

ADVANCED
6502

PROGRAMMING

RODNAYZAKS

BERKELEY • PARIS • DDSSELDORF

SYM is a trademark of Synertek Systems, Inc.
KIM is a trademark of MOS Technology, Inc.
AIM65 is a trademark of Rockwell International, Inc.
"COMPUTEACHER" and "GAMES BOARD" are trademarks of Sybex, Inc.

Cover design by Daniel Le Noury
Technical illustrations by Guy S. Orcutt and j. trujillo smith

Every effort has been made to supply complete and accurate information. However,
Sybex assumes no responsibility for its use, nor for any infringements of patents or other
rights of third parties which would result. No license is granted by the equipment
manufacturers under any patent or patent rights. Manufacturers reserve the right to
change circuitry at any time without notice.

© 1982 SYBEXInc., 2344Sixth Street, Berkeley, CA94710. World rights reserved. No
part of this publication may be stored in a retrieval system, transmitted, or reproduced in
any way, including but not limited to photocopy, photograph, magnetic or other record,
without the prior agreement and written permission of the publisher.

Based on 6502 Games by Rodnay Zaks, © 1980 SYBEX Inc.

Library of Congress Card Number: 82-160235
ISBN 0-89588-089-X
Printed in the United States of America
10987654321

Contents
Preface

1 Introduction

Optional Hardware Support 2
Connecting the System 4
Ga.mes Bol\r.SJPtei;couuect ,,,..,..., 7

fr,~;}(~1~~~~~ 13

2 Generating Square Waves (Music Player)

Introduction
The Rules 20
A Typical Game
The Connections
The Algorithm
The Program

20

22
22

22
23

vii
1

20

3 PseudoRandomNumberGenerator (Translate) 41

Introduction
The Rules 41
A Typical Game
The Algorithm
The Program

41

42
43

43

4 Hardware Random Number Generator
(Hexguess)

Introduction
The Rules 59
A Typical Game
The Algorithm
The Program

59

59
60

60

5 Simultaneous Input/Output (Magic Square)

Introduction 73
The Rules 73
A Typical Game
The Algorithm
The Program

76
78

80

6 Simple Real Time Simulation (Spinner)

Introduction 87
The Rules 87
The Algorithm 88
The Program 89

59

73

87

V

7 Real Time Simulation (Slot Machine) 99

Introduction 99
The Rules 99
A Typical Game 100
The Algorithm 101
The Program 112

8 Real Time Strategies (Echo) 137

Introduction 137
The Rules 137
A Typical Game 139
The Algorithm 141
The Program 144

9 Using Interrupts (Mindbender) 162

Introduction 162
The Rules 162
A Typical Game 162
The Algorithm 165
The Program 167

10 Complex Evaluation Technique (Blackjack) 189

Introduction 189
The Rules 189
A Typical Game 190
The Program 194

11 Artificial Intelligence (Tic-Tac-Toe)) 218

Introduction 218
The Rules 218
A Typical Game 218
The Algorithm 224
The Program 247

Appendices 287

A. 6502 Instructions-Alphabetic 287
B. 6502 Instruction Set-Hex and Timing 288

Index 290

vi

Preface
This book has been designed to teach you advanced programming

techniques for the 6502 microprocessor in a systematic and progressive
way. Developing a program involves devising a suitable algorithm and
appropriate data structures, and then coding the algorithm. In the case
of a microprocessor such as the 6502, the design of the algorithm and the
data structures is generally constrained by three conditions:

1. The amount of memory available is often limited or must be
minimized; i.e., the program must be terse.

2. The highest possible execution speed may be required. Efficient
coding of the program into assembly level language instructions
then becomes an essential consideration. In particular, the use of
registers must be optimized.

3. The specific input/ output design requires an understanding of the
input and output chips and their programming.

Thus, when evaluating designs for an algorithm and data structures,
the programmer must weigh the merits of the various techniques in terms
of his skill, the memory limitations, the requirec-1. speed of execution,
and the overall probability of success.

Advanced programming for the 6502, therefore, involves knowledge
of all the chips that may be affected by the program, in addition to the usual
programming skills concerned with the algorithm, the data structures,
and the efficient use of internal instructions and registers. This book
provides a comprehensive and complete overview of all the important
techniques required to program a 6502 system efficiently. The book has
been designed as an educational text. Each chapter introduces new con­
cepts, chips, or techniques in turn. In the final chapters more complex
algorithms are presented, which integrate the techniques presented
throughout the book.

For clarity and consistency, this book uses a specific 6502-based
system on which all the programs will run. The details are presented in
Chapter 1. However, the programs and techniques presented here are
applicable to all 6502-based systems. Similarly, all the programs studied
in this book are presented in the form of realistic games involving success­
ively all the techniques described. They cover most types of applications
ranging from simple input/ output techniques to sophisticated real-time
simulations, including the handling of interrupts and the design of com­
plex data structures.

vii

ADVANCED 6502 PROGRAMMING

A case study approach is used, and each chapter contains the following:

1. A description of the concepts and techniques to be studied

2. The specifications of the program's behavior and a typical session
with the program, i.e., the problem to be solved

3. The algorithm(s): theory of operation, design, and trade-offs

4. The actual program: data structures, programming techniques,
specific subroutines, merits of alternative techniques, and a com­
plete program listing.

Variations and exercises are also proposed in each chapter.
Thus, you will first study the definition of the problem, then observe

the expected program behavior, and then learn how to devise a possible
solution (algorithm plus data structures). Finally, you will design a
complete program for this algorithm in 6502 assembly level language,
paying specific attention to the required data structures, the efficient use
of registers, the input/ output chips, and the techniques used for efficient
programming.

You will sharpen your skills at using input/ output techniques including
timers and interrupts. But most importantly, you will be consistently
reminded of the trade-offs between ease in programming, use of
memory, efficiency of execution, and algorithmic improvements by use
of specialized hardware or software techniques.

In order to learn the advanced programming techniques presented in
this book, it is not necessary to build any actual hardware. However, it is
necessary to write programs on your own along the ten chapters of
this book. By showing you and explaining in detail the design of many
actual programs, the author hopes to facilitate your next step: actual
programming.

viii

Acknowledgments

The author would like to acknowledge the contributions of Chris Williams
and Eric Novikoff, who thoroughly checked all of the games programs and con­
tributed numerous ideas for improvements.

The author is particularly indebted to Eric Novikoff for his valuable
assistance throughout all phases of the manuscript's production, and for his
meticulous supervision of the final text.

The author would also like to express his appreciation to Rockwell International
and in particular, to Scotty Maxwell, who made available to him one of the very
first system 65 development systems. The availability of this powerful develop­
ment tool, at the time the first version of this book was being written, was a major
help for the accurate and efficient check-out of all the programs.

1. Introduction

In order to learn the techniques and study the program examples
presented in this book, no specific equipment is required. However, the
availability of a 6502-based system is a major advantage to develop and
test 6502 programs on your own. Bear in mind that each 6502-based
system will have a somewhat different input/ output configuration. The
techniques presented in this book are applicable to all, and the programs
can be easily adapted once you understand input/ output operations.

To read this book, you should be familiar with the 6502 instruction set
and basic programming techniques on the level of Programming the 6502.
A basic knowledge of input/ output techniques is also recommended.
(This topic is covered in 6502 Applications.)

The programs presented in Chapters 2 through 11 range from simple
to complex. In order to implement these programs, algorithms will be
devised and data structures will be designed. This is the process any
disciplined computer programmer must go through when designing a

1

ADVANCED 6502 PROGRAMMING

program solution for a given problem. The ten case studies presented in
this book will also familiarize you with common input/ output techni­
ques. Toward the end of the book, you will find that the problems
presented pose increasingly complex intellectual challenges to devising
efficient solutions. All the strategies presented in this book, including
the one used for the Tic-Tac-Toe game in Chapter 1, are believed to be
original. These strategies and the design process will be analyzed in
detail. As an additional design constraint intended to teach you efficient
design, all the algorithms and data structures presented in this book
have been designed to result in a program that can reside within less than
lK of available memory.

The programs presented in this book have been tested on actual
hardware by many users and have been found to be error-free in the con­
ditions under which they were tested. As in any large set of programs,
however, inadequacies or improvements may be found.

OPTIONAL HARDWARE SUPPORT

The programs contained in this book can be developed on any
6502-based system. However, in order to be executed they require a
specific input/output environment. For the sake of simplicity, a
uniform hardware environment has been used throughout this book. It
assumes a 6502-based board, the SYM board (by Synertek Systems),
and an additional input/ output board, called the Games Board, which
can be easily built. For completeness, an overview of the SYM board
and a complete description of the Games Board will be provided in this
chapter. However, it is not necessary to purchase or build these boards
to understand the information presented in this book. The Games
Board may also be adapted easily to other 6502-based computers such as
Commodore or Apple computers. The programs remain essentially un­
changed except for input/ output device allocations.

The Games Board can also be simulated on a standard terminal by
displaying information on a CRT screen and capturing input from a
normal alphanumeric keyboard.

A photograph of the Games Board is shown in Figure 1.1. The
keyboard on the right is used to provide inputs to the microcomputer
board, while the LEDs on the left are used to display the information
sent by the program. The specific use of the keys and the LEDs will be
explained in each chapter. A speaker is also provided for sound effects.
It can be mounted in an enclosure (box) for improved sound quality (see
Figure 1.2). This input/ output board can be easily built at home from a
small number of low cost components.

2

INTRODUCTION

Fig. 1.1: The Games Board

Fig. 1.2: Enclosure May Be Used for Improved Sound

3

ADVANCED 6502 PROGRAMMING

CONNECTING THE SYSTEM

If you wish to assemble the actual system and build the input/ output
board, read on. If you are not interested in building any actual hard­
ware, proceed to the description of an important program subroutine
that will be used repeatedly in this book: the keyboard input routine.

Four essential components are required to assemble the Games
Board:

1 - the power supply
2 - the SYM board
3 - the Games Board
4 - (preferably) a cassette recorder

The first requirement is to connect the wires to the power supply. If
it is not already so equipped, two sets of wires must be connected to it.
(See Figure 1.3.) First, it must be connected to a power cord. Second,
the ground and plus 5V wires must be connected to the SYM power
connector, as per the manufacturer's specifications.

Next, the Games Board should be physically connected to the SYM.
Two edge connectors are required for the SYM: both the A connector
and the AA connector are used. (See Figure 1.4.) There is also a power
source connector.

Always be careful to insert the connectors with the proper side up
(usually the printed side). An error in inserting the power connector,
in particular, will have highly unpleasant results. Errors in inserting
the 1/0 connectors are usually less damaging.

Finally, if a cassette recorder is to be used (highly recommended),
the SYM board must be connected to a tape recorder. At the
minimum, the "monitor" or "earphone" wires should be connected,
and preferably the "remote" wire as well. If new programs are going
to be stored on tape, the "record" or "microphone" wire should also
be connected. (See Figure 1.5.) Details for these connections are given
in the SYM manual.

At this point the system is ready to be used. (See Figure 1.6.) If you
have one of the games cassettes (available separately from Sybex),
simply load the cassette into the tape recorder. Press the RST key after
powering up your SYM, and load the appropriate game into your
SYM. You are ready to play.

Otherwise, you should enter the hexadecimal object code of the
game on the SYM keyboard. All games are started by jumping to
location 200 ("GO 200").

4

INTRODUCTION

Fig. 1.3: Two Wires Must Be Connected to the Power Supply

Fig. 1.4: The Games Board Is Connected to the SY M with 2 Connectors
(Note also Power and Cassette Connectors)

5

ADVANCED 6502 PROGRAMMING

Fig. 1.5: Connecting the Cassette Recorder

Fig, 1.6: The System is Ready to be Used

6

INTRODUCTION

GAMES BOARD INTERCONNECT

The Keyboard

The board's components are shown in Figure 1.7. The LED ar­
rangement used for the games is shown in Figure 1.8. The keyboard
used here is of the "line per key" type, and does not use a matrix ar­
rangement. Sixteen keys are required for the games, even though more
keys are often provided on a number of "standard keyboards," such
as the one used in the prototype of Figure 1. 7. On this prototype, the
three keys at the bottom right-hand corner are not used (keys H, L,
and "shift").

Figure 1.9 shows how a 1-to-16 decoder (the 74154) is used to iden­
tify the key which has been pressed, while tying up only four output
lines (PBO to PB3) - four lines allow 16 codes. The keyboard scan­
ning program will send the numbers 0-15 in succession out on lines
PBO-PB3. In response, the 74154 decoder will decode its input (4 bits)
into each one of the 16 outputs in sequence. For example, when the
number "0000" (binary) is output on lines PBO to PB3, the 74154
decoder grounds line 1 corresponding to key "O". This is illustrated in
Figure 1.9. After outputting each four-bit combination, the scanning
program reads the value of PA 7. If the key currently grounded was
not pressed, PA 7 will be high. If the corresponding key was pressed,
PA 7 will be grounded and a logical "0" will be read. For example, in

Fig. 1.7: Games Board Elements (Prototype)

7

ADVANCED 6502 PROGRAMMING

0 0 0
2 3

0 0 0
4 5 6

0 0 0
7 8 9

000000
10 11 12 13 14 15

Fig. 1.8: The LEDs

Figure 1.10, a key closure for key 1 has been detected. As in any scan­
ning algorithm, a good program will debounce the key closures by im­
plementing a delay. For more details on specific keyboard interfacing
techniques, the reader ls referred to reference C207 - Microprocessor
Interfacing Techniques.

In the actual design, the four inputs to the 74154 (PBO to PB3) are con­
nected to VIA #3 of the SYM. PA 7 is connected to the same VIA. The
3.3 K resistor on the upper right-hand corner of Figure 1.9 pulls up
PA 7 and guarantees a logic level "l" as long as no grounding occurs.

The GETKEY program, or a similar routine, is used by all the pro­
grams in this book and will be described below.

The LEDs

The connection of the fifteen LEDs is shown in Figure 1.11. Three
7416 LED drivers are used to supply the necessary current (16 mA).

The LEDs are connected to lines PAO to PA7 and PBO to PB7, ex­
cepting PB6. These ports belong to VIA #1 of the SYM. An LED is lit
by simply selecting the appropriate input pin of the corresponding
driver. The resulting arrangement is shown in Figure 1.12 and Figure
1.13.

8

INTRODUCTION

PBO

PB1

PB2

PB3

+5 3.3K

24 KEYO

"O" 1 ~ 0

23 2
"l''

22 ''2'' 3 2
21 "4"

4 3
20 "8'' 5 4

6 5
7 6
8 7

4to 16
9 8

DECODER 10 9

11 A
12 B
13 C
14 D
15 E
16 F

17 ~F

Fig. 1.9: Decoder Connection to Keyboard

J
0 ----tO

74154 2 ~-'-___ ..._,___--l l (CLOSED)

0 . •
0 •

I
I
I

• I
I

l

"O" I PA7------------------~
(CLOSURE DETECTED)

Fig. 1.10: Detecting a Key Closure

+5V

+5v

9

ADVANCED 6502 PROGRAMMING

VIA#l LED AO

320'1 /\I
PAO 2 LED l

PAl 3 4 LED 2

PA2 5 6 LED 3

PA3 9 7416 8 LED4

PA4 11 10 LED5

PA5 13 12 LED6

7 14 \I\
LEDA5

-
+5 +5

LEDA6

330'1 ;V
PA6 2 LED7

PA7 3 4 LED 8

PBO 5 6 LED9

PB1 9 7416 8 LED 10

PB2 11 10 LED 11

PB3 13 12 LED 12

7 14 V\
LED B3

- +5

LEDB4

330'1 N
PB4 2 LED 13

PB5 3 4 LED 14

PB7 5 6 LED 15

7416 \J\
LED B7

7 14

-=- +5

Fig. 1.11: LED Connection

10

INTRODUCTION

7 8 9

10 11 12 13 14 15

Fig. 1. 12: LED Arrangement on the Board

The resistors shown in Figure 1.11 are 330-ohm resistors designed as
current limiters for the 7416 gates.

The output routines will be described in the context of specific
games.

Required Parts

One 6" x 9" vector-board
One 4-to-16 decoder (74154)
Three inverting hex drivers (7416)
One 24-pin socket
Three 14-pin sockets (for the drivers)
One 16-key keyboard, unencoded
Fifteen 330-ohm resistors
One 3.3 K-ohm resistor
One decoupling capacitor (.1 mF)
Fifteen LEDs
One speaker
One 50-ohm or 110-ohm resistor (for the speaker)
Two 15"-20" long 16-conductor ribbon cables
One package of wire-wrap terminal posts
Wire-wrap wire
Solder

A soldering iron and a wire-wrapping tool will also be required.

11

ADVANCED 6502 PROGRAMMING

VIA NUMBER ·1

0

2

PORT 3
lA

4

5

6

2

PORT 3
lB

4

5

6

7

Fig. 1.13: Detail of LED Connection to the Ports

Assembly

A suggested assembly procedure is the following: the keyboard can
be glued directly to the perf board. Sockets and LEDs can be posi­
tioned on the board and held in place temporarily with tape. All con­
nections can then be wire-wrapped. In the case of the prototype, the
connections to the keyboard were soldered in order to provide reliable
connections since they were not designed as wire-wrap leads. Wire­
wrap terminal posts were used for common connections.

Additionally, on the prototype two sockets were provided for con­
venience when attaching the ribbon cable connector to the Games
Board. They are not indispensable, but their use is strongly suggested
in order to be able to conveniently plug and unplug cables. (They ap­
pear in the top left corner of the photograph in Figure 1.14.) A 14-pin
socket and a 16-pin socket are used for this purpose. Wire-wrap ter­
minal posts can be used instead of these sockets to attach the ribbon
cable directly to the perf board. The other end of the ribbon cable is

12

INTRODUCTION

Fig. 1.14: Games Board Detail

simply attached to the edge connectors of the SYM. When connecting
the ribbon cable at either end, always be very careful to connect it to
the appropriate pins (do not connect it upside down). The Games
Board derives its power from the SYM through the ribbon cable con­
nection. Connecting the cable in reverse will definitely have adverse
effects.

The speaker may be connected to any one of the output drivers
PB4, PB5, PB6, or PB7 of VIA #3. Each of these output ports is
equipped with a transistor buffer. A 110-ohm current-limiting resistor
is inserted in series with the speaker.

THE KEYBOARD INPUT ROUTINE

This routine, called "GETKEY," is a utility routine which will scan
the keyboard and identify the key that was pressed. The correspond­
ing code will be contained in the accumulator. It has provisions for
bounce, repeat, and rollover.

Keyboard bounce is eliminated by implementing a 50 ms delay upon
detection of key closure.

The repeat problem is solved by waiting for the key currently

13

ADVANCED 6502 PROGRAMMING

pressed to be released before a new value is accepted. This cor­
responds to the case in which a key is pressed for an extended period
of time. Upon entering the GETKEY routine, a key might already be
depressed. It will be ignored until the program detects that a key is no
longer pressed. The program will then wait for the next key closure. If
the processing program using the GETKEY routine performs long
computations, there is a possibility that the user may push a new key
on the keyboard before GETKEY is called again. This key closure will
be ignored by GETKEY, and the user will have to press the key again.

Most of the programs described in this book have audible prompts
in the form of a tone which is generated every time the player should
respond. Note that when a tone is being generated or during a delay
loop in a program, pressing a key will have absolutely no effect.

(AC03) (ACOl)
DDR3A PORT3A

0 0

0

0

0

0

0

0
-

0 7

0 ------(INPUT) 1 ___...

(OUTPUT)

1 0 - •
1 - 74154 •
1 - •
1 3 4TO 16

DECODER
1

1 15 ------1

1 7

DDR3B PORTB
(AC02) (ACOO)

VIA#3

Fig. 1. 15: VIA Connection to Keyboard Decoder

14

DECREMENT
KEY COUNTER

GET KEY

Fig. 1.16: GETKEY Flowchart

INTRODUCTION

OUT

15

ADVANCED 6502 PROGRAMMING

The hardware configuration for the GETKEY routine is shown in
Figure 1.9. The corresponding input/output chip on the SYM is
shown in Figure 1.15. VIA #3 of the SYM board is used to com­
municate with the keyboard. Port B of the VIA is configured for out­
put and lines O through 3 are gated to the 74154 (4-to-16 decoder),
connected to the keyboard itself. The GETKEY routine will output
the hexadecimal numbers "O" through "F," in sequence, to the
74154. This will result in the grounding of the corresponding output
line of the 74154. If a key is pressed, bit 7 of VIA #3 of Port A will be
grounded. The program logic is, therefore, quite simple, and the cor­
responding flowchart is shown in Figure 1.16.

The program is shown in Figure 1.17. Let us examine it. The
GETKEY routine can be relocated, i.e., it may be put anywhere in the
memory. In order to conserve space, it has been located at memory
locations 100 to 12E. It is important to remember that this is the low
stack memory area. Any user programs which might require a full
stack would overwrite this routine and thus destroy it. To prevent this
possibility, it could be located elsewhere. For all of the programs that
will be developed in this book, however, this placement is adequate.
The first four instructions of the routine condition the data direction
registers of VIA #3. The data direction register for Port A is set for in­
put (all zeroes), while the data direction register for Port B is set for
output (all ones). This is illustrated in Figure 1.15.

LDA #0
STA DDR3A
LDA#$FF
STA DDR3B

Two instructions are required to test bit 7 of Port 3A, which in­
dicates whether a key closure has occurred:

START BIT PORT3A
BPL START

The key counter is initially set to the value 15, and will be decremented
until a key closure is encountered. Index register X is used to contain
this value, as it can readily be decremented with the DEX instruction:

RSTART LDX #15

This value (15) is then output to the 74154 and results in the selection

16

0100 A9 00
0102 SD 03 AC
0105 A9 FF
0107 8[1 02 AC

INTRODUCTION

'GETKEY' KEYBOAR[I INPUT ROUTINE
REA[IS AND DEBOUNCES KEYBOARD, RETURNS WITH KEY NUMBER
IN ACCUMULATOR IF KEY DOWN,
OPERATION: SENDS NUMBERS 0-F TO 74154 (4 TO 16
LINE DECO[IERJ, WHICH GROUNDS ONE SIDE OF KEYSWITCHES
ONE AT A TIME. IF A KEY IS DOWN, PA7 OF VIA t3 WILL BE
GROUNDE[I, AND THE CURRENT VALUE APPLIE[I TO THE 74154 W
BE THE KEY NUMBER. WHEN THE PROGRAM DETECTS A KEY CLOS
CHECKS FOR KEY CLOSURE FOR 50 MS, TO ELIMINATE BOUNCE,
NOTE: IF NO KEY IS PRESSED, GETKEY WILL WAIT,

,=$100 ;NOTE: GETKEY IS IN LOW STACK
DDR3A =$AC03 ;[IATA DIRECTION REG A FOR VIA t3
DDR3B =$AC02 ;[IATA DIRECTION REG B FOR VIA t3
PORT3A =$AC01 ;vIAt3 PORT A IN/OUT REGS
PORT3B =$ACOO ;vIAt3 PORT B IN/OUT REGS

LDA to
STA [IDR3A ;SET KEY STROBE PORT FOR INPUT
LDA OFF
STA DDR3B ;SET KEYt PORT FOR OUTPUT

010A 2C 01 AC START BIT PORT3A ;SEE IF KEY IS STILL DOWN FROM
;LAST KEY CLOSURE: KEYSTOBE IN 'N'
; STATUS BIT,

010D: 10 FE< BPL. START HF YES, WAIT FOR KEY REL.EASE
010F: A2 OF RS TART LDX t15 ;SET KEYt COUNTER TO 15
0111: SE 00 AC NXTKEY STX PORT3B ;ouTPUT KEY • TO 74154
0114: 2C 01 AC BIT PORT3A ;SEE IF KEY DOWN: STROBE IN 'N'
0117: 10 05 BPL BOUNCE HF YES, GO DEBOUNCE
0119: CA DEX ;DECREMENT KEY • 011A: 10 FS BPL NXTKEY ;No, [10 NEXT KEY
011c: 30 Fl BMI RSTART ;START OVER,
OllE: SA BOUNCE TXA ;SAVE KEY NUMBER IN A
011F: AO 12 LDY 012 ;OUTER LOOP CNT LOAD FOR

;DELAY OF 50 MS.
0121: A2 FF LP1 LDX UFF ;INNER 11 us. LOOP
0123! 2C 01 AC LP2 BIT PORT3A ;SEE IF KEY STILL [IOWN
0126: 30 E7 BMI RSTART HF NOT, KEY NOT VALID, RESTART
0128: CA DEX
0129! DO F8 BNE LP2 HHIS LOOP USES 2115*5 us
012B: 88 [IEY
012c: [10 F3 BNE LP1 ;ouTER LOOP: TOTAL IS 50 MS,
012E: 60 RTS ;DONE! KEYt IN A,

SYMBOL TABLE:
[IDR3A AC03 D[IR3B AC02 F'ORT3A AC01
PORT3B ACOO START 010A RS TART 010F
NXTKEY 0111 BOUNCE 011E LP1 0121
LP2 0123

DONE

Fig. 1.17: GETKEY Program

of line 17 connected to key 15 ("F"). The BIT instruction above is
used to test the condition of bit 7 of Port 3A to determine whether this
key has been pressed.

NXTKEY STX PORT3B
BIT PORT3A
BPL BOUNCE

If the key were closed, a branch would occur to "BOUNCE," and a

17

ADVANCED 6502 PROGRAMMING

delay would be implemented to debounce it; otherwise, the counter is
decremented, then tested for underflow. As long as the counter does
not become negative, a branch back occurs to location NXTKEY.
This loop is repeated until a key is found to be depressed or the
counter becomes negative. In that case, the routine loops back to loca­
tion RSTART, restarting the process:

DEX
BPL NXTKEY
BMI RSTART

Note that this will result in the detection of the highest key pressed
in the case in which several keys are pressed simultaneously. In other
words, if keys "F" and "3" were pressed simultaneously, key "F"
would be identified as depressed, while key "3" would be ignored.
Avoiding this problem is called multiple-key rollover protection and
will be suggested as an exercise:

Exercise 1-1: In order to avoid the multiple-key rollover problem,
modify the GETKEY routine so that all 15 key closures are monitored.
If more than one key is pressed, the key closure is to be ignored until
only one key closure is sensed.

Once the key closure has been identified, the corresponding key
number is saved in the accumulator. A delay loop is then implemented
in order to provide a 50 ms debouncing time. During this loop, the key
closure is constantly monitored. If the key is released, the routine is
restarted. The delay itself is implemented using a standard two-level,
nested loop technique.

BOUNCE

LPl
LP2

TXA
LOY #$12
LOX #$FF
BIT PORT3A
BMI RSTART
DEX
BNE LP2
DEY
BNE LPl

Exercise 1-2: The value used for the outer loop counter ("$12,,, or 12
hexadecimal) may not be quite accurate. Compute the exact duration

18

INTRODUCTION

of the delay implemented by the instructions above, using the tables
showing the duration of each instruction in the Appendix.

SUMMARY

Executing the games programs requires a simple Games Board which
provides the basic input/output facilities. The required hardware and
software interface has been described in this chapter. Photographs of
the assembled board which evolved from the prototype are shown in
Figures 1.18 and 1.19.

Fig. 1.18: "Production" Games Board

Fig. 1. 19: Removing the Cover

19

2. Generating Square Waves
(Music Player)

INTRODUCTION

This program will teach you how to synthesize frequencies by
generating square waves. It will use a table-driven algorithm to generate
tones and play music. It will make systematic use of indexed addressing
techniques.

THE RULES

This game allows music to be played directly on the keyboard of a
computer. In addition, the program will simultaneously record the
notes that are played, and then automatically play them back upon re­
quest. Keys "O" through "C" on the keyboard are used to play the
musical notes. (See Figure 2.1.) Key "D" is used to specify a rest. Key
"E" is used to play back the musical sequence stored in the memory.
Finally, key "F" is used to clear the memory, i.e., to start a new
game. The following paragraph will describe the usual sequence of the
game.

KEY NOTE KEY NOTE
A B C D NUMBER NUMBER
(A) (B) (C) (REST)

0 G 8 G

1 2 3 E 1 A 9 G#

(A) (B) (C) (PBK) 2 B A A

3 C B B
4 5 6 F

(D) (E) (F) (RST) 4 D C C

5 E D REST

7 8 9 0 6 F E PLAY
BACK

(F#) (G) (G#) (G)
7 F# F RESTART

Fig. 2. 1: Playing Music on the Keyboard

20

GENERATING SQUARE WAVES

9th Symphony:

5-5-6-B-B-6-5-4-3-3-4-5-5-4-4-D-5-

5-6-B-B-6-5-4-3-3-4-5-4-3-3-D-4-4-

5-3-4-6-5-3-4-6-5-4-3-4-D

Clementine:

3-3-3-D-2-D-5-5-5-D-3-D-3-5-8-D-D-

8-6-5-4-D-D-D-4-5-6-D-6-D-5-4-5-D-
3-D-3-5-4-D-D-2-3-4-3

Frere Jacques:

3-4-5-3-3-4-5-3-5-6-8-D-5-6-8-D-B­

A-B-6-5-D-3-D-B-A-B-6-5-D-3-D-3-D-

2-D-3-D-D-D-3-D-2-D-3

Jingle Bells:

5-5-5-D-5-5-5-D-5-B-3-4-5-D-D-D-6-
6-6-6-6-5-5-5-B-B-6-4-3

London Bridge:

B-A-8-6-5-6-8-D-4-5-6-D-5-6-B-D-B­

A-B-6-5-6-B-D-4-D-B-D-5-3

Mary Had a Little Lamb:

5-4-3-4-5-5-5-D-4-4-4-D-5-B-8-D-5-
4-3-4-5-5-5-5-4-4-5-4-3

Row Row Row Your Boat:

3-D-3-D-3-4-5-D-5-4-5-6-B-D-D-D-C­

C-B-B-5-5-3-3-8-6-5-4-3

SIient Night:

B-D-D-A-B-D-5-D-D-D-B-D-D-A-B-D-5-

D-D-D-3-D-D-3-D-B-D-D-D-C-D-D-C­

D-B-D-D-C-D-8-5-8-D-6-D-4-D-3

Twinkle Twinkle Little Star:

3-3-B-8-A-A-B-D-6-6-5-5-4-4-3-D-B­

B-6-6-5-5-4-D-3-3-8-B-A-A-B-D-6-6-

5-5-4-4-3

Fig. 2.2: Simple Tunes for Computer Music

21

ADVANCED 6502 PROGRAMMING

A TYPICAL GAME

Press key "F" to start a new game. A three-note warble will be
heard, confirming that the internal memory has been erased. Play the
tune on keys "O" through "D" (using the notes and the rest features).
Up to 254 notes may be played and stored in the memory. At any
point, the playback key ("E") may be pressed and the notes and rests
that were just played on the keyboard (and simultaneously stored in
the memory) will be reproduced. The musical sequence may be played
as many times as desired by simply pressing key "E." Examples of
simple tunes or musical sequences that can be played on the computer
are shown in Figure 2.2.

THE CONNECTIONS

This game uses the keyboard plus the speaker. The speaker is con­
nected in series to one of the buffered output lines of PORT B of VIA
#3, via a 1 f 0-ohm current limiting resistor. PB4, PBS, PB6, or PB7 of
VIA #3 are used, as they are driven by a transistor buffer on the SYM.
For higher quality music, it is recommended that the speaker be placed
in a small box-type enclosure. The value of the resistor may also be
adjusted for louder volume (without going below 50-ohm) to limit the
current in the transistor.

THE ALGORITHM

A tone (note) is simply generated by sending a square wave of the
appropriate frequency to the speaker, i.e., by turning it on and off at
the required frequency. This is illustrated in Figure 2.3. The length of
time during which the speaker is on or off is known as the half-period.
In this program, the frequency range of 195 to 523 Hertz is provided.
If N is the frequency, the period Tis the inverse of the frequency, or:

T = 1/N

Therefore, the half-periods will range from 1/(2 x 195) = .002564 to

22

-­T/2
SQUARE WAVE

~N=l/T

SPEAKER

Fig. 2.3: Generating a Tone

GENERATING SQUARE WAVES

1/(2 X 523) = .000956 seconds. A classic loop delay will be used to im­
plement the required frequency.

Actual computations for the various program parameters will be
presented below.

THE PROGRAM

The program is located at memory addresses 200 through 2DD, and
the recorded musical sequence or tune is stored starting at memory
location 300. Up to 254 notes may be recorded in 127 bytes.

I>ata Structures

Three tables are used in this program. They are shown in Figure 2.4.
The recorded tune is stored in a table starting at address 300. The note
constants, used to establish the frequency at which the speaker will be
toggled, are stored in a 16-byte table located at memory address 2C4.
The note durations, i.e., the number of half-cycles required to imple­
ment a uniform note duration of approximately .21 second, are stored
in a 16-byte table starting at memory address 2D 1. Within the tune
table, two "nibble" -pointers are used: PILEN during input and PTR
during output. (Each 8-bit byte in this table contains two notes.) In
order to obtain the actual table entry from the nibble-pointer, the
pointer is simply shifted one bit position to the right. The remaining
value becomes a byte-pointer, while the bit shifted into the carry flag
specifies the left or the right half of the byte. The two tables called
CONSTANTS and NOTE DURATIONS are simply reference tables
used to determine the half-frequency of a note and the number of
times the speaker should be triggered once a note has been identified
or specified. Both of these tables are accessed indirectly using the X
register.

Some Music Theory

A brief survey of general music conventions is in order before
describing the actual program. The frequencies used to generate the
desired notes are derived from the equally tempered scale, in which the
frequencies of succeeding notes are in the ratio:

1: zy'"2

The frequencies for the middle C octave are given in Figure 2.5.
When computing the corresponding frequencies of the higher or the

23

ADVANCED 6502 PROGRAMMING

ACOO OPB

AC02 DDRB

Fig. 2.4: Memory Map

lower octave, they are simply obtained by multiplying by two, or
dividing by two, respectively.

Generating the Tone

The half-period delay for the square wave sent to the speaker is im­
plemented using a program loop with a basic 10 µs cycle time. In the
program, the "loop index," or iteration counter is used to count the
number of 10 µs cycles executed. The loop will result in a total delay
of:

(loop index) x 10 - 1 microseconds

24

GENERATING SQUARE WAVES

NOTE FREQUENCY (HERTZ)

A 220.00

A# 223.08

B 246.94

C 261.62

C# 277.18

D 293.66

D# 311.13

E 329.63

F 349.23

F# 369.99

G 391.99

G# 415.30

Fig. 2.5: Frequencies for the Middle C Octave

On the last iteration of the loop (when the loop index is
decremented to zero), the branch instruction at the end will fail. This
branch instruction will execute faster, so that one microsecond
(assuming a 1 MHz clock) must be subtracted from the total delay
duration. The tone generation routine is shown below:

TONE

FL2
FLl

STA
LDA
STA
LDA
LDX
LDY
DEY
CLC
BCC
BNE
EOR
STA
DEX
BNE
RTS

FREQ
#$FF
DDRB
#$00
DUR

F~:QJ
FLl
#$FF
OPB

FL2

INNER
LOOP

OUTER
LOOP

Note the "classic" nested loop design. Every time it is entered, the
outer loop adds an additional thirteen microseconds delay: 14
microseconds for the extra instructions (LDY, EOR, STA, DEX, and

25

ADVANCED 6502 PROGRAMMING

BNE), minus one microsecond for responding to the unsuccessful in­
ner loop branch. The total outer loop delay introduced is therefore:

(loop index) x 10 + 13 microseconds

Remember that one pass through the outer loop represents only a half­
period for the note.

Computing the Note Constants

Let "ID" be the inner loop delay and "OD" be the outer loop addi­
tional delay. It has been established in the previous paragraph that the
half-period is T /2 = (loop index) x 10 + 13 or,

T 12 = (loop index) x ID + OD

The note constant stored in the table is the value of the "index" re­
quired by the program. It is easily derived from the equation that:

note constant = loop index = (T - 2 x OD)/2 x ID

The period may be expressed in function of the frequency as T = 1/N
or, in microseconds:

T = 106/N

Finally, the above equation becomes:

note constant = (106/N - 2 x OD)/2 x ID

For example, let us compute the note constant corresponding to the
frequency for middle C. The frequency corresponding to middle C is
shown in Figure 2.5. It is 261.62 Hertz. The "OD" delay has been
shown above to be 13 microseconds, while "ID" was set to 10
microseconds. The note constant equation becomes:

note constant = (106 /N - 2 x 13)/2 x 10
1000000/261.62 - 26

20
= 190 (or BE in hexadecimal)

It can be verified that this corresponds to the fourth entry in the table

26

GENERATING SQUARE WAVES

NOTE NOTE CONSTANT NOTE CONSTANT

'c BE

D A9

E 96

r FE F BE
BELOW

E2 MIDDLEC i F# 86 ABOVE { 5E
MIDDLEC : MIDDLEC C

C9 G 7E

G# 77

A 70

\B 64

Fig. 2.6: Note Constants

at address NOTAB (see Figure 2.9 at the end of the listing, at address
02C4). The note constants are shown in Figure 2.6.

Exercise 2-1: Using the table in Figure 2. 6, compute the corresponding
frequency, and check to see if the constants have been chosen correctly.

Computing the Note Durations

The DURTAB table stores the note durations expressed in numbers
equivalent to the number of half-cycles for each note. These durations
have been computed to implement a uniform duration of approximately
.2175 second per note. If D is the duration and T is the period, the
following equation holds:

DX T = .2175

where D is expressed as a number of periods. Since, in practice, half­
periods are used, the required number D' of half-periods is:

D' = 2D = 2 X .2175 X N

For example, in the case of the middle C:

D = 2 x .2175 x 261.62 = 133.8 !:: 114 decimal (or 72 hexadecimal)

Exercise 2-2: Compute the note durations using the equation above,
and the frequency table in Figure 2.5 (which needs to be expanded).
Verify that they match the numbers in table DURTAB at address 2Dl.
(See Figure 2.9)

27

ADVANCED 6502 PROGRAMMING

Program Implementation

The program has been structured in two logical parts. The cor­
responding flowchart is shown in Figure 2. 7. The first part of the pro­
gram is responsible for collecting the notes and begins at label

YES

NO

28

START

YES

PLAYEM

TEMP = PTR SHIFTED
RT. ONE BIT
POSITION

NOTE NUMBER =
NOT "E" TABLE
(TEMP) SHIFTED

·RIGHT 4 PLACES

NO

NOTE NUMBER =
NOTE TABLE (TEMP)

Fig. 2.7: Music Flowchart

NOTE TABLE (TEMP)
= KEY NUMBER

YES

GENERATING SQUARE WAVES

SHIFTPILEN
LOW ORDER BIT

INTO CARRY

TEMP= PILEN
SHIFTED RIGHT ONE

POSITION

YES

NO

SHIFT KEY NUMBER
LEFT 4 PLACES

NOTE TABLE (TEMP)
= [NOTE TABLE(TEMP\

OR KEY NUMBER)

Fig, 2.7: Music Flowchart (Continued)

ADVANCED 6502 PROGRAMMING

''NUMKEY. '' (The program is shown in Figure 2. 9). The second part
begins at the label "PLAYEM" and its function is to play the stored
notes. Both parts of the program use the PLAYNOTE subroutine
which looks up the note and duration constants, and plays the note.
This routine begins at the label "PLAYIT," and its flowchart is
shown in Figure 2.8.

30

NO

PLAY NOTE
NUMBER

USE NOTE NUMBER
TO LOOK UP
DURATION

USE NOTE NUMBER
TO LOOK UP NOTE

CONSTANT

LOOP FROM OTO
NOTE CONSTANT
TO WASTE TIME

RETURN

Fig, 2,8: PLA YIT Flowchart

0200 A9 00
0202 85 00
0204 18
0205 20 00 01
0208 C9 OF
020A DO 05
020C 20 87 02
020F 90 EF
0211 C9 OE
0213 DO 06
0215 20 48 02
0218 18
0219 90 EA

021B: 85 01
021D: 20 70 02
0220: AS 00
0222! C9 FF
0224! DO 05
0226: 20 87 02
0229: 90 DA
022B: 4A
022c: AB

022D: AS 01
022F! BO 09

0231 29 OF
0233 99 00 03
0236 E6 00
0238 90 CB
023A OA
023B OA
023C OA
023D OA
023E 19 00 03
0241 99 00 03
0244 E6 00
0246 90 BD

GENERATING SQUARE WAVES

MUSIC PLAYER PROGRAM
, USES 16 - KEY KEYBOARD AND BUFFERED SPEAKER
IPROGRAM PLAYS STORED MUSICAL NOTES,
ITHERE ARE TWO MODES OF OPERATION: INPUT AND PLAY,
;INPUT MODE IS THE DEFAULT, AND ALL NON-COMMAND KEYS
!PRESSED (0-D) ARE STORED FOR REPLAY, IF AN OVERFLOW
IOCCURS, THE USER IS WARNED WITH A THREE-TONE WARNING,
HHE SAME WARBLING TONE IS ALSO USED TO SIGNAL A
IRESTART OF THE PROGRAM,

GETKEY
PI LEN
TEMP
PTR
FREQ
DUR
TABEG
OPB
DDRB

=$100
=SOO
=S01
=$02
=S03
=S04
=S300
=SACOO
=SAC02
= S200

ILENGTH OF NOTE LIST
;TEMPORARY STORAGE
ICURRENT LOCATION IN LIST
!TEMPORARY STORAGE FOR FREQUENCY
ITEMP STORAGE FOR DURATION
;TABLE TO STORE MUSIC
IVIA OUTPUT PORT B
IVIA PORT B DIRECTION REGISTER
I ORIGIN

ICOMHAND LINE INTERPRETER
SF AS INPUT MEANS RESET POINTERS, START OVER,
SE MEANS PLAY CURRENTLY STORED NOTES
ANYTHING ELSE IS STORED FOR REPLAY,

START LDA to ;CLEAR NOTE LIST LENGTH
STA PI LEN
CLC I CLEAR NIBBLE MARKER

NXKEY JSR GET KEY
CMP :115 ;IS KEY 115"
BNE NXTST INO, DO NEXT TEST
JSR BEEP3 ITELL USER OF CLEARING
BCC START ICLEAR POINTERS AND START OVER

NXTST CMP +14 ; IS KEY +141'
BNE NUMKEY ;No, KEY IS NOTE NUMBER
JSR PLAYEM ;PLAY NOTES
CLC
BCC NXKEY IGET NEXT COMMAND

IROUTINE TO LOAD NOTE LIST WITH NOTES
;
NUMKEY STA TEMP ISAVE KEY, FREE A

JSR PLAY IT ;PLAY NOTE
LDA PI LEN ;GET LIST LENGTH
CHP HFF I OVERFLOW'!'
BNE OK ;No, ADD NOTE TO l.IST
JSR BEEP3 IYES, WARN USER
BCC NXKEY IRETURN TO INPUT MODE

OK LSR A ;SHIFT LOW BIT INTO NIBBLE POINTER
TAY IUSE SHIFTED NIBBLE POINTER AS

;BYTE INDEX
LDA TEMP ;RESTORE KEYt
BCS FINBYT IIF BYTE AL.READY HAS 1 NIBBLE,

IFINISH IT AND STORE
AND 17.00001111 11ST NIBBLE, MASK HIGH NIBBLE
STA TABEG,Y ISAVE UNFINISHED 1/2 BYTE
INC PI LEN IPOINT TO NEXT NIBBLE
BCC NXKEY IGET NEXT KEYSTROKE

FINBYT ASL. A ;SHIFT NIBBLE 2 TO HIGH ORDER
ASL A
ASL A
ASL A
ORA TABEG,Y IJOIN 2 NIBBLES AS BYTE
STA TABEG,Y ;,,,AND STORE,
INC PILEN ;POINT TO NEXT NIBBLE IN NEXT BYTE
BCC NXKEY IRETURN

Fig. 2.9: Music Program

31

ADVANCED 6502 PROGRAMMING

0248
024A
024C
024E
024F

0250
0253
0255
0257
0259
025B
025C
025D
025E
025F
0262
0264
0267
0269
026B
026D
026F

0270
0272
0274
0276
0279
027A
0279
027E
0280
0283
0286

0287
0289
028B
028D
0290
0292
0295
0297
029A
0299

029C
029E
029F
02A1
02A2
02A4
02A5
02A7

A2 00
86 02
A5 02
4A
AA

BD 00 03
BO 04
29 OF
90 06
29 FO
4A
4A
4A
4A
20 70 02
A2 20
20 9C 02
E6 02
A5 02
C5 00
90 DF
60

C9 OD
DO 06
A2 54
20 9C 02
60
AA
BD D1 02
85 04
BD C4 02
20 AS 02
60

A9 FF
85 04
A9 4B
20 AS 02
A9 38
20 AS 02
A9 4B
20 AS 02
18
60

AO FF
EA
DO 00
88
DO FA
CA
DO F5
60

ROUTINE TO PLAY NOTES
;
PLAYEH LDX

STX
LDA

LOOP LSR
TAX

to
PTR
PTR
A

;CLEAR POINTER

;LOAD ACUH W/CURRENT PTR VAL
ISHIFT NIBBLE INDICATOR INTO CARRY
;usE SHIFTED NIBBLE POINTER

LDA
BCS
AND
BCC

;AS BYTE POINTER
TABEG,X ;LOAD NOTE TO PLAY
ENDBYT ;LOW NIBBLE USED, GET HIGH
t~00001111 ;MASK OUT HIGH BITS
FINISH ;PLAY NOTE

ENDBYT AND
LSR
LSR
LSR
LSR

t~11110000 ;THROW AWAY LOW NIBBLE
A ISHIFT INTO LOW

FINISH JSR
LDX
JSR
INC
LDA
CHP
BCC
RTS

;

A
A
A
PLAY IT
020
DELAY
PTR
PTR
PI LEN
LOOP

;CALCULATE CONSTANTS & PLAY
;BETWEEN-NOTE DELAY

IONE NIBBLE USED

;END OF LIST'i'
INO, GET NEXT NOTE
;DONE

;ROUTINE TO DO TABLE LOOK UP, SEPARATE REST
I
PLAYIT CHP t13

BNE SOUND
LDX 054
JSR DELAY
RTS

SOUND TAX

;

LDA DURTAB,X
STA DUR
LDA NOTAB,X
JSR TONE
RTS

;REST?
IND,
;DELAY=NOTE LENGTH=,21SEC

;usE KEYt AS INDEX ••
;,,,TO FIND DURATION,

;STORE DURATION FOR USE
;LOAD NOTE VALUE

;ROUTINE TO HAKE 3 TONE SIGNAL
;
BEEP3

;

LDA OFF
STA DUR
LDA H4B
JSR TONE
LDA t$38
JSR TONE
LDA H4B
JSR TONE
CLC
RTS

;DURATION FOR BEEPS

ICODE FOR E2
; 1ST NOTE
;coDE FOR D2

!VARIABLE-LENGTH DELAY
;
DELAY
DLY

LDY OFF
NOP
BNE ,+2
DEY
BNE DLY
DEX
BNE DELAY
RTS

; 10 US LOOP

;LOOP TIME 2556*CXJ

IROUTINE TO HAKE TONE: t OF 1/2 CYCLES IS IN 'DUR',
;AND 1/2 CYCLE TIME IS IN A, LOOP TIHE=20*CAJt26 US

,__ _______ fl,, 2,9: Music Pl'09ram (Continued),---------'

32

GENERATING SQUARE WAVES

;SINCE TWO RUNS THROUGH THE OUTER LOOP MAKES
;ONE CYCLE OF THE TONE,

02AB: 85
02AA: A9

03 TONE
FF

STA FREQ
LDA UFF
STA DDRB
LDA ,uoo
LDX DUR
LDY FREO
DEY

;FRED IS TEMP FOR t OF CYCLES
;SET UP DATA DIRECTION REG

02AC: BD 02 AC
02AF: A9 00 ;A IS SENT TO PORT, START HI
02B1: A6 04
02B3: A4 03
02B5: 88
02B6: 18
02B7: 90 00
02B9: DO FA
02BB: 49 FF
02BD: 8D 00
02co: CA
02c1: [IO FO
02C3: 60

AC

FL..2
FL.1

;TABLE

CL.C
BCC ,+2
BNE FL!
EOR UFF
STA OPB
DEX
BNE FL2
RTS
OF NOTE

;INNER, 10 US LOOP
;COMPLEMENT I/0 PORT
; , , ,AND SET IT

;ouTrn LOOP

CONSTANTS
;CONTAINS:
;[OCTAVE BELOW MIDDLE CJ : G,A,B
iCOCTAVE OF MIDDLE CJ ; C,D,E,F,Ft,G,Gt,A,B
;[OCTAVE ABOVE MIDDLE CJ : C

02C41 FE NOTAB ,BYT $FE,IE2,$C9,$BE,$A9,$96,$8E
02C5: E2
02C6: C9
02C7: BE
02c0: A9
02C9: 96
02CA: BE
02CB: 86 ,BYT $86,$7E,$77,$70,$64,$5E
02cc: 7E
02CD: 77
02CE: 70
02CF: 64
02DO: 5E

iTABLE OF NOTE DURATIONS IN t OF 1/2 CYCLES
;SET FOR A NOTE LENGTH OF ABOUT ,21 SEC,

02ri1: 55 DURTAB ,BYT $55,$60,$6B,$72,180,$8F,$94
02[12: 60
02D3: 6B
02n4: 72
02D5: 80
02It6: BF
02D7: 94
02D8: Al
02D9: AA
02DA: B5
02DB: BF
020c: D7
02DD: E4

SYMBOL TABLE:
GETKEY 0100
PTR 0002
TA BEG 0300
START 0200
NUMKEY 021B
PLAYEM 0248
FINISH 025F
BEEP3 0287
TONE 02A8
NOT AB 02C4

,BYT $A1,$AA,$B5,$BF,$D7,$E4

PI LEN 0000
FRED 0003
OPB ACOO
NXKEY 0205
DK 022B
LOOP 024E
F'l.AYIT 0270
DELAY 029C
FL2 02B3
DURTAB 02D1

TEMP
DU Fi
DDFW
NXTST
FINBYT
ENDBYT
SOUND
DLY
Fl..1

0001
0004
AC02
0211
023A
0259
027A
029E
02B5

~-------Fig. 2.9: Music Program (Continued)---------'

33

ADVANCED 6502 PROGRAMMING

The main routines are called, respectively, NXKEY, NUMKEY,
and BEEP3 for the note-collecting program, and PLA YEM and
DELAY for the note-playing program. Finally, common utility
routines are TONE and PLAYIT.

Let us examine these routines in greater detail. The program resides
at memory addresses 200 and up. Note that the program, like most
others in this book, assumes the availability of the GETKEY routine
described in Chapter 1.

The operation of the NXKEY routine is straightforward. The next
key closure is obtained by calling the GETKEY routine:

START

NXKEY

LDA #0
STA PILEN
CLC
JSR GETKEY

Initialize length of list to 0

The value read is then compared to the constants "15" and "14" for
special action. If no match is found, the constant is stored in the note
list using the NUMKEY routine.

NXTST

CMP #15
BNE NXTST
JSR BEEP3
BCC START
CMP #14
BNE NUMKEY
JSR PLAYEM
CLC
BCC NXKEY

Exercise 2-3: Why are the last two instructions in this routine used in­
stead of an unconditional jump? What are the advantages and disad­
vantages of this technique?

Every time key number 15 is pressed, a special three-tone routine
called BEEP3 is played. The BEEP3 routine is shown at address 0287.
It plays three notes in rapid succession to indicate to the user that the
notes in the memory have been erased. The erasure is performed by
resetting the list length PILEN to zero. The corresponding routine ap­
pears below:

34

BEEP3 LDA #$FF
STA DUR
LDA #$4B
JSR TONE
LDA #$38
JSR TONE
LDA #$4B
JSR TONE
CLC
RTS

Its operation is straightforward.

GENERATING SQUARE WAVES

Beep duration constant

Code forE2
1st note
CodeforD2
2nd note
Code forE2
3rd note

The NUMKEY routine will save the code corresponding to the note
in the memory. As in the case of a Teletype program, the computer
will echo the character which has been pressed in the form of an audi­
ble sound. In other words, every time a key has been pressed, the pro­
gram will play the corresponding note. This is performed by the next
two instructions:

NUMKEY STA TEMP
JSR PLAYIT

The list length is then checked for overflow. If an overflow situation is
encountered, the player is advised through the use of the three-tone se­
quence of BEEP3:

LDAPILEN
CMP#$FF
BNE OK
JSR BEEP3
BCC NXKEY

Get length of list
Overflow?
No: add note to list
Yes: warn player
Read next key

Otherwise, the new nibble (4 bits) corresponding to the note identifica­
tion number is shifted into the list:

OK LSRA

TAY
LDA TEMP

Shift low bit into
nibble pointer
Use as byte index
Restore key #

Note that the nibble-pointer is divided by two and becomes a byte in­
dex. It is then stored in register Y, which will be used later to perform

35

ADVANCED 6502 PROGRAMMING

an indexed access to the appropriate byte location within the table
(STA TABEG,Y).

Depending on the value which has been shifted into the carry bit, the
nibble is stored either in the high end or in the low end of the table's
entry. Whenever the nibble must be saved in the high-order position of
the byte, a 4-bit shift to the left is necessary, which requires four in­
structions:

FINBYT

BCS
AND
STA
INC
BCC
ASLA
ASLA
ASLA
ASLA

FINBYT
#OJoOOOOl 111
TABEG,Y
PI LEN
NXKEY

Test if byte has a nibble
Mask high nibble
Save
Next nibble

Finally, it can be saved in the appropriate table address,

ORA TABEG,Y
STA TABEG,Y

The pointer is incremented and the next key is examined:

INC PILEN
BCC NXKEY

Let us look at this technique with an example. Assume:

PILEN = 9
TEMP= 6

The effect of the instructions is:

OK

36

LSRA

TAY
LDATEMP
BCSFINBYT

(length of list)
(key pressed)

A will contain 4, C will con­
tain 1
y = 4
A= 6
C is 1 and the branch occurs

GENERATING SQUARE WAVES

The situation in the list is:

BYTE
7 4 3 o DISPLACEMENT

NOTE NOTE
1 0

0 TABEG

NOTE NOTE
3 2

PILEN EMPTY
5 4

2

~---
7 6 3

~---- -----
'" -~ . 4

Fig, 2.10: Entering a Note In the List

Shift "6" into the high-order position of A:

FINBYT ASLA
ASLA
ASLA
ASLA

Write A into table:

ORATABEG,Y

STA TABEG,Y

The Subroutines

PLA YEM Subroutine

A = 60 (hex)

A = 6X (where X is the
previous nibble in the table)

Restore old nibble with new
nibble

The PLAYEM routine is also straightforward. The PTR memory
location is used as the running nibble-pointer for the note table. As
before, the contents of the running nibble-pointer are shifted to the
right and become a byte pointer. The corresponding table entry is then
loaded using an indexed addressing method:

37

ADVANCED 6502 PROGRAMMING

PLAYEM LDX#O
STX PTR PTR = 0

LOOP

ENDBYT

LDAPTR
LSRA
TAX
LDATABEG,X
BCSENDBYT
AND #OJoOOOOl 111
BCCFINISH
AND #OJo 11110000
LSRA
LSRA
LSRA
LSRA

Depending upon the value of the bit which has been shifted into the
carry, either the high-order nibble or the low-order nibble will be ex­
tracted and left-justified in the accumulator. The subroutine PLAYIT
described below is used to obtain the appropriate constants and to
play the note:

FINISH JSR PLAY IT Play note

A delay is then implemented between two consecutive notes, the run­
ning pointer is incremented, a check occurs for a possible end of list,
and the loop is reentered:

LDX #$20
JSR DELAY
INC PTR
LDA PTR
CMP PILEN
BCC LOOP
RTS

PLAYIT Subroutine

Delay constant
Delay between notes
One nibble used

Check for end of list
No: get next note
Done

The PLAYIT subroutine plays the note or implements a rest, as
specified by the nibble passed to it in the accumulator. This subroutine
is called "PLAYNOTE" on the program flowchart. It merely looks
up the appropriate duration for the note from table DURTAB, and
saves it at address DUR (at memory location 4). It then loads the ap­
propriate half-period value from the table at address NOTAB into the

38

GENERATING SQUARE WAVES

A register, using indexed addressing, and calls subroutine TONE to
play it:

PLAY IT

SOUND

CMP#13
BNESOUND
LDX #$54
JSR DELAY
RTS
TAX
LDADURTAB,X
STA DUR
LDANOTAB,X
JSR TONE
RTS

TONE Subroutine

Check for a rest
No
Delay = .21 sec (note duration)
If rest was specified

Use key # as index
To look up duration

The TONE subroutine implements the appropriate wave form
generation procedure described above, and toggles the speaker at the
appropriate frequency to play the specified note. It implements a
traditional two-level, nested loop delay, and toggles the speaker by
complementing the output port after each specified delay has elapsed:

TONE STA FREQ

A contains the half-cycle time on entry. It is stored in FREQ. The loop
timing will result in an output wave-length of:

(20 X A + 26) µs

Port B is configured as output:

LDA #$FF
STA DDRB

Registers are then initialized. A is set to contain the pattern to be out­
put. X is the outer loop counter. It is set to the value DUR which
contains the number of half cycles at the time the subroutine is called:

LDA #$00
LDXDUR

39

ADVANCED 6502 PROGRAMMING

The inner loop counter Y is then initialized to FREQ, the frequency
constant:

FL2 LDY FREQ

and the inner loop delay is generated as usual:

FLI DEY
CLC
BCC.+2
BNE FLI 10 µs inner loop

Then the output port is toggled by complementing it:

EOR #$FF
STA OPB

and the outer loop is completed:

DEX
BNE FL2
RTS

The DELAY subroutine is shown in Figure 2.9 at memory location 29C
and is left as an exercise.

SUMMARY

This program uses a simple algorithm to remember and play tunes.
All data and constants are stored in tables. Timing is implemented by
nested loops. Indexed addressing techniques are used to store and
retrieve data. Sound is generated by a square wave.

EXERCISES

Exercise 2-4: Change the note constants to implement a different range
of notes.
Exercise 2-5: Store a tune in memory in advance. Trigger it by pressing
key "O."
Exercise 2-6: Rewrite the program so that it will store the note and
duration constants in memory when they are entered, and will not
need to look them up when the tune is played. What are the disadvan­
tages of this method?

40

3. Pseudo Random Number Generator
(Translate)

INTRODUCTION

This program will use a pseudo random number generator, display
patterns from tables, measure elapsed time, and generate delays. It will
check your knowledge of basic input/ output techniques before we proceed
to more complex concepts.

THE RULES

This is a game designed for two competing players. Each player tries to
quickly decipher the computer's coded numbers. The players are alter­
nately given a turn to guess. Each player attempts to press the hexa­
decimal key corresponding to a 4-bit binary number displayed by the
program. The program keeps track of the total guessing time for each
player, up to a limit of about 17 seconds. When each player has correctly
decoded a number, the players' response times are compared to deter­
mine who wins the turn. The first player to win ten turns wins the match.

The program signals each player's turn by displaying an arrow
pointing either to the left or to the right. The player on the right will be
signaled first to initiate the game. The program's "prompt" is shown
in Figure 3 .1.

A random period of time will elapse after this prompt, then the bot­
tom row of LEDs on the Games Board will light up. The left-most
LED (LED #10) signals to the player to proceed. The four right-most
LEDs (LEDs 12, 13, 14, and 15) display the coded binary number.
This is shown in Figure 3.2. In this case, player 1 should clearly press
key number 5. If the player guesses correctly, the program switches to
player 2. Otherwise, player 1 will be given another chance until his or
her turn (17 seconds) is up. It should be noted here that for each
number presented to the player, the total guessing time is accumulated
to a maximum of about 17 seconds. When the maximum is reached,
the bottom row will go blank and a new number will be displayed.

The program signals player 2's turn (the player on the left) by
displaying a left arrow on the LEDs as shown in Figure 3.3. Once both
players have had a turn to guess a binary digit, the program will signal

41

ADVANCED 6502 PROGRAMMING

• 0 0
2 3

• • • 4 5 6

• 0 0
7 8 9

Fig. 3.1: Prompt Signals the Right Player to Play

10 11 12 13 14 15

eoo•o•
"GO" ----------­BINARY NUMBER

Fig. 3.2: Bottom Row of LEDs Displays Number to be Guessed

0 0 • 2 3

• • • 4 5 6

0 0 • 7 8 9

Fig.3.3: It is Player 2's Turn (Left Player)

the winner by lighting up either the left-most or the right-most three
LEDs of the bottom row. The winner is the player with the shortest
guessing time. The game is continued until one player wins ten times.
He or she then wins the match. The computer signals the match win­
ner by blinking the player's three LEDs ten times. At the end of the
match, control is returned to the SYM-1 monitor.

A TYPICAL GAME

The right arrow lights up. The following LED pattern appears at the
bottom: 10, 13, 14, 15. The player on the right (player 1) pushes key

42

PSEUDO RANDOM NUMBER GENERATOR

''C,'' and the bottom row of LEDs goes blank, as the answer is incor­
rect. Because player 1 did not guess correctly and he or she still has
time left in this turn, a new number is offered to player 1. LEDs 10,
13, 14, and 15 light up and the player pushes key "7." He or she wins
and now the left arrow lights up, indicating that it is player 2's turn. This
time the number proposed is 10, 12, 15. The left player pushes key "9."
At this point, LEDs 10, 11, and 12 light up, indicating that the player
is the winner for this turn as he/she has used less total time to make a
correct guess than player 1.

Let us try again. The right arrow lights up; the number to translate
appears in LEDs 10, 13, 14, and 15. Player 1 pushes key "7," and a
left arrow appears. The next number lights LEDs 10 and 14. Player 2
pushes key "2." Again, the left-most three LEDs light up at the bot­
tom, as player 2 was faster than player I at providing the correct
answer.

THE ALGORITHM

The flowchart corresponding to the program is shown in Figure 3.4.
A first waiting loop is implemented to measure the time that it takes for
player I to guess correctly. Once player I has achieved a correct guess,
his or her total time is accumulated in a variable called TEMP. It is
then player 2's turn, and a similar waiting loop is implemented. Once
both players have submitted their guesses, their respective guessing
times are compared. The player with the least amount of time wins,
and control flows either to the left or to the right, as shown by labels 1
and 2 on the flowchart in Figure 3.4. A secondary variable called
PL YRl or PL YR2 is used to count the number of games won by a
specific player. This variable is incremented for the player who has
won and tested against the value 10. If the value 10 has not been
reached, a new game is started. If the value 10 has been reached, the
player with this score is declared the winner of the match.

THE PROGRAM

The corresponding program uses only one significant data struc­
ture. It is called NUMTAB and is used to facilitate the display of the
random binary numbers on the LEDs. Remember that LED #10 must
always be lit (it is the "proceed" LED). LED #11 must always be off.
LEDs 12, 13, 14, and 15 are used to display the binary number.
Remember also that bit position 6 of Port 1B is not used. As a result,
displaying a "O" will be accomplished by outputting the pattern

43

ADVANCED 6502 PROGRAMMING

44

START

SHOW THAT IT IS
PLAYER 2's TURN

END

Fig. 3.4: Translate Flowchart

LIGHT LEDs TO
SHOW PLAYER 2
WINS ROUND

PSEUDO RANDOM NUMBER GENERATOR

"00000010." Outputting a "l" will be accomplished with the pattern
"10000010." Outputting "2" will be accomplished with the pattern
"00100010." Outputting "3" will be accomplished with the pattern
"10100010," etc. (See Figure 3.5)

The complete patterns corresponding to all sixteen possibilities are
stored in the NUMTAB table of the program. (See Figure 3.6.) Let us
examine, for example, entry 14 in the NUMTAB (see line 0060 of the
program). It is "00111010." The corresponding binary number to be
displayed is, therefore: "00111."

7 6 5 4 3 2 0

0 0 0 0 0

It is "1110" or 14. Remember that bit 6 on this port is always "O."

Low Memory Area

Memory locations Oto lD are used to store the temporary variables
and the NUMT AB table. The functions of the variables are:

TEMP
CNTHI,CNTLO

CNTlH,CNTlL

PLYRl

PLYR2
NUMBER
SCR and following

Storage for random delay-length
Time used by a player to make
his or her move
Time used by player 1 to make
his or her move (permanent
storage)
Score for Player l(number of
games won so far, up to a
maximum of ten)
Same for player 2
Random number to be guessed
Scratch area used by the
random number generator

In the assembler listing, the method used to reserve memory loca­
tions in this program is different from the method used in the program
in Chapter 2. In the MUSIC program, memory was reserved for the
variables by simply declaring the value of the symbols representing the

45

ADVANCED 6502 PROGRAMMING

VIA#l LED AO

3200 /\I
PAO 2 LED 1

PAl 3 4 LED2

PA2 5 6 LED3

PA3 9 7416 8 LED4

PA4 11 10 LEDS

PAS 13 12 LED6

7 14 \J\
LED AS

- +s +s

LEDA6

3300 N
PA6 2 LED7

PA7 3 4 LEDS

PBO 5 6 LED9

PB1 9 7416 8 LED 10

PB2 11 10 LED 11

PB3 13 12 LED 12

7 14 \J\
LED B3

- +5

LED B4

3300 #
PB4 2 LED 13

PBS 3 4 LED 14

PB7 5 6 LED 15

7416 \J\
LED B7

7 14

-=- +s

Flg.3,5: LED Connections

46

PSEUDO RANDOM NUMBER GENERATOR

variable locations with the statement:

(VARIABLE NAME)= (MEMORY ADDRESS)

In this program, the location counter of the assembler is incremented
with expressions of the form:

* = * + n

Thus, the symbols for the variable locations in this program are
declared as "labels," while, in the MUSIC program, they are "sym­
bols" or "constant symbols."

The program in this chapter consists of one main routine, called
MOVE, and five subroutines: PLAY, COUNTER, BLINK, DELAY,
RANDOM. Let us examine them. The data direction registers A and B
for the VIA's #1 and #3 of the board must first be initialized. DDRlA,
DDRlB, and DDR3B are configured as outputs:

START LOA #$FF
STA DDRlA
STA DDRlB
STA DDR3B

DDR3A is conditioned as input:

LDA#O
STA DDR3A

Finally, the variables PLYRl and PLYR2, used to accumulate the
number of wins by each player, are initialized to zero:

STA PLYRl
STA PLYR2

The main body of MOVE is then entered. A right arrow will be
displayed to indicate that it is player 2's turn. A reminder of the LEDs
connections is shown in Figure 3.5. In order to display a right arrow,
LEDs 1, 4, 5, 6, and 7 must be lit (refer also to Figure 3.1). This is ac­
complished by outputting the appropriate code to Port lA:

MOVE LOA #0Jo01111001
STA PORTIA Display right arrow

47

ADVANCED 6502 PROGRAMMING

The bottom line of LEDs must be cleared:

LDA#O
STA PORTlB

Finally, the counters measuring elapsed time must be cleared:

STA CNTLO
STA CNTHI

We are ready to play:

JSR PLAY

The PLAY routine will be described below. It returns to the calling
routine with a time-elapsed measurement in locations CNTLO and
CNTHI.

Let us return to the main program (line 0082 in Figure 3.6). The
time-elapsed duration which has been accumulated at locations
CNTLO and CNTHI by the PLAY routine is saved in a set of perma­
nent locations reserved for player 1, called CNTIL, CNTlH:

LOA CNTLO
STA CNTIL
LDACNTHI
STA CNTlH

It is then player 2's turn, and a left arrow is displayed. This is ac­
complished by turning on LEDs 3, 4, 5, and 6:

LOA #0/oOOOl l l lOO Display left arrow
STA PORTIA

Then LED #9 is turned on to complete the left arrow:

LOA #1
STA PORTIB

As before, the time-elapsed counter is reset to zero:

48

LDA#O
STA CNTLO
STA CNTHI

LINE t LOC

0002 0000
0003 0000
0004 0000
0005 0000
0006 0000
0007 0000
0008 0000
0009 0000
0010 0000
0011 0000
0012 0000
0013 0000
0014 0000
0015 0000
0016 0000
0017 0000
0018 0000
0019 0000
0020 0000
0021 0000
0022 0000
0023 0000
0024 0000
0025 0000
0026 0000
0027 0000
0028 0000
0029 0000
0030 0000
0031 0000
0032 0000
0033 0001
0034 0002
0035 0002
0036 0003
0037 0004
0038 0005
0039 0006
0040 0007
0041 0008
0042 OOOE
0043 OOOE
0044 OOOE
0045 OOOE
0046 OOOE 02
0047 OOOF 82
0048 0010 22
0049 0011 A2
0050 0012 12
0051 0013 92
0052 0014 32
0053 0015 B2
0054 0016 OA
0055 0017 SA
0056 0018 2A
0057 0019 AA
0058 001A 1A
0059 001B 9A
0060 001C 3A
0061 001D BA
0062 001E
0063 001E
0064 001E
0065 001E
0066 0200
0067 0200 A9
0068 0202 SD
0069 0205 SD
0070 0208 SD
0071 020B A9
0072 020D SD
0073 0210 85
0074 0212 85
0075 0214 A9
0076 0216 80
0077 0219 A9
0078 021& SD
0079 021E 85
0080 0220 85
0081 0222 20
0082 0225 A5
0083 0227 85
0084 0229 A5

PSEUDO RANDOM NUMBER GENERATOR

CODE LINE

FF
03 AO
02 AO
02 AC
00
03 AC
05
06
79
01 AO
00
00 AO
02
01
BC 02
02
04
01

; I TRANSLATE,
,PROGRAM TO TEST 2 PLAYER'S SPEED
HN TRANSLATING A BINARY NUMBER TO A SINGLE
;HEXADECIMAL DIGIT. EACH PLAYER IS GIVEN A
; TURN, AS SHOWN BY A LIGHTED LEFT OR RIGHT
iPOINTER. THE NUMBER WILL SUDDENLY FLASH ON
;LE[1S 12-15, ACCOMPANIED BY THE LIGHTING
;or LED 110. THE PLAYER HUST THEN
;pusH THE CORRESPONDING BUTTON. AFTER
;BOTH PLAYERS TAKE TURNS, RESULTS ARE
;SHOWN ON BOTTOM ROW+ AFTER 10 WINS,
;A PLAYER'S RESULTS WILL FLASH,
;SHOWING THE BETTER PLAYER. THEN
;THE GAME RESTARTS.
;
;i;o:

PORT1A $A001 ;LEDS 1-8
PORTlB $AOOO ;LEDS 9-15
DDRlA tA003
DDRlB $A002
PORT3A $AC01 ;KEY STROBE INPUT.
PORT3B $ACOO ;KEY + OUTPUT.
DDR3A $AC03
DDR3B $AC02
;
;vARIABLE STORAGE!

TEMP
CNTHI

* = $0

=+1
=+1
;TIME

; TEMPORARY STORAGE FOR AMT• OF
PL YR USES TO GUESS•

CNTLO
CNT1H
CNT1L
PLYRl
PLYR2
NUMBER
SCR

=+1
=+1
=+1
=+1
=+1
=+1
=+6

;AMT. OF TIME PLYRl USES TO GUESS.

'

; SCORE OF + WON FOR PL YR 1.
; PUnER 2 SCORE.

; STORES NUMBER TO BE GUESSED•
; SCRATCHPAD ~OR RND • t GEN•

ITABLE OF 'REVERSED' NUMBERS FOR DISPLAY
HN BITS 3-8 OF PORTlB, OR LEDS 12-15.
;
NUMTAB ,BYTE %00000010

,BYTE :uooooo10
,BYTE 7.00100010
.BYTE %10100010
.BYTE %00010010
.BYTE %10010010
.BYTE 7.00110010
.BYTE %10110010
.BYTE 7.00001010
.BYTE X10001010
.BYTE %00101010
,BYTE x10101010
.BYTE il:0001101-0
.BYTE 7.10011010
.BYTE 7.00111010
.BYTE 7.10111010

;
;MAIN PROGRAM

* = $200
;
START LOA OFF ; SET UP PORTS

STA DDR1A
STA DDRlB
STA DDR3B
LDA to
STA DDR3A
STA PLYRl ;CLEAR NO. OF WINS.
STA PLYR2

MOVE LDA 1%01111001
STA PORT1A ;SHOW RIGHT ARROW.
LDA to
STA PORT1B
STA CNTLO ; CLEAR COUNTERS.
STA CNTHI
JSR PLAY ;GET PLAYER 1 'S TIME.
LDA CNTLO ; XFER TEMP COUNT TO PERMANENT
STA CNTlL
LIIA CNTHI

Fig. 3.6: Translate Program

STORAGE.

49

ADVANCED 6502 PROGRAMMING

0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165

022B
022D
022F
0232
0234
0237
0239
023B
023D
0240
0242
0244
0246
0248
024A
024C

85 03
A9 3C
BD 01 AO
A9 01
BD 00 AO
A9 00
85 02
85 01
20 ec 02
AS 01
cs 03
FO 04
90 27
BO 08
AS 02

024C CS 04
024E 90 lF
0250 BO 00
0252 A9 FO
0254
0257
0259
025C
025E
0261

BD 00 AO
A9 00
BD 01 AO
A9 40
20 E3 02
E6 05
A9 OA 0263

0265
0267
0269
026B
026E
026F
0271
0274
0276
0279 A9
027B 20
027E E6
0280 A9
0282 cs
0284 DO
0286 A9

cs
DO
A9
20
60
A9
SD
A9
BD

05
AB
FO
CB 02

OE
00 AO
00
01 AO
40
E3 02
06
OA
06
BE
OE

0288
028B
028C
02BC
028C
028C
028C
028C
028C
028C
028F

20
60

CB 02

20 F4 02
20 E3 02

0292 20 F4 02
0295 29 OF
0297 85 07
0299 AA
029A BS OE
029C OD 00 AO
029F SD 00 AO
02A2 20 BS 02
02A5
02A7
02A9
02AB
02AE
02B1
02B4
02B5
02B5
02B5
02BS
02B5
02B5
02B7
02BA
02BD
02BF
02CO
02C2

C4 07
FO OB
A9 01
2D 00 AO
SD 00 AO
4C BC 02
60

AO OF
ac oo AC
2C 01 AC
10 OB
88
10 FS
E6 02

EOUAL

PLR1

PLR2

STA CNT1H
LDA nooo111100
STA PORTIA
LDA t1
STA PORT1B
LDA tO
STA CNTLO
STA CNTHI
JSR PLAY
LDA CNTHI
CHP CNT1H
BED EQUAL
BCC PLR2
BCS PLR!
LDA CNTLO

; SHOW LEFT ARROW.

; CLEAR COUNTERS.

;GET PLAYER 2'5 TIME,
;GET PLAYER 2'S COUNT AND.•.
; COMPARE TO PLAYER 1 'S.
;CHECK LOW ORDER BYTES TO RESOLVE
;PLAYER 2 HAS SMALLER COUNT, SHOW
;PLAYER 1 HAS SMALLER COUNT, SHOW
;HI BYTES WERE EQUAL, SO

;CHECK LOW BYTES.
CHP
BCC
BCS
LDA
STA
LilA
STA
LDA
JSR
INC
LDA

CNT!L
PLR2
PLR!
tX!! 110000
PORT1B
to
PORTIA
U40
DELAY
PLYR1
t!O

CMP PLYR1
BNE MOVE
LDA tX11110000
JSR BLINK
RTS
LDA U1110
STA PORT!B
LDA tO

; COMPARE SCORES.
;PLAYER 2 WINS, SHOW
;PLAYER 1 WINS, SHOW
;LIGHT RIGHT SIDE OF
;TO SHOW WIN.

; CLEAR LOW LEDS.

IT,
IT,
BOTTOM ROW

; WAIT A WHILE TO SHOW WIN.

; PLAYER 1 WINS ONE HORE •••
; • • .HAS HE WOM 10~

; IF NOT, PLAY ANOTHER ROUND.
HES - GET BLINK PATTERN.
;BLINK WINNING SIDE.
;ENDGAME: RETURN TO MONITOR.
;LIGHT LEFT SIDE OF BOTTOM.

; CLEAR LOW LEDS.
HJAIT A WHILE TO SHOW WIN.

WINNER,
IT•
IT,

STA PORTIA
LDA 1$40
JSR DELAY
INC PLYR2
LDA t!O
CHP PLYR2
BNE HOVE
LDA U1110
JSR BLINK
RTS

;PLAYER 2 HAS WON ANOTHER ROUND.•.•
; ••• HAS HE WON 10~

;suBROUTINE 'PLAY'

;JF NOT, PLAY ANOTHER ROUND.
;YES-GET PATTERN TO BLINK LEDS.
;BLINK THEM
;END.

;GETS TIME COUNT OF EACH PLAYER, AND IF
;BAD GUESSES ARE MADE, THE PLAYER IS
;GIVEN ANOTHER CHANCE, THE NEW TIME ADDED TO
;THE OLD.

PLAY JSR RANDOM
JSR DELAY
JSR RANDOM
AND HOF
STA NUMBER
TAX
LDA NUMTAB, X
ORA PORTlB
STA PORTlB
JSR CNTSUB
CPY NUMBER
BEG DONE
LDA t01
ANI1 PORTlB
STA PORT!B
JMP PLAY

DONE RTS

;SUBROUTINE 'COUNTER'

; GET RANDOM NUMBER.
;RANDOM - LENGTH DELAY•
; GET ANOTHER.
;KEEP UNDER 16 FOR USE AS
;NUMBER TO GUESS.
;USE AS INDEX TO.• ••
; •• GET REVERSED PATTERN FROM TABLE • • •
; ••• TO DISPLAY IN LEDS 12-lS.

;GET KEYSTROKE & DURATION COUNT•
; IS KEYSTROKE CORRECT GUESS?
; IF SO, DONE.
;NOt CLEAR OLD GUESS FROM LEDS.

;TRY AGAIN W/ANOTHER NUMBER.
;RETURN W/ DURATION IN CNTLO+CNTHI

;GETS KEYSTROKE WHILE KEEPING TRACK OF AMT OF
;TIME BEFORE KEYPRESS.

CNTSUB LDY I-SF
KEYLP STY PORT3B

BIT PORT3A
BPL FINISH
DEY
BPL KEYLP
INC CNTLO

; SET UP KEYi COUNTER•
;OUTPUT KEYi TO KEYBOARD MPXR.
;KEY DOWN?
;IF YES, DONE.
; COUNT DOWN KEY t.
; TRY NEXT KEY.
;ALL KEYS TRIED, INCREMENT COUNT.

'--------- Fig. 3.6: Translate Program (Continued

50

PSEUDO RANDOM NUMBER GENERATOR

0166 02C4 DO EF BNE CNTSUB ;TRY KEYS AGAIN IF NO OVERFLOW•
0167 02C6 E6 01 INC CNTHI ;OVERFLOW, INCREMENT HIGH BYTE,
0168 02C8 DO EB BNE CNTSUB HRY KEYS AGAIN.
0169 02CA 60 FINISH RTS ;ooNE: TIME RAN OUT OR KEY PRESSED,
0170 02CB
0171 02CB ;suBROUTINE 'BLINK'
0172 02CB iBLINKS LEDS WHOSE BITS ARE SET IN ACCUMULATOR
0173 02CB ;oN ENTRY.
0174 02CB
0175 02CB A2 14 BLINK LnX t20 ;20 BLINKS.
0176 02CD 86 01 STX CNTHI ;SET BLINK COUNTER.
0177 02CF 85 02 STA CNTLO iBLINK REGISTER.
0178 02Dl A5 02 BLOOP LDA CNTLO ;GET BLINK PATTERN.
0179 02D3 4D 00 AO EOR PORTlB ; BLINK LEDS.
0180 02D6 8D 00 AO STA PORTlB
0181 02D9 A9 OA LDA tlO ;SHORT DELAY.
0182 02DB 20 E3 02 JSR DELAY
0183 02DE C6 01 DEC CNTHI
0184 02EO DO EF BNE BLOOP ;LOOP IF NOT DONE.
0185 02E2 60 RTS
0186 02E3 I
0197 02E3 ;suBROUTINE 'DELAY'
0188 02E3 ; CONTENTS OF REG. A DETERMINES DELAY LENGTH,
0189 02E3
0190 02E3 85 00 DELAY STA TEMP
0191 02ES AO 10 DU LDY 010
0192 02E7 A2 FF DL2 LDX UFF
0193 02E9 CA DL3 DEX
0194 02EA DO FD BNE DL3
0195 02EC 88 DEY
0196 02ED DO F8 BNE DL2
0197 02EF C6 00 DEC TEMP
0198 02F1 DO F2 BNE DU
0199 02F3 60 RTS
0200 02F4
0201 02F4 ;SUBROUTINE 'RAN[IOM'
0202 02F4 ; RANDON NUN BER GENERATOR,
0203 02F4 iRETURNS RANDOM NUMBER IN ACCUN,
0204 02F4 I
0205 02F4 38 RANDON SEC
0206 02F5 A5 09 LDA SCR+l
0207 02F7 65 oc ADC SCR+4
0208 02F9 65 OD ADC SCR+5
0209 02FB 85 08 STA SCR
0210 02FD A2 04 LDX t4
0211 02FF B5 08 RNDLP LDA SCR,X
0212 0301 95 09 STA SCR+l ,X
0213 0303 CA DEX
0214 0304 10 F9 BPL RNDLP
021S 0306 60 RTS
0216 0307 ,END

SYMBOL TABLE

SYMBOL VALUE

BLINK 02GB BLOOP 02D1 CNT1H 0003 CNTlL 0004
CNTHI 0001 CNTLO 0002 CNTSUB 02B5 DDRlA A003
DDRlB A002 DDR3A AC03 DDR3B AC02 DELAY 02E3
DU 02E5 DL2 02E7 DL3 02E9 DONE 02B4
EQUAL 024A FINISH 02CA KEYLP 02B7 HOVE 0214
NUMBER 0007 NUMTAB OOOE PLAY 028C PLR.1 0252
PLR2 026F PLYR1 0005 PLYR2 0006 PORTlA AOOl
PORT1B AOOO PORT3A AC01 PORT3B ACOO RANDOM 02F4
RNDLP 02FF SCR 0008 START 0200 TEMP 0000

END OF ASSEMBLY

Fig.3.6: Translate Program (Continued)

51

ADVANCED 6502 PROGRAMMING

and player 2 can play:

JSR PLAY

The time elapsed for player 2 is then compared to the time elapsed for
player 1. If player 2 wins, a branch occurs to PLR2. If player 1 wins, a
branch occurs to PLRl. The high bytes are compared first. If they are
equal, the low bytes are compared in turn:

EQUAL

LOA CNTHI
CMP CNTlH
BEQ EQUAL
BCC PLR2
BCS PLRl
LOA CNTLO
CMP CNTlL
BCC PLR2
CMPCNTlL
BCCPLR2
BCSPLRl

Compare high bytes

Player 2 has lower time?
Player 1 does
Compare low bytes

Once the winner has been identified, the bottom row of LEDs on his
or her side will light up, pointing to the winner. Let us follow what
happens when PLRl wins, for example. Player l's right-most three
LEDs (LEDs 13 through 15) are lit up:

PLRl LOA#% 11110000
STAPORTlB

The other LEDs on the Games Board are cleared:

LOA #0
STA PORTIA

A DELAY is then implemented, and we get ready to play another
game, up to a total of 10:

LOA #$40
JSR DELAY

The score for player 1 is incremented:

INC PLYRl

52

PSEUDO RANDOM NUMBER GENERATOR

It is compared to 10. If it is less than 10, a return occurs to the main
MOVE routine:

LOA #10
CMP PLYRl
BNEMOVE

Otherwise, the maximum score of 10 has been reached and the game is
over. The LEDs on the winner's side will blink:

LOA #11/o 11110000 Blink pattern
JSR BLINK
RTS

The corresponding sequence for player 2 is listed at address PLR2
(line 117 on Figure 3.6):

PLR2

The Subroutines

LOA #OJolllO
STA PORTlB
LDA#O
STA PORTIA
LOA #$40
JSR DELAY
INC PLYR2
LOA #10
CMP PLYR2
BNE MOVE
LOA #11/o 1110
JSR BLINK
RTS

PLAY Subroutine
The PLAY subroutine will first wait for a random period of time

before displaying the binary number. This is accomplished by calling
the RANDOM subroutine to obtain the random number, then the
DELAY subroutine to implement the delay:

PLAY JSR RANDOM
JSR DELAY

53

ADVANCED 6502 PROGRAMMING

The RANDOM subroutine will be described below. Another random
number is then obtained. It is trimmed down to a value between O and
15, inclusive. This will be the binary number displayed on the LEDs. It
is stored at location NUMBER:

JSR RANDOM
AND#OF
STA NUMBER

Mask off high nibble

The NUMTAB table, described at the beginning of this section, is then
accessed to obtain the correct pattern for lighting the LEDs using in­
dexed addressing. Register X contains the number between O and 15 to
be displayed:

TAX UseXasindex
LDA NUMTAB,X Retrieve pattern

The pattern in the accumulator is then stored in the output register in
order to light the LEDs. Note that the pattern is OR'ed with the
previous contents of the output register so that the status of LED 9 is
not changed:

ORA PORTlB
STA PORTlB

Once the random number has been displayed in binary form on the
LEDs, the subroutine waits until the player presses a key. The
CNTSUB subroutine is used for this purpose:

JSR CNTSUB

It will be described below.
The value returned in register Y by this subroutine is compared to

the number to be guessed, which is stored at memory address
NUMBER. If the comparison succeeds, exit occurs. Otherwise, all
LEDs are cleared using an AND, to prevent changing the status of
LED 9, and the subroutine is reentered. Note that the remaining time
for the player will be decremented every time the CNTSUB subroutine
is called. It will eventually decrement to 0, and this player will be given
another number to guess:

54

PSEUDO RANDOM NUMBER GENERATOR

CPY NUMBER
BEQ DONE
LDA #01
AND PORTlB
STA PORTlB
JMP PLAY

DONE RTS

Correct guess?

No: clear old guess

Try again

Exercise 3-1: Modify PLAY and/or CNTSUB so that, upon timeout,
the player loses the current round, as if the maximum amount of time
had been taken to make the guess.

CNTSUB Subroutine

The CNTSUB subroutine is used by the PLAY subroutine previous­
ly described. It monitors a player's keystroke and records the amount
of time elapsed until the key is pressed. The key scanning is performed
in the usual way:

CNTSUB
KEYLP

FINISH

LDY #$F
STY PORT3B
BIT PORT3A
BPL FINISH
DEY
BPL KEYLP
BNE CNTSUB

Count down key #
Next key

Each time that all keys have been scanned unsuccessfully, the time
elapsed counter is incremented (CNTLO,CNTHI):

INC CNTLO
BNE CNTSUB
INC CNTHI
BNE CNTSUB

FINISH RTS

Upon return of the subroutine, the number corresponding to the key
which has been pressed is contained in index register Y.

Exercise 3-2: Insert some "do-nothing" instructions into the CNTSUB
subroutine so that the guessing time is longer.

55

ADVANCED 6502 PROGRAMMING

BLINK Subroutine

The LEDs specified by the accumulator contents are blinked
(turned on and off) ten times by this subroutine. It uses memory loca­
tion CNTHI and CNTLO as scratch registers, and destroys their
previous contents. Since the LEDs must alternately be turned on and
off, an exclusive-OR instruction is used to provide the automatic on/
off feature by performing a complementation. Because two com­
plementations of the LED status must be done to blink the LEDs
once, the loop is executed 20 times. Note also that LEDs must be kept
lit for a minimum amount of time. If the "on" delay was too short,
the LEDs would appear to be continuously lit. The program is shown
below:

BLINK

BLOOP

LDX #20
STX CNTHI
STA CNTLO
LDA CNTLO
EOR PORTlB
STA PORTlB
LDA #10
JSR DELAY
DEC CNTHI
BNE BLOOP
RTS

DELAY Subroutine

20 blinks
Blink counter
Blink register
Get blink pattern
Blink LEDs

Short delay

Loop if not done

The DELAY subroutine implements a classic three-level, nested
loop design. Register X is set to a maximum value of FF
(hexadecimal), and used as the inner loop counter. Register Y is set to
the value of 10 (hexadecimal) and used as the level-2 loop counter.
Location TEMP contains the number used to, adjust the delay and is
the counter for the outermost loop. The subroutine design is
straightforward:

56

DELAY
DLI
DL2
DL3

STA TEMP
LDY #$10
LDX #$FF
DEX
BNE DL3
DEY

PSEUDO RANDOM NUMBER GENERATOR

BNE DL2
DEC TEMP
BNE DLI
RTS

Exercise 3-3: Compute the exact duration of the delay implemented by
this subroutine as a function of the number contained in location
TEMP.

RANDOM Subroutine

This simple random number generator returns a semi-random
number into the accumulator. A set of six locations from memory ad­
dress 0008 ("SCR") have been set aside as a scratch-pad for this
generator. The random number is computed as 1 plus the contents of
the number in location SCR + 1, plus the contents of the number in
location SCR + 4, plus the contents of the number in location SCR
+ 5:

RANDOM SEC
LDA SCR + 1
ADC SCR + 4
ADC SCR + 5
STA SCR

The contents of the scratch area (SCR and following locations) are
then shifted down in anticipation of the next random number genera­
tion:

RNDLP
LDX #4
LDA SCR,X
STA SCR+ l,X
DEX
BPL RNDLP
RTS

The process is illustrated in Figure 3.7. Note that it implements a
seven-location circular shift. The random number which has been
computed is written back in location SCR, and all previous values at
memory locations SCR and following are pushed down by one posi­
tion. The previous contents of SCR + 5 are lost. This ensures that the
numbers will be reasonably random.

57

ADVANCED 6502 PROGRAMMING

SCR

SCR + 1

SCR + 2

SCR + 3

SCR +4

SCR + 5

Fig. 3.7: Random Number Generation

SUMMARY

This game involved two players competing with each other. The
time was kept with nested loops. The random number to be guessed
was generated by a pseudo-random number generator. A special table
was used to display the binary number. LEDs were used on the board
to indicate each player's turn to display the binary number, and to
indicate the winner.

Exercise 3-4: What happens in the case in which all memory locations
from SCR to SCR + 5 were initially zero?

58

4. Hardware Random Number Generator
(Hexguess)

INTRODUCTION

In this chapter random numbers will be generated using the timer's
latch on an input/ output chip. More complex algorithms will be devised
and simultaneous light and sound effects will be created.

THE RULES

The object of this game is to guess a secret 2-digit number generated
by the computer. This is done by guessing a number, then submitting
this number to the computer and using the computer's response (in­
dicating the proximity of the guessed number to the secret number) to
narrow down a range of numbers in which the secret number resides.
The program begins by generating a high-pitched beep which signals
to the player that it is ready for a number to be typed. The player must
then type in a two-digit hexadecimal number. The program responds
by signaling a win if the player has guessed the right number. If the
player has guessed incorrectly, the program responds by lighting up
one to nine LEDs, indicating the distance between the player's guess
and the correct number. One lit LED indicates that the number
guessed is a great distance away from the secret number, and nine lit
LEDs indicate that the number guessed is very close to the secret
number.

If the guess was correct, the program generates a warbling tone and
flashes the LEDs on the board. The player is allowed a maximum of
ten guesses. If he or she fails to guess the correct number in ten tries, a
low tone is heard and a new game is started.

A TYPICAL GAME

The computer beeps, notifying us that we should type in a guess.

Our guess is: "40"
The computer lights 4 LEDs We are somewhat off

59

ADVANCED 6502 PROGRAMMING

Next guess: "CO"
Computer's answer: 3 LEDs
Next guess: "20"
Computer's response: 3

Next guess: "80"
Response: 5
Next guess: "75"
Response: 5
Next guess: "90"

We are going further away

The number must be between
CO and 20

We are getting closer

It's not just below 80

Response: 4 We're wandering away
Next guess: "65"
Response: 7 Now we're closing in
Next guess: "60"
Response: 9
Next guess: "5F"
Response: 8
Next guess: "61"
We win!!! All the LEDs flash and a high warbling tone is heard.

THE ALGORITHM

The flowchart for Hexguess is shown in Figure 4.1. The algorithm is
straightforward:

- a random number is generated
- a guess is entered
- the closeness of the number guessed to the secret
number is evaluated. Nine levels of proximity are
available and are displayed by an LED on the board.
A closeness or proximity table is used for this pur­
pose.
- a win or a loss is signaled
- more guesses are allowed, up to a maximum of
ten.

THE PROGRAM

])ata Structures

The program consists of one main routine called GETGES, and two
subroutines called LITE and TONE. It uses one simple data structure

60

NO

HARDWARE RANDOM NUMBER GENERATOR

START

TURN ON
COUNTER +1

LIGHTS

Fig. 4. 1: Hexguess Flowchart

NO

61

ADVANCED 6502 PROGRAMMING

- a table called LIMITS. The flowchart is shown in Figure 4.1, and
the program listing appears in Figure 4.2.

The LIMITS table contains a set of nine values against which the
proximity of the guess to the computer's secret number will be tested.
It is essentially exponential and contains the sequence: 1,2,4,8,16,32
64,128,200.

Program Implementation

Let us examine the program itself. It resides at memory address 200
and may not be relocated. Five variables reside in page zero:

GUESS is used to store the current guess
GUESS# is the number of the current guess
DUR and FREQ are the usual parameters re­
quired to generate a tone (TONE subroutine)
NUMBER is the secret computer number

As usual, the data direction registers VIA #1 and VIA #3 are condi­
tioned in order to drive the LED display and read the keyboard:

LDA #$FF
STA DDRlA
STA DDRIB
STA DDR3B

OUTPUT
OUTPUT
OUTPUT

Memory location DUR is used to store the duration of the tone to be
generated by the TONE subroutine. It is initialized to "FF" (hex):

STA DUR

The memory location GUESS# is used to store the number of guesses.
It is initialized to 10:

START LDA #$0A
STA GUESS#

The LEDs on the Games Board are turned off:

62

LDA #00
STA PORTIA
STA PORTlB

0200: A9 FF
0202: BD 03 AO
0205! BD 02 AO
0208: 8D 02 AC
020B: 8~ 02
020D: A9 OA
020F: 85 01
0211: A9 00
02:1.3: 81) 01 AO
0216! 8[1 00 AO
0219! AD 04 AO
021c: 85 04
021[! A9 20

0220! 20 96 02
0223! 20 00 ()J.
0221.i! OA
0227! OA
02:?B! OA
0229! OA
022A! 8~j 00
022c: 20 00 () l
022F! ?9 OF
OT3t: 05 00
o:?.:33: 85 00
0235! A5 04
0237: 38
0238: E~.i 00

023A BO 05
023C 49 FF
023E 38
OT3F 69 00

HARDWARE RANDOM NUMBER GENERATOR

Y~HEXGUEss~
IHEXADECIMAL NUMBER GUESSING GAME,
ITHE OBJECT OF THE GAME rs TO GUESS A HEXA[~CIMAL
; NUMBER THAT THE COMPlJTEF< HAI'' THOl!GHT UP,
;wHEN THE COMPUTER ·BF[Ps·~ A GUESS SHOIJL.D
IBE ENTERED, GUESSES ARE TWO DIGIT HEXADECIMAL
INUMBERS, WHEN TWO DIGITS HAVE BEEN RECEIVED,
ITHE COMPUTER WILL DISPLAY THE NEARNESS
IOE THE GUESS BY LIGHTING A NUMBER OF
IL.EDS PROPORTIONAL TO THE CLOSENESS OF
ITHE GUES3, T[N GUESSES ARE ALLOWED,
IIF A GUESS IS CORRECT, THEN THE COMPUTER
;WILL FLASH THE LEDS AND MAKE A WARBLING
;TONE,
ITHE ENTRY l.OCATION IS 1200,

GETKEY $1.00
;6522 VIA 41 ADDRESSES:
TIMER $A004 ,LOW LATCH OF TIMER 1
DDRlA IA003 ,PORTA DATA DIRECTION REG,
DDR1B IA002 ;PORTB DATA DIRECTION REG,
PORT1A IA001 ,PORT A
PORTlB IAOOO iPORT B
;6522 VIA t3 ADDRESSES:
DDR~B IAC02 IPORTB DATA DIRECTION REG,
PORT3B IACOO IPORT B
;sTORAGU3!
Gt.JESS $00
GUESSt $()1
r,tm 102
f'RE!l 103
NUMBEFI $04

STAF'~T

GETGES

$200
LDA t;sFT
STA DflFU.f~
STA DDR1B
STA DDH3B
Sf A DUR
l.DA UOA
STA GUESSt
LDA too
STA PORT1A
STA PORT1B
LDA TIMER
STA NIJMBEF<
LDA U20

JSFI TllNE
JSR GETKF.Y
ASL. A
ASL A
ASL A
ASL A

ISET UP DATA DIRECTION REGISTERS

,SET UP TONE DURATIONS.
;10 GtJESSES Al.LOWED

;Bt.ANK LEDS

;GET RANDOM NUMBFR TO GlJESS
~ + + • AND SAVF. +

ISET ur SHORT HIGH TONE TO
;SIGNAi ... IJSEF~ TO INPUT GUESS.
I MAKE f1EEP,
;GET HIGti ORDER USER GlJESS
,SHIFT INTO HTGH ORDER POSITION

STA GUESS ;SAVE
JSR GETKEY IGET LOW ORDER USER GUESS
AND t%0000111J. I MASK HIOH OR DEF< DITf,,
ORA GUESS ,ADD HIGH ORDER NIBBLE,
STA GUESS
l.DA NUMBEP
::;Ee
SBC GUESS

IFJNAL PRODUCT SAVED,
; GET Ni IMB[R FDR COMPAF<E

/SUBTRACT GUESS FROM NUMBER
;ro DEfERMINE NEARNESS OF GUESS+

BCS ALRIGHT IPOSITIUE VALUE NEEDS NO FIX,
EOR tZt1111111 IMAKE DISTANCE ABSOLUTE
SEC ;MAKE IT A TWO'S COMPLEMENT
ADC too ;,,,NOT JUST A ONES COMPLEMENT.

'-------------Fig. 4.2: Hexguess Program------------'

63

ADVANCED

0241: A1 00
0243: DD AD

0246: BO 2.7

0248t EB
0'.'491 FO 09
o:?4B! DO F6
024[1! A9 OB
024F! 85 0()

O?~j:I. t A? fT
02:;3: 8fl 01
()2~)6! 8[1 00
02~i9t A? 32
02'.5B ! 20 96
02~iE! A9 FT
0260: 4D 01
0263! 8[1 01
02661 8[1 00
0269: C6 00
02bB! [I() EC
026D1 FO 9F
026Ft E8

0270! A9 00
0272: 8D 00
0275! 20 8[
0278! sr, 01.
027U! 90 o~~i
0?7Dt A9 01.
0~?7F t SD 00
02B?: C6 01
0284l no 98
028b! A9 BE
02ne: 20 96
028Bl 4C OD

OWFl A9 00
0290! :rn
0291! 2A
0292! CA
02{J3: DO Ff<
()2t'/5 ! 60

()296: BS 03
029B! A'? 00
0:?9A! A6 02
029C! A4 03
029E: 88
029Fl 18
02AOI 90 00
02A2: no FA
02A4t 49 FF
02A6! 8[1 00
02A9! CA
02AA! no FO
02ACt 60

6502 PROGRAMMING

02

AO
AO

02

AO
/\0
AO

AO
02
A()

AO

02
02

AC

AL.FiIGHT LDX too ;sFT CL.OSf:NESS COUNT FF/ TO DISTANT
LOIJF·' CMP LIMITS,X ;CDMPARF NEAF~NFSS cw GUESS TO

'TABLE OF l.IMIT'J TO SEE HOW MANY
H. JGHTS TD LIGHT

BCS SIGNAL ;NEARNF.SS JS BIGGER THAN LIMIT, so
;oo LIGHT JNDICATOF:,

rnx ,LOOK AT NEXT CL.OSENEnS L.EVEL,
CPX t9 ,ALL NINE LEVEL'! TRIED''
BNE L.()OF' ,NfJ, TRY NEXT L.EVEL,

WIN LDA Ul :yrs: wrn' L.OAD NUMBER OF E<l. IN~:S
STA GUFSS HJSE GUESS AS TEMP
L.DA l$FT ,LIGHT LEDS
~>TA PDRT1A
':>TA POf!TU<

wow L.DA •~,o ,TONE VALUE
..JSR TONE ,MAKE wrn SIGNAL.
L.DA OFF
Elm PORTlA ,CDMF'LEMENT PDRTS
STA F'OIHlA
STA F'OF:T1£<
DEC GUESS ,£!LINKS/TONES DONE'>
BNE wow ;NO, DO AGAIN
BEQ START ;YES, START NEW GAME,

SIGNAL INX ; INCREMENT CLOSENFSS····LEVEL
;cOl!NTER sn AT LEAST 1 LFD IS LTT,

L DA to ; GI.TAR HIGH LFD F'OF<T
STt, POF<Tlfl
JSF~ LITE ;GET LED F'ATTEF<N
STA PORTlA ;sFT t.FDS
F<CC cc fIF CARRY SET F'f<O
LUA t01
STA nm TH•

er DFC GUFSSt ;oNE Gt.JESS USED
BNE GETGES ;SOME LFFT, GET NEXT,
LDA HBE ;LOW TONE SIGNALS LOSE
JSR TONE
.JMP ST Arn iNEW GAME,

IF:OLJTINE TO MAKE PATTERN OF L.IT LEDS BY SHIFTING A
,STRING OF ONES TO THE I.EFT IN THE ACCIJMLJLATOF: UNTIi
ITHE BIT POSITION C()F:RESPONDTNG TO THE NUMBER IN X
IIS F:EACHED, .

LITE LDA tO ;CLEAR ACCUMULATOR FOR F'ATTEFW
SHIFT SEC IMAKF LOW BTT HIGH,

FWL A ,SHIFT TT IN
DEX rnNE flIT DDNE,,,
BNE mnrr ; LDOF' TF NOT DONE,
HTS ,FFTUFW

;TONE GFNEF<ATION ROUNTINE,

TONE STA FREQ
L.DA uoo
LDX r,1.m

Fl.2 LDY FREQ
FL1 DEY

CLC
BCC .+2
BNE FU
EOR UFF
STA POF<T3B
DEX
BNE FL2
RTS

TABLE OF LIMITS FOR CLOSENESS LEVELS.

'---------Fig. 4.2: Hexguess Program (Continued),--------

64

HARDWARE RANDOM NUMBER GENERATOR

02AD CB
02AE 80
02AF 40
02BO 20
02B1 10
02B2 08
02B3 04
02B4 02
02B5 01

SYMBOL TABLE:
GETKEY 0100 TIMEFI A004 DflFUA A003
DDR1D A002 PORTIA AOOJ. PORTH< AOOO
DDR3B AC02 F'ORT3B ACOO GUESS 0000
GLJESSt ()001. DUR 000:.• Ff!E(l ()()03
NUMBER 0004 START 020n ri[TGES 021.E
ALRIOHT 0241 LOOf·· 0::>43 WIN 024r,
wow 0259 SIGNAL 026r er 02B2
LITE 028E SHIFT 0290 TONF 0296
FL.2 029C FU. 029[L IM!TS 02AD

,::

~------Fig. 4.2: Hexguess Program (Continued),---------'

The program will generate a random number which must be guessed
by the player. A reasonably random number is obtained here by
reading the value of timerl of VIA #1. It is then stored in memory ad­
dress NUMBER:

LDATIMER
STA NUMBER

Low latch of timer 1

A random number generator is not required because requests for ran­
dom numbers occur at random time intervals, unlike the situation in
most of the other games that will be described. An important observa­
tion on the use of Tl CL of a 6522 VIA is that it is often called a
"latch" but it is a "counter" when performing a read operation! Its
contents are not frozen during a read as they would be with a latch.
They are continuously decremented. When they decrement to 0, the
counter is reloaded from the "real" latch.

Note that in Figure 4.3 TlL-L is shown twice - at addresses 04 and
06. This is a possible source of confusion and should be clearly
understood. Location 4 corresponds to the counter; location 6 cor­
responds to the latch. Location 4 is read here.

We are ready to go. A high-pitched tone is generated to signal the
player that a guess may be entered. The note duration is stored at

65

ADVANCED 6502 PROGRAMMING

00 ORB (PBO TO PB7)

01 ORA (PAO to PA?)

02 DDRB

03 DDRA

04 Tl L-L/Tl C-L

05 TlC-H

06 Tl L-L

07 TlL-H

08 T2L-L/T2C-L

09 T2C-H

OA SR

OB ACR

QC PCR (CA1,CA2,CB2,CB1)

OD IFR

OE IER

OF ORA

1/0 data, port A

Used for control-affects handshake

}
Data direction

registers

Counter-low

Counter-high

Latch-low

Latch-high

Latch-low
Counter-low

Counter-high

Shift register

Auxiliary

Peripheral

Flags

Enable

Timer 1

}imo,2

Function
control

Interrupt
Control

Output register A
(does not affect handshake)

Fig. 4.3: 6522 VIA Memory Map

memory location DUR while the note frequency is set by the contents
of the accumulator:

GETGES LOA #$20
JSR TONE

High pitch

Two key strokes must be accumulated for each guess. The GETKEY
subroutine is used to obtain the number of the key being pressed,
which is then stored in the accumulator. Once the first character has
been obtained, it is shifted left by four positions into the high nibble
position, and the next character is obtained. (See Figure 4.4.)

66

HARDWARE RANDOM NUMBER GENERATOR

A

- GUESSl

PRESERVE AT "GUESS" SHIFT BY 4

FINAL 2 DIGIT GUESS

Fig. 4.4: Collecting the Player's Guess

JSR GETKEY
ASLA
ASLA
ASLA
ASLA
STA GUESS
JSR GETKEY

GUESS2

GUESS2

Once the second character has been transferred into the accumulator,
the previous character, which had been saved in memory location
GUESS, is retrieved and OR'ed back into the accumulator:

AND #OJoOOOOl 111
ORA GUESS

It is stored back at memory location GUESS:

STA GUESS

67

ADVANCED 6502 PROGRAMMING

Now that the guess has been obtained, it must be compared against the
random number stored by the computer at memory location
NUMBER. A subtraction is performed:

LDANUMBER
SEC
SBC GUESS

Note that if the difference is negative, it must be complemented:

BCSALRIGHT
EOR #o/ol 1111111
SEC
ADC#OO

Positive?
It is negative: complement
Make it two's complement
Add one

Once the "distance" from the guess to the actual number has been
computed, the "closeness-counter" must be set to a value between 1
and 9 (only nine LEDs are used). This is done by a loop which com­
pares the absolute "distance" of the guess from the correct number to
a bracket value in the LIMITS table. The number of the appropriate
bracket value becomes the value assigned to the proximity or closeness
of the guessed number to the secret number. Index register X is initial­
ly set to 0, and the indexed addressing mode is used to retrieve bracket
values. Comparisons are performed as long as the "distance" is less
than the bracket value, or until X exceeds 9, i.e., until the highest table
value is looked up.

ALRIGHT
LOOP

LOX #00
CMP LIMITS,X
BCSSIGNAL
INX
CPX#9
BNELOOP

Look up limit value

Closeness is less
Keep trying 10 times

At this point, unless a branch has occurred to SIGNAL, the distance
between the guess and the actual number is 0: it is a win. This is sig­
naled by blinking the LEDs and by generating a special win tone:

WIN

68

LOA #11
STA GUESS
LOA #FF

Scratch storage

HARDWARE RANDOM NUMBER GENERATOR

wow

STA PORTIA
STA PORTIB
LDA #50
JSR TONE

Tone pitch
Generate tone

The blinking is generated by complementing the LEDs repeatedly:

LDA #$FF
EOR PORTIA
STA PORTIA
STA PORTlB

The loop is executed again:

DEC GUESS
BNE WOW

Complement ports

Finally, when the loop index (GUESS) reaches zero, a branch occurs
back to the beginning of the main program: START:

BEQ START

If, however, the current guess is not correct, a branch to SIGNAL
occurs during bracket comparison, with the contents of the X register
being the proximity value: i.e., the number of LEDs to light. Depend­
ing on the closeness of the guess to the secret number, LEDs #1 to #9
will be turned on:

SIGNAL INX
LDA#O
STA PORTIB
JSR LITE
STA PORTIA
BCCCC
LDA #01
STA PORTIB

Increment closeness level
Clear high LED port

Get LED pattern

If carry set, PBO = 1

The number of LEDs to turn on is in X. It must be converted into the
appropriate pattern to put on the output port. This is done by the
LITE subroutine, described below.

If LED #9 is to be turned on, the carry bit is set by LITE. An ex-

69

ADVANCED 6502 PROGRAMMING

plicit test of the carry for this case is done above (the pattern 01 is then
sent to PORTlB). The number of the current guess is decremented
next. If it is 0, the player has lost: the lose signal is generated and a

A

A

A

70

7 0 C

0

7 0 C

r4,:,:,:,:,:,:,:, 1 .. 1, 1 ..
1

0

7 0 C

r4,:,:,:,:,:,: <+I I l""I
0

7 0 C

ra:<<<<<<+1 +1
0

7 0 C

JUST BEFORE 1st ROTATION

BEFORE 2nd ROTATION

BEFORE 3rd ROTATION

BEFORE 8th ROTATION

(CARRY WILL BE 0)

AFTER 9th ROTATION

(CARRY IS 1)

Fig. 4.5: Obtaining the LED pattern for 8 LED's

HARDWARE RANDOM NUMBER GENERATOR

new game is started; otherwise, the next guess is obtained:

cc

The Subroutines

LITE Subroutine

DEC GUESS#
BNE GETGES
LDA #$BE
JSR TONE
JMP START

Any guesses left?
Low tone

New game

The LITE subroutine will generate the pattern required to light up
LEDs #1 to #8, depending on the number contained in register X. The
required "l" bits are merely shifted right in the accumulator as
register Xis being decremented. An example is given in Figure 4.5.
4.5.

Upon exit from the subroutine, the accumulator contains the cor­
rect pattern required to light up the specified LEDs. If LED #9 is in­
cluded, the pattern would consist of all ones, and the carry bit would
be set:

LITE
SHIFT

LDA#O
SEC
ROLA
DEX
BNE SHIFT
RTS

TONE Subroutine

Starting "l"
Rotate the "1" to position
Done?

The TONE subroutine will generate a tone for a duration specified
by a constant in memory location DUR, at the frequency specified by
the contents of the accumulator. Index register Y is used as the inner
loop counter. The tone is generated, as usual, by turning the speaker
connected to PORT3B on and off successively during the appropriate
period of time:

TONE

FL2
FLl

STA FREQ
LDA #$00
LDX DUR
LDY FREQ
DEY

71

ADVANCED 6502 PROGRAMMING

SUMMARY

CLC
BCC .+2
BNE FLl
EOR #$FF
STA PORT3B
DEX
BNE
RTS

This time, the program used the timer's latch (i.e., a hardware register)
rather than a software routine as a random number generator. A simple
"LITE" routine was used to display a value, and the usual TONE
routine was used to generate a sound.

EXERCISES

Exercise 4-1: Improve the Hexguess program by adding the following
feature to it. At the end of each game, if the player has lost, the pro­
gram will display [the number which the player should have guessed]
for approximately 3 seconds, before starting a new game.

Exercise 4-2: What would happen if the SEC at location 290 hex­
adecimal were left out?

Exercise 4-3: What are the advantages and disadvantages of using the
timer's value to generate a random number? What about the suc­
cessive numbers? Will they be related? Identical?

Exercise 4-4: How many times does the above program blink the lights
when it signals a win?

Exercise 4-5: Examine the WIN routine (line 24D). Will the win tone
be sounded once or several times?

Exercise 4-6: What is the purpose of the two instructions at addresses
29F and 2AO? (Hint: read Chapter 2.)

Exercise 4-7: Should the program start the timer?

Exercise 4-8: Is the number of LEDs lit in response to a guess linearly
related to the closeness of a guess?

72

5. Simultaneous Input/Output
(Magic Square)

INTRODUCTION

Special visual patterns will be created by this program. Random
numbers will be generated by the hardware source, the timer. Delays,
blinkers, and counters will be used.

THE RULES

The object of the game is to light up a perfect square on the board,
i.e., to light LEDs 1, 2, 3, 6, 9, 8, 7, and 4 but not LED #5 in the
center.

The game is started with a random pattern. The player may modify
the LED pattern on the board through the use of the keyboard, since
each of the keys complements a group of LEDs. For example, each of
the keys corresponding to the corner LED positions (key numbers: 1, 3,
9, and 7) complements the pattern of the square to which it is attached.
Key #1 will complement the pattern formed by LEDs l, 2, 4, 5.
Assuming that LEDs 1, 2, and 4 are lit, pressing key #1 will result in
the following pattern: 1-off, 2-off, 4-off, 5-on.

• • 0 0 0 0

• 0 0 0 • 0

0 0 0 0 0 0

The pattern formed by LEDs 1, 2, 4, and 5 has been complemented
and only LED #5 is lit after pressing key #1. Pressing key #1 again will
result in: 1, 2, and 4-on with 5-off. Pressing a key twice results in two

73

ADVANCED 6502 PROGRAMMING

successive complementations, i.e., it cancels out the first action.
Similarly, key #9 complements the lower right-hand square formed

by LEDs 5, 6, 8, and 9.
Key #3 complements the pattern formed by LEDs 2, 3, 5, and 6.
Key #7 complements the pattern formed by LEDs 4, 5, 7, and 8.
The "edge keys" corresponding to LEDs 2, 4, 6, and 8 complement

the pattern formed by the three LEDs of the outer edge of which they
are a part. For example, pressing key #2 will complement the pattern
for LEDs 1, 2, and 3. Assume an initial pattern with LEDs 1, 2, and 3
lit. Pressing key #2 will result in obtaining the complemented pattern,
i.e., turning off all three LEDs. Similarly, assume an initial patter~
on the left vertical edge where LEDs 4 and 7 are lit.

0 0 0

• 0 0

• 0 0

Pressing key #4 will result in a pattern where LED #1 is lit and LEDs 4
and 7 are turned off .

• 0 0

--o 0 0

0 0 0
KEY 4 HAS BEEN PRESSED

Likewise, key #8 will complement the pattern formed by LEDs 7, 8,
and 9, and key #6 will complement the pattern formed by LEDs 3, 6,
and 9.

74

SIMULTANEOUS INPUT/OUTPUT

Finally, pressing key #5 (the center LED position) will result in com­
plementing the pattern formed by LEDs 2, 4, 5, 6, and 8. For exam­
ple, assume the following initial pattern where only LEDs 6 and 8 are
lit:

0 0 0

0 0 •
0 • 0

Pressing key #5 will result in lighting up LEDs 2, 4, and 5:

0 • 0

.~ 0

0 0 0

The winning combination in which all LEDs on the edge of the square
are lit is obtained by pressing the appropriate sequence of keys .

• • •
• 0 •
• • •

75

ADVANCED 6502 PROGRAMMING

The mathematical proof that it is always possible to achieve a "win"
is left as an exercise for the reader. The program confirms that the
player has achieved the winning pattern by flashing the LEDs on and
off.

Key ''O'' must be used to start a new game. A new random pattern
of lit LEDs will be displayed on the board. The other keys are ignored.

A TYPICAL GAME

Here is a typical sequence:
The initial pattern is: 1-3-4-6-9 .

• 0 •
• 0 •
0 0 •

Move: press key #8.
The resulting pattern is: 1-3-4-6-7-8 .

• 0 •
• 0 •
I• • ol

t
Next move: press key #2.
The resulting pattern is: 2-4-6-7-8.

76

SIMULTANEOUS INPUT/OUTPUT

+ lo • ol
• 0 •
• • 0

Next move: press key #3.
The resulting pattern is: 3-4-5-7-8 .

0 0 • ---
• • 0

• • 0

Next move: press key #2.
The resulting pattern is 1-2-4-5-7-8 .

• I• • ol
• • 0

• • 0

77

ADVANCED 6502 PROGRAMMING

Next move: press key #6.
The resulting pattern is 1-2-3-4-5-6-7-8-9 .

• • •
• • . --
• • •

Note that this is a "classic" pattern in which all LEDs on the board
are lit. It is not a winning situation, as LED #5 should be off. Let us
proceed.

Next move: the end of this game is left to the mathematical talent of
the reader. The main purpose was to demonstrate the effect of the
various moves.

Hint: a possible winning sequence is 2-4-6-8-5 !
General advice: in order to win this game, try to arrive quickly at a

symmetrical pattern on the board. Once a symmetrical pattern is ob­
tained, it becomes a reasonably simple matter to obtain the perfect
square. Generally speaking, a symmetrical pattern is obtained by hit­
ting the keys corresponding to the LEDs which are off on the board
but which should be "on" to complete the pattern.

THE ALGORITHM

A pattern is generated on the board using random numbers. The
key corresponding to the player's move is then identified, and the ap­
propriate group of LEDs on the board is complemented.

A table must be used to specify the LEDs forming a group for each
key.

The new pattern is tested against a perfect square. If one exists, the
player wins. Otherwise, the process begins anew.

The detailed flowchart is shown in Figure 5 .1.

78

START

GET RANDOM
NUMBER FROM

TIMER

GET RANDOM
NUMBER FROM

TIMER

STORE IN PORT B

GET KEY NUMBER

SIMULTANEOUS INPUT/OUTPUT

Fig. 5.1: Magic Square Flowchart

79

ADVANCED 6502 PROGRAMMING

THE PROGRAM

l)ata Structures

The main problem here is to devise an efficient way to complement
the correct LED pattern whenever a key is pressed. The complementa­
tion itself may be performed by an Exclusive-OR instruction. In this
case, the pattern used with the EOR instruction should contain a "l"
in each LED position which is to be complemented, and "O"s
elsewhere. The solution is quite simple: a nine-entry table, called
TABLE, is used. Each table entry corresponds to a key and has 16 bits
of which only nine are used inasmuch as only nine LEDs are used.
Each of the nine bits contains a '' l '' in the appropriate position, in­
dicating the LED which will be affected by the key.

For example, we have seen that key number 1 will result in com­
plementing LEDs 1, 2, 4, and 5. The corresponding table entry is
therefore: 0, 0, 0, 1, 1, 0, 1, 1, where bits 1, 2, 4, and 5 (starting the
numbering at l, as with the keys) have been set to "l." Or, more
precisely, using a 16-bit pattern:

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1
The complete table appears below in Figure 5.2.

KEY PATIERN

l 00011011 00000000

2 00000111 00000000

3 00110110 00000000

4 01001001 00000000

5 10111010 00000000

6 00100100 00000001

7 11011000 00000000

8 11000000 00000001

9 10110000 00000001

Fig. 5.2: Complementation Table

Program Implementation

A random pattern of LEDs must be lit on the board at the beginning
of the game. This is done, as in the previous chapter, by reading the
value of the VIA #1 timer. If a timer were not available, a random
number-generating routine could be substituted.

80

0200 A9 FF
0202 SD 03 AO
0205 SD 02 AO
0208 AD 04 AO
020B SD 01 AO
020E AD 04 AO
0211 29 01.
0213 BD 00 AO
0216 20 00 01
0219 C9 00
021.B FO EB
021D C9 OA
021F 10 F5

0221 38
0222 E9 01
0224 OA

0225 AA
0226 AD 01 AO
0229 5D 6B 02
022C 8[1 01 AO
022F AD 00 AO
0232 5D 6C O':>
0235 29 01
0237 BD 00 AO

023A 4A
023B 90 [19
023[1 AD 01 AO
0240 C9 FF
0242 DO D2

SIMULTANEOUS INPUT/OUTPUT

; 'MAGIC SQUARE' PROGRAM
;KEYS 1-9 ON THE HEX KEYBOARD ARE EACH ASSOCIATED
1WITH ONE LED IN THE 3X3 ARRAY. WHFN A KEY IS PRESSED,
1IT CHANGES THE PATTERN OF THE I.IT I.EDS IN THE ARRAY,
1THE OBJECT OF THE GAME IS TO CONVERT THE RANDOM
1PATTERN THE GAME STARTS WITH TO A SQUARE OF LIT
H .. EDS BY PRESSING THE KEYS, THE Lf:DS WII .. L FLASH WHEN
;THE WINNING PATTERN IS ACHIEVED.
;KEY tO CAN BE USED AT ANY TIME TO RESTART
;THE GAME WITH A NEW PATTERN,

GETKEY
Tl.CL
PORTI
F'ORT2
TEMP
DDRA
DDRB

=$100
=$A004
=$A001
=$AOOO
=$0000
=$A003
=$A002

1LOW REGISTER OF TIMER IN 6522 VIA
16522 VIA PORT A

.=$200
;

;6522 VIA PORT B
1TEMPORARY STORAGE
1DATA DIRf:CTION REGISTER OF PORT A
1SAME FOR PORT B

;COMMENTS: THIS PROGRAM USES A TIMER REGISTER FOR A
RANDOM NUMBER SOURCE. IF NONE IS AVAILABLE, A
RANDOM NUMBER GENERATOR COULD BE USED, BUT
DUE TO ITS REPEATABILITY, IT WOULD NOT WORK AS
WELL. THIS PROGRAM USES PORT A'S REGISTERS FOR
STORAGE OF THE LED PATTERN. SINCF WHAT IS READ
BY THE PROCESSOR IS THE POLARITY OF THE
OUTPUT LINES, AN EXCESSIVE LOAD ON THE LINES WOULD
PREVENT THE PROGRAM FROM WORKING CORRECTL.Y,

LDA t$FF ;SET UP PORTS FDR OUTPUT
STA DDRA
STA DDRB

START LDA T1CL ,BET 1ST F<ANDOM NLJMBEft
STA PDRT1
I...DA T1CL ; •• • AND SECOND,
AND t01 ,MA Sr: OUT BOTTOM ROW 1..FD!3
STA PORT2

KEY JSR GET KEY
CMP to ,KEY MUST BF J. 9: IS IT 01'
BEQ START ;YES, RESTAFO' GAME WITH NEW HOARD.
CMP ,uo ;rs IT LESS THAN J.O?
BPL. KEY ;+ IF KEY >=10, sn GFT MH.lTHER

FOL.LOWING SECTION USES KEY NUMBER AS INDEX TO FIND IN
TABLE A BIT PATTERN USED TO COMPll:MENT LED'S

SEC ;DECREMENT A FOR TAF<L.f: Ar:r.rss
SBC t1
ASL A ; MULTIPLY A*2, SINCE EACH ENTf/Y IN

;TABLE rs TWO BYTES.
TAX ;usE A AS INDEX
LDA PORT! ;GET PORT CONTENTS FOR COMPLEMENT
FOR TABLE,X ,ECIR PORT CONTENTS W/F'ATTEF!N
STA PORT! ;RESTORE PORT!
LDA PORT2 ;no SAME WITH Prmr2,
EDF< TABLEt1,X Y f + .USING NEXT TAF<I .. .F: UHfa,
AND t01 ;MASK OllT BOTTOM ROW t.r·ns
STA POF<T2 ; , • ,AND RFSTOFff.

THIS SECTION CHECKS FOR WINNING PATTEF<N IN LEns

LSF~ A ,SHIFT BIT 0 OF POF'T 1 INTD CAFrnY,
BCC KEY ;IF NOT WJN PATTERN, [i[T NEXT MOVE
L.DA POF!Tl ;LOAD PORT1 FOR WIN TEST
CMP tY.ll 101111. ;CHErK F[lr! W!N F'ATTEFW
f.<N[KEY ;ND WIN, GET NEXT Hf'IVF

'-----------Fig. 5.3: Magic Square Program---------~

81

ADVANCED 6502 PROGRAMMING

;wrN BLINK LED'S EVERY 1/2 SEC, 4 TIMES

0244: A9 OE
0246: 85 00
0248: A2 20 BLINK
024Al AO FF DELAY

024Cl EA DL.Y
024Dl DO 00
024Fl 88
0250: DO FA
0252: CA
0253: DO F5
0255: AD 01 AO
0258: 49 FF
025A: SD 01 AO
025D: AD 00 AO
0260: 49 01
0262: SD 00 AO
0265: C6 00
0267: DO DF
0269: FO AB

HABLE

026B: 1B TABLE
026Cl 00
026D: 07
026El 00
026Fl 36
0270: 00
0271: 49
0272: 00
0273: BA
0274: 00
0275: 24
0276: 01
0277: DB
0278: 00
0279: co
027AI 01
027B: BO
027C: 01

SYMBOL. TABLE:
GETKEY 0100
f'ORT2 AOOO
DDRB A002
BL.INK 0248
TABLE 026B

X

LDA t14
STA TEMP ;LOAD NUMBER OF BLINKS
LDX
LDY

U20
UFF

;DELAY CONSTANT FOR ,08 SEC
;OUTER LOOP OF VARIABLE DELAY
;ROUTINE, WHOSE ·DFLAY TIME

NOP
;rs 2556 * (CONTENTS OF X ON FNTER
;10 MICROSEC LOOP V

BNE .+2
DEY
BNE DLY
DEX
BNE DELAY
LDA PORT1 ;GET PORTS AND COMPLEMENT THEM
EOR UFF
STA PORT1
I.DA PORT2
EOR t1
STA PORT2
DEC
BNE

TEMP
BLINK

;coUNT DOWN NUMBER OF BLINKS
;no AGAIN IF NOT DONF

BECl KEY ;GET NEXT MOVE

OF CODES USED TO COMPLEMENT LEDS

,BYT %00011011,XOOOOOOOO

,BYT %00000111,XOOOOOOOO

,BYT %00110110,%00000000

,BYT %01001001,XOOOOOOOO

,BYT r.10111010,xoooooooo

,BYT %00100100,%00000001

,BYT %11011000,XOOOOOOOO

,BYT x11000000,r.00000001

,BYT %10110000,%00000001

T1CL.. A004 PORTl A001
TEMP 0000 DDRA A003
START 0208 KEY 0216
DELAY 024A DLY 024C

'---------Fig. 5.3: Magic Square Program (Continued)--------'

82

SIMULTANEOUS INPUT/OUTPUT

The data direction registers for Ports A and B of the VIA are con­
figured for output to drive the LEDs:

LDA #$FF
STA DORA
STA DDRB

The "random" numbers are then obtained by reading the value of
timer 1 of the VIA and are used to provide a random pattern for the
LEDs. (Two numbers provide 16 bits, of which 9 are kept.)

START LDA TlCL
STA PORT!
LDA TlCL
AND #01
STA PORT2

Get 1st number
Use it
Get 2nd number
Keep only position 0
Use it

An explanation of the use of TlCL has been presented in the
previous chapter. The program then monitors the keyboard for the
key stroke of the player. It will accept only inputs "0" through "9"
and will reject all others:

KEY JSR GETKEY
CMP #0
BEQ START
CMP#IO
BPL KEY

Is keyO?

If key = IO get another

If the player has pressed key ''0,'' the program is restarted with a new
LED display. If it is a value between '' 1 '' and ''9'' that is pressed, the
appropriate change must be performed on the LED pattern. The key
number will be used as an index to the table of complementation
codes. Since the keys are labeled 1 through 9, the key number must
first be decremented by 1 in order to be used as an index. Since the
table contains double-byte entries, the index number must also be
multiplied by 2. This is performed by the following three instructions:

SEC
SBC #1
ASLA

Subtract 1
Multiply by 2

83

ADVANCED 6502 PROGRAMMING

Remember that a shift left is equivalent to a multiplication by 2 in the
binary system. The resulting value is used as an index and stored in in­
dex register X:

TAX

The LED pattern is stored in the Port A data registers. It will be com­
plemented by executing an EOR instruction on Port 1, then repeating
the process for Port 2:

LDAPORTl
EOR T ABLE,X Complement Portl
STAPORTl
LDA PORT2 Same for Port2
EOR TABLE+ l,X
AND #01 Mask out unused bits
STAPORT2

Note that assembly-time arithmetic is used to specify the second byte
in the table:

EOR TABLE+ 1,X

Once the pattern has been complemented, the program checks for a
winning pattern. To do so, the contents of Port 2 and Port 1 must be
matched against the correct LED pattern. For Port 2, this is ''O, 0, 0,
0,0,0,0, l."ForPortl,thisis"l, 1, 1,0, 1, 1, 1, l."BitOofPort2
happens presently to be contained in the accumulator and can be
tested immediately after a right shift:

LSRA
BCC KEY

Shift bit O of Port 2

The contents of Port 1 must be explicitly compared to the appropriate
pattern:

84

LDAPORTl
CMP #%11101111
BNEKEY

SIMULTANEOUS INPUT/OUTPUT

To confirm the win, LEDs are now blinked on the board. TEMP is
used as a counter variable; X is used to set the fixed delay duration. Y
is used as a counter for the innermost loop. Each port is com­
plemented after the delay has elapsed.

LOA #14
STA TEMP Load number of blinks

BLINK LDX #$20 Delay constant for .08 sec
DELAY LOY #$FF Outer loop of variable

delay routine, whose delay
time is 2556 x (Contents
of X on entry) 10 µs loop

DLY NOP
BNE.+2
DEY
BNE DLY
DEX
BNE DELAY
LOA PORTl Get ports and complement

them
EOR #$FF
STA PORTl
LOA PORT2
EOR #1
STA PORT2
DEC TEMP Count down number of blinks
BNE BLINK Do again if not done
BEQ KEY Get next key

SUMMARY

This game of skill required a special table to perform the various
complementations. The timer is used directly to provide a pseudo­
random number, rather than a program. The LED pattern is stored
directly in the 1/0 chip's registers.

EXERCISES

Exercise 5-1: Rewrite the end of the program using a delay subroutine.

Exercise 5-2: Will the starting pattern be reasonably random?

85

ADVANCED 6502 PROGRAMMING

Exercise 5-3: Provide sound ef feels.

Exercise 5-4: Allow the use of key "A,, to perform a different change
such as a total complementation.

Exercise 5-5 (more difficult): Write a program which allows the com­
puter to play and win.

Exercise 5-6: Add to the previous exercise the following feature:
record the number of moves played by the computer, then play against
the computer. You must win in fewer moves. You may specify an
identical starting pattern for yourself and the computer. In this case,
you should start, then let the computer "show you.,, If the computer
requires more moves than you do, you are either an excellent player, a
lucky player, or you are a poor programmer. Perhaps you are using
the wrong algorithm!

86

6. Simple Real Time Simulation
(Spinner)

INTRODUCTION

This program will react in real time to an operator input. The game
will operate at multiple levels of difficulty using more complex loop
counters.

THE RULES

A light spins around the square formed by LEDs 1, 2, 3, 6, 9, 8, 7,
and 4, in a counterclockwise fashion.

----- .. fo
t~

0
•
0 ... _.,. __

The object of the game is to stop the light by hitting the key cor­
responding to the LED at the exact time that the LED lights up. Every
time that the spinning light is stopped successfully, it will start spin­
ning at a faster rate. Every time that the player fails to stop the LED
within 32 spins, the light will stop briefly on LED #4, then resume
spinning at a slower pace. The expert player will be able to make the
light spin faster and faster, until the maximum speed is reached. At
this point, all the LEDs on the Games Board (LEDs 1 through 15)
light up simultaneously. It is a win, and a new game is started.

Each win is indicated to the player by a hesitation of the light on the
LED corresponding to the key pressed. When a complete game is won,
all LEDs on the Games Board will be lit.

87

ADVANCED 6502 PROGRAMMING

This game can also be used to sharpen a player's reflexes, or to test
his or her reaction time. In some cases, a player's reaction may be too
slow to catch the rotating LED even at its slowest speed. In such a
case, the player may be authorized to press two~ or even three, con­
secutive keys at once. This extends the player's response time. For ex­
ample, with this program, if the player would press keys 7, 8, and 9
simultaneously, the light would stop if it was at any one of those posi­
tions (7, 8, or 9).

THE ALGORITHM

The flowchart is presented in Figure 6.1. The game may operate at
eight levels of difficulty, corresponding to the successive speeds of the
"blip" traveling with increased rapidity around the LED square. An
8-bit counter register is used for two functions simultaneously. (See
Figure 6.2.) The lower 3 bits of this register are used as the "blip­
counter'' and point to the current position of the light on the LED
square. Three bits will select one of eight LEDs. The left-most 5 bits of
this register are used as a "loop-counter" to indicate how many times
the blip traverses the loop. Five bits allow up to 32 repetitions. LEDs
are lit in succession by incrementing this counter. Whenever the blip­
counter goes from "8" to "O," a carry will propagate into the loop­
counter, incrementing it automatically. Allocating the 8 bits of
register Y to two different conceptual counters facilitates program­
ming. Another convention could be used.

Every time that an LED is lit, the keyboard is scanned to determine
whether the corresponding key has been pressed. Note that if the key
was pressed prior to the LED being lit, it will be ignored. This is ac­
complished with an "invalid flag." Thus, the algorithm checks to see
whether or not a key was initially depressed and then ignores any fur­
ther closures if it was. A delay constant is obtained by multiplying the
difficulty level by four. Then, during the delay while the LED is lit, a
new check is performed for a key closure if no key had been pressed
at the beginning of this routine. If a key had been pressed at the begin­
ning it will be treated as a miss, and the program will not check again
to see if the key was pressed as the "invalid flag" will have been set.

Every time the correct key is pressed during the delay while the LED
is on (left branch of the flowchart in the middle section of Figure
6.1), the value of the difficulty level is decremented (a lower difficulty
number results in a higher rotation speed). For every miss on the part

88

SIMPLE REAL TIME SIMULATION

of the player, the difficult. ·:due is incremented np to 15, resulting in
a slower spin of the light. Once a difficulty level of (J has been reached,
if a hit is recorded, all LEDs on the board will light to acknowledge
the situation.

THE PROGRAM

l)ata Structures

The program uses two tables. The KYTBL table stores the key
numbers corresponding to the circular LED sequence: 1,2,3,6,9,8,7,4.
It is located at memory addresses OB through 12. See the program
listing in Figure 6.3.

The second table, L TABLE, contains the required bit patterns
which must be sent to the VIA's port to illuminate the LEDs in se­
quence. For example, to illuminate LED #1, bit pattern "000000001,
or 01 hexadecimal, must be sent. For LED #2, the bit pattern
"00000010" must be sent, or 02 hexadecimal. Similarly, for the other
LEDs, the required pattern is: 04, 20, 00, 80, 40; OB in hexadecimal.

Note that there is an exception for LED #9. The corresponding pat­
tern is "0" for Port 1, and bit O of Port 2 must also be turned on. We
will need to check for this special situation later on.

Program Implementation

Three variables are stored in memory page 0:

DURAT

DIFCLT
DNTST

Is the delay between two successive
LED illuminations
Is the "difficulty level" (reversed)
Is a flag used to detect an illegal
key closure when scanning the keys

As usual, the program initializes the three required data direction
registers: DDRl on both Port A and Port B for the LEDs, and
DDR3B for the keyboard:

START LDA #$FF
STA DORIA
STA DDRIB
STA DDR3B

89

ADVANCED 6502 PROGRAMMING

START

USE BITS0-20F
COUNTER TO LOOK
UP LED PAffiRN IN

TABLE, THEN DISPLAY
PAffiRN

OUTPUT NUMBER OF
KEY TO LOOK FOR

(BITS0-20F
COUNTER)TO

KEYBOARD

SET INVALID FLAG

DURAT = 128

Fig, 6.1: Spinner Flowchart

90

NO

CLEAR INVALID FLAG

NO

NO

SIMPLE REAL TIME SIMULATION

NO

YES

INCREMENT
DIFFICULTY, MAKING

SURE IT DOES NOT
EXCEED 15

Fig. 6. 1: Spinner Flowchart (Continued)

91

ADVANCED 6502 PROGRAMMING

7 6 5 4 3 2 0

y I I
' y .l'--r-J

LOOP BLIP
COUNTER COUNTER

Fig. 6.2: Dual Counter

The difficulty level is set to 8, an average value:

LDA#8
STA DFCLT

The keystrobe port is conditioned for input:

STA DDR3A

The Y register, to be used as our generalized loop-plus-blip-counter, is
set to"O":

NWGME LOY #0

The key-down indicator is also set to "O":

LOOP LDA#O
STA DNTST

LED #9 is cleared:

STA PORTlB

The lower 3 bits of the counter are extracted. They contain the blip­
counter and are used as an index into the LED pattern table:

TYA
AND #$07
TAX

Y contains counter
Extract lower 3 bits
Use as index

The pattern is obtained from L TABL, using an indexed addressing

92

LINE

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0037
0037
0037
0037
0037
0037
0037
0038
0039
0040
0041
0042
0042
0042
0042
0042
0042
0042
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062

t LOC

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0001
0002
0003
0003
0003
0003
0003
0003
0003
0004
0005
0006
0007
0008
0009
OOOA
OOOB
OOOB
OOOB
OOOB
OOOB
oooc
OOOD
OOOE
OOOF
0010
0011
0012
0013
0013
0013
0013
0200
0200
0202
0205
0208
020B
020D
020F
0212
0214
0216
0218
021B
021C
021E
021F

01
02
04
20
00
BO
40
08

01
02
03
06
09
08
07
04

A9
SD
SD
SD
A9
85
SD
AO
A9
85
SD
98
29
AA
B5

SIMPLE REAL TIME SIMULATION

CODE LINE

FF
03 AO
02 AO
02 AC
OB
01
03 AC
00
00
02
00 AO

07

03

'SPINNER'
,PROGRAM TO TEST REACTION TIME OF PLAYER,
IBLIP OF LIGHT.SPINS AROUND EDGE
IOF 3X3 LED MATRIX, AND USER MUST PRESS
,CORRESPONDING KEY, IF, AFTER A NUMBER OF
,SPINS, CORRECT KEY HAS NOT BEEN PRESSED,
IBLIP SPINS SLOWER, IF CORRECT KEY HAS BEEN
,PRESSED, BLIP SPINS FASTER, ALL
,LEDS LIGHT WHEN SUCCESSFUL KEYPRESS
IOCCURS ON MAXIMUM SPEED,

;J/0 :
I
PORTlA $A001 ,LEDS 1-8
PORTlB $AOOO ILEDS 8-15
DDRlA $A003
DDRlB $A002
PORT3A $ACOl ;KEY STROBE INPUT,
PORT3B $ACOO ;KEY t OUTPUT,
DDR3A $AC03
DDR3B $AC02

,VARIABLE STORAGE:

* = $0

DURAT *=*+l /DURATION OF INTER-MOVEMENT DELAY,
DIFCLT *=*+l ,DIFFICULTY LEVEL,
DNTST *=*+l ISET TO $01 IF KEY DOWN AT START

IOF INTER-MOVEMENT DELAY,
I
HABLE OF PATTERNS TO BE SENT TO LED
/MATRIX AT EACH LOOP COUNT,
ISET FOR CLOCKWISE ROTATION STARTING AT LED tl,
;
LTABLE .BYTE $01,$02,$04,$20,$00,$80,$40,$08

ITABLE OF PATTERNS TO BE SENT TO KEYBOARD
ITO TEST IF LEDS ARE ON AT EACH LOOP COUNT,

KYTBL ,BYTE 1,2,3,6,9,8,7,4

,MAIN PROGRAM

* = $200

START LDA UFF ;SET I/0 REGISTERS,
STA DDRlA
STA DDRlB
STA DDR3B
LDA ts
STA IIIFCLT ISET IIIFFICULTY,
STA IIDR3A ISET KEYSTROBE PORT,

NWGME LDY to IRESET LOOP/BLIP COUNTER,
LOOP LDA to

STA IINTST ,CLEAR KEYDOWN INDICATOR,
STA PORTlB ICLEAR HI LED PORT,
TYA IUSE LOWER 3 BITS OF MAIN COUNTER
AND U07 ; AS INDEX TO FI NII LEU PATTERN
TAX IIN TABLE OF PATTERNS,
LDA LTABLE,X IGET PATTERN FOR LED TO

Flg.6.3: Spinner Program

93

ADVANCED 6502 PROGRAMMING

0063 0221 ,BE TURNED ON
0064 0221 SD 01 AO STA PORTlA STORE IN LE[I PORT,
0065 0224 DO 05 BNE CHECK IF PATTERN <> 0, SKIP,
0066 0226 A9 01 LioA t1 PATTERN=O, SO SET HI BIT,
0067 0228 SD 00 AO STA PORTlB
0068 022B BS OB CHECK LDA KYTBL,X ,GET KEYt TO TEST FOR,
0069 022D 8[1 00 AC STA PORT3B ,STORE IN KEYPORT,
0070 0230 2C 01 AC BIT PORT3A ,STROBE HP
0071 0233 30 04 BHI DELAY HF NOT, SKIP,
0072 0235 A9 01 INVALD LDA tOl ; STOBE HI: SET KEY DOWN HARKER,
0073 0237 85 02 STA DNTST
0074 0239 A9 80 DELAY LDA USO ,GET t OF LOOP CYCLES <DELAY LENGTH)

0075 023B 85 00 STA DURAT
0076 023D AS 01 [Ill LDA DIFCLT ,MULTIPLY DIFFICULTY COUNTER
0077 023F OA ASL A ,BY FOUR TO I•ETERHINE DELAY
0078 0240 OA ASL A ,LENGTH,
0079 0241 AA TAX
0080 0242 26 02 DL2 ROL DNTST HIELAY ACCORD ING TO DIFCLT,
0081 0244 66 02 ROR DNTST
0082 0246 CA DEX
0083 0247 DO F9 BNE DL2 ,LOOP 'TIL COUNT= 0
0084 0249 AS 02 LDA DNTST ,GET KEY DOWN FLAG,
0085 024B DO 05 BNE NOTST ,IF KEY WAS DOWN AT BEGINNING OF
0086 024D HIELAY, DON'T TEST IT,
0087 024D 2C 01 AC BIT PORT3A ,CHECK KEY STROBE,
0088 0250 10 19 BPL HIT ,KEY HAS CLOSED DURING DELAY: HIT,
0089 0252 C6 00 NOTST DEC DURAT ,COUNT DELAY LOOP DOWN,
0090 0254 DO E7 BNE DLl ,LOOP IF NOT 0,
0091 0256 CB INY ,INCREMENT HAIN SPIN COUNTER,
0092 0257 DO BB BNE LOOP ,IF 32 LOOPS NOT DONE, DO NEXT LOOP
0093 0259 A6 01 LDX DIFCLT ,NO HITS THIS TIME, HAKE NEXT
0094 025B ,EASIER,
0095 025B EB INX
0096 025C BA TXA ,HAKE SURE DIFFICULTY DOES NOT
0097 025D C9 10 CMP t16 ,EXCEED 15
0098 025F DO 02 BNE OK
0099 0261 A9 OF LDA t15
0100 0263 85 01 OK STA DIFCLT
0101 0265 20 80 02 JSR WAIT ,PAUSE A BIT,
0102 0268 4C 12 02 JHP NWGME ,START NEW ROUND,
0103 026B 20 80 02 HIT JSR WAIT ,PAUSE A BIT,
0104 026E C6 01 DEC DIFCLT ,MAKE NEXT GAME HARDER,
0105 0270 DO AO BNE NWGME ,IF DIFFICULTY NOTO <HARDEST),
0106 0272 ,PLAY NEXT GAME,
0107 0272 A9 FF LDA UFF ;PLAYER HAS HADE IT TO TOP
0108 0274 8D 01 AO STA PORTlA ;DIFFICULTY LEVEL, LIGHT ALL LEDS,
0109 0277 8D 00 AO STA PORTlB
0110 027A 20 80 02 JSR WAIT ,PAUSE A BIT,
0111 027D 4C 00 02 JHP START ;PLAY ANOTHER GAME,
0112 0280 ;
0113 0280 ,SUBROUTINE 'WAIT'
0114 0280 ,SHORT DELAY,
0115 0280 ;
0116 0280 AO FF WAIT LDY UFF
0117 0282 A2 FF LP! LDX t$FF
0118 0284 66 00 LP2 ROR DURAT
0119 0286 26 00 ROL DURAT
0120 0288 66 00 ROR DURAT
0121 028A 26 00 ROL DUR AT
0122 028C CA DEX
0123 028D DO FS BNE LP2
0124 028F 88 DEY
0125 0290 DO FO BNE LPl
0126 0292 60 RTS
0127 0293 ,END

SYMBOL TABLE
SYMBOL VALUE

CHECK 022B DDRlA A003 DDRlB A002 DDR3A AC03
DDR3B AC02 DELAY 0239 DIFCLT 0001 DLl 023It
DL2 0242 DNTST 0002 DURAT 0000 HIT 026B
INVALD 0235 KYTBL OOOB LOOP 0214 LP1 0282
LP2 0284 LT ABLE 0003 NOT ST 0252 NWGME 0212
OK 0263 PORT1A A001 PORTlB AOOO PORT3A AC01
PORT3B ACOO START 0200 WAIT 0280
END OF ASSEMBLY

Flg.6.3: Spinner Program Continued

94

SIMPLE REAL TIME SIMULATION

mechanism with register X, and this pattern is output on Port lA to
light up the appropriate LED:

LOA LT ABLE, X Get pattern
STA PORTIA Use it to light up LED

As we indicated in the previous section, an explicit check must be
made for the pattern "O;" which requires that bit O of Port B be
turned on. This corresponds to LED #9:

BNE CHECK
LDA #1
STA PORTlB

Was pattern = O?
If not, set LED #9

Once the correct LED has been lit, the keyboard must be inspected to
determine whether the player has already pressed the correct key. The
program only checks the key number corresponding to the LED being
lit:

CHECK LDAKYTBL,X
STA PORT3B
BIT PORT3A
BMI DELAY

X contains correct pointer
Select correct key
Strobe hi?
If not, skip

If the corresponding key is down (a strobe high on Port 3A is
detected), the key-down flag, DNTST, is set to "l ":

INVALD LDA #01
STA DNTST

This is an illegal key closure. It will be ignored. A delay to keep the
LED lit is implemented by loading a value in memory location
DURAT. This location is used as a loop-counter. It will be
decremented later on and will cause a branch back to location DLl to
occur:

DELAY LDA #$80
STADURAT

The difficulty counter, D IFCL T, is then multiplied by four. This is ac­
complished by two successive left shifts:

95

ADVANCED 6502 PROGRAMMING

DLI LDA DIFCLT
ASLA
ASLA
TAX

The result is saved in index register X. It will determine the delay
length. The lower the "difficulty-level," the shorter the delay will be.

The delay loop is then implemented:

DL2 ROL DNTST
ROR DNTST
DEX
BNE DL2 Loop til count = 0

The key-down flag, DNTST, is then retrieved from memory and
tested. If the key was down at the beginning of this routine, the pro­
gram branches to location NOTST. Otherwise, if a closure is detected,
a hit is reported and a branch occurs to location HIT:

LDA DNTST
BNE NOTST
BIT PORT3A
BPL HIT

Check key strobe

At NOTST, the external delay loop proceeds: the value of DURAT is
decremented and a branch back to location DLI occurs, unless
DURAT decrements to "O." Whenever the delay decrements to "O"
without a hit, the main counter (register Y) is incremented by 1. This
results in advancing the blip-counter (lower three bits of register Y) to
the next LED. However, if the blip-counter was pointing to LED #4
(the last one in our sequence), the loop-counter (upper 5 bits of
register Y) will automatically be incremented by 1 when the blip­
counter advances. If the value 32 is reached for the loop-counter, the
value of register Y after incrementation will be "O" (in fact, an
overflow will have occurred into the carry bit). This condition is tested
explicitly:

NOTST

96

DEC DURAT
BNE DLI
INY
BNE LOOP

LoopifnotO
Increment counter
32 loops?

SIMPLE REAL TIME SIMULATION

Once the Y register has overflowed, i.e., 32 loops have been executed,
the difficulty value is increased, resulting in a slower spin:

LDX DIFCLT
INX

No hits. Make it easier

The maximum difficulty level is 15, and this is tested explicitly:

OK

TXA
CMP #16
BNEOK
LDA #15
STA DIFCLT

Finally, a brief pause is implemented:

JSR WAIT

and a new spin is started:

JMP NWGME

Only A may be compared

Stay at 15 maximum

In the case of a hit, a pause is also implemented:

HIT JSR WAIT

then the game is made harder by decrementing the difficulty count
(DIFCLT)

DEC DIFCLT

The difficulty value is tested for "O" (fastest possible spin). If the "O"
level has been reached, the player has won the game and all LEDs are
illuminated:

BNENWGME
LDA #$FF
STA PORTIA
STA PORTlB

If not 0, play next game
It is a win
Light up

The usual pause is implemented, and a new game is started:

97

ADVANCED 6502 PROGRAMMING

JSR WAIT
JMP START

The pause is achieved with the usual delay subroutine called "WAIT."
It is a classic, two-level nested loop delay subroutine, with additional
do-nothing instructions inserted at address 0286 to make it last longer:

WAIT
LPl
LP2

SUMMARY

LOY #$FF
LOX #$FF
RORDURAT
ROL DURAT
RORDURAT
ROL DURAT
DEX
BNE LP2
DEY
BNE LPl
RTS

This program implemented a game of skill. Multiple levels of diffi­
culty were provided in order to challenge the player. Since human
reaction time is slow, all delays were implemented as delay loops. For
efficiency, a special double-counter was implemented in a single register:
the blip counter-loop counter.

EXERCISES

Exercise 6-1: There are several ways to "cheat" with this program.
Any given key can be vibrated rapidly. Also, it is possible to press any
number of keys simultaneously, thereby massively increasing the
odds. Modify the above program to prevent these two possibilities.

Exercise 6-2: Change the rotation speed of the light around the LEDs
by modifying the appropriate memory location. (Hint: this memory
location has a name indicated at the beginning of the program.)

Exercise 6-3: Add sound effects.

98

7. Real Time Simulation
(Slot Machine)

INTRODUCTION

This program simulates an actual electro-mechanical machine and
operates in real time. It performs a complex score evaluation using indexed
addressing techniques as well as special data structures to facilitate and
expedite the process.

THE RULES

This program simulates a Las Vegas-type slot machine. The rota­
tion of the wheels on a slot machine is simulated by three vertical rows
of lights on LED columns 1-4-7, 2-5-8, and 3-6-9. The lights "rotate"
around these three columns, and eventually stop. (See Figure 7 .1.) The
final light combination representing the player's score is formed by
LEDs 4-5-6, i.e., the middle horizontal row.

At the beginning of each game, the player is given eight points. The
player's score is displayed by the corresponding LED on the Games
Board. At the start of each game, LED #8 is lit, indicating this initial
score of 8.

The player starts the slot machine by pressing any key. The lights
start spinning on the three vertical rows of LEDs. Once they stop, the
combination of lights in LEDs 4, 5, and 6 determines the new score. If
either zero or one LED is lit in this middle row, it is a lose situation,
and the player loses one point. If two LEDs are lit in the middle row,
the player's score is increased by one point. If three LEDs are lit in the
middle row, three points are added to the player's score.

Whenever a total score of zero is obtained, the player has lost the
game. The player wins the game when his or her score reaches 16
points. Everything that happens while the game is being played pro­
duces tones from the machine. While the LEDs are spinning, the
speaker crackles, reinforcing the feeling of motion. Whenever the
lights stop rotating, a tone sounds in the speaker, at a high pitch if it is
a win situation, or at a low pitch if it is a lose situation. In particular,
after a player takes his or her turn, if there are three lights in the mid-

ADVANCED 6502 PROGRAMMING

SCORE

WHEEL 1 WHEEL2 WHEEL3

Fig. 7.1: The Slot Machine

die row (a win situation), the speaker will go beep-beep-beep in a high
pitch, to draw attention to the fact that the score is being incremented
by three points. Whenever the maximum of 16 points is reached, the
player has obtained a "jackpot." At this point all the LEDs on the
board will light up simultaneously, and a siren sound will be generated
(in ascending tones). Conversely, whenever a null score is reached, a
siren will be sounded in descending tones.

Note that, unlike the Las Vegas model, this machine will let you win
frequently! Good luck. However, as you know, it is not as much a
matter of luck as it is a matter of programming (as in Las Vegas ma­
chines). You will find that both the scoring and the probabilities can
be easily modified through programming.

A TYPICAL GAME

The Games Board initially displays a lit LED in position 8, in­
dicating a starting score of 8. At this point the player should select and
press a key. For this example let's press key 0. The lights start spin­
ning. At the end of this spin, LEDs 4, 5, and 9 are lit. (See Figure 7 .2.)
This is a win situation and one point will be added to the score. The
high-pitch tone sounds. LED #9 is then lit to indicate the total of the 8
previous points plus the one point obtained on this spin.

100

REAL TIME SIMULATION

0 0 0

• • o~WIN

0 0 •
Fig. 7.2: A Win Situation

Key O is pressed again. This time only LED 5 in the middle row is lit
after the spin. The score reverts back to 8. (Remember, the player
loses 1 point from his or her score if either zero or only one LED in the
middle row is lit after the spin.)

Key O is pressed again; this time LEDs 5 and 6 light up resulting in a
score of nine.

Key O is pressed again. LED 4 is lit at the end of the spin, and LED 8
lights up again.

Key O is pressed. LED 6 is lit. The score is now 7, etc.

THE ALGORITHM

The basic sequencing for the slot machine program is shown in the
flowchart in Figure 7. 3. First, the score is displayed, then the game is
started by the player's key stroke and the LEDs are spun. After this,
the results are evaluated: the score is correspondingly updated and a
win or lose situation is indicated.

The LED positions in a column are labeled 0, 1, 2, from the top to bot­
tom. LEDs are spun by sequentially lighting positions 0, I, 2, and then
returning to position 0. The LEDs continue to spin in this manner and
their speed of rotation diminishes until they finally come to a stop.
This effect is achieved by incrementing the delay between each suc­
cessive actuation of an LED within a given column. A counter-register
is associated with each ''wheel,'' or column of three LEDs. The initial
contents of the three counters for wheels 1, 2, and 3 are obtained from
a random number generator. In order to influence the odds, the ran­
dom number must fit within a programmable bracket called (LOLIM,
HILIM). The value of this counter is transferred to a temporary
memory location. This location is regularly decremented until it
reaches the value "O." When the value O is reached, the next LED on

101

ADVANCED 6502 PROGRAMMING

INITIAL

SCORE= 8

YES

YES

Fig. 7.3: Slots Flowchart

102

REAL TIME SIMULATION

the "wheel" is lit. In addition, the original counter contents are in­
cremented by one, resulting in a longer delay before lighting up the
next LED. Whenever the counter overflows to 0, the process for that
wheel stops. Thus, by using synchronous updating of the temporary
memory locations, the effect of asynchronously moving LED "blips"
is achieved. When all LEDs have stopped, the resulting position is
evaluated.

The flowchart corresponding to this DISPLAY routine is shown in
Figure 7 .4. Let us analyze it. In steps 1, 2, and 3 the LED pointers are
initialized to the top row of LEDs (position 0). The three counters
used to supply the timing interval for each wheel are filled with num­
bers from a random number generator. The random number is selected
between set limits. Finally, the three counters are copied into the tem­
porary locations reserved for decrementing the delay constants.

Let us examine the next steps presented in Figure 7.4:
4. The wheel pointer Xis set at the right-most column: X = 3.
5. The corresponding counter for the current column (column 3

this time) is tested for the value Oto see if the wheel has stopped.
It is not O the first time around.

6, 7. The delay constant for the column of LEDs determined by
the wheel pointer is decremented, then it is tested against the
value 0. If the delay is not 0, nothing else happens for this
column, and we move to the left by one column position:
16. The column pointer Xis decremented: X = X - 1
17. X is tested against zero. If X is zero, a branch occurs to

step 5. Every time that X reaches the value zero, the same
situation may have occurred in all three columns. All
wheel counters are, therefore, tested for the value zero.

18. If all counters are zero, the spin is finished and exit oc­
curs. If all counters are not zero, a delay is implemented,
and a branch back to (4) occurs.

Back to step 7:
7. If the delay constant has reached the value zero, the next

LED down in the column must be lit.
8. The LED pointer for the wheel whose number is in the wheel

pointer is incremented.
9. The LED pointer is tested against the value 4. If 4 has not

been reached, we proceed; otherwise, it is reset to the value 1.
(LEDs are designated externally by positions 1, 2, and 3 from

103

ADVANCED 6502 PROGRAMMING

104

DISPLAY START

FILL COUNTERS WITH
2 RANDOM NUMBERS

BETWEEN LOLIM
&HILIM

COPY COUNTERS TO
3 CORRESPONDING

DELAY CONST ANT
LOCATIONS

Fig. 7 .4: DISPLAY Flowchart

REAL TIME SIMULATION

YES

1 Q TEMP= JXLED
POINTER(X)

11

12

COPY COUNTER (X)

13 INTO DELAY
CONSTANT (X)

OUTPUT [(LTMSKI)

14 OR (LTMSK2) OR
(LTMSK3)] TO LEDs

15
DONE, RETURN

G

Fig. 7 ,4: DISPLAY Flowchart (Continued)

105

ADVANCED 6502 PROGRAMMING

top to bottom. The next LED to be lit after LED #3 is LED
#1.)

10, 11. The LED must be lit on the board, and a table LIGHTABLE
is utilized to obtain the proper pattern.

12. The counter for the appropriate wheel is incremented. Note
that it is not tested against the value zero. This will occur only
when the program moves to the left of wheel 1. This is done
at location 18 in the flowchart, where the counters are tested
for the value zero.

13. The new value of the counter is copied into the delay constant
location, resulting in an increased delay before the next LED
actuation.

14. The current lighting patterns of each column are combined
and displayed.

15. As each LED is lit in sequence, the speaker is toggled (ac­
tuated) .

16. As usual, we move to the column on the left and proceed as
before.

Let us go back to the test at step 5 in the flowchart:
5. Note that whenever the counter value for a column is zero,

the LED in that column has stopped moving. No further ac­
tion is required. This is accounted for in the flowchart by the
arrow to the right of the decision box at 5: the branch occurs
to 16 and the column pointer is decremented, resulting in no
change for the column whose counter was zero.

Next, the evaluation algorithm must evaluate the results once all
LEDs have stopped and then it must signal the results to the player.
Let us examine it.

The Evaluation Process

The flowchart for the EVAL algorithm is shown in Figure 7.5. The
evaluation process is also illustrated in Figure 7.6, which shows the
nine LEDs and the corresponding entities associated with them. Refer­
ring to Figure 7 .6, X is a row-pointer and Y is a column- or wheel­
pointer. A value counter is associated with each row. It contains the
total number of LEDs lit in that row. This value counter will be con­
verted into a score according to specific rules for each row. So far, we
have only used row 2 and have defined a winning situation as being
one in which two or three LEDs were lit in that row. However, many
other combinations are possible and are allowed by this mechanism.

106

REAL TIME SIMULATION

Exercises will be suggested later for other winning patterns.
The total for all of the scores in each row is added into a total called

SCORE, shown at the bottom right-hand corner of Figure 7 .6.
Let us now refer to the flowchart in Figure 7. 5. The wheel- or col­

umn pointer Y is set initially to the right-most column: Y = 3.
2. The temporary counters are initialized to the value zero.
3. Within the current column (3), we need only look at the row

which has a lit LED. This row is pointed to by LED­
POINTER. The corresponding row value is stored in:
X = LED POINTER (Y)

4. Since an LED is lit in the row pointed to by X, the value
counter for that row is incremented by one.

Assuming the LED situation of Figure 7. 7, the second value counter
has been set to the value 1.

5. The next column is examined: Y = Y - 1.
If Y is not 0, we go back to (3); otherwise the evaluation process

may proceed to its next phase.

Exercise 7-1: Using the flowchart of Figure 7.5, and using the example
of Figure 7. 7, show the resulting values contained in the value counters
when we finally exit from the test at (6) in the flowchart of Figure 7.5.

The actual number of LEDs lit in each row must now be trans­
formed into a score. The SCORETABL is used for that purpose. If the
scoring rules contained in this table are changed, they will completely
modify the way the game is played.

The score table contains four byte-long numbers per row. Each
number corresponds to the score to be earned by the player when 0, 1,
2, or 3 LEDs are lit in that row. The logical organization of the score
table is shown in Figure 7.8. The entries in the table correspond to the
score values which have been selected for the program presented- at
the beginning of this chapter. Any combination of LEDs in rows 1 or
3 scores 0. Any combination of 2 LEDs in row 2 scores 1, but, three
LEDs score 3. Practically, this means that the score value of row 1 is
obtained by merely using an indexed access technique with the number
of LEDs lit as the index. For row 2, a displacement of four must be
added for table access. In row 3, an additional displacement of four
must be added. Mathematically, this translates to:

SCORE= SCORETABL[(X - 1) x 4 + 1 + Y]

107

ADVANCED 6502 PROGRAMMING

2

3

4

5

NO

7

EVAL
START

8

Q ~ SCORTABL
9 (VALUE COUNTER

(X), TEMP)

10

11

Fig. 7.5: EVAL Flowchart

108

NO

14

17

18

NO

RETURN:
NEXT SPIN

YES

NO

16 SIGNAL GAME
WON WITH RISING
WARBLE, LIT LEDs

RETURN:
NEW GAME

23

REAL TIME SIMULATION

YES

20

21

YES

RETURN:
NEXT SPIN

RETURN:
NEW GAME

Fig. 7 .5: EVAL Flowchart (Continued)

109

ADVANCED 6502 PROGRAMMING

VALUE
COUNTER

SCORE

TOTAL =I SCORE I
y

Fig. 7.6: Evaluation Process on the Board

Y=l Y=2 Y=3

X=l O • 0

~. 0.
X=

3 0 0 0
Fig. 7.7: An Evaluation Example

VALUE
COUNTER

0

0

where X is the row number and Y is the number of LEDs lit for that
row. Since this technique allows each of the three rows to generate a
score, the program must test the value counter in each row to obtain
the total score.

This is accomplished by steps 7 and 8: the row pointer is initialized

110

REAL TIME SIMULATION

0 2 3 NUMBER LEDs LIT

0 0 0 0 ROWl

0 0 3 ROW2

0 0 0 0 ROW3

Fig. 7.8: The Score Table

to 3, and a score table displacement pointer is set up:

TEMP = (X - 1) x 4 + 1

9. Next, the value of the score is obtained from the table:

Q = SCORTABL (value counter (X), TEMP)

The value of that row's score is obtained by accessing the score
table indexed by the number of LEDs lit, contained in the value counter
for that row, plus a displacement equal to TEMP. The intermediate
score is obtained by adding this partial score to any previous value:

10. SCORTMP = SCORTMP + Q
11. Finally, the row number is decremented, and the process is

repeated until X reaches the value 0.
12. Whenever X reaches the value 0, the score for this spin has

been computed and stored in location SCORTMP.
13. At this point, the score computed above (SCORTMP) is ex­

amined by the program, and two possibilities exist: if the
SCORTMP is 0, a branch occurs to 20, where the game score
is decremented. If SCORTMP is not 0, the game score will be
increased by the score for this spin - SCORTMP. Let us
follow this path first.

14. The total game score is incremented by one.
15. It is then tested for the maximum value of 16.

111

ADVANCED 6502 PROGRAMMING

16. If the maximum score of 16 is reached in step 15, a special
audible and visual signal is generated to reward the player. A
new game may be started.

17. If 16 is not reached in step 15, the updated game score is
shown to the player, accompanied by a high-pitched tone.

18. The amount by which the game score must be increased,
SCORTMP, is decremented.

19. If SCORTMP is not zero, more points mu~t be added to the
game score, and a branch occurs to 14. Otherwise, the player
may enter the next spin.

Let us now follow the other path from position thirteen on the
flowchart, where the total score had been tested:

20. The score for this spin is 0, so the game score is decremented.
21. It is displayed to the player along with a low tone.
22. The new score is tested for the minimum value 0. If this

minimum value has been reached, the player has lost. Other­
wise, the player may keep playing.

23. A descending siren-type tone is generated to indicate the loss,
and the game ends.

THE PROGRAM

l)ata Structures

Two tables are used by this program: 1) the score table is used to
compute a score from the number of LEDs lit in each row - this has
already been described; 2) the LTABLE is used to generate the ap­
propriate code on the 1/0 port to light the specified LED. Each entry
within this table contains a pattern to be OR'ed into the 1/0 register to
light the specified LED.

Vertically, in the memory, the table entries correspond to the first
column, the second column, and then the third column of LEDs.
Looking at the program on lines 39, 40, and 41, the rows of digits cor­
respond respectively to the columns of LEDs. For example, the third
entry in the table, i.e., 64 decimal, or 40 hexadecimal (at address
OOlC) corresponds to the third LED in the first column on the Games
Board, or LED 7.

Page Zero Variables

The following variables are stored in memory:
- TEMP is a scratch location

112

LINE t LOC

0002 0000
0003 0000
0004 0000
0005 0000
0006 0000
0007 0000
0008 0000
0009 0000
0010 0001
0011 0002
0012 0003
0013 0004
0014 0005
0015 0008
0016 0008
0017 OOOB
0018 OOOE
0019 OOOE
0020 0011
0021 0014
0022 001A
0023 001A
0024 001A
0025 001A
0026 001A
0027 001A
0028 001A
0029 001A
0030 001A
0031 001A
0032 001A
0033 001A
0034 001A
0035 001A
0036 001A
0037 001A
0038 001A
0039 001A
0039 001B
0039 OOlC
0040 001D
0040 001E
0040 001F
0041 0020
0041 0021
0041 0022
0042 0023
0043 0023
0044 0023
0045 0023
0046 0023
0047 0023
0048 0023
0048 0024
0048 0025
0048 0026
0049 0027
0049 0028
0049 0029
0049 002A
0050 002B
0050 002C
0050 002D
0050 002E
0051 002F
0052 002F
0053 002F
0054 002F
0055 002F
0056 0200

REAL TIME SIMULATION

CODE LINE

01
08
40
02
10
80
04
20
00

00
00
00
00
00
00
01
03
00
00
00
00

A9 FF

ISLOT MACHINE SIMULATOR PROGRAM.
IPRESS ANY KEY TO START 'SPIN'.
ISCORE DETERMINED BY ARRAY 'SCORTB'•
18 POINTS INITIAL SCORE, ONE POINT PENALTY
IFOR EACH BAD SPIN.

TEMP
SCORTP
SCORE
DUR
FREQ
SPEEDS

INDX
INCR

LTMSK
VALUES
RND
;
II/0
;
PORT1A
DDR1A
PORTlB
DDR1B
PORT3B
DDR3B
T1CL

I ARRAYS
;

* = $0
=+1
=+1
=+1
=+1
=+1
=+3

,TEMPORARY STORAGE.
ITEMPORARY SCORE STORAGE.

I SCORE.
IDURATION OF TONES.

IFREOUENCY OF TONES.
ISPEEDS OF REVOLUTION FOR LEDS

IIN
=+3
=+3

COLUMNS

IUSED
=+3
*=U3
=+6

$A001
$A003
$AOOO

= $A002
$ACOO

= $AC02
$A004

IDELAY COUNTERS FOR LED REVOLUTIONS.
IPOINTERS FOR LED POSITIONS!

TO FETCH PATTERNS OUT OF TABLES,
IPATTERNS FOR LIT LEDS

INO, OF LIT LEDS IN EACH ROW.
ISCRATCHPAD FOR RND t GEN,

IVIAt1 PORT A I/0 REG <LEDS)
IVIAt1 PORT A DATA DIRECTION REG.

IVIAt1 PORT B I/0 REG, <LEDS>
IVIAtl PORT B DATA DIRECTION REG,

IVIAt3 PORT B I/0 REG. <SPKR>
IVIAt3 PORT B DATA DIRECTION REG,

IARRAY OF PATTERNS TO LIGHT LEDS.
IARRAY ROWS CORRESPOND TO COLUMNS OF LED
IARRAY, AND COLUMNS TO ROWS, FOR EXAMPLE, THIRD
IBYTE IN ROW ONE WILL LIGHT LED 7,
LTABLE ,BYTE 1,8,64

,BYTE 2,16,128

,BYTE 4,32,0

IARRAY OF SCORES RECEIVED FOR CERTAIN
IPATTERNS OF LIT LEDS,
IROWS CORRESPOND TO ROWS IN LED ARRAY,
ICOLUMNS CORRESPOND TO NUMBER OF LEDS
ILIT IN THAT ROW.
II.E,, 3 LEDS IN MIDDLE ROW IS 3 PTS,
SCORTB .BYTE 0,0,0,0

,BYTE 0,0,1,3

.BYTE 0,0,0,0

I***** HAIN PROGRAM*****
I
GETKEY = $100

* = $200
LDA UFF ISET UP PORTS,

'-----------Fig. 7.9: Slot Machine Program-----------'

113

ADVANCED 6502 PROGRAMMING

OOS7 0202 SD 03 AO STA DDR1A
OOS8 0205 SD 02 AO STA DDR1B
OOS9 0208 SD 02 AC STA DDRJB
0060 020B AD 04 AO LDA T1CL ;GET SEED FOR RANDOM t GEN,
0061 020E BS 15 STA RND+l
0062 0210 A9 08 START LDA ts ;INITIAL SCORE IS EIGHT,
0063 0212 BS 02 STA SCORE
0064 0214 AS TAY ;SHOW INITIAL SCORE
0065 0215 20 JD 03 JSR LIGHT
0066 0218 20 00 01 KEY JSR GET KEY ;ANY KEY PRESSED STARTS PROGRAM,
0067 021B 20 27 02 JSR DISPLY ;SPIN WHEELS
0068 021E 20 A7 02 JSR EVAL ;CHECK SCORE AND SHOW IT
0069 0221 AS 02 LDA SCORE
0070 0223 DO FJ BNE KEY ;IF SCORE<> O, GET NEXT PLAY,
0071 0225 FO E9 BEU START ; IF SCORE = O, RESTART,
0072 0227 ;
0073 0227 ;SUBROUTINE TO DISPLAY 'SPINNING' LEDS,
0074 0227 ff IND COMBINATION TO USEI1 TO DETERMINE SCORE,
0075 0227 ;
0076 0227 LOLIM = 90
0077 0227 HI LIM = 135
0078 0227 SPDPRM = 80
0079 0227 A9 00 DISPLY LDA tO ;RESET POINTERS,
0080 0229 BS OB STA INCR
0081 022B 85 oc STA INCRt1
0082 022D BS OD STA INCRt2
0083 022F AO 02 LDRND LDY t2 ;SET INDEX FOR 3 ITERATIONS,
0084 0231 20 80 03 GETRND JSR RANDOM ;GET RANDOM t,
ooss 0234 C9 87 CMP tHILIM noo LARGE?
0086 0236 BO F9 BCS GETRND ;IF SO, GET ANOTHER,
0087 0238 C9 5A CMP tLOLIM noo SMALL?
0088 023A 90 F5 BCC GETRND ;IF SO, GET ANOTHER,
0089 023C 99 08 00 STA INDX,Y ;SAVE IN LOOP INDEXES AND
0090 023F 99 OS 00 STA SPEEDS,Y ;LOOP SPEED COUNTERS,
0091 0242 88 DEY
0092 0243 10 EC BPL GETRND ;GET NEXT RND t,
0093 0245 A2 02 UPDATE LDX t2 ;SET INDEX FOR THREE ITERATIONS,
0094 0247 B4 OS UPDTLP LDY SPEEDS,X HS SPEED (Xl=O?
0095 0249 FO 44 BEil NXTUPD ;IF SO, DO NEXT UPDATE,
0096 024B D6 08 DEC INDX,X ;DECREMENT LOOP INDEX(Xl
0097 024!1 DO 40 BNE NXTUPD ;IF LOOPINDEXCX> <> 0,
0098 024F ;no NEXT UPDATE,
0099 024F B4 OB LDY INCR,X ;INCREMENT POINTER(X),
0100 0251 CB INY
0101 0252 co 03 CPY t3 ;POINTER = 3?
0102 0254 DO 02 BNE NORST HF NOT SKIP .. ,
0103 0256 AO 00 LDY to ;,,,RESET OF POINTER TO 0,
0104 0258 94 OB NOR ST STY INCR,X ;RESTORE POINTER<X>,
0105 02SA 86 00 STX TEMP ;MULTIPLY X BY 3 FOR ARRAY ACCESS,
0106 02SC SA TXA
0107 02SD OA ASL A
0108 02SE 18 CLC
0109 02SF 65 00 ADC TEMP
0110 0261 75 OB ADC INCR,X ;ADD COLUMNt TO PTR(X) FOR ROWt,
0111 0263 AS TAY ;XFER TO Y FOR IN[IEXING,
0112 0264 99 lA 00 LDA LTABLE,Y ;GET PATTERN FOR LED,
0113 0267 95 OE STA LTMSK,X ;STORE IN LIGHT MASK(Xl,
0114 0269 B4 OS SPDUPD LDY SPEEDS,X ;INCREMENT SPEED(Xl,
0115 0268 cs INY
0116 026C 94 05 STY SPEEDS,X ;RESTORE,
0117 026E 94 08 STY INDX,X ;RESET LOOP INDEX(X),
0118 0270 A9 00 LEDUPD LDA to ;UPDATE LIGHTS,
0119 0272 SD 00 AO STA PORTlB ;RESET LED t9
0120 0275 AS 10 LDA LTMSK+2 ;COMBINE PATTERNS FOR OUTPUT,
0121 0277 DO 07 BNE OFFLD9 ; IF MASKt3 <> 0, LED 9 OFF,
0122 0279 A9 01 LDA tOl HURN ON LED 9,
0123 0278 SD 00 AO STA PORTlB
0124 027E A9 00 LDA to ;RESET A SO PATTERN WON'T BE BAD,
0125 0280 OS OE OFFLD9 ORA LTMSK ;COMBINE REST OF PATTERNS,
0126 0282 OS OF ORA LTMSK+l
0127 0284 8D 01 AO STA PORTlA ; SET LIGHTS,
0128 0287 AD 00 AC LDA PORT3B ;TOGGLE SPEAKER,

Fig. 7. 9: I So t Machine Pro ram g (C ontlnued

114

REAL TIME SIMULATION

0129 028A 49 FF EOR HFF
0130 028C SD 00 AC STA PORT3B
0131 028F CA NXTUPD DEX DECREMENT X FOR NEXT UPDATE,
0132 0290 10 B5 BPL UPDTLP IF X>=O, DO NEXT UPDATE,
0133 0292 AO 50 LDY tSPDPRM DELAY A BIT TO SLOW
0134 0294 88 WAIT DEY FLASHING OF LEDS,
0135 0295 DO FD BNE WAIT
0136 0297 A5 OS LDA SPEEDS I CHECK IF ALL COLUMNS OF
0137 0299 ILEDS STOPPED,
0138 0299 05 06 ORA SPEEDS+!
0139 029B OS 07 ORA SPEEDSt2
0140 029D DO A6 BNE UPDATE ;IF NOT, DO NEXT SEQUENCE
0141 029F iDF UPDATES,
0142 029F A9 FF LDA HFF
0143 02Al 85 03 STA DUR iDELAY TO SHOW USER PATTERN,
0144 02A3 20 30 03 JSR DELAY
0145 02A6 60 RTS IALL LEDS STOPPED, DONE,
0146 02A7 ;
0147 02A7 ISUBROUTINE TO EVALUATE PRODUCT OF SPIN, AND
0148 02A7 IDISPLAY SCORE W/ TONES FOR WIN, LOSE, WIN+ENDGAME,
0149 02A7 IAND LOSEtENDGAME,
0150 02A7 ;
01S1 02A7 HITONE = $20
0152 02A7 LO TONE = tFO
01S3 02A7 A9 00 EVAL LDA tO IRESET VARIABLES,
0154 02A9 85 11 STA VALUES
0155 02AB 85 12 STA VALUES+!
01S6 02AD 85 13 STA VALUES+2
0157 02AF 85 01 STA SCORTP
0158 02B1 AO 02 LDY t2 ISET INDEX Y FOR 3 ITERATIONS
0159 02B3 ;ro COUNT t OF LEDS ON IN EACH ROW,
0160 02B3 B6 OB CNTLP LDX INCR,Y ICHECK POINTERCY), ADDING
0161 02B5 F6 11 INC VALUES,X IUP t OF LEDS ON IN EACH ROW,
0162 02B7 88 DEY
0163 02B8 10 F9 BPL CNTLP ILOOP IF NOT DONE,
0164 02BA A2 02 LDX t2 SET INDEX X FOR 3 ITERATIONS,
0165 02BC IOF LOOP TO FIND SCORE,
0166 02BC BA SCORLP TXA IMULTIPLY INDEX BY FOUR FOR ARRAY
0167 02BD mow ACCESS,
0168 02BD OA ASL A
0169 02BE OA ASL A
0170 02BF 18 CLC IADD I OF LEDS ON IN ROWCX) TO,,,
0171 02CO 75 11 ADC VALUES,X ; , ,ARRIVE AT COLUMN ADDRESS IN ARRAY,
0172 02C2 AB TAY IUSE AS INDEX
0173 02C3 B9 23 00 LDA SCORTB,Y IGET SCORE FOR THIS SPIN,
0174 02C6 18 CLC
0175 02C7 65 01 ADC SCORTP I ADD TO ANY PREVIOUS SCORES
0176 02C9 IACCUMULATED IN THIS LOOP,
0177 02C9 85 01 STA SCORTP IRE STORE
0178 02CB CA DEX
0179 02cc 10 EE BPL SCORLP iLOOP IF NOT DONE
0180 02CE A9 60 LDA 1$60 SET UP DURATIONS FOR TONES,
0181 02D0 85 03 STA DUR
0182 02D2 AS 01 LDA SCORTP iGET SCORE FOR THIS SPIN,
0183 02D4 FO 34 BEQ LOSE , IF SCORE IS O, LOSE A POINT,
0184 02D6 E6 02 WIN INC SCORE IRAISE OVERALL SCORE BY ONE,
0185 02D8 A4 02 LDY SCORE IGET SCORE
0186 02DA co 10 CPY 116 IWIN W/ 16 PTS?
0187 02DC FO 10 BEQ WINEND IYES : WIN+ENDGAME.
0188 02DE 20 3D 03 JSR LIGHT iSHOW SCORE,
0189 02El A9 20 LDA tHITONE iPLAY HIGH BEEP,
0190 02E3 20 64 03 JSR TONE
0191 02E6 20 30 03 JSR DELAY ISHORT DELAY,
0192 02E9 C6 01 DEC SCORTP ; [IECREMENT SCORE TO BE ADDED TO,,,
0193 02EB ,OVERALL SCORE BY ONE,
0194 02EB DO E9 BNE WIN ,LOOP IF SCORE XFER NOT COMPLETE,
0195 02ED 60 RTS ;[!ONE, RETURN TO MAIN PROGRAM,
0196 02EE A9 FF WINEND LDA UFF HURN ALL LEDS ON TO SIGNAL WIN,
0197 02FO BD 01 AO STA PORT1A
0198 02F3 BD 00 AO STA PORT1B
0199 02F6 85 00 STA TEMP iSET FREQ PARM FOR RISING WARBLE,
0200 02FB A9 00 LDA to
0201 02FA es 02 STA SCORE ICLEAR TO FLAG RESTART,

Fl 9 • 7.9: Slot Machine Pr og ram Continued

115

ADVANCED 6502 PROGRAMMING

0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273

02FC
02FE
0300
0300
0302
0305
0307
0309
030A
030C
030E
0311
0313
0316
0318
031A
031B
031D
031F
0322
0324
0326
0328
032B
032D
032F
0330
0330
0330
0330
0330
0332
0334
0336
0337
0339
033A
033C
033D
033D
033D
033D
033D
033F
0341
0344
0347
0349
034B
034C
034D
034E
0350
0350
0352
0354
0355
0356
0358
035A
035C
035C
035F
0360
0363
0364
0364
0364
0364
0366
0368
036B

A9 04
85 03

AS 00
20 64 03
C6 00
DO F7
60
C6 02
A4 02
20 3D 03
A9 FO
20 64 03
A4 02
FO 01
60
A9 00
85 00
SD 01 AO
A9 04
85 03
AS 00
20 64 03
E6 00
DO F7
60

A4 03
A2 FF
DO 00
CA
DO FB
88
DO F6
60

A9 00
85 00
SD 01 AO
SD 00 AO
CO OF
FO 01
BB
38
2A
90 05

A2 FF
86 00
2A
BB
10 F5
A6 00
DO 04

BD 01 AO
60
BD 00 AO
60

85 04
A9 FF
BD 00 AC
A9 00

LDA 14
STA DUR

RISE LDA TEMP
JSR TONE
DEC TEMP
BNE RISE
RTS

;BEEPS

LOSE DEC SCORE
LDY SCORE
JSR LIGHT
LDA tLOTONE
JSR TONE
LDY SCORE
BEQ LOSEND
RTS

LOSEN[t LDA 10
STA TEMP
STA PORTlA
LDA t4
STA DUR

FALL LDA TEMP
JSR TONE
INC TEMP
BNE FALL
RTS

;SHORT DURATION FOR INDIVIDUAL
IN WARBLE,

;GET FREQUENCY,,,,
;,,,,FOR BEEF',
;NEXT BEEP WILL BE HIGHER,
;Do NEXT BEEF' IF NOT DONE,
;RETURN FOR RESTART,
;IF SPIN BAD, SCORE•SCORE-1
;SHOW SCORE

,PLAY LOW LOSE TONE,

,GET SCORE TO SEE ,,,,
,IF GAME IS OVER,
,IF NOT, RETURN FOR NEXT SPIN,
,SET TEMP FOR USE AS FREQ PARM
,IN FALLING WARBLE,
; CLEAR LED t1,

,PLAY BEEP,
;NEXT TONE WILL BE LOWER,

,RETURN FOR RESTART,

,VARIABLE LENGTH DELAY SUBROUTINE,
,DELAY LENGTH• (2046*[C0NTENTS OF DURJtlO) US,

DELAY LDY DUR
DL! LDX UFF
DL2 BNE *+2

DEX
BNE DL2
DEY
BNE DL!
RTS

,GET DELAY LENGTH,
, SET CNTR FOR INNER 2040 US, LOOP
,WASTE TIME,
; DECREMENT INNER LOOP CNTR,
,LOOP 'TILL INNER LOOP DONE,
;DECREMENT OUTER LOOP CNTR,
; LOOP 'TILL DONE,
;RETURN,

,SUBROUNTINE TO LIGHT LED CORRESPONDING
,TO THE CONTENTS OF REGISTER YON ENTERING,

LIGHT LDA
STA
STA
STA
CPY
BEQ
DEY
SEC

to
TEMP
PORTlA
PORTlB
t15
*+3

,CLEAR REG, A FOR BIT SHIFT,
,CLEAR OVERFLOW FLAG,
,CLEAR LOW LEDS,
,CLEAR HIGH LEDS,
,CODE FOR UNCONNECTED BIT?
,IF 50, NO CHNG,
;DECREMENT TO MATCH,
,SET BIT TO BE SHIFTED HIGH,

LTSHFT ROL
BCC

A ,SHIFT BIT LEFT,
LTCC ,IF CARRY SET, OVERFLOW HAS

,OCCURRED INTO HIGH BYTE,
LDX
STX
ROL

l$FF ; SET OVERFLOW FLAG,

LTCC DEY
BPL
LDX
BNE

LOBYTE STA
RTS

HIBYTE STA
RTS .

TEMP
A

LTSHFT
TEMP
HI BYTE

,HIGH
PORTlA

PORTlB

,MOVE BIT OUT OF CARRY,
,ONE LESS BIT TO BE SHIFTED,
,SHIFT AGAIN IF NOT DONE,
,GET OVERFLOW FLAG,
,IF FLAG(>O, OVERFLOW: A CONTAINS

BYTE,
;STORE A IN LOW ORDER LEDS,
.RETURN,
,STORE A IN HIGH ORDER LEDS,
.RETURN,

HONE GENERATION SUBROUTINE,

TONE STA FREQ
LDA UFF
STA PORT3B
LDA too

,.._ _______ Fig. 7.9: Slot Machine Program Continued ---------'

116

REAL TIME SIMULATION

0274 036D A6 03 LDX DUR
0275 036F A4 04 FL2 LDY FREQ
0276 0371 BB FU DEY
0277 0372 18 CLC
0278 0373 90 00 BCC H2
0279 0375 DO FA BNE FU
0280 0377 49 FF EOR J$FF
0281 0379 BD 00 AC STA F'ORT3B
0282 037C CA DEX
0283 037D DO FO BNE Fl2
0284 037F 60 RTS
0285 0380
0286 0380 IRANDOM NUMBER GENERATOR SUBROUTINE,
0287 0380
0288 0380 38 RANDOM SEC
0289 0381 AS 15 LDA RND+l
0290 0383 65 18 ADC RND+4
0291 0385 65 19 ADC RNDt5
0292 0387 85 14 STA RND
0293 0389 A2 04 LDX 14
0294 038B B5 14 RNDSH LDA RNfl,X
0295 038D 95 15 STA RND+l,X
0296 03BF CA DEX
0297 0390 10 F9 BPL RNDSH
0298 0392 60 RTS
0299 0393 ,END

SYMBOL TABLE

SYMBOL VALUE

CNTLP 02B3 DDRlA A003 DDRlB A002 DDR3B AC02
DELAY 0330 DISPLY 0227 DU 0332 DL2 0334
DUR 0003 EVAL 02A7 FALL 0326 FL! 0371
FL2 036F FREQ 0004 GETKEY 0100 GETRN[t 0231
HI BYTE 0360 HI LIM 0087 HITONE 0020 !NCR OOOB
INDX 0008 KEY 0218 LDRN[t 022F LEDUPD 0270
LIGHT 033D LOBYTE 035C LOLIM 005A LOSE 030A
LOSE ND 031B LOTONE OOFO LTABLE 001A LTCC 0355
LTMSK OOOE LTSHFT 034D NORST 0258 NXTUPD 028F
OFFLD9 0280 PORTlA AOOl PORTlB AOOO PORT3B ACOO
RANDOM 0380 RISE 0300 RND 0014 RN[tSH 038B
SCORE 0002 SCORLP 028C SCORTB 0023 SCORTP 0001
SPDPRM 0050 SPDUPD 0269 SPEEDS 0005 START 0210
TlCL A004 TEMP 0000 TONE 0364 UPDATE 0245
UPDTLP 0247 VALUES 0011 WAIT 0294 WIN 02D6
WINEND 02EE
END OF ASSEMBLY

Fig. 7.9: Slot Machine Program (Continued)

- SCORTP is used as a temporary storage for the score gained or
lost on each spin

- SCORE is the game score
- DUR and FREQ specify the usual constants for tone generation
- SPEEDS (3 locations) specify the revolution speeds for the three

columns
- INDX (3 locations): delay counters for LED revolutions
- INCR (3 locations): pointers to the LED positions in each column

used to fetch patterns out of tables
- LTMSK (3 locations): patterns indicating lit LEDs
- VALUES (3 locations): number of LEDs lit in each column
- RND (6 locations): scratch-pad for random number generator.

117

ADVANCED 6502 PROGRAMMING

Program Implementation

The program consists of a main program and two main subroutines:
DISPLY and EVAL. It also contains some utility subroutines: DELAY
for a variable length delay, LIGHT to light the appropriate LED,
TONE to generate a tone, and RANDOM to generate a random
number.

The main program is stored at memory locations 200 and up. As
usual, the three data-direction registers for Ports A and B of VIA#l
and for Port B of VIA#3 must be conditioned as outputs:

LDA #$FF
STA DDRlA
STA DDRlB
STA DDR3B

As in previous chapters, the counter register of timer 1 is used to pro­
vide an initial random number (a seed for the random number generator) .
.This seed is stored at memory location RND + 1, where it will be used
later by the random number generation subroutine:

LDA TlCL
STA RND +

On starting a new game, the initial score is set to 8. It is established:

START LDA#8
STA SCORE

and displayed:

TAY Y must contain it
JSR LIGHT

The LIGHT subroutine is used to display the score by lighting up the
LED corresponding to the contents of register Y. It will be described
later.

The slot machine program is now ready to respond to the player.
Any key may be pressed:

KEY JSR GETKEY

118

REAL TIME SIMULATION

As soon as a key has been pressed, the wheels must be spun:

JSR DISPLY

Once the wheels have stopped, the score must be evaluated and
displayed with the accompanying sound:

JSR EVAL

If the final score is not "O," the process is restarted:

LDASCORE
BNEKEY

and the user may spin the wheels again. Otherwise, if the score was
"O," a new game is started:

BEQ START

This completes the body of the main program. It is quite simple
because it has been structured with subroutines.

The Subroutines

The algorithms corresponding to the two main subroutines DISPLY
and EVAL have been described in the previous section. Let us now
consider their program implementation.

DISPLY Subroutine

Three essential subroutine parameters are LOLIM, HILIM, and
SPDPRM. For example, lowering LOLIM will result in a longer spin­
ning time for the LEDs. Various other effects can be obtained by vary­
ing these three parameters. One might be to include a win almost every
time! Here LOLIM = 90, HILIM = 134, SPDPRM = 80.

Memory location INCR is used as a pointer to the current LED
position. It will be used later to fetch the appropriate bit pattern from
the table, and may have the value 0, I, or 2 (pointing to LED positions
I, 2, or 3). The three pointers for the LEDs in each column are stored
respectively at memory locations INCR, INCR + I, and INCR + 2.
They are initialized to 0:

119

ADVANCED 6502 PROGRAMMING

DISPLY LDA #0
STA INCR
STA INCR + 1
STA INCR + 2

Note that in the previous examples (such as Figure 7. 7), in order to
simplify the explanations, we have used pointers X and Y to repre­
sent the values between 1 and 3. Here, X and Y will have values rang­
ing between O and 2 to facilitate indexing. The wheel pointer is set to
the right-most wheel:

LDRND LDY #2

An initial random number is obtained with the RANDOM subroutine:

GETRND JSR RANDOM

The number returned by the subroutine is compared with the accep­
table low limit and the acceptable high limit. If it does not fit within
the specified interval, it is rejected, and a new number is obtained until
one is found which fits the required interval.

CMP #HILIM
BCS GETRND
CMP #LOLIM
BCC GETRND

Too large?
If so, get another
Too small?
If so, get another

The valid random number is then stored in the index location INDX
and in the SPEEDS location for the current column. (See Figure 7 .10.)

STA INDX,Y
STA SPEEDS,Y

The same process is carried out for column 1 and column 0:

DEY
BPL GETRND Get next random #

Once all three columns have obtained their index and speed, a new
iteration loop is started, using register X as a wheel counter:

120

REAL TIME SIMULATION

0 2

0 0 0 0
000

SPEEDS

INDX

INCR 0 0 0

Fig. 7.10: Spinning the Wheels

UPDATE LDX #2 Set counter for 3 iterations

The speed is tested for the value 0:

UPDTLP LDY SPEEDS,X
BEQ NXTUPD

Is speed (X) = O?
If so, update next column

As long as the speed is not 0, the next LED in that column will have to
be lit. The delay count is decremented:

DEC INDX,X Decrement loop, index (X)

121

ADVANCED 6502 PROGRAMMING

If the delay has not decremented to 0, a branch occurs to NXTUPD
which will be described below. Otherwise, if the delay counter INDX
is decremented to 0, the next LED should be lit. The LED pointer is
incremented with a possible wrap-around if it reaches the value 3:

NORST

BNE NXTUPD

LDY INCR,X
INY
CPY #3
BNE NORST
LDY #0
STY INCR,X

If loop index(X) < > 0, do
next update
Inc pointer

Pointer = 3?
If not, skip
Reset to 0
Restore pointer(X)

The new value of the LED pointer is stored back into INCR for the
appropriate column. (Remember that within the UPDATE routine, X
points at the column.) In order to light the appropriate LED, a bit pat­
tern must be obtained from LTABLE. Note that LTABLE (and also
SCORTB) is treated conceptually,as if it was a two-dimensional array,
i.e., having rows and columns. However, both LTABLE and
SCORTB appear in memory as a contiguous series of numbers. Thus,
in order to obtain the address of a particular element, the row number
must be multiplied by the number of columns and then added to the
column number.

The table will be accessed using the indexed addressing mode, with
register Y used as the index register. In order to access the table, X
must first be multiplied by 3, then the value of INCR (i.e., the LED
pointer) must be added to it.

Multiplication by 3 is accomplished through a left shift followed by
an addition, since a left shift is equivalent to multiplication by 2:

STX TEMP
TXA
ASLA
CLC
ADC TEMP

Multiply X by 3

Left shift

Plus one

The value of INCR is added, and the total is transferred into register Y
so that indexed addressing may be used. Finally, the entry may be
retrieved from LTABLE:

122

REAL TIME SIMULATION

ADC INCR,X
TAY
LDA LTABLE,Y Get pattern for LED

Once the pattern has been obtained, it is stored in one of three
memory locations at address L TMSK. and following. The pattern is
stored at the memory location corresponding to the column currently
being updated, where the LED has "moved." The lights will be turned
on only after the complete pattern for all three columns has been im­
plemented. As a result of the LED having moved one position within
that column, the speed constant must be incremented:

SPDUPD
STA LTMSK,X
LDY SPEEDS,X
INY
STY SPEEDS,X

The index is set so that it is equal to the new speed:

STY INDX,X

Note that special handling will now be necessary for LED #9. The
pattern to be displayed on the first eight LEDs was stored in the
LTABLE. The fact that LED #9 must be lit is easily recognized by the
fact that the pattern for column #3 shows all zeroes; since one LED
must be lit at all times within that column, it implies that LED #9 will
be lit:

LEDUPD LDA #0
STA PORTIB Reset LED 9

Next, the pattern for the third column is obtained from the location
where it had been saved at LTMSK + 2. It is tested for the value of 0:

LDA LTMSK + 2
BNE OFFLD9

If this pattern is 0, then LED #9 must be turned on:

LDA #01

123

ADVANCED 6502 PROGRAMMING

STA PORTlB

Otherwise, a branch occurs to location OFFLD9, and the remaining
LEDs will be turned on. The pattern contained in the accumulator
which was obtained from LTMSK + 2, is successively OR'ed with the
patterns for the second and first columns:

OFFLD9
LDA#O
ORA LTMSK
ORA LTMSK +

At this point, A contains the final pattern which must be sent out in
the output port to turn on the required LED pattern. This is exactly
what happens:

STA PORTIA

At the same time, the speaker is toggled:

LDA PORT3B
EOR #$FF
STA PORT3B

It is important to understand that even though only the LED for one
of the three columns has been moved, it is necessary to simultaneously
turn on LEDs in all of the columns or the first and second columns
would go blank!

Once the third column has been taken care of, the next one must be
examined. The column pointer X is therefore decremented, and the
process is continued:

NDTUPD DEX
BPL UPDTLP If X >= 0 do next update

Once the second and the first columns have been handled, a delay is
implemented to avoid flashing the LEDs too fast. This delay is con­
trolled by the speed parameter SPDPRM:

WAIT

124

LDY #SPDPRM
DEY
BNE WAIT

REAL TIME SIMULATION

y = 0 2 VALUES

0

•0• 2

000 0

INCR 0

Fig. 7. 11: Evaluating the End of A Spin

Once this complete cycle has been executed, the speed location for
each column is checked for the value 0. If all columns are 0, the spin is
finished:

LDA SPEEDS
ORA SPEEDS+
ORA SPEEDS + 2
BNE UPDATE

Otherwise, a branch occurs at the location UPDATE. If all LEDs
have stopped, a pause must be generated so that the user may see the
pattern:

and exit occurs:

LDA #$FF
STA DUR
JSR DELAY

RTS

125

ADVANCED 6502 PROGRAMMING

Exercise 7-2: Note that the contents of the three SPEEDS locations
have been OR'ed to test for three zeroes. Would it have been equivalent
to add them together?

EVAL Subroutine

This subroutine is the user output interface. It computes the score
achieved by the player and generates the visual and audio effects. The
constants for frequencies for the high tone generated by a win situation
and the low tone generated by a lose situation are specified at the
beginning of this subroutine:

HITONE = $20
LOTONE = $FD

The method used to compute the number of LEDs lit per row has been
discussed and shown in Figure 7. 7. The number of LEDs lit for each
row is initially reset to 0:

EVAL LDA #0
STA VALUES
STA VALUES+
STA VALUES + 2

The temporary score is also set to 0:

STA SCORTP

Index register Y will be used as a column pointer, and the number of
LEDs lit in each row will be computed. The number of the LED lit for
the current column is obtained by reading the appropriate INCR en­
try. See the example in Figure 7 .11. The value contained in each of the
three locations reserved for INCR is a row number. This row number
is stored in register X, and is used as an index to increment the ap­
propriate value in the VALUES table. Notice how this is accomplished
in just two instructions, by cleverly using the indexed addressing feature
of the 6502 twice:

CNTLP LDY #2 3 iterations
LDX INCR,Y
INC VALUES,X

126

REAL TIME SIMULATION

Once this is done for column 2, the process is repeated for columns 1
and 0:

DEY
BPL CNTLP

Now, another iteration will be performed to convert the final numbers
entered in the VALUES table into the actual scores as per the
specifications of the score table, SCORTB. Index register Xis used as
a row-pointer for VALUES and SCORTB.

LDX#2

Since the SCORTB table has four one-byte entries per row level, in
order to access the correct byte within the table the row number must
first be multiplied by 4, then the corresponding "value" (number of
LEDs lit) for that row must be added to it. This provides the correct
displacement. The multiplication by 4 is implemented by two suc­
cessive left shifts:

SCORLP TXA
ASLA
ASLA

The number presently contained in the accumulator is equal to 4 times
the value contained in X, i.e., 4 times the value of the row-pointer. To
obtain the final offset within the SCORTB table, we must add to that
the number of LEDs lit for that row, i.e., the number contained in the
VALUES tables. This number is retrieved, as usual, by performing an
indexed addressing operation:

CLC
ADC VALUES,X Column address in array

This results in the correct final offset for accessing SCORTB.
The indexed access of the SCORTB table can now be performed.

Index register Y is used for that purpose, and the contents of the ac­
cumulator are transferred to it:

TAY

127

ADVANCED 6502 PROGRAMMING

The access is performed:

LDA SCORTB, Y Get score for this spin

The correct score for the number of LEDs lit within the row pointed to
by index register X is now contained in the accumulator. The partial
score obtained for the current row is added to the running total for all
rows:

CLC
ADC SCORTP
STA SCORTP

Total the scores
Save

The row number is then decremented so that the next row can be ex­
amined. If X decrements from the value 0, i.e., becomes negative, we
are done; otherwise, we loop:

DEX
BPL SCORLP

At this point, a total score has been obtained for the current spin.
Either a win or a lose must be signaled to the player, both visually and
audibly. In anticipation of activating the speaker, the memory loca­
tion DUR is set to the correct tone duration:

LDA #$60
STA DUR

The score is then examined: if 0, a branch occurs to the LOSE routine:

LDA SCORTP
BEQ LOSE

Otherwise, it is a win. Let us examine these two routines.

WIN Routine

The final score for the user (for all spins so far) is contained in
memory location SCORE. This memory location will be incremented
one point at a time and checked every time against the maximum value
16. Let us do it:

128

WIN INC SCORE
LOY SCORE
CPY #16

REAL TIME SIMULATION

If the maximum value of 16 has been reached, it is the end of the game
and a branch occurs to location WINEND:

BEQ WINEND

Otherwise, the score display must be updated and a beep must be
sounded:

JSR LIGHT

The LIGHT routine will be described below. It displays the score to
the player. Next, a beep must be sounded.

LOA #HITONE
JSR TONE

The TONE routine will be described later.
A delay is then implemented:

JSR DELAY

then the score for that spin is decremented:

DEC SCORTP

and checked against the value 0. If it is 0, the scoring operation is com­
plete; otherwise, the loop is reentered:

BNE WIN
RTS

WINEND Routine

This routine is entered whenever a total score of 16 has been
reached. It is the end of the game. All LEDs are turned on
simultaneously, and a siren sound with rising frequencies is activated.
Finally, a restart of the game occurs.

129

ADVANCED 6502 PROGRAMMING

All LEDs are turned on by loading the appropriate pattern into Port
lA and Port lB:

LOA #$FF
STA PORTIA
STA PORTlB

Turn on all LEDs

Variables are reinitialized: the total score becomes 0, which signals to
the main program that a new game must be started, the DUR memory
location is set to 4 to control the duration of time for which the beeps
will be sounded, and the frequency parameter is set to "FF" at loca­
tion TEMP:

STA TEMP
LDA#O
STA SCORE
LDA#4
STA DUR

Freq. parameter

Clear for restart

Beep duration

The TONE subroutine is used to generate a beep:

RISE LOA TEMP
JSR TONE

Get frequency
Generate beep

The beep frequency constant is then decremented, and the next beep is
sounded at a slightly higher pitch:

DEC TEMP
BNE RISE

Whenever the frequency constant has been decremented to 0, the siren
is complete and the routine exits:

RTS

LOSE Routine

Now let us examine what happens in the case of a lose situation. The
events are essentially symmetrical to those that have been described
for the win.

In the case of a loss, the score needs to be updated only once. It is
decremented by 1:

130

REAL TIME SIMULATION

LOSE DEC SCORE

The lowered score is displayed to the user:

LDY SCORE
JSR LIGHT

An audible tone is generated:

LOA #LOTONE
JSR TONE

The final value of the score is checked to see whether a "O" score has
been reached. If so, the game is over; otherwise, the next spin is
started:

LOY SCORE
BEQ LOSEND
RTS

Let us look at what happens when a "O" score is reached (LOSEND).
A siren of decreasing frequencies will be generated. All LEDs will go
blank on the board:

LOSEND LDA#O
STA TEMP
STA PORTIA Clear LED #1

The beep duration for each frequency is set to a value of 4, stored at
memory location DUR:

LDA #4
STA DUR

The beep for the correct frequency is then generated:

FALL LDA TEMP
JSR TONE Play beep

Next, the frequency constant is increased by 1, and the process is
restarted until the TMP register overflows.

131

ADVANCED 6502 PROGRAMMING

INC TEMP
BNE FALL
RTS

Next tone will be lower

This completes our description of the main program. Let us now ex­
amine the four subroutines that are used. They are: DELAY, LIGHT,
TONE, and RANDOM.

DELAY Subroutine

This subroutine implements a delay; the duration of the delay is set
by the contents of memory location DUR. The resulting delay length
will be equal to (2046 x DUR + 10) microseconds. The delay is im­
plemented using a traditional two-level, nested loop structure. The
inner-loop delay is controlled by index register X, while the outer-loop
delay is controlled by index register Y, which is initialized from the
contents of memory location DUR. Y is therefore initialized:

DELAY LOY DUR

The inner loop delay is then implemented:

DL1
DL2

LOX #$FF
BNE *+2
DEX
BNE DL2

Waste time
Inner loop counter
Inner loop

And, finally, the outer loop is implemented:

DEY
BNE DL1
RTS

Exercise 7-3: Verify the exact duration of the delay implemented by
the DELA Y subroutine.

LIGHT Subroutine

This subroutine lights the LED corresponding to the number con­
tained in register Y. Remember that the fifteen LEDs on the Games

132

REAL TIME SIMULATION

Board are numbered externally from 1 to 15 but are connected to bits 0
to 7 of Port IA and O to 7 of Port lB. Thus, if a score of 1 must be
displayed, bit O of Port IA must be turned on. Generally, bit N of Port
IA must be turned on when N is equal to the score minus one. However,
there is one exception. To see this, refer to Figure 1.4 showing the
LED connections. Notice that bit 6 of Port 1B is not connected to any
LEDs. Whenever a score of fifteen must be displayed, bit 7 of Port 1B
must be turned on. This exception will be handled in the routine by
simply not decrementing the score when it adds up to fifteen.

The correct pattern for lighting the appropriate LED will be created
by shifting a "l" into the accumulator at the correct position. Other
methods will be suggested in the exercise below. Let us first initialize:

LIGHT LDA#O
STA TEMP
STA PORTIA
STA PORTlB

We must first look at the situation where the score contained in Y is
15 and where we do nothing (no shift):

CPY #15
BEQ *+3

Code for uncorrected bit?
If so, no change

For any other score, it is first decremented, then the shift is per­
formed:

LTSHFT

DEY
SEC
ROLA

Decrement to internal code
Set bit to be shifted

The contents of the accumulator were zeroed in the first instruc­
tion of this subroutine. The carry is set to the value 1, then shifted into
the right-most position of A. (See Figure 7 .12.) This process will be
repeated as many times as necessary. Since we must count from 1 to
14, or O to 13, an overflow will occur whenever the "l" that is rotated
in the accumulator "falls off" the left end. As long as this does not
happen, the shifting process continues, and a branch to location
LTCC is implemented:

BCC LTCC

133

ADVANCED 6502 PROGRAMMING

7 0

0

T~ 0: 0 :0 :0 :0: o; 0: +&:r"" JROTATION

0

Ar 0: 0: o; 0: 0: 0: 1 : 0 ':81 AFTER2ROTATIONS

0

Fig. 7.12: Creating the LED Pattern

However, if the "I" bit does fall off the left end of the accumulator,
the value "FF" is loaded at memory location TEMP to signal this oc­
currence. Remember that the value was cleared in the second instruc­
tion of the LIGHT subroutine.

LDX #$FF
STX TEMP

The "1" bit is then moved from the carry into the right-most position
of the accumulator. Later, the value contained in memory location
TEMP will be checked, and this will determine whether the pattern
contained in the accumulator is to be sent to Port IA or to Port lB.

134

REAL TIME SIMULATION

The shifting process continues. The counter is decremented, and, if
it reaches the value "O," we are done; otherwise, the process is
repeated:

LTCC
ROLA
DEY
BPL LTSHFT

Once the process is completed, the value of memory location TEMP is
examined. If this value is ''O, '' it indicates that no overflow has oc­
curred and Port lA must be used. If this value is not "O," i.e., it is
"FF," then Port lB must be used:

LO BYTE

HIBYTE

LDX TEMP
BNE HIBYTE
STA PORTIA
RTS
STA PORTlB
RTS

TONE Subroutine

Get overflow flag

A sent to low LEDs
Return
A sent to high LEDs

This subroutine generates a beep. The frequency of the beep is
determined by the contents of the accumulator on entry; the duration
of the beep is set by the contents of the memory location DUR. This
has already been described in Chapter 2.

RANDOM Subroutine

This is a simple random number generator. The subroutine has
already been described in Chapter 3.

Exercise 7-4: Suggest another way to generate the correct LED pattern
in the accumulator, without using a sequence of rotations.

Game Variations

The three rows of LEDs supplied on the Games Board may be inter­
preted in a way that is different from the one used at the beginning of
this chapter. Row 1 could be interpreted as, say, cherries. Row 2 could
be interpreted as stars, and row 3 could be interpreted as oranges.
Thus, an LED lit in row 1 at the end of a spin shows a cherry, while

135

ADVANCED 6502 PROGRAMMING

two LEDs in row 3 show two oranges. The resulting combination is
one cherry and two oranges. The scoring table used in this program
can be altered to score a different number of points for each combina­
tion, depending upon the number of cherries, oranges, or stars present
at the end of the spin. It becomes simply a matter of modifying the
values entered into the scoring table. When new values are entered in­
to the scoring table a completely different scoring result will be im­
plemented. No other alterations to the program will be needed.

SUMMARY

This program, although simple in appearance, is relatively complex
and can lead to many different games, depending upon the evaluation
formula used once the lights stop. For clarity, it has been organized into
separate routines that can be studied individually.

136

8. Real Time Strategies
(Echo)

INTRODUCTION

A stack technique is used to accumulate information. It is compared
to the use of scratch locations.

THE RULES

The object of this game is to recognize and duplicate a sequence of
lights and sounds which are generated by the computer. Several varia­
tions of this game, such as "Simon" and "Follow Me" (manufacturer
trademarks*), are sold by toy manufacturers. In this version, the player
must specify, before starting the game, the length of the sequence to be
recognized. The player indicates his or her length preference by press­
ing the appropriate key between 1 and 9. At this point the computer
generates a random sequence of the desired length. It may then be
heard and seen by pressing any of the alphabetic keys (A through F).

When one of the alphabetic keys is pressed, the sequence generated
by the program is displayct:l on the corresponding LEDs (labeled 1
through 9) on the Games Board, while it is simultaneously played
through the loudspeaker as a sequence of notes. While this is happen­
ing, the player should pay close attention to the sounds and/or lights,
and then enter the sequence of numbers corresponding to the sequence
he or she has identified. Every time that the player presses a correct
key, the corresponding LED on the Games Board lights up, indicating
a success. Every time a mistake is made, a low-pitched tone is heard.

At the end of the game, if the player has guessed successfully, all
LEDs on the board will light up and a rising scale (succession of notes)
is played. If the player has failed to guess correctly, a single LED will
light up on the Games Board indicating the number of errors made,
and a descending scale will be played.

If the player guessed the series correctly, the game will be restarted.
Otherwise, the number of errors will be cleared and the player will be
given another chance to guess the series.

*"Follow Me" is a trademark of Atari, Inc., "Simon" is a trademark of Milton Bradley Co.

137

ADVANCED 6502 PROGRAMMING

At any time during a game, the player may press one of the
alphabetic keys that will allow him or her to hear the sequence again.
All previous guesses are then erased, and the player starts guessing
again from the beginning.

Two LEDs on the bottom row of the LED matrix are used to com­
municate with the player:

LED 10 (the left-most LED) indicates "computer ready - enter the
length of the sequence desired."

LED 11 lights up immediately after the player has specified the
length of the sequence. It will remain lit throughout the game and it
means that you should "enter your guess."

At this point, the player has three options:
1. To press a key corresponding to the number in the sequence that

he or she is attempting to recognize.
2. To press key 0. This will result in restarting the game.
3. To press keys A through F. This will cause the computer to play

the sequence again, and will restart the guessing sequence.

Variations

The program provides a good test for your musical abilities. It is
suggested that you start each new game by just listening to the se­
quence as it is played on the loudspeaker, without looking at the LEDs.
This is because the LEDs on the Games Board are numbered, and it is
fairly easy to remember the light sequence simply by memorizing the
numbers. This would be too simple. The way you should play it is to
start with a one-note sequence. If you are successful, continue with a
two-note sequence, and then with a three-note sequence. Match your
skills with other players. The player able to recognize the longest se­
quence is the winner. Note that some players are capable of recogniz­
ing a nine-note sequence fairly easily.

After a certain number of notes are played (e.g., when more than
five notes are played), in order to facilitate the guessing you may
allow the player to look at the LEDs on the Games Board. Another
approach might be to allow the player to press one of the alphabetic keys
at any time in order to listen to the sequence again. However, you may
want to require that the player pay a penalty for doing this. This could
be achieved by requiring that the player recognize a second sequence
of the same length before trying a longer one. This means that if, for
example, a player attempts to recognize a five-note sequence but
becomes nervous after making a mistake and forgets the sequence,

138

REAL TIME STRATEGIES

that player will be allowed to press one of the alphabetic keys and hear
the sequence again. However, if the player is successful on the second
attempt, he or she must then recognize another five-note sequence
before proceeding to a six-note one.

You can be even tougher and specify that any player is allowed a
replay of the stored pattern a maximum of two, three, or five times
per game. In other words, throughout the games a player may replay
the sequence he or she is attempting to guess by pressing one of the
alphabetic keys, but this resource may be used no more than n times.

An ESP Tester

Another variation of this game is to attempt to recognize the se­
quence without listening to it or seeing it! Clearly, in such a case you
can rely only on your ESP (Extra Sensory Perception) powers to
facilitate guessing. In order to determine whether you have ESP or
not, set the length of the initial sequence to "1." Then, hit the key in
an attempt to guess the note selected by the program. Try this a
number of times. If you do not have ESP your results should be ran­
dom. Statistically, you should win one out of nine times which is only
one-ninth of the time, or 11.110/o of the time. Note that this percent­
age is valid only for a large number of guesses.

If you win more than 11 0/o of the time, you may have ESP! If your
score is higher than 50%, you should definitely run for political office
or immediately apply for a top management position in business. If
your score is less than 11 0/o, you have ''negative ESP'' and you should
consider looking both ways before crossing the street.

The following is an exercise for readers who have a background in
statistics.

Exercise 8-1: Compute the statistical probability of guessing a correct
two-number sequence, and a correct four-number sequence.

A TYPICAL GAME

The program starts at location 200. As usual, LED 10 lights up as
shown in Figure 8.1. We specify a series of length two by pushing key
"2" on the keyboard. The LED display as it appears in Figure 8.2,
means "enter your guess."

We want to hear the tunes so we push key ''F.'' In response, LEDs 5
and 2 light up briefly on the Games Board and corresponding tones

139

ADVANCED 6502 PROGRAMMING

eooooo
10 11 12 13 14 15

Fig. 8. 1: Specify Length of Sequence to Duplicate

oeoooo
10 11 12 13 14 15

Fig. 8.2: Enter Your Guess

0 0 0 0 • 0
2 3 l 2 3

0 • 0 0 0 0
4 5 6 4 5 6

0 0 0 0 0 0
7 8 9 7 8 9

oeoooo oeoooo
10 11 12 13 14 15 10 11 12 13 14 15

Fig.8.3: Follow Me

are heard through the speaker. This is illustrated in Figure 8.3. We
must now enter the sequence we have recognized. We push "5" on the
keyboard. In response, LED 11 goes blank and LED 5 lights up briefly.
Simultaneously, the corresponding note is played through the speaker.
It is a successful guess!

Next, we press key "2." LED 2 lights up, and the speaker produces
the matching tone indicating that our second guess has also been suc­
cessful. A moment later, all LEDs on the board light up to con­
gratulate us and the rising scale is sounded. It is a sequence of notes of
increasing frequencies meant to confirm that we have guessed sue-

140

REAL TIME STRATEGIES

cessfully. The game is then restarted, and LED 10 lights up, as shown
in Figure 8.1.

Let us now follow a losing sequence: LED 10 is lit at the beginning
of the game, as in Figure 8.1. This time we press key "l" in order to
specify a one-note sequence. Led 11 lights up, as shown in Figure 8.2.
We press key ''F,'' and the note is played on the speaker. (We do not
look at the Games Board to see which LED lights up, as that would be
too easy.) We press key "3." A "lose" sound is heard, and LED 1
lights up indicating that one mistake has been made. A decreasing
scale is then played (notes of decreasing frequencies) to confirm to the
unfortunate player that he or she has guessed the sequence incor­
rectly. The game is then continued with the same sequence and length,
i.e., the situation is once again the one indicated in Figure 8.2.

If at this point the player wants to change the length of the se­
quence, or enter a new sequence, he or she must explicitly restart the
game by pressing key 0. After pressing key 0, the situation will be
the one indicated in Figure 8.1, where the length of the sequence can
be specified again.

THE ALGORITHM

The flowchart for this program is shown in Figure 8.4. Let us ex­
amine it, step-by-step:

1. The program tells the player to select a sequence length by
lighting LED 10 on the Games Board.

2. The sequence length is read from the keyboard. (Keys O and
A-F are ignored at this point.)

3. The two main variables are initialized to "O," i.e., the number
of guesses and the number of errors are cleared.

4. A sequence table of the appropriate length must then be
generated using random numbers whose values are between 1
and 9.

5. Next, LED 11 is lit, and the player's keystroke is read.
6. If it is "O," the game is restarted. Otherwise, we proceed.
7. If the keystroke value is greater than or equal to 10, it is an

alphabetic character and we branch off to the right part of the
flowchart into steps 8 and 9. The recorded sequence is displayed
to the player, all variables are reinitialized to 0, and the guess­
ing process is restarted. If the keystroke was a number between
1 and 9, it must be matched against the stored value. We go to
10 on the flowchart.

141

ADVANCED 6502 PROGRAMMING

142

2

3

4

5

YES

START

SIGNAL PLAYER TO
ENTER SEQUENCE

LENGTH

READ SEQUENCE
LENGTH FROM

KEYBOARD

FILL SEQUENCE TABLE
WITH RANDOM

NUMBERS BETWEEN
l AND9

Fig, 8.4: Echo Flowchart

NO

YES

LIGHT LED (KEY
11 NUMBER) PLAY

TONE (KEY NUMBER)

12

NO

LIGHT ALL LEDS
15 PLAY ASCENDING

TONES

8

9

REAL TIME STRATEGIES

GUESS NUMBER = 0
ERRORS= 0

DISPLAY NUMBER OF
16 ERRORS, PLAY

DESCENDING TONES

17

Fig. 8.4: Echo Flowchart (Continued)

143

ADVANCED 6502 PROGRAMMING

10. If the guess was correct, we branch right on the flowchart to
step 11.

11. Since the key pressed matches the value stored in memory, the
corresponding LED on the Games Board is lit, and the tone
corresponding to the key that has been pressed is played.

12. The guessed number is incremented, and then it is compared to
the maximum length of the sequence to be guessed.

13. A check is made to see if the maximum length of the sequence
has been reached. If it has not, a branch occurs back to step 5
on the flowchart, and the next keystroke is obtained. If the
maximum length of the sequence has been reached, we proceed
down the flowchart to the box labeled 14.

14. The total number of errors made by the player is checked. The
variable ERRORS is tested against the value "O." If it is "O" it
is a winning situation and a branch occurs to box 15.

15. All LEDs on the board are lit, a sequence of ascending tones is
played, and a branch occurs back to the beginning of the game.

Let us now go back to box 14. If the number of errors was greater
than zero, this is a "lose" situation and a branch occurs to box 16.

16. The number of errors is displayed, and a sequence of descend­
ing tones is played.

17. All variables are reset to 0, and a branch occurs to box 5, giving
the player another chance to guess the series.

Now we shall turn our attention back to box 10 on the flowchart,
where the value of the key was being tested against the stored value.
We will assume this time that the guess was wrong, and branch to the
left of box 10.

18. The number of errors made by the player is incremented by
one.

19. A low tone is played to indicate the losing situation. The pro­
gram then branches back to box 12 and proceeds as before.

THE PROGRAM

The complete program appears in Figure 5 .1. The program uses two
tables, and several variables. The two tables are NOTAB used to
specify the note frequencies, and DURTAB used to specify the note
durations. Both of these tables were introduced in Chapter 2, and will
not be described here. Essentially, they provide the delay constants re­
quired to implement a note of the appropriate frequency and to play it
for the appropriate length of time. Note that it is possible to modify

144

LINE t LOC CODE

0002 0000
0003 0000
0004 0000
0005 0000
0006 0000
0007 0000
0008 0000
0009 0000
0010 0000
0011 0000
0012 0000
0013 0000
0014 0000
0015 0000
0016 0000
0017 0000
0018 0000
0019 0000
0020 0000
0021 0000
0022 0000
0023 0000
0024 0000
0025 0000
0026 0000
0027 0000
0028 0000
00:29 0000
0030 0000
0031 0000
0032 0000
0033 0000
0034 0000
0035 0000
0036 0000
0037 0000
0038 0000
0039 0000
0040 0000
0041 0000
0042 0000
0043 0000
0044 0000
0045 0000
0046 0000
0047 0000
0048 0000
0049 0000
0050 0000
0051 0200
0052 0200 A9 FF
0053 0202 8D 03 AO
0054 0205 8D 02 AO
0055 0208 8D 02 AC
0056 020B A9 00
0057 020D 8D 01 AO
0058 0210 85 02
0059 0212 85 01
0060 0214 AD 04 AO
0061 02:1.7 85 10
0062 0219 85 13
0063 02l.B A9 02
0064 021D 8D 00 AO
006~j 0220 20 00 01
0066 0223 C9 00
0067 0225 FO F9
0068 0227 C9 0/\
0069 0229 10 F5
0070 022B 85 00

REAL TIME STRATEGIES

UNF.

'ECHO'
;PATTERN/TONE RECnL_L nND ESP TFST PROGRAM.
;THE USER GUESSES n PnTTERN OF L.TT LEPS nNn
;THEIR /\SSOCIATED TONES. THE rnNE/LTGHT
;coMBINATION CAN BE PLnYFD, so THnT THE l!SFR
;MUST F~EMEMBER IT nNn F:EFNTEF.' IT COF:RFCTLY~

OPERATING THE PRDGRnM:
;THE STARTING ADDRESS IS $~00
;THE BOTTOM ROW OF LEDS IS nN !ND!CnTnR
;FOR PROGRAM srnrus: THE LFFTMOST
;ONE (tlO) INDICnTES THnT THF PROGRAM
; IS EXPECTING THE USFR TO HlF'!.!T THF l FNGTH
90F THE SEQUENCE TO PE GlJFSSEDw
;THE LED SECOND FROM THF L.EFT (flt) INrrsnTFS
;THnT THE PROGRAM EXPECTS F!THER n G!JfSR (1-9~r
;THE COMMAND TO RESTnRT THE GnME (DI, OR
;THE COMMAND TO PlAY THF SEDUFNCF rn-Fl-
iTHE KEYS 1-9 ORF ASSQCTnTFD WITH THF
iLEDS :t.-9.
;LOOKING AT THE SEC!UFMCF !.JHtt.F TN THE MTDft!..F
;oF GUESSING IT WILL ER/\SF nu PRF''}!OIJS
1GUESSES <RESET GESNO /\HD ERRS TO n•.
;/\FTER A WIN, THF' PROGR/\M REST/\RTS.

;LINKAGES!
GETKEY - $100
;
;vnRinBLE STORAGES!
DIGITS - $00 iNt!MBFP OF nTGTTS Hl PFnUF~!r:F

9NUMBER OF CURRENT GUFSP. GESNO - $01

ERRS

DUR
FRECl
TEMP
TABLE
RND

;(WHERE THF 1.!SER TS TN THF SFRTFRl
$02 ;NUMRER nF FRPORS MnDF JN

,GUESSING Cl!F:RENT SFQUENCF.
~~ $03 ; TEMP STOPt:GF FOP ~10TF 1"! 1 !P!\TTPN.
,- $04 ; TEMF' STOfMGE' FOR NOTF FPFfl! !FNr:Y.
- $05 ;rEMPORnRY STORAGE FOR Y RFG.
,,.. $06 ; STOFMGE FOR REOUEMCF
- $OF ;scRnTCHPnn FOR RONDOM f GEN.

;6522 VIA t1 nDDRESSES!
PORTrn - $A001
DDF:lA - $/\003
PORT1B - $1\000
DDR1.B - $A002
T1CL - $1\004
;6522 VIA t3 ADDRFSSFS
PORT3B - $/\COO
DDR3FI ,- $AC02

START

DIG~·;EY

* =- $200

u,n
STA
STA
ST/\
u:,n
ST fl
ST/\
STf"I
LDA
ST/\
STA
l n/\
STA
.JSR
CMP
BFQ
CMP
BPL
STA

,t$FF ~ ~:l:T ! IP !)f'l:Tn T:! :rF-:FCT T n~i PFC T i:::TFF'S ,.
DDRlf\
DDRlP
DDR:JB
to ;cLFf'l:R vnRTOPLF STnR~GFS
PfJF:T1 I\ ; •• , AND I Fn"
ERRS
GESNO
T1CL ;GET SFFP FOR R~!P t GFN
RND+1 ;~ND STORF JN RND SCRnTCH.
RND+1
tX010 ;TURN LFn 110 Q~I Tn TND!Cf\TF
POF:T:I B 7 NE En FnF~ r .. FNGTH H!PlJT ~
GETKFY ;GFT l_F~1GTH 0F SFRTFS.
f"O 7tS ITO?
DIGKEY ;rF YFS, GET f\NPTHFR.
t10 ;LENGTH GRFATER THAN 9?
DIGKEY fTF,YFSv GFT ANOTHER.
DIGITS ;snvE vnLin LENGTH

-------------Fig. 8.5: Echo Program-------------'

145

ADVANCED 6502 PROGRAMMING

0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
Ol.11
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
Ol.40
0141

022D
022E
022F
0231
0234
0236
0237
0238
023A
023B
023D
023[1
023F
0241
0242
0244
0246
0249
024B
024E
0251
0253
0255
0257
0259
0259
0259
0259
0259
025B
025D
025F
0261
0263
0266
0269
026B
026D
026F
0270
0272
0274
0275
0277
0279
027B
027B
027B
027B
027r,
027F
0281
0283
0285
0287
0289
028C
028E
0291
0294
0296
0298
029A
029C
029E
02AO
02A2
02A5
02A7
02A8
02AB

AA
CA
86 05
20 E7 02
A6 05
FB
18
69 00
[18
29 OF

FO FO
95 06
CA
10 EB
A9 00
BD 01 AO
A9 04
BD 00 AO
20 00 01
C9 00
FO AB
C9 OA
30 22

A2 00
86 01
86 02
B5 06
86 05
20 CF 02
20 FA 02
AO FF
66 03
26 03
88
DO F9
A6 05
EB
E4 00
DO E6
FO C9

A6 01
D5 06
FOOD
E6 02
A9 80
85 03
A9 FF
20 04 03
FO 06
20 CF 02
20 FA 02
E6 01
A5 00
C5 01
DO AB
A5 02
C9 00
FO 15
20 CF 02
A9 09
48
20 FA 02
68

T/\X ,USE LENGTH-] /\S INDEX FOR FIi !.!MG ...
DEX 1 •• SERIES W/R/\NDOM V/\LUFS.

FILL STX TEMP ISAUE X FROM 'RANDOM'
,JSR RANDOM
LDX TEMP !RESTORE X
BED ;oo A DEIM/\L ADJUST
CLC
ADC tO
cu,
AND UOF I REMOVE IJPF'ER NYBBLE 8(1
;NUMBER IS <tO
BEQ FILL It CAN'T BE ZERO.
ST/\ TABLE,X ISTORE t IN T/\BLE
DEX ;DECREMENT FOR NEXT
BPL FILL ILOOP IF NOT DONE

KEY LOA tO ILE/\R LEDS
STA PORTIA
LDA tZOlOO ITURN INPUT INDICATOR DN,
STA PORTlB
JSR GETKEY IGET GUESS OR PLAY CMD,
CMP to ;rs ITO?

STRTJP BEQ START IJF YES, RESTART,
CMP t10 INIJMBER 10 ?
BMI EVAL IIF YES, EVALUATE GUESS,

;
IROUTINE TO DJSPLnY SERIES TO BE GUESSED BY
H.IGHTING LEDS MID PLnYING TONES TN SEQUFNCE.

SHOW LDX tO
STX GESNO 1CLE/\R ALL CURRENT GUESSES,
STX ERRS ICLE/\R CURRENT ERRORS.

SHOWL.P LDA rnBLE,X ;GET XTH ENTRY IN SERIFS TnBLE.
STX TEMP ;SAVF X
JSR LIGHT H..IllHT LEDt(TABLE(Xl)
JSR PLAY 1PL/\Y TONFtlT/\BLEIX))
LDY tSFF ISET LOOP CNTR, FOR DELAY

DELAY ROR DUR ;WASTE TIME
ROL. DUR
DEY ICOUNT DOWN •• ,
BNE DELAY ;IF NOT DONE, LOOP nG~T~!
LOX TEMP ;RESTORE X
INX ;INCREMFNT INDEX TO SHOW NFXT
CPX DIGITS 1ALL DIGITS SHOWN•
BNE SHOWLP IIF NOT, SHOW NEXT,
BEO KEY ; DONE! GET NEXT HlPIJT +

IROUTINE TO EVALUATE GUESSES OF Pl AYER,

EIJAL LDX GFSNO ; GE"T NI.JMBFR OF f.HIFSS.
CMP TABLE1X ;GUESS~ CORR~~POMDING DIGJT?
BEQ CDRECT 11F YES, SHOW PLAYER.

WRONG JNC ERRS ;GUESS WRONG, nNOTHFR ERROR,
LDA f$80 ;DURATION FOR LOW TONE TO JNDICnTE
STA DUR IBAD GUESS,
LOA f$FF IFREQUENCY CONST/INT
JSR PLYTON IPLAY IT
BEQ ENDCHK ICHECK FOR FNDGnME

CfJRECT JSR LIGHT l'JAI..JDATE CORF:FCT nl.JFSF,.
JSR PLAY

ENDCHK INC GESNO ;QNF MORF GUESS TnKEN,
LDA DIGITS
CMP GESNO IALL DIGITS GUESSFD?
BNE KEY IIF NOT, GFT NEXT,
LOA ERRS IGET NUMBER OF ERRORS,
CMF' tO ; ANY ERRORS?
BEQ WIN IIF NOT, PLAYER WINS.

LOSE JSR LIGHT ISHOW NUMBER OF ERRORS.
LOA t9 IPLAY 8 DESCENDING TONES

LOSELP PHA
JSR PLAY
PLA

'----------Fig. 8.5: Echo Program (Continued)----------

146

0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212

02AC
02AD
02AF
02Bl
02B3
02B5
02B7
02B9
02BC
02BF
02Cl
02C2
02C5
02C6
02C7
02C9
02CB
02CD
02CF
02CF
02CF
02CF
02CF
02CF
02DO
02D1
02D3
02D6
02D7
02D8
02D9
02DB
02DE
02EO
02E2
02E5
02E6
02E7
02E7
02E7
02E7
02E7
02E8
02EA
02EC
02EE
02FO
02F2
02F4
02F6
02F7
02F9
02FA
02FA
02FA
02FA
02FA
02FA
02FA
02FB
02FC
02FF
0301
0304
0306
0308
030B
030[1
030F
0310
0311

38
E9 01
DO F6
85 01
85 02
FO 8D
A9 FF
8D 01 AO
8[1 00 AO
A9 01
48
20 FA 02
68
18
69 01
C9 OA
DO F4
FO 84

48
AB
A9 00
8D 00 AO
38
2A
88
DO FC
8D 01 AO
90 05
A9 01
8D 00 AO
68
60

38
AS 10
65 13
65 14
85 OF
A2 04
B5 OF
95 10
CA
10 F9
60

AB
88
B9 27 03
85 03
B9 l.E 03
85 04
A9 00
BD 00 AC
A6 03
A4 04
BB
18
90 00

SEC
SBC tl
BNE LOSELP

REAL TIME STRATEGIES

STA GESNO ;CL.EAR VARIABLES
STA ERRS
BEQ KEY ;GET NEXT GUESS SFOUFNCE

WIN LDA ttFF ;TURN ALL l.EDS ON FOR WJN
STA PORT1A
STA PORT1B
LDA tl ;PLAY 8 nsCENDiffll TONES

WINLP PHA
.JSR PLAY
PLA
CLC
ADC t01
CMP tlO
BNE WINLP
BEQ STRTJP ;usE DOUBLE--.JIIMF' FOR RESrnRT

iROUTINE TO LIGHT NTH LED, WHERE N IS
iTHE NUMBER PASSED AS A PARAMETER IN
iTHE ACCUMULATOR,

LIGHT PHA iSAVE A
TAY iUSE A AS COUNTER IN Y
LDA tO ;CLEAR A FOR BIT SHIFT
STA PORTlB ;CLEAR HI LEDS,
SEC ;GENERATE HI BIT TO SHIFT LEFT.

LTSHFT ROLA ;MOVE HI BIT LEFT,

LTCC

DEY iDECREMENT COUNTER
BNE LTSHFT iSHIFTS DONE?
STA PORT1A iSTORE CORRECT PATTERN
BCC LTCC ;BIT 9 NOT HI, DONE,
LDA t1
STA PORT1B ;TURN LED 9 ON.
f'LA
RTS

iRESTORE I\
;[IQNE.

;RANDOM NUMBER GENERATOR: RETURNS W/ NEW
;RANDOM NUMBER IN A,

RANDOM SEC
J .. DA RND+l
ADC RNDt4
ADC RND+5
STA RND
LDX t4

RNDLP LDA RND,X
STA RN[tt1,X
[IEX
BPL RNDLP
RTS

;ROUTINE TO PLAY TONE WHOSE NUMBER IS PASSED
;IN BY ACCUM, IF ENTERED AT PLYTON, IT WILL
;PLAY TONE WHOSE LENGTH IS IN DUR, FREQUENCY
; IN ACCUMULATOR,

PLAY TAY ;usE TONEI AS JNDEX, ••
DEY ;DECREMENT TO HATCH TABLES
LDA DURTAB,Y ;GET DURATION FOR TONEt N,
STA DUR ;SAVE IT,
LDA NOTAB,Y iGET FREQ, CONST FOR TONEI N

f'LYTON STA FREQ ;SAVE IT,
LOA to ;sET SPKR PORT LO.
STA PORT3B
LDX DUR ;GET DURATION IN t OF J/2 CYCLFS.

FL2 LOY FREQ ;GET FRFUUENCY
Fl.1 DEY ; COUNT DIJWN DEL AY, , ,

CLC ; WASTE TIME
BCC *+2

---------Fig. 8.5: Echo Program (Continued)----------'

147

ADVANCED 6502 PROGRAMMING

0213 0313 DO FA
0214 0315 49 FF
0215 0317 BD 00 AC
0216 031A CA
0217 031B DO FO
0218 031D 60
0219 031E
0220 031E
0221 031E
0222 031E C9
0222 031F BE
0222 0320 A9
0222 0321 96
0222 0322 BE
0222 0323 7E
0222 0324 70
0222 0325 64
0222 0326 SE
022:5 0327
0224 0327
0225 0327
0226 0327 6B
0226 0328 72
0226 0329 80
0226 032A BF
0226 032B 94
0226 032C AA
0226 03211 BF
0226 032E [17

0226 032F E4
0227 0330

SYMBOL TABLE

SYMBOL VALUE

CORE CT 028E DDRl.A
DELAY 026B DIGITS
DURTAB 0327 ENDCHK
FILL 022F FL!
GESNO 0001 GETKEY
LOSE 02A2 LOSELP
NOT AB 031E PLAY
F'ORTlB AOOO PDRT3B
RN DLF' 02F2 SHOW
STRTJP 0253 T1CL
WIN 02B7 WIN LP
END OF ASSEMBLY

BNE FLl ILOOP FOR DELAY
EOR tlFF ICOMPLEMENT PORT
STA PORT3B
DEX ICOUNT DOWN DURATION,,,
BNE FL2 ILOOP TIL NOTE OVER,
RTS I DONE,

ITABLE FOR NOTE FREQUENCIES,

NOTAB ,BYTE $C9,$BE,IA9,196,$8E,$7E,$70,164,15E

ITABLE FOR NOTE DURATIONS,

DURTAB .BYTE $6B,S72,$80,$8F,$94,Snn~sRF,$D7,tF4

,END

1100;3 DDRl B r"'i002 flT:rR3B Af~O:?
0000 DI!WEY 02:~o mm 0003
0294 ERRS 0002 E 1Jf"IL '):.!7B
030F FL.:? 030D FREfl 0'.)04
0100 KEY 02411 LIGHT O?(;~
02A7 LTr.C O:?E~i LT!,HFT (";·JD"?
02FA PIYTON 0304 PORT1/\ A')')l.
ACOO R/\NDOM 02F7 RND OOOF
0259 SHOWLP 02!":"iF ST/\RT 0?00
A004 TABLE 0006 TEMP 000~~:;
02Cl. WRONG 0281

,._---------Fig. 8.5: Echo Program (Contlnued)----------i

the difficulty of the game by increasing or decreasing the duration
during which each note is played. Clearly, reducing the duration
makes the game more difficult. Increasing the duration will usually
make it easier, up to a point. You are encouraged to try variations.

The main variables used by the program are the following:
DIGITS contains the number of digits in the sequence to be

recognized.
GESNO indicates the number of the current guess, i.e., which of the

notes in the series the user is attempting to recognize.
ERRS indicates the number of errors made by the player so far.
TABLE is the table containing the sequence to be recognized.

148

REAL TIME STRATEGIES

A few other memory locations are reserved for passing parameters
to subroutines or as scratch-pad storage. They will be described within
the context of the associated routines.

As usual, the pr :>gram starts by setting the data direction registers
for Port lA, Port 1B and Port 3B to an output configuration:

START LDA #$FF
STA DDRlA
STA DDRlB
STA DDR3B

Next, all LEDs on the board are turned off:

LDA#O
STAPORTlA

and the two variables, ERRS and GESNO, are set to 0:

STA ERRS
STA GESNO

The random number generator is primed by obtaining a seed and stor­
ing it at locations RND + 1 and RND + 4:

LDA TlCL
STA RND + 1
STA RND + 4

Read timer counter.

The game is now ready to start. LED 10 must be turned on to indicate
to the player that the game is ready:

LDA #%010
STAPORTlB

Pattern for LED 10
Specify length

The keyboard is scanned for the player input using the usual GETKEY
subroutine (described in Chapter 1):

DIGKEY JSR GETKEY

It is checked for the value "O":

149

ADVANCED 6502 PROGRAMMING

CMP #0
BBQ DIGKEY If = 0, get another one

If the entry was "O," the program waits for another keystroke. Other­
wise, it is compared to the value 10:

CMP #10 Sequence longer than 9
BPL DIGKEY

If the sequence length is greater than 9, it is also rejected. Accepting
only valid inputs, using a bracket is known as "reasonableness
testing" or "bracket-filtering."

If all is fine, the length of the sequence to be recognized is stored at
memory location DIGITS:

STA DIGITS Length of sequence

A running pointer is then computed and stored at location TEMP. It
is equal to the previous length minus 1:

FILL

TAX
DEX
STX TEMP

Use X for computation
Decrement

The RANDOM subroutine is then called to provide a first random
number:

JSR RANDOM

The position pointer in the series of notes now being generated is
retrieved from TEMP, and stored in index register X in anticipation
of storing the new random number in TABLE:

LDX TEMP

The value of the random number contained in the accumulator is then
converted to a decimal value between O and 9. This process can be per­
formed in various ways. Here, we take advantage of the special
decimal mode available on the 6502. The decimal mode is set by speci­
fying:

SED Set decimal mode

150

REAL TIME STRATEGIES

Note that the carry flag must be cleared, prior to an addition:

CLC Clear carry

The trick used here is to add "O" to the random number contained in
the accumulator. The result in the right part of A is guaranteed to be a
digit between O and 9, since we are operating in the decimal mode.
Naturally, any other number could also be added to A to make its con­
tents "decimal"; however, this would change the distribution of the
random numbers, and some numbers in the series such as 0, 1, and 2
might never appear. Once this conversion has been performed, the
decimal mode is simply turned off:

ADC #0
CLO

Add "O" in decimal mode
Clear decimal mode

This is a powerful 6502 facility used to a great advantage in this in­
stance. In order to guarantee that the result left in A be a decimal
number between O and 9, the upper nibble of the byte is removed by
masking it off:

AND $#OF

Finally, a value of ''O'' is not allowed, and a new number must be ob­
tained if this is the current value of the accumulator:

BEQ FILL

Exercise 8-2: Could we avoid this special case for "O" by adding a
value other than "O" to A above?

If this is not the current value of the accumulator, we have a decimal
number between 1 and 9 that is reasonably random, which can now
be stored in the table. Remember that index register X has been
preloaded with the current number's position in the sequence (re­
trieved from memory location TEMP). It can be used, as is, as an in­
dex:

STATABLE,X Store # in table

The number pointer is then decremented in anticipation of the next
iteration:

151

ADVANCED 6502 PROGRAMMING

DEX

and the loop is reentered until the table of random numbers becomes
full:

BPL FILL

We are now ready to play. LED 12 will be turned on, signaling to the
player that he or she may enter a guess:

KEY LDA#O
STA PORTIA
LDA #OJoOlOO
STA PORTlB

The player's guess is then read from the keyboard:

JSR GETKEY Get guess

It must be tested for "O" or for an alphabetic value. Let us test for
"O":

STRTJP
CMP #0
BEQ START

Is it O?
If yes, restart

If it is "0," the game is restarted, and a branch occurs to location
START. If it is not "O," we must check for an alphabetic character:

CMP #10
BMI EVAL

Number<lO?
If yes, evaluate correctness

If the value of the input keystroke is less than ten, it is a guess and is
evaluated with the EVAL routine. Otherwise, the program executes
the SHOW routine to display the series.

The SHOW Routine

We will assume here that an alphabetic key has been pressed. BMI
fails, and we enter the SHOW routine. This routine plays the
computer-generated tune and lights up the corresponding sequence of
LEDs. Also, whenever this routine is entered, the guessing sequence is

152

REAL TIME STRATEGIES

restarted and the temporary variables are reset to 0:

SHOW LDX#O
STX GESNO
STX ERRS Reset all variables

The first table entry is obtained, the corresponding LED is lit, and the
corresponding tone is played:

SHOWLP LDATABLE,X
STX TEMP
JSR LIGHT
JSR PLAY

Get Xth entry in table
Save X
Light LED# TABLE (X)
Play tone# TABLE (X)

An internote delay is then implemented using Y as the loop counter
and two dummy instructions to extend the delay:

DELAY
LDY #$FF
ROR DUR
ROL DUR
DEY
BNE DELAY

Dummy instruction
Dummy
Count down
End of loop test

We are now ready to perform the same operation for the next note in
the current table. The index pointer is restored and incremented:

LDX TEMP
INX

Restore X
Increment it

It is then compared to the maximum number of digits stored in the
table. If the maximum has been reached, the display operation is com­
plete and we go back to label KEY. Otherwise, the next tone is sound­
ed, and we go back to label SHOWLP:

CPX DIGITS
BNE SHOWLP
BEQ KEY

The EVAL Routine

All digits shown?

Done, get next input

Let us now examine the routine which evaluates the guess of the

153

ADVANCED 6502 PROGRAMMING

player. It is the EVAL routine. The value of the corresponding entry in
TABLE is obtained and compared to the player's input:

EVAL LDXGESNO
CMPTABLE,X
BBQ CORECT

Load guess number into X
Compare guess to number
If correct, tell player

If there is a match, a branch occurs to location CORECT; otherwise,
the program proceeds to label WRONG. Let us examine this case. If
the guess is wrong, one more error is recorded:

WRONG INC ERRS

A low tone is played:

LDA #$80
STA DUR
,LDA #$FF
JSR PLYTON Play it

A jump then occurs to location ENDCHK:

BBQ ENDCHK Check for end of game

Exercise 8-3: Examine the BEQ instruction above. Will it always result
in a jump to label ENDCHK? (Hint: determine whether or not the Z
bit will be set at this point.)

Exercise 8-4: What are the merits of using BEQ (above) versus JMP?

Now we shall consider what happens in the case of a correct guess.
If the guess is correct, we light up the corresponding LED and play the
corresponding tone. Both subroutines assume that the accumulator
contains the specified number:

CORECT JSR LIGHT
JSR PLAY

Turn on LED
Play note to confirm

We must now determine whether we have reached the end of a se­
quence or not, and take the appropriate action. The number of
guesses is incremented and compared to the maximum length of the

154

stored tune:

ENDCHK INC GESNO
LDA DIGITS
CMP GESNO
BNE KEY

REAL TIME STRATEGIES

One more guess

All digits guessed?
If not, get next key closure

If we are not done yet, a branch occurs back to label KEY. Otherwise,
we have reached the end of a game and must signal either a ''win'' or a
"lose" situation. The number of errors is checked to determine this:

LDAERRS
CMP #0
BEQ WIN

Get number of errors
No error?
If not, player wins

If a "win" is identified, a branch occurs to label WIN. This will be
described below. Let us examine now what happens in the case of a
"lose":

LOSE JSR LIGHT Show number of errors

The number of errors is displayed by lighting up the corresponding
LED. Remember that the accumulator was conditioned prior to enter­
ing this routine and contained the value of ERRS, i.e., the number of
errors so far.

Next, a sequence of eight descending tones is played. The top of the
stack is used to contain the remaining number of tones to be played:

LOSELP
LDA#9
PHA
JSR PLAY
PLA

Play 8 descending tones
Save A on stack
Play tone
Restore A

Once a tone has been played, the remaining number of tones to be
played is decremented by one and tested for "O":

SEC
SBC #1
BNE LOSELP

Set carry (for subtract)
Subtract one

Exercise 8-5: Note how the top of the stack has been used as a tem-

155

ADVANCED 6502 PROGRAMMING

porary scratch location. Can you suggest an alternative way to achieve
the same result without using the stack?

Exercise 8-6: Discuss the relative merits of using the stack versus using
other techniques to provide temporary working locations for the pro­
gram. Are there potential dangers inherent in using the stack?

Eight successive tones are played. Then the two work variables,
GESNO and ERRS, are reset to ''O,'' and a branch occurs back to the
beginning of the program:

STAGESNO
STA ERRS
BBQ KEY

Clear variables

Get next guess sequence

Let us examine now what happens in a "win" situation. All LEDs on
the Games Board are turned on simultaneously:

WIN LOA #$FF
STA PORTIA
STA PORTlB

It is a win: turn all LEDs on

Next, a sequence of eight ascending tones is played. The tone number
is stored in the accumulator and will be used as an index by the PLAY
subroutine to generate an appropriate note. As before, the top of the
stack is used to provide working storage:

WINLP
LOA #1
PHA
JSR PLAY
PLA

A will be incremented to 9
Save A on the stack

The number of tones which have been played is then incremented by 1
and compared to the maximum value of 9:

CLC
ADC #01
CMP#lO

Clear carry for addition

As long as the maximum of 9 has not been reached, a branch occurs
back to label WINLP:

156

REAL TIME STRATEGIES

BNE WINLP

Otherwise, a new game is started:

BEQ STRTJP Double jump for restart

This completes the description of the main program. Three
subroutines are used by this program. They will now be described.

The Subroutines

LIGHT Subroutine

This subroutine assumes that the accumulator contains the number
of the LED to be lit. The subroutine will light up the appropriate LED
on the Games Board. It will achieve this result by writing a "l" in the
appropriate position in the accumulator and then sending it to the ap­
propriate output port. Either Port IA will be used (for LEDs 1 through
8) or Port lB (for LED 9). The "1" bit is written in the appropriate
position in the accumulator by performing a sequence of shifts. The
number of shifts is equal to the position of the LED to be lit. Index
register Y is used as a shift-counter. The number of the LED to be lit is
saved in the stack at the beginning of the subroutine and will be
restored upon exit. Note that this is a classic way to preserve the con­
tents of an essential register during subroutine execution so that the
contents of the accumulator will be unchanged upon subroutine exit.
If this was not the case, the calling program would have to explicitly
preserve the contents of the accumulator prior to calling the LIGHT
subroutine. Then it might have to load it back into the accumulator
prior to using another one of the routines, such as the PLAY routine.
Because LIGHT and PLAY are normally used in sequence, it is more
efficient to make it the subroutine's responsibility to save the contents
of the accumulator. Let us do it:

LIGHT PHA Preserve A

The shift-counter is then set up:

TAY Use Y as shift counter

and the accumulator is initialized to "O":

157

ADVANCED 6502 PROGRAMMING

LDA#O Clear A

LED 9 is turned off in case it was lit:

STA PORTlB

The shifting loop is then implemented. The carry bit is initially set to
"1," and it will be shifted left in the accumulator as many times as
necessary:

LTSHFT
SEC
ROLA
DEY
BNE LTSHFT

Set carry

The correct bit pattern is now contained in the accumulator and dis­
played on the Games Board:

STA PORTIA

However, one special case may arise: if LED 9 has been specified, the
contents of the accumulator are ''O'' at this point, but the carry bit has
been set to "1" by the last shift. This case must be explicitly tested for:

BCC LTCC Is bit 9 set?

If this situation exists, the accumulator must be set to the value
"00000001," and output to Port lB:

LDA #1
STA PORTlB Turn LED 9 on

We finally exit from the routine without forgetting to restore the ac­
cumulator from the stack where it had been saved:

LTCC PLA
RTS

Restore A

Exercise 8-7: List the registers destroyed or altered by this subroutine
every time it is executed.

158

REAL TIME STRATEGIES

Exercise 8-8: Assume that register Y must be left unchanged upon
leaving this subroutine. What are the required program changes, if
any?

RANDOM Subroutine

This subroutine generates a new random number and returns its
value in A. Its operation has been described in Chapter 4.

PLAY Subroutine

This subroutine will normally play the tone corresponding to the
number contained in the accumulator. Optionally, it may be entered
at location PLYTON and will then play the tone corresponding to the
frequency set by the accumulator and corresponding to the length
specified by the contents of memory location DUR. Let us examine it.

Index register Y is used as an index to the two tables required to
determine the note duration and the note frequency. In this game, up
to 9 notes may be played, corresponding to LEDs and keys 1 through
9. Index register Y is first conditioned:

PLAY TAY
DEY

Use tone # as index
Decrement to internal value

Note that the index register must be decremented by one. This is
because key 1 corresponds to entry number O in the table, and so on.
The duration and frequencies are obtained from tables DURTAB and
NOTAB using the indexed addressing mode. They are stored respec­
tively at locations DUR and FREQ:

PLYTON

LDA DURTAB,Y
STA DUR
LDA NOTAB,Y
STA FREQ

The speaker is then turned off:

LDA#O
STA PORT3B

Get duration
Save it
Get frequency
Save it

Set speaker Port 3B

Two loops will now be implemented. An inner loop will use register Y
as the delay-counter to implement the correct frequency for the note.

159

ADVANCED 6502 PROGRAMMING

Register X will be used in the outer loop and will generate the tone for
the appropriate duration of time.

Let us condition the two counter registers:

FL2
LDX DUR
LDY FREQ

Get duration in # of Yi cycles
Get frequency

Next, let us implement the inner loop delay:

FLl DEY
CLC
BCC *+2
BNE FLl

Waste time

Delay loop

Note that two "do-nothing" instructions have been placed inside the
loop to generate a longer delay. At the end of this inner loop delay the
contents of the output port connected to the loudspeaker are com­
plerµented in order to generate a square wave.

EOR #$FF Complement port

Note that, once more, EOR #$FF is used to complement the contents
of a register.

STA PORT3B

The outer loop can then be completed:

SUMMARY

DEX
BNE FL2
RTS

Outer loop

This program demonstrates how simple it is to implement electronic
keyboard games that sound for input/ output and that are challenging
to adult players.

Exercise 8-9: The duration and frequency constants for the nine notes
are shown in Figure 8. 6. What are the actual frequencies generated by
the program?

160

REAL TIME STRATEGIES

NOTE FREQUENCY DURATION
CONSTANT CONSTANT

1 C9 66

2 BE 72

3 A9 80

4 96 SF
5 SE 94

6 7E AA

7 70 BF
s 64 D7
9 SE E4

Fig, 8.6: Frequency and Duration Constants

161

9. Using Interrupts
(Mindbender)

INTRODUCTION

Interrupts are generated by using the programmable interrupt timer
of the 6522 VIA, a common 65021/0 chip. The programmable interrupt
timer is used in the free-running mode to generate a wave form.

THE RULES

This game is inspired by the commercial game of MasterMind
(trademarked by the manufacturer, Invicta Plastics, Ltd.). In this
game, one or more players compete against the computer (and against
each other). The computer generates a sequence of digits - for exam­
ple, a sequence of five digits between "O" and "9" - and the player
attempts to guess the sequence of five numbers in the correct order.
The computer responds by telling the player how many of the digits
have been guessed accurately, and how many were guessed in their
correct location in the numerical sequence.

LEDs 1 through 9 on the Games Board are used to display the com­
puter's response. A blinking LED is used to indicate that the player's
guess contains a correct digit which is located in the right position in
the sequence. A steadily lit LED is used to indicate a digit correctly
guessed but appearing out of sequence. Several players can match
their skills against each other. For a given complexity level - say, for
guessing a sequence of seven digits-the player that can correctly guess
the number sequence with the fewest guesses is the winner.

The game may also be played with a handicap whereby a given
player has to guess a sequence of n digits while the other player has to
guess a sequence of only n - 1 digits. This is a serious handicap, since
increasing the level of difficulty by one is quite significant.

A TYPICAL GAME

Both audio and visual feedback are used to play this game.

162

USING INTERRUPTS

The Audio Feedback

Every time that a player has entered his or her sequence of guesses,
the computer responds by sounding a specific tone. A low tone in­
dicates an incorrect guess; a high tone indicates that the sequence was
guessed correctly.

The Visual Feedback

At the beginning of each game, LED #10 is lit, requesting the length
of the sequence to be guessed. This is shown in Figure 9.1. The player
then specifies the sequence length as a number from 1 through 9. Any
other input will be ignored.

t
•00000

10 11 12 13 14 15

Fig. 9. 1: Enter Length of Sequence

As soon as the length has been specified, for example, let's say the
length "2" has been selected, LED #11 lights up. This means "Enter
your guess." (See Figure 9.2.) At this point the player enters his or her
guess as a sequence of two digits. Let us now play a game.

t
••oooo

10 11 12 13 14 15

Fig. 9.2: Enter Your Guess

The player types in the sequence "1,2." A low tone sounds, LEDs
10 and 11 go out briefly, but nothing else happens. The situation is in­
dicated in Figure 9.3. Since LEDs 1 through 9 are blank, there is no.
correct digit in the guess. Digits "1" and "2" must be eliminated. Let
us try another guess.

We type "3,4." A low tone sounds, but this time LED #1 is steadily
on, as indicated in Figure 9.4. From this we know that either "3" or

163

ADVANCED 6502 PROGRAMMING

0 0 0
l 2 3

0 0 0
4 5 6

0 0 0
7 8 9

eeoooo
10 11 12 13 14 15

Fig. 9.3: Player Enters Wrong Guess

i • 0 0
l 2 3

0 0 0
4 5 6

0 0 0
7 8 9

••oooo
10 11 12 13 14 15

Fig. 9.4: One Correct Digit In the Correct Position

"4" is one of the digits and that it belongs in the other position. Con­
versely, the sequence "4,3," must have one good digit in the right
position. Just to be sure let us perform a test.

We now type "4,3." A low tone sounds, indicating that the se­
quence is not correct, but this time LED #1 is on and blinking.
This proves that our reasoning is correct, and we proceed.

We now try "4,5." A high-pitched sound is heard and LEDs 1 and 2

164

USING INTERRUPTS

light up briefly, indicating that those digits have been guessed correct­
ly and that we have won our first game.

At the end of the game, the situation reverts to the one at the begin­
ning, as indicated in Figure 9.1. Note that typing in a value other than
"l" through "9" as a guess will restart the game.

There is a peculiarity to the game: if the number to be guessed con­
tains two identical digits, and the player enters this particular digit in
one of its two correct locations, the computer response will indicate
this digit as being both the right digit in the right place and the right
digit in the wrong place!

THE ALGORITHM

The flowchart for Mindbender is shown in Figure 9.5. Interrupts are
used to blink the LEDs. Interrupts will be generated automatically by
the programmable interval timer of VIA #1 at approximately 1/15th­
of-a-second intervals.

Referring to Figure 9.5, all of the required registers and memory loca­
tions will be initialized first. Next (box 2 on the flowchart), the length
of the sequence to be guessed is read from the keyboard. The validity
bracket "1" to "9" is used to "filter" the player's input.

Next, a random sequence must be generated. In box 3 of the
flowchart, a sequence of random numbers is generated and stored in a
digit table, starting at address DIGO.

In box 5, the computer's sequence of numbers is compared - one
number at a time - with the player's guess. The algorithm takes one
digit from the computer sequence and matches it in order against
every digit of the player sequence. As we have already indicated, this
may result in lighting up two LEDs, if ever there are two or more iden­
tical digits in the number to be guessed and the player has specified
only one digit. One digit may be flagged as being in the right place,
and also as being correct but in the wrong location(s).

Note that, alternatively, another comparison algorithm could be
used in which each digit of the player's sequence is compared in turn
with each digit of the computer's sequence.

Once the digits have been compared, the resulting score is displayed
on the LEDs (box 6). Finally, a test is made for a win situation (box 7),
and the appropriate sound is generated (box 8).

165

ADVANCED 6502 PROGRAMMING

166

MINDBENDER

INITIALIZE

2

GENERATE RANDOM
3 NUMBERS AND STORE

IN DIGITTABLE

4 READ USER GUESSES
INTO ENTRY TABLE

COMPARE GUESS
5 WITH CORRECT

NUMBERS

DISPLAY SCORE
6 CORRECT DIGITS

AND CORRECT PLACE

Fig. 9.5: Mindbender Flowchart

USING INTERRUPTS

THE PROGRAM

Data Structures

Two tables of nine entries are used to store, respectively, the com­
puter's sequence and the player's sequence. They are stored starting at
addresses DIGO and ENTRYO. (See Figure 9.6.)

The Variables

Page O is used, as usual, to provide additional working registers,
i.e., to store the working variables. The use of page O is indicated as a
"memory map" in Figure 9.6. The first nine locations are used for the
program variables. The function of each variable is indicated in the il­
lustration and will be described in detail as we examine the program
below. Locations "09" through "OE" are reserved for the random
table used to generate the random numbers. Locations "OF" through
"17" are used for the DIGO table used to store the computer­
generated sequence of random numbers. Finally, locations "18" and
following are used to contain the sequence of digits typed by the user.

The memory locations used for addressing input/output and for in­
terrupt vectoring are shown in Figure 9.7. Locations "AOOO" through
"A005" are used to address Ports A and B of VIA #1 as well as timer
Tl. The memory map for a 6522 VIA is shown in Figure 9.8.

Location "AOOB" is used to access the auxiliary control register,
while location "AOOE" accesses the interrupt-enable register. For a
detailed description of these registers the reader is referred to the 6Jv ...
Applications Book (reference D302).

Memory locations "A67E" and "A67F" are used to set up the in­
terrupt vector. The starting address of the interrupt-handling routine
will be stored at this memory location. In our program, this will be ad­
dress "03EA." This is the routine in charge of blinking the LEDs. It
will be described below. Finally, Port 3 is addressed at memory loca­
tions "ACOO" and "AC02."

Program Implementation

A detailed flowchart for the Mindbender program is shown in
Figure 9.9. Let us now examine the program itself. (See Figure 9.13.)

The initialization block resides at memory addresses 0200-0239 hex­
adecimal and conditions interrupts and 1/0. First, interrupts are con­
ditioned. Prior to modifying the interrupt vector which resides at ad-

167

ADVANCED 6502 PROGRAMMING

00 DIGITS Length of Sequence

01 DUR Tone Duration Constant

02 XTEMP Temporary X Register

03 YTEMP Temporary Y Register

04 CNT Number of Matches

05 MAS KA Pattern for Blinking LEDs on A

06 MAS KB Pattern for Blinking LEDs on B

07 FREQ Tone Frequency Constant

08 CNTl Correct Digits Correct Place

RND 09

OA

OB
Random Numbers

oc

OD

OE

DIGO OF

10

11

12

13 Up to 9 Digits of Numbers to Guess

14

15

16

17

ENTRYO 18 Up to 9 Digits

Fig. 9.6: Low Memory Map

168

AOOO

AOOl

A002

A003

A004

AOOS

A006

A007

A008

A009

AOOA

AOOB

AOOC

AOOD

AOOE

A67E

A67F

ACOO

ACOl

AC02

USING INTERRUPTS

PORTlB

PORTlA

DDRlB

DDRlA

TILL

Tl CH

ACR

IER

~

IRQVECL

IRQVECH

PORT3B

DDR3B

Fig, 9.7: High Memory Map

169

ADVANCED 6502 PROGRAMMING

00 ORB (PBO TO PB7)

01 ORA (PAO TO PA7)

02 DDRB

03 DDRA

04 Tl L-L/Tl C-L

05 TlC-H

06 Tl L-L

07 TlL-H

08 T2L-L/T2C-L

09 T2C-H

OA SR

OB ACR

oc PCR (CAI ,CA2,CB2,CB1)

OD IFR

OE IER

OF ORA

1/0 data, port A

Used for control-affects handshake

} Da,o d;,o";oo ,eg;'""

Counter-low

Counter-high
Timer 1

Latch-low

Latch-high

Latch-low

};mo,2 Counter-low

Counter-high

Shift register

Auxiliary
Function control

Peripheral

Flags
Interrupt control

Enable

Output register A
(does not affect handshake)

Fig. 9.8: 6522 VIA Memory Map

dresses "A67E" and "A67F" (see Figure 9.7) access to this protected
area of memory must be authorized. This is performed by the AC­
CESS subroutine, which is part of the SYM monitor:

JSR ACCESS

Next, the new interrupt vector can be loaded at the specified location.
The value "03EA" is entered at address IRQVEC:

170

LOA #$EA
STA IRQVECL
LOA #$03
STA IRQVECH

Low interrupt vector

High interrupt vector

USING INTERRUPTS

Now the internal registers of the 6522 VIA #1 must be conditioned
to set up the interrupts. The interrupt-enable register (IER) will enable
or disable interrupts. Each bit position in the IER matches the cor­
responding one in the interrupt flag register (IFR). Whenever a bit
position is "O," the corresponding interrupt is disabled. Bit 7 of IER
plays a special role. (See Figure 9.10.) When IER bit 7 is "O," each
"1" in the remaining bit positions of IER wil clear the corresponding
enable flag. When IER bit 7 is "1," each "1" written in IER will play
its normal role and set an enable. All interrupts are, therefore, disa­
bled by setting bit 7 to "O" and all remaining bits in the IER to ones:

LDA #$7F
STA IER

Next, bit 6, which corresponds to the timer 1 interrupt, is enabled. In
order to do this, bit 7 of IER is set to "l," as is bit 6:

LDA#$CO
STA IER

Next, timer 1 will be set in the ''free-running mode.'' Remember that,
with the 6522, the timer can be used in either the "one-shot" mode or
the "free-running mode." Bits 6 and 7 of the auxiliary control
register are used to select timer 1 operating modes. (See Figure 9.11.)
In this instance, bit 7 is set to "0" and bit 6 is set to "l ":

LDA #$40
STAACR

Prior to using the timer in the output mode, its counter-register must
be loaded with a 16-bit value. This value specifies the duration of the
square pulse to be generated. The maximum value "FFFF" is used
here:

LDA #$FF
STA TlLL
STA TICH

The actual wave form from timer 1 is shown in Figure 9.12. In order
to compute the exact duration of the pulse, note that the pulse dura-

171

ADVANCED 6502 PROGRAMMING

NO

172

START

DIGIT (TEMP) =
RANDOM NUMBER

GET KEY NUMBER

Fig. 9.9: Detailed Mlndbender Flowchart

USING INTERRUPTS

YES

CNT=CNT+l

YES

Fig. 9.9: Detailed Mlndbender Flowchart (Continued)

173

ADVANCED 6502 PROGRAMMING

7 6 5 4 3 2 0

IFR IRQ

Tl _,.. T2 - '" CBl '" CB2 -,-. SR - ,... CAl - CA2 -
SETI

IER CLEAR
CONTROL

Fig. 9.10: Interrupt Registers

tion will alternate between n + 1.5 cycles and n + 2 cycles, where n is
the initial value loaded in the counter register.

Next, interrupts are enabled:

CLI

and the three ports used by this program are configured in the ap­
propriate direction:

STA DORIA
STA DDRlB
STA DDR3B

Output
Output
Output

All LEDs are then cleared:

ACR7 ACR6 MODE

OUTPUT INPUT
ENABLE ENABLE

0
0 (ONE-SHOT) GENERA TE TIME OUT INT WHEN Tl LOADED PB? DISABLED

1
0 (FREE RUN) GENERATE CONTINUOUS INT PB7 DISABLED

0 GENERATE INT AND OUTPUT PULSE ON PB7 EVERYTIME Tl IS
1 (ONE-SHOT) LOADED = ONE-SHOT AND PROGRAMMABLE WIDTH PULSE

1 GENERATE CONTINUOUS INT AND SQUARE WAVE
1 (FREE RUN) OUTPUT ON PB7

Fig. 9. 11: 6522 Auxiliary Control Register Selects Timer 1 Operating Modes

174

USING INTERRUPTS

tin
WRITE
TIC-H

PB7
OUT----,"

IRQ

N + 1.5

(0) (.5)

N + 1.5 CYCLES N + 2CYCLES

OUT -----------------t_ ----

KEY!

Fig. 9.12: Timer 1 In Free Running Mode

LOA #0
STA PORTIA
STA PORTIB

and the blink masks are initially set to all O's:

STA MASKA
STAMASKB

LED 10 is now turned on in order to signal to the player that he or she
should specify the number of digits to be guessed:

LOA #%00000010 Select LED 10
STA PORTIB Turn it on

The key pressed is read using the usual GETKEY routine:

JSR GETKEY Get# digits

A software filter is implemented at this point. The value of the key
read from the keyboard is validated as falling within the range "l"
through "9." If it is greater than 9, or less than 1, the entry is ignored:

CMP #10
BPL KEYl
CMP #0
BEQ KEYl

175

ADVANCED 6502 PROGRAMMING

Once validated, the length specified for the sequence is stored at
memory location DIGITS:

STA DIGITS

A sequence of random numbers must now be generated.

Generating a Sequence of Random Numbers

The initial random number is obtained from the counter and used to
start the random number generator. The theory behind this technique
has been described before.

Locations RND + 1, RND + 4, and RND + 5 are seeded with the
same number:

LDA TILL
STA RND+ 1
STA RND+4
STA RND+ 5

Then a random number is obtained using the RANDOM subroutine:

RAND

LDY DIGITS
DEY
JSR RANDOM

Get # of digits to guess
Count to 0
Filling them with values

The resulting random number is set to a BCD value which guarantees
that the last digit will be between O and 9:

SED
ADC #00
CLD

Decimal Adjust

It is then truncated to the lower 4 bits:

AND #$00001111

Once the appropriate random digit has been obtained, it is saved at
the next location of the digit table, using index register Y as a running
pointer:

176

USING INTERRUPTS

STA DIGO,Y

The counter Y is then decremented, and the loop executed until all re­
quired digits have been generated:

DEY
BPL RAND

Collecting the Player's Guesses

Index register X will serve as a running pointer for the ENTRY
table used to collect the player's guess. It is initialized to the value
"O," and stored at memory location XTEMP:

EXTRA LDA#O Clear pointer
STA XTEMP

LEDs 10 and 11 are then turned on to signal the player that he or she
may enter his or her sequence:

LOA #$00000110
STA PORTIB

The key pressed by the player is read with the usual GETKEY routine:

KEY2 JSR GETKEY

If the key pressed is greater than 9, it is interpreted as a request to
restart the game:

CMP #10
BPL KEYi

Otherwise, the value of the index register X is retrieved from memory
location XTEMP and is used to perform an indexed store of the ac­
cumulator to the appropriate location in the ENTRY table:

LOX XTEMP
STAENTRYO,X Store guess in table

The running pointer is then incremented, and stored back in memory:

177

ADVANCED 6502 PROGRAMMING

INX
STXXTEMP

Then, the value of the running pointer is compared to the maximum
number of digits to be fetched from the keyboard and, as long as this
number is not reached, a loop occurs back to location KEY2:

CPX DIGITS
BNE KEY2

All numbers fetched?
If not, get another

Once the player has entered his or her sequence, the digits must be
compared to the computer-generated sequence. In anticipation of the
display of a possible win the LEDs on the board are blanked and the
masks are cleared:

LDX #0
STX PORTIA
STX PORTlB
STX MASKA
STXMASKB

Two locations in memory will be used to contain the number of cor­
rect digits and the number of correct digits in the correct location.
They are initially cleared:

STX CNT
STX CNTl

Number of matches
Number of correct digits

Each entry of the DIGO table will now be compared in turn to all en­
tries of the ENTRYO table. Each digit is loaded from the DIGIT table
and immediately compared to the corresponding ENTRY contents:

DIG LP LDA DIGO,X
CMP ENTRYO,X

If it is not the right digit at the right place, there is no exact match. We
will then check to see if the digit appears at any other place within the
ENTRY table:

BNE ENTRYCMP

178

USING INTERRUPTS

Otherwise, one more exact match is recorded by incrementing location
CNTl, and the next digit is examined:

INC CNTl
BNE NEXTDIG

Let us examine now what happens when no match has occurred. The
digit (of the number to be guessed) which has just been read and is
contained in the accumulator should be compared to every digit within
the ENTRY table. Index register Y is used as a running pointer, and
the contents of the accumulator are compared in turn to each of the
digits in ENTRY:

ENTRYCMP LDY #0
ENTRYLP CMP ENTRYO, Y

BNE NEXTENT

If a match is found, memory location CNT is incremented and the
next digit is examined:

INC CNT
BNE NEXTDIG

Otherwise, index register Y is incremented. If the end of the sequence
is reached, exit occurs to NEXTDIG. Otherwise a branch back occurs
to the beginning of the loop at location ENTRYLP:

NEXTENT INY
CPY DIGITS
BNE ENTRYLP

Increment guess # pointer
All tested?
No: try next one

The next digit in table DIG must then be examined. The running
pointer for DIG is contained in index register X. It is incremented and
compared to its maximum value:

NEXTDIG INX
CPX DIGITS

Increment digit # pointer
All digits checked

If the limit has not been reached, a branch occurs back to the begin­
ning of the outer loop at location DIGLP:

179

ADVANCED 6502 PROGRAMMING

BNE DIGLP

At this point, we are ready to turn on the LEDs to display the results
to the player.

Displaying the Results to the Player

The total number of LEDs which must be turned on is obtained by
adding the contents of CNT to CNTl:

CLC
LDA CNT
ADC CNTl

Get ready for add

The total is contained in the accumulator and transferred into index
register Y where it will be used by the LITE routine:

TAY
JSR LITE

The operation of the LITE routine will be described below. Its effect is
to fill the accumulator with the appropriate number of ones in order
to turn on the appropriate LEDs.

The pattern created by the LITE subroutine is then stored in the
mask:

STA PORTIA

For the special case in which the result is 9, the carry bit will have been
set. This case is explicitly tested:

BCCCC If carry 0, don't light PBO.

and if the carry had been set to 1, Port B will be set appropriately so
that LED #9 is turned on:

LDA #1 Turn PBO on
STA PORTlB

Recall that once masks A and B have been set up, they will
automatically be used by the interrupt handling routine which will

180

USING INTERRUPTS

cause the appropriate LEDs to blink.

cc LDY CNTl
JSR LITE
STA MASKA
BCC TEST
LDA #01
STAMASKB

The program must now test for a win or lose situation.

Testing for a Win or Lose Situation

The number of correct digits in the right places is contained in
CNTl. We will simply compare it to the length of the sequence to be
guessed:

TEST LDX CNTl
CPX DIGITS

If these numbers are equal, the player has won:

BEQ WIN

Otherwise, a low tone will be sounded. The tone duration constant is
set to "72," and its frequency value to "BE":

BAD LDA #$72
STA DUR
LDA #$BE

The TONE subroutine is then used to generate the tone, as usual:

JSR TONE

Then a return occurs to the beginning of the program:

BEQ ENTER

If a win has occurred, a high-pitched tone will be generated. Its dura­
tion constant is set to "FF" and its pitch is controlled by setting the

181

ADVANCED 6502 PROGRAMMING

frequency constant to "54":

WIN LDA #$FF
STA DUR
LDA #$54

As usual, the TONE subroutine is used to generate the tone:

JSR TONE

The game is then restarted:

JMP KEYi

The Subroutines

Four routines are used by this program. They are: LITE, RAN­
DOM, TONE, and INTERRUPT HANDLER. The RANDOM and
TONE routines have been described in previous chapters and will not
be described again here.

LITE Subroutine

When entering this subroutine, index register Y contains the
number of LEDs which should blink. In order to make them blink it
is necessary to load the appropriate pattern into the mask patterns
called MASKA and MASKB. The appropriate number of l's has to be
set in these two locations. A test is first made for the value "O" in Y.
If that value is found, the accumulator is cleared, as well as the carry
bit (the carry bit will be used as an indicator for the fact that Y con­
tained the value "9"):

LITE BNE STRTSH
LDA#O
CLC
RTS

Test Y for zero

Otherwise, the accumulator is initially cleared, and the appropriate
number of 1 's is shifted left into the accumulator through the carry
bit. They are introduced one at a time by setting the carry bit, then
performing a left shift into A. Each time, index register Y is decre­
mented and the loop is executed again as long as Y is not "O":

182

SHIFT
LDA #0
SEC
ROLA
DEY

USING INTERRUPTS

Shift into position

BNE SHIFT Loop
RTS

Note that a rotation to the left is used rather than a shift. If Y did
contain the value ''9,'' the accumulator A would be filled with l's and
the carry bit would also contain the value "l" upon leaving the
subroutine.

The Interrupt Handler

This subroutine complements the LEDs each time an interrupt is
received, i.e., every time timer 1 runs out. It is located at memory ad­
dresses "03EA" and following. Since the accumulator is used as a
working register by the subroutine, it must be preserved upon entry
and pushed into the stack:

PHA

The contents of Ports lA and lB will be read and then complemented.
Recall that there is no complementation instruction on the 6502, so
an exclusive OR will be used instead. MASKA and MASKB specify
the bits to be complemented:

LDAPORTIA
EOR MASKA
STA PORTIA
LDA PORTlB
EOR MASKB
STA PORTlB

Also recall that the interrupt bit in the 6522 has to be cleared explicitly
after every interrupt. This is done by reading the latch:

LDA TILL

Finally, the accumulator is restored, and a return occurs to the main
program:

183

ADVANCED 6502 PROGRAMMING

SUMMARY

PLA
RTI

In this program, we have used two new hardware resources in the
6522 1/0 chip: the interrupt control and the programmable interval
timer. Interrupts have been used to implement simultaneous processing
by blinking the LEDs while the program proceeds, testing for a win or
lose situation.

Exercise 9.1: Could you implement the same without using interrupts?

;MINDBENDER PROGRAM
;PLAYS MINDBENDER GAME: USER SPECIFIES LENGTH OF NUMBER
no BE GUESSED, THEN GUESSES DIGITS, AND COMPUTER TELLS
;PLAYER HOW MANY OF THE DIGITS GUESSED WERE RIGHT, AND
iHOW MANY OF THOSE CORRECT DIGITS WERE IN THE CORRECT
;PLACE, UNTIL THE PLAYER CAN GUESS THE NUMBER, ON THE
;BOARD, BLINKING LEDS INDICATE CORRECT VALUE 8 CORRECT
;DIGIT, AND NONBLINKING LEDS SHOW CORRECT DIGIT VALUE,
iBUT WRONG PLACE,
iTHE BOTTOM ROW OF LEDS IS USED TO SHOW THE MODE OF
iTHE PROGRAM: IF THE LEFTMOST LED IS LIT, THE
;PROGRAM EXPECTS THE USER TO ENTER THE LENGTH
iOF THE NUMBER TO BE GUESSED, IF THE TWO LEFTMOST
;LEDS ARE LIT, THE PROGRAM EXPECTS A GUESS,
HHE PROGRAM REJECTS UNSUITABLE VALUES FOR A NUMBER
;LENGTH, WHICH CAN ONLY BE 1-9, A VALUE OTHER THAN
;o-9 FOR A GUESS RESTARTS THE GAME,
;A LOW TONE DENOTES A BAD GUESS, A HIGHT TONE, A WIN,
;AFTER A WIN, THE PROGRAM RESTARTS,
iAN INTERRUPT ROUTINE IS USED TO BLINK THE LEDS,

GETKEY
ACCESS
DIGITS
DUR
XTEMP
YTEMP
CNT
MASK A

MASKB
FREQ
CNT1
RN[I
DIGO
ENTRYO
IRQVECL
IRClVECH

,=$200
=$100
=$8B86
=$00
=$01
=$02
=$03
=$04
::::$05

=$06
=$07
=$08
=$09
=$OF
=$18
=$A67E
=$A67F

iROUTINE TO UNPROTECT SYS MEM
;NUMBER OF DIGITS TO BE GUESSED
;TONE DURATION CONSTANT
iTEMP STORAGE FOR X REG,
iTEMP STORAGE FOR Y REG,
iKEEPS TRACK OF• OF MATCHES
;coNTAINS PATTERN EOR'ED WITH LED
;STATUS REGISTER A TO CAUSE BLINK
;LED PORT B BLINK MASK
;TEMP STORAGE FOR TONE FREQUENCY
i• OF CORRECT DIGITS IN RIGHT PLAC
;FIRST OF RANDOM i LOCATIONS
iFIRST OF 9 DIGIT LOCATIONS
iFIRST OF 9 GUESS LOCATIONS
lINTERRUPT VECTOR LOW ORDER BYTE
; •• AND HIGH ORDER
i6522 VIA •1 REGISTERS:

,.._---------Fig. 9.13: Mindbender Program----------'

184

0200: 20 86 BB
0203: A9 EA
0205!
0200:
020A:
020Dl
020F:
0212:
0214:
0217:
0219:
021c:
021E:
0221:
0224!
0225!
0228!
022B!
022E!
0230:
0233:

8[1 7E A6
A9 03
8D 7F A6
A9 7F
8[1 OE AO
A9 CO
8D OE A()
A9 40
BD OB AO
A9 FF
SD 04 AO
8D 05 AO
58
BD
BD
BD

03 AO
02 AO
02 AC

A9 00
8[1 01 AO
BD ()() AO

0236! 85
0238: 85

()5

06

023A
023C
023F
0242
0244
0246
0248
024A
024C
024F
0251
0253
0255
0257

0258
025B
025C
025E

A9 02
BD 00 AO
20 00 01
C9 OA
10 EB
C9 00
FO E4
85 00
AD 04 AO
8~; OA
85 or,
85 OE
A4 ()0
88

20 FF 02
F8
69 00
DB

025F 29 OF
0261 99 OF 00
0264 88
0265 10 Fl

IER
ACR
TlLL
Tl CH
PORT1A
DDR1A
PORTlB
DDR1B
PORT3B
D[IR3B

=$AOOE
=$AOOB
=$A004
=$A005
=$A001
=$A003
=$AOOO
=$A002
=$AC()O
=$AC02

USING INTERRUPTS

iNTERRUPT ENABLE REGISTER
AUXILIARY CONTROL REGISTER
TIMER 1 LATCH LOW
TIMER 1 COUNTER HIGH
VIA 1 PORT A IN/OUT REG
VIA 1 PORT A DATA DIRECTION REG,
VIA PORT BIN/OUT REG
VIA PORT B DATA DIRECTION REG,
VIA 3 PORT BIN/OUT REG
VIA 3 PORT B DATA DIRECTION REG

;ROUTINE TO SET UP VARIABLES AND INTERRUPT TIMER FOR
;L,E,D, FLASHING

KEY!

,JSR ACCESS
L.IIA UEA
STA IRClVECL.
LDA 003
STA IRClVECH
L.DA t$7F
STA IER
LIIA UCO
STA IER
L.DA t$40
STA ACR
LDA t$FF
STA Tll.L.
STA TlCH
CLI
STA DDR1A
STA DDR1B
STA DDR3B
LDA tO
STA PORTlA
STA PORTlB
STA MASKA
STA MASKB

iUNPROTECT SYSTEM MEMORY
;LOAD LOW INTERRUPT VECTOR

;,,,AND STORE AT VECTOR LOCATION
;LOAD INTERRUPT VECTOR,,,,

; , , , AND STORE,
;cl.EAR INTERRUPT ENABLE REGISTER

;ENABLE TIMER INTERRUPT

;ENABLE TIMER IN FREE-RUN MODE

;SET LOW LATCH ON TIMER 1
;sET LATCH HIGH & START COUNT
;ENABLE INTERRUPTS
;sET VIA 1 PORT A FOR OUTPUT
;sET VIA 1 PORT B FOR OUTPUT
;sET VIA 3 PORT B FOR OUTPUT
;cl.EAR LEDS

;cLEAR BLINK MASKS

ROUTINE TO GET NUMBER OF DIGITS TO GUESS, THEN
FILL THE DIGITS WITH RANDOM NUMBERS FROM 0-9

RAND

LDA t~OOOOOOlO ;LIGHT LED TO SIGNAL USER TO
STA PORTlB ;INPUT OF t OF DIGITS NEEDED,
JSR GETKEY ;GET t OF DIGITS
CMP 410 ;IF KEYt >9, RESTART GAME
BPL KEYl
CMP to
BEG KEYl
STA DIGITS
LDA T1l.l.
STA RNDtl
STA RNDt4
STA RNDt5
LDY DICiITS
DEY

..JSR RANDOM
SED
ADC too
cu,

;cHECK FOR O DIGITS TO GUESS
;,,,O DIGITS NOT Al.LOWED

;STORE VAL.ID t OF DIGITS
;GET RANDOM t,
;usE IT TO START RANDOM
;NUMBER GENERATOR,

;GET t OF DIGITS TO BE GUESSED,
;,,AND COUNT TO 0, FIL.LING
;THEM WITH VALUES,

;GET RANDOM VALUE FOR DIGIT

;DECIMAL AD.JUST

AND t~()OOOllll ;KEEP DIGIT (10
STA DIGO,Y ;SAVE IT IN DIGIT TABLE,
DEY
BPL RAND ;FILL NEXT DIGIT

'-------- Fig. 9.13: Mlndbender Program (Continued)-------'

185

ADVANCED 6502 PROGRAMMING

/ROUTINE TO FILL GUESS TABLE W/USERS'S GUESSES

02671 A9 00 ENTER LUA to /CLEAR ENTRY TABLE POINTER
0269: 85 02
026B1 A9 06
026D: 0[1 00 AO
02701 BD 00 AO

STA XTEMP
LUA tZ00000110 /LET USER KNOW THAT GUESSES
ORA PORT1B ;SHOULD BE INPUT •••

02731 20 00 01 KEY2
02761 C9 OA

STA PORT1B ; ••• WITHOUT CHANGING ARRAY
JSR GETKEY /GET GUESS
CMP 110 /IS IT GREATER THAN 97

0278: 10 B4
027AI A6 ()2
027CI 95 18
027E: EB
027F: 86 0'.1
02811 E4 00
0283: DO EE

02851 A2 00
0287: BE 01 AO
028A: BE 00 AO
028UI 86 05
028FI 86 06
02911 86 04
02931 86 08
02951 B5 OF
02971 U~i 18
02''91 DO 04

029B1 E6 08
[I() 1() 029D:

029F:
02All
02A4:
02A61

AO
U9
DO
E6

00
18 00
04
04

O:!A8: [IO 05
02AAI CB
02AB1 C4 00
02AD: DO F'"l
o;!AF: EB
02B01 E4 ()()
02B2: DO El
02B41 18
02B5: AS 04
02B7: 65 08
02B9: AB
02BA: 20 Fi 02
02BUI BD 01 AO
02CO: 90 O~i

A9
8[1
A4

01
00 AO
OB
F1 02

02c2:
02C41
02C7:
02C9! 20
02cc:
02CE/

85 05
90 04

02UOI A9 01
0202: 85 06

;

BPL KEYl /IF YES, RESTART GAME
LOX XTEMP /GET POINTER FOR INDEXING
STA ENTRYO,X /STORE GUESS IN TABLE
INX /INCREMENT POINTER
STX XTEMP
CPX DIGITS /CORRECT t OF GUlSSES FElCHEU?
BNE KEY2 /IF NOT, GET ANOTHER

/THIS ROUTINE COMPARES USERS'S GUESSES WITH DIGITS
/OF NUMBER TO GUESS. FOR EACH CORRECT DIGIT IN THE
/CORRECT PLACE, A BLINKING LED IS LIT, AND FOR EACH
/CORRECT DIGIT IN THE WRONG PLACE, A NONBLINKING
;LEU IS l..IT.

DIGLP

ENTHYCMP
ENTRYLF'

NEXT ENT

NEXTDIG

cc

LOX to /CLEAR FOLLOWING STORAGES:
STX PORTIA /LEDS
STX PORT1B
STX MASKA /BLINK MASKS
STX MASKB
STX CNT /COUNT OF MATCHES
STX CNT1 /COUNT OF RIGHT DIGITS
l..DA L)[G(), X
CMP ENTRYO,X
BNE ENTRYCMP

ILOAU lST DIGIT OF t FORCOMPhl'U':S
;RIGHT GUESS/RIGHT PLACE~
;No: IS GUESS RIGHT DIGIT/

IWRCING PLACE?
INC
BNE
LDY
CMP
BNE
INC
BNE
INY
CPY
BNE
INX
CPX
BNE
CL.C

CNT1 /CINE MORE RIGHT GUESS/RIGHT PLACE
NEXTDIG /EXAMINE NEXT DIGIT CIF NUMBER
tO /RESET GUESSt PTR FOR CCIMPARLS
ENTRYO,Y /RIGHT DIGIT/WRCING PLACE?
NEXTENT ;NCI, SEE IF NEXT DIGil IS,
CNT /ONE MCIRE RIGHT DIGIT/WRONG PLACE
NEXTDIG /EXAMINE NEXT DIGIT OF NUMBER

DIGITS
ENTRYLP

DIGITS
DIGLP

LUA CNT
ADC CNTl
TAY
.JSR LITE
STA PORT1A
BCC CC
LDA tl
STA PORTlB
LDY CNTl
JSR LITE
STA MASKA
BCC TEST
LDA t1
STA MASKB

;INCREMENT GUESSt PTR
;ALL GUESE;ES TESl"EDi

INCi, TRY NEXT GUESS.
;INCREMENT DIGITJ PTR

;ALL DIGITS EVALUATED?
;NO, CHECK NEXT DIGIT,
;GET READY FCIR ADD •• ,.
ICIF TOTAL MATCHES TO DETERMINE
;NUMBER OF LEDS TO LIGHl
IXFER A TCI Y FOR 'LIGHT' ROUTINf
/GET PATTERN TCI LIGHT LEDS

;TURN LEDS CIN
;IF CARRY=O, DON'T LIGHT PBO

/TURN PI<O ON.
ILCIAD t CIF LEDS lD BLINK
iGET PATTERN
/START TCI BLINK LEDS
; IF CAFrnY ~o. PBO WON'T BUNK

;RCIUTINE TCI TEST FOR WIN BY CHECKING IF t CIE CCIRRECT

'-------- Fig. 9.13: Mlndbender Program (Continued)------~

186

02D4: A6 08
02D6: E4 ()0
02D8: FO OB
02DA: A9 72
02nc: 85 01
02DE: A9 BE
02EO: 20 12 03
02E;ci: FO 8''
o;!E5: A9 FF
02E7: 85 01
02E9: A9 54
02EBl 20 1 '' 03
02EE: 4C 2E 02

02F1: DO 04
02F3l A9 00
02F5: 18
02F6l 6()
02F7: A9 00
02F9l 38
02FAl 2A
02FBl 88

02FC: DO FB
02FE: 60

02FF 38
0300 A5 OA
0302 6~i OD
0304 6~i OE
0306 85 ()9
0308 A2 04
030A B5 09
030C 95 OA
030E CA
030F 10 F9
0311 60

0312 85 07
0314 A9 FF
0316 SD ()() AC
0319 A9 00
031B Ai, 01
031[1 A4 07

USING INTERRUPTS

;DIGITS IN CORRECT F~ACES • NUMBER OF DIGITS, IF WIN,
;A HIGH PITCHED SOUND IS GENERATED, AND IF ANY
;DIGIT IS WRONG, A LOW SOUND IS GENERATED,

TEST LDX CNT1 LOAD NUMB EH OF CORRECT DIGITS
CPX DIGITS ;ALL GUESSES CORRECT"
BEG WIN HF YES, PL.AYER WINfl

BAD LDA 072
STA DUR ;sET LIP LENGTH OF LOW TONE
LDA UBE ; HINE VALUE FOR LOW TONE
JSR TONE ; SIGNAL. BAD GUESSES W/TllNE
BE Cl ENTER ;GET NEXT GUESSES

WIN LDA UFF ; DURATION FIJFI HIGH TIJNE
STA DUR
LDA f:$54 ;TONE VALUE FOR HIGH TllNE
JSR TONE ; SIGNAL. WIN
JMP KEYl ;RESTART GAME

;ROUTINE TO FILL ACCUMULATOR WITH '1' BITS, STARTING
;AT THE LOW ORDER END, LIP TO AND INCLUDING THE
;err POSITION CORRESPONDING ro THE t OF LEDS TO
;BE LIT OR SET TO BLINKING,

LITE

STRTSH
SHIFT

BNE STRTSH
LDA tO
cu:
RTS
LDA tO
SEC
ROLA
DEY

BNE SHIFT
RTS

;IF Y NOT ZERO, SHIFT ONES IN
;srECIAL. CASE: RESULT IS NO ONES,

;CLEAR A SO PATTERN WILL SHOW
; MAKE A BIT HIGH
;SHIFT IT TO CORRECT POSITION
IBY LOOPING TO t OF GUESS/DIGIT
;MATCHES, AS PASSED IN Y
; LOOP 'TIL DONE

;RANDOM NUMBER GENERATOR
;usES NUMBERS A,B,C,D,E,F STORED AS RND THROWlH
;RND+5l ADDS B+E+Ftl AND PLACES RESULT IN A, THEN
;SHIFTS A TO B, B TO C, ETC, THE NEW RANDOM NUMBER
;WHICH IS BETWEEN O AND 255 INCLUSIVE IS IN THE
;ACCUMULATOR ON EXIT

RANDOM SEC
LDA
ADC
ADC
STA
LDX

RPL LDA
STA
DEX
f.tF'L.
RTS

RND+l
RNDt4
RND+~;
RND
t4
RND,X
RND+l,X

RPL

ICARRY ADDS VALUE 1
;ADD A,B,E AND CARRY

;SHIFT NUMBERS OVER

;TONE GENERATOR ROUTINE,
;DURATION OF TONE <NUMBER OF CYCLES TO CREATE)
;SHOULD BE IN 'DUR' ON ENfRY, AND THE NOTE VALUE
;(FREQUENCY) IN THE ACCUMULATOR,

TONE STA FREO
LDA t$FF
STA PORT3I<
LDA HOO
L.DX DUR

Fl.2 LDY FRECl

'-------- Fig. 9.13: Mlndbender Program (Continued)------~

187

ADVANCED 6502 PROGRAMMING

031F: 88 FLl DEY
03201 18 CLC
0321: 90 00 BCC .+2
0323: DO FA BNE FLl
03251 49 FF EOR HFF'
03271 SD 00 AC STA PORT3B
032AI CA DEX
032B1 DO FO BNE FL2
032DI 60 RTS

;INTERRUPT-HANDLING ROUTINE
;COMPLEMENTS LEDS AT EACH INTERRUPT

= $3EA ;LOCATE ROUTINE IN HIGH MEMORY
03EAI 48 PHA ;SAVE ACCUMULATOR
03EB1 AD 01 AO LDA PORTlA ;GET PORT FOR COMPLEMENTING
03EEI 45 05 EOR MASK A ;COMPLEMENT NECESSARY BITS
03FOI 8D 01 AO STA PORTlA ;STORE COMPLEMENTED CONTENTS
03F3: AD 00 AO I.DA PORTlB ;no SAME WITH PORTlB
03F61 45 06 EOR MASKB
03F8: SD 00 AO STA PORTlB
03FB: A[I 04 AO LDA TlLL CLEAR INTERRUPT BIT IN VIA
03FE: 68 Pl.A RESTORE ACCUMULATOR
03FFI 40 RTI DONE, RESUME PROGRAM

SYMBOL TABLE:
GETKEY 0100 ACCESS 8B86 DIGITS 0000
DUR 0001 XTEMP 0002 YTEMP 0003
CNT 0004 MASK A 0005 MAS KB 0006
FREQ 0007 CNTl 0008 RND 0009
DIGO OOOF ENTRYO 0018 IRClVECL A67E
IRClVECH A67F IER AOOE ACR AOOB
T1LL A004 TlCH A005 PORTlA A001
DDR1A A003 PORTlB AOOO DDRlB A002
PORT3B ACOO DDR3B AC02 KEYl 022E
RAND 0258 ENTER 0267 KEY2 0273
DIG LP 0295 ENTRYCMP 029F ENTRYLP 02A1
NEXTENT 02AA NEXT DIG 02AF cc 02C7
TEST 02£14 BAD 02DA WIN 02E5
LITE 02F1 STRTSH 02F7 SHIFT 02F9
RANDOM 02FF RPL. 030A TONE 0312
FL2 031D FL.1 031F

DONE

.__ ______ Fig. 9.13: Mlndbender Program (Continued)-------'

188

10. Complex Evaluation Technique
(Blackjack)

INTRODUCTION

This problem involves a complex evaluation in a simple input/ output
environment and a very small amount of memory. The program
generates light and sound effects and operates in real time.

THE RULES

The standard game of Blackjack or "21," is played in the following
way. A player attempts to beat the dealer by acquiring cards which,
when their face values are added together, total more points than
those in the dealer's hand but not more than a maximum of 21 points.
If at any time the total of 21 is achieved after only two cards are
played, a win is automatically declared for the player; this is called a
Blackjack (the name of the game). Card values range from 1 through
11. In the standard version of Blackjack the house rules require the
dealer to "hit" (take a card) if his/her hand equals 16 or fewer points,
but prohibits him/her from taking a "hit" when his or her hand totals
17 or more points.

The version of Blackjack played on the Games Board differs slight­
ly from the standard game of Blackjack. The single "deck of cards"
used here contains cards with values from 1 through 10 (rather than 1
through 11), and the number of points cannot exceed 13 (as opposed to
21). The dealer in this variation of the game is the computer.

At the beginning of each hand, one card is dealt to the dealer and
one to the player. A steady LED on the Games Board represents the
value of the card dealt to the dealer (the computer). A flashing LED
represents the card dealt to the player. If the player wants to be "hit"
(i.e., receive another card) he/she must press key "C." The player
may hit several times. However, if the total of the player's cards ever
exceeds 13, the player has lost the round ("busted") and he/she can
no longer play. It is then the dealer's turn. Similarly, if the player
decides to pass ("stay"), it becomes the dealer's turn. The dealer plays
in the following manner: if the dealer's hand totals fewer than 10

189

ADVANCED 6502 PROGRAMMING

points, the computer deals itself one more card. As long as the hand
does not exceed 13, the computer will check to see if it needs another
card. Like the situation with the player, once the total of the com­
puter's cards exceeds 13, it loses. No provision has been made for a
bonus or an automatic win, which occurs whenever the player or the
dealer gets exactly 13 points with only two cards (a Blackjack). This is
left as an exercise for the reader. Once the dealer finishes its turn,
assuming that it does not bust, the values of both hands are compared.
If the dealer's total is greater than the player's, the player loses. Other­
wise, the player wins. At the beginning of each series the player is
allocated 5 chips (5 points). Each loss decreases this total by one chip;
each win increases it by one. The game is over when the player goes
broke and loses, or reaches a score of 10 and wins. After each play the
resulting score is displayed as a number between O and 10 on the
appropriate LED. Each time a player wins a hand, the left-most three
LEDs of the bottom row light up. If the dealer wins the hand, the right­
most LEDs light up. (See Figure 10.1.)

0 0 0 0 0 0
2 3 2 3

0 0 0 0 0 0
4 5 6 4 5 6

0 0 0 0 0 0
7 8 9 7 8 9

•• eooo 000 • •• 10 11 12 13 14 15 10 11 12 13 14 15

PLAYER WINS COMPUTER WINS

Fig.10.1: Indicating the Winner

A TYPICAL GAME

When playing a game against the dealer, the player will press key
"A" to be "hit" (receive an additional card) until either a total of 13 is
exceeded (a "bust"), or until the player decides that his or her total is
close enough to 13 that he or she might beat the dealer. When the
player makes this decision to stay, he or she must press key "C." This
will start the dealer's turn, and all other keys will then be ignored.

190

COMPLEX EVALUATION TECHNIQUE

LEDs will light up in succession on the board as the computer deals
itself additional cards until it goes over ten, reaches 13 exactly, or
busts. Once the computer has stopped playing, any key may be
pressed; the player's score will be displayed and the winner will be in­
dicated through lit LEDs on the winner's side. The display will appear
for approximately one second, then a new hand will be dealt.

Note that once the value of the computer's hand has reached a total
greater than or equal to 10, it will do nothing further until a key is
pressed. Let us follow this "typical game."

The initial display is shown in Figure 10.2. A steady LED is shown
as a black dot, while a blinking LED is shown as a half dot. In the in­
itial hand the computer has dealt itself a 1 and the player a 4. The
player presses key "A" and receives an additional card. It is a 9. The
situation is shown in Figure 10.3. It's a Blackjack and the player has
won. The best the dealer can hope for at this point is to also reach 13 .

• 0 0
2 3

t) 0 0
4 5 6

0 0 0
7 8 9

Fig. 10.2: First Hand

• 0 0
2 3

() 0 0
4 5 6

0 0 ()
7 8 9

Fig, 10,3: Player Receives A Second Card: Blackjack

191

ADVANCED 6502 PROGRAMMING

Let us examine its response. To do this we must pass by hitting "C."
A moment later LED #3 lights up. The total of the computer's hand
now is 1 + 3 = 4. It will deal itself another card. A moment later,
LED #7 lights up. The computer's total is now 4 + 7 = 11. It stops.
Having a lower total than the player, it has lost. Let us verify it. We
press any key on the keyboard (for example, "0"). The result appears
on the display: LEDs 10, 11 and 12 light up indicating a player win,
and LED #6 lights up, indicating that the player's score has been in­
crease from 5 to 6 points. This information is shown in Figure 10.4. The

0 0 0
1 2 3

0 0 0
4 5 6

0 0 0
7 8 9

•• eooo
10 11 12 13 14 15

Fig. 10.4: End of Turn: Dealer Loses

LED display then goes blank and a new hand is displayed. When there
is a draw, none of the LEDs in the bottom row light up and the score
is not changed. A new hand is dealt. (If the player busts, the dealer
wins immediately and a computer win is displayed.)

Let us play one more game. At the beginning of this hand the com­
puter has dealt itself a 5, and the player has a 6. The situation is shown
in Figure 10.5. Let us ask for another card. We hit key "A" and are
given a 7. This is almost unbelievable. We have thirteen again!! The
situation is shown in Figure 10.6 It is now the computer's turn. Let us
hit "C." LED #10 lights up. The computer has 15. It has busted. The
situation is shown in Figure 10. 7. Let us verify it. We press any key on
the keyboard. The three left-most LEDs on the bottom row (LED 10,
11, and 12) light up and a score of 7 is displayed. This is shown in
Figure 10.8. A moment later the display goes blank and a new hand is
started.

192

COMPLEX EVALUATION TECHNIQUE

0 0 0
2 3

0 • ()
4 5 6

0 0 0
7 8 9

Fig. 10,5: Second Hand

0 0 0
2 3

0 • ()
4 5 6

() 0 0
7 8 9

Fig. 10.6: Blacklock Again

0 0 0
2 3

0 • ()
4 5 6

() 0 0
7 8 9

•00000
10 11 12 13 14 15

Fig, 10,7: D-lar Busts

193

ADVANCED 6502 PROGRAMMING

0 0 0
2 3

0 0 0
4 5 6

0 0 0
7 8 9

•• eooo
10 11 12 13 14 15

Fig. 10.8: Final Score Is 7

THE PROGRAM

The detailed flowchart for the Blackjack program is shown in
Figure 10.9, and the program is listed at the end of the chapter. As
usual, a portion of page O has been reserved for the variables and flags
which cannot be held in the internal registers of the 6502. This area is
shown in Figure 10.10 as a "memory map." These variables or flags
are:

DONE: This flag is set to the value "O" at the beginning of the
game. If the player goes broke, it will be set to the value '' 11111111. '' If
the player scores 10 (the maximum), it will be set to the value "1."
This flag will be tested at the end of the game by the ENDER routine
which will display the final result of the game on the board and light
up either a solid row of LEDs or a blinking square.

CHIPS: This variable is used to store the player's score. It is initial­
ly set to the value "5." Every time the player wins a hand it will be in­
cremented by 1. Likewise, every time the player loses a hand, it will be
decremented by 1. The game terminates whenever this variable reaches
the value "O" or the value "10."

MASKA, MASKB: These two variables are used to hold the masks
or patterns used to blink the LEDs connected respectively to Port A
and Port B on the Games Board.

PHAND: It holds the current hand total for the player. It is incre­
mented every time the player hits (i.e., requests an additional card).
card).

CHAND: This variable holds the current hand total for the com­
puter (the dealer).

194

START

CLEAR LEDs
DRAW FIRST CARDS

FOR EACH HAND

DECREMENT SCORE
SET END FLAG IF

SCORE= 0

COMPLEX EVALUATION TECHNIQUE

YES

P=C

CLEAR LEDs
DISPLAY SCORE AND

RESULTS OF HAND

NO

YES

Fig. 10.9: Blackjack Flowchart

YES

INCREMENT
SCORE SET

END FLAG IF
SCORE50

END

195

ADVANCED 6502 PROGRAMMING

TEMP: This is a temporary variable used by the RANDOM routine
to deal the next card to either player.

RND through RND + 5: These six locations are reserved for the
random number generating routine called RANDER.

WHOWON: This status flag is used to indicate the current winner
of the hand. It is initially set to "O," then decremented if the player
loses or incremented if the player wins.

At the high end of memory the program uses VIA #1, the ACCESS
subroutine provided by the SYM monitor, and the interrupt-vector at
address A67E, as shown in Figure 10.11.

Let us now examine the program operation. For clarity it should be
followed on the flowchart in Figure 10.9.

co DONE Status flag for end of game

Cl CHIPS Player score

C2 MA SKA

} Mo•ks "'°" ,o flmh •h• lfD•
C3 MASKB

C4 PHAND Total for player

C5 CHAND Total for computer

C6 TEMP

CJ RND

cs

C9

Random numbers
CA

CB

cc

CD Status for current winner

Fig. 10.10: Low Memory Map

196

8886

AOOO

AOOl

A002

A003

A004

AOOS

A006

A007

A008

A009

AOOA

AOOB

AOOC

AOOD

AOOE

AOOF

A67E

A67F

COMPLEX EVALUATION TECHNIQUE

SYM Subroutine

PORTS

PORTA

DDRB

DDBA

TlLL

TlCH

Via Control

INTVECL }
1--------------1 Interrupt Vector

INTVECH

Fig, 10, 11: High Memory Map

197

ADVANCED 6502 PROGRAMMING

Program Initialization

The timer on 6522 VIA #1 will be used to generate the interrupts
which blink the LEDs. These interrupts will cause a branch to location
03EA where the interrupt-handling routine is located. The first step is,
therefore, to load the new value into the interrupt vector, i.e.,
''03EA,'' at the appropriate memory location:

BLJACK JSR ACCESS
LDA #$EA
STAINTVECL
LDA #$03
STA INTVECH

Unprotect system memory
Load low interrupt vector

High vector

As described previously, the interrupt-enable register is first loaded
with the value "01111111," and then with the value "11000000" in
order to enable the interrupt for timer 1:

LDA #$7F
STA IER
LDA #$CO
STA IER

Clear timer interrupt-enable

Enable timer 1 interrupt

Loading the value ''7F'' clears bits O through 6, thereby disabling all
interrupts. Then, loading the value "CO" sets bit 6, which is the
interrupt-bit corresponding to timer 1. (See Figure 9.10.) As in the
previous chapter, timer 1 is put in the free-running mode. It will then
automatically generate interrupts which will be used to blink the
LEDs. In order to set it to the free-running mode, bit 6 of the ACR
must be set to "1 ":

LDA #$40
STAACR

Put timer 1
In free run mode

The latches for timer I are initialized to the highest possible value, i.e.,
FFFF:

198

LDA #$FF
STA TILL
STA TlCH

Low latch of timer 1
High latch and start timer

COMPLEX EVALUATION TECHNIQUE

Finally, now that the timer has been correctly initialized, interrupts
are enabled on the processor:

CLI Enable interrupts

LED Ports A and B configured as outputs (remember that the ac­
cumulator still contains the value "FF"):

STADDRA
STA DDRB

As a precaution, the decimal flag is cleared:

CLO

The player's score is initialized to the value 5:

LDA#5
STA CHIPS

Set player's score to 5

The DONE flag is initialized to the value "O":

LDA#O
STA DONE

The LEDs on the board are cleared:

STA MASKA
STA MASKB
STA PORTA
STA PORTB

Clear done flag

Clear LEDs

And the WHOWON flag is also initialized to "O":

STA WHOWON Clear flag

Dealing the First Hand

We are now ready to play. Let us deal one card to both the dealer
and the player. The LIGHTR and the BLINKR subroutines will be
used for that purpose. Each of these subroutines obtains a random

199

ADVANCED 6502 PROGRAMMING

number and lights the corresponding LED. LIGHTR lights up a
steady LED while BLINKR blinks the LED. These two subroutines
will be described later. We set one LED blinking for the player:

JSR BLINKR Set random blinking LED

and we save the first total for the current player's hand:

STAPHAND Store player's hand

then we do the same for the computer:

Hit or Stay?

JSR LIGHTR
STA CHAND

Set random steady LED
Store computer's hand

We will now read the keyboard. If the player presses "A," this in­
dicates a requested hit and one additional card must be dealt to the
player. If "C" is pressed, the player "stays" (passes) and it becomes
the computer's turn to play. All other keys are ignored. Let us first ob­
tain the key closure from the keyboard:

ASK JSR GETKEY

The key value must now be compared to "A" and to "C":

CMP #$0A
BEQ HITPLR
CMP #$0C
BEQ DEALER

Is it computer's turn?

If any other key has been pressed, it will be ignored and a new key will
be read:

JMP ASK Invalid key, try again

At this point in the program, we will assume the situation warrants
a "hit." One more card must be dealt to the player. Let us set one
more LED blinking. Naturally, the BLINKR subroutine, as well as the
LIGHTR subr~utine, are careful not to deal a card that has already

200

COMPLEX EVALUATION TECHNIQUE

been dealt. How this is achieved will be described later (this is the pur­
pose of the SETBIT subroutine).

HITPLR JSR BLINKR Set random LED

As soon as a new card has been dealt to the player, we compute the
player's new total for the current hand:

CLC
ADC PHAND
STA PHAND

Tally player's hand

The new total must be checked against the value '' 13. '' As long as the
player has 13 or less, he or she may play again, i.e., either be hit or
stay. However, if the player's score exceeds "13," he or she busts and
loses the play. Let us check:

CMP #14
BCC ASK
JMP LOSE

Check for 13
Ask if~= 13
Busted

It is now the dealer's turn. Since the computer is much faster than the
player in deciding whether it wants to hit or to stay, we will first slow it
down to provide more suspense to the game:

DEALER JSR DELAY

The delay subroutine also extends the period of time between the suc­
cessive decisions made by the computer to ·make the computer appear
more "human-like."

Before dealing another card to the computer (the dealer), let us ex­
amine its total. The house rule is that the dealer's total cannot exceed
"10." (Naturally, other algorithms are available from Blackjack ex­
perts.) The computer hand is therefore checked against the value
'' 10.'' If this value is exceeded, a branch occurs to location WINNER
where the winner will be decided. Otherwise, a new card will be dealt
to the computer:

LDACHAND
CMP #10
BCS WINNER

Check hand for limit
Yes. Decide winner.

201

ADVANCED 6502 PROGRAMMING

As long as the hand totals less than "10," the dealer requests a hit. A
new card is dealt to the dealer in exactly the same way that it was dealt
previously to the player:

JSR LIGHTR

The dealer's new total is computed:

CLC
ADC CHAND
STA CHAND

Set random LED

Tally computer's hand

Just as in the case of the player before, it is compared against the value
"13" to determine whether or not the dealer has busted:

CMP #14
BCC DEALER
JMP WIN

Is hand "'= 13?
Yes: another hit?
Busted: player wins

If the computer has busted, a jump occurs to location WIN which in­
dicates a "win" by the player. Otherwise, a branch back to location
DEALER occurs, where the computer will determine whether or not it
wants to receive an additional card. Let us now determine the winner.
Both hands are compared:

WINNER LDACHAND
CMPPHAND Compare hands

There are three possible cases: equal scores, player wins, and player
loses.

BEQ SCORER
BCC WIN

In the case that both scores are equal, a jump occurs to location
SCORER which will display the current status. If the player wins, a
branch occurs to location WIN and the sequence will be described
below. First, let us examine what happens when the player loses.

The Player Loses

A special flag, called WHOWON, is used to store the status at the

202

COMPLEX EVALUATION TECHNIQUE

end of each play. It is decremented to indicate a loss by the player:

LOSE DECWHOWON

The player's score is decremented:

DEC CHIPS

The player's score must be compared to the value "O." If the player's
score has reached "O," he or she is broke and has lost the game. In
this case, the DONE flag is set to "11111111;" otherwise, it is not
changed. Finally a jump occurs to SCORER where the final score will
be displayed:

Player Has Won

BNE SCORER
DEC DONE
JMP SCORER

Player broke?
Yes: set lose flag
Finish game

Similarly, when the player wins, the WHOWON flag is set to "l":

WIN INC WHOWON

The score is incremented:

INC CHIPS

It is then compared to the value "10":

LDA CHIPS
CMP #10 Chips= 10?

If the maximum score of "10" has been reached, the DONE flag is set.

BNE SCORER
INC DONE Set done flag

Displaying the final status is accomplished by the SCORER routine.
Remember that the final status will be displayed only at the player's
request - when any key is pressed on the keyboard. Let us wait for

203

ADVANCED 6502 PROGRAMMING

this:

SCORER JSR GETKEY

Before displaying the status, all LEDs on the board are turned off:

LDA#O
STA MASKA
STA MASKB
STA PORTA
STA PORTB

The player's score must now be displayed on the board. Let us read it:

LOX CHIPS
BEQ ENDER

If the player has no more chips, a branch occurs to location ENDER
and the game will be terminated. Otherwise, the score is displayed.
Unfortunately, LEDs are numbered internally "O" through "7," even
though they are labeled externally "l" through "8." In order to light
up the proper LED, the score must therefore first be decremented:

DEX

then a special subroutine called SETMASK is used to display the ap­
propriate LED. On entry to the SETMASK routine, it is assumed that
the accumulator contains the number of the LED to be displayed.

TXA
JSR SETMASK

Now that the proper mask has been created to display the score, we
must indicate the winner. If the player won, the three left-most LEDs
in the bottom row will be lit; if the computer won, the three right-most
LEDs will be lit. If it was a tie, no LEDs will be lit on the bottom row.
Let us see who won:

LOA WHOWON
BEQ ENDER Tie: do not change LEDs
BMI SC

204

COMPLEX EVALUATION TECHNIQUE

If the player lost, a branch occurs to address SC. If, on the other
hand, the player won, the three left-most LEDs in the bottom row are
lit:

LDA #$OE
JMP SCO

Player won: set left LEDs

If the player lost, the three right-most LEDs are lit:

SC LDA #$BO Player lost: set right LEDs

Contained in the accumulator is the appropriate pattern to light the
bottom row of LEDs, and this is sent to the Games Board:

sco

End of a Play

ORA PORTB
STA PORTB

The ENDER routine is used to terminate each play. If the score was
neither "O" nor "10," a new hand will be dealt:

ENDER JSR DELAY2
LDADONE
BNE ENO
JMP START

Otherwise, we check the DONE flag for either a player win or a player
loss. If the player lost the game, the bottom row of LEDs is lit and the
program ends:

ENO BPL ENI
LDA #$BE
STA PORTB
RTS

$01: Jump on win condition
Solid row of LEDs

Return to monitor

In the case of a player win, a blinking square is displayed and the pro­
gram is terminated:

ENI LDA #$FF
STA MASK.A

205

ADVANCED 6502 PROGRAMMING

Subroutines

LDA #$01
STA MASKB
RTS

SETBIT Subroutine

The purpose of this subroutine is to create the pattern required to
light a given LED. Upon entering the subroutine, the accumulator
contains a number between "O" and "9" which specifies which LED
must be lit. Upon exiting the subroutine, the correct bit is positioned
in the accumulator. If the logical LED number was greater than ''7,''
the carry bit is set to indicate that output should occur on Port B
rather than on Port A. Additionally, Y will contain the external value
of the LED to be lit (1 to 10).

Let us examine the subroutine in detail. The LED number is saved
in index register Y:

SETBIT TAY Save logical number

It is then compared to the limit value "7."

CMP #8
BCC SBO

If the value was greater than 7, we subtract 8 from it:

SBC #8 Subtract if > 7

Exercise 10-1: Recall that SBC requires the carry to be set. ls this the
case?

Now we can be assured that the number in the accumulator is be­
tween ''O'' and ''7.'' Let us save it in X:

SBO TAX

A bit will now be shifted into the correct position of the accumulator.
Let us first set the carry to "l ":

SEC Prepare to roll

206

COMPLEX EVALUATION TECHNIQUE

We clear the accumulator:

LDA#O

then we roll in the bit to the correct position:

SB LOOP ROLA
DEX
BPL SBLOOP

Note that index register Xis used as a bit-counter. The accumulator is
now correctly conditioned. The external number of the LED to be lit is
equal to the initial value which was stored in the accumulator plus
one:

INY Make Y the external #

If LEDs 9 or 10 must be lit, the carry bit must be set to indicate this
fact. Port B will have to be used rather than Port A:

CPY #9
RTS

S~t carry for Port B

Exercise 10-2: Compare this subroutine to the LIGHT subroutine in
the previous chapter.

Exercise 10-3: How was the carry set for LED #9 at the end?

LIGHTR Subroutine

This subroutine deals the next card to the dealer (computer). It must
obtain a random number, then make sure that this card has not
already been dealt, i.e., that it does not correspond to a card which
has already been displayed on the board. If it has not already been
displayed, the random number can be used as the value of the next
card to be dealt. A steady LED will then be lit on the board.

Let us first get a random number:

LIGHTR JSR RANDOM

It will be shown below that the RANDOM routine does not just ob-

207

ADVANCED 6502 PROGRAMMING

tain a random number but also makes sure that it does not correspond
to a card already used. All we have to do then is position the correct
bit in the accumulator and display it. Let us use the SETBIT routine
we have just described in order to position the bit in the accumulator:

JSR SETBIT

We must determine whether Port A or Port B must be used. This is
done by testing the carry bit which has been conditioned by the SET­
BIT subroutine:

BCS LLO

We will assume that Port A must be used. The new bit will be added to
the display by ORing it into Port A:

ORA PORTA
STA PORTA

The value of the card must be restored into the accumulator. It had
been saved in the Y register by the SETBIT routine:

TYA
RTS

In case Port B is used, the sequence is identical:

LLO ORAPORTB
STA PORTB
TYA
RTS

BLINKER Subroutine

Restore value

This subroutine operates exactly like LIGHTR above except that it
sets an LED flashing. Note that it contains the SETMASK subroutine
which will set the proper LED flashing and exit with a numerical value
of the LED in the accumulator:

BLINKR
SETMASK

208

JSR RANDOM
JSR SETBIT

Get random number

BLO

BCS BLO
ORAMASKA
STAMASKA
TYA
RTS
ORAMASKB
STAMASKB
TYA
RTS

RANDOM Subroutine

COMPLEX EVALUATION TECHNIQUE

Branch if Port B

Restore value

This subroutine will generate a random number between "0" and
"9" which has not already been used, i.e., which does not correspond
to the internal number of an LED that is already lit on the Games
Board. The value of this number will be left in the accumulator upon
exit. Let us obtain a random number:

RANDOM JSR RANDER Get 0-255 number

The RANDER subroutine is the usual random number generator
which has been described in previous chapters. As usual, we must re­
tain only a number between "O" and "9." We will use a different
strategy here by simply rejecting any number greater than "9" and
asking for a new random number if this occurs:

AND#$0F
CMP #10
BCS RANDOM

Exercise 10-4: Can you suggest an alternative method for obtaining a
number between "O" and "9"? (Hint: such a method has been described
in previous chapters.) ·

A random number between "O" and "9" has now been obtained.
Let us obtain the corresponding bit position which must be lit and save
it in location TEMP:

JSR SETBIT
STA TEMP

Set bit in position

We will now check to see if the corresponding bit is already lit on either

209

ADVANCED 6502 PROGRAMMING

Port A or Port B. Let us first check to see if it is Port A or Port B:

BCS RNO Determine Port A or B

Assuming that it is Port A, we must now find which LEDs in Port A
are lit. This is done by combining the patterns for the blinking and
steady LEDs, which are, respectively, in Mask A and Port A:

LDAMASKA
ORA PORTA Combine Port and Mask

Then a check is made to see whether or not the bit we want to turn on
is already on:

JMP RNl

If it is on, we must obtain a new random number between "O" and
"9":

RNl AND TEMP
BNERANDOM

If the bit was not already on, we simply exit with the internal value of
the LED in the accumulator:

DEY
TYA
RTS

Similarly, if an LED on Port B had to be turned on, the sequence is:

RNO LDAMASKB
ORA PORTB
AND TEMP
BNE RANDOM
DEY
TYA
RTS

RANDER Subroutine

This subroutine generates a random number between "O" and
"255." It has already been described in previous chapters.

210

COMPLEX EVALUATION TECHNIQUE

DELAY Subroutines

Two delay loops are used by this program: DELAY, which provides
approximately a half-second delay and DELAY2, which provides
twice this delay or approximately one second. Index registers X and Y
are each loaded with the value "FF." A two-level nested loop is then
implemented:

DELAY2
DELAY

DO
Dl

JSR DELAY
LDA #$FF
TAY
TAX
DEX
LDA #$FF
BNE Dl
DEY
BNEDO
RTS

Exercise 10-5: Compute the exact duration of the DELA Y subroutines.

Interrupt Handler

The interrupt routine is used to blink LEDs on the board, using
MASKA and MASKB, every time that the timer generates an inter­
rupt. No registers are changed. The operation of this routine has been
described in the preceding chapter:

SUMMARY

PHA
LDA PORTA
EOR MASKA
STA PORTA
LDA PORTB
EOR MASKB
STA PORTB
LDA TILL
PLA
RTI

This program was more complex than most, despite the simple strategy

211

ADVANCED 6502 PROGRAMMING

used by the dealer. Most of the logical steps of the algorithm were
accompanied by sound and light effects. Note how little memory is re­
quired to play an apparently complex game.

Exercise 10-6: Note that this program assumes that the contents of
memory location RND are reasonably random at the beginning of the
game. If you would like to have a more random value in RND at the
beginning of the game, can you suggest an additional instruction to be
placed in the initialization phase of this program? (Hint: this has been
done in previous programs.)

Exercise 10-7: In the ENDER routine are the instructions "BNE
ENO" and "JMP START" both needed? If they are not, under what
conditions would they be needed?

Exercise 10-8: "Recursion,, describes a routine which calls itself. Is
DELAY 2 recursive?

;
ACCESS
INTVECL
INTVECH
IER
ACR
T1LL
T1CH
DDRA
DDRB
PORTA
PORTB
MASKA
MASKB
CHIPS
DONE
PHAND
CHAND
TEMP·
FWD
WHOWON
GETKEY

BLJACK PROGRAM
$8B86
$A67E
$A67F
$AOOE
$AOOB
$A004
$A005
$A003
$A002
$AOO:l
$AOOO
$C2
$C3

"' $Cl
$CO
$C4
$C5
$C6
$C7
$CD
$100
$200

BLACKJACK GAMEi USES A 'DECK' OF 10 CARDS, CARDS DEALT
TO THE PL.AYE~ ARE FLASHING I.ED'S, ONES IN THE COM­
PUTER'S HAND ARE STEADY, CARDS ARE DEALT BY A RANDOM
NUMBER GENERATOR WHICH IS NON-REPETITVE, NUMERICAL
TOTALS ARE KEPT IN ZERO PAGE LOCATIONS 'PHAN[!' AND
'CHAND', PORTA AND PORTB ARE THE OUTPUT PORTS TO THE
LED DISPLAY, MASKA AND MASKB ARE USED BY THE INTERRUPT
ROUTINE TO FLASH SELECTED LED'S, 'DONE' AND
'WHOWON' ARE STATUS FLAGS TO DETERMINE END OF GAME AND
WHO WON THE CURRENT HAND,

.__---------Fig. 10.12: Blacklack Program----------'

212

0200: 20 86 fJB
0203: A9 EA
020~): 8[1 lE A6
0208: A9 03
020A! 8[1 lF A6
02011: A9 lF
o:!OF! 8[1 OE AO
02:L2: A9 co
o:1:t4: 8D OE AO
0217: A9 40
021 <J: 8[1 OB A()

02:LC! A9 FT
02:1.E! 8D 04 AO
0221: 8[1 ()" d AO
0224: 58
022~:i: 8[1 03 AO
0228: BD 02 AO
022B: DO
022c: A9 0~5
022E! 8~i Cl
0230: A9 ()()

023:?! 8~i co

0234 8'.) C2
0236 85 C:3
02:m 8[1 01 AO
02:rn 81) 00 AO
023E 8!5 CD
0240 20 OF O:l
0243 85 C4
0245 20 F7 02
0248 85 c~;

024A 20 00 01
024[1 C9 OA
024F FO 07
02~.H C9 oc
0253 FO 12
02'.)~j 4C 4A 02

0258 20 OF o;,
02'.:JB 1B
02'.:'IC 65 C4
o:~:5E 85 C4
0260 C9 OE
0262 90 E6
0264 4C 87 02

0267 20 5D 03
0:16A A5 C~)

026C C9 OA
026E BO OF
0270 20 F7 02
027:l 18

COMPLEX EVALUATION TECHNIQUE

I PROGRAM STARTS BY INITIALIZING THE TIMER AND THE
!INTERRUPT VECTOR, THE OUTPUT PORTS ARE TURNED ON,
IAND l~E STATUS FLAGS ARE CLEARED,

BL.JACK ,JSR ACCESS ILINPROTECT SYSTEM MFMOl~Y
l..DA UEA ILOAD LOW INT ERUPT VECTDF<
STA INTVECL
I.DA U03 ILOAD HIGH INTER UPI VECTOI~
STA INTVECH
LDA U7F ICLEAf< TIMER INTETWF·T ENABLE
STA Im
LDA UCO I ENABLE TIMER 1. INTEf<UPT
STA IER
LDA U40 IPUT TIMER l IN FREE RUN MODE
STA ACR
LDA •HFF
STA T 11. L. ; ~3LT LOW LATCH DN TIMER 1.
STh T1CH ISET HIGH LATCH & STAr~r TIMEI'<
CL.I ,E:NABI..E Pf<DCESSOR INTERUPTS
STA DDRA ISET I ... ED PDfnS TO OUTPUTS
STA DDRB
CL D
I...DA #~ii !iSET FLAYER'S SCORE HI 5
STA CHIPS
LDA ,J() ,CLEAR DONE FL.Ali
STA DONE

INEW HAND! DISPLAY I~; CLEARED, BOTH HANDS r'iRE
IAF<E SET WITH STAFU VALUES, AND THF COl~I~[GF'OND l NCi
,LED'S Am:: SET+

STAF?T STA M,'iSKA ;CL.EAR BLINKER MA!3KS; IT IS
STA MASKI< ;ASSUMED THAT ACC, CONTAINS ZERO
STA PORTA ,CL.EAf< I...ED'i3
STA PORTB
STA WHDWDN ,CL.EAR FL.AG F()I;: HAND
.JSR Bl..INKR ,SET F<ANDDM BLINKING L.Efl
STA PHAND ,STDRF PLAYER'S HAND
JSR L.IIJHTR ;SET A STEf'"-iDY RANDOM LED
STA CHAND I STORE COMPUTER'S HAND

;~:EY INPUT! 'A' IS A HIT, 'C' IS COMPUTER' TUl~N
;ALL OTHERS ARE IGNOF:ED

ASK .JSR GETKEY ,CiET A KEY INPUT
CMF' UOA ;DOES PL.AYER WANT A HIT'•'
BEQ HITF'U< ;YES, Bl~ANCH
CMF' noc ;1s IT 'COMP TURN' KEY"
I<EQ DEAI ... ER ;YES
JMF' ASK ;BAD KEY, TRY AGAIN

;
HITPL.R JSR Bl..INKR ; SE:T A RANDOM LED

CL.C
ADC PHAND HAL.LY PLAYER'S HAND
STA PHAND
CMF' tl4 ;CHECK HAND
BCC ASK ;JS <••13, OK
. .JMP 1...0~iE ;BLJS'f E[I, GD TD L.DSE 1,DUTINE

DEAL.EF< JSf~ DELAY ;DELAY EXECUTION OF f<DUTINE
l..DA CHAND ;1s CDMP OVEI'< HiJI.JGE LIMIT"
CMP HO
f<CS WINNER ;YES, FIGURE WINNFf<
,JSI~ L.IGHTR ,NO,SE'l RANDOM LED
CI...C

-------Fig. 10.12: Blacklack Program (Continued)-------.....

213

ADVANCED 6502 PROGRAMMING

0274: 65 C5 ADC CHAND ;TALLY COMPUTER'S HAND
0276! 85 C5 STA CHAND
0278: C9 OE CMP U4 ;JS HAND <=13'?
027A: 90 EB BCC DEALER ,YES, ANOTHER HIH
ovc: 4C 92 02 -IMP WIN ;BUSTED, PLAYER WINS

;
;FIGURE WINNER: 'WIN' AND 'LOSE' TALLY SCDRE,
IAND DETERMINE IF THE PLAYER HAS WDN DR LDST
;THE GAME, THE 'WHDWON' FLAG IS SET TD SHDW WHO
;WDN THE PARTICULAR HAND, IF THE HANDS ARE EQUAL,
INDTHING IS AFFECTED,

027F: A5 C5 WINNER LDA CHAND ;COMPARE HANDS
0281: C5 C4 CMP PHAND
02831 FO 19 BEQ SCORER IARE EQUAL, ND CHANGE
020::=;: 90 OB BCC WIN ,PLAYER'S HAND GREATEF<
0287: C6 CD LOSE DEC WHO WON /LOSE ROUTINE
0289: C6 Cl DEC CHIPS ;TALLY SCORE
028Bl DO 11 BNE SCORER ; IS Pl.AYER BROKE''
028[1: C6 co DEC DONE ;YES, SET END OF GAME FL.AGl LOSE
02SF: 4C 9E 02 -IMP SCORER
0292: E6 CD WIN INC WHO WON ,WIN ROUTINE
0294: E6 Ci INC CHIPS ;TALLY SCORE
0296: A5 Ci LDA CHIPS ,ADD WINNINGS
02<Js: C9 OA CMF' uo ;IF CHIF'S=lO, SET END OF GAME FL.AG
029A: DO 02 BNE SCORER
029C: E6 co INC DONE ,SET END OF GAME FLAG: WIN

;
ID I SPLAY SCORE BY LIGHTING 1 DF 10 LED'S, THE
,BOTTOM ROW OF LED'S IS SET TD SHDW WHETHER THE !"'LAYER
;(}R THE COMPUTER WDN THE HAND, THE DISPLAY IS HELD
;THUS, THEN A TEST IS MADE FDR AN END IJF GAME CONDITION
,IF SUCH A CIJNDITIIJN EXISTS, THE 1...ED·'i, AR[
,SET ACCDRDINliL.Y, AND THE PROGRAM IS TERMINATED,
HT IS ASSUMED THAT THE ADDRESS OF THE MDNJTIJR JS
,DN THE STACK,
;

029E! 20 00 01 SCOF;ER JSR GETKEY ,HOLD LAST STANDINGS OF CAl:~DS
02A1! A9 00 LDA to ,CLEAR LED'S
02A3! 85 C2 STA MASKA
02A~'.i! 85 C3 STA MASKB
02A7: 8D 01 AO STA PORTA
02AA: SD 00 AO srA PORTB
02AD! A6 Cl LDX CHIPS ;DISPLAY NUMBER OF CHIP!:,
02AFl FO 18 BEQ ENDER ,ADJUST so SUBROUTINE SETS
02B1! CA DEX ,THE RIGHT LED
02B2: BA TXA
02B3l :w 12 03 ..JSR SETMASI\

02B6 A5 CD LDA WHO WON ,SEE WHO WIJN HAND
02B8 FO OF BEil ENDER HIE··· DO NOT AFFECT LED~ S
02BA 30 05 BMI SC
02BC A9 OE LDA UOE ,F'L.AYER WON-- SU THl,EE LEFT LED'S
02BE 4C C3 02 JMP sco
02C1 A9 BO SC LDA UBO lF'LAYER LOST- SET THREE RIGHT LED'
O:<C3 OD 00 AO sco ORA PDF<TB ;SET LED PORT
02C6 8[1 00 AO STA f'ORTB
02C9 20 5A 03 ENDER ..JSR DELAY2 ;HOLD DISF'L.AY

02cc A5 co LDA DONE ,CH[CK FOR [ND OF CJ AME CONDITION
02CE DO 03 BNE ENO
02[10 4C 34 O':> JMP START ;z[RO, START NEW HAND
02D3 10 06 ENO BPL EN1 ;$0:l, WIN CONIJITIDN
02D5 A9 BE LDA UBE ,SET SOLID RDW LEDS
02[17 SD 00 AO STA PORTB
02DA 60 RTS ;Flf.cTURN TO MONITDI~

Fig. 10.12: Blacklack Program (Continued)

214

02DB A9 FF
02DD 85 C2
02DF A9 01
02El 85 C3
02E3 60

02E4: AB
02E5: C9 08
02E7: 90 02
02E9: E9 08
02EB: AA
02EC: 38
02ED: A9 00
02EF: 2A
02FO: CA
02Fl: 10 FC
02F3: CB
02F4l CO 09
02F6l 60

EN1 LDA tH"F
STA MASKA
L.DA UOl
STA MASKB
RTS

COMPLEX EVALUATION TECHNIQUE

ISET BL.INKING SQUARE

IRETURN TO MONITOR

--··SUBROUTINES

ISET A BIT IN ACCUMULATOR: ENTER WtTH A LOGICAL VALUE,
II,E, 0-9, IN ACC, EXITS WITH A NUMERICAL VALUE(l-10)
IIN Y, AND THE BIT POSITIONED TN ACC, THE CARRY FLAG

SETBIT TAY
CMP t8
BCC SBO
SBC tB

SBO TAX
SEC
LOA tO

SBLOOP ROLA
DEX
BPL SBL.OOP
INY
CPY t9
RTS

ISAVE LOGICAL. NUMBER
IBRACKET 0-7 VALUE

1,,,SUBTRACT IF >7
I SET INDEX REG
IPREPARE BIT TO ROLL.

IMOVE BIT TO POSITION

IMAKE Y NUMERICAL, NOT LOGICAL.
ISET CARRY, FOR PORTB, C•I

;
ILIGHTRI SETS A RANDOM STEADY LED THAT HAS NOT BEEN
IPREVIOUSLY SET, IT GETS A RANDOM NUMBER, THEN SETS
ITHE BIT IN THE PROPER PORT, THE NUMERICAL VALUE OF
IBIT SET IS IN THE ACCUMW .. ATOR ON EXIT,

02F7
02FA
02FD
02FF
0302
0305
0306
0307
030A
030D
o:rnE

20 23 03 LIGHTR
20 E4 02

JSR RANDOM
JSR SETBIT
BCS L.LO
ORA PORTA
STA PORTA
TYA

IGET RANDOM NUMBER
IGET BIT POSITIONED IN ACC,
IBRANCH IF PORT B DESIGNATED
ISET LED IN PORTA

030F
0312
0315
0317
0319
031B
031C
031D
03:1.F

BO 08
OD 01 AO
SD 01 AO
98
60

IRESTORE NUMERICAL VALUE
r·(J'S

OD 00 AO LLO
SD 00 AO

ORA PORTB
STA PORTI<
TYA

ISET LED IN PORTB

98
60

20 23 03
20 E4 0''
BO 06
05 C2
85 C2
98
60
05 C3
85 C3

IRESTORE NUMERICAL VALUE
RTS

IBLINKRI SETS A RANDOM FLASHING LED THAT HAS NOT BEEN
IPREVIOUSLY SET, THE NUMERICAL VALUE OF THE LED IS IN
ITHE ACCUMULATOR ON EXIT, IT GETS A RANDOM NUMBER,
ITHEN DROPS INTO THE SETMASK ROUTINE TO FLASH THE
I PRDF'EF< LED,

ISETMASKI ENTER WITH A LOGICAL VALUE, AND ROUTINE
ISETS THE PROPER FL.ASHING LED, EXITS WITH NUMERICAL
IVALUE OF LED SET IN ACCUMULATOR

BL.INKR JSR
SETMASK ,.JSR

BCS
ORA
STA
TYA
RTS

BLO ORA

RANDOM
SETBIT
BLO
MASKA
MASK,~

MASKB
STA MASKI<

IGET RANDOM NUMBER

IBRANCH IF PORTB DESIGNATED
;SET MASKA

IRESTDRE NUMERICAL VALUE

ISET MASKB

'-------- Fig. 10.12: Blackfack Program (Continued)--------'

215

ADVANCED 6502 PROGRAMMING

0321: 98
0322: 60

03:13: 20 47 03
0326: 29 OF
0328: C9 OA
032Al BO F7
032c: 20 E4 02
032Fl 85 C6
0331: BO 08
03:l3l AS C2
0335: OD 01 AO
0338: 4C 40 03
03:3Bl A5 C3
033D: OD 00 AO
0340: 25 C6
0342: DO DF
0344: 88
o:~45: 98
0346: 60

0347: 38
0348: AS CB
034A: 65 Cf<
034C: 6'.5 cc
034E: 85 Cl
03~;0: A2 04
0352: B5 C7
0354: 95 CB
0356: CA
0357: 10 F9
0359: 60

o:i:sA: 20 5[1 o;~
035[1: A9 FF
035FI AB
0360: AA
0361: CA
0362: A9 FF
0364: DO FI<
0366: 88
03671 DO F7
0369: 60

o:,EAI 48
03EI<: AD 01 AO

TYA
RTS

;GENERATES A RANDOM NUMBER FROM 0 TO 9 THAT IS NOT
;THE NUMBER OF AN LED AL.READY SET, RESULT IS IN ACC ON
;EXIT,
;
RANDOM JSR RAN DEF, ;GET 0-255 NUMBER

AND UOF ;MASK HIGH NIBBLE
CMP tlO ;BRACKET ()-9
BCS RANDOM
JSR SETBIT ;sET BIT IN POSITION
STA TEMP ;SAVE IT
BCS RNO ;DETERMINE PORT A OR B
L.DA MASK A ;coMBINE PORT AND MASK
ORA PORTA
JMP RNl

RNO L.DA MAS KB ;COMBINE PORT AND MASK
ORA PORTB

RNl AND TEMP ;LOOK AT SPECIFIC BIT
BNE RANDOM HF BIT SET Al.READY, TRY AGAIN
DEY ;MAKE y LOGICAL
TYA ;EXIT WITH VALUE IN ACCUMULATOR
RTS

;GENERATES A RANDOM NUMBER FROM 0····2~)5. USES NUMBERS
;A,B,C,D-,E,F STORED AS RND THROUGH RND+5. ADDS B+E+F+l
;AND PUTS RESULT IN A, THEN SHIFTS A TU B, B TO C,
;RANDOM NUMBER IS IN ACCUMULATOR ON EXIT,
;
RAND ER SEC ;CARRY ADDS

I...DA RND+l ,ADD H,D,F
ADC RNIH-4
ADC RND+c;
STf~ RND
LDX t4 ,SHIFT NUME<Er~S DOWN

RDLODP I...DA RND,X
STA l~ND+:L, X
DEX
I<PL. f!DL.OOP
RTS

;DELAY LODP: DELAY2 IS SIMPLY TWICE THE TIME DELAY
,OF DELAY, GIVEN LllllP IS APPROX, ,5 SEC, DELAY,

DELAY2 .JSR DELAY
DELAY LDA t$FF ;SET VALUE FOR LOill''S

TAY
DO TAX
Dl DEX

L.DA t$FF
I<NE [11
DEY
BNE DO
RTS

;
;INTERRUPT ROUTINE: EXCLUSIVE OR'S THE OUTPUT
;PORTS WITH THE CORRESPDNDING BL.INKER MASKS EVERY
;TIME THE TIMER TIMES llUT TO FLASH SlLEClED LED'S,
;ND REGISTERS ARE CHANGED, AND THE INTERRUPT
,FL.AG IS CL.EARED BEFDRE EXIT,

cs$Q;,EA
PHA
L..DA PORTA

;SAVE ACCUMULATOR
;CDMPLEM~NT PilRTH WITH MASKS

ETC,

-------Fig. 10.12: Blacklack Program (Continued)-------...

216

03EE 45 C2
O:lFO 8[1 01 AO
03F3 AD ()() AO
03F6 45 C3
O:lFS SD ()() AO
O:lFB AD 04 AO
O:ffE 68
o:lFF 40

SYMBOL TABLE:
ACCESS 8B86
!ER AOOE
TlCH A005
PORTA AOOl
MAS KB OOC3
f'HAND OOC:4
RND OOC:7
BL.JACK 0200
HITF'LR 0258
LOSE ()287
SC 02Cl
ENO ()2[13
SBO 02EB
LLO o;rn7
BLO 031[1
RNl o:i40
DEL.AY2 03~iA
D:L ()361

::i:

EOR MASK A
STA PORTA
LDA F'ORTB
EOI, MASKB
STA PORTIJ
LDA T1LL.
F'LA
RTI

INTVECI...
ACl'l
DDRA
F'ORTB
CHIPS
CHAND
WHOWON
START
DEALEf<
WIN
sco
ENl
SIJLDOF'
BLINKR
f,ANDOM
RAN DER
DELAY

COMPLEX EVALUATION TECHNIQUE

ICLEAR TIMER INlFRRUPT BJT
;RESTORF ACCUMULATOR

A67[INTVECH
AOOB l ll...L
A003 DDF~B
AOOO MASKt-i
OOC:L ODNI,·
OOCci TEMf'
OOCD fiEl I\LY
0234 ASK
0267 WINNE!'<
029;) SCOf~Ef~
02C3 [NDEJ<
02DB SFTBJT
02EF I IGHTI'<
O:lOF SLTMA!31\
032:3 1;:N()
0347 f<lll...OiJP
O::l::iD [I()

hl.i/F"
,,004
AOO'.''.
OOC:?
ooi.:o
OOC6
0100
024A
02/F.
();>'IF
():·>c</

O:'E4
o:.~F/
o:·,:1?
o:,:·1,,
()~1'.'.'i:?
().5/)()

.__------Fig. 10.12: Blackjack Program (Continued)·---------'

217

11. Artificial Intelligence
(Tic-Tac-Toe)

INTRODUCTION

This chapter presents the complete design of a complex algorithm that
solves the strategy and implementation problems of the Tic-Tac-Toe
game. This is a long program using sophisticated evaluation techniques,
table look-up algorithms, as well as complex data structures such as
chained lists. It deserves a close examination and will bring you to a true
competence level when programming the 6502.

THE RULES

Tic-Tac-Toe is played on a three-by-three sectioned square. An "O"
symbol will be used to represent a move by the player and an "X" will
be used to display a move by the computer. Each player moves in turn,
and on every turn each player strategically places his or her symbol in
a chosen section of the board. The first player to line up three symbols
in a row (either horizontally, vertically or diagonally) is the winner.
An example of the eight possible winning combinations is shown in
Figure 11.1. Using our LED display, a continuously lit LED will be
used to display an "X," i.e., a computer move. A blinking LED will
be used to display an "O," i.e., the player's move.

Either the player or the computer may make the first move. If the
player decides to move first, he or she must press key "F." If the com­
puter is to move first, any other key should be pressed and the com­
puter will start the game. At the end of each game a new game will
start automatically. The computer is equipped with a variable IQ (in­
telligence) level ranging from one to fifteen. Every time the computer
wins, its IQ level is reduced one unit. Every time the player wins, the
computer's IQ level is increased by one unit. This way, every player
has a chance to win. A high tone is sounded every time the player wins
and a low tone is sounded every time that the player loses.

A TYPICAL GAME

The display is initially blank. We will let the computer start. We do
this by pressing any key but the key "F." (If we press key "F," then
the player must go first.) Let us begin by pressing "O." After a short
pause the computer responds with a "chirp" and makes its move. (See
Figure 11.2.)

218

ARTIFICIAL INTELLIGENCE

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0

0 0

0 0

Fig. 11. 1: Tic-Tac-Toe Winning Combinations For a Player

X

Fig. 11.2: First Computer Move

An "X" is used to denote the computer's moves. "O" will be used
to denote our moves. Blank spaces are used to show unlit LEDs. Let

219

ADVANCED 6502 PROGRAMMING

us move to the center and occupy position 5. (See Figure 11.3.) We
press key "5." A moment later, LED #1 lights up and a chirp is heard
that indicates it is our turn to play. The board is shown in Figure 11.4.

0

X

Fig. 11,3: Our First Move

X

0

X

Fig, 11,4: Second Computer Move

It is now our turn and we should block the computer to prevent it
from completing a winning column: let us occupy position 4. We press
key "4." A moment later, LED #6 lights up and a chirp is heard. The
situation is shown in Figure 11.5.

X

0 0 X

X

Fig. 11,5: After the Computer's Third Move

220

ARTIFICIAL INTELLIGENCE

We play in position 2. The computer reacts by playing in position 8.
This is shown in Figure 11.6. We prevent the computer from com­
pleting a winning row by playing in position 9. The computer responds
by occupying position 3. This is shown in Figure 11.7. This is a draw
situation. Nobody wins, all the LEDs on the board blink for a mo­
ment, and then the board goes blank. We can start another game.

X 0

0 0 X

X X

Fig. 11.6: After the Computer's Fourth Move

X 0 X

0 0 X

X X 0
(DRAW)

Fig. 11.7: After the Computer's Fifth Move

Another Game

This time we are going to start and, hopefully, win! We press "F"
to start the game. A chirp is heard, confirming that it is our turn to
play. We play in position 5. The computer responds by occupying
square 3. The chirp is heard, announcing that we can play again. The
situation is shown in Figure 11.8. We play in position 4. The computer
responds by occupying square 6. This is shown in Figure 11.9. This
time we must block the computer from completing the column on the

221

ADVANCED 6502 PROGRAMMING

X

0

Fig. 11.8: Move 1

X

0 0 X

Fig. 11.9: Move 2

X X

0 0 X

0

Fig. 11. 10: Move 3

right and we move into position 9. The computer responds by moving
to square 1, thus preventing us from completing a diagonal. This
situation is shown in Figure 11.10. We must prevent the computer
from completing a winning row on top; therefore we occupy position
2. The computer responds by occupying position 8. This is shown in
Figure 11.11. We make our final move to square 7 to finish the game.
This is a draw: we did not beat the computer.

222

ARTIFICIAL INTELLIGENCE

X 0 X

0 0 X

X 0

Fig, 11, 11: Move 4

Since the computer was "smart enough" to move into a diagonal
position after we occupied the center position, we did not win. Note: if
we keep trying, at some point the computer will play one of the side
positions (2, 4, 6, or 8) rather than one of the corners and we will then
have our chance to win. Here is an example.

We move to the center. The computer replies by moving into posi­
tion 6. The situation is shown in Figure 11.12. We move to square 1;
the computer moves to square 9. This is shown in Figure 11.13. We

0 X

Fig, 11.12: Move 1

0

0 X

X

Fig. 11.13: Move 2

223

ADVANCED 6502 PROGRAMMING

move to square 3; the computer moves to square 7. This is shown in
Figure 11.14. This time we make the winning move by playing into
square 2. The situation is shown in Figure 11.15. Note that if we start
playing and if we play well, the result will be eith~r a draw or a win.
With Tic-Tac-Toe, the player who starts the game cannot lose if he or
she makes no mistakes.

0 0

0 X

X X
"MOVE3"

Fig. 11.14: Move 3

0 0 0

0 X

X X

Fig. 11.15: "We Wini"

THE ALGORITHM

The algorithm for the Tic-Tac-Toe program is the most complex of
those we have had to devise so far. It belongs to the domain of so­
called "artificial intelligence." This is a term used to denote the fact
that the functions performed by the program duplicate the mental ac­
tivity commonly called "intelligence." Designing a good algorithm
for this game in a small amount of memory space is not a trivial prob­
lem. Historically, many algorithms have been proposed, and more can
be found. Here, we will examine two strategies in detail, and then
select and implement one of them. Additional exercises will suggest
other possible strategies.

224

ARTIFICIAL INTELLIGENCE

Strategy to Decide the Next Move

A number of strategies may be used to determine the next move to
be made by the computer. The most straightforward approach would
be to store all possible patterns and, the best response in each case.
This is the best method to use from a mathematical point of view as it
guarantees that the best possible move will be made every time. It is
also a practical approach because the number of combinations on a 3
x 3 board is limited. However, since we have already Je~rned to do
table lookups for other games, such an approach would not teach us
as much about programming. It might also not be considered "fair."
We will, therefore, investigate other methods applicable to a wider
number of games, or to a larger board.

Many strategies can be proposed. For example, it is possible to con­
sider a heuristic strategy in which the computer learns by doing. In
other words, the computer becomes a better player as it plays more
games and learns from the mistakes it makes. With this strategy the
moves made by the computer are random at the beginning of the
game. However, provided that a sufficient amount of memory is
available, the computer remembers every move that it has made. If it
is led into a losing situation, the moves leading to it are thrown out by
the computer as misjudged moves, and they will not be used again in
that sequence. With time and a reasonable "learning" algorithm this
approach will result in the construction of decision tables. However,
this approach assumes that a very large amount of memory is
available. This is not the case here. We want to design a program
which will fit into lK of memory. Let us look at another approach.

Another basic approach consists of evaluating the board after each
move. The board should be examined from two standpoints: first, if
there are two "O"s in a row, it is important to block them unless a win
can be achieved with the current move. Also, the win potential of
every board configuration should be examined each time: for exam­
ple, if two "X"s are in a row, then the program must make a move in
order to complete the row for a win. Naturally these two situations are
easy to detect. The real problem lies in evaluating the potential of
every square on the board in every situation.

An Analytical Algorithm

At this point, we will show the process used to design an algorithm
along very general guidelines. After that, as we discover the weakness­
es of the algorithm, we will improve upon it. This will serve as an ex-

225

ADVANCED 6502 PROGRAMMING

ample of a possible approach to problem-solving in a game of
strategy.

General Concept

The basic concept is to evaluate the potential of every square on the
board from two standpoints: "win" and "threat." The win potential
corresponds to the expectation of winning by playing into a particular
square. The threat potential is the win potential for the opponent.

We must first devise a way to assign a numerical value to the com­
binations of "O"s and "X"s on the board. This must be done so that
we can compute the strategic value, or ''potential,'' of a given square.

Value Computation

For each row (or column or diagonal), four possible configurations
may occur - that is, if we exclude the case in which all three positions
are already taken and we cannot play in a row. These configurations
are shown in Figure 11.16. Situation "A" corresponds to the case in
which all three squares are empty. Clearly, the situation has some
possibilities and we will start by assigning the value "one" to each
square in that case. The next case is shown in row "B" of Figure
11.16; it corresponds to the situation in which there is already an "X"
in that row. If we were to place a second "X" in that row, we would
be very close to a win. This is a desirable situation that has greater
value than the preceding one. Let us add "one" to the value of each
free square because of the presence of the "X"; the value of each
square in that instance will be "two."

Let us now consider case "C" in Figure 11.16, in which we have one
"X" and one "O." The configuration has no value since we will never
be able to win in that particular row. The presence of an "O" brings
the value of the remaining square down to "zero."

Finally, let us examine the situation of row "D" in Figure 11.16,
where there are already two "X"s. Clearly, this is a winning situation
and it should have the highest value. Let us give it the value "three."

The next concept is that each square on the board belongs to a row,
a column, and possibly a diagnoal. Each square should, therefore, be
evaluated in two or three directions. We will do this and then we will
total the potentials in every direction. For convenience, we will use an
evaluation grid as shown in Figure 11.17. Every square in this grid has
been divided into four smaller ones. These internal squares are used to
display the potential of each square in each direction. The square

226

ARTIFICIAL INTELLIGENCE

Al
VALUE 1

t ! I I
B I I X I VALUE2

t ! I
cl jxjoj VALUEO

I t
DI I X I X I VALUE3

I t
E I I lo! VALUEO

I I !
F I 1°1°1 VALUEO

I I
Fig. 11.16: The Six Combinations

Fig. 11, 17: Evaluatlon Grid

227

ADVANCED 6502 PROGRAMMING

labeled "H" in Figure 11.17 will be used to evaluate the horizontal
row potential. "V" will be used for the vertical column potential.
"D" will be used for the diagonal potential. "T" will be used for the
total of the previous three squares. Note that there is no diagonal
value shown for four of the squares on the board. This is because they
are not placed on diagonals. Also note that the center square has two
diagonal values since it is at the intersection of two diagonals.

Once our algorithm has computed the total threat and win poten­
tials for each square, it must then decide on the best square in which to
move. The obvious solution is to move to the square having the
highest win or threat potential.

Now we shall test the value of our algorithm on some real examples.
We will look at some typical board configurations and evaluate them
by using our algorithms to check if the moves it generates make sense.

A Test of the Initial Algorithm

Let us look at the situation in Figure 11.18. It is the player's turn
("O") to play. We will evaluate the board from two standpoints:
potential for "X" and threat from "O." We will then select the
square that has the highest total in each of the two grids generated and
make our move there.

0

X

0

Fig. 11.18: Test Case 1

Let us first complete the evaluation grid for the first row. Since
there is an "O" in the first row, the horizontal potential for the player
is zero (refer to row C, Figure 11.16 and look up the value of this con­
figuration). This is indicated in Figure 11.19. Let us now look at row
2: it contains two blank squares and an "X." Referring to line B of
Figure 11.16, the corresponding value is "two." It is entered at the ap­
propriate location in the grid, as shown in Figure 11.20. Finally, the

228

ARTIFICIAL INTELLIGENCE

2 X

3 0

Fig. 11.19: Evaluation Grid: Row 1 Potential

2

X
2

21~.,.,+--

3Q ~o 4-
Fig. 11.20: Evaluating the Horizontal Potential

third row is examined, and since there is an "0" in it, the row poten­
tial is "zero," as indicated in Figure 11.20. The process is then repeat­
ed for the three columns. The result is indicated in Figure 11.21.

The value of each square of column 1 is "zero," since there is an
"O" at the bottom. Similarly, for column 2 the value is also "zero,"
and for column 3 it is "one" for each square, since all three squares
are open (blank). (Refer to line A in Figure 11.16.)

The process is repeated for each of the two diagonals and the results
are shown in Figure 11.22. Finally, the total is computed for each
square. The results are shown in Figure 11.23. Remember that the
total appears in the bottom right-hand corner of each square.

It can be seen that at this point, two squares (indicated by an arrow
in Figure 11.23) have the highest total, "three." This indicates where

229

ADVANCED 6502 PROGRAMMING

230

2 3

Fig. 11.21: Evaluating the Vertical Potential

0

0

2 0

X
2

0 ._0-'-_0_1*
Fig. 11.22: Evaluating the Diagonal Potential

* 0
0

2 0

2 0

X
2

2 3

0
0 0

0

Fig. 11.23: The Final Patentlal

I HIGHEST
SCORE

ARTIFICIAL INTELLIGENCE

we should play. But wait! We have not yet examined the threat, i.e.,
the potential from our opponent "O."

We will now evaluate the threat posed by "O" by again computing
the potential of each square on the board, but this time from "O's"
standpoint. The position values for the six meaningful combinations
are indicated in Figure 11.24. When we apply this strategy to our
evaluation grid, we obtain the results shown in Figure 11.25. The
square with the highest score is the one indicated by the arrow. It
scores "four," which is higher than the two previous squares that
were determined when we evaluated the potential for "X."

Using our algorithm, we decide that the move we should make is to
play into square 1, as indicated in Figure 11.26.

Let us verify whether this was indeed the appropriate move, assum­
ing that each player makes the best possible move. A continuation of
the game is shown in Figure 11.27. It results in a draw.

Al I I VALUE 1

B I X VALUEO

cl l0 1xl VALUEO

DI X X VALUEO

E I 0 VALUE2

F I 0 1°1 VALUE3

Fig. 11.24: Evaluation for "O"

231

ADVANCED 6502 PROGRAMMING

HIGHEST *
SCORE -

4
-'---+---+---:----

0 ±
o I 3

0 2

X
0

2

Fig. 11,25: Potential Evaluation

X 0

X

0

Fig. 11,26: Move for Highest Score

232

X 0

X

0 0

X O X

X 0

0 X 0

X 0 X

X

0 X 0 0

(DRAW)

Fig. 11.27: Finishing the Game

0

X 0

X 0

ARTIFICIAL INTELLIGENCE

Let us now examine what would have happened if we had not
evaluated the threat and played only according to the highest potential
for "X" as shown in Figure 11.23. This alternative ending for the
game is shown in Figure 11.28. This game also results in a draw. In
this instance, then, the square with the value "four" did not truly
have a higher strategic value than the one with the value "three."
However, our algorithm worked.

Let us now test our algorithm under more difficult circumstances.

0

X X
0

X 0
0 X X
0 0

0

0 X

0

X 0

0 X

0 X

X 0

X 0 X

0

X (DRAW)

0

Fig. 11.28: An Alternative Ending for the Game

Improving the Algorithm

X

In order to test our algorithm, we should consider clear-cut situa­
tions in which there is one move that is best. To begin, we will assume
that it is the player's turn. The first test situation, evaluated for "X,"
is illustrated in Figure 11.29, and the potential for "0" is shown in
Figure 11.30. This time we have a problem. The highest overall poten­
tial is "four" for "X" in the lower right corner square. If the com­
puter moved there, however, the player would win! At this point our
algorithm should be refined.

We should note that whenever there are already two "X"s in a row
the configuration should result in a very high potential for the third
square. We should therefore assign it a value of "five" rather than

233

ADVANCED 6502 PROGRAMMING

*o 3

0
3 3

2

X
2 0

3 2

* X * 3 4

Fig. 11.29: Test #1 Evaluated for "X"

*' 0

0
3 2

0

X
0

* X * 1 1

Fig, 11.30: Test# 1 Evaluated for "O"

X 0 0

PLAY THERE

Fig, 11.31: Test #2

234

ARTIFICIAL INTELLIGENCE

"three" to ensure that we move there automatically. We have thereby
identified and made our first improvement to the algorithm.

The second test situation is shown in Figure 11.31. Our algorithm
assigns the value "six" to the lower right corner square (as indicated
by an arrow in Figure 11.31). This is clearly the correct move. It
works! Now, let us test the improvement we have made.

The First Move

When the board is empty, our algorithm must decide which square
should be occupied first. Let us examine what this algorithm does.
(The results are shown in Figure 11.32.) The algorithm always chooses
to move to the center. This is reasonable. It could be shown, however,
that it is not indispensable in the game of Tic-Tac-Toe. In fact, having
the computer always move to the center makes it appear "boring," or
simply "lacking imagination." Something will need to be done about
this. This will be shown in the final implementation.

Fig. 11.32: Moving to the Center

Another Test

Let us try one more simple situation. This situation is shown in
Figure 11.33. Again, the recommended move is a reasonable one. The
reverse situation is shown in Figure 11.34 and does, indeed, lead to a
certain win. So far, our algorithm seems to work. Let us try a new
trap.

A Trap

The situation is shown in Figure 11.35. It is now "X's" turn to play.
Using our algorithm, we will move into one of the two squares having

235

ADVANCED 6502 PROGRAMMING

* X * 1 1 X
0 0

0
0 0

--0 0 0

*
0 0

* X
2 0 2

Fig. 11.33: A Simple Situation

* 0 * 2 2
0

X - X
2 2

*
0

* 3 3
X

Fig. 11.34: A Revene Situation

the total of "four." This time, however, such a move would be an er­
ror! Assuming such a move, the end of the game is shown in Figure
11.36. It can be seen that "O" wins·. The move by "X" was an incor­
rect choice if there was a way to get at least a draw. The correct move
that would lead to a draw is shown in Figure 11.37. This time, our
algorithm has failed. Following is a simple analysis of the cause: it
moved to a square position of value "four" corresponding to a high
level of threat by "O," but left another square with an equal threat
value unprotected (see Figure 11.35). Basically, this means that if "O"
is left free to move in a square whose threat potential is equal to
"four," it will probably win. In other words, whenever the threat
posed by "O" reaches a certain threshold, the algorithm should con­
sider alternative strategies. In this instance, the strategy should be to
place an "X" in a square that is horizontally or vertically adjacent to

236

NEXT
MOVE

0 X

X

0

0 X

X

0 X 0

NEXT
MOVE

Fig. 11.35: Trap 3

ARTIFICIAL INTELLIGENCE

0 X
X

0 0

0 X

0 X
0 X 0

Fig. 11.36: End of Game

the first one in order to create an imminent "lose threat" for "O,"
and thereby force "O" to play into the desired square. In short, this
means that the algorithm should analyze the situation further or better
still, analyze the situation one level deeper, i.e., one turn ahead. This
is called two-ply analysis.

237

ADVANCED 6502 PROGRAMMING

0 0 0

X X 0 X X 0 X X

0 0 X 0

0 0 0 X 0

0 X X 0 X X (DRAW)

X 0 X 0

Fig. 11.37: A Correct Move

In conclusion, our algorithm is simple and generally satisfactory.
However, in at least one instance, Trap 3 in Figure 11.35, it fails. We
must therefore, include either a special consideration for this case, or
we must analyze the situation one turn ahead every time and look at
what would happen if we were to place an "X" or an "O" in every
one of the available squares. The latter is actually the "cleanest" solu­
tion. Ideally, we should analyze all of the possible sequences until an
end-of-game situation is obtained. The programming complexity, the
storage required, and the time that would be needed to analyze the
situations would, however, make this approach impractical. In a more
complex game, such as chess or checkers, it would be necessary to use
such a multi-ply analysis. For example, using only a two-ply analysis
technique to design a simple chess game would not make it very in­
teresting or very good. It would be necessary to use three-ply, four-ply
or even more detailed analysis in order to make the game challenging.

If it is not possible to push the evaluation to a sufficient depth, the
algorithm must be equipped with specific procedures that can detect
special cases. This is the case with ad hoc programming, which can
be considered "unclean" but actually results in a much shorter pro­
gram and/or a lesser memory requirement. In other words, if the
special situations in a game can be recognized in advance, then it is

238

ARTIFICIAL INTELLIGENCE

possible to write a special-purpose program which will take these
situations into account. The resulting program will usually be shorter
than the completely general one. This type of program, however,
can only be constructed if the programmer has an excellent initial
understanding of the game.

In the game of Tic-Tac-Toe, the number of combinations is limited.
This makes it possible to examine all possible combinations that can
be played on the board and to devise a procedure that takes all of these
cases into account. Since we are primarily limited here by the amount
of available memory, we will construct an ad hoc algorithm that fits
within lK of memory. Alternative techniques will be proposed as
exercises.

The Ad Hoc Algorithm

This algorithm assigns a value to each square on the board depend­
ing on who has played there. Initially a value of "zero" is assigned to
each square on the board. Every time the player occupies a square,
however, the corresponding value of the square becomes "one."
Every time the computer occupies a square, the value of that square
becomes "four." This is illustrated in Figure 11.38. The value of
"four" has been chosen so that it is possible to know the combination
of moves in that row just by looking at the total of every row. For ex­
ample, if a row consists of a move by the player and two empty
squares, its "row-sum" is "one." If the player has played twice, its
row-sum is "two." If the player has played three times, the row-sum is
"three." Since "three" is the highest total that can be achieved in
rows where only the player has played, the value of "four" has been
assigned to a computer move. For example, if the value of a row is
"five," we know that there is one computer move ("X"), one player
move ("0"), and one empty square. The six possible patterns are
shown in Figure 11.38. It can readily be seen that the row-sum values
of "two" or "eight" are winning situations. A row-sum value of
"five" is a blocked position, i.e., one that has no value for the player.
If a win situation is not possible, then the best potentials are represent­
ed by either a value of "one" or a value of "four" depending on
whose turn it is to play.

The algorithm is based on such observations. It will first look for a
win by checking to see if there is a row-sum of value "eight." If this is
the case, it will play there. If not, the algorithm will check for a so­
called "trap" situation in which two intersecting rows each have a
computer move in them and nothing else (the algorithm is always used

239

ADVANCED 6502 PROGRAMMING

PATIERN ROWSUM

I I
VALUE

0

0 I I

1°1°1 I 2 (WIN)

X I I 4

X X I I 8 (WIN)

1°1 X I I 5 (BLOCKED)

Fig. 11.38: Row-sums

for the computer's benefit). This is illustrated in Figure 11.39. By ex­
amining Figure 11.39, it becomes clear that each unoccupied square
that belongs to two rows having a row-sum of "four" is a trap posi­
tion where the algorithm should play. This is exactly what it does.

The complete flowchart for the board analysis is shown in Figure
11.40. Now, let us examine it in more detail. Remember that it is
always the computer's turn when this algorithm is invoked.

First, it checks for a possible immediate win. In practice, we will ex­
amine all row-sums and look for one which has a total of "eight."
This would correspond to a case where there are two computer moves
in the same row with the last square being empty. (Refer to Figure
11.38.)

Next, we will check for a possible player win. If the player can win
with the next move, the algorithm must block this move. To do so, it
should scan the row-sums and look for one that has a total of "two,"

240

PLAY
HERE

ARTIFICIAL INTELLIGENCE

ROWSUM

X 4

0

4

Fig. 11.39: A Trap Pattern

which would indicate a winning combination for the player. (Refer to
Figure 11.38.)

At this point the algorithm should check to see if the computer can
play into any of the trap positions defined above. (See Figure 11.39 for
an example.)

One more feature has been built into the algorithm: the computer is
equipped with a variable IQ level, i.e., with a variable level of in­
telligence. The above moves are ones that any "reasonable computer"
must make. From this point on, however, the algorithm can let
the computer make a few random moves and even possible mistakes if
its intelligence level is set to a low level. In order to provide some
variety to the game, we will obtain a random number, compare it to
the IQ, and vary our play depending upon the results. If the IQ is set
to the maximum, the program will always execute the right branch of
the flowchart; however, if the IQ is not set to the maximum, it will
sometimes execute the left branch. Let us follow the right branch of
the flowchart. At this point, we will check for two special situations
that correspond to moves #1 and #4 in the game.

For the first situation, i.e., the first move in a game, the algorithm
will occupy any position on the board. That way, its behavior will be
different every time and, thus, appear "intelligent."

241

ADVANCED 6502 PROGRAMMING

START

RETURN
W/MOVE

INX

RETURN
W/MOVE

INX

Fig. 11.40: Board Analysis Flowchart

For the next situation we must look at move #4. It is the computer's
turn. In other words, the player started the game (move #1), the com­
puter responded (move #2), then the player made his or her second
move (move #3), and it is now the computer's turn. In short, in the
game thus far, the player has played twice and the computer has

242

GET RANDOM MOVE
FOR UNOCCUPIED

SQUARE

RETURN
WI MOVE

INX

PLAYTHERE?

YES

YES

YES

GET RANDOM
MOVE

YES

ARTIFICIAL INTELLIGENCE

NO

FIND RANDOM
UNOCCUPIED SIDE

Fig. 11.40: Board Analysls Flowchart (Continued)

played once. At this point, we want to check to see if the first three
moves have all been made along one of the diagonals. If so, since the
player has made two moves and the computer has made one, the row­
sum of one of the diagonals will be "six." The algorithm must check
explicitly for this. If the first 3 moves have all been made along a

243

ADVANCED 6502 PROGRAMMING

diagonal, the computer must move to a side position. This is a special
situation which must be built into the algorithm, or it cannot be
guaranteed that the computer (assuming the highest IQ level) will win
every time. This situation is illustrated in Figure 11.41. Note that if
straightforward logic was used, the algorithm would play into one of
the free corners since a threat exists from the player that he or she
might play there, and thereby set up a trap situation. The results of
such an action are shown in Figure 11.42. By looking at this illustra-

0

0

X

0

244

0

X

0

Fig. 11.41: The Diagonal Trap

X 0

X

0 0
COMPUTER

X 0

X X

0 0
COMPUTER

X

PLAYER

X

0
PLAYER
(WINS)

Fig. 11.42: Falling Into the Diagonal Trap

X

0

X

0

ARTIFICIAL INTELLIGENCE

tion, it can be seen that such a move would result in a loss. However,
let us examine what happens if we play on one of the sides. This situa­
tion is illustrated in Figure 11.43; it results in a draw. This is clearly the
move that should be made. This is a relatively little-known trap in the
game of Tic-Tac-Toe, and a provision must be built into the algorithm
so that the computer will win.

0 0

X X X X 0

0 0
COMPUTER PLAYER

0 X 0 X

X X 0 X X 0

0 0 0 X 0
PLAYER COMPUTER

Fig. 11.43: Playing to the Side

0

X

0

X

0

X

COMPUTER

0

X

X
PLAYER
(DRAW)

X

0

0

X

0

0

If it was not the fourth move, or if there was not a diagonal trap set,
the next thing the computer should do is to check to see if the player
can set a trap. (Refer to the flowchart in Figure 11.40.) If the player
can set a trap, the computer plays in the appropriate square to block
it. Otherwise, the computer moves to the center square, if available; if
that is not possible, it moves randomly to any position.

Since this algorithm was built in an ad hoc fashion, it is difficult to
prove that it wins or achieves a draw in all cases. It is suggested that you
try it on a board or that you try out the actual program on the Games
Board. You will discover that in all conditions under which it has been
tested, the computer always wins or achieves a draw. If the computer
keeps winning, however, its IQ level will drop, and eventually it will
allow the player to win. As an example, some sequences obtained on
the actual board are shown in Figure 11.44.

245

ADVANCED 6502 PROGRAMMING

COMPUTER PLAYER COMPUTER PLAYER COMPUTER PLAYER

4 5 5 6

7 1 1 6 5 4

9 8 4 7 1 9

2 (DRAW) 3 2 3 7

8 5 8 9 2 (LOSS)

6 3 (DRAW) 6

7 9 5 5 4

1 4 3 4 8 2

(DRAW) 6 9 9 1

2 5 1 2 7 (LOSS)

9 1 8 7 6

7 8 (DRAW) 1 5

6 3 2 4 7

(DRAW) 5 1 3 2

8 5 3 7 8 9

1 7 4 6 (DRAW)

3 2 9 8 9 5

6 9 (DRAW) 3 6

(DRAW) 1 4 2

6 5 5 3 8 7

4 8 2 8 (DRAW)

2 3 9 6

7 1 7 4

(DRAW) (DRAW)

Fig. 11.44: Actual Game Sequences

246

ARTIFICIAL INTELLIGENCE

Suggested Modifications

Exercise 11-1: Designate a special key on the Games Board that, when
pressed will display the computer's IQ level.

Exercise 11-2: Modify the program so that the IQ level of the com­
puter can be changed at the beginning of each game.

Credits

The ad hoc algorithm which was described in this section is believed
to be original. Eric Novikoff was the main contributor. "Scientific
American" (selected issues from 1950 through 1978), as well as Dr.
Harvard Holmes must also be credited with having provided several
original ideas.

Alternative Strategies

Other strategies can also be considered. In particular, a short pro­
gram can be designed by using tables of moves that correspond to
various board patterns. The tables can be short because when sym­
metries and rotations are taken into account, the number of situations
that can be represented is limited. This type of approach results in a
shorter program, however, the program is somewhat less interesting to
design.

Exercise 11-3: Design a Tic-Tac-Toe program using this type of table.

THE PROGRAM

The overall organization of the program is quite simple. It is shown
in Figure 11.42. The most complex part is the algorithm that is used to
determine the next move by the computer. This algorithm, called
"FINDMOVE," was previously described.

Let us now examine the overall program organization. The cor-
responding flowchart is shown in Figure 11.45.

1. The computer IQ level is set to 75 percent.
2. The user's keystroke is read.
3. The key is checked for the value "F." If it is an "F," the player

starts; otherwise the computer starts. Depending on the value
of the key pressed, the flowchart continues into boxes 4 or 5,
then to 6.

247

ADVANCED 6502 PROGRAMMING

START

Fig. 11.45: Tic-Tac-Toe Flowchart

248

ARTIFICIAL INTELLIGENCE

16 BLANK All LIGHTS
BUT WINNING ROW

20

21

Fig. 11.45: Tic-Tac-Toe Flowchart (Continued)

If the player starts (PLAYER is not equal to ''O' '), then we move to
the left side of the flowchart.

7. The key, pressed by the player specifying his or her move, is
read and the move is displayed on the board.

8. The corresponding LED is lit on the board. It then becomes the
computer's turn to play and the variable PLAYER is set to
"O" in box 9.

When exiting from box 6, if it is the computer's turn, we move to
box 10.

11. The next move to be made by the computer must be computed
at this time.

This is the complex algorithm we have described above.
11. Next, the computer's move is displayed.
12. PLAYER is reset to "one" to reflect the fact that it is now the

player's turn.
After either party has moved, the board is checked for a winning se-

249

ADVANCED 6502 PROGRAMMING

quence of lights in box 13. If there is not a winning sequence of lights,
we move to the left on the flowchart.

14. We next check to see if all moves have been exhausted: we
check for move #9. If the ninth LED is lit and a winning situa­
tion has not been detected, it is a draw, and all lights on the
board must be flashed.

15. We flash all the LEDs on the board. Then, we return to box 6
and the next player plays.

When exiting from box 13, if there is a win situation, this fact must
be displayed:

16. All of the lights are blanked except for the winning three LEDs.
Next, it must be determined by the algorithm whether the
player or the computer has won.

17. A determination is made as to whether it was the player or the
computer who won. If the computer has won, we branch to the
right on the flowchart.

18. A low frequency tone is sounded.
19. The computer's IQ is decremented (to a minimum of 0).
The situation for a player win, shown in boxes 20 and 21, is analo­

gous.
The general program flow is straightforward. Now, we shall examine

the complete information. The subroutine which analyzes the board
situation is called "ANALYZE" and uses "UPDATE" as a subroutine
to compute the values of various board positions.

l)ata Structures

The main data structure used by this program is a linear table with
three entry points that are used to store the eight possible square
alignments on the board. When evaluating the board, the program
will have to scan each possible alignment for three squares every time.
In order to facilitate this process, all possible alignments have been
listed explicitly, and the memory organization is shown in Figure
11.46.

The table is organized in three sections starting at R WPTl,
RWPT2, and RWPT3 (RWPT stands for "row pointer"). For exam­
ple, the first elements RWPTl, RWPT2, and RWPT3, for the first
three-square sequence are looked at by the evaluation routine. The se­
quence is: "O, 3, 6," as indicated by the arrows in Figure 11.43. The
next three-square sequence is obtained by looking at the second entry
in each RWPT table. It is "1, 4, 7," which is, in fact, the second col­
umn on our LED matrix.

250

ARTIFICIAL INTELLIGENCE

0
RWPTl -- 00 0

,___

1
01 1

2
02 2

3
FIRST 03 0

SQUARE 4
04 3

5
05 6

6
06 0

7
07 2

RWPT2 ~ 08 --3 -
-

09 4
-

OA 5

SECOND OB 1
SQUARE

QC 4
-

OD 7
-

OE 4

OF 4

RWPT3 -- 10 6 ~

11 7

12 8

THIRD 13 2 -
SQUARE

14 5

15 8 -

16 8 -
17 6

Fig. 11.46: Tic-Tac-Toe Row Sequences In Memory

251

ADVANCED 6502 PROGRAMMING

The table has been organized in three sections in order to facilitate
access. To be able to access all of the elements successfully, it will be
necessary to keep a running pointer that can be used as an index for ef­
ficient table access. For example, if we number our generalized rows
of sequences from O to 7, "row" 3 will be accessed by retrieving
elements at addresses RWPTl + 3, RWPT2 + 3, RWPT3 + 3. (It is
the sequence "O, 1, 2," as seen in Figure 11.46.)

Memory Organization

Page O contains the RWPT table which has just been described, as
well as several other tables and variables. The rest of the low memory
is shown in Figure 11.47.

The GMBRD table occupies nine locations and stores the status of
the board at all times. A value of "one" is used to indicate a position
occupied by the player, and a value of "four" indicates a position oc­
cupied by the computer.

The SQST AT table also occupies nine words of memory and is used
to compute the tactical status of the board.

The ROWSUM table occupies eight words and is used to compute
the value of each of the eight generalized rows on the square.

The RNDSCR table occupies six words and is used by the random
number generator.

The remaining locations are used by temporary variables, masks, and
constants, as indicated in Figure 11.47. The role of each variable or con­
stant will be explained as we describe each routine in the program.

High Memory

High memory locations are essentially reserved for input/output
devices. Ports 1 and 3 are used, as well as interrupts. The correspond­
ing memory map is shown in Figure 11.48. The interrupt-vector
resides at addresses A67E and A67F. It will be modified at the begin­
ning of the program so that interrupts will be generated automatically
by the interval timer. These interrupts will be used to blink the LEDs
on the board.

Detailed Program Description

At the beginning of each game, the intelligence level of the com­
puter is set at 75 percent. Each time that the player wins, the IQ level

252

GMBRD/CLRST

SQSTAT

ROWS UM

RNDSCR

CLREND

INIT

ARTIFICIAL INTELLIGENCE

181 BOARD STATUS
01 = PLAYER I}·~~ I

04 = COMPUTER I
I

20 1--~~~~~~~~~--1
21 TACTICAL STATUS

:}byt~
291--~~~~~~~~~--1

2A SUM OF SQUARE VALUES }
PLAYER= 1

EMPTY = 0 1, 8 bytes
COMPUTER= 4

311--~~~~~~~~~--1

32 SCRATCH PAD FOR RANDOM }

38

39

3A

38

3C

30

3E

3F

40

41

! NUMBER GENERA TOR j 6 bytes

TEMPI

TEMP2

MOVNUM

PLAYR

LTMSKH

LTMSKL

DUR

FREQ

ODDMSK

INTEL

I I

}
Temporaries for FINDMV
routine (A and X Registers)

Number of current move

Indicates whose turn it is

Blink mask, high

Blink mask, low

Duration constant for tone

Frequency constant for tone

Used to force an odd result

IQ number (intelligence)

I I

~~
Fig. 11,47: Tlc-Tac-T-: Low Memory

253

ADVANCED 6502 PROGRAMMING

254

AOOO

AOOl

A002

A003

A004

AOOS

A006

A007

A008

A009

AOOA

AOOB

AOOC

AOOD

AOOE

A67E

A67F

ACOO

ACOl

AC02

PORTlB

PORTlA

DDRlB

DDRlB

Tl LL

Tl CH

IRQVL

IRQVH

PORT3B

UNUSED

DDR3B

Fig. 11.48: Tic-Tac-Toe: High Memory

ARTIFICIAL INTELLIGENCE

will be raised by one point. Each time that the player loses, it will be
decremented by one point. It is initially set at the value 12 decimal:

START LOA #12
STA INTEL

Initialization occurs next:

RESTRT JSR INIT

Set IQ at 750"/o

Let us examine the INIT subroutine which has just been called. It
resides at address 0050 and appears on lines 0345 and following on the
program listing. The first action of the initialization subroutine is to
clear all low memory locations used by program variables. The loca­
tions to be cleared are those between CLRST and CLREND (see lines
41 and 57 of the program listing). Note that a seldom-used facility of
the assembler - multiple labels for the same line - has been utilized
to facilitate the clearing of the correct number of memory locations.
Since it may be necessary to introduce more temporary variables in the
course of program development, a specific label was assigned to the
first location to be cleared, CLRST (memory location 18), and
another to the last location to be cleared (CLREND). For example,
memory location 18 corresponds both to CLRST and to GMBRD.
The clearing operation should start at address CLRST and proceed
forward fourty locations (CLREND-CLRST). Thus, we first load the
number of locations to be cleared into index register X, then we use
a loop to clear all of the required locations:

INIT LDA#O
LDX #CLREND-CLRST

CL RALL STA CLRST,X Clear location
DEX
BPL CLRALL

After low memory has been cleared, the two starting locations for the
random number generator must be seeded. As usual, the low-counter
of timer 1 is used:

LOA TILL
STA RNDSCR + 1
STA RNDSCR + 4

255

ADVANCED 6502 PROGRAMMING

Ports lA, 18, and 3B are then configured as outputs. The appropriate
pattern is loaded into the data direction registers:

LDA #$FF
STA DDRlA
STA DDRlB
STA DDR3B

All LEDs on the board are turned off:

LDA#O
STA PORTIA
STA PORTlB

Next, the interrupt vector's address must be loaded with a new
pointer. The address to be deposited there is the address of the inter­
rupt handler, which has been designed to provide the regular blinking
of the LEDs. (This process has already been explained in previous
chapters.) The interrupt handler resides at address INTVEC. The high
byte and the low byte of this address will be loaded in memory loca­
tions IRQVH and IRQVL, respectively. A special assembler symbol is
used to denote the low byte of the interrupt vector: #< INTVEC. Con­
versely, the high byte is represented in assembly language by # >
INTVEC. The new interrupt vector is loaded at the specified memory
locations:

JSR ACCESS
LDA #<INTVEC
STA IRQVL Low vector
LDA # >INTVEC
STA IRQVH High vector

As usual, the interrupt-enable register must first be cleared, then the
appropriate interrupt must be enabled:

LDA #$7F
STA IER
LDA#$CO
STA IER

Clear register

Enable interrupt

Timer 1 is set to the free-running mode:

256

LOA #$40
STAACR

ARTIFICIAL INTELLIGENCE

The latch for timer 1 is loaded with the highest possible count,
''FFFF'':

LOA #$FF
STA TILL
STA TlCH

Finally, interrupts are enabled, the decimal mode is cleared as a
precaution, and we terminate the initialization stage:

CLI
CLO
RTS

Back to the Main Program

We are now at line 69 of the program listing. We read the next key
closure on the keyboard:

JSR GETKEY

It is the first move. We must determine whether it is an "F" or not. If
it is an "F," the player moves first; otherwise the computer moves
first. Let us check it:

CMP #$F
BNE PLAYLP

It is the player's turn and this information is stored in the temporary
variable PLAYR, shown in Figure 11.44:

LOA #01
STA PLAYR

It is time for a new move, and the move counter is incremented by
one. Variable MOVNUM is stored in low memory. This is shown in
Figure 11.44. It is now incremented:

PLAYLP INCMOVNUM

257

ADVANCED 6502 PROGRAMMING

At this point, PLAYR indicates whose turn it is to play. If it is set at
"zero," it is the computer's turn. If it is set at "one," it is the player's
turn. Let us check it:

LDA PLAYR
BEQ CMPMU

We will assume here that it is the player's turn. PLAYR is reset to
"zero" so that the computer will make its move next:

DEC PLAYR

The player's move is received by the PLRMV subroutine which will be
described below. Let us allow the player to play:

JSR PLRMV

The move made by the player is specified at this point by the contents
of the X register. Since it was the player's move, the corresponding
code on the board's representation should be "01," which will be
deposited in the accumulator:

LDA #01

We will now display the move on the board by blinking the proper
LED. In addition, the corresponding ROWSUM will automatically be
updated:

JSR UPDATE

The UPDATE routine will be described in detail below. Once the
move has been made, we should check for a possible win. In the case
of a win, the player has three blinking LEDs in a row, and the cor­
responding row total is automatically equal to "three." We will
therefore simply check all eight rows for a ROWSUM of three:

LDA #03
BNE WINTST

At address WINTST a test is performed for a winning configura­
tion. Index register Y is loaded with "seven" and used as a loop

258

ARTIFICIAL INTELLIGENCE

counter. All of the rows, 7 through 0, are checked for the value
"three":

WINTST
TSTLP

LDY #7
CMP ROWSUM,4
BEQ WIN
DEY
BPL TSTLP

Let us now continue with the player's move. We will examine the
computer's move later. (The computer's move corresponds to lines
83-88 of the program listing, which have not been described yet.) A
maximum of nine moves is possible in this game. Let us verify whether
or not we have reached the end of the game by checking the value of
MOVNUM, which contains the number of the current move:

LDAMOVNUM
CMP #9
BNE PLAYLP

This is the end of our main loop. At this point, a branch occurs back
to location PLAYLP, and execution of the main program resumes.

If we had reached the end of the game at this point, the game would
be a tie, since there has not been a winner yet. At this point all of the
lights on the board would be set blinking and then the game would
restart. Let us set the lights blinking:

LDA #$FF
STA LTMSKL
STA LTMSKH
BNE DLY

The delay is introduced to guarantee that the lights will be blinked for
a short interval. Let us now examine the end-of-game sequence.

When a win situation is found, it is either the player's win or the
computer's win. When the player wins, the row total is equal to
"three." When the computer wins, the row total is equal to "twelve."
(Recall that each computer move results in a value of "four" for the
square. Three squares in a row will result in 3 x 4 = 12.) If the com­
puter won, its IQ will be decremented:

259

ADVANCED 6502 PROGRAMMING

WIN CMP#12
BEQINTDN

At this point a jump would occur to INTDN, where the intelligence
level will be decreased (intelligence lowered).

A losing tone will be generated to indicate to the player that he or
she has lost. The corresponding frequency constant is "FF," and it is
stored at address FREQ:

INTDN LDA #$FF
STA FREQ

The intelligence level will now be decreased unless it has already
reached "zero" in which case it will remain at that value:

LDA INTEL
BEQ GTMSK
DEC INTEL

For a brief time the winning row will be illuminated on the board, and
the end-of-game tone will be played. First, we clear all LEDs on the
board:

GTMSK LDA#O
STA PORTIA
STA PORTIB

At this point, the number of the winning row is contained in index
register Y. The three squares corresponding to that row will simply be
retrieved from the RWPT table. (See Figure 11.43.) Let us display the
first square:

LDXRWPTI,Y
JSR LEDLTR

The LEDL TR routine will be described below. It lights up the
square whose number is contained in register X. Let us now display
the next square:

260

LDX RWPT2,Y
JSR LEDLTR

Then, the third one:

LDX RWPT3,Y
JSR LEDLTR

ARTIFICIAL INTELLIGENCE

At this point, we should turn off all unnecessary blinking LEDs on the
board. The new pattern to be blinked is the one with the winning row
and we must, therefore, change the L TMSKL mask:

LDA PORTIA
AND LTMSKL
STA LTMSKL

We now do the same for Port IB:

LDA PORTIB
ANDLTMSKH
STA LTMSKH

Exercise 11-4: Subroutine LEDLTR on line 125 of the program listing
has just lit the third LED on the board for the winning row. Im­
mediately after that, we start reading the contents of Port IA, and
then Port 1 B.

There is, however, the theoretical possibility that an interrupt might
occur immediately after LEDLTR, that might change the contents of
Port IA. Would this be a problem? If it would not be a problem, why
not? If it would, modify the program to make it always work correct­
ly.

At this point, Ports A and B contain the appropriate pattern to light
the winning row. If the player has won, the blink masks L TMSKL and
L TMSKH contain the same pattern, and will blink the row. We are
now ready to sound the win or lose tone. The duration is set at "FF":

LDA #$FF
STA DUR

The frequency, FREQ, was set above. We simply have to play it:

LDA FREQ
JSR TONE

261

ADVANCED 6502 PROGRAMMING

A delay must be provided:

DLY JSR DELAY

We are now ready to start a new game with the new intelligence level
of the computer:

JMP RESTART

Back to WIN

Let us now go back to line 103 of the program listing and examine
the case in which the computer did not win (i.e., the player won). A
different frequency constant is loaded at location FREQ:

LDA #30
STA FREQ

Since the player won, the intelligence level of the computer will be
raised this time. Before it is raised, however, it must be checked
against the value "fifteen," which is our legal maximum:

LDAINTEL
CMP #$OF
BEQ GTMSK
INC INTEL

The sequence was exactly analagous to the one in which the computer
wins, except for a different tone frequency, and for the fact that the
intelligence level of the computer is increased rather than decreased.

The Computer Moves

Let us now go back to line 83 of the program listing and describe
what happens when the computer makes a move. Variable PLAYR is
incremented, then a delay is provided to simulate "thinking time" for
the computer:

COMPMV INC PLAYR
JSR DELAY

The computer move is determined by the ANALYZ routine described

262

ARTIFICIAL INTELLIGENCE

below:

JSR ANALYZ

The computer's move is entered as a "four" at the appropriate
location on the board:

LDA #04
JSR UPDATE

Next, we check all of the rows for the possibility of a computer win,
i.e., for a total of "twelve":

WINTST
LDA #12
LDY #7

and so on. We are now back in the main program described previous­
ly.

When the program segment outlined above is compared to the one
that is used for the player's move, we find that the primary difference
between the two is that the move was specified by the ANALYZ
routine rather than being picked up from the keyboard. This routine is
the key to the level of intelligence of the algorithm. Let us now ex­
amine it.

Subroutines

The ANALYZE Subroutine

The ANALYZ subroutine begins at line 143 of the program listing.
The corresponding conceptual flowchart is shown in Figure 11.40. In
the ANALYZ subroutine the ODDMSK is first set to "zero."

ANALYZ LDA #0
STA ODDMSK

We now check for the possibility of a computer win during its next
turn. If that possibility exists, we clearly must play into the winning
square. This will end the game. A winning situation is characterized by
a total of "eight" in the corresponding row; therefore let us deposit
the total "eight" into the accumulator:

263

ADVANCED 6502 PROGRAMMING

LDA #08

A winning situation will occur when the squares in rows 1, 2, or 3 all
total "three" at the same time. Let us set our filter variable, X, for the
number of rows that qualify, to "three":

LDX #03

We are now ready to use the FINDMV routine:

JSR FINDMV

The FINDMV routine will be described below. It must be called with
the specified ROWSUM in A and with the number of times a match is
found in X. It will systematically check all of the rows and squares. If
a square is found, it exits with a specified square number in X and the
Z flag is set to "O." Let us test it:

BNE DONE

If a winning move has been found, the ANALYZ routine exits. Unfor­
tunately, this is not usually the case, and more analysis must be done.

The next special situation to be checked is to see if the player has a
winning move. If so, it must be blocked. A winning situation for the
player is indicated by a row total of "2." Let us load "2" into the ac­
cumulator and repeat the previous process:

LDA #02
LDA #03
JSR FINDMV
BNE DONE

If the player could make a winning move, this is the square where the
computer should play and we exit to DONE; otherwise, the situation
should be analyzed further.

We will now check to see if the computer can implement a trap. A
trap corresponds to a situation in which a computer move has already
been made in the same row. We would like to play at the intersection
of two rows containing computer moves. This was explained above
when the algorithm was described. This situation is characterized by A
= 4 and X = 2. Let us load the registers with the appropriate values

264

and call the FINDMV routine:

LOA #04
LOX #02
JSR FINDMV
BNE DONE

ARTIFICIAL INTELLIGENCE

If we succeed, we exit to DONE; otherwise, we proceed down the
flowchart diagrammed in Figure 11.40.

It is at this point that the computer can demonstrate either in­
telligent or ill-advised play. The behavior of the computer will be
determined by its intelligence level. We will now obtain a random
number and compare it to the computer's IQ. If the random number
exceeds the computer's IQ, we will proceed to the left side of the
flowchart in Figure 11.40 and make an ill-advised move (i.e., a random
one). If the random number does not exceed the computer's IQ, we
will make an intelligent move on the right side of the flowchart. Let us
generate the random number:

JSR RANDOM
We truncate the random number to its right byte so that it does not ex­
ceed fifteen:

AND #$OF

and we compare it to the current IQ of the computer:

CMP INTEL
BEQOK
BCSRNDMV

If the random number is higher than the IQ level stored in INTEL, we
branch to RANDMV and play a random move. At this point, we will
assume that the random number was not greater than the IQ level, and
that the computer will play an intelligent move. We now proceed from
line 162 (location "OK").

We will first check to see if this is move #1; then we check to see if
this is move #4. Let us check for move #1:

OK LPXMOVNUM
CPX #1

265

ADVANCED 6502 PROGRAMMING

If it is move #1, we occupy any square:

BEQ RNDMV

Let us now check for move #4:

CPX#4

If it is not move #4, we will check to see if the player can set a trap.
This will be performed at location TRAPCK. Let us assume here that
it is move #4.

BNE TRAPCK

This section will check both diagonals for the possibility of the se­
quence player-computer-player. If this sequnce is found, we will play
to the side. Otherwise, we will go back to the mainstream of this
routine and check to see if the player can set a trap. The combination
player-computer-player in a row is detected when the row totals
"six." Therefore, we load the value "six" into the accumulator and
check the corresponding diagonal. By coincidence, diagonals corre­
spond to the sixth and seventh entires in our RWPT table. (See
Figure 11.46.) Let us do it:

LDX#6
TXA
CMP ROWSUM,X
REQODDRND

If a match is found, we branch to address ODDRND, where we will
play to the side. This will be described below. If a match is not found
we check the next diagonal:

INX
CMP ROWSUM,X
BEQ ODDRND

If, at that point, the test also fails for the second diagonal, we will
check to see if the player can set a trap:

266

ARTIFICIAL INTELLIGENCE

Checking To See If the Player Can Set a Trap (TRAPCK)

The possibility of a trap for the player is identified (as in the case of
the computer), when two intersecting rows each contain only a
player's move. This has been explained in the description of the
algorithm above. The value of a row which is a candidate for a trap is
thereby equal to "one" (one player's move). The parameters must,
therefore, be set to A = 1, and X = 2 before we can call the
FINDMV routine:

TRAP CK LDA #1
LDX#2
JSR FINDMV
BNE DONE

If the proper location for a trap can be found, the next move is to play
there. Otherwise, if possible, the computer moves to the center or, if
the center is occupied, it makes a random move on the side.

LDX GMBRD + 4
BNE RNDMV
LDX #5
BNE DONE

Playing a Random Move on the Side

The four sides on the board are numbered externally 2,4,6 and 8, or
internally 1,3,5, and 7. Any odd internal number specified for a move
will result in our occupying a side position. If we want to occupy a side
position, we simply load the value "one" in ODDMSK, and we
guarantee that the random number generated will be one of the four
corners. This is performed by entering at address ODDRND:

ODDRND LDA #1
STA ODDMSK

Generally, however, we may want to make a random move. This will
be accomplished by generating and using any random number that is
reasonable, i.e., by setting ODDMSK to "O" prior to entering at ad­
dress RNDMV. Let us obtain a random number:

267

ADVANCED 6502 PROGRAMMING

RNDMV JSR RANDOM

Let us strip off the left byte:

AND #$OF

Then let us OR this random number with the pattern stored in ODDMSK.
If the mask had been set to "O," it would have no effect on the random
number. If the mask had been set to '' 1,'' however, it would result in
our playing into one of the corners (the center is occupied here):

ORAODDMSK

Since the random number which was generated was between "O" and
"15," we must check to be sure that it does not exceed "9"; other­
wise, it cannot be used:

CMP #9
BCS RNDMV

We must now check to make sure that the space into which we want
to move is not occupied. We load the square's number into index
register X and verify the square's status by reading the appropriate en­
try of the GMBRD table (see the memory map in Figure 11.47):

TAX
LDAGMBRD,X

If there is any entry other than ''O'' in this square, it means that it is
occupied and we must generate another random number:

BNE RNDMV

We have selected a valid square and will now play into it. When we ex­
it from this routine, the external LED number should be contained in
X. It is obtained by adding "l" to the current contents of X, which
happens to be the internal LED number:

INX
DONE RTS

268

ARTIFICIAL INTELLIGENCE

FINDMV Subroutine

This subroutine will evaluate the board until it finds a square which
meets the specifications in the A and the X registers. The accumulator
A contains a specified row-sum that a row must meet in order to
qualify. Index register X specifies the number of times that a par­
ticular square must belong to a row whose row-sum is equal to the one
specified by A.

The FINDMV subroutine starts with a square status of "O" for
every square on the board. Every time it finds a square that meets the
row-sum specification, it will increase its status by "1." Thus, at the
end of the evaluation process, a square with a status of ''l '' is a square
which meets the row-sum specifications once. A square with a status
of "2" is one that meets the specification twice, etc.

The final selection is performed by FINDMV, which checks the
value of each square in turn. As soon as it finds a square whose status
matches the number contained in register X, it selects that square
as one that meets the initial specification.

The complete flowchart for FINDMV is shown in Figure 11.49.
Essentially, the subroutine operates in three steps. These steps are in­
dicated in Figure 11.49. Step 1 is the initialization phase. Step 2 cor­
responds to the selection of all squares that meet the row-sum
specifications contained in register A. The status of every empty
square in a row that meets this specification is increased by one as all
the rows are scanned. Step 3 is the final selection phase. In this phase,
each square is looked at in turn until one is found whose status match­
es the value contained in X. As soon as one is found, the process
stops. That square is the one that will be played by the computer. If a
square is not found, the routine will exit, with the index X having
decremented to "O," and this will be used as a failure flag for the call­
ing routine.

Let us now examine the corresponding program. It starts at line 204
in the program listing.

Step 1: Initialization

Index registers X and A will be used in the body of this subroutine.
Their initial contents must first be preserved in temporary memory
locations. Addresses TEMPI and TEMP2 are used for that purpose.
(See Figure 11.47 for the memory map.)

Let us preserve X and A:

269

ADVANCED 6502 PROGRAMMING

STEP 1
INITIALIZATION

STEP 2
COMPUTING

STATUS
(A-SELECTION)

STEP 3
FINAL SELECTION

(AANDX)

270

FINDMV

PLAY THIS
SQUARE

YES

OUT

Fig. 11.49: FINDMV Flowchart

INCREMENT ITS
STATUS

CHECK 2ND SQUARE

ARTIFICIAL INTELLIGENCE

FINDMV STX TEMP2
STA TEMPI

The status of the board is then cleared. Each square's status must be
set to "O." This is accomplished by loading the value "O" into the ac­
cumulator, then going through a nine cycle loop that will clear the
status of each square in turn:

CLRLP

LDA#O
LDY #8
STA SQSTAT,4
DEY
BPL CLRLP

Step 2: Computing the Status of Each Square

Each of the eight possible row-sums will now be examined in turn.
If the row-sum matches the value specified in the accumulator on
entry, each empty square within the specified row will have its status
incremented by "1." If the row-sum value does not meet the minimum,
the next one will be examined. Index register Y is used as a row pointer.
The RWPT table described at the beginning of this program and shown
in Figure 11.46 will be used to successively retrieve the three squares
that form every row. Let us first initialize our counter:

LDY #7

Now, we will check the value of the corresponding row-sum:

CHEKLP LDA TEMPI
CMP ROWSUM,Y
BNE NOCHEK

Let us assume at this point that the row-sum is indeed the correct one.
We must now examine each of the three squares in the row. If the
square is empty, we increment its status. The first step is to obtain the
square's value by looking it up in the table, using index register Y as a
displacement, and using addresses RWPTl, RWPT2, and RWPT3
successively as entry points into the row table. Let us try it for the first
square:

271

ADVANCED 6502 PROGRAMMING

LDX RWPTI,Y

Index register X now contains the square number. If the square is
empty, a new subroutine, CNTSUB, is used to increment its status:

JSR CNTSUB

It will be described below.
Let us now do the same for the second and third squares:

LDX RWPT2,Y
JSR CNTSUB
LDX RWPT3,Y
JSR CNTSUB

We have now completely scanned one row. Let us look to see if any
more rows need to be checked:

NOCHEK DEY
BPL CHECKLP

The process is repeated until all the rows have been checked. At this
point, we enter into step 3 of FINDMV. (Refer to the flowchart in
Figure 11.49.)

Step 3: Final Selection

Index register X will be used as a square pointer. It will start with
square #9 and continue to examine squares until one is found that
meets the additional X register specifications, i.e., the number of
times that the given square belongs to a row with the appropriate row­
sum value. Let us initialize it:

LDX#9

Now, we compare the value of the square status with the value of the
specified X parameter:

FNMTCH

272

LDA TEMP2
AND SQSTAT-1,X

ARTIFICIAL INTELLIGENCE

If the square status matches the value of the parameter, we select this
square:

BNE FOUND

Otherwise, we try the next one:

FOUND

DEX
BNE FNMTCH
RTS

Exercise 11-5: Why are "AND" and "BNE" rather than "CMP" and
"BEQ,, used to find a matching square above? (Hint: decide what the
difference in the program's strategy would be.)

COUNTSUB Subroutine

This subroutine is used exclusively by the FINDMV subroutine and
increments the status of the square whose number is in register X, if
the square is empty. First, it examines the status of the square by look­
ing for its code in the GMBRD table:

CNTSUB LDAGMBRD,X
BNE NOCNT

If the square is occupied, an exit occurs. If it is not, the status value of
the square is incremented:

NOCNT
INC SQSTAT,X
RTS

UPDATE Subroutine

Every time a move is made, it must be displayed on the board.
Then, the appropriate code must be stored in the board representa­
tion, i.e., in the table GMBRD. Finally, the new ROWSUMs must be
computed and stored at the appropriate locations. These functions are
accomplished by the UPDATE subroutine.

The player's code is contained in the accumulator. The position into
which the move is made is contained in register X. Since the number in
index register Xis the value of an external LED, it is first decremented
in order to match the actual internal LED number:

273

ADVANCED 6502 PROGRAMMING

UPDATE DEX

The value must now be stored in the appropriate location of the GMBRD
table which contains the internal representation of the board:

STAGMBRD,X

Note that the value of X is simply used as a displacement into the
table. However, the accumulator happens to contain the appropriate
code that is merely written at the specified location. At this point, UP­
DATE would like to display the move on the LEDs. It must first
decide, however, whether to light a steady LED or make it blink. To
do this, it must determine whether it is the player's move or the com­
puter's move. It does this by examining the code contained in the ac­
cumulator. If the code is "four," it is the computer's move. If the
code is "I," it is the player's move. Let us examine it:

CMP#04
BEQ NOBLNK

If it is the computer's move, a branch will occur to address NOBLNK;
otherwise, we proceed. Let us assume for the time being that it was the
player's move:

JSR LIGHT

The LIGHT subroutine is used to set the bit blinking and will be
described below. Upon exit from LIGHT, the accumulator contains
the bit in the position that is required to set the LED blinking. At this
point, the blink masks should be updated:

ORA LTMSKL
STA LTMSKL

If the carry was "zero" upon completion of LIGHT, one of the bits
zero through seven had been set and we are done:

BCCNOBLNK

Otherwise, if the carry had been set to 1, it would mean that LED #9
had to be set, i.e., that the high ,order part of the mask had to be

274

I

\

ARTIFICIAL INTELLIGENCE

modified. Let us do it:

LDA #01
STA LTMSKH

At this point, the LED masks are properly configured and we can give
the order to light the LEDs:

NOBLNK JSR LEDLTR

The LEDL TR routine lights up the LED specified by register X. Note
that if it was a computer move, this LED will remain steadily on. If it
was a player's move, this LED will be turned off and on automatically
as interrupts occur.

Next, we must update all row-sums. Index register X is used as a
row pointer. We will look at all eight rows in turn. In anticipation of
the addition, the carry bit is cleared:

AD DROW
LDX#7
CLC

The first square of row eight is examined first:

LDY RWPTl,X

Note that index register Y will contain the internal square number
following this instruction. This will immediately be used for another
indexed operation. The contents of the square will be read so that the
new row-sum may be computed. (The row-sum for that row may or
may not be the same as before. No special provision has been made
for restricting the search to the two or three rows affected.) All rows
are examined in turn, and all row-sums are re-computed to keep the
program simple.

Let us obtain the current square's value:

LDAGMBRD,Y

The GMBRD table is accessed using index register Y as a displace­
ment. Note that the two instructions shown above implement a two­
level indexing operation. This is a most efficient data retrieval tech­
nique. At this point, the accumulator contains the value of the first

275

ADVANCED 6502 PROGRAMMING

square. It will be added to the value of the two following squares. The
process will now be repeated:

LDY RWPT2,X
ADC GMBRD,Y

The number of the second square has been looked up by the LDY in­
struction and its value stored in Y. The addition instruction looks up
the actual value of that square from GMBRD, and adds that value to
the accumulator. This process is performed one more time for the
third square:

LDY RWPT3,X
ADC GMBRD,Y

The final value contained in the accumulator is then stored in the
ROWSUM table at the position specified by the value of index register
X (the row index):

STA ROWSUM,X

The next row will now be scanned:

DEX
BPLADDROW

If X becomes negative, we are done:

RTS

LED LIGHTER Subroutine

This subroutine assumes upon entry that register X contains the in­
ternal LED number of the LED on the board which must be turned on.
The subroutine will therefore turn that LED on using the LIGHT
subroutine, which converts a number in register X into a bit pattern in
the accumulator for the purpose of turning on the specified LED:

LEDL TR JSR LIGHT

At this point, either Port IA or Port lB must be updated. Let us

276

ARTIFICIAL INTELLIGENCE

assume initially that it is Port IA (if it is not Port lA, which we can
find out by examining the carry bit below, then the pattern contained
in the accumulator is all zeroes and will not change the value of Port
IA):

ORA PORTIA
STA PORTIA
BCC LTRDN

The carry bit is tested. If it has been set to 1 by the LIGHT subroutine,
then LED #9 must be turned on. This is accomplished by sending a
"l" to Port lB:

LDA #1
STA PORTB
RTS

PLRMV Subroutine (Player's Move)

This subroutine obtains one correct move from the player. It chirps
to get his or her attention and waits for a keyboard input. If a key
other than 1 through 9 is pressed, it will be ignored. Whenever the
subroutine gets a move, it verifies that the square on the board is in­
deed empty. If the square is not empty, the subroutine will ignore the
player's move. Let us first generate a chirp in order to get the player's
attention:

PLRMV LDA #$80
STA DUR
LDA #$10
JSR TONE

Now, let us capture the key closure:

KE YIN JSR GETKEY

We must now check to see that the key that is pressed is between 1 and
9. Let us first check to see that it is not greater than or equal to 10:

CMP#lO
BCS KEYIN

Let us now verify that it is not equal to "zero":

277

ADVANCED 6502 PROGRAMMING

TAX
BEQ KEYIN

Finally, let us verify that it does not correspond to a square that is
already occupied:

LOA GMBRD-I,X
BNE KEYIN
RTS

Exercise 11-6: Modify the PLRMV subroutine above so that a new
chirp is generated every time a player makes an incorrect move. To tell
the player that he or she has made an incorrect move, you should
generate a sequence of two chirps, using a different tone than the one
used previously.

LIGHT Subroutine

This subroutine accepts an LED number in register X. It returns
with the pattern to be output to the LEDs in the accumulator. If LED
9 is to be lit (X = 8), the carry bit is set. This subroutine is straightfor­
ward and has been described previously:

LIGHT STX TEMPI
SEC
ROLA
DEX
BPL SHIFT
LOX TEMPI
RTS

DELAY Subroutine

This is a classic delay subroutine that uses two nested loops that
have a few extra instructions within the loop that are designed to waste
time:

DELAY
DLI
DL2

278

LOY #$FF
LOX #$FF
ROL DUR
ROR DUR

DEX
BNE DL2
DEY
BNE DL1
RTS

Interrupt Handling Routine

ARTIFICIAL INTELLIGENCE

Every time that an interrupt is received, the appropriate LEDs will
be complemented (turned off if on, or on if off). The positions of the
LEDs to be blinked are specified by the contents of the L TMSK
masks. Two bytes are used in memory for the low and high halves,
respectively. (See Figure 11.47 for the memory map.)

Turning the bits on or off is accomplished by an exclusive-OR in­
struction that is the equivalent of a logical complementation. Since
this routine uses the accumulator, the contents of A must be preserved
at the beginning of the routine. It is pushed onto the stack and
restored upon exit. The subroutine is shown below:

INTVEC PHA
LOA PORTIA
EOR LTMSKL
STA PORTIA
LOA PORTIB
EOR LTMSKH
STA PORTIB
LOA TILL
PLA
RTI

Exercise 11-7: Notice the LDA TILL instruction above. The next in­
struction in this subroutine is PLA. It will overwrite the contents of
the accumulator with the words pulled from the stack. The contents of
the accumulator, as read from TILL, will therefore be immediately
destroyed. Is this a programming error that was accidentally left in
this program? If not, what purpose does it serve? (Hint: this situation
has been encountered before. Refer to one of the earlier chapters.)

INITIALIZE Subroutine

This subroutine was described in the body of the main program
above.

279

ADVANCED 6502 PROGRAMMING

RANDOM and TONE Subroutines

These two subroutines were described in previous programs.

SUMMARY

This program was the most complex we have developed. Several
algorithms have been presented, and one complete implementation of
an ad hoc algorithm has been studied in great detail. Readers interested
in games of strategy and programming are encouraged to implement
an alternative algorithm.

LINE t LOC CODE LINE

0002 0000 'TICTAC'
0003 0000 I PROGRAM TO PLAY TIC-TAC-TOE ON SYM-1
0004 0000 /COMPUTER WITH 3X3 LED MATRIX AND HEX KYBD,
0005 0000 ; AT BEGINNING OF GAME, IF 'F' KEY IS
0006 0000 ;PRESSED, PLAYER GOES FIRST, ANY OTHER KEY,
0007 0000 ICOMPUTER GOES FIRST, THEREAFTER, TO MAKE
0008 0000 ;A MOVE, PRESS KEY CORRESPONDING TO NUMBER
0009 0000 IOF SQUARE DESIRED,
0010 0000 ;
0011 0000 I LINKAGES:
0012 0000
0013 0000 GET KEY $100
0014 0000 ACCESS -$8B86
0015 0000 ;
0016 0000 ;110:
0017 0000
0018 0000 PORT1A $A001 ;** 6522 VIA tl. •••
0019 0000 DDR1A $A003
0020 0000 PORT1B $AOOO
0021 0000 DDR1B - $A002
0022 0000 IER $AOOE ;INTERRUPT ENABLE REGISTER,
0023 0000 ACR $AOOB /AUXILIARY CONTROL REGISTER,
0024 0000 TlLL - $A004 ;TIMER 1 LATCH LOW,
0025 0000 T!CH $A005 HI MER 1 LATCH HIGH,
0026 0000 PORT3B $ACOO ;**6522 VIA t3
0027 0000 DDR3B $AC02
0028 0000 IRQVL $A67E
0029 0000 IRQVH $A67F
0030 0000
0031 0000 HABLE OF SQUARES IN BOARD'S 8 ROWS,
0032 0000
0033 0000 * = 0
0034 0000
0035 0000 00 RWPT1 ,BYTE 0,1,2,0,3,6,0,2
0035 0001 01
0035 0002 02
0035 0003 00
0035 0004 03
0035 0005 06
0035 0006 00
0035 0007 02
0036 0008 03 RWPT2 ,BYTE 3,4,5,1,4r7,4,4
0036 0009 04
0036 OOOA 05
0036 OOOB 01
0036 oooc 04
0036 OOOD 07
0036 OOOE 04
0036 OOOF 04
0037 0010 06 RWPT3 ,BYTE 6,7,8,2,5,8,8,6

Fig, 11,50: Tic-Tac-Toe Program

280

0037
0037
0037
0037
0037
0037
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102

0011
0012
0013
0014
0015
0016
0017
0018
0018
0018
0018
0018
0021
0021
002A
0032
0032
0032
0038
0039
003A
003B
003C
003D
003E
003F
0040
0040
0041
0041
0042
0042
0042
0042
0200
0200
0202
0204
0207
020A
020C
020E
0210
0212
0214
0216
0218
021A
021D
021F
0222
0224
0226
0228
022B
022E
0230
0233
0235
0237
023A
023C
023D
023F
0241
0243
0245
0247
0249
024B
024D
024F

07
08
02
05
08
08
06

A9 OC
85 41
20 50 00
20 00 01
C9 OF
DO 04
A9 01
85 3B
E6 3A
AS 3B
FO OE
C6 3B
20 80 03
A9 01
20 40 03
A9 03
DO OF
E6 3B
20 A4 03
20 9D 02
A9 04
20 40 03
A9 OC
AO 07
D9 2A 00
FO 11
88
10 F8
A:S 3A
C9 09
DO er,
A9 FF
85 3D
85 3C
DO 4A
C9 OC
FO OE

ARTIFICIAL INTELLIGENCE

/VARIABLE STORAGES:

CLRST
GMBRD *'•*+9

iBOARD
SGSTAT *•*+9
ROWSUM *•*+8

,lST LDC, TO BE CLE/\RED BY 'INIT',
; GAME BDAR[I: PLAYER'S POSITIIJNS IJN

AS $01•PLAYER, $04•COMPUTER,
;sGUARE'S TACTICAL STATUS,
/SUM IJF VALUES IJF SGUARES IN

;Row, WHERE !•PLAYER,
i4•COMPUTER, D•EMPTY.

RNDSCR
TEMPl
TEMP2
MOVNUM
PL AYR
LTMSKH
LTMSKL
DUR
FRE(I
CLREND
ODDMSK

•+6 iRND t GEN, SCRATCHPAD,

INTEL

*=Hl
•+1
*•Hl
·+1
·+1
·+1
·+!
*•Hl

•+1
;GENERATOR

*•HI

/NUMBER OF CURRENT MOVE,
iWHO'S TURN IT IS,

/HIGH ORDER BLINK MASK FOR LED'S
;LOW ORDER SAME,

IDURATION FOR TONES,
/FREQUENCY OF TONES,

; LAST LDC TO BE CLE/\RED BY 'INIT',
; MAKES F·RODUCT OF RANDOM MOVE

ODD TO PICK CORNER,
/INTELLIGENCE QUOTIENT,

****** MAIN PROGRAM******

* $200

START LDA t12
STA INTEL

RESTRT JSR INIT
JSR GETKEY
CMP t$F
BNE PLAYLP
LDA t01
STA PLAYR

PLAYLP INC MOVNUM
LDA PLAYR
BEQ COMPMV
DEC PL.AYR
JSR PLRMV
LDA t01
JSR UPDATE
LDA t03
BNE WINTST

COMPMV INC PL.AYR
JSR DELAY
JSR ANALYZ
LDA t04
JSR UPDATE
LDA tJ.2

WINTST LDY t7
TSTLP CMP ROWSUM,Y

BEO WIN
DEY
BPL TSTL.F'
LDA MOVNUM
CMP t9
BNE PLAYLP
LDA UFF
STA LTMSKL
STA LTMSKH
BNE DLY

WIN CMP tl~
BEQ INTDN

;SET I,Q, AT 757.
;INITIALIZE PROGRAM,
;GET FIRST MOVE [IETERMINER,
;rs IT 'F'?

iYES, PLAYER FIRST,

;coUNT THE MOVES.
iWHO'S TURN?
/IF O, COMPUTER'S MOVE,
/PLAYER'S TURN, COMPUTER NEXT,
iGET PLAYER'S MOVE,
;STORE PLAYER'S PIECE,
iPLAY IT, AND UPDATE ROWSUMS,
/LOAD PATTERN FOR WIN SEARCH,
1 CHECK FOR WIN,
;COMPUTER'S TURN, PLAYER NEXT,
iTIME FOR COMPUTER TO 'THINK',
iFIND COMPUTER'S MOVE,
iSTORE COMPUTER'S PIECE,
iPLAY IT,
iLOAD PATTERN FOR WIN SEARCH.
;LOOP'7X TO CHECK ROWSUMS
iFOR WINNING PATTERN,
iWIN IF PATTERN FOUND,
;L.OOP AND
iTRY AGAIN,
i!F HOVE NUMBER - 9,
;THEN GAME IS TIE,
;KEEP PLAYING IF NOT,
iSET ALL LIGHTS TO BLINKING.

;KEEP THEM BLINKING A WHILE,
;COMPUTER WIN?
iIF YES, I,[I, DOWN,

.._------Fig. 11.50: Tic-Tac-Toe Program (Continued)--------'

281

ADVANCED 6502 PROGRAMMING

0103 0251 A9 1E LDA t30 ;Lorin FREQ. r.oNST FOR WTN TONE.
0104 0253 85 3F STA FREQ
0105 0255 A5 41 LDA INTEL
0106 0257 C9 OF CMP UOF ~I• Q • AS HIGH /\S POSS I Bl.~''
0107 0259 FO OE BED GTMSK ; IF-- YESv DON'T CH/\NGF IT•
0108 025B E6 41 INC INTfL JRf.'IISF r.o.
0109 025D DO OA BNE IJTMSK ;Go FLASH ROW,
0110 025F A9 FF INTHN LUA UFF HOAD FREQ, CONST. FDR LOhF rtJNE.
0111 0261 85 3F STA FRECl
0112 0263 A5 41 LDA INTEL ; I .o. - O'?
0113 0265 FO 02 BED GTMSK ;JF YES, DON'T DECRFMENTI
0114 0267 C6 41 BEC INTEL ; I .o. DOWN.
0115 0269 A9 00 GTMSK LDA to JCL..E"'R /\LL LFDS.
0116 026B 8[1 01 AO STA PORTlA
0117 026E er, 00 AO STA PORTlB
0118 0271 B6 00 LDX RWPTl,Y ;GET BIT IN /\CCUM, rn LIGHT
0119 0273 ;LED CORRESPOND ING TO 1s·; SQUARE
0120 0273 ;JN WINNING ROW.
0121 0273 20 6F 03 JSR LEDL TR
0122 0276 B6 08 l.DX RtJF'T2,Y ;GET SECOND BTT.
0123 0278 20 6F 03 JSR LEDL.TR
0124 027B B6 10 LDX RWPT3, Y ;GET :;F:n BIT.
0125 027D 20 6F 03 JSR LEDL rn
0126 0280 AD 01 AO L.DA PIJRTlA ;MASI'< OUT UNNffESS/\RY BITS IN
0127 0283 25 3[1 AND l..TMSU. ;BUNf: MASKS.
0128 0285 85 3D ST/\ LTMSKL
0129 0287 AD 00 AO l..DA PORTlB
0130 028A 25 3C ANH LTMSKH
0131 028C 85 3C srn LTMSKH
0132 028E A9 FF LDA UFF ,SET WIN/LOSE TONE DURATION.
0133 0290 85 3E STA DUR
0134 0292 A5 3F LDA FREQ ;GE:-T FREOUENCY.
0135 0294 20 AD 00 JSR TONE ;pL.f.iY TONE,
0136 0297 20 A4 03 DLY JSR DELAY •DEI.../\Y TO SHOW WIN IJR TIE.
0137 029A 4C 04 02 clMP RESTRT iSTART NEW Gf.lME, DON'T CHMG. r .a.
0138 029D ;
0139 029[1 ; ****** SUBROUTINE '/\N/\L.YZE' ******
0140 029[1 ;DOES A STATIC ANALYSIS OF GAME BOARD, AND
0141 029D ,RETURNS WITH A MOVE IN REGISTER x.
0142 029[1 ;
0143 029D A9 00 ANALYZ LDA to ;SET MASK THAT M/\KFS RANDOM MOVFS
0144 029F 85 40 STA ODDMSK ;BE SIDES TO o.
0145 02A1 A9 OB LDA toe ,CHECK FOR WINNING MOVE FOR
0146 02A3 A2 03 l..DX 103 ,COMPUTER,
0147 02A5 20 04 03 . ..JSR FINDMV
0148 02A8 DO 59 BNE DONE ;rF FOUND, RETURN.
0149 02AA A9 02 LDA t02 :CHECK FOR WINNH!G MOVE FOR
0150 02AC A2 03 LDX t03 ;PLAYER.
0151 02AE 20 04 03 .JSF: FINDMV
0152 02Bl DO 50 BNE DONE ; IF FOUND, F:ETURN.
0153 02B3 A9 04 LDA t04 :CAN COMPUTER SFT A TR/\P?
0154 02B5 A2 02 l..DX t02
0155 02B7 20 04 03 JSR FINDMV
01.56 02BA DO 47 BNE !JONE ,IF YES, PIAY 1'T.
0157 02BC 20 9A 00 JSR RANDOM rGET A RANDflM NUMBER ..•
0158 02BF 29 OF AND UOF ;: •• • f'lND MI\KE IT 0··-15 ••.
0159 02Cl C5 41 CMF' INTEL ;FOR USE ~s STUPID/SM/\RT DETERMINER.
0160 02C3 FO 02 BEQ OK rIF BOTH ARE EQUAi., SK!P TFST
0161 02C5 BO 2B BCS RNDMV ; IF RNDt INTF.L, PLAY /\ DUMB MOVE,
0162 02C7 A6 3A OK LDX MOVNUM
0163 02C9 EO 01 CPX tl ;1sr MO'JE?
0164 02CB FO 25 BEQ RNDM•J ; IF YES, PL./\Y /\MY SQUARE.
0165 02CD EO 04 CPX t4 ;4TH MOVE?
0166 02CF DO oc BNE TR/\Pr:K ;rF NOT, CONTINUF.
0167 02D1 A2 06 l..DX t6 ;1 Of.ID TNDFX TO 1ST J:Jif'lG. ROWSUM,
Ol.68 02D3 BA TXA 'I OAD SUM OF F:OW HA 1)tNG P-C-F'.
0169 02D4 D5 2A CMP ROWSUM,X ;,HF:CK tF 1ST UI/\G, IS P-C-P
0170 02D6 FO 16 BEO ODDRND ;IF YE~r PI.AY SIDE.
0171 02D8 EB INX ;CHECK NEXT DTAG. ROlJSl.!M
0172 02D9 D5 2A CMP ia,owsuM, x
()173 02DB FO l1 BE[l ODDRND
Ol.74 02(1(1 A9 01 TRAPCK LM t1 ;rAN PL/\YFR SET /\ TRAF'?

Fl g .11.50: Tic-Tac-Toe Pr og ram Continued

282

0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
021.8
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246

02DF
02E1
02E4
02E6
02EB
02EA
02EC
02EE
02FO
02F2
02F5
02F7
02F9
02FB
02FD
02FE
0300
0302
0303
0304
0304
0304
0304
0304
0304
0304
0304
0304
0304
0304
0306
0308
030A
030C
030F
0310
0312
0314
0316
0319
031B
031D
0320
0322
0325
0327
032A
032B
032D
032F
0331
0333
0335
0336
0338
0339
0339
0339
0339
0339
033B
033D
033F
0340
0340
0340
0340
0340
0340
0340
0340
0341

A2 02
20 04 03
DO 1D
A6 IC
DO 08
A2 05
[10 15
A9 01
85 40
20 9A 00
29 OF
05 40
C9 09
BO F5
AA
B5 18
DO FO
EB
60

86 39
85 38
A9 00
AO 08
99 21 00
88
10 FA
M 07
A5 38
[19 21\ 00
DO OF
B6 00
20 39 03
B6 08
20 39 03
B6 10
20 39 03
BB
10 E7
f'l2 09
A5 39
35 20
DO 03
CA
DO F7
60

B5 18
DO 02
F6 21
60

CA
95 18

LDX t2
JSR FINDHV
BNE DONE
L.DX GHBRDH
BNF RNDH'.'
LDX t5
BNE DONE

ODDRND LI•A t1
STA IJDDHSK

RNDHV JSR RANDOM
AND t$0F
ORI\ ODDMS~:
CMP t9
BCS F:NDMV
TAX
L.Dfl GMBRfl~~
BNE RNDHV
INX

DONE RTS

ARTIFICIAL INTELLIGENCE

IF YES, PLAY BLOCK.
IS CENTER
Of:CUPIFn?
NO: PL/\Y IT.

;SET ODDMASK TO 1, SO
fMOVE WILL BE n SIDF.
;GET RnNDOM ~ FOR MOVE.
;M/\~:E IT 0-15.
;MnKE ODD t IF roRNFR H~FDFn.
;NLIMBER TOO HIGH?
;rF YES, GFT nNOTHFR.

;sp"'cE OCCUPIED?
;rF YES, GET ANOTHER MnVF.
; INCREMENT XTO MATCH OUTPUT rJF FH!f!M 1.I.
;RETURN W/ MOVE TN v

; ****** SUBROUTINE 'FIND MOUE' **'***
;FINDS n snunRE MEETING SPECIFICnTTONS
;PASSED IN IN A AND X.
;INDEX REGISTER v CONlnINS
IMASK THAT, WHEN OR'ED WJTH
;NUMBER OF TIMES n SQlJnRE FITS ROWS WITH
;ROWSUM IN nccuM.1 MUST YIELD~ ONE
;FOR SOUf'IRE TO ounLIFY.

FI NDMt1 STX TF.MF':?.
ST/\ TEHPl
LD/\ tO
LDY 118

CLRLP STA SQST/\T,Y
DEY
BPL CLRLP
LDY t7

CHEKLP LDA TEHP1
CHP ROWSUH,Y
BNE NOCHrn
LDX RWPTt ,Y
JSR CNTSUB
LDX F:WPT2, Y
.JSR CNTSUB
LDX RWPT3,Y
JSR CNTSUB

NOCHEK DEY
BPL CHEr:l.F'
LDX t9

FNHTCH LDA TEMP~
/\ND SQSTnT-l ,X
BNE FOUND
DEX
BNE FNMTCH

FOUND RTS

~ Sr'VJE PEG JETF.RS.

;cL.EnR sounR~ srnTlJS REGISTF.RS.

1L..OOP 7X
~DOES ROWSUM
IM/\TCH P/\R/\HFTFR•
l!F NOT, TRY NEXT.
;CHECK 1ST sounRE IN ROW.
;INCREMENT ITS STATUS IF IT'S EMPTY.
;Do 2ND sounRE".

;nND THJRP.

; TF:Y NEXT F:OW.

ILOAD PARAMETFR •..
1(S01JnRE STnTUS!nHD(PnRnM))Q?
l!F YES, PLAY X ns HOVE.
~DECREMENT nND TRY NEXT sasrnr.

; ****** SUBROUTINE 'COUNTSUB' *11111
;INCREMENTS SQSTAT OF EMPTY SQU/\RES.

CNTSUB LDA GHBRD,X
BNE NOCNT
INC SQSTAT,X

NOCNT RTS

;GET SQUARE.
;IF FULL, SUP.
IINCREHENT SQST/\T
;DONE+

; ****** SUBROUTINE 'UPD/\TE' ••••••
;PLAYS HOVE BY STORING CODE P/\SSED IN IN /\CCUM.
;AT SQUARE SPECIFIED BY X REG.
;ALSO LIGHTS/SETS BLINKING PROPER LED,
;AND COM~JTES ROWSUMS.

UPDATE !)EX
STA GHBRD,X

;DECREMENT MOVE TO MnTCH INDEXING.
I PLAY Hll'JE.

.._-------Fig, 11,50: Tlc-Tac-T- Program (Contlnuecl)------.....1

283

ADVANCED 6502 PROGRAMMING

0247 0343 C9 04 CMF' f$04 CfJMPIJTEF:' S M01.IE?
0248 0345 FO ()[I BEQ NOBLN~: IF YES, !:'(!N'T SFT LED BL.INl{IMG.
0249 0347 20 98 03 JSR LJGHT PLriYFR'SMOVE!GETRITCORRFSPONDING
0250 034A ;ro LED TO BF SET Tl] BLIN!''.ING.
0251 034A 05 3[1 OR/'\ LTMSKL ;PL/'\CF BJT-IN BLINK MASKS.
0252 034C 85 3D ST/'\ LTMSKI.
0253 034E 90 04 BCC NOBLNK ; TF C-:-0? !'l(lN'T SEf PIT 9,.
0254 0350 A9 01 LM t01 ;SET BTT 9 rn BLINKrNr~~
0255 0352 85 3C ST/'\ LTMS~:H
0256 0354 20 6F o:~ NllBLNK JSR LF.DLTF: ~LIGHT LFD,.
0257 0357 f\2 07 LDX t7 ;LOOP TO COMPUTE" F.'fH,.JSUM~.
0258 0359 18 ADDROW CLC ;PRFTriRE FOF: fil))')!TJfJN ..
0259 035A B4 00 LDY RWPT1,X ?GET FIRST PO!JflRE :"lf!f.•F:EE~'.
0260 035C B9 18 00 UrA GMBRit,Y ;GET CONTENTS OF S0Uf:RF.
0261 035F B4 08 I.DY RWF'T2,X rriDD SECnMD SO!.JriRF IN ROW.
0262 0361 79 18 00 ADC GMBf·::D r Y
0263 0364 B4 10 LDY RWF'T3~X ;ADD FINM SQUARE.
0264 0366 79].8 00 ADC GMBRD,Y
0265 0369 95 2A STl'I ROWSUM1X ;SNJE ROW~~UM
0266 036B CA DEX
0267 036C 10 EB BPL ADDRIJW ~GET NEXT F:Dl,JSUM.
0268 036E 60 RTS
0269 036F
0270 036F ****** SUBROUTINE' 'LED LIGHTER' ***:t.~t
0271 036F ;GIVEN AN ARGUMENT IN X REGr t_JGHTS
0272 036F H.ED (0-8) CORRFSPfJMDIMG TfJ TH/'\T f'tHGUMFt-!T.
0273 036F
0274 036F 20 98 03 L.EDLTH JSR LIGHT ;GF.T BTT T.N COF:F:ECT F'(HHTinN.
0275 0372 0[1 01 AO ORA PORTIA 11..IGHT LED.
0276 0375 SD 01 AO STA PORTIA
0277 0378 90 05 BCC LTRDN 7IF L.ED f9 f'l(JT Tn BE LIT, E~~TP.
0278 037A A9 01 LD/\ 1'1 H TGHT L FD *"
0279 037C 8[1 00 AO ST/\ PORT!B
0280 037F 60 LTRDN RTS ~DONE~
0281 0380
0282 0380 ; ****** SUBROUTINE 'PL/'\YER' S MO'.'E' '+'t:t.*-**
0283 0380 ;GETS PLAYER'S MOIJE, CHEC•:S FOF: FRF'flF'S.
0284 0380
0285 0380 A9 80 PLRMV LDA USO ;MMS SHfJF'T ~FEP rn ~'.TGNA!.
0286 0382 85 3E ST/'\ DUR ; KFYBOflF:D !NPIJT NEE"DED.

0287 0384 A9 10 LDA f$10

0288 0386 20 AD 00 JSR TONE'
0289 0389 20 00 01 KE YIN JSR GEH:EY 9GET MfJl.'F..

0290 038C C9 OA CMP -t10 ;OUT QF BOUNDS'~
0291 038E BO F9 BCS KEY IN ;TF YFS1 RT M'fJTHFR,
0292 0390 AA rnx
0293 0391 FO F6 BEQ e:EYIN ;rF MOt.'E 0, GET M!IJTHER,
0294 0393 B5 17 L.[l(i GMBRfr-1,X ;SO!./r"IRF. f..'.MPTY?
0295 0395 DO F2 BNE KE YIN ;IF MDTr rF:Y lirll'\IN.
0296 0397 60 RTS
0297 0398
0298 0398 ****** SUBROUTINE 'LIGHT' uuu
0299 0398 ;SHIFTS A ONE BIT LEFT IN f'tCClJMULf'\ Tf.lF' TO
0300 0398 ;A POSITION CORRESPOND ING TO THE
0301 0398 ;ARGUMENT PASSED IN IN REG. x. IF x-··e,
0302 0398 ;CARRY IS SET.
0303 0398
0304 0398 86 38 LIGHT STX TEMP1 ;SC'i 1,)E x.
0305 039A A9 00 LDA to ;r:::LEAF'. ACCUM. FOR SHIFl.
0306 039C 38 SEC ;GFT BIT TO BF SHIFTET1.
0307 039[1 2A SHIFT ROL A ;SHIFT BIT IFFT.
0308 039E CA DEX
0309 039F 10 FC BPL SHIFT ;co11NT DOWM !\NP UICIF'.
0310 03A1 A6 38 LDX TEMP1 ;RESTORE V

0311 03A3 60 RTS
0312 03A4
0313 03A4 ****** SUBROUTINE 'DEL/'\Y' *-*·*·***" 0314 03A4
0315 03A4 AO FE DELAY L.DY UFF
0316 03A6 A2 FF nu LDX UFF
0317 03A8 26 3E DL2 ROL DUR ;W/\STE TIME,
0318 03AA 66 3E ROR DUR

Fig, 11.50: Tic-Tac-Toe Program (Continued)

284

0319 03AC
0320 03AD
0321 03AF
0322 03BO
0323 03B2
0324 03B3
0325 03B3
0326 03B3
0327 03B3
0328 03B3
0329 03B3
0330 03B4
0331 03B7
0332 03B9
0333 03BC
0334 03BF
0335 03C1
0336 03C4
0337 03C7
0338 03C8
0339 03C9
0340 03C9
0341 03C9
0342 03C9
0343 03C9
0344 0050
0345 0050
0346 0052
0347 0054
0348 0056
0349 0057
0350 0059
0351 005C
0352 005E
0353 0060
0354 0062
0355 0065
0356 0068
0357 006B
0358 006[/
0359 0070
0360 0073
0361 0073
0362 0073
0363 0076
0364 0076
0365 0078
0366 007B
0367 007[1
0368 0080
0369 0082
0370 0085
0371 0087
0372 008A
0373 008C
0374 008F
0375 0091
0376 0094
0377 0097
0378 0098
0379 0099
0380 009A
0381 009A
0382 009A
0383 009A
0384 009A
0385 009A
0386 009B
0387 009[1
0388 009F
0389 OOA1
0390 OOA3

CA
[10 F9
88
[10 F4
60

48
AD 01
45 3D
8D 01
AD 00
45 3C
8D 00
A[I 04
68
40

A9 00
A2 28
95 18
CA
10 FB
AD 04
85 33
85 36
A9 FF
SD 03
8[1 02
8[1 02
A9 00
8[1 01
SD 00

20 86

A9 B3
SD 7E
A9 O:l
SD 7F
A9 7F
8D OE
A9 CO
8[1 OE
A9 40
8[1 OB
A9 FF
SD 04
SD 05
58
DB
60

38
AS 33
65 36
65 37
85 32
A2 04

AO

AO
AO

AO
AO

AO

AO
AO
AC

/\0
AO

SB

A6

A6

AO

AO

AO

AO
AO

ARTIFICIAL INTELLIGENCE

I.IEX
BNE nt..:.'
DEY
BNE nu
RTS

****** INTERRIJPT HM/DUNG F:OUT!NF ******
PAT EACH INTERRUPT, LEDS WHOSE POSITIONS IN
HHE Bl.INK MASKS HA'JE ONES IN THEM ~F:F T\JRNED
;oN IF OFF, OFF IF ON,
INTVEC PHA

LM PORTl.A
EDF: L TMSKL
STA POF:Tl.t\
LDrl POF:Tl. B
EOR LTMSf'.H
STA PfJRT1B
LDA Til..!
PLA
RTI

; ****** SUBROUTINE 'INITinLIZE' 111111
;rNITinLIZES PRORRnM.

* - '*50

INIT LM tO
LDX

CLRALL STA
[!EX
BPL
LDt\
STA
STA
LDA
ST/\
STA
STA

:tCLREMD-CL F:S f
CLRST,X

CLRt\Lt
Tl.LL
RN[ISCF:+J.
RNDSCRH
UFF
DDR1t\
[IDR1B
DDR3B

;GET RnNDOM NUMB~R ~fNERATOR SEED.

!SET UP I/0

LDA -to r CLEAR I .EDS
STA PORT1~
STA PORT1B

ISET UP TIMER FOR INTERRUPTS WHICH
;BLINK LEDS,

JSR ncCESS ;UNPROTECT SYM-1 SYSTEM MEMORY TO
ISET UP INTERRUPT VECTORS.

LDA t<INTVEC ;Lonn LOW BYTE INTERRLJPT VECTOR.
STA IRQ~~ !STORE AT INTERRUPT VECTOR LOCATION,
LOA t>INTVEC ILOt\D HI BYTE INTERRUPT VECTOR,
STA IRQVH IBTORE.
LDA t$7F ICLEAR INTERRUPT ENABLE REGISTER.
STA IER
LM UCO I ENABLE T!MER1 INTFRRUPT.
STA IER
LDA t:$10
STA ACR
LDA UFF
STA Tl.LL
STA T1CH
CLI
CLD
RTS

IENABLE TIMERl IN FREE-RUH MQDF.

ISET LOW LATCH ON TIMER 1,
;sETHIGHLt\TCHISTARTTNTFRRUPTCOUNT,
;ENABLE INTERRUPTS.

****** SUBROUTINE 'RANDOM'******
;RANDOM NUMBER GENERATOR: RETURNS NEW
IRANDOM NUMBER IN ACCUMULATOR,

RAN[IOM SEC
L[IA RNDSCR+1
ADC RNDSCR+4
ADC RNDSCR+5
STA RNDSCR
LDX t4

L-------Flg. 11.50: Tic-Tac-Toe Program (Continued)---------'

285

ADVANCED 6502 PROGRAMMING

0391 OOA5 B5 32 RNDLP LDA Rt-JDSCF:, X
0392 OOA7 95 33 STA RNDSCF:+1,X
0393 OOA9 CA DEX
0394 OOAA 10 F9 BF'L RNDLF'
0395 OOAC 60 RTS
0396 OOAD
0397 OOAD ; ****** SUBROUTINE 'TONE' *****t
0398 OOAD ;GENERATES A TONE: NO, OF 1./~ CYCLES
0399 OOAD ;MUST BE IN DUR, AND
0400 OOAD ;WAVELENGTH CONST. IN ACCLIMULAfOF,.
0401 OOAD
0402 OOAD 85 :,F TONE STA FREQ
0403 OOAF A9 FF LDA UFF
0404 OOBl 8D 00 AC STA PORT3B
0405 OOB4 A9 00 LDA 100
0406 OOB6 A6 3E LDX DUR
0407 OOB8 A4 3F FL2 LDY FREQ
0408 OOBA 88 FU. DEY
0409 OOBB 18 CLC
0410 OOBC 90 00 BCC *+2
0411 OOBE DO FA BNE FU
041.2 ooco 49 FF EOR UFF
0413 OOC2 8D 00 AC STA PORT3B
0414 OOC5 CA DEX
0415 OOC6 DO FO BNE FL.2
0416 ooc0 60 RTS
0417 OOC9 ,END

SYMBOL TABLE

SYMBOL VALUE

ACCESS 8B86 ACR AOOB ADDROtJ 0359 ANAI.Y? 0::>9D
CHEKLP 0314 CLRALL 0054 CLREND 0040 CLRI..P 030C
CLRST 0018 CNTSUB 0339 COMPMV 02~6 DJ"1R1f't ('1()()3

DDR!B A002 DDR3B r'"lC02 DELAY 03M DU 03M
DL2 03A8 DLY 0297 DONF 0:503 DUR oo:3F
FINDMV 0304 FU OOBA FL.2 OOf.18 FNMTCH 0,3'.2F
FOUND 0338 FREQ 003F GETKEY 01.00 GMBRD 001.8
GTMSK 0269 IER AOOE INIT 00'.:"iO INTflN 0?5F
INTEL 0041 INTVEC 03B3 IRQVH A67F IROVl l'i67F
KEY IN 0389 LEDL.TR 036F LIGHT 0398 LTMSKH 003r:
LTMSKL 003D LTRDN 037F MOVNUM 003A NOBLNK 03~}4
NOCHEK 032A NOC NT 033F ODDMSK 0040 ODDRNfr O:->n-::
OK 02C7 PLAYLP 0212 PL/\YR 003B Pl..RMV 0380
PORT1A AOOl PORT1B AOOO PORT3B /\COO RANDOM OO~Jfl
RESTRT 0204 RNDLP OOA5 RNDMV 02F2 RNDSCR 0032
ROtJSUH 002A RtJPT1 0000 RWF'T2 0008 RWF'T3 001.0
SHIFT 039D SQSTAT 0021 START o:~oo TlCH f'I005
T1LL A004 TEMP! 0038 TEMP2 0039 TONE OOf'II)
TRAPCK 02DD TSTLP 0237 UF'DATE O~l40 WIN 0?4D
WINTST 0235
END OF ASSEMBLY

'-------Fig. 11,50: Tic, Tac-Toe Program (Continued)----------'

286

Appendix A

6502 INSTRUCTIONS-ALPHABETIC

ADC Add with carry JSR Jump to subroutine
AND Logical AND LDA Load accumulator
ASL Arithmetic shift left LDX Load X
BCC Branch if carry clear LDY Load Y
BCS Branch if carry set LSR Logical shift right
BEQ Branch if result = 0 NOP No operation
BIT Test bit ORA Logical OR
BMI Branch if minus PHA Push A
BNE Branch if not equal to 0 PHP Push P status
BPL Branch if plus PLA Pull A
BRK Break PLP Pull P status
BVC Branch if overflow clear ROL Rotate left
BVS Branch if overflow set KOR Rotate right
CLC Clear carry RTI Return from interrupt
CLD Clear decimal flag RTS Return from subroutine
CLI Clear interrupt disable SBC Subtract with carry
CLV Clear overflow SEC Set carry
CMP Compare to accumulator SED Set decimal
CPX Compare to X SEI Set interrupt disable
CPY Compare to Y STA Store accumulator
DEC Decrement memory STX Store X
DEX Decrement X STY Store Y
DEY Decrement Y TAX Transfer A to X
EOR Exclusive OR TAY Transfer A to Y
INC Increment memory TSX Transfer SP to X
INX Increment X TXA Transfer X to A
INY Increment Y TXS Transfer X to SP
JMP Jump TYA Transfer Y to A

287

AppendixB

6502 INSTRUCTION SET-HEX AND TIMING

IMPLIED ACCUM. ABSOLUTE ZERO PAGE IMMEDIATE ABS. X ABS. Y

MNEMONIC OP n # OP n # OP n # OP n # OP n • OP n # OP n •
ADC (I) 60 4 3 65 3 2 69 2 2 70 4 3 79 4 3
AND (I) 20 4 3 25 3 2 29 2 2 30 4 3 39 4 3
AS l OA 2 I OE 6 3 06 s 2 IE 7 3
BCC (2)
BC S 12)
BE Q (2)

B I T 2C 4 3 24 3 2

I
BM I (2)

B NE (2)
BP l (2)

B R K 00 7 I
B V C (2)
B VS (2)

CL C IB 2 I
Cl D 08 2 I

Cl I 58 2 I
Cl V BS 2 I
C MP CD 4 3 cs 3 2 C9 2 2 DD 4 3 09 4 3
CPX EC 4 3 E4 3 2 EO 2 2
CPY cc 4 3 C4 3 2 co 2 2
DEC CE 6 3 C6 5 2 DE 7 3
DEX CA 2 I
DEY 88 2 I
E OR (I) 40 4 3 45 3 2 49 2 2 50 4 3 59 4 3
INC EE 6 3 E6 5 2 FE 7 3

IN X ES 2 I I
IN Y CB 2 I '
J Mp I 4C 3 3
J s R 2D 6 3
l DA (I) AD 4 3 AS 3 2 A9 2 2 BO 4 3 B9 4 3
L D X (I) AE 4 3 A6 3 2 A2 2 2 BE 4 3
l D Y (I) AC 4 3 A4 3 2 AO 2 2 BC 4 3
LS R 4A 2 I 4E 6 3 46 5 2 SE

--
7 3

NOP EA 2 I
ORA DD 4 3 05 3 2 09 2 2 10 4 3 19 4 3
PHA 48 3 I
pH p DB 3 I
PL A 68 4 I
pl p 28 4 I

RO L 2A 2 I 2E 6 3 26 5 2 3E 7 3
R OR 6A 2 I 6E 6 3 66 5 2 7E 7 3
R T I 40 6 l
RT S 60 6 l F9 4 3 SBC (l) ED 4 3 E5 3 2 E9 2 2 FD 4 3
SEC 38 2 l
SE D FB 2 I
SE I 78 2 l
STA BO 4 3 85 2 90 5 3 99 5 3
ST X BE 4 3 86 2
STY BC 4 3 S4 2
TAX AA 2 I
TAY AS 2 l

TS X BA 2 I
TX A SA 2 I
T XS 9A 2 l
TY A 98 2 I

(1) Add 1 ton if crossing page boundary

288

(IND. X) (INO)Y Z. PAGE. X RELATIVE

OP n ' OP n ' OP n ' OP n

61 6 2 71 5 2 75 • 2
21 6 2 31 5 2 35 • 2

16 6 2
90 2
BO 2

FO 2

30 2
DO 2
10 2

50 2
70 2

Cl 6 2 01 5 2 05 • 2

06 6 2

" 6 2 51 5 2 55 • 2
f6 • 2

Al 6 2 Bl 5 2 B5 • 2

B• • 2
56 6 2

01 6 2 11 5 2 15 • 2

36 6 2

76 0 ,
El 6 2 fl 5 2 f5 • 2

81 6 2 91 0 2 95 • 2

9• • 2

INDIRECT

' OP n '

2
2

2

2
2
2

2
2

6C 5 3

APPENDIX

PAOCESS011
Z PAGE, Y STATUS CODES

OP

86

96

n ' NV B O I l C MNEMONIC

•• •• AOC

• • AN 0

• •• A S L

BC C
BC S
BE Q

M,M. • B I T
BM I
B NE
BP L

1 1 BR K
B V C
BVS

D CL C
0 CL D

0 CL I
0 Cl V

• •• C MP

• •• CPX

• •• C p y

• • DEC

• • DEX

• • DEY

• • E OR

• • INC

• • IN X

• • IN Y
J MP
J s.

• • LO A

• 2 • • LOX

• • L DY

0 •• LS R
NOP

• • ORA
PHA
pH p

• • PLA

•••••••• pl p

• •• RO L

• •• R OR

•••••••• RTl
RT S

•• •• SBC
I SEC

I SE D
1 SE I

STA . 2 ST X
ST Y

• • TAX

• • TAY

• • TS X

• • TX A
TX S

• • TY A

{2) Add 2 ton if branch within page

Add 3 ton if branch to another page

289

ACCESS, 170
Ad hoc algorithm, 239
Ad hoc programming, 238
Analytical algorithm, 225
ANALYZE, 263
Array, 122
Artificial intelligence, 224
Assembler, 47
Assembly, 12
Audio feedback, 163
Auxiliary Control Register, 174
BE0, 154
Binary number, 41
Blackjack, 189
Blackjack Program, 212
BLIN
Blink masks, 175
BLINKER, 208
Blinking, 274
Blinking LEDs, 261
Blip counter, 92
Board analysis flowchart, 242
Bounce, 13
Bracket-filtering, 150
Carry, 206
Cassette recorder, 4
CLI, 174
CNTSUB,55
Complement, 73
Complementation Table, 80
Computing the Status, 271
Constant symbols, 47
Counter, 65, 101
COUNTSUB, 273
Current limiters, 11
Decimal mode, 151

290

Index

Decision tables, 225
DELAY, 56,132,211,278
Delay constant, 103
Diagonal trap, 244
Diagonals, 266
DISPLAY, 118
DISPLY, 119
Do-nothing, 55
Draw, 222
Dual Counter, 92
Duration, 148
DURTAB, 144
ECH0,137
Echo, 35
Echo Program, 145
ESP Tester, 139
EVAL, 118,126,153
Evaluating the board, 225
Extra Sensory Perception, 139
FINDMV, 264,269
FINDMV flowchart, 270
First move, 235
Free run, 198
Free-running, 198
Free-running mode, 171,256
Frequencies, 25
Frequency,22,261
Frequency and duration constants, 161
Games Board, 2, 7
GETKEY, 13, 149
GETKEY Program, 17
GMBRD,252
Heuristic strategy, 225
Hexadecimal, 41
Hexguess Program, 63
IER, 171

IFR, 171
Illegal key closure, 95
Index, 159
Indexed addressing, 37, 39, 122, 126
Initialization, 198
INITIALIZE, 279
Intelligence level, 252, 260
Interconnect, 4
Interrupt, 198,252,261
Interrupt Handler, 183, 211
Interrupt handling, 198,279
Interrupt Registers, 174
Interrupt-enable register, 256
Interrupt-enabler, 171,179,256
IQ level, 245,265
Jackpot, 100
JMP, 154
Key closure, 277
Keyboard, 7
Keyboard input routine, 13
Labels, 47
Latch, 65
LED #9, 123
LED Connection, 10
LEDs, 8
Levels of difficulty, 8
LIGHT, 118, 132,157,274,278
LIGHTER, 276
LIGHTR,207
LITE, 70, 182
Loop counter, 92
LOSE,130
Magic Square, 73
MasterMind, 162
MiddleC, 23
Mindbender, 162
Mindbender Program, 184
MOVE,47
Multiplication, 122
Music Player, 20
Music Program, 31
Music theory, 23
Nested loop delay, 39
Nested loop design, 25
NOTAB, 144
Note duration, 159
Note frequency, 159
Note sequence, 139
Parameters, 149

Parts, 11
Perfect square, 73
PLAY,48, 53
PLAYEM,37
Playing to the side, 24
PLA YIT, 30, 38
PLA YNOTE, 30
PLRMV,277
Potential, 225
Power supply, 4
Programmable bracket, 101
Prompt,42
Protected, 170
Protected area, 170
Pulse, duration, 171
RANDER,210

INDEX

RANDOM, 57, 135, 150,159,209
Random moves, 241
Random number, 54, 65, 78,118,267
Random number generator, 57, 118,

149
Random pattern, 73
Random move, 267
Recursion, 211
Repeat, 13
Resistors, 11
RNDSCR,252
Row sequences, 251
Row-sum, 239,271
SBC, 206
Scratch area, 57
Score, 107, 128
Score table, 107, 111, 112
SCORTB, 127
Seed, 118, 149
74154,8
7416,8
Shifting loop, 158
SHOW, 152
Side, 267
Simple tunes, 21
Siren, 100
Slot Machine, 99
Slot Machine Program, 113
Software filter, 175
Special decimal mode, 150
Spinner, 87
Spinner Program, 93
SQSTAT, 252

291

ADVANCED 6502 PROGRAMMING

Square status, 269
Square wave, 22
Strategy, 225
SYM,4
TlCL, 6, 83
TlL-L, 65
Threat potential, 226
Tic-Tac-Toe, 218
Tic-Tac-Toe Flowchart, 248
Tic-Tac-Toe Program, 280
TIMER,65
Timer, 65, 83,198,256
Timer l, 175
TONE, 39, 70, 130, 135
Translate, 41
Translate Program, 49
Trap,235,239,264,267
Trap pattern, 241
Two-level loop, 211
Two-ply analysis, 237
Unprotect system, 198
UPDATE,273
Value computation, 226
VIA,8
VIA memory map, 66
Visual feedback, 163
WAIT,98
Wheel pointer, 103, 120
WIN, 128
Win, 259
Win potential, 225
WINEND, 129

292

	Cover
	Title
	Contents
	Preface
	1. Introduction
	Optional Hardware Support
	Connecting the System
	Game Board Interconnect
	The Keyboard Input Routine
	Summary

	2. Generating Square Waves (Music Player)
	Introduction
	The Rules
	A Typical Game
	The Connections
	The Algorithm
	The Program
	Summary
	Exercises

	3. Pseudo Random Number Generator (Translate)
	Introduction
	The Rules
	A Typical Game
	The Algorithm
	The Program
	Summary

	4. Hardware Random Number Generator (Hexguess)
	Introduction
	The Rules
	A Typical Game
	The Algorithm
	The Program
	Summary
	Exercises

	5. Simultaneous Input/Output (Magic Square)
	Introduction
	The Rules
	A Typical Game
	The Algorithm
	The Program
	Summary
	Exercises

	6. Simple Real Time Simulation (Spinner)
	Introduction
	The Rules
	The Algorithm
	The Program
	Summary
	Exercises

	7. Real Time Simulation (Slot Machine)
	Introduction
	The Rules
	A Typical Game
	The Algorithm
	The Program
	Summary

	8. Real Time Strategies (Echo)
	Introduction
	The Rules
	A Typical Game
	The Algorithm
	The Program
	Summary

	9. Using Interrupts (Mindbender)
	Introduction
	The Rules
	A Typical Game
	The Algorithm
	The Program
	Summary

	10. Complex Evaluation Technique (Blackjack)
	Introduction
	The Rules
	A Typical Game
	The Program
	Summary

	11. Artificial Intelligence (Tic-Tac-Toe)
	Introduction
	The Rules
	A Typical Game
	The Algorithm
	The Program
	Summary

	Appendix A. 6502 Instructions: Alphabetic
	Appendix B. 6502 Instruction Set: Hex and Timing
	Index

