

6502
APPLICATIONS BOOK

U.S.A:
2020 Milvia Street
Berkeley, CA 94704
Tel: (415) 848-8233
Telex: 336311

RODNAYZAKS

8
EUROPE:
18 rue Planchat
75020 Paris, France
Tel: (1) 370 32 75
Telex: 211801

The programs presented in this book have been designed for their educational value,
and checked out with care. However, they are not warranted for any purpose.

Every effort has been made to supply complete and accurate information. How­
ever, Sybex assumes no responsibility for its use; nor any infringements of patents or
other rights of third parties which would result. No license is granted by the equipment
manufacturers under any patent or patent rights. Manufacturers reserve the right to
change circuitry at any time without notice.

In particular, technical characteristics and prices are subject to rapid change.
Comparisons and evaluations are presented for their educational value and for guidance
principles. The reader is referred to the manufacturer's data for exact specifications.

Copyright© 1979 SYBEX Inc. World Rights reserved. No part of this publica-
tion may be stored in a retrieval system, copied, transmitted, or reproduced in any way,
including, but not limited to, photocopy, photography, magnetic or other recording,
without the prior written permission of the publisher.

Library of Congress Card Number: 78-73740
Library of Congress Cataloging in Publication Data
Zaks, Rodnay.

6502 applications book.

(Microcomputer programming series)
Bibliography: p.
Includes index.
1. 6502 (Cornputer)--Programming. I. Title.

II. Series.
QA76.8.S63Z35 001.6'42 78-73740
ISBN 0-89588-015-6

Printed in the United States of America

ACKNOWLEDGEMENTS

Many persons have contributed to the checkout, development or improvement of
these programs. Special acknowledgements are due by the author to: Pierre Le Beux,
Daniel David, Jaff Lin, Eric Martino!, Tricourt, and to Eric Novikoff (ASM65
assembler).

The following persons have also contributed valuable comments on the final draft of
the manuscript, and their contribution is gratefully acknowledged: John McClenon,
Doug Trusty, Phil Hooper, Daniel David, Robert Chitsum, and John Smith.

The following companies have provided access to valuable information or resources
at an early date, and their contribution is gratefully acknowledged: Rockwell Interna­
tional, Synertek Systems, Apple.

The listings of Chapter Four, part I have been produced on a Rockwell System 65.
The listings of part 2 have been produced with the ASM65 assembler listed in
Appendix A.

Art Credits:
Daniel Lenoury (Cover Design)
Barry Janoff and Renate Woodbury (Technical Art)

OTHER BOOKS IN THIS SERIES:
•Programming the 6502 (ref C202)
• 6502 Games (refG502)

PREFACE
This book presents practical application techniques for the 6502

microprocessor. It assumes an elementary knowledge of microproces­
sor programming on the level of the preceding book in this series (Ref­
erence C202: Programming the 6502). Understanding how to program
the microprocessor chip itself (the 6502) is only a prerequisite for the
actual programming of a microprocessor board connected to real
devices. The next problem is to learn how to write actual applica­
tion programs involving the input/output ports and other facilities
available in a real system. This book addresses itself to this problem.
It will present the techniques and programs required for typical appli­
cations, using the actual input-output chips available on a board.

The programs presented in this book will require a minimum of ac­
tual hardware to be effectively implemented. The user is therefore en­
couraged to practice the concepts and techniques presented here on
actual hardware. A realistic description of possible applications boards
will be presented. The programs are applicable to any 6502-based mi­
crocomputer board such as the KIM, the SYM, the AIM 65, or others.
Many programs can be run directly on one or more of these boards
while others will require some changes. However, the concepts and
techniques are common to all.

The application programs presented in this book will allow the reader
to build a complete home alarm system, which includes fire detection and
other features, an electronic piano, a motor speed regulator, an appli­
ance or hobby-train controller, a time-of-day clock, a simulated traf­
fic control system, a morse code generator, an industrial control loop
for temperature control, including analog-to-digital conversion, and
more.

This book is intended to teach all the basic skills required to apply
the 6502 to real life applications. It is preceded in our 6502 series by
"C202 - Programming the 6502," and followed by "0402 - 6502
Games."

CALL FOR PROGRAMS

While reading this book, you will find many useful or interesting
programs. Many of you will want to develop other novel applica­
tion programs using the 6502. If you should find improvements for
programs already in this book or if you should develop new interesting
programs, let us know. All our books are constantly updated and ex­
panded. One of your programs might get published in a subsequent
edition or another book. Write to the author at the following address:

Rodnay Zaks, Ref. D302
Sybex Inc.
2020 Milvia Street
Berkeley, CA 94704

Also if you have suggestions for additional programs which you
would have liked to see included in this book, let us know, and we
might be able to accommodate your request in a subsequent edition.

TABLE OF CONTENTS

TABLE OF ILLUSTRATIONS , . , ... , 7

I. INTRODUCTION , . , , .. 11

II. THE INPUT OUTPUT CHIPS 15

Introduction. Basic Definitions. The 6520 PIA. The 6522. Programming
the 6522. The 6530 ROM-RAM 1/0 Timer (RR/OT). The 6532. Summary.

III. 6502 SYSTEMS 64

Introduction. Standard 6502 System. The KIM-1. The SYM-1. The AIM 65.
Other boards.

IV. BASIC TECHNIQUES 78

Introduction
SECTION 1: THE TECHNIQUES
Relays. Switches. Speaker. A Morse Generator. Time of Day Clock. A
Home Control Program. A Telephone Dialer.
SECTION 2: COMB/NA TIO NS OF TECHNIQUES
Introduction. Generating a Siren Sound. Sensing an Input Pulse. Pulse
Measurement. A Simple Music Program. KIM Traffic Control. Learn the
Multiplication Table. Summary.

V. INDUSTRIAL AND HOME APPLICATIONS 145

Introduction. A Traffic Control System. Dot Matrix LED. Displaying
Switch Values. Tone Generation. Music. A Burglar Alarm. DC Motor
Control. Analog to Digital Conversion (A Heat Sensor). Summary.

VI. THE PERIPHERALS 216

Introduction. Keyboard. Paper Tape Reader or ASCII Keyboard. Micro­
printer. Summary.

VII. CONCLUSIONS 241

APPENDIX A - A 6502 ASSEMBLER IN BASIC 243

Introduction. General Description. Using the Assembler. Syntax.
HP2000F BASIC.

APPENDIX B -MULTIPLICATION GAME:
THE PROGRAM 259

APPENDIX C - PROGRAM LISTINGS
(Chapter 4 Part 1) 262

-Program 4-1: Morse
- Program 4-2: Time of Day
- Program 4-3: Home Control

- Program 4-4: Phone Dialer

APPENDIX D - HEXADECIMAL
CONVERSION TABLE 273

APPENDIX E - ASCII CONVERSION TABLE 274

APPENDIX F - 6502 INSTRUCTIONS 275

1-1

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-28
2-29
2-30

2-31
2-32
2-33
2-34
2-35
3-36
2-37
2-38
2-39
2-40

3-1
3-2

TABLE OF

ILLUSTRATIONS

Standard Programming Form

Typical PIO
The 6520 PIA .. · · · .. · · · .. · ·
6520 Internal Architecture
Buffer A
Buffer B
6520 Memory Map
6520 Register Selection
6520 Control Registers
6520 CA2 Control
6520 CB2 Control
Interrupt Control (CAI, CBI Inputs)
Identifying the PIO
Identifying the Port
6522 Internal Architecture
6522 VIA Memory Map
6522 Registers .. .
Using the 6522: STA DDRA
Using the 6522: STA DDRB
Using the 6522: STA ORA .. .
Using the 6522: LDA ORB
Peripheral Control Register
Interrupt Flag Enable Register (IFR/IER)
Control Lines Function (ACR)
PCR Detailed Operation (courtesy:Rockwell)
Continued: PCR Detailed Operation
Reading Data When Ready
6522: Auxiliary Control Register
Interrupt Registers .. .
6522: Auxiliary Control Register Controls Tl Modes
6522: Auxiliary Control Register Selects Timer I
Operating Modes .. .
Timer Addressing
Timer I in Free Running Mode
Shift Register Control .. .
6522 Register Selection is Direct
Connecting Multiple 6522's: Generating an IRQ
6530 Internal Architecture
6530 Memory Map
6532 Internal Architecture
6532 Addressing
Comparison Chart of the Four PIO's

Organization of a "Standard" 6520 System
PhotoofKIM-1 .. .

14

16
20
21
23
23
24
25
25
26
26
27
29
30
31
32
32
33
34
35
35
36
37
37
38
38
39
40
41
44

44
45
46
46
48
52
60
62
62
63
63

65
66

3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18

4-0

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26
4-27
4-28
4-29
4-30
4-31
4-32
4-33
4-34
4-35
4-36

KIM-I Internal Organization
KIM-I Memory Map
KIM Application Center
KIM Expansion Connector .. .
SYMPhoto
SYM-1 Internal Organization
System Memory Map
RAM Memory Map
Expansion Connector (E) .. .
Application Connector (A) .. .
Auxiliary Application Connector (AA)
Memory Map for the 6522' s
Memory Map for the 6532
The Four Buffered Outputs
Keyboard and LED Connection
AIM 65 is a Board with Mini-Printer and Full Keyboard

Complete System with Power Supply, Microcomputer
Board, Tape Recorder and Applications Board
1/0 Buffers
6530 Relay Interface .. .
Connecting a Simple Relay .. .
Precautions on Device Side .. .
Connecting a Double Pole Relay
Connecting Two Relays to the PIO
External Circuit for the Relays
Memory Map for 6522 #3 .. .
Port B of 6522 #3 .. .
Detail of Relay Connection on the Applications Board
Connecting an SPST .. .
Connecting an SPOT
Connecting Four SPOT Switches to the SYM
An SPOT Switch .. .
Connection Detail for Four SPDT's
Connecting the Speaker .. .
Obtaining a Louder Output
Memory Allocation for the Morse Program
Morse Transmission Flow Chart
Converting Morse to Binary
Converting ASCII to Morse
Morse Equivalence Table .. .
Flow Chart for Generating Hexidecimal Morse Code
Square Wave Generates Tone in Speaker
6522 Auxiliary Register .. .
Timing Diagram for Tone Generation
Program to use Timer I
Generate Tone of Set Duration with Timer 1
6522 ACR Selects Timer Modes
Bits 6 and 7 of ACR
The Morse Program .. .
Using Indexed Addressing to Retrieve Morse Code
Memory Map for Timer 1
Flow Chart for Delay
Time-of-Day Memory Map
Time-of Day Clock

67
68
68
69
69
70
71
71
72
72
73
74
74
75
76
76

80
81
82
82
83
83
84
84
85
86
86
88
89
89
90
90
91
91
92
93
94
95
96
97
97
98
98
99
99

100
100
101
104
106
109
111
113

4-37
4-38
4-38
4-40
4-41
4-42

4-43
4-44
4-45
4-46
4-47
4-48
4-49
4-50
4-51
4-52
4-53
4-54
4-55

4-56
4-57
4-58
4-59
4-60
4-61
4-62
4-63
4-64
4-65
4-66

5-1
5-2
5-3
5-4
5-5a
5-5b
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22

The Time-of-Day Program
Home Control Program
The Telephone Frequencies
Phone Dialer Flow Chart .. .
Phone Dialer Program
Telephone Dialer: Indirect Indexed Access and
Memory Map
Loading the Timer
Computing the Timer Constants
Suggested Hardware Improvement
A Siren Sound .. .
Siren Flow Chart .. .
Stopping at Nmax
Siren Program for the Flow Chart of Fig 4-4 7
Connecting a Speaker (Improved)
Connecting Switch and Speaker
Detailed Flow Chart
Switch Closure Measurement Program
Switch Time Measure
The Switch Time Program: Measurement and
Tone Generation
250ms Delay Flow Chart
250ms Delay
Time 10 Flow Chart
Generating a O .1 Second Delay
Mozart Sona tine
Bach Choral .. .
"Auclair de la lune"
Play Sound Flow Chart .. .
Playing a Tune
Traffic Flow Chart
Traffic Controller

The Application Board #2
Underside Shows Wire-Wrap
For Convenience Application Cables Connect to Board
Board Layout .. .
Hl & H2 Connectors
H3 & H4 Connectors
The Traffic Control System
Connecting the LED's
Actual LED Connection
Night Pattern
Traffic Light Simulation: Night Mode (Program 5-1)
Pattern to Address the LED Pairs
Loop Tuning .. ·
Day Mode
Traffic Light Simulation: Day Mode (Program 5-2)
A 5 X7 Dot Matrix LED
Connecting the 5 X 7 LED
The Connectors to the LED
Displaying a "O"
Displaying" l" .. .
Driving a Dot-Matrix LED
A Dot Matrix Table
Basic LED Matrix Display (Program 5-3)

114
118
119
120
121

123
124
126
127
128
128
128
129
130
131
132
133
134

134
135
135
136
136
138
139
140
141
141
143
144

146
147
147
148
150
150
151
151
152
152
153
\54
157
160
161
164
165
165
166
166
168
169
169

5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38
5-39
5-40
5-41
5-42
5-43
5-44
5-45
5-46
5-47
5-48
5-49
5-50
5-51

6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24

A-1
A-2
A-3

Displaying a Switch Value
Advanced LED Matrix Display (Program 5-4)
Speaker Connection .. .
Basic Speaker Activation (Program 5-5)
Binary Switches Specify Tone
Music Frequency Table .. .
Music Program Flow Chart
The Music Program (Program 5-6)
Connections for Music Program
The Photo-Transistor Circuit (on socket M3)
Alarm Flow Chart
A Siren Sound .. .
Burglar Alarm (Program 5-7)
Motor Circuit .. .
Digital Speed Control .. .
Simplified Speed Diagram
DC Motor Speed Curve .. .
The Connections
DC Motor Flow Chart .. .
The Waveforms .. .
Motor Control (Program 5-8)
Connection for ADC
Successive Approximations
Successive Approximation Flow Chart
ADC Interface
Connection to H4
ADC Memory Map
ADC Flow Chart .. .
Analog Digital Convertor (Program 5-9)

Connecting the Keyboard .. .
Step 2: Reading IORA After Key Closure
Step 3: Writing IORA .. .
Step 4: Read Back IORA .. .
Keyboard Character Codes Table
Keyboard Flow Chart .. .
Keyboard Program (Program 6-1)
Indexed Addressing for Table Access
Converting the Character ID # to ASCII
Punched 8-Level Paper-Tape
Paper-Tape Reader Hardware
PTR Connection Details
Paper-Tape Reader Interface•..........................
PTR Flow Chart
PTR Memory Map .. .
PTR/Keyboard Program (Program 6-2)
Indirect Indexed Access: ST A ($00), Y
Basic Printer Interface
Printer Connection .. .
Flow Chart for Printer Program
Printer Memory Map .. · .. .
Printer Program (Program 6-;I)
Indexed Indirect Access .. .
Actual 20-Character Printout•..........................

Sample Run with ASM65 .. .
The Symbol Table
6502 Assembler Listing (copyright ©1979,Sybex Inc.) •••••••••••••.•

175
175
178
179
181
182
182
183
184
187
188
189
189
193
193
194
195
195
196
197
198
204
205
205
206
207
207
208
210

217
218
218
219
219
220
221
223
224
225
226
227
227
228
229
230
231
233
234
235
236
237
239
240

245
246
249

CHAPTERl

INTRODUCTION

When learning how to program, understanding the operation of the
microprocessor itself is only the first problem which must be solved.
This is the problem addressed by our book, ref C202, Programming
the 6502. The next problem is to learn how to program effectively, us­
ing input/output devices connected to the microprocessor board. This
is the purpose of this book. Naturally, no book can completely cover
all possible devices. A selection, therefore, has been made among the
important input/ output devices usually connected to a 6502, and ap­
plication programs are presented, which are likely to fit a majority of
applications.

First, you will learn how to effectively program a PIO, the parallel
input/ output chip. You will learn to use polling or interrupts. You will
learn to generate pulses, measure delays, and control actual input/
output devices such as switches, relays, or more complex devices such
as a digital to analog converter, a motor, and others. You will also
learn how to use more complex input/output chips such as a program­
mable timer. Additional interfaces will be presented for simple de­
vices, so that you may actually build an applications board and prac­
tice on it.

In order to learn programming effectively, you are strongly encour­
aged to practice. It is indeed the only real way of becoming a proficient
programmer. In order to practice, you will need a microcomputer
board such as the KIM, the SYM, the AIM65, or any other 6502
board. Because all boards normally provide at least one PIO (often 2),
and at least 2 timers (sometimes more), all programs presented in this
book should run on any of these boards with minor variations, if any.

11

6502 APPLICATIONS BOOK

The additional hardware which you will need in order to run speci­
fic programs will be discussed in Chapters 4, 5 and 6. It is minimal and
easily obtainable. In particular, you will find in Chapters 4, 5 and 6 the
description of suggested applications boards which can be constructed
from common components at low cost. It will allow you to run the
programs in the chapter, using your microcomputer board and the
applications board. It is suggested that you consider building it in
order to practice.

However, it is not indispensable. You will learn all the basic tech­
niques by merely reading the book. If you wish to grow from there,
then actual practice is strongly recommended.

Connecting Your Microprocessor to the Real World

Connecting the microprocessor itself to the real world first involves
building a basic microprocessor board, then connecting it to actual de­
vices. Both hardware and software interfaces will be required to con­
nect actual devices to the board. This book will present in detail both
the hardware components and the programs required for the most
commonly used devices. In order to design industrial programs nor­
mally involving expensive devices such as traffic signals, simulated
devices will be used on the applications board, using LED's for exam­
ple. If the program were to be applied to a real traffic system, only the
interface hardware would usually be changed. The program would re­
main essentially identical. The skills you will learn are, therefore, ap­
plicable to real life situations.

The Pedagogy

When reading this book, you will usually "learn by doing."
Each program will be presented in detail: its purpose, its flow-chart,
the hardware interface, the devices, the program itself, and the com­
plete analysis of the techniques used. Each chapter is essentially self­
contained. For example it is not necessary that you understand all the
PIO features of Chapter 2 to read Chapter 3. However, sequential read­
ing is recommended for a complete understanding. The contents of
Chapter 2 introduce all the usual parallel 1/0 chips used in a 6502
system, from the 6520 to the 6532. Since all existing 6502 boards to
date use these standard chips, this chapter should be read by all those
who are not familiar with them.

12

INTRODUCTION

Chapter Three presents the "Standard 6502 Board", and some well­
known variations: KIM, SYM, AIM65 (others exist). Most examples
presented in the book will run directly on a SYM, and with simple
changes, on a KIM, or other boards.

Chapter Four introduces the basic application techniques for con­
necting simple devices: relays, switches, speaker. The first applica­
tions board will be used for applications ranging from a Morse gen­
erator to a telephone dialer.

Chapter Five presents more complex home and industrial applica­
tions. The second applications board will be used for applications
ranging from simulated traffic control and analog-to-digital conver­
sion to a complete home burglar alarm or an electronic piano.

In Chapter Six actual low-cost peripherals are connected to a micro­
computer board: from paper-tape-reader to keyboard and printer.

Finally, a summary and synthesis are presented in Chapter Seven.

You will also find in Appendix A a complete assembler for the 6502,
written in BASIC, to facilitate your development of complex programs
requiring an assembler.

You will find on the next page a Standard Programming Form de­
signed to facilitate writing your 6502 programs.

13

....
""'

...
f
' ...
Ill ..
a
:s
Ii.
a .,
Ii. ,, .,
0

1G a
:3
3
S-

IG ...
0

i

8 STANDARD
PROGRAMMING FORM

HEXADECIMAL

ADDRESS 1 2 3 LABEL

I PROGRAM

AUTHOR DATE L L
SYMBOLIC ASSEMBLER INSTRUCTIONS

MNEM OPERAND COMMENT

copyright (0 SYBEX 1978

SHEET 1-1-1 8;
0
t-.J
)>
"'Cl
"'Cl ,-

~
-i

6 z
C/)

CD
0
0
7'

CHAPTER2

THE INPUT
OUTPUT CHIPS

INTRODUCTION

In this book, we will connect a variety of input-output devices to a
6502 board in order to realize practical microcomputer applications. It
is therefore essential to understand the input-output resources of a
6502 system. The reader who is not familiar with the basic terms or
with the basic techniques (such as "polling") is encouraged to review
them in the previous volume of this series, reference C202 (Program­
ming the 6502).

In this chapter, we will review systematically the parallel input­
output chips used on nearly every 6502 board to provide the required
input-output facilities. It is indispensable to understand at least how a
"PIO," such as a 6522 works, before proceeding to the application
chapters. The exact details of the timer operation or other exotic
resources (such as a shifter) are not essential in a first reading and
could be skipped. Also, the exact details and formats of the various
registers inside the 6520, 6522, 6530, and 6532 are not important to
memorize. They are provided here as a reference for the following
chapters.

It is therefore suggested that you read carefully at least one of the
sections on a PIO such as the 6520 or the 6522, without trying to
remember all the details, but focussing on the way they operate. Nearly
every application will make use of a PIO, i.e. of one of the chips
presented in this section.

15

6502 APPLICATIONS BOOK

In addition to these chips, most microcomputer boards will provide
some other specialized input-output interfaces, such as a cassette in­
terface or a CRT interface. The interested reader is referred to the
manufacturer's literature or to the reference book C207 ("Micro­
processor Interfacing Techniques") for details on these specific
interfaces.

BASIC DEFINITIONS

This section is a reminder of the terms we will use in this chapter.
The three essential input-output facilities on nearly every micro­

computer board, are the "PIO," the "UART," and the "timer. Let
us examine them:

CRA CAl

CA2

~~ !~g
;ii 8

~" !!! DATA BUS "' -<
->~ PORTA i~ ~~> ;;1 ;m
"' ~

CRB DDRB PDRB

-.. 8
II II

REGISTER I RSO Ii PORTB

SELECT RSI

IRQA CB2

~ CB1

Fig, 2-1: Typlca I PIO

The PIO

The "PIO" or "parallel input-output chip," is a component which
provides at least two parallel eight-bit ports. In a PIO, the use of
each line of each port is usually programmable in direction. The direc­
tion of each line is usually determined by the contents of a "data­
direction register" associated with each port. Whenever a specific bit

16

THE INPUT OUTPUT CHIPS

of the data direction register is "0", for example, the corresponding
line on the port will be an input. Prior to using the PIO, the program­
mer will first have to load the contents of the data-direction register of
each port, in order to define in which direction the lines will be used.
Specific additional constraints may be imposed by manufacturer such
as restricting lines to be programmable in direction in groups of four,
or else assigning special functions to some bit positions such as bit six
and bit seven. Some of these restrictions will be encountered in the
chips presented in this chapter. The internal block diagram of the
"standard PIO" is shown in Fig 2-1. The two buffers for port A and
port B appear on the right of the illustration. The data-direction regis­
ter associated with each port appears to the left of these buffers. Addi­
tionally, two control registers are provided in this simplified diagram.
The control register is required to specify the function of the control
signals which are provided by this PIO. In particular, it must deter­
mine and control the "hand-shaking" procedure, and whether the
control signals will trigger flags or interrupts, and also whether a low­
to-high transition, or a high-to-low transition, should be used for ex­
ample. Typically, the programmer will have to specify the contents of
the control register prior to making any use of the control lines sup­
plied by the component. Also the programmer will look up the con­
tents of the control register to determine whether an internal interrupt
or other special condition has been detected (status information).

In addition to the two data ports, a PIO should also supply control
lines to allow automated hand-shaking with a peripheral. These con­
trol lines are shown on the right side of the standard PIO of Fig 2-1,
and are labeled respectively CAI, CA2 for port A, and CBI, CB2 for
port B.

As an example of a hand-shaking procedure, the external peripheral
might supply a "DAT A READY" signal on CAL The microproces­
sor would then respond with a "DATA REQUEST" signal on CA2.
Additionally, when a "data ready" signal is received on CAl, it should
be flagged in the control register, and an interrupt request might be
generated externally in order to alert the 6502 to this event. This is a
typical simple example of the control sequence required for effective
hand-shaking. Much of this procedure is automated inside the stan­
dard PIO, and the options are defined by the contents of the control
register. The specific details will be presented for each of the PI O's we
will describe, beginning on page 20.

17

6502 APPLICATIONS BOOK

The Timer

A basic requirement in most practical applications is the ability to
generate specific delays. Delays can be measured by software tech­
niques or else by hardware timers. As long as no interrupts are used in
the system, delays can usually be generated conveniently by software
loops (see reference C202 for details). However, in more complex
situations, or in situations where interrupts may occur, it is desirable
to use one or more external hardware timers to generate or measure
fixed delays.

Using the Timer on Output

In its simplest form, a hardware timer is a counter equipped with a
register (8 bits or 16 bits). When used in output mode, the timer's
register is loaded with a given value by the program. It is then given a
"go ahead" signal and it starts counting. Most timers will use the
system clock, but not necessarily (usually a one MHz clock= one­
microsecond pulses). The number placed in the counter's register will
be decremented by one for every successive clock pulse. If the value
placed in the register was N, the contents of the counter will have
decremented to zero after N pulses, that is after N microseconds,
assuming one-microsecond pulses. Whenever the counter decrements
to zero, a signal will be generated which will set a status flag in the timer
chip and/or generate an external interrupt. Depending on the preci­
sion required, the program will either poll timer devices or else accept
interrupts. Typical programs will be presented in this chapter.

If the timer were equipped with a single 8-bit register, it could count
only from one to 256. The maximum delay would only be 256 micro­
seconds with a standard clock. This delay is too short for most appli­
cations. Naturally, it would be possible to use the interrupt generated
at the end of the 256 microseconds to update a memory location, then
test whether this memory location had reached a specific value.
However, this would result in inaccurate time measurement and a
somewhat cumbersome process. Therefore, a timer which is equipped
with an 8-bit register would be insufficient. Two techniques are
used to overcome this limitation. Conceptually, the simpplest one
is to use a 16-bit register for the counter. The counter may then
count from I to 64K, i.e., from one microsecond to 65,536 micro­
seconds or approximately 65 milliseconds. This is indeed sufficient for
most applications. However, this technique requires that the timer be

18

THE INPUT OUTPUT CHIPS

loaded in at least two operations, since the data-bus is only 8-bit wide.
First, the program must load one half of the register, then it must
load the other half, an inconvenience.

The other technique to generate delays over a wide range is to use
internal divide circuits within the timer. Such a timer will then appear
to the programmer as a device equipped with perhaps four registers.
For example, if the first register is used, then the delay generated will
be expressed in clock units (1 microsecond typical). If the second
register is used, then the delay unit will be 8 times the clock cycle; in
the third one the timing unit will be 64 times the clock cycle, and in the
next one the timing will be 1,024 times the clock cycle (or approximately
one millisecond, assuming a 1 MHz clock). This approach is somewhat
more convenient to the programmer and offers the possibility of load­
ing the timer in a single operation, yet using it over a wide range. How­
ever, the internal complexity of the device is increased.

Using the Timer On Input

A timer may be used on input to measure the duration of an exter­
nal pulse, or else the time elapsed between two successive pulses. In
this case, the initial contents of the timer counter are zero and the
counter will increment its internal register with each timing interval.
Once the delay has been measured, a flag will be set by the device or
else an external interrupt may be generated, and the program will be
responsible for reading the contents of the counter register which in­
dicate the external event duration.

Pulse Trains

A timer may be used not only to generate or measure a pulse, but also
to generate or count a train of pulses. Whenever a delay is generated or
measured for a pulse, the timer mode is usually called a "one-shot"
mode. When a train of pulses is generated, it is often called a
"free-running" mode. Additionally, a number of options can be pro­
vided to specify whether a high-to-low transition or else a low-to-high
transition of the signal should be used to activate or stop the timer, or
else whether levels should be considered rather than pulses. Addi­
tionally, the timing and logical value of interrupt flags can be
specified. Further, the conditions under which the internal status is set
and reset are usually programmable. Because of the large number of
possible variations, each timer device tends to have a strong personal­
ity and needs to be studied in detail before being used.

19

6502 APPLICATIONS BOOK

The UART

"UART" stands for "Universal Asynchronous Receiver Trans­
ceiver." The essential function of the UART is to perform serial-to­
parallel, and parallel-to-serial conversions. Additionally, the standard
UART provides a number of options usually required for serial com­
munications with external devices such as parity (checking, inhibition
or generation) and start and stop bits. The conversion is performed by
an internal shifter. Such a shifter may also be incorporated in some
input-output chips.

Actual 6502 Input-Output Devices

Virtually every 6502-based board will require at least 2 PIO's and
one timer. These functions will be typically provided by a combination
of 6520 and 6530 chips or by a combination of 6522 and 6532 chips.
The 6520 and 6530, which will be described below, are the original
input-output chips which were introduced by MOS Technology. The
6502 is now manufactured by several other manufacturers, such as
Synertek and Rockwell, and additional support chips have been intro­
duced, such as the 6522 and the 6532. Still other support chips will
probably be introduced in the future.

At this time, however, the most important chips are the 6520, the
6530, the 6522, and the 6532. These four essential input-output chips
will be described now.

20

DATA_,,., __ .._,, Dfl

BUS to
,..,,,--,/. 07

)
=: :}·::;~';'

ADDRESS
IUS __,_ CSI I
~ CS2 :i! -~
(j2)~ 9ft0bl•

- IVW
CONTROi. -----.. 16

IUS

6520
PIA

t
vss vcc

...,__. CAil
~CAlf CONTROt.{A)

= \-·

--cs,l CONTROl(B)
..,__CBI

Fig 2-2: The 6520 PIA

THE INPUT OUTPUT CHIPS

THE 6520 (PIA)

The 6520 is almost a pure "PIO," as we have defined it. it has been
designed as a pin-for-pin replacement for the Motorola M6820, and
has been called by the manufacturer a "peripheral interface adapter"
or "PIA." The signals of the 6520 are shown on Fig 2-2. Its internal ar-
chitecture is shown in Fig 2-3.

Referring to Fig 2-3, it can be seen that this device provides two
parallel input-output ports, port A and port B. Each port is equipped
with a buffer. However, the two ports are not quite identical, and the
buffer really works only as an output buffer, not as an input one. A
data-direction register ("DOR") is available for each port, and
specifies the direction of each line of the port. A value "0" in this
DOR specifies an input, and a value "l" specifies an output. The
choice of conventions stems from a safety consideration: whenever a
"RESET" is applied, the contents of all registers will be zeroed and

DATA
BUS

C:Sl
cs,
rn
RSO

ri'iil
ilRlli --t~~~~~~-1.._:::.::::_.}4-+-

Fig 2-3: 6520 Internal Architecture

PORTA

POOTB

21

6502 APPLICATIONS BOOK

the data-direction register will become all zeroes. As a result, all lines
will be configured as inputs; this is the safe way to start a system. No
external pulse can be generated until the program has started execu­
tion.

Additionally, each port is equipped with two registers, the control
register and the output register. The data sent by the 6502 to the
device are gated to the output register (ORA) of the specified port,
where they are held. The function of the control register (CRA) will
be explained below. It specifies the role of various control options
and contains status information for each port.

Finally, each port is equipped with two external control lines, la­
beled CAI, and CA2 for port A. CAI is a monodirectional line from the
device to the 6520. CA2 is a bidirectional line, which may be used
either as an input or an output.

The two ports are logically equivalent and symmetrical, as indicated
on Fig 2-3. However, practical differences exist. In particular, the
drive capability of port B is superior to port A, and the role of the con­
trol signals is not completely symmetrical.

Looking now at the left of Fig 2-3, or at Fig 2-2, the data bus con­
nects the internal buffer of the 6520 to the system data bus. Two in­
terrupt requests may be generated by the device, if so specified by the
contents of the control registers for port A and B; they are respectively
IRQA and IRQB. Finally, three. chip-select inputs must be specified
for the device, and are labeled CS 1, CS2, and CS3. This design was
used by Motorola in order to allow the convenient direct connection
of up to 8 separate devices to the data bus, without the necessity of an
external address decoder. In practice, the high number of chip-select
inputs on the chip may have resulted in a disadvantage which will be
pointed out below (one register-select missing). Two register-select in­
puts are provided, and connected to the address bus. They are labeled
RSO and RSI. This means that the 6520 device appears to the pro­
grammer as four memory locations. This may seem surprising since
we have just determined (see Fig 2-3) that there are four registers per
port, i.e. a total of eight registers. How can one address 8 registers with
only 4 addresses? This is a problem brought about by the pin number
limitation of the device. One bit of the control-register, bit 2, is used
to multiplex between the two sets of registers. When bit 2 of the con­
trol register is equal to "0," the data-direction for that port is selected.
When it is ''l ,'' the peripheral-interface buffer is selected.

Finally, three more control lines are available: "R/W" (read or
write), "enable" (usually phase two of the clock), and finally "reset."

22

+5V +5V

.>
::,,,
>

THE INPUT OUTPUT CHIPS

+5V

--....... ~ output
"1" = Voo

~I
I i""---4-- input r

resistor pull-up
1 TIL food

+5V

no pull-up.
high-Z input.

passive pull-up resistor
1.6mAsink = I TTL load

Fig. 2-4: Buffer A

+5V

--..... ~output
"1" moy not be> 2.4V

~I

J_
•current drive:

I mA sink at 1.5V
•output is high impedance
when lines are "input"

Fig. 2-5: Buffer B

Differences between Port A and Port B

Port A and port B, even though they are logically equivalent, are
physically dissimilar. The buffers of port A use passive pull-ups. They
can sink 1.6 mA, making the buffers capable of driving a standard

23

6502 APPLICATIONS BOOK

TTL load. On port B, the buffers are push-pull devices (see Fig 2-4
and 2-5). Since they are active devices, the logic "l" voltage may not
be higher than 2.4 volts (versus Voo in the case of port A). However
they have a superior current drive (lmA at 1.5v), so that they can be
directly connected to LED's, or to Darlington transistor switches.
Finally, when port B is used as input, the output buffer enters a high­
impedance mode, so that the input will have a high impedance (more
than one Megohm). The details of the port A buffer are shown on
Fig 2-4, and the details of the port B buffer are shown on Fig 2-5.

DDRA/ IORA

CRA

DDRB/ IORB

CRB

Fig. 2-6: 6520 Memory Map

The Internal Registers

Let us consider now in more detail the specific resources and
peculiarities of the 6520. First, as we have already noted, the 6520 is
equipped with 6 internal registers: the two buffers (which share the
address of the output register), the two data direction registers, and
the two control registers. However, because of the pin number limita­
tion, only two register-select pins are available on the device, called
respectively RSO and RSI. The resulting 6520 memory map is shown
on Fig 2-6. It shows that registers DDRA and IORA for example,
share the same logical memory address. The control-register is
addressed independently. The 6520 differentiates internally between
the DDRA and the IORA by the value of bit 2 of the control register.
The register selection is presented on Fig 2-7. Whenever bit 2 of the
control register is "O," the DOR is selected. Whenever it is "1," the
IO register or buffer-register, is selected. The control register is the on­
ly register which can be addressed directly by RSO and RS1 since it is

24

THE INPUT OUTPUT CHIPS

logically necessary to specify the contents of this control register prior
to accessing the other registers.

RSl RSO CRA·2 CRB-2 REGISTER SELECTED

0 0 1 BUFFER A

0 0 0 DORA

0 1 CRA

1 0 1 BUFFER B

1 0 0 DDRB

1 1 CRB

Fig. 2-7: 6520 Register Selection

This scheme implies that the initialization of this device is somewhat
more complex than it should be, and that, if the program should need
to access successively the DDRA and the IORA, additional instruc­
tions must be inserted to modify the contents of bit 2 of the CRA
every time. This is indeed inconvenient.

The Control Register

The contents of the control register are shown on Fig 2-8. It has al­
ready been pointed out that bit 2 of this register performs a special
function: it differentiates between the DDR and the IOR register for
that port. The other bits within the register provide control options for
the two control lines available on each port, and 2 bits are reserved for
status or interrupt information. The control register A functions are
controlled by bits 3, 4, and 5 and are shown on Fig 2-9.

7 6 5 4 3 2 0

IRQl IRQ2 CA/B2 control DDRA/B CA/Bl
select control

Fig. 2-8: 6520 Control Registers

25

6502 APPLICATIONS BOOK

CRABIT MODE EFFECT
5 4 3

1 0 0 Handshake •CA 1 interrupt input transi-
on read tion sets CA2 high.

•Read Port A instruction
sets CA2 low.

1 0 1 Pulse output •Read Port A data sets CA2
low for one cycle (=
acknowledge to device).

1 1 0 Manual setsCA2 low
Output

1 1 1 Manual sets CA2 high
Output

Fig. 2-9: 6520 CA2 Control

CRB BIT MODE EFFECT
5 4 3

1 0 0 Handshake •CB 1 interrupt input transi-
on write· lion sets CB2 high.

•Write Port B data sets
CB2 low.

1 0 1 Pulse Output •Write Port B data sets CB2
low for one cycle (=
acknowledge to device).

1 1 0 Manual setsCB2 low
Output

1 1 1 Manual sets CB2 high
Output

Fig, 2-10: 6520 CB2 Control

The functions of the two control lines of port B are controlled by
bits 3, 4, and 5 of its control register and shown on Fig 2-10. Bits O and
1 provide interrupt control for the CAl and CB1 inputs. They are
shown on Fig 2-11.

26

THE INPUT OUTPUT CHIPS

CRBIT ACTIVE TRANSITION IRQOUTPUT
1 0 OF INPUT SIGNAL

0 0 negative disable (high)

0 1 negative enable (will go law
when CRA bit 7 set

byCA1/CB1
transition)

1 0 positive disable (high)

1 1 positive enable (as above)

Fig 2-11: Interrupt Control (CA 1, CB 1 Inputs)

Using the 6520

After a "Reset" has been applied, the contents of all the registers
will be zero. The 6520 must, therefore, first be initialized to specify the
input and output configurations on both its ports. The control op­
tions of the control register must also be specified and the 6520 should
normally be left with a "1" in bit position 2 of the control register, so
that the IOR register can be accessed directly by the 6502.

A typical sequence is:

LDA #$OF "00001111" = 4 INPUTS, 4
OUTPUTS

STA DDRA CONFIGURE DIRECTION
LDA #CONTROL CONTROL OPTIONS:

STA CRA

INPUT-OUTPUT

BIT 2 = 1 TO ADDRESS
IORA

Sending data out on port A would be accomplished by the following
two intructions (assuming CRA-bit 2 = "1 "):

LDA #DAT A OR ELSE LDA $20 (FROM
MEMORY)

STA IORA

27

6502 APPLICATIONS BOOK

Reading an input connected to the 6520 is accomplished by:

LOA
STA

IORA
$20 SAVE IT IN MEMORY

We are saving here the contents of the accumulator immediately in
memory location 20 (hexadecimal). However, this line is not indispen­
sable. In many cases, we will simply read the contents of IORA in the
accumulator and then perhaps check their value but not necessarily
store them.

6520 Warnings

In addition to the dissimilarities between port A and port B, some
specific features of the control functions should be remembered. In
particular, bits 6 and 7 are cleared on A or B if 6 is input and if read­
ing. Also, to clear bit 7, one reads port B data. The CB2 handshake,
unlike the CA2 handshake, is for writing B data (CA2 operates for
read or write). Finally, bit 6 or 7 may cause an interrupt.

Polling the 6520's

The simplest way to poll several 6520's is to check the status of bits
6 and 7 of the control register. When both bits 6 and 7 are "O," the de­
vice does not require any service. If either bit is '' 1,'' an internal inter­
rupt has been generated, and service is required.

Technique I

In order to identify quickly which one of four devices has requested
service, a sequential table access technique may be used, provided the
addresses of the 4 devices are sequential in the memory. Address n will
be allocated to CRAl, address n + 1 to CRBl, address n + 2 to
CRA2, address n + 3 to CRB3, etc. The program can then make use
of the indexed indirect addressing feature and is shown below:

28

START
NEXT

LOX
LOA
BMI
DEX
BEQ
BNE

#8
(BASE-1,X)
SERVICE

START
NEXT

INDEX
ACCESS NEXT CR
IRQON?
X=X-1

THE INPUT OUTPUT CHIPS

BASE -WORD CRA I PIO #1 PORTA
-WORD CRB I PORTB
-WORD CRA 2 PIO #2 PORTA
-WORD CRB 2 PORTA
-WORD CRA 3 PIO #3 PORTA
-WORD CRB 3 PORTB
-WORD CRA4 PIO #4 PORTA
-WORD CRB 4 PORTB

Fig. 2-12: Identifying the PIO

Index register Xis set to the initial value "8" and will be successively
decremented by 1, every time we go through the polling loop. The
accumulator is loaded with the contents of the last enrty in the table
first:

LOA (BASE-I, X)

If bit 7 was set (bit 7 is the sign bit or "N" flag), a branch will occur to
the service routine:

BMI SERVICE

If the N flag was not set, X is decremented, and the next CR is checked:

DEX
BEQ START RESTART IF X=O
BNE NEXT GO ON IF X IS NOT 0

Improvement: would switching the last two instructions speed up the
program?

Technique 2

Within each CRA, two status bits must be checked: bits 6 and 7.
The "BIT" instruction of the 6502 has been created for this specific
purpose. It is a nondestructive comparison which will check the con­
tents of bits 6 and 7. The program for polling the 6520's appears on
Fig 2-13.

BIT CRA

29

6502 APPLICATIONS BOOK

BMI IRQA7
BVC NOT Al

IRQA6 A2 IRQ FOUND (Bit 6)

IRQA7 Al IRQ FOUND (BIT 7)

NOT Al BIT CRB SAME FOR PORT B
BMI IRQB7
BVC NEXT2

IRQB6 B2 IRQ FOUND (BIT 6)

IRQB7 Bl IRQ FOUND (BIT 7)

NEXT2 BIT NEXT 6520

Fig. 2-13: Identifying the Ports

The "BIT" instruction is used to test whether either bits 6 or 7 are a
"I". This is performed by:

BIT CRA

We must then test whether bit 6 or 7 was set to '' 1.'' The BIT
instruction sets V flag and the N flag, so that these two flags can now
be tested;

BMI
BVC

IRQA7
NOT Al

BIT7 = I
NO INTERRUPT FOUND

If none of the flags were set, a branch will occur to NOT Al, where
the CRB will be checked. Bit 7 is tested with the BMI instruction. If
bit 7 was one, the sign bit N will have been set, and the routine at
address IRQA 7 will be executed.

Otherwise, bit 6 was the bit that was set and the routine at address
IRQA6, following the BMI, will be executed.

This sequence can be executed for any number of 6520's. Note that
this procedure gives higher priority to A7 than A6.

30

THE INPUT OUTPUT CHIPS

ltSO 151 llS2 RS3 +5V

Fig 2-14: 6522 Internal Architecture

THE 6522

The 6522, introduced by MOS Technology, and also manufactured
by Rockwell International and Synertek, is the successor device to the 6520.

The 6522 chip, called the VIA (Versatile Interface Adapter), is a
PIO-timer-shifter combination. It is equipped internally with 16 regis­
ters which are shown on Fig 2-14. The corresponding memory map is
on Fig 2-15.

Four sets of registers can be distinguished as to their function:

1. The PIO registers (addresses O through 3, plus address F).
2. The timer registers (two timers, addresses 4 through 9.
3. The shift register (address A).
4. The control registers (addresses B through E).

These four sets will now be examined in detail to explain the capa­
bilities of the 6522.

31

6502 APPLICATIONS BOOK

00

01

02

03

04

05

06

07

08

09

OA

OB

oc

OD

OE

OF

RS3 ,s,

0 0

0 0

0 0

0 0

0 I

0 I

0 I

0 I

I 0

I 0

I 0

I 0

I I

I I

I I

I I

32

ORB (PBO TO PB7)

ORA (PAO TO PA7)

DDR B

DOR A

Tl L-L/Tl C-L

TlC-H

Tl L-L

Tll-H

T2L-LIT2C-L

T2C-H

SR

ACR

1/0 data, part A

used far control-affects handshake

data direction
registers

counter-low

counter-high

latch-law

latch-high

latch-low
counter-low

counter-high

shift register

auxiliary

(timer]

I ,Omo,2

PCR (CA1,CA2,CB2,CB1) peripheral

} function
control

IFR

IER

flags } interrupt

enable
control

ORA
output register A
(does not affect handshake)

Fig. 2-15: 6522 VIA Memory Map

'" ,so --------------0 0

0 I

I 0

I I

00 o,s

l
01 O•A +

PAR.All El
o, ODRB 1'0

OJ DORA -------------0 0

0 I

I 0

I I

"' lll·l(W)!ll(.ll'1) +ci.o.Tl lntflag{W)

OS TIC-H(RVTlL-H+ T!C-H(W) +TIC-< Tll< +doa l
Tl l'llflag (R} TIMERTl

06 Tll-l

07 TH-H +deor Tl l"t FIOQ(WJ

0 0

0 I

I 0

08 T~{(WVJX-1.('1) + deer T2 hit flog(W) }

"' TX-><
+T2C-l T2L-l TIMER T2

+cleo,T2ln.!f~~ -----
DA SR ________] SHIFT --

I I

0 0

0 I

I 0

08 ACR

\ m~~ oc PO<

00 ...
OE ...

I I Of ORA no~~:-~1;;-1~r

Fig. 2-16: 6522 Registers

THE INPUT OUTPUT CHIPS

The PIO Section
The PIO Section provides two 8-bit bidirectional ports. Each port is

equipped with an input/output register. They are called respectively
ORA and ORB for port A and port B. They are shown on Fig 2-14.
Each register is associated with a direction register, respectively DDRA
AND DDRB. Whenever the corresponding bit of the data direction
register is set to "l" the line connected to the OR will be an output.
Whenever the data direction bit is "O", the corresponding line will be
an input. The polarity has been chosen so that all lines are iniput when
a "reset" is applied.

There is an asymmetry in this PIO: Port A is equipped with two OR
registers, with and without the handshake feature.

Using the PIO

Before using the PIO as input or output, the data-direction registers
must be loaded with the proper value to configure the corresponding
bits of the 1/0 registers as input or output. As an example, let us con­
figure here Port A as an output and Port B as an input.

OAlA BUS

J!SO ~I RS2 RS3

Fig 2-17: Using the 6522: STA DDRA

33

6502 APPLICATIONS BOOK

DATA eus PORT A

,-.~-~/OUTPUT

IRQ

PORT B

Fig 2-18: Using the 6522: STA DDRB

LOA
STA
LOA
STA

(seeFig2-17 and2-18)

#$FF "11111111 " OUTPUT
DORA
#0
DDRB Bis INPUT

Let us now output the value "00000001" on Port A (see Fig 2-19):

34

LOA
STA

#$01
ORA

''00000001 ''

THE INPUT OUTPUT CHIPS

P0'11J,,,

,,-,.,, .. .>v.·, OUTPUT

Fig 2-19: Using the 6522: STA ORA

l!S0"5lli!S2 QSJ

Fig 2-20: Using the 6522: LDA ORB

35

6502 APPLICATIONS BOOK

Finally, let us read the value of Port B into the accumulator (see Fig
2-20).

LDA ORB

Whenever using the OR registers, it is usually necessary to check a status
signal to make sure that the device being spoken to is ready to listen or to
transmit. This is call handshaking. The operation of the control
signals required to implement it will be explained now.

The Two Control Signals (Peripheral Control Register)

Each port is equipped with two control lines, named CAI, CA2,
and CBI, CB2 (see Fig 2-14, on the right side). For example, before
sesnding data to a printer device, such as a Teletype, the micro­
processor must ascertain that the printer is not busy, and is ready
to accept the next character. This will be accomplished by a hand­
shaking procedure.

Whenever the printer is no longer busy, it is ready to accept the next
character, and it will send a pulse or a level transition to the 6522. This
level transition, or pulse, must be detected and latched by the device,
then tested by the program. The signal will be transmitted to one of
the two control inputs, CAI or CBI.

The 6522 allows great flexibility in specifying the nature of the signal
coming in or out.

It is possible to specify whether a high-to-low (or "negative") tran­
sition (a falling edge) or a /ow-to-high (or "positive") transition (a rising
edge) will trigger the internal interrupt flag. This is specified by bit O (for
CAI) and bit 4 (for CBI) of the peripheral control register (PCR). ''O''
corresponds to the high-to-low transition, and "l" corresponds to the
low-to-high transition (see Fig 2-21).

7 6 5 4 3 2 0

(82 CBl CA2 CAl
control control control control

Fig. 2-21: Peripheral Control Register

36

THE INPUT OUTPUT CHIPS

7 6 5 4 3 0

T2 J CB\ J CB2 I SR I CAI

Fig. 2-22: Interrupt Flag Enable Register (IFR/ IER)

CR BIT ACTIVE TRANSITION IRQOUTPUT

l 0 OF INPUT SIGNAL

0 0 negative disable (high)

0 l negative enable (will go low
when CRA bit 7set

byCAl/CB1
transition)

1 0 positive disable (high)

1 1 positive enable (as above)

Fig. 2-23: Cantrol Lines Function (ACR)

Once the nature of the signal has been specified, it becomes possible
to test it.

Checking status: It is possible to detect whether a transition has oc­
curred by testing the contents of bits 1 or 4 (for CAl and CBl respec­
tively) of the interrupt-flag register (IFR) (see Fig 2-22). This bit will be
"0" as long as no signal has been received, and will become "1" once
the appropriate transition has been detected. After reading a "l"
status, it must be possible to reset it so that one can move on to the detec­
tion of the next event. This will be accomplished either by writing a'' l ''
into the appropriate bit position of the register, or else by reading, or
writing, the corresponding input/output data register.

37

6502 APPLICATIONS BOOK

PCR3 PCR2 PCRI Mode

0 0 0 CA2 Negative Edge Interrupt (IFRO/ORA Clear)
Mode-Set CA2 interrupt flag (IFRO) on a negative
transition of the input signal. Clear IFRO on a read or
write of the Peripheral A Output Register (ORA) or by
writing logic I into IFRO.

0 0 0 CA2 Negative Edge Interrupt (IFRO Clear) Mode-Set
IFRO on a negative transition of the CA2 input signal.
Reading or writing ORA does not clear the CA2 interrupt
flag. Clear IFRO by writing logic I into IFRO.

0 I 0 CA2 Positive Edge Interrupt (IFRO/ORA Clear) Mode-
Set CA2 interrupt flag on a positive transition of the CA2
input signal. Clear IFRO with a read or write of the
Peripheral A Output Register.

0 I I CA2 Positive Edge Interrupt (IFRO Clear) Mode-Set
IFRO on a positive transition of the CA2 input signal.
Reading or writing ORA does not clear the CA2 interrupt
flag. Clear IFRO by writing logic I into IFRO.

I 0 0 CA2 Handshake Output Mode-Set CA2 output low on a
read or write of the Peripheral A Output Register. Reset
CA2 high with an active transition on CAI.

I 0 I CA2 Pulse Output Mode-CA2 goes low for one cycle
following a read or write of the Peripheral A Output
Register.

I I 0 CA2 Output Low Mode-The CA2 output is held low in
this mode.

I I I CA2 Output High Mode-The CA2 output is held high in
this mode.

Fig. 2-24: PCR Detalled Operation (courtesy: Rockwell)

PCR7 PCR6 PCRS Mode

0 0 0 CB2 Negative Edge Interrupt (IF3/0RB Clear) Mode-Set
CB2 interrupt flag (IFR3) on a negative transition of the
CB2 input signal. Clear IFR3 on a read or write of the
Peripheral B Output Register (ORB) or by writing logic I
into IFR3.

0 0 I CB2 Negative Edge Interrupt (IFR3 Clear) Mode-Set
IFR3 on a negative transition of the CB2 input signal.
Reading or writing ORB does not clear the interrupt flag.

I Clear IFR3 by writing logic I into IFR3.

Fig. 2-25: Continued. PCR Detailed Operation

38

THE INPUT OUTPUT CHIPS

0 l 0 CB2 Positive Edge Interrupt (IFR3/0RB Clear) Mode-
Set CB2 input signal. Clear the CB2 interrupt flag on a
read or write of ORB or by writing logic l into IFR3.

0 l l CB2 Positive Edge Interrupt (IFR3 Clear) Mode-Set IFR3
on a positive transition of the CB2 input signal. Reading or
writing ORB does not clear the CB2 interrupt flag. Clear
IFR3 by writing logic l into IFR3.

l 0 0 CB2 Handshake Output Mode-Set CB2 low on a write
ORB operation. Reset CB2 high with an active transition
of the CBl input signal.

l 0 l CB2 Pulse Output Mode-Set CB2 low for one cycle
following a write ORB operation.

l l 0 CB2 Manual Output Low Mode-The CB2 output is held
low on this mode.

l l l CB2 Manual Output High Mode-The CB2 output is held
high in this mode.

Fig. 2-25: PCR Detailed Operation (continued)

CAI -----i reedy

6522 ill :l++----i DEVICE

DORA ORA

Fig. 2-26: Reading Data When Ready

A Simple Input Example

Let us specify a low-to-high ''ready'' transition from the peripheral,
and an input configuration on Port A (see Fig 2-26). Whenever the data
is ready, it will be read into the accumulator. The program is:

LOA
STA

#0
DORA SET INPUTS

39

6502 APPLICATIONS BOOK

LOA #1
STA PCR CAI INTERRUPT LOW-TO-

HIGH
WAIT LDA IFR READ INT FLAGS

AND #$02 00000010 MASK BIT 1
FOR CAI

BEQ WAIT READY?
LOA ORA READ DATA IN

Improvement: Can you modify the two instructions "LDA /FR AND #$02" to

improve efficiency?

7 ' 6 5 4 ' 3 '
2 0

r

T2 PB PA
Tl CON- SHIFT REGISTER LATCH LATCH

CONTROi. TROl CONTROL ENABLE ENABLE

Fig, 2-27: 6522. Auxiliary Control Register

Latching the Input/Output

The input and output of the 6522 are not symmetrical. Outputs are
always latched. This is why the input/output register is called OR (out­
put register). Inputs are not necessarily latched. This is specified by bits
''O'' and ''I'' (respectively port A and port B) of the auxiliary control
register (ACR). Whenever these bits are "O," no latching oc­
curs on input. Whenever these bits are set to "1," the inputs are latched
(see Fig 2-27). When an input is not latched, the program is actually
reading the value of the input lines connected to the port it is reading.
When the inputs are latched, the latch is enabled by the active transi­
tion of CAI or CBI, depending on the port used. The value is then
preserved in the latch register until the next pulse is received on the
control line. Danger: on output, the program reads the latch controls,
which may or may not be the same as the contents of OR.

Sending a Control Signal Out

CA2 or CB2 are used to provide a control strobe (see Fig 2-14).

40

THE INPUT OUTPUT CHIPS

Since these lines are bidirectional, they must be configured for output
by setting the peripheral control register bit 3 or 7 respectively (for A2
or B2) (see Fig 2-24).

The nature of the signal can be specified to be either a level or a
pulse. "O" in bits 2 or 6 respectively (for A or B) corresponds to a
pulse. "1" corresponds to a level. Whenever a level is specified, it is
possible to specify either a positive value or a negative value. This is
accomplished by setting or clearing bits 1 and 5 respectively (for A2
and B2) (see Fig 2-24).

Finally, when a pulse is generated, its duration can be controlled
with bits 1 and 5 (respectively for A2 and B2) of the control register.
Whenever the bit is set to "O," a single cycle strobe will be generated.
Whenever this bit is set to "1," an output pulse will be generated,
which will remain low from the time the OR register is accessed (read
or write) until the next signal transition on CAI or CBl.

Summary of Control Output

A pulse of virtually any duration and polarity can be specified. It
can be used to poll an external device (interrogate it), to acknowledge
a data transfer, to move on to another device connected to the same
line, or to control the state of the device (on, off, or other option).

A summary of the peripheral control register bits is shown on Fig
2-21, and the details are shown on Fig 2-24 and 2-25.

7 6 5 4 3 2 0

IFR IRQ

sell Tl - ,- T2 - CBl- ,_ CB2- - SR - -CAl - ,-CA2-

clear IER

control

Fig. 2-28: Interrupt Registers

Interrupts

Interrupts are controlled by two registers, the interrupt enable reg­
ister (IER), and the interrupt flag register (IFR). The registers are

41

6502 APPLICATIONS BOOK

shown on Fig 2-28. They share the same memory address. One is an
input register, the other an output register.

The interrupt flag register IFR is an input register. Each bit position
from O to will be set whenever an interrupt is detected on any of the
external lines (CAI, CA2, CBI, CB2), on the shift register (SR), on
any of the two timers (Tl and T2). Bit 7 is set whenever any other bit is
set in the register.

The interrupt enable register (IER) will enable or disable interrupts
from any of the sources. The bit positions in IER match the ones of
IFR (see Fig 2-28). Whenever a bit position is "O," the corresponding
interrupt is disabled and will not be sent. Whenever it is '' 1,'' it is en­
abled, and if an interrupt occurs, it will be recorded. It becomes then
possible for the program to read the contents of the IFR register and
test any relevant bit to determine whether an interrupt has occurred.
In order to set or clear conveniently any of the IER bits, bit position 7
of IER is used in conjunction with a read or write signal and the con­
tents of the data bus are then copied into the IER register. If IER bit 7
is "O", each "l" will clear an enable flag. If bit 7 is "I", each "I"
written into IER will set an enable.

Example: Let us enable CAI and CA2 interrupts, and disable all
others (see Fig 2-28):

LDA #$7C "01111100" CLEAR BITS
2 TO 6

STA IER
LDA #$83 "10000011" ENABLE BITS

0 AND 1
STA IER

Exercise 2-1: Write a program to enable CBJ interrupts, and disable
others.

Exercise 2-2: Disable CBJ and CB2, leaving others unchanged.

Identifying the Interrupt

Whenever several interrupts can occur simultaneously, i.e., when­
ever several bits of the IFR are used, the program will have to check
the contents of IFR and determine which interrupt has occurred. The
order in which it checks these bits will determine the priority of the

42

THE INPUT OUTPUT CHIPS

corresponding interrupt. For example, if an interrupt from Tl has
highest priority, then this is the bit which should be checked first. The
simplest way to check the contents of IFR is to shift its contents right
or left by one position and check the value of the bit which falls off
(into the Carry bit) by testing the carry bit. This technique assigns pri­
orities in a right-to-left or left-to-right manner to the signals of Fig
2-28.

Exercise 2-3: Look at Fig 2-28. List the devices in order of effective
priority, assuming that the contents of !FR are shifted left by the poll­
ing program.

Naturally it is also possible to check for combinations of interrupts
by checking the values of specific bits in the IFR register. For more
details on interrupts and polling, refer to Chapter 3 of ref. C202.

The Timers

The 6522 is equipped with two interval timers. These timers can be
used as inputs or as outputs.

When used as an output, a timer may generate either an output sig­
nal or a train of pulses.

When used as an input, a timer will measure the duration of a pulse,
or else will count the number of pulses received. When generating or
reading a pulse of set duration, the timer is said to be in "one-shot"
mode. Either timer 1 or timer 2 of the 6522 can be used in this manner.

When used to generate or to count a continuous train of pulses, the
timer is said to be in a "free-running mode." Only timer 1 may be used
in this manner.

Prior to using any timer in output mode, its counter register must be
loaded with a value: when generating pulses, the counter will either
contain the number of clock pulses to be generated, or the duration of
the pulse.

When using the timer on input, its register must be cleared. When
counting pulses, it will contain the number of pulses so far. When
sensing a pulse, it will contain its duration.

Timer 1 versus Timer 2

Timer 2 may be used on input to count pulses applied to PB6 of
IORB (see Fig 2-14). When used on output, it can only generate a

43

6502 APPLJCA TIONS BOOK

pulse of set duration on PB6. It cannot generate a train of pulses.
Either one of these two modes is selected by bit 5 of the auxiliary con­
trol register (ACR) (see Fig 2-27). "O" corresponds to the one-shot
mode, and "l" to the pulse-counting mode.

0 ONE ~HOT MODE
l fR!E RUNNING M()Of

0 OUlPUT lO Pe7 DtS.ABlEO
1. OUlPUl 10 PB7 fNABlED

Fig 2-29: 6522: Auxlllary Control Register Controls Tl Modes

Timer 1 is different from Timer 2 and offers additional possibilities.
It has four operating modes which are shown on Fig 2-29. It can be
used either in one-shot mode or in free-running mode. Additionally, it
may either enable or disable an output on PB7. The mode is specified
by bit 6 of the auxiliary control register. It is "O" for one-shot opera­
tion and "l" for free-running mode.

Bit 7 specifies whether PB7 is enabled or disabled. When "0," PB7
is disables, when'' l ,'' PB7 is enabled (see Fig 2-30).

ACR7

OUTPUT
ENABLE

0

0

1

1

44

ACR6 MODE

FREE RUN
ENABLE

0 Generate time out INT when Tl loaded
(ONE-SHOT) PB? disabled.

1 Generote continuous INT
(FREE RUN) PB7 disabled.

0 Generate INT and output pulse on PB7 everytime
(ONE-SHOT) Tl is loaded.

=one-shot and progrommable width pulse.

1 Generote co11tinuous INT and square wave
(FREE RUN) output on PB7.

Fig. 2-30: 6522 . Auxlllary Control Register Selects
Timer 1 Operating Modes

THE INPUT OUTPUT CHIPS

Loading the Counters

Each timer uses a 16-bit counter. The low part must be loaded first
and the high part must be loaded next. Loading the high part of the
counter automatically clears the timer interrupt flag and starts the
timer running. Timer 1 is also equipped with a true 16-bit latch, while
Timer 2 is not. This enables Timer 1 to operate continuously, in "free­
running" mode; the latch is automatically transferred to the counter
when the counter reaches zero. For Timer 1, the values of the latches
may be read or written without affecting the counters. This is used to
generate waveforms of arbitrary complexity.

The details of timer addressing are shown on Fig 2-31.

ADDRESS WRITE READ

- -04 Tl L-L Tl C-L/
+ clear Tl int flag

- -05 Tl L-H + Tl C-H TlC-H
+ Tl l-L >-TlC-L

TIMER 1 + clear Tl int flag

- -06 Tl L-L Tl L-l

- - 07 Tl L-H Tll-H
+ clear Tl int flag

- - 08 T2L-l T2C-C
+ clear T2 int flag

TIMER 2

- -09 T2C-H T2C-H
T2L-L >-T2CL

+ clear T2 int ilag

Fig, 2-31: Timer Addressing

Real Duration

The actual waveform from Timer 1 is shown on Fig 2-32. Note that
the real duration is the value of the count ("N") plus 2, or the value of
the count plus 1.5. In order to obtain a more exact timing, the user
should therefore load in the counter register the desired number of
periods minus 2.

45

6502 APPLICATIONS BOOK

N + 1.5

l(N)l(N-1)1 ~

~~-::~::::_
P87 -·------,,
OUT

~ N + 1~s°~te1 N + 2cyd"5---t L ____ _
Fig. 2-32: Timer 1 In Free Running Mode

The Shift Register

The shift register is provided for serial-to-parallel or parallel-to­
serial conversion. The shifting speed can be controlled by three time
sources: Timer 2, Phase 2 of the clock (<1>2), and an external clock. The
external timing source is specified by bits 2 and 3 of the auxiliary con­
trol register (see Fig 2-27). Bit 4 of the auxiliary control register speci­
fies input or output. The complete table showing the function of these
bits appears on Fig 2-33.

ACR4 ACR3 ACR2 Mode

0 0 0 Shift register disabled.

0 0 1 Shift in under control of Timer 2.

0 I 0 Shift in under control of 02 pulses.

0 I I Shift in under control of external clock pulses.

I 0 0 Free-running output at rate determined by Timer 2.

1 0 1 Shift out under control of Timer 2.

I 1 0 Shift out under control of the 02 pulses.

1 I I Shift out under control of external clock pulses.

Fig. 2-33 Shift Register Control

On output, the user will load the shift register. This will automati­
cally start the timing and shifting process. Whenever 8 bits will have
been shifted out of the register, the interrupt flag (bit 2 of the interrupt
flag register) will be set automatically. It can then be tested by the
program.

46

THE INPUT OUTPUT CHIPS

On input, the shift register must be initialized to some value such as
"O" in order to start the timing process. It will then start capturing
bits at the frequency of the specified timing source, such as timer 2,
phase 2 of the clock, or an external clock, as specified by bits 2, 3, 4 of
the ACR. Whenever 8 bits have been accumulated, the corresponding
interrupt flag of IFR will be triggered. The program will deposit a
value such as "0" in the SR, then test continuously the value of IFR
bit 2. Whenever an interrupt is detected, the shift is complete. The
shift register should then be disabled by zeroing bits 2, 3, 4 of ACR,
while the program is storing data away. Naturally if data is coming in
continuously, the shift register will not be disabled and the program
should "come back" quickly enough not to lose data.

PROGRAMMING THE 6522

The 6522 is a combination PIO, timer, and shifter. The basic input­
output operations on the PIO are performed essentially as on the
6520, except that the registers may be selected directly and that one
does not need to switch bit 2 of the control register to differentiate be­
tween them. This leads to simpler and shorter programming. How­
ever, the control facilities provided by the 6522 are extensive, and
quite different from those of the 6520. Let us therefore examine first
some examples of basic input-output, then some examples of the con­
trol options.

Basic Input

Input is accomplished by loading all zeroes in the data direction reg­
ister of the port which is to act as input, then reading the contents of
the OR. In this simple program, we will, in addition, store the data,
which has just been read, into memory location 20. The program ap­
pears below:

INPUT LDA #0
STA
LDA
STA

DDRA
ORA
$20

PORT A IS INPUT
READ DATA (IF VALID)
SA VE THEM IN MEMORY

47

6502 APPLICATIONS BOOK

RS3 RS2 RSI RSO R/W REGISTER COMMENT

0 0 0 0 w ORB
0 0 0 0 R IRB
0 0 0 1 w ORA controls handshake
0 0 0 1 R IRA
0 0 1 0 DDRB
0 0 1 1 DORA
8 1 8 8 w Tl L-L latch
0 1 0 1 R TlC-L counter
0 1 0 1 TlC-H Tl L-L into Tl C-L
0 1 1 0 Tl L-L
0 1 1 1 Tll-H
1 0 0 0 w T2L-L latch
1 0 0 0 R T2C-L counter
1 0 0 1 T2C-H triggers T2L-L into T2C-L
1 0 1 0 SR
1 0 1 1 ACR
1 1 0 0 PCR
1 1 0 1 IFR
1 1 1 0 IER
1 1 1 1 ORA no effect on handshakes

Fig. 2-34: 6522 Register Selection Is Direct

Basic Output

Output is performed in exactly the same way as input; the data
direction register for port B will be loaded for all ones, thus specifying
all outputs. The data to be sent to port B is assumed to reside at mem­
ory location 20 so that it will be first loaded into the accumulator, then
transferred to the ORB. The reader will remember that there is no in­
struction in the 6502 which allows transferring directly from memory
location 20 to ORB. An extra instruction is therefore required to
transfer first the data from memory into the accumulator, and then
from the accumulator to ORB. The program appears below:

OUTPUT

48

LOA
STA
LOA
STA

#$FF
OORB
$20
ORB

B = OUTPUT
GET DATA FROM MEMORY
OUTPUT IT

THE INPUT OUTPUT CHIPS

Using the Control Options

We will configure here port A as all inputs. It will be assumed that
the peripheral or device connected to port A will send the "data
ready" strobe on line CAL The strobe will be active during its low-to­
high transition. The 6522 will have to detect this "data ready" strobe
transition, and the program will poll the 6522 to determine whether
any data has been received. If data has been received, it will read it
and store it at location 20 in memory. The program has already been
developed (see "Basic Input" page 39) and appears again below:

READY IN LOA #0 A= INPUT
STA DORA
LOA #1 CAI INT LO TO HT
STA PCR

TEST LOA IFR TEST BIT 1
AND #$2 00000010 BINARY
BEQ TEST = 1?
LOA ORA READ DATA
STA $20 SAVE IN MEMORY

As usual, the data direction register is set to all zeroes to configure
ORA as inputs:

LOA #0
STA DORA

The control register PCR will now be conditioned so that an internal
interrupt is generated whenever a low-to-high transition occurs:

LOA #1
STA PCR

The two instructions above load the binary value 00000001 into PCR.
Referring to Fig 2-23, the reader should verify that this is indeed the
correct value. Bit zero of the peripheral control register PCR specifies
which active transition of the input signal will be recognized. Since we
want the CAI interrupt flag to be set by a positive transition (low-to­
high), PCRO must be set to the value 1.

Bits 6 and 7 of the ACR relate to the timer 1 operating mode. Since
the timer is not being used, their contents are irrelevant here. Bits 2, 3,

49

6502 APPLICATIONS BOOK

and 4 of ACR specify the operation of the shift register. Since the shift
register is not used here, they should be zero, as specified on Fig 2-33.
Bit 5 of the ACR is T2 control, and therefore unused here. Bit 1 is the
PB latch enable, and is unused here. Bit zero is the port A latch en­
able. When specified (by writing a "l"), data present on the A input
will be latched whenever the CAI interrupt flag is set. This would be
accomplished by:

LDA #1
STA ACR

Since we assume here that polling is used, instead of a hardware in­
terrupt, the program will be responsible for reading the contents of the
interrupt flag and detetmining whether an interrupt has occurred. The
contents of the interrupt flag register are shown in Fig 2-28. Bit position
I of the IFR needs to be tested in order to determine whether the CAI
"data ready" signal has been received. This is performed by the fol­
lowing three instructions:

TEST LDA
AND
BEQ

IFR
#$2
TEST

The AND instruction masks out all bits except bit position I so that it
can be tested.

As long as bit I is zero, this program will remain in this polling
loop. Once the "data ready" signal has been recognized, data can be
read from the ORA and transferred to their final memory location,
which we will assume to be, as usual, memory location 20:

LDA ORA
STA $20

Reading the contents of ORA into the accumulator will also automati­
cally clear bit I of IFR (the CAI status indicator), so that the internal
interrupt will be automatically reset.

It is important to remember that interrupt flags must explicitly be
cleared every time they are used. The 6522 is organized in such a way
that the "normal" operation, such as reading the contents of ORA
after detecting an interrupt, will take care of it automatically. How­
ever, the reader should be alert to the fact that if he should use "non­
standard programming," errors might occur as the interrupt flag
might remain continuously on. A technique which may be used in such
a case is to write back the contents of IFR after reading it:

50

THE INPUT OUTPUT CHIPS

STA IFR

This "programming trick" will reset only the bit which had been set to
"1, " thus effectively clearing the bit without modifying any other
(unless more than one bit was "l ").

A Handshake Protocol on Input

We will assume here that the complete handshake sequence is used:
first the program is responsible for sending a "start" pulse (active
high) to the device. Later, the device will respond with a "data ready"
strobe (active high-to-low here), and the program will be responsible
for determining that the signal has been received, then transferring the
data into memory location 20. The program appears below:

NS HAKE LOA #0
STA DORA A IS INPUT
STA ACR
LOA #$0C BITS 2 AND 3 ON
STA PCR CLEAR START PULSE
LOA #$OE BITS l, 2, 3 ON
STA PCR GENERATE START ON CA2
LOA #$0C
STA PCR CLEAR IT

WAIT LOA IFR INTERRUPT?
AND #$02 (START PULSE?)
BEQ WAIT POLLING LOOP
LOA ORA DATA READY
STA $20 SA VE IN MEMORY

Let us examine the program. As usual, port A is conditioned as input
by storing zeroes in the DORA:

LOA #0
STA DORA ZERO DORA
STA ACR

We will assume here that no latching is necessary on input (see previ­
ous program if you wish to latch data on input). The PCR register
must now be conditioned so that a start pulse will be generated, active
high. The level of CA2 (the line which we will use to provide the start
signal CAI can only be used as input) will first be set low, then high,
to guarantee a low-to-high transition. Conditioning the CA2 output

51

6502 APPLICATIONS BOOK

low is accomplished by loading the value "110" respectively in bits 3,
2, and 1 of PCR (see Fig 2-24). This is accomplished by the following
instructions:

LOA
STA

#$0C
PCR

00001100

Next, the level on the CA2 output must be specified as high. This is ac­
complished by loading the value "111" in bits 3, 2, 1 of PCR:

LOA #$OE
STA PCR

00001110

We will assume here that a brief pulse is sufficient to provide the
"start" signal. Some devices might require that this pulse be of a long­
er duration. In such a case, a delay would have to be added at this
point to guarantee that the pulse remains high for a specific duration
of time. Here, we will simply turn the signal off again:

LOA
STA

#OC
PCR

00001100

At this point, we proceed, as in the previous program, by polling bit
one of the IFR to detect whether the CAI has been set to one:

WAIT LOA
AND
BBQ

IFR
#$02
WAIT

00000010

Then, as above, the data is read from ORA and stored in memory
location 20:

LOA ORA
STA $20

+$V

Fig. 2-35: Connecting Multiple 6522's .
Generating an IRQ

52

THE INPUT OUTPUT CHIPS

Using Multiple 6522's

In the case where multiple 6522's are used, their interrupt request
output IRQ is usually connected to the IRQ line as shown on Fig 2-35.
However, once an IRQ is received by the 6502, the program must
determine which 6522 originated it. A polling loop is generally used.
This polling loop will interrogate in turn each IFR of the devices to
determine which one has generated an interrupt. This information is
readily available in bit 7 of the interrupt flag register as shown on Fig
2-22. The reader will recall that bit 7 is universally used as a preferred
position for polling, since once the contents of the register under test
are loaded into the accumulator, the contents of bit 7 will condition
the sign bit of the microprocessor flags register (bit N). The next in­
struction in the program may readily test bit N and determine whether
it was ''O'' or '' 1.'' This is exactly what the polling program does here.
A typical polling program appears below:

INTFOUND1

NEXTl

LDA
BPL

LDA
BPL

IFRl
NEXTl

IFR2
NEXT2

(IDENTIFY 1 OF 7 CAUSES)

The program loads the contents of the IFR of the first 6522 and tests
whether it is positive. If it is positive, no interrupt has been generated
by the device and the program tests the next one, and so on. However,
if the device is found to have generated an interrupt, a specific routine
must then determine what to do next. Let us examine it.

Identifying one out of 7 possible internal interrupts for the 6522

Referring to Fig 2-22, it can be seen that seven possible conditions may
set an internal interrupt in the IFR register of the 6522: Tl, T2, CBl,
CB2, SR, CAI, CA2. If all of the internal resources of the 6522 are
used simultaneously, as is often the case, then all possibilities should
be checked. A simple program which will identify one out of 7 inter­
rupts appears below:

53

6502 APPLICATIONS BOOK

ONEOF7 ASL
BMI
ASL
BMI
ASL

A
TIMERl
A
TIMER2
A

The program checks successively bit 6, bit 5, bit 4, etc., by simply
shifting the contents of the accumulator left by one bit position every
time. It should be noted that the order in which the shifts occur estab­
lish a priority of the interrupts within the device. Using the program
as shown above, Timer 1 will have the highest priority, then Timer 2,
etc. The user might want to assign different priorities to the interrupts
by testing the bits in a different order.

Generating Delays with a Timer

The reader should study the details of the timers in the manufac­
turer's data sheets before using them. Timer 2 is simpler than Timer 1.
Both timers are not identical, and it is important to understand their
specific characteristics before using them. Since a complete study of
the timer operating modes is not necessary for the purposes of this
book, we will show here two typical examples of the generation of de­
lays, using respectively Timer 2 and Timer 1 . Other examples will be
presented in the applications chapters.

Generating a One-Shot Delay with Timer 2

The program appears below:

ONESHOT2 LDA #0
STA ACR SELECT MODE
STA T2LL LOW-LATCH=O
LDA #$01 DELAY DURATION
STA T2CH HIGH PART=OlHEX. START
LDA #$20 MASK

LOOP BIT IFR TIME OUT?
BEQ LOOP
LDA T2CL CLEAR TIMER 2 INTERRUPT

Bits 6 and 7 of the ACR must be set to zero to specify the one-shot

54

THE INPUT OUTPUT CHIPS

mode (PB7 not used with T2). Since we assume here that none of the
other resources such as the shift register are being used, we simply
load all zeroes into the ACR register:

LOA #0
STA ACR

Timer 2, like Timer 1, contains a 16-bit OR so that the two halves of
the register must be loaded separately. We will first load the low half,
then the high half:

STA T2LL
LOA #$01
STA T2CH

Loading the value $01 into T2C-H also results in clearing any inter­
rupt flag and starting the counter automatically.

Fig 2-28 shows that bit 5 of the IPR is the one indicating that Timer
2 has timed out. Bit 5 of the IPR therefore must be tested for the value
'' 1.'' This is accomplished by the next three instructions:

LOOP
LOA
BIT
BEQ

#$20
IPR
LOOP

BIT 5= 1

The value 20 hexadecimal is equal to "00100000." It is used to test
whether bit 5 is indeed a" 1." The BIT instruction performs a logical
AND, without modifying the contents of the accumulator. As long as
bit 5 remains "O," the program loops, waiting for the Timer 2 inter­
rupt. Whenever Timer 2 generates the interrupt, it is detected, and the
program exits the loop.

Finally, the program must explicitly clear the Timer 2 interrupt be­
fore branching to another task. This could be accomplished by reload­
ing a new value into the counter register. However, since this program
should be useful in any environment, we make no assumption as to
what will be done after this program terminates. The interrupt flag
will be cleared either by writing into T2C-H or by reading T2C-L.
Since we do not want to start the counter running again, we will not
write in T2C-H, but instead read T2C-L, simply to clear the interrupt:

LOA T2CL

55

6502 APPLICATIONS BOOK

Generating a One-Shot Delay with Timer I

We will use Timer I here in a manner essentially analogous to Timer·
2 above. However, Timer I is equipped with a true 16-bit latch regis­
ter, unlike Timer 2. Ther program appears below:

ONESHOTI LDA #0
STA ACR I-SHOT MODE - NO PB7

PULSES
STA TILL LOW LATCH
LDA #$01 DELAY
STA TICH LOADS ALSO TICL AND

STARTS
LDA #$20

LOOP BIT IFR TIME OUT?
BEQ LOOP
LDA TILL CLEAR INT FLAG

The program is essentially analogous to the one above, and should be
self explanatory. The only difference is that the low latch is loaded
first, then the program writes into Tl C-H, the high part of the counter
proper. This instruction also results in transferring the contents of
TIL-L into TIC-L (see Fig 2-34 showing the 6522 internal registers)
and starts the counter. The rest of the program is identical.

Generating a Pulse

The above programs will generate a delay for a program. If an ac­
tual pulse must be generated, then the proper output pin must be spe­
cified. For Timer I, the PB7 pin will be used to provide the output
pulse PB7 will be an output if either DDRB7 or ACR 7 equals "I."

Timer 2 does not send a direct pulse on a pin for output. The pulse
must be generated by adding instructions which explicitly turn on and
off one of the bits of the port. However, Timer 2 may count pulses
easily in its pulse-counting mode. Pin PB6 is then used for this pur­
pose. This underlines again the practical differences between these
timers. In any practical application, the reader is encouraged to review
the manufacturer's data sheets to take best advantage of them.

56

THE INPUT OUTPUT CHIPS

Shifting in and out

The shift register SR is connected to pin CB2 of the 6522. All pulses
will be generated or sensed on this specific pin. The combination of
bits 2, 3, and 4 of the ACR determines the way in which the shifter
operates. The 8 combinations are shown on Fig 2-33 above.

In our examples so far, the contents of bits 2, 3, 4 of the ACR have
always been zero, so that the shifter register was disabled. The shifter
will shift in or shift out under control of one of three possible timing
sources: Timer 2, Phase 2 of the clock, or an external clock. In addi­
tion, it provides a special mode with a free running output at the rate
determined by Timer 2. The reader is again referred to the manufac­
turer's data sheets for the complete specifications on the shifter. We
will simply present here two typical examples of shifting in and shift­
ing out.

Shifting in With an External Clock

The program appears below:

SHIFTIN LOA #0
STA ACR CLEAR SR
LOA #$0C EXTERNAL CLOCK MODE
STA ACR ST ART SHIFTER

LOOP LOA IFR DONE FLAG?
AND #$04 TEST BIT 2
BEQ LOOP WAITING LOOP
LOA SR READ 8 BITS INTO ACC
STA $20 SAVE IN MEMORY

The shift register is first cleared by loading zeroes into the ACR:

LOA #0
STA ACR

Then the correct operating mode is specified by loading the value
"011" in bits 4, 3, 2, respectively of the ACR:

LOA #$0C
STA ACR

57

6502 APPLICATIONS BOOK

This specifies a shift-in under control of an external clock (see Fig
2-33).

Once the 8 shifts have occurred, the shifting mechanism is auto­
matically disabled, and the SR interrupt flag is set in the IFR register.
After the shifting has been started, the program therefore simply
checks the contents of bit position 2 of the IFR (see Fig 2-28) to verify
whether it is '' 1.'' The polling loop appears below:

LOOP LDA
AND
BEQ

IFR
#$04
LOOP

At this point, the contents of shift register SR simply need to be
transferred into memory location 20 as usual:

LDA SR
STA $20

Shifting out Under Phase 2 Control

The program is essentially similar to the one above except that the
control bits to be loaded in tbe ACR are different, in order to specify
the proper operating mode. Assuming that we simply have to send one
word of 8 bits out, no waiting loop is necessary here to determine
whether the shift is finished or not. The program appears below:

SHIFTOUT LDA #0
STA ACR CLEAR SR
LDA #$18
STA ACR cl>2 OUT MODE
LDA $20 READ DAT A FROM

MEMORY
STA SR

As above, the shift register is first cleared, then the ACR is loaded
with the value "18" hexadecimal, which specifies the combination
"110" into bit positions 4,3 and 2. This specifies the shift out at a rate
controlled by phase 2 of the system clock:

LDA #0
STA ACR

58

LDA #$18
STA ACR

THE INPUT OUTPUT CHIPS

The data is then fetched from memory location 20, and deposited into
the shift register. Depositing the data ip.to the shift register automati­
cally starts it.

LDA $20
STA SR

If we had to send a succession of 8-bit words, the program here should
wait for one shift to be completed before starting the next one. This
would be accomplished by a waiting loop like the one above. Once 8
bits have been shifted out, the 6522 automatically sets bit 2 of the IFR
(see Fig 2-28) . The program therefore would simply test continuously
bit 2 of the IFR until it takes the value "1." Once the value "l" has
been detected, the shift will be resumed.

Summary of the 6522

The three functions of this component are: PIO, timer, shift. Addi­
tionally, complex control signals can be specified for the PIO and the
timer. The function of the possible control signals and options has
been described. This component should be viewed as a set of three sep­
arate functions. The functions of Port A and Port B are essentially
similar but not symmetrical: the two timers have some common fea­
tures but offer different possibilities. Finally, the shift register is
essentially symmetrical on input and output and can be used to receive
or transmit bits or words at any set frequency from a number of exter­
nal clock sources.

Exercise 2-4: Save in a 2-word memory table at location BUFFER two
successive data words from DEVICE 1. DEVICE l supplies an active
low-to-high READY strobe. It requires an acknowledge signal (high
pulse).

Exercise 2-5: Same as 2-4, except DEVICE l requires an active-low
START pulse, and responds with the READY signal.

Exercise 2-6: Send data to DEVICE 2 from memory location BUF­
FER. DEVICE 2 supplies a BUSY signal when not ready.

59

6502 APPLICATIONS BOOK

Exercise 2-7: Same as 2-5, but DEVICE 2 requires a STATUS strobe
to supply a READY /BUSY answer.

Exercise 2-8: Turn a printer on with a "I" on the control line, wait for
READY, send a character, turn it off

Exercise 2-9: Count JO input pulses on PB6.

Exercise 2-10: Generate a pulse of I ms on PB7.

Exercise 2-11: Shift out 8 bits from memory location BUFFER at
Timer 2 rate.

DATA PORl A

aus

EJ
RSO EJ

PORTB

BUS
Nf,-A9

Fig. 2-36: 6530 Internal Architecture

60

THE INPUT OUTPUT CHIPS

THE 6530 ROM-RAM 1/0 TIMER (RRIOT)
(RRIOT stands for ROM-RAM-I/0-Timer).

The 6530 is a special combination component which combines four
functions usually distinct: a PIO, a timer, a RAM and a ROM. The in­
ternal architecture of the 6530 is shown on Fig 2-36. It is equipped
with the usual two PIO ports, each one of them with its own data-di­
rection register. However, there are no control lines or interrupt logic
associated with the ports. The timer is connected to port B. The RAM
memory provides 64 bytes, the ROM provides lK bytes. A ROM, once
programmed, cannot be changed. Since it is uneconomical to produce
ROM's in small quantities, the 6530 is only used in situations where a
large number of identical components is going to be produced. As an
example, the KIM board uses two 6530's which contain the internal
control program or "monitor."

Three pins on this component have a dual function: CS1 and CS2
are mask options intead of PB6 and PBS. Also, PB7 may be used as
an interrupt request IRQ.

The Interval Timer

The interval timer is equipped with an 8-bit register, and may be
used in one of four modes. Depending on the values AO and Al of the

A2 Al AO

0 0 0

0 0

0 0

0 f

0 0

0

0

BUFFER A

DORA

BUFFER B

DDRB

TIMER 1T

(W)TIMERBT
(R)INTFLAG

TIMER64T

TIMER 1024T
(R)INTFLAG

Note: A3 specifies
whether interrupt
is used.

+IRQto PB7

NOIRQtoPB7

+IRQto PB7

NOIRQtoOB7

Fig. 2-37: 6530 Memory Map

61

6502 APPLICATIONS BOOK

address lines, it will count in increments of 1, 8, 64, 1024 times the sys­
tem clock. To the programmer, the timer appears as a set of 4 memory
locations as shown on Fig 2-37.

When using the timer, pin PB7 may be used as an interrupt pin.
When used as an interrupt, pin PB7 must be programmed as an input.
When not used as an interrupt, it may be used for any usual purpose.
For details on the utilization of PB7 as interrupt, the reader is referred
to the manufacturer's data sheets.

THE 6532 RIOT

The 6532 is essentially a 6530 without the ROM. The RAM, how­
ever, is larger: it provides 128 words. In addition, the PA7 line on this
device may be used an an edge-detecting input. When this mode is used,
an active transition will set an internal interrupt flag (bit 6 of the inter­
rupt flag register).

The internal architecture of the 6532 is shown on Fig 2-38. The ad­
dressing of the chip is shown on Fig 2-39. The rest of the operation of
the 6532 is essentially like the 6530.

Ports A and B are not symmetrical. The main difference between
the two ports is that port B is equipped with push-pull buffers which
are capable of sourcing 3 mA. at 1.5 volts. This allows the direct con­
nection of this port to LED's or Darlington transistors. Further, port
A reads directly from the pins. On port B, data is read from the output
register instead of the peripheral pins.

62

DATA
&US

ADORESS
&US

(AO-Ab)

IIS
cs,
=
jil2
RIW
ffl --r-L~__j

Fig. 2-38: 6532 Internal Architecture

POR1 A
(AJ moy be control)

POOT&
(87 moy be co,,trol)

THE INPUT OUTPUT CHIPS

RS A4 A3 A2 Al AO R/W

0
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 . 1 0 0 0
1 1 . 1 0 1 0
1 1 . 1 1 0 0
1 1 . 1 1 1 0
1 . 1 0 1
1 1 1 1
1 0 1 0

• disable (OVenoble (1) INT from timer to IRQ
•• di>able (OVenoble (1) INT from PA7 10 IRQ '
.... nego1ive (0Vposi1ive (1) edge detect

SELECTION

RAM
CAA
DORA
ORB
DORB

WRITE TIMER + 1T
+BT

+b-CT
+102~T

READ TIMER
READ INTERRUPT HAG

WRITE EDGE DETECT CONTROl

Fig. 2-39: 6532 Addressing

SUMMARY

Most applications will require at least the use of two or more ports
on one or more PIO's, and the use of a programmable timer. Still
more complex applications will require the use of control signals and
the possible use of automated shifts. All the components we have re­
viewed - the 6520, the 6522, the 6530 and the 6532 - provide two PIO
ports. Except for the 6520, they all provide at least one programmable
timer. A comparison table of the four input-output devices appears
on Fig 2-40.

One or more of the above PIO's will be used in all the applications
in this book.

6520 6522 6530 6532

PORT ALINES 8 8 8 8
PORTB LINES 8 8 5 to 8 8
CONTROL LINES, A 2 2 0 0
CONTROL LINES, B 2 2 0 0
DDRA 1 1 yes yes
DDRB 1 1 yes yes
TIMER 1 yes yes yes
TIMER 2 yes
ROM lK X B
RAM 64 X 8 128 X 8
OTHER - add 'I control registers 4 timer ratios 4 timer ratios
INTERRUPT 2 1 oplional 1

Fig 2-40: Comparison Chart of the Four PIO's

63

CHAPTER3

6502 SYSTEMS

INTRODUCTION

The applications presented in this volume will be connected to a
"standard" 6502 system. The organization of such a "standard
system" will therefore be presented first. Then, some real 6502 boards
will be described and will be shown to be consistent with the standard
model just introduced.

In order to present realistic applications, it is necessary to define an
exact hardware configuration to which the applications are effectively
connected. The majority of the examples presented in the book are di­
rectly applicable to the SYM board, and can be readily adapted to the
KIM board. One section of the next chapter will specifically present
KIM programs. SYBEX does not endorse any board or any manufac­
turer. Simply, for educational purposes, it is more practical to present
applications directly applicable to existing boards, rather than invent a
fictitious one. Most programs written for the SYM are compatible with
the KIM, and can be readily adapted to other boards, such as the
AIM65. The reader is encouraged to exercise his own judgment in deter­
mining which board will be best suited to his needs.

The architecture of the KIM, SYM, and AIM 65 are presented in this
chapter. SYM is presented in more detail so that the reader who does not
have a SYM can understand the interconnections used in the application
programs presented in the following chapters. However, it should be
stressed again that any other board can be used, and that the changes re­
quired in the programs are usually minor.

64

6502 SYSTEMS

A "STANDARD" 6502 SYSTEM

Any standard microprocessor system includes at least the microproc­
essor unit (MPU) and its clock circuit, the ROM, the RAM, and one or
more PIO's. The organization of such a standard system, using the
6502, is shown on Fig 3-1.

£XPAN510N

6502
TOOfVICES

Fig. 3-1: Organization of a "Standard" 6520 System

The 6502 incorporates most of the clock's circuitry within the micro­
processor chip, so that only an external crystal and an oscillating circuit are
necessary. The 6502 and its clock circuit are shown on the left of the
illustration. The 6502, like any "standard" microprocessor, creates three
busses: the address bus (16 lines), the data bus (8 lines, bi-direc­
tional), and finally the control bus.

In the standard system, the RAM memory (read-write memory), the
ROM memory (read-only memory), and the PIO are shown as separate
chips connected to the 3 busses. The ROM will typically contain a moni­
tor program necessary to use the microprocessor board resources, or
else user programs (in industrial applications). The PIO will create two
ports (8 lines each) to communicate with external devices, plus perhaps
some additional control lines. In any practical application, at least two
PIO's will be necessary to provide a sufficient number of 1/0 lines. Some

65

6502 APPLICATIONS BOOK

additional logic is usually required for address decoding and other
functions.

Because several combination-chips are available in the 6502 family,
the ROM, the RAM, and the PIO may be combined on one or more
chips. However, any system using the 6502 will normally incorporate all
the logical elements of Fig 3-1.

Let us now examine some real boards and how they relate to our stan­
dard board.

Fig, 3-2: Photo of KIM-1

THEKIM-1

The KIM-1 was an early board introduced by MOS Technology in
support of their 6502 microprocessor. It incorporates a minimal number
of components, is equipped with a hexadecimal keyboard and with 6
LED's, so that it can be used as a low-cost stand-alone complete micro­
computer board. It is shown on Fig 3-2. Its internal organization is
shown on Fig 3-3.

The KIM-I includes a separate lK by 8 RAM (for the user) and two
6530 combination chips. The reader will recall from the previous chap-

66

6502 SYSTEMS

ter that the 6530 is a combination chip providing a PIO, a programma­
ble timer, a ROM, and a RAM. On this board, there is no need for an ex­
ternal ROM memory since the amount of ROM memory provided by
the two 6530's is sufficient to contain the system monitor. Each 6530
also contains 64 bytes of RAM which are partly used by the system
monitor.

Fig. 3-3: KIM-1 Internal Organization

EXPANSION
CONNEC10/f

Additionally, the board is equipped with a keyboard, 6 LED's, a tape
recorder interface, and a teletype interface. It can be expanded exter­
nally through two edge connectors, called respectively the expansion
connector and applications connector, as shown on Fig. 3-3. The
system memory-map is shown on Fig 3-4. The signals for the two con­
nectors of the KIM are shown on Fig 3-5 and 3-6.

The reader should ascertain that the organization of this board does
meet the description of our standard 6502 system as shown on Fig 3-1.
The details of the pin interconnects are useful to those readers who will
want to connect the applications presented here to this particular board.

67

6502 APPLICATIONS BOOK

00

PAGEO

STACK
I FF

STACK POINTER--·'-, -----!

22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2

I
I
~ .. "' .. .,"' --~ .. '

-~, ,~ ... , .. ',
' I

I

13FF:
1400 ___ _

1700
17FF
1800

i1~66--65.,.,.,:,:,..,.#-2 -

KB Col D
KB Col A
KB Col E
KB Col B
KB Col F
KBRowO
PB5
PB7
PAO
PB4
PB3
PB2
PBl
PBO
PA7
PA6
PA5
PA4
PAI
PA2
PA3
Vss (GND)

I
I

ROM
6530 #I

I ," I
!,,'\, ... ,' ' ..

(EXPANSION)

4K
EXPANSION

1

64 Byte RAM, 6530#1 KIM RAM+Applicat,ons RAM
64 Byte RAM, 6530#2
1/0 & Timer, 6530#1 (KIM 1/0)
1/0 & Timer, 6530#2 (Applications 1/0)

Fig. 3-4: KIM-1 Memory Map

~ KB Row 1
y KB Col C
X KB Row 2
w KB Col G
V KB Row 3
u TTY PTR
T TTY KYBD
s TTY PTR RTRN (+)
R TTY KYBD RTRN (+)
p AUDIO OUT HI
N +12v
M AUDIO OUT LO
L AUDIO IN
K DECODEENAB
J K7
H K5
F K4
E K3
D K2
C Kl
B KO
A Vcc(+5V)

Fig 3-5: KIM Application Connector

68

6502 SYSTEMS

Fig. 3-6: KIM Expansion Connector

22 Vss (GND) :z RAM/R/W
21 Vee (+5) y fi
20 X PLL TEST
19 w R/W
18 V R/W
17 SST OUT u ~2
16 K6 T AB15
15 DBO s AB14
14 DBI R AB13
13 DB2 p AB12
12 DB3 N ABll
11 DB4 M ABlO
10 DBS L AB9
9 DB6 K ABS
8 DB7 J AB7
7 RST H AB6
6 NMI F AB5
5 RO E AB4
4 IRQ D AB3
3 ~l C AB2
2 RDY B AB1
1 SYNC A ABO

Fig. 3-7: SYM

69

6502 APPLICATIONS BOOK

THE SYM-1

The SYM-1 board was introduced by Synertek Systems as an expand­
ed version of the previous board. A photo of the SYM appears on Fig
3-7. Its internal organization is shown on Fig 3-8.

LED'S

tc(YPA.D

c,i

'"'
m

'"'
.4,UOIO

'"'

AU)(l'OfrtS OPnONAl POlfTS
(Al (ISi {.A) fl)

Fig. 3-8: SYM-1 Internal Organization

The essential differences from the previous board are:
• It is equipped with a separate 4K by 8 ROM. A larger ROM size al­

lows a more complex monitor to reside on the board.
• It is equipped with more complex input-output chips and has three

of them instead of two, thereby offering more IO ports and resources.
Because of the extra ports, it also has one more applications connector
than the previous board.

• Additional input-output facilities are available such as four input­
output buffers and part of a CRT interface.

Other miscellaneous differences exist between these boards but are
not relevant for the purposes of this book.

The system memory map is shown on Fig 3-9, and a more detailed
RAM memory map is shown on Fig 3-10. The details of the three con­
nectors are shown respectively on Fig 3-11, 3-12, and 3-13.

70

"l
"l
"l
"l

OPTIONAL ROM
ASSEMBLER/EDITOR

~~so ?\;\t':::,>·w@+.+10i0rAfw ?~vrr::
FFFF INTERRUPT VECTORS (6532)

Fig. 3-9: System Memory Map

0000
ON-BOARD RAM

OOFF . ,Sl ACK"' •·

01 FF STA<;::K ..

02FF
ON-BOARD RAM

03FF ON-BOARD RAM

0400

OPTIONAL
ON-BOARD

RAM

07FF

0800

OPTIONAL
ON-BOARD

RAM

OBFF
ocoo

OPTIONAL
ON-BOARD

RAM

OFFF

Fig, 3-1 O: RAM Memory Map

I PAGE 0

I PAGE 1

I PAGE2

I PAGE3

6502 SYSTEMS

71

6502 APPLICATIONS BOOK

SYNC A ABO
2 RDY B ABI
3 ijl C AB2
4 IRQ D AB3
5 RO E AB4
6 NMI F AB5
7 RES H AB6
8 DB7 J AB7
9 DB6 K AB8

IO DB5 L AB9
11 DB4 M ABIO
12 DB3 N ABII
13 DB2 p AB12
14 DBI R AB13
15 DBO s AB14
16 18 T AB15
17 DBOUT (I) u J2
18 POR V R/W
19 Unused w R/W
20 Unused X AUD TEST
21 +5V y J2
22 GND z RAM-R/W

Fig. 3-11: Expansion Connector (E)

I GND A +5V
2 APA3 B 00
3 APA2 C 04
4 APAI D- 08
5 APA4 E oc
6 APA5 F IO
7 APA6 H 14
8 APA7 J IC

9 APBO K 18

IO APBI L Audio In

Fig. 3-12: Application Connector (A)

72

6502 SYSTEMS

11 APB2 M Audio Out (LO)
12 APB3 N RCN-1 (1)
13 APB4 p Audio Out (HI)
14 APAO R TTY KB RTN (+)
15 APB7 s TTY PTR (+)
16 APB5 T TTY KB RTN (-)
17 KBROWO u TTY PTR (-)
18 KB COL F V KB ROW 3
19 KB COL B w KB COL G
10 KB COLE X KB ROW 2
21 KB COL A y KB COL C
22 KB COLD z KB ROW 1

(1): Jumper Option

Fig. 3-12: Application Connector (A). (continued)

GND A +5V
2 -VN B +VP
3 2 PA 1 C 2 PA 2
4 2 CA 2 D 2 PAO
5 2 CB 2 E 2 CA 1
6 2 PB 7 F 2 CB 2
7 2 PB 5 H 2 PB 6
8 2 PB 3 J 2 PB 4
9 2 PB 1 K 2 PB 2

10 2 PA 7 L 2 PB 0
11 2 PA 5 M 2 PA 6
12 2 PA 3 N 2 PA 4
13 RES p 3 CA 1
14 3 CB 1 R SCOPE
15 3 PB 2 s 3 PB 3
16 3 PB 0 T 3 PB 1
17 3 PA 6 u 3 PA 7
18 3 PA 3 V 3 PA 0
19 3 PA 4 w 3 PA 1
20 3 PA 5 X 3 PA 2
21 3 PB 5 (B) y 3 PB 4 (B)
22 3 PB 7 (B) z 3 PB 6 (B)
(B): Buffered

Fig. 3-13: Auxiliary Application Connector (AA)

73

6502 APPLICATIONS BOOK

AbOO ORB {Pea TO P87) 1/0doto, port A

AbOI OltA. (PAO TO PA7) used for c.on•ol-offem honchhok•

Ab02 DOR8 I do10 dl,~o;on

DOR A
,e;11ters

AbOJ

Ah<)< Tll-VTlC-l coun1er-low

AbOS TIC-H couri1er-hlgh

hmet'I
Ab06 TJL-l lotch-low

Ab01 Tll-H latch-high

lolch-low I ,;me,2

Ab08 T2l-VT2C-L count low

A>ul T2C-H counlfN'-low

AbOA SR d,iflregister

AbOB ACR oul,1,ory

} func110,,

"""" PCR {C.Al,CA2,C82.CB1) pe,,pheral ~Ofllrol

AbOO .. '""" } '"'en'vpf
Ab<(enable control ••
Ng ORA

outpul r9-9i11er A

(does no1 affect hondihoke)

b•O for VIA Ir.
b•8 for VI.A 1'1,
b•CforVIAIJ.

Fig, 3-14: Memory Map for the 6522's

A41 F TIMER~ 1024

A41E TIMER+64T

A41D TIMER+BT

A41(TIMER~ IT

A407
(W) EDGE DETECT

(R) INT FLAGS

A406 (W) EDGE DETECT
(R) TIMER

A405 (W) EDGE DETECT
(R) INT FLAGS

A404
(W) EDGE DETECT

(R) TIMER

A403 DDRB

A402 ORB

A401 DDRA

A400 ORA

Fig. 3-15: Memory Map for the 6532

74

6502 SYSTEMS

The memory map for the 6522's is shown on Fig 3-14, while the mem­
ory map for the 6532 is shown on Fig 3-15.

Since some implementation details will be used (or worked around) in
some of the application programs, two relevant details are presented
below.

Fig 3-16 shows the four buffered outputs available on PB4 through
PB7 of 6522 #3. Fig 3-17 shows the connection to the LED's and the
keyboard.

6522

#3

AA CON NECTOR

PB4 BUFFER - y

BUFFER -PBS - 21

PB6 BUFFER - 2

PB7 BUFFER - 22

Fig. 3-16: The Four Buffered Outputs

THEAIM65

The AIM 65 is shown on Fig 3-18. This unit, developed by Rockwell
International, consists of two boards. One of them is the microcompu­
ter board, equipped with a 20-column dot-matrix printer, and a 20-char­
acter alphanumeric display. The second board is a full ASCII keyboard,
which is attached directly to the other one. The printer operates at up to
120 lines per minute, using a five-by-seven dot matrix to print the com­
plete ASCII 64-character set (upper case only). In its minimal version,
the AIM 65 is equipped with a comprehensive monitor (8K) lK of RAM,
two 6522's, one 6532, plus the usual interfaces (teletype, two audio cas­
sette interfaces, and naturally the keyboard interface). Several addi­
tional chips can easily be placed on the board. Further, the user appli-

75

6502 APPLICATIONS BOOK

76

PA7

P80 ...

A.-17 A-Z A-X A-V

.. , 1--------.o-l .. , -------...; ... 1---------===~ ... 1---------­... 1---------­
P& 7 1-------~~-

Fig, 3-17: Keyboard and LED Connection

Fig 3-18: AIM65 ls a Board with Mini-Printer
and Full Keyboard

6502 SYSTEMS

cations connector is identical to those described for the previous
boards. A user developing applications for this specific board will there­
fore only have to modify the programs presented here to fit the memory
assignments of the AIM 65 PIO's.

OTHER BOARDS

Other boards are manufactured by various manufacturers such as
Ohio Scientific.

Overall, all 6502 boards fit the description of our "standard system."
As long as they use the same 1/0 chips (and nearly all do, as these chips
offer strong advantages), there should be virtually no modification
needed to the programs presented in this book, except for the PIO ad­
dresses, and the possible unavailability of specific 1/0 lines.

The SYM A and E connectors are equivalent to the KIM and AIM
edge connectors. The vertical board, on the left of the power supply of
Fig 3-19 below, is a 16K memory expansion board connected through the
E connector.

At the foreground, two experiments are connected through the A con­
nector: a hexadecimal keyboard, and a microprinter. They are described
in chapter 6.

Fig 3-19: KIM/SYM/ AIM Connector Compatlblllty

77

CHAPTER4

BASIC TECHNIQUES

INTRODUCTION

In this chapter, we will connect a 6502 board to basic input-output
devices. We will connect it to simple output devices such as light-emit­
ting-diodes (LED's), relays, and a loudspeaker. On input, we will con­
nect it to a set of switches. Then, we will use these resources to start
developing simple application programs such as a Morse generator, a
time-of-day clock, a simple home control program, and even an auto­
matic telephone dialer. We will then present applications which are a
direct application of these techniques: a siren, a pulse meter, a music
program, a mathematical game. Then, in the following chapter we will
develop more complex programs using these basic input-output de­
vices and more complex ones.

Few components are needed to actually realize the applications
board for this chapter. A picture of the actual board is shown on Fig 4-0.
All the components can be purchased at low cost from any electronics
store. The reader is strongly encouraged to acquire these few electronic
components, and wire them as indicated in this chapter, in order to
effectively apply the programs that will be described. Naturally, this
will require access to a 6502-based board.

In order to present real programs, the hardware configuration of
the SYM board is used in the first part, and the KIM for the second
one. However, all of these programs should run with minimal modifi­
cations on any other 6502 board (see Chapter Two).

78

BASIC TECHNIQUES

The programs to be developed in this chapter are simple, but as­
sume a basic understanding of the 6502 instructions, as provided by
the preceding book in the series, reference C202 ("Programming the
6502").

The list of components required for the applications programs in
this chapter is:

perforated board
switches
LED driver
LED's
12 V relays
speaker
variable resistor
resistors
male 120 V AC plug
female 120 AC plugs

(1)
(4)
(1)
(1 or more)
(3)
(1) (high impedance preferred)
(1)

(1)
(2)

The hardware connection of the various components on the board
will be described for each application.

It is not indispensable to assemble an applications board to read this
chapter. However, many exercises will be suggested in this chapter and
the following ones. Although they can be developed on paper, true
programming expertise is best acquired through actual experimenta­
tion. The reader is therefore again encouraged, either before or after
reading this book, to start programming on real hardware.

The goal of this chapter is to teach the basic hardware and software
interfacing techniques which are required to connect any "standard"
6502 board to simple external devices. At the end of this chapter, you
should know how to use the main resources of the input-output chips,
and how to write programs which will sense and control input-output
devices. We will build upon this knowledge in the next chapter and
develop more complex industrial and home applications.

79

6502 APPLICATIONS BOOK

80

Fig, 4,0: Complete System with Power Supply, Micro­
computer Board, Tape Recorder and Applications Board

BASIC TECHNIQUES

SECTION 1: THE TECHNIQUES

RELAYS

A relay is used to control an external high voltage or high current
circuit: the control circuit is isolated from the external one through the
relay. A relay requires DC current. The current flows through a coil,
producing a magnetic field. This field will provoke in turn the closure
of a movable contact. The external circuit may be alternating current
(AC) or direct current (DC). In order to control external devices using
a significant current of voltage, such as appliances, we will use relays.

The SYM board has a special provision for high current or high
voltage devices. Four buffered output ports are available on the
board. They are respectively connected to bits 4, 5, 6, and 7 of the in­
put-output register B of the PIO (6522-029) (see Fig 4-1). We will,
therfore, directly use these special outputs which can control relays.
On any other board which has only PIO outputs (such as KIM) a tran­
sistor or buffer must be used. The use of a 7404 Hex Inverter is
shown on Fig 4-2 to control three external relays from two output lines
of a 6530.

6522

#3

AA CON NECTOR

PB4 BUFFER -y •
BUFFER -PBS - 21

PB6 BUFFER - 2

PB7 BUFFER -22

Fig. 4-1: 1/0 Buffers

81

6502 APPLICATIONS BOOK

6530 740,C II

Fig. 4.2: 6530 Relay Interface

The Hardware Interface

The connection diagram for a single relay appears on Fig 4-3. This
relay may be, for example, a 12 volt relay with a 50 to 500 ohms coil.
The contact can be SPST (Single pole, single throw = one contact) or
SPOT (Single pole, double throw = two contacts) at 10-15 amps. The
current rating of the relay contacts should be sufficient to handle the
external device connected to it. Most house appliances do not draw
more than 10 to 15 amps so that the above specifications should be
sufficient for home applications.

OUTPUT

+ 12V

Fig. 4-3: Connecting a Slmple Relay

Note on the illustration that a clipping diode is connected in parallel
to the coil. This is an important precaution with any relay to avoid
damage to the PIO buffer or amplifier. A reverse voltage spike occurs
when the relay is turned off. Any diode which will handle the voltage
may be used. For example, an IN914 should be sufficient for our pur­
poses.

82

BASIC TECHNIQUES

RELAY

RESISTOR

Fig. 4-4: Precautions on Device Side

On the device side of the relay, two precautions can be taken: a
capacitor may be placed in parallel to the output to absorb the surge
due to contact closure (this insures a longer life for the relay contacts).
Also, if a significant current may be drawn, a resistor should be placed
in series (see Fig 4-4).

A double-pole relay can be connected in exactly the same manner
and the connection diagram appears on Fig 4-5. Such a relay is capa­
ble of switching two independent, separate circuits simultaneously.

(3 CONTACT DUAL OUTPUT)

Fig. 4-5: Connecting a Double Pole Relay

Let us now consider a practical application. We will connect two re­
lays, Rl and R2 respecitvely, to bits 6 and 7 of port B of the SYM PIO.
These two relays will be used to control AC devices. In the simplest
case, we will assume that these AC devices are two independent lamps.
This will allow us to test the program easily, by merely verifying
whether the lamps are turned on and off correctly. Naturally, instead
of a lamp, the device could be any household device or appliance
which does not overload the relay. The interconnect diagram appears
on Figure 4-6.

83

6502 APPLICATIONS BOOK

AA-22 (PB7) __ .,,_-1,. __

+ 12V---o.--'--'

AA-Z >---o-....... -
(PB6)

RELAY Rl

II

RELAY R2

II

Fig. 4-6: Connecting Two Relays to the PIO

EXTERNAL
CIRCUIT

EXTERNAL
CIRCUITS

Let us inspect Figs 3-11, 3-12 and 3-13 showing the connection points
for the three SYM connectors: we see that the four buffered oputputs,
called PB4, PB5, PB6 and PB7, are available repectively on pins Y,
21, Zand 22. The connection points marked PB5 through PB7 on our
illustration, therefore, simply need to be connected by a wire to the
appropriate pin of the '' auxiliary application connector.''

84

CONNECT
TO 120V AC

OUTLET

1"10V 120V
FEN.ALE FEMAlE

PLUG PlUG

Fig. 4-7: External Circuit for the Relays

BASIC TECHNIQUES

On the external circuit side of the relay, one AC plug is used which
will be connected into a wall outlet and supply power to the two out­
lets which will be controlled by the microcomputer. These two female
outlets are connected to the relays as indicated on Fig 4-7. They are
powered in parallel from the AC plug. However, either one of them
can be turned on independently under microcomputer control. Let us
now implement the software control for these relays.

ACOO

AC05

AC06

AC07

ACOB

ACOF

IOR-B

TlC-H

Tl l-L

Tll-H

ACR

Fig 4-8: Memory Map for 6522 #3 (Third 6522 of SYM)

The Software Interface

Each of the two circuits connected to relays Rl and R2 will be
turned on whenever the corresponding relay is actuated. The relay will
be turned on by setting the corresponding control bit to 1. By inspect­
ing Fig 4-8, it can be seen that Port B for the 6522 #3 is located at
Memory Address ACOO. The contents of memory location ACOO are
illustrated on Fig 4-9. Let us now turn the relays on and off.

85

6502 APPLICATIONS BOOK

MEMORYADDRESS ,-----,~-.----.----,---,---,---..----,

ACOQ: 7 6 5 4 3 2 0

.__ _______ _,.. PB4 (UNUSED)

'-----------~ PB5 (RELAY R3)
'--------------~ PB6 (RELAYR2)

.._--------------~ PB7 (RELAY Rl)

Fig. 4-9: Port B of 6522 #3

First, we must configure Port Bas an output port. To simplify, we
will specify that bits O through 7 be outputs, even though we use here
only bits 5, 6, and 7. The convention could be changed in a different
application. It will be remembered from Chapter 2 that, in order to
specify the direction in which input-output lines will be used, the
corresponding bit position of the Data Direction Register must be
loaded with a zero or a on~. A one in the Data Direction Register will
specify an output. A zero will specify an input. Loading all ones in the
Data Direction Register guarantees that all bits will be used as out­
puts.

CTRL

21 RELAY!
Y RELAY 2
Z RELAY 3

-,-,
I I
I I ,r ..
II
II
II
II
II
II

o--.+--CMN2

Fig. 4-10: Detail of Relay Connection
on the Applications Board

As a remark, when programming, it is a good policy to always make
things as simple and consistent as possible. Since we assume here that
(for the time being) no other devices are connected to the other lines of
Port B, it is safer to configure all lines as either inputs or outputs.

86

BASIC TECHNIQUES

Specifying all bits as outputs will be accomplished by the following
two instructions:

LDA #$FF
STA $AC02

LOAD A IMMEDIATE WITH 11111111
STORE A INTO ADDRESS AC02
HEXADECIMAL

It can be verified on Fig 4-8 that AC02 is the address of the Data Di­
rection Register for Port B of the 6522 device #3. "FF" hexadecimal is
equivalent to "11111111" binary. Let us now turn on the relay con­
nected to PB6.

LDA$ACOO
ORA #$40
STA $ACOO

READ CURRENT VALUE OF PB
FORCE PB6 TO 1
OUTPUT

The first instruction is used to read the current value of Port B. Be­
cause several devices or relays may be presently connected to Port B,
we do not want to simply write a pattern such as "01000000" into
Port B; this would turn on the relay connected to PB6, but would also
turn off all the other relays! Therefore, we want to read the present
status of PB and only change a single bit, PB6. The change is accom­
plished with the logical OR instruction, the second in our program
(ORA). The logical OR respects the integrity of all the bits, and forces
to "1" the specified bit location. If we wanted to turn on PB7 instead
of PB6, the pattern "80" (hexadecimal) would be used, instead of
"40." Finally, the resulting bit pattern is stored at address ACOO,
which corresponds to PB; the relay connected to PB6 is then turned on.

Exercise 4-1: Write the three-instruction program which will turn on
the relays connected to PB6 and PB7 simultaneously.

Let us now turn off the relay connected to PB6:

LDA $ACOO
AND #$BF
STA $ACOO

READ THE CURRENT STATUS OF PB
SET BIT 6 TO 0
STORE RESULTING VALUE IN PB

The logical-AND instruction is used to force a "O" at the specified bit
location. All other bit locations are not affected. ("BF" hexadecimal
is "10111111" in binary.)

87

6502 APPLICATIONS BOOK

Note: The AND instruction is traditionally used to zero a specified
bit location. However, an identical result may be obtained using the
EOR instruction. The program remains the same except that the AND
instruction becomes:

EOR #$40

The advantage is that the pattern used to turn off is the same as the
one used to turn on. This eliminates a possible mistake. The reader
should naturally verify that this is a legitimate way to force a zero.
This is because the exclusive OR of '' 1 '' and '' 1 '' is ''O. '' If bit 6 was
a "l," the "40" pattern will therefore force it to a zero. All other bits
will be unaffected.

Verification
Let us verify now that these simple instructions are indeed sufficient

to turn our relays on and off. We will connect two lamps, or two de­
vices, to the two relays and type in these instructions at the keyboard,
then verify that the lamps are turned on or off. Since the keyboard re­
quires that input be in hexadecimal form, here is the hexadecimal
equivalent of the two above programs:

To turn the relay on:
AD 00 AC
09 PATTERN (PATTERN stands for an 8 bit pattern)
80 00 AC

The program to turn the relay off is:
AD 00 AC
49 PATTERN
80 00 AC

If you have a board you should now key in these two programs and
verify their correct operation.

SWITCHES

Two main types of switches may be connected: a push-button
(SPST switch) or a two-position switch (SPOT). The connection of an
SPST is illustrated in Fig 4-11. With the connection indicated, the
switch is in the logical state "l" when the contact is open and in state
"O" when the contact is closed. If the opposite should be desirable,
the polarities would simply be reversed on the switch contact.

88

BASIC TECHNIQUES

The connection of an SPOT switch (a two position switch) is illus­
trated in Fig 4-12. The connection is straightforward. One of the con­
tact positions will be logical state '' 1,'' while the other one will be logi­
cal state "O."

INPUT -----+ .. f_i_oK __ /?
PORT I

Fig. 4-11: Connecting an SPST

+sv

b
INPUT-------o
PORT

f
GND

I l
Fig. 4-12: Connecting an SPDT

Connecting Four Switches

GND

We will use lines 1, 2, 3, and 4 of Port B of the 6522, as four input
lines used to sense the status of the external switches. The actual con­
nection appears on Fig 4-13. Let us examine the program.

PB1
(A-10)

PB2
(A-11)

PB3
(A-12)

PB4
(A-13)

+SV---<>

r--°lswitchS1

GND +sv---o

r-° I switch S2

+sv~ GND

r---°lswitch S3

GND +sv--o

rlswitchS4

GND

Fig. 4-13: Connecting Four SPDT Switches to the SYM

89

6502 APPLICATIONS BOOK

Fig, 4-14: An SPDT Switch

" JI

Fig. 4-15: Connection Detail for Four SPDT's

The Software Interface

We first need to configure PB!, PB2, PB3, and PB4 as input lines
on Port B. This is accomplished by loading the appropriate pattern in
address "A002," the data direction register for Port B.

LDA #$EO
STA $A002

SET BITS 01234 AS INPUTS

The pattern "EO" is used to configure lines 0, 1, 2, 3, 4 as inputs
and lines 5, 6, 7 as outputs (they may be connected to external relays).
"EO" hexadecimal is "11100000" in binary. Each "O" sets an input.
Each" l" sets an output. "El" could also be used.

Let us now read the value of the switch and branch to a specified
memory location determined by this value.

LDA #SWITCHPTR

BIT $AOOO
BEQ ANY ADDRESS

90

"02" FOR Sl, "04" FOR S2, "08"
FOR S3, "10" FOR S4
AOOO IS ADDRESS
WILL BRANCH TO SPECIFIED
ADDRESS IF SWITCH WAS ZERO
(OFF)

BASIC TECHNIQUES

Alternatively, if we wish to branch to a specified memory location if
the switch is "l" (on), we would substitute the instruction BNE in­
stead of the BEQ in the last line of the program.

Testing the Program on the Board

The hexadecimal code for the above program is:

A9 SWITCHPTR
2C 00 AO
FO ANY ADDRESS or ''DO'' ANYADDRESS

SPEAKER

An external speaker may be connected directly to a pin of one of the
PIO devices. Pin 7 is often more powerful and is generally used. On
the 6522 device, the polarity of the PB7 output signal can be controlled
by one of the internal interval timers. The timer will be used to gener­
ate a tone of given frequency. The preferred position for connecting
the speaker will therefore be PB7. The connection diagram appears
on Fig4-16.

PB7
(A-15)

+sv

Fig. 4-16: Connecting the Speaker

When the buffered output of the SYM is used (6522 #3) a resistor
should be placed in series with the speaker to limit the output current.
Instead of connecting the speaker directly to a PIO output pin, the
circuit of Fig 4-17 may be used to provide a louder sound.

+sv

Fig. 4-17: Obtaining a Louder Output

Warning: a variable resistor is shown on Fig 4-17 for convenience.
However, if it is set to zero, it will probably burn, and destroy the cor­
responding output transistor (this applies also to SYM).

91

6502 APPLICATIONS BOOK

The Software Interface

A sound can be generated by the speaker by merely turning it on
and off at the desired frequency. The sound will not be as "clean
sounding'' as one from a musical instrument since it will have been
generated by a square wave. However, it will be sufficient for our
needs and can be clearly identified by its frequency. We will now build
a practical application

A MORSE GENERATOR

We will develop here a program capable of generating a Morse code
corresponding to any letter of the alphabet. Ths program will activate
a loudspeaker, so that we can verify that the proper Morse code is be­
ing generated. In addition, it will have the capability of turning on or
off an external device so that this morse code could for example be
transmitted over a communications link.

STACX: u,..,sm
fO ,..

,2

"
,. ,,. .,., ,,.

•AGEO •AGE I MGE2 •=>

Fig. 4-18: Memory Allocatlon for the Morse Program

The conventions used by this program are the following:
The program itself will be stored in Page 3 of the RAM, i.e., start­

ing at location 300. This is illustrated on Fig 4-18. This program con­
tains a Morse equivalence table which will serve to generate the proper
bit pattern for any given ASCII character. It will be shown below how
this table is generated. It is assumed that the first character to be con­
verted to Morse is contained in the accumulator at the time the pro­
gram is started.

92

BASIC TECHNIQUES

Further, the speed of the transmission will be adjustable through
the variable SPEED, stored in Page Oat memory location FO (See Fig
4-18). Each time unit (such as the duration of a dot in Morse code) is
expressed internally in milliseconds. Putting the value 100 into vari­
able "SPEED" will result in the duration being 1110th of a second.

Before the program is started, it is assumed that CHAR and SPEED
have valid contents, and that the accumulator contains the first
character to be transmitted. An external subroutine could call this
subroutine repeatedly in order to transmit a string of characters. It is the

responsibility of this subroutine to deposit a character in the
accumulator every time it calls the Morse transmitter.

Let us now examine the algorithm used to transmit the Morse code.

GET ASCII CHARACTER
IN ACCUMULATOR

CONVERT TO
MORSECOOE

SHIFT OUT NEXT
MORSE BIT

GENERATE SHORT
OR LONG TONE

t
DELAY 1 PERIOD

DELAY 2 PERIODS
=SPACE BITS

DELAY BETWEEN
SUCCESSIVE CHARACTERS

~
EXIT

YES

NO
-EXIT

SPAa

DELAY
7PERIOOS

Fig. 4-19: Morse Transmission Flow Chart

93

6502 APPLICATIONS BOOK

This algorithm is illustrated on the flow-chart of Fig 4-19. The pro­
gram first checks for a space character. If found, it will generate no
signal for seven time periods, plus the delay between successive char­
acters.

It then verifies that the ASCII character contained in the accu­
mulator has a valid hexadecimal code. Legal codes must be between
"2C" and "5A" inclusive, in hexadecimal (assuming a 7-bit ASCII
code). Otherwise, an error exit occurs. After validation of character
code, this ASCII code must be converted to its morse equivalent.
The technique will be explained later.

The binary encoding of the morse code will consist of a "START"
bit (a "l "), followed by a "O" for a ".", and a "1" for a " - ".
All unused bits within the 8-bit word, to the left of the start bit,
will be set to "O." This conversion will be performed by the program
by a table lookup described later. Let us now assume that the binary
version of the morse code has been obtained. The sequence of tones
must be generated. The contents of the accumulator will be shifted out
left until the START is found. Following the detection of the START
bit, every "O" will be interpreted as a "·" and every "I" will be inter­
preted as a " - ", up to the eighth bit. For every "O" shifted out, a
short tone will be generated. For every "l" shifted out, a long tone will
be generated. The tone generation will also be described later in detail.

After generating the tone corresponding to a bit, a 1-period waiting
time is inserted, and the next bit of the Morse code is checked until the
last one (the eighth) has been found.

Following the transmission of the squence of tones for a Morse
character, a two period delay is generated. This corresponds to ''space''
bits which are normally inserted at the end of every transmission for a
character. A one-period delay is then generated which separates suc­
cessive characters.

94

(DASH)

SHIFl SINC00£ LEFl
ENTERA"'l' ONRIGHl

ENT£R A START 81T
IN A BINARY CODE·
~c:"'CXXDll)lff

GET NEXT SIGNAl
OfMORSECOOl
("."Oil"-")

(DOT)

SHlf"T e1NCOOE LEFl
fNTflt A 0 '0'' ON RIGH'I

Fig. 4-20: Converting Morse to Binary

BASIC TECHNIQUES

The sequence is clearly illustrated on the flow-chart of Fig 4-20 and
should be verified by the reader. Let us now examine in detail the spe­
cific problems which we have not yet resolved.

Converting ASCII to Binary Morse

We want to establish here a correspondance table between the ASCII
character and the binary representation of its Morse code. Let us illus­
trate this in an example.

The character "B" has a Morse code of " - · · · ".
Every " - " will be encoded by a "1," and every "·" by a "O". The

binary equivalent of " - ... " is, therefore, "1000".

In addition, by convention, we will add a START bit (a" l ") to the
left of the code we have just generated. The resulting code at this point
is: "11000." Finally, every binary Morse code will be contained in an
eight-bit word. The remaining bits to the left of the START bit will now
be set to zero. Our resulting eight-bit code is therefore: "00011000."
In hexadecimal, this is "18".

The hexadecimal representation of the binary morse encoding for B
is: "18".

As an example, the table below shows the hexadecimal equivalent
of A, B, C, D. A complete equivalence table for all legal morse characters
appears on Fig 4-22. The algorithm corresponding to the technique
just described is illustrated by the flow-chart of Fig 4-23.

Letter ASCII Morse binary hexadecimal

A 41 00000101 05
B 42 00011000 18
C 43 -.-. 00011010 IA
D 44 00001100 oc

Fig. 4-21: Converting ASCII to Morse

95

6502 APPLICATIONS BOOK

We now have established an equivalence table for all the ASCII
characters. This table will be called the "Morse table" and will be
stored at the end of the program (see Fig 4-18). Whenever we re­
quire the Morse code equivalent of a specific character, we will access
the proper entry table and find there the binary code. This will be de­
.scribed later when we discuss the actual program.

Hu
Characltr Morse Code ASCII TabltValae

--··-- 2C 73
2D 31

·-·-·- 2E ss
2F 32

0 ----- 30 3F
I ·---- 31 2F
2 32 27
3 33 23
4 34 21
s 3S 20

36 30
37 38
38 3C

----· 39 3E
User definable 3A 01

38 01
< 3C 01

3D 01
> 3E 01

3F 4C
@ User definable 40 01
A 41 0S
B 42 18
C 43 IA
0 44 0C
E 4S 02
F 46 12
G 47 0E
H 48 10
I 49 04
J 4A 17
K 4B 00
L 4C 14
M 40 07
N 4E 06
0 4F 0F
p so 16
Q SI ID
R S2 0A
s S3 08
T S4 03
u ss 09
V 56 II
w 57 08
X 58 19
y 59 18
z SA IC

Fig. 4-22: Morse Equivalence Table

96

BASIC TECHNIQUES

YES

NEXT BIT= l

YES

EXAMINE RIGHT SYMBOL
OF MORSE CODE

SHIFT NEXT BIT RIGHT
INTO RESULT

EXAMINE NEXT MORSE
SYMBOL

SHIFTINA"l"

SHIFT IN O'S UP TO 8 BITS

I
OUT

NO:"."

NEXT BIT=O

Fig. 4-23: Flow Chart for Generating Hexldeclmal
Morse Code

Generating a Tone with the Timer

Our next problem will be to generate a tone of set duration and fre­
quency. We will use here a timer.

- CJ<3::. N = 1 IT

T/2

Fig. 4-24: Square Wave Generates Tone In Speaker

97

6502 APPLICATIONS BOOK

The tone will be generated at the speaker by sending it a square
wave of the required frequency. This is illustrated by Fig 4-24. The
timer can be used to generate this waveform automatically. In order to
obtain this result, we will set the appropriate bits in the control register
ACR (see Fig 4-25), then simply control the length of time during
which this tone or wave form is generated. The actual timing diagram
appears in Fig 4-26. p2 at the top of the illustration is Phase 2 of the
system clock. In most standard 6502 systems the clock has a I micro­
second period. The pulse generated by this timer appears on the PB7
output pin. It will last N + 1.5 subcycles, where N is the value depos­
ited in the counter. This is because the counter of the timer decrements
from N down to 0, and inverses the output port with the next high-to­
low transition of the clock. This is illustrated on Fig 4-26. An interrupt
(IRQ) is also generated at the same time, but will not be used here.

7 6 5 4 3 2 0
I

T2 PB PA
Tl CON- SHIFT REGISTER LATCH LATCH

CONTROL TROL CONTROL ENABLE ENABLE

Fig. 4-25: 6522 Auxiliary Register

~--- ~+15 _____ ~

~_:_IL;~

w::,~--~---:
TIC H • -----+-----

PB7 ----•
OUT

~ N +·-~-:'~--~-+'._~'.cl"--------<'----

Fig. 4-26: Timing Diagram for Tone Generation

98

BASIC TECHNIQUES

Ln order to use the timer, we must, therefore, deposit an appropri­
ate value N in its counter. However, as soon as the contents of the
counter are written, the counter starts running. Since the counter is a
16-bit register, we cannot load it in a single data transfer from the
microprocessor. It must be latched. The timer is, therefore, equipped
with an internal 16-bit latch called TlL. The low part of the latch is
called TlL-L, while the high part of the latch is called TlL-H. The
value N will be deposited in TlL-L and in TlL-H. At this point the
16-bit contents are specified but nothing happens yet. In order to start
the timer, we will give a special·command which will transfer the con­
tents of the latch into the actual counter. This is the "write Tl C-H"
command which appears on the fourth line of Fig 4-27:

LDA #VALUE LO
ST A $A006 LOAD LOW LATCH
LDA #VALUE HI

STA $A007 LOAD HI LATCH
STA $A005 1RANSffR LATCH=START

Fig 4-27: Program to use Timer 1

SET ACR6AND
ACR7TO "1"

= ~ FREE RUNNII\G NC£t

STORE VALUE
IN LATCH

LOAD IT
INTO COUNTER
=START TONE

PLAY TONE FOR
DURATION "DELAY"

TURN OFF ACR7
= STOP TONE

i
OUT

Fig 4-28: Generate Tone of Set Duration with Timer 1

99

6502 APPLICATIONS BOOK

The sequence of events to use the timer should now be clear. It is de­
scribed on the flow chart of Fig 4-28. First, we will set the appropriate
bits of the control register ACR to the required values. The timer
operates in "free-running" mode where it generates a square output
on PB7. This is obtained by setting bits 6 and 7 of ACR to "0" and
"I" (see Fig 4-29 and 4-30). Next, the appropriate value N will be
stored in the latch. Then, it will be transferred into the counter itself to
start it. This will be the starting point for the tone being generated.
Every time that the counter decrements to zero, it will reload the value
stored in its latch register automatically. The timer will therefore from
now on automatically generate a square wave with a half-period of
approximately N + 2. (This is approximate because the low part of the
pulse has an N + 1.5 duration whereas the upper part of it has an N +
2 duration).

ACR7

OUTPUT
ENABLE

0

0

I

I

100

ACR6 MODE

FREE RUN
ENABLE

0 Generate lime out INT when Tl loaded

(ONE-SHOT) PB7 disabled.

I Generale continuous !NT
(FREE RUN) PB7 disabled.

0 Generate INT and output pulse on PB7 everylime

(ONE-SHOT) Tl is loaded.
=one-shot and programmable width pulse.

1 Generate coritinuous INT and square wave

(FREE RUN) output on PB7.

Fig. 4-29: 6522 ACR Selects Timer Modes

ACR

7 6

I. 1 •

0: ONE-S

1' I: FREER
HOT MODE
UNNINGMODE

0: OUTPUT TO PB7 DISABLED
I: OUTPUT TO PB7 ENABLED

Fig. 4-30: Bits 6 and 7 of ACR

L ! ;~f

or,oo
cr:oo
0000
0000
ocoo
0000

0009 or,oo
0009 0000
0010 0000
0011 0000
001:::' 0000
0013 0000
00 l 4 0000
0015 0000
0016 0000
0017 0000
0018 0000
0019 0000
0020 0000
0021 0300 ,o
00:':' 0302 FO " 0023 0304 C9 ,c
0024 0306 90 ..
0025 0308 C9 58
0026 030A ,o
0027 030C AA
00:28 0300 "' " 03
0029 0310 AO OB
0030 0312 .. Fl
0031 0314 OA
0032 031:5 C6 Fl
0033 0317 90 " 0034 0319 ., F2
0035 031B AO " 0036 OJlD OA
0037 031[., F2
0038 0320 AO 01
0039 0322 90 o,
00'10 0324 03
0041
004:'
0043 0326: co
0044 0328: BU o, AO
004:5 OJ2lr: A9 00
0046 032D: BD 06 AO
0047 0330: A9 o,
0048 0332: BO 07 AO
0049 033'5: .,. o, AO
0050 0338: A9 01
00:51 OJJA: BD 00 AO
00:52 0330: ,o " 03
0053 0340: A9 00
00:54 03412: "' o, AO
00::;:5 034:5: BO 00 AO
0056 0348: AO 01
00!'17 '034A; 20 "!.7 03.
0058 034D: C6 Fl
0059 OHF: DO CA
OOAO 0351: AO 02
0061 o3,3: ,o " 03
0062 0356! 60
00.<,3
006,I 0357: ..
006, 0358: OA
0066 0359: OA
OOii.7 035Al AB
ooee 035(1: AO FO
0069 OJ5£l: A' FA
0070 03:SF: CA
0071 0360: DO FD
007:;, 0362! 38
0073 0363: E9 01
007" 03',:5: DO " 1"107:i 0367: •• 0016 0368: DO Fl
0011 036Al ,o
0077 0368! AO 07
0011 0360: ,o ,, Ol
0017 0370: 60
0071 0371! 73
0071 03?2: 31
0018 0373: ..
non~ 0374: 32
0078 0375: 3F
007EI 0376: 2F
0078 0371: 27
0078 0378: 23
0079 0379: 21
0079 037A: 20
0079 037B: 30
0079 037C: 38
0079 037D: JC
0079 037[: 3E
0080 037F: 01
0080 03B0: 01
0080 0381: 01
0080 0382: 01
0080 0383: 01
COBO 038,1! ,c
00(31 0385: 01

BASIC TECHNIQUES

L:r,r

lTHTS IS A SUH''OlJTINE J.i.HlC.H ACCH·TS ASC:I CH;.F,.r,CTfFS
; IN ~HE F..AN>~E :'CH "0 5AH (FLUS :'OH FQF, SF'ACE • ANti f'LAYS
iTl-'EIR l"\QF,SE c::::E EOUI'.11LENT ON A SfEMFF HCCt:[· UF· TO
H·B7, 6.5.2.:-u:::. IT flL<;Q TUf.NS ON AN(I (l!F" PfW• ~~22-
iU.2:5, ANt1 l.l!CH A SU!Tf,BLE DRl'.'ER, THIS BIT ,:;,,-. "-EY .~
;TFANSMITTER, A MAIN F"F'QGRAM UILL Cf,LL Tl-'!'3 SUB~OIJllNE
;l.l[TH THE ASC: 1 tHAR(.l.Cln. Hl TH(AC:CIJMU~ATQf ..
iEXAMfLES OF" THE MAIN f·ROGRAM WOULD lit ONE THAT
;GETS INFUT ri:.oM A•TEi:.MINAL AND SEN[IS MORSE CODE OUT
OTHROIJGH THIS PF.':JGF.:A/1, n~· A PROGF..AM WHTCH RAhWOMTZES
; A 'SEF..IES A CHf.f'-ACTEf's'S AN!• SENI•S THEM F"OR COI 1E ff;ACTJCE.
;THE FormAT FOF,. THE. MORSE cor•E CAHF.ACTEF'S !N Tl-'E TABLE
;IS : MOVItHi no:-o LEFT TO RTGHT , THE FtRST l<ltGH
;BIT <A ON(J IS THE SlART BIT, MH• AF"1ER THIS
;EACH ONE IS A DASH, ANI1 EACH ZERO IS A DOl,

SP(£[,:fFO
COUNT=fFl
CHAR,.Sf::!

,"fJOO
MORSE CMP U:?0

l!Ea SPACE
CMF' U:'C
BCC EXIT
CMP tt5E<
BCS EXIT
TAX
LDA TAEIL[-S2C,X
LDY UB
STY COUNT

STARTB ASL A
DEC COUNT
BCC STARTfl
STA CHAR

NEXT LOA CHAR
ASL A
STA CHAR

: IF A SPACE, IIO SPACE ROUTINE

; SH IF ascn cor•E.
; rs LESS THf.N :!CH, ANII RETURN IF so.
;SEE IF ASCII CODE IS OVER
; ";A.H.1 ~ &E!!1RN tr "iO
;PUT cor,E IN HWEX REO?STER
;GET l'IORSE CHA~ACTER
; NUMI<Ef: Of Bl TS I.D .BE _RIJ!A!E!1 fROtl .e.c.c..wtl.il.A.I.DR

;SHtrT A UNTI!.. STAI.T B!T F"OUNf•

;Now !:,HIFT OUT HORSE CODE (!•DASH, O=DOT)

l[IY tSl ;[IQT: 1 TIN£ PERIOr•, [IH(,'Jl T TO r•OT
flCC S[N[I ; IF CARRY CL[AF,.. nr,r
LDY UJ ;[LSE {1A£H (J TINE Ff'<l0[1G)

I THIS SECTION S£Nf1S A HIGH OUTFUT FOR (Y f<EGISlER J NU
iOF TIME FERIOI+S, ANfo THEN A LOW FOR I TIME l"ERIOO.
SENI1 U•A tfCO

STA SAOOE< ;<;El TIMfR HOPE TQfJ;.'EE F.LINN!NG MOM:
LOA tso
STA •A006
LOA U04
STA SA007
STA •AOO~
LDA Ul
STA SAOOO
JSR ltELAY
LDA tso

; THIS \ltd 11F:,

; f\>-J~ 1Hir •Jf,LU(M'Tfr·MIN•· !Hr l')Nl
; r1r TH[OIJHIJT ({,f'f·f.J)< l'."."11:'.
; TIO".i Slf,i, rs HHIE
i TIJF..N ON flUTI Ul BIT-Fl«)

J[•ELAYFDR ELEMENT TIM[r[R]f)[i

; TUF:N nFF" TtJNF"
;TUhN OFF f)IJH·IJT f<ff rf·JH))

STA SAOOB
STA SAOOO
l[IY tf01

JSR DELAY ,
DEC COUHT
(IN[NEXT

;(,(.Ll'IY F"')F J TIME F'(F,.lOIJ(SFflC.[L[TW[J::t,i [Lf.1'1£.t/151
an(CREMENT CQUt,1T -SEE l.f S &ITS l,IFRE ROTATED
I IF NOT, [lQ ANOTHER ELEMENT

F'YNISH LOY U2 IDELAY FOR J(Tl,IO HERE PLUS PREVIOUS SPACE
JSR D£LAY AT Ebll1 or usr £LL!tEJilJ "[.IJlE P[.IHODS(.SE'AC£ BET

EXIT RTS
J THIS [l[LAYS FOR
DEL•Y TYA

•SL A
ASL o\
TM

DJ l[1A SfEED
[I:' Ltl)(UF"A
[11 CIEX

BN[fl!
SEC
SIIC Ul
IIN[D2

"" 8NE DJ
•rs

SPACE LOY U7
J'iR llELAf
ors

(Y R[GISTEF.:) •snrc,•.0041 SfCONDS

H•ELAY FOR 7 TIME PE'RIOOS
I (SPACE f,f:TW[[N WO~DS)
Ji:t!TWUI FROlt +ulRS.[PRnl<RAl1

TAltLE ,BYTE •7J,SJ1 ,S~!;,SJ2,SJF, .. 2F"

,BYTE S3C,S3E,t01,'S01,•01,so1

,BYTE so1,s4c,,01,so:s,s18,•1A

Fig. 4-31: The Morse Program
(Full-size listing In Appendix C)

101

6502 APPLICATIONS BOOK

0081 0386: 05
0()1-11 0387: 18
0091 oJee: IA
nos1 0389: oc
0081 OJBA: 02
008:> OJBB: 12

OJBC: OE
008'.' 0380: 10
OM:' 038£: o,
01)8:;' OJSF: 17

0082 0390! 00
0083 0391: ..
0083 0392: 07
0083 0393: 06
0083 OJH: OF
0083 0395: 16 .BYTE su .. s1D,,0A.t08,SOJ,109
0083 0396: 10
008-4 0397! OA
0084 0398: 08
0084 0399! 03
008"1 039A: 09
008'4 0399: ll
0085 039C: o,
0085 039[1: 19
008:5 039[: " (lf\85 039F: IC

SYMBOL TAf<Ll:
Sf'ffD OOFO COUNT OOFl CHAf• OOF::'
M{lf-.SE 0300 SH,l';Tfi 0314 NEXT OJJE<
SHH/ 03'.'6
DflAt OJS7

F !NISH 0351 EXIT 0356
OJ 035£< OJSl'l

DI OJ Sf Sf AC[0361< TAt<LE 0371

Fig. 4.31: The Morse Program (continued)

The tone must be played during a set duration called here "DE­
LAY." The duration of this delay can be implemented through soft­
ware or hardware techniques. A software loop will be used in this pro­
gram. Finally, the tone must be stopped when the specified delay has
been achieved. This will be performed by turning off bit 7 of ACR.

The reader should refer to the flow-chart of Fig 4-28 and make sure
that he understands the sequence of actions necessary to use the timer.
The actual implementation will be presented below along with the pro­
gram.

The Morse Program

We will follow here the flow-chart which has been presented on Fig
4-19 and develop the corresponding program. A number of specific
techniques will be used in this program:

Indexed addressing will be used to retrieve the binary encoding of
the Morse code for a given ASCII character.

The hardware timer will be used to generate a tone of fixed fre­
quency. A software delay will be implemented to regulate the duration
of the tone.

102

BASIC TECHNIQUES

Nested loops will be used to implement a multiplication in the delay
loop.

Let us now examine the program. It assumes that the accumulator
has been loaded with the value of the ASCII character whose Morse
code is to be transmitted. (See memory map on Fig 4-18). For flexibil­
ity, the speed of transmission is adjustable. It is expressed in units of 1
milliseconds (.001 second). The variable "SPEED" at memory loca­
tion "OOFO" must be set prior to entering this program. For example,
if "SPEED" is set to the value 1000, the duration of a "·" will be
1000 x .001 = 1 second. The program will reside in Page 3, starting
at address "0300" hexadecimal.

The beginning of the program is:

SPEED
COUNT

CHAR

*

$00FO
$00Fl
$00F2
$0300

The first four lines are assembler directives. The first three direc­
tives assign respectively the memory addresses OOFO, OOFl, OOF2, to
SPEED, COUNT, and CHAR respectively. The fourth directive spe­
cifies the value of the pseudo address-counter to be 0300 hexadecimal,
i.e., specifies that the first executable instruction in the program will
reside at memory address 0300.

We must first check that the character in the accumulator is a legal
code. This is accomplished by:

MORSE CMP #$20 IS IT A SPACE CODE?
BEQ SPACE
CMP #$2C ERROR IF LESS THAN 2C
BCC EXIT
CMP #$5B OR MORE THAN 5B
BCS EXIT

The first two lines check whether the character in the accumulator is
a "space" character (20 hexadecimal). If so, a delay of seven time
periods is implemented followed by the normal delay between charac­
ters.

The next four instructions verify that the ASCII code is between
"2C" and "5A" inclusive. This is the range of valid ASCII characters

103

6502 APPLICATIONS BOOK

for Morse transmission. If an illegal character is found, an error is
detected, and a jump occurs to location "EXIT.'' In order to keep the
program simple and educational, no specific action is taken here at
location EXIT to flag the error. The reader is strongly encouraged (as
an exercise) to add specific instructions at location EXIT which will
flag the erroneous character found in the accumulator. In this pro­
gram, there will simply be no transmission for this erroneous char­
acter.

Once a legal ASCII character has been found in the accumulator, it
must be converted into the binary code which will be used to generate
the sequence of sounds. The binary Morse code corresponding to
every permissible ASCII character is stored at the end of the program,
from memory location 36B to memory location 399. We ~ould like to
retrieve the first entry of the table for the ASCII character 2C, the
next entry of this table for the next sequential ASCII character, and so
on. This is a typical case where we wish to use indexed addressing.
However, an extra problem arises here: the ASCII characters are num­
bered from 2C on, rather than from "0" or from "1" on. The solu­
tion is quite simple, and appears below:

TAX
LDA TABLE-$2C,X

The ASCII is transferred into the index register X so that it may be
used as an offset. In order to take into account the fact that the charac­
ters are numbered from 2C on, the base of the table is simply specified
to be not the real base at address 36B, but the address table minus 2C
(hexadecimal). The binary code can then be loaded in the accumulator
with a single indexed memory access (see Fig 4-32).

TABl.f-2: --
CHARACTER

ASCII 2C
(FIRST CHARACTER)

"TABl.f": 36A

MORSE
TABLE

INDEX

I
x:I CHARACTER I

Fig 4-32: Using Indexed Addressing to Retrieve Morse Code

104

BASIC TECHNIQUES

Our binary Morse code is now in the accumulator. Let us recall here
that this code contains a leading 1, which is the ST ART bit, followed
by the O's and the l's representing the dashes and the periods. Any un­
used bits to the left of the ST ART bit have been set to 0. The contents
of the accumulator will, therefore, be shifted left until a START bit is
found, then the "real" bits corresponding to the dashes and the periods
will be used to generate sounds. The program is:

LOY #$08 NUMBER OF BITS TO BE ROTATED
FROM A

STY COUNT
STARTB ASL A

NEXT

DEC COUNT
BCC STARTB
STA CHAR
LOA CHAR

SHIFT A UNTIL START BIT FOUND

ASLA

STA CHAR

LOY #$01
BCC SEND
LOY #$03

SHIFT OUR MORSE CODE (1 = DASH,
0=D0T)
DOT= 1 TIME PERIOD, DEFAULT
TO DOT

IF CARRY CLEAR, DOT
ELSE DASH (THREE TIME PERIODS)

The index register Y would normally be used as a counter in order to
stop the successive left shifts of A, once 8 bits have been shifted out.
However, the SEND routine, which will generate the sound, requires
that the Y register be loaded with a duration of the sound to be gen­
erated. We can, therefore, not use index register Y for the purpose of
shifting out the bits. The next idea that comes to mind is to reuse the
index register X which is now available. Unfortunately, our conven­
tion in this program is that the DELAY routine uses index register X.
Since neither of the two Index Registers is available as a counter, we
will have to use a memory location. This is location COUNT. An im­
portant remark is that when writing the program, we might well have
coded this portion of the program before coding routines SEND or
DELAY. In such a case, we would probably have used index regis­
ter X or Y here to store the number of bits to be shifted from the accu­
mulator. Later on, we would have discovered the necessity of using
these same registers in the routines SEND or DELAY. This is when

105

6502 APPLICATIONS BOOK

programming discipline takes its full importance. If it is found that
other routines should require the use of X and Y, one must go back in
the coding and change the code in the program that precedes by using
a memory location named COUNT instead of a register. Forgetting to
do this is unfortunately a classical error. In that case, the other rou­
tines will accidentally destroy the contents of registers X and Y, and a
severe programming error will occur. As a programming discipline, it
is therefore strongly recommended to write explicitly in the comments
at the beginning of every routine which registers are changed or de­
stroyed by this routine. The conventions for communicating and pass­
ing information between subroutines or segments of a program should
be completely clear before writing a new routine.

The left-most zeroes contained in the accumulator are ignored and its
contents are shifted out until a START bit is found. Once the START
bit has been found, every bit shifted out of the left of the accumulator
represents either a "." or a "-" depending on whether it is "0" or
"1." Once the bit shifted out of the accumulator has been identified,
we will go to location SEND in order to generate the appropriate tone.
Since the contents of the accumulator will be changed by the subse­
quent processing, they must be preserved in memory prior to going to
SEND. This is the purpose of the second instruction ST A CHAR.

ADDRESS WRITE READ

- - 04 Tl L-L TlC-L/
+ clear Tl int flag

- - 05 Tl L-H + Tl C-H TIC-H
+ TI L-L .,. Tl C-L

TIMER I + clear Tl int flog

- - 06 Tl L-L Tl L-L

- - 07 Tl L-H TIL-H
+ clear Tl int flog

- - 08 T2L-L T2C-C
+ clear T2 int flog

TIMER 2

- -09 T2C-H T2C-H
T2L-L.,. T2CL

+ clear T2 int flog

Fig. 4-33: Memory Map for Timer 1

106

BASIC TECHNIQUES

Having thus preserved the accumulator's contents at the memory loca­
tion CHAR, the Index Register Y is loaded with the duration corre­
sponding to the bit which just fell through the accumulator: a "1" if it
was a dot, a "3" if it was a dash. The purpose of the STA CHAR, fol­
lowed by LDA CHAR, which seems useless, is due to our desire to re­
enter this program at "NEXT" with an LDA CHAR instruction.

The SEND Routine

The SEND routine uses timer 1 of the 6522 to generate the tone of
set frequency. The memory map for the timer appears on Fig 4-33.
The timer must first be set in the free-running mode. This is accom­
plished by:

SEND LDA #$CO
STA #AOOB

The value CO is deposited at address AOOB which is the ACR or
Control Register. It turns on bits 6 and 7 as required by the timer (see
Fig 4-29 for details). The value 0400 hexadecimal is then deposited at
memory addresses A006,A007:

LDA #$00
STA $A006
LDA #$04
STA $A007

These memory locations are respectively the low and the high part
of the TlL or latch. It sets the frequency of the tone to be generated.
0400 hexadecimal is in binary: 00000100 00000000 or 1024. A half­
period of the clock is approximately N + 2 or 1026. The period is
therefore:

T = 2052 microseconds
And the frequency is N = 1 + T = approximately 500 HZ

We must now start the tone and stop it after the specified duration.
The tone is turned on by:

STA $A005

This instruction transfers the contents of the latch into the counter

107

6502 APPLICATIONS BOOK

register and starts the external waveform. We have indicated that
this program also turns on "manually" PBO so that an external device
such as a transmitter can be activated simultaneously with the genera­
tion of the tone in the speaker. This is accomplished by:

LDA #$01
STA $AOOO

It is assumed here that PBO has been configured as an output port
prior to execution of this program.

The duration of the tone is implemented by the subroutine DELAY:
JSR DELAY. We will examine it below. Once the tone duration has
elapsed, it must be turned off. This is accomplished by:

LDA #$00
STA $AOOB
STA $AOOO

TURN OFF TONE
TURN OFF OUTPUT BIT (PBO)

Finally, we must leave one unit of silence between two tones. This
is implemented by:

LDY#$01
JSR DELAY I-PERIOD DELAY

Finally, we must decrement our bit counter, contained at memory
location COUNT, in order to check whether any more bits need to be
shifted from the accumulator. This is accomplished by:

DEC COUNT 8 BITS DONE?
BNE NEXT IF NOT, GO BACK

Once a complete character has been transmitted, two more units of
delay must be implemented to separate this character from the next
one. This is accomplished by:

FINISH LDY #$02
JSR DELAY

EXIT RTS

108

BASIC TECHNIQUES

The DELAY Subroutine
This subroutine will implement a delay of: (contents of Y

Register) X (SPEED) X .001 seconds. The delay will, therefore,
be computed as the multiplication of three numbers. We will use
here a special technique of nested loops in order to avoid performing
a classical multiplication. The routine appears below:

DELAY
02
Dl

LOA SPEED
LOX #$FA
DEX
BNE Dl
SEC
SBC #$01
BNE 02
DEY
BNE DELAY
RTS

The corresponding flow-chart appears on Fig 4-34.

OUTER DELAY
LOOP

DELAY

J
A=SPEED

COUNTER= CT D2

COUNTER=COUNTER-1 Dl

+
NO~

+ YES

I A=A-1 I
NO ___l___
~ t YES

I Y=Y-1 I
NO __i__
~

!
Fig. 4-34: Flow Chart for Delay

109

6502 APPLICATIONS BOOK

The first delay loop is the one corresponding to Dl. Let us compute
its duration (the time of each instruction is in parentheses):

(3) LDA SPEED
(2) LDX #$C6 C6 HEX = 198 DECIMAL
(2) DEX
(3) BNE DI

The duration of the delay introduced by these first four instructions of
the program is: 3 + 2 + (2 + 3) x 198 = 995 microseconds.

The following two instructions are:

(2) SEC
(2) SBC #$01

Their durations are two microseconds each. These two instructions
add, therefore, an additional delay of 4 microseconds. They are used
to subtract I from the content of the accumulator. This is because
both Index Registers X and Y are already used in this program as
counters, so that the accumulator must be used as a third counter. Un­
fortunately, there is no decrement instruction which operates directly
on the accumulator and a formal subtract instruction must be used.
The reader will remember that the carry must be set prior to a sub­
tract. This is the purpose of the SEC instruction prior to the SBC. The
next instruction is:

(2/3) BNE D2

This is a second delay loop. Every time that the branch is successful,
it requires three microseconds, and when it is not successful it requires
2 microseconds. The total delay from the entry point DELAY to this
point in the subroutine is, therefore, 995 + 7 = 1002 microseconds =
I millisecond.

A delay of I millisecond will be generated every time that the loop
D2 is executed. Since D2 contains the value of SPEED, these two
loops are implementing a delay of SPEED x .001 second, which is
what we wanted. Once this total delay of SPEED x .001 second has
been achieved, one more loop is implemented using the Y Register:

110

DEY
BNE DELAY
RTS

BASIC TECHNIQUES

This final loop multiplies the previous delay by the value contained
in Register Y. At this point, we have obtained the desired total delay
Y x SPEED x .001 seconds, and we return (RTS).

Using the program. In order to use this program, it is suggested that
you choose a slow transmission speed initially, unless you are familiar
with Morse code, and that you generate a single character at a time.
Once you see that your program works correctly, you should write a
short subroutine which will feed characters to your Morse program.
You can then verify that the Morse transmission proceeds correctly
for any string of characters.

Exercise 4-2: Write a subroutine which will feed your program a string
of N characters contained in a table starting at address TABLE.

Exercise 4-3: Read the keyboard, and generate the corresponding
Morse signals.

TIME OF DAY CLOCK

We will develop here a Time of Day Clock routine which will main­
tain the time in hours, minutes, and seconds in three dedicated mem­
ory locations. If desired, this program could be readily extended to
store fractions of a second, or any other time unit desired. The mem­
ory map for this program appears on Fig 4-35. As usual, memory
locations in Page O (zero) are reserved for the variables. The hours,
minutes, and seconds are stored respectively at memory locations
OOF4 (hexadecimal), OOF5, OOF6. One more memory location is used:
OOF7 contains the variable COUNT.

,l,,(X)5 l!H..(

TIL·L

COUNl

PA.Gt f PAG(J

Fig. 4-35: Time-of-Day Memory Map

111

6502 APPLICATIONS BOOK

To start the clock, the program will be typed in, then the current
24-hour time plus one minute should be entered in locations SECS,
MIN, HOUR.

Then A7 must be entered in location A67E (for SYM), and 03 in
location A67F. This is an interrupt vector, and will be explained later.
Finally, enter "GO 0390; then, at the exact time which has been en­
tered in SECS, MIN, HOUR, press "CR".

The correct time will be kept from now on by the clock in SECS,
MIN, HOUR.

The variable COUNT stores 20th of a second units. It is initialized
with the value 20, then decremented every 20th of a second. The decre­
mentation signal is a hardware interrupt generated by an interval timer
contained in the 6522. The flow-chart for the program appears on Fig
4-36. The first phase is the initialization phase where the timer is load­
ed with the appropriate counter value to generate an interrupt after
50 milliseconds (1120th of a second). Variable COUNT is initialized to
the value 20, and the timer is started.

Whenever the timer times out, 1120th of a second has elapsed and
an interrupt is generated. On receiving an interrupt, the microproces­
sor will preserve its registers, reload the counter register of the timer
with the appropriate constant for the generation of another interrupt
50 milliseconds later, and start the timer. The memory location
COUNT will be decremented, since a 20th of a second has elapsed.
The value of this location will be tested for the value "0." If it is not
"O," exit from this routine occurs. Whenever COUNT goes through
the value "0," it is reset to "20," and the memory location SECS (the
number of seconds) is incremented by 1.

Every time that SECS is incremented by 1, it is checked for the value
"60." If the value 60 is reached, SECS must be reset to "O" and MIN
(the number of minutes) must be incremented. Similarly, MIN must
be checked for the value "60." If MIN has reached "60," it is reset to
''O'' and the number of hours is incremented. If the number of hours
reaches "24," it is reset to "0." Exit from this routine then occurs.
The program will remain dormant until the next interrupt is received.
In order to display the contents of this time-of-day clock, the user
needs simply to examine the contents of memory locations F4, F5, and
F6. A display routine could also be written to display the value of
these memory locations automatically.

The program appears on Fig 4-37 and it is self-explanatory. The
first segment of the program is the initialization segment INIT which
sets the variable COUNT to "20" decimal = "14" hexadecimal. It

112

Fig. 4-36: Time-of-Day
Clock

BASIC TECHNIQUES

INITIALIZE COUNT TO
20 (I /20,h sec.) LOAD TIMER

WITH 50 MS counf

START TIMER

RETURN

CLOCK
(INTERRUPT)

~
PRESERVE STATUS

RELOAD TIMER
WITH SO MS

START TIMER

TICK OFF l /20! sec.
DECREMENT COUNT)

RESTORE COUNT
1020

INCREMENT SECONDS
INDICATOR "SECS"

+

~EXIT

~NO
~-EXIT

YES

RESET MIN. TO ZERO
INCREMENT HOURS

~NO
~-EXIT

~ YES

RESET HOUR TO
ZERO

RESTORE REGISTERS

EXIT

113

6502 APPLICATIONS BOOK

LJNl:.I ux· (UUf LIHI:

;J-lkST LOAD 11., I"' UXATION A671., ANDO) 11'< A.071-

""' """ ;THIS JS A Rl:.Al TIMl:.(UX.K kOl!lJNf: ,._HK.H MAINTAIN~ ..., ;THI:. CUIU.Nl TIMI:. IN THE LOCATIONS St£ IOOUJ, Ml""
ow ;tOOl"S). AND HOCI IOOt•112-4 HOUI TMHJ IT l5 BUNCHED TO ..., ;BY THE TIMi:OlJT Qt THI: INT1:lJtUP1 TIMl:.R, -.,HICH

""' <XU) ;(.AU5e> AN INTI:.lRUPT ANDBkANCH 10 THl: (LOCtr.:

""" <XU) ;IOUTINI: n,,,1:.,..n TIMES Pl:.l ~Ec·oND THI: ('LO('); ROUTINE """ ;AND INTERVAL TIMf:.l MUST Iii: INITIAUZl.0 flkSl THt

""' ;CODI:: 'INIT' O()t.!, THC!, A.ND IT MUST BE 811.AJ'<Hl:.0 TOTO
OOIO ;START THI: (UX:t,; TOJNJTIAUZi:., PL'T TH!- <.Lkki-Nl TIMl
oou ,THl (LOO, acx:11-.1: v.JLL SlSTAITI:01!<, !)f:C. Mt AND

,HOUR, THEN IS!>l:l:. lHi-(OMMANU ·(j()(JJW(I' Al THAT

;EXACT TIMI:. NOTHl"'VtLSE MUST BE [)ON£
000, ""' COUNT•MlOFi ,COL:Nn k I-OR T'<""l,NTU. TH!) OJ- A SH

0000 Si:('S•MIOJ-11 :CURRENT TIMI:.

"'" ""' MIN•IOOB
000, HOUR•SOOf•

ACR.SAOOB :TIMEJ. MOOE A.EGISTU
oon TILL .. IA006 ;.ow Olt.UER TIMU C:ONSl ANT
0011 TIHC•SMm ;HIGH ORDER TJMU CONST ANT

0019 ·-50)90

""" 0),0 A914 INIT l.OAISl4 ;SET TO ,.Ill.ST TWENn

0021 '"' S7ACOON'T :COUl'll'S ., .. IDOBAO STA AC& :SET BrTS I AND~ LO•
:INACR

002) A9CO LDA nCD ;;SETBITSIAN07 HIGH IN .,,. IDOEAO STASAOIJE :THE IN'nRRUPT ENABU
,kf:GISTI.k (TO ENABLE

;INTU.RUP'TS FROM TIMER IJ

Ol9C lDA,S,0 ;STORE CHO IN TIME.Ii.

IOO&AO STA TILL (DELAY CONST ANT FOR
0027 OJAI A90 LOA ,SC) ,OMS)

""'
.,., IDl>SAO STA TJHC .THIS STARTS TIMEII

""" OlA6 "' m :RETIJRN TO MONITOR
0030 .,., .. CLOO< PHP ;SAVE STAruS
00)1 .,
OOll .,., Fl SED
00)) O,M LDA,S50 :STORE. Cl,O IN TIMER

OlAC 101>6AO STA TILL (DELA\' CONST ANT FOR
00)) Q)Af A9Cl LOA ISCJ XlMS)
0036 0)81 ID05AO STA TIHC .THIS ST ART~ TIMER
00)7 ., .. C>F7 DEC COUNT ;DECREMENT COUN'T OF

:T'\\'ENTY
00)1 0)86 0031 BNEEXrT ;EXIT IF WE HAVE NOT

;COUNTED TO TWENTY YET
00)9 0)81 "'" lOAl$14 .ELSE RESTORE COUNT-
0040 .,.,,

"" STA COUNT ;A f\JLLSECONDHASPASSED
0041 O>IIC A901 LOAISOI
0042 "'"' .. CLC
0043 O)Bf "" AOC SECS ,ADO I TO SEC

OlCI IH6 STA SECS
004> OlC) ('960 CMPIS60 ;SEE IF 60 Sf:CONDS

0046 o,c, 0022 BNEEXrT ;IF NOT, EXIT

0047 OJC7 A900 LDAnro ;ELSE RESET SECONDS TO 0 OlC9 "" STA SECS ,,, .. O>CB A.901 LDAISOJ
OJCD " CLC

00,0 o,c,; "" AOC MIN ;ANO ADD I TOMINLna
00'2 moo UF, STA MIN
00,) OJD2 C,60 CMPIS60 ;SEEJF60MINVTES
00,. "'"' 001) BNEEXIT ;JFNOT,EXJT

00" 0306 A900 LDAn<I)

""' O>DI IH' ST AMIN ;El.SE. RESET MINllTES TO 0
00'7 OJDA A901 LDAISOJ
00'8 OJOC " CLC .,,, 03DD "" ADC HOUR ;ANO AOD L TO HOUR
0060 O,DF Uf' STA.HOUR
0061 OJEI C,2' CMPIS24 :SEt. IF 2A HOURS

OlE) 000< BNEEXIT ;IF NOT. EXIT
006) .,., ,,oo LDAn<I)

""' 03£7 Uf' STA HOUR ~l.SE. RESET HOUR TOO

OJE9 .. EXIT PLA ;It EST ORE ST A T\JS
o,EA " 0067

ERRORS .. OOOO<<o:XP

SYMBOL TABLE

SYMBOL VALUE

ACl CLOCI< .,., COUNT 00'7 EXIT O>E9

HOUR "'" <NIT 0390 MCN oon PLS O>EA

SECS 00'6 TIHC TILL

ENDOF~EMBLY

Fig. 4•37: The Time-of-Day Program

(Full-size Listing In Appendix C)

114

BASIC TECHNIQUES

also loads the timer with the appropriate count to generate a 50 milli­
second delay. The memory map for the timer appears on Fig 4-35.
Timer 1 of the 6522 is used. The table showing the bits for condi­
tioning this device appear on Fig 4-25 and 4-29. This timer can be used
in either a one-shot mode or a free-running mode. In a one-shot mode,
a single interrupt (and possibly an output pulse on PB7) will be gener­
ated every time that the internal timer's counter decrements to 0
(zero). In the free-running mode, the counter will be automatically re­
loaded from the internal latch and continuous interrupts (and possibly
a pulse on PB7) will be generated. Since the output pin PB7 is not used
in this application, bit 7 of the ACR (auxiliary control register) will be
set to "O". There is then a choice between a one-shot mode and a free­
running mode. In the one-shot mode, the counter must be explicitly
reloaded every time an interrupt is generated. In the free-running
mode, the timer will automatically reload the internal counter from its
latch. However, the interrupt flag must be cleared explicitly either by
writing into TlC-H or by modifying the interrupt flag directly. The
two options are essentially identical in terms of programming effort.
The free-running mode may yield a more accurate time measurement,
since the timer runs continuously and automatically going from the
value "O" to the value corresponding to the 50 millisecond delay.
Since a free-running mode has been used in the Morse program, we
will use here a one-shot mode. The reader is encouraged to try using
the alternative mode as an exercise. Using the one-shot mode is speci­
fied by setting bit ACR6 to ''O''. All other bits of the ACR register are
not used here and will be set to "0". Bits 7 and 8 are set to "O" in
ACR, specifying the one-shot mode with PB7 disabled.

Next, the interrupt flags register must be properly conditioned.
When read, this register is viewed as the Interrupt Flag Register, IFR.
When written into, it is called the Interrupt Enable Register, IER. In
order to set specific bits of the IER, bit 7 of IER must be set to 1. For
each "l" specified in register locations O through 6, a "l" will be
written in the register, enabling the appropriate condition. A "O" in
any bit position will not clear the specified bit position in the IER reg­
ister, but leave the contents unchanged. Clearing is accomplished by
specifying a "O" in bit position 7 and then specifying a "1" for every
bit position that needs to be cleared. In this instance, we simply want
to enable an interrupt from timer Tl. We will therefore write at the
memory location corresponding to IER the value "11000000," or
"CO" hexadecimal (see Chapter 2 for detail).

115

6502 APPLICATIONS BOOK

Finally, we must load the appropriate constant in the timer to gen­
erate the delay which will generate and interrupt after 50 milli­
seconds. The value C350 hexadecimal (= 50,000 decimal) is there­
fore loaded into the counter. It will be noted in the routine INIT that
first the low part of the latch is loaded, then the high part of the coun­
ter is loaded. Loading into the high part of the counter results in trans­
ferring the lower part of the latch automatically to the lower part of
the counter and starting the timer at the same time.

The INIT subroutine appears below:

COUNT
SECS
MIN
HOUR
ACR
TILL
TlCH

INIT

= $00F7
$00F6
$00F5
$00F4
$AOOB

= $A006
= $A005

LDA #$14
STA COUNT
STA ACR
LDA #$CO
STA $AOOE
LDA #$50
STA TILL
LDA #$C3
STA TICH
RTS

1 /20 THS OF A SECOND

TIMER MODE REGISTER
LOW ORDER TIMER CT
HIGH ORDER TIMER CT

FIRST 20 COUNTS

BITS 8 AND 7 LOW IN ACR
BITS 8 AND 7 HIGH
IN INTERRUPT ENABLE REGISTER
STORE C350 IN TIMER
(CT FOR 50 MS)

START TIMER

The initialization has now been completed, and the main program is
executed from location CLOCK on. It will be noted that all additions
within the routine CLOCK are performed in decimal mode. This is
why the decimal flag is set with instruction SEO. This way, when dis­
playing the contents of the memory locations, they will be displayed
one digit per LED in the usual decimal manner rather than in hexa­
decimal format.

Following execution of the INIT subroutine, a return occurs to the
monitor. Provided no key is touched on the keyboard, nothing will
happen until an interrupt time-out occurs. Upon detection of the

116

BASIC TECHNIQUES

interrupt, an automatic branch will occur to the clock. Whenever an
interrupt occurs in the 6502, it branches automatically to memory loca­
tion FFFE,FFFF where it finds the interrupt vector, i.e., the next
address to be installed in the program counter register. On the
SYM, the user pre-loads memory locations A67E and A67F with
the desired interrupt vector. The SYM monitor, which is in execu­
tion at all times that the user program is not runnirtg, duplicates
automatically the contents of memory locations A600 through A67F
at addresses FF80 to FFFF. Thus, the contents of A67E and A67F are
automatically copied by the SYM monitor to memory addresses
FFFE, FFFF. At the time the interrupt occurs, it will branch to FFFE,
FFFF, and it will find there the 16 bit contents to be installed in the
program counter register.

CLOCK is the interrupt routine which is entered every time the
interrupt is received. It saves the registers P (the status register) and
A (the accumulator). It does not need to save the other registers as
it will not be needing them.

It then reloads the timer counter with the value C350 hexadecimal
= 50,000 decimal and starts the timer again. Loading the counter
automatically clears the previous interrupt.

The routine then checks successively whether the variable COUNT
has reached the value "20", the variable SECS has reached the value
"60", the variable MIN has reached the value "60", or the variable
HOUR has reached the value "24". If any one of these variables has
reached its limit value, it is reset to "O", as indicated in the flow-chart
of Fig 4-36, or the program of Fig 4-37.

Finally, the routine exits by restoring the two registers it had saved,
A and P, and executing an RTI (Return From Interrupt).

A HOME CONTROL PROGRAM

A generalized home control program will monitor the status of a
Time of Day Clock, as well as the status of an alarm system, and take
various actions depending on the time of the day or on the alarm con­
dition detected. We will use here the time of day clock program which
has been developed above, display the time of the day, then depending
upon the time of the day, specific actions will be taken by closing one
or more relays. The program appears on Fig 4-38. The data-direction
register of Port B is set to OF hexadecimal in order to enable the four
low order bits for output (for the relays). Clearly, only those bit posi­
tions actually connected to relays should be specified as outputs. The

117

6502 APPLICATIONS BOOK

others should remain inputs. As usual, as a precaution, an explicit in­
struction is included in the program to turn the relays off. This is per­
formed by depositing the value 00 hexadecimal at the memory loca­
tion for IORB (Address ACOO).

Two built-in routines of the SYM monitor are used by this program
to facilitate the output. The accumulator is loaded from memory loca-

IJNI,; •

w" ""' w•, ,,,,, ...,
""'

""' "'" ""' WI< ""' '"'' ""' ""' ""' "'" "'" "'" "'"' "''° OWi

"'" """
"'" -IJl)lJ """' Wl" "'°"
"'" "'°"
""' '"'" tl027 ""'
"'" ""'
""' UU2'1 '"" "'" W<A

"'"' """ WlU U:ZIC

""'" u.?IIJ

l.llll Ullt
l.llll "''°
"'" ""' WJl "'" t.alll

"'"
'""
""' on•

"'" OU'J

UIIH

''"' oJllli

OOll ""' UlW

""' ""' "'" '"" l.11,1)7 '""' WH '"" WJl
Olll

"'" ""' 11Uli '""
IIH'il

118

LJNl:

!HIS IS A SJMPI I:: HOMI: CONTkOl 11.0UTINl: WHICH kUNS
•• IllklJUloH A I 001' l::A(:lt rn.n. [1111.0Ulill ii DISt'l AY!> nu,
,(l!kMl:.N r ~IMl. ANll BII.ANCHl:S TO A NUMbMI. Of lJS1'k

!,tlbll.O\IIIN1·3
,Y<lm 11 3LkV11..l: 01:Vll l.3
,l:XAMl'IIS .
,IJ A ~UbkOl/1 INI: COUil> CHl:.CK THl: CUkltl::.N"! TIMt: AND

TUllNONALIGHflf THI: tlME WERE RlliHf

:21 A Sl!IUIOUflNl: (OULU MONITOR THI: srATlJS ot- AN
AlAII.M snn:M ANU IAKl: "t'l'kOt'KIAfE ALTION IF AN

IN111.uL>t:.11. w1:a1:01.r1:cr1:u
l)l)klS•IAl'Ul

JOkll•$AUlll
t10Uk•$t)Uf,4

MIN•IOOt3

OUTl:lYT•MlltA
~'ANO•U'JI06

... s,oltlJ

"" CON'Tkl CLO
AIIUf" LUA rWt- ;Sl:T DATA DIRECTION

MUUJ AC STA UlllUt ,kE(,ISTl:ll TO OUTPUT FOR

RELAY!,

LDAISOO

lllOOAl' STA 1011.H ;TURN OFF kt:LAYS

A.Jf• IOOP I UA HOlJM ;THIS IS THE MAIN CONTMOL

JOOP

JUI-All J~M OlHIIYI ,ourt'U r CUJI.JU:NT HOUM TO

OJSt'lAY

AJ t, lOAMIN

:lltAU J~M OUTIIY r ;OUTf'Ul CUMJI.ENT MINUTI:

10 OISt'tAY

J~k SC:ANU ,MUKl:~H ,uuH n Ol~PLAY

w1r11 TIMI:

HYTt Sl:A,5tA,SCA
l·A ..
CA BYTI: Jl:A,5tA,StA

IA

k\ H u H_A,U . .\

BY 11:. U.A.U:A,ll:A

liYll: ICA,Sl:A,ll:A
,JHl: USl:M CAN PLAC..'I:

JUMl'S ro
,SU8MOUTINl:.S Hl-.RE TO SER·
VKl: Ol'VJCES

tlYTl: Sl:A.H:.A,StA8YH. U.A,Sl::A,StA

l:A IIYII:: SLA.St:A.SEA

"
BY rt UA.StA.StA

l:A

EA BY re u:A,SEA,H!A

tA
l:,\

U.UIIOl JMl'LUOJ>

Fig. 4.31: Home Control Program
(Full-size Listing In Appendix C)

BASIC TECHNIQUES

IIOlJ)I 001·4 IOMQ A<.'00

lltA WU6

Fig 4-38: Home Control Program (continued)

tion HOUR which contains the time-of-day expressed in hours (see
the time of day routine), then a call is made to subroutine OUTBYT
which results in displaying the HOUR on the board's display.
Similarly, the minutes are displayed by loading the accumulator
from memory location MIN and calling OUTBYT.

The OUTBYT routine is contained at memory location 82FA of the
monitor and displays the contents of A as two hex digits. Next, the
routine SCAND of the monitor (at memory address 8906) is used to
scan the display once. Once the time has been displayed, an appropri­
ate jump instruction will be executed if some set condition is met.
Since these conditions will vary with each application, they have been
left blank in the program and should be filled in by the reader. As an
exercise, it is suggested that the relays be turned on at 2 or 3 specified
times a few minutes apart. The noise made by the relays when closing
indicates that the program is working correctly. This should be done
prior to attaching any actual device to the relays.

A TELEPHONE DIALER

We will develop here a program capable of dialing a number once it
has been deposited in the memory. With a regular telephone (rotary
dial), pulses are merely sent on the line. This should be simple at this
point, and we are going to develop here a program capable of generat-

2

9

HIGH \ -~- '-·· ·-· '·-= ••
TONE 'L'l2Cl9fl,i13361f,_.1477~.

-~-- - ~t-·_J

Fig. 4-39: The Telephone Frequencies

119

6502 APPLICATIONS BOOK

ing the tone frequencies used in the U.S. for touch phones. The table
of telephone frequencies appears on Fig 4-39. Each digit will cause
two tones to be generated. The various frequencies have been chosen
carefully by the telephone company in order to avoid the possibility of
spurious harmonics, and to use the smallest bandwidth possible. They
range from 697 Hertz to 1477 Hertz as indicated on the illustration.

Our program will generate two tones simultaneously, which will be
fed into the same speaker. The frequencies will have to be accurate in

120

DIGIT POINTER =O

GET DIGIT

INCREMENT DIGIT POINTER

MULTIPLY NUMBER BY
4=1NDEX

SET TIMER MODES FOR
Tl ANDT2

GET TONE 1
PUT IN TIMER 1

GET TONE 2
PUT IN TIMER 2

GENERATE TONE FOR
SET DURATION

TURN OFF
BOTH TIMERS

WAIT FOR SET
DURATION

YES
-===--•OUT

Fig. 4-40: Phone Dialer Flow Chart

BASIC TECHNIQUES

order to be recognized by the telephone switching equipment. This
result can be obtained by using two timers. We will use here Timer A
and Timer B of our microprocessor board. Each timer will generate a
frequency, and the output of both timers will be sent to the loudspeak­
er. For more reliable results, the use of an operational amplifier for
the speaker is strongly recommended. However, the program would
remain unchanged. The flow-chart for the program appears on Fig
4-40. The number of digits for the telephone number is irrelevant.
This program will accommodate a telephone number of any length.
The first digit to be "dialed" is obtained from the memory. An equiv­
alence table is kept in memory, which specifies the periods for the two
tones to be generated for each digit. More precisely, this table specifies
the half period, and since two tones are associated with every digit,
this table will use four bytes for every digit. The value of the digit
must therefore be multiplied by four in order to be used as an index
to this table.

The two table values will be obtained and loaded respectively in
Timer A and Timer B which will be started. The two tones will then be
generated automatically for a specified duration (say half a second or
one second). Then a silence interval will be enforced, and the next
digit will be fetched from memory. The process will be repeated until
all digits have been dialed. The flow-chart is straightforward. Let us
examine now the program. The complete program is shown on Fig
4-41.

LINE I ux-

woo
000) ..,, ..,,

woo
OOIO ..,,
0011 0000
oou
0011 ..,,
oo,,
00"

0016 ..,,

0011

..,,
0000

..,,
0023 0000

002,
om

""'
Ol02

0030
003'

rno, UNI:

:THIS IS A PaOGR.AM WHICH OlA.Ui PRE STORED
;Tl:LEPHONI: NUMBEllS. IT P•ODUC'ES A TWO TONE OlTTPUT
;THllOUGH A SPEAJri:Ell Hoot.ED UP IN CONFIGURATION 2
;(TWOTONES-SEf SPEAKEll. THESE TONES WILL ACTIVATI
;A Sl ANOAJlD TOUCH TONE PHONE WHEN THE SPEAKER IS
,PLACED DIRECTl. Y OVER THI: MOlJTH PIECE OF THE TELi:
;PHONI: 10 LJSE THl: PROGRAM. PLACE THE PHONE
;NUMBlRJ~J ANY'olrHERl: IN ME.MOR,, ONE DIGIT Pl:11. BYTI:..
;ANDl:NDING WITH OF (HEX). fOl EXAMPLE, THE NUMBER
;,H.12ll WOULD Bl: o, o, o, OJ 0201 02 OF tALL HEX) IN
;Mf:.MOln· THl:N PLACE THE ADDRESS OF THl: NUMBER,
;LO"'' BYTE FIRST, IN THE LOCATIONS OO(X)ANDOOCI .
;THEN EITHER GO TO THIS ROUTINE FROM THE MONITOR
;OR JSll TO IT FROM ANOTHEk PkCXillAM.

NUMP'Tll•IOOOJ ;THIS POINTS TO THE ADDltESS OF
;THE TELEPHONE NUMBER

ONOEL•SoilO ;THIS IS THE DELA 'f' CONST ANT FOil.
:THE TIME WHEN THE

OffDEL.-SlO ;DELAY CONST ANT FOR THE TIME
;WHEN THE TONES AR£ 0

DELCON•SFF ;GENER.Al PURPOSE DELAY
;CONSTANT

ACRl•SAOOB ;THESE ARE THE TIMER MODE
;JtEGISTERS (TIMER I)

ACl.l•SACOB ;(TIMEk l)

TICH•IAt"m ;THIS IS THE TIMER I COUfln"Ek
iHIGH BYTE)

TILH•SAOO"l ;TIMEk I LATCH (HIGH BYTE)

Tlll•IAOOt (LOW BYTE)

ncH-IAC:0, ;sAME AS TIMER I - FOR TIMER l

TILH•IACO?
Tll.L • IACXM

·-solOO
AOOO PHONE LDY noo ;INDEX FOR DIGITS OF

;PHONE NUMBER

"co DJGrT LPA~l' ;GET DIGIT

Cl
OOF CMP ;SEE IF END OF PHONE

:NUMBEk

Fig 4-41: Phone Dialer Program
(Full-size Listing In Appendix C)

121

6502 APPLICATIONS BOOK

0032 Ol<n DOOi BNE NOENO
003) ;RETIJRN JS SO (TO

;MONITOR OR CALLING
;PROGRAM)

OA EA EA NOEND ASLA ;MULTIPLY NUMBER BY
;FOUR TO INDEX TABLE

003' O,OD 0A EA EA (EACH TABLE ENTRY IS
4 BYTES)

0310 TAX ;X • INDEX FOR TABLE

"'" 0311 A9a, LOA ISO'.)

00)1 031) IDOBAO STA ACRI ;SET TIMER MODE TO FREE
;RUNNING ON BOTH TIMERS

003' 0316 IDOB AC
BD5D0l LDA TABLE,X ;GET LOW ORDER, FIRST

;TONE

'"'" O)IC" 1004AO STA TILL ;STORE IN TIMER I

'"'" OllF INX
00'3 BDSDOJ LDA TABLE.X ;GET HIGH ORDER, FIRST

;TONE - om 1007 AO STA TILH ;STORE TIMER I
oo .. IOOS AO STA TJCH ;THIS STARTS TIMER I

;GOING . ,,, ..
00" 03>.A BO SD03 LOA TA.81.£,X ;GET LOW ORDER, SECOND

;TONE

""" 0320 1004AC STA TlLL :STORE IN TIMER 2
00'9)NX

BDSDOJ LOA TABLE,X ;GET HIGH ORDER. SECOND
;TONE

0051 033' ID07AC STA nLH ;STORE IN TIMER 2

IDOSAC STA T2CH .THIS ST ARTS TIMER 2

:GOING
OOl] LDX ,ONDEL ;GET TONES-ON DELAY

;CONSTANT - one 20,503 JSR DELAY ;DELAY WHILE TONE IS ON

""" OllF CA
03'0 DOFA flNEON

oo,, ..., U>A '100
00,1 - 1008 ...0 STAACll.l ;TURN BOTH TIMERS OFF
00,9 .,., 10011 AC STAAC'U

03'A LDXIOFFDEL ;GET TONES.OFF DELAY

;CONSTANT

211550) OFF JSR DELAY ,DELAY WHILE TONE IS OFF

CA DEX
006) 0,,0 DOFA BNf. OFT

"""
.,,, .tC:CUOJ JMPDIGrT ;GO BACK FOR NEXT DIGIT

;OF PHONE NUMBElt

""'' om
0066 °'" ;THIS IS A SIMPLE DELAY ROlITINE FOR THE TONE ON ANO

;OFF PEll

""'' om

""" °'" A9FF DELAY LOA tOELCON ;GET DELAY CONST ANT

0069 om " WAIT SEC ;DELAY FOR THAT LONG
00,0 .,,. E90I SBCISOI

"'"' Ol>A DOF> BNE \\'AIT .. ,, 0,,C .. Rn;
00'3 OllO

""" ;THIS IS A TABLE OF THE CONSTANTS FOR THE TONE ..,, 0,,0 ;FREQUENCIES FOR EACH TELEPHONE DIGIT. THE

""" 0,,0 ;CONSTANTS ARE TWO BYTES LONG, LOW IYTJ:. FIRST.
oon ..,, ll TABLE .BYTESIJ,S02,S76,SOI ;TWO TONES FOR 'O'

°'" ..
"" """ OI ..,,
°'" CD BYTE SCD,S02.SIIE.SOI ;TWO TONES FOR 'I'

°"' """ 036)

""" OOIO .,., CD .BYTE SCD,lm.S76,SOI
000) "" ..
0080 .. ,, " 000> 0368 o,
OOII CD .BYTE SCD,S02,SB,SOI

""'' ..
""'' o,
0082 036D .. .BYTE S89.S02,S9E,SOI
0082 Ol6E ..
0082
0082 01
0083 om .. .BYTES89.S02.S76,S0l ., . .,,, ..

0,7) " 008) "" 01 037' .. .B'ITIS89.S02,S53,SOJ

°'" 008< o,n "" o,

""''
.,,., .. .BYIT $4B,S02.S9E..S01

""'' "" ..
03'8 ..

""'' o,
0,,0 .. .BYTE S4B,S02.S76,SOJ

°'" Ul7E " OI ~-, .. .8YTES,.8,S02,S5J,S0I ;

Fig 4-41: Phone Dialer Program (continued)

122

BASIC TECHNIQUES

02
l'Oll1 OJU 53

OOll7 OJlk Ol

.ENO

l:11.ROII.S • 1Xl)O <0000>

SYMOOL TA.BU:

SYMIK.ll VALUl:

AOOlt ACRl ACllB DELA y on, DELCON OOFF
UllH 0)(12 NOENO OJOA NUMPTR OOCO OFF Ol4C
OHl>El 0020 OJlC ONDEL PHONE OKIO
TICH TILH AW7 TILL NXM TICH AC05
TllH nu A.OW TABLE OHO WAIT OU7

!:ND OF ASSl:MBL Y

Fig 4-41: Phone Dlaler Program (continued)

Register Y is used as a pointer to the current digit of the telephone
number being dialed. It is first initialized to 0:

PHONE LOY #$00

e.-.SE ~~t-----fr
AD01f($S

Fig 4-42: Telephone Dlaler:
Indirect Indexed

Access (top) and Memory
Map (bottom)

..,...,,

""'"'

m,

·-·
Next, the digit is obtained, using an indirect indexed addressing tech­
nique (see Fig 4-42). It is assumed that the complete telephone number
has been stored sequentially starting at address "NUMPTR", and is
terminated by the value "OF", which indicates the end of the tele­
phone number.

DIGIT LOA (NUMPTR), Y GET DIGIT

The index register Y is then incremented, so that it will point to the
next digit the next time around. We check if the last digit ("OF") has
been found, and, if so, the program terminates:

123

6502 APPLICATIONS BOOK

INY
CMP #$OF
BNE NOENO
RTS

We will assume that we have not yet reached the last digit of the tele­
phone number, and we will proceed. The value of the digit itself must
be multiplied by four since we have already pointed out that the equiv­
alence table between the digits and the half periods contains four
bytes per entry. The multiplication by four will be performed by two
successive left shifts. The result will then be stored in register X so that
it can be used as an index:

NO ENO ASL A
ASL A
TAX

Next, both Timer A and Timer B are set to the free running mode:

4 BYTES
PER ENTRY

LOA #$CO
STA ACRI
STA ACR2

EQUIVALENCE
TABLE

CD

02

53

01

(digit 3 is being dialed)

"3"

Fig. 4-43: Loading the Timer

Till

TILH

T2Ll

T2CH

They are then loaded each with the half-period retrieved from the
equivalence table (see Fig 4-43):

LOA TABLE, X
STA TILL
INX

124

BASIC TECHNIQUES

LDA TABLE,X
STA TILH
STA TICH
INX
LDA TABLE, X
STA T2LL
INX
LDA TABLE,X
STA T2LH
STA T2CH

Once both timers have been actuated, the tone must simply be gen­
erated for a set period of time. This duration is specified here by the
value ONDEL. The required delay is obtained by the subroutine
DELAY, and a secondary "ON" loop.

ON
LDX
JSR
DEX
BNE

#ONDEL
DELAY

ON

Finally, once the tone has been generated for the correct duration,
both timers are simply turned off:

LDA #$00
STA ACRI
STA ACR2

then a delay of silence is generated:

OFF
LDX
JSR
DEX
BNE

#OFFDEL
DELAY

OFF

and the program returns to the beginning in order to generate the
tones corresponding to the next digit:

JMP DIGIT

125

6502 APPLICATIONS BOOK

The DELAY routine is a classical one:

DELAY
WAIT

LDA
SEC
SBC
BNE
RTS

#DELCON

#$01
WAIT

The equivalence table which specifies the half-period equivalence for
the tones to be generated appears at the end of the program on Fig
4-41.

Let us compute here the half periods corresponding to each of the
frequencies which have been generated. Seven frequencies must be
generated: 697, 770, 852, 941, 1209, 1336, 1477.

As an example, for a frequency N = 697Hz, the corresponding peri­
od is 1/N = 1434.7 microseconds. The half period is therefore 717 mi­
croseconds or 02CD hexadecimal.

DESIRED HALF N=HALF HEX
FREQUENCY PERIOD PERIOD-1.7 for Ex. 4-4

697 717.3 716 02cc
770 649.3 648 0288
852 586.8 585 0249
941 531.3 530 0212
1209 413.5 412 019C
1336 374.2 372 0174
1477 338.5 337 0151

Fig. 4-44: Computing the Timer Constants

Similarly, the half periods for the other frequencies appear on Fig
4-44. The corresponding hexadecimal values have been used in the
program of Fig 4-41.

Let us now examine some possible improvements to this basic pro­
gram.

Exercise 4-4: Some improvement is possible as to the precision with

126

BASIC TECHNIQUES

which the frequencies are generated. Referring to chapter 2 of this
book or else to a hardware manual, you will notice that Timer I in
free-running mode does not generate a tone of exactly the expected
frequency. In/act, it adds either 1.5 microseconds or 2 microseconds
to the half-period value that has been loaded in the counter register.
Recompute the half frequencies that should be used assuming that
both Timer I and Timer 2 add on the average I. 75 microseconds to
every half-period.

Note: Don't look yet, but the answer is on Fig. 4-44.
Exercise 4-5: This program can also be improved functionally by add­
ing a programmable "silence" symbol. This is useful in some coun­
tries for international dialing or within a company to obtain access to
an outside line. One must first dial some digits to get a line then wait
for a specified duration before dialing the actual number. Incorporate
this change in the above program.

A hardware improvement for cleaner frequencies is shown below.

Fig 4-45: Suggested Hardware Improvement for Cleaner Frequencies

SECTION 2: COMBINATIONS
OF TECHNIQUES

INTRODUCTION
The programs presented in this section will use a combination of the

techniques presented in this chapter and will be developed for the KIM
board. The only significant difference between KIM and SYM for the
purposes of these exercises will be the location of the PIO's in the
memory map. The interested reader is referred to Fig 2-4 for the actual
KIM memory map. Since the programs are written in assembly-level
language using symbolic labels and operands, most of them would be
identical for SYM. It is only during the assembly process (either

127

6502 APPLICATIONS BOOK

through an automatic assembler such as the one presented in Appen­
dix A, or through manual assembly), i.e., at the time the hexadecimal
representation for the instructions is generated, that differences will
appear due to the differences in memory assignments.

128

FREQUENCY

NMAX

NMIN

2T JT

Fig. 4-46: A Siren Sound

TURN SPEAKER ON

SWITCH SPEAKER STATE

DELAY

DECREASE DELAY

Fig. 4-47: Siren Flow Chart •
Up Ramp

TURN SPEAKER ON

SWITCH SPEAKER STATE

DELAY

DECREASE DELAY

DELAY=MAX

Fig. 4-48: Stopping at Nmax

BASIC TECHNIQUES

GENERATING A SIREN SOUND

The graphic representation of a siren sound is shown on Fig 4-46.
This sound starts at the minimum frequency Nmin, and increases dur­
ing time T up to a maximum value called Nmax· The tone frequency
drops then instantaneously to Nmin and resumes its upward progres­
sion until time 2T, and so on. The flow-chart for generating a sound
of increasing frequencies is shown on Fig 4-47. In addition, the maxi­
mum frequency should not exceed Nmax, or else the sound will be­
come inaudible (or else cannot be generated by the speaker any more).
The flow-chart for repeatedly generating the ramp is shown on
Fig4-48.

The program is shown on Fig 4-49. It approximates the shape of
Fig4-46.

; S !REN
;
PA ~$1700
PAD =$1701

0000: FF DELAY ,BYT $FF
,=$40

0040: A9 01 LDA t$01
0042: 8D 01 17 STA PAD
0045: 8D 00 17 STA F'A
0048! EE 00 17 SWITCH INC F'A
004B! A6 00 LDX DELAY
004D: CA LODF' DEX
004E! DO FD BNE LOOF'
0050: C6 00 DEC DELAY
0052: 4C 48 00 JMF' SWITCH

SYMBOL TABLE:
PA 1700 F'A[I 1701 DELAY 0000
SWITCH 0048 LOOF' 004[1

DONE

Fig 4-49: Siren program for the flow chart of Fig 4-47

The speaker is attached to the IORA register (memory address
1700), in bit position zero. It can be attached directly. For a better
sound, the circuit of Fig 4-50 is recommended. The data direction reg­
ister DORA for this PIO must first be configured so that bit zero is an
output:

LDA #$01
STA PAD DORA

129

6502 APPLICATIONS BOOK

3K

Fig, 4-50: Connecting a Speaker (Improved)

The speaker can then be turned on. Turning the speaker on and off
can be easily accomplished by a programming trick. This consists of
using the INC instruction. This instruction will increment the contents
of the designated register and will generate successive numbers which
will be alternately odd and even. This guarantees that the right-most
bit (bit 0, to which the speaker is connected) will switch from the value
zero to the value one. This allows turning the speaker on and off with
only a single instruction, versus two if a different pattern had to be
loaded in the accumulator and then transferred to the ORA. Let us
turn the speaker off. The speaker will remain off for a duration speci­
fied by the constant "DELAY." The delay loop is the following:

SWITCH

LOOP

STA
INC
LDX
DEX

PA INITIAL VALUE IN ORA
PA
DELAY

BNE LOOP

Once the value DELAY has been used, it is decremented:

DEC DELAY

This way, the next time around, the delay value will be smaller and the
tone will be higher in pitch. The speaker must now be switched:

JMP SWITCH

The program above implements the upramp of the siren sound as
shown on flow chart 4-47.

Exercise 4-7: Complete the program as per the flow-chart of Fig 4-48

130

BASIC TECHNIQUES

to generate successive upramps, and generate a true siren sound.

Exercise 4-8: Write a siren program which goes up in pitch, then
down, then up again, etc.

SENSING AN INPUT PULSE

In this program, a switch will be depressed and the program must
measure the duration during which the switch is held down, then
beep n times through the loudspeaker, where n is the time during
which the switch was depressed, expressed in seconds. The speaker is
connected to bit O of the IORA as in the preceding program. The switch
is connected to bit 7 of the IORA, for easy detection. The connection
is illustrated on Fig 4-51.

IORA

Fig. 4-51: Connecting Switch and Speaker

The flow-chart for the program is shown on Fig 4-52. The delay
duration during which the key is pressed is measured in units of .25
seconds, then converted into seconds. The speaker is then activated
and timed.

The program is shown on Fig 4-53. It follows the previous flow­
chart and should be self-explanatory.

PULSE MEASUREMENT

In this program, the time during which the key was depressed will be
measured, and a sound will be generated. The number of beeps

131

6502 APPLICATIONS BOOK

Notes
•COUNTER holds "n"
(number of beeps).
• N is a duration.

132

SWITCH DOWN DURING DURATION

YES

NO

COUNTER=O

COUNTER= COUNTER+ 1

DELAY . 25 SEC

DIVIDE COUNTER
BY 4=SECONDS

N=DURATION

DELAY

SWITCH SPEAKER STATE

N=N-1

DELAY . 25/SEC

COUNTER= COUNTER -1

Fig. 4-52: Detailed Flow Chart

BASIC TECHNIQUES

T =$00
F'A =$1700
PAD =$1701

,=$40
0040 A9 01 LDA tOl
0042 8[1 01 17 STA PAD ;F·AO IS OUTF'UT
0045 A9 00 LDA to
0047 85 00 STA T
0049 8[1 00 17 STA PA
004C AD 00 17 POL LDA PA
004F 30 FB BMI POL ; SWITCH UF'?
0051 E6 00 CPT INC T
0053 A2 3D LDX t$3[1 ,i SEC DELAY
0055 AO 00 BL2 LDY to
0057 CB BL1 INY
0058 DO FD BNE BL1
005A EB INX
005B [10 FB BNE BL2
005[1 A[I 00 17 LDA PA
0060 10 EF BPL CF'T

; SWITCH IS UF'! RING SPEAKER ONCE,
0062! 46 00 LSR T ; DIVIDE E<Y FOUR
0064! 46 00 LSR T
0066! A9 00 SOUND LDA to
0068! A2 80 LDX t$80
006A! AO 00 CL2 LDY too
006C! CB cu INY
006[1! [10 FD BNE cu
006F! 49 01 EOR t1
0071: SD 00 17 STA PA
0074! EB INX
0075! DO F3 BNE CL2

;NEW 1/4 SECOND DELAY
0077! A2 3[1 LDX 03[1
0079! AO 00 DL2 LDY too
007B! CB [Ill INY
007C! DO FD BNE [Ill
007E: EB INX
007F: DO FB BNE DL2
0081! C6 00 DEC T
0083! 10' El E<F'L SOUND
0085! 00 BRK

SYMBOL TABLE!
T 0000 F'A 1700 F'A[I 1701
F'OL 004C CF'T 0051 E<L.2 OO:J5
BL! 0057 SOUND 001>'6 CL:? ()()()~'\

CL! 006C DL2 007? [IL I ()I) 71:<

DONE
Fig 4-53: Switch Closure Measurement Program

should be proportional to the duration of the switch closure.
The flow-chart for this program is essentially analogous to the pre­

vious one and it is shown on Fig 4-54. The corresponding program is
shown on Fig 4-55.

This program uses the DELAY subroutine which measures a .25
second delay. The flow-chart for this subroutine is shown on Fig
4-56. The corresponding program is shown on Fig 4-57.

133

6502 APPLICATIONS BOOK

0000:

0040:
0042!
0044:
0047!
0049:
004C!
004F!
0051:
0053:
0056:
0059:
005B:
005D:
005E!
005F!
0062!

SYMBOL
PA
FREQ
CF'T

DONE

134

00

A9 00
85 00
BD 00 17
A9 01
BD 01 17
AD 00 17
30 FB
E6 00
20 90 00
AD 00 17
10 F6
A5 00
OA
OA
20 co 00
4C 5B 00

PA
F'AD

INITIALIZE PIO
TIMER=O

NO~

YES

YES

TIMER=TIMER+ I

DELAY 250MS

READ TIMER

GENERA TE SOUND OF
FREQUENCY PROPORTIONAL

TO TIMER FOR I SEC

Fig. 4-54: Switch Time Measure

=$1700
=$1701

[11_250 =$0090
FREQ =$00CO

.=00
T ,BYT $00

,=$40
LDA too
STA T ; INIT TIME
STA F'A
LDA tOl
STA F'AD ;BIT 0 OUT

POL LDA F'A ;POLLING,,,
BMI F'OL ;NOT F'RESSED,

CPT INC T ;INCREMENT TIME
JSR DL250 ;250 MS DELAY,
LDA F'A
BF·L CF' f

HERE LDA T
ASL A ; MF'Y BY TWO
ASL A ; MF·Y BY TWO AGAIN
JSR FREQ ,MAKE TONE,
JMF· HERE

TABLE!
1700 PAD 1 701 DL250
ooco T 0000 POL
0051 HERE 005B

Fig 4-55: The Switch Time Measurement Program:
Tone Generation

0090
004C

ooco:
ooc2:
OOC4!
OOC6!
oocs:
OOC9!
OOCB:
oocD:
OODO:
00[11:
00[13!
00[15!

SYMBOL
PA
FL2

DONE

85 BF
A9 00
A2 80
A4 BF
CB
[tO FD
49 01

;MAKES A TONE, IJSES REG, A
;ASSUMES PA SET FOR OUTPUT,

BASIC TECHNIQUES

;FREQUENCY CONSTANT IN REG, A ON ENTRY

PA =$1700
F =$BF

,=$CO
FREQ STA F

LDA to
LDX USO ,DURATION CONSTANT

FL2 LDY F ; FREQUENCY CONSTANT IN y

FLl INY
BNE FLl
EOR tl

8[1 00 17 STA PA ; TOGGLE PAO
EB INX
DO F3 BNE FL2
AS BF LDA F
60 RTS

TABLE!
1700 F OOBF FREQ ooco
OOC6 FLl OOCB

Fig 4-55: The Switch Time Program (continued)

SAVE Y

X = 61X

Y=O

X=X+l

' NO~

YES

RESTORE Y

OUT

Fig. 4-56: 250ms Delay Flow Chart

135

6502 APPLICATIONS BOOK

0090: 98
0091: A2 3[1
0093: AO 00
0095: CB
0096: DO FD
0098: EB
0099! DO FB

;***** DL250 *****
;250 MILLISECOND DELAY
;REG, Y UNAFFECTED

' ,=$90
DL250 TYA ,SAVE

LDX U3D
DL2 LDY to
[Ill INY ; INNER

BNE DLl
INX
BNE DL2 ,OUTER

y

LOOP

LOOP
009B! AB TAY iRESTORE y

009C: 60 RTS

SYMBOL TABLE!
DL250 0090 DL2 0093

DONE

Flg.4-57: 250ms Delay

[Ill 0095

Exercise 4-9: The flow-chart of Fig 4-55 has been written so that each
box in the flow-chart corresponds to one instruction in the program of
Fig 4-54. Using this flow-chart, or else the program, write on the left
of each box the duration of the delay it introduces. Compute the re­
sulting internal delay duration for this subroutine. Is it exactly 250
ms?

136

NO

>El COUNlfR LOCAllOf\/
lO DURATION VALUE

DECREMENT COUNTER

Fig. 4-58: Time 10 Flow Chart

009E
OOAO
OOA2
OOA5
OOA8
OOAA
OOAC
OOAE

SYMBOL
TIMER
TO

86 9D
A9 62
8D 07 17
AD 07 17
10 FB
C6 9D
DO F2
60

i***** TIMEIO *****
il/10 SECOND DELAY
;
TIMER =$1707
D =$9D

,=$9E
TIME10 STX D
TO LDA 062

STA TIMER
Tl LDA f IMER

E<F'L Tt
DEC D
E<NE TO
RTS

TABLE:
1707 [I

OOAO Tl

BASIC TECHNIQUES

iDECIMAL 98

009[1 TIMEIO 009E
OOA5

Fig 4-59: Generating a O. 1 Second Delay

A SIMPLE MUSIC PROGRAM

As a preliminary step to playing music, now let us generate a sound
with the speaker, using a prc5grammed delay. The flow-chart is shown
on Fig 4-58 and the delay subroutine is shown on Fig 4-59. Prior to
using the subroutine, the constant F must be loaded with the appro­
priate delay duration which will determine the frequency of the sound.

In order to generate music which has some resemblance to actual
tunes, it is necessary to generate a sound of specified frequency and
also to control its duration. The musical symbols used to indicate the
duration of a tone are shown below:

Musical Symbols

(. = +500Jo)

)=1
J=2
J.=3
J =4
J.=6
0=8

o.=12

The dot which may follow a note indicates plus 500Jo duration. Over­
all, there are seven possible durations. Additionally, it is necessary to
represent a "silence". At a minimum, this information will require
three bits in an encoded format, or else four bits in a decoded format.
(A decoded format is one where the values I, 2, 3, 4, 6, 8, and 12 are
represented by their actual binary representation.)

To represent the notes of one octave, A, B, C, D, E, F, G must be

137

6502 APPLICATIONS BOOK

represented, as well as the six half notes between them. This represents
a total of 13 keys for one octave. If more than one octave should be
used, then one full byte should be allocated to represent the tone. If
the reader is limited by the amount of memory available on his board,
he may wish to restrict his tunes to 16 possible keys and would then be
able to use an encoding where the left half of every byte represents the
duration and the right part of every byte represents the notes.

Here, we will play simple tunes and use a straightforward encoding
technique, where one full byte is allocated to the duration, and one
full byte is allocated to the note frequency. Three examples, a Mo­
zart Sonatine, a Bach Chorale and a popular children's song are shown
on Fig 4-60, 4-61 and 4-62.

The flow-chart for the corresponding music program is shown on
Fig 4-63 and the program itself appears on Fig 4-64.

A .1 second timer is a simple preliminary subroutine which will gen­
erate a .1 second delay (see Figs 4-58, 4-59).

Address Duration F Note

00 09 20 la d A
2 04 4F do#J C#
4 04 6B miJ E
6 05 12 sol# J. G#
8 01 20 la ;:: A
A 01 39 si tP- B
C OF 20 la 0 A
E 02 00
12 09 7C fa#d F#
12 04 6B mi J E
14 04 91 la J A
16 04 6B mi J E
18 04 59 re ,J D
IA 09 4F do#d C#
lC 00 00
1E
20

Fig. 4-60: Mozart Sonatine

138

BASIC TECHNIQUES

Address Duration F Note

00 88 44 do C
02 06 59

I

D re
04 06 6B mi E
06 88 83 sol G
08 06 74 fa F
A 06 74 fa F
C 88 91 la A
E 06 83 sol G
10 06 83 sol G
12 88 A3 do C
14 06 9E si B
16 06 A3 do C
18 06 83 sol G
lA 06 6B mi E
lC 06 44 do C
1E 88 59

I

D re
20 06 6B mi E
22 06 20 la A
24 88 83 sol G
26 06 74 fa F
28 06 6B mi E
2A 88 59

I

D re
2C 06 44 do C
2E 06 04 sol G
30 06 44 do C
32 88 39 si B
34 06 44 do C
36 06 6B mi E
38 06 83 sol G
3A OE A3 do C
3C OE 44 do C
3E 00 00

Fig 4-61: Bach Chorale

139

6502 APPLICATIONS BOOK

Address Duration F Note

0 04 44 do,rc
2 04 44 do J' C
4 04 44 do,JC
6 04 59 reJ'D
8 09 6B miJ E
A 09 59 re,/ D
C 04 44 doJ' C
E 04 6B mi,J E
IO 04 59 re.f D
12 04 59 re,J D
14 09 44 doJ C
16 IO 00
18 04 44 doJ' C
lA 04 44 do/ C
lC 04 44 do,J C
1E 04 59 re j' D
20 09 6B miJ E
22 09 59 reJ D
24 04 44 do,J C
26 04 6B mi.f E
28 04 59 reJ' D
2A 04 59 reJ' D
2C 09 44 doJ C
2E 00 00

Fig. 4-62: "Au clalr de la lune"

Exercise 4-10: Verify whether the subroutine implements a .1 second
delay exactly. Verify the duration of every instruction and the number
of times that the loop is executed. Compute the corresponding delay.

KIM TRAFFIC CONTROL

A possible connection for a traffic control simulation is shown on
Fig 4-66. It is equipped with switches in every direction, which will be
used to indicate the presence of a car or else a pedestrian call.

140

0010 A9 31
0012 8[1 07 17
0015 2C 07 17
0018 10 FB
001A CA
0018 [JO F3
001[1 60

"f" CONTAINS DELAY

X=DURA110N

Y=TONE DELAY

NO

NO

A=AEORl

SWITCH SPEAKER WITH A

X=O?

+ YES

OUT

Fig. 4-63: Play Sound Flow Chart

;***** F'LAY A TUNE ***** F'A =$1700
F'AD =$1701
TIMER =$1707

,=00
A[IDRS .=.t~
TEMF' • =. !-1
YSAVE • =, t1
F .=.+1

,=$10
TIME20 LDA t$3l

STA TIMER
Tl BIT TIMER

BF'L T1
DEX
BNE TIME20
RTS

Fig 4-64: Playing a Tune

BASIC TECHNIQUES

141

6502 APPLICATIONS BOOK

,=$20
0020: 84 03 FREQT STY YSAVE
0022: 85 04 STA F
0024! A9 31 FTO LDA H.31
0026: 8[1 07 17 STA TIMER ,ST,'iR f TIMER < 1/20 SEC,>
0029: A4 04 FTl LDY F
0020: CB FT2 INY
002c: DO FD BNE Ff2
002E: EE 00 17 INC F'A ;SWITCH SF'EAI\ER
0031! 2C 07 17 BIT TIMER ;TIME ELAF'SEfri
0034! 10 F3 BPL FTl ;No: GO ON,
0036! CA FT3 DEX
0037! no EB BNE FTO
0039: A4 03 LDY YSAVE
oo.rn: 60 RTS

,=$40
0040! A2 OF START u,x !$OF
0042: 9A rxs
0043: A9 00 LDA uoo
0045: 8(1 Fr, 17 SfA U7FA
0048: 8[1 FE 17 STA $\7FE
004B: A9 lC LDA U!C
004[1! 8(1 FB ll STA H7FB
0050; 8[1 FF 17 srA U7FF ;IN fERRUF'f VECfOR
0053! A9 01 LDA HO!
00~_;5: 8[1 01 17 SfA F'A[I ; F'A_rl IS OUTF'IJf
0058! AO 00 DAC,if'O LDY HOO
•)O'St-) ! Bl 00 NEXT LD•·• (AD[lh:S >, Y
oosc: 8~ 02 '3TA fEMP
O<l'lE: 29 7F. AND H?F
0060: A;. fAX ; l•UF,r, f [r:JIJ

006!: Ff) F~ f<UI [lh(:~·1F-'()

006.·I: en !NY
00.L,.): f<l ()•) l [IA ({-t[lfJR'.·i I,'(
006b! f-0 LO f<Ell fUNI_
001,B: 20 :~') uo Jf;h' H;·un
OOM<! 24 02 f< I f fFMf'
006[1: 30 0:°.J f<M I AFffR
OOM: ~-;2 02 LllX uo:.•
0071: 20 10 00 -JSR T !Mf_ :-•()

()011: CH Af ff f< !IIY
()0/5 ! ,1r: ~1,, (1() 1111' ,w,r
,_)i)/8: 20 lf) 00 r, iri1:.. JSR f [MF .'•l
1)0 /fi ! FO F7 BUl AF 'LR

SYMBOL TABLE!
PA 1700 PAD 1701 TIMER 1707

AD DRS 0000 TEMP 0002 YSf~VF 0003

F 0004 f!ME20 0010 Tl OOl~i

FREQT 0020 FfO 0024 FT 1 0029

FT2 002B FT3 0036 START 0040

DACAPO 0058 NEXf 005A AFfER 0074

TONE 0078

Fig 4-64: Playing a Tune (continued)

142

BASIC TECHNIQUES

Exercise 4-11: Write a traffic control program which meets the follow­
ing specifications:
• Minimum yellow duration: 3 seconds
• Whenever a car presence is detected (by holding down one of the
switches) extend the green duration for that duration by three seconds.
• Maximum green duration in any direction: 2 minutes, if there is a
request in the opposite direction.
• Blink the lights at night (a night indication is provided by a separate
switch).
• A possible flow-chart for this program is shown on Fig 4-65. Write
the corresponding program.

"'

A GREEN, BRED
Y•O(M:'TIYlOIR£CflCN-A)

Fig. 4-65: Traffic Flow Chart

LEARN THE MULTIPLICATION TABLE

As a final exercise, this program should teach the multiplication
table. The program should blink an LED or the loudspeaker n times,
with n between 1 and 10, then wait 2 seconds, then blink again p times,
with p between l and 10.

143

6502 APPLICATIONS BOOK

IOHIECTION

~
V« Vet V,c

V«
G

0 V« .~ R C G V«

ADlll(Cl 00N

.J..

••
,I, . .. o(c • 0 v.

G V.

V«.Vu \lr,t

.J..

J,

J.

~
"'
P8

....._
J1:~J ~. . Cl!

-2 11--<
'-- . 3'--< .___. • i---c

PA.CG) l
PA11f0) OIR~A

PA,[RJ

• 9---C

IO 111--<
12 13'--<

P""(GJ l
PA,(01 Ont., I
PA.t!R) .. " ' ONO - , ...

Fig. 4-66: Traffic Controller

The user must then push n times on a push-button switch to enter his
answer. An audible acknowledgment should be provided by the speak­
er. The user terminates his answer by not pushing on the switch for 3
seconds or more. If the answer was correct, the LED should light up
for five seconds. If the answer was not correct, the LED will blink.

Exercise 4-12: Design the corresponding flow chart, and write the pro­
gram. (This program is simple but somewhat longer than many of the
previous ones. If you really need the answer, it is shown in Appendix
B.)

SUMMARY

Simple input-output devices have now been connected to a 6502
board. We have learned how to realize simple hardware interfaces,
and how to develop simple applications software to sense and control
an external environment. Although the complexity of the applications
presented here has been kept low, more complex applications could be
developed using the same simple hardware. We are now ready to pro­
ceed to more complex programs and interfaces in Chapter 5: Indus­
trial and Home Applications.

144

CHAPTERS

INDUSTRIAL AND HOME
APPLICATIONS

INTRODUCTION

The basic skills for connecting simple devices to a 6502-based micro­
comput~r board, and for developing the basic applications software,
have been presented in Chapter 4. Here, more complex devices will be
interfaced to the 6502 board, and more complex applications software
will be developed. The applications presented are typical home and
industrial control situations. In the next chapter, microcomputer
peripherals will be interfaced to the 6502 board.

The first application presented here will be a traffic-control simula­
tion. Traffic lights will be simulated by LED's on the board and appli­
cation programs of increasing complexity will be developed. The pres­
ence of cars will even be detected by simulated loop detectors, normally
embedded in the pavement, and simulated here by push-button switches.
The skills required for developing these hardware and software interfaces
are those required by a real industrial control environment.

Then, a 5 x 7 dot matrix LED will be interfaced to this system. This
is a tec~nique frequently used in the display of data. Dot matrices are
used, not just for LED's, but to represent characters on a television
screen, or on a dot matrix printer. This dot matrix will be used to dis­
play actual switch values as sensed by the 6502 board.

Tones will then be generated with the loudspeaker in order to de­
velop simple music programs. The set of switches will be used to spe­
cify which note should be played. The skills acquired in controlling the
sound of the speaker will also be used by the next program to generate

145

6502 APPLICATIONS BOOK

sounds such as a siren.
The next application program will implement a burglar alarm system

for a home or a building. A light beam will be used as one of the de­
vices which detect a possible intrusion. Whenever the light beam is
interrupted the alarm will be sounded through the speaker. Many
additional improvements will also be proposed in the exercises.

The speed of an ordinary DC motor will then be controlled by the
computer. It is, in fact, quite simple to control the speed of a motor using
digital techniques. These techniques and the required hardware inter­
face will be presented.

In the next application, a heat sensing device will be connected to
the microprocessor board, and the temperature measurement will be
output in the form of an audible sound. The higher the temperature,
the higher the pitch of the tone will be. This will introduce the concept
of analog to digital conversion, and the actual hardware and software
techniques used to effect this conversion will be presented here.

The reader is encouraged to build the actual applications board #2
required by the programs in this chapter. All components used on this
board are low in cost, and normally readily available from an elec­
tronics shop (except perhaps for the digital to analog converter which
must often be ordered from a distributor). Photographs of the actual
board are shown on Fig 5-1, 5-2 and 5-3.

Fig. 5-1: The Appllcatlon Board #2

146

INDUSTRIAL AND HOME APPLICATIONS

Fig. 5-2: Underside shows wire-wrap

Fig. 5-3: For convenience Appllcatlon Cables connect to board

147

6502 APPLICATIONS BOOK

In view of the limited number of ports normally available on the
output of the microcomputer board, four connectors labeled HI, H2,
H3, and H4 have been installed on the board to facilitate the connec­
tions and avoid rewiring between programs. These connectors have
been designed to mate directly to the SYM external connection cables
but could be readily adapted to the output of other microcomputer
boards. For each application, it will be necessary to plug in one or

148

············· CONNH4

8

~LED13

~o
-c::::::J-R 1

r-::-1
L::_J

BIG
RELAY 2
(not used)

EJ o TfTI G
0 ©

~
LJ

r:l r:l r:i
LJ l_j l_j

r:l (not

~ used)

r:l r:l r:l r::l
tJ lj tJ l_j

® LED'S

©
0@© @@@

®

E] ~
............

CONNHl•......

Fig. 5-4: Board Layout

INDUSTRIAL AND HOME APPLICATIONS

two of the output cables coming from the board to the corresponding
connectors shown on the applications board. The details of each con­
nection will be indicated at the beginning of each application.

The component layout for the board is shown on Fig 5-4. The con­
nectors detail is shown on Fig 5-5 A and B. The details of each connec­
tion is shown within the paragraph corresponding to each application.

VIA# l
IORA
AOOI

VIAi I
IORB
AOOO

(EXCEPT
P66)

CONNECTOR
HI

PINNO

CONNECTOR
H2

PINNO

vcco-1--
~i~
::~ ~ SWl!.CH :;

;:~ ; :~
PAJ+- A4
PA2~ AJ
PAl 0---- A2
PAO~ A!
(lS&)

P87 o-lL.- ROW 1 OF LEO MATRIX {PIN 2)
P85 o-12----- ROW 2 (17)
PB4 o-lL- ROWJ (J)

PBJ~ RQWA (4)
PB2 0--- ROWS (11)
PBI o,..lL__ ROW 6 (10)

PS0 o2.?-- ROW 7 (9)

lED

Fig. 5-5a: H1 and H2 Connectors

A wire-wrap technique has been used to connect the wires to the pins
on the back of the board as shown on Fig 5-2. It is naturally possible
to solder the wires. Do not forget the usual precautions in handling
LSI circuits: all instruments (including yourself) should be grounded.
As a final detail, the pot trimmer (variable resistor) connected in series
with the loudspeaker should not be set to the value zero. If it were,
the pot might burn when power is applied to the speaker, in the case of
a board like the SYM where the speaker would be connected to one of
the buffered outputs (in addition the output transistor is also likely to
burn out). An additional resistor in series with the speaker is recom-

149

6502 APPLICATIONS BOOK

mended for this reason.
The goal of this chapter is to teach you actual applications tech­

niques which should enable you to create either home applications of
significant complexity or to solve actual industrial control problems in
a realistic environment. At the end of this chapter, you should have
acquired all the basic skills required to start developing complex ap­
plications on your own. If specific interfacing problems should be en­
countered, reference C207 "Microprocessor Interfacing Techniques"
is suggested.

Important note: In order to use one more input-output line, tran­
sistor 1 (centermost) of the four buffered ports of the SYM is bypassed.

The programs presented in this section have been designed to be
improved. The alert reader will notice that many improvements in
style are possible. Such improvements are proposed or described
in the exercise section at the end of every application. When reading
the programs, it is suggested that you watch for such possible im­
provements in the coding. However, it is only in the next chapter that
we will present optimized programs, once all other problems have
been solved.

Again, in this chapter, a large number of exercises will be proposed.
It is strongly recommended that most of these exercises be solved
either on paper or on a real microcomputer board. They have been
carefully designed to insure that concepts presented in the preced­
ing section were actually learned, and that you can use them creative­
ly. If you can solve the exercises without looking at this book, you will
have effectively learned how to resolve your own applications prob­
lems.

CONNECTOR
HJ

PINNO

vcc o-.L--.
GNO~
+17V~ a::::.3 -12\lo-r-

lORA { PA7 ~(PH0T0TRANSIST0R)
AC01 PA6 ~ (MOTOR)

P67 ~ (SPEAKER)
P86 +-- (SMAl.l RHAY)

VIAIJ P85 o,,r-" BIG RELAY 1)

IORB PIM ~COl.50flEOMATRIX(PINl3)
·ACOO P63 ~COLA (14)

P62 +.- COL3 (8)

: 22 ~~~ g~

VIAil
IORA
AOOI

lSBOF
VIAil
IORB
ACXXI

CONNECTOR

"' P1NN0

I
vcc~
GND~ (MSB)
PAJ ~ I/P80FDAC(PtN5)

:: ~ :::; :: :~:
PAA o-,l__. I/P5 " (8) ~: ! :;:; :: ::~)
~~ ~ :;~ :: ::~:
P80 o-!.!..- =AllATOil 0/P(M.5-PIN 10)

Fig. 5-5b: H3 and H-4 Connectors

150

INDUSTRIAL AND HOME APPLICATIONS

A TRAFFIC CONTROL SYSTEM

We are going to develop programs to control a simulated intersec­
tion. The diagram of the intersection appears on Fig 5-6. It has two
directions of traffic flow identified as A and B. In traffic control jar­
gon they are called the "phases". The two traffic lights for both direc­
tions of a phase, such as the two traffic lights for arterial A, will dis­
play the same color (green, yellow, or red) at the same time. Similarly,
the other two traffic lights for phase B will be turning on simultane­
ously. These four sets of traffic lights will be simulated on our board
by four sets of green, yellow, and red LEDs. Additionally, we will as­
sume that vehicle loop detectors have been imbedded in the pavement
at the locations marked A-1, A-2, B-1, B-2 on the diagram of Fig 5-6.

'y G GYR

~ ~

Fig. 5-6: The Traffic Control System

+5V

DORA

0 I

I I

2 I

J I

5 I

• 0 UDPAIRS

7 0

!A003) (AOOI)

Fig. 5-7: Connecting the LED's

151

6502 APPLICATIONS BOOK

They are called "loop detectors," and their role will be explained
later.

Let us first examine the hardware connection of our "traffic lights"
(in fact, the LEDs) to the microprocessor system. Referring to Fig 5-7,
we are connecting a 7404 driver to the IORA register of the 6522 #1.
The LED pairs appear on the right of the illustration. For clarity, only
one LED is shown on each line. In fact, two LEDs are connected in
parallel on each line since there are two sets of traffic lights for every
phase. The actual connection is shown on Fig 5-8. In order to config­
ure the low order 6 bits of IORA as outputs, the direction register,
DDRA, which appears to its left will have to be loaded with the proper
bit pattern: "00111111." A driver (the 7404) is necessary in order to
supply enough current to light up the LED's.

152

CONNECTOR
HI

PINN() LED

Fig. 5-8: Actual LED Connection

DELAY

AND YB ON

DELAY

Fig. 5-9: Night Pattern

INDUSTRIAL AND HOME APPLICATIONS

We are now going to develop programs for several traffic control
algorithms. Two main cases can be distinguished: the night pattern
(flashing lights), and the day pattern.

(Connection: Connector A to Connector HI)

01()0 A9 3F NIGHT LDA #$3F *
0102 SD 03 AO STA $A003 Set VIA #1 DDRA = 3F for output

mode
0105 A9 02 NIT2 LDA #$02
0107 SD 01 AO STA $AOOI Turn on yellow light in one direction
OIOA A9 FC LDA $FC - count.
OlOC 85 00 STA $00 Set DL YA Count = $FC (i.e. - 4)

at location $0000
OlOE 20 20 01 JSR DLYA Call DLYA
Olli A9 20 LDA #$20
0113 SD 01 AO STA $AOOI Turn on red light in the other

direction
0116 A9 FC LDA #$FC
0118 85 00 STA $00 Set DL YA count = $FC at

loc. $0000
OIIA 20 20 01 JSR DLYA Call DLYA
OIID 4C 05 01 JMP NIT2 Repeat

Subroutine DL YA: This subroutine takes index from location 0000, loop
until this index incremented from a pre-set negative value to zero, the pre-set index
is used to control the length of delay.

0120 A2 9D DLYA LDX #$9D
0122 AO 71 LPXA LDY #$71
0124 cs LPYA !NY Inner Outer
0125 co 00 CPY #$00 J delay delay
0127 30 FB BM! LPYA loop loop
0129 ES INX
012A EO 00 CPX #$00
012C 30 F4 BM! LPXA
012E E6 00 INC $00 Increment delay count every time an

outer delay loop is completed
0130 A5 00 LDA $00
0132 C9 00 CMP #$00
0134 30 EA BM! DLYA Loop till index = 0
0136 60 RTS

Fig. 5-10: Traffic Light Slmulatlon: Night Mode (Program 5-1)

153

6502 APPLICATIONS BOOK

Night Pattern

This is the simplest pattern. The traffic lights are flashing red in one
direction and amber in the other one. This traffic control strategy is
used for isolated intersections with a low amount of traffic at night.
The flow-chart corresponding to the algorithm appears on Fig 5-9. It
states that the red for one direction and the yellow for the other one
are on or off simultaneously. They are both kept on or off for a fixed
duration called "DELAY". The program corresponding to this flow
chart appears on Fig 5-10. It consists of a main program called "NIGHT"
and a delay subroutine called "DLYA." Let us examine the program.

Referring back to Fig 5-7, the Data Direction Register for the 6522
#1 must first be properly configured so that the lower six bits of IORA
will be the outputs which will drive the LEDs. This DORA is located
at memory location A003 and the IORA is located at memory location
AOOl (refer to Fig 3-6 for the 6522 memory map).

The first two instructions load the required contents in the Data Di­
rection Register:

NIGHT LDA #$3F
STA $A003 SET DORA

We then simply have to deposit the appropriate pattern in the IORA
register to turn the required LEDs on or off. The pattern required for
addressing each LED pair appears on Fig 5-11.

BINARY HEX LIGHT

00000001 01 GREEN A
00000010 02 YELLOW A
00000100 04 REDA
00001000 08 GREEN B
00010000 10 YELLOW B
00100000 20 RED B

Fig. 5-11: Pattern to Address the LED Pairs

154

INDUSTRIAL AND HOME APPLICATIONS

The next two lines of the program turn on the yellow for A by de­
positing the hexadecimal value "02" in the IORA register.

NIT2 LDA #02
STA $A001 SET IORA

A delay must then be implemented. The delay value is deposited in the
accumulator and then stored at memory location "00" where it will be
found by the delay routine. A subroutine jump then occurs to DLYA.

LDA #$FC
STA $00
JSR DLYA

Once the specified delay has elapsed, the hexadecimal value "20" is
deposited into the IORA. This will turn off yellow in direction A and
simultaneously turn on the red for direction B. As before, the delay
duration is deposited in memory location "0", and a jump occurs
again to the DL YA subroutine:

LDA #$20
STA $A001
LDA #$FC
STA $00
JSR DLYA

Finally, upon expiration of a specified delay, the program loops back
to location NIT2 where it turns on YA and turns off RB again:

JMP NIT2

The operation of the program should be completely straightforward at
this point. Let us examine the delay subroutine. The principle of delay
loops is to load a register or a memory location with a value and then
increment or decrement it until it reaches a set value. Since the reader
is presumably familiar with the decrementation technique (see ref
C202), we are going to use here an incrementation technique for a
change. However, it requires a few more instructions. An improve­
ment will be suggested in an exercise at the end of this section. The
delay subroutine appears on Fig 5-12. Since the delay to be implement-

155

6502 APPLICATIONS BOOK

ed is of the order of tens of seconds, it cannot be implemented as a sin­
gle loop. A single loop delay would load a register with the value 255
(hexadecimal FF) and decrement or increment from there. The result­
ing delay would not be sufficient. In order to implement the longer
delay, we will use nested loops: an inner delay loop, and at least one
outer delay loop which will be executed every time that the inner one
has counted out. Let us examine the program. Register Xis used as the
outer loop counter. It is loaded with the hexadecimal value 9D. This
value will be justified later on:

DLYA LDX #$9D

The second instruction of the program loads register Y with the hex­
adecimal value 71. Y is the inner loop counter:

LPXA LDY #$71

The next three instructions implement the inner delay loop:

LPYA INY
CPY #$00
BMI LPYA

Y is incremented until it reaches the value 0. Every time that the inner
delay loop counts out (i.e., that Y reaches the value 0), the outer coun­
ter X is incremented. This is the sixth instruction in the program:

INX

Every time that X is incremented, it is compared to the value 0, and
as long as the value O is not reached, the branch occurs back to LPXA
at the beginning of the inner delay loop:

CPX #$00
BMI LPXA

The resulting delay so far is, therefore, the inner delay value times the
number of times that the outer delay loop has been executed.

156

INDUSTRIAL AND HOME APPLICATIONS

Every time that this outer delay loop times out, our overall delay
counter at location 00 is incremented by l:

INC $00

This is a third delay loop. The contents of memory location 00 are
tested against the value 00 every time that they are incremented.
Whenever the value 00 is reached, we exit from this routine. As long as
it does not reach the value 0, we go back to location DLYA, i.e., at the
beginning of the previous delay loop to execute the previous procedure
again:

LDA $00
CMP #$00
BMI DLYA
RTS

The overall structure of the program is shown on Fig 5-12, with its three
nested delay loops, and the timing of the instructions. The overall de­
lay will be equal to the contents of memory location 00 times the outer
loop delay times the inner loop delay. Let us compute this total delay
duration. The timing of the instructions appears on Fig 5-12. Let us
examine the inner loop first. Every time that it is executed, three in­
structions are executed lasting seven microseconds. To keep things
simple, we will require this inner loop to generate a delay of approxi­
mately l millisecond. The outer loop #1 will be responsible for imple­
menting a 100,000 millisecond delay (0.1 second).

(2) DLYA LOX
(2) LPXA LOY

(2) INNER[LPYA INY
(2) LOOP CPY
(3) ------BMI
(2) INX
(2) CPX
(3) BMI J OUTER

LOOP
LPYA #1

LPXA
(5) INC
(3) LOA
(2) CMP
(3) BMI DLYA------'

RTS

Fig 5-12: Loop Tuning

OUTER
LOOP

#2

157

6502 APPLICATIONS BOOK

Let us start with the value "80" (hexadecimal) in register Y. This is
128 in binary, the middle of the range which can be obtained with 8
bits. Running through the inner delay loop will result in incrementing
Y 128 times. The total duration of the loop will, therefore, be 7 X 128
= 896 microseconds. Since we want to obtain a delay of approximately

1,024 microseconds for this inner loop, we must modify the value to
be loaded in register Y. Let us compute it. We want this value N to be
such that N X 7 = 1000. N must, therefore, be equal to 1000 + 7 =
142.86. The nearest integer is 143. Since, in this particular delay sub­
routine, we are incrementing the value contained in Y, rather than de­
crementing it, we want to load in Y the value 256 - 143 = 113 decimal
or 71 hexadecimal.

Let us now compute the duration of the delay introduced by the
outer delay loop #1. One traversal of the outer delay loop will result in
a delay equal to the duration of the first instruction of the program (at
address DL YA) plus the duration of the inner delay loop, plus the fol­
lowing three instructions up to and including the branch BMI LPXA.
The duration is:

2+ 7 X 143 + 7 = 1010 microseconds.

We want this outer delay loop #1 to implement a .1 second delay
or 100,000 microseconds. The number of times P that it must be exe­
cuted must, therefore, be such that 1010 x P = 100000. P must there­
fore be equal to 100000 -;- 1010 = 99.

Again, since we are using an incrementing technique for the delay,
the number to be deposited in X must be such that it is incremented
exactly 99 times before it overflows into the value "00". The number
to be deposited in X must, therefore, be equal to 256 - 99 = 157 in
decimal or 9D hexadecimal. Let us now verify the total duration of the
delay we have implemented. The outer loop delay is equal to 99 x
1010 = 99990 microseconds. The remaining four instructions to be ex­
ecuted at the end of the DL YA subroutine represent a duration of
5 + 3 + 2 + 3 = 13 microseconds. 2 us must be added for the first
instruction of DL YA.

The final delay for the complete traversal of DYLA is therefore
99990 + 15 = 100005 microseconds. This represents nearly exactly a
.1 second delay. In fact, it is so close to .1 second that you should be
able to clock this routine with a stop watch and verify the accuracy of
this method.

A word of caution: Remember that this subroutine uses an in­
crementing technique. The number to be deposited at memory loca­
tion 00 will control the number of tenths of a second of delay that the

158

INDUSTRIAL AND HOME APPLICATIONS

subroutine will introduce. However, the number to be deposited at
location 00 should be the complement of the actual number of tenths
of a second since it will be incremented until it overflows through 0. In
other words, to obtain a .4 second delay, you should not deposit
the value 4 at location 00 but deposit the value 256 - 4 = 252 decimal
= FC hexadecimal. This is what we did in the program of Fig 5-10
(night mode algorithm).

The time has come now to improve this delay routine:

Exercise 5-1: Rewrite the delay subroutine by using a decrementation
technique rather than an incrementation technique. Recompute the
numbers to be loaded in X and Y so that the resulting delay introduced
by the subroutine is approximately .1 second. What is the advantage
of using a decrementing technique rather than an incrementing
technique?

Caution: If you decide to use the decrementing technique for the
delay, do not forget to change location 09FC in the memory. A differ­
ent constant must he loaded prior to calling this routine.

Exercise 5-2: Modify the program so that the lights flash every second.
Also, shorten it by using EOR to toggle the lights from one configur­
ation to another.

Day Mode

In this mode, each traffic light goes through a green, yellow, and
red sequence in the usual manner. As long as the light in direction A is
green or yellow, the light for B is red, and vice versa. The flow-chart
corresponding to the control algorithm appears on Fig 5-13. The ar­
rows on the right of the flow-chart indicate the length of time during
which each of the lights is on. If we call DI the green duration for A,
D2 the yellow duration for A, D3 and D4 respectively the durations of
the green and yellow for B, we can see, by inspecting the diagram, that
the total duration of a cycle is D 1 + D2 + D3 + D4.

At a real intersection, these delays are subject to constraints. In par­
ticular, the cycle of the intersection is normally between one minute
and two minutes. The maximum is due to the fact that most drivers
will not tolerate a red light duration of more than two minutes in any
direction: they will simply go through once their patience is exhausted,
assuming that the traffic light is malfunctioning. In addition, the

159

6502 APPLICATIONS BOOK

VEll0WB0N

OELAV A

G v 11 (, Y 11

r· r
r:
. . r·.

OJ

,~
Fig. 5-13: Day Mode (Off Commands not shown)

other delays are constrained by the clearances necessary for a vehicle
or a pedestrian to clear the intersection once he has entered it. The yel­
low time is also called the clearance time and represents the time that is
necessary for a car to clear the intersection. The green may have any
minimal duration as long as no pedestrians are crossing the intersec­
tion. However, if pedestrians may cross this intersection, the mini­
mum red duration should be such that a pedestrian may safely clear
the intersection. The duration of the red in direction B, for example, is
equal to 01 + 02. If we assume, for example, that the minimum yel­
low in direction A is equal to 3 seconds and that the minimum red for
direction Bis equal to IO seconds, we can see by inspecting Fig 5-13 that
the minimum duration for the green in direction A is 01 = 10 - 3 =
7 seconds. Mathematically:
If we set:

GREEN A= 01
YELLOW A= 02
GREEN B = 03
YELLOW B = D4

Then:
RED A= 03 + D4
RED B = Dl + D2

In general, the cycle is fixed, andDl + 02 + D3 + 04 = CONSTANT.
In our program, we will use faster cycles than in real life. This is

simply because it is frustrating to wait for one or more minutes in

160

INDUSTRIAL AND HOME APPLICATIONS

order to observe the correct functioning of the traffic lights. For prac­
tical purposes, a cycle time of 10 to 20 seconds is desirable for testing
purposes, and the reader should now have acquired the skills to adjust
the delay easily, so that his microcomputer could be connected to a real
intersection. The program appears on Fig 5-14.

0140 A9 3F DAY LOA #$3F
0142 80 03 AO STA $A003 Set VIA #I DORA = $3F for output

mode
0145 A9 21 ONDAY LOA #$21
0147 80 01 AO STA $AOOI Turn on green and red in two

directions
014A A9 DO LOA #$DO
014C 85 00 STA $00 Set DL YA count = $DO at Joe.

$0000
014E 20 20 01 JSR DLYA Call delay
0151 A9 22 LOA #$22 Turn on yellow and red
0153 80 01 AO STA $AOOI
0156 A9 EA LOA #$EA
0158 85 00 STA $00 Set DL YA count = $EA
015A 20 20 01 JSR DLYA Call delay
0150 A9 oc LOA #$DC Turn on red and green
015F 80 01 AO STA $AOOI
0162 A9 DO LOA #$DO
0164 85 00 STA $00 Set DL YA index = $DO
0166 20 20 01 JSR DLYA Call delay
0169 A9 14 LOA #$14 Turn on red and yellow
0168 80 01 AO STA $AOOI
016E A9 E8 LOA #$E8
0170 85 00 STA $00 Set DL YA index = $ES
0172 20 20 01 JSR DLYA Call delay
0175 4C 45 01 JMP ONDAY Repeat

Fig. 5-14 (Program 5-2): Traffic Light Simulation: Day Mode

(Connection: Connector A to Connector H 1)

As in the previous program, the Data Direction Register DORA
must be configured in the output mode to control the 6 LEDs connect-
ed to it. This is done by the first two instructions of the program:

DAY LOA #$3F
STA $A003

Then, the green for direction A and the red for direction B are turned
on by the next two instructions which load the appropriate bit pattern

161

6502 APPLICATIONS BOOK

(21 hexadecimal) in the 1/0 register:

ON DAY LDA #$21
STA $A001

A delay duration is then specified by depositing a value in memory
'ocation 00 and by calling the delay subroutine:

LDA #$DO
STA $00
JSR DLYA

The process is then repeated for the yellow in direction A, the red in
direction A, and the green in direction B, and finally the yellow in
direction B, before coming back to the starting point:

LDA #$22 YELLOW A AND RED B
STA $A001
LDA #$EA
STA $00
JSR DLYA DELAY
LDA #$0C RED A AND GREEN B
STA $A001
LDA #$DO
STA $00
JSR DLYA DELAY
LDA #$14 RED B AND YELLOW B
STA $A001
LDA #$ES
STA $00
JSR DLYA DELAY
JMP ONDAY REPEAT

The reader should verify that the program corresponds exactly to the
flow-chart of Fig 5-13. Its interpretation should be completely straight

162

INDUSTRIAL AND HOME APPLICATIONS

forward now. The reader is strongly encouraged to try different time
constants than the ones indicated in the program and verify that the
timing is what he expects. Let us now consider improvements to this
traffic control algorithm.

For example, you can modify the program so that the yellow clear­
ance, the red clearance and the cycle durations be specified by the length
of time one of the switches is depressed after starting the program.

Exercise 5-3: Implement a "dynamic response algorithm " : the green
time for arterial A will be extended by five seconds every time a request
is $ensed on the "loop detector" (a switch), up to a maximum green
duration of three minutes.

Exercise 5-4: Implement "pedestrian calls" by using the switches.
Green should be give to the pedestrian as soon as possible, while respec­
ting the minimum clearances.

Exercise 5-5 : Implement a "police switch": by pushing one of the
switches, the intersection will sequence manually through its sequence.
If pushed quickly twice, the intersection reverts to automatic.

DOT MATRIX LED

We will use here a 5 x 7 dot-matrix LED display (see Fig 5-15). This
type of matrix is used in a number of applications. For example, dot
matrix printers often use a 5 x 7 dot matrix in order to print charac­
ters on paper. TV monitors or CRT displays also use a dot matrix in
order to display characters in the screen. 5 x 7 is the standard mini­
mal dot rpatrix for an acceptable representation of characters but it is
not the best in terms of readability. Larger dox matrices, such as 7 x
9, are used for improved readability, at increased cost. In this applica-

163

6502 APPLICATIONS BOOK

0 0 00 0
0 0000
0 0 0 0 0
0 0 0 0 0
0 0000
0 0000
0 0 0 0 0

Fig. 5-15: A 5x7 Dot Matrix LED

tion we will directly conntect a 5 X 7 LED dot matrix to the 1/0 register
B of the 6522 #1 and to the 6522 #3. Ideally, drivers should be used
with LEDs in order to get sufficient light intensity. Here, to minimize
the parts count, we will connect the LED directly. This means that on
the actual board the LEDs will be dim and the display somewhat hard
to see. For improved performance add drivers on the lines. The con­
nection of the LED dot matrix is shown on Fig 5-16. The 7 rows num­
bered 1 through 7 are connected respectively to bits 7,5,4,3,2,l, and 0
of the 1/0 register B of the 6522 #1. Bit 6 of this IORB is not available
on the SYM board because the monitor dedicates bit 6 to the cassette
input function. The state of bit 6 will, therefore, be indifferent in what
will follow.

The five columns of the LED display, labeled respectively 1 through
5, are connected to bits O through 4 of the IORB of the 6522 #3. This is
illustrated on Fig 5-16. The two IORB's reside respectively at address­
es AOOO and ACOO.

164

VIA II I
10RA
AOOI

VIA II 1

IORB
(Aoo:l)

([XCEPT
PB6)

CONNECTOR

"' PINNO

vcco-L--
~fr ;d -t
PA6o,....1..__
PA5~
PA4o-l-­

PAJ~

::~ ~
PAO~
'L!.81

P87 c-,!.L_
P85 o-,.!L­
PB4 c,-...!...!L_

::~~
P8\ o-1.!-­
PBO e---2,?_

INDUSTRIAL AND HOME APPLICATIONS

~2211
1008

X

X

X
(ACOO)

Fig. 5-16: Connecting the 5x7 LED

sw,rCH B4

03 ., ., ..
AJ

A2
Al

ROW I mLEDMATRtX (PIN 2)
ROW2 (\2)
ROWJ {J)

ROW4
R0W5
ROW6
ROW7

,,,
(11)

(\Ol
(9)

CONNECTOR
HJ

PINNO

vcco-!.-­
GND~
~·2·,-.....!..~

2 M:16 • I 2V ,-,...2.2...._
QFVIA#] 2

l~~;I { ::: ~ ::~)r~oR:RANSISTOR)

PB7~1SPEAl(fR)
P86 ~ SMALt RELAY)

VIA•J PBS~BIG"'EtAYI)

1~;~ ::~ ~ ~~~!O~LfDMATRIX\~~~ \J)

PB2 o-12-- COt 3 \6)
PB1~(0l2 11)

PB0~(0LI \5)

Fig. 5-17: The Connectors to the LED

165

6502 APPLICATIONS BOOK

The basic problem is to select the appropriate combinations of rows
and columns to display the dots representing a character. Any charac­
ter of the alphabet can be generated with a 5 x 7 matrix. Here we will,
for example, display all the hexadecimal characters, i.e., the digits 0
through 9 and the letters A through F. Let us examine their encoding.

An LED dot "on" will be represented by a "O" bit. An LED dot
"off" will be represented by a "I" bit. This is because an LED will be
turned on by grounding its row connection. The pattern required to

CHAAACHR BINARY

Bil

0 • • • 0 I 0 0 0 I

• 000 • 0 I I I 0

• 000 • 0 I I I 0

• 0 0 0 • 0 I I I 0

• 0 0 0 • 0 I I I 0

• 0 0 0 • 0 I I I 0

0 • • • 0 I 0 u 0 I

HEX [Bl I "I Jf I Jf I Bl I

Fig. 5-18: Displaying "O"

CHARACTER BINARY

BIT

0 0 • 0 0 7 I I 0 I I

0 0 • 0 0 I I 0 I I

00 • 0 0 I I 0 I I

00 • 0 0 I I 0 I I

0 0 • 0 0 I I 0 I I

0 0 • 0 0 I I 0 I I

0 0 • 0 0
I I 0 I I

BF Bf 00 BF Bf
H{X H- fl AO H FF

Fig. 5-19: Displaying "1"

166

INDUSTRIAL AND HOME APPLICATIONS

display a "O" appears on Fig 5-18. Naturally, the user is free to choose
any other pattern and other encodings may be used. For example, as
an exercise, the user might want to display a "0" with square edges
rather than with round edges. It should be a simple matter to modify
the table accordingly.

The equivalent binary representation of the encoding appears on the
right of Fig 5-18. The hexadecimal equivalent is indicated at the bot­
tom of the binary table. The reader should remember that row 6 is not
used. It is indifferent, i.e., can be assumed to be either a "O" or a
'' 1 ''. For example, let us look at the hexadecimal encoding for charac­
ter "O" on Fig5-18. The first column has the value "1000001", or
more exactly "1-000001" where a "-" represents the value of bit 6,
which is not used. Let us assume for example that bit 6 will be set at
"O". Then, the value of the first column is "10000001" or "81" hexa­
decimal.

Similarly, the value of the second column is (adding a O for bit 6)
"00111110" or "3E" hexadecimal.

The five columns for the digit "O" are therefore:

81, 3E, 3E, 3E, 81

Let us look now at character "l". It is shown on Fig 5-19 and the re­
quired binary encoding appears on the right of the illustration.

Assuming that bit 6 is a "O," the equivalent hexadecimal represen­
tations are:

BF, BF, 00, BF, BF

If we assume that bit 6 is set at the value 1, then the encoding would
be:

FF, FF,40,FF, FF

Any one of the values "O" or "l" for bit 6 may be used for any one
of the columns as long as we do not use bit 6 for any purpose.

A complete table for encoding the characters "0" through "F" is
shown on Fig 5-21.

167

6502 APPLICATIONS BOOK

Exercise 5-7: Show the shape of the characters O through Fusing this
table.

Exercise 5-8: Rewrite the table in a more consistent way assuming that
bit 6 is always "O".

YES

z
8~
zc5

u

(REPEAT

GET CHARACTER

POINT TO FIRST COLUMN

GET DOT PATTERN

DISABLE COLUMNS

ENABLE ROW PA HERN

ENABLE COLUMN

POINT TO NEXT COLUMN

SHIFT COLUMN POINTER

DELAY

Fig. 5-20: Driving a Dot-Matrix LED

The flow chart for the LED dot matrix program appears on Fig
5-21. Both rows and columns are configured as outputs by loading the
appropriate bit patterns into the corresponding data direction registers
of the 6522. The dot pattern for the character must then be displayed.
The dots will be displayed in succession for every column of the LED.
For each character, the program must therefore access five successive

168

INDUSTRIAL AND HOME APPLICATIONS

entries in the dot-matrix table, corresponding to the five columns of
dots required to display the character. This particular program will
then cycle and display the character indefinitely. The dots are dis­
played by turning off the columns (erasing the previous pattern), then
enabling the row pattern corresponding to the desired dot positions,
and enabling the column on which they are to be illuminated. Then,
the next column must be displayed. All dots should be lit up for the
same period of time, if they are to appear as having a uniform inten­
sity to the observer. Further, all columns must be scanned in a time
period of less than 1/10 of a second if no visible blinking is to occur.
The delay routine at the end of the program is adjucted accordingly.
The program appears below and on the next page.

character 8 LSB addr col I col 2 col 3
0 90 81 3E 3E
I 95 FF FF 00
2 9A DE 7C 7A
3 9F DD 76 76
4 A4 F3 EB DB
5 A9 05 76 76
6 AE Cl 76 76
7 83 7F 7F 7F
8 88 C9 76 76
9 BD CD 76 76
A C2 EO DB 7B
B C7 00 76 76
C cc Cl 7E 7E
D DI 00 7E 7E
E D6 00 76 76
F DB 00 77 77

Table resides in memory locations 0090-00DF.

Fig. 5-21: A Dot Matrix Table

Connection: Connector A to Connector H2
Connector AA to Connector H3

col 4 col 5
3E 81
FF FF
76 CE
76 C9
00 FB
76 79
76 D9
7F 00
76 C9
76 Cl
DB EO
76 C9
7E DD
7E Cl
76 76
77 77

This program gets 8 LSB character address from location 0001, then goes to
table shown on Fig 5-21 to pick up the data pattern for the selected character
and display it on the LED matrix.

Before executing this program, pre-load the 8 LSB of character address at loc-
0001.

The character pattern should be stored on Page Oas indicated on Fig 5-21.
(The 8 MSB of character address are all 00 on Page 0)

Fig. 5-22: Basic LED Matrix Display (Program 5-3)

169

6502 APPLICATIONS BOOK

Note: I) A character generator can be used to replace this table.
2) The LED matrix used is 5 x 7, i.e. 7 bits are needed to define the

the pattern of each column, but the above table uses 8 bits; this is
because the program uses VIA #I 1/0 register B to drive the 7 rows and
only 7 bits of this register can be used. Bit 6 is indifferent because it is
dedicated for ON BOARD CASSETTE IN only.

0180 A9 BF BSCLED LDA #$BF Before execution, 0001 should be
pre-set

0182 SD 02 AO STA $A002 To the selected character addr.
0185 A9 IF LDA #$IF Set VIA #1 DDRB = BF to drive

7 rows
0187 SD 02 AC STA $AC02 Set VIA #3 DDRB = IF to drive

5 columns
018A A9 00 LDA #$00
018C 85 03 STA $03 Set 8MSB of character addr =

00 at 0003
OISE A2 00 LDX #$00
0190 AS 01 RPTCHA LDA $01 Move the pre-set 8LSB of character

addr. from 0001 to 0002
0192 85 02 STA $02
0194 AO 10 LDY #$10 Set (Y) = $10 for enabling last

column
0196 Al 02 NXTCOL LDA $02 (A) = current column pattern of

selected character
0198 SE 00 AC STX $ACOO Disable all columns before enable

rows
019B SD 00 AO STA $AOOO Enable rows
019E SC 00 AC STY $ACOO Enable current column
OJAI ,E6 02 INC $02 Advance address in ($0002) for next

column
OIA3 98 TYA
OIA4 4A LSR A Shift (Y) right by one bit for

enabling next column
OIA5 AS TAY
OIA6 co 00 CPY #$00 (Y) = 00 means all 5 columns

displayed
OIA8 DO 03 BNE DLY3 If not, branch to DL Y3 to

compensate timing (1), if yes,
repeat the whole character

OIAA 4C 90 01 JMP RPTCHA
OIAD A2 FF DLY3 LDX #$FF
OIAF ES LP3 INX
OIBO EO 00 CPX #$00
OIB2 30 FB BMI LP3
OIB4 4C 96 01 JMP NXTCOL Then go to enable next column

Notes: I) This compensation is needed or else the last column will always be

Fig. 5-22: (Continued)

170

INDUSTRIAL AND HOME APPLICATIONS

enabled longer making the last column brighter than the first 4
columns.

2) The compensation mentioned above only solves the problem par­
tially. The brightness is still not even, due to a different number of
LED's enabled in each column. To solve this, a more detailed program
can be written to take the number of LED's enabled for each column
into account for timing compensation.

Fig 5-22: (continued)

The program is shown here. The first four instructions of the
program condition the data direction registers for the rows and the
columns, specifying that they be outputs:

BSCLED LOA #$BF
STA $A002
LOA #$IF
STA $AC02

SET VIA #1

SET VIA #2

7 ROWS

5 COLUMNS

By convention, in this program, the table location of the character to
be displayed is contained at memory location "01" in page 0. The
location of the character to be displayed is, for example, 90 for the
character "O," 95 for character "1," and so on, as indicated in the ta­
ble at the beginning of the program. (An improved program will be
suggested below.) As an example, if we are to display the character
"2," then the value 9A must have been deposited at memory address
01. Since we will need to point successively to 5 table entries for each
of the columns corresponding to this character, we will need to gen­
erate the addresses 9A, 9B, 9C, 90, and 9E. In order not to destroy
our original character pointer "9A," we will use two extra memory
locations at addresses 02 and 03 to contain the current pointer to the
column dots being displayed. Since we are operating in page 0, the
contents of memory location 03 will be set to "0" (high order byte of
the address). This is accomplished by:

LOA #$00
STA $03

Whenever we enter the main display loop, register X will be assumed
to have the value "00". It will be used to disable an output register:

LOX #$00

171

6502 APPLICATIONS BOOK

The first column we will point to is the one at the address specified
in location 01 (the character table entry pointer). We therefore trans­
fer the contents of memory location 01 to address 02:

RPTCHA LDA $01
STA $02

Register Y is used as a shift counter and, at the same time, to enable
selectively one of the columns. It is set initially to the value "10" in
order to enable the first column:

LDY #$10

The "1" will then be shifted right by one bit position, in order to en­
able the next column, and so on. When the '' 1'' finally falls off the
register, all 5 columns have been displayed for the character, and the
loop may be restarted. Since this register is not only used to enable one
of the columns but also to count up to 5, it is labeled as a shift-coun­
ter. The dot pattern for the current column is obtained by accessing
the table entry at address 02:

NXTCOL LDA $02

The dot pattern is now contained in the accumulator. Let us display it.
All columns are first disabled by loading "0" in the IORB:

STX $ACOO

The accumulator contents are then output to the IORB to enable the
rows:

STA $AOOO

Finally, the appropriate column is enabled and the selected LED will
light up:

STY $ACOO

172

INDUSTRIAL AND HOME APPLICATIONS

An LED will light up only when it is connected to an active column
and to a grounded (0) row. Each "O" in the dot pattern will light up
the corresponding dot in the selected column.

Memory location "02" is then incremented, in order to point to the
next dot pattern entry for the character. We must then shift our col­
umn pointer right by one position and determine whether we have
already displayed all columns or not:

INC $02
TYA Y CANNOT BE SHIFTED

DIRECTLY
LSR A
TAY STORE RESULT BACK IN A
CPY #$00
BNE DLY3
JMP RPTCHA

Since it is not possible to shift the Y register directly, it must be trans­
ferred first to the accumulator, which is then shifted, and the contents
of the accumulator are copied back into register Y. The contents of
the accumulator are then tested for the value "O" (a program im­
provement may be suggested to the present coding). If the accumula­
tor is "O", we are done and have displayed all 5 columns. Otherwise,
we must implement a delay during which the LED will light up and
then display the next column:

DLY3 LOX #$FF
INX
CPX #$00
BMI LP3
JMP NXTCOL

Index register Xis used as a counter, and a traditional delay is achieved
by incrementing the index register a reasonable number of times, then
branching back to the next column at address NXTCOL.

173

6502 APPLICATIONS BOOK

Program improvements: In order to improve this program by re­
ducing the number of instructions, let us first consider some coding
modifications. Then, we will examine improvements to the functions
performed.

Exercise 5-9: Rewrite the delay routine DL Y3 so that it uses fewer in­
structions.

Exercise 5-10: Inspect the least three instructions of the routine NXT­
COL, from address OJA6 on (see Fig 5-22). Can you suggest another
way to test whether the last "J" bit in Y has been shifted out?

Exercise 5-11: Add a routine to this program so that, instead of depos­
iting a pointer to the table entry at address OJ, one needs to deposit only
the actual character value. With this routine, the user must be able
to deposit an actual value between "O" and "F," and have this pro­
gram display it correctly. In order to do this, one must convert the
character value to the table value. For example, "O" will correspond
to "90" (see table at the beginning of program 5-3), "J" will correspond
to "95 ", and so on. The equation is: Starting address = 90 + code
X 5.

Note: Instead of performing a formal multiplication by five, one
can use a shortcut: Remember that shifting left by one bit position is
equivalent to a multiplcation by 2 and that 5 = 2 + 2 + 1. A mult­
iplication by 4 can be accomplished by 2 successive left shifts.

Exercise 5-12: Write an additional routine which will display a string
of characters. It will assume that the starting address of the string of
characters is contained at memory location 01. Each character will be
displayed for one second. The string of characters may be terminated
by any code which is not between O and F. The program will then
pause for two seconds and display the string again.

Let us now consider improvements to the functions of the program.
We will add four switches and develop a program which displays the
hexadecimal value of the switches.

174

INDUSTRIAL AND HOME APPLICATIONS

DISPLAYING SWITCH VALUES

We will read here the values of four input switches in binary, and
display the corresponding hexadecimal character on the LED matrix.
The flow-chart for the algorithm appears on Fig 5-23. The program
reads the four switches, then points to the beginning of the conversion
table as defined in the previous program, then computes the table off­
set for the character to be displayed. The address in the table for the
binary code corresponding to the dots to be illuminated is obtained by
multiplying the value of the character by 5. This can be verified by in-

READ SWITCHES
Al TOA4

POINT TO CONVERSION
TABLE BASE

COMPUTE OFFSET
=CHARACTER X 5

DISPLAY CHARACTER

Fig. 5-23: Displaying a Switch Value

specting the table shown on Fig 5-22. The address of the first column
to be displayed is then computed and deposited in address 01 in page
0. The previous program is used to display the character on the LED
display. The program is:

Connection: Connector A to Connector H2
Connector AA to Connector H3

This program reads the switches Al to A4 to compute one of 16 hexadecimal values
and display it.

This program uses program 5-3 as a subroutine. Before execution, change program
5-3 as follows:
I) At Joe OIA8, data 4C should be changed to 60 (60 is the machine

code for RTS).
2) The timing compensation constant at Joe. IAC is FF, this should be

changed to FO, because this program enables the last column longer than
program 5-3.

Fig 5-24: Advanced LED Matrix Display (Program 5-4)

175

6502 APPLICATIONS BOOK

0200 A9 00 ROCHA LDA #$00
0202 SD 03 AO STA $A003 Set VIA #I DORA =00 for input

mode
0205 AD 01 AO LDA $AOOI Read switches Bl - B4 and Al - A4
0208 29 OF AND #$OF Ignore Bl - B4
020A AS TAY Store Al - A4 reading in (Y)
020B A2 90 LDX #$90 Calculate character address and store

at loc. 0001. 90 is the base address
020D 86 01 STX $01
020F A2 00 LDX #$00 Addition counter
0211 18 ADD CLC A contains switch reading
0212 65 01 ADC $01 Loop through the addition five times
0214 85 01 STA $01 90 + (A)
0216 98 TYA
0217 ES INX Restore switch value in A.
0218 EO 05 CPX #$05 (X) = 5 means calculation completed
021A 30 F5 BMI ADD
021C 20 80 01 JSR BSCLED Then call BSCLED for display
021F 4C 00 02 JMP ROCHA Then update switch reading

Fig. 5-24: (Continued)

The program appears on Fig 5-24. The first two instructions config­
ure the data direction register for port A as input, so that the switches
can be read:

RD CHA LDA #$00
STA $A003

Then, the contents of switches Al through A4 are read. This program
ignores the value of switches Bl through B4.

LDA $A001
AND #$OF MASK Bl-B4

The contents indicated by the switches are saved in index register Y:

TAY

The start address of the table (90) is then stored at memory address O 1:

176

LDX #$90
STX $01

INDUSTRIAL AND HOME APPLICATIONS

We will add to this start address the required offset to access the
first column of dots for the character specified by the switches. The
offset is computed by multiplying the value of the switches by 5. Index
register X is used as a counter from O to 5. It is initialized to zero:

LDX #$00

The contents of memory location 01 are incremented by 1:

ADD CLC
ADC $01
STA $01

The CLC instruction (clear carry) must be used prior to any addi­
tion. In addition, we assume that the binary mode has been set (the
6502 may operate either in binary mode or in decimal mode). Unless
otherwise specified, the 6502 will normally operate in binary mode,
since a reset operation will have cleared the flags register, thereby set­
ting the binary mode.

The value of the switches is then restored in the accumulator from
index register Y where it had been saved. The addition counter X is in­
cremented by 1 and tested against the value 5:

TYA
INX
CPX #$5
BMI ADD

As long as the value of 5 has not been reached, the addition is repeat­
ed. Once the value 5 has been reached, memory location 01 has been
conditioned to the proper value and the subroutine BSCLED (the pre­
vious LED display program) is called:

JSR BSCLED

The program then loops back in order to read the switches again and
display the character they specify:

JMP RDCHA

177

6502 APPLICATIONS BOOK

TONE GENERATION

We have seen in the previous chapter how a tone may be generated
by simply sending a square wave of the desired frequency to a speaker.
The square wave form is generated by turning the speaker alternative­
ly on and off. The duration during which the speaker is on or off is
called the half-period. The delay measurement may be performed by
software, or else by hardware, using the built-in interval timer of the
6522. This built-in interval timer has been used previously, and we will
use here a software method to control the delay duration. We will first
develop a basic program to generate a tone, then improve it to gen­
erate computer music.

+5V

TO CONN HJ
PIN 15

(Note: Do not
odjust R4CCW
ell thewoy
otherwise transistor
B7 on MP board
may be too hot)

SPEAKER

Fig. 5-25: Speaker Connection

The hardware connection is shown on Fig 5-25. An additional resistor
of 50 ohms or more should be placed in series with the speaker to limit
the output current. The speaker is connected to the buffered output of
the SYM. Turning the variable resistor down to zero could burn out
both the pot and the output transistor on the board.

The technique used to generate a tone is the usual square wave method,
implemented by a delay subroutine.

178

INDUSTRIAL AND HOME APPLICATIONS

Connection: Connector A to Connector H2
Connector AA to Connector H3

This program activates the speaker with a pre-set frequency which has to be loaded
into Joe. 0004 before execution.

0230 A9 80 BSCSPK LOA #$80
0232 80 02 AC STA $AC02 Set VIA #3 DDRB = 80 for speaker

output
0235 A9 80 AGAIN LOA #$80
0237 80 00 AC STA $ACOO Set speaker driver high = activate

speaker
023A 20 48 02 JSR DLYB Call delay
0230 A9 00 LOA #$00
023F 80 00 AC STA $ACOO Set speaker driver low = turn

speaker off
0242 20 48 02 JSR DLYB Call delay
0245 4C 30 02 JMP AGAIN Repeat

Subroutine DL YB: This subroutine is similar to subroutine DL YA except that
I) This delay is much shorter.
2) This delay takes delay index from Joe. 0004 (the index should be a negative

value).

0248 A6 04
024A ES
0248 EO 00
0240 30 FB
024F 60

DLYB LOX $04
LPXB INX

CPX #$00

Load delay value into X
Increment X

BMI LPXB Loop till (X) =O
RTS

Fig. 5-26: Basic Speaker Activation (Program 5-5)

The delay parameter for this program must be loaded at memory
location 0004 prior to execution. It controls the frequency of the tone
which is generated. The program is shown on Fig 5-26. The data direc­
tion register B is configured for output on bit 7:

BSCSPK LOA #$80
STA $AC02

The speaker is then turned on:

AGAIN LOA #$80
STA $ACOO

179

6502 APPLICATIONS BOOK

The speaker is left on for a duration specified by the contents of mem­
ory location 0004, by calling the delay subroutine DL YB:

JSR DLYB

The speaker must then be turned off. This is accomplished by resetting
bit 7 of the IORB to "O":

LOA #$00
STA $ACOO

The speaker must then be left off for the same duration and a call to
subroutine DL YB accomplishes this:

JSR DLYB

The program then loops on itself:

JMP AGAIN

The delay subroutine DLYB is essentially like the delay subroutine
DLYA of Program 5-1:

DYLB
LPXB

LOX $04
INX
CPX #$00
BMI LPXB
RTS

DELAY VALUE
COUNTER

Let us compute the duration of the delay introduced by this subrou­
tine. The duration of each instruction is indicated on the right of
each instruction below:

cycles
LOX $04 (2)

C INX (2)
Loop CPX #$00 (2)

BMI LPXB (3)
RTS (6)

180

INDUSTRIAL AND HOME APPLICATIONS

In addition, the JSR (Jump to Subroutine) instruction, used to call
this subroutine, introduces a 6-cycle delay. The loop is executed 256 -
4 = 252 times.

The total delay duration is therefore:

6 + 2 + (2+2+3) x 252 + 6 = 14 + 7 x 252 = 1778 microseconds

Exercise 5-13: Modify the delay routine by using a decrement instruc­
tion rather than an increment instruction.

"O" "I" "O"

Fig. 5-27: Binary Switches Specify Tone

MUSIC

The basic method for generating a tone of set frequency has been
presented. We want now to be able to play a tune. This program will
read the binary value of the three switches A-1 through A-3 and gen­
erate a tone corresponding to the switch setting (see Fig 5-27). The
note "C" (do) will be generated for a "O" switch setting, then a "D" (re)
for '' l '', etc. A full octave plus one note, i.e., ''C'' through ''C'', can
be played according to the setting of the three switches. This program
will use the previous one as a subroutine. Before executing it, the con­
tents of memory location 0245 should be changed from "4C" to
"60". A frequency table will be constructed first, which specifies the
duration of the half period of the square wave which generates the
tone. It appears on Fig 5-28.

181

6502 APPLICATIONS BOOK

0050 A2 80 TUNE LDX #$80 Frequency for middle C
0052 4C 74 02 JMP LD04
0055 A2 90 LDX #$90 Frequency for D
0057 4C 74 02 JMP LD04
005A A2 9C LDX #$9C Frequency for E
005C 4C 74 02 JMP LD04
005F A2 A4 LDX #$A4 Frequency for F
0061 4C 74 02 JMP LD04
0064 A2 BO LDX #$BO Frequency for G
0066 4C 74 02 JMP LD04
0069 A2 B8 LDX #$88 Frequency for A
0068 4C 74 02 JMP LD04
006E A2 co LDX #$CO Frequency for B
0070 4C 74 02 JMP LD04
0073 A2 C4 LDX #$C4 Frequency for C
0075 4C 74 02 JMP LD04

Fig. 5-28: Music Frequency Table

READ SWITCHES

OBTAIN PERIOD

PLAY NOTE

DELAY

Fig. 5-29: Music Program Flow Chart

182

INDUSTRIAL AND HOME APPLICATIONS

Connection: Connector A to Connector H2
Connector AA to Connector H3

This program reads switches Al - A3 and activates the speaker at 8 different
frequencies defined by the switches.

This program uses Program #5 as a subroutine, hence before execution data at Joe.
0245 should be changed from 4C to 60.

This program branches to a frequency table for tuning. The frequency table has to
be loaded as follows before execution:

0250 A9 00 MUSIC LDA #$00 Pre-load the 8MSB of indirect jump
address

0252 85 05 STA $05 At Joe 0005 (= 00 because frequency
table is on page O)

0254 SD 03 AO STA $A003 Set VIA #I DORA = 00 for input
mode

0257 AO co KEY LDY #$CO (Y) = delay constant for each frequency
0259 AD OJ AO LDA #$AOOI Read in switch setting
025C 29 07 AND #$07 Ignore upper five bits
025E 85 04 STA $04 Save switch setting at $04
0260 18 CLC
0261 65 04 ADC $04
0263 65 04 ADC $04
0265 65 04 ADC $04
0267 65 04 ADC $04 Calculate relative address in

frequency table
0269 85 04 STA $04
0268 A9 50 LDA TUNE Add the base address of frequency

table
026D 65 04 ADC $04
026F 85 04 STA $04 Store the calculated address (8LSB) at

Joe. 0004
0271 6C 04 00 JMP ($0004) Jump indirect into frequency table
0274 86 04 LD04 STX $04 Get the correct frequency constant
0276 20 30 02 CBS PK JSR BSCSPK Call BSCSPK to activate speaker
0279 88 DEY
027A co 00 CPY #$00 Loop till (Y) = 0 before sensing the

switches
027C DO F8 BNE CBS PK Again
027E 4C 57 02 JMP KEY Go to sense switches again

Fig 5-30: The Music Program (Program 5-6)

The flow-chart for the algorithm appears on Fig 5-29. The program
reads the contents of the three switches, then computes the offset re-
quired to obtain the corresponding delay from the frequency table.

183

6502 APPLICATIONS BOOK

184

VIAii!
IORA
·AOOl

VIAii!
IORB
AOOO

(EXCEPT
PB6)

CONNECTOR
H2

PINNO.

vcco I
GND~
~;)o 2 -=
PA6 o 3

PAS 4

PA4 5

PA3 6
7 PA2
B

PAI
9 PAO

(LSB)

PB7 15

PB5 17

PB4 o lB
19

PB3 o :2i:i
PB2
PB1 o ;j!l

PBO o 22

CONNECTOR
H3

PINNO.

•

•
•

•
•

vcco-;
1
--­

GND~

SWITCH B4
B3
B2
Bl
A4
A3

A2
Al

ROW I OF LED MATRIX (PIN 2)
ROW2 " (12)
ROW3 (3)

ROW4 (4)
ROW5 (11)
ROW6 (10)
ROW7 (9)

+12vo 13 -=- •
2MSB _ 12V 25

OF VIA II 3 D-'2"'---
IORA { PA7

3
(PHOTO TRANSISTOR)

ACOl PA6
15

(MOTOR)
PB7 o • (SPEAKER)
PB6 16 (SMALLRELAY)

o,..;.:.....--{BIG RELAY 1) o---- COL 5 OF LED MA TRIX (PIN 13)
o-:..:.....--cOL4 (14)
0-,::.::..... __ COL 3 (8)

D-''----- COL 2 (1)
a-;;.;;;... __ COL 1 (5)

PB5
17

VIAll3 18
IORB PB4

ACOO PB3 19

PB2 20

PB1 21

PBO 22

Fig. 5-31: Connections For Music Program

INDUSTRIAL AND HOME APPLICATIONS

This offset is equal to 5 times the value specified by the switches. The
period of the square wave is then obtained and the note is played for a
specified duration. The program then loops on itself so that the next
note (or the same) is played. The program is shown on Fig 5-30 and
the connections are shown on Fig 5-31. Locations 04 and 05 will be
used for an indirect jump. Since the frequency table resides in Page 0,
the contents of location 05 are immediately initialized to 0:

MUSIC LDA
STA

#$00
$05

The data direction register, DDRA, is then configured to "00" to spe­
cify the input mode:

STA $A003

The duration of the tone is specified by the contents of register Y
which correspond to an outer loop delay (to be explained below):

KEY LDY #$CO

The contents of the three switches A 1, A2, and A3 are then read from
the IORA at location AOOl, and the upper 5 bits are masked (set to 0):

LDA #$A001
AND #$07

This switch setting is then saved at memory location 04 so that the ac­
cumulator can be used for other purposes:

STA $04

In order to compute the offset in the frequency table, the value ob­
tained from the switch is multiplied by 5. This is done here by adding
this value to itself 4 times:

ADC $04
ADC $04
ADC $04
ADC $04
STA $04

185

6502 APPLICATIONS BOOK

The resulting offset value is then stored at memory location 04 and we
are now ready to obtain the half period from the frequency table:

LDA
ADC
STA
JMP
STX

TUNE
$04
$04
($0004)
$04

BASE ADDRESS

BASE & DISPLACEMENT
JUMP INDIRECT
FREQUENCY CONST ANT

The value is returned in register X and saved at memory location 04
then the subroutine BSCSPK is called to activate the speaker:

CBS PK JSR BSCSPK

This speaker will be activated as many times as specified by the con­
tents of register Y:

DEY
CPY #$00
BNE CBSPK

Finally, once the tone has been generated for the specified duration,
the keys are read again:

JMP KEY

Let us improve this program:

Exercise 5-14: We could simplify the frequency table by storing in it only
the binary value for the delay, i.e.: $80, $90, etc. Modify the program
above so that the switch setting is used as an index to retrieve the con­
tents of this new table. Note the significant improvement in the length
of the overall program.

Exercise 5-15: If you actually run this program on a microcomputer
board, you will notice a minor problem: The program does indeed
play the required note; however, you can hear at the same time a lower
frequency note. By inspecting carefully the last 5 instructions of the
music program, you should be able to determine what the problem is.
Can you propose a modified program which will eliminate this? (Hint:
The speaker may be turned off "too long".)

186

INDUSTRIAL AND HOME APPLICATIONS

Exercise 5-16: Looking at the instructions "ADC $04" repeated 4
times, suggest a way to achieve the same result with fewer instructions,
if possible.

Exercise 5-17: The third instruction from the end is "CPY #$00". Is it
necessary?

The table used in the music program has been designed "by ear",
not by computing the correct frequencies. The values should now be
checked to determine how good this table is.

In America, the Standard Pitch is A4 = 440 Hz. The frequency of
notes doubles every twelve half notes. From tone T, to tone T2, the
frequency is N2 = '2\(2 x N,.

The frequencies are indicated on Fig 5-28 .

Exercise 5-18: Inspect the BSCSPK routine to compute its timing.
Knowing the periods of the notes (Fig 5-28), compute the correct
theoretical frequency constants. (Hint: Do not forget that the speaker
is alternately on and off for half a period.)

14

HEP
P0002

6

7

6

vcc

2.2K

TOCONNH3
PIN 2

10

HEP
S9100

Fig. 5-32: The Photo-Transistor Circuit (on socket M3)

187

6502 APPLICATIONS BOOK

A BURGLAR ALARM

We are going to implement here a realistic home alarm system. En­
try in the home will be detected by a phototransistor-detector set; it is
assumed that the light emitter is normally on. Whenever the beam is
broken, the detector will indicate it and the alarm will be triggered.
This alarm will generate a siren sound in the speaker. Further im­
provements will be suggested at the end of the program.

@D PHOTO DETECTOR
STATUS

----=---­~
OFF

ACTIVATE SPEAKER
FOR SET DU RATION

INCREASE FREQUENCY

Fig. 5-33: Alarm Flow Chart

The connection of the phototransistor is shown on Fig 5-32, and the
flow-chart for the algorithm appears on Fig 5-33. We will read the
status of the detector. As long as it stays "on", nobody has broken
the beam, and we keep reading. Whenever the beam is broken, the
status of the detector will be "O" ("off"), and the speaker will be acti­
vated for a set duration. In order to generate a siren-like sound, the
frequency of this sound will be progressively increased until a maxi­
mum frequency is reached (see Fig 5-35). At this point, the status of
the photodetector will be probed again, and as long as it is off, the
siren will keep sounding. The program appears on Fig 5-34. The pho­
totransistor input is connected to bit 7 of the IORA of VIA #3 (see Fig
5-32).

188

0281
0283

0286
0289
028B

INDUSTRIAL AND HOME APPLICATIONS

FREQUENCY

N2

Nl

0 T 2T 3T

Fig. 5-34: A Siren Sound

Connection: Connector A to connector H2
Connector AA to connector H3

This program senses the phototransistor output, if the output is high, which
means the phototransistor is in the dark and is in the off-state, nothing
will happen, but if the output is low, which means the phototransistor
gets light and is in the on-state, then sound the alarm immediately.

This program also uses BSCSPK as a subroutine, hence loc. 0245 should be
changed to 60.

A9 00 ALARM LDA #$00
SD 03 AC STA $AC03 Set VIA #3 DORA = 00 for input

mode
AD 01 AC DETECT LDA $ACOI Read photo-transistor output
29 80 AND #$80
C9 80 CMP #$80

028D FO F7 BEQ DETECT If output = high, keep polling
028F A9 80 LDA #$80 Else sound the alarm by setting the

initial
0291 85 04 STA $04 Frequency constant = 80 at Joe. 0004
0293 AO FO LP7 LDY #$FO Set delay constant = FO at (Y)
0295 20 30 02 SOUND JSR BSCSPK Call BSCSPK to activate speaker
0298 cs INY
0299 co 00 CPY #$00
029B 30 F8 BMI SOUND Loop till (Y) = 0 before changing

frequency constant

Fig, 5-35: Burglar Alarm (Program 5-7)
189

6502 APPLICATIONS BOOK

029D A9 01 LDA #$01 Increment frequency constant by I
029F 18 CLC
02AO 65 04 ADC $04
02A2 85 04 STA $04
02A4 C9 AS CMP #$AS Loop till highest frequency constant

= AS
02A6 30 EB BMI LP7
02A8 4C 86 02 JMP DETECT Then sense phototransistor o/p again

Fig. 5.35 (continued): Burglar Alarm

The first instructions of the program implement a polling loop
which tests the status of the phototransistor:

ALARM

DETECT

LOA
STA
LOA
CMP
BEQ

#$00
$AC03
$AC01
#$80
DETECT

As soon as the photodetector is off (on an experiment board, this will
be achieved by covering the LED detector with a finger or a piece of
cloth), the alarm will be sounded. The specified initial frequency con­
stant is loaded at memory address 04, and the tone duration for this
frequency is loaded in register Y. The previous subroutine BSCSPK is
then called to sound the speaker:

LOA #$80
STA $04

LP7 LOY #$FO
SOUND JSR BSCSPK

INY
CPY #$00
BMI SOUND

The subroutine is called as many times as necessary to implement the
secondary delay specified by register Y. The frequency constant is
then incremented by 1, stored back at memory location 04, and com­
pared against the maximum frequency. As long as the maximum fre­
quency has not been reached, the program keeps generating a sound
of increasing frequency.

190

INDUSTRIAL AND HOME APPLICATIONS

LDA #$01
CLC
ADC $04
STA $04
CMP #$A8
BMI LP7
JMP DETECT

Whenever the maximum frequency has been reached, the program
loops back to its starting point. Several improvements are possible.

In a realistic home use, this alarm system will be placed somewhere
inside a house and the photoelectric pair including a light-emitter and
a receiver will be placed somewhere in the house. (In practice, an in­
fra-red beam is often used as it is not visible to the eye.) It may be
positioned to protect a room or to protect the entrance to the house.
The program should be improved so that, once the alarm has been
turned on, it is possible to leave the house without triggering it. The
first exercise will bring this improvement:

Exercise 5-19: Modify the program so that the user may exit from the
house within two minutes after the system has been armed (turned

•on). In other words, no alarm should be triggered for two minutes
after the program is turned on, regardless of the status of the photo­
detector. After that, the alarm should operate normally.

Another problem must be solved: Upon re-entering the house, we real­
ly do not want the alarm to sound immediately. We want to have the
time to walk to the microcomputer board and turn it off. The next ex­
ercise will take care of that:

Exercise 5-20: Once the alarm has been armed (after two minutes), it
should not sound until 30 seconds after detection of an entry.

Let us improve further: There might be some minor variations in the
light beam which may cause noise on the line. We do not want this to
trigger the alarm.

Exercise 5-21: Modify the program so that the alarm is triggered only
if the beam is interrupted for more than .05 second.

191

6502 APPLICATIONS BOOK

Let us keep improving: In case an animal should trigger the alarm, we
want to provide an automatic shut-off system. We want the alarm to
sound for two minutes after detection has occurred and then turn it­
self off.

Exercise 5-22: Modify the program so that the alarm will sound for
two minutes after detection has occurred and then turn itself off

In addition, at the time that detection occurs we may want to take ad­
ditional action such as turning on the lights or else dialing the police.
This can be easily accomplished by merely turning on an external
relay.

Exercise 5-23: Modify the above program so that an external relay is
turned on every time that entry is detected.

Note that this feature can be used advantageously even if you cannot
dial the police automatically: You could connect a lamp to the relay
output so that even if an intruder came in and left quickly when the
alarm sounded, his intrusion would be revealed by the fact that the
lamp would be left turned on at the time you returned.

Exercise 5-24: Could we delete the instruction CPY #$00 at address
0299?

Exercise 5-25: Add a "panic button" which you can press to activate
the alarm at any time. Modify the sound of the alarm so that neigh­
bors can differentiate between a "panic call" and an "alarm. "

DC MOTOR CONTROL

The goal of this program is to control the speed of an ordinary DC
motor. A regular low-cost 12 volt hobby DC motor will be connected
to the microcomputer board, and the rotational speed will be specified
by switches. Three switches will be used, so that 8 different combina­
tions may be specified, corresponding to 8 rotational speeds. The
motor circuit is shown on Fig 5-36. The switches connection is shown
on Fig 5-27.

192

INDUSTRIAL AND HOME APPLICATIONS

vcc
FROM 4

CONN HJ 12A-
PIN 3 M2 V2 w

11
red

INVERTER
IS USED....- Ml

TO HAVE
2

MOTOR
NORMALLY

OFF

M2 10

Fig. 5-36: Motor Circuit

10 ,,
PULSES l .

I
I

I I
t I

--1-----'
I
I
t

SPEED ~ IA --.~­t
I
I

I I

,,

I

I
I
I

--L----

fig. 5-37: Digital Speed Control

IJ

- - /\!\AX

t - - - AVERAGE

--MIN

193

6502 APPLICATIONS BOOK

PULSES
I

I
I I I I I

I I I : I
I I I 1

SPEED -- -:- - -21',-~ - - -21:s.- -:-- -_z
____ v ____ ~-S.SZ---~-~ ----

, I I : I

: I I t
1

I I I :

Fig, 5-38: Simplified Speed Diagram

The principle used to control the speed of the motor is to turn it on
for a set duration, then turn it off. Because of its rotational inertia,
the motor will keep turning for a while. A new pulse will then be gen­
erated and the motor will be turned on again. It will accelerate again.
This pattern will be repeated. The resulting speed of the motor is
shown on Fig 5-37. A simplified diagram showing the same curve ap­
pears on Fig 5-38. It is essentially a saw-tooth curve where the motor
accelerates as long as power is applied, then decelerates until it receives
the next pulse. The average speed is indicated by the horizontal line
between the minimum and the maximum speeds on Fig 5-37. It can be
seen from the illustration that the speed will constantly oscillate be­
tween its minimum and its maximum values. If the speed must be de­
fined with good accuracy, then the minimum and the maximum speeds
will have to be close. This will be achieved by using shorter pulses.
However, as in any phenomenon that involves inertia and oscil­
lations, instabilities will occur. In particular, it should be noted on
the illustration that, if the "on" pulse is given before time "t0 ", then
the speed will not decrease and will keep increasing instead. This is be­
cause the inertia of the motor has not had the time to slow it down to
where the speed would decrease. More complex phenomena may still
occur. This topic will not be discussed in detail here. Simply, we will
design a program with adjustable delays and later adjust these delays
by trial and error so that they work with the type of motor we are us­
ing. The reader should simply be aware that these delays can be ad­
justed in various ways to improve the accuracy of the speed obtained
and/ or to eliminate oscillation problems.

194

INDUSTRIAL AND HOME APPLICATIONS

to t,

Fig. 5-39: DC Motor Speed Curve

0522#1

DORA IORA

0522'3
IORA

\ACOJ)

Fig. 5-40: The Connections

The Hardware Connections

Two ports are used: on the 6522 #1 and on the 6522 #3. They are
shown on Fig 5-40. The IORA register is used as an input port for the
three switches. The switch setting will determine the speed of the
motor. The corresponding value of the DDRA is shown on the left of
the illustration. The IORA of 6522 #3 is used as an output port to con­
trol the motor itself. The motor is connected to bit 6 of the IORA. The
detail of the interface appears on Fig 5-36. The driver is required to in­
vert the signal and the transistor is used to provide sufficient current.

195

6502 APPLICATIONS BOOK

TURN MOTOR ON

DELAY

READ SWITCHES

MULTIPLY BY DELAY UNIT

ADD MINIMUM DURATION

STORE COMPUTED DELAY

COUNTER= CYCLES

TURN MOTOR ON

t
DELAY B

TURN MOTOR Off

DELAY C

DECREMENT COUNTER

NO ----1-._ YES

~
Fig. 5-41: DC Motor Flow Chart

The Program

The flow-chart for the program is shown on Fig 5-41. The motor
will be turned on for a duration Ton, and turned off for a duration
Torr. In this algorithm, the duration off is fixed, and the duration
Ton is increased for every switch setting from "000" to "111." The
minimum Ton duration here corresponds to the switch setting "000".

196

INDUSTRIAL AND HOME APPLICATIONS

The delay corresponding to a switch setting can be computed with the
formula:

Ton= MIN +Unit X switches.

Numerically, the constants used for the delays are:

SWITCHES
DELAYoN

0

ON

000

ON

011

0

ON

111

DELAYoFF = COH = 192 decimal
DELA YoN = 80H + switches X OBH =

128 + switches x 11 (decimal)

000 001 010 011 100 101 110 111
128 139 150 161 172 183 197 205

128

ON
Orf

0 192

161

OFF

0 192

205

OFF

0 192

Fig. 5-42: The Waveforms

The waveforms generated by the various settings appear on Fig 5-42.
Let us now turn to the flow-chart of Fig 5-41. The motor is first turned
on for an initial duration to achieve initial rotational speed (otherwise,
a train of short pulses might not be able to get it started). The value of
the switches is then read and the resulting delay must be computed.
The value of the switches multiplied by the delay unit is added to the
minimum pulse duration. The resulting computed delay is stored. The

197

6502 APPLICATIONS BOOK

motor is then turned on for the computed delay duration. This is De­
lay B. Then the motor is turned off for a duration called Delay C. This
process is then repeated for several cycles in order for the speed to sta­
bilize. Then, the switches can be read again and, if the setting has been
changed, the new speed will be generated. Note that the built-in delay
implemented by repeating the cycle several times also takes care of the
switch bounce problem. If no delay was allowed for the speed to sta­
bilize, the switches should be debounced by hardware or by software
(see reference C207 for details on debouncing).

Connection: Connector A to connector H2
Connector AA to connector H3

This program reads switches Al - A3 to define motor speed desired and rotates
the motor accordingly.

This program uses two subroutines: DL YA and DL YB.

0280 A9 40 MOTOR LDA #$40
0282 8D 03 AC STA $AC03 Set VIA #3 DDRA = 40 for motor

driver output
0285 A9 00 LDA #$00 Turn on motor for one DLYA

duration to obtain initial speed.
0287 8D 01 AC STA $ACOI
02BA A9 FF LDA #$FF
02BC 85 00 STA $00
02BE 20 20 01 JSR DLYA
02CI A9 00 LDA #$00 Set VIA #I DDRA = 00 for input

mode
02C3 SD 03 AO STA $A003
02C6 AD 01 AO MTRSP LDA $AOOI Read switches
02C9 29 07 AND #$07 Ignore upper 5 bits
02CB AS TAY (Y) = switch reading
02cc A9 OB LDA #$08 Set on-delay difference = OB

between switch settings
02CE 85 06 STA $06
02D0 co 00 LPS CPY #$00
92D2 FO 07 BEQ ONDLY
02D4 18 CLC
02D5 65 06 ADC $06
02D7 88 DEY Loop till ($0006) = (switch reading

X $08)
02D8 4C DO 02 JMP LP8
02DB 85 06 ONDLY STA $06
02DD A9 80 LDA #$80 Calculate the on-delay constant = 80

+(switch reading X OB)

Fig, 5-43: Motor Control (Program 5-8)
198

INDUSTRIAL AND HOME APPLICATIONS

02DF 18 CLC
02EO 65 06 ADC $06
02E2 85 06 STA $06 Store this constant at Joe. 0006
02E4 AO co LDY #$CO
02E6 A5 06 MTRON LDA $06 Move (0006) to Joe. 0004 before call

DLYB
02E8 85 04 STA $04
02EA A9 00 LDA #$00 Turn motor on
02EC SD 01 AC STA $ACOI
02EF 20 48 02 JSR DLYB Then call DLYB
02F2 A9 co LDA #$CO Set off-delay constant = CO,

independent of switch reading,
load this into Joe. 0004

02F4 85 04 STA $04
02F6 A9 40 MTROFF LDA #$40 Turn motor off
02F8 SD 01 AC STA $ACOI
02FB 20 48 02 JSR DLYB Then call DL YB
02FE 88 DEY
02FF co 00 CPY #$00 Repeat this on-off sequence till (Y)

= 00
0301 30 E3 BM! MTR ON
0303 4C C6 02 JMP MTRSP Then read switch setting & repeat

over

Fig. 5-43: (Continued)

The program appears on Fig 5-43. The first four instructions turn
the motor on by conditioning the data direction register and placing
''O'' in the data register:

MOTOR

AC

LOA
STA
LOA
STA

#$40
$AC03
#$00
$AC01

A delay value "FF" is then deposited at memory location "00",
which is the agreed convention for passing a parameter to the subrou­
tine OL YA (see Program 5-1). The subroutine OLYA is then called. It
implements the initial delay required for the motor to achieve its initial
speed.

LOA #$FF
STA $00
JSR OLYA

199

6502 APPLICATIONS BOOK

The value of the switches is then read:

MTR SP

LDA
STA
LDA

#$00
$A003
$A001

And the value of the lower three bits is extracted from the reading:

AND #$07
TAY

MASK

For each switch position except "000", an additional duration unit
will be added to the minimum duration of "OB" hexadecimal. The
value of the switch reading is, therefore, saved in index register Y, and
the initial duration delay is loaded into memory location "06".

LDA #$OB
STA $06

LP8 is an addition loop which will add the delay unit as many times as
specified by the switch setting:

LP8 CPY #$00
BEQ ONDLY
CLC
ADC $06
DEY
JMP LP8

Exercise 5-26: Can you modify the code above so that CPY #$00 is
unnecessary? Why?

Once ONDLY has been reached, memory location "06" contains the
additional duration for the pulse, as specified by the switches. It is
then added to the minimal duration of "80" hexadecimal:

ONDLY

200

STA
LDA
CLC
ADC
STA

$06
#$80

$06
$06

INDUSTRIAL AND HOME APPLICATIONS

The Y register is then loaded with the value "CO" hexadecimal which
specifies the number of times that we will turn the motor on and off:

LDY #$CO

Once location MTRON has been reached, memory location "06" con­
tains the constant necessary to implement the "on" delay. It is trans­
ferred to memory location "04" so that the subroutine DL YB may be
used. The motor is turned on and the delay is implemented:

MTR ON LDA
STA
LDA
STA
JSR

$06
$04
/:OJ
$AC01
DLYB

TURN MOTOR ON

The off delay must then be implemented, and the value "CO" hexa­
decimal is stored at memory location "04". The motor is explicitly
turned off and the delay is implemented by the subroutine DL YB:

MTR OFF

LDA
STA
LDA
STA
JSR

#$CO
$04
#$40 MOTOR OFF
$ACOI
DLYB

After the motor has been turned off, the loop counter Y is decrement­
ed. Index register Y is used here to count the number of times that the
on/ off cycle will be executed. It has been loaded with the initial value
"CO" hexadecimal, and is decremented every time that the motor is
turned off. If the value "O" has been reached, the program goes back
to the beginning and reads the next switch setting. If Y has not decre­
mented to "O", then the program loops back to MTRON in order to
go again through an on/off cycle:

DEY
CPY #$00
BMI MTRON
JMP MTRSP

Let us now consider improvements to the program.

201

6502 APPLICATIONS BOOK

Exercise 5-26: Let us first perform some improvements in style: Exa­
mine the program corresponding to memory addresses 2D0 to 2D8.
Can you suggest any improvement to the way the code has been writ­
ten?. (Hint: One instruction can be saved.)

Exercise 5-27: Same question for lines 02FF to 0303.

Exercise 5-28: This exercise is valuable if you are indeed performing
an experiment on a real motor: increase progressively the "off" delay
by changing the appropriate constant in the program. What happens?

Exercise 5-29: Same question by reducing the off delay. What is the
problem?

Exercise 5-30: Another algorithm which could be used would be to
send a variable number of "on" pulses of constant duration, i.e., to ad­
just the duration of the "off" delay rather than the "on" delay. Can
you modify the program accordingly?

Important note. Because every motor has different characteristics, the
timings in the program are best determined by a trial and error proc­
ess. You are strongly encouraged to modify the various constants
which have been used, such as the minimum "on" delay, the mini­
mum "off" delay, and the timing increments until you obtain by ex­
perience the settings which give the best results. In addition, if you in­
tend to load the motor by connecting it to a real device, you will intro­
duce additional inertia and friction parameters. Additionally, low­
cost hobby motors may be poorly lubricated and after a period of a
few weeks or a few months may have much higher friction. They will
then require a much longer warm-up period and may also require
longer pulses. As long as you are aware of the mechanical mood of
your motor, you should be able to adjust the parameters accordingly.

Exercise 5-31: Can you determine what happens if you send very short
"on" pulses?

The above program is an open control loop where we are controlling
the speed of the motor but not measuring it. Let us suggest possible
improvements to this technique.
Exercise 5-32: Display the speed setting of the motor. The speed set­
ting of the motor could be identical to the switch setting, i.e., you
could just display a number between O and 7.

202

INDUSTRIAL AND HOME APPLICATIONS

In the next exercise, we are going to implement a real closed control
loop. This exercise is of special interest if you want to understand the
concept used to regulate a disk, for example. A simple and effective
way to measure the speed of the motor is to attach a cardboard disk to
the shaft. A hole, called the index hole, should be perforated in the
disk. Arrange the disk so that a light emiter is on one side of the disk
while a light receiver is on the other side. They sould be arranged
in §uch a way that when the hole passes in front of the light­
emitting diode, the light illuminates the receiver. (This is exactly what
is done on a computer floppy disk to detect the index hole.) Every time
that the receiver is illuminated, a pulse will be detected. By counting
the number of pulses per second, one obtains the exact rotational
speed of the motor in rotations per second. Using this information, it
is possible to adjust the duration, or the frequency, of the "on" and
the "off" pulses to regulate the speed with great precision. The com­
parison between this technique and a floppy disk stops here, as, in a
floppy disk, the speed must be regulated with great precision and must
be regulated even during a partial rotation of the disk, not just on the
average. On a disk, additional information is therefore used: Informa­
tion is recorded on a track and the pulses are used to adjust the rota­
tional speed during part of a single revolution. In the case of our
motor, it is important to measure the actual speed, since any friction
or any load on the motor will modify its rotational speed. All the
hardware and software techniques necessary to implement this have
been already introduced.

Exercise 5-33: Write the program that will accomplish it.

ANALOG TO DIGITAL CONVERSION (A HEAT SENSOR)

A thermistor will be used here to measure temperature. Any other
heat sensing device could be used. The resistance of a thermistor
changes with the temperature. We will use this feature to detect tem­
perature changes in the environment and take action depending on the
temperature measured. The main problem is, given an analog value
(one which changes value continuously, here the resistance of the ther­
mistor), the main problem is to measure it with a binary number. This is
called the analog to digital conversion problem. Components exist today
which will perform this conversion essentially with a single compo-

203

6502 APPLICATIONS BOOK

nent. Here, we are going to use a less costly (and more educational)
solution which uses a digital-to-analog converter plus some opamps.
The analog-to-digital conversion will be performed by program. (For
details on analog to digital conversion techniques, the reader is re­
ferred to Chapter 5 of our reference book C207 Microprocessor Inter­
facing Techniques.)

We will use here a successive approximations technique. An initial
binary value will be generated, then converted to analog form. This
analog approximation will then be compared with a comparator to the
value generated by the thermistor. The result of the comparison, "O"
or '' 1 '' depending on whether it is smaller or greater, will be used to
generate the next successive approximation.

651711

DDR..a.

A

{A002) JAOOO)

Fig. 5-44: Connection for ADC

The hardware connection used in this experiment is shown on Fig
5-44. The 8-bit output of IORA is connected to an 8-bit DAC, a digi­
tal-to-analog converter. This digital-to-analog converter transforms
the 8-bit binary number into an analog signal whose value is then com­
pared to the one of the thermistor. The comparator output is connect­
ed back to bit O of IORB, where it can be sensed.

The algorithm will turn on in succession every bit of IORA from the
most significant bit (bit 7), down to bit 0.

The initial value tried will be "10000000". If it is found to be too
small, then bit 7 will be left unchanged, and bit 6 will be turned on. In

204

INDUSTRIAL AND HOME APPLICATIONS

this example, the next approximation will be "11000000". If at this
point the approximation is too high (as decided by reading the output
of the comparator), then bit 6 will be turned off. The next approxima­
tion will be" 10100000". Bit 5 has been automatically turned on. And
so on.

75

.625

SECOND
TRY -------.----

FIRST
TRY

61T7
=I

BIT 6
=I

FOURTH
APPROXIMATION

THIRD
TRY

BIT 5
=I

-~

S1T4

=I

ANALOG

SIGNAL

O -APPROXIMAllON

Fig. 5-45: Successive Approximations

TURNONMSB

OUTPUT APPROXIMATION

READ COMPARATOR

TURN OFF CURRENT BIT

MOVE DOWN ONE BIT.
TURN ITON

Fig. 5-46: Successive Approximation Flow Chart

205

6502 APPLICATIONS BOOK

The formal algorithm is illustrated on Fig 5-45, and on the flow
chart of Fig 5-46. The process continues until all 8 bits have been used.
The resulting binary value is the best possible approximation of the
analog value, with the precision afforded by an 8-bit representation.
Naturally, the process assumes that the algorithm is executed fast
enough, so that the analog value does not change faster than it can be
measured. Otherwise, a sample-and-hold circuit should be used.
The illustration of Fig 5-45 shows the successive-approximations
closing in on the exact value of the analog signal. Every time that a
new bit is used, the interval is divided by two.

(MSB)

2 l!pB 5

3 l/p7 6
FROM 4 I/ 6 7
CONN 5 8

H4 6 I/ 4 9
PINS 7 1/p3 10

8 l/p2 11
9 I/ 1 12

(LSB)
16

+12V -----~s
13

MC 1408
BBIT
DAC
M4

7

I.SK M6

10

M6

4

0/P

15 2 2·2K 13
2 M6

(THERMISTOR)

M7 IK

II,___ ___ ~

'= -12V

Fig. 5-47: ADC Interface

The Hardware Connection

-12V

10
TO CONN H4

PIN 22

The hardware connection is shown in Fig 5-47 and 5-48. The DAC
used here is an MC1408, which requires a 12-volt power supply. Its
output drives the M5 opamp which feeds into the comparator input.
The thermistor appears at the bottom of the illustration, and feeds in­
to the other input of the comparator. The comparator output connects
to pin 22 of connector H4 and feeds into bit O of IORB for the 6522 #1.

206

INDUSTRIAL AND HOME APPLICATIONS

VIA#l
IORA
AOOl

LSBOF
VIA#l
IORB
AOOO

The Program

CONNECTOR
H4

PINNO.

vcc
l

14
GND~
PA7 -

PA6
3

PA5 4

PA4 5
6

PA3
7

PA2
PAl V

8

PAO
9

PBO
22

(MSB)
I/PB OF DAC (PIN 5)

I/P7 " (6)
I/P6 " (7)

I/P5 " (8)
I/P4 " (9)

I/P3 " (10)
I/P2 " (11)

I/Pl " (12)
(LSB)
COMPARATOR O/P(M5-PIN 10)

Fig. 5·48: Connection to H4

In this program, the value of the temperature measured on the ther­
mistor will be indicated by the frequency of a tone on the speaker. The
tone's pitch will become higher as the temperature increases.

0000

0004

0008

SPEAKER CT

MWAPPRO>

6522

IORB AOOO -----l
AOOl IORA

A002 DDRB

A003 DORA

Fig. 5-49: ADC Memory Map

The memory map for the analog-to-digital conversion program is
shown on Fig 5-49. Memory location 4 is used to store the constant
used by the DL YB program, which generates a delay specified by the
value of the constant. Location 8 is used to store the new approxima­
tion being computed by the program. The 6522 #1 is shown at memory
locations AOOO and following.

207

6502 APPLICA TJONS BOOK

"'

Fig, 5-50: ADC Flow Chart

208

INDUSTRIAL AND HOME APPLICATIONS

The flow-chart appears on Fig 5-50. The 6522 is first initialized to
configure IORA as output for the DAC, and IORB bit O is used as
comparator input. The pointer register is set to its initial value of
"10000000" which is the initial approximation value. This pointer
register will point to the bit being turned on in the approximation se­
quence loop. The bit will be shifted right every time that a loop has
been completed.

The initial value of the approximation is set equal to the pointer reg­
ister. It is then converted to analog. A delay is implemented in order to
give enough time to the DAC to perform the conversion, then its out­
put is examined. If the comparator output is "1 ", then the new ap­
proximation is too small and its value does not need to be changed. If
the comparator output is "O", then the approximation value is too
high and the current bit must be turned off. Next, the pointer register
is shifted right by one bit position, in order to point to the next bit to
be used in this technique. If the last bit has been reached, the final ap­
proximation has been computed. If not, a new approximation is ob­
tained by adding the value of the pointer register to the old approxi­
mation and a new iteration is started.

Once an approximation value has been obtained, a tone must be
generated whose pitch depends on the value of the measurement. A
minimum tone frequency is used and the pitch constant is obtained by
adding the value of the approximation to this minimum frequency.
The speaker routine is then called to sound the speaker (BSCSPK).
After the speaker has sounded for a minimum period of time, the pro­
gram reads the value of the thermistor again.

On the board, the fastest way to obtain an audible response is to use
a soldering iron (or a cigarette) and put its tip close to the thermistor.
The sound coming from the speaker should increase quickly in pitch.
When the soldering iron is removed, the speaker will go through a re­
verse sequence. Naturally the thermistor could be located away from
the board. Properly isolated, it could be placed on a wall, in a cup, or
in any other device whose temperature should be measured. A thermo­
couple could also be used or be immersed in liquid so that the liquid's
temperature could be measured. The temperature of the environment
could be controlled, for example, by using a heating coil connected to
one of the relays. One remaining problem would be to calibrate the
thermistor so that precise temperature measurements can be made.

209

6502 APPLICATIONS BOOK

0360
0362

0365
0367

Connection: Connector A to connector H4
Connector AA to connector H3

This program uses successive approximations with a DAC so that the analog
value of a thermistor can be sensed continuously. Then the approximated
digital value is used as a parameter to control the frequency of the
speaker. From the frequency change, one can tell whether the temperature
is increasing or decreasing.

Speaker frequency is proportional to temperature (or resistance
of the thermistor)

This program uses BSCSPK and DL YB subroutines.

A9 FF ADC LOA #$FF
80 03 AO STA $A003 Set VIA #1 DORA = FF for output

to drive DAC
A9 00 LOA #$00
80 02 AO STA $A002 Set VIA #1 DDRB = 00 for input to

read comparator
036A A9 80 FSTBIT LOA #$80 Set MSB for approximation
036C AB TAY (Y) stores current bit under test
0360 85 08 STA $08 Loe. 0008 stores current value under

test
036F A5 08 NXTBIT LOA $08
0371 80 01 AO STA $A001 Output current value to DAC
0374 A2 20 LOX #$20 Delay for comparator to settle
0376 CA LP9 DEX
0377 EO 00 CPX #$00
0379 10 FB BPL LP9
037B AD 00 AO LOA #$AOOO Read comparator output
037E 29 01 AND #$01 Get bit 0
0380 C9 01 CMP #$01
0382 FO 05 BEQ SHFBIT Comparator output = 1 means DAC

output is still too low, keep
current value and go to shift bit
else, DAC output is too high
deduct current bit from current value,

0384 98 TYA then shift bit
0385 45 08 EOR $08
0387 85 08 STA $08
0389 98 SHFBIT TYA
038A 4A LSR A Right shift (Y) by I bit for next

approximation
038B AB TAY
038C C9 00 CMP #$00
038E FO 08 BEQ ECHO (Y) = 0 means approximation

completed, go to turn on speaker
0390 18 CLC

Fig. 5-51:Analog-Dlgltal Converter (Program 5-9)

210

INDUSTRIAL AND HOME APPLICATIONS

0391 65 08 ADC $08 (Y) = 0, current value plus next bit
as the output to DAC for next
approximation

0393 85 08 STA $08
0395 4C 6F 03 JMP NXTBIT
0398 AO FO ECHO LDY #$FO Delay constant for each frequency
039A A5 08 LDA $08
039C 4A LSR A
039D 85 04 STA $04
039F A9 80 LDA #$80
03Al 05 04 ORA $04 Calculate corresponding frequency

constant and store it at loc. 0004
03A3 85 04 STA $04
03A5 20 30 02 SPKR JSR BSCSPK Call BSCSPK to activate speaker
03A8 88 DEY
03A9 CO 00 CPY #$00
03AB 30 F8 BMI SPKR
03AD 4C 6A 03 JMP FSTBIT Repeat for next approximation

sequence

Fig. 5-51: (Continued)

Let us now examine the program, then suggest improvements. The
program is shown on Fig 5-51. The first four instructions condition
the data direction registers for Ports A and B of the 6522 #1, respec­
tively as output (with a DAC), and as input (for the comparator):

ADC LDA
STA
LDA
STA

#$FF
$A003
#$00
$A002

DORA 1 = FF = OUTPUT

DDRBl = 00 = INPUT

The next two instructions store the literal value "80" hexadecimal into
register Y. This is the pointer register which i's set to the initial value
"10000000" binary.

FSTBIT LDA #$80
TAY

The memory location "08" has been reserved to store the current ap­
proximation. It is initialized to 10000000:

STA $08

211

6502 APPLICATIONS BOOK

The main iteration loop is then entered. The binary approximation is
obtained from memory location "08" and sent to the DAC:

NXTBIT LDA
STA

$08
$A001

A delay is then implemented to allow the comparator to settle:

LP9
LDX
DEX
CPX
BPL

#$20

#$00
LP9

The output of the comparator is read:

LDA #AOOO COMPARATOR OUTPUT

Bit O of IORB is then extracted and tested:

AND #$01 BIT 0
CMP #$01
BEQ SHFBIT

If its output is "l ", the approximation is still too low, and the next bit
must simply be turned on. If it is "O," the value is too high and the
current bit must be turned off:

TYA
EOR $08
STA $08

Having adjusted the value of the current approximation if necessary,
the pointer register is now shifted right for the next bit of the iteration:

SHFBIT TYA
LSR A

If the last bit has been reached, we have obtained the best possible ap­
proximation and we branch to location ECHO to sound the speaker:

TAY
CMP #$00
BEQ ECHO

212

INDUSTRIAL AND HOME APPLICATIONS

Otherwise, we turn on the next bit of the approximation and we go
back to the beginning of the loop:

CLC
ADC $08
STA $08
JMP NXTBIT

The ECHO routine will sound the speaker in function of the value
measured. In this routine, register Y is used to implement the delay
during which the speaker will be sounding. It is loaded here with the
initial value "FO" hexadecimal. The value of the approximation is
read from memory location "08", and shifted right by one bit posi­
tion. This means that the value of the last bit of the approximation
will not be reflected by a variation in the pitch of the note in this tech­
nique.

Bit 7 is forced to the value "l ", so that the speaker oscillates at a
minimum guaranteed frequency to be audible.

The resulting value is stored at memory location "04" which used
to pass a parameter to the BSCSPK routine which has already been
presented:

ECHO LOY #$PO
LOA $08
LSR A
STA $04
LOA #$80
ORA $04
STA $04

SPK JSR BSCSPK ACTIVATE SPEAKER

Next, the routine is called and sounds the speaker at the specified fre­
quency. Register Y is then decremented and tested, and, as long as it
does not reach the value "O", the speaker will sound:

DEY
CPY #$00
BMI SPKR
JMP FSTBIT

213

6502 APPLICATIONS BOOK

Once the speaker has sounded for the set duration, the program re­
turns to the beginning of the approximation to sense again the status
of the thermistor.

Exercise 5-34: Display in hexadecimal the value of the approximation
you have obtained.

Exercise 5-35: ls it possible to eliminate all "CPY #$00" from
the program?

Exercise 5-36: Calibrate your thermistor by determining the computed
measurement which corresponds to given temperatures measured with
a thermometer. Store these values in a table so that you can display the
actual temperature and not the approximation register value.

Exercise 5-37: Modify the program so that the speaker will sound 1 to
10 times, depending on the temperature it is measuring. At room tem­
perature, it will sound once. At high temperature, it will sound 10
times. This is an audible way to communicate the results of the mea­
surement (with a poor precision).

Exercise 5-38: Having calibrated your thermistor, add a heating coil
(which can be obtained from a hardware store at low cost) and regu­
late the temperature of a glass of water so that the water remains at
precisely temperature T. Caution: Most thermistors are not water­
proof, so that they may have to be attached to the outside of the con­
tainer rather than immersed inside. However, you can also obtain
thermo-couples or other thermistors which are water resistant and can
be immersed directly into liquid.

Exercise 5-39: As a further improvement to your home burglar-alarm
system (see program 5-7), add a routine to the basic control loop that
checks the temperature periodically. If the temperature becomes larg­
er than a set level, say 35 degrees centigrade, then sound the alarm.
You have just implemented a fire detector.

Exercise 5-40: Another variation: The goal is to hold your soldering
iron at the appropriate distance of the thermistor to bring it to a tem­
perature of say 80°C. Modify your program so that it blinks an LED
quickly as long as the thermistor's temperature is much less than the
desired temperature, then blinks slowly as you approach the desired
temperature level. Another LED should also be used to display wheth­
er you are over or under the desired temperature.

214

INDUSTRIAL AND HOME APPLICATIONS

SUMMARY

In this chapter, real world applications have been developed, rang­
ing from simple home control to complex industrial control. A variety
of input-output devices have been connected to the microprocessor
board, ranging from switches and LED's to a DC motor, a thermistor,
and a photo-emitter-receiver pair. The selection of devices and tech­
niques presented here should enable you to start solving a large num­
ber of actual control problems. For more information on specific in­
terfacing techniques, refer to our reference C207, "Microprocessor
Interfacing Techniques". Also, to develop a true programming exper­
tise, experimenting is strongly encouraged.

In the next chapter, actual computer peripherals will be interfaced
to the 6502 board.

215

CHAPTER6

THE PERIPHERALS

INTRODUCTION

In this chapter, we will connect the 6502 board to actual computer
peripherals. The programs in this section have been optimized to
demonstrate "elegant" techniques for solving problems, by using the
specific resources of the components involved.

First, we will connect a standard 16-key matrix keyboard and make
"clever" use of the input-output register capabilities to minimize the
number of instructions needed to identify the character and display it.
Next, we will manufacture a home-built paper-tape-reader at low cost.
In this application, the paper tape can simply be pulled manually
through the reader and will be correctly read by the microcomputer.
Finally, we will show how simple it is to connect a microprinter (or an
ASCII keyboard) to the microcomputer board. At this point, the read­
er should feel confident that he has acquired the skills required to
solve most usual problems encountered in actual applications.

The applications presented here are simple to realize, and useful.
The programs are directly applicable to SYM, KIM or AIM65, with
minor changes. Practice is, therefore, again encouraged.

All the programs are short, and will provide valuable knowledge
even if you do not plan to connect a peripheral. Careful reading of
this chapter is recommended to all.

216

THE PERIPHERALS

KEYBOARD

We will first connect an external 16-key matrix keyboard (called a
hexadecimal keyboard) and identify the key which has been pressed.
The keyboard connection is shown on Fig 6-1. It is connected to the 8
bits of the IORA of a 6522. Bits O through 3 are connected to the rows,
while bits 4 through 7 are connected to the columns. On the diagram,
the key at the intersection of row 2 and column 7 has been pressed,
connecting the row to the column.

6522

DDRA
7 8 9 A

4 5 6 B

1 2 3 F

C 0 D E

(A003) (AOOl)

(BEFORE KEY CLOSURE)

Fig. 6-1: Connecting the Keyboard

The data direction register is configured for all outputs. A special
feature of the IORA of the 6522 will be used by this program. The
IORA is really a bi-directional register. We will condition all rows to
be l's and all columns to be O's. If a key is pressed, the corresponding
row will be grounded by the column connected to it through the switch.
When reading back the IORA, the "0" value in the corresponding
row will be written into the register. In our example, when reading
IORA after the key has been depressed, the resulting value will be
"00001011" in binary or "OB" in hexadecimal. Using a "line-rever­
sal technique" (for details, see our references C201 or C207), we will
write "11111011" binary or "FB" hexadecimal in IORA. Since row num­
ber 2 is "O" (grounded), it will also ground column 7. When reading

217

6502 APPLICATIONS BOOK

back the contents of IORA, we will find the final value "01111011"
binary or "7B" hexadecimal. At every bit position of IORA where a
"0" is present, the corresponding row or column have been intercon­
nected. This technique will not only detect which switch has been
pressed, but will also detect errors, such as several keys being depressed
at the same time. If more than one key is depressed at any one time,
then there will be more than one "O" per nibble (group of 4 bits) in the
IORA.

218

DDRA

(A003)
DDRA IS

UNCHANGED

IORA

Fig. 6-2: Step 2 -Reading IORA After Key Closure

7

(A003) (AOOl)

Fig. 6-3: Step 3 -Writing IORA

THE PERIPHERALS

DDRA IORA

0 i--.-~-+---1,----t-~+--O

(A003) (AOOl)

Fig, 6-4: Step 4 -Read back IORA

In order to identify the character corresponding to the key which
has been pressed (a hexadecimal character between "O" and "F"), we
will simply build a table giving the ASCII representation of the char­
acters for each legal pattern in IORA.

For example, we have just determined that when key "B" is pushed,
the pattern "78" hexadecimal is found in IORA. As an exercise the
reader is encouraged to compute the IORA pattern for other charac­
ters. The correspondence table is shown on Fig 6-5.

If ever an illegal code is found, it is ignored and the keyboard is
scanned again.

Finally, once the ASCII code for the character has been obtained, it
can be displayed. As an example here the display routine available as
part of the SYM board monitor is used to display the character. Modi­
fications will be suggested at the end of this section to display the char­
acters on other media.

0 I 4 5 6 7 9 A B C D

DE ED DD BD EB DB BB E7 87 77 78 EE BE 7E 7D

30 31 32 33 34 35 36 37 39 41 42 43 44 45 46

Fig. 6-5: Keyboard Character Codes Table

219

6502 APPLICATIONS BOOK

Note: This program will use 3 monitor routines for convenience:
SCAND, HDOUT, ACCESS.

INI IALIZE, ERASE MEMORY
PROTECT

DORA ~ OUTPUT

SEND "00001111"

READ IORA

FORCE COLUMN
BITS TO "l"

WRITE BACK

READ IORA

NEXT TABLE ENTRY

SCAND

YES

LOOK UP ASCII CODE

DISPLAY IT (HD OUT)

Fig. 6-6: Keyboard Flow Chart

The flow-chart for the program appears on Fig 6-6.
The program is first initialized, then the "OF" (hexadecimal) pat­

tern is sent on IORA. The value of IORA is read back (without chang­
ing the DDRA!). This value does not need to be stored in a 6502 regis­
ter or in the memory, because of the bidirectional feature of the IORA
of this component. It will be latched into the component and remain
there. The four column bits are then forced to a "1 ", and the new
IORA pattern is output. IORA is then read back so that the final bit

220

THE PERIPHERALS

pattern may be obtained. The pattern in the IO register is then matched
against all possible values in the ASCII table of Fig 6-5. If the IORA
code does not match the current table entry, the next one is looked up.
If none matches, then a branch back to the beginning of the loop oc-
curs.

The program is shown on Fig 6-7.

0000 20 86 8B INIT JSR ACCESS
3 A9 FF LDA #$FF
5 8D 03 AO STA DDRA DDRAisPAD
8 A2 OF START LDX #$OF

A 8E 01 AO STX IORA IORAisPA
D AD 01 AO LDA IORA IORAisPA

0010 09 FO ORA #$FD
2 8D 01 AO STA IORA IORAisPA
5 AD 01 AO LDA IORA IORAisPA
8 D5 30 LOOP CMP TAB,X

A FO 05 BEQ DISPL
C CA DEX
D 10 F9 BPL LOOP
F 30 05 BMI SCAN

0021 B5 40 DISPL LDA ASCT,X
3 20 00 89 JSR HDOUT
6 20 06 89 SCAN JSR SCAND
9 4C 08 00 JMP START

0030 E7 D7 B7 77 TAB BYTE $E7, $D7, $B7, $77, $EB, $DB,
EB DB BB 7B $BB, $78, $ED, $DD, $BO,
ED DD BD 7D $7D, $EE, $DE, $BE, $7E

EE DE BE 7E
0040 37 38 39 41 ASCT BYTE '7, '8, '9, 'A, '4, '5, '6,

34 35 . 36 42 'B, '!, '2, '3, F, 'C, '0,
31 32 33 46 'D, 'E
43 30 44 45

Fig. 6-7: Keyboard Program (Program 6-1)

The initialization phase removes the memory protection feature, in
the case of the SYM board, by using the ACCESS subroutine, then
conditions the data direction register of Port A to be all outputs:

INIT JSR
LDA
STA

ACCESS
#$FF "11111111" = OUTPUTS
DDRA

221

6502 APPLICATIONS BOOK

The "00001111" pattern is then sent to the data register:

START LOX
STX

#$OF
IORA

"00001111"

It is immediately read back and the columns are forced to all 1 's by
oring it with the pattern '' 11110000'':

LOA
ORA

IORA
#$FO "11110000"

The resulting pattern is sent to the data register (IORA):

STA IORA

It is immediately read back and it now contains the final pattern that
will be used to determine which key has been pressed:

LOA IORA

The code contained in the accumulator will now be compared in se­
quence to every entry in the table. Every time we have a table struc­
ture, the indexed addressing mode is conveniently used to access the
elements in sequence. The initial value of the index register if "OF"
hexadecimal or "15" decimal. A match will be attempted against the
last entry of the table (see Fig 6-7). Then the previous one will be test­
ed. Whenever a match is found a branch occurs to location DISPL:

LOOP CMP
BEQ
DEX

TAB,X
DIS PL

BPL LOOP

If the match fails, then the index register Xis decremented in anticipa­
tion of the next character match. It must be tested against the value
"O": When it decrements below "0" and becomes negative, no valid
key has been detected and an exit occurs through SCAN:

BMI SCAN

At this point, register X indicates which character has been recog-

222

TAB --1-•

CHARACTER CODE
TABLE

HIGH ADDRESSES'----------'

+(X)

THE PERIPHERALS

XIS POINTER
TOT ABLE ENTRY

Fig. 6-8: Indexed Addressing for Table Access

nized. It contains a number between "O" and "15". We now want to
convert this number to the ASCII code required to display (or print)
the character we have recognized:

DSPL LOA ASCT, X

At location DISPL, the accumulator is loaded with the ASCII code
corresponding to the value of the character as determined by the value
of index register X. Again an indexed addressing technique is used for
this sequentially ordered data (see Fig 6-9). The subroutine HDOUT
(of the SYM) is then used and the character is displayed (SC AND rou­
tine of the SYM) before the keyboard scanning resumes:

SCAN
JSR
JSR

HDOUT
SC AND

JMP START

223

6502 APPLICATIONS BOOK

X A

INDEX

LDA ASCT, X

Fig. 6-9: Converting the Choracter ID# to ASCII

Two tables of constants are used by the program. The first one is
called "TAB". The table contains the list of legal bit patterns that
may appear in IORA. The value of the index register X at the time it
reads one of these entries determines the identity of the key which has
been pressed. The second table used is called "ASCT". It contains the
ASCII code for each of the digits of the keyboard.

These two tables appear at the end of the program on Fig 6-7. Note
that the index register X does not have to contain the actual hexadeci­
mal digit corresponding to the key which has been pressed. As long as
the two tables are arranged in matching sequence, the proper ASCII
code will be extracted for each legal binary pattern found in the table
TAB. This is why these two tables on the program are out of the hexa­
decimal sequence.

Exercise 6-1: Rearrange the two tables, TAB and ASCTof Fig 6-7, so
that the value of the index register X is always equal to the hexadeci­
mal value of the key which has been pressed on the keyboard.

Exercise 6-2: As an alternative to the above method, relabel the keys
of the keyboard, without changing the tables TAB and ASCT, so that
the value index register X corresponds to the key which has been
pressed.

224

THE PERIPHERALS

Let us suggest now some possible variations so that the digit which
has been detected can be displayed to the outside world in other ways:

Exercise 6-3: Sound the speaker once if character "1 "has been pressed.
Sound it twice if character "2" has been pressed, and so on.

Exercise 6-4: Using the Morse program which has been developed in
chapter 4 (see Program 4-3), modify the above program so that it
sounds the Morse code corresponding to each key pressed.

Exercise 6-5: Modify the above program so that it will sound a note
for each key pressed. One key should be dedicated to a silence. An­
other set of two keys can be used to determine the duration of the note
(durations 1, 2, and 4).

Exercise 6-6: Write a stored music program. You will first play a tune
by hitting the keys of the keyboard in the desired sequence. The first
50 notes (or any other number) of the tune should be memorized in the
memory of the system. Then hit a special key, and the program should
play back the tune that has just been memorized.

PAPER TAPE READER OR ASCII KEYBOARD

Connecting a decoded (ASCII) keyboard, or a paper tape reader in­
volves a nearly identical technique. The hardware interface involves 8
data bits (the 7 bit ASCII code plus parity), and an extra status bit in­
dicating that a character is available. A simple interface will be pre­
sented here for a "home-built" simplified paper tape reader. The pro­
gram for a decoded keyboard would be nearly identical.

• • • 0

• • •
• • 2

- - - -- ---- sprocket holes

• • • 3
• • • 4

• • 5
• • • 6

• •• PARITY (7)

Fig. 6-10: Punched 8-level Paper-tape

225

6502 APPLICATIONS BOOK

Paper tape has traditionally been used to store programs in a reli­
able and economical form. Each character is represented on the paper
tape by a row of holes punched in it (see Fig 6-10). One hole, smaller
than the other, is used by the sprocket wheel which positions the paper

Note: The emitter (not shown) comes over the detector.

The FPAIOO emitter is located on the small board on top. The PTR is connected to the
6502 board via a flat ribbon through the A-connector (top).

Fig. 6-11: Paper Tape Reader Hardware

226

THE PERIPHERALS

tape. The other 8 holes (other types of codes exist using less holes) are
used to encode the character itself in ASCII format. The paper tape is
moved one hole position at a time, and the code corresponding to the
hole must be read by the reader. We will use here a pair of photo emit­
ters and detectors FPAlOO.

PORT A

PORTB

dV

+sv +SY

STATUS

Fig. 6-12: PTR Connection Details

6522
DORA IORA

(AOC'())

A2

AS

A6

Al

A8

A15

ASCII
KEYBOARD

OR
PAPER-TAPE

READER

Fig. 6-13: Paper Tape Reader Interface

DATA

227

6502 APPLICATIONS BOOK

The light-emitting diodes emit light continuously. When a hole
passes in front of the LED, the light will be transmitted and the photo­
detector placed on the other side will sense it. This will be a '' l''.
When no light is transmitted, a "O" will be detected. Note that the in­
tensity of the LED's must be adjusted carefully, so that no light goes
through the paper tape in the absence of a hole (practical remarks will
be presented later). This very low-cost and simple paper-tape-reader
can be operated by hand by pulling the paper tape between the two
detectors. The program will synchronize itself, as we will see, on the
hole normally intended for the sprocket wheel. The hardware diagram
appears on Fig 6-11. The detailed connection of the light emmitting
diodes and of the hole detectors and the data detector circuits appear
on Fig 6-12. The microcomputer interface is shown on Fig 6-13. The
IORA of 6522 #1 is used as input for these data bits. The IORB of port
B of the same 6522 is used to read the status bit into its position 7.

The signals are conditioned by Schmitt triggers (7414). The two
sockets for the 7414's are used as guides for the paper tape itself. The
signal corresponding to the detection of a sprocket hole is ''0''. The
signal corresponding to a data hole is '' 1 ''.

Fig, 6, 14: PTR Flow Chart

228

CHARACTER COUNTER ; 0

READ IT

STORE IT IN LINE TABLE

YES
-our

THE PERIPHERALS

Note that a single resistor is used in this simple interface to drive all
LED's. In practice, individual resistors could be used for each indivi­
dual LED. The value of the resistor must be adjusted carefully so that
just enough light goes through a hole to be detectable by the opposite
detector. Otherwise all l's('' 11111111 '') will be detected continuously
if the light may go through a normal (fairly transparent) paper tape. If
you are experiencing trouble with the value of this resistor, you may
consider using initially black paper tape, or at least very opaque tape,
to eliminate this problem.

The flow-chart for the program is shown on Fig 6-14. A character
counter will be used to count the number of characters coming in. The
program remains in a waiting loop until the next character becomes
available. This will be detected by the presence of a sprocket hole over
the corresponding detector. Once the status signal indicates the avail­
ability of the character, it should be read quickly. It is read and stored
in a line table in the memory. The character counter is then incremented.

By convention, the reading operation will be terminated either by a
"NULL" character (nothing punched on the tape), or else an explicit
"carriage-return" character (CR). The program, therefore, checks for
the NULL character or "CR", and, if they are found, it exits. If they
are not found, it can go back to the beginning of the loop. However,
before going back to the beginning of the loop, the program must wait
until the status information has been reset. Once the "character-avail­
able" signal has disappeared, it can go back to the beginning of the
loop and wait for the next character to become available.

The memory-map corresponding to this program is shown on Fig
6-15. The program appears on Fig 6-16.

0000

0001

TABLE

POINTER

-

CHARA CTER
LE TAB

AOOO

AOOl

Fig. 6-15: PTR Memory Map

IORB

IORA

229

6502 APPLICATIONS BOOK

0002 AO 00 KBPT LOY #0
4 2C 00 AO TS BIT IORB IORBisPB
7 30 FB BM! TS
9 AD 01 AO LOA !ORA !ORA is PA
C 91 00 STA ($00), y
E cs !NY
F C9 00 CMP #0

0011 FO OB BEQ RET
3 C9 SD CMP #$80
5 FO 07 BEQ RET
7 2C 00 AO TE BIT IORB IORBisPB
A 10 FB BPL TE
C 30 E6 BMI TS
E 60 RET RTS

Fig 6-16: PTR/Keyboard Program (Program 6-2)

The program assumes that DDRA and DDRB have been initialized
with the proper values. Otherwise extra lines of initialization must be
added to the beginning of this program. Register Y is used as the char­
acter counter and is initialized to the value "0":

KBPT LDY #0

Next, the value of the status line must be tested, in o. ':ler to determine
whether a character is available. It is connected to IO kB bit 7 in order
to facilitate its detection:

TS BIT
BMI

IORB
TS

Bit 7 is a preferred bit position to connect a status signal, since it is a
bit position which can be tested in one instruction: bit 7 is the "sign"
bit. It sets the "N" flag in the status register, which can be tested di­
rectly for "positive" and "negative" ("O" or "I"). Here, it is tested
by the BMI (branch on minus) instruction. As long as the signal is

230

THE PERIPHERALS

"l ", no character is available. When it becomes "0", a character is
available. The accumulator can then be loaded with the data present
on the data lines:

LOA IORA READ DATA 1

The 8-bit character obtained from the paper-tape-reader must then be
stored at an appropriate memory location. It is assumed here that the
starting address of the line buff er has been deposited at memory loca­
tion "00, 01." An indirect addressing technique will be used in order to
access the first element of the table. In addition, the addressing mode
will be indexed by the value of Y, in order to access successively all ele­
ments of the table. The corresponding instruction is:

STA ($00),Y

Let us examine this indirect indexed instruction here. The indirec­
tion specifies: "go to memory address "00" and use its contents as an
address (Step 1 on Fig 6-17).

00 LINE BUFFER

01 ADDRESS

ADDRESS

POSITION Y

FINAL ADDRESS

Fig. 6-17: Indirect Indexed Access: STA ($00), Y

Register Y is then used as an index: its contents are added to the
base address to provide the final address (Step 2 on Fig 6-17). The con-

231

6502 APPLICATIONS BOOK

tents of Y are the displacement within the line-buffer table, i.e., the
pointer to the current entry.

The character counter is then incremented, thus pointing to the next
available location in the line buffer, in anticipation of the next char­
acter:

INY

The character in the accumulator must now be tested for "NULL" or
for a "carriage return," to check whether the end of a line has been
reached. This is accomplished by the next four instructions:

CMP
BEQ
CMP
BEQ

#0
RET
#$SD
RET

NULL?
IF YES, EXIT
CR?
IF YES, EXIT

Finally (refer to the flow-chart of Fig 6-14), we must wait for the
"character-ready" signal to disappear before testing it again, or else
we would read twice the same character. This is accomplished by the
next 3 instructions:

TE BIT
BPL
BMI

IORB
TE
TS

TEST READY SIGNAL

Finally, the subroutine terminates with the usual return instruction:

RET RTS

Exercise: 6-7: In addition to storing the character in a table, generate
through the speaker the Morse code corresponding to the character
being read. Be careful to generate the Morse code quickly enough so
that you do not lose characters on input. Alternatively you may decide
to pull the paper very slowly so that you have enough time to generate
the Morse output between two successive characters. Or as another
possible solution, you may decide to generate the Morse code only at
the end of the line when all the characters have been read. This is def­
initely the safest solution but it defers the enjoyment of verifying that
each character is being correctly read!

232

THE PERIPHERALS

Exercise 6-8: Connect eight LEDs on the PTR board, and light them
with the 6502, as each character is recognized.

Exercise 6-9: Sound an alarm if the parity bit is incorrect. (The parity
bit insures that the total number of bits for a given character is even or
odd, depending on the convention used. You must verify this.)

MICRO PRINTER

Many small microprinters use electrosensitive paper, and print 20
characters across, using a dot matrix to form the characters. Examples
are Olivetti (various models) or Matsuhita. The bare printer requires
a small interface which will sent the appropriate signals to the print­
ing head, move the paper and manage the mechanical resources
of the printer mechanism. Once equipped with such a basic interface,
the microprinter can be connected to any microprocessor equipped
with a PIO (a programmable input/output port). Such a printer will
be used here and will be connected to the 6502 system via a 6522 and a
6532 port. Differences may exist if you are using a printer with a dif­
ferent interface. However, the logic of the program should be essen­
tially similar.

The program will print a 20-character line at a time. It will supply
the "start print" signal, then send the 20 characters in sequence. In
order to send a character, the program waits for the printer interface
to supply a "character request signal." In response to this signal, the

6502

BOARD
CHARACTER

REQUEST

START PRINT

PRINTER BUSY

Fig. 6-18: Basic Printer Interface

PRINTER

PRINTING

233

6502 APPLICATIONS BOOK

6'31 3
PORTA .

6522
PORT 8

DORA IORA

(AAOl) (AAOO)
D0R8 IORB

(A002) (AOOO)

CONNECTOR
A

A-19

A-A

A-22

A-10

A-18

A-W

01

-o,
-o,

6-BIT

-DA DATA

-o,
-oo

CHARACTER
REQUEST

START

Fig. 6-19: Printer Connection

program must supply the characters, or else the previous character
stored in the interface buffer will be printed by error. The character
will be supplied on the 6 data lines. A 6 bit character representation is
used (see Fig 6-18).

The hardware connection for the printer appears in Fig 6-19. Port A
of the 6532 is used and bit O of Port B of the 6522 is also used. The
IORA of the 6532 supplies the 6 data lines and receives on bit 6 the
"character request," as indicated on the illustration. Bit O of the
IORB of the 6522 is used to generate the "start" signal. In addition,
the printer interface normally supplies a "printer busy" signal. It will
be ignored here and replaced by a software delay routine of 30 milli­
seconds. A flow-chart for the program appears on Fig 6-20.

The data-direction registers for the two PIOs are initialized. A start
pulse is generated to start the printer. The program then checks the
"character request" line. The program waits at this point until a level
change indicates that a character is requested. It gets the next charac­
ter from one of the memory locations where the 20 character line is
stored (see Fig 6-21). The character is then sent to the printer. Once
the character has been sent, the program waits for the "character re­
quest" signal to disappear. It increments the character counter and
checks to see whether it has reached the value "20." If it has not

234

INITIALIZE DIRECTION
REGISTERS AND RESET !ORB

GENERATE START PULSE --~----, L~
NO~

YES

GET NEXT CHARACTER

SEND CHARACTER

ti~
~

NO

INCREMENT COUNTER

SEND "SPACE"

TIMER 1024 30 HEX

r--1__
~~

~ YES

OUT

NO

THE PERIPHERALS

Fig. 6-20: Flow Chart for Printer Program

reached the value "20," another character must be sent to the printer
and the loop is re-entered. Once the 20 characters have been sent to the
printer, a "space" code is sent to the printer to terminate the line,
causing a line feed and a carriage return to be generated. (A different
convention may be used by a different interface.) Then a delay of 48
milliseconds must be provided for the mechanical elements of the
printer to position themselves for the next line. The internal timer of

235

6502 APPLICATIONS BOOK

the 6532 is used for this purpose and the timer word corresponding to
the 1024 times factor is used here. The 1024 factor corresponds to a
delay of 1024 microseconds or approximately 1 millisecond per delay
unit in the timer word. This word is loaded with "30" hexadecimal =

"48" decimal. Once it times out, the program exits.
The program is shown on Fig 6-22. The memory map for the printer

program is shown on Fig 6-21. The two memory locations "00" and
"01" contain the pointer to the location of the first character in the
memory. In order to use this program, the user should load the value
"01" at memory location "A002" (DDRB), and "00" in memory
location "AOOO" (IORB) before turning the printer on. The memory
locations used by the input/ output devices appear on the right of Fig
6-19. Let us examine the program.

00

01

236

CHAR 1-

POINTER

--CHARACTER
TABLE

(20
CHARACTERS)

(6522)

A002

{6532) A400
A401

A407

A41F

IORB

DDRB

IORA

DORA

TIMER FLAG

TIMER 1024

Fig. 6-21: Printer Memory Map

THE PERIPHERALS

0200 A9 3F LINE LOA #$3F Configure Port A
2 SD 01 A4 STA !ORA
5 AO 01 LOY #1 Send start signal
7 BC 00 AO STY IORB

A 88 DEY
B BC 00 AO STY IORB "O" output
E 2C 00 A4 TSTI BIT IORA Read status

0211 70 FB BVS TSTI Char request?
3 Bl 00 LOA ($00), y Load character
5 SD 00 A4 STA IORA Print it
8 2C 00 A4 TST2 BIT IORA Check status
B 50 FB BVC TST2
D CB INY Next character
E co 14 CPY #$14 20th?

0220 DO EC BNE TSTI
2 A9 20 LOA #$20 Space/ character
4 BD 00 A4 STA IORA
7 A9 30 LOA #$30 Delay constant
9 BD IF A4 STA Tl024 Timer XI024
C 2C 07 A4 TTIM BIT TIMFLG Timer status?
F 10 FB BPL TTIM

0231 60 RTS
0000 50 00 WORD BUFFER
0050 30 31/32 33/34 BUFFER BYTE '0, '1, '2, '3, '4, '5, '6, '7,

35/36 37/38 39/40 '8, '9, 'W, 'A, 'B, 'C, 'D,
41,42 43,44 45,46 'E, 'F, 'G, 'H, 'I
47/48 49

IORAisPA

!ORB is PB

Fig, 6-22: Printer Program (Program 6-3)

The data direction register A is first initialized:

LINE LDA #$3F
STA IORA

A start pulse is then generated by depositing the value "0000001" in
the IORB:

LDY #1 ''00000001 ''
STY IORB

237

6502 APPLICATIONS BOOK

IORB is then set to all O outputs:

DEY y = ''00000000''
STY IORB

We must then check the "character request" line. If this line is a" l ",
we keep looping. When it becomes a "O", we will get the next charac­
ter:

TSTl BIT
BVS

IORA READ STATUS
TSTl

It should be remembered that the "BIT" instruction will test a given
memory location without disturbing its contents. It will copy bits 6
and 7 respectively in the "V" and "N" flags. We are interested here in
testing the value of bit 6 (refer to the printer connection on Fig 6-19).
The BVS instruction will test the value of the overflow flag "V",
which has been set to be identical to the value of bit 6 of IORB. Its
value is therefore the value of the "character-request" line. The next
character is obtained from the 20 character table stored at the memory
address contained in locations "00" and "01 ". An indirect access in­
struction will result in accessing the first entry of this table. For gen­
erality, we want this segment of the program to be able and retrieve
any entry within the table. As in any table organization, indexed ad­
dressing will, therefore, be used. Register Y is used here as the index
register. It contains initially the value "00" which will be incremented
through the value 19 before we exit from the loop. An indexed indirect
addressing technique is used here:

LDA ($00),Y

The indexed indirect access is illustrated on Fig 6-23. The contents of
memory location "0001" are first accessed. They are then used as the
address of the base of the table to accessed. The contents of register Y
will be added to the contents of memory location 0001 and this final
address will be used as the address of the data to be fetched (see Fig
6-21). This data is the ASCII code for the character to be printed. It is
sent to IORA:

STA IORA

238

00

01

BASE

TABLE

ADDRESS

CHARACTER

THE PERIPHERALS

- LDA($00), Y

~~

+(

($00)

Y)

Fl NAL ADDRESS=
SE+Y BA

Fig 6-23: Indexed Indirect Acce11

Once the character has been sent, we must wait for the character re­
quest line to become "1" again. A two-instruction loop is used exactly
as above:

TST2 BIT
BVC

IORA
TST2

The character counter (register Y) is then incremented:

INY

and tested against the limit value "20" decimal = "14" hexadecimal.
As long as the limit value is not reached we re-enter the loop:

CPY #$14
BNE TSTl

The code for the required "space" character is then output on IORA:

LDA #$20
STA IORA

Finally, we must guarantee the minimal delay between 2 successive

239

6502 APPLICATIONS BOOK

line printings. The 1,024 factor is used for the timer. The final 48 ms
delay is obtained by simply loading the appropriate memory location
with the constant specifying the number of milliseconds (refer to Fig
6-19 for the printer memory map):

LDA #$30 DECIMAL = 48
STA Tl024

The timer flag is then checked continuously until it becomes "l ",
indicating a timeout:

TTIM BIT
BPL

TlMFLG
TTIM

The actual printout for the sample 20 character line indicated in the
program appears on Fig 6-24:

0123456789@ABCDEFGHI

Fig 6-24 : Actual 20-Character Printout

Exercise 6-10: Connect the printer and the paper-tape reader. The
printer should print the contents of the papertape at the end of every
line.

SUMMARY

In this chapter, actual peripherals have been interfaced both from a
hardware and software standpoint to the microcomputer board. Full
use has been made of the specific capabilities of the PIO registers, and
of the addressing techniques provided by the 6502 in order to optimize
the programs. The reader should now have acquired all the skills re­
quired for realizing his own applications programs in most usual
cases.

240

CHAPTER 7

CONCLUSIONS

This book has systematically introduced the hardware and software
techniques required to connect an actual 6502 board to the outside
world. The input-output chips have first been described, along with
usual 6502 boards. Then application programs of increasing complex­
ity have been presented in chapters 4, 5, and 6. At this point, the read­
er should feel confident that he can connect his own 6502 board to
usual input-output devices and solve the hardware and software inter­
facing problems associated with this. In fact, the author believes that,
with the skills acquired now, the reader should be in a position to start
solving almost any applications problems of usual complexity. There
are naturally cases where specific interfacing problems exist and the
reader is encouraged to consult reference C207 "Microprocessor In­
terfacing Techniques'' for that purpose. If at this point, the reader has
skipped the exercises, it is strongly suggested that he go back to chap­
ters 4, 5, and 6 and solve all exercises proposed in these chapters, first
on paper, then on a real microcomputer board.

The Next Step

If you have not built any applications board yet, the next logical
step is to go to your local electronics store and purchase the few low­
cost components required by the applications proposed here. You
should then try to write some programs by yourself, without consult­
ing this book, and make sure you have acquired the skills required to
solve these problems. Use your imagination and you can invent many

241

6502 APPLICATIONS BOOK

other possible applications, using the same limited hardware, or else
additional simple input-output devices.

For the reader interested in more complex programming tech­
niques required to implement complex algorithms, a third volume in
this series will be published, called "6502 Games". In this volume,
much more complex algorithms are introduced, and described, which
will allow the reader to play a variety of games ranging from mind­
bender to magic squares. The hardware required for these games is
minimal (one 16-key keyboard, 15 LED's and one loudspeaker).

It has been found that the time required by each person to learn how
to program varies very significantly from one person to the next.
However, the next logical step after reading any programming book
should be the same: practice. It is hoped that the contents of this book
will have brought you the skills for such successful practice.

242

APPENDIX A

A 6502 ASSEMBLER
IN BASIC

INTRODUCTION

Developing short programs for the 6502 may be done on paper, and
the programs may then be entered on a 6502 board. However, if longer
programs are to be developed (say more than a few dozen
instructions), or else if a large number of small programs is to be
developed, the convenience of an assembler becomes of significant im­
portance. Since it is assumed that most readers seriously interested in
applying a 6502 to real applications will start developing such pro­
grams, this book includes the full listing of an assembler for the 6502
written in BASIC for those who do not already have access to a 6502
assembler.

The advantage of an assembler for the 6502 written in BASIC is that
it can be run on any computer equipped with BASIC which may be ac­
cessible to the user. The version of BASIC used in this program is the
one available on Hewlett-Packard computers. It can be characterized
as a subset of most microcomputer BASICs ip that it does not include
the features found on the latter ones. Using this assembler on a com­
puter having a different BASIC will involve a translation process.
However, the translation effort should be moderate, in view of the
fact that most popular BASICs available on microcomputers include
many more features than the one which has been used for this
assembler. This assembler is therefore essentially upwardly compatible.
In fact, a user who is good at programming in his BASIC will pro-

243

6502 APPLICATIONS BOOK

bably be capable of effecting a significant reduction in the number of
instructions used for this assembler.

This assembler has been used to assemble a large number of pro­
grams for the 6502 and has performed successfully. To the best of our
knowledge, it is therefore a reliable product. However, it is included
here for educational purposes only and not warranted for any purpose
whatsoever. A Microsoft BASIC version of this assembler will be
published in the near future for readers interested in this particular
version.

A complete listing of the assembler is shown in this section, and a
sample output demonstrating its operation is shown below.

All the programs at the end of Chapter Four have been assembled
with this assembler.

GENERAL DESCRIPTION

ASM 65 is a complete 6502 mnemonic assembler. It recognizes all
industry standard mnemonics, and will produce the standard hexa­
decimal listings, as shown on the example of Fig A-1.

In addition, this assembler provides the industry standard direc­
tives, with only exception the use of "." to indicate current location
assignments and references. The directives available are: .BYT,
.WORD,.DBYT,.TEXT. The user is referred to any manufacturer's
assembler description for the details of these directives.

USING THE ASSEMBLER

The ASM 65 is written in Hewlett-Packard 2000 series F BASIC. A
description of the features of this particular BASIC implementation
appear later in this section. Few changes should be needed to adapt
this interpreter to other versions of BASIC to which the reader would
have access.

ASM 65 operates on serial files. A minimum of three files are equipped
and four are normally used. They are: the source file, the symbol
table file, a temporary file, and optionally a destination file distinct
from the source file.

The input file contains the assembly language instructions. It must

244

APPENDIX A

% CAT SRC
;MEMORY BLOCK MOVE PROGRAM
;MOVES UP TO 255 BYTES FROM A TABLE STARTING AT
;LOCl TO A TABLE STARTING AT LOC2, LENGTH OF THE
;SECTION TO BE MOVED IS IN MOVLEN,
MOVLEN =SOO
LOCl =$200
LOC2 =S300

LOX MOVLEN ILOAD LENGTH OF MOVE TO INDEX
LOOP LDA LOCl,X ;LOAD BYTE TO BE MOVED

STA LOC2,X ISTORE BYTE TO BE MOVED
DEX ;COUNT DOWN
BPL LOOP ;IF NOT DONE, MOVE NEXT BYTE
RTS ;DONE

% RUN ASM65
SOURCE FILE ?SRC
OBJECT FILE ?DEST
PRINTOUT ?YES
ASSEMBLY BEGINS,,,

;MEMORY BLOCK MOVE PROGRAM
;MOVES UP TO 255 BYTES FROM A TABLE STARTING AT
;LOCl TO A TABLE STARTING AT LOC2, LENGTH OF THE
;SECTION TO BE MOVED IS IN MOVLEN,
MOVLEN =SOO
LOCl =$200
LOC2 =$300

0000: A6 00
0002: BD 00 02 LOOP

LOX MOVLEN
LDA LOCl,X
STA LOC2,X
DEX

;LOAD LENGTH OF MOVE TO INDEX
;LOAD BYTE TO BE MOVED

0005: 90 00 03
oooa: CA
0009: 10 F7
oooB: 60

SYMBOL TABLE:
MOVLEN 0000
LOOP 0002

DONE

BPL LOOP
RTS

LOCl

;STORE BYTE TO BE MOVED
;COUNT DOWN
;JF NOT DONE, MOVE NEXT BYTE
IDONE

0200 LOC2 0300

Fig A 1: Using the ASM 65 Assembler

therefore contain ASCII text, and must be structured as per the rules
of the assembler syntax (described in the next section). In general, the
input lines can be written in free format, with the fields separated by
one or more spaces. However, any label must start in column one.
Any line without a label may not start in column one.

The assembler will automatically format the comment field on the
output file. However it will not format the other fields within the in­
structions so that the user may tabulate his input statements in any
reasonable way for clarity. This feature is intended to improve reada­
bility.

245

6502 APPLICATIONS BOOK

The output file is also ASCII text, including the representation of
all numbers. The output file may be optionally printed after the sec­
ond pass of the assembler has been executed. A prompt is printed on the
listing, or appears on the screen: "PRINTOUT?" and the user may
specify "yes" or "no."

The assembler provides extensive diagnostics and will describe all
errors it has identified, then list them on the output.

In this implementation, the error printout may contain various field
markers such as operator field limiters("!"), and the internal unre­
solved reference delimiter ("**").

The symbol table gives the usual hexadecimal for all symbolic labels
used by the program. An example is shown on figure A-2.

SYHBOL TABLE:
HOVLEN 0000 LOC1 0200 LOC2 0300
LOOP 0002

DONE

Fig A-2: The Symbol Table

SYNTAX

Constants

Constants may be expressed in any of the four usual number repre­
sentations:

• Hexadecimal: the constant must be preceded by a"$". Exam­
ple: "LDA $20" will load the accumulator from memory address
''20'' hexadecimal.

• Binary: it must be preceded by a "OJo". Example: "LDA
OJo 11111111" will load the accumulator with all ones.

• Decimal: usual representation. Example "LDA #0" will load the
accumulator with the decimal value zero.

•ASCII: must be proceeded by a" ' ". Example: "LDA' A" will
load the ASCII code for A into the accumulator.

Arithmetic Expressions

Arithmetic expressions may be used in the operator field, in a label

246

APPENDIX A

assignment, or in a memory allocation instruction.
The operand in an arithmetic expression may be a number expressed

in any representation, or a label, or a "·" (the current location sym­
bol) or any combination of those. The legal operators are " + " and
'' - · ''. In the case where more than one operator is used, the arith­
metic expression will be evaluated from left to right.

Comments

Comments must be preceded by a";". They may begin in any col­
umn including column one. All comments will be justified in the mid­
dle of the output sheet unless they begin in column one.

Memory Assignments

Memory assignments are performed by one or more of the four di­
rectives:

.BYT

.WORD

.DBYT

.TEXT

- Assigns one byte of data to one memory loca­
tion.
- Assigns two bytes of data to two consecutive
memory locations, low order byte first.
- Assigns two bytes of data to two consecutive
memory locations, high order byte first.
- Converts an ASCII string to hex data, and
stores it in consecutive memory locations. The
string must be delimited by two identical non­
blank characters.

There is no end directive- an end-of-file is used instead.

Example of a memory assignment:

.BYT $2A, WORDCONST

.WORD 2, %10

HP2000F BASIC:

Hewlett-Packard BASIC is different from many common mini- and
microcomputer BASICs, but is easily adapted. The following is a list

247

6502 APPLICATIONS BOOK

of features which differ from most BASICs, or from the Dartmouth
standard.

Files

Files are declared in a FILES statement at the beginning of the pro­
gram and are numbered in the order in which they appear in it. The
ASSIGN statement assigns a file specified by its first argument to a file
number specified by the second argument. The third argument is a
dummy variable. A star appearing in a FILES statement means a file
will later be assigned to that file position by an ASSIGN statement.
The READ statement reads the file. Its first argument, preceded by a
"#", is the file number of the file to be read from. If the record
number is one, and there is no semicolon, the statement serves to reset
the file pointer to 0, as in "READ #2, l ". Any arguments after the
semicolon are those variables to be read.

The PRINT statement is similar to the read statement. It also has a
special form, "PRINT #2,END", which makes an end-of-file marker
on the file.

The IF END # THEN statement operates in a way analogous to a
vectored interrupt. When an end-of-file occurs on a read, program ex­
ecution will continue at the line number mentioned after the THEN,
instead of causing the program to crash. This will occur even if the
computer is not currently executing the statement: i.e., the end-of-file
vector need only be specified once, unless it needs to be changed.

Strings

Strings are one dimensional, and can only be dimensioned as such.
To assign 0 (zero) length to a string, or clear it, a statement of the type
"L$ =" " is used. Characters in a string are referenced as follows:
to reference a substring within a larger string, the form "T$(a,b)" is
used where a and b are expressions signifying respectively the first and
last character addresses in the main string of the desired substring.
Characters in a string are addressed from left to right, starting at 1.
Example: if A$= "ABCDE" and the statement "B$=A$(2,3)" is ex­
ecuted, B$ will become "BC".

The form "T$(a)" references all characters in T$ starting with
character #a and continuing on to the end of T$.
Example: if A$= "12345", A$(3) means the substring "345".

248

APPENDIX A

The string functions CHR$ and ASC$, which respectively convert
an ASCII decimal number into a one-character string, and a one­
character string into its decimal ASCII equivalent are not available, so
ASM65 reads a string of ordered ASCII characters from a system file
called $ASCIIF, which it then uses for number and string conversion.

MAX returns the maximum of 2 values.
Example: '' B = 11 MAX 9'' would yield 11.

MIN returns the minimum of 2 values.
LIN when in a print statement adds amount of linefeed specified in its
argument to output.

The above definitions are intended only as guidelines for the transla­
tion of ASM65 into other versions of BASIC.

ASM65

Fig A-3: 6502 Assembler Listing
copyright© 1979, Sybex Inc.

10 REM
REM
REM
REM
REM
REM
REM
R=10
T9=0

********** 6502 MNEMONIC ASSEMBLER, VERSION 2,0 **********
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310

WRITTEN IN HP2000F TSS BASIC,
CAN BE USED WITH ALL 65XX PROCESSORS AS HADE BY COMMODORE,
SYNERTEK, AND ROCKWELL,
ALL MNEMONICS AND DIRECTIVES ARE INDUSTRY STANDARD, WITH
THE EXEPTION OF THE USE OF FOR CURRENT ADDRESS.

A=O
DIM L$C72J,M$C72J,0$C72J,C$C72J,Z$[72J,P$C72J,T$C72J
DIM A$C72J,N$C72J
DIM UC72J
L=O
FILES *,SYHTAB,TEMP,*,SASCIIF
PRINT "SOURCE FILE
INPUT H
PRINT 'OBJECT FILE•;
INPUT 0$
ASSIGN T$,1,08
ASSIGN 0$,4,08
READ t1, 1
PRINT t2,1
PRINT t3,1
R8=0
PRINT 'PRINTOUT •;

u INPUT
IF U
R8=1
PRINT
C=O

<> 'NO' THEN 300

'ASSEMBLY BEGINS,,,•

249

6502 APPLICATIONS BOOK

320 IF END t1 THEN 2440
330 LS=''
340 IS=''
350 HS=''
360 OS=''
370 CS=''
380 ZS='
390 L=L+l
400 REH********** SEPARATE TOKENS, STORE LABEL ASSIGNMENTS**********
410 READ t1 HS
420 T5=C
430 IF IS='' THEN 830
440 P=1
450 PS=';'
460 GOSUB 3970
470 IF P1=0 THEN 510
480 IF P1=1 THEN BOO
490 CS=IHPlJ
500 IS=ISC1,P1-1J
510 IF ISC1,1J=' ' THEN 590
520 GOSUB 3790
530 LS=PS
540 IF LS<> ',' THEN 590
550 Mt=•,•
560 GOSUB 4940
570 LS="
580 GOTO 860
590 GOSUB 3790
600 Ht=PS
610 IF HSC1,3J=',WO' THEN 3110
620 IF HSC1,3J=',TE' THEN 3110
630 IF HSC1,3J=',BY' THEN 3110
640 IF HSC1,3J=',DB' THEN 3110
650 IF HS<> '' THEN 850
660 CS=CSC1,34J
670 IF LEN<LS) <> 0 THEN 700
680 IS= IS C 1 , 19 J
690 GOTO 820
700 GOSUB 3790
710 NS=PS
720 IF LEN<NS) <> 0 THEN 750
730 T1=C
740 GOTO 780
750 GOSUB 4070
760 IF T4=2 THEN 830
770 T1=F1
780 PRINT t2;LS,Tl
790 PRINT t2; END
800 IS=ISC1,LEN(IS) HIN 55J
810 ZSC17,17tLEN<ISlJ=IS
820 ZS[<LEN<ISlt19 HAX 38) HIN 72J=CS
830 PRINT t3;zs,T5
840 GOTO 320
850 IF HSC1,1J <> •,• THEN 1050
860 PS='='
870 GOSUB 3970
880 IF Pl>O THEN 910
890 PRINT 'HISSING '=' IN LINE •;L
900 GOTO 3090
910 P=P1+1
920 GOSUB 3790
930 IF PSC1,1J <> '' THEN 960
940 PRINT 'HISSING ARGUMENT IN LINE ';L
950 GOTO 3090
960 NS=PS

250

970 GOSUB 4070
980 IF T4 <> 2 THEN 1010
990 PRINT 'ILLEGAL FORWARD REFERENCE IN LINE 'IL
1000 GOTO 3090
1010 T1=C
1020 C=F1
1030 IF LS<> '' THEN 780
1040 GOTO 800
1050 RESTORE 5710
1060 IF MS='' THEN 1140
1070 FOR I=l TO 56
1080 READ H
1090 IF T$=M$ THEN 1130
1100 NEXT I
1110 PRINT 'UNKNOWN OPCODE IN LINE 'IL
1120 GOTO 3090
1130 O=I
1140 IF LS='' THEN 1170
1150 PRINT t21LS,C
1160 PRINT t21 END
1170 GOSUB 3750
1180 OS=PS
1190 ISCP-LEN<OS>-1,P-LEN<OSl-lJ='!'

APPENDIX A

1200 REM********** FIND ADDRESSING HODES, LOAD EFFECTIVE ADDRESS**********
1210 IF OS<> '' THEN 1240
1220 H=l
1230 GOTO 2200
1240 IF OS<> 'A' THEN 1270
1250 11=2
1260 GOTO 2200
1270 IF OSC1,1J <> 't' THEN 1320
1280 H=3
1290 P=Ptl
1300 N$=0$C2J
1310 GOTO 1870
1320 IF HSC1,1J <> 'B' THEN 1460
1330 IF HS~'BIT' THEN 1460
1340 H=12
1350 Nt=Ot
1360 GOSUB 4070
1370 IF T4 <> 2 THEN 1400
1380 A=-200
1390 GOTO 1970
1400 A=Fl-C-2
1410 IF A>= 0 THEN 1430
1420 A=256tA
1430 IF ABS<Fl-C> <= 127 THEN 1970
1440 PRINT 'BRANCH OUT OF RANGE IN LINE 'IL
1450 GOTO 3090
1460 PS='('
1470 P=P-LEN(0$)
1480 GOSUB 3970
1490 P5=P1
1500 P$=','
1510 GOSUB 3970
1520 P6=P1
1530 P7=0
1540 IF NOT P6 THEN 1610
1550 IF ISCP6t1,P6t1J <> 'X' THEN 1580
1560 P7=1
1570 GOTO 1610
1580 IF IS[P6t1,P6t1J='Y' THEN 1610
1590 PRINT 'BAD ADDRESSING MODE IN LINE 'IL
1600 GOTO 3090
1610 IF P5 <> 0 THEN 1780

251

6502 APPLICATIONS BOOK

1620 GOSUB 3790
1630 NS=P$
1640 IF NOT P6 OR NOT P7 THEN 1670
1650 M=5
1660 GOTO 1710
1670 IF NOT P6 THEN 1700
1680 M=6
1690 GOTO 1710
1700 M=4
1710 GOSUB 4070
1720 A=F1
1730 IF T4 <> 2 THEN 1750
1740 A=-1000
1750 IF ABSCA) <= 255 THEN 1970
1760 M=Mt3
1770 GOTO 1970
1780 GOSUB 3790
1790 NS=P$C2J
1800 IF NOT P6 OR NOT P7 THEN 1830
1810 M=10
1820 GOTO 1870
1830 IF NOT P6 THEN 1860
1840 M=ll
1850 GOTO 1870
1860 M=13
1870 GOSUB 4070
1880 A=Fl
1890 IF CM<> 10 AND M <> 111 OR A<= 255 THEN 1920
1900 PRINT "VALUE TOO LARGE FOR ZERO PAGE IN LINE ';L
1910 GOTO 3090
1920 IF T4 <> 2 THEN 1970
1930 A=-1000
1940 IF M=13 THEN 1970
1950 A=-200
1960 REM********** PRINT OPCODES & EA ON FILE**********
1970 IF A>= 0 THEN 2070
1980 ZSC10,11J='**'
1990 C=Ctl
2000 IF M <> 12 THEN 2020
2010 ZSC11,11J='R'
2020 W9=At256
2030 IF W9)= 0 THEN 2200
2040 2$(13,14]='**'
2050 C=Ct1
2060 GOTO 2200
2070 R=16
2080 I=A
2090 GOSUB 4940
2100 TS=A$
2110 AS='OOO'
2120 ASC4J=H
2130 IF CM>= 3 AND M <= 6) OR CM>= 10 AND M <= 12) THEN 2180
2140 ZSC13,14J=ASCLENCAS)-3,LENCAS>-2J
2150 ZSC10,11J=ASCLEN(A$)-1J
2160 C=Ct2
2170 GOTO 2200
2180 ZSClO,llJ=ASCLENCASl-lJ
2190 C=Ct1
2200 R=16
2210 I=TS
2220 GOSUB 4940
2230 r•=·ooo•
2240 TH4J=AS
2250 ZSC1,4J=T$CLENCTS)-3J
2260 RESTORE 5140

252

APPENDIX A

2270 FOR 1=1 TO <0-1)*13+H
2280 READ TS
2290 NEXT I
2300 IF TS<> THEN 2370
2310 IF H>6 OR M<4 THEN 2350
2320 H=M+3
2330 C=T5
2340 GOTO 1970
2350 PRINT "ILLEGAL ADDRESSING MODE IN LINE •;L
2360 GOTO 3090
2370 ZSC7,8J=TS
2380 ZS[5,5]=•:•
2390 C=C+l
2400 ZS[17,17+LEN<IS)J=IS
2410 ZS[(19+LEN<IS)) MAX 38]=CS[1,72-(19+LEN(I$) MAX 38)]
2420 PRINT 13;zs,T5
2430 GOTO 320
2440 REM********** SECOND PASS: RESOLVE FWD REFERENCES**********
2450 PRINT 12; END
2460 PRINT 13; END
2470 READ 12,1
2480 L=O
2490 READ 13,1
2500 PRINT 14,1
2510 IF END 13 THEN 2870
2520 P=l
2530 READ t3;IS,T5
2540 L=L+l
2550 IF IS="" THEN 2850
2560 PS="!"
2570 GOSUB 3970
2580 IF Pl=O OR P1=17 THEN 2610
2590 P=Pl
2600 IS[P,P]•" "
2610 IF IS[l0,10] <> "*' THEN 2850
2620 GOSUB 3790
2630 NS=PS
2640 IF Nftl,1] <> "<" THEN 2660
2650 NS=NH2]
2660 GOSUB 4070
2670 IF T4 <> 2 THEN 2700
2680 PRINT "IRRESOLVABLE FWD REF I BAD LABEL IN LINE •;L
2690 GOTO 3090
2700 I=Fl
2710 IF IS[ll,11] <> 'R' THEN 2750
2720 I=F1-T5-2
2730 IF I >= 0 THEN 2750
2740 1=1+256
2750 R=16
2760 GOSUB 4940
2770 TS=AS
2780 AS="OOO"
2790 A$[4J=TS
2800 IF 1$[13,14] ~> "**" THEN 2840
2810 IS[13,14J=AS[LEN<AS)-3,LEN(A$)-1J
2820 IS[10,11J=ASCLEN(AS)-1J
2830 GOTO 2850
2840 IS[10,11J=AS[LEN(AS)-1J
2850 PRINT 14;Is
2860 GOTO 2510
2870 PRINT 14; END
2880 IF RB=l THEN 3080
2890 IF END 14 THEN 2940
2900 READ 14,1
2910 READ 14;1$

253

6502 APPLICATIONS BOOK

2920 PRINT U
2930 GOTO 2910
2940 READ 12,1
2950 PRINT LIN<2>i'SYHBOL TABLE:'
2960 IF END 12 THEN 3080
2970 FOR 16=1 TO 3
2980 READ 12iOS,T5
2990 R=16
3000 I=T5
3010 GOSUB 4940
3020 TS='OOOO'
3030 TSCLEN(TS)t1l=AS
3040 PRINT TAB((I6-1)*25tl);os;TAB((I6-1>*25t13);TSCLEN(TS)-3];
3050 NEXT 16
3060 PRINT
3070 GOTO 2970
3080 END
3090 PRINT '<'IS'>'
3100 END
3110 REH********** PROCESS MEMORY LOADS**********
3120 07=1
3130 IF HSC2,3l <> 'TE' THEN 3260
3140 IF 07 <> 1 THEN 3190
3150 GOSUB 3750
3160 P=P-LEN<PS>
3170 OS=ISCP,Pl
3180 P=Pt1
3190 IF P <= 72 THEN 3220
3200 PRINT 'BAD DELIMITER IN LINE •;L
3210 GOTO 3090
3220 PS[1l='''
3230 PSC2,2l=ISCP,Pl
3240 IF PSC2,2l=OS THEN 320
3250 GOTO 3280
3260 GOSUB 3790
3270 ZS='
3280 P=Pt1
3290 IF LEN<PS>=O THEN 320
3300 NS=PS
3310 GOSUB 4070
3320 IF T4 <> 2 THEN 3350
3330 PRINT 'BAD LABEL IN MEMORY ASSIGNMENT OF LINE ';L
3340 GOTO 3090
3350 R=16
3360 I=Fl
3370 GOSUB 4940
3380 TS=AS
3390 AS='OOO'
3400 ASC4l=TS
3410 IF HSC2,2l <> 'W' THEN 3460
3420 ZSC10,1ll=ASCLEN<AS>-3,LEN<AS)-2l
3430 ZSC7,8l=ASCLEN<AS>-ll
3440 C=Ct2
3450 GOTO 3560
3460 IF HSC2,2J='D' THEN 3530
3470 IF Fl<256 THEN 3500
3480 PRINT 'NUMBER TOO LARGE IN MEMORY ASSIGNMENT OF LINE •;L
3490 GOTO 3090
3500 ZSC7,8l=ASCLEN<AS)-1J
351p C=Ct1
3520 GOTO 3560
3530 ZSC7,8l=ASCLEN<AS)-3,LEN<AS)-2J
3540 ZSC10,11J=ASCLEN(AS>-1J
3550 C=Ctl
3560 I=T5

254

3570
3580
3590
3600
3610
3620
3630
3640
3650
3660
3670
3680
3690
3700
3710
3720
3730
3740
3750
3760
3770
3780
3790
3800
3810
3820
3830
3840
3850
3860
3870
3880
3890
3900
3910
3920
3930
3940
3950
3960
3970
3980
3990
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
4110
4120
4130
4140
4150
4160
4170
4180
4190
4200
4210
4220

APPENDIX A

R=16
GOSUB 4940
TS='OOO'
T$[4J=A$
ZSC1,4J=TSCLEN(TS>-3J
ZSC5,5J=•:•
IF G7 <> 1 THEN 3700
IF LEN(L$)=0 THEN 3670
PRINT +2;L$,T5
PRINT +2; END
ZSC17,17tLEN(l$)J=I$
Z$[(19tLEN(l$)) MAX 38J=C$[1,72-<19tLEN<IS>> MAX 38)
GOTO 3710
ZS=ZSC1,15J
G7=0
PRINT +3;ZS,T5
T5=C
GOTO 3130
REM***** ROUTINE TO ISOLATE TOKEN*****
REM : STARTS LOOKING FOR TOKEN ATP, PUTS IT IN PS, AND
REM : UPDATES P, IF ENTERED HERE, STOPS SCAN AT ' ',
T9=1
REM : IF ENTERED HERE, STOPS SCAN AT ' ', ',', '>', - •
FOR 11=P TO LEN<IS>
IF 1$[11,IlJ <> ' ' THEN 3830
NEXT I1
PS=••
FOR 12=11 TO LEN(!$)
IF 1$[12, 12J=' ' THEN 3920
IF T9=1 THEN 3900
IF l$[l2,I2J=',' THEN 3920
IF l$[I2,I2J=')' THEN 3920
IF IS[I2,I2J='=' THEN 3920
P$[LEN<PS>t1J=l$[12,I2J
NEXT 12
P=I2
IF LEN(P$) 0 THEN 3950
P=Ptl
T9=0
RETURN
REM***** FIND SYMBOL ROUTINE*****
REM : RETURNS Pl=SYMLOC IF IT IS FOUND, Pl=O
REM : IF SYMBOL NOT FOUND
FOR l=P TO LEN(!$)
IF I$CI,IJ=PS[1,1J THEN 4050
NEXT I
F'l=O
RF TURN
Pl=I
RETURN
REM***** NUMERIC STRING INTERPRETER*****
REM : SIMPLIFIES STRINGS OF LABELS AND NUMERIC EXPRESSIONS
REM : OF NUMBERS IN ANY BASE, PLUS ASCII CONSTANTS,
Fl=W=O
A$=••
FOR 1=1 TO LEN<NS)
IF NSCI,IJ='t' THEN 4180
IF NSCI,IJ='-' THEN 4180
IF NSCI,IJ='>' THEN 4610
A$[LEN(A$)tlJ=N$[l,IJ
NEXT I
IF AS<> ',' THEN 4210
F2=C
GOTO 4480
IF ASC1,1J>'Z' THEN 4350
IF ASC1,1J('A' THEN 4350

255

6502 APPLICATIONS BOOK

4230 READ t2,1
4240 IF END t2 THEN 4330
4250 READ t2;TS,Tl
4260 IF TS<> A$ THEN 4240
4270 F2=T1
4280 T4=3
4290 IF END t2 THEN 4320
4300 READ t2;T$,Tl
4310 GOTO 4300
4320 GOTO 4480
4330 T4=2
4340 RETURN
4350 IF A$C1,1J <> ''' THEN 4390
4360 AS=A$C2J
4370 GOSUB 4640
4380 GOTO 4480
4390 B=lO
4400 IF A$[1,1J ·~· THEN 4430
4410 B=2
4420 GOTO 4450
4430 IF A$Cl,1J <> '$' THEN 4460
4440 B=16
4450 AS=A$C 2J
4460 GOSUB 4750
4470 F2=F
4480 IF W=2 THEN 4510
4490 Fl=FltF2
4500 GOTO 4520
4510 Fl=Fl-F2
4520 IF I >= LENIN$) THEN 4610
4530 TS='+-•
4540 FOR W=! TO LENITSI
4550 IF TSCW,WJ=N$[I,Il THEN 4590
4560 NEXT W
4570 PRINT 'ILLEGAL OPERATOR IN LINE ';L
4580 GOTO 3090
4590 AS=••
4600 GOTO 4170
4610 T4=0
4620 RETURN
4630 REM***** ASCII CHARACTER TO NUMBER CONVERTER*****
4640 AS=ASC1,1J
4650 F2=0
4660 READ •5,1
4670 READ •5 ;rs
4680 FOR I=l TO 72
4690 IF ASC1,1J=TSCI,IJ THEN 4740
4700 F2=F2+1
4710 NEXT I
4720 F2=F2-8
4730 GOTO 4670
4740 RETURN
4750 REM***** MULTI-RADIX STRING TO NUMBER CONVERTER*****
4760 REM : BIS BASE OF NUMBER IN AS, F IS PRODUCT,
4770 F=O
4780 Il=O
4790 FOR I2=LENCASI TO 1 STEP -1
4800 RESTORE 4910
4810 FOR N=O TO B-1
4820 READ FS
4830 IF FS=ASCI2,I2J THEN 4870
4840 NEXT N
4850 PRINT 'BAD NUMBER IN LINE •;L
4860 GOTO 3090
4870 F=F+N*B-Il

256

4880
4890
4900
4910
4920
4930
4940
4950
4960
4970
4980
4990
5000
5010
5020
5030
5040
5050
5060
5070
5080
5090
5100
5110
5120
5130
5140
5150
5160
5170
'.5180
5190
5200
5210
5220
5230
5240
5250
5260
5270
5280
5290
5300
5310
5320
5330
5340
5350
5360
5370
5380
5390
5400
5410
5420
5430
5440
5450
5460
5470
5480
5490
5500
5510
5520

Il=I ltl
NEXT 12
RETURN

APPENDIX A

DATA •o•,•1•,•2•,•3•,•4•,•5•,•6•,•7•,•s•,•9•,•A·,·B·,·c·,·o·
DATA 'E','F','G','H','l', 1 J', 1 K', 1 L1

,
1 M1

,
1 N 1

,
1 0 1

,
1 P 1 ,'Q','R','S 1

DATA ·r•,•u•,•v•,•w•,·x·,·v·,·z·
REH***** MULTI-RADIX NUMBER TO STRING CONVERTER
REH I I IS INPUT NUMBER, R IS BASE THAT A$ WILL BE AS PRODUCT,
A$=''
T=I
FOR N=20 TOO STEP -1
IF T/R-N >= 1 THEN 5020
NEXT N
N=N-1
ll=INT<T/R-N)
IF (l <= R-1 THEN 5050
ll=O
T=T-ll*R-N
RESTORE 4910
FOR S=O TO ll
READ T$
NEXT S
AH LEN< A$) tlJ= f$
IF N>O THEN 5010
RETURN
REH*************** OPCODE TABLE***************
DATA ' •, '69', '65', • 75', • •, '6[1', '?[I', •79•, '61', •71 •,' ','
DATA , •,•29•,•25•,•35•,• 1 , 1 2[1', 1 30 1

,
1 39 1

,
1 21','31 1

,
1

','

DATA ' 1 ,'0A', 1 1 ,'06', 1 t6', 1 1
,

1 0E 1
,

1 lE 1
,

1
','

DATA ' .,. •,•90•,•
DATA
DATA

',' .,.
DATA •,•
DATA ' ','
DATA• •,•
DATA • , I

DATA '00','
DATA' •,•
DATA' ','
DATA '18','
DATA 'DB','
DATA '58','
DATA 'BB','

•,• . ,. .,.
','

','
','
',' . ,.

.,.

',' .,. ',' .,.
•,•

•,•
',' .,. ','

',' ',' ',' .,.
., .

•, • 2C •, • •, •
,.

' , ., . ' ,'
',' ., ',' ',

' , . . ,' . , .
' , ' ', .,
,. . ,' , ', •,•

•,• ', •, •, ' ,.
', . ., ' ' , ' ,.
•, ', ' , , , •,•

•,'Bo•,•
•, 'FO', •

•, •30•, •
·,·no·,·

','
•,•so•,·
•, •70•, •

•,•
•,• ., .

DATA ',. • •, •c9•, •cs•, •ns·, • •,•cn·,·no·,·09•,•c1·, ·01•,• •,•
DATA' •,• •, •£0•, 'E4•, • ·, ·ec·, · . ,' . , ',' ., .
DATA ',' •,·co·, •c4•, • •,• ·,•cc•,· ,'
DATA ' , ',' ·, ·c6·, ·ri6·, • •, ·cE·, ·nE·, • •,• ',' •,•
DATA 'CA',' ',' .,. ', •,• ',' •,•
DATA ·as•,.• , ., •• ,. , .,. ' , .,.
DATA .,. •,•49•,•45•,•55•,• 1 , 1 40 1 ,'SD', 1 59','41','51','
DATA , •,• 1 ,'E6','F6 1 ,• •,•EE•,•FE•,• •,• •,•
DATA •Ea•,• •,• •,• •,• •,• •,•
DATA •ca·,· .,. •,• .,. ' .,.
DATA •,• •,• •,• •,•4c•,• •,•
DATA •,• •,• •,• •,•20•,•,
DATA •,• .,.A9·,·As·,·Bs·,· •,·An·,·Bo·,·B9·,·A1·,·B1·,·
DATA • •,• •,•A2•,•A6•,• •,•B6•,•AE•,• •,•BE•,• •,• •,•
DATA .,. ·,·Ao·,•A4•,•B4•,• ·,·Ac·,·Bc·,· .,. •,•
DATA • .,.4A·,· .,.46·,·s6·,· •,•4£•,•sE·,· .,. .,.
DATA •EA•,• •,• , , , , ' ' '
DATA • •,• •,•09•,•os•,•1s•,• •,•on•,•1n•,•19•,•01•,•11•,•
DATA •49•,• •,•
DATA ·oa•,• .,.
DATA •6s•,• •,•
DATA •29•,• •,• ','

',' .,.
', . .,.

' ,

.,

.
', ' . ., . •,

',' , '
',' ' ,' ,• . ,. , .

' •,• ' ,. ,.

257

',' ., '
',' .,.
•,'
•, ·6C'
','

','
',' ., . .,.
•,• . , .
·,·
','

6502 APPLICATIONS BOOK

5530
5540
5550
5560
5570
5580
5590
5600
5610
5620
5630
5640
5650
5660
5670
5680
5690
5700
'.>710
5720
5730
5740
5750
5760
'.5770

258

DATA •,•2A•,• •,•26•,•36•,• •,•2E•,•3E•,• •,• •,• •,• •,•
DATA 1 1 , 1 6A 1 , 1 1 , 1 66 1 , 1 76 1 ,• 1 , 1 6E 1 , 1 7E 1 , 1 •,• .,. •,• •,•

DATA 1 40 1
, 1 •,• •,• •,• •,• •,• •,• •,• •,• •,•

DATA 1 60 1
, 1 , , •,• •,• , , •,• ' •,•

DATA 1
,

1
,

1 E9 1 , 1 E5 1 , 1 FS 1 ,• •,
1 ED 1

,
1 FD 1

,
1 F9 1

,
1 El 1

,
1 Fl 1

,
1

.,.

DATA 1 38 1 , 1 1 , 1 •,• •,• •,• •,• •,• •,• '"'•,• •,• •,• •,•

DATA 1 F8 1 , 1 1 , 1 •,• •,• •,• •,• •,• •,• •,•

DATA 1 78 1 , 1 •,• •,• , •,• , , •,• •,•

DATA • •,• •,• •,•as•,•95•,• •,•so•,•90•,•99•,•a1•,•91•,• •,•
DATA 1 •,• 1 , 1 86 1 ,• •, 1 96 1 , 1 8E 1

, 1 ., •• , •• ,.

DATA , •,• •,•94•,•94•,• ·,·sc•,• ., .• ,.
DATA 1 AA 1 ,• •,• •,• •,• •,• •,• •,• •,• •,• •,•

DATA 1 A8 1
, 1 •,• •,• •,• •,• •,• •,• •,• •,•

DATA 'BA 1 , 1 •,• •,• •,• •,• •,• •,• •,• •,• •,• •,•

DATA •aA•,• •,• •,• •,• •,• •,• •,• •,•
DATA •9A•,• •,• •,• •,• •,• •,• •,•
DATA •99•,• •,• •,•

REM*************** MNEMONIC TABLE***************
DATA 'ADC','AND','ASL','BCC','BCS','BEO','BIT','BMI','BNE'
DATA ·BPL.,. BRK·, ·BVC.,. ·Bvs., ·cLC., ·cLD·, ·cLI., ·cLv·, ·cMP·' •cpx•' •cpy•
DATA ·nEc·,.·DEx·,·DEY·,·EoR·,·1Nc·,·rNx·,·rNY·,·JMP·,·JsR·,·LnA·,·LDX·
DATA ·LDY·,·LsR·,·Nop•,•oRA·,·pHA·,•pHP·,·pLA·,•pLp·,·RoL·,·RoR·,·RTI·
DATA ·RTs·,.·sBc•,•sEc·,·sED·,·sEI·,·srA·,·srx•,•sTv·,•rAx·,·rAY·,·1sx•
DATA 'TXA','TXS','TYA'
END

APPENDIXB

MULTIPLICATION GAME:

,)020: A~J 00
00~2! B~i o:.'
0024! A'.::.i 01
oo:?6: 8~.', 03
oo:!B: A9 01
002A! 8[1 () 1
00211: 20 ~-j()

0030! 20 90

THE PROGRAM

17
o:~
00

;***** MlJL. T *****
N $00
t· '·$01
NS AVE ~$02
F'SAVE "$03
T ~$04
Li =$9D
X =$200
y =$201
RE SUL =$202
A SAVE ~$240
XS AVE =$241
YSAVE =$242
F'A =$1700
F'AD =$1701
TIM[R =$1707

,=$20
START LDA N

STA NSAVE
LDA F'
STA F'SAVE
LDA 1$01
STA F'Ali

Ml JSR SOUND
JSR DL250

259

6502 APPLICATIONS BOOK

0033: C6 00 DEC N
0035: [10 F,~ BNE Ml
0037: A:.1 14 l.[IX U14 ; 2 '.:iECDN[I
0039: ~o 't[()() JSR TIME10 ; • 1 SEC SUBFWI.JTINL
003C: 20 ~/0 ~)2 M:2 JSF~ SOUND
003F: 20 90 ()() .JSE' DL.2~0
0042: C6 01 L1EC F'
0044: [I() Ff, f<NL M;>
0046: A9 00 Ali,,IN LDA to
0048: s:::J 04 STA T
004A: A[I 00 17 f'IJL L[IA F'A
()()4[1: 30 fl< BMl F'OL
004F: E6 04 f'L l/'.; L INC T ;KEY DDWN!'
0051: Ari ()() LI M:I LDA PA
0054: 1 () f I< BF'L M3
0056: AO 1F L.[IY UlF ;KEY UF''/
005B: A:! 01 M4 l.[IX tl
005A: ~() 9E ()() .!SI/ TIMElO
005[1: Al.I 00 1 / L.[IA PA
0060: 10 ELI BPL F·LUSl
0062: 8ll DEY
0063: 10 F 3 BF'I M4

; AN~;wL~~ COMPLETE l FIE HULT IN T
0065: A6 ()'> l. [IX NS AVE
0067: A4 03 L.DY F'SAVE
0069: :20 10 i,L~ JSR MULTI ;RESULT IN A
006Cl C~.'i 04 CMF' T
006E: FO or, [!E[l BRAVO

,WRUNG AN,;wrn
0070: AO 10 l..DY 010
0072: 20 ~~ 0 o:, M:i ..JSR SOUN[•
0075: 20 </() ()() .JSR DL.250
0078: BB DEY
0079: [10 Fl BNE M5
007B: FO C9 [!E[l AGAIN

; CORf(ECT ANSWER
007[1: AO :.>o BRAVO L[IY U20
007F: 2() ~iO ()> M6 JSR SOUND
oos:~: BU DEY
0083: [10 FA BNE" M6
0085: 00 BRK

, -=$90
00•10: 98 fll.:750 TYA
0091: A:? _;11 LDX J$3D
0093: AO 00 l.ll 2 L.DY to
0095: CH [il. 1 INY
0096: t,() f [I E<NE [Ill
0098: EB INX
0099: [I() f ll BNE [ll.2
009B: AH TAY
009C: 60 RTS

, ;$'IE
00'/E: 86 1111 T IMEl 0 STX [I DUI\ATION IN 1/10 SE.C
OOAO! A9 6:.~ TO LDA H62 913 BASE TEN
00A2: 811 07 17 STA TIMER TIMER 1024
OOA5: A[1 07 17 Tl LDA TIMER
OOAB: 1 () Fl.< E<F'L Tl
OOAA: C6 9[1 DEC [I

OOAC: [I() F2 BNE TO
OOAE: 60 RTS

,;$210
0~10: BE 00 0:2 MllL I [STX X

260

APPENDIX B

0213! SC: 01 02 STY y

0216! AO ()IJ L.DY tfJ
0218! A9 00 L.DA to
021A! 4[00 02 UNE L.SF, X
021[1! 90 04 !<CC TWO
021F: 1 ll CLC
0220: 611 01 0.2 ADC y
0223: 4A rwu LSR A
0224: 6E () :~ o:? fWR RE SUL
022?: BB DEY
0228! DO f() BNE ONE
022A: Ali 02 o:t L.DA F,ESUL
022D: 60 RfS

.=$2~~,o
0250: 811 ·10 o:: :il.lUN[1 STA A SAVE
0253: BF 41 O'") STX XSAVE
0256: BC 4} ()2 STY YSAVE
0259: A't 00 L..DA to
025B: A:? 80 L DX HEIO
0:?5D: AO 00 1:L.,} LDY to
025F: co cu INY
0260: [I() ,-r, BNE cu
026:?! 4'/ 01 EOR tl
0264! 811 00 17 STA PA
0267: Ell INX
0268! [10 F.:l BNE CL2
026A! All 40 o:~ L.[IA A SAVE
026[1! A[41 ():' L[IX XSAVE
02}0! AC 4:·) <):' L..DY YSAVE
0273! 60 RTS

SYME<DL. I Al:il l:
N 0000 p 0001 NU AVE:. ()()()2

F'SAVl: 0003 T 0004 [I 0091.1
X 0200 y 0201 f':ESUL o:rn2
A SAVE 0240 XS AVE 0241 YSAVE 0242
PA 1700 PAD 1701 TIMrn 1707
STARf 0020 Ml 002[1 M2 003C
AGAIN 0046 F'OL 004A F'LUS1 004F
M3 0051 M4 005B Mc· ,J 0072
BRAVO 0()7[1 M6 007F DL250 00'10
DL2 0093 DL1 0095 TIM[lO 009E
TO OOAO Tl OOA5 MULTI 0210
ONE 021A TWO 0223 SOUN[1 o::!so
CL2 0:25[1 cu 025F

uONE

261

N LlNE t LCC r:o;:,E L.cNE
~
N 0002 0000 :rHIS IS A S~PPC TINE ~HICH CCEF·Ts Asc:r CHA ACTFRS

0003 0000 ; IN -:-HE RANGE 2C TO SAH r F·!_IJ :0H CIJF' SPA E .'• ND F'(_;~V-~
0004 000() ;THE!F: MOF'SE CJD EQU Ii; I Lf::f'JT N A ·?F'E:".t-·.C:F iJcr- [a . ,'

~ 0005 0000 fF'B7, 652:?-u.:~. IT f'tl~O TURt.J ON r":.ND CiFr' BC., y;;::;::-
0006 0000 ;u2s, AND WITH A SUIT;~BLE ORI ~R~ TH~S 3IT C~N ~E·f .~

==
0007 0000 ,H:ANSMITTER, A MAIN c•POGRA WH_L CALL THr··:, -31JPF'()!~;· I hi;~
0()08 00()0 IWITH THE ASC:I rHARACTER TN HE ~:iccuMu:_~TG;::;. 1118'.. 0009 0000 IEXAMPLES OF THE MAIN PROGRAM WOULD BE ONE f.l-l/~;' n 0 0010 0000 iGETS INFIJT FROM A1 TERMINAL AND SENDS MORSE CODE GIJT

"II 0011 0000 :THROUGH THIS PP8GRAM, OR A ~POGRAM WHTCH RANDOMT7E3 =- ~ > ..
0 001::> 0000 ; A SERIES A C~~AR~CTERS ~ND SENDS THEM FOR CC[1E F'PA1;T11:E. Cl 0013 0000 1fHE FORMAT FOR THE MORSE CODE CAHRACTERS IN T~E ft.~ BL!:: = ~
..

~
a 0014 0000 ;rs : MOVING FPQ~ LEFT TO RTGHT THE Fti;·sr HlGH :i 0015 0000 ;BIT (A !JNE) LS T~E START BTT, AND AFTER THIS -= ~ f" 0016 0000 ,EACH ONE !·3 ,,; [!;.·:3H,, AND EACH ZERO IS A DOT, ... 0017 0000 SPEED=$FO ~

==
,)() 18 0()00 COUNT=$Fl ti>

~
trj 0 0019 0000 CHAR=$F2

0020 0000 , =$300 z ..
Ill 0021 0300! C9 20 MORSE CMF' U20 ;:FA ':}FACE, DO SPACE ROUTINE .&;ii.. -:;; 00:22 0302! FO 67 BEQ SPACE

~ t:, m 0023 0304! C9 2C CMF' U2C iSEE lF ASCII SODE
,.

f" 0024 0306! 90 4E BCC EXIT IS LESS THFN 2CH• AND PE•UPN IF SO.

~ ... w 0025 0308! C9 5B CMP U5B ;sff IF ASC!I SODE ~S 1JVER
00 :i' 0026 030A! BO 4A BCS EXIT c:;1·1Ht ~ND RETURN IF SO = ~ .. 0027 030C! AA TAX ;PIJT 1:or1E TN INDEX REGISTER

~ Ill 0028 030[1! BD 45 03 LDA TABLE-$2C,X ;GET MtJR~E CHARA(TER ..)C
LDY t$8 ;NUMPEF: OF 3ITS ro BE ROTAT<::D FROM ACl:UMULATOR n = 0029 0310! AO 08

~ ~ 0030 0312! 84 Fl STY COUNT
0031 0314! OA STARTB ASL A

~ z 0032 0315! C6 Fl DEC COUNT
0033 0317! 90 FB BCC STARTB ;SHIFT A UNTIL START B!T FO!JND '-" C 0034 0319! 85 F2 STA CHAR
0035 031B: A5 F2 NEXT LDA CHAR
0036 031D! OA ASL A iNOW SHIFT OUT MORSE CODE (l=[IASH, O=DOT> 00 0037 031E 85 F2 STA CHAR
0038 0320 AO 01 LDY t$1 DOT= 1 TIME PERIOD, DEF;,IJL_ T TO frOT
0039 0322 90 02 BCC SEND IF CARRY CLEt";F:, nr; r
0040 0324 AO 03 LDY 1$3 ELSE DASH (3 T[ME F'E"'IrlDS)

0041 ; THIS SECTION SENDS A HIGH OUTPUT FOR (Y REGISTER) NU
0042 ;oF TIME PERIODS, AND THEN A LOW FOR l fIME PERIOD,
0043 0326! A9 CO SEND LDA tsco
0044 0328: SD OB AO STA $AOOB ; SET TI MFR MO Pc· rrJf'PEE Pl!UtJ T NG MtlflF
0045 0328! A9 00 LDA tso THIS IJ('d !IF,
0046 032D! SD 06 AO STA $A006
0047 0330! A9 04 LDA t$04 ,j}.,'T") y:-1 ir 1)rt1 __ ur nr-:r.~r.·;~: tJ~- T!J[1 °;'I!:'
004G 0332! SD 07 AO STA $A007 1·.1- THE OiJ f~·t !T (·f··f '' ' ,·.11:: •
0049 0335: 8[1 05 AO STA $A005 ; fHIS Sft1::-rs TGflE
0050 0338: A9 01 LDA ·t$1 ;JIJHJ fJN 'l1Jff·t)1 t\iT-·F3')
0051 033A: SD 00 AO STA $A000

"Cl 005:! 033D! 20 57 03 JSR DELAY •DE!.AY~ClP ~LEMFNf T r:'1E ,_'[F,'I!Jfl ... 0053 0340: A9 00 LDA tso 0 0054 0342: SD OB AO STA $AOOB ; TUr:N 'lFF T/lNF Ill ... OO~iS 0345: BD 00 AO STA $A000 • ri.:r,:tJ fJFF 1-i11; r·1 ,·: P ! r . r r11J, a
:I ()(;'.':;6 0348: AO 01 L[!Y t$01

fa 00~7 034A: 20 57 03 JSR DELAY :T_f:_L/'\Y f'fJF· 1 TIME PE~roo,srncE .crwLEN CLLnLur~, .. 0058 0340: C6 Fl DEC COUNT ;nECREMENT COUNT -SEE IF 8 BITS WFRE ROTATED

3:
0059 034F: DO CA BNE NEXT IF NOT, DO ANOTHER ELEMENT

0 0060 0351: AO 02 FINISH LDY U2 ;DELAY FOR 3CTWO HERE PLUS PREVIOUS SPACE ... 0061 0353: 20 57 03 JSR DEL.,H AT END OF LAST EL£l1ENTl TIME PERIOllS (SPACE BET ..
ID 0062 0356: 60 EXIT RTS

n ()Oi,:l ; THIS DELAYS FOR <Y REGISTER) iSf·f~[1*.00~ SECONitS
0 0064 0357: 98 [IELAY TYA
:I 0065 0358! OA ASL A ..
;- 0066 0359: OA ASL. A
C 0067 035A! AB TAY ID
~ 0068 035B! A5 FO [13 L[tA SFEUt

0069 03~[1! A2 FA D'2 u,x t tF,~
0070 OJ5F! CA [11 DE:<
0071 0360: no r [1 BNE Dl
007'.' 0362: 38 SEC
0073 0363: E9 01 SBC ti!

)> 0074 0365: DO F6 BNE [1:' DELAY FOR 7 TIME PERIODS
-0 0075 0367: 88 DEY (SPACE BETWEEN WO~DS) -0

0076 0368! no Fl f<;JE D5 RETURN FROM MORSE PRnRRAM m z 0077 036A: 60 RTS
CJ 0077 036B: AO ()7 '.:iFAC:E I [tY Ul x N 0077 036[1: ~o .,, / ,) ~ 1c;p ftl l AY

~ n ~ 0077 0370: oO R r::,

w 0077 0371 73 TABLE .BYTE $73,$31,$6h,$32,$3F,$2F 0-~ 0, .i:. 0077 0372 31 0 0078 0373 6A l'v
007fl 0374: 32)>
0078 "'O 0375: 3F "'O 0078 0376: 2F r-
0078 0377: 27 .BYTE 127,$23,$21,$20,130,$38 n
0078 0378! 23)>

-i 0079 0379: 21
6 0079 037A: 20

0079 0378: 30 z
(J) 0079 037C: 38
OJ "O 0079 037[1: 3C .BYTE $3C,$3E,i01,$0l,$01,S01 ..
0 0 0079 037E: 3E
0 ca .. 0080 037F: 01
7' a

:I 0080 0380: 01

f' 0080 0381: 01 ... 0080 0382: 01
0080 0383: 01 ,BYTE S01,14C,$01,$05,$l8,S1A

~ 0080 0384: 4C
0 00'.l L 0385: 01

O·)OJ. 0386: 05 CD

n on:11 0387: 18
0 O(,!? l 0388: 1A
::, 0081 0389: oc ,BYTE $0C,$02,112,$0E,$10,104 ..
;- 0081 038A: 02
C 008:' 0388: 12
CD

Ol!R:-'J 038C: OE A. - 008:' 038D: 10
')OR~ 03BE: 04
/)')'J:' 038F: 17 ,BYTE $17,$0D,$14,107,$06,$0F
0082.. 0390: OD
0083 0391: 14
0083 0392: 07
0083 0393: 06
0083 0394: OF
0083 0395: 16 ,BYTE $16,SlD,IOA,$08,$03,$09
0083 0396! 1D
0084 0397: OA
0084 0398: 08

~
(JI

,, .. .g
3
:I .,. ...
:i::
0

;
n
0 :s ..
;·
C
CD
~

0084 0399: 03
0084 039A: 09
0084 039B: 11
0085 039C: OB
0085 039[1: 19
0085 039E: lB
(lfl85 039F: lC

SYMBOL TAf<LE!
SF·EED OOF,)
MORSE 0300
SEND 03:'6
DELAY o.~57
Dl 035F

,BYTE $ll,$0B,$l9•$lB•$lC

COUNT OOFl CHA~·
srr,RrB 0314 NEXT
FINISH 0351 EXIT
1)3 035B [I:>

SPACE 036B TABLE

()(;F:2

f)--StB
0.356
035[1
0371

)>
'"tl
'"tl
m z
0 x
n

6502 APPLICATIONS BOOK

LINE# LOC CODE LINE

;FIRST LOAD A 7 IN LOCATION A67E, AND 03 IN A07f
0002 0000 ;THIS IS A REAL TIME CLOCK ROUTINE WHICH MAINTAINS
0003 0000 ;THE CURRENT TIME IN THE LOCATIONS SEC (OOF6), MIN
0004 0000 ;(OOF5), AND HOUR (OOF4) [24 HOUR TMEEJ. IT IS BRANCHED TO
0005 0000 ;BY THE TIME OUT Of THE INTERRUPT TIMER, WHICH
0006 0000 ;CAUSES AN INTERRUPT AND BRANCH TO THE CLOCK
0007 0000 ;ROUTINE TWENTY TIMES PER SECOND. THE CLOCK ROUTINE
0008 0000 ;AND INTERVAL TIMER MUST BE INITIALIZED FIRST. THE
0009 0000 ;CODE '!NIT' DOES THIS, AND IT MUST BE BRANCHED TO TO
OOIO 0000 ;START THE CLOCK. TO INITIALIZE, PUT THE CURRENT TIME
0011 0000 ;THE CLOCK ROUTINE WILL BE STARTED IN SEC, MIN, AND

;HOUR, THEN ISSUE THE COMMAND 'G00390CR' AT THAT

;EXACT TIME. NOTHING ELSE MUST BE DONE.
0012 0000 COUNT=$00f7 ;COUNTER FOR TWENTIETHS Of A SEC
0013 0000 SECS=$00f6 ;CURRENT TIME
0014 0000 MIN=$00f5
0015 0000 HOUR=$00f4
0016 0000 ACR=$AOOB ;TIMER MODE REGISTER
0017 0000 TILL=$A006 ;LOW ORDER TIMER CONSTANT
0018 0000 TIHC=$A005 ;HIGH ORDER TIMER CONSTANT
0019 0000 * =$0390
0020 0390 A914 !NIT LDA #$14 ;SET TO FIRST TWENTY
0021 0392 85 f7 STA COUNT ;COUNTS
0022 0394 8DOB AO STAACR ;SET BITS 8 AND 7 LOW

;INACR
0023 0397 A9CO LDA#$CO ;;SET BITS 8 AND 7 HIGH IN
0024 0399 8DOEAO STA$AOOE ;THE INTERRUPT ENABLE

;REGISTER (TO ENABLE
;INTERRUPTS FROM TIMER 1)

0025 039C A950 LDA #$50 ;STORE C350 IN TIMER
0026 039E 8D 06 AO STA TILL ; (DELAY CONSTANT FOR
0027 03Al A9C3 LDA #$C3 ; 50MS)
0028 03A3 8D05 AO STA TIHC ;THIS ST ARTS TIMER
0029 03A6 60 RTS ;RETURN TO MONITOR
0030 03A7 08 CLOCK PHP ;SA VE ST A TUS
0031 03A8 48 PHA
0032 03A9 f8 SED
0033 03AA A950 LDA #$50 ;STORE C350 IN TIMER
0034 03AC 8D06 AO STA TILL ; (DELAY CONSTANT FOR
0035 03AF A9C3 LDA #$C3 ; 50MS)
0036 03Bl 8D05 AO STA TlHC ;THIS STARTS TIMER
0037 03B4 C6f7 DEC COUNT ;DECREMENT COUNT Of

;TWENTY
0038 03B6 D031 BNE EXIT ;EXIT IF WE HA VE NOT

;COUNTED TO TWENTY YET
0039 03B8 A914 LDA#$14 ;ELSE RESTORE COUNT-
0040 03BA 85 f7 STA COUNT ;A FULL SECOND HAS PASSED
0041 03BC A901 LDA #$01
0042 03BE 18 CLC
0043 03BF 65 f6 ADC SECS ;ADD 1 TO SEC
0044 03Cl 85 f6 STA SECS
0045 03C3 C960 CMP #$60 ;SEE If 60 SECONDS
0046 03C5 D022 BNEEXIT ;IF NOT, EXIT
0047 03C7 A900 LDA #$00 ;ELSE RESET SECONDS TO 0
0048 03C9 85 f6 STA SECS
0049 03CB A901 LDA#$01
0050 03CD 18 CLC

Program 4-2: Time of Day (Fig 4-37 In text)

266

APPENDIXC

0051 OJCE 65 F5 ADC MIN ;AND ADD I TO MINUTES
0052 0300 85 F5 STA MIN
0053 0302 C960 CMP#$60 ;SEE IF 60 MINUTES
0054 03D4 DO 13 BNEEXIT ;IF NOT, EXIT
0055 03D6 A900 LDA #$00
0056 0308 85 F5 STA MIN ;ELSE RESET MINUTES TO 0
0057 030A A901 LDA #$01
0058 OJDC 18 CLC
0059 OJDD 65 F4 ADC HOUR ;AND ADD I TO HOUR
0060 030F 85 F4 STA HOUR
0061 OJEI C924 CMP #$24 ;SEE IF 24 HOURS
0062 OJEJ D004 BNE EXIT ;IF NOT, EXIT
0063 03E5 A900 LDA #$00
0064 03E7 85 F4 STA HOUR ;ELSE RESET HOUR TO 0
0065 03E9 68 EXIT PLA ;RESTORE STATUS
006•' OJEA 28 PLP
006'; OJEB 40 RTI

ERRORS = 0000 <0000>

SYMBOL TABLE

SYMBOL VALUE

ACR AOOB CLOCK OJA? COUNT OOF7 EXIT 03E9
HOUR OOF4 INIT 0390 MIN OOF5 PLS 03EA
SECS OOF6 TIHC A005 TILL A006

END OF ASSEMBLY

Program 4-2: Time of Day (continued)

267

6502 APPLICATIONS BOOK

LINE# LOC CODE LINE

0002 0000 ;THIS IS A SIMPLE HOME CONTROL ROUTINE WHICH RUNS
0003 0000 ;THROUGH A LOOP. EACH TIME THROUGH IT DISPLAYS THE
0004 0000 ;CURRENT TIME AND BRANCHES TO A NUMBER OF USER

SUBROUTINES
0005 0000 ;WHICH SERVICE DEVICES.
0006 0000 ;EXAMPLES;
0007 0000 ;I) A SUBROUTINE COULD CHECK THE CURRENT TIME AND
0008 0000 TURN ON A LIGHT IF THE TIME WERE RIGHT.
0009 0000 ;2) A SUBROUTINE COULD MONITOR THE STATUS OF AN
OOIO 0000 ALARM SYSTEM AND TAKE APPROPRIATE ACTION IF AN
0011 0000 INTRUDER WERE DETECTED.
0012 0000 DDRB=$AC02
0013 0000 IORB=$ACOO
0014 0000 HOUR=$00F4
0015 0000 MIN=$00F5
0016 0000 OUTBYT=$82FA
0017 0000 SCAND = $8906
0018 0000 •=$0200
0019 0200 08 CONTRL CLO
0020 0201 A90F LOA #$OF ;SET DATA DIRECTION
0021 0203 SD 02 AC STA DDRB ;REGISTER TO OUTPUT FOR

RELAYS
0022 0206 A9 00 LOA #$00
0023 0208 8D 00 AC STA !ORB ;TURN OFF RELAYS
0024 020B A5F4 LOOP LDA HOUR ;THIS IS THE MAIN CONTROL

LOOP
0025 020D 20 FA 82 JSR OUTBYT ;OUTPUT CURRENT HOUR TO

DISPLAY
0026 02!0 A5 F5 LDA MIN
0027 0212 20 FA 82 JSR OUTBYT ;OUTPUT CURRENT MINUTE

TO DISPLAY
0028 0215 20 06 89 JSR SCAND ;REFRESH (LIGHT) DISPLAY

WITH TIME
0029 0218 EA .BYTE $EA,$EA,$EA
0029 0219 EA
0029 021A EA
0030 021B EA .BYTE $EA,$EA,$EA
0030 021C EA
0030 021D EA
0031 OZIE EA .BYTE $EA,$EA,$EA
0031 021F EA
0031 0220 EA
0032 0221 EA .BYTE $EA,$EA,$EA
0032 0222 EA
0032 0223 EA
0033 0224 EA .BYTE $EA,$EA,$EA
0033 0225 EA ;THE USER CAN PLACE

JUMPS TO
0033 0226 EA ;SUBROUTINES HERE TO SER-

VICE DEVICES
0034 0227 EA .BYTE $EA,$EA,$EA
0034 0228 EA
0034 0229 EA
0035 022A EA .BYTE $EA,$EA,$EA
0035 022B EA
0035 022C EA
0036 022D EA .BYTE $EA,$EA,$EA
0036 022E EA

Program 4-3: Home Control (Fig 4-38 in text)

268

0036 022F
0037 0230
0037 0231
0037 0232
0038 0233

0038 0234
0038 0235

EA
EA
EA
EA
EA

EA
EA

.BYTE $EA,$EA,$EA)

.BYTE $EA,$EA,$EA

0039 0236 4COB02 JMP LOOP
0040 0239

ERRORS - 0000<0000>

SYMBOL TABLE

SYMBOL VALUE

CONTRL 0200
LOOP 020B

END OF ASSEMBLY

DDRB AC02
MlN OOF5

HOUR OOF4
OUTBYT 82FA

!ORB
SCAND

Program 4-3: Home Control (continued)

APPENDIX(

ACOO
8906

269

6502 APPLICATIONS BOOK

LINE# LOC CODE LINE

0002 0000 ;THIS IS A PROGRAM WHICH DIALS PRE STORED
0003 0000 ;TELEPHONE NUMBERS. IT PRODUCES A TWO TONE OUTPUT
0004 0000 ;THROUGH A SPEAKER HOOKED UP IN CONFIGURATION 2
0005 0000 ;(TWO TONES-SEE SPEAKER). THESE TONES WILL ACTIVATE
0006 0000 ;A STANDARD TOUCH TONE PHONE WHEN THE SPEAKER IS
0007 0000 ;PLACED DIRECTLY OVER THE MOUTH PIECE OF THE TELE-
0008 0000 ;PHONE. TO USE THE PROGRAM, Pf.ACE THE PHONE
0009 0000 ;NUMBER(S) ANYWHERE IN MEMORY, ONE DIGIT PER BYTE,
0010 0000 ;AND ENDING WITH OF (HEX). FOR EXAMPLE, THE NUMBER
0011 0000 ;555-1212 WOULD BE 05 05 05 010201 02 OF (ALL HEX) IN
0012 0000 ;MEMORY. THEN PLACE THE ADDRESS OF THE NUMBER,
0013 0000 ;LOW BYTE FIRST, IN THE LOCATIONS OOCO AND OOCI.
0014 0000 ;THEN EITHER GO TO THIS ROUTINE FROM THE MONITOR

;OR JSR TO IT FROM ANOTHER PROGRAM.
0015 0000 NUMPTR = $00CO ;THIS POINTS TO THE ADDRESS OF

;THE TELEPHONE NUMBER
0016 0000 ONDEL=$40 ;THIS IS THE DELAY CONSTANT FOR

;THE TIME WHEN THE
0017 0000 OFFDEL=$20 ;DELAY CONSTANT FOR THE TIME

;WHEN THE TONES ARE 0
0018 0000 DELCON =$FF ;GENERAL PURPOSE DELAY

;CONSTANT
0019 0000 ACRI =SAOOB ;THESE ARE THE TIMER MODE

;REGISTERS (TIMER 1)
0020 0000 ACR2=$ACOB ;(TlMER2)
0021 0000 TICH =$A005 ;THIS IS THE TIMER 1 COUNTER

;(HIGH BYTE)
0022 0000 TILH =$A007 ;TIMER 1 LATCH (HIGH BYTE)
0023 0000 TILL=$A004 ; (LOW BYTE)
0024 0000 T2CH=$AC05 ;SAME AS TIMER 1 - FOR TIMER 2
0025 0000 T2LH =$AC07
0026 0000 T2LL=$AC04
0027 0000 *=$0300
0028 0300 AOOO PHONE LOY #$00 ;INDEX FOR DIGITS OF

;PHONE NUMBER
0029 0302 Bl CO DIGIT LOA (NUMPTR)Y ;GET DIGIT
0030 0304 C8 !NY
0031 0305 C90F CMP #$OF ;SEE IF END OF PHONE

;NUMBER
0032 0307 DOOi BNE NOEND
0033 0309 60 RTS ;RETURN IS SO (TO

;MONITOR OR CALLING
;PROGRAM)

0034 030A OA EA EA NOEND ASL A ;MULTIPLY NUMBER BY
;FOUR TO INDEX TABLE

0035 0300 OA EA EA ASL A ; (EACH TABLE ENTRY IS
; 4 BYTES)

0036 0310 AA TAX ;X=INDEX FOR TABLE
0037 0311 A9CO LOA #$CO
0038 0313 SD OB AO STA ACRI ;SET TIMER MODE TO FREE

;RUNNING ON BOTH TIMERS
0039 0316 80 OB AC STA ACR2
0040 0319 BO 5D 03 LOA TABLE,X ;GET LOW ORDER, FIRST

;TONE
0041 031C 80 04 AO STA TILL ;STORE IN TIMER 1
0042 03IF ES INX
0043 0320 BO 5003 LOA TABLE,X ;GET HIGH ORDER, FIRST

;TONE

Program 4-4: Phone Dialer (Fig 4-41 In text)

270

APPENDIXC

0044 0323 8D 07 AO STA TlLH ;STORE TIMER I

0045 0326 8D 05 AO STA TlCH ;THIS STARTS TIMER I
;GOING

0046 0329 ES INX
0047 032A BD 5D 03 LDA TABLE,X ;GET LOW ORDER, SECOND

;TONE

0048 032D 8D 04 AC STA T2LL ;STORE IN TIMER 2

0049 0330 ES INX
0050 0331 BD 5003 LDA TABLE,X ;GET HIGH ORDER, SECOND

;TONE

0051 0334 8D07 AC STA T2LH ;STORE IN TIMER 2

0052 0337 8D05 AC STA T2CH ;THIS STARTS TIMER 2
;GOING

0053 033A A2 40 LDX #ONDEL ;GET TONES-ON DELAY
;CONSTANT

0054 033C 20 55 03 ON JSR DELAY ;DELAY WHILE TONE IS ON

0055 033F CA DEX
0056 0340 DOFA BNEON

0057 0342 A900 LDA #$00
0058 0344 8DOB AO STA ACRI ;TURN BOTH TIMERS OFF

0059 0347 8D OB AC STAACR2
0060 034A A2 20 LDX#OFFDEL ;GET TONES-OFF DELAY

;CONSTANT

0061 034C 20 55 03 OFF JSR DELAY ;DELAY WHILE TONE IS OFF

0062 034F CA DEX
0063 0350 DOFA BNE OFF
0064 0352 4C 02 03 JMP DIGIT ;GO BACK FOR NEXT DIGIT

;OF PHONE NUMBER

0065 0355
0066 0355 ;THIS IS A SIMPLE DELAY ROUTINE FOR THE TONE ON AND

;OFF PERI
0067 0355
0068 0355 A9 FF DELAY LDA #DELCON ;GET DELAY CONSTANT

0069 0357 38 WAIT SEC ;DELAY FOR THAT LONG

0070 0358 E9 01 SBC #$01
0071 035A DOFB BNE WAIT
0072 035C 60 RTS
0073 035D
0074 035D ;THIS IS A TABLE OF THE CONSTANTS FOR THE TONE
0075 035D ;FREQUENCIES FOR EACH TELEPHONE DIGIT. THE
0076 035D ;CONSTANTS ARE TWO BYTES LONG, LOW BYTE FIRST.
0077 035D
0078 035D 13 TABLE .BYTE $13,$02,$76,$01 ;TWO TONES FOR '0'

0078 035E 02
0078 035F 76
0078 0360 01
0079 0361 CD .BYTE $CD,$02,$9E,$01 ;TWO TONES FOR 'I'

0079 0362 02
0079 0363 9E
0079 0364 01
0080 0365 CD .BYTE SCD,$02,$76,$01 '2'

0080 0366 02
0080 0367 76
0080 0368 01
0081 0369 CD .BYTE SCD,$02,$53,$01 '3'

0081 036A 02
0081 0368 53
0081 036C 01
0082 036D 89 .BYTE $89,$02,$9E,$01 '4'

0082 036E 02

Program 4-4: Phone Dialer (continued)

271

6502 APPLICATIONS BOOK

0082 036F 9E
0082 0370 01
0083 0371 89 .BYTE $89,$02,$76,$01 '5'

0083 0372 02
0083 0373 76
0083 0374 01
0084 0375 89 .BYTE $89,$02,$53,$01 '6'

0084 0376 02
0084 0377 53
0084 0378 01
0085 0379 48 .BYTE $4B,$02,$9E,$01 '7'

0085 037A 02
0085 037B 9E
0085 037C 01
0086 0370 48 .BYTE $48,$02,$76,$01 '8'
0086 037E 02

0086 037E 76
0086 0380 01
0087 0381 48 .BYTE $4B,$02,$53,$0l '9'

0087 0382 02
0087 0383 53
0087 0384 01
0088 0385 .END

ERRORS = 0000 <0000>

SYMBOL TABLE

SYMBOL VALUE

ACRI AOOB ACR2 ACOB DELAY 0355 DELCON OOFF

DIGIT 0302 NO END 030A NUMPTR ooco OFF 034C

OFFDEL 0020 ON 033C ON DEL 0040 PHONE 0300

TICH A005 TILH A007 TILL A004 T2CH AC05

T2LH AC07 T2LL AC04 TABLE 0350 WAIT 0357

END OF ASSEMBLY

Program 4-4: Phone Dialer (continued)

272

APPENDIXD

HEXADECIMAL
CONVERSION TABLE

HEX 0 1 ? 3 4 5 6 7 8 Q A R r, D " F 00 000
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0
1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 256 4096
2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 512 8192
3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 768 12288
4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 1024 16384
5 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 1280 20480
6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 1536 24576
7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 1792 28672
8 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 2048 32768
9 M4M5M6M7M8M91~1~ IB21531M~1~IB71~1~ 2304 36864
A mo™ 1~ffl3ffl4ffl5ffi6ffi7IB8ffi9m m V2V3V4V5 2560 40960
B 1~ V7V8V9~ m 1~IB3IB4IB5IB6mIB8IB91001~ 2816 450~
C 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 3072 49152
D 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 3328 53248
E 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 3584 57344
F 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 3840 61440

5 4 3 2 I 0

HEXj DEC HEXI DEC HEXj DEC HEXj DEC HEXI DEC HEXI DEC
0 0 0 0 0 0 0 0 0 0 0 0
1 1,048,576 1 65,536 1 4,096 1 256 1 16 1 1
2 2,097,152 2 131,072 2 8,192 2 512 2 32 2 2
3 3,145,728 3 196,608 3 12,288 3 768 3 48 3 3
4 4,194,304 4 262,144 4 16,384 4 1,024 4 64 4 4
5 5,242,880 5 327,680 5 20,480 5 1,280 5 BO 5 5
6 6,291,456 6 393.216 6 24,576 6 1,536 6 96 6 6
7 7,340,032 7 458,752 7 28,672 7 1,792 7 112 7 7
B 8,388,608 B 524,288 B 32,768 B 2,048 B 128 B B
9 9,437,184 9 589,824 9 36,864 9 2,304 9 144 9 9
A 10,485,760 A 655,360 A 40,960 A 2,560 A 160 A 10
B 11,534,336 B 720,896 B 45,056 B 2,816 B 176 B 11
C 12,582,912 C 786,432 C 49,152 C 3,072 C 192 C 12
D 13,631,488 D 851,968 D 53,248 D 3,328 D 208 D 13
E 14,680,064 E 917,504 E 57,344 E 3,584 E 224 E 14
F 15,728,640 F 983,040 F 61,440 F 3,840 F 240 F 15

273

6502 APPLICATIONS BOOK

HEX

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E

274

APPENDIXE

ASCII CONVERSION
TABLE

0 1 2 3 4 5 6
BITS 000 001 010 011 100 101 110
0000 NUL OLE SPACE 0 @ p -
0001 SOH DC1 I 1 A Q a
0010 STX DC2 .. 2 B R b
0011 ETX DC3 # 3 C s C

0100 EOT DC4 $ 4 D T d
0101 ENO NAK % 5 E u e
0110 ACK SYN & 6 F V f
0111 BEL ETB 7 G w g
1000 BS CAN (8 H X h
1001 HT EM) 9 I y i
1010 LF SUB . : J z j

1011 VT ESC + . K [k
1100 FF FS . < L \ I
1101 CR GS - = M] m
1110 so RS > N A n
1111 SI us I ? 0 of- 0

THE ASCII SYMBOLS

NUL -Null
SOH -Start of Heading
STX -Start of Text
ETX -End of Text
EOT -End of Tranemlaalon
ENQ -Enquiry
ACK .:...Acknowledge
BEL -Bell
BS -Backspace
HT - Horizontal 'lllbulatlon
LF -Line Feed
VT -Vertical 'lllbulatlon
FF -Form Feed
CR -Carriage Return
SO -Shift Out
SI -Shift In

DLE -Data Link Escape
DC -Device Control
NAK -Negative Acknowledge
SYN -Synchronous Idle
ETB -End of Transmission Block
CAN -Cancel
EM -End of Medium
SUB -Substitute
ESC -Escape
FS - FIie Separator
GS -Group Separator
RS -Record Separator
US -Unit Separator
SP -Space (Blank)
DEL -Delete

7
111
p
q
r
s
t
u
V

w
X

y
z
{
~-
} -DEL1

APPENDIXF

6502 INSTRUCTIONS
(ALPHABETIC)

ADC Add with carry JSR Jump to subroutine
AND Logical AND LOA Load accumulator
ASL Arithmetic Shift Left LOX Load X
BCC Branch if carry clear LOY Load Y
BCS Branch if carry set LSR Logical shift right
BEQ Branch if result = 0 NOP No operation
BIT Test bit ORA Logical OR
BMI Branch if minus PHA Push A
BNE Branch if not equal to 0 PHP Push P status
BPL Branch if plus PLA Pull A
BRK Break PLP Pull P status
BVC Branch if overflow clear ROL Rotate left
BVS Branch if overflow set ROR Rotate right
CLC Clear carry RTI Return from interrupt
CLD Clear decimal flag RTS Return from subroutine
CLI Clear interrupt disable SBC Subtract with carry
CLV Clear overflow SEC Set carry
CMP Compare to accumulator SED Set decimal
CPX Compare to X SEI Set interrupt disable
CPY Compare to Y STA Store accumulator
DEC Decrement memory STX Store X
DEX Decrement X STY Store Y
DEY Decrement Y TAX Transfer A to X
EOR Exclusive OR TAY Transfer A to Y
INC Increment memory TSX Transfer SP to X
INX Increment X TXA Transfer X to A
INY Increment Y TXS Transfer X to SP
JMP Jump TYA Transfer Y to A

275

6502 APPLICATIONS BOOK

INDEX

6502 Assembler 243
6520 20, 21
6520Dangers 28
6522 20,31,47,

48,161,164
6530 20, 61
6532 20, 61
6532 RIOT..................... 61

A
ACR 107
active devices 24
AIM 65 11, 64, 75,

alarm
alarm system
analog to digital conversion .. .
application connector
arterial
ASCII Keyboard
ASM65
audible response
!(UXi!iary application
connector
auxiliary control
register (ACR)

B
basic input
beam
bi-directional
bit
board layout
buffer
buffered output
buffered ports
buffers
burglar alarm

C
CAI
CA2
CBI
CB2
chip-select
clearances
clipping diode
clock

276

233
188
117
203

72
151
225
244
209

73

44

47
188
217
238
148

22,23
81

150
17

188

17
17
17
17
22

160
82

18, 111

closed control
comparator
computer music
conclusions
connectors
control lines
control options
control register
control register (CRA)

D
DAC
Darlington
data hole
data ready
data request
data-direction register
day mode
DC motor control
DDR
DORA
debouncing
decoded keyboard
delay
delay loop
delays
detector
disk
dot matrix
dot matrix LED
driver
duration
duration of a pulse

E
electrosensitive
expansion connector
external clock

F
flags
flash
floppy disk
free-running
free-running mode

G
grounded

203
206
178
241
148
22
49
25
22

204
62

228
17
17
16

159
192

21
24

198
225

103,202
110

18,54
188
203

75
161, 163

195
45
43

233
72
52

17
159
203
107
43

217

H
hand-shaking
handshake protocol
hardware timer
heating coil
hex inverter
hexadecimal keyboard
home alarm
home control
HP2000F BASIC

index hole
indexed addressing

indexed indirect
indexed indirect addressing
indirect addressing
indirection
industrial control
inertia
input-output
input pulse
internal divide
interrupt
interrupt routine
interrupts
interval timer
introduction
!ORA
IRQA
IRQB

K

17
51
18

209
81

217
188
117
247

203
102, 104,
222,223

238
28

231
231

145,150
194

15
131

19
17

117
11, 17

61
11
24
22
22

key.............................. 218
keyboard 67, 75,217
KIM 11, 61, 64,

L
LED
light emitter
line-reversal technique
loop detectors
loudspeaker

M
matrix
memory map
microprinter
monitor
Morse
MOS Technology
Motorola M6820

66, 81, 127

165
188,203

217
145, 152

149

217
24

233
65
92

20,66
21

multiplication
multiplication table
music
music program

N
nested loops
night pattern
null

0
offset
Olivetti
one-shot
opamp
ORB
output register (ORA)
output signal
output transistor
overflow

p

174
143
181
137

103, 109
153, 154

229

104
233
54

204,206
48
22
43

149
238

paper tape . 226
paper-tape reader............ 225
parallel-to-serial conversion . . . 46
parallel input-output 15
passive pull-ups 23
pedagogy....................... 12
peripherals 216
phase 2 58
phases.......................... 151
photo emitters 226
phototransistor 188
PIA............................. 20
PIO 11, 16,233
pitch............................ 209
polling.......................... 11
polling loop 58
polling the 652-0's 28
port............................. 16
pot trimmer................... 149
precautions.................... 149
printer.......................... 75
programmable timer 11
programming form.......... 14
pulse............................ 56
pulse measurement 131
pulse trains . 19
pulses........................... 202

R
RAM............................ 65
register selection 25
relays........................... 81

277

6502 APPLICATIONS BOOK

reset
Rockwell
ROM
rotational speed
RRIOT
RSI
RSO

s
sample-and-hold
saw-tooth curve
SCAND
scanning
Schmitt triggers
serial-to-parallel
shift register
shifter
siren
siren sound
software delay
solder
SPOT
speaker
speed
spike
sprocket hole
SPST
square wave
standard system
status
status flag

278

21, 27
31, 65

203
203

61
24
24

206
194
119
223
228
46
46
20

188
128, 129

102
149
82

91, 178
202
82

228
82

92,178
64

117
18

successive approximations . . 204
switch values.................. 175
switches 11, 64, 70,

Synertek
Synertek Systems

T

127, 148
31
70

table............................. 222
thermistor . 203
time-of-day . 111
timer 15, 16, 18,

43, 102
timer I 43, 107
timer2 43
tone
tone generation
traffic control
traffic lights
train of pulses

97, 102
178

140,151
145
43

tune............................. 181
TV monitors.................. 161, 163

u
UART.......................... 16

V
VIA............................. 31

w
wire-wrap...................... 149

	Cover
	Title
	Preface
	Contents
	Table of Illustrations
	1. Introduction
	2. The Input Output Chips
	Introduction
	Basic Definitions
	The 6520 (PIA)
	The 6522
	Programming the 6522
	The 6530 ROM-RAM I/O Timer(RRIOT)
	The 6532 RIOT
	Summary

	3. 6502 Systems
	Introduction
	A "Standard" 6502 System
	The KIM-1
	The SYM-1
	The AIM 65
	Other Boards

	4. Basic Techniques
	Introduction
	Section 1: The Techniques
	Relays
	Switches
	Speaker
	A Morse Generator
	Time of Day Clock
	A Home Control Program
	A Telephone Dialer

	Section 2: Combinations of Techniques
	Introduction
	Generating a Siren Sound
	Sensing an Input Pulse
	Pulse Measurement
	A Simple Music Program
	KIM Traffic Control
	Learn the Multiplication Table
	Summary

	5. Industrial and Home Applications
	Introduction
	A Traffic Control System
	Dot Matrix LED
	Displaying Switch Values
	Tone Generation
	Music
	A Burglar Alarm
	DC Motor Control
	Analog to Digital Conversion (a Heat Sensor)
	Summary

	6. The Peripherals
	Introduction
	Keyboard
	Paper Tape Reader or ASCII Keyboard
	Microprinter
	Summary

	7. Conclusions
	Appendix A. A 6502 Assembler in Basic
	Introduction
	General Description
	Using the Assembler
	Syntax
	HP2000F BASIC

	Appendix B. Multiplication Game: The Program
	Appendix C. Program Listings
	Program 4-1: Morse
	Program 4-2: Time of Day
	Program 4-3: Home Control
	Program 4-4: Phone Dialer

	Appendix D. Hexadecimal Conversion Table
	Appendix E. ASCII Conversion Table
	Appendix F. 6502 Instructions

