUE
BCC SRO
SRC #8 §+4+SURTRACT IF 7
SEO TAX $SET INDEX REG
SEC sFREFARE BIT TO ROLL
LA #0
SBLOOF ROL A $MOVE EIT TO FOSITION
LEX
RFL. SELOOF
INY $MAKE Y NUMERICAL» NOT LOGICAL
CRY %9 §8ET CARRY. FOR FORTBy C=1
RTS

H
sLIGHTR: SETS A RANIOM STEADY LED THAT HAS NOT B
SPREVIOUSLY SET. IT GETS A RANDOM NUMERERs THEN &
$THE RIT IN THE FROFER FORT. THE NUMERICAL UVALUE
FBIT SET IS IN THE ACCUMULATOR ON EXIT.
i
LIGHTR JSR RANDOM $GET RANDOM NUMRER

JBR SETERIT $GET EIT FOSITIONEL ACC .
BCS LLO §BRANCH IF FORT B I GNATED
ORA FORTA $SET LED IN FORTA

8TA FORTA

TYA [TORE NUMERICAL VALUE
RTS

L.L.0 ORA FORTE §SET LED IN FORTE
GTA FORTE
TYA FRESTORE NUMERICAL VALUE
RTS

v
SELINKRY SETS A RANDOM FLASHING LED THAT HAS NOT
$PREVIOUSLY SET. THE NUMERICAL VALUE OF THE
$THE ACCUMULATOR ON EXIT., IT GETS A RANDOM NUMBE
$ THEN DROFS INTO THE SETMASK ROUTINE TO FLASH THE
SPROFER LED.
y
FSETHMASK? ENTER WITH A LOGICAL VALUEy AND ROUTINE
3SETS THE FPROFER FLASHING LED. EXITS WITH NUMERICAL
sVALUE OF LEDI! SET IN ACCUMULATOR
’
BLINKR JSR RANDOM $GET RANDOM NUMRER
SETMASK JSR SETRIT

BCS BLO $ RBRANCH IF FORTE DESIGNATED
ORA HMASKA FBET MAGKA
STA MASKA
TYA FRESTORE NUMERICAL VALUE
RTS

EL.O ORA MASKER $SET MASKE

STA MASKE

Fig. 10.12: Blackjack Program (Continued)

215

ADVANCED 6502 PROGRAMMING

0321: 98 TYA
03223 60 RTS

y
$GENERATES A RANDOM NUMEBER FROM 0- TO 9 THAT IS NOT
$THE NUMEBER OF AN LED ALREADY SET. RESULT IS IN ACC ON

FEXIT.
3
0323% 20 47 03 RANDOM JSR RANDER $GET 0~-255 NUMBER
0326% 29 OF ANDI #$0F $MASK HIGH NIBELE
0328 C9 0A CMFP %10 $ BRACKET 0-9
03241 BO F7 ECS RANLIOM
032C: 20 E4 02 JSR SETRIT $SET RIT IN POSITION
032F: 85 Cé STA TEMP FSAVE IT
0331% BO 08 BES RNO sOETERMINE FORT A OR R
0333: A5 €2 LOA MASKA $COMEBINE FORT ANI MASK
.0335¢ on 01 A0 ORA FORTA
0338! 4C 40 03 JMP RN1
033B: AS C3 RNO LDA MASKE FCOMBINE FORT ANI MASK
0331t on 00 AO ORA FORTER
0340% 25 Cé RN1 AND TEMF sLOOK AT SPECIFIC RIT
0342: DO OF ENE. RANI'OM $IF BIT SET ALREADYs TRY AGAIN
0344% 88 DEY §MARKE Y LOGICAL
0345¢ 98 TYA FEXIT WITH VALUE IN ACCUMULATOR
034632 60 RTS

¥
SGENERATES A RANDODM NUMBER FROM 0-26%. USES NUMBERS
FA*ByCsDEyF STORED AS RNIY THROUGH RND4S. ADDS RHE+F+1
FAND FUTS RESULT IN As THEN SHIFTS A TO Ry B TO C» ETC.
FRANDOM NUMBER IS IN ACCUMULATOR ON EXIT.

’
03471 38 RANDER SEC sCARRY ALIDS 1
0348: AS C8 t.0A RNIM1 $ARD RsDsF
034ht 65 ALC RNiH4
034C: 6% Cf: ALC RNDHE
Q34E: 8L C7 STA RN
A2 04 LOX #4 $SHIFT NUMRERS DOWN
BS C7 RELOOF L.DA RNIsX
95 C8 STA RNIM1sX
0356¢ CA DEX
03%57: 10 F¢9 EFL. ROLOOF
0359 &0 RTS

v
FDELAY LOOF: DELAYR I8 SIMPLY TWIC THE TIME DELAY
$0OF RELAY, GIVEN LOOF IS AFFROX. DELAY .

’
033A! 20 50 03 DELAY2 JSR DELAY

035D: A% FF DELAY L.DA F$FF FSET VALUE FOR LODFS
03%5F: AB TAY

0360: AA o TAX

0341% CA o1 DEX

0362% A9 FF LDA #$FF

0364: DO FR ENE Il

036461 88 LEY

0367 [0 F7 ENE 110

0369: 60 RTS

. e

FINTERRUPT ROUTINE! EXCLUSIVE OR‘S THE QUTRUT
$FORTS WITH THE CORRESFONDING BLINKER MASKS
STIME THE TIMER TIMES OUT TO FLASH & oo
$NO REGISTERS ARE CHANGELy AND THE

FLAG IS CLEAREDN RBEFORE EXIT.

5

. =$03A
03EAL 48 FHA PBAVE ACCUMUL AT
O3EE: Al 01 AO LIA FORTA § COMF

Fig. 10.12: Blackjack Program (Continued)

216

COMPLEX EVALUATION TECHNIQUE

Q3EE! 45 C2 EQR MASKA

03F0: 8L 01 A0 STA FORTA

Q3F3: A 00 AO LA FORTER

Q3F&6% 45 C3 EOR MASKE

03F8: 8I' 00 A0 8TA FORTR

O3FER: A 04 AO LLA T1iLL G [RIT
OJFE! 68 FLA #F

Q3FF?: 40 RTI

SYMBOL TAELE?

ACCESS 8R864 INTVECI. AL T7E

IER AOOE ACR AOOR

Ti1CH A0OT DIRA AQO3

FORTA A001 FORTE A000 0oL
MAGKE 00C3 CHIFS oocl Q00
PHAND 00C4 CHANI Q0CH QOCAH
RND 00C7 WHOWON ooch

BLJACK 0200 START

HITFLR 0258 LEALER

LOSE 0287 WIN

sC 02C1 8Co

ENO 0203 EN1

SEO SRBL.OOF

LLO 0307 RLINKF MASK

BLO 031D RANDIOM RNG
RN1 0340 RANLER [UM SIS
DELAYZ2 035a DELAY no

ni 0361

N

Fig. 10.12: Blackjack Program (Continued)

217

11. Artificial Intelligence
(Tic-Tac-Toe)

INTRODUCTION

This chapter presents the complete design of a complex algorithm that
solves the strategy and implementation problems of the Tic-Tac-Toe
game. This is along program using sophisticated evaluation techniques,
table look-up algorithms, as well as complex data structures such as
chained lists. It deserves a close examination and will bring you to a true
competence level when programming the 6502.

THE RULES

Tic-Tac-Toe is played on a three-by-three sectioned square. An ““O”’
symbol will be used to represent a move by the player and an “‘X’’ will
be used to display a move by the computer. Each player moves in turn,
and on every turn each player strategically places his or her symbol in
a chosen section of the board. The first player to line up three symbols
in a row (either horizontally, vertically or diagonally) is the winner.
An example of the eight possible winning combinations is shown in
Figure 11.1. Using our LED display, a continuously lit LED will be
used to display an ‘“X,”’ i.e., a computer move. A blinking LED will
be used to display an ‘‘O,’’ i.e., the player’s move.

Either the player or the computer may make the first move. If the
player decides to move first, he or she must press key ‘‘F.”’ If the com-
puter is to move first, any other key should be pressed and the com-
puter will start the game. At the end of each game a new game will
start automatically. The computer is equipped with a variable IQ (in-
telligence) level ranging from one to fifteen. Every time the computer
wins, its IQ level is reduced one unit. Every time the player wins, the
computer’s IQ level is increased by one unit. This way, every player
has a chance to win. A high tone is sounded every time the player wins
and a low tone is sounded every time that the player loses.

A TYPICAL GAME

The display is initially blank. We will let the computer start. We do
this by pressing any key but the key ‘F.”’ (If we press key ‘‘F,”’ then
the player must go first.) Let us begin by pressing ‘‘0.’’ After a short
pause the computer responds with a ‘‘chirp’’ and makes its move. (See
Figure 11.2.)

218

ARTIFICIAL INTELLIGENCE

O
O
O

@)
@)
@)

@)
@)
@)

Fig. 11.1: Tic-Tac-Toe Winning Combinations For a Player

X

Fig. 11.2: First Computer Move

An ‘X’ is used to denote the computer’s moves. ““O*’ will be used
to denote our moves. Blank spaces are used to show unlit LEDs. Let

219

ADVANCED 6502 PROGRAMMING

us move to the center and occupy position 5. (See Figure 11.3.) We
press key ¢“5.”” A moment later, LED #1 lights up and a chirp is heard
that indicates it is our turn to play. The board is shown in Figure 11.4.

X

Fig. 11.3: Our First Move

X

X

Fig. 11.4: Second Computer Move

It is now our turn and we should block the computer to prevent it
from completing a winning column: let us occupy position 4. We press
key ‘4.”” A moment later, LED #6 lights up and a chirp is heard. The
situation is shown in Figure 11.5.

X
O[O X
X

Fig. 11.5: After the Computer's Third Move

220

ARTIFICIAL INTELLIGENCE

We play in position 2. The computer reacts by playing in position 8.
This is shown in Figure 11.6. We prevent the computer from com-
pleting a winning row by playing in position 9. The computer responds
by occupying position 3. This is shown in Figure 11.7. This is a draw
situation. Nobody wins, all the LEDs on the board blink for a mo-
ment, and then the board goes blank. We can start another game.

X|[O
O|O(X
XX

Fig. 11.6: After the Computer’s Fourth Move

X|O|X
O|X
X|X]|O

(DRAW)

O

Fig. 11.7: After the Computer's Fifth Move

Another Game

This time we are going to start and, hopefully, win! We press ‘“‘F”’
to start the game. A chirp is heard, confirming that it is our turn to
play. We play in position 5. The computer responds by occupying
square 3. The chirp is heard, announcing that we can play again. The
situation is shown in Figure 11.8. We play in position 4. The computer
responds by occupying square 6. This is shown in Figure 11.9. This
time we must block the computer from completing the column on the

221

ADVANCED 6502 PROGRAMMING

Fig. 11.8: Move 1

Fig. 11.9: Move 2

X X
O[O | X
O

Fig. 11.10: Move 3

right and we move into position 9. The computer responds by moving
to square 1, thus preventing us from completing a diagonal. This
situation is shown in Figure 11.10. We must prevent the computer
from completing a winning row on top; therefore we occupy position
2. The computer responds by occupying position 8. This is shown in
Figure 11.11. We make our final move to square 7 to finish the game.
This is a draw: we did not beat the computer.

222

ARTIFICIAL INTELLIGENCE

X
O
X

O|0O|X
X|0O

Fig. 11.11: Move 4

Since the computer was ‘‘smart enough’’ to move into a diagonal
position after we occupied the center position, we did not win. Note: if
we keep trying, at some point the computer will play one of the side
positions (2, 4, 6, or 8) rather than one of the corners and we will then
have our chance to win. Here is an example.

We move to the center. The computer replies by moving into posi-
tion 6. The situation is shown in Figure 11.12. We move to square 1;
the computer moves to square 9. This is shown in Figure 11.13. We

Fig. 11.12: Move 1

O

Fig. 11.13: Move 2

223

ADVANCED 6502 PROGRAMMING

move to square 3; the computer moves to square 7. This is shown in
Figure 11.14. This time we make the winning move by playing into
square 2. The situation is shown in Figure 11.15. Note that if we start
playing and if we play well, the result will be either a draw or a win.
With Tic-Tac-Toe, the player who starts the game cannot lose if he or
she makes no mistakes.

O O
O|X
X X

““MOVE 3"

Fig. 11.14: Move 3

O0|0]|O
O| X
X X

Fig. 11.15: '"We Win]"

THE ALGORITHM

The algorithm for the Tic-Tac-Toe program is the most complex of
those we have had to devise so far. It belongs to the domain of so-
called “‘artificial intelligence.’’ This is a term used to denote the fact
that the functions performed by the program duplicate the mental ac-
tivity commonly called ‘“intelligence.’”’ Designing a good algorithm
for this game in a small amount of memory space is not a trivial prob-
lem. Historically, many algorithms have been proposed, and more can
be found. Here, we will examine two strategies in detail, and then
select and implement one of them, Additional exercises will suggest
other possible strategies.

24

ARTIFICIAL INTELLIGENCE

Strategy to Decide the Next Move

A number of strategies may be used to determine the next move to
be made by the computer. The most straightforward approach would
be to store all possible patterns and, the best response in each case.
This is the best method to use from a mathematical point of view as it
guarantees that the best possible move will be made every time. It is
also a practical approach because the number of combinations on a 3
X 3 board is limited. However, since we have already learned to do
table lookups for other games, such an approach would not teach us
as much about programming. It might also not be considered ‘‘fair.”’
We will, therefore, investigate other methods applicable to a wider
number of games, or to a larger board.

Many strategies can be proposed. For example, it is possible to con-
sider a heuristic strategy in which the computer learns by doing. In
other words, the computer becomes a better player as it plays more
games and learns from the mistakes it makes. With this strategy the
moves made by the computer are random at the beginning of the
game. However, provided that a sufficient amount of memory is
available, the computer remembers every move that it has made. If it
is led into a losing situation, the moves leading to it are thrown out by
the computer as misjudged moves, and they will not be used again in
that sequence. With time and a reasonable ‘‘learning’’ algorithm this
approach will result in the construction of decision tables. However,
this approach assumes that a very large amount of memory is
available. This is not the case here. We want to design a program
which will fit into 1K of memory. Let us look at another approach.

Another basic approach consists of evaluating the board after each
move. The board should be examined from two standpoints: first, if
there are two ““O’’s in a row, it is important to block them unless a win
can be achieved with the current move. Also, the win potential of
every board configuration should be examined each time: for exam-
ple, if two “X”’s are in a row, then the program must make a move in
order to complete the row for a win. Naturally these two situations are
easy to detect. The real problem lies in evaluating the potential of
every square on the board in every situation.

An Analytical Algorithm

At this point, we will show the process used to design an algorithm
along very general guidelines. After that, as we discover the weakness-
es of the algorithm, we will improve upon it. This will serve as an ex-

225

ADVANCED 6502 PROGRAMMING

ample of a possible approach to problem-solving in a game of
strategy.

General Concept

The basic concept is to evaluate the potential of every square on the
board from two standpoints: ‘‘win’’ and ‘‘threat.’’ The win potential
corresponds to the expectation of winning by playing into a particular
square. The threat potential is the win potential for the opponent.

We must first devise a way to assign a numerical value to the com-
binations of *‘O’’s and ‘‘X’’s on the board. This must be done so that
we can compute the strategic value, or ‘“potential,’’ of a given square.

Value Computation

For each row (or column or diagonal), four possible configurations
may occur — that is, if we exclude the case in which all three positions
are already taken and we cannot play in a row. These configurations
are shown in Figure 11.16. Situation ‘“A”’ corresponds to the case in
which all three squares are empty. Clearly, the situation has some
possibilities and we will start by assigning the value ‘‘one”’ to each
square in that case. The next case is shown in row ‘“B’’ of Figure
11.16; it corresponds to the situation in which there is already an ‘X’
in that row. If we were to place a second “‘X’’ in that row, we would
be very close to a win. This is a desirable situation that has greater
value than the preceding one. Let us add ‘‘one’’ to the value of each
free square because of the presence of the ‘“X’’; the value of each
square in that instance will be ‘“two.”’

Let us now consider case ‘‘C’’ in Figure 11.16, in which we have one
“X’ and one ‘‘O.”’ The configuration has no value since we will never
be able to win in that particular row. The presence of an ‘‘O’’ brings
the value of the remaining square down to “‘zero.”’

Finally, let us examine the situation of row ‘‘D’’ in Figure 11.16,
where there are already two ““X’’s. Clearly, this is a winning situation
and it should have the highest value. Let us give it the value ‘‘three.”’

The next concept is that each square on the board belongs to a row,
a column, and possibly a diagnoal. Each square should, therefore, be
evaluated in two or three directions. We will do this and then we will
total the potentials in every direction. For convenience, we will use an
evaluation grid as shown in Figure 11.17. Every square in this grid has
been divided into four smaller ones. These internal squares are used to
display the potential of each square in each direction. The square

226

ARTIFICIAL INTELLIGENCE

VALUE 1

X VALUE 2

X110 VALUE 0

XX VALUE 3

O VALUEOQ

oy
oo

OlO VALUE 0

Fig. 11.16: The Six Combinations

H,V

T

7.

Fig. 11.17: Evaluation Grid

227

ADVANCED 6502 PROGRAMMING

labeled ““H”’ in Figure 11.17 will be used to evaluate the horizontal
row potential. “V”’ will be used for the vertical column potential.
“D’’ will be used for the diagonal potential. ‘““T’’ will be used for the
total of the previous three squares. Note that there is no diagonal
value shown for four of the squares on the board. This is because they
are not placed on diagonals. Also note that the center square has two
diagonal values since it is at the intersection of two diagonals.

Once our algorithm has computed the total threat and win poten-
tials for each square, it must then decide on the best square in which to
move. The obvious solution is to move to the square having the
highest win or threat potential.

Now we shall test the value of our algorithm on some real examples.
We will look at some typical board configurations and evaluate them
by using our algorithms to check if the moves it generates make sense.

A Test of the Initial Algorithm

Let us look at the situation in Figure 11.18. It is the player’s turn
(‘‘O”’) to play. We will evaluate the board from two standpoints:
potential for *“X’’ and threat from “‘O.”” We will then select the
square that has the highest total in each of the two grids generated and
make our move there.

@)
X

O

Fig. 11.18: Test Cuse 1

Let us first complete the evaluation grid for the first row. Since
there is-an ““O”’ in the first row, the horizontal potential for the player
is zero (refer to row C, Figure 11.16 and look up the value of this con-
figuration). This is indicated in Figure 11.19. Let us now look at row
2: it contains two blank squares and an ‘“X.’’ Referring to line B of
Figure 11.16, the corresponding valueis ‘‘two.”’ It is entered at the ap-
propriate location in the grid, as shown in Figure 11.20. Finally, the

228

ARTIFICIAL INTELLIGENCE

3l Ok

2

Fig. 11.19: Evaluation Grid: Row 1 Potential

1|——! O |——

2 2|
2} X
.

0 0
3l O 2

Fig. 11.20: Evaluating the Horizontal Potential

third row is examined, and since there is an ‘‘O’’ in it, the row poten-
tial is ‘‘zero,’’ as indicated in Figure 11.20. The process is then repeat-
ed for the three columns. The result is indicated in Figure 11.21.

The value of each square of column 1 is ‘‘zero,’’ since there is an
O’ at the bottom. Similarly, for column 2 the value is also ‘‘zero,”’
and for column 3 it is ““one’” for each square, since all three squares
are open (blank). (Refer to line A in Figure 11.16.)

The process is repeated for each of the two diagonals and the results
are shown in Figure 11.22. Finally, the total is computed for each
square. The results are shown in Figure 11.23. Remember that the
total appears in the bottom right-hand corner of each square.

It can be seen that at this point, two squares (indicated by an arrow
in Figure 11.23) have the highest total, ‘‘three.’” This indicates where

229

ADVANCED 6502 PROGRAMMING

—— O |——
X

OIO 0|1

O |

1 2 3

Fig. 11.21: Evaluating the Vertical Potential

ot o0 (o0 |
ST O
21 0 211
7 X
olo)] o}l
O
i

Fig. 11.22: Evaluating the Diagonal Potential

@)

0 0 0 1

e e

2 2 0 1

2 0 X 2 1

% 7

TE 7 B

HIGHEST

,O 0 0 ! SCORE
2 | -

Fig. 11.23: The Final Potential

230

ARTIFICIAL INTELLIGENCE

we should play. But wait! We have not yet examined the threat, i.e.,
the potential from our opponent ‘‘O.”’

We will now evaluate the threat posed by ‘‘O’’ by again computing
the potential of each square on the board, but this time from *“O’s”’
standpoint. The position values for the six meaningful combinations
are indicated in Figure 11.24. When we apply this strategy to our
evaluation grid, we obtain the results shown in Figure 11.25. The
square with the highest score is the one indicated by the arrow. It
scores ‘“four,”” which is higher than the two previous squares that
were determined when we evaluated the potential for “X.”’

Using our algorithm, we decide that the move we should make is to
play into square 1, as indicated in Figure 11.26.

Let us verify whether this was indeed the appropriate move, assum-
ing that each player makes the best possible move. A continuation of
the game is shown in Figure 11.27. It results in a draw.

A VALUE 1

B X VALUE 0

C O| X VALUEO

D X X VALUE O

E O | vawe:2

F O O VALUE 3

Fig. 11.24: Evaluation for 'O’

23

ADVANCED 6502 PROGRAMMING

HIGHEST
SCORE

O

o
N N N N

O

0

_

1

1
3
1
1
1
2

o|-NNe ||

Fig. 11.25: Potential Evaluation

X

O

X

O

Fig. 11.26: Move for Highest Score

X

O

X

O| |0

O

232

Fig. 11.27: Finishing the Game

(DRAW)

ARTIFICIAL INTELLIGENCE

Let us now examine what would have happened if we had not
evaluated the threat and played only according to the highest potential
for ¢“X”’ as shown in Figure 11.23. This alternative ending for the
game is shown in Figure 11.28. This game also results in a draw. In
this instance, then, the square with the value ‘“‘four’ did not truly
have a higher strategic value than the one with the value ‘‘three.”’
However, our algorithm worked.

Let us now test our algorithm under more difficult circumstances.

O @) X|O
X | X XX O|X|[X

O

O X| X O XX (ORAW)
@) @) O[X|O

Fig. 11.28: An Alternative Ending for the Game

Improving the Algorithm

In order to test our algorithm, we should consider clear-cut situa-
tions in which there is one move that is best. To begin, we will assume
that it is the player’s turn. The first test situation, evaluated for ““X,”’
is illustrated in Figure 11.29, and the potential for ‘“O”’ is shown in
Figure 11.30. This time we have a problem. The highest overall poten-
tial is “‘“four” for ‘“X’’ in the lower right corner square. If the com-
puter moved there, however, the player would win! At this point our
algorithm should be refined.

We should note that whenever there are already two ““X’’s in a row
the configuration should result in a very high potential for the third
square. We should therefore assign it a value of ‘‘five’’ rather than

233

ADVANCED 6502 PROGRAMMING

oj1]0]3

1| ©

2 |1 2]0

| X

2 |1 210
X

0] 3 2 | 4

03%2

OIXOI
0f{ 1 o1 1
T X T

Fig. 11.30: Test #1 Evaluated for 'O

72| X .

1 2 1 0 1 0

N\

0 3 // 1 5 6 [-s— PLAY THERE

Fig. 11.31: Test #2

234

ARTIFICIAL INTELLIGENCE

“‘three’’ to ensure that we move there automatically. We have thereby
identified and made our first improvement to the algorithm.

The second test situation is shown in Figure 11.31. Our algorithm
assigns the value ‘‘six’’ to the lower right corner square (as indicated
by an arrow in Figure 11.31). This is clearly the correct move, It
works! Now, let us test the improvement we have made.

The First Move

When the board is empty, our algorithm must decide which square
should be occupied first. Let us examine what this algorithm does.
(The results are shown in Figure 11.32.) The algorithm always chooses
to move to the center. This is reasonable. It could be shown, however,
that it is not indispensable in the game of Tic-Tac-Toe. In fact, having
the computer always move to the center makes it appear ‘‘boring,’’ or
simply “‘lacking imagination.”” Something will need to be done about
this. This will be shown in the final implementation.

1
1
1
NVZ B
I
1
1

Fig. 11.32: Moving to the Center

Another Test

Let us try one more simple situation. This situation is shown in
Figure 11.33. Again, the recommended move is a reasonable one. The
reverse situation is shown in Figure 11.34 and does, indeed, lead to a
certain win. So far, our algorithm seems to work. Let us try a new
trap.

A Trap

The situation is shown in Figure 11.35. It is now ‘“X’s’’ turn to play.
Using our algorithm, we will move into one of the two squares having

235

ADVANCED 6502 PROGRAMMING

1 0 1 0
0 1 0 1 x
o0t o o]0
7— O 5 — - O
0
1 1 0 0 1 1
X
ol 2 010} 2

Fig. 11.33: A Simple Situation

Lo o
~nkd i

1

]

]I]]O]l
1|3/113 X

Fig. 11.34: A Reverse Situation

the total of ““four.”” This time, however, such a move would be an er-
ror! Assuming such a move, the end of the game is shown in Figure
11.36. It can be seen that ‘“O’’ wins. The move by ‘“X”’ was an incor-
rect choice if there was a way to get at least a draw. The correct move
that would lead to a draw is shown in Figure 11.37. This time, our
algorithm has failed. Following is a simple analysis of the cause: it
moved to a square position of value ‘‘four’’ corresponding to a high
level of threat by ‘‘O,”’ but left another square with an equal threat
value unprotected (see Figure 11.35). Basically, this means that if ‘‘O”’
is left free to move in a square whose threat potential is equal to
““four,” it will probably win. In other words, whenever the threat
posed by ¢“O’’ reaches a certain threshold, the algorithm should con-
sider alternative strategies. In this instance, the strategy should be to
place an “‘X”’ in a square that is horizontally or vertically adjacent to

236

ARTIFICIAL INTELLIGENCE

NEXT of2]o]o

MOVE O

N

N ©
O&oon
wo\k\\w

N\\\O
O

Fig. 11.35: Trap 3

O
O|X|O O|X]|O

X
X

Fig. 11.36: End of Game

the first one in order to create an imminent ‘‘lose threat’’ for ‘‘O,”
and thereby force ““O’’ to play into the desired square. In short, this
means that the algorithm should analyze the situation further or better
still, analyze the situation one level deeper, i.e., one turn ahead. This
is called two-ply analysis.

237

ADVANCED 6502 PROGRAMMING

O O

O

O
O
O
X
O

O
>
>
O
>

X (DRAW)

O

X
O
Pl

Fig. 11.37: A Correct Move

In conclusion, our algorithm is simple and generally satisfactory.
However, in at least one instance, Trap 3 in Figure 11.35, it fails. We
must therefore, include either a special consideration for this case, or
we must analyze the situation one turn ahead every time and look at
what would happen if we were to place an “‘X’’ or an *“‘O’’ in every
one of the available squares. The latter is actually the ‘‘cleanest’’ solu-
tion. Ideally, we should analyze all of the possible sequences until an
end-of-game situation is obtained. The programming complexity, the
storage required, and the time that would be needed to analyze the
situations would, however, make this approach impractical. In a more
complex game, such as chess or checkers, it would be necessary to use
such a multi-ply analysis. For example, using only a two-ply analysis
technique to design a simple chess game would not make it very in-
teresting or very good. It would be necessary to use three-ply, four-ply
or even more detailed analysis in order to make the game challenging.

If it is not possible to push the evaluation to a sufficient depth, the
algorithm must be equipped with specific procedures that can detect
special cases. This is the case with ad hoc programming, which can
be considered ‘‘unclean’’ but actually results in a much shorter pro-
gram and/or a lesser memory requirement, In other words, if the
special situations in a game can be recognized in advance, then it is

238

ARTIFICIAL INTELLIGENCE

possible to write a special-purpose program which will take these
situations into account. The resulting program will usually be shorter
than the completely general one. This type of program, however,
can only be constructed if the programmer has an excellent initial

understanding of the game.
In the game of Tic-Tac-Toe, the number of combinations is limited.

This makes it possible to examine all possible combinations that can
be played on the board and to devise a procedure that takes all of these
cases into account. Since we are primarily limited here by the amount
of available memory, we will construct an ad Aoc algorithm that fits
within 1K of memory. Alternative techniques will be proposed as
exercises.

The Ad Hoc Algorithm

This algorithm assigns a value to each square on the board depend-
ing on who has played there. Initially a value of ‘‘zero”’ is assigned to
each square on the board. Every time the player occupies a square,
however, the corresponding value of the square becomes ‘‘one.”’
Every time the computer occupies a square, the value of that square
becomes ‘‘four.”’ This is illustrated in Figure 11.38. The value of
““four’” has been chosen so that it is possible to know the combination
of moves in that row just by looking at the total of every row. For ex-
ample, if a row consists of a move by the player and two empty
squares, its ‘‘row-sum”’ is ‘‘one.”” If the player has played twice, its
row-sum is ‘‘two.’’ If the player has played three times, the row-sum is
“‘three.”” Since ‘‘three’’ is the highest total that can be achieved in
rows where only the player has played, the value of ‘“four’’ has been
assigned to a computer move. For example, if the value of a row is
““five,”” we know that there is one computer move (‘‘X’’), one player
move (‘‘O’’), and one empty square. The six possible patterns are
shown in Figure 11.38. It can readily be seen that the row-sum values
of “‘two” or ‘“‘eight’’ are winning situations. A row-sum value of
““five’’ is a blocked position, i.e., one that has no value for the player.
If a win situation is not possible, then the best potentials are represent-
ed by either a value of ‘‘one’’ or a value of ‘““four’’ depending on
whose turn it is to play.

The algorithm is based on such observations. It will first look for a
win by checking to see if there is a row-sum of value “‘eight.’’ If this is
the case, it will play there. If not, the algorithm will check for a so-
called ‘‘trap’’ situation in which two intersecting rows each have a
computer move in them and nothing else (the algorithm is always used

239

ADVANCED 6502 PROGRAMMING

PATTERN ROWSUM
VALUE

(¢]

OO 2 (WIN)

X1 X 8 (WIN)

Ol X 5 (BLOCKED)

Fig. 11.38: Row-sums

for the computer’s benefit). This is illustrated in Figure 11.39. By ex-
amining Figure 11.39, it becomes clear that each unoccupied square
that belongs to two rows having a row-sum of ‘“four’’ is a trap posi-
tion where the algorithm should play. This is exactly what it does.

The complete flowchart for the board analysis is shown in Figure
11.40. Now, let us examine it in more detail. Remember that it is
always the computer’s turn when this algorithm is invoked.

First, it checks for a possible immediate win. In practice, we will ex-
amine all row-sums and look for one which has a total of ‘‘eight.”
This would correspond to a case where there are two computer moves
in the same row with the last square being empty. (Refer to Figure
11.38.)

Next, we will check for a possible player win. If the player can win
with the next move, the algorithm must block this move. To do so, it
should scan the row-sums and look for one that has a total of ‘‘two,”’

240

ARTIFICIAL INTELLIGENCE

ROWSUM
PLAY
HERE i—' X 4
\ . 0
~
X > :
4 4 4 0 0

Fig. 11.39: A Trap Pattern

which would indicate a winning combination for the player. (Refer to
Figure 11.38.)

At this point the algorithm should check to see if the computer can
play into any of the trap positions defined above. (See Figure 11.39 for
an example.)

One more feature has been built into the algorithm: the computer is
equipped with a variable 1Q level, i.e., with a variable level of in-
telligence. The above moves are ones that any ‘‘reasonable computer’’
must make. From this point on, however, the algorithm can let
the computer make a few random moves and even possible mistakes if
its intelligence level is set to a low level. In order to provide some
variety to the game, we will obtain a random number, compare it to
the 1Q, and vary our play depending upon the results. If the IQ is set
to the maximum, the program will always execute the right branch of
the flowchart; however, if the IQ is not set to the maximum, it will
sometimes execute the left branch. Let us follow the right branch of
the flowchart. At this point, we will check for two special situations
that correspond to moves #1 and #4 in the game.

For the first situation, i.e., the first move in a game, the algorithm
will occupy any position on the board. That way, its behavior will be
different every time and, thus, appear ‘‘intelligent.”’

241

ADVANCED 6502 PROGRAMMING

CAN COMPUTER

Y

RETURN W/
WINNING MOVE
IN X

{

RETURN W/
BLOCKING MOVE
IN X

CAN
PLAYER WIN?

YES

CAN COMPUTER
PLAY TRAP?

Y

RETURN

W/ MOVE
IN X
GET RANDOM
NUMBER

RANDOM
NUMBER >
1.Q.?

(NEXT PAGE)

GET RANDOM
MOVE, CHECKING
FOR SPACE
OCCUPIED

Y

RETURN
W/ MOVE
IN X

Fig. 11.40: Board Analysis Flowchart

For the next situation we must look at move #4. It is the computer’s
turn. In other words, the player started the game (move #1), the com-
puter responded (move #2), then the player made his or her second
move (move #3), and it is now the computer’s turn, In short, in the
game thus far, the player has played twice and the computer has

242

ARTIFICIAL INTELLIGENCE

YES MOVE

NUMBER 17
GET RANDOM MOVE
FOR UNOCCUPIED
SQUARE
MOVE YES

\ NUMBER 4?

RETURN

W/ MOVE
INX

ROWSUM
OF EITHER
DIAGONAL
= 6?7

CAN PLAYER
SET TRAP?

FIND RANDOM
UNOCCUPIED SIDE

RETURN W/
BLOCKING MOVE
IN X

Y
‘ PLAY THERE? ’

GET RANDOM
MOVE

1Y

RETURN
W/ MOVE
IN X

Fig. 11.40: Board Analysis Flowchart (Continued)

played once. At this point, we want to check to see if the first three
moves have all been made along one of the diagonals. If so, since the
player has made two moves and the computer has made one, the row-
sum of one of the diagonals will be “‘six.”’ The algorithm must check
explicitly for this. If the first 3 moves have all been made along a

243

ADVANCED 6502 PROGRAMMING

diagonal, the computer must move to a side position. This is a special
situation which must be built into the algorithm, or it cannot be
guaranteed that the computer (assuming the highest IQ level) will win
every time. This situation is illustrated in Figure 11.41. Note that if
straightforward logic was used, the algorithm would play into one of
the free corners since a threat exists from the player that he or she
might play there, and thereby set up a trap situation. The results of
such an action are shown in Figure 11.42. By looking at this illustra-

O

O

Fig. 11.41: The Diagonal Trap

O X O X
X X
O O O

COMPUTER PLAYER

O X O X
XX X
O @) O 0|0

COMPUTER PLAYER
(WINS)

X

Fig. 11.42: Faliing Into the Diagonal Trap

244

ARTIFICIAL INTELLIGENCE

tion, it can be seen that such a move would result in a loss. However,
let us examine what happens if we play on one of the sides. This situa-
tion is illustrated in Figure 11.43; it results in a draw. This is clearly the
move that should be made. This is a relatively little-known trap in the
game of Tic-Tac-Toe, and a provision must be built into the algorithm
so that the computer will win.

O O O X
X| X XX X{X]|O
O O O

COMPUTER PLAYER COMPUTER

O X O OO (X
XIX|O X|X|0
O Ol |O0|X]|O O|X|O

PLAYER COMPUTER PLAYER
(DRAW)

@)

X

X
X
O

Fig. 11.43: Playing to the Side

If it was not the fourth move, or if there was not a diagonal trap set,
the next thing the computer should do is to check to see if the player
can set a trap. (Refer to the flowchart in Figure 11.40.) If the player
can set a trap, the computer plays in the appropriate square to block
it. Otherwise, the computer moves to the center square, if available; if
that is not possible, it moves randomly to any position.

Since this algorithm was built in an ad hoc fashion, it is difficult to
prove that it wins or achieves a draw in all cases. It is suggested that you
try it on a board or that you try out the actual program on the Games
Board. You will discover that in all conditions under which it has been
tested, the computer always wins or achieves a draw, If the computer
keeps winning, however, its IQ level will drop, and eventually it will
allow the player to win. As an example, some sequences obtained on
the actual board are shown in Figure 11.44,

245

ADVANCED 6502 PROGRAMMING

246

Fig. 11.44: Actual Game Sequences

COMPUTER| PLAYER | | COMPUTER| PLAYER | |COMPUTER| PLAYER

4 5 5 6

7 1 1 6 5 4

9 8 4 7 1 9

2 (DRAW) 3 2 3 7

8 5 8 9 2 (LOSS)

6 3 (DRAW) 6

7 9 5 5 4

1 4 3 4 8 2
(DRAW) 6 9 9 1

2 5 1 2 7 (LOSS)

9 1 8 7 6

7 8 (DRAW) 1 5

6 3 2 4 7
(DRAW) 5 1 3 2

8 5 3 7 8 9

1 7 4 6 (DRAW)

3 2 9 8 9 5

6 9 (DRAW) 3 6
(DRAW) 1 4 2

6 5 5 3 8 7

4 8 2 8 (DRAW)

2 3 9 6

7 1 7 4
(DRAW) (DRAW)

ARTIFICIAL INTELLIGENCE

Suggested Modifications

Exercise 11-1: Designate a special key on the Games Board that, when
pressed will display the computer’s IQ level.

Exercise 11-2: Modify the program so that the IQ level of the com-
puter can be changed at the beginning of each game.

Credits

The ad hoc algorithm which was described in this section is believed
to be original. Eric Novikoff was the main contributor. ‘‘Scientific
American”’ (selected issues from 1950 through 1978), as well as Dr.
Harvard Holmes must also be credited with having provided several
original ideas.

Alternative Strategies

Other strategies can also be considered. In particular, a short pro-
gram can be designed by using tables of moves that correspond to
various board patterns. The tables can be short because when sym-
metries and rotations are taken into account, the number of situations
that can be represented is limited. This type of approach results in a
shorter program, however, the program is somewhat less interesting to
design.

Exercise 11-3: Design a Tic-Tac-Toe program using this type of table.

THE PROGRAM

The overall organization of the program is quite simple. It is shown
in Figure 11.42. The most complex part is the algorithm that is used to
determine the next move by the computer. This algorithm, called
“FINDMOYVE,”’ was previously described.

Let us now examine the overall program organization. The cor-
responding flowchart is shown in Figure 11.45.

1. The computer IQ level is set to 75 percent.

2. The user’s keystroke is read.

3. The key is checked for the value ¢‘F.”’ If itis an “‘F,’’ the player
starts; otherwise the computer starts. Depending on the value
of the key pressed, the flowchart continues into boxes 4 or §,
then to 6.

247

ADVANCED 6502 PROGRAMMING

‘ START ’

—_
73
bl
m
2]

TO75%

4 PLAYER =1

\B R

2| GETKEYSTROKE

YES

5 PLAYER =0

15

MOVE
NUMBER 97

'IO FIND COMPUTER'S

11 PLAY COMPUTER’'S

12 PLAYER = 1

FLASH ALL LIGHTS

248

Fig. 11.45:

-l

PLAYER = 07

MOVE

MOVE

Y

7 | GeTPLAYER'S MOVE

\

PLAY PLAYER'S
MOVE

Y

PLAYER = 0

Tic-Tac-Toe Flowchart

ARTIFICIAL INTELLIGENCE

O

16| BLANKALLLIGHTS
BUT WINNING ROW

COMPUTER
WIN?

i

18| outPuUT HIGH TONE

20 OUTPUT LOW TONE

V 19| INCREMENTI.Q.
(NOT ABOVE 15)

21| oecremenTiQ.
(NOT LESS THAN 1)

Fig. 11.45: Tic-Tac-Toe Flowchart (Continued)

If the player starts (PLAYER is not equal to ‘‘0’’), then we move to
the left side of the flowchart.
7. The key, pressed by the player specifying his or her move, is
read and the move is displayed on the board.
8. The corresponding LED is lit on the board. It then becomes the
computer’s turn to play and the variable PLAYER is set to
“0”’ in box 9.

When exiting from box 6, if it is the computer’s turn, we move to
box 10.

11. The next move to be made by the computer must be computed
at this time.

This is the complex algorithm we have described above.

11. Next, the computer’s move is displayed.

12. PLAYER is reset to ‘‘one’’ to reflect the fact that it is now the
player’s turn.

After either party has moved, the board is checked for a winning se-

249

ADVANCED 6502 PROGRAMMING

quence of lights in box 13. If there is not a winning sequence of lights,
we move to the left on the flowchart.

14. We next check to see if all moves have been exhausted: we
check for move #9. If the ninth LED is lit and a winning situa-
tion has not been detected, it is a draw, and all lights on the
board must be flashed.

15. We flash all the LEDs on the board. Then, we return to box 6
and the next player plays.

When exiting from box 13, if there is a win situation, this fact must

be displayed:

16. All of the lights are blanked except for the winning three LEDs.
Next, it must be determined by the algorithm whether the
player or the computer has won.

17. A determination is made as to whether it was the player or the
computer who won. If the computer has won, we branch to the
right on the flowchart.

18. A low frequency tone is sounded.

19. The computer’s IQ is decremented (to a minimum of 0).

The situation for a player win, shown in boxes 20 and 21, is analo-

gous.

The general program flow is straightforward. Now, we shall examine
the complete information. The subroutine which analyzes the board
situation is called “ANALYZE” and uses ‘“UPDATE"’ as a subroutine
to compute the values of various board positions.

Data Structures

The main data structure used by this program is a linear table with
three entry points that are used to store the eight possible square
alignments on the board. When evaluating the board, the program
will have to scan each possible alignment for three squares every time.
In order to facilitate this process, all possible alignments have been
listed explicitly, and the memory organization is shown in Figure
11.46.

The table is organized in three sections starting at RWPTI,
RWPT2, and RWPT3 (RWPT stands for ‘‘row pointer’’). For exam-
ple, the first elements RWPT1, RWPT2, and RWPT3, for the first
three-square sequence are looked at by the evaluation routine. The se-
quence is: “‘0, 3, 6,”” as indicated by the arrows in Figure 11.43. The
next three-square sequence is obtained by looking at the second entry
in each RWPT table. It is ““1, 4, 7,”’ which is, in fact, the second col-
umn on our LED matrix.

250

’
RwWPT! —%

FIRST
SQUARE

RwWpT2 —#

SECOND
SQUARE

RWPT3 —

THIRD 4
SQUARE

01
02
03
04

05

\ 07
(08

0A
0B
oC

oD

ARTIFICIAL INTELLIGENCE

A

A

A

A

A

\A§

A

)

Fig. 11.46: Tic-Tac-Toe Row Sequences in Memory

251

ADVANCED 6502 PROGRAMMING

The table has been organized in three sections in order to facilitate
access. To be able to access all of the elements successfully, it will be
necessary to keep a running pointer that can be used as an index for ef-
ficient table access. For example, if we number our generalized rows
of sequences from 0 to 7, ‘‘row’’ 3 will be accessed by retrieving
elements at addresses RWPT1 + 3, RWPT2 + 3, RWPT3 + 3. (Itis

the sequence ‘0, 1, 2,”’ as seen in Figure 11.46.)

Memory Organization

Page 0 contains the RWPT table which has just been described, as
well as several other tables and variables. The rest of the low memory
is shown in Figure 11.47.

The GMBRD table occupies nine locations and stores the status of
the board at all times. A value of ‘‘one”’ is used to indicate a position
occupied by the player, and a value of ‘‘four’’ indicates a position oc-
cupied by the computer,

The SQSTAT table also occupies nine words of memory and is used
to compute the tactical status of the board.

The ROWSUM table occupies eight words and is used to compute
the value of each of the eight generalized rows on the square.

The RNDSCR table occupies six words and is used by the random
number generator.

The remaining locations are used by temporary variables, masks, and
constants, as indicated in Figure 11.47. The role of each variable or con-
stant will be explained as we describe each routine in the program.

High Memory

High memory locations are essentially reserved for input/output
devices. Ports 1 and 3 are used, as well as interrupts. The correspond-
ing memory map is shown in Figure 11.48. The interrupt-vector
resides at addresses A67E and A67F. It will be modified at the begin-
ning of the program so that interrupts will be generated automatically
by the interval timer. These interrupts will be used to blink the LEDs
on the board.

Detailed Program Description

At the beginning of each game, the intelligence level of the com-
puter is set at 75 percent. Each time that the player wins, the IQ level

252

GMBRD/CLRST

SQSTAT

ROWSUM

RNDSCR

CLREND

INIT

20

29
2A

31
32

38

39

3A

3B

3C

3D

3E

3F

40

41

50

ARTIFICIAL INTELLIGENCE

NN

BOARD STATUS
01 = PLAYER
04 = COMPUTER
9 bytes
/
TACTICAL STATUS N
>9 bytes
/
SUM OF SQUARE VALUES
PLAYER = 1
: EMPTY =0 8 bytes
| COMPUTER = 4
SCRATCH PAD FOR RANDOM
NUMBER GENERATOR 6 bytes
TEMP1
Temporaries for FINDMV
TEMP2 routine (A and X Registers)
MOVNUM Number of current move
PLAYR Indicates whose turn it is
LTMSKH Blink mask, high
LTMSKL Blink mask, low
DUR Duration constant for tone
FREQ Frequency constant for tone
ODDMSK Used to force an odd result
INTEL 1Q number (intelligence)
PROGRAM AREA

Fig. 11.47; Tic-Tac-Toe: Low Memory

253

ADVANCED 6502 PROGRAMMING

::: TlCH/

wl

A008 // _UNUSED //// 7.

N

wocl

AQOD //
NN
RV Vg Wl \
20 Ve Ve e N\
A 0 Ve a N \
NN

Fig. 11.48: Tic-Tac-Toe: High Memory

254

ARTIFICIAL INTELLIGENCE

will be raised by one point. Each time that the player loses, it will be
decremented by one point. It is initially set at the value 12 decimal:

START LDA #12
STA INTEL Set IQ at 75%

Initialization occurs next:
RESTRT JSR INIT

Let us examine the INIT subroutine which has just been called. It
resides at address 0050 and appears on lines 0345 and following on the
program listing. The first action of the initialization subroutine is to
clear all low memory locations used by program variables. The loca-
tions to be cleared are those between CLRST and CLREND (see lines
41 and 57 of the program listing). Note that a seldom-used facility of
the assembler — multiple labels for the same line — has been utilized
to facilitate the clearing of the correct number of memory locations.
Since it may be necessary to introduce more temporary variables in the
course of program development, a specific label was assigned to the
first location to be cleared, CLRST (memory location 18), and
another to the last location to be cleared (CLREND). For example,
memory location 18 corresponds both to CLRST and to GMBRD.
The clearing operation should start at address CLRST and proceed
forward fourty locations (CLREND-CLRST). Thus, we first load the
number of locations to be cleared into index register X, then we use
aloop to clear all of the required locations:

INIT LDA #0
. LDX #CLREND-CLRST
CLRALL STA CLRST,X Clear location
DEX
BPL CLRALL

After low memory has been cleared, the two starting locations for the
random number generator must be seeded. As usual, the low-counter
of timer 1 is used:

LDA TILL
STA RNDSCR + 1
STA RNDSCR + 4

255

ADVANCED 6502 PROGRAMMING

Ports 1A, 1B, and 3B are then configured as outputs. The appropriate
pattern is loaded into the data direction registers:

LDA #3FF

STA DDRIA
STA DDRIB
STA DDR3B

All LEDs on the board are turned off:

LDA #0
STA PORTI1A
STA PORTIB

Next, the interrupt vector’s address must be loaded with a new
pointer. The address to be deposited there is the address of the inter-
rupt handler, which has been designed to provide the regular blinking
of the LEDs. (This process has already been explained in previous
chapters.) The interrupt handler resides at address INTVEC. The high
byte and the low byte of this address will be loaded in memory loca-
tions IRQVH and IRQVL, respectively. A special assembler symbol is
used to denote the low byte of the interrupt vector: #<INTVEC. Con-
versely, the high byte is represented in assembly language by #>
INTVEC. The new interrupt vector is loaded at the specified memory
locations:

JSR ACCESS

LDA #<INTVEC

STA IRQVL Low vector
LDA #>INTVEC

STA IRQVH High vector

As usual, the interrupt-enable register must first be cleared, then the
appropriate interrupt must be enabled:

LDA #$7F

STA IER Clear register
LDA #3$C0

STA IER Enable interrupt

Timer 1 is set to the free-running mode:

256

ARTIFICIAL INTELLIGENCE

LDA #$40
STA ACR

The latch for timer 1 is loaded with the highest possible count,
“FFFF”’:

LDA #$FF
STA TILL
STA T1CH

Finally, interrupts are enabled, the decimal mode is cleared as a
precaution, and we terminate the initialization stage:

CLI
CLD
RTS

Back to the Main Program

We are now at line 69 of the program listing. We read the next key
closure on the keyboard:

JSR GETKEY

It is the first move. We must determine whether it is an “F’’ or not. If
it is an ‘‘F,”’ the player moves first; otherwise the computer moves
first. Let us check it:

CMP #$F
BNE PLAYLP

It is the player’s turn and this information is stored in the temporary
variable PLAYR, shown in Figure 11.44:

LDA #01
STA PLAYR

It is time for a new move, and the move counter is incremented by
one. Variable MOVNUM is stored in low memory. This is shown in

Figure 11.44. It is now incremented:

PLAYLP INC MOVNUM

257

ADVANCED 6502 PROGRAMMING

At this point, PLAYR indicates whose turn it is to play. If it is set at
“‘zero,’’ it is the computer’s turn. If it is set at ““one,’” it is the player’s
turn. Let us check it:

LDA PLAYR
BEQ CMPMU

We will assume here that it is the player’s turn. PLAYR is reset to
‘‘zero’’ so that the computer will make its move next:

DEC PLAYR

The player’s move is received by the PLRMYV subroutine which will be
described below. Let us allow the player to play:

JSR PLRMV

The move made by the player is specified at this point by the contents
of the X register. Since it was the player’s move, the corresponding
code on the board’s representation should be ““01,”” which will be
deposited in the accumulator:

LDA #01

We will now display the move on the board by blinking the proper
LED. In addition, the corresponding ROWSUM will automatically be
updated:

JSR UPDATE

The UPDATE routine will be described in detail below. Once the
move has been made, we should check for a possible win. In the case
of a win, the player has three blinking LEDs in a row, and the cor-
responding row total is automatically equal to ‘‘three.” We will
therefore simply check all eight rows for a ROWSUM of three:

LDA #03
BNE WINTST

At address WINTST a test is performed for a winning configura-
tion. Index register Y is loaded with ‘‘seven’’ and used as a loop

258

ARTIFICIAL INTELLIGENCE

counter. All of the rows, 7 through 0, are checked for the value
“‘three’’:

WINTST LDY #7

TSTLP CMP ROWSUM 4
BEQ WIN
DEY
BPL TSTLP

Let us now continue with the player’s move. We will examine the
computer’s move later. (The computer’s move corresponds to lines
83-88 of the program listing, which have not been described yet.) A
maximum of nine moves is possible in this game. Let us verify whether
or not we have reached the end of the game by checking the value of
MOVNUM, which contains the number of the current move:

LDA MOVNUM
CMP #9
BNE PLAYLP

This is the end of our main loop. At this point, a branch occurs back
to location PLAYLP, and execution of the main program resumes.

If we had reached the end of the game at this point, the game would
be a tie, since there has not been a winner yet. At this point all of the
lights on the board would be set blinking and then the game would
restart. Let us set the lights blinking:

LDA #3FF
STA LTMSKL
STA LTMSKH
BNE DLY

The delay is introduced to guarantee that the lights will be blinked for
a short interval. Let us now examine the end-of-game sequence.

When a win situation is found, it is either the player’s win or the
computer’s win. When the player wins, the row total is equal to
‘“‘three.”” When the computer wins, the row total is equal to ‘‘twelve.”’
(Recall that each computer move results in a value of ‘“four’’ for the
square. Three squares in a row will resultin 3 x 4 = 12.) If the com-
puter won, its IQ will be decremented:

259

ADVANCED 6502 PROGRAMMING

WIN CMP#12
BEQ INTDN

At this point a jump would occur to INTDN, where the intelligence
level will be decreased (intelligence lowered).

A losing tone will be generated to indicate to the player that he or
she has lost. The corresponding frequency constant is ‘‘FF,”’ and it is
stored at address FREQ:

INTDN LDA #S$FF
STA FREQ

The intelligence level will now be decreased unless it has already
reached ‘‘zero’’ in which case it will remain at that value:

LDA INTEL
BEQ GTMSK
DEC INTEL

For a brief time the winning row will be illuminated on the board, and
the end-of-game tone will be played. First, we clear all LEDs on the
board:

GTMSK LDA #0
STA PORTI1A
STA PORTI1B

At this point, the number of the winning row is contained in index
register Y. The three squares corresponding to that row will simply be
retrieved from the RWPT table. (See Figure 11.43.) Let us display the
first square:

LDX RWPT1,Y
JSR LEDLTR

The LEDLTR routine will be described below. It lights up the
square whose number is contained in register X. Let us now display

the next square:

LDX RWPT2,Y
JSR LEDLTR

260

ARTIFICIAL INTELLIGENCE
Then, the third one:

LDX RWPT3,Y
JSR LEDLTR

At this point, we should turn off all unnecessary blinking LEDs on the
board. The new pattern to be blinked is the one with the winning row
and we must, therefore, change the LTMSKL mask:

LDA PORTIA
AND LTMSKL
STA LTMSKL

We now do the same for Port 1B:

LDA PORTI1B
AND LTMSKH
STA LTMSKH

Exercise 11-4: Subroutine LEDLTR on line 125 of the program listing
has just lit the third LED on the board for the winning row. Im-
mediately after that, we start reading the contents of Port 14, and
then Port IB.

There is, however, the theoretical possibility that an interrupt might
occur immediately after LEDLTR, that might change the contents of
Port 1A. Would this be a problem? If it would not be a problem, why
not? If it would, modify the program to make it always work correct-
Iy.

At this point, Ports A and B contain the appropriate pattern to light
the winning row. If the player has won, the blink masks LTMSKL and
LTMSKH contain the same pattern, and will blink the row. We are
now ready to sound the win or lose tone. The duration is set at “‘FF*’:

LDA #$FF
STA DUR

The frequency, FREQ, was set above. We simply have to play it:

LDA FREQ
JSR TONE

261

ADVANCED 6502 PROGRAMMING

A delay must be provided:
DLY JSR DELAY

We are now ready to start a new game with the new intelligence level
of the computer:

JMP RESTART

Back to WIN

Let us now go back to line 103 of the program listing and examine
the case in which the computer did not win (i.e., the player won). A
different frequency constant is loaded at location FREQ:

LDA #30
STA FREQ

Since the player won, the intelligence level of the computer will be
raised this time. Before it is raised, however, it must be checked
against the value ‘‘fifteen,’” which is our legal maximum:

LDA INTEL
CMP #$0F
BEQ GTMSK
INC INTEL

The sequence was exactly analagous to the one in which the computer
wins, except for a different tone frequency, and for the fact that the
intelligence level of the computer is increased rather than decreased.

The Computer Moves

Let us now go back to line 83 of the program listing and describe
what happens when the computer makes a move. Variable PLAYR is
incremented, then a delay is provided to simulate ‘‘thinking time’’ for
the computer:

COMPMYV INC PLAYR
JSR DELAY

The computer move is determined by the ANALYZ routine described

262

ARTIFICIAL INTELLIGENCE

below:
JSR ANALYZ

The computer’s move is entered as a ‘‘four’’ at the appropriate
location on the board:

LDA #04
JSR UPDATE

Next, we check all of the rows for the possibility of a computer win,
i.e., for a total of “‘twelve”’:

LDA #12
WINTST LDY #7

and so on. We are now back in the main program described previous-
ly.

When the program segment outlined above is compared to the one
that is used for the player’s move, we find that the primary difference
between the two is that the move was specified by the ANALYZ
routine rather than being picked up from the keyboard. This routine is
the key to the level of intelligence of the algorithm. Let us now ex-
amine it.

Subroutines

The ANALYZE Subroutine

The ANALYZ subroutine begins at line 143 of the program listing.
The corresponding conceptual flowchart is shown in Figure 11.40. In
the ANALYZ subroutine the ODDMSK is first set to ‘‘zero.”

ANALYZ LDA #0
STA ODDMSK

We now check for the possibility of a computer win during its next
turn. If that possibility exists, we clearly must play into the winning
square, This will end the game. A winning situation is characterized by
a total of ‘‘eight’’ in the corresponding row; therefore let us deposit
the total ‘‘cight’’ into the accumulator:

263

ADVANCED 6502 PROGRAMMING

LDA #08

A winning situation will occur when the squares in rows 1, 2, or 3 all
total “‘three’’ at the same time. Let us set our filter variable, X, for the
number of rows that qualify, to “‘three’’:

LDX #03

We are now ready to use the FINDMY routine:
JSR FINDMV

The FINDMY routine will be described below. It must be called with
the specified ROWSUM in A and with the number of times a match is
found in X. It will systematically check all of the rows and squares, If
a square is found, it exits with a specified square number in X and the
Z flag is set to ‘‘0.”” Let us test it:

BNE DONE

If a winning move has been found, the ANALYZ routine exits. Unfor-
tunately, this is not usually the case, and more analysis must be done.

The next special situation to be checked is to see if the player has a
winning move. If so, it must be blocked. A winning situation for the
player is indicated by a row total of ¢“2.”’ Let us load ‘2"’ into the ac-
cumulator and repeat the previous process:

LDA #02
LDA #03

JSR FINDMV
BNE DONE

If the player could make a winning move, this is the square where the
computer should play and we exit to DONE; otherwise, the situation
should be analyzed further.

We will now check to see if the computer can implement a trap. A
trap corresponds to a situation in which a computer move has already
been made in the same row. We would like to play at the intersection
of two rows containing computer moves. This was explained above
when the algorithm was described. This situation is characterized by A
= 4and X = 2. Let us load the registers with the appropriate values

264

ARTIFICIAL INTELLIGENCE

and call the FINDMY routine:

LDA #04
LDX #02

JSR FINDMV
BNE DONE

If we succeed, we exit to DONE; otherwise, we proceed down the
flowchart diagrammed in Figure 11.40.

It is at this point that the computer can demonstrate either in-
telligent or ill-advised play. The behavior of the computer will be
determined by its intelligence level. We will now obtain a random
number and compare it to the computer’s IQ. If the random number
exceeds the computer’s IQ, we will proceed to the left side of the
flowchart in Figure 11.40 and make an ill-advised move (i.e., a random
one). If the random number does not exceed the computer’s IQ, we
will make an intelligent move on the right side of the flowchart. Let us
generate the random number:

JSR RANDOM
We truncate the random number to its right byte so that it does not ex-
ceed fifteen:

AND #$0F
and we compare it to the current IQ of the computer:

CMP INTEL
BEQ OK
BCS RNDMV

If the random number is higher than the IQ level stored in INTEL, we
branch to RANDMYV and play a random move, At this point, we will
assume that the random number was not greater than the IQ level, and
that the computer will play an intelligent move. We now proceed from
line 162 (location ‘‘OK’’).

We will first check to see if this is move #1; then we check to see if
this is move #4. Let us check for move #1:

OK LPX MOVNUM
CPX #1

265

ADVANCED 6502 PROGRAMMING

If it is move #1, we occupy any square:
BEQ RNDMV

Let us now check for move #4:
CPX #4

If it is not move #4, we will check to see if the player can set a trap.
This will be performed at location TRAPCK. Let us assume here that
it is move #4.

BNE TRAPCK

This section will check both diagonals for the possibility of the se-
quence player-computer-player. If this sequnce is found, we will play
to the side. Otherwise, we will go back to the mainstream of this
routine and check to see if the player can set a trap. The combination
player-computer-player in a row is detected when the row totals
“*six.”” Therefore, we load the value ‘‘six’’ into the accumulator and
check the corresponding diagonal. By coincidence, diagonals corre-
spond to the sixth and seventh entires in our RWPT table. (See
Figure 11.46.) Let us do it:

LDX #6

TXA

CMP ROWSUM, X
REQ ODDRND

If a match is found, we branch to address ODDRND, where we will
play to the side. This will be described below. If a match is not found
we check the next diagonal:

INX
CMP ROWSUM,X
BEQ ODDRND \

If, at that point, the test also fails for the second diagonal, we will
check to see if the player can set a trap:

266

ARTIFICIAL INTELLIGENCE

Checking To See If the Player Can Set a Trap (TRAPCK)

The possibility of a trap for the player is identified (as in the case of
the computer), when two intersecting rows each contain only a
player’s move. This has been explained in the description of the
algorithm above. The value of a row which is a candidate for a trap is
thereby equal to ‘‘one’’ (one player’s move). The parameters must,
therefore, be set to A = 1, and X = 2 before we can call the
FINDMY routine:

TRAPCK LDA #1
LDX #2
JSR FINDMYV
BNE DONE

If the proper location for a trap can be found, the next move is to play
there. Otherwise, if possible, the computer moves to the center or, if
the center is occupied, it makes a random move on the side,

LDX GMBRD + 4
BNE RNDMYV
LDX #5

BNE DONE

Playing a Random Move on the Side

The four sides on the board are numbered externally 2,4,6 and 8, or
internally 1,3,5, and 7. Any odd internal number specified for a move
will result in our occupying a side position. If we want to occupy a side
position, we simply load the value ‘“‘one’’ in ODDMSK, and we
guarantee that the random number generated will be one of the four
corners. This is performed by entering at address ODDRND:

ODDRND LDA #1
STA ODDMSK

Generally, however, we may want to make a random move. This will
be accomplished by generating and using any random number that is
reasonable, i.c., by setting ODDMSK to ‘0’ prior to entering at ad-
dress RNDMYV. Let us obtain a random number:

267

ADVANCED 6502 PROGRAMMING

RNDMYV JSR RANDOM

Let us strip off the left byte:
AND #$0F

Then let us OR this random number with the pattern stored in ODDMSK.
If the mask had been set to ¢“0,”’ it would have no effect on the random
number. If the mask had been set to ‘‘1,”” however, it would result in
our playing into one of the corners (the center is occupied here):

ORA ODDMSK

Since the random number which was generated was between ¢‘0’’ and
““15,”’ we must check to be sure that it does not exceed ‘“9’’; other-
wise, it cannot be used:

CMP #9
BCS RNDMV

We must now check to make sure that the space into which we want
to move is not occupied. We load the square’s number into index
register X and verify the square’s status by reading the appropriate en-
try of the GMBRD table (see the memory map in Figure 11.47):

TAX
LDA GMBRD,X

If there is any entry other than ‘“0”’ in this square, it means that it is
occupied and we must generate another random number:

BNE RNDMV

We have selected a valid square and will now play into it. When we ex-
it from this routine, the external LED number should be contained in
X. It is obtained by adding ‘17’ to the current contents of X, which
happens to be the internal LED number:

INX
DONE RTS

268

ARTIFICIAL INTELLIGENCE

FINDMY Subroutine

This subroutine will evaluate the board until it finds a square which
meets the specifications in the A and the X registers. The accumulator
A contains a specified row-sum that a row must meet in order to
qualify. Index register X specifies the number of times that a par-
ticular square must belong to a row whose row-sum is equal to the one
specified by A.

The FINDMYV subroutine starts with a square status of ‘‘0”’ for
every square on the board. Every time it finds a square that meets the
row-sum specification, it will increase its status by ‘“1.”’ Thus, at the
end of the evaluation process, a square with a status of *“1”’ is a square
which meets the row-sum specifications once. A square with a status
of ““2”’ is one that meets the specification twice, etc.

The final selection is performed by FINDMYV, which checks the
value of each square in turn. As soon as it finds a square whose status
matches the number contained in register X, it selects that square
as one that meets the initial specification.

The complete flowchart for FINDMYV is shown in Figure 11.49,
Essentially, the subroutine operates in three steps. These steps are in-
dicated in Figure 11.49. Step 1 is the initialization phase. Step 2 cor-
responds to the selection of all squares that meet the row-sum
specifications contained in register A. The status of every empty
square in a row that meets this specification is increased by one as all
the rows are scanned. Step 3 is the final selection phase. In this phase,
each square is looked at in turn until one is found whose status match-
es the value contained in X. As soon as one is found, the process
stops. That square is the one that will be played by the computer. If a
square is not found, the routine will exit, with the index X having
decremented to ‘‘0,”’ and this will be used as a failure flag for the call-
ing routine.

Let us now examine the corresponding program. It starts at line 204
in the program listing.

Step 1: Initialization

Index registers X and A will be used in the body of this subroutine.
Their initial contents must first be preserved in temporary memory
locations. Addresses TEMP1 and TEMP2 are used for that purpose.
(See Figure 11.47 for the memory map.)

Let us preserve X and A:

269

ADVANCED 6502 PROGRAMMING

STEP1
INITIALIZATION

STEP 2
COMPUTING <
STATUS
(A-SELECTION)

STEP 3
FINAL SELECTION 4
(AAND X)

FINDMV

V

SAVE X AND A
PARAMETERS

\

CLEAR SQUARE
STATUSES

270

CHEKLP

Y Y

CHECK ROWSUM
AGAINST SPECIFIED
VALUE

\

GET 15T SQUARE
IN ROW

EMPTY?

YES

INCREMENT ITS
STATUS

' |

NEXT ROW

NO
YES
(NOCHEK)
YES

CHECK LAST SQUARE

'y

CHECK 2ND SQUARE

Y

CHECK 3RD SQUARE

Y

SQUARES.
STATUS =
XPAR/})METER

PLAY THIS
SQUARE

Y

NEXT SQUARE

NO

Fig. 11.49: FINDMYV Flowchart

YES

ARTIFICIAL INTELLIGENCE

FINDMYV STX TEMP2
STA TEMPI

The status of the board is then cleared. Each square’s status must be
set to ‘“0.”’ This is accomplished by loading the value ‘‘0’’ into the ac-
cumulator, then going through a nine cycle loop that will clear the
status of each square in turn:

LDA #0

LDY #8
CLRLP STA SQSTAT,4

DEY

BPL CLRLP

Step 2: Computing the Status of Each Square

Each of the eight possible row-sums will now be examined in turn.
If the row-sum matches the value specified in the accumulator on
entry, each empty square within the specified row will have its status
incremented by ““1.”’ If the row-sum value does not meet the minimum,
the next one will be examined. Index register Y is used as a row pointer.
The RWPT table described at the beginning of this program and shown
in Figure 11.46 will be used to successively retrieve the three squares
that form every row. Let us first initialize our counter:

LDY #7
Now, we will check the value of the corresponding row-sum:

CHEKLP LDA TEMPI
CMP ROWSUM,Y
BNE NOCHEK

Let us assume at this point that the row-sum is indeed the correct one.
We must now examine each of the three squares in the row. If the
square is empty, we increment its status. The first step is to obtain the
square’s value by looking it up in the table, using index register Y as a
displacement, and using addresses RWPT1, RWPT2, and RWPT3
successively as entry points into the row table. Let us try it for the first
square:

271

ADVANCED 6502 PROGRAMMING

LDX RWPT1,Y

Index register X now contains the square number. If the square is
empty, a new subroutine, CNTSUB, is used to increment its status:

JSR CNTSUB

It will be described below.
Let us now do the same for the second and third squares:

LDX RWPT2,Y
JSR CNTSUB
LDX RWPT3,Y
JSR CNTSUB

We have now completely scanned one row. Let us look to see if any
more rows need to be checked:

NOCHEK DEY
BPL CHECKLP

The process is repeated until all the rows have been checked. At this
point, we enter into step 3 of FINDMYV. (Refer to the flowchart in
Figure 11.49.)

Step 3: Final Selection

Index register X will be used as a square pointer. It will start with
square #9 and continue to examine squares until one is found that
meets the additional X register specifications, i.e., the number of
times that the given square belongs to a row with the appropriate row-
sum value. Let us initialize it:

LDX #9

Now, we compare the value of the square status with the value of the
specified X parameter:

FNMTCH LDA TEMP2
AND SQSTAT-1,X

272

ARTIFICIAL INTELLIGENCE

If the square status matches the value of the parameter, we select this
square:

BNE FOUND
Otherwise, we try the next one:

DEX
BNE FNMTCH
FOUND RTS

Exercise 11-5: Why are “AND’’ and “‘BNE’’ rather than ‘“‘CMP’’ and
““BEQ’’ used to find a matching square above? (Hint: decide what the
difference in the program’s strategy would be.)

COUNTSUB Subroutine

This subroutine is used exclusively by the FINDMYV subroutine and
increments the status of the square whose number is in register X, if
the square is empty. First, it examines the status of the square by look-
ing for its code in the GMBRD table:

CNTSUB LDA GMBRD,X
BNE NOCNT

If the square is occupied, an exit occurs. If it is not, the status value of
the square is incremented:

INC SQSTAT,X
NOCNT RTS

UPDATE Subroutine

Every time a move is made, it must be displayed on the board.
Then, the appropriate code must be stored in the board representa-
tion, i.e., in the table GMBRD. Finally, the new ROWSUMs must be
computed and stored at the appropriate locations. These functions are
accomplished by the UPDATE subroutine.

The player’s code is contained in the accumulator. The position into
which the move is made is contained in register X. Since the number in
index register X is the value of an external LED, it is first decremented
in order to match the actual internal LED number:

273

ADVANCED 6502 PROGRAMMING

UPDATE DEX

The value must now be stored in the appropriate location of the GMBRD
table which contains the internal representation of the board:

STA GMBRD,X

Note that the value of X is simply used as a displacement into the
table. However, the accumulator happens to contain the appropriate
code that is merely written at the specified location. At this point, UP-
DATE would like to display the move on the LEDs. It must first
decide, however, whether to light a steady LED or make it blink. To
do this, it must determine whether it is the player’s move or the com-
puter’s move. It does this by examining the code contained in the ac-
cumulator. If the code is ‘“‘four,”’ it is the computer’s move. If the
code is ¢‘1,”’ it is the player’s move. Let us examine it:

CMP #04
BEQ NOBLNK

If it is the computer’s move, a branch will occur to address NOBLNK;
otherwise, we proceed. Let us assume for the time being that it was the
player’s move:

JSR LIGHT

The LIGHT subroutine is used to set the bit blinking and will be
described below. Upon exit from LIGHT, the accumulator contains
the bit in the position that is required to set the LED blinking. At this
point, the blink masks should be updated:

ORA LTMSKL
STA LTMSKL

If the carry was ‘‘zero’’ upon completion of LIGHT, one of the bits
zero through seven had been set and we are done:

BCC NOBLNK
Otherwise, if the carry had been set to 1, it would mean that LED #9

had to be set, i.e., that the high order part of the mask had to be

274

ARTIFICIAL INTELLIGENCE

modified. Let us do it:

LDA #01
STA LTMSKH

At this point, the LED masks are properly configured and we can give
the order to light the LEDs:

NOBLNK JSR LEDLTR

The LEDLTR routine lights up the LED specified by register X. Note-
that if it was a computer move, this LED will remain steadily on. If it
was a player’s move, this LED will be turned off and on automatically
as interrupts occur.

Next, we must update all row-sums. Index register X is used as a
row pointer. We will look at all eight rows in turn. In anticipation of
the addition, the carry bit is cleared:

LDX #7
ADDROW CLC

The first square of row eight is examined first:
LDY RWPT1,X

Note that index register Y will contain the internal square number
following this instruction. This will immediately be used for another
indexed operation. The contents of the square will be read so that the
new row-sum may be computed. (The row-sum for that row may or
may not be the same as before. No special provision has been made
for restricting the search to the two or three rows affected.) All rows
are examined in turn, and all row-sums are re-computed to keep the
program simple.
Let us obtain the current square’s value:

LDA GMBRD,Y
The GMBRD table is accessed using index register Y as a displace-
ment. Note that the two instructions shown above implement a two-

level indexing operation. This is a most efficient data retrieval tech-
nique. At this point, the accumulator contains the value of the first

275

ADVANCED 6502 PROGRAMMING

square. It will be added to the value of the two following squares. The
process will now be repeated:

LDY RWPT2,X
ADC GMBRD,Y

The number of the second square has been looked up by the LDY in-
struction and its value stored in Y. The addition instruction looks up
the actual value of that square from GMBRD, and adds that value to
the accumulator. This process is performed one more time for the
third square:

LDY RWPT3,X
ADC GMBRD,Y

The final value contained in the accumulator is then stored in the
ROWSUM table at the position specified by the value of index register
X (the row index):

STA ROWSUM, X

The next row will now be scanned:

DEX
BPL ADDROW

If X becomes negative, we are done:
RTS

LED LIGHTER Subroutine
This subroutine assumes upon entry that register X contains the in-

ternal LED number of the LED on the board which must be turned on.
The subroutine will therefore turn that LED on using the LIGHT

subroutine, which converts a number in register X into a bit pattern in
the accumulator for the purpose of turning on the specified LED:

LEDLTR JSR LIGHT

At this point, either Port 1A or Port 1B must be updated. Let us

276

ARTIFICIAL INTELLIGENCE

assume initially that it is Port 1A (if it is not Port 1A, which we can
find out by examining the carry bit below, then the pattern contained
in the accumulator is all zeroes and will not change the value of Port
1A):

ORA PORTIA
STA PORTIA
BCC LTRDN

The carry bit is tested. If it has been set to 1 by the LIGHT subroutine,
then LED #9 must be turned on. This is accomplished by sending a
““1”’ to Port 1B:

LDA #1
STA PORTB
RTS

PLRMYV Subroutine (Player’s Move)

This subroutine obtains one correct move from the player. It chirps
to get his or her attention and waits for a keyboard input. If a key
other than 1 through 9 is pressed, it will be ignored. Whenever the
subroutine gets a move, it verifies that the square on the board is in-
deed empty. If the square is not empty, the subroutine will ignore the
player’s move. Let us first generate a chirp in order to get the player’s
attention:

PLRMV LDA #3$80
STA DUR
LDA #$10
JSR TONE

Now, let us capture the key closure:
KEYIN JSR GETKEY

We must now check to see that the key that is pressed is between 1 and
9. Let us first check to see that it is not greater than or equal to 10:

CMP #10
BCS KEYIN

Let us now verify that it is not equal to ‘‘zero’’:

277

ADVANCED 6502 PROGRAMMING

TAX
BEQ KEYIN

Finally, let us verify that it does not correspond to a square that is
already occupied:

LDA GMBRD-1,X
BNE KEYIN
RTS

Exercise 11-6: Modify the PLRMYV subroutine above so that a new
chirp is generated every time a player makes an incorrect move. To tell
the player that he or she has made an incorrect move, you should
generate a sequence of two chirps, using a different tone than the one
used previously.

LIGHT Subroutine

This subroutine accepts an LED number in register X. It returns
with the pattern to be output to the LEDs in the accumulator. If LED
9is to be lit (X = 8), the carry bit is set. This subroutine is straightfor-
ward and has been described previously:

LIGHT STX TEMP1
SEC
ROL A
DEX
BPL SHIFT
LDX TEMP1
RTS

DELAY Subroutine

This is a classic delay subroutine that uses two nested loops that
have a few extra instructions within the loop that are designed to waste
time:

DELAY LDY #$FF

DL1 LDX #$FF
DL2 ROL DUR
ROR DUR

278

ARTIFICIAL INTELLIGENCE

DEX
BNE DL2
DEY
BNE DL1
RTS

Interrupt Handling Routine

Every time that an interrupt is received, the appropriate LEDs will
be complemented (turned off if on, or on if off). The positions of the
LEDs to be blinked are specified by the contents of the LTMSK
masks. Two bytes are used in memory for the low and high halves,
respectively. (See Figure 11.47 for the memory map.)

Turning the bits on or off is accomplished by an exclusive-OR in-
struction that is the equivalent of a logical complementation. Since
this routine uses the accumulator, the contents of A must be preserved
at the beginning of the routine. It is pushed onto the stack and
restored upon exit. The subroutine is shown below:

INTVEC PHA
LDA PORTIA
EOR LTMSKL
STA PORTIA
LDA PORTIB
EOR LTMSKH
STA PORTIB
LDA TILL
PLA
RTI

Exercise 11-7: Notice the LDA TILL instruction above. The next in-
struction in this subroutine is PLA. It will overwrite the contents of
the accumulator with the words pulled from the stack. The contents of
the accumulator, as read from TILL, will therefore be immediately
destroyed. Is this a programming error that was accidentally left in
this program? If not, what purpose does it serve? (Hint: this situation
has been encountered before. Refer to one of the earlier chapters.)

INITIALIZE Subroutine

This subroutine was described in the body of the main program
above.

279

ADVANCED 6502 PROGRAMMING

RANDOM and TONE Subroutines

These two subroutines were described in previous programs.

SUMMARY

This program was the most complex we have developed. Several
algorithms have been presented, and one complete implementation of
an ad hoc algorithm has been studied in great detail. Readers interested
in games of strategy and programming are encouraged to implement
an alternative algorithm.

LINE # LOC CODE LINE
0002 0000 ‘TICTAC”
0003 0000 FROGRAM TO FLAY TIC-TAC~TOE ON SYM-1

- .

0004 0000 COMPUTER WITH 3X3 LED MATRIX AND HEX KYED.
0005 0000 AT BEGINNING OF GAMEs IF ‘F’ KEY IS
00046 0000 iPRESSEDy PLAYER GOES FIRSTy ANY OTHER KEYs
0007 0000 $COMPUTER GOES FIRST., THEREAFTER» TO MAKE
0008 0000 A MOVEy FRESS KEY CORRESFONDING TO NUMRER
0009 0000 #0F SQUARE DESIRED.

0010 0000 ¥

0011 0000 $LINKAGES?

0012 Q000 i

0013 0000 GETKEY = $100

0014 0000 ACCESS = $8B86

0015 0000 i

QQ16 0000 51/08

0017 0000 ;

0018 0000 FORT1A = $A001 PRk 46522 VIA #1....
0019 0000 DDR1A $A003

0020 0000 FORT1R $A000

0021 0000 IDR1E = $A002

0022 0000 IER $A00E 5 INTERRUPT ENARLE REGISTER.
0023 0000 ACR $A00R $AUXItL.IARY CONTROL REGISTER.
0024 0000 TiLb : $A004 FTIMER 1 LATCH LOW.
0025 0000 TiCH $A005 $TIMER 1 LATCH HIGH.
0026 0000 FORT3ER = $ACOO FRKOS22 VIA #3..,..
0027 0000 DOR3E = $ACO2

0028 0000 IROVL = $ALVE

0029 0000 IRQVH = $A&7F

0030 0000 H

0031 0000 #TABRLE OF SQUARES IN KOARD’S 8 ROWS.

0032 0000 H

0033 0000 X = 0

0034 0000 ;

0033 0000 00 RWPT1 .BYTE 0s152y0s3+650s2

0035 0001 01
0035 0002 02
0035 0003 00
0035 0004 03
0035 0005 04
0035 0006 00
0035 0007 o2
0036 0008 03 RWFT2 LBYTE 3s4+5+15457354454
0036 0009 04
0036 000A 05
0036 OQ0OBR 01
0034 0Q0C 04
0036 000 07
0034 O000E 04
0036 O000F 04
0037 0010 06 RWPT3 LBYTE 6+7+8y2,5:s8,8s4

Fig. 11.50: Tic-Tac-Toe Program

280

ARTIFICIAL INTELLIGENCE

0037
0037
0037
0037
0037
0037
0037
0038
0039
0040
0041
0042
0043
0044
0045
00446
0047
0048
0049
0050
0051
0052
0053
0054
0055
00546
0057
0058
0059
00560
0061
0062
0063
0064
0065
0066
0067
00468
0069
0070
0071
0072
0073
0074
0075
00746
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102

0011
0012
0013
0014
0015
0016
0017
0018
0018
0018
0018
0018
0021
0021
0024
0032
0032
0032
0038
0039
003A
003R
003C
003D
003E
003F
0040
0040
0041
0041
0042
0042
0042
0042
0200
0200
0202
0204
0207
0204
020C
020E
0210
0212
0214
0214
0218
021A
021D
021F
0222
0224
0226
o228
022R
022E
0230
0233
0235
0237
0234A
023C
0230
023F
0241
0243
0245
0247
0249
024F
024D
024F

00
01

03

03

03
oz

03

00

Fig. 11.50: Tic-Tac-Toe Program (Continved)

H
}VARIAERLE STORAGES:
¥

CLRST
GMERD

SOASTAT
ROWSUM

RNDSCR
TEMF1
TEMP2
MOVNUM
FLAYR
L TMSKH
LTMSKL
DUR
FREQ
CLREND
ODIMSK

INTEL

¥
START

RESTRT

PLAYLP

COMPMY

WINTST
TSTLF

WIN

Akkkk MAIN PROGRAM Xokxkokx

$#1ST LOC., TO BE CLEAREL BY “INIT’.

KmK+9 $GAME ROARD: FLAYER‘S FOSITIONS ON
sROARD AS $01=FLAYERy $04=COMFUTER.

*=X+9 $SQUARE’S TACTICAL STATUS.

*x=X1+8 $SUM OF VALUES OF SQUARES IN

$ROWs WHERE 1=FLAYER»
$ 4=COMPUTER, 0O=EMFTY.

*=K+6 SRND' # GEN. SCRATCHFAI.
+1
X+1
X+1 #NUMBER OF CURRENT MOVE.
X+1 sWHD‘S TURN IT IS.
X+1 $HIGH ORDER BLINK MASK FOR LED‘S
X+1 71.0W ORDER SAME.,
*+1 $DNURATION FOR TONES.
=X+1 $FREQUENCY OF TONES.
#LAST LOC TO BE CLEARED BY ‘INIT’,
X=X+1 FMAKES FRODUCT OF RANDOM MOVE
§GENERATOR ODD TO PICK CORNER.
X=Xx+1 FINTELLIGENCE QUOTIENT.

X = $200

LA #12

STA INTEL FSET I.Q. AT ?25%

JSR INIT #INITIALIZE FROGRAM.
JSR GETKEY $GET FIRST MOVE DETERMINER.
CMF #3$F yIS IT ‘F*7

ENE FLAYLF

LDA ¥#01 #+YESs FLAYER FIRST.
€TA PLAYR

INC MOUNUM sCOUNT THE MOVES.,
LDOA PLAYR FWHD’S TURN?

REQ COMFMV $IF 0s COMFUTER'S MOVE.

DEC PLAYR §FLAYER’S TURNy COMPUTER NEXT.
JSR PLRMY §GET PLAYER‘S MOVE,

LDA #01 $STORE FLAYER’S FIECE.

JSR UPDATE $FLAY IT: AND UFDATE ROWSUMS.
LA %03 $LOADN PATTERN FOR WIN SEARCH.
ENE WINTST $§CHECK FOR WIN.

INC PLAYR §COMPUTER’S TURNy FLAYER NEXT.
JSR DELAY FTIME FOR COMPUTER TO ‘THINK’.
JSR ANALYZ $FIND COMPUTER’S MOVE.

LDA %04 ySTORE COMFUTER‘S FIECE.

JSR UPDATE FFLAY IT.

LDA #1232 FLOAD PATTERN FOR WIN SEARCH.
LIY ¥7 51.00F "7X TO CHECK ROWSUMS

CMP ROWSUMsY sFOR WINNING PATTERN.

REQ WIN sWIN IF PATTERN FOUND.

DEY iLOOF AND

BFL TSTLF $TRY AGAIN,

LA MOVNUM #IF MOVE NUMBER = 9»

CMFP %9 $THEN GAME IS TIE.

ENE FLAYLF JKEEF FLAYING IF NOT.

LA #$FF FSET ALL LIGHTS TO ELINKING.
STA LTMSKL

STA | TMSKH

BNE DLY FKEEF THEM BLIMNKING A WHILE.
CMP #12 $COMPUTER WIN?T

REQ INTODN §IF YESs I.Q. DOWN.

281

ADVANCED 6502 PROGRAMMING

0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
Q121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0134
0137
0138
0139
0140
0141
0142
0143
0144
0145
01446
0147
0148
0149
Q150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
Q143
01564
0165
0166
0167
0148
0169
0170
0171
0172
0173
0174

0251

0253
0255
0257
0259
025E
0250
025F
0261

0263
0265
0267
0269
026K
026E
0271
0273
0273
Q273
0276
0278
Q27E
0270
0280
0283
0285
0287
0284
028C
028E
0290
0292
0294
0297
0294
Q29D
Q290D
0290
Q29D
029D
0290
029F
02a1
02A3
0245
02AB
02AA
Q2aC
02AE
[0353:5
02R3
02B5
Q2B7
Q2RA
02EC
02EF
02C1
02C3
Q2CS
02C7
Q2C%?
02CH
o2Ccn
Q2CF
0201
0203
0204
0204
0218
Qo209
O2LR
o20on

20
-1}
20
213
20
Al
oy
85
ALt
25
85
A%

A5
20
20
ac

282

AQ

03
032

03
A0

A0

00
03
02

03

03

03

00

Fig. 11.50: Tic-Tac-Toe Program (Continuved)

LA
STA
LuA
CMF
BREQ
INC
ENE
INTEN LDA
STA
LItA
REQ
REC
GTMSK LIA
s5Ta
STA
LbX

SLED

FIN
JSR
LIiX
JSR
LIX
JSR
Loa
ANI1
STA
[]
AN
STA
LDnA
STA
LI
JSR
niy JSR
Jup

i
$

$30
FRER
INTEL
#$0F
GTMSK
INTEL
GTMSK
+$FF
FRED
INTEL
GTHSK
INTEL
#0
FORT1A
PORT1E
RWFT1,Y

5LOAD FREQ. CONST FOR WIN TONE.

1.0, AS HIGH AS POSSIRLE?T

$IF YES» DON‘T CHANGE IT.

FRAISE I.Q.

G0 FLASH ROW.

sLOATT FREQ. CONST. FOR LOSE TONE,

iI.Q. = 07

§IF YESs DON‘T DECREMENT!
sI.Q, [OWN.

$CLEAR ALL LEDS.

3GET RIT IN ACCUM,. TO LIGHT

CORRESFONDING T0 187 SQUARE
WINNING ROUW.

LETMLTR
RWFT2yY
LEOLTR
RWFT3,Y
LEDLTR
FORT14A
LTHSKL
L. TMSKL
FORTLR
LTMSKH
L. TMSKH
#$FF
DUR
FREQ
TONE
DELAY
RESTRT

XXXXkk SUBRROUTINE

SGET SECONI! RIT.
$GET 3RED BIT.

$MASK OUT UNNECESSARY BITS IN
§ RLTINK MASKS.

FSET WIN/LOSE TONE IMIRATION.

$CET FREQUENCY.

FPFLAY TONE,

iDELAY TO SHOW WIM OR TIE.

sSTART NMEW GAME, DON’T CHMG. 1.Q,

SANALYZE ' XX0EX

sDOES A STATIC ANALYSIS OF GAME BOARDy AN
§RETURNS WITH A MOVE IN REGISTER X.

3
ANALYZ LDA
STA
LDA
LI
S8R
ENE
LI
Lox
JSE
ENE
LDa
LIX
JSk
RNE
JSR
ANT
CMF
REQ
ECS
OK Lox
cex
BEQ
CFX
ENE
LIox
XA
CMF
REQ
INX
CMF
BERQ
TRAFCK LDA

$0
DODMSK
$08
$03
FINDMY
TIONE
$02
+03
FINDMY
IONE
04
#02
FINDMY
IIONE
RANDOM
$$0F
INTEL
oK
RNDHU
HOUNUM
#1
RNDMY
+4
TRAFGK
+5

ROWSUM X
OTLIRNI

ROWSUMy X
DDNRND
#1

FSET MASK THAT MAKES RANDOM M{OVES
$HE SIDES TO O,

$CHECK FOR WINNING MOVE FOR
iCOMPUTER .

7 IF FOUNIy RETURN.
3CHECK FOR WINNING MOVE FOR
PFLAYER .

sIF FOUNDs RETURN.
$CAN COMFPUTER SET A& TRAF?

#IF YESy PLAY IT,

$GET A RANDIOM NUMBER. ..

Foeo AN MAKE IT 0-15...

FFOR USE AS STUFID/SMART DETERMIMER .
§1F BOTH ARE EQUAL» SKIF TEST

$TIF RNIM > INTEL, FLAY A DUMB MOVE.

$1ST MOVE?

#IF YES» FLAY ANY SQUARE.

FATH MOUVE?

5IF MOT» CONTINUE.

F1.0AL INDEX TO 18T NIAG. ROWSUM.
i.0AD SUM OF ROW HAVING F~C~F.
$CHECK TF 18T DIIAG. I8 F-C~F

§IF YESs PLAY SILE.

$CHECK NEXT DTAG. ROWELM

sCAN FLAYER SET A TRAF?

ARTIFICIAL INTELLIGENCE

0175
0176
0177
0178
0179
0180
0181
0182
0183
o184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
02064
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231

0232
0233
0234

0235
0236
0237
0238
0239
0240
0241

0242
0243
0244
0245
0246

02DF
02E1
02E4
02E64
02E8
02EA
02EC
02EE
02F0
02F2
02F5
02F7
02F9
02FB
02F LI
Q2FE
0300
0302
0303
0304
0304
0304
0304
0304
0304
0304
0304
0304
0304
0304
0306
0308
030A
030C
Q30F
0310
0312
0314
0316
0319
031E
Q31D
0320
0322
0325
0327
0320
032E
032I
032F
0331
0333
0335
03364
0338
0339
0339
0339
0339
0339
033E
033D
033F
0340
0340
0340
0340
0340
0340
0340
0340
0341

AZ 02
20 04
Do 1ip
Aé 1C
no o8
A2 05
no is
A9 01
8% 40
20 9n
29 OF
05 40
C? 09
BO FS
AA

RS 18
o FO
E8

40

o F7

ES 18
Do 02
Fé 21
60

caA
?5 18

LOX #2
03 JSR FINDMY
ENE DIONE $IF YESs FLAY ELOCK.
L.DX GMERID+A4 $IS CENTER
ENE RNDMUY $OCCUPIED?
LIX #5 $ND: FLAY IT.
ENE [IONE
QDORND L.IA #1 $SET OIDMASK TO 1, SC
STA OIIMSK $MOVE WIL.L BE A SIIE.
00 RNIMY SR RANDOM 5GET RANDOM * FOR MOUE.
ANIt #$0F FMAKE IT 0-15.
ORA ODIOMSKE SMAKE QNN # IF CORMER
CMF #9 FNUMRER T0OQ HIGH?
ECS RNDMUY $IF YESy GET ANOTHER.
TAX
LIIA GMERD:X $SFACE OCCUFIEN?
ENE RNIMU 5TF YES: GET ANOTHER MOUE.
INX FINCREMENT X TOMATCH QUTELUTOF FIMIML
IIONE RTS FRETUREN W/ MOWE TIM M.

KKKKkK SUBROUTINE “FIND MOVE wo¥ooobx
$FINDS A SOUARE MEETING SFECIFICATIONE
FFASSED IN IN A AND X.

FINDEX REGISTER X CONTAINE
iMASK THATy WHEN OR’ED WITH
FNUMBER OF TIMES A SQUARE FITS ROWS WITH
FROWSUM IN ACCUM.,» M YIELD & ONE
FFOR SOUARE TO QUNLTFY,
i
FIMNDMY STY TEMF2
STA TEMFI
Lnn 20 CLEAR SQUARE STATUS
LIy #8
00 CLRLF STA SQ8TAT:Y
DEY
EFL CLRLF
Loy #7
CHEKLF LIA TEMF1 d
00 CMF ROWSUM, Y H MAMETER?
BNE NOCHEK #IF NOT: TRY MEXT.
LDOX RWFTL:Y sCHECK 187 SOUARE IM ROW.

03 JSR CNTSUR FINCREMENTITS €T

LOX RWFT2.Y 300 2ND SOUARE.

03 JER CNTSUR

LDX RWFT3:Y FAND THIRD.
03 JSR CNTSUR
NOCHEK DEY FTRY MNEXYT ROW.
RPL CHEKLF
Lnx #9
ENMTCH LDA TEMF2 $LOAD PARAMETER. . .
AND SQSTAT~1,X F(SQUARE ESTATUS)AMI{FARAM)

FSAVE REGISTERS.

ENE FOUND $IF YESy FLAY X AS MOVE.
DEX FNECREMENT ANIY TRY MEXT
ENE FNMTCH

FOUND RTS

i
§Kkkkkr SURBROUTINE "COUNTSUR‘Y wobkxp
F INCREMENTS SQSTAT OF EMPTY SQUARES,
1

CNTSUER LA GMERL:X FGET SQUARE.
ENE NOCNT §IF FULL» SKIF.
INC SQSTAT:X $INCREMENT SQSTAT
NOCNT RTS FTIONE.

§ Kkkk%k SUEROUTINE ‘UPDATE’ XYYkey

$FLAYS MOVE RY STORING CODE FPASSEI' IM IN ACCUM.
$nT SQUARE SFPECIFIED RY X REG.

#AL.S0 LIGHTS/SETS BLINKING FROFER LEIy

FOND COMPUTES ROWSUMS,

L
UFDATE IEX $IECREMENT MOVE TOD MATCH I
STA GMRRD» X sFLAY MOVE.

STERE.

IF IT’S EMFTY.

07

STAT

MIEXING .

Fig. 11.50: Tic-Tac-Toe Program (Continued)

283

ADVANCED 6502 PROGRAMMING

284

Fig. 11.50: Tlc-Tac-Toe Program (Continued)

R/e MOUE?

0247 0343 (9 04 CME F504 FCOMPUTE

0248 0345 FO OI REQ NOBLNK $IF YESy MNEIMG .
0249 0347 20 98 013 LIGHT SPOMOING
0250 0344

0251 034A 05 3D MAGKE,
0252 034C 85 3D

0253 034E 90 04 T 9,
0254 0350 A9 01

0255 0352 85 3C €

0256 0354 20 6F 03 MOHELNK H FHT LED.

0257 Q357 A2 07 SLOOF TO COMPUTE RDWSUME,
0258 0359 18 ADDROW FFREEARE FOR ADDITI

0259 035h E4 00 LOY RWPTLyX B FIRET SNUARE Al
0260 035C E9 18 00 I.IA GMBRLD:Y 3 CONTENTE OF ¢ "
0261 035F R4 08 LIY RWFT2¢X H SECO SOUARE IN ROW.
02462 03461 79 18 00 AlIC GMERIy Y

0263 0344 B4 10 LY RWFTZ:X FARD FINAL SQUARE.

0264 0366 79 18 0Q ADC GMBRL:Y

0265 0369 97 24 STA ROWSUMrX FSAVE ROWELIM

0266 034B CaA EX

0267 034C 10 ER RFL ARDROW $GET NEXT EOWSHM,

0248 034E &0 RTS

0249 03&F §

0270 036&F F ok SURRQUTINE 1. v

0271 036F FGIVEN AN ARGUMENT IN REGs LIGH

0272 0364F FLED (0-8) CORRESFONDING T0O THAT ARGUMENMT.

0273 0364F i

0274 036F 20 989 03 LEBLTR JSR LIGHT $BEY BIY IM CORREDCT POSITION.
0275 0372 oD 01 A0 ORA FORTI1A FLIGHT LED,

0276 0375 8D 01 AO STA FORTI1A

0277 0378 90 0S RCC LTRIN FIF LEDIN #9 MOT TO BE LIT: gNIE.
0278 037A A% 01 LDA #1 FLIGHT LED %9

0279 037C 8L 00 AD STA FORT1E

0280 037F 40 LTRIN RTS FTIONE .

0281 0380 j

0282 0380 § kK SURROUTINE ‘FLAYER’S MOVE’ dobybkx

0283 0380 $GETS FLLAYER’S MOVE, CHECKS FOR ERROES.

0284 0380 3

0283 0380 A% 80 FLEMY LIIN #480 FMAKE SHORT REEF T

0286 0382 85 3E STA NUR SKEYRDARD INFUT NEE

0287 0384 a9 10 LIn #$10

0288 0386 20 AD 00 JSR TONE

0289 0389 20 00 O1 KEYIN JSK GETKEY FGET MOVE.

0290 038C C9% 0A CHfP #10 sQUT OF S

0291 038 RO F? ECS KEYIN iTF YES» T NMOTHER.
0292 0390 AA TAX

0293 0391 FO Fé REQ KEYIM $IF MOVE = 0y GET AMOTHER.
0294 0393 RS 17 L.IA GMERII-15X FSQUARE EMPTY?T

02953 0395 IO F2 ENE KEYIN $IF MDT: TRY AGAIN.

02946 0397 60 RTS

0297 0398 ¥

0298 0398 § ook SUBRQUTINE “LIGHTZ rkkyx

0299 0398 FSHIFTS A ONE EIT LEFT IMN ACCUMULATOR TO

0300 0398 3N FOSITION CORRESFONDING TO THE

0301 0398 FARGUMENT FASSED! IN IN REG. X. IF X8,

0302 0398 FCARRY IS SET.

0303 0398 H

0304 0398 86 38 LIGHT STX TEMPL FSAME X,

0305 03?A A9 00 LEA %O FCILEAR ACCUM. FOR SHIFT.
03046 039C 38 SEC $GET RIT TO EBE SHIFTEDR.
0307 0390 2A SHIFT ROL A §SHIFT RIT LEFT.

0308 039 CaA DEX

0309 O039F 10 FC BFL. SHIFT FCOUNT DOWM AND LOOF,
0310 03A1 Aé 38 LIX TEMF1 FRESTORE X.

0311 03A3 &0 RTS

0312 03A4 i

0313 03A4 §OkkkXKK SURRQUTINE “RELAYZ kydydy

0314 03a4 H

0315 03A4 A0 FF DEL.AY LIY #$FF

0316 03A6 A2 FF Lt LIY #$FF

0317 03A8 26 3E nL2 ROL. DUR FWASTE TIME.

0318 03AA 46 3E ROR DUR

ARTIFICIAL INTELLIGENCE

0319
0320
0321
0322
0323
0324
0325
0324
0327
0328
0329
0330
0331
0332
0333
0334
0335
0334
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0354
0357
0358
0359
0360
0341
0362
0363
0344
0345
0366
0347
0348
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0388
0382
0383
0384
0385
0384
0387
0388
0389
0390

03AC
03AD
03AF
03RO
03EB2
03R3
03R3
03R3
03B3
03R3
03R3
03R4
03R7
03B?
Q3EC
03BF
03C1
03C4
03C7
03C8
03C?
03C?
03C?
03C?
03C?
0050
0050
0052
0054
0056
0057
0059
Q0SC
00GE
0060
0062
0065
0048
Q06K
Q06T
0070
0073
0073
0073
0076
0076
0078
007R
0070
0080
0082
0085
0087
008A
008C
Q08F
0091
0094
0097
0098
0099
0094
009A
00%A
00%A
0094
00%A
00%k
ooon
Q09F
00A1
00A3

ca
no
88
o
460

48
ADl
45
8D
AD
45
8n
ALl
68
40

38

65
65
85
A2

F?

Fa

o1

01
00
3c
00
04

33
36
37
32
04

DEX
ENE
DEY
ENE
RTS

2

oLy

KRXEKK IMTERRUPT HANILING ROUTINE Xohkrks

FAT EACH INTERRUFT,

THE RBLINK
FON IF OFF»
INTVEC FHA
LItA
EQR
sTA
LDA
EOR
STA
LI
FLA
RTI

no

no
AQ

210
A0

Aok Su

X =

H
INIT Lhn
LIx
8TA
TEX
RFL
ton
STA
STA
Loa
STA
STA
STA
LOA
STA
cTA
SET UP TIM

CL.RALL

AQ

AQ
AQ
AC
Ao
AQ
8R

Ab

Ab

AQ

A0

AQ

AQ

i
RANDOM SEC
LDA
ADC
ADC
§TA
LIx

MASKS HA
OFF IF

FORTiA
LTMSKL
FORT1A
FORTIER
L.TMSKH
FORT1R
TiLi

EROUTINE

INITIALIZES FPROGRAM.

€50

*0
#CLREND-
CLRSTsX

CLLRALL
TiLL
RNDSCR+1
RNISCR+4
#$FF
OIR1A
DDRIE
IIRIR

*0
FORT1A
FORT1E
ER FOR T

FSET UP
FIINTVEC
IRQUL.
#:=INTVEC
IRQVH
+47F
IER
+£C0
IER
440
ACR
#EFF
TiLL
TiCH

xkxxk SURROUTINE
sRANDOM NUMEEFR
sRANDOM NUMEER IN ACCUMULATOR.

GENE

RNDSCR+1
RNIISCR+4
RNDSCR+5
RNDSCR
$4

Fig. 11.30: Tic-Tac-Toe Program (Continued)

LEDS WHOSE FOSITIONG IN
YE ONES IN THEM ARE TURNEID
ON.

CINITIALTZES ¥Xfxsy

$CLEAR STORAGEE.
CLRST

FGET RAMDOM NUMBER GEMERATOR GEET.

$SQET UF I/0

FCLEAR LETS

MTERRUFTS WHICH

FUNFROTECT SYM~1 SYSTEM MEMORY
IMTERRUFT VECTORS.

$L.OAD LOW BYTE INTERRUST LVECTOR

#8TORE AT IMTERRUFPT VEC

FLOAD HI RYTE IMTERRUFT

FETORE .

sCLEAR

o

INTERRUFT ENARLE REGICTER.

FENABLE TIMER1 INTERRUFT.

FENARLE TIMER1 IN FREE-RUM MOLE.

FEET LOW LATCH ON TIMER 1.
FSETHIGHLATCHR STARTINTERRUFT COUNT |
FENARLE INTERRUFTS

‘RANDOM . RXRKRX
RATOR: RETURNS NEW

285

ADVANCED 6502 PROGRAMMING

0391 00A% EI
0392 0047 99
0393 00A9 ChA
0394 00AA 10
0395 00AC 640
03946 00AL

0397 00AD

0398 O00AD

0399 00AD

0400 00AD

0401 00AD

0402 0Q0ADl 89
0403 00AF p9
0404 OOEl 8D
0405 (QO0R4 A9
0406 O00BS& A6
0407 OOBB A4
0408 OOBA 8B
0409 OQOERER 18
Q0410 QOEC 90
0411 OOBE IO
0412 Q0CO 49
0413 00C2 8rI
0414 0Q0CS cCA
0415 00C6 IO
0416 00CB 40
0417 00C9

SYMBOL. TABLE

286

SYMEOL. VALUE
ACCESS BEBS
CHEKLF 0314
CLRST oo1g
DOR1B A0Q2
L2 03A8
FINDMV 0304
FOUND 0338
GTMSK 0269
INTEL 0041
KEYIN 0389
LTMSKL 0030
NOCHEK 0324
OK 02c7
PORT1A AQO01
RESTRT 0204
ROWSUM 002A
SHIFT 0390
TiLL A004
TRAPCK 0200
WINTST 0235

END OF ASSEMHLY

32

33

F9

00 AC

00
FA
FF
00 AC

FO

ACR
CLRALL
CNTSUE
DDRZE
oLy
FL1
FREQ
IER
INTVEC
LEDLTR
LTRIN
NOCNT
FLAYLF
PORT1E
RNDLF
RWPT1
SASTAT
TEMFP1
TSTLP

RNIILF

L.T1A
STA
DEX
EFL
RTS

¥k SUBROUTINE
$GENERATES a TONE!
iMUST BE IN DUR»

RMI'SCR s X
RNIISCR+1sX
RNTILF
TONE‘ XREXKY
N, OF 1/2 CYCLES

AN

FWAVELLENGTH CONST. IN ACCUMULATOR.
;

TONE

FL2
FL1

AOQR
0054
0339
ACO2
0297
00RA
Q03F
AOOE
QIR3
036F
037F
033F
0212
AQQO
00NAS
0000
0021
0038
0237

STA FREQ
LDA $SFF
STA FORT3E
Lna #00
LIX DR
LY FREQ
DEY
CLG
BCC *+2
HNE FL.1
EOR #$FF
STA PORT3R
DEX
BNE FL2
RTS
+ENI
ANDROW 0359 ANNLYZ 029N
CLRENT 0040 CLRLF
COMEMY 0226 INR1A
DELAY 03Aa4 e
LONE 0303 IR
FL2 Q0ERR FNMTCH
GETKEY 2100 GMERD
INIT Q050 INTIN
IRQUH ALTF TRQUL
LIGHT 0398 LTMSKH
MOUNLIM 003A NORLNK
ODDMSK 0040 ODIRNI
FILAYR 003K FLREMY
FORT3R ACO0 RANDOM
RNIMY Q2F2 RNISCR
RUFT2 0008 RWFT2 o010
START 0200 TiCH AQOT
TEMP2 2039 TONE Q0AR
UFDATE 0340 WIN 0240

Fig. 11.30: Tic-Tac-Toe Program (Continued)

Appendix A

6502 INSTRUCTIONS—ALPHABETIC

ADC Add with carry JSR Jump to subroutine
AND Logical AND LDA Load accumulator
ASL Arithmetic shift left LDX Load X

BCC Branch if carry clear LDY Load Y

BCS Branch if carry set LSR Logical shift right
BEQ Branch if result = 0 NOP No operation

BIT Test bit ORA Logical OR

BMI - Branch if minus PHA Push A

BNE Branch if not equal to 0 PHP Push P status

BPL Branch if plus PLA Pull A

BRK Break PLP Pull P status

BVC Branch if overflow clear ROL Rotate left

BVS Branch if overflow set ROR Rotate right

CLC Clear carry RTI Return from interrupt
CLD Clear decimal flag RTS Return from subroutine
CLI Clear interrupt disable SBC Subtract with carry
CLV Clear overflow SEC Set carry

CMP Compare to accumulator SED Set decimal

CPX Compare to X SEI Set interrupt disable
CPY Compare to Y STA Store accumulator
DEC Decrement memory STX Store X

DEX Decrement X STY Store Y

DEY Decrement Y TAX Transfer A to X
EOR Exclusive OR TAY Transfer A to Y
INC Increment memory TSX Transfer SP to X

INX Increment X TXA Transfer X to A
INY Increment Y TXS Transfer X to SP
JMP Jump TYA Transfer Y to A

287

Appendix B

6502 INSTRUCTION SET—HEX AND TIMING

IMPLIED ACCUM. ABSOLUTE 2ERO PAGE IMMEDIATE ABS. X ABS. Y

MNEMONIC OPtn | #ior|n OP[n | #|OP]n | a]OP| nfalopr|{n]|ajorfn]|nw
ADC () a3 es|[3j265j2]2[m]4a]3][|m]a]lz
AND (1) Wi 4f3fj2s{3f2|29f2)2]33)aalz]aql3s
ASL OA| 2 OE[6| 3] 06f 5|2 {773

Bcc |

BCS (2)

BEQ (2)

81T 20|43 |24f3]2

BMI)

BNE (2)

BP L 2)

B R K CRIEAE

evec |@

Bvs |

ctc 182 |

cLD os| 2 |1

cLt 82 |

cLv 88| 2 | 1

C MP o4 |3lcsip3|2]co[2]|2|DD[4a|3io9}jal3
CPX EC| 43 ea|3 |2 e0fj2]2

cPY cCl4 |3 jcajzala]colaio2

DEC CE| 6 {3]|co| s]2 DE| 7| 3

DEX cal 2]

DEY e8| 2 |1

EOR [| 4|3 |43 92| 2ts0|4f{3|s9})al3
INC 3 3 |6l 5] 2 fEl 7|3

TN'X B 2 | ¢

INY cef 2!

Ime 4|3 | 3

ISR 20|63

[AD| 4 | 3 |As| 3 (2 [Ae| 2] 2 BDf a3 leefla]s
Lox | AE| 4 [3 |A6| 3 |2 |A2] 2] 2 BE| 4 | 3
toy | (B AC| 4 [3 |Aa| 3 [2 |A0| 2] 2(8BC|a]3

LSR Al 21 4| 6] 3]as| 5|2 €| 713 -
NO P EA | 2 |1

ORA op| 4|3 |osj3]2 0t 2l2|w|lal3sjiefal]s
PHA 48 [3 |1

PHP 0|3 |1

PLA 814 |

PLP 2814 |1

ROL 241 2 (i 6! 31252 ¥k 7] 3

ROR A | 2 G| 6] 3166 5| 2 L 71 3

RTH 06 |1

RTS 0 e 1 F9| 4|2
sec | (1) 0| 4 | 3ies|3j2|e|2}2]|Ff| a3

SEC 8|2

SED B2 i

SE! 782 |1

STA 80| 4 | 3 |85 2 5| 3tewls |3
ST X 8 | 4 | 3 |81 2

STY 8C| 4| 3 {saj 2

TAX Aal 2 |1

TAY Al 2|1t

TSX a2z |

TXA sal 2 |1

TXS A} 2 |1

TYA {21

(1) 'Add 110 n if crossing page boundary

288

APPENDIX

PROCESSOR
{IND. X) (IND)Y 2. PAGE, X RELATIVE INDIRECT Z.PAGE, ¥ STATUS CODES

OP} OP| n ofl n| #|OP| n| g |OPl n OP| n| #|NV BD 1 ZC[MNEMONIC
et o 7t s 75| a2 . eel ADC
2| 6 Nl s 35| 4| 2 [L4 AND
16| 6| 2 [] oo ASL

0| 22 BCC

BO| 2 | 2 BCS

O 2 | 2 BEQ

Mo Me . B3

2|22 BMI

oo| 2| 2 BNE

o} 2} 2 BP Y

] 1 BRK

0|22 BVC

(2|2 BVS

] ctc

[ciD

[(S

(1] cLv

Qe DV |5 pD5{ 4] 2 . o0 C mp
. es CPX

. ee| CpPY

bo|o | 2 . 3 DEC

. [DEX

e e DEY

ale 5 s s5{ 4 | 2 e . EOR
Fo| 64 2 0 [INC

PY D TN X

P INY

oC| s ImP

ISR

Al | 6 B1| 5 B5 ! 4| 2 . [LD A
Bo| 4|2 |® O tOX

Bs | 4 2 ® [] LDY

sele | 2 0 ee®f 5R

NO P

ol e nis 15t 4|2 . . ORA
PHA

PHP

] . PLA

ecsosobGoe PLP

Ble | 2 . e8| RO

76 | o | 2) ® 8 ROR

esoeeeee RTI

RTS

[N fls 5|42 oe oo sBC
1 SEC

1 SED

1 SE}

81 | 6 o | e 95| 4 | 2 STA
% |4 |2 STX

94| 4| 2 STY

[[TAX

D * TAY

° . 15X

L4 L4 TXA

TXS

. [TYA

{2} Add 210 n if branch within page
Add 3 to n if branch to another page

289

ACCESS, 170

Ad hoc algorithm, 239

Ad hoc programming, 238
Analytical algorithm, 225
ANALYZE, 263

Array, 122

Artificial intelligence, 224
Assembler, 47

Assembly, 12

Audio feedback, 163
Auxiliary Control Register, 174
BEQ, 154

Binary number, 41
Blackjack, 189

Blackjack Program, 212
BLIN

Blink masks, 175
BLINKER, 208

Blinking, 274

Blinking LEDs, 261

Blip counter, 92

Board analysis flowchart, 242
Bounce, 13
Bracket-filtering, 150
Carry, 206

Cassette recorder, 4

CLI, 174

CNTSUB, 55
Complement, 73
Complementation Table, 80
Computing the Status, 271
Constant symbols, 47
Counter, 65, 101
COUNTSUB, 273
Current limiters, 11
Decimal mode, 151

290

Decision tables, 225
DELAY, 56, 132,211, 278
Delay constant, 103
Diagonal trap, 244
Diagonals, 266
DISPLAY, 118

DISPLY, 119
Do-nothing, 55

Draw, 222

Dual Counter, 92
Duration, 148

DURTAB, 144

ECHO, 137

Echo, 35

Echo Program, 145

ESP Tester, 139

EVAL, 118, 126, 153
Evaluating the board, 225
Extra Sensory Perception, 139
FINDMYV, 264, 269
FINDMY flowchart, 270
First move, 235

Freerun, 198
Free-running, 198
Free-running mode, 171, 256
Frequencies, 25
Frequency, 22, 261
Frequency and duration constants, 161
Games Board, 2, 7
GETKEY, 13, 149
GETKEY Program, 17
GMBRD, 252

Heuristic strategy, 225
Hexadecimal, 41
Hexguess Program, 63
IER, 171

IFR, 171

Illegal key closure, 95
Index, 159

Indexed addressing, 37, 39, 122, 126
Initialization, 198
INITIALIZE, 279
Intelligence level, 252, 260
Interconnect, 4

Interrupt, 198, 252, 261
Interrupt Handler, 183, 211
Interrupt handling, 198, 279
Interrupt Registers, 174
Interrupt-enable register, 256
Interrupt-enabler, 171, 179, 256
1Q level, 245, 265

Jackpot, 100

JMP, 154

Key closure, 277

Keyboard, 7

Keyboard input routine, 13
Labels, 47

Latch, 65

LED #9, 123

LED Connection, 10

LEDs, 8

Levels of difficulty, 8
LIGHT, 118, 132, 157,274, 278
LIGHTER, 276

LIGHTR, 207

LITE, 70, 182

Loop counter, 92

LOSE, 130

Magic Square, 73
MasterMind, 162

Middle C, 23

Mindbender, 162
Mindbender Program, 184
MOVE, 47

Multiplication, 122

Music Player, 20

Music Program, 31

Music theory, 23

Nested loop delay, 39
Nested loop design, 25
NOTAB, 144

Note duration, 159

Note frequency, 159

Note sequence, 139
Parameters, 149

INDEX

Parts, 11

Perfect square, 73

PLAY, 48, 53

PLAYEM, 37

Playing to the side, 24

PLAYIT, 30, 38

PLAYNOTE, 30

PLRMYV, 277

Potential, 225

Power supply, 4

Programmable bracket, 101

Prompt, 42

Protected, 170

Protected area, 170

Pulse, duration, 171

RANDER, 210

RANDOM, 57, 135, 150, 159, 209

Random moves, 241

Random number, 54, 65, 78, 118, 267

Random number generator, 57, 118,
149

Random pattern, 73

Random move, 267

Recursion, 211

Repeat, 13

Resistors, 11

RNDSCR, 252

Row sequences, 251

Row-sum, 239, 271

SBC, 206

Scratch area, 57

Score, 107, 128

Score table, 107, 111, 112

SCORTSB, 127

Seed, 118, 149

74154, 8

7416, 8

Shifting loop, 158

SHOW, 152

Side, 267

Simple tunes, 21

Siren, 100

Slot Machine, 99

Slot Machine Program, 113

Software filter, 175

Special decimal mode, 150

Spinner, 87

Spinner Program, 93

SQSTAT, 252

291

ADVANCED 6502 PROGRAMMING

Square status, 269
Square wave, 22
Strategy, 225

SYM, 4

TICL, 6, 83

TI1L-L, 65

Threat potential, 226
Tic-Tac-Toe, 218
Tic-Tac-Toe Flowchart, 248
Tic-Tac-Toe Program, 280
TIMER, 65

Timer, 65, 83, 198, 256
Timer 1, 175

TONE, 39, 70, 130, 135
Translate, 41

Translate Program, 49
Trap, 235, 239, 264, 267
Trap pattern, 241
Two-level loop, 211
Two-ply analysis, 237
Unprotect system, 198
UPDATE, 273

Value computation, 226
VIA, 8

VIA memory map, 66
Visual feedback, 163
WAIT, 98

Wheel pointer, 103, 120
WIN, 128

Win, 259

Win potential, 225
WINEND, 129

292

	Cover
	Title
	Contents
	Preface
	1. Introduction
	Optional Hardware Support
	Connecting the System
	Game Board Interconnect
	The Keyboard Input Routine
	Summary

	2. Generating Square Waves (Music Player)
	Introduction
	The Rules
	A Typical Game
	The Connections
	The Algorithm
	The Program
	Summary
	Exercises

	3. Pseudo Random Number Generator (Translate)
	Introduction
	The Rules
	A Typical Game
	The Algorithm
	The Program
	Summary

	4. Hardware Random Number Generator (Hexguess)
	Introduction
	The Rules
	A Typical Game
	The Algorithm
	The Program
	Summary
	Exercises

	5. Simultaneous Input/Output (Magic Square)
	Introduction
	The Rules
	A Typical Game
	The Algorithm
	The Program
	Summary
	Exercises

	6. Simple Real Time Simulation (Spinner)
	Introduction
	The Rules
	The Algorithm
	The Program
	Summary
	Exercises

	7. Real Time Simulation (Slot Machine)
	Introduction
	The Rules
	A Typical Game
	The Algorithm
	The Program
	Summary

	8. Real Time Strategies (Echo)
	Introduction
	The Rules
	A Typical Game
	The Algorithm
	The Program
	Summary

	9. Using Interrupts (Mindbender)
	Introduction
	The Rules
	A Typical Game
	The Algorithm
	The Program
	Summary

	10. Complex Evaluation Technique (Blackjack)
	Introduction
	The Rules
	A Typical Game
	The Program
	Summary

	11. Artificial Intelligence (Tic-Tac-Toe)
	Introduction
	The Rules
	A Typical Game
	The Algorithm
	The Program
	Summary

	Appendix A. 6502 Instructions: Alphabetic
	Appendix B. 6502 Instruction Set: Hex and Timing
	Index

