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Richard Feynman (1918–1988)
Nobel Laureate in Physics,1965

George Wald (1906–1997)
Nobel Laureate in Physiology/Medicine, 1967

With all due respect to Feynman (one of the towering figures of twentieth century
physics), his quote slightly misses the point: it would be better to say that “everything
animals do, molecules do”. And as Wald certainly knew, physicists are better under-
stood as collections of molecules than as collections of atoms.

Of all of the remarkable scientific achievements of the late twentieth century, none
is more spectacular than the transformation of biology into molecular biology and its



associated subdisciplines. This transformation occurred only because, time and time
again, fundamental advances in theoretical physics drove the development of useful
new tools for chemistry. The chemists, in turn, learned how to synthesize and charac-
terize ever more complex molecules, and eventually created a quantitative framework
for understanding biology and medicine. We chemists like to describe our field as the
central science, and indeed it is. Our job as educators is to help students understand
the interconnections.

This small book grew from my supplementary lecture notes during the ten years I
have taught advanced general chemistry or honors general chemistry at Princeton Uni-
versity. It is mainly intended as a supplement for the more mathematically sophisticated
topics in such courses. I have also used parts of it as background for the introductory
portions of a junior-level course, and it has been used elsewhere as an introduction to
physical chemistry. For example, an introduction to biophysical chemistry or materials
science should build on a foundation which is essentially at this level. Most of the stu-
dents become science or engineering majors, and they have a broad range of interests,
but the strongest common denominator is interest in and aptitude for mathematics. My
intent is not to force-feed math and physics into the chemistry curriculum. Rather it is
to reintroduce just enough to make important results understandable (or, in the case of
quantum mechanics, surprising).

This book can be used to supplement any general chemistry textbook. It lets the in-
structor choose whichever general chemistry book covers basic concepts and descrip-
tive chemistry in a way which seems most appropriate for the students. Of course de-
scriptive chemistry is an essential component of every freshman course. My own class
includes demonstrations in every lecture and coverage of a very wide range of chem-
ical applications. The challenge to us was to keep the strong coverage of descriptive
chemistry characteristic of the best modern texts, yet elevate the mathematical level to
something more appropriate for our better students. Many important aspects of chem-
istry can only be memorized, not understood, without appeal to mathematics. For ex-
ample, the basic principles behind classical physics are quite familiar to most of these
students. Almost all of them have used �F = m�a, potential energy, and Coulomb’s law;
many molecular properties follow simply from an understanding of how charges in-
teract. When these students move on to study organic reaction mechanisms or protein
folding, much of their comprehension will depend on how well they understand these
basic concepts.

Later I use the same principles to show something is wrong with any classical inter-
pretation of atomic and molecular structure. Quantum mechanics allows us to predict
the structure of atoms and molecules in a manner which agrees extremely well with
experimental evidence, but the intrinsic logic cannot be understood without equations.

In this new edition, I have tried to integrate chemical applications systematically
throughout the book. Chapter 1 reviews the pre-calculus mathematical concepts ev-
ery general chemistry student will need by the end of a college chemistry class. The



level of coverage in this chapter is essentially the same as the SAT II Math Level 1C
exam. However, this chapter should not be skipped even by mathematically advanced
students—it emphasizes the connections from algebra and trigonometry to chemical
concepts such as solubility products, balancing equations, and half-lives. It also estab-
lishes the notational conventions.

Chapter 2 presents the basics of differential and integral calculus. I use derivatives
of one variable extensively in the rest of the book. I also use the concept of integration
as a way to determine the area under a curve, but the students are only asked to gain a
qualitative understanding (at a level which allows them to look up integrals in a table),
particularly in the first five chapters. Multivariate calculus is never used.

Chapter 3 is the physics chapter. The first edition jumped into Newton’s laws writ-
ten with calculus ( �F = d �p/dt), which many students found overwhelming. This ver-
sion moderates that introduction by presenting the concepts of force and energy more
gradually. New to this edition is an extensive discussion of atoms and molecules as
charged objects with forces and potential energy (this discussion was previously much
later in the book).

Chapter 4 is an introduction to statistics (the Gaussian and Boltzmann distribu-
tions), and includes a wide range of applications (diffusion, error bars, gas kinetic en-
ergy, reaction rates, relation between equilibrium constants and energy changes). It is
in my opinion a very important chapter, because it provides a quantitative foundation
for the most important equations they will see in their general chemistry textbook. It
also attempts to address the continuing problem of statistical illiteracy. Our students
will spend the rest of their lives hearing people lie to them with statistics; I want to
start to give them the tools to separate fact from fiction.

Chapter 5 takes the student through fundamental quantum mechanics. The perspec-
tive is quite different than what is found in most texts; I want students to be surprised
by the results of quantum mechanics, and to think at least a little about the philosophi-
cal consequences. This edition has a much longer discussion of chemical applications
(such as NMR/MRI).

I believe essentially all of the material in the first five chapters is accessible to the
advanced general chemistry students at most universities. The final three chapters are
written at a somewhat higher level on the whole. Chapter 6 introduces Schrödinger’s
equation and rationalizes more advanced concepts, such as hybridization, molecular
orbitals, and multielectron atoms. It does the one-dimensional particle-in-a-box very
thoroughly (including, for example, calculating momentum and discussing nonstation-
ary states) in order to develop qualitative principles for more complex problems.

Chapter 7 covers the kinetic theory of gases. Diffusion and the one-dimensional
velocity distribution were moved to Chapter 4; the ideal gas law is used throughout
the book. This chapter covers more complex material. I have placed this material
later in this edition, because any reasonable derivation of PV = n RT or the three-
dimensional speed distribution really requires the students to understand a good deal
of freshman physics. There is also significant coverage of “dimensional analysis”: de-
termining the correct functional form for the diffusion constant, for example.



Chapter 8 (which can be covered before Chapter 7 if desired) provides a very broad
overview of molecular spectroscopy and the origins of color. The topics range all the
way from rainbows and peacock feathers to microwave ovens and the greenhouse ef-
fect. Once again, the emphasis is on obtaining an understanding of how we know what
we know about molecules, with mathematics kept to a minimum in most sections.

This edition features a vastly increased number of end-of-chapter problems, and an-
swers for about half of those problems at the end of the text. It also has supplementary
material available in two different forms:

1. The Physical Basis of Chemistry Web Site is accessible from the Har-
court/Academic Press Web site:

,

and also from a Web site at Princeton University:

.

It contains images and QuickTime movies geared to each of the individual chap-
ters. Much of this material was originally created by Professor Kent Wilson and
the Senses Bureau at University of California, San Diego (although in many cases
the slides have been adapted to match notation in the text), and all of the mate-
rial may be freely used for noncommercial purposes with acknowledgment. The
Web site will also contain additional problems, the inevitable typographical cor-
rections, and links to other useful chemistry sources.

2. From time to time, a verbatim copy of the Web site will be written to compact
disk, and copies made available at no charge to adopting instructors by writing
to Harcourt/Academic Press, 525 B St., Suite 1900, San Diego, CA 92101 or by
arrangement with your Harcourt sales representative.

I am grateful to many of my colleagues and former students for excellent sugges-
tions. As with the first edition, I hope that the students learn even half as much by using
this book as I did by writing it.

Warren S. Warren
Princeton, New Jersey

May, 1999



Auguste Comte (1798–1857)
in Philosophie Positive (1830)

A. Frankland (1825–1899)
in Amer. J. Math. 1, 349 (1878)

Frankland was correct.
This book is mainly intended as a supplement for the mathematically sophisticated

topics in an advanced freshman chemistry course. My intent is not to force-feed math
and physics into the chemistry curriculum. It is to reintroduce just enough to make im-
portant results understandable (or, in the case of quantum mechanics, surprising). We
have tried to produce a high-quality yet affordable volume, which can be used in con-
junction with any general chemistry book. This lets the instructor choose whichever
general chemistry book covers basic concepts and descriptive chemistry in a way which
seems most appropriate for the students. The book might also be used for the intro-
ductory portions of a junior-level course for students who have not taken multivariate
calculus, or who do not need the level of rigor associated with the common one-year
junior level physical chemistry sequence; for example, an introduction to biophysical
chemistry or materials science should build on a foundation which is essentially at this
level.

The book grew out of supplementary lecture notes from the five years I taught ad-
vanced general chemistry at Princeton University. Placement into this course is based
almost exclusively on math SAT scores—no prior knowledge of chemistry is assumed.
Most of the students become science or engineering majors, and they have a broad
range of interests, but the strongest common denominator is interest in and aptitude
for mathematics.

Picking a text book for this group of students proved to be a difficult problem. The
most important change in freshman chemistry books over the last decade has been the
introduction of color to illustrate descriptive chemistry. The importance of this advance
should not be minimized—it helps bring out the elegance that exists in the practical
aspects of chemistry. However, it has dramatically increased the cost of producing text-
books, and as a result it has become important to “pitch” these books to the widest pos-
sible audience. In general that has meant a reduction in the level of mathematics. Most



modern textbooks mainly differ in the order of presentation of the material and the style
of the chapters on descriptive chemistry—and almost all of them omit topics which re-
quire a little more mathematical sophistication. Thus the challenge to us was to keep
the strong coverage of descriptive chemistry characteristic of the best modern texts, yet
elevate the mathematical level to something more appropriate for our better students.

In fact, many important aspects of chemistry can only be memorized, not under-
stood, without appeal to mathematics. For example:

The basic principles behind classical mechanics are quite familiar to most of these
students. Almost all of them have used F = m�a, or can understand that a charge go-
ing around in a circle is a current. It is easy to use only these concepts to prove that
something is wrong with any classical interpretation of atomic and molecular struc-
ture. Quantum mechanics allows us to predict the structure of atoms and molecules
in a manner which agrees extremely well with experimental evidence, but the intrinsic
logic cannot be understood without equations.

The structure of molecules is generally explained by concepts which are simple and
usually correct (for example, VSEPR theory), but clearly based on some very stringent
assumptions. However, the test of these theories is their agreement with experiment.
It is important to understand that modern spectroscopic techniques let us measure the
structures of molecules to very high precision, but only because the experimental data
can be given a theoretical foundation.

Statistics play a central role in chemistry, because we essentially never see one
molecule decompose, or two molecules collide. When 1 g of hydrogen gas burns in
oxygen to give water, 6 × 1023 hydrogen atoms undergo a fundamental change in their
energy and electronic structure! The properties of the reactive mixture can only be un-
derstood in terms of averages. There is no such thing as the pressure, entropy or temper-
ature of a single helium atom—yet temperature, entropy and pressure are macroscopic,
measurable, averaged quantities of great importance.

The concepts of equilibrium as the most probable state of a very large system, the
size of fluctuations about that most probable state, and entropy (randomness) as a driv-
ing force in chemical reactions, are very useful and not that difficult. We develop the
Boltzmann distribution and use this concept in a variety of applications.

In all cases, I assume that the students have a standard general chemistry book at
their disposal. Color pictures of exploding chemical reactions (or for that matter, of
hydrogen atom line spectra and lasers) are nice, but they are already contained in all
of the standard books. Thus color is not used here. The background needed for this
book is a “lowest common denominator” for the standard general chemistry books; in
addition, I assume that students using this book are at least taking the first semester of
calculus concurrently.

I wish to thank the students who have used previous versions of this book, and have
often been diligent in finding errors; and Randy Bloodsworth, who found still more
of the errors I missed. Useful suggestions have come from a variety of experienced



instructors over the last few years, most notably Professor Walter Kauzmann and the
late Miles Pickering, Director of Undergraduate Laboratories at Princeton.

Any suggestions or corrections would be appreciated. I hope that the students learn
even half as much by using this book as I did by writing it.

Warren S. Warren
Princeton, New Jersey

May 1993



Chapter 1

The Tools of the Trade:
Mathematical Concepts

No human investigation can be called real science if it cannot be demonstrated
mathematically.

Leonardo da Vinci (1452–1519)

This chapter will review the fundamental mathematical concepts (algebra and
trigonometry) needed for a quantitative understanding of college-level chemistry and
physics. Virtually all of this material is covered in high-school mathematics classes,
but often the connection to real scientific applications is not obvious in those classes.
In contrast, the examples used here will frequently involve chemical and physical con-
cepts that will be covered in detail in later chapters or in the later parts of a standard
freshman chemistry book. Here they will be treated as math problems; later you will
see the underlying chemistry.

1.1 UNITS OF MEASUREMENT
Chemistry and physics are experimental sciences, based on measurements. Our char-
acterization of molecules (and of everything else in the universe) rests on observable
physical quantities, expressed in units that ideally would be precise, convenient and re-
producible. These three requirements have always produced trade-offs. For example,
the English unit of length inch was defined to be the length of three barleycorns laid
end to end—a convenient and somewhat reproducible standard for an agricultural so-
ciety. When the metric system was developed in the 1790s, the meter was defined to be

1



2 Chapter 1 The Tools of the Trade: Mathematical Concepts

1/10,000,000 of the best current estimate of distance from the equator to the North Pole
along the Prime Meridian. Unfortunately, this definition was not convenient for cali-
brating meter sticks. The practical definition was based on the distance between two
scratches on a platinum-iridium bar. This bar was termed the primary standard. Copies
(secondary standards) were calibrated against the original and then taken to other lab-
oratories.

The most important modern system of units is the SI system, which is based around
seven primary units: time (second, abbreviated s), length (meter, m), temperature
(Kelvin, K), mass (kilogram, kg), amount of substance (mole, mol), current (Amperes,
A) and luminous intensity (candela, cd). The candela is mainly important for charac-
terizing radiation sources such as light bulbs. Physical artifacts such as the platinum-
iridium bar mentioned above no longer define most of the primary units. Instead, most
of the definitions rely on fundamental physical properties, which are more readily re-
produced. For example, the second is defined in terms of the frequency of microwave
radiation that causes atoms of the isotope cesium-133 to absorb energy. This frequency
is defined to be 9,192,631,770 cycles per second (Hertz) —in other words, an instru-
ment which counts 9,192,631,770 cycles of this wave will have measured exactly one
second. Commercially available cesium clocks use this principle, and are accurate to
a few parts in 1014.

The meter is defined to be the distance light travels in a vacuum during
1/299,793,238 of a second. Thus the speed of light c is exactly 299,793,238 meters
per second. The units are abbreviated as m · s−1 (the “·” separates the different units,
which are all expressed with positive or negative exponents) or as m/s. More accu-
rate measurements in the future will sharpen the definition of the meter, not change
this numerical value. Similarly, the unit of temperature above absolute zero (Kelvin)
is defined by setting the “triple point” of pure water (the only temperature where ice,
water, and water vapor all exist at equilibrium) as 273.16K. These inconvenient nu-
merical values were chosen instead of (for example) exactly 3 × 108 m · s−1 or 273K
because the meter, the second and degree Kelvin all predated the modern definitions.
The values were calculated to allow improved accuracy while remaining as consistent
as possible with previous measurements.

The definition of the kilogram is still based on the mass of a standard metal weight
kept under vacuum in Paris. The mole is defined to be the number of atoms in exactly
.012 kg of a sample containing only the most common isotope of carbon (carbon-12).
This means that determining Avogadro’s number (the number of atoms in a mole) re-
quires some method for counting the atoms in such a sample, or in another sample
which can be related to carbon. The most accurate modern method is to determine
the spacing between atoms in a single crystal of silicon (Problem 1.1). Silicon is used
instead of carbon because it is far easier to produce with extremely high purity. This
spacing must be combined with measurements of the density and of the relative atomic
weights of carbon and silicon (including the mixture of different naturally occurring
isotopes of each one) to determine Avogadro’s number (6.0221367×1023 mol−1). Each
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of these measurements has its own sources of uncertainty, which all contribute to the
finite accuracy of the final result.

In principle, Avogadro’s number could be used to eliminate the standard kilogram
mass. We could define Avogadro’s number to be exactly 6.0221367×1023, then define
.012 kg as the mass of one mole of carbon-12. However, we can determine the mass
of a metal weight with more accuracy than we can count this large number of atoms.

All other physical quantities have units that are combinations of the primary units.
Some of these secondary units have names of their own. The most important of these
for our purposes are listed in Table 1.1.

TABLE 1.1 � Common SI Secondary Quantities and their Units

Secondary Equivalent in
Quantity Abbreviation Unit Other Units

Charge q Coulomb (C) A · s
Energy E; U ; K Joule (J) kg · m2 · s−2

Frequency ν Hertz (Hz) s−1

Force F Newton (N) kg · m · s−2

Pressure P Pascal (Pa) kg · m−1 · s−2

(force per unit area)
Power or intensity I Watt (W) kg · m2 · s−3

(energy per second)
Volume V — m3

Because this book covers a wide rage of subfields in chemistry and physics, we will
use many different abbreviations. To avoid confusion, notice that in Table 1.1 (and
throughout this book) units are always written with normal (Roman) type. Variables or
physical quantities are always either Greek characters or written in italic type. Thus,
for example, “m” is the abbreviation for meters, but “m” is the abbrevation for mass.

The kilogram, not the gram, is the primary unit of mass in the SI system, so care
must be taken to use the correct units in formulas. For example, the formula for kinetic
energy K is K = ms2/2. If m is the mass in kg and s is the speed in m · s−1, K is in
Joules. The kinetic energy of a 1 g mass moving at 1 m · s−1 is .0005 J, not 0.5 J.

Prefixes can be used with all of the primary and secondary units to change their val-
ues by powers of ten (Table 1.2). Note the abbreviations for the units. Capitalization is
important; meters and moles per liter (molar), or mill- and mega-, differ only by capi-
talization. There are prefixes for some of the intermediate values (for example, centi- is
10−2) but the common convention is to prefer these prefixes, and write 10 mm or .01 m
instead of 1 cm.

Since the primary unit of length is the meter, the secondary unit of volume is the
cubic meter. In practice, though, the chemical community measures volume in liters
and concentration in moles per liter, and often measures temperature in degrees Cel-
sius (labeled ◦C, not C, to avoid confusion with the abbreviation for charge). Other
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TABLE 1.2 � Common Prefixes

Prefix Example Numerical Factor

femto- femtosecond (fs) 10−15

pico- picomole (pmol) 10−12

nano- nanometer (nm) 10−9

micro- micromolar (μM) 10−6

milli- milliliter (mL) 10−3

— 100

kilo- kilogram (kg) 103

mega- megapascal (MPa) 106

giga- gigawatt (GW) 109

tera- terahertz (THz) 1012

non-SI units in common use are listed in Table 1.3 below. For instance, the ideal gas
law PV = n RT in SI units uses pressure in Pascals, volume in cubic meters, and tem-
perature in Kelvin. In that case the ideal gas constant R = 8.3143510 J · K−1 · mol−1.
However, it is also quite common to express pressures in atmospheres or torr. One torr
is the pressure exerted by a 1 mm mercury column at the Earth’s surface (the area of the
column does not matter), and 1 atm is the same as the pressure exerted by a 760 mm
mercury column. These alternative units require different values of R (for example,
R = 0.08206 · L · atm · K−1 · mol−1).

TABLE 1.3 � Common non-SI Units and their SI Equivalents

Non-SI Equivalent in
Quantity Unit other units

Concentration molar (M) mol · L−1

(volume of total solution)
molar (m) mol · kg−1

(mass of solvent)
Energy kilojoule per mole (kJ · mol−1) 1.660540 × 10−21 J

electron volt (eV) 1.602177 × 10−19 J
or 96.4753 kJ · mol−1

calorie (cal) 4.184 J
Length Angstrom (Å) 10−10 m = 100 pm
Mass atomic mass unit (amu) 1.6605402 × 10−27 kg

or Dalton (Da)
Pressure atmosphere (atm) 101,325 Pa

bar 100,000 Pa
torr 1/760 atm; 133.32 Pa

Temperature degrees Celsius (◦C) ◦C = K − 273.15
Volume liter (L) .001 m3
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The energies associated with chemical processes are inconveniently small when ex-
pressed in Joules. For example, the dissociation energy for the bond in the H2 molecule
is 7.17 × 10−19 J. It is thus more common to write the energy associated with breaking
one mole of such bonds (432 kJ · mol−1). Another convenient energy unit is the elec-
tron volt (eV), which (as the name implies) is the energy picked up by an electron when
it is moved across a potential of one volt. We will discuss this more in Chapters 3 and
5.

The atomic mass unit (amu) is 1/12 of the mass of a single atom of carbon-12, and
as the name implies, is the usual unit for atomic masses. It is also commonly called
the Dalton (abbreviated Da) in biochemistry books, and is equivalent to 1 g· mol−1.
The mass of a single atom of the most common isotope of hydrogen (one proton and
one electron) is 1.007825 amu. Naturally occurring hydrogen also contains a second
isotope: about 0.015% of the atoms have one neutron and one proton, and this isotope
(called deuterium, abbreviated D) has mass 2.0141018 amu. This makes the average
mass of naturally occurring hydrogen (the mass of one mole divided by Avogadro’s
number) about equal to 1.00797 amu:

Avg. mass = (0.99985) · 1.007825 + (0.00015 · 2.0141018) = 1.00797 amu

However, the fraction of deuterium can vary in naturally occurring samples, because
isotopic substitution can slightly change chemical properties. Normal water (H2O)
boils at 100◦C (at 1 atm pressure) and freezes at 0◦C; heavy water (D2O) boils at
101.42◦C and freezes at 3.82◦C.

The task of reconciling experimental measurements in many different laboratories
to produce the best possible set of fundamental physical constants is assigned to CO-
DATA (the Committee on Data for Science and Technology), established in 1966 by
the International Council of Scientific Unions. Roughly every ten years this group re-
leases a new set of constants. Appendix A presents the 1998 values. Each value also
has associated error bars, which we will explain in more detail in Chapter 4.

1.2 COMMON FUNCTIONS AND CHEMICAL APPLICATIONS
1.2.1 Definition of Functions and Inverse Functions
When we have a relation between two variables such as y = x2, we say that y is a func-
tion of x if there is a unique value of y for each value of x . Sometimes we also write
y = f (x) to emphasize the function itself (in this case, the function f corresponds to
the operation of squaring).

Every function has a domain (the set of all permitted values of x) and a range (the
set of all permitted values of y). For this equation, we can pick any real value of x and
produce a value for y, so the domain is [−∞, ∞]. However, not all values of y are
possible. This particular function has a minimum at (x = 0, y = 0) hence the range is
[0, ∞].
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A function must have a unique value of y for each value of x , but it need not have a
unique value of x for each value of y. If it does have a unique value of x for each value
of y, we can also define an inverse function, x = g(y). We could rearrange y = x2 and
write x = √

y (taking the square root), but there are two values of x (plus and minus)
associated with a single positive value of y, and no real values of x associated with a
negative value of y. So the square root is only a function if the domain and range are
restricted to nonnegative numbers. With that restriction, squaring and taking square
roots are inverse functions of one another—if you do them in succession, you get back
to your original number.

1.2.2 Polynomial Functions
Polynomials are among the simplest functions we will use. In general, a polynomial
has the form:

y = a0 + a1x + a2x2 + a3x3 + · · · + anxn =
n∑

i=0

ai x
i (1.1)

where the coefficients a0, a1, a2... are numbers which do not depend on x . Equation 1.1
uses a common shorthand (summations represented by the Greek character �) to re-
duce an expression with many terms into a simpler schematic form. The lower limit
of the summation is presented under the summation character; the upper limit is above
the character.

Notice that only integral powers of x appear in the expression. Polynomial equa-
tions where the highest power of x (the order) is two, such as y = 2x2 + 6x + 1 or
y = ax2 + bx + c, are also called quadratic equations. Third-order polynomials are
called cubic equations.

Quadratic equations arise frequently in the mathematical descriptions of common
physical and chemical processes. For instance, silver chloride is only very slightly sol-
uble in water. It has been determined experimentally that the solubility product Ksp

of silver chloride at 25C is 1.56 × 10−12 M2, meaning that in a saturated solution the
concentrations of silver ion and chloride ion satisfy the relationship

Ksp = [Ag+][Cl−] = 1.56 × 10−10 M2 (1.2)

Following the usual convention, we will now express all concentrations in moles
per liter, and drop the units “M2” from the solubility product expression. If solid silver
chloride is added to water, dissociation of the solid will create an equal number of silver
ions and chloride ions, hence the concentrations of silver ion and chloride ion will be
the same. If we substitute x = [Ag+] = [Cl−] into Equation 1.2, this implies

x2 = 1.56 × 10−10

x = [Ag+] = [Cl−] = 1.25 × 10−5 moles per liter (1.3)
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Equation 1.2 also has a negative solution, but we cannot have a negative amount of
dissociated silver chloride, hence the domain of x is the set of nonnegative numbers.
Thus one liter of saturated silver chloride solution contains 1.25 × 10−5 moles of dis-
solved silver chloride.

On the other hand, suppose we add silver chloride to a .01 M sodium chloride so-
lution. Now if the number of moles dissolved in one liter is x , we have

[Ag+] = x ; [Cl−] = x + .01

(x)(x + .01) = 1.56 × 10−10 (1.4)

x2 + .01x − (1.56 × 10−10) = 0

In high school algebra you frequently used factoring to solve quadratic equations.
However, in this and virtually all other real problems you will encounter in chemistry,
neither the numerical coefficients nor the solutions will turn out to be integers, so fac-
toring is not useful. The general solutions to the equation ax2 + bx + c = 0 are given
by the expression

If ax2 + bx + c = 0, x = −b ± √
b2 − 4ac

2a
(1.5)

Here a = 1, b = .01, and c = 1.56 × 10−10, so Equation 1.5 gives x = 1.56 × 10−8

(and a negative solution, which again is not physically reasonable.) Note that far less
silver chloride can be dissolved in a sodium chloride solution than in pure water—this
is called the common ion effect.

Often it is possible to use approximate methods to avoid the tedium of solving Equa-
tion 1.5. In this problem, the small value of the solubility product tells us that the fi-
nal concentration of the chloride ions will not be affected much by the dissolved sil-
ver chloride. So if we write [Cl−] = 0.01 + x ≈ 0.01, Equation 1.4 reduces to
0.01x = 1.56 × 10−10, which leads to the same final answer (to the number of sig-
nificant digits used here). It is often a good strategy to try an approximation, obtain
a (tentative) answer, then plug the answer back into the original equation to verify its
accuracy.

Cubic and higher order polynomial expressions also arise naturally in a wide range
of problems in chemistry, particularly in solubility and equilibrium problems. If we try
to dissolve lead (II) chloride (PbCl2) instead of silver chloride, the solubility product
expression becomes

Ksp = [Pb2+][Cl−]2 = 1.6 × 10−5 (1.6)

Each formula unit of PbCl2 dissolved in water creates two units of chloride, and one
of lead. So in one liter of water, x moles of dissolved PbCl2 gives

[Pb2+] = x ; [Cl−] = 2x ; 4x3 = 1.6 × 10−5; x = 1.6 × 10−2 moles per liter
(1.7)
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Suppose we try to dissolve lead (II) chloride in a 0.1 M solution of sodium chloride.
Now x moles of dissolved lead (II) chloride give concentrations of

[Pb2+] = x ;

[Cl−] = 2x + 0.1; (1.8)

x(2x + 0.1)2 = 4x3 + 0.4x2 + 0.01x = 1.6 × 10−5

The solution for a general cubic equation (analogous to Equation 1.5) is vastly more
tedious, and never used in practice. This problem can be solved by assuming that the
small amount of dissolved PbCl2 does not substantially change the chloride concentra-
tion (x � 0.1), which gives

[Pb2+] = x; [Cl−] = 2x + 0.1 ≈ 0.1;
0.01x = 1.6 × 10−5; x = 1.6 × 10−3 moles per liter (1.9)

You can plug x = 1.6 × 10−3 into Equation 1.8 to verify that the approximation is
reasonable. If the concentration of chloride were lower (say 10−2 M) the approximation
method would not work very well, and we would have to solve the equation

[Pb2+] = x ; [Cl−] = 2x + 0.01;
x (2x + 0.01)2 = 4x3 + 0.04x2 + 0.0001x = 1.6 × 10−5 (1.10)

In the days before the common availability of personal computers, one then had
to resort to successive approximations. Today such a problem would be solved graphi-
cally, numerically on a graphing calculator, or on a computer; the solution is x = 0.013
moles per liter.

1.2.3 Trigonometric Functions
Another important class of functions encountered in chemistry and physics is the
trigonometric functions. Consider the equation x2 + y2 = 1. The set of all points
in a plane that satisfy this equation is a circle with radius 1 (Figure 1.1). Any position
on the circle could be labeled by the length θ of the arc which stretches counterclock-
wise from the positive x-axis to that point. Since the circle has circumference 2π , only
values of θ between 0 and 2π are needed to describe the whole circle.

We can give the same label θ to the angle that creates this arc. In this case, we refer
to the angle in units of radians, and thus 2π corresponds to a complete circle. Radians
might seem superficially to be an inconvenient unit for measuring angles. In fact, they
turn out to be the most natural unit, as we will see when we discuss derivatives in the
next chapter.

We can also use Figure 1.1 to define trigonometric functions. The x-coordinate
gives the cosine of the angle θ , written cos θ . The y-coordinate gives the sine of the
angle θ , written sin θ . Figure 1.1 shows that sin2 θ + cos2 θ = 1. We also define the
tangent of the angle θ , written tan θ , as the ratio sin θ/ cos θ .
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y

sin
length = 

1

cos x

FIGURE 1.1 � Definition of the sine and cosine function, in terms of positions on a circle with
radius 1.

Now suppose we move counter-clockwise along the circle at a constant speed,
which we will call ω. ω has units of radians per second, and is also called the angular
velocity. The x- and y-coordinates will vary with time as shown in Figure 1.2. Notice
that the waveform is the same for the cosine (x-coordinate) and the sine (y-coordinate)
except for a shift of one-quarter cycle. The frequency of the sine wave, commonly de-
noted by the symbol ν, is the number of cycles per second. This unit is given the special
name of Hertz. Since there are 2π radians in one cycle, ω = 2πν. One complete cycle
requires a time T = 2π/ω = 1/ν, which we call the period of the sine wave (seconds
per cycle).

Don’t let the definition based on tracking around a circle fool you—sine and co-
sine waves appear in many problems in chemistry and physics. The motion of a mass

YX

time

1

1

2 4 6

FIGURE 1.2 � Sine (y) and cosine (x) components of motion at a constant angular velocity ω

along a circular path.
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suspended from a spring, or of a pendulum with small swings, is sinusoidal. In addi-
tion, what we call light is a combination of an electric field and a magnetic field, as
discussed in Chapter 3. If these fields are sine waves at the same frequency (such as
5 × 1014 Hertz), the eye perceives a well-defined color (in that case, red). One of the
results of quantum mechanics (Chapter 5) will be that such a single frequency electro-
magnetic wave consists of particles (called photons) with a well-defined energy. The
cesium clock mentioned in Section 1.1 absorbs photons, and in the process an electron
moves into a higher energy level.

Each of the trigonometric functions also has an inverse function. For example, as
θ goes from 0 to π in Figure 1.1, x = cos θ goes from +1 to −1. No two values of
θ in this domain give the same value of x . Therefore we can define an inverse cosine
function, θ = arccos x , which gives a single value between 0 and π for each value of
x between 1 and −1. For example, the only value of θ between 0 and π which gives
cos θ = 0 is θ = π/2, so arccos(0) = π/2. Some books refer to arccos θ as “cos−1 θ ,”
but that notation is confusing because the inverse function is not the same as the recip-
rocal; 1/ cos(0) = 1, not π/2.

1.3 VECTORS AND DIRECTIONS
Force, momentum, velocity and acceleration are examples of vector quantities (they
have a direction and a magnitude) and are written in this book with an arrow over them.
Other physical quantities (for example, mass and energy) which do not have a direction
will be written without an arrow. The directional nature of vector quantities is often
quite important. Two cars moving with the same velocity will never collide, but two
cars with the same speed (going in different directions) certainly might!

In general, three coordinates are required to specify the magnitude and direction
of a vector in three-dimensional space. The most common system for specifying these
parameters is Cartesian coordinates, which specify the projections (x, y, z) of the vec-
tor along three mutually perpendicular axes (Figure 1.3, left). Sometimes we will refer
only to the component of a vector quantity along a specific direction, which we will sig-
nify by a subscript and without boldface. Thus the velocity vector �v has components
(vx , vy, vz) along the three Cartesian coordinates. The magnitude |�v| of the velocity
vector (which we will usually call the speed s) is given by

s = |�v| =
√

v2
x + v2

y + v2
z (1.11)

It is also sometimes convenient to specify only the direction of a vector. This is
done by introducing unit vectors, which are defined to have length one. Unit vectors
are signified by a caret ( ) instead of an arrow. Thus �v = |�v| v̂ = sv̂.

We will make one exception to these rules for simplicity: we will write the com-
ponents of the position vector �r as simply (x, y, z), and its magnitude as r . Hence
r =

√
x2 + y2 + z2 and �r = rr̂ .
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r

FIGURE 1.3 � The position of a vector can be expressed in Cartesian coordinates (x, y, z), left,
or spherical coordinates (r, θ, φ), right.

Cartesian coordinates have some advantages for describing vectors. For instance,
we can add two vectors by adding the individual components

(2, 3, 5) + (1, 1, 6) = (3, 4, 11).

Despite these advantages, other coordinate systems often turn out to be more useful
than Cartesian coordinates. For example, the interaction energy between a proton and
an electron depends only on distance between them, not on the direction; we say that
the potential generated by the proton is spherically symmetric. As a result, when we
discuss the possible energy levels for the electron in a hydrogen atom, the expressions
will be far simpler in spherical coordinates, which specify the length of the vector (r )
and two angles to give the orientation (Figure 1.3, right). The angle θ is the angle be-
tween the vector and the z-axis. The angle φ is the angle that the projection of the vector
down into the xy-plane makes with the x-axis.

Every point (x, y, z) in Cartesian coordinates corresponds to a unique value of
(r, θ, φ), with r > 0, 0 ≤ θ ≤ π , and 0 ≤ φ < 2π , except for points along the z-axis
(where φ is undefined). Values of φ outside of this range can be moved into the range by
adding some multiple of 2π ; for example, φ = −π/2 is the same as φ = 3π/2. We can
convert between spherical and Cartesian coordinates by the following relationships:

x = r sin θ cos φ

y = r sin θ sin φ

z = r cos θ

r =
√

x2 + y2 + z2;

θ = arccos
(

z/
√

x2 + y2 + z2
)

; (1.12)

φ =
{

arctan(y/x) if x > 0
π + arctan(y/x) if x < 0
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For example, (x, y, z) = (1, 1, 0) is the same as (r, θ, φ) =
(√

2, π/2, π/4
)

;

(x, y, z) = (0, 2, 0) is the same as (r, θ, φ) = (2, π/2, π/2).
Spherical coordinates have the advantage that the length is immediately obvious (it

is the r coordinate), but they have some disadvantages as well. For example, vectors
in spherical coordinates cannot be added just by adding their components.

1.4 EXPONENTIALS AND LOGARITHMS
Exponentials and logarithms appear in many formulas in chemistry. We have already
encountered them in the definitions of prefixes in Table 1.2, which are essentially a
shorthand to avoid large powers of ten (we can write 17 ps instead of 1.7×10−11 s). In
addition to powers of 10, we frequently use powers of e = 2.7183 . . . and occasionally
use powers of 2. The number e (base of natural logarithms) arises naturally in calcu-
lus, for reasons we will discuss briefly later (calculus classes explain it in great detail).
Powers of e occur so often that a common notation is to write exp(x) instead of ex .

Powers of two arise naturally in digital electronics. Bits are stored in a computer
as 1 or 0. Each letter on the computer keyboard is stored as a unique combination of
eight bits, called a byte. There are 28 = 256 possible combinations. Bytes are in turn
addressed on computer chips in powers of two. A small personal computer might have
“64 MB RAM,” or 64 megabytes of random access memory, but the prefix “mega-” is
deceptive (and international scientific organizations have proposed a replacement). In
computer language, because of the internal construction of integrated circuits, it means
220 = 1,048,576. In scientific notation (and in everything we do in chemistry), the pre-
fix “mega” means exactly 106.

1.4.1 Properties of Exponentials

Most of the properties of exponentials are the same for 10x , 2x , or ex . For example,
101 · 102(= 10 · 100) = 1001+2(= 1000), and (102)2 = 102·2 = 104. In general we
can write:

2a+b = 2a · 2b

10a+b = 10a · 10b (1.13)

e(a+b) = ea · eb

2ab = (
2a

)b = (
2b

)a

10ab = (
10a

)b = (
10b

)a
(1.14)

eab = (
ea

)b = (
eb

)a
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with similar results for any other (positive) number. The power need not be integral,
but the convention is that ab is positive if a is positive. Thus, even though both (−2)

and 2 give 4 when squared, we define 41/2 = 2.
The logarithm is the inverse of the exponential operation. Thus, if y = ax we define

x ≡ loga y (read as “log base a of y”). Again the common logarithms are base 10 (often
written “log”) and base e (often written “ln”); base 2 also appears occasionally. From
the definition,

ln(ex) = x ; eln x = x (x > 0) (1.15)

log(10x) = x ; 10log x = x (x > 0) (1.16)

Other common properties include:

log ab = log a + log b;
log(a/b) = log a − log b; (1.17)

log an = n log a

Analogous formulas apply for ln.
Conversion between different bases is sometimes necessary. This can be done as

follows:

10x = [e(ln 10)]x (from Eq. 1.15)

= ex ln 10 ≈ e(2.3026... )x (from Eq. 1.14) (1.18)

Similarly

2x = ex ln 2 ≈ e(.694... )x (1.19)

Conversion between log and ln is also simple:

ln x = (ln 10)(log x) ≈ (2.3026 . . . ) log x (1.20)

The numerical factor ln 10 = 2.3026 . . . pops up in some of the equations you will see
in chemistry and physics; in fact, many chemical equations you see with “log” in them
will actually have “2.3026 log”, essentially because the equation should really contain
ln.

1.4.2 Applications of Exponentials and Logarithms
� Nuclear Disintegrations and Reaction Kinetics

Exponentials play a useful role in understanding nuclear disintegrations and half-lives.
For example, 14C , a radioactive isotope of carbon used for “carbon dating,” has a half-
life t1/2 = 5730 years before it converts into stable 14 N . This means that the number



14 Chapter 1 The Tools of the Trade: Mathematical Concepts

N of carbon-14 atoms in a sample will satisfy the following relationships:

N (t1/2) = N (0)/2; N (t1/2) = N (0)/4 : N (3t1/2) = N (0)/8
(1.21)

Half of the sample will be left after t1/2 = 5730 years; half of what is left will decay in
another 5730 years (in other words, one-quarter will be left after 2t1/2 = 11460 years),
and so forth. More generally,

N (t) = N (0)2−t/t1/2 (1.22)

Using Equation 1.19 this can also be written as

N (t) = N (0)e−kt ; k = (.694 . . . )/t1/2 (1.23)

Written in this form, k is called the rate constant. Rate constants also appear in
chemical kinetics. For instance, in Chapter 4 we will show that the rate of a unimolecu-
lar reaction (such as an internal rearrangement of some atoms within a single molecule)
changes with temperature according to the equation

k = A exp (−Ea/kB T ) (1.24)

Here kB = 1.38 × 10−23 J · K−1 is a numerical constant called Boltzmann’s constant.
The parameters A and Ea depend on the specific chemical reaction.

� Hydrogen Ion Concentrations
A very broad range of hydrogen ion concentrations is encountered in chemical reac-
tions. A 1M solution of hydrochloric acid, a very strong acid, has a hydrogen ion con-
centration ([H+]) of about 1M. A 1M solution of sodium hydroxide (NaOH) has a hy-
droxide ion concentration ([OH−]) of about 1M, and since the product [H+][OH−] =
10−14 M2 in water at 25C, the hydrogen ion concentration is about 10−14 M.

Rather than dealing with such a wide concentration range, we usually express hy-
drogen ion concentration (acidity) by the pH:

pH = − log [H+] (1.25)

With this definition, pH = 0 for a 1M HCl solution, and pH = 14 for a 1M NaOH
solution.

The choice of pH as the usual measure of acidity is more than just a practical con-
venience. Voltages generated by electrochemical cells are generally proportional to the
log of the concentration. Electrochemical devices that measure hydrogen ion concen-
tration (pH meters) are readily available, and such a device could readily measure either
the 1M or the 10−14 M concentrations mentioned above. This does not imply, however,
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that the 1M concentration can be measured to 10−14 M accuracy! A typical pH meter
will be accurate to about .01 units over this entire range.

PROBLEMS �
In this chapter and all other chapters, answers to the starred problems can be found in
the Answer Key at the end of the book.

Units of Measurement

1-1.� Find the volume of exactly one mole of an ideal gas at “standard temperature and
pressure” (T = 273.15K, P = 1 atm = 101325 Pa).

1-2. Einstein’s famous formula E = mc2, which shows that mass can be converted into
energy, is written in SI units. Determine how much energy (in Joules) is created
by the destruction of one gram of matter. Compare this to the energy liberated by
the combustion of one gram of gasoline (50 kJ).

1-3.� The volume per silicon atom in crystalline silicon can be measured spectroscop-
ically. There are eight atoms in the “unit cell,” which is a cube with side length
543.10196 pm. The density of crystalline silicon is 2.3291 g · mL−1. The atomic
weight of naturally occurring silicon is 28.086 g · mol−1. Show how these num-
bers can be combined to give Avogadro’s number.

1-4. Find the correct value for the ideal gas constant R (including the units) when pres-
sure is expressed in Torr, volume is expressed in cubic centimeters, and tempera-
ture is expressed in degrees Kelvin.

Applications of Functions in Chemistry

1-5.� Silver chloride is much more soluble in boiling water (Ksp = 2.15 × 10−8 at T =
100C) than it is at room temperature (Ksp = 1.56 × 10−10). How much silver
chloride is dissolved in 1L of a saturated solution at 100C?

1-6. How much silver chloride can be dissolved in 1L of a 0.1M sodium chloride solu-
tion at 100C? Explicitly state the approximation you are using to solve this prob-
lem, and show that the approximation is valid.

1-7.� Using a computer or graphing calculator, determine the amount of silver chloride
which can be dissolved in 1L of a 10−4 M sodium chloride solution at 100C.

1-8. Lead iodide (PbI2) dissolves in water with solubility product

Ksp = [Pb+2][I−]2 = 1.39 × 10−8

at 25C. How much lead iodide is present in 1L of a saturated solution?

1-9.� How much lead iodide can be dissolved in 1L of a 1M sodium iodide solution at
25C? Explicitly state the approximation you are using to solve this problem, and
show that the approximation is valid.
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1-10. Using a computer or graphing calculator, determine the amount of lead iodide
which can be dissolved in 1L of a .001M sodium iodide solution.

Vectors and Directions

1-11.� A particle is located along the x-axis in a Cartesian coordinate system, 1 unit from
the origin. Find its position in spherical coordinates.

1-12. A particle at the position (r, θ, φ) = (1, π/4, π/2). Find its position in Cartesian
coordinates.

1-13. Find the geometrical object described by each of the following equations:
(a)� z = 2 (b) r = 6

(c)� φ = π/4 (d) θ = 0

(e)� θ = π/4 (f) θ = π/2

Trigonometric Functions

1-14. Two very useful formulas for converting between sines and cosines of different
angles are:

sin(θ1 + θ2) = sin θ1 cos θ2 + cos θ1 sin θ2

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2

Use these relations and the definition of the sine and cosine (see Figure 1.1) to find
the sine and cosine for θ = 0, π/4, π/2, 3π/4, π , 5π/4, 3π/2, 7π/4, 2π .

1-15. Light rays bend when they pass from one substance to another (for example, from
water into air; see the figure below). The equation which describes the change in
direction (called Snell’s Law) is n1 sin θ1 = n2 sin θ2. Here θ1 and θ2 are the angles
the light makes with a perpendicular to the surface, as shown in the diagram. The
numbers n1 and n2 (the indices of refraction of the materials) are tabulated in ref-
erence books. The values in the figure are for yellow light and room temperature.

substance 2
(air, n =1.0002765)

substance 1
(water, n =1.33335)

2

1

(a)� Find θ2 if θ1 = 45◦.
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(b) Show that if θ1 exceeds a certain value for light going from water to air (called
the critical angle θc), Snell’s law cannot be satisfied. In this case the light gets
completely reflected instead of transmitted (this is called total internal reflection).
Show also that Snell’s law can always be satisfied for light going from air to water.

(c) Find θc for this system.

1-16. Over what range and domain can the arctangent function be defined if we want it
to be monotonically increasing (e.g., arctan(θ2) > arctan(θ1) if θ2 > θ1)?

1-17.� Over what range and domain can the arcsine function be defined if we want it to
be monotonically increasing?

Exponentials and Logarithms

1-18. Why is the restriction to x > 0 necessary in Equations 1.15 and 1.16?

1-19. Without using a calculator, given only that log 2 = 0.301 (and of course log 10 =
1), find the following logs:
(a)� log 4 (b) log 40

(c)� log 50 (d) log 0.025

Other Problems

1-20. At 25C, the ionization constant Kw = [H+][OH−] for pure water is 1.00 × 10−14;
at 60C, Kw = 9.6 × 10−14. Find the pH of pure water at both temperatures.

1-21. Tritium (hydrogen-3) is used to enhance the explosive yield of nuclear warheads.
It is manufactured in specialized nuclear reactors. The half-life of tritium is 12.3
years. If no new tritium were produced, what fraction of the world’s supply of
tritium would exist in 50 years?

1-22. The Shroud of Turin is a length of linen that for centuries was purported to be the
burial garment of Jesus Christ. In 1988 three laboratories in different countries
measured the carbon-14 content of very small pieces of the Shroud’s cloth. All
three laboratories concluded that the cloth had been made sometime between AD

1260 and AD 1390.

(a) If these results are valid, how much less carbon-14 is there in the Shroud than
in a new piece of cloth? Use the midpoint of the age range (AD 1325) and use 5730
years for the half-life of carbon-14.

(b) If the Shroud dated from the crucifixion of Jesus (approximately AD 30), how
much less carbon-14 would there be in the Shroud than in a new piece of cloth?

(c) It has very recently been proposed that the radiocarbon dating measurement
might be in error because mold has grown on the Shroud over the years. Thus the
measured carbon-14 content would be the average of new organic material and the
old Shroud, and the Shroud would appear more recent.

Assume that the Shroud actually dates from AD 30, that the mold has the same
percentage carbon content as the linen, and that the mold all grew recently (so that
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it looks new by carbon-14 dating). How many grams of mold would there have to
be on each gram of Shroud linen to change the apparent origin date to AD 1325?
(Mold was not apparent on the tested samples.)

1-23. Organic chemists use a common “rule of thumb” that the rate of a typical chemical
reaction doubles as the temperature is increased by ten degrees. Assume that the
constants A and Ea in Equation 1.24 do not change as the temperature changes.
What must the value of Ea (called the activation energy) be for the rate to double
as the temperature is raised from 25C to 35C?

1-24. Balancing chemical reactions is an application of solving multiple simultaneous
linear equations. Consider, for example, the complete combustion of one mole of
methane to produce carbon dioxide and water:

CH4 + xO2 −→ yCO2 + zH2O

Since atoms are not transmuted under normal chemical conditions, this can be bal-
anced by equating the number of carbon, hydrogen, and oxygen atoms on each side

1 = y(carbon); 4 = 2z(hydrogen); 2x = 2y + z(oxygen)

These equations can be solved by inspection: x = 2, y = 1, z = 2.
However, a balanced equation tells us nothing about the physical reaction path-

way, or even whether or not a reaction is possible—balancing is essentially alge-
bra. Sometimes there is not even a unique solution. To see this, balance the fol-
lowing equation:

CH4 + xO2 −→ wCO + yCO2 + zH2O

using π/2 moles of oxygen per mole of methane. It turns out that any value of
x within a certain range will give a valid balanced equation (with all coefficients
positive); what is this range?
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Sir Isaac Newton (1642–1727)

Perhaps the most remarkable feature of modern chemical theory is the seamless transi-
tion it makes from a microscopic level (dealing directly with the properties of atoms)
to describe the structure, reactivity and energetics of molecules as complicated as pro-
teins and enzymes. The foundations of this theoretical structure are based on physics
and mathematics at a somewhat higher level than is normally found in high school.
In particular, calculus provides an indispensable tool for understanding how particles
move and interact, except in somewhat artificial limits (such as perfectly constant ve-
locity or acceleration). It also provides a direct connection between some observable
quantities, such as force and energy.

This chapter highlights a small part of the core material covered in a first-year cal-
culus class (derivatives and integrals in one dimension). The treatment of integrals
is particularly brief—in general we do not explicitly calculate integrals in this book.
However, we will often tell you the value of some integral, and so we will very briefly
summarize integration here to help you understand the concept.

2.1 DERIVATIVES
2.1.1 Definition of the Derivative
Suppose we have some “smoothly varying function” y = f (x) which might look like
Figure 2.1 when graphed (y = f (x) on the vertical axis, x on the horizontal axis).

19
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There is a formal definition of a “smoothly varying function”, but for our purposes,
what we mean is that the curve has no breaks or kinks.

We can draw a unique tangent line (a straight line whose slope matches the curve’s
slope) at each point on the curve. Recall that the slope of a line is defined as the amount
y changes if x is changed by one; for example, the line y = 3x +6 has a slope of three.

Three of these tangent lines are drawn on the curve in Figure 2.1. You can see qual-
itatively how to draw them, but you cannot tell by inspection exactly what slope to use.
This slope can be found by looking at two points x0 and x0 +	x , where 	x (the sepa-
ration between the two points, pronounced “delta x”) is small. We then determine the
amount 	y = f (x0 + 	x) − f (x) that the height of the curve changes between those
two points. The ratio 	y/	x approaches the slope of the tangent line, in the limit that
	x is very small, and is called the derivative dy/dx . Another common shorthand is to
write the derivative of f (x) as f ′(x).

The mathematical definition of the derivative is:

dy

dx

∣∣∣∣
x=x0

= lim
	x→0

(
	y

	x

)
= lim

	x→0

(
f (x0 + 	x) − f (x0)

	x

)
(2.1)

The “d” in dy and in dx means “	 in the limit of infinitesimally small changes.”
The “|x=x0 ” in Equation 2.1 just means “evaluated at the point x = x0.” The restriction
	x → 0 is very important; the expression in Equation 2.1 will only give the slope of
the tangent line in that limit. You can see from the illustration in Figure 2.1 that a line
drawn through the two points x0 and (x0 + 	x) would be close to the tangent curve,
but not on top of it, because 	x is not arbitrarily small.

Much of the first semester of calculus is devoted to understanding what is meant by
a “smoothly varying function,” and finding the derivatives of various functions. For

y = f(x)

f(x0+ x)

x0

x0+ x

x

f(x0)

FIGURE 2.1 � Graph of an arbitrary function f (x). The dashed lines show tangent curves at
several points. The slope of the tangent line (called the derivative) can be found by drawing a line
between two very close points (here x0 and x0 + 	x).
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example, suppose y = x3:

d(x3)

dx

∣∣∣∣
x=x0

= lim
	x→0

(
(x0 + 	x)3 − x3

0

	x

)
= lim

	x→0

(
x3

0 + 3(	x)x2
0 + 3(	x)2x0 + (	x)3 − x3

0

	x

)
= lim

	x→0
(3x2

0 + 3(	x)x0 + (	x)2) (2.2)

= 3x2
0 (2.3)

The last two terms are dropped in going from Equation 2.2 to Equation 2.3 because they
vanish as 	x approaches zero. We could also just say “d(x3)/dx = 3x2,” leaving out
the part which implied that the derivative is actually evaluated at x = x0.

2.1.2 Calculating Derivatives of General Functions
The direct approach to calculating a derivative (explicitly using Equation 2.1) gets quite
tedious for more complicated functions, but fortunately it is virtually never necessary.
For example, the functions we encountered in the last chapter have quite simple deriva-
tives:

d(xn)

dx
= nxn−1 (2.4)

d(sin x)

dx
= cos x (2.5)

d(cos x)

dx
= − sin x (2.6)

d(tan x)

dx
= 1

cos2 x
(2.7)

d(ex)

dx
= ex (2.8)

d(ln(x))

dx
= 1

x
(2.9)

Incidentally, Equations 2.8 and 2.9 are much simpler than the corresponding equa-
tions in other bases:

d(10x)

dx
= (2.3023 . . . )(10x);

d(log(x))

dx
= 1

(2.3023 . . . )x
(2.10)

The extra factor of ln 10 = 2.3023 . . . in these equations makes base-10 much less
convenient. The very simple relationship between an exponential with base e and its
derivative is the reason that base is so important, even though e ≈ 2.7183 . . . is an
irrational number.
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Four general relations are widely used to calculate derivatives of more complicated
functions. In the next few equations, f (x) and g(x) are two possibly different functions
of x , and C is any numerical constant. All of these relations are discussed in the first
semester of calculus.

• Relation 1: Multiplying a function by any constant multiplies the derivative by
the same constant.

d(C f (x))

dx
= C

d f (x)

dx
(2.11)

Examples:

a) d(3x3)/dx = 3d(x3)/dx = 9x2

b) d(6 sin θ)/dθ = 6 cos θ

• Relation 2: The sum of two functions has a derivative that is equal to the sum of
the two derivatives.

d( f (x) + g(x))

dx
= d f (x)

dx
+ dg(x)

dx
(2.12)

Examples:

a) d(x3 + x2)/dx = d(x3)/dx + d(x2)/dx = 3x2 + 2x
b) d(x2 + C)/dx = d(x2)/dx + d(C)/dx = 2x + 0 = 2x

The second example above illustrates an important point: adding a constant to
any function does not change its derivative.

• Relation 3: The product of two functions has a derivative which is related to the
derivatives of the individual functions by the expression

d( f (x)g(x))

dx
= f (x)

dg(x)

dx
+ g(x)

d f (x)

dx
(2.13)

Examples:

a) To find the derivative d f (x)/dx of the function f (x) = x2 sin x let
f (x) = sin x and g(x) = x2 in Equation 2.13. Then we have:

d(x2 sin x)

dx
= (sin x)

(
d(x2)

dx

)
+ (x2)

(
d(sin x)

dx

)
= 2x sin x + x2 cos x

b)
d((sin x)/x)

dx
= cos x

x
− sin x

x2
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c)
d(xex)

dx
= xex + ex

• Relation 4: The derivative of complicated functions can be reduced to the deriva-
tives of simpler function by the chain rule:

d( f (y))

dx
=

{
d( f (y))

dy

} {
dy

dx

}
(2.14)

The chain rule looks deceptively simple but is extremely powerful. For example:

1. To find the derivative d f (x)/dx of the function f (x) = sin 2x , let y = 2x
and f (y) = sin y. Then we have:

d f (y)

dy
= cos y = cos 2x

dy

dx
= 2

d(sin 2x)

dx
= 2 cos 2x

2. To find the derivative of f (x) = e−Cx2
let y = −Cx2 and f (y) = ey in

Equation 2.14. Then we have:

d f (y)

dy
= ey = e−Cx2

dy

dx
= −2Cx

d(e−Cx2
)

dx
= −2Cxe−Cx2

2.1.3 Second and Higher Derivatives
The derivative dy/dx of a function y = f (x) is also a function, which in turn has its
own derivative. This second derivative gives the slope of the tangent curves to dy/dx .
It is generally written as d2 y/dx2 or f ′′(x). It is calculated by applying the definition
of a derivative (Equation 2.1) two separate times. Thus, to find the second derivative
of the function y = x3, recall that we showed the first derivative is 3x2 (Equation 2.3).
Equation 2.4 showed that the derivative of x2 is 2x . Equation 2.11 then implies that the
derivative of 3x2 is 6x . Therefore, we have

d2 y

dx2

∣∣∣∣
x=x0

= d

dx

dy

dx

∣∣∣∣
x=x0

= d(3x2)

dx

∣∣∣∣
x=x0

= 6x0 (2.15)

Third, fourth, and higher derivatives are defined in a similar way.
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2.2 APPLICATIONS OF DERIVATIVES
Why do we care about derivatives in a chemistry course? There are several reasons:

2.2.1 Finding Maxima and Minima
At the local peaks and valleys (called maxima or minima) of any smoothly varying
function, dy/dx = 0. You will see formal proofs in calculus class, but the basic reason
is simple. The tangent at the peak point or at the bottom of the valley must be horizontal.
You can see that this is true by looking at Figure 2.1. More quantitatively, suppose
dy/dx > 0 (sloping up to the right); then moving to a slightly larger value of x must
increase y. Suppose dy/dx < 0 (sloping up to the left); then moving to a slightly
smaller value of x must increase y. In either case, the initial value of x could not have
been the maximum.

We will often derive specific expressions in this book (for example, the speed distri-
bution of a monatomic gas at room temperature), and it is much easier to find the max-
imum values by differentiation than by graphical methods. Incidentally, in the book
Surely You’re Joking, Mr. Feynmann1 , Richard Feynmann’s frat brothers at MIT are
musing over the strangely shaped drafting tools called “French curves,” and trying to
figure out how the shape is chosen. Feynmann tells them they are special curves—
however you hold them, the tangent line to the point at the bottom of the curve is hor-
izontal. Try that one on your more gullible friends . . . .

If the second derivative is positive at a point where the first derivative is zero, the
point is a minimum; if the second derivative is negative, the point is a maximum. If the
second derivative is also zero, dy/dx = 0 does not necessarily imply a maximum or a
minimum. For instance, the function y = x3 has dy/dx = 0 at x0 = 0.

2.2.2 Relations Between Physical Observables
In physics and chemistry, many quantities are directly related by differentiation. We
will give only a few examples here:

• The rate of change of position with respect to time is the velocity (vx = dx/dt).
The rate of change of velocity with respect to time is acceleration (ax =
dvx/dt = d2x/dt2). Thus calculus provides a very natural language for de-
scribing motions of particles, and in fact Newton’s famous laws of motion are
best expressed in terms of derivatives (he was one of the inventors of calculus as
well). We will discuss Newton’s laws in Chapter 3.

• Current, charge, and voltage are extremely important quantities in electrical cir-
cuits, including those formed in electrochemical experiments. The rate of change
of total charge Q with respect to time is the current (I = d Q/dt). The voltage

1A must-read for any science student—it is the autobiography of Richard Feynmann, Nobel laureate in Physics
and one of the most interesting personalities in twentieth century science.
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across a capacitor, such as two metal plates separated by air, is proportional to
the charge (V = Q/C , where C is the capacitance). The voltage across a re-
sistor is proportional to the current (V = I R). The voltage across an inductor,
such as a coil of wire, is V = −L d I/dt = −L d2 Q/dt2, where L is called the
inductance.

2.2.3 Kinetics of Chemical and Radioactive Processes
The rate of change of concentration of some species A (e.g., d[A]/dt) is a measure of
the rate of chemical reaction. Most of the equations in chemical kinetics are differential
equations meaning they involve at least one derivative. In addition, nuclear disintegra-
tions (such as 14C−→ 14N+e−) use the same rate equations as do many unimolecular
decompositions (such as N2O4 −→ 2NO2).

In the nuclear case, one electron is emitted for each 14C that disintegrates. The total
number of emitted electrons per unit time is proportional to the number of 14C present
at that time (N (t), as we defined it in Section 1.4).

# of disintegrations per unit time = −d N (t)

dt
= k N (t) (2.16)

Note the minus sign. Each disintegration decreases the total number of carbons. One
solution to this differential equation is apparent from Equation 2.8, which shows that
the derivative of an exponential is proportional to itself. You can readily use Equa-
tion 2.8 to verify that

N (t) = N (0) exp(−kt) (2.17)

is a solution to Equation 2.16; in fact it is the only solution.

2.2.4 Quantum Mechanics
We will discuss quantum mechanics extensively in Chapters 5 and 6. It provides
the best description we have to date of the behavior of atoms and molecules. The
Schrödinger equation, which is the fundamental defining equation of quantum mechan-
ics (it is as central to quantum mechanics as Newton’s laws are to the motions of par-
ticles), is a differential equation that involves a second derivative. In fact, while New-
ton’s laws can be understood in some simple limits without calculus (for example, if a
particle starts at x = 0 and moves with constant velocity vx , x = vx t at later times), it is
very difficult to use quantum mechanics in any quantitative way without using deriva-
tives.

2.2.5 Approximating Complicated Functions
Another common application of derivatives is to generate a simple approximation to
some complicated function f (x). We can rearrange Equation 2.1 and substitute y =
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f (x) to give:

f (x0 + 	x) = f (x0) + (	x)
d f (x)

dx

∣∣∣∣
x=x0

(limit 	x → 0)

If 	x is not infinitesimal, but is “sufficiently small,” it must be true that

f (x0 + 	x) ≈ f (x0) + 	x
d f (x)

dx

∣∣∣∣
x=x0

(2.18)

Equation 2.18 is actually the first term in what is known as a Taylor series, which can
be extended to include higher derivatives as well for a better approximation. The more
general expression is:

f (x0 + 	x) = f (x0) + 	x
d f (x)

dx

∣∣∣∣
x=x0

+ (	x)2

2

d2 f (x)

dx2

∣∣∣∣
x=x0

+ · · · (	x)n

n!

dn f (x)

dxn

∣∣∣∣
x=x0

+ · · · (2.19)

where n! (called “n factorial”) = 1 ·2 ·3 . . . n is the product of all integers up to n if n >

0; 0! = 1. You may have encountered this expression in high school algebra; it also
gives the coefficients in front of the different terms in the expansion of (a + b)n . This
equation is only useful if the terms eventually get progressively smaller. Fortunately,
many simple functions converge quickly to their Taylor expansions. As an example,
from Equation 2.8, the derivative of ex is also ex , so d(ex)/dx |x=0 = 1. Therefore, if
x0 = 0 in Equation 2.18,

ex ≈ 1 + x (x � 1) (2.20)

where we have replaced “	x” with “x” for simplicity because we will not be looking
at the limit as this term approaches zero. The full expression in Equation 2.19 is very
easy to find, because all of the higher derivatives of ex are also ex :

ex = 1 + x + x2

2
+ x3

6
+ · · · + xn

n!
+ · · · (2.21)

The ratio of the nth term in Equation 2.21 to the immediately preceding term is x/(n −
1). So if x � 1, each term is much smaller than the one before it, and the series con-
verges rapidly. For example, if x = 0.01, e0.01 = 1.010050167, which differs only
slightly from the value of 1.01 predicted by Equation 2.20.

If x > 1 the series starts out with growing terms, but no matter how large a number
we choose for x , x/n � 1 for large enough n. Thus eventually the terms start getting
progressively smaller. In fact this series converges for all values of x .

Taylor series for the sine and cosine function are also often useful:

sin x = x − x3

3!
+ x5

5!
· · · + (−1)n x2n+1

(2n + 1)!
+ · · · (2.22)
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cos x = 1 − x2

2!
+ x4

4!
· · · + (−1)n x2n

(2n)!
+ · · · (2.23)

Notice that the expansion for the cosine contains only even powers of x , which is ex-
pected since cos(−x) = cos x , and this is only true for even powers; the expansion for
the sine contains only odd powers of x .

Sometimes the Taylor series only converges for a specific domain of x values. For
example, the Taylor series expansion of ln(1 + x) (Problem 2-7) only converges for
|x | < 1. There are even bizarre functions which do not converge at all to their Tay-
lor series expansions. In practice, however, such pathological cases are almost never
encountered in physics or chemistry problems, and Taylor series expansions are a very
valuable tool.

Another example is useful for simplifying polynomials:

1/(1 + x)n ≈ 1 − nx (x � 1) (2.24)

2.3 PRINCIPLES OF INTEGRATION
Just as logarithms and exponentials are inverse operations, integration is the inverse
of differentiation. The integral can be shown to be the area under the curve in the same
sense that the derivative is the slope of the tangent to the curve. The most common ap-
plications of integrals in chemistry and physics are normalization (for example, adjust-
ing a probability distribution so that the sum of all the probabilities is 1) and calculation
of the expectation values of observable quantities.

The curve in Figure 2.2 shows the simple function y = f (x) = 3x2. The area

y 
=

 3
x2

FIGURE 2.2 � Integration gives the area under a curve between two points. Left: the shaded
area is the integral of f (x) from x1 to x2. Right: the area can be approximated by adding the areas
of a large number of rectangles. This is called numerical integration.
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under the curve between x1 and x2, shaded on the left side of the figure, is written as

x2∫
x=x1

f (x) dx (2.25)

This expression is called “the integral of f (x) from x1 to x2.” The
∫

sign signifies an
integral. The upper limit is written above the integral sign; the lower limit is below.

One way to approximate the area under the curve would be to replace the compli-
cated shape on the left hand side of Figure 2.2 with the series of rectangles on the right.
For example, to get the area between x = 2 and x = 4, we could break up that range
into four boxes, each 0.5 units wide, and each with a height which matches the curve
at the middle of the box. The total area of these boxes is 55.875 square units. As we
increase the number of boxes, the approximation to the exact shape becomes better,
and the total area changes. In this case, with a very large number of boxes, the area
approaches 56 square units.

Usually, however, we would prefer to have an explicit functional form for the in-
tegral. Since integration is the inverse operation of differentiation, this means that to
integrate f (x) we need to find a function whose derivative is f (x). This new function
is called the antiderivative. The difference between the values of this antiderivative
function at the two extreme limits of the area gives the value of the integral. For ex-
ample, we already showed (Equation 2.3) that the derivative of x3 is 3x2, so x3 is an
antiderivative of 3x2. Thus we have:

4∫
x=2

3x2 dx = x3
∣∣x=4

x=2 = (4)3 − (2)3 = 56 (2.26)

The expression “|x=4
x=2” means “evaluated at x = 4, minus the value at x = 2.”

Since the derivative of any constant is zero, the antiderivative can only be deter-
mined up to an added constant. For example, the functions f (x) = x3, f (x) = x3+12,
and f (x) = x3 −3 all have the same derivative (d f (x)/dx = 3x2). But if you redo the
integration in Equation 2.26 using either of these other functions as the antiderivative,
you end up with the same answer for the integral. This means that the additive constant
can be chosen to be whatever value is convenient, which will be quite important when
we consider potential energy in Chapter 3.

One useful general relationship involving integrals is:∫
α f (x) dx = α

∫
f (x) dx (α any constant) (2.27)

Thus doubling the height of a curve (setting α = 2 on the left side of Equation 2.27)
doubles the area under the curve (setting α = 2 on the right). We left out the limits of
integration, because this result is true no matter what the limits are.
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Appendix B lists some commonly used integrals. In general, integration is much
harder than differentiation. Fortunately, there are standard reference books with tables
of integrals, which fit into two different categories. Indefinite integrals give expres-
sions which do not depend on the limits of integration. For example, the first entry in
Appendix B is ∫

xn dx = xn+1

n + 1
, n �= −1 (2.28)

which simply states that xn+1/(n + 1) is an antiderivative of xn; once again, any con-
stant can be added to the right hand side. To evaluate the integral in Equation 2.26 using
this relation, note that Equation 2.28 with n = 2 would give the integral of x2 (= x3/3).
To get the integral of 3x2, combine this result with Equation 2.27.

Appendix B also lists some functions integrated for specific limits: these are called
definite integrals. Perhaps the most important of these functions, which we will use
extensively in later chapters, is f (x) = exp(−x2/2σ 2) (Figure 2.3). This function is
called a Gaussian. The constant σ adjusts the width of the curve ( f (x) is very small
if x 
 σ ) and is called the standard deviation.

It is possible to prove that

x=∞∫
x=−∞

exp(−x2/2σ 2) dx = σ
√

2π (2.29)

However, no simple function gives the area between arbitrary limits. This integral is
so fundamental that its value, numerically integrated by computers to high accuracy, is
given its own name—it is called the error function and is discussed in Chapter 4.

For tables of integrals see: references [1] and [2].
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FIGURE 2.3 � The Gaussian function, f (x) = exp(−x2/2σ 2).
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PROBLEMS �
Calculating Derivatives

2-1.� Find dy/dx if y = 6 − 2x − x2. Use two different approaches—first evaluate this
derivative explicitly, as in Equation 2.3; then use the relations listed in Equations
2.4, 2.11 and 2.12.

2-2. Find the value of x which maximizes the function y = 6 − 2x − x2.

2-3.� Use the rules for differentiation in this chapter to find d f (x)/dx for the following
functions:
(a) f (x) = sin2 x (b) f (x) = ln(6x)

2-4. Use the rules for differentiation in this chapter to find d f (x)/dx for the following
functions:
(a) f (x) = (cos x)(sin x) (b) f (x) = e−6x

2-5.� Find the first nonzero term in the Taylor series expansion for the function in (1+x).
Use this expansion to evaluate ln 1.01, and compare your answer to the exact value.

2-6. Find the error made by the approximation 1/(1 + x)n ≈ 1 − nx (nx � 1) for
x = 0.01 and n = 2, and for x = 0.01 and n = 50.

2-7.� Find the full Taylor series expansion for the function ln(1 + x) (Hint: first find a
general expression for the nth derivative of the function).

2-8. Use the first term in the Taylor series (Equation 2.18 to prove Equation 2.24.

2-9.� Evaluate the following integrals without using an integral table:

(a)
x=π/2∫
x=0

sin x dx

Hint: Use Eqns. 2.4 to 2.9 to determine what function has sin x as its derivative.

(b)
x=1∫

x=0
e2x dx

Hint: Use Eqns. 2.4 to 2.9 to determine what function has e2x as its derivative.

2-10. Evaluate the following integrals without using an integral table:

(a)
x=π/2∫
x=0

sin x dx (b)
x=1∫

x=0
e2x dx

2-11.� Use Equation B-18 from the table in Appendix B⎛⎝ x=∞∫
x=−∞

e−x2/2σ 2
dx = σ

√
2π

⎞⎠ ,

plus the fact that the function e−x2/2σ 2
is symmetric about x = 0, to evaluate the

integral
x=∞∫
x=0

e−ax2
dx (note the different lower limit).
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2-12. Use Appendix B and Equation 2.27 to evaluate the following integrals:

(a)
x=2π∫
x=0

sin2 x dx (b)
x=∞∫

x=−∞
2 exp(−x2/8) dx

2-13.� Many chemical species undergo dimerization reactions. For example, two
molecules of butadiene, C4H6, can combine to form the dimer C8H12. Often such
reactions go almost to completion, because the product is more stable than the re-
actant. Starting with a sample of pure butadiene at time t = 0, the concentration
of butadiene at a later time t ([C4H6](t)) is given by the expression:

1

[C4H6](t)
= 1

[C4H6](t = 0)
+ kt

(a) Find an expression for the rate of change of butadiene concentration d[C4H6](t)
dt .

The correct expression only contains [C4H6](t) and k.

(b) How long does it take for the concentration of butadiene to fall to half of its
initial value?

2-14. Some chemical reactions obey what is called a “zero-order rate law”—the rate of
the reaction is independent of concentration, for a limited time. A typical example
might be an enzyme which has a limited number of “active sites,” but which binds
the reactant so tightly that all the sites are filled if any significant concentration of
the reactant is present in solution. Writing the concentration of the reactant as [A],
this means that d[A]/dt = −k.

(a) Derive an expression for [A](t). Your expression should include the concen-
tration at time t = 0 and the rate constant k.

(b) How long does it take for the concentration of the reactant to fall to half its
initial value?

2-15. The Environmental Protection Agency has established a guideline for radon con-
centration in air of 4 picocuries per liter. One curie is defined as 3.7 × 1010

disintegrations per second, so this means one liter of air can have no more than
(4 × 10−12)(3.7 × 1010) = .148 radon disintegrations per second. For the isotope
of radon most commonly found in basements (222Rn) the half-life t1/2 is 3.82 days.
Use Equations 1.23 and 2.16 to determine how many radon atoms are in one liter
of air which just meets the EPA guidelines, and to determine the concentration of
radon in this air (one liter of air at 298K and atmospheric pressure contains about
2.4 × 1022 molecules).

2-16. The unit “curie” used in the last problem is named after Pierre and Marie Curie,
who did pioneering experiments with radium in the nineteenth century. One curie
(3.7 × 1010 disintegrations per second) is the decay rate of one gram of radium,
atomic mass 226 g · mol−1. What is the half-life of radium-226?



Essential Physical Concepts
for Chemistry

Science is divided into two categories: physics and stamp collecting.

Lord Ernest Rutherford (1871–1937)
Nobel Laureate in Chemistry (1908)

Lord Rutherford (who was indeed a physicist, as the quote implies) would have been
astonished to see this century’s transformation of biology from “stamp collecting” into
molecular biology, genomics, biochemistry and biophysics. This transformation oc-
curred only because, time and time again, fundamental advances in theoretical physics
drove the development of useful new tools for chemistry. Chemists in turn learned how
to synthesize and characterize ever more complex molecules, and eventually created a
quantitative framework for understanding biology and medicine.

This chapter introduces the core concepts of what is now called classical physics
(mechanics, electricity, magnetism, and properties of waves). Today we think of clas-
sical physics as a special case in a more general framework which would include rel-
ativistic effects (for particles with velocities which approach the speed of light) and
quantum effects, which are needed for a complete description of atomic behavior.
Nonetheless, we will find that this classical perspective (with a few minor corrections)
serves as an excellent starting point for understanding many atomic and molecular
properties.

The motions of macroscopic objects (planets or billiard balls) are well described by
laws of motion first derived by Sir Isaac Newton in the seventeenth century. Because
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Newton’s laws long predated relativity and quantum mechanics, we often also call this
description classical mechanics.

Forces play the central role in the usual formulation of classical mechanics. Forces
are vector quantities (they have both direction and magnitude), as discussed in Chap-
ter 1. At a fundamental level, physicists are aware of four distinct forces. The strong
force and weak force are extremely short range, but are responsible for holding nuclei
together. The electromagnetic force exerted on particle 1 by particle 2 (which we write
as �F1,2(r)) is pointed along a unit vector r̂1,2 from particle 2 to particle 1 (Figure 3.1).
The force depends explicitly on the separation r between the two particles. In SI units,
the full expression is

�F1,2(r) =
{

q1q2

4πε0r2

}
r̂1,2 (3.1)

where q1 and q2 are the two charges and ε0 = 8.854×10−12 J−1· C2· m−1 is called the
permittivity of free space. The extra factor of 4π is explicitly written out (rather than
absorbed into the definition of ε0) to simplify some later equations in electromagnetic
theory. Notice that two particles with the same charge give a positive force, which by
the definitions in Figure 3.1 is a repulsion. Equation 3.1 is also called Coulomb’s law,
and the force itself is sometimes called the Coulombic force. This force is the most
important one for describing atomic and molecular interactions.

The final force, the gravitational force, is very similar mathematically to the elec-
tromagnetic force:

�F1,2(r) =
{−Gm1m2

r2

}
r̂1,2 (3.2)

where G = 6.672×10−11 J · m · kg−2 is called the gravitational constant. Since masses
are always positive, this force is always negative, hence is attractive. The gravitational
attraction between a proton and an electron is many orders of magnitude smaller than
the Coulombic attraction (Problem 3-1).

r

r1,2
^ 2

1

� The electromagnetic or gravitational force between two particles lies along a
vector between the particles.
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Forces are important because they affect motion. Motion can be described by the
velocity vector �v, or by the momentum vector �p = m�v. The effects are described quan-
titatively by Newton’s laws, which can be paraphrased as follows:

1. In the absence of external forces, the momentum of an object stays constant in
direction and magnitude;

2. Force is the derivative of momentum with respect to time. Since �p = m�v, we
can write:

�F = d �p
dt

= d(m�v)

dt
= m

d �v
dt

= m�a = m
d2�r
dt2

(3.3)

3. The force exerted on object i by object j (which we will write as �Fi, j ) is equal in
magnitude to the force exerted on object j by object i , and opposite in direction
( �Fi, j = − �Fj,i ).

Equation 3.3 uses the fact that velocity is the derivative of position with respect to
time, and acceleration is the derivative of velocity with respect to time. Equation 3.3 is
actually a vector equation. If the vectors are expressed in Cartesian coordinates (Sec-
tion 1.3) it is identical to the three equations

Fx = dpx

dt
= d(mvx)

dt
= m

dvx

dt
= max = m

d2x

dt2

Fy = dpy

dt
= d(mvy)

dt
= m

dvy

dt
= may = m

d2 y

dt2
(3.4)

Fz = dpz

dt
= d(mvz)

dt
= m

dvz

dt
= maz = m

d2z

dt2

Newton’s laws are valid in any inertial frame of reference. In other words, we can
examine the system while we are “at rest,” or while we are moving in any direction at
a constant velocity. The existence of inertial frames of reference is an assumption, but
objects in everyday experience (apples falling from trees, cars colliding on the freeway)
satisfy Newton’s laws quite well. Strictly speaking, the surface of the Earth does not
provide an inertial frame of reference: it rotates about its axis once a day and revolves
around the Sun once a year, so our instantaneous velocity is constantly changing its
direction. This correction is important for astronomical observations—stars appear to
move in circular paths in the night sky, and the forces on them from other stars are far
too small for Newton’s First Law to be so grossly violated. However, the correction
has only minor consequences for molecules or billiard balls.

Some of the consequences of these laws are general and easily derived. In any
closed system, which may contain a large number of objects but has no forces other
than the forces of interaction between these objects, the second and third laws imply
that any change to the momentum of object i because of interaction with object j is
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exactly opposite in direction to the change in momentum of object j . Thus the sum of
the momenta of objects i and j is unaffected by the force between them. This can be
generalized to show that the total momentum of the system �ptotal, which is the sum of
all of the individual momentum vectors

�ptotal = �p1 + �p2 + �p3 · · · + �pN =
N∑

i=1

�pi (3.5)

is unchanged by any of the interactions. We say that the total momentum is conserved,
or a constant of the motion.

Total momentum is not the only quantity that is conserved in a closed system. Another
quantity that is conserved is the total energy, but this is a subtler concept than momen-
tum conservation, because energy can be converted between many different forms. En-
ergy can be stored by moving against a force—it takes energy input as work to lift a
ball above a table, and then dropping the ball converts this energy input into a veloc-
ity. Energy can also leak out of a system in many different ways. For example, friction
converts kinetic energy into heat, and the collision of two billiard balls converts a small
amount of the kinetic energy into sound.

We will assume in this book that the force depends on only a single coordinate, such
as the distance between two particles, and points along that coordinate. Fortunately,
this is a very common case. Then we can account for motion against a force by defining
a potential energy function U (r) such that the derivative of U (r) gives the force:

F(r) = −dU (r)

dr
(3.6)

Note that Equation 3.6 does not use a vector symbol for the force; we already know its
direction from the assumption above (to within a sign). Also, the force must be conser-
vative, which means in practice that the energy required to move from point A to point
B depends only on the two positions, not on other factors such as velocity. Gravity and
the force between charges are conservative; friction is not.

Equation 3.6 implies that U (r) is the negative of the antiderivative of F(r), so
Equation 3.6 does not uniquely define U (r). A different potential energy function
V (r) = U (r) + C , where C is any numerical constant, would give the same force:

dV (r)

dr
= d(U (r) + C)

dr
= dU (r)

dr
+ dC

dr
= dU (r)

dr
(3.7)

In other words, adding a constant C to the potential energy function offsets it, but does
not change the slope (the derivative). How do we know the “right” value of C to use in
order to get the “real” potential energy? We don’t. Forces are directly observable (they
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cause acceleration). Differences in potential energy are also observable. Dropping a
ball off a table gives a final velocity that depends on the difference in potential energy
between the initial and final positions U (rinitial) − U (rfinal) , but not on either potential
energy by itself, and the unknown numerical constant C does not affect this difference.
Thus C has no effect on the time evolution, and is completely arbitrary. We usually
specify C to make U (r) = 0 at some convenient value of r .

Let’s explicitly consider a few common cases:

For an ideal spring

U (r) = k(r − r0)
2

2
; F(r) = −dU (r)

dr
= −k(r − r0) (3.8)

where k is the force constant of the spring and r0 is the length of the spring when it
is neither stretched nor compressed. We will see later that modeling chemical bonds
as springs gives a useful description of many molecular properties. The negative sign
in the expression for F(r) implies that the force always acts to compress an extended
spring, or extend a compressed spring.

The potential energy and force between two charged bodies (in SI units) is given by

U (r) = q1q2

4πε0r
; F(r) = −dU (r)

dr
= q1q2

4πε0r2
(3.9)

According to this definition of the potential energy, U (r → ∞) = 0, and the po-
tential energy is negative for oppositely charged bodies at a finite distance (q1q2 < 0).
Note that a coulomb is a large amount of charge, and it takes a tremendous amount of
energy to bring two one-coulomb charges within one meter.

The potential energy and the gravitational attractive force between two bodies (masses
m1 and m2) is given by

U (r) = −Gm1m2

r
; F(r) = −Gm1m2

r2
(3.10)

Applying Equations 3.9 and 3.10 for point charges and masses is easy; it is subtler
when the sizes of the objects are comparable to their separation. Part of the Earth is
immediately underneath your feet, so r is very small from that portion to your body.
However, the vast majority of the Earth’s mass is thousands of kilometers away. It can
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be shown that the net gravitational (or Coulomb’s law) attraction of a spherical shell on
anything outside the shell is the same as if all of the mass (or charge) were concentrated
exactly at the center. On the other hand, any object inside a spherical shell of charge or
mass feels no net force in any direction (Figure 3.2). These effects are very important
for multielectron atoms, as will be discussed in Chapter 6; electrons in orbitals that
place them close to the nucleus feel very little repulsion from electrons that are farther
from the nucleus.

The radius of the Earth at the Equator is 6,378 km, so r in Equation 3.10 changes
little as we move a short distance from the surface of the earth. The gravitational force
is almost the same on top of Mt. Everest as it is at sea level. This lets us approximate
the gravitational attraction to the Earth as:

F(r) = −Gm1mEarth

r2
≈ −Gm1mEarth

r2
Earth

= −m1g (3.11)

where g = GmEarth/r2
Earth = 9.8 m · s−2.

Recall that integration “undoes” differentiation, in the sense described in Chapter 1.
This means in turn that we integrate the force to get the difference in potential energy
between two positions, say r1 and r2:

U (r2) − U (r1) = −
r=r2∫

r=r1

F(r) dr (3.12)

Equation 3.12 is a form of the work-energy theorem. Moving in a direction opposed
to a force (such as raising a ball above the earth) requires work, which is stored as po-
tential energy; motion in the same direction as a force (for example, allowing the ball
to drop) reduces the potential energy. The right hand side of Equation 3.12 is the work
W done on the system. The work-energy theorem states that this work is equal to the
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� A positive charge inside a negatively charged spherical shell (left) feels no net
force in any direction; the shell has no effect on it. A positive charge outside a spherical shell (right)
feels a net force that is identical to what it would feel if all of the charge in the shell were
concentrated in its center. The same results hold for gravitation attraction.



Chapter 3

change in the potential energy of the system (the left-hand side). Again the force must
be conservative: rubbing sandpaper against a block of wood requires a work input, but
rather than changing the potential energy of the block, the work ends up as dissipated
heat.

For example, the work-energy theorem can be used to find the work done by ex-
panding a gas in a piston (Figure 3.3). Suppose Pint > Pext; recalling the definition of
pressure as force per unit area (P = F/A), this implies that there will be a net outward
force on the piston. Work has to be done on the surrounding gas as the piston is moved
outward from r = r1 to r = r2.

Work w done
on surroundings

= U (r2) − U (r1)

= −
r=r2∫

r=r1

F(r) dr = −
r=r2∫

r=r1

(−Pext · A) dr (3.13)

We can convert the change in piston position dr into a change in volume dV by
noting, from the geometry, that dV = A dr . Hence

w = −
r=r2∫

r=r1

(−Pext · A) dr =
∫

Pext · (A dr) =
V2∫

V =V1

Pext dV (3.14)

The internal pressure must exceed the external pressure for any useful work to be done.
Remember that result: it is as true for scientists as it is for gases.

Another application of Equation 3.12 is to express gravitational potential energy
in a simplified form for objects near the surface of the earth. Since the force in Equa-
tion 3.11 is nearly constant, we can approximate the potential energy change for raising

Pinternal Pexternal

Piston motion

� A piston with cross-sectional area A will move outward if Pinternal > Pexternal,
thereby doing work on the surroundings. The change in position dr becomes a change in volume
dV = A dr . The net work w done on the surroundings is given by Equation 3.14.
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an object a distance h = r − rEarth as:

U (rEarth + h) − U (rEarth) = −
r=rEarth+h∫
r=rEarth

(−mg) dr

= m gr |rEarth+h
rEarth

= mgh (3.15)

Now the convenient definition is that the potential energy is zero on the surface of the
Earth:

U (h) = mgh (near the surface of the earth) (3.16)

Often Newton’s laws predict periodic motion in simple systems. For example, a ball
supported from the ceiling by a spring, or a pendulum which is not too far from vertical,
will oscillate at a constant and predictable rate. If we connect two balls of comparable
mass by a spring and stretch the spring, the entire system will oscillate back and forth,
or vibrate.

Consider the ball on a spring, which we will assume moves only in the x-direction.
If we define x = 0 as the position where the spring just counterbalances the force of
gravity (so there is no net force or acceleration), we have:

F = ma = m

(
d2x

dt2

)
= −kx {from Equations 3.3 and 3.8} (3.17)

The second derivative of the position is proportional (with a minus sign) to the position
itself. There are only two functions which have this property:

d2 sin(ωt)

dt2
= −ω2 sin(ωt);

d2 (cos(ωt))

dt2
= −ω2 cos(ωt) (3.18)

x = 0

� Two systems that undergo simple harmonic motion if displacements are small
(left, pendulum; right, mass suspended by a spring).
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so the most general solution has the form

x = A cos(ωt) + B sin(ωt) (3.19)

where A and B are constants. The velocity and acceleration are found by differentia-
tion:

v = −ωA sin(ωt) + ωB cos(ωt)

a = −ω2 A cos(ωt) − ω2 B sin(ωt) = −ω2x (3.20)

Combining Equations 3.17 and 3.20 gives

ω =
√

k/m (harmonic motion, one moving mass) (3.21)

which is the rate of oscillation. Note that the units of ω are radians per second, so the
product ωt has units of radians. To convert to a frequency ν (cycles per second) we
divide by 2π :

ν = 1

2π

√
k/m (3.22)

Given some set of initial conditions (the initial position x(0) and the initial velocity
v(0)), we an determine A and B:

x(0) = A; v(0) = ωB (3.23)

(Be careful not to confuse the characters for frequency, ν—Greek “nu”— and velocity,
v—italic “v”.)

The equations above assume that only one end of the spring moves. If both ends
can move (as will happen if, for example, the “spring” is really a chemical bond con-
necting two atoms with similar masses m1 and m2) the expression becomes slightly
more complicated. If all we are interested in is the relative motion of the two masses,
the solutions looks exactly like Equations 3.21 to 3.23 with the mass replaced by μ =
m1m2/(m1 + m2).

ω =
√

k/μ; ν = 1

2π

√
k/μ; μ = m1m2/(m1 + m2)

(harmonic motion, two moving masses) (3.24)

The quantity μ has the same dimensions as the mass, and is called the reduced mass.
Note that if m1 � m2, μ ≈ m1, and Equation 3.24 reduces to Equations 3.21 to 3.23.

The collective motions of large numbers of particles often have properties which are
only loosely related to the particles themselves, and which are better described using



Section 3.4

very different concepts. As an example, sound waves are actually waves of gas pressure
(Figure 3.5) —the density of gas molecules is alternately slightly higher or lower than
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� Sound waves in air are waves of gas pressure. The positions of the maxima and
minima change with time. The waves travel at a characteristic speed s = λν determined by
properties of the air molecules and independent of wavelength or frequency.

the equilibrium value. The two simplest limiting cases are plane waves, for which the
amplitude varies in only one direction (Figure 3.5) and spherical waves, which have an
origin and spread out in concentric circles from that point. In each case, we can charac-
terize the wave by its wavelength (the separation between cycles), which is convention-
ally called λ. This disturbance travels at a characteristic speed s which is determined
by the medium. The energy is dictated by the size of the disturbance (the variation in
pressure from maximum to minimum), not by the speed (as it would be for a single
particle).

Traveling waves can also be described by their frequency ν, the number of full cy-
cles which pass a given point in one second. Just as in Chapter 1, we can also define
an angular frequency ω = 2πν, the number of radians that pass a given point in one
second. The length of one cycle, multiplied by the number of cycles which pass any
given point in one second, will give the total distance the wave travels in one second
which means

λν = s (Wavelength × Frequency = Speed) (3.25)

The threshold of hearing corresponds to a pressure variation of about 2×10−10 atm.
Such a wave has a power density of 10−20 W ·m−2. The typical human ear responds
comfortably to pressures up to a factor of 106 greater than this threshold; at that point,
pain is usually felt. The sound waves most young adults can hear have frequencies
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from roughly 20 cycles per second (20 Hz; very deep bass) to 20,000 cycles per second
(20 kHz; very high treble).

The speed of sound in air at room temperature is about 330 m · s−1 independent of
wavelength. Thus, from Equation 3.25, most young adults can hear sound with wave-
lengths in air between 16.5 m and 16.5 mm. Small animals can generally hear higher
frequencies because the active structures in their ears are smaller; large animals can of-
ten hear lower frequencies. The speed of sound is generally much higher in liquids or
solids than in gases: sound travels at 1500 m · s−1 through water, and about 4000 m · s−1

through hardwood.
Musical instruments create tones by restricting the possible wavelengths. For ex-

ample, a violin string is held rigid at two points, separated by a distance L . The waves
generated by drawing the bow across the string must have zeroes at the two rigid points.
Since a sine wave goes through zero every half cycle, the only waves consistent with
this constraint must satisfy the condition:

L = λ

2
, λ,

3λ

2
, · · · ,

nλ

2
· · · (3.26)

or equivalently, the frequency ν is restricted:

ν = s

2L
,

s

L
,

3s

2L
, · · · ,

ns

2L
· · · (3.27)

The lowest frequency is called the fundamental; all of the other frequencies are multi-
ples of the fundamental and are called harmonics. Doubling the frequency corresponds
to raising a note by one octave. When a piano and a flute play middle-A, they both
produce a distribution of sound waves with a fundamental frequency of 440 Hertz, but
they sound different because the amplitudes of the different harmonics depend on the
instrument.

Electricity and magnetism seem superficially to be as different as a lightning bolt and
a compass. However, in the nineteenth century a series of elegant experiments showed
electricity and magnetism to be closely related phenomena. Charges create electric
fields, even when they are not moving. Moving charges create currents, which in turn
generate magnetic fields. These experiments ultimately led to a set of differential equa-
tions called Maxwell’s equations, which provide a completely unified description of
the electric and magnetic fields generated by any given charge distribution.

Electric fields and magnetic fields (denoted �ε and �B respectively in this book) are
vector quantities. A charge q in an electric field feels a force �F = q�ε. A charge mov-

ing at velocity �v in a magnetic field �B feels a force of magnitude
∣∣∣ �F

∣∣∣ = |�v|
∣∣∣ �B

∣∣∣ sin θ ,

where θ is the angle between the two vectors, in a direction perpendicular to the plane



Section 3.4

containing both �v and �B. The SI unit for electric fields is volts per meter (V/m). The
SI unit for magnetic fields is the Tesla (T).

Constant (or static) electric and magnetic fields are present nearly everywhere. For
example, the two leads of a standard 9V battery are separated by approximately 6 mm
at their closest point. To a good approximation, the electric field between the leads
points toward the negative lead, and has magnitude (9V)/(.003 m) = 1500 V/m. This
field has no obvious effect on uncharged bodies that do not conduct electricity. The
small amount of ions naturally present in air are accelerated by this voltage, but they
collide with other molecules and randomize their velocity long before they can build
up much excess energy. At substantially higher fields (about 2 × 106 V/m) the excess
energy buildup from this acceleration becomes serious and air breaks down, causing
a spark. In Chapter 8 we will discuss the fields seen by electrons in atoms, which are
much higher still (about 1011 V/m).

The Earth’s magnetic field is approximately 50μT. The position of the magnetic
North Pole (currently in extreme northern Canada) wanders somewhat: European nav-
igators in the 15th century found that compasses pointed somewhat east of true north,
but in more recent times the deviation has been west. Over geologic time, the Earth’s
field occasionally becomes small and then changes direction. A very large laboratory
magnet would generate a peak field of 15–20T by circulating current through tens of km
of coiled superconducting wire cooled to liquid helium temperature (4K). Large mag-
nets are available in essentially every chemistry building, because of their use for nu-
clear magnetic resonance (NMR), a spectroscopic technique we will discuss in Chapter
5. They are also used in hospitals for magnetic resonance imaging (MRI).

Sound waves cannot travel through a vacuum, where there is no matter to support
a density variation. However, electric and magnetic fields can travel though a vacuum.
The solutions to Maxwell’s equations for such fields show that an oscillating single-
frequency electric field will only propagate in free space if there is also an oscillating
magnetic field perpendicular to it. The ratio between the electric field and magnetic
field amplitudes is fixed, so we refer to this as an electromagnetic wave. If the wave is
traveling in the z-direction and we choose the x-direction as the direction of the electric
field, the general form for a plane electromagnetic wave turns out to be:

�ε(x, y, z, t) = εmax x̂ cos
(

2π z
λ

− ωt
) = εmax x̂ cos

(
2π z
λ

− 2πνt
)

�B(x, y, z, t) = Bmax ŷ cos
(

2π z
λ

− ωt
) = Bmax ŷ cos

(
2π z
λ

− 2πνt
)

(3.28)
εmax

Bmax
= c; λν = c

where x̂ and ŷ are unit vectors in the x- and y-directions, respectively. What we call
“light” is an electromagnetic wave which can be detected by our eyes, which are sen-
sitive to only a very small distribution of wavelengths—running roughly from λ =
700 nm (red) to λ = 400 nm (violet). In a vacuum, the maxima and minima move
at the speed of light c. Waves propagating through the atmosphere move a little slower
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than c; radiation with λ = 590 nm (yellow light) moves at a speed s = c/1.0002765. In
general s = c/n, where n (called the index of refraction) depends on both the wave-
length and the material. At an interface between two materials, the difference in the
indices of refraction dictates the amount light changes direction (see Problem 1-15).

Electromagnetic waves transmit energy as well. The average intensity I (in watts
per square meter) is proportional to the average squared electric field:

I = ε2

754
(3.29)

The average intensity of sunlight hitting the surface in the continental U.S. at noon is
about 200 W/m2. A typical laser pointer produces 5 mW in a 1 mm2 spot, so the inten-
sity is about 5000 W/m2. At the opposite extreme, commercially available “ultrafast
laser systems” can readily produce 100 mJ pulses with 100 fs duration (1012 W peak
power). This peak power is roughly equal to the worldwide electrical generation ca-
pacity. Such pulses can be focused to about 10−10 m2 (1022 W/m2); still higher peak
powers are created for specialized applications, such as laser fusion.

We can broadly categorize the properties of electromagnetic waves by wavelength
(Table 3.1). For example, an AM radio station transmits waves with center wavelength
between λ = 545 m (ν = 550 kHz) and λ = 187 m (ν = 1600 kHz). The sound
is encoded on the electromagnetic wave by making the amplitude of the wave change
with time (hence AM for amplitude modulation). As we discuss in Chapter 8, modern
chemical laboratories include different instruments that probe molecular responses to
radiation all the way from the radio frequency to the X-ray regions.

�
Region λ (meters) Typical Sources Molecular effects

Low frequency > 103 power lines
(ν = 60 Hz, λ = 5000 km

Radio frequency 103–1 AM/FM radio;
television

Microwaves 1-10−3 radar; microwave ovens excites rotations
Infrared 10−3–10−6 heated objects excites vibrations
Visible 4–7 × 10−7 sun excites electrons in

some molescules
Ultraviolet 2–4 × 10−7 sun breaks bonds
X-rays 10−7–10−11 special sources breaks bonds if

absorbed
γ -rays < 10−11 nuclear disintegrations breaks bonds if

absorbed
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Waves have properties that are often quite different from what we would associate with
billiard balls or other particles. These differences will become very important when we
discuss quantum mechanics.

Particles (baseball) versus Waves (water wave)

Position localized delocalized
Interference no yes
Energy ∝ (velocity)2 ∝ (amplitude)2

(free space)
Speed variable from 0 fixed by medium

to 3 × 108 m/sec, (e.g., sound in air, 330 m/sec)
continuously

Mass yes no
Momentum yes, �p = mv2 yes; water waves smash

buildings

Probably the most dramatic difference in the behavior of particles and waves is the
possibility of interference for waves when multiple sources are present. Figure 3.6 il-
lustrates the differences. The top of Figure 3.6 illustrates purely particle-like behavior
(for instance, firing two shotguns simultaneously). The particles from each shotgun

Particle source (two shotguns)

Wave source (two speakers)

� Comparison of the total distribution produced by two particle sources or two
wave sources. Notice that waves exhibit interference, so the amplitude at some positions is far
lower than the amplitude which would be produced by either source alone.
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have a range of velocities and directions, so each shotgun gives a spread of positions
on a faraway target. Suppose these spreads overlap, but the probability of two pellets
colliding in midair is small; then the total distribution of pellets on the target is obvi-
ously just the sum of the spreads produced by each shotgun individually.

The bottom of Figure 3.6 illustrates purely wavelike behavior (for instance, play-
ing the same tone through two speakers). When two waves overlap, their maxima can
reinforce (causing constructive interference and increasing the amplitude of the distur-
bance) or can cancel (causing destructive interference and decreasing its amplitude).
We usually see constructive interference in some directions and destructive interference
in others. If the paths to the two sources differ by an integral number of wavelengths
(D1−D2 = Nλ) the maxima and minima of the two waves will coincide and reinforce.
If they differ by a half-integral number of wavelengths, the maxima from one source
will coincide with the minima from the other, and the waves will cancel.

The separation between maxima (often called fringes) depends explicitly on the
wavelength, so interference can be used to measure wavelength. For example, a
diffraction grating consists of a series of regularly spaced dark lines. Light passes
through the spaces between the lines, so we see constructive and destructive interfer-
ence as if there were many wave sources at slightly different positions. If light comes
in perpendicular (normal) to the grating, as in Figure 3.7, some of the intensity will
come out in different directions θ . For the waves to reinforce in any particular direc-
tion, the path length differences between the rays that hit different spaces (shown here
as a dashed line) must be an integral number of wave lengths. Geometrical arguments

d sind

� Magnified view of light hitting a diffraction grating at normal incidence. Much of
the light just goes through (θ = 0). For any other direction θ , the light from the different spaces in
the grating travels along paths with different lengths. The path length difference (shown here as a
dashed line) is d sin θ . If this is an integral number of wavelengths (nλ = d sin θ) waves along these
paths can constructively interfere, and this generates an increased intensity.
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show that this length is d sin θ so we have

nλ = d sin θ (diffraction grating, normal incidence) (3.30)

Equation 3.30 is called the diffraction equation. The solution with n = 0 (θ = 0)

is simple transmission of the light. The solutions for n �= 0 give intensity in other
directions, and the positions of these additional spots can be used to determine λ if d is
known. Thus, optical scientists can use a manufactured diffraction grating with known
line separations to measure the wavelength of an unknown light source.

X-rays have wavelengths that are comparable to the spacing between atoms. Rows
of atoms cause diffraction, so if the wavelength of the X-rays is known, the spacing
between atoms can be determined. Figure 3.8 shows that the condition for constructive
interference, hence strong scattered X-rays, is

Nλ = 2d sin θ (diffraction off a crystal lattice) (3.31)

This technique, called X-ray crystallography, can be extended to measure the de-
tailed structures of even complicated materials such as proteins with literally thousands
of atoms. However, it is much harder to infer molecular structure if the material cannot
be grown as a single crystal, and crystal growth can be exceedingly difficult.

d

d

� X-rays diffracted off a crystal (viewed here as a regular array of atoms) will
constructively interfere if multiple scattering paths reinforce. For example, in this picture, the two
black atoms both produce scattered X-rays which would superimpose. The difference in the total
path length (along the dashed paths) would be 2d sin θ . So the constraint for constructive
interference is Nλ = 2s sin θ .
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When atoms combine to form molecules, they create chemical bonds which can be de-
scribed by a potential energy function. An accurate description of the bonding requires
quantum mechanics, as we discuss in Chapters 6 and 8, but many of the features can
be understood with the “classical” picture we have been developing in this chapter.

Bonds are broadly grouped into two types: ionic (for example, in the molecule KCl,
which can be written to a good approximation as K+Cl−) and covalent (for example, in
homonuclear diatomic molecules such as O2 or I2). We will consider the covalent case
first. As two neutral atoms grow closer, the potential energy decreases until a minimum
is reached; at still shorter distances, the potential energy eventually becomes positive.
Figure 3.8 shows the actual, experimentally measured potential energy for two iodine
atoms (solid line); the bottom of the potential well, which corresponds approximately to
the bond length, is 2.5×10−19 Joules below the energy as r → ∞. It is more common
to multiply this value by Avogadro’s number, thus giving a well depth of 150 kJ/mol
in this case.

The exact shape of the potential energy curve is different for each possible pair of
atoms, and can only be calculated by a detailed quantum mechanical treatment. One
convenient approximate potential for covalent bonds is the Lennard-Jones 6–12 po-
tential, shown as the dashed line in Figure 3.9 and in more detail in Figure 3.10.

The equation for this potential is:

U (r) = 4ε
((σ

r

)12
−

(σ

r

)6
)

(3.32)
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� Comparison of the actual interatomic potential for two iodine atoms (solid line)
with the approximate Lennard-Jones potential, Equation 3.32. The Lennard-Jones potential
reproduces the important features.
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U(r)

0

r = 0 r = 

r

rmin

U(r) = 

� Comparison of the Lennard-Jones potential with a still simpler approximation: a
parabola with the same minimum and second derivative at the minimum. Near the bottom of the
well, this potential (the same as a spring) provides a good approximation.

As r → ∞, U (r) → 0; as r → 0, U (r) → ∞. At r = σ , U (r) = 0. The minimum
energy position will be where dU (r)/dr = 0:

dU (r)

dr

∣∣∣∣
r=rmin

= 4ε
(−12σ 12

r13
min

+ 6σ 6

r7
min

)
= 0

rmin = (2)1/6σ ; U (rmin) = −ε (3.33)

The position of the potential minimum rmin and the well depth ε are listed for a variety
of diatomic molecules in Table 3.2, and these parameters can be used to construct an
approximate potential using Equation 3.32. This equation also can be used to evaluate
the force along the internuclear axis, since F = −dU/dr . When r > rmin, the force is
attractive because dU/dr > 0; when r < rmin the force is repulsive.

The Taylor series (discussed in Chapter 2) lets us simplify any potential further in
the region close to the minimum rmin. Saving the terms through the second derivative
gives

U (r) ≈ U (rmin) + (r − rmin)
(

dU (r)

dr

)∣∣∣
r=rmin

+
(

(r−rmin)
2

2

) (
d2U (r)

dr2

)∣∣∣
r=rmin

(3.34)

= U (rmin) +
(

(r−rmin)
2

2

) (
d2U (r)

dr2

)∣∣∣
r=rmin

since the first derivative vanishes at the minimum. Equation 3.34 has the same form
as the potential energy of a spring (Equation 3.8) with the zero of energy chosen as the
bottom of the potential well. Thus, for energies near the bottom of the well, modeling
the internuclear interaction as if there were a “spring” connecting the atoms is often
a good approximation (Figure 3.10). Comparing Equations 3.8 and 3.34 gives an ef-
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fective “force constant” k = d2U (r)/dr2
∣∣
r=rmin

for the chemical bond. Experimental
values are listed in Table 3.2.

�
Experimental Potential Well Separation rmin Force

Dissociation Energy Depth ε at Potential constant
Molecule (kJ · mol−1) (kJ · mol−1) Minimum (pm) (N · m−1)

H2 432 458 74 570
HF 565 590 92 970
HCl 428 445 128 520
HBr 364 380 141 410
HI 295 308 160 310
I2 149 150 267 170
Cl2 239 242 199 330
ICl 207 210 232 240
O2 494 512 121 1180
N2 941 955 109 2300
CO 1072 1085 113 1902
Ionic bonds:
NaCl 552∗ 554∗ 236 109
KCl 490∗ 491∗ 267 109
∗energy below separated ions; all other energies are relative to neutral atoms

The potential energy function looks somewhat different for an ionic bond, such
as in the molecule 39K 37Cl, which can be approximately written as the ion pair
39K+ 37Cl−. Those two ions have the same number of electrons and neutrons, and
differ only in the number of protons. The chloride ion is larger (181 versus 133 pm)
because the natural repulsion of the electrons is counteracted by two fewer protons. At
long distances the charge distributions are symmetrical, so as shown in Figure 3.11 we
can replace the electrons and protons with a single positive charge for K+, and a single

� For large separations, the complicated interaction between the 37 charged
particles in K+ and the 35 charged particles in Cl− reduces to simple Coulombic attraction between
the two net charges. Effects from the spherical electronic clouds and the small nucleus tend to
cancel (see Figure 3.2).
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negative charge for Cl−. Thus at long distances the potential energy is proportiona1 to
1/r (Coulomb’s law), which is a much slower falloff than the 1/r6 dependence in the
Lennard-Jones potential.

In addition, even though as chemists we think of K+ as more stable than K and Cl−

as more stable than Cl, the ion pair K+–Cl− is less stable than the pair of neutral atoms
at infinite separation. The energy difference is quantified by the ionization potential
(IP) and the electron affinity (EA), which are defined for an arbitrary atom A as:

A → A+ + e− energy difference 	E = I P

A− → A + e− energy difference 	E = E A (3.35)

Some typical values are listed in Table 3.3.

�

Ionization Electron Affinity
Atom Potential (kJ · mol−1) (kJ · mol−1)

H 1312 73
Li 520 60
C 1086 122
F 1681 328

Na 496 53
Cl 1255 349
K 419 48

Notice that all of these numbers are positive. Thus, for example, it takes 419
kJ · mol−1 to remove an electron from a neutral potassium atom; it takes 349 kJ · mol−1

to remove an electron from Cl−. This implies that at infinite separation, the reaction
K + Cl → K+ + Cl−; requires an energy input:

	E = I P(K) − E A(Cl) = +70 kJ · mol−1

The molecule gains back this energy (and more) due to the Coulombic attraction as
the atoms move from infinite separation to the experimentally observed bond distance
of 267 pm. Coulombic attraction would tend to draw the two ions as close as possible,
but we will see later (in Chapters 5 and 6) that quantum mechanics predicts the energy
will eventually start to rise if the atoms get too close. Combining all of these concepts
gives a commonly used approximate potential for ionic bonds of the form

U (r) = Ae−Br/rmin − e2

4πε0r
+ I P − E A (3.36)

The last two terms reflect the energy difference between the ion pair and neutral atoms.
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Some molecular properties can be understood by picturing molecules as a collection of
masses connected by massless springs (Figure 3.12). For a diatomic molecule, the mo-
tions of the two masses (m1 and m2) can be completely described by six components:
the x-, y- and z-components of the velocities of each mass. However, these motions
are coupled. For example, if mass 1 in Figure 3.12 is moving towards mass 2 and mass
2 is motionless, the spring will shrink; this in turn will supply a force to mass 2, and
energy will oscillate back and forth between the kinetic energy of the two masses and
potential energy in the spring.

These six distinct velocities or any combinations of them are called degrees of free-
dom. It is possible to choose combinations of velocities on the different atoms in a way
which simplifies the subsequent motion. For example, if the spring is initially at its rest
length and if mass 1 and mass 2 are both moving at the same velocity, the separation
between the masses does not change and the masses continue to move at their initial
velocities for an indefinite time. In general we can group the possible motions of the
two masses into three different categories: translation, rotation, and vibration.

1. If both of the masses are moving in the same direction at the same speed, the sys-
tem is translating. This motion does not change the separation between the two
masses so it has no effect on the spring. In effect, the translation describes the
characteristics of the two masses taken as a single, structureless “object.” In de-
riving the kinetic theory of gases (Chapter 7) we will use this translational energy,
and the momentum it implies, to calculate pressure.

Translation is completely described by three degrees of freedom—motion of the
entire system in the x-, y-, or z- direction (the three motions on the top of Fig-

� Two masses can be described by six distinct motions, or degrees of freedom.
The motions can be grouped logically into translations of the two masses together (top), rotations
(middle) and a single vibration (bottom). In the absence of collisions, the six motions drawn here
are completely separate from each other; energy does not flow between rotations, vibrations, and
translation.
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ure 3.12). Since total momentum is conserved in the absence of external forces
(such as collisions), these three velocity components will remain constant.

2. Suppose we choose a frame of reference where the total momentum is zero, and
suppose further that the separation r between the masses is fixed (for example, by
a rigid rod). The masses could still be rotating at some frequency ω about their
center of mass. If the spring is initially pointed along the x-direction, then the
axis of rotation can be in the y-direction, the z-direction, or any combination of
the two (the middle row of Figure 3.12). Thus there are two degrees of freedom
associated with rotation in a two-mass system.
Rotational energy contributes to the internal energy of a diatomic molecule, and
classically any rotational speed is possible. We will return to rotational properties
in Chapter 8, when we discuss quantum mechanics, which imposes restrictions
on the rotational energy; we will find that transitions between allowed rotational
states let us measure bond lengths or cook food in microwave ovens.

3. Finally, suppose the masses are not translating (the total momentum is zero) or
rotating. This means the components of the velocities perpendicular to the spring
are zero. However, it is still possible for the length of the spring to change be-
cause of forces generated by the internuclear potential discussed in the last sec-
tion. Then the system is vibrating (the bottom row of Figure 3.12). For small
vibrational energy, the rate of the vibration will be given by Equation 3.24

ω =
√

k

μ

where k is the force constant of the spring connecting the two masses and μ =
m1m2/(m1 + m2) is the reduced mass.

Consider, for example, carbon monoxide. The mass of one mole of carbon-12
atoms is exactly 12 g; dividing by Avogadro’s number (and converting to kg)
gives the mass of a single carbon-12 atom as 1.9926 × 10−26 kg. The mass of
one mole of oxygen-16 atoms is 15.9949 g, so the mass of one atom is 2.6560 ×
10−26 kg (masses in amu for many different isotopes are listed in Appendix A).
The reduced mass μ = mC mO/(mC + mO) is then 1.1385 × 10−26 kg.

We will show in Chapter 8 that the vibrational motion of atoms in molecules is re-
sponsible for the greenhouse effect which tends to increase the Earth’s temperature.
We will also show that the modern (quantum mechanical) picture does not permit the
molecule to merely sit with its atoms separated by the minimum potential energy. Even
at absolute zero, the molecule still has total energy E = h̄ω/2, where h̄ = 1.054×10−34

J · s (see Appendix A). So the actual dissociation energy is always less than the depth
of the potential well, as shown in Table 3.2.

The three translations, two rotations, and one vibration provide a total of six inde-
pendent motions. In the absence of external forces (such as collisions), energy is never
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exchanged between translation, rotation and vibration, and translational motion in the
x-direction is never changed into translational motion in the y- or z-directions. So we
can treat each motion independently. Thus this decomposition into translation, rotation
and vibration simplifies matters considerably.

This separation of the different motions into translation, rotation and vibration can also
be generalized to polyatomic molecules. N atoms have 3N degrees of freedom (mo-
tion of each atom in the x-, y-, or z- directions). These motions can be decomposed
into translation, rotation and vibration as well. If we treat the collection of atoms as a
rigid, nonrotating “object,” it can move as a whole in the x-, y- or z-directions: thus
there are still three translational degrees of freedom. If the molecule is linear, there are
only two rotational degrees of freedom, as in the diatomic case (rotation about the axis
of the spring does not change anything at all, but rotation about any axis perpendicu-
lar to the spring does have an effect). If the molecule is nonlinear, rotation about all
three directions in space is different. Thus a nonlinear molecule has six rotations and
translations; a linear molecule has five rotations and translations. This implies:

Linear N -atom molecule: 3 translations, 2 rotations, 3N − 5 vibrations
Nonlinear N -atom molecule: 3 translations, 3 rotations, 3N − 6 vibrations

Table 3.4 gives typical bond energies and force constants for bond stretches (averaged
over a large number of different molecules), but many of the vibrational modes in large
molecules have much smaller restoring forces. For a general polyatomic molecule,
there are usually more vibrations than bonds, and finding stable vibrational excitations
(called normal modes) can be a quite complicated task. Figure 3.13 shows the three

�

Type of Dissociation Energy Separation at potential Force const.
Bond (kJ · mol−1) minimum (pm) (N · m−1).

H–C 413 110 500
H–N 391 101 597
H–O 467 96 845

C–C 347 154 550
C=C 614 134 843
C≡C 839 120 1500

C–O 358 143 540
C=O 799 123 1600

C–N 305 143 512
C≡N 891 116 1850
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� The three normal vibrational modes of water. For the top mode (the symmetric
stretch) both O–H bonds are extended or compressed at the same time. For the middle mode (the
antisymmetric stretch) one O–H bond is extended when the other is compressed. The bottom mode
is called the bend. In every case the hydrogen atoms move more than the oxygen, because the center
of mass has to stay in the same position (otherwise the molecule would be translating). For a
classical molecule (built out of balls and perfect springs) these three modes are independent. Thus,
for example, energy in the symmetric stretch will never leak into the antisymmetric stretch or bend
modes.

normal vibrational modes of water. Note that, for example, just stretching one of the
O–H bonds in water does not produce a normal mode; that would force two of the atoms
to move, which would in turn induce a force on the other hydrogen atom.

The two stretching modes have nearly the same vibrational frequency (110 versus
113 THz) but the bending mode frequency is much lower (48 THz), reflecting the lower
restoring force for the bending motion. In larger molecules, some of the internal mo-
tions have very low restoring forces. For example, in the ethane molecule (H3C–CH3)
rotation of the two –CH3 groups about the central C–C bond is essentially unhindered.

The network of chemical bonds within molecules only partially determines the chemi-
cal and physical properties. Intermolecular interactions cause gases to deviate from the
ideal gas law (as we will discuss in Chapter 7) or condense into liquids. Interactions
between nonbonded atoms in the same molecule cause proteins to fold into specific
configurations, which catalyze chemical reactions critical to life.

Interactions between neutral, nonpolar atoms or molecules are relatively weak, and
can be accurately modeled by the Lennard-Jones potential discussed in the last section.
Table 3.5 lists some specific examples. Notice that the well depth is less than 1% of typ-
ical bond energies in Table 3.2. In fact none of these atoms and molecules is condensed
into a liquid at STP (standard temperature and pressure; P = 1 atm, T = 273K).
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�

Molecule or Atom ε σ [pm]

He 0.14 × 10−21 J (0.085 kJ · mol−1) 256
Ne 0.49 × 10−21 J (0.30 kJ · mol−1) 275
Ar 1.66 × 10−21 J (1.00 kJ · mol−1) 341
Kr 2.26 × 10−21 J (1.36 kJ · mol−1) 383
Xe 3.16 × 10−21 J (1.90 kJ · mol−1) 406

CH4 2.05 × 10−21 J (1.24 kJ · mol−1) 378
C(CH3)4 (neopentane) 3.20 × 10−21 J (1.93 kJ · mol−1) 744

CO2 2.61 × 10−21 J (1.57 kJ · mol−1) 449

Intermolecular interactions are much stronger in molecules which have a partial
charge separation (polar molecules). For example, the electrons in a hydrogen–oxygen
bond tend to be pulled more towards the oxygen atom (we say that oxygen is more elec-
tronegative than hydrogen), resulting in an electric dipole moment (Figure 3.14, left).

Electric dipoles interact much more strongly than do neutral molecules (at long
range, the interaction is proportional to 1/r3 instead of 1/r6). Probably the most im-
portant example of a dipole-dipole interaction is the hydrogen bond, which generally
has the form X–H· · · Y, where X and Y are electronegative elements such as N, O, or F,
and the X–Y dipole interacts with a lone pair of electrons on the Y atom. The right side
of Figure 3.14 shows the structure of the gas-phase water dimer. Hydrogen bonds have
a typical strength of 25–50 kJ · mol−1. They dramatically stabilize liquid water (each
water molecule has two hydrogens and two lone pairs of electrons, so it can participate
in two hydrogen bonds). They also hold together DNA strands in a “double helix,” and
account for much of the stability in protein folding.

Polar molecules can also serve to stabilize ionic charges in solution, as illustrated
schematically in Figure 3.15. Anions are surrounded by the hydrogen end of the water
molecules; cations are surrounded by the oxygen end. This serves to partially shield
the charges in solution, thus reducing the energy associated with charge separation. As
a result, salts dissolve more readily in polar solvents than in nonpolar solvents.

� Left: The electrons in water tend to be pulled more towards the oxygen atom,
resulting in an electric dipole moment. Right: Structure of the water dimer in the gas phase,
showing a typical hydrogen bond. The complex rotates freely about the dashed line; the atoms do
not always lie in a single plane.
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� Schematic illustration of the structure of a salt solution. The cations are attracted
to the negative charge density on the oxygen, which increases stability; the anions are attracted to
the more positive hydrogens.

Note that the water molecules are not aligned into a rigid, ordered structure; in prac-
tice all of the molecules are moving rapidly and randomly. Molecular dynamics sim-
ulations represent all of the intermolecular interactions with classical potentials, gen-
erating forces and acceleration via Newton’s laws. Such simulations give very good
descriptions of many of the properties of bulk solutions.

�
3-1.� Find the ratio between the strength of the gravitational force and the strength of

the Coulombic force between a proton and an electron.
3-2. Energies associated with nuclear binding can be quite impressive. For example,

the mass of a deuterium nucleus is 3.3435860 × 10−27 kg; from Appendix A, the
masses of the proton and neutron are 1.6726231 × 10−27 kg and 1.6749286 ×
10−27 kg respectively. Use Einstein’s formula E = mc2 to calculate the energy
difference between a mole of deuterium nuclei and a mole of separated protons
plus neutrons.

3-3.� Escape velocity is defined as the velocity vesc needed for an object on the surface
of a planet or satellite to escape its gravitational pull. This means that the total
energy (kinetic plus potential, where the potential energy as r → ∞ vanishes, as
in Equation 3.10) is at least zero.

(a) Show that the escape velocity is independent of mass.
(b) Find the escape velocity from the surface of the Earth (the mass of the Earth
is 6.0 × 1024 kg; the radius is 6378 km).

3-4. An American TV comedy series of the 1980s, WKRP in Cincinnati, depicted life
at a fictional radio station. One holiday season, the station management did a pro-
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motion that encouraged listeners to show up in a local parking lot for a surprise
reward. They sent up a helicopter over the parking lot, then pushed out turkeys—
reasoning that the birds would gently fly down, be caught in the lot below, and
become holiday dinners. Unfortunately, turkeys cannot fly.

Assume that the turkeys were released 500 m above the ground, that the aver-
age turkey had a mass of 10 kg, and that little of the kinetic energy was dissipated
on the way down. Calculate the energy released on impact. To compare this kinetic
energy to chemical energy, find the amount of gasoline needed for an equivalent
energy release (the explosion of gasoline produces approximately 50 kJ of energy
per gram).

3-5.� Suppose we start at time t = 0 by extending a spring (force constant k, one moving
mass m) a distance L , then releasing it (x(0) = L , v(0) = 0). Write a complete ex-
pression for the position and velocity with time. Use this to calculate the potential
energy and kinetic energy, and show that while each of these quantities oscillates,
the sum of the potential and kinetic energy is constant.

3-6. For two argon atoms interacting via the Lennard-Jones potential, find:

(a) the separation which gives the minimum potential energy
(b) the separation which gives the largest attractive force
(c) the separation which gives the largest repulsive force

3-7.� A typical diffraction grating might have 1200 lines per mm. Suppose a 1-mm di-
ameter argon-ion laser beam shines on the grating, in the geometry of Figure 3.11.
Argon-ion lasers have two strong light components (λ = 488 nm and λ = 514 nm)
so the grating will send the n = 1 diffracted spots in different directions, and will
thus separate the two colors of light.

At a distance 1 m from the diffraction grating, what will be the separation be-
tween the spots of 488 nm and 514 nm light?

3-8. Solutions you encounter in the laboratory will always be nearly electrically neutral.
The net charge on all of the cations will almost exactly balance the net charge on
all of the anions. To see why this is so, imagine a solution with a slight charge
imbalance: 1 mM excess positive charge, for example Na+. Assume this solution
is placed into a 1 liter, spherical container.

(a) Using only Coulomb’s law, calculate the repulsive force on a sodium ion sit-
ting near the inside surface of the container. This force is applied on a very small
area (the radius of a sodium ion is 95 pm). Recalling that pressure is defined as
force per unit area, calculate the outward pressure exerted on the sodium ion. If
you used SI units for everything, the pressure you calculated is in Pascals; compare
this to typical atmospheric pressure (101,325 Pascals).
(b) The potential energy of this much stored charge can be calculated to be U =
+0.15 Q2

πε0 R
, where R is the radius of the container and Q is the total charge. Cal-

culate this energy and find the amount of gasoline needed for an equivalent energy
release (as noted above, the explosion of gasoline produces approximately 50 kJ
of energy per gram)
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(c) The answer in part (a) above is actually somewhat of an overestimate, because
the solvent itself will rearrange to partially block the field from the excess charge.
The force will be scaled down by the dielectric constant. The dielectric constant
for a typical nonpolar solvent, such as hexane, differs by about a factor of 50 from
the dielectric constant for water. Which solvent has the larger dielectric constant
value, and why? (The larger dielectric constant turns out to be 78.)

3-9. The diffraction equation (3.28) is a simplified version for light which comes in
perpendicular to a surface. For light which hits a surface at an angle θin, the angles
θout which give reinforced reflections satisfy the equation

nλ = d(sin θin − sin θout)

Suppose you wish to determine the spectrum of a beam of light. You could use a
diffraction grating to separate (“disperse”) two closely-spaced wavelengths (say,
570 nm and 580 nm). Will you separate these two components more by hitting the
grating at near-normal incidence (θin ≈ 0) or near-grazing incidence (θin ≈ π/2)?

3-10. Polonium crystals have a simple cubic structure with atoms separated by d =
336.6 pm. If a polonium crystal is exposed to X-rays with λ = 154 pm (the most
common source wavelength), find the angle 2θ which corresponds to the deflec-
tion of the strongest scattered component.

3-11. The most common unit of pressure in the United States is pounds per square inch
(psi). The pound is a unit of weight, and is the same as the force exerted by gravity
on a 0.454 kg mass. One inch is equal to .0254 meters. Convert a pressure of 1 atm
into psi.

3-12.� Find the pressure (force per unit area) exerted by a 1 m high column of mercury
(density = 13.6 kg · L−1) on the base of the column, in Pascals (the answer is
independent of the width of the column). Compare this to atmospheric pressure.

3-13.� Deuterium (D), the isotope of hydrogen with one neutron and one proton, has mass
3.3445 × 10−27 kg. H, the isotope with no neutrons, has mass 1.6735 × 10−27 kg.
The potential is nearly the same for H2, HD, and D2. Compare the vibrational fre-
quencies of these molecules.

3-14. A 100 g ball is suspended from a spring. At time t = 0 the spring is neither
compressed nor extended, and the velocity is 1 m · s−1 (going up). The ball goes
through one complete oscillation (up and down) in one second. Calculate how far
the ball is extended when the motion reaches its upper limit.

3-15.� Which is lower in energy, one mole of H2 plus one mole of Cl2, or two moles of
HCl? How large is the energy difference?

3-16. Use the dissociation energies in Tables 3.2 and 3.4 to determine the energy pro-
duced by the complete combustion of one mole of methane (CH4) to produce car-
bon dioxide and water.

3-17. Which of the diatomic molecules in Table 3.2 has the highest vibrational fre-
quency? Which has the lowest?



H. G. Wells (1866–1946)

Statistics play an absolutely central role in chemistry, because we essentially never see
one molecule decompose, or two molecules collide. In addition, the energies associ-
ated with the making and breaking of individual chemical bonds are quite small. Even
a very highly exothermic reaction such as the combustion of hydrogen releases only
4 × 10−19 J of energy per hydrogen molecule. So practical processes involve very
large numbers of molecules. However, when 1 g of hydrogen gas burns in oxygen to
give water, 6×1023 hydrogen atoms undergo a fundamental change in their energy and
electronic structure. The properties of the reactive mixture can only be understood in
terms of averages. In fact, many of the measurable quantities commonly used in chem-
istry cannot be defined for a single molecule. There is no such thing as the pressure or
entropy of a helium atom, and the temperature is difficult to define—yet temperature,
entropy and pressure are macroscopic, measurable, averaged quantities of great impor-
tance.

You might think that the statistical nature of chemical processes is a tremendous
complication. In fact, however, it often simplifies life enormously because averaged
properties can be quite predictable. You can go to Las Vegas or Atlantic City, put
one dollar in a slot machine, and win one million dollars; or you could go through a
semester’s tuition. The uncertainty in your winnings is quite large, which generates the
excitement of gambling. However, casino managers know the odds in their games, and



they know that, averaged over millions of visitors a year, they will come out ahead—
their uncertainty is a much smaller fraction of the total bet. Similarly, at room temper-
ature and normal pressures, about 1027 gas molecules hit a 1 m2 window in 1 second.
The pressure exerted by the gas comes from the total momentum transfer from all of
these collisions. But at atmospheric pressure, the force on each side on a 1 m2 window
is the same as would be exerted by over 10,000 kg of mass! If the pressure on the op-
posite sides of the window varied by any significant fraction of this, the net force could
easily break glass.

In this chapter we will discuss two statistical problems which are particularly rel-
evant for chemistry and physics. First we will describe the distribution generated by
random walk processes which are equally likely to be positive or negative (the nor-
mal or Gaussian distribution). We will derive this distribution under fairly stringent
assumptions, but it turns out to be extremely general and useful. For example, exper-
imental uncertainties in the laboratory usually follow this distribution, and our results
thus predict how these errors are reduced by averaging. Random walks can also be used
to describe the rate at which leakage from a hazardous waste site approaches an under-
ground stream, the motion of a dust particle on the surface of a liquid, or the way odors
are spread through the air.

The other problem we will discuss is the most likely distribution of a fixed amount
of energy between a large number of molecules (the Boltzmann distribution). This dis-
tribution leads directly to the ideal gas law, predicts the temperature dependence of re-
action rates, and ultimately provides the connection between molecular structure and
thermodynamics. In fact, the Boltzmann distribution will appear again in every later
chapter of this book.

One of the most basic problems in statistics is called the random walk problem. Sup-
pose you take a total of N steps along a north-south street, but before each step you flip
a coin. If the coin comes up heads, you step north; if the coin comes up tails, you step
south. What is the probability that you will end up M steps north of your starting point
(in other words, the probability that you will get M more heads than tails)?

If you toss N coins, the total number of distinct possible outcomes is 2N since there
are two ways each coin can fall. For example, if N = 3 the eight outcomes are

HHH, HHT, HTH, THH, TTH, THT, HTT, HHH

The number of these outcomes which have exactly nH heads and nT tails is given by
the binomial distribution:

Number of outcomes with
nH heads and nT tails

= N !

nH ! nT !
; nH + nT = N (4.1)



The probability P(nH , nT ) of getting exactly nH heads and nT tails is given by di-
viding Equation 4.1 by the total number of possible outcomes 2N .

P(nH , nT ) = 2−N N !

nH ! nT !
(4.2)

Again using N = 3 as an example, the probability of getting two heads (and hence one
tail) is

P(2, 1) = 2−3 3!

2!1!
= 1

8

6

2 · 1
= 3

8
(4.3)

The sum of the probabilities for all the possible values of nH must be one, because we
will always get some number of heads.

nH =N∑
nH =0

P(nH , N − nH ) = 1 (4.4)

which you can also verify explicitly for N = 3, since P(0, 3) = P(3, 0) = 1/8 and
P(2, 1) = P(1, 2) = 3/8.

Now, in order for you to end up M steps north, you need M more heads than tails:

nH = nT + M (4.5)

which implies

nH = (N − nH ) + M {combining 4.1 and 4.5}
2nH = N + M (4.6)

nH = N + M

2
; nT = N − nH = N − M

2

so the solution to the problem is

P(M) = 2−N N !(
N + M

2

)
!

(
N − M

2

)
!

(4.7)

Factorials can be calculated for N < 100 on hand calculators. The distribution for
N = 10 is graphed as the dots in Figure 4.1. Since N is even, only even values of M
are possible. Notice that the distribution looks very similar to the Gaussian function
we first discussed in Section 2.2.

You end up where you started (M = 0) less than 1/4 of the time, since P(0) =
252/1024; however, almost 2/3 of the time (652/1024) you get M = 2, 0, or −2, and
you are within two steps of the start.

You are equally likely to end up with more heads or more tails. Thus, if you tried
this a large number of times, the expected average value of M (written M) would be



� Dots: Probabilities of getting M more heads than tails out of 10 coin flips. Solid
line: Gaussian function, as introduced in Section 2.2

zero, since the distribution is symmetric (P(M) = P(−M)). However, most of the
time you will end up away from the start in some direction. We can quantify this by
calculating the expected average value of some quantity which measures the deviation
from equality and is always positive. For example, we could find the average value of
|M |, or we could find the average value of M2 (which is also always positive), and then
take the square root at the end.

In general, the average value of any function f (M) is given by the expression:

f (M) =
∑

all possible M

f (M)P(M) (4.8)

so we have, for example,

∣∣M∣∣ =
M=N∑

M=−N

|M | P(M);
(

M2
)1/2

=
{

M=N∑
M=−N

M2 P(M)

}1/2

(4.9)

Let’s explicitly calculate
(

M2
)1/2

and
∣∣M∣∣:

M2 = (−10)2(1/1024) + (−8)2(10/1024) + (−6)2(45/1024)

+(−4)2(120/1024) + (−2)2(210/1024) + (0)2(252/1024)

+(2)2(210/1024) + (4)2(120/1024) + (6)2(45/1024)

+(8)2(10/1024) + (10)2(1/1024)

= 10(
M2

)1/2
=

√
10 ≈ 3.1 (4.10)



∣∣M∣∣ = |(−10)| (1/1024) + |(−8)| (10/1024) + |(−6)| (45/1024)

+ |(−4)| (120/1024) + |(−2)| (210/1024) + (0)(252/1024)

+2(210/1024) + (4)(120/1024) + (6)(45/1024)

+(8)(10/1024) + (10)(1/1024)

= 2.46

Thus “on average” we end up about three steps from where we started, but to be more
precise we have to specify just what we are averaging. It turns out that for any possible

distribution,
(

M2
)1/2

≥ ∣∣M∣∣.

Equation 4.7 is very difficult to use for even a few hundred random events because fac-
torials grow rapidly. However, the agreement between the binomial values and a Gaus-
sian curve in Figure 4.1 is not accidental. It can be shown that if N 
 1 and M � N ,

P(M) = 2−N N !(
N + M

2

)
!

(
N − M

2

)
!

≈ Ce−M2/2N (4.11)

which is a very much simpler formula to use. The function e−M2/2N is a Gaussian func-
tion with standard deviation σ = √

N , as discussed in Chapter 2. The distribution of
probabilities in Equation 4.11 is sometimes called the normal distribution. Even for
N = 10 a Gaussian function is a fairly good approximation to the binomial expression
for small M ; and M ≈ N is extremely improbable for large N anyway (see Problem 4-
1).

The constant C comes from the requirement that the sum of all the probabilities
equals one. If N is large, we can approximate M as a continuous variable instead of
something restricted to integral values (and this will be more realistic for chemical and
physical applications). Then we have

M=+∞∫
M=−∞

P(M) d M = 1 = C

M=+∞∫
M+−∞

e−M2/2N d M (4.12)

This last integral is identical to Equation 2.29, with the substitutions x = M and σ =√
N :

M=+∞∫
M=−∞

e−M2/2N d M =
√

2π N (4.13)



Substituting Equation 4.13 into 4.12 gives C = 1/
√

2π N :

P(M) d M = 1√
2π N

e−M2/2N d M (4.14)

Now we can see how this distribution behaves for large values of N . For example, if
we toss 10,000 coins, we have σ = √

N = 100 in Equation 4.14. We would expect
to get, on average, 5000 heads and 5000 tails (M = 0), and indeed the maximum of
P(M) occurs at M = 0. But if M � 100, P(M) is only slightly smaller than P(0).
Thus some deviations from exact equality are quite likely.

We can calculate expectation values for this continuous distribution in much the
same way as we calculated them in the last section for ten coin tosses. The generaliza-
tion of Equation 4.8 for a continuous distribution is:

f (M) =
∫

all possible M

f (M)P(M) d M (4.15)

This can be used to show, for example, that(
M2

)1/2
=

(
1√

2π N

∫
M2e−M2/2N d M

)1/2

=
√

N (4.16)

which you can verify using the definite integrals in Appendix B.2.
Equation 4.16 shows that the width of the distribution is proportional to the square

root of the number of steps. So
√

N (which is also the standard deviation σ ) provides a
measure of the fluctuations of M from its average value of zero. After 10,000 random
steps, we will be, on average, about

√
10,000 = 100 steps away from the starting point.

But if we take 1,000,000 random steps (100 times more steps) we will only end up on
average 1000 steps from the start (10 times as far); out of all of these steps, in effect
999,000 (99.9%) canceled each other out.

Often we are interested in finding the probability that M is within some range. For
example, we might want to know how likely we are to get more than 52% heads out of
10,000 coin tosses. In this case we need to integrate P(M) over limits other than ±∞.
As noted in Chapter 2, this integral is not given by any simple function, but it can be
calculated by a computer. The fraction of P(M) between some commonly used limits
is shown in Table 4.1. For a more detailed table see Appendix B, or references [1] and
[4].

When z 
 1, the following approximate formula is useful:

1

σ
√

2π

∞∫
zσ

e−x2/2σ 2
dx ≈ e−(z2/2)

z
√

2π
(z 
 1) (4.17)

We can illustrate the application of Table 4.1 with a few examples. 95% of the area
under the curve is within ±1.96σ of M = 0. Thus we can say with 95% confidence



�

z less than +zσ between ±zσ greater than +zσ

0 0.500 0.000 0.500
1.0 0.841 0.682 0.159
1.5 0.9332 0.866 0.0668
1.960 0.975 0.950 0.025

2.0 0.9772 0.954 0.0228
2.326 0.990 0.980 0.010

3.0 0.9986 0.997 0.00135
4.0 0.99996 0.99992 0.00004
5.0 1 − 2.87 × 10−7 1 − 5.74 × 10−7 2.87 × 10−7

10.0 1 − 7.62 × 10−24 1 − 1.52 × 10−23 7.62 × 10−24

that M after 10,000 coin tosses will be in the range ±196, since σ = √
N = 100.

Equivalently we can say, with 95% confidence, that nH = (N + M)/2 after 10,000
coin tosses will be between 4902 and 5098 (Problem 4-2).

Notice that the probability is very small for deviations much greater than σ . Getting
more than 52% heads out of 10,000 tosses requires nH ≥ 5200, or M = nH −nt ≥ 400;
this is the area farther than +4σ , or 3.91 × 10−5. The probability of getting more than
55% heads out of 10,000 tosses (M ≥ 1000) is the area past 10σ , or less than one part
in 1023.

In general, as we increase the number of coin tosses, the absolute expected devi-

ation from exactly N/2 heads

((
M2

)1/2
= √

N

)
grows, but the fractional expected

deviation from exactly 50% heads

((
M2

)1/2
/N = 1/

√
N

)
shrinks. For example, the

probability of getting more than 50.2% heads out of 1,000,000 tosses (M ≥ 4000) is
the same as the probability of getting more than 52% heads after 10,000 coin tosses
(M ≥ 400). (Problem 4-3.)

The most important results of the last section can be summarized as follows:

1. The likely fluctuation from the most probable result is proportional to the square
root of the number of random events (

√
N ).



2. The probability of observing a fluctuation which is much larger than the standard
deviation σ is extremely small.

3. The fractional fluctuation from the most probable result scales as the inverse
square root of the number of random events (1/

√
N ).

These results turn out to be applicable to much more than just coin toss problems.
A few examples are given below.

Suppose a chunk of dry ice evaporates at the center of a long tube. The gaseous carbon
dioxide molecules initially travel to the left or right with equal probability. Let’s over-
simplify the problem a bit to begin with: assume that, at one specific time, each CO2

molecule moves at a speed s left or right (typically ≈ 400 m · s−1), and each molecule
travels a distance λ (typically ≈ 10 nm) before it collides with another gas molecule.
Each collision completely randomizes the velocity.

Under these assumptions, the probability of finding a carbon dioxide molecule Mλ

from its starting point after N collisions is mathematically exactly the same as the coin
toss probability of M more heads than tails. The root-mean squared distance traveled

from the starting point will be
(

M2
)1/2

λ = √
Nλ—proportional to the square root of

the number of steps, or equivalently proportional to the square root of the travel time.
If there were no collisions, the mean distance traveled would be proportional to the first
power of the travel time (x = vx t).

Of course, real molecules have a distribution of velocities, and they do not all travel
the same distance between collisions. However, there is a remarkable theorem which is
proven in advanced physics courses which shows that essentially every purely random
process gives a normal distribution:

P(M) d M = 1

σ
√

2π
e−M2/2σ 2

d M (4.18)

where now we use σ , which simply reflects the width of the distribution, instead of
the unknown number of random events N . So the results for coin tosses turn out to be
extremely general. If all of the molecules start at time t = 0 at the position x = 0, the
concentration distribution of C(x, t) at later times is a Gaussian:

C(x, t) ∝ exp

(
− x2

4Dt

)
(4.19)

where D is called the diffusion constant. Comparing 4.19 to the standard form of the
Gaussian (Equation 4.18) shows that the standard deviation σ of this Gaussian is σ =√

2Dt , so we immediately write:(
x2

)1/2
(RMS distance traveled from start) = σ =

√
2Dt (4.20)



�
Molecule Conditions D(×10−5 m2 · s−1)

Hydrogen in hydrogen at STP 15
in air at STP 7.0

Nitrogen in air at STP 1.85
Carbon dioxide in air at STP 1.39

in CO2 at STP 1.0
Iodine dissolved in liquid hexane, 25C .0004
Water in water at 25C .00024
Hemoglobin in water at 25C .000007

Some typical values for gases and liquids are given in Table 4.2.
Suppose we fill a beaker with carbon dioxide gas, perhaps from dry ice evaporating

in the bottom, and then remove the dry ice. Does the carbon dioxide instantly dissipate
into the atmosphere? No; Equation 4.20 shows that in one second, the average CO2

molecule will only migrate√
2 · (1.29 × 10−5) · 1 m = .0053 m = 5.3 mm.

After 100 seconds, the average migration is only 53 mm. So the beaker will re-
main filled with CO2 for an extended period. A common lecture demonstration in-
volves “pouring the gas” from such a beaker over a candle flame, which extinguishes
the candle. The carbon dioxide gas can be poured through air because it is heavier than
air, yet the low rate of diffusion guarantees that the CO2 molecules will mainly remain
together.

The single most important application of statistical methods in science is the determina-
tion and propagation of experimental uncertainties. Quantitative experimental results
are never perfectly reproducible. Common sources of error include apparatus imper-
fections, judgments involved in laboratory technique, and innumerable small fluctua-
tions in the environment. Does the slight breeze in the lab affect a balance? When a
motor starts in the next building, does the slight power surge affect a voltmeter? Was
the calibrated volumetric flask perfectly clean?

Sometimes we know a great deal about the expected statistics of a measurement.
Suppose we actually flip the same coin 10,000 times, and get 5500 heads; we showed
that the chance of getting this many heads or more is less than 10−23. We could con-
clude that we were just extremely lucky. However, it is more reasonable to conclude
that something is biased about the coin itself or the way we tossed it, so that heads and
tails do not really have equal probability. Would we draw the same conclusion if we
got 5200 heads (the chance of getting this many heads or more is 3.91×10−5)? Would
we draw the same conclusion if we got 5050 heads?



We showed in the last section that there is a 95% chance that after 10,000 coin
tosses, the number of heads would be between 4902 and 5098. The most common def-
inition treats error bars as such a 95% confidence limit. Table 4.1 shows that 95% of
the area in a Gaussian is within ±1.96σ from the center, so the error bars are ±1.96σ

and the number of heads nH after 10,000 coin tosses is “5000 ± 98.” For the reasons
discussed below, we would probably round it to 5000±100. So we would not be suffi-
ciently surprised by 5050 heads to judge that something was wrong; we would be sur-
prised enough by 5200 heads.

There is nothing magical about the choice of 95% in the confidence limits; it is
merely a common compromise between setting error bars so wide that you never draw
any conclusions, and setting them so narrow that you are led to false conclusions. In
some cases higher or lower values are appropriate. For example, 99.99% confidence
limit error bars would be about ±4σ from Table 4.1.

Sometimes a measurement involves a single piece of calibrated equipment with a
known measurement uncertainty value σ , and then confidence limits can be calculated
just as with the coin tosses. Usually, however, we do not know σ in advance; it needs to
be determined from the spread in the measurements themselves. For example, suppose
we made 1000 measurements of some observable, such as the salt concentration C in
a series of bottles labeled 100 mM NaCl. Further, let us assume that the deviations
are all due to random errors in the preparation process. The distribution of all of the
measurements (a histogram) would then look much like a Gaussian, centered around
the ideal value. Figure 4.2 shows a realistic simulated data set. Note that with this many
data points, the near-Gaussian nature of the distribution is apparent to the eye.

To find the width of the distribution, we evaluate the measured average
(mean) concentration and the root-mean-squared deviation from the average:

� Simulated histogram of 1000 different random measurements, compared with a
Gaussian distribution.



mean concentration = C =
N∑

i=1

Ci

N

r.m.s. deviation from average = σ =
{

N∑
i=1

(Ci − C)2

N

}1/2

(4.21)

For this particular data set, C turns out to be 99.944 mM, but one glance at Fig-
ure 4.2 shows that not all of those digits are significant. σ turns out to be 0.66 mM, so
we would calculate that the concentration of a typical bottle is 99.944±(1.96·0.66) mM
= 99.944 ± 1.29 mM. In practice, we would not report so many digits: the usual con-
vention is that the last reported digit should be uncertain by an amount between 3 and
30 units. So we would write 99.9 ± 1.3 mM (the last digit, in the tenth-millimolar po-
sition, is uncertain by 13 units) in writing confidence limits for the distribution. This
implies that 95% of the time a bottle selected at random would have a concentration
between 98.6 and 101.2 mM.

We can also generalize result (3) at the beginning of Section 4.3 to say that the aver-
age of N measurements is expected to be in error by an amount which is proportional
to 1/

√
N . This is the principle behind signal averaging. The average of 1000 trials is

expected to be
√

1000 times more accurate than the result of a single trial. So we would
report 99.974 ± (1.96 · 0.66)/

√
1000 mM = 99.94 ± 0.04 mM (again to the correct

number of significant digits) in writing confidence limits for the mean.
Note now that the labeled mean concentration is outside of the error bars, which

as we noted before were based on 95% confidence limits. This means that, if the mean
concentration were really 100 mM, there would be less than one chance in 20 that 1000
bottles, chosen at random, would give a deviation from the average which was this
large. Based on these statements, we can conclude (again at the 95% confidence level)
that the actual mean concentration, which we could approach in principle by measuring
an extremely large number of bottles, is less than 100.00 mM.

Which is more important: confidence limits for the mean or confidence limits for the
distribution? It depends on the application. The vendor of the standardized solutions
above should report confidence limits for the distribution to its customers, who will
use one bottle at a time (for example, in preparing a saline solution to be injected into
a patient). In other cases, however, the error is in the measurement process itself. We
believe that all electrons have the same mass, but 1000 measurements of electron mass
will likely all give slightly different answers. Then we want to know confidence limits
for the mean. In addition, 95% confidence limits for the mean are used by pollsters
to predict the results of an election. The fact that individual preferences vary is not
interesting; what is interesting is whether, on average, more than 50% of the voters
prefer one specific candidate.

The approach described above only gives correct confidence for a very large num-
ber of observations, say N > 50. It is possible to generalize these formulas to assign



statistically valid error bars for smaller numbers of observations, but the formulas are
more complex (Problem 4-6 gives one example).

Unfortunately, the 1/
√

N factor ultimately overwhelms the patience of the exper-
imenter. Suppose a single measurement (for example, determination of the endpoint
of a titration) takes ten minutes. The average of four measurements is expected to be
twice as accurate, and would only take thirty extra minutes. The next factor of two im-
provement (to four times the original accuracy) requires a total of 16 measurements,
or another 120 minutes of work; the next factor of two requires an additional 480 min-
utes of work. In addition, this improvement only works for random errors, which are as
likely to be positive as negative and are expected to be different on each measurement.
Systematic errors (such as using an incorrectly calibrated burette to measure a volume)
are not improved by averaging. Even if you do the same measurement many times, the
error will always have the same sign, so no cancellation occurs.

Before we leave the subject of confidence limits, a few warnings are in order.

1. Even the best statistical methods do not prevent disagreements. For example, the
choice of 95% confidence limits is arbitrary. You might want to use higher con-
fidence limits if, for example, you were trying to determine if your control rods
would absorb enough neutrons to prevent the reactor in a nuclear power plant
from going critical. Thus two people can look at the same data and draw differ-
ent conclusions. Notice, however, that 99.99% confidence limits are only about
twice as wide as 95% confidence limits if σ is known, and if systematic errors
can be ignored.

2. Nearly impossible things happen every day. If your chance of winning a lottery
with a single ticket purchase is 10−7, you can say, with 99.99999% confidence,
that the ticket in your hand will not be a big winner. Yet somebody will beat these
odds, or eventually nobody would buy lottery tickets.

Suppose you draw three cards from a standard deck of 52: the three of spades,
the six of diamonds, and the eight of diamonds. Should you be astonished? After
all, your chance of getting these three cards in this order is only (1/52) · (1/51) ·
(1/50), or less than 10−5; you could say, with 99.999% confidence, that this com-
bination should not have happened. But you had to get some combination of three
cards, and they all have the same probability.

A less obvious (but far more common) abuse of statistics is their use to analyze
health risks. For example, we know with high accuracy the average incidence of
any of hundreds of different subtypes of cancer, based on reporting by doctors
over the last several decades. Suppose I select 100 towns at random, analyze the
incidence of 100 different types of cancer in each of these towns over a decade,
and compare these incidences to the known averages with 95% confidence limits.
Out of these 10,000 combinations, on average 500 will be outside the limits and
will be “statistically significant”! About 250 combinations of one town and one
disease will be “statistically high,” and will terrify the local population when the



results are published; the 250 combinations of one town and one disease which
are “statistically low” will probably be ignored.

All of the seeming paradoxes above can be resolved by remembering the difference
between prediction and postdiction. You should be astonished if someone tells you in
advance that you will pick the three of spades, the six of diamonds, and the eight of
diamonds. You should be concerned if a town with a factory which produces a known
liver carcinogen shows a statistically significant incidence of increased liver cancer.
And if anyone can tell you for sure that the lottery ticket you are about to purchase will
be a winner, by all means do it.

Often we need to combine several laboratory measurements or do some additional data
manipulation to extract specific quantities of interest. Suppose, for example, that you
wish to measure the solubility product of silver chloride, which we used in our illustra-
tion of quadratic equations in Chapter 1. Consider the following procedure:

• Start with 1000.0 mL of pure water (measured with a volumetric flask to ±0.5 mL
accuracy). Add 10.000 mg silver chloride (weighed to ±0.01 mg accuracy), then
stir to produce a saturated solution.

• Separate the remaining solid from the liquid and determine the mass of the solid
after it has dried, in order to determine the number of grams which dissolved. If
the temperature is 10◦C, the remaining mass would be 9.112 mg, also weighed
to ±0.01 mg accuracy.

• Divide the dissolved mass by the sum of the atomic weights of silver (107.8682±
.0003 g · mol−1) and chlorine (35.4527±.0003 g · mol−1), to determine the num-
ber of dissolved moles of silver chloride. This will directly give the (equal) con-
centration of silver ions and chloride ions. The square of the number of dissolved
moles of silver chloride is the solubility product.

The procedure outlined above has many possible sources of both random and sys-
tematic error. The measurements of volume and of mass will not be perfectly accurate;
if the equipment has been correctly calibrated and the laboratory technique is good,
these errors are random (equally likely to be positive or negative). The masses of the
two nuclei are not perfectly known, but these errors can be assumed to be random as
well (the error bars are the results of many careful measurements). The silver chloride
and water will both have impurities, which will tend to make systematic errors. Some
impurities (e.g., chloride ions in the water) would tend to make the measured solubility
product smaller than the true value. Some impurities (e.g., sodium chloride in the sil-
ver chloride) would tend to make the measured solubility product larger than the true
value. Finally, even without impurities, there is one (probably small) systematic error



in the procedure outlined above which will tend to make the measured solubility prod-
uct larger than the true value; can you spot it?

In good laboratory procedure, the systematic errors are significantly smaller than
the random errors. Assuming this is the case, the random errors are propagated as fol-
lows:

• Addition or subtraction: given two quantities with random errors A ± (	A)

and B ± (	B), the sum A + B or the difference A − B has random error√
(	A)2 + (	B)2.

This formula is easy to verify with the “coin toss” distribution. As discussed
above, with 10,000 coin tosses you have 5000 ± 98 heads. You can also ver-
ify (by calculating σ ) that with 2500 coin tosses you have 1250 ± 49 heads, but
for 12,500 tosses you get “6250 ± 109.56733” heads, not 6250 ± 147 heads as
you would get by just adding the error bars for 10,000 tosses and 2500 tosses.
We would report 6250± 110 heads, using the rounding off convention discussed
above (last digit uncertain between 3 and 30 units).

In propagating errors it is generally advisable to keep one or two extra digits in
intermediate results, and round off only when you get to the final result. Ap-
plying this rule to the solubility product measurement, the mass of dissolved sil-
ver chloride is 0.888 ± 0.0142 mg, and the formula weight of silver chloride is
143.3279 ± 0.00042 g · mol−1.

• Multiplication or division: given two quantities with random errors A ± (	A)

and B ± (	B), the product or quotient (C = A · B or C = A/B) has a random
error given by (	C)/C =

√
((	A/A)2 + ((	B)/B)2

Notice that it is the fractional error which counts in multiplication or division. For
example, if A = 100 ± 3 (3% error) and B = 20.0 ± 0.8 (4% error), the product AB
will have a 5% error using this rule above (AB = 2000 ± 100). The number of moles
of dissolved silver chloride is calculated to be

0.000888 ± 0.0000142 g

143.3279 ± 0.00042 g · mol−1
= (6.1956 × 10−6) ± (9.9074 × 10−8),

which we would round to (6.20 ± 0.10) × 10−6 moles. The volume is 1000 ± .05 mL,
so the concentration is (6.20 ± 0.10) × 10−6 M. The error in the volume measurement
makes no discernible difference in the error bars.

Often the data analysis requires multiplication by some number B such as Avo-
gadro’s number, which is typically known to much higher accuracy than any of the
measured data. In that case, the rule for multiplication above simplifies immediately to
	C/C = 	A/A—the fractional error after multiplication by a constant is unchanged.

• Raising to a power: given a quantity with random error A ± (	A), the quantity
C = An has a random error given by (	C)/C = n(	A)/A



Notice that the fractional error in A2 is twice the fractional error in A, not
√

2
times the fractional error as would happen if you multiplied two independent numbers
with the same error. The solubility product is the square of the concentration, so it
is (3.83 ± 0.12) × 10−11 M2. By the way, notice that each individual measurement
was made with much higher accuracy than the final result—correct error propagation
is quite important.

A different distribution arises if the random process is subject to some constraints. For
example, we might know the average kinetic energy of the gas molecules in a bulb, and
we might like to predict how the energy is distributed among the molecules, subject to
the knowledge that only distributions which give our known average kinetic energy are
possible.

The applications are very general, but we will again illustrate the distribution with
a “coin toss” problem. A chemistry instructor, eager to improve his course ratings, de-
cides to end his last lecture in dramatic fashion. He spends his monthly salary to buy 20
gold coins, which he tosses into a bag along with nine chocolate coins. The 10 students
come up, one at a time, to draw coins from the bag just before filling out the evaluation
forms. Each student can keep any gold coins he or she draws, but must stop when a
chocolate coin is picked. The gold coins left after the ninth chocolate coin is picked go
to the tenth student. What is the most likely distribution?

Figure 4.3 shows a few of the many different ways the 20 gold coins can go to 10
students. Before you go further, estimate the relative likelihood of these distributions.

� Five of the many possible ways twenty coins can be distributed among ten
students. Each student is represented by a circle. Thus, for example, the column on the left
illustrates the case where each student gets two coins.



Assume n0 students end up with no coins, n1 students with one coin, and so forth.
Then the total number of students N (10 in this case) is:

n0 + n1 + n2 + · · ·
(

=
∞∑
j=0

n j

)
= 10 (4.22)

The total number of coins C (20 in this case) serves as the constraint. The number of
ways each distribution can be generated, which we will call �, turns out to be given by
what is called the multinomial expansion:

� = N !

n0! n1! n2!
· · · (4.23)

Consider, for example, the second distribution. One student gets all of the coins (n0 =
9, n20 = 1, and all other ni = 0), giving � = 10 in Equation 4.23. This makes sense
because the “big winner” could be any one of the ten students, so there are 10 different
possibilities for this distribution. On the other hand, the first distribution, which treats
everyone exactly the same, gives � = 1 in Equation 4.23 (n2 = 10, all other ni = 0).
Neither distribution is likely.

The probability gets higher if more groups of students are included in the distribu-
tion. For example, the third distribution, which has its maximum at the expected aver-
age with a range of values, gives � = 37,800. However, it is far from the most probable
distribution. The fourth distribution gives � = 113,400; the fifth distribution, which
is more probable than any other, gives � = 151,200. Notice that the most probable
distribution is biased towards the smallest values. In this case, 30% of the students get
no coins, and are really angry when they write their course evaluation forms; another
20% got only one coin, or less than their expected “fair share.” So 50% get less than
the average, but only 30% get more than average. (The reader may decide whether this
experiment produced the intended result of uniformly glowing course evaluations).

Just as with the binomial distribution, calculating factorials is tedious for large N .
The binomial distribution converged to a Gaussian for large N (Equation 4.11). The
most probable distribution for the multinomial expansion converges to an exponential:

n j = n0 exp(−α j) (N , C 
 1) (4.24)

where α is some constant. Notice this implies that the ratio of the populations of adja-
cent levels is fixed by α:

n1

n0
= n2

n1
= n3

n2
= n4

n3
= exp(−α) (4.25)

The constant exp(−α) gets larger as the average number of coins C/N increases, but
is always less than one. This distribution for the case C/N = 2 (two coins on average
per student) and a large number of students is graphed in Figure 4.4.



Now let’s translate this “coin toss” problem back into a chemical application. Sup-
pose molecules only had energy levels which were multiples of some specific packet,
or “quantum.” Figure 4.3 would also give the different distributions for 20 “quanta”
among 10 molecules; Figure 4.4 would give the expected distribution for a large num-
ber of molecules if there were an average of two quanta of energy per molecule.

More generally, of course, the possible energy levels are not equally spaced, and
they might even have a continuous distribution. However, the distribution of energy
between the different available states of a molecule (kinetic energy of translation, vi-
brational energy, and so forth) still follows exactly this same pattern. The generaliza-
tion of Equation 4.25 is that the most probable distribution of populations between two
states i and i , with energies Ei and E j respectively, is given by:

ni

n j
= e−β(Ei −E j ) (4.26)

The quantity β(Ei − E j ) plays the same role in Equation 4.26 as α played in Equa-
tion 4.25 (in the “coin toss” problem, the “energy difference” between adjacent levels
was one coin). Increasing β increases the fractional population of highly excited states,
and thus increases the total energy of the system. Equation 4.26 is called the Boltzmann
distribution, after Ludwig Boltzmann, a famous theoretical physicist.

Suppose we have a system with a large number of available states, such as a mole of
gas in a box. The positions and velocities of the 6 × 1023 gas molecules are constantly
changing due to collisions with the walls and collisions with each other. If we leave the
gas undisturbed for a long enough time, the system will evolve to a state, commonly

� The most probable distribution of 2N coins among N students, where N is very
large, is given by Equations 4.24 and 4.25. Note that only about one in seven students gets the
expected “average result” (2 coins), and that most students have less than the average. Energy
divides up between the available states in molecules in exactly this same way.



called equilibrium, where none of the macroscopic observables of the system (for ex-
ample, pressure and total energy) are changing. In this case, because the number of
molecules is so large, fluctuations about the most probable distribution are very small
(see Section 4.3). The relative number of gas molecules with different amounts of en-
ergy (kinetic energy, internal vibrational energy, rotational energy, electronic excita-
tion, and any other possible energies the molecules can have) will be given by Equa-
tion 4.26, with the value of β determined by the amount of energy available to the gas.

In order to make the expression dimensionless in Equation 4.26, the units of β must
be (joules)−1, or some other inverse energy. It is more convenient to rewrite β as:

β = 1

kB T
(4.27)

where T is called the temperature, and kB = 1.38×10−23 J · K−1 is called Boltzmann’s
constant. We can combine Equations 4.26 and 4.27 to write:

ni

n j
= e−(Ei −E j )/kB T (4.28)

Equation 4.28 is the definition of temperature. Temperature is intrinsically a very
different quantity from, for example, pressure or volume. It is a macroscopic and statis-
tical concept. It makes no sense to talk about the temperature of a single helium atom,
although the energy of such an atom is well defined. But temperature is very important,
because when two systems mix, energy is exchanged until the value of T (or β) is the
same—even if this means the average energy is different between the two systems. For
example, a balloon filled with 50% helium and 50% nitrogen will have the same tem-
perature for the helium atoms as it will for the nitrogen molecules. However, as we will
show in Chapter 8, the nitrogen molecules will be more energetic on average because
of molecular vibrations and rotations.

Equation 4.28 maximizes �, the number of ways the energy can be distributed con-
sistent with the known total energy. This led to the concept of entropy,

S = kB ln � (4.29)

Entropy is also a macroscopic and statistical concept, but is extremely important in
understanding chemical reactions. It is written in stone (literally; it is the inscription on
Boltzmann’s tombstone) as the equation connecting thermodynamics and statistics. It
quantifies the second law of thermodynamics, which really just asserts that systems try
to maximize S. Equation 4.29 implies this is equivalent to saying that they maximize
�, hence systems at equilibrium satisfy the Boltzmann distribution.



Recall from Chapter 3 that the potential energy due to gravity is U = mgh near the
Earth’s surface. The acceleration due to gravity is g = 9.8 m · s−2 independent of mass;
the Earth pulls proportionately just as hard on an oxygen molecule (m = 5.3×10−26 kg)
as it does on a bowling ball (m = 7 kg). Bowling balls sit on the ground. But we can
breathe, so oxygen molecules are present above the ground. Why is this?

The number of molecules or bowling balls at height h, which we will call nh , can
be compared to the number n0 at h = 0 by Equation 4.28:

nh

n0
= e−(Eh−E0)/kB T = e−mgh/kB T

At room temperature (300K) we have:

mg

kB T
= 1.26 × 10−4 m−1 (oxygen molecules)

mg

kB T
= 1.66 × 1022 m−1 (bowling balls)

This predicts that bowling balls do not float any significant distance above the floor—
in accord with our expectation. However, the situation for oxygen molecules is quite
different. At a height of approximately 8000 m, mgh/kT ≈ 1, and the concentration
of oxygen molecules has fallen to about 1/e of its value at sea level (if we assume no
temperature variations).

We can use the Boltzmann distribution to give the velocity distribution for a gas at equi-
librium. If we are only interested in the y-direction (in other words, we want to know
the probability of finding different values of vy , independent of the values of vx or vz)
the Boltzmann distribution gives:

N (vy)

N (vy = 0)
= e−mv2

y/(2kB T ) (4.30)

This is called the one-dimensional velocity distribution, since only the y direction is
included. It can also be converted to a probability distribution P(vy) dvy , which should
be interpreted as the chance of finding any one molecule with a velocity between vy and
vy + dvy :

P(vy) dvy =
{√

m

2πkT

}
e−mv2

y/(2kB T ) dvy (4.31)

The term in {brackets} in Equation 4.31 is the normalization constant, chosen so that∫
P(v) dv = 1.



Equation 4.31 is a Gaussian in vy with standard deviation σ = √
kB T/m. The dis-

tribution is peaked at vy = 0 (remember vy can be positive or negative). The average
value vy = 0, since as many molecules are going left as right. The mean-squared ve-
locity in the y direction v2

y (square before averaging) is evaluated in the same way as

M2 was for the coin toss distribution in Section 4.2: this quantity is just equal to σ 2 for
a Gaussian. We thus have

v2
y = kB T

m
;

(
v2

y

)1/2
=

√
kB T

m
(4.32)

Recall here that m is the mass of a single particle; for He, m = 6.65 × 10−27 kg.
In general, we expect the velocity distributions in the x-, y-, and z-directions to be

the same, and thus we can relate the pressure to the mean-squared speed s2:

v2
x = v2

y = v2
z ; s2 = v2

x + v2
y + v2

z = 3v2
y (4.33)

hence

s2 = 3kB T

m
;

(
s2

)1/2
=

√
3kB T

m
(4.34)

If the speed of the i th particle is si , and there are a total of N particles, the total energy
is given by:

E =
N∑

i=1

ms2
i

2
= N

(
ms2

2

)
= 3N

(
mv2

y

2

)
(4.35)

Substituting Equation 4.32 into Equation 4.35 gives

E = 3

2
NkB T (4.36)

This simple equation explains why there is such a thing as a lowest possible tempera-
ture (absolute zero). At that temperature, the kinetic energy would equal zero, and the
molecules would be completely motionless.

As we show in Chapter 7, R in the ideal gas equation and the Boltzmann constant
kB are related by the expression

R = NAvogadrokB = (6.022 × 1023) kB = 8.3144 J/(mole · K )

(4.37)

Thus we could also write

E = 3

2
n RT (4.38)



where n is the number of moles. This expression only works for a monatomic gas,
because we have ignored any internal energy.

The total energy of a system is a difficult quantity to measure directly. It is much
easier to measure energy changes d E/dT —for example, the number of joules neces-
sary to raise the temperature of one mole of gas by one degree Kelvin. If the gas is kept
in a constant volume container, this is called the constant-volume molar heat capacity
cv ,and equals 3R/2 (independent of temperature) for a monatomic gas. Each possible
direction of motion (x , y, or z) contributes RT/2 to the total energy per mole, or R/2
to the heat capacity.

Kinetic properties (rates of chemical reactions) and thermodynamic properties (equi-
librium constants, energy, entropy) are described by a large number of different math-
ematical relations, which are usually just presented for the student to memorize. Part
of the reason for this is the complexity associated with a full treatment of these proper-
ties; these subjects are taught in graduate chemistry and physics courses at every major
university, and multivariate calculus is needed to formulate a rigorous treatment. Un-
fortunately, simple memorization does not provide much intuition.

This section takes a different approach. We will show in this section that it is possi-
ble to rationalize the fundamental thermodynamics and kinetic equations presented in
introductory chemistry courses using only the statistical concepts we have outlined in
this chapter. The goal here is to show why these equations are reasonable, not to give
rigorous proofs.

The rates of chemical reactions are generally temperature dependent, and most chemi-
cal reactions go more quickly as the temperature increases. For example, the molecule
C3H6 (called cyclopropane) has the three carbon atoms arranged in a triangle of carbon-
carbon single bonds. The 60◦ bond angle is smaller than normal for carbon, so this
molecule is strained. It is less stable than the molecule propene, which has the same
formula but a double bond instead of the ring. As a result, cyclopropane can sponta-
neously convert to propene, or isomerize. At high pressures the isomerization rate is
proportional to the concentration of cyclopropane:

d[cyclopropane]

dt
= −k f [cyclopropane] (4.39)

At 773K, k f = 5.5 × 10−4 sec−1; at 1000K the reaction is far faster (k f = 8.1 sec−1).
Experiments show that over a wide range of temperatures we can write:

k f = A exp

(
− B

T

)
(4.40)



where A and B are constants which depend on the specific reaction. The reverse reac-
tion is also possible, but slower. If we start with pure propene, it is possible to produce
cyclopropane:

d[cyclopropane]

dt
= kr [propene] (4.41)

At 773K, kr = 1.5 × 10−5 sec−1.
We can understand Equation 4.40 and give a physical interpretation of A and B

by viewing this decomposition as proceeding through an intermediate state called the
transition state (Figure 4.5). In the transition state, the potential energy is higher than
in cyclopropane itself, because bonds have to break for the molecule to rearrange. The
energy difference between the reactant and the transition state is called the activation
energy Ea . Of course, the atoms later regain this energy (and more) as the double bond
forms in the product.

Only molecules with energy comparable to the transition state can get over this po-
tential energy barrier and rearrange. The cyclopropane molecules have a distribution of
internal energies, enforced by collisions. At any given time, a small fraction of the cy-
clopropane molecules will be in highly excited states with sufficient internal energy to
“cross over” the barrier. The number of cyclopropane molecules with internal energy
equal to the activation energy Ea is given by the Boltzmann distribution as:

nEa = n0 exp

(
− Ea

kB T

)
(4.42)

This explains the exponential term in Equation 4.41; the constant B is just the ac-
tivation energy:

� Relative energies of cyclopropane, propene, and the transition state between the
two.



k f = A exp

(
− Ea

kB T

)
(4.43)

Equation 4.43 is called the Arrhenius equation, after Svante Arrhenius who proposed
it in 1889.

Not every molecule with this much energy will rearrange. The energy has to be
deposited in the correct bonds, so dissociation usually does not occur instantaneously
after a collision produces a cyclopropane molecule with enough energy. If it takes too
long for energy to migrate to the correct bonds, another collision may well deactivate
the molecule. Thus the A factor (called the preexponential factor) depends on colli-
sion rate (assuming that each collision randomizes the internal energy, allowing more
molecules to reach a high enough internal energy to dissociate) and on geometrical fac-
tors within the molecule as well. The collision frequency increases with temperature,
but very slowly compared to the factor exp(−Ea/kB T ) so it is usually a good approx-
imation to say that A is temperature independent.

Both cyclopropane and propene are stable at room temperature for extended periods.
At elevated temperatures, however, the forward and backward reaction rates ultimately
produce an equilibrium between cyclopropane and propene. This equilibrium is char-
acterized by an equilibrium constant

K = [propene]

[cyclopropane]
,

which is the ratio of the two concentrations. By definition, at equilibrium the con-
centrations remain constant, so the rate of destruction of cyclopropane molecules
(k f [cyclopropane]) equals the rate of creation of cyclopropane from propene
(kr [propene]).

Equilibrium: k f [cyclopropane] = kr [propene] (4.44)

which can be combined with Equation 4.43 to give:

K = [propene]

[cyclopropane]
= k f

kr

= A f exp
(−(Etransition state − Ecyclopropane)/kB T

)
Ar exp

(−(Etransition state − Epropene)/kB T
) (4.45)



where we have explicitly written the activation energy of the forward reaction as the
energy of the transition state minus the energy of cyclopropane; the activation energy
of the reverse reaction is the energy of the transition state minus the energy of propene.

As noted above, not every molecule with an energy equal to the activation energy
reacts; the energy has to be in the correct bonds to form the transition state. For this
reason, the preexponential factors are proportional to the ratio of the number of states
available:

A f

Ar
∝ �propene

�cyclopropane
(4.46)

Combining Equations 4.45 and 4.46 gives

K ≈ �propene

�cyclopropane

exp
(−(Epropene − Ecyclopropane)

)
kB T

= �propene

�cyclopropane
exp

(
− 	E

kB T

)
(4.47)

So the equilibrium constant is a simple function of the difference in energy and the
difference in number of available states between the reactants and the products. We
can also understand Equation 4.47 by forgetting about the intermediate state, and just
applying the Boltzmann distribution directly to the reactants and products.

For an isomerization reaction such as this one, the change in volume 	V ≈ 0. In a
more general reaction done under constant-pressure conditions, we would have to add
the work done on the surroundings (P	V discussed in Section 3.2) to the energy differ-
ence between the reactants and products, and we would replace 	E with the enthalpy
difference 	H = 	H+P	V . Now take the natural log of both sides of Equation 4.47,
and convert � into the entropy using Equation 4.29:

ln K = ln �propene − ln �cyclopropane − 	H

kB T
kB T ln K = kB T ln �propene − kB T ln �cyclopropane − 	H

= T (Spropene − Scyclopropane) − 	H

= T 	S − 	H

	H − T 	S = −kB T ln K

The quantity 	H − T 	S is also called the Gibbs free energy difference 	G. Since
	G in Joules per molecule is a very small number for chemical reactions, we usually
multiply by Avogadro’s number on the left side (which gives 	G in Joules per mole)
and the right side (which gives R = NAvogadrokB). This gives the famous relationship
between equilibrium constants and free energy differences:

	G = −RT ln K (4.48)
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4-1.� Use the binomial distribution to calculate the exact probability of getting 95 or
more heads out of 100 coin tosses.

4-2. Show that 95% of the time, nH after 10,000 coin tosses will be between 4902 and
5098.

4-3.� Find the probability of getting 50.2% heads out of 1,000,000 tosses, and show that
it is the same as the probability of getting more than 52% heads after 10,000 coin
tosses.

4-4. Many books and scientific programs tabulate the error function which is defined
as

erf(y) = 2

α
√

π

yα∫
0

exp

(−x2

α2

)
dx

The parameter α adjusts the width of the curve, but does not change the value of
the error function. This definition makes erf(0) = 0 and erf(∞) = 1, but in some
ways it is not particularly convenient; usually we would rather find the area be-
tween limits expressed as multiples of the standard deviation σ . The normalized
area between 0 and zσ is

1

σ
√

2π

zσ∫
0

exp(−x2/2σ 2) dx

Express this integral in terms of the error function.
4-5.� Calculating statistically valid error bars after a small number N of measurements

(for example, six measurement of the concentration) is an important application
of statistics. Sometimes we can estimate the error in each measurement based on
our knowledge of the equipment used, but more often the sources of error are so
numerous that the best estimate is based on the spread of the values we measure.

With a small number of measurements, calculating valid error bars requires a
more complex analysis than the one given in Section 4.3. The mean is calculated
the same way, but instead of calculating the root-mean-squared deviation σ , we
calculate the variance s:

mean = C =
N∑

i=1

Ci

N

variance = s =
{

N∑
i=1

(Ci − C)2

N − 1

}1/2

The variance is the best guess for the standard deviation of the distribution. If the
errors are assumed to be random with a normal distribution, then 95% confidence



limits for the mean are obtained by the following expression:

Error bars: ± ts√
N

where the value of t is obtained from the table below.

Number of t (95%
Measurements confidence)

2 12.706
3 4.303
4 3.182
5 2.776
6 2.571
7 2.447
8 2.365
9 2.306

10 2.262
20 2.093
30 2.045
∞ 1.960

(a) Show that, in the limit of a very large number of measurements, this approach
reduces to the same method given in Section 4.3.

(b) Why is there no entry in the table for one measurement?

(c) The concentrations of six bottles of labeled 100 mH HCl are found to be
99.62 mM, 101.81 mM, 100.40 mM, 99.20 mM, 100.89 mM, and 100.65 mM.
The average is greater than 100 mM. Can we conclude, with 95% confidence, that
the real average concentration (if we had averaged the concentrations in a very
large number of bottles) is greater than 100 mM?

4-6. Suppose you open a 22.4 liter box to the atmosphere at 0◦C. According to the
ideal gas law, one mole of gas occupies 22.4 liters under those conditions, so there
should be one mole of gas (≈ 6.02 × 1023 molecules) in the box. Based on the
arguments in this chapter, if you tried this experiment many times, and counted
the actual number of gas molecules you captured each time, how much would you
expect your answer to fluctuate?

4-7.� Compare the concentration of oxygen molecules in the air in Denver, Colorado
(approximate altitude 1500 m) to the concentration at sea level. You may assume
the temperature remains constant at 25◦C.

4-8. When pollsters quote “error bars” or “likely errors,” they are actually quoting
“95% confidence limits.” If the percentages in the polls are around 50%, this re-
duces to a “coin toss” problem just like the ones discussed in this chapter. Suppose
100 people are asked to compare French and California wines, and the preferences
are exactly evenly divided. You could report that 50% prefer French wine. What
would be the “error bars,” given the assumptions above?



4-9.� Mary and Jane each have two children. At least one of Mary’s children is a boy;
Jane’s first child is a boy. Show that Jane is more likely than Mary to have two
boys.

4-10. A group of 100 students (50 men, 50 women) are divided up completely at random
into pairs for a chemistry laboratory. Each pair is all-female, all-male, or mixed.
What are the relative probabilities of these three outcomes?

4-11.� Isotopic substitution reactions, such as

14N −14 N +15 N −15 N ⇔ 214N −15 N

involve only extremely small energy differences, so the equilibrium is determined
almost completely by statistical differences. Assume you have an equal number
of 14N and 15N atoms, and that they combine at random to form the three pos-
sible kinds of molecules above. Find the expected relative concentrations of the
molecules, and find the expected equilibrium constant (hint: it is not one. If you
don’t see this, do Problem 4-10 first).

4-12. On the TV game show Let’s Make a Deal, the contestant is shown three curtains.
Behind two of the curtains are cheap gifts; behind the third curtain is the Grand
Prize. She selects one curtain. The show’s host (who of course knows which cur-
tain hides the Grand Prize) then opens a different curtain to show a cheap gift. Fi-
nally, he gives the contestant the right to either stay with her original choice, or
switch to the remaining unopened curtain. Statistically, what should she do? Why?

4-13.� Assume that A = 100±5 and B = 15.0±1.8. Find the error bars for the quantities
A + B, AB, and A3 B2.

4-14. Explain why the fractional error bars for A2 are larger than the fractional error bars
for AB, even if A and B each have the same fractional random error.



Introduction to Quantum
Mechanics

Commonsense is nothing more than a deposit of prejudices laid down by the
mind before you reach eighteen.

Albert Einstein (1879–1955)

The latter half of the nineteenth century was a time of intellectual triumph in the physi-
cal sciences. Most of the material contained in the first year of modern college physics
courses was completely understood by then. Newton’s laws had been rephrased in dif-
ferent mathematical forms which simplified even complicated many-body problems
such as planetary motion. In addition, the description of electric and magnetic fields by
Maxwell’s equations was an essentially complete success—so much so that these equa-
tions and their consequences are the central focus of some graduate physics courses
even today.

The systemization of chemistry was also well underway, propelled in large part by
Mendeleev’s development of the Periodic Table in 1869. Two postulates and an enor-
mous number of careful experimental measurements played a crucial role in this work:

1. Avogadro proposed in 1811 that equal volumes of different gases contained the
same number of “elementary particles” (molecules). However, this led to a seem-
ingly unreasonable conclusion. Since two volumes of hydrogen gas combine
with one volume of oxygen gas to create two volumes of water, Avogadro’s hy-
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pothesis implies that the molecules of oxygen must split into two identical parts.
But the only known forces were gravity, which was far too small to hold atoms
together, and Coulombic attraction, which never generates an attraction between
like particles!

As a result of this concern and others, Avogadro’s hypothesis was rejected for
nearly half a century. Ultimately, however, Avogadro’s hypothesis made it pos-
sible to assign relative atomic weights to most of the lighter elements (determin-
ing the actual weight of an atom requires determination of Avogadro’s number,
which was not accurately known until Millikan determined the charge and mass
of the electron in 1909).

2. Dulong and Petit proposed in 1819 that for most materials which melt far above
room temperature,

d E

dT
≈ 25 J · mol−1 · K−1

(
substance confined to
a constant volume

)
(5.1)

This quantity (the constant-volume molar heat capacity cv) was derived for
monatomic gases in the last chapter. The rule of Dulong and Petit was combined
with stoichoimetric measurements to determine atomic weights for the heavier
elements (Problem 5-1). Mendeleev started with a ranking of the elements by
weight and then deduced the form of the periodic table, leaving gaps (and re-
arranging iodine and tellurium into their proper order) on the basis of chemical
properties. Shortly thereafter, the discovery of the elements gallium and germa-
nium, which filled holes in the table and had properties he predicted on the basis
of the other elements in those columns, emphatically verified the logic of this ap-
proach.

Dramatic progress had been made in other aspects of chemistry as well. The ther-
modynamic quantities which describe chemical reactions (such as energy and entropy)
had been placed on a theoretical footing by statistical arguments. The kinetic theory of
gases, which will be discussed in Chapter 7, was essentially complete. Many important
reactions still used today to synthesize complicated molecules were first demonstrated
in those years, and are still cited in modern scientific papers.

All in all, the accomplishments of nineteenth century chemistry and physics were
impressive by any standard. At the beginning of that century, scientists (natural
philosophers) often seemed not much different from Latin scholars or poets. By the
end of the century, scientific research was an economic (and military) factor.

In fact, however, there were warning signs that something was badly wrong. We
will focus here on six sets of observations which are relevant to chemical processes,
and which together played a major role in the demise of what we now call classical
physical theory.
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1. Any heated object glows. The color of the glow changes as the temperature
increases—from dull red (an electric stove) to yellow to “white hot”. By the
end of the nineteenth century the spectrum (distribution of wavelengths) of light
emitted by a heated object had been accurately measured throughout the visible
and much of the infrared region—it is very broad, and peaks at shorter wave-
lengths as the temperature increases. A variety of theories were introduced to
explain the experimental results. In the end, the only theory which fit the ex-
perimental data required a nonsensical assumption, and the only theory which
required no assumptions gave a physically impossible result.

2. Not all objects emit a broad distribution of wavelengths. A large voltage across
two electrodes in a hydrogen-filled tube causes a discharge, but the gas glows at
only a small number of different frequencies (three visible lines). Other gases
produce different patterns of lines, both in the emission spectra of hot atoms and
in the absorption spectra of cold atoms. In fact, helium was discovered in the
sun (because of its absorptions) long before it was found on earth! The wave-
lengths of the visible absorptions and emissions (400–700 nm) are about 1000
times larger than atomic dimensions, so the restrictions to certain frequencies
could not be equivalent to, say, the tones produced by a violin string. What could
cause this peculiar property?

3. The rule of Dulong and Petit was not only obviously successful in placing ele-
ments in their proper places in the Periodic Table; it also had an extremely sim-
ple theoretical justification. A crystal could be modeled as a collection of atoms,
held together by restoring forces analogous to springs. Inside the crystal each
atom could move in three different directions (x, y, z), and each direction of mo-
tion would stretch one spring and compress another. Because of the Boltzmann
distribution, the kinetic energy of each atom then had to be 3kB T/2 (just as with
a gas); for each spring, the potential energy had to equal the kinetic energy (see
Section 3.3). The net prediction was that the energy of a crystal of N atoms had
to be:

E = K (kinetic energy) + U (potential energy)

= 3NkB T

2
+ 3NkB T

2
= 3NkB T (any solid) (5.2)

so the heat capacity is

d E

dT
= 3NkB = 24.9 J · mol−1 · K−1 (5.3)

in perfect agreement with Equation 5.1.

However, the rule of Dulong and Petit fails for some common substances at room
temperature, and it fails for all substances at low temperatures—(d E/dT ) ap-
proaches zero as the temperature goes to 0.
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4. We noted in the last chapter that the Boltzmann distribution accurately predicts
the heat capacity of monatomic gases such as helium. It also readily predicts the
heat capacity of polytomic gases. As discussed in Chapter 3, atomic motions in
polyatomic molecules include three translations, which are handled by the kinetic
theory of gases in the same way as a single atom. Thus the three translation de-
grees of freedom (x, y,and z) each contribute kB T/2 to the total kinetic energy
per molecule, or RT/2 per mole. N-atom molecules also have 2 different rota-
tions plus (3N-5) vibrations if the molecule is linear, or 3 rotations plus (3N-6)
vibrations if it is nonlinear. The Boltzmann distribution can be used to show that
each rotation also contributes RT/2 per mole to the total kinetic energy. In ad-
dition, just as with solids, we predict that the potential and kinetic energies are
equal for the vibrations in a harmonic oscillator, so each vibration should con-
tribute a total of RT to the energy or R to the heat capacity. So the Boltzmann
distribution predicts that cv is given by:

Linear molecule, N atoms:

cv = 5R/2

(
3 translations +
2 rotations

)
+ (3N − 5)(R)

(
vibrational
energy

)
= (3N − (5/2))R

Nonlinear molecule, N atoms:

cv = 3R

(
3 translations +
3 rotations

)
+ (3N − 6)(R)

(
vibrational
energy

)
= (3N − 3)R (5.4)

Equation 5.4 disagrees with experiments, which show that cv is temperature de-
pendent and substantially smaller than this predicted value at room temperature.
The experimental value of cv for virtually all diatomic gases at room temperature
is about 5R/2, not 7R/2, and increases with temperature. For larger molecules
the deviation from Equation 5.4 is even more substantial. This major disagree-
ment was well known to Boltzmann —who committed suicide in 1906, when
questions about the validity of his life’s work seemed most serious.

5. The Periodic Table was completely empirical. There was no obvious reason why
the ninth (fluorine), tenth (neon) and eleventh (sodium) elements should have
such vastly different properties, or why this pattern should repeat for the 17th,
18th and 19th elements (and again for the 35th, 36th and 37th elements).

6. Even after Avogadro’s hypothesis was universally accepted, and all chemists
wrote oxygen as O2, there was still no justification for why two oxygen atoms
should come together as a molecule. There was also no obvious reason why H2O
should be more stable than HO or HO2.
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It was easy to dismiss these problems as specialized imperfections in a theoretical
framework which was obviously enormously successful. In fact, however, they led to
what is arguably the greatest revolution in modern science. In just a few decades all of
the preceding theory of mechanics, electricity and magnetism lost its universality. The
modern description of atoms and radiation is far richer but more complex. The the-
ory which ultimately evolved, known as quantum mechanics, is counterintuitive and
often inelegant. Commonsense will often not help you here; you will find many of the
conclusions in this chapter to be positively crazy, and the philosophical consequences
are quite profound. But the bottom line is simple—quantum mechanics works. It has
survived almost a century of rigorous experimental tests. To be sure, just as we can con-
trast nineteenth-century chemistry and physics with twentieth-century ideas, someday
a still further understanding will evolve; but this fuller theory will have to include the
results of quantum mechanics as a special case, at least in the size and energy limits
which include atoms and molecules.

Light which hits a surface can be absorbed, transmitted, or reflected; most of the time
some combination of these possibilities occurs. An idealized object which would ab-
sorb all of the radiation at all wavelengths is called a blackbody. A black, non-glossy
sheet of paper, or carbon black from a sooty flame, is a good approximation to a black-
body for visible radiation.

Every substance at a finite temperature continually radiates energy, with a distri-
bution (spectrum) which depends on the surface temperature. Figure 5.1 shows these
spectra for two different temperatures: 5800K (the surface temperature of the sun) and
3000K (the surface temperature of the tungsten filament in a household halogen lamp,
which is a special kind of incandescent light bulb).

Blackbody spectra have the following properties:

1. The total power radiated per cm2 of surface area is proportional to the fourth
power of the temperature:

Ptot = σ T 4 (5.5)

The modern value of σ , which is called the Stefan-Boltzmann constant, is σ =
5.67 × 10−8 W · m−2 · K−4. For example, treating the filament in a 3000K halo-
gen lamp as a blackbody is a fairly good approximation; if you take a 100-watt
lamp, and turn down the voltage so that the power dissipated is only 50 watts, the
temperature of the filament will fall by a factor of 4

√
2 to about 2600K.
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Ultraviolet Infrared

� Energy density U (λ) emitted as a function of wavelength for blackbodies at two
different temperatures. The visible region (λ ≈ 0.4–0.7μm) is shaded near the center. The total
power radiated per unit area rises dramatically as the temperature increases. The spectrum shifts to
shorter wavelengths as well.

2. The wavelength λmax of maximum emission is inversely proportional to temper-
ature:

λmaxT = 2898 μm · K (5.6)

For a 3000K halogen lamp λmax ≈ 970 nm, which is in the infrared region of the
spectrum. Most of the radiated energy appears as heat, not visible light. The color
of the light is also different from sunlight (it has relatively much more yellow and
red), which is the reason that photographs taken with incandescent lighting seem
to have distorted colors. The 2500K filament in a regular light bulb will be even
less efficient in generating visible light, since λmax will move farther from the
visible.

Many different scientists tried to find the correct functional form for the experi-
mental distribution P(λ). By early 1900 the experimental data was good enough to
rule out most of these attempts. In October 1900 Max Planck found a functional form
which gave an excellent fit to experiment, but at that point the theoretical justification
was quite weak. He worked for several years on a variety of derivations which re-
lied on relations between thermodynamic properties. Ultimately, however, all of the
derivations which gave the experimentally verified result were shown to require one
assumption: the possible energies in each mode had to be restricted to discrete values
E = hν, 2hν, 3hν, . . . , where h was an arbitrary constant. In that case, Planck showed
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that the radiated energy density U (λ) had to be:

U (λ) = 8πhc

λ5(ehc/λkT − 1)
(5.7)

This implied that for some reason the cavity radiated light only in packets (later
called photons) with energy hν. A specific value of h (today called Planck’s constant)
gave perfect agreement with experiment. We also sometimes use frequency in units of
radians per second (ω) instead of cycles per second (ν), as we discussed in Chapter 1,
but we can convert readily between the two if we define h̄ ≡ h/2π :

E = hν = (h/2π)(2πν) = h̄ω (5.8)

Both h and h̄ (called “hbar”) are widely used. The current best experimental values are
h = 6.6261 × 10−34 J · s and h̄ = 1.05457 × 10−34 J · s.

It is important to understand how strange this looked. An analogy with sound waves
is helpful: the power output (loudness) of a musical instrument certainly does not ap-
pear to be restricted to specific values, and flutes (high ν) do not appear to be restricted
to a greater minimum loudness than tubas (low ν). Yet light waves did seem to have
these properties. Naturally, such a strange result led others to work on the problem of
blackbody radiation. Within a few years it became clear that the emitted spectrum could
be directly calculated by a statistical treatment, without Planck’s arbitrary assumption.
The different frequencies and directions of emitted radiation are independent. Each of
these independent “modes” of the radiation field can have any possible intensity. Of
course very strong intensities in any mode are unlikely because of the Boltzmann dis-
tribution, but there are an infinite number of modes. The radiated energy density was
predicted to be:

U (λ) = 8πkT λ−4 (5.9)

Equation 5.9 is called the Rayleigh-Jeans law, and can also be derived by taking the
limit of Equation 5.7 as h approaches zero (Problem 5-2).

According to the Rayleigh-Jeans law, all objects gave off more blue light than red
light, and more ultraviolet than visible light. Since the radiated power grows greater
as the wavelength decreases, and wavelength can be arbitrarily short, this implied that
everything radiates an infinite amount of power! The conflict between a completely
reasonable derivation which gives an impossible result (the Rayleigh-Jeans law) and a
derivation which requires a ridiculous assumption but gives the right answer in the labo-
ratory (the Planck law) became generally understood in the physics community around
1908, and is called the ultraviolet catastrophe.

Planck’s law is universally accepted today, and blackbody radiation is a tremendously
important concept in physics, chemistry, and biology. The blackbody distribution is
graphed on a log scale for a variety of temperatures in Figure 5.2.
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� Blackbody radiation distribution for a variety of different temperatures. Notice
that the curves shift with increasing temperature to shorter wavelengths and higher intensities, but
otherwise they look identical.

We know that the surface temperature of the sun is approximately 5800K, because
the spectrum of sunlight observed from outer space matches the distribution from a
5800K blackbody. At that temperature λmax ≈ 500 nm, which is blue-green light; per-
haps coincidentally (but more likely not) the sensitivity of animal vision peaks at about
the same wavelength. Unfortunately, this temperature is well above the melting point
of any known material. The only practical way to sustain such temperatures is to gen-
erate sparks or electrical discharges. In fact one of the dangers of “arc welding” to join
metals is the extremely high temperature of the arc, which shifts much of the radiated
energy into the ultraviolet. The light can be intense enough to damage your eyes even
if it does not appear particularly bright.

Tungsten filaments are the light source in incandescent light bulbs. The efficiency
of such a bulb increases dramatically with increasing temperature, because of the shift
in λmax. Figure 5.3 illustrates this efficiency using a historical (but intuitive) unit of
brightness—the candle.

The vapor pressure of tungsten also rises dramatically as the temperature increases,
so increasing the temperature shortens the bulb life. In a standard light bulb, the operat-
ing temperature is held to about 2500K to make the lifetime reasonable (≈ 1000 hours).
Halogen lamps, which have recently become widely available, incorporate a very ele-
gant improvement. The filament is still tungsten, but a small amount of iodine is added.
The chemical reaction

W(g) + 2I(g) � WI2 (5.10)
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� Efficiency of an ideal blackbody radiator for generating visible light (expressed as
brightness per radiated watt). As the temperature increases, so does the fraction of light emitted in
the visible. Thus the efficiency rises as well.

shifts back towards the reactants as the temperature increases. Near the walls of the
quartz bulb the temperature is relatively cool, and tungsten atoms emitted by the fil-
ament react with the iodine to form WI2 and other tungsten compounds. As these
molecules migrate though the bulb they encounter the much hotter filament, which
causes them to decompose—redepositing the tungsten on the filament and regenerating
the iodine vapor. So halogen bulbs can run hotter (3000–3300K), yet still have a long
life.

At still lower temperatures little of the emission is in the visible, but the effects of
blackbody radiation can still be very important. The Sun’s light warms the Earth to a
mean temperature of approximately 290K; the Earth, in turn, radiates energy out into
space. For the Earth λmax ≈ 10 μm, far out in the infrared. If this radiation is trapped
(for example, by molecular absorptions) the Earth cannot radiate as efficiently and must
warm. This is the origin of the greenhouse effect; as we will discuss in Chapter 8, car-
bon dioxide and other common gases can absorb at these wavelengths, so combustion
products lead directly to global warming.

Even the near-vacuum of outer space is not at absolute zero. The widely accepted
“Big Bang” theory held that the universe was created approximately 15 billion years
ago, starting with all matter in a region smaller than the size of an atom. Remnants of
energy from the initial “Big Bang” fill the space around us with blackbody radiation
corresponding to a temperature of 2.73K. Detection of this “cosmic background” gar-
nered the 1965 Nobel Prize in Physics for Penzias and Wilson. Measurements from the
Cosmic Background Explorer satellite showed “warm” and “cool” spots from regions
of space 15 billion light-years away. These temperature variations (less than 10−4 de-
grees!) reflect structures which were formed shortly after the “Big Bang,” and which
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by now have long since evolved into groups of galaxies. Very recent measurements are
forcing some modifications to the conventional framework. Not only is the universe
still expanding; the expansion is accelerating!

Two papers by Albert Einstein ultimately led to acceptance of the idea of quantiza-
tion of energy for radiation, and were central to the development of the quantum the-
ory (ironically, in later years Einstein became the most implacable critic of this same
theory). The first of these papers, in 1905, concerned the photoelectric effect. Light
ejected electrons from a metallic surface if the light had a greater frequency than some
threshold frequency ν0 which depended on the particular metal. The kinetic energy K
of the emitted electrons was proportional to the excess frequency, ν − ν0 (Figure 5.4).
Only the number of emitted electrons, not the kinetic energy, increased as the intensity
increased.

Einstein rationalized these observations with an assumption closely related to
Planck’s—that the light existed only in bundles (quanta) of energy hν. Then hν0 rep-
resented the energy needed to overcome the potential energy of binding of the electron
to the metal, and the leftover energy (hν − hν0) appeared as kinetic energy. The slope
of the line in Figure 5.4 gave an independent measure of h, which agreed with Planck’s
value.

To the modern experimentalist, a device based on the photoelectric effect called a
photomultiplier tube provides the most dramatic demonstration of the reality of pho-
tons (Figure 5.5).
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� Light will only eject electrons from a metallic surface if the frequency is higher
than a specific threshold, which varies for different metals. The maximum kinetic energy of the
emitted electrons will increase if the frequency of the incident light increases. Einstein interpreted
these observations as evidence for photons with energy E = hν.



Section 5.3

Photon
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� Schematic illustration of a photomultiplier tube. A single photon ejects an
electron from the photocathode. The electron is accelerated by voltage differences, and knocks
multiple electrons off each successive surface. The burst of electrons is collected at the end.

A photon kicks an electron off the first surface; the electron is accelerated by the
voltage difference to the next electrode. The accelerated electron hits with sufficient
force to knock off several more electrons, which in turn are accelerated to the next sur-
face. After six or more of these stages, the cascade started by a single photon has be-
come a burst of typically 106 electrons (total charge Q ≈ 106e = 1.6 × 10−13C).

This is still an extremely small charge; however, all of these electrons leave the pho-
tomultiplier tube within about 10 ns, because their velocities were determined almost
completely by the accelerating voltages. Under extremely low light conditions, a mea-
suring device such as oscilloscope will show a signal with intermittent bursts, each rep-
resenting a cascade started by a single photon, on a baseline which has a small amount
of noise. An electronic device called a “counter” simply examines this voltage contin-
uously, and adds 1 every time the level exceeds a preset threshold. This type of pho-
ton counting system is used in hundreds of research laboratories to measure signals as
small as a few photons per second (Problem 5-16), and with care it can be taken down
to still much lower light levels.

Another paper of Einstein’s showed that quantization of energy also predicted that
Dulong and Petit’s heat capacity rule would only be valid at high temperatures. Assume
that the only allowed energies are E = 0, hν, 2hν, . . . nhν, where n can be arbitrarily
large. The average energy is

〈E〉 = (0)nE=0 + (hν)nE=hv + (2hν)nE=2hν + · · ·
nE=0 + nE=hν + nE=2hν + · · · (5.11)

(The denominator in this expression is the total population in all states; the numer-
ator is the total energy). At very low temperatures (kB T � hν) very little population
is found in excited states, and the average energy is far less than kB T . For example,
consider the case hν = 100kB T . From the Boltzmann distribution, even the lowest
excited state (with energy E = 100kB T ) is almost empty:
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nE=100kB T = nE=0 exp

(−(100kB T )

kB T

)
≈ 10−43nE=0

nE=200kB T ≈ 10−86nE=0

If we save only the largest terms in the numerator and denominator of Equation 5.11
(or use the exact expression, given in Problem 5-5) we find:

〈E〉 ≈ (100kB T )(10−43nE=0)

nE=0
= 10−41kB T

Thus vibrations with frequencies ν much higher than kB T/h contribute essentially
nothing to the total energy or to the heat capacity d E/dT . As the temperature ap-
proaches zero, all of the vibrational modes have frequencies much higher than kB T/h,
and thus they cease to contribute to the heat capacity.

At the opposite extreme, if kB T 
 hνmax (where νmax is the highest vibrational
frequency of the material) then there is a nearly continuous distribution of available
energies. For example, the state with E = kB T has about 37% as much population as
the state with E = 0; the state with E = 2kB T has about 14% of the population of
E = 0. If you sum over all of the possible states, it can be shown that the classical
E = kB T per vibration is recovered (Problem 5-5). Hence the rule of Dulong and Petit
must be the high-temperature limit for all substances.

Einstein published this paper to explain measurements of the heat capacity of ex-
actly one substance (diamond); almost nobody else in the scientific community thought
there was anything wrong with the law of Dulong and Petit! But further measurements
quickly verified that heat capacity did depend on temperature, and later refinements of
this approach (most notably by Debye) gave excellent agreement with experiment. In
a sense, chemists were just very lucky that “room temperature” is in the high temper-
ature limit for most substances—or else the Periodic Table might have been deduced
far later.

Heat capacities of polyatomic molecules can be explained by the same argu-
ments. As discussed in Chapter 3, bond-stretching vibrational frequencies can be over
100 THz. At room temperature kB T � hν and these stretches do not contribute to the
heat capacity (which explains why most diatomics give cv ≈ 5R/2, the heat capacity
from translation and rotation alone). Polyatomic molecules typically have some very
low-frequency vibrations, which do contribute to the heat capacity at room tempera-
ture, and some high-frequency vibrations which do not.

Extremely low temperature investigations (millikelvins or lower) remain an active
area of modern physical research. The major motivation is often the decrease in the
Boltzmann factor which makes it possible to put virtually all of the molecules in the
lowest energy state, even if the energy 	E to higher levels is very small. The simplest
way to get stable low temperatures in the laboratory is to use commercially available
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condensed gases such as liquid nitrogen (which boils at 77K at atmospheric pressure)
or liquid helium (which boils at 4K at atmospheric pressure, and about 2K at the lowest
feasible pressures produced by a vacuum pump). These gases are prepared using refrig-
eration techniques such as those described in Chapter 7. Lower temperatures are usu-
ally achieved by putting additional equipment inside a cavity which is already cooled
by liquid helium. But all of these techniques are dramatically complicated by the de-
crease in heat capacity as temperature approaches zero. A very tiny amount of energy
coupled in by blackbody radiation from the room, or even blackbody radiation from
the 4K liquid helium, is very effective in increasing temperature.

The motions of two bodies connected by an attractive force can also include rotation.
In the simplest case (for example, rotation of the Earth around the Sun) one of the two
bodies is much more massive than the other, and the heavier body hardly moves. The
attractive force causes an acceleration through Newton’s Second Law, but this does not
necessarily imply that the speed changes—for a perfectly circular orbit the speed is con-
stant. Velocity is a vector quantity, and so a change in direction is an acceleration as
well.

Bound orbits due to the attraction between unlike charges (or due to gravity, which
has the same functional form) are all circles or ellipses. We will consider the circular
case first. Suppose a particle of mass m is moving counterclockwise in a circular orbit
of radius R in the xy-plane. The particle’s position r = (x, y, z) can be described by
the equations

x = R cos(ωt); y = R sin(ωt); z = 0

|�r | =
√

x2 + y2 + z2 = R (5.12)

At t = 0 the particle is at the coordinate (R, 0); at ωt = π/2 the particle is at (0, R);
at ωt = π the particle is at (−R, 0); at ωt = 3π/2 the particle is at (0, −R), and at
ωt = 2π the particle has returned to its starting point.

The instantaneous velocity and acceleration are found by taking derivatives:

vx = dx/dt = −ωR sin(ωt)

vy = ωR cos(ωt)

vz = 0

|�v| =
√

v2
x + v2

y + v2
z = ωR (5.13)

ax = d2x/dt2 = −ω2 R cos(ωt)

ay = −ω2 R sin(ωt)

az = 0

|�a| =
√

a2
x + a2

y + a2
z = ω2 R (5.14)
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Notice that the acceleration vector is pointed directly toward the origin:

�a = −ω2�r ; |�a| = ω2 R (5.15)

According to Newton’s laws, this acceleration can only be sustained if there is an at-
tractive force �F = m�a towards the origin:∣∣∣ �F

∣∣∣ = m |�a| = mω2 R = − q1q2

4πε0 R2
(Coulomb’s law, circular orbit)

(5.16)

The minus sign comes into Equation 5.16 because q1q2 < 0 (the charges have op-
posite signs) for a bound orbit. If the initial distance R from the origin is specified,
Equation 5.16 implies that the rate of rotation ω is also fixed, as is the speed ωR. Re-
arranging Equation 5.16 gives:

ω =
√

− q1q2

4πε0 R3m
(5.17)

Starting from this result we can readily find the speed and energy:

Speed s = |�v| = ωR =
√

− q1q2

4πε0 Rm

kinetic energy K = ms2

2
= − q1q2

8πε0 R

potential energy U = q1q2

4πε0 R

total energy E = K + U = q1q2

8πε0 R
(5.18)

Note that these equations only make any sense if q1q2 < 0 (the charges are of op-
posite sign, giving an attraction), so the kinetic energy is positive as expected.

Circular orbits are a special case. More generally orbits are ellipses, and then
the speed is not constant. The velocity can be decomposed into components parallel

v

r
v

� For elliptical orbits, the sum of kinetic and potential energy is conserved, as is the

quantity
∣∣∣ �L∣∣∣ = mv⊥r (angular momentum). The orbiting body moves fastest at the minimum

separation.
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and perpendicular to the position vector (Figure 5.6). The component parallel to r ,
called v‖, changes the length of the position vector (if v‖ > 0 the separation is increas-
ing) so for a circular orbit v‖ = 0. The other component, perpendicular to r , is called
v⊥. For an elliptical orbit, v‖ = 0 only when |�r | is at a minimum or maximum. Comets
have highly elliptical orbits; planetary orbits are more nearly circular. For example, the
Earth’s distance to the sun varies by 3.2% over a year, as does its speed.

Newton’s laws can also be used to describe elliptical orbits, and it is then found
that a vector quantity called angular momentum is conserved (always stays constant),
just as the total momentum �p stayed constant in a closed system. Angular momentum
is conventionally denoted �L . The vector �L points perpendicular to the orbit (in the z-
direction by our definitions) and has length∣∣∣ �L∣∣∣ = mv⊥r = constant (5.19)

For a circular orbit with radius R, since v‖ = 0 and v⊥ = ωR, Equation 5.17 gives∣∣∣ �L∣∣∣ = mωR2 =
√

−q1q2 Rm

4πε0
(5.20)

kinetic energy K = mv2

2
= mω2 R2

2
=

∣∣∣ �L∣∣∣2

2(m R2)
≡

∣∣∣ �L∣∣∣2

2I
(5.21)

The quantity I = m R2 in the denominator of Equation 5.21 is called the moment of
inertia, and is labeled I .

Just as in the case of vibrational motion, the equations become a little more complex
if the two objects have similar masses. It can be shown that Equations 5.20 and 5.21
above still hold, if m is replaced by the reduced mass μ = m1m2/(m1 + m2):∣∣∣ �L∣∣∣ = μωR2, μ = m1m2/(m1 + m2)

K =

∣∣∣ �L∣∣∣2

2I
, I = μR2 (circular orbit, two connected masses) (5.22)

The concept of angular momentum was introduced centuries ago, and might seem
rather specialized. In fact, however, it is impossible to overstate the importance of
angular momentum in chemistry. We will show in later sections that electrons orbit
the nuclei of atoms or molecules with trajectories which are far more subtle than circu-
lar or elliptical orbits, but the concept of angular momentum still applies. It is central
to bonding; it explains why element 10 (neon) is stable while elements 9 (fluorine) and
11 (sodium) are highly reactive; and it lets us predict what combinations of atoms will
form stable molecules. Nuclei and electrons themselves have angular momentum, as
if they were spinning, and the properties of these “spins” are probed countless times a
day in chemistry departments to measure molecular structures. Finally, the molecule
as a whole has angular momentum, and this property is used to measure bond lengths
and angles (and to heat food in a microwave oven).
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If we accept that light exists as photons, then the presence of specific and sharp fre-
quencies in the emission spectra of atoms must be interpreted as restricting the internal
energy of atoms to specific values. For single-electron atoms the frequencies of the
observed photons satisfy the simple relationship

v = Z2(3.28984 × 1015 Hertz)

(
1

m2
− 1

n2

)
(5.23)

where m and n are arbitrary integers and Z is the atomic number (Z = 1 for hydrogen,
Z = 2 for He+, and so forth). The results of Section 5.3 imply that we should assign an
energy E = hν to each photon emitted at frequency ν. Conservation of energy would
then imply that production of a photon requires a change in the internal energy of the
atom. A transition from a state with energy Em to a state with energy En then produces
a photon with energy hν = Em − En .

E = hν = Z2(2.1799 × 10−18 Joules)

(
1

m2
− 1

n2

)
= Em − En

(5.24)

When m gets very large, 1/m2 approaches zero. So if we pick the zero of energy to
correspond to the limit of very large m, we find:

En = (−2.1799 × 10−18 Joules)Z2/n2 (5.25)

The energy required to take a hydrogen atom from n = 1 (the lowest state) to n = ∞
is 2.1799 × 10−18 Joules, which is called the ionization energy.

The first real clues about the structure of atoms came in 1909 when Rutherford bom-
barded a thin film of gold with α-particles (helium nuclei). The deflection pattern was
consistent only with an atomic structure which had the positive charge and most of the
mass concentrated at the center. This immediately suggested a planetary model (called
the Bohr model after Niels Bohr, who received the 1922 Nobel Prize in Physics for
this work), with electrons orbiting the nucleus, held in place by the attraction between
unlike charges. The expected properties of an electron (mass me charge −e) orbiting
a nucleus (mass mn charge +Ze) at radius R were derived in the last section. For a
circular orbit there are three conserved quantities, or constants of the motion: the total
energy (Equation 5.18), the length of the angular momentum vector (Equation 5.20),
and the direction of the angular momentum vector (perpendicular to the orbit). Equat-
ing the energy in Equation 5.18 to the observed result in Equation 5.25 restricts the
possible values for R:

E = −Ze2

8πε0 R
= Z2(−2.1799 × 10−18 Joules)

n2
(5.26)
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The different values of n in Equation 5.25 then correspond to orbits with different
radii, angular momenta, and rotation rates. For example, for hydrogen (Z = 1), we
would get

R(Bohr model) = n2e2

8πε0(2.1799 × 10−18 Joules)
= n2(52.92 pm)

(5.27)

Substituting Equation 5.27 into the expression for the angular momentum (Equa-
tion 5.20) gives: ∣∣∣ �L∣∣∣ (Bohr model) = n(1.0546 × 10−34 J · s) (5.28)

The numerical constant in Equation 5.28 is the same as h̄ in the Planck relationship. So
the assumption that electrons have circular orbits with angular momentum restricted
to multiples of h̄ gave the correct emission spectra for hydrogen. We could also start

from the assumption
∣∣∣ �L∣∣∣ = nh̄, rearrange Equation 5.20, and derive R:

R =
4πε0

∣∣∣ �L∣∣∣2

me2
= n2 4πε0h̄2

mee2
(5.29)

In honor of Bohr, the value of R for n = 1 is called the Bohr radius a0:

a0 = 4πε0h̄2

mee2
= 52.92 pm (5.30)

In one very important way, circular orbits held together by Coulomb’s law are dif-
ferent from orbits held together by gravity. The electron moves at constant speed, but
its direction is changing, therefore it is accelerating (this is also a direct consequence of
�F = m�a). However, an accelerating electron radiates electromagnetic energy. So en-

ergy conservation implies that the total energy must constantly decrease, and the elec-
tron must spiral down very quickly to the nucleus. So once again we have an extremely
strange result which agrees perfectly with experiment. If we take it at face value, elec-
trons can only stay in orbits which give them specific values of angular momentum,
and if they are in these orbits they do not radiate energy. But these create still more
questions. For example, why should the only orbits be circular? Wouldn’t a hydrogen
atom look different from a direction perpendicular to the orbit than it does from other
directions? Finally, many attempts were made to extend these ideas to larger atoms or
to molecules, and they all failed miserably.

The Bohr model was an important step forward in understanding atomic structure,
but just because it was recognized by a Nobel Prize does not mean it is correct! As
we show in the next few chapters, the hydrogen atom energy is indeed restricted to the
values given by Equation 5.25, and the Bohr radius a0 will reappear as a convenient
parameter in the correct solution for the hydrogen atom. However, Equation 5.28 does
not give the correct restriction on the length of the angular momentum vector, and elec-
trons do not “orbit” the nucleus.
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Yet another step towards the new theory was taken in 1924 by Louis de Broglie, a grad-
uate student at the time at the Sorbonne in Paris. So far we have seen that energies of
matter (hydrogen atoms) and light are both quantized, and that light can be shown to
behave sometimes as particles. Can particles behave sometimes as waves?

Wavelike behavior, such as interference, depend directly on the wavelength, and it
is far from obvious what “wavelength” you would assign to a hydrogen atom, let alone
a macroscopic object such as a baseball. For photons we have

E = hν = hc/λ (photons) (5.31)

In addition, classical electromagnetic theory predicts that light waves have momentum
given by

p = E/c (5.32)

so we can combine these two equations to write

p = h

λ
(photons) (5.33)

de Broglie argued that Equation 5.33 could be used to define the wavelength of par-
ticles:

p = h

λ
(particles) (5.34)

Of course, the definition might not be very useful; we could also “define” the ears of an
elephant to be wings, but this would not make elephants fly. What makes this defini-
tion interesting is a very simple extension. He also argued that the orbit of an electron
around a proton would only be stable if its circumference 2π R were an integral number
of wavelengths. Thus

nλ = nh

p
(from Equation 5.34) = 2π R (5.35)

Rearranging this gives pR = n(h/2π) = nh̄, but
∣∣∣ �L∣∣∣ = mv⊥ R = pR for a circular

orbit (see Equation 5.19), so this implies
∣∣∣ �L∣∣∣ = nh̄. Thus Bohr’s restriction of angular

momentum to multiples of h̄ is exactly the same as de Broglie’s assumption that elec-
trons have a wavelength which determines the allowed orbits.

de Broglie’s successful description of the hydrogen atom with his hypothesis that par-
ticles could have wavelike behavior is not just a mathematical curiosity; it has tremen-
dous experimental consequences. The Bohr model is obsolete, but the concept of a de
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Broglie wavelength (Equation 5.34) is not. Countless experiments have shown that
particles really do have a wavelength.

The most straightforward way to understand the consequences of the wave-particle
duality is to return to an application we first discussed in Chapter 3—examining the
effects of combining two identical sources. As Figure 3.6 showed, the distribution from
two sources of classical particles (for example, two shotguns) is merely the sum of the
distributions from each source; the distribution from two sources of classical waves (for
example, two speakers playing the same tone) has superimposed interference patterns.
For particles, the intensity of each source (which is never negative) adds to produce the
net intensity; for waves, the amplitude of the wave (which can be positive or negative)
adds, so destructive or constructive interference is possible.

What we have shown, however, is that light and matter can have both wavelike and
particle-like character. So let us generalize Figure 3.6 to include two other sources: a
light source (Figure 5.7) and a beam of electrons (Figure 5.8). An intense monochro-

Light source (monochromatic; slits smaller than ): Intensity
pattern

D1 – D2 = n , waves reinforce (constructive interference);
D1 – D2 = (n + 1/2) , waves cancel (destructive interference)

D1

D2

Light source (broadband; slits smaller than ):

Maxima and minima for large n are at different positions
for different wavelengths, so most fringes fade.

Light source (broadband; slits much larger than ):

Different positions within the slits give different
values for D1 and D2, so all fringes fade.

� Comparison of interference fringes from two wave sources under different
conditions. Notice that the fringes fade if the light is not monochromatic, or if the slits are large.
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matic light source, such as a laser, produces an interference pattern from two small slits
which is essentially the same as the sound pattern in Figure 3.7; in fact, as we noted in
Chapter 3, the wavelike character of X-rays (electromagnetic fields with wavelengths
comparable to crystal lattice spacings) permits measurement of distances in crystals
because of the interference pattern.

Interference is an important aspect of wavelike behavior, but it is not always ob-
vious. For example, two flashlights do not produce an interference pattern on a wall;
their intensities appear to add. The disappearance of fringes comes from several ef-
fects. The two sources are large compared to an optical wavelength; the output of a
flashlight has a broad range of colors; and the waves from two flashlights do not have a
well-defined phase relation between them. However, even a complex source such as a
flashlight will generate interference under the right conditions. Young first explored in-
terference in 1801, and Michaelson and Morley used interference between light waves
from one source traveling along two nearly equal paths to attempt to measure changes
in the speed of light in 1887.

If the intensity is turned down dramatically, so that only a small number of photons
go through the slits at a time, it is possible to resolve individual photons. A photomul-
tiplier tube positioned near the first maximum would eventually detect a large number
of photons; a tube positioned near the first minimum would detect fewer photons.

Now let us examine a beam of small particles such as electrons. Since λ = h/p,
we know that the prescription for maximizing interference will be to prepare this beam
with all of the electrons having nearly the same momentum. This can be done with
a cathode ray tube (CRT), which is simply an evacuated tube with a very high volt-
age difference between two electrodes (Figure 5.8). Electrons are attracted to the more
positively charged plate (the anode). If the voltage difference is high enough, it can
overcome the binding energy of the electrons to the metal in the cathode, and electrons
travel from the cathode to the anode. These electrons are accelerated by the potential
difference.

Suppose there are two extremely small holes in the anode. The electrons passing
through these holes can strike the end of the tube, which is coated with a phosphor—a

Electron beam (particles, wavelength comparable to slit spacing):

–1000 V 0 V Phosphor

� Simplified illustration of a cathode ray tube. The “cathode rays” are electrons
which can be pulled off the cathode by a large potential difference between cathode and anode.
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material which glows when electrons hit it. The spatial distribution of the glow will
show interference effects from the two different electron paths. The positions of the
maxima and minima can be predicted (just as for light waves) by determining whether
the path length difference is an integral or half-integral multiple of wavelengths.

All of the other phenomena associated with waves can also be observed in parti-
cles. For example, in 1927 Davisson and Germer accelerated a beam of electrons to a
known kinetic energy and showed that these electrons could be diffracted off a nickel
crystal, just as X-rays are diffracted (see Figure 3.8). Just as with photons, interfer-
ence is not always seen: if the wavelength spread or the slits are large, the fringes wash
out. This also explains why interference is not seen with macroscopic objects, such as
buckshot—the wavelength is far too small.

In general, the tradeoff between particle-like and wave-like properties depends on
the spatial resolution of the measurement. If this resolution is much larger than the
wavelength, interference effects disappear. For example, in the photoelectric effect
light ejects an electron from a surface whose area is much larger than one square wave-
length; the surface is also generally smooth on the scale of one wavelength (≈ 1μm).
As a result, the behavior is dominated by particle-like properties, as discussed earlier.
Interferometric measurements require observation of fringes from path length differ-
ences comparable to a wavelength. Similarly, electron diffraction comes from beams
of energetic electrons with a wavelength comparable to the lattice spacing. On the other
hand, television sets use cathode ray tubes with a beam diameter much greater than the
electron wavelength, and interference effects wash out.

Quantum mechanics has tremendous philosophical consequences which are still de-
bated to this day, and which go well beyond the scope of this book. Perhaps the most
important of these consequences is the destruction of classical determinism, and the
recognition that it is impossible to make observations without fundamentally chang-
ing the system being observed. This result is quantified by the Heisenberg Uncertainty
Principle, which is simply a consequence of the wavelike nature of matter.

Newton’s laws are perfectly deterministic. Suppose we have a set of masses, all of
whose positions and momenta are specified at some instant in time. Further, suppose
that we specify all of the forces of interaction between these balls. We could now use
Newton’s laws to determine, exactly, the state of this system at any later time.

For example, suppose we knew that at time t = 0, a ball was centered in a box
with length 0.5 meter, and suppose we knew that it was moving to the right at ex-
actly 1 m · s−1. In the absence of any forces, we could predict exactly where it would be
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next week, next month, or next year. The round-trip distance is one meter, so the ball
returns to its original position (moving to the right) at exactly t = 1s, t = 2s, and so
forth.

Of course, there are uncertainties in any realistic measurement, and this ultimately
limits our ability to predict the future position of the ball. Suppose we only knew the
initial velocity to 1% accuracy: v = 1.000 ± 0.01 m · s−1. Then the uncertainty in the
total distance traveled (x = vt) grows with time (Figure 5.9):

t = 10 sec, x = 10.00 ± 0.1 m (10.00 ± 0.1 round trips);

t = 100 sec, x = 100.0 ± 1 m (100.0 ± 1 round trips)

For short times we know the approximate position, but at long times the position is
essentially unknown. However, there is no fundamental physical limit to our ability to
measure the velocity; so, in principle, we can do the initial measurement with enough
accuracy to predict the position at any later time. For example, we could accurately
predict the position of the ball after one year (31,557,600 seconds) if we measured the
initial velocity with an uncertainty much better than one meter in 31,557,600 seconds.

According to Newtonian physics, the universe and all of the objects in it are simply
an extremely complicated collection of masses and charges. This implies that if you
knew the state of the universe at any one time (exactly), you could predict (exactly)
the future. Of course it is unrealistic to actually do a set of measurements which define
the conditions at one time with enough accuracy, but it is in principle possible. There-
fore, Newtonian mechanics predicts that the future is perfectly determined by the past.
There is no such thing as “free will”, and you need not worry about studying for the
next examination; it has already been determined how much you will study, and what
you will score on the test!

t 0 sec
Ball centered in box,

v = 1.000  .01 m • sec-1

t 10 sec
Ball has traveled

10.00  0.1 m; ball is within
0.1 m of center of box

0.5 meters

t 100 sec
Ball has traveled

100.00  1 m; could be
anywhere in the box

� Uncertainty in position, coming from uncertainty in initial knowledge of velocity.
This uncertainty can be reduced to an arbitrarily small value by a sufficiently accurate initial
measurement.
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Up to now, we have summarized quite a number of seemingly bizarre results. However,
all of these results can be understood by accepting the idea of wave-particle duality,
which may not be predicted from classical physics, but is not intrinsically inconsistent
with it. It could be argued that now we simply know more about the nature of matter and
light; thus the concepts of waves and particles, previously thought to be so different,
simply have to be extended to a middle ground.

There is still a problem with such a compromise. To have interference, waves must
be simultaneously present from two sources, so that they can cancel or reinforce. Yet if
the intensity of the light in Figure 5.7 is turned down very low (so that only one photon
is present at a time), or if the intensity of the electron beam in Figure 5.8 is decreased (so
that only one electron hits the phosphor at a time), fringes still build up with time. The
electron or photon arrives at different positions with probabilities that exactly mirror
the fringes observed at high intensity.

How can this be? If the electron passed through the top slit in Figure 5.10, and no
other electrons are present in the tube at the time, how can it matter that a second slit
also exists? Similarly, if it passed through the bottom slit, why would the top slit affect
anything? Therefore, how can we get interference?

An experimentalist, puzzled by this unreasonable result, would quickly pose a mod-
ification to Figure 5.10 to clarify the issue: detecting which slit the single electron actu-
ally used. For example, a small coil could surround the upper slit. The moving electron
would produce a current, and this would induce a voltage in the coil. Now detecting
this voltage would determine if the electron used the upper or lower slit.

If we do this, the interference vanishes (Figure 5.11).
You might chalk this disappearance up to a badly designed experiment. There are

many other ways to measure the position of an electron (for example, you can scatter
light off it). But every experiment ever devised destroys the interference as soon as it
becomes possible in principle to distinguish between the slits. You cannot know more

–1000 V 0 V
Phosphor

Signal after
long time

Low intensity electron beam (only one electron present at a time):

� If only one electron is present in the system at a time, but there are two possible
and indistinguishable paths, the ultimate signal will show interference effects.
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about the electron’s trajectory without fundamentally changing the way it behaves! If
it is not possible to distinguish the two trajectories, all of the properties of the system
are the same as if the particle went through both slits at the same time.

Figure 5.11 shows one of the most counterintuitive results of quantum mechanics.
There are fundamental limits to our ability to make certain measurements—the act of
determining the state of a system intrinsically perturbs it. For example, it is impossible
to measure position and momentum simultaneously to arbitrarily high accuracy; any
attempt to measure position automatically introduces uncertainty into the momentum.
Similarly, a molecule which is excited for a finite period of time cannot have a per-
fectly well-defined energy. As a result, classical determinism fails. It is not possible,
even in principle, to completely specify the state of the universe at any instant, hence
the future need not be completely defined by the past. These results are usually phrased
something like:

	x	p � h

4
; 	E	t � h

4
(5.36)

and are examples of what is called the Heisenberg Uncertainty Principle.
The Heisenberg Uncertainty Principle and its far-reaching consequences actually

follow directly from the conclusion that particles also have wavelike character (and
vice versa). Consider, for example, two waves with slightly different frequencies (Fig-
ure 5.12). The waves can be made to constructively interfere at one point, but even-
tually the difference in frequency will cause them to destructively interfere. In Fig-
ure 5.12 the waves are chosen to have a 10% frequency difference. So when the slower
wave goes through 5 full cycles (and is positive again), the faster wave goes through
5.5 cycles (and is negative).

–1000 V 0 V
Phosphor

Signal after
long time

Low intensity electron beam with meter:

Meter

� If it is possible to detect which of two interfering paths an electron actually
takes, the interference vanishes—no matter how carefully the apparatus is designed to minimize
perturbations.
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time

� Two waves at different frequencies will constructively interfere and
destructively interfere at different times.

Suppose that we had a very large number of sine waves, all arranged so that they
were in phase at time t = 0, with a random (Gaussian) distribution of frequencies.
Eventually the waves will start to destructively interfere (cancel), and the amount of
time the waves remain in phase depends on the width of the frequency distribution. For
a distribution of frequencies with an uncertainty in frequency of ±5% (	ν = 0.05ν0,
where ν0 is the average frequency), it can be shown that the sum looks like Figure 5.13.

 time

A
m

pl
itu

de

� The sum of a large number of sine waves, with a distribution of frequencies of
5% around the center frequency, produces constructive interference for a range ±	t ≈ ±5 cycles
from the time when they all are in phase (the arrow in the figure). The length of the arrow is thus
2	t .
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The waves produce a pulse of radiation with a finite width (represented by the arrow
in the figure). We will define the uncertainty 	t as the half width at half maximum;
thus we would use half the length of this arrow, or approximately five cycles at the
center frequency ν0. The pulse is large as long as most of the frequency components
constructively interfere, then grows small. From the figure, 	t is approximately five
cycles at the center frequency ν0. Each cycle lasts for a time 1/ν0. The net result is:

	t ≈ 5 · (1/ν0); 	ν = 0.05ν0

	v	t ≈ 1/4 (or equivalently 	ω	t ≈ π/2) (5.37)

We used “≈” instead of “=” in Equation 5.37 because the exact numerical value de-
pends on the definition of the uncertainties—you will see different values in different
books. If we define “	t” in Figure 5.13 as the full width at half maximum or the root-
mean-squared deviation from the mean, the numerical value in Equation 5.37 changes.
It also changes a little if the distribution of frequencies is not Gaussian. Equation 5.37
represents the best possible case; more generally we write

	ν	t � 1/4 (5.38)

Equation 5.38 turns out to be a universal result. If we increase the range of fre-
quencies, then the waves constructively interfere for a shorter time. In order to have a
single, well-defined frequency (	ν → 0) the wave needs to continue for a very long
time (	t → ∞).

If a wave persists only for a time 	t (or if we can only measure its frequency for a
finite time 	t), the frequency is intrinsically unknown by an amount (1/4	t). For ex-
ample, suppose we try to measure the frequency of a sound wave by using a microphone
and an oscilloscope to count the number of cycles in one second. We could readily dis-
tinguish between a sound wave at 1000 Hz and one at 1001 Hertz, because the faster
wave will go through one more cycle (in fact, your ear would hear a “beat” as the notes
went in and out of phase with each other). It would be nearly impossible to distinguish
between a wave at 1000 Hz and a wave at 1000.001 Hz; at the end of one second, they
would still be nearly perfectly in phase with each other.

Planck’s relationship E = hν lets us convert Equation 5.38 into a relation between
energy and measurement time.

	E	t � h

4
(5.39)

Also, the equation which describes a sine wave moving in the x direction is

ε(x, t) = ε0 cos
(

2π
(
νt + x

λ

))
(5.40)

so the product x · (1/λ) must behave the same way as the product ν · t . Thus

	x	

(
1

λ

)
� 1

4
(5.41)
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and since p = h/λ (the de Broglie formula),

	x	p � h

4
(5.42)

It is impossible to simultaneously specify the position and the momentum in one di-
mension to arbitrarily high accuracy. Any measurement which locates the position of
a wave in time (or in space) guarantees that there must be a distribution of energies (or
momenta). In the two-slit experiment, measuring the position of the electron (thus re-
ducing the uncertainty 	x in position) introduces an uncertainty in the momentum and
wavelength, and if 	x is small enough to determine which slit was used, the introduced
uncertainty is always sufficient to eliminate the fringes.

The Uncertainty Principle often permits simple explanations of complex quantum me-
chanical results. Here are a few examples.

1. Confining a particle to a restricted region in space increases its minimum pos-
sible energy. Let us consider one particularly simple case—a particle in a one
dimensional “box”. The box is defined by a potential

U (x) =
{

0, 0 < x < L;
∞, x ≤ 0 or x ≥ L

}
(5.43)

This potential is the same as a flat-bottomed container with infinitely high walls
separating inside from outside. Here we will use the Uncertainty Principle to
estimate the minimum energy; later (in Chapter 6) we will find all of the pos-
sible energies and states for this system, using a differential equation known as
Schrödinger’s equation.

• The particle cannot sit motionless in the box. Such a state would have p =
0, hence 	p = 0 (there is no uncertainty). Since 	x	p ≥ h/4, this is only
possible if 	x is infinite. But the particle is certainly in the box, so this is
impossible.

• The energy of the particle is entirely kinetic energy, since the potential en-
ergy is zero inside the box. So a state with fixed energy E has a fixed value
of | �p| = √

2m E . The uncertainty comes from the fact that momentum is a
vector quantity, and the momentum can be either positive or negative (the
particle can be moving either right or left). So the uncertainty 	p is:

	p =
√

2mE (5.44)
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• The maximum possible range of x is ±L/2 about the middle. If we assume
	x ≈ L/2 we predict

	p ≥ h(4	x) = h/2L (5.45)

Combining Equations 5.44 and 5.45 gives

E ≥ h2/(8mL2) (assuming 	x ≈ L/2) (5.46)

The lowest energy state decreases in energy as the box expands (enlarging
the box permits a larger value of 	x , hence a smaller value of 	p). Thus,
for example, a ball in a box must always be moving, but it can have a lower
minimum speed if the box is big.

We could get the same answer in a different way, using de Broglie’s relation λ =
h/p (Problem 5-15). The wave representing the electron would have to vanish at
the two walls, similar to the waves on a violin string. The longest possible wave
we could fit into the box would have wavelength λ = 2L . Such a wave would
go through half a cycle between the two walls, and would be zero at each wall.

The minimum energy is trivially small for macroscopic objects, so these effects
are not observed in everyday life. For example, if m = 1 kg and L = 1 m,
then E ≥ (5.5 × 10−68 J) and the minimum energy state has a velocity of less
than 10−33 m · s−1. However, as we will show in Chapter 8, we live in a colorful
world largely because these effects can be substantial for light particles (such as
electrons) confined to small regions such as chemical bonds.

2. Electrons cannot have planar orbits in atoms, because the position uncertainty
out of the plane is then zero. This means that the uncertainty in the momentum
would be infinite, which is only possible if the length of the momentum vector
(and the kinetic energy, since K = | �p|2 /2m) are infinite.

3. Electron cannot simply orbit at a well-defined distance from the nucleus, even if
the orbit is not planar. In that case we could switch to spherical coordinates, and
the uncertainty in the coordinate r would be zero. This would give an infinitely
large uncertainty in a momentum component, and lead to the same problem as
above.

4. We can now understand why a hydrogen atom does not collapse, the way a clas-
sical electron orbit would. Suppose we took the electronic distribution about the
nucleus, and cut all distances in half.

• The average potential energy U = −e2/4πε0r would double. Since the
potential energy is negative this would tend to decrease the total energy.
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• Halving the orbital radius halves the position uncertainty, and the Uncer-
tainly Principle implies that the momentum uncertainty would double. Re-
member that the uncertainty comes from the fact that momentum is a vector
quantity. At any instant in time, the electron might be moving to the left or
the right, giving a range of values around | �p| = 0. Thus doubling the un-
certainty implies that | �p| doubles as well.

• Since K = | �p|2 /2m the minimum possible average kinetic energy quadru-
ples, which would tend to increase the total energy.

Thus minimizing the total energy (potential plus kinetic) involves a tradeoff. Below
a certain separation, the total energy must start to increase with further size reductions:
the kinetic energy will increase more than the potential energy will decrease.

In general, stable (stationary) states in quantum mechanical systems are described by
a set of quantum numbers which give the values of all of the constants of the motion.
In a hydrogen atom, for example, a classical treatment (Section 5.4) showed that the
conserved quantities for a general orbit were the total energy, the length of the orbital
angular momentum vector, and the direction of that vector. In a modern quantum me-
chanical treatment, the stationary states (called orbitals) are described by a principal
quantum number n which gives the overall energy, just as in Equation 5.13,

En = −2.18 × 10−18 J

n2
(5.47)

and by additional quantum numbers which describe either the orbital angular momen-
tum L of the electron going around the protons (analogous to the Earth rotating around
the Sun), or the intrinsic angular momentum S of the electron itself. The angular mo-
mentum of the electron is commonly called spin, by analogy with a spinning ball (or
the Earth spinning on its own axis).

Even though angular momentum does not affect the energy (for a hydrogen atom),
it certainly does play an important role in understanding bonding. Angular momentum
is quantized, just as Bohr and deBroglie predicted (although the equation they derived,∣∣∣ �L∣∣∣ = nh̄, is not correct). As we discuss in Chapter 6, the orbitals also have additional

properties which do not correspond at all to what would be predicted classically.
Rather than detail these effects here, however, we can illustrate the effects of angu-

lar momentum in a simpler case by examining the electronic spin angular momentum �S.
Experimentally, it is found that all electrons have angular momentum, and the length

of the angular momentum vector is always
∣∣∣�S∣∣∣ = √

3h̄/2. This angular momentum
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generates a magnetic dipole �μ = γ �S, where γ is a quantity called the gyromagnetic
ratio. Thus electrons act like little bar magnets, but with some very strange properties
as we discuss below.

Assume the particle is placed into an external magnetic field pointing along the z-
direction ( �B = B0̂z). The potential energy for a magnetic dipole in such a field is:

U = −μz B0 = −γ Sz B0 (5.48)

The force on the dipole is:

F = −dU

dz
= γ Sz

d B0

dz
(5.49)

Thus electrons can be deflected by a nonuniform magnetic field (d B0/dz �= 0). The
force, hence the amount of the deflection, is proportional to the component Sz of the
dipole moment along that axis.

Since all directions in space are equivalent, there is no reason to expect �S to pref-
erentially point in any specific direction. Thus we would classically expect a beam of
particles with angular momentum to be deflected over a continuous range of angles,
since Sz should range from +√

3h̄/2 to −√
3h̄/2. (Figure 5.14.).

Instead, electrons are deflected into only the two directions corresponding to Sz =
(±1/2)h̄, independent of the direction in space we choose for z. (Figure 5.15). We refer
to electrons as “spin-1/2” particles because of this property. Protons are also spin-1/2
particles, with exactly the same spin properties except for a smaller value of the gyro-
magnetic ratio γ .

The state Sz = +h̄/2 is commonly called the “spin-up” state and Sz = −h̄/2 is
called the “spin-down” state, but they do not correspond to the angular momentum vec-

tor does not point exactly along the z-axis. Since
∣∣∣�S∣∣∣2

= (3/4)h̄2 = S2
x + S2

y + S2
z , we

Beam of randomly oriented
magnetic dipoles

Broad distribution
of directions

Magnetic
field

� The force on a magnetic dipole in a nonuniform field depends on the orientation.
Thus a beam of randomly oriented dipoles should fan out in a wide range of directions.
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Beam of
“spin 1/2 particles:”

S 2 = 3/4 h2

Two beams:
Sz =  h/2

Magnetic
field

� A beam of electrons, protons, or other spin-1/2 particles only deflects into two
directions, not the continuous distribution predicted classically.

have

S2
x + S2

y = 3

4
h̄2 − S2

z = 3

4
h̄2 −

(±h̄

2

)2

= h̄2

2
(5.50)

On average, we would expect
∣∣∣�Sx

∣∣∣2
and

∣∣∣�Sy

∣∣∣2
to each be h̄2/4. In fact, every time you

measure either Sx or Sy (with a nonuniform magnetic field in the x- or y-direction in-
stead of the z-direction) you get ±h̄/2, just as every measurement of Sz gave ±h̄/2.

Suppose we try to completely specify the direction of the angular momentum vec-
tor, for example by selecting only those particles with Sz = Sy = Sx = +h̄/2. You
would think you could start by selecting out the atoms with Sz = +h̄/2, since the ap-
paratus in Figure 5.15 separates them spatially from the ones with Sz = −h̄/2. Then
you could take these selected spins and separate them into the different possible values
of Sx , using a magnetic field in the x-direction; finally, you could separate them into
the different Sy values using a magnetic field in the y-direction.

Instead, if you measure Sz again after measuring Sx , you find that Sz has been ran-
domized and Sz = −h̄/2 is just as likely as Sz = +h̄/2 (Figure 5.16). Only one com-
ponent of the angular momentum can be specified at a time, and the act of measuring
this component completely randomizes the others—just as measurements of position
and momentum were limited by the Heisenberg Uncertainty Principle.

Spin behavior is not just a bizarre curiosity of quantum mechanics. The difference in
energy between electron spin states or nuclear spin states in a magnetic field has proven
invaluable for chemistry. The largest commercially available superconducting mag-
nets can give fields of about 20 Tesla (400,000 times stronger than the Earth’s field)
which are uniform to better than one part per billion. In such fields, the two states
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z-axis magnetic
field; save only

Sz =  h/2

x-axis
magnetic field;

save only
Sx = h/2

z-axis magnetic
field; get both

Sz =  h/2

� It is impossible to specify more than one component of the spin angular
momentum vector. Measurement of any one component scrambles all of the others.

Sz = ±1/2 of a hydrogen nucleus separate in energy by a small amount, according
to Equation 5.48. This separation corresponds to photon frequencies ν = (	E)/h of
42 MHz per Tesla (840 MHz in a 20 Tesla magnet), in the radiofrequency range. Thus
radiofrequency radiation can be absorbed by the hydrogen atoms. The value of γ for
electrons is about 650 times greater than the value for hydrogen, so electron spin tran-
sitions are in the microwave range. Only molecules with an odd number of electrons
or some unpaired electrons give electron spin transitions, but every hydrogen atom has
nuclear spin transitions.

Not all hydrogen absorb energy at exactly the same frequency. The nuclei are sen-
sitive to small local variations in the magnetic field. These variations arise largely from
electrons in the molecule, which also act like small magnets to partially shield the pro-
ton from the external magnetic field. The strength of this electronic shielding depends
on the local charge distribution. For example, a proton next to a carbonyl group (C = O)
will absorb energy at a different frequency than one which is only next to carbons and
hydrogens. This effect, called the chemical shift, makes proton resonance frequencies
vary over a range of about 10 parts per million, which is 8400 Hertz in a 20 Tesla mag-
net. Individual lines are quite narrow in solution (typically about 0.1 Hertz) so even
very slightly different chemical environments lead to resolved spectral lines (see Fig-
ure 5.17).

In addition, the interaction between proton spins and the electronic distribution pro-
duces an additional line splitting for physically nearby but chemically inequivalent pro-
tons, called the scalar coupling or J-coupling. Consider the nuclear magnetic reso-
nance (NMR) spectra of the two molecules below (Figure 5.17). The molecule 1,2-
dichloroethane has all four protons equivalent by symmetry (remember that the rotation
about the C-C bond is essentially unhindered, giving only a single line). The molecule
1,1-dichloroethane has one proton on a carbon with two chlorines, and three protons (a
methyl group) on a carbon with no chlorines, so the chemical shifts are different.
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� NMR spectra of two different molecules: 1,1-dichloroethane (top and
1,2-dichloroethane (bottom). The horizontal scale is in parts per million (PPM) away from a
“reference peak” (at the far right), which by convention is dimethyl sulfoxide (DMSO). The
different structure of the two spectra arises from chemical shifts and scalar couplings, and permits
determination of structural features.

The methyl group protons will have transition frequencies which change slightly
if the other proton is up or down. The Boltzmann distribution shows that the spin-up
and spin-down states are almost equally likely for NMR at room temperature (Prob-
lem 5-13), so the methyl group is split into a doublet with equal intensity. The other
proton sees eight possibilities for the spin states in the methyl group (all three spin up;
two spins up three different ways; one spin up three different ways; no spins up). This
breaks up the line into a 1:3:3:1 quartet with intensities given by the binomial distri-
bution, just as we discussed in Chapter 4. An NMR spectroscopist would look at the
spectrum at the bottom of Figure 5.17 and instantly realize that the lone proton had three
neighbors, and that the doublet (with three times the total area of the quartet) represents
three protons with one neighbor. The net effect is that the radiofrequency spectrum of
any molecule is a very sensitive indicator of molecular structure.

Physicists pioneered NMR spectroscopy in the 1940s, and used it to understand the
bizarre properties of nuclear spin angular momentum. The discovery of chemical shifts
and scalar coupling made it universally applicable to chemistry, and every major chem-
istry department in the country has NMR spectrometers which use this effect. Many
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have electron spin resonance (ESR) spectrometers as well. The magnetic resonance
spectra of other nuclei, such as 13C and 31P, can provide complementary information
to the proton magnetic resonance spectrum and are also widely used. In fact, NMR is
widely recognized as the single most powerful tool for determining the structures of
unknown molecules. Its importance has been recognized with Nobel Prizes in physics,
and more recently (1991) in chemistry to Richard Ernst. Ernst’s prize was awarded
largely for a technique called two-dimensional spectroscopy. This technique allows
chemists and molecular biologists to routinely determine the full structure in solution
of proteins with molecular weights greater than 25,000 grams per mole!

The magnetic resonance frequency for protons is proportional to magnetic field
strength. The protons in you are primarily in one molecule (water) so in a uniform
magnetic field, your NMR spectrum consists essentially of one line. Now suppose the
magnetic field is not uniform—for example, suppose there is a magnetic field gradient
of 1 mT per meter in the direction from your head to your feet. Two water molecules
separated by 1 cm will see a magnetic field which differs by 10 μT. Hence they will
have a resonance frequency difference of 420 Hz, much more than the NMR linewidth
for either molecule (the spins will also feel a force, as shown in Equation 5.48, but since
they are trapped in your body the effect of the force is negligible).

A pulse with length 	t will only excite a range of frequencies of order 	ν ≈
(1/4	t), in accord with the Uncertainty Principle. So a sufficiently long pulse would
only excite the water molecules in a small region. In this case, a 1 ms pulse would ex-
cite molecules in a band about 6 mm wide. Finally, gradients in the other two spatial
directions would make water molecules in different positions have different frequen-
cies, and the NMR spectrum gives a spatially resolved image. This is called magnetic
resonance imaging, or MRI; physicians dropped the term “nuclear” to avoid scaring
patients in hospitals.

MRI uses only radiowaves, which are not ionizing like X-rays. It is also supe-
rior to X-rays in measuring variations in soft tissue. Figure 5.18 shows a clinical MRI
brain scan (eyes and nose at top, back of head at bottom) taken with a 1.5 T magnet.
The contrast in this image comes from differences in the local environment of the wa-
ter molecules. For example, the water density is very high in the eyes, and the water
molecules can move freely. In the brain itself the water motion is more restricted. This
image is taken with a sequence of radiofrequency pulses which is designed to give less
signal from the spins with restricted motion.

One of the most remarkable new developments in magnetic resonance, and indeed
one of the exciting frontiers in modern clinical science, is functional MRI —literally
watching thought processes in action. Figure 5.19 shows “fast scans” (taken in less than
one second, compared to several minutes for Figure 5.18) which highlight regions in
the brain which change signal strength during different cognitive tasks.

Functional imaging signals are observed by exciting the water spins with radiofre-
quency pulses, then waiting a long time (many milliseconds) before observing the
MRI signal. The currently accepted explanation goes all the way back to basic physics.
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� MRI brain scan
of a healthy human, with various
positions marked. The patient is
lying in a 1.5 Tesla magnet.
Contrast in the image comes from
variations in water properties
(density, linewidth) in the various
tissue regions.

� Functional magnetic resonance imaging (fMRI) detects signal changes in
different regions of the brain during thought-activated processes. The four brain slices show regions
which change during a complex thought process (mentally rotating two objects to see if they are
superimposable or mirror images).
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Oxygenated tissue and deoxygenated tissue have different water resonance frequencies,
because hemoglobin (the molecule which carries oxygen) has a different number of un-
paired electrons when it is oxygenated. These unpaired electrons act like bar magnets,
changing the local magnetic field. Activation of the motor cortex or visual area requires
oxygen transport across the blood-brain barrier, which makes the resonance frequency
more uniform (decreasing the linewidth 	ν). This, in turn, increases the length of time
	t before the MRI signal disappears in the activated region.

Over the next few years, functional imaging has the potential to completely revolu-
tionize our understanding of the mind. Twentieth-century chemistry and physics trans-
formed biology into “molecular biology”; enzymes and proteins became understood
as big molecules instead of black boxes, and the molecular basis of life processes was
developed. Scientists are now on the threshold of acquiring this same level of under-
standing of processes in cells and organs.

In this chapter we have tried to give an overview of the critical experiments which
proved that classical mechanics and electromagnetic theory are only valid in special
cases, and that the range of validity does not include atoms and molecules. We have
presented a number of very strange results, all of which have been amply verified by
experiment; and we have summarized the work of twelve Nobel Prize winners in only a
few pages. But this is far from the end of the story. Applications of quantum mechanics
are still the subject of vigorous ongoing research, and the philosophical consequences
are much too subtle to explore in the limited space available here. Still, a few illustra-
tions of some of the stranger applications might be useful for perspective.

Quantum mechanics provides an interesting method for communicating data. Par-
ticles with Sz = +h̄/2 are commonly called “spin up” and Sz = −h̄/2 are “spin down,”
let us call Sx = +h̄/2 the “spin right” state, and Sx = −h̄/2 the “spin left” state. Now
suppose we design a communications system which sends our a signal as a stream of
bits (ones and zeroes). Suppose the person transmitting the data (conventionally called
Alice) sends each bit on a single particle. She can use either spin up-spin down as “1”
and “0,” or spin right-spin left as “1” and “0.” She makes this choice of basis states
(up-down or left-right) at random each particle she sends. So each particle will be sent
out in one of four different states (up, down, left, and right), as in Figure 5.20.

The person who receives the stream of particles (conventionally called Bob) does
not know, in advance, whether Alice chose up-down or right-left to encode the informa-
tion on any given particle. He can decode the stream of data only by guessing up-down
or right-left, because measurement of Sx randomizes Sz (and vice versa) and Sz and Sx

cannot both be measured on the same particle (Figure 5.21). Roughly half the time he
will guess correctly, and get the correct “1” or “0.” Roughly half the time he will guess
incorrectly, in which case he will get either “1” or “0” at random—this half of the data
will be garbage.
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Data 1 0 1 1 0 0 . . .

Basis UD RL RL UD UD RL
(random)

Transmitted ↑ ←− −→ ↑ ↓ ←−
particle

� Alice transmits a data stream by encoding each data bit either as 1 = spin up and
0 = spin down, or as 1 = spin right and 0 = spin left. She chooses whether to use up-down or
right-left at random, and chooses again for each data bit. Each bit is then sent as a single particle
(for example, one electron).

Alice and Bob then tell each other what basis states they used for each particle (not
the data itself), and the incorrect data is resent by the same procedure. Again roughly
half of the data gets through, and roughly half is lost; eventually, repeating this proce-
dure many times, all of the data can be transmitted.

This approach is called quantum cryptography, and systems have been demon-
strated which have enough bandwidth to transmit speech (practical systems use pho-
tons instead of particles, but the principle is identical). Why go to all this bother? Be-
cause the message cannot be eavesdropped without the sender and receiver knowing
something is wrong. In conventional communications, someone else can intercept the
transmitted signal and retransmit it without alteration, or can tap off only a small part
of the signal. But here the message is sent one particle at a time, so it is not possible to
tap off a small portion. In addition, the eavesdropper (conventionally called Eve) can-
not know, when a particle is received, if it was encoded up-down or left-right. So she
cannot detect the signal then send a duplicate. Any attempt to eavesdrop on the signal
will reduce it to garbage, for both the receiver and the eavesdropper.

Another example of current interest is quantum computing. Conventional com-
puter systems have improved exponentially over the last four decades, roughly dou-
bling processor speed, memory size, and disk size every eighteen months. This kind of
improvement has required very expensive research and development (billions of dol-
lars in manufacturing cost for the fabrication lines which make each new generation of
chips), but massive computer sales have offset this investment. The exponential growth
cannot go on forever. Even now, the smallest logic gates on the fastest chips switch

Received ↑ ←− −→ ↑ ↓ ←−
particle

Guessed Basis UD UD RL RL RL RL
Data 1 0 or 1 1 0 or 1 0 or 1 0 . . .

� In order to decode the received data stream, the receiver has to guess whether the
transmitter used up-down or right-left to encode the particles. If the guess is correct, the received
data is right. If the guess is wrong, the received data will be “0” half the time, and “1” half the time
at random.
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states using fewer than 100 electrons. By 2015, if we simply follow historical trends,
the gates must switch with half an electron, and the cost of building the microprocessor
fabrication line will exceed the sum of the gross national products of the planet.

However, since one electron or proton has two possible spin states, N electrons or
protons have 2N possible states (just like the coin toss case). Molecules can be config-
ured to be simultaneously in many different quantum states, just as the electron in the
two-slit experiment seems to pass through both slits simultaneously. In principle, this
property can be used someday to make massively parallel computers, and such comput-
ers with five or six bits have been made in the laboratory (using NMR). As of this writ-
ing, nobody knows whether or not it will ever be possible to build a quantum computer
which is big enough to do a computation faster than a conventional machine, although
it is clear that NMR will not work for this application.

We conclude this chapter by going back to Albert Einstein, whose work was in-
strumental in the evolution of the quantum theory. Einstein was unable to tolerate the
limitations on classical determinism that seem to be an inevitable consequence of the
developments outlined in this chapter, and he worked for many years to construct para-
doxes which would overthrow it. For example, quantum mechanics predicts that mea-
surement of the state of a system at one position changes the state everywhere else im-
mediately. Thus the change propagates faster than the speed of light—in violation of at
least the spirit of relativity. Only in the last few years has it been possible to do the ap-
propriate experiments to test this ERP paradox (named for Einstein, Rosen and Podol-
sky, the authors of the paper which proposed it). The predictions of quantum mechanics
turn out to be correct.

If you do not understand quantum theory completely, you are in good company.
For a fuller treatment of the philosophical consequences of quantum mechanics see ref-
erence [4].
For more information on the history of the development of quantum theory see refer-
ence [5].

�

5-1.� The most common oxide of a certain metal M contains 1 kg of oxygen for each
2.33 kg of the metal.

(a) Find the atomic weight of M if the oxide is assumed to be
i) M2O, ii) MO, iii) M2O3, iv) MO2, v) M2O5.

(b) Heat capacities are more difficult to measure accuracy than combining ratios.
An experimental value of cv for the metal gives 0.42 ± .04 kJ · kg−1 · K−1. Using
these two results, what is the formula of the oxide and the atomic weight of the
metal?

5-2. Show that Equation 5.9, the Rayleigh-Jeans law, is identical to the Planck black-
body distribution in the limit as h → 0.
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5-3.� Explain how infrared detectors can be used as “night vision goggles” to distinguish
between a warm engine and the surrounding grass, even on a cloudy night.

5-4. For λ = 500 nm (near the peak sensitivity of human vision), find the ratio between
the amount of light produced by a 2600K lightbulb filament (1 mm wide, 1 cm
long), and the amount of light produced by a 800K stove burner (area 0.1 m2).
(This explains why a stove can be hot enough to burn you badly even though you
cannot see it is hot.)

5-5.� With some algebraic manipulation, the correct expression for the average energy
of an oscillator which is restricted to energies E = 0, hν, 2hν, . . . , nhν, . . . can
be shown to be:

〈E〉 = hν

ehν/kB T − 1

Use this formula to calculate the heat capacity of an oscillator. What is the heat
capacity when hν = 100kB T ? Also, use this equation to find the heat capacity in
the limit hν � kB T .

5-6. The “dot product” of two vectors �u and �v, written �u · �v, is a number given by the
expression �u · �v = uxvx + uyvy + uzvz = |�u| |�v| cos θ , where θ is the angle
between the two vectors. Use this equation to show that �u and �v are perpendicular
for a circular orbit.

5-7.� A mole of photons is given the name “einstein.” A typical red laser pointer pro-
duces 5 mW average power at a wavelength λ = 650 nm. How long does it take
this pointer to produce one einstein?

5-8. The Earth (radius 6378 km) has an approximately circular orbit of radius 1.496 ×
108 km. It goes around the sun once a year (3.2 × 107 s). It rotates on its own axis
once a day (84,400 s). Its mass is 5.98×1024 kg; the Sun’s mass is 1.989×1030 kg.

(a) Calculate the angular velocity ω and the mean rotational speed |�v| for the
Earth’s rotation about the Sun.

(b) Calculate the reduced mass μ, the moment of inertial I , the angular momen-

tum
∣∣∣ �L∣∣∣ and the rotational kinetic energy K =

∣∣∣ �L∣∣∣2
/2I for the Earth’s motion

around the Sun. You may assume the orbit is circular.

(c) If you consider only the rotation of the Earth, how much acceleration are you
experiencing if you sit in a “motionless” chair at the equator?

5-9. The neutron persists outside of a nucleus for approximately 12 minutes before de-
caying. Use the uncertainty principle to estimate the fundamental limitation to
measurements of its mass.

5-10. The expressions for the Bohr atom technically should use the reduced mass μ =
melectronmnucleus/(melectron+mnucleus) instead of the electron mass, as noted in Equa-
tion 5.22. This alters the calculated value of the Bohr radius a0, and therefore also
alters the radius R and the total energy E = −Ze2/2R.



Chapter 5

(a) Calculate the reduced mass μ = m1m2/(m1 + m2) of a hydrogen atom and
compare it to the mass of the electron alone.

(b) Deuterium is an isotope of hydrogen with a proton and a neutron in the nu-
cleus, instead of just a proton. This changes the reduced mass. Find the change
in the frequency of the n = 2 to n = 1 emission line in going from hydrogen to
deuterium (this is easily measured in the laboratory).

5-11. (a) Use the Bohr model of the hydrogen atom to calculate the kinetic energy of
an electron in the n = 1 state.

(b) The kinetic energy gives us the expected length of the momentum vector (K =
| �p|2 /2m), but the direction of the momentum vector is random. Use this result to
estimate 	p, the uncertainty in the momentum vector.

(c) Now use the Heisenberg uncertainty relationship 	x	p ≈ h/4 to estimate
the position uncertainty for a 1 s state. Compare this to the expected radius a0

(Equation 5.16).

5-12. The shortest laser pulse created to date has a duration (full width at half max-
imum) of 3.5 femtoseconds, and a center wavelength of approximately 800 nm
(ν ≈ 375 THz). However, because of the uncertainty principle, such a pulse has
a very large range of frequencies 	ν. Use the uncertainty principle to determine
	ν.

5-13. In zero magnetic field, the two spin states of a proton (the spin-up state and the
spin-down state) have the same energy. In a large magnetic field (10 Tesla), these
two states are separated in energy (see Equation 5.48). The spins can be “flipped”
by radiation which has exactly the right energy per photon to promote the protons
from the ground state to the excited state.

(a) The gyromagnetic ratio γ for protons is 2.6752 × 108 rad · s−1 · (Tesla)−1.
Verify that 426 MHz radiowaves give photons with the same energy as the splitting
between the two levels at 10 Tesla.

(b)� Spin energy differences are very small compared to kB T near room tempera-
ture. One consequence of this is a relatively large population in the more excited
state. Use the Boltzmann distribution to calculate the fraction of the population in
the higher state at 300K.

(c) The net magnetization M of the entire sample is proportional to the difference
in population between the spin-up state and the spin-down state. Use the Taylor
expansion of ex to show that, near room temperature, the net magnetization is pro-
portional to the reciprocal of the temperature (M ∝ 1/T ).

5-14. Lasers can be used to essentially stop moving atoms. In a typical application,
sodium atoms absorb light with wavelength λ ≈ 590 nm, thus decreasing their
velocity in the direction of the laser beam. After the light is emitted in a random
direction, the atom is free to absorb again.
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Use conservation of momentum to determine how much the velocity in the di-
rection of the laser beam changes by the absorption of one photon.

5-15. The de Broglie relationship can be used to predict the possible energies for a par-
ticle in a one dimensional “box”. Since the walls of the box are infinitely high,
assume that the box itself must contain an integral or half-integral number of wave-
lengths, with the zeroes of the wave at either edge (λ = 2L/n, n a positive integer).
Use this relation to derive an expression for the energy as a function of n.

5-16. A photomultiplier tube is designed so that it gives a short burst of current (≈ 106

electrons in 10 ns) when a photon hits it, as discussed in Section 5.3. Since it is an
electronic device, it also has noise.

(a) Assume that the only source of noise has a Gaussian distribution. Assume
that the average value is 0 mA, the standard deviation is 4 μA, and assume that
the noise can be completely different every 10 ns (so that, in effect, the noise has
100,000,000 independent chances per second to be large enough to fool you into
thinking an electron hit). In one second, how many times out of those 100,000,000
will the noise exceed 106 electrons in 10 ns, thus making you think you have de-
tected a photon even if the tube is dark (this is called the “dark current”)?

(b) Suppose the circuit is improved slightly, so that now the standard deviation of
the noise is 2 μA instead of 4 μA. How much does the dark current decrease?



Erwin Schrödinger (1886–1961)

By 1925 the hodgepodge of bizarre results in the last chapter had led to the complete
collapse of classical physics. What was now needed was some framework to take its
place. Werner Heisenberg and Erwin Schrödinger came up with two apparently very
different theoretical descriptions; within a year, however, it had become clear that both
approaches were in fact identical, and they still stand as the foundations of modern
quantum mechanics.

Schrödinger’s description, called wave mechanics, is the easier one to present at
the level of this book. A general description requires multivariate calculus, but some
useful special cases (such as motion of a particle in one dimension) can be described
by a single position x , and we will restrict our quantitative discussion to these cases.

Before we go into the mathematical framework behind wave mechanics, we will review
one more mathematical concept normally seen in high school: imaginary and complex
numbers. As discussed in Section 1.2, for a general quadratic equation ax2 +bx +c =



0, x = (−b ± √
b2 − 4ac)/2a gives two solutions if b2 > 4ac and one solution if

b2 = 4ac. If b2 < 4ac, no real numbers are solutions to the quadratic equation. For
example, the equation x2 + 1 = 0 has no real solutions.

If we define i = √−1 (an imaginary number) then we can still write out two solu-
tions for b2 < 4ac. In general these solutions will have both a real and an imaginary
part, and are called complex numbers. For example, if x2 − 2x + 2 = 0, the solu-
tions are x = 1 ± i . Complex solutions to quadratic equations are not important in
chemical problems; however, complex numbers themselves will prove to be important
in quantum mechanics.

We can write a general complex number in the form z = x + iy, and graph such
numbers in an xy-plane (the complex plane, see the left side of Figure 6.1). The dis-
tance from the origin |z| =

√
x2 + y2 is called the magnitude of the complex number;

it is a generalization of the concept of absolute value for real numbers. The angle θ is
called the phase of the complex number. Purely real numbers have θ = 0 or π ; purely
imaginary numbers have θ = π/2 or 3π/2. Phases between 0 and 2π are sufficient
to describe any number. The number x − iy (reversing the sign of only the imaginary
part) is called the complex conjugate of z, and is written z∗. Note that zz∗ = |z|2.

The Taylor series expansion in Chapter 2 makes it possible to derive a remarkable
relationship between exponentials and trigonometric functions, first found by Euler:

eiθ = cos θ + i sin θ (6.1)

You should convince yourself that
∣∣eiθ

∣∣ = 1, and that the phase of eiθ is just θ , as shown
on the right-hand side of Figure 6.1.

All of the usual properties of exponentials (Equations 1.13 and 1.14) also apply to
complex exponentials. For example, the product of two exponentials is found by sum-

y

z

x

y

ei(x, y)

1

x

� Left: representation of z = x + iy in the “complex plane,” showing the
magnitude |z| and phase θ . Right: the quantity eiθ is always on the unit circle, and is
counterclockwise by an angle θ from the x-axis.



ming the exponents: e1+2i · e3+4i = e(1+3)+(2+4)i = e4+6i . The magnitude of this
complex exponential is determined completely by the real term in the exponent:∣∣e4+6i

∣∣ = ∣∣e4
∣∣ · ∣∣e6i

∣∣ = ∣∣e4
∣∣ · 1 = e4

The phase (6 radians) is determined completely by the imaginary term in the exponent.
The relations sin(−θ) = − sin θ and cos(−θ) = cos θ imply

e−iθ = ei(−θ) = cos(−θ) + i sin(−θ)

= cos θ − i sin θ (6.2)

Finally, Equations 6.1 and 6.2 can be combined to give

cos θ = (eiθ + e−iθ )/2; sin θ = (eiθ − e−iθ )/2i (6.3)

Schrödinger’s picture of quantum mechanics describe any object (for example, an elec-
tron) by its wavefunction, ψ(x). The wavefunction itself is not directly observable, but
it contains information about all possible observations because of the following two
properties.

1. ψ∗(x)ψ(x) = |ψ(x)|2 = P(x), the probability of finding the object at position
x . P(x) ≥ 0 by definition, but the wavefunction is not just the square root of the
probability. Wavefunctions at any point can be positive, negative, or even com-
plex. This phase variation of the wavefunction is central to quantum mechan-
ics. It lets particles exhibit wave-like behavior such as interference at positions
where two waves are out of phase, just as classical waves exhibit interference
(Chapter 3).

Since the object must be somewhere, with probability 1,

+∞∫
x=−∞

|ψ(x)|2 dx =
+∞∫

x=−∞
P(x) dx = 1 (6.4)

All possible wavefunctions are continuous (no breaks or jumps) and satisfy Equa-
tion 6.4.

2. Given any observable quantity A (for example, the position or momentum of the
object), the wavefunction ψ(x) lets us calculate the expectation value 〈A〉 which
is the average value you would get if you made a very large number of observa-
tions of that quantity. The wavefunction thus contains all the information which
can be predicted about the system.



For some observables, such as the position x or the potential energy U , the expec-
tation value is calculated from the probability distribution in exactly the same way as
we calculated classical averages in Chapter 4:

〈x〉 =
+∞∫

x=−∞
x P(x) dx =

+∞∫
x=−∞

x |ψ(x)|2 dx;

〈U 〉 =
+∞∫

x=−∞
U (x)P(x) dx =

+∞∫
x=−∞

U (x) |ψ(x)|2 dx (6.5)

Some expectation values require more complicated integrals. There is a general pre-
scription for determining the correct integral, but here we will merely give the right
form for two other important quantities: the momentum 〈p〉 and the kinetic energy 〈K 〉:

〈p〉 = ih̄

+∞∫
x=−∞

ψ∗(x)
dψ(x)

dx
dx (6.6)

〈K 〉 = − h̄2

2m

+∞∫
x=−∞

ψ∗(x)
d2ψ(x)

dx2
dx (6.7)

Notice that these equations explicitly include derivatives and the complex conjugate
ψ∗ of the wavefunction. The expression for the momentum even includes i = √−1!

Complex numbers are not just a mathematical convenience in quantum me-
chanics; they are central to the treatment. Equation 6.6 illustrates this point directly.
Any measurement of the momentum (for example, by measuring velocity and mass)
will of course always give a real number. But if the wavefunction is purely real, the
integral on the right-hand side of Equation 6.6 is a real number, so the momentum is a
real number multiplied by ih̄. The only way that product can be real is if the integral
vanishes. Thus any real wavefunction corresponds to motion with no net momentum.
Any particle with net momentum must have a complex wavefunction.

If the wavefunction satisfies Schrödinger’s equation,

− h̄2

2m

d2ψ

dx2
+ U (x)ψ(x) = Eψ(x) (6.8)

with the same value of E for every value of x , then we call ψ a stationary state with
total energy E (potential plus kinetic). Sometimes a stationary state is also called an
eigenstate.



You have very likely seen stationary states before, although the name might be new
to you. The orbitals in a hydrogen atom (1s, 2pz , and so forth) are all stationary states,
as we will discuss in Section 6.3. The probability distribution P(x) and the expectation
values of all observables are constant in time for stationary states.

If ψ is a stationary state, then we can multiply Schrödinger’s equation by −1, and
show that −ψ is also a stationary state:

− h̄2

2m

d2(−ψ(x))

dx2
+ U (x) (−ψ(x)) = E (−ψ(x)) (6.9)

The probability density P(x) = |ψ(x)|2 is the same for ψ as it is for −ψ ; the expec-
tation values for all observable operators are the same as well. In fact, we can even
multiply ψ by a complex number and the same result holds. The overall phase of the
wavefunction is arbitrary, in the same sense that the zero of potential energy is arbitrary.
Phase differences at different points in the wavefunction, on the other hand, have very
important consequences as we will discuss shortly.

Equation 6.8 does not always have to be satisfied; ψ(x) does not have to be a sta-
tionary state. However, if ψ(x) does not satisfy Equation 6.8, the probability distribu-
tion P(x) and the expectation values of observables will change with time. The sta-
tionary states of a system constitute a complete basis set—which just means that any
wavefunction ψ can be written as a superposition of the stationary states:

ψ(t = 0) = a1ψ1 + a2ψ2 + a3ψ3 · · · =
∑

i

aiψi (6.10)

Note that the label “(x)” has been dropped in Equation 6.10, and in many other equa-
tions in this chapter. It is still understood that the wavefunction depends on position,
but eliminating the label simplifies the notation.

If the wavefunction at time t = 0 is given by Equation 6.10, it can be shown that
the wavefunction at any later time is given by:

ψ(t) = a1e−i E1t/h̄ψ1 + a2e−i E2t/h̄ψ2 + a3e−i E3t/h̄ · · · =
∑

i

ai e
−i Ei t/h̄ψi

(6.11)

Equation 6.11 shows that even if a wavefunction is initially real, it later becomes
complex. For more information on wave mechanics: see Reference [4]

The “particle-in-a-box” problem, which we considered qualitatively in Chapter 5, turns
out to be one of the very few cases in which Schrödinger’s equation can be exactly
solved. For almost all realistic atomic and molecular potentials, chemists and physicists
have to rely on approximate solutions of Equation 6.8 generated by complex computer
programs. The known exact solutions are extremely valuable because of the insight



they provide—they let us make predictions about the properties of the solutions in more
complicated cases.

Schrödinger’s equation contains the product U (x)ψ(x). Recall from Chapter 5 that
the “particle-in-a-box” potential is infinite except inside a box which stretches from
x = 0 to x = L . So the product U (x)ψ(x) would be infinite for x < 0 or x > L
unless ψ(x < 0) = ψ(x > L) = 0. Thus if the energy E is finite, the wavefunction
can be nonzero only for 0 < x < L—in other words, the particle is inside the box.

Inside the box the wavefunction must satisfy the equation

− h̄2

2m

d2ψ

dx2
= Eψ(x) (6.12)

or equivalently

d2ψ

dx2
= −2m E

h̄2
ψ(x) (6.13)

since U (x) = 0. The second derivative of ψ is proportional to ψ itself, with a negative
sign. But this was exactly the situation we encountered with the harmonic oscillator in
Chapter 3. So the answer must be the same:

ψ(x) = A sin(αx) + B cos(αx) (6.14)

Substitution of 6.14 into 6.13 gives

α =
√

2m E

h̄2
. (6.15)

Because wavefunctions must be continuous, we also have boundary conditions—the
wavefunction must vanish at x = 0 and x = L .

ψ(0) = A sin(0) + B cos(0) = B = 0 (6.16)

ψ(L) = A sin(αL) = 0 (6.17)

Equation 6.17 implies either that A = 0, in which case ψ = 0 everywhere and the
wavefunction cannot be normalized (Equation 6.4), or

αL = nπ , n = 1, 2, 3 . . . (6.18)

Thus we have

ψn(x) = A sin(nπx/L), 0 < x < L; ψn(x) = 0 otherwise (6.19)

The subscript on the wavefunction identifies it as the one with some particular value of
n. n = 0 would force the wavefunction to vanish everywhere, so there would be no
probability of finding the particle anywhere. Hence we are restricted to n > 0.



A is just the normalization constant. Substituting Equation 6.19 into Equation 6.4
gives A = √

2/L (Problem 6-5):

ψn(x) =
√

2/L sin(nπx/L), 0 < x < L; ψn(x) = 0 otherwise
(6.20)

The energy can be found by combining Equation 6.18 with the definition of α (Equa-
tion 6.15) and solving for E :

En = n2h2

8mL2
(6.21)

The three wavefunctions ψ1, ψ2 and ψ3 are graphed in Figure 6.2.
Notice that the number of zero crossings (nodes) increases as the energy increases.

This is a very general result which applies to atomic and molecular wavefunctions as
well, as we discuss later.

This energy is entirely kinetic energy, since U (x) vanishes in the box. Since E =
| �p|2 /2m, we can also calculate the length of the momentum vector for the nth state:

| �p| =
√

2m E = nh

2L
(6.22)

Since this is a one-dimensional problem, there are only two choices: the momentum is
either pointed along +x or −x , so px = ±nh/2L . However, for any of the stationary
states (or any other real wavefunction, as discussed earlier), Equation 6.6 gives 〈p〉 =
0. So a particle in any of the stationary states is not moving on average. Any single
observation would give px = ±nh/2L , but the average of many observations would
be zero.

n  3

n

n  2

n  1

E3  9E1

E2  4E1

E1 h2/8 mL2

� The three lowest energy wavefunctions for a particle in a box.



Solving Equation 6.5 gives 〈x〉 = L/2, which is also obvious from inspection. All
of the probability distributions for the stationary states are symmetric about the center
of the box.

Of course it is possible for the particle to be someplace other than the center, or to
have nonzero momentum. We make such wavefunctions with combinations of the sta-
tionary states. Figure 6.3 illustrates the wavefunction and the probability distribution
obtained by adding together the two lowest solutions, then dividing by

√
2 to normalize

the wavefunction (Problem 6-5). These superposition states are not stationary states be-
cause the two stationary states we added together have different energies. This implies
that such quantities as the momentum and average position will change with time. No-
tice that these two stationary states constructively interfere on the left side of the box,
and destructively interfere on the right side. As a result, the wavefunction is localized
mainly in the left side of the box (〈x〉 < L/2). However, since the wavefunction is
real, it is still true that 〈p〉 > 0. If we had taken the difference instead of the sum of the
two wavefunctions, the particle would be localized in the right side of the box (Prob-
lem 6-7). Notice also that the wavefunction still does not rise rapidly near the edge of
the box. If we added in still higher energy wavefunctions, it would be possible to cre-
ate a sharper rising edge. As noted earlier, any possible wavefunction in the box can
be written as a unique combination of the stationary states.

Since the wavefunction is not a stationary state, it evolves according to Equa-
tion 6.11. If there are only two stationary states in the superposition state, as in Fig-
ure 6.3, the probability distribution and all of the observables oscillate at a frequency
ω = (E2 − E1)/h̄ (see Problem 6-10). If we have the “left side” wavefunction in
Figure 6.3 at time t = 0, at later times we will have a “right side” wavefunction. At

3

Probability

2

1

0

Position (units of box length L)

0 1.00.90.80.70.60.50.40.30.20.1

(( 1 2)/ )

(( 1 2)2/2)

Wavefunction

2

� A wavefunction created by adding together the first two stationary states is no
longer centered in the box.



intermediate times, the momentum becomes nonzero (see Problem 6-10). Note also
that this oscillation frequency is the same as the frequency of a photon whose energy
is equal to the energy difference between the two states. The electric field of a pho-
ton oscillates as well, which suggests that absorption of such a photon might be able to
change the relative population of the two states. We will discuss this in Chapter 8.

This concept of superposition states is at the heart of many quantum mechanical
problems. At the end of the last chapter we discussed the two stationary states of a
spin-1/2 particle in a magnetic field oriented along the z-direction: the spin up state
Sz = +h̄/2 and the spin down state Sz = −h̄/2. Each of these states has a nonzero
value of the spin angular momentum measured along the z-axis, but zero average value
of the spin angular momentum along any direction in the xy-plane.

(〈Sx〉 = 〈
Sy

〉 = 0
)
.

Superpositions of these states create the spin right and spin left states discussed in the
last chapter, or in general states with a nonzero value of the spin angular momentum
along any specific direction of interest. For example, in more advanced courses it is
shown that

“spin right” (Sx = +h̄/2) = {“spin up” + “spin down”}/21/2

“spin left” (Sx = −h̄/2) = {“spin up” − “spin down”}/21/2

Thus each of these states has equal amounts of “spin up” and “spin down”; they
differ only by the phase in the superposition.

Schrödinger’s equation for a single electron and a nucleus with Z protons is an exten-
sion into three dimensions (x, y, z) of Equation 6.8, with the potential replaced by the
Coulomb potential U (r) = Ze2/4πε0r . This problem is exactly solvable, but it re-
quires multivariate calculus and some very subtle mathematical manipulations which
are beyond the scope of this book.

The wavefunctions for a hydrogen atom are described by the principal quantum
number n, which gives the energy; the orbital angular momentum quantum number l;
and the azimuthal quantum number ml , which gives the z-component of orbital angu-
lar momentum. In addition, for each of these wavefunctions, we can have ms = ±1/2,
corresponding to the projection of the spin angular momentum along the z-axis.

En = (−2.18 × 10−18 J)Z2/n2∣∣∣ �L∣∣∣2
= h̄2l(l + 1); l = 0, 1, 2, . . . (n − 1)

Lz = h̄ml , ml = −1, −1 + 1, . . . l − 1, l (6.23)

Sz = (±1/2)h̄

We noted in Chapter 5 that only one component of the electron’s angular momentum
(typically chosen as the z-component, Sz) can be specified. A similar result holds for



L; only the single component Lz can be specified. There are (2l + 1) levels of the
azimuthal quantum number ml for each value of l.

Note that even when ml has its maximum value (ml = l), L2
z <

∣∣∣ �L∣∣∣2
. Thus we

never know the exact direction of the angular momentum vector. An atom does not
really have any preferred direction in space, so all of the different ml levels have exactly
the same energy: such levels are called degenerate. In fact, for a hydrogen atom, states
with different values of l, ml , and ms (but the same value of n) are degenerate as well.

The orbital angular momentum quantum number l has other strange characteristics.
Notice that l = 0 is allowed. However, for a classical orbit, circular or elliptical, we

have
∣∣∣ �L∣∣∣ = mv⊥ R (Equation 5.19), which cannot be zero. The vector L points in the

direction perpendicular to the orbit, so if l = 0 the orbit must be equally likely to be in
any direction. This suggests (and calculations confirm) that the orbitals with l = 0 are
spherically symmetric. These are commonly called “s orbitals.” The symmetry of the
orbital gets progressively more complicated as we go to higher values of l:

l 0 1 2 3 4
orbital name s p d f g

The n = 1 and n = 2 orbital wavefunctions for a one-electron atom are:

n = 1, l = 0 (“1s orbital”): ψ1s = C1 exp(−Zr/a0)

n = 2, l = 0 (“2s orbital”): ψ2s = C2(2 − Zr/a0) exp(−Zr/2a0)

n = 2, l = 1 (“2p orbitals”):

ψ2px = C3x exp(−Zr/2a0) = C3[r sin θ cos φ exp(−Zr/2a0)] (6.24)

ψ2py = C3 y exp(−Zr/2a0) = C3[r sin θ sin φ exp(−Zr/2a0)]

ψ2pz = C3z exp(−Zr/2a0) = C3[r cos θ exp(−Zr/2a0)]

where r =
√

x2 + y2 + z2, Z is the number of protons in the nucleus, and a0 ≡
4πε0h̄2/mee2 = 52.92 pm is the Bohr radius introduced in Chapter 5. The coefficients
C1, C2, and C3 are normalization constants, chosen to satisfy the three-dimensional ver-
sion of Equation 6.4. The energy can also be written in terms of the Bohr radius:

En = −Z2e2

8πε0a0n2
(6.25)

Every introductory chemistry textbook graphs the lowest energy solutions in a va-
riety of different ways, and we will not duplicate those graphs here. However, some
of the important characteristics of these solutions are often omitted from introductory
texts.

1. There is no unambiguous way to represent ψ(x, y, z) on a two-dimensional sheet
of paper. The most common convention is to draw a contour—a surface which



consists entirely of points with the same value of |ψ |2, and which encloses some
large fraction (say 90%) of the total probability density |ψ |2.

The contours for s wavefunctions are all spheres, since the value of ψ depends
only on r (Figure 6.4). Any contour with |ψ |2 for the 2pz orbital completely
misses the xy-plane (where z = 0, hence ψ = 0). Any contour for 2pz orbitals
breaks down into two lobes with opposite signs of ψ—usually represented as a
positive lobe above and a negative lobe below the plane.

2. All of the hydrogen stationary states can be written in the general form:

ψ(r, θ, φ) = Rn,l(r)Yl,ml (θ, φ) (6.26)

which separates the radial part of the wavefunction Rn,l(r) from the angular part
Yl,ml (θ, φ). As the notation implies, the radial part depends only on the n and l
quantum numbers, not on ml , and the angular part is independent of n. In general,
the radial part of the wavefunction Rn,l(r) vanishes for n − l − 1 different values
of r . For example, the 2s wavefunction (n = 2, l = 0) vanishes everywhere on
the surface of a sphere with radius r = 2a0/Z . These surfaces are called radial
nodes.

The angular part is the same for a 2pz , 3pz , or 110pz orbital, since only n changes
between these wavefunctions. The angular part also makes the wavefunction
vanish on l other surfaces, called angular nodes. For a pz orbital, the lone an-
gular node is a simple surface—the xy-plane. The 2pz and 3pz wavefunction
look different in Figure 6.4 because of the extra radial node in the 3pz case. For
higher orbitals the angular nodes can look quite complicated.

It is also common to graph only the angular part Yl,ml (θ, φ) of an orbital. For any
pz orbital (l = 1, ml = 0) this gives two spheres.

z

1s
orbital

3pz
orbital

2pz
orbital

� Contours for the 1s, 2pz and 3pz orbitals.



3. As discussed in Section 6.1.3, we could replace ψ2pz with −ψ2pz , and this would
be an equally valid stationary state (see Equation 6.9). So there is nothing wrong
with writing the negative lobe on top and the positive on the bottom.

4. Different combinations of degenerate orbitals simplify different problems. For
example, the normal representations px , py, pz of the l = 1 orbitals are actually
mixtures of different ml values. The stationary states with a single value of ml �=
0 have real and imaginary parts, and are difficult to visualize.

Schrödinger’s equation is not analytically solvable for anything more complicated than
a hydrogen atom. Even a helium atom, or the simplest possible molecule (H+

2 ) requires
a numerical calculation by computer. However, these calculations give results which
agree extremely well with experiment, so their validity is not doubted.

Even though the hydrogen-atom wavefunctions are not exact solutions for multi-
electron atoms or molecules, they are often used for a good qualitative description. We
will discuss here briefly the major features which change from the hydrogen problem.
Every elementary textbook has dozens of full-color figures to illustrate molecular or-
bitals and hybrids, and we will not duplicate these figures here; we are aiming for an
understanding of why these results are reasonable.

In a hydrogen atom, the orbital energy is determined exclusively by the principal quan-
tum number n—all the different values of l and ml are degenerate. In a multielectron
atom, however, this degeneracy is partially broken: the energy increases as l increases
for the same value of n.

We can illustrate this by comparing the energies of the 1s, 2s and 2p orbitals for a
helium atom, which has two electrons. The first electron goes into the 1s orbital. Thus
the atom He+ has an electronic probability distribution which is given by putting Z = 2
into Equation 6.24 above:

P(r) (for He+) = |ψ1s(r)|2 = C2
1 exp(−4r/a0) (6.27)

Recall from Section 3.2 that a spherical shell of charge has the same effect outside the
shell as it would have if it were completely concentrated at its center; however, it has
no effect (produces no net force) on a charge inside the shell. Thus, very far from the
nucleus (r 
 a0), the electron effectively neutralizes half of the +2e charge of the
helium nucleus. A second electron far from the nucleus would feel an effective net
charge of +e. Near the nucleus, however (r � a0 ), a second electron would be almost
completely inside the 1s distribution, and would feel no net force in any direction from
the first electron; thus it would feel an effective net charge of +2e (Figure 6.5, left).
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� Left: effective charge in He+ (nuclear charge minus the shielding from the one
electron) as a function of distance from the nucleus. Right: probability of finding an electron at
different positions for the 1s, 2s, and 2p orbitals of He+.

Of course, a second electron will not be fixed at a single position. It will have a
wavefunction with a spatial distribution, just as the first electron did. The right side
of Figure 6.5 graphs the probability of finding an electron at different values of r for
the 1s, 2s and 2p orbitals. This probability is found by multiplying |ψ |2 by the total
volume between two shells, one with radius r , the other with radius r + dr . The 1s
orbital is the lowest state, and a second electron goes into this orbital for the ground
state of He (the two electrons have opposite values of ms ).

In hydrogen the 2s and 2p orbitals have the same energy. We can see qualitatively
why this might be true: the 2s orbital has a small lobe very close to the nucleus, but the
main lobe is farther from the nucleus than the bulk of the 2p orbital, and these effects
exactly offset one another.

Even in a helium atom, however, the situation is different. The electron in the 1s
orbital makes the effective charge greater for r < a0, as shown in the left figure. This
will have a more favorable effect on a 2s orbital than it will on a 2p orbital, because
the 2s orbital is larger in that region. Hence the 2s orbital is lower in energy.

The same trend holds true for the relative ordering of the 3s, 3p, and 3d orbitals. In
fact, in neutral atoms the 4s orbital is actually below the 3d orbital in energy; but the
difference is generally small, and in transition metal ions the order is reversed. Thus
the electronic configuration of calcium is [Ar] 4s2 (meaning it has the same first 18
electrons as argon, plus 2 4s electrons), the configuration of Ti is [Ar] 4s23d2, but the
configuration of Ti2+, isoelectronic with Ca, is instead [Ar] 3d2.

As we noted as the beginning of Chapter 5, one of the barriers to accepting Avogadro’s
postulate was the implication that molecules such as oxygen and hydrogen contained
two identical atoms which were held together by some force. We are now in a position
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� Left: general arrangement of three bodies, in this case two protons and an
electron. Right: minimum energy configuration for H+

2 . The electron is delocalized.

to understand why bonds between identical atoms are possible. We will concentrate on
the simplest possible case: the molecule H+

2 with two protons and one electron (Fig-
ure 6.6, left).

Two protons and an electron have a Coulombic potential energy given by:

U = 1

4πε0

(+e2

R
− e2

r1
− e2

r2

)
(6.28)

By inspection, the most favorable location for the electron is between the two protons.
If the three particles lie on a line with the electron in the middle, then r1 = r2 = R/2:

U (R) = 1

4πε0

(+e2

R
− e2

(R/2)
− e2

(R/2)

)
= 1

4πε0

−3e2

R
(6.29)

Thus classically the potential energy gets more negative (more favorable) as the nu-
clear separation decreases. In fact, three charged balls would collapse together, and the
“bond length” would be comparable to the diameter of the proton—about five orders of
magnitude smaller than the experimentally measurable separation of 106 picometers.

By analogy with the hydrogen atom itself, you might have guessed what prevents
this collapse—the Uncertainty Principle. As the distances shrink, the uncertainty in
the electron’s momentum (and hence its kinetic energy) must increase. For example,
suppose we took the geometry on the right side of Figure 6.6 and cut all of the distances
in half.

• From Equation 6.28, the new potential energy would be twice as negative.

• In order for the configuration to be stable, the electron must be between the pro-
tons. So 	x , 	y and 	z would all be cut in half as well.

• By the Uncertainty Principle, 	px , 	py , and 	pz would all become twice as
large.

• The overall length of the shortest possible momentum vector would double.

• The minimum possible kinetic energy K = p2/2m would quadruple.

Thus halving the size reduces the potential energy, but raises the kinetic energy.
Eventually, as the internuclear separation gets shorter, the increase in kinetic energy



has to more than offset the decrease in potential energy, and thus the overall energy
will increase if the molecule shrinks further.

When the protons are separated by a large distance, the stationary states are the
normal hydrogen orbitals centered on each proton, and the states on each atom have
the same energy. Stationary states with the same energy (called degenerate stationary
states) have a special feature in Schrödinger’s equation. Suppose the wavefunctions
ψ1(x) and ψ2(x) are two degenerate stationary states, both with energy E .

− h̄2

2m

d2ψ1(x)

dx2
+ U (x)ψ1(x) = Eψ1(x) (6.30)

− h̄2

2m

d2ψ2(x)

dx2
+ U (x)ψ2(x) = Eψ2(x) (6.31)

We can multiply Equation 6.30 by some coefficient c1; multiply Equation 6.31 by some
coefficient c2; and add them together to get:

− h̄2

2m

d2(c1ψ1(x) + c2ψ2(x))

dx2
+ U (x) (c1ψ1(x) + c2ψ2(x))

= E (c1ψ1(x) + c2ψ2(x)) (6.32)

So c1ψ1 + c2ψ2 is also a solution to Schrödinger’s equation with the same energy. The
coefficients c1 and c2 have to be chosen to satisfy Equation 6.4, but otherwise they are
arbitrary. So we can take any combination we want of stationary states with the same
energy, and the combination is still a stationary state with that energy.

Combining atomic orbitals lets us create molecular orbitals which reinforce or
weaken the probability in the energetically favored region between the protons by com-
bining these atomic orbitals. For example, the two different 1s orbitals can be com-
bined to create two new orbitals, called 1σ and 1σ ∗.

ψ1σ = C1σ (ψ1s, atom 1 + ψ1s, atom 2)

ψ1σ ∗ = C1σ ∗(ψ1s, atom 1 − ψ1s, atom 2) (6.33)

The factors C1σ and C1σ ∗ are both about
√

2, and are needed to preserve the normaliza-
tion. We must end up with the same number of combinations as the number of atomic
orbitals we used. This can be understood by analogy with describing the distance be-
tween two particles in a plane by two different coordinate systems, rotated from one
another by 45◦ (Figure 6.7).

If we pick any coordinate system and put one of the particles at the origin (0, 0),
the coordinates of the other particle (x, y) directly give the distance r =

√
x2 + y2.

Rather than using a horizontal x-axis, we can create a new axis x ′ in any direction we
want by combining x and y. But this new vector will only have the same length as did
x and y if we divide by the appropriate factor. In the case shown here, where x and y
are added with equal weight, the factor is

√
2. If we create a new x ′-axis, we must also

create a new y′-axis for the coordinates to give the right distance between the particles,
and the y′-axis has to be constructed in such a way that it is perpendicular to x ′.
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� If we pick one point in a plane as the origin (0, 0), and define two perpendicular
directions as the x and y axes, the position of any other point can be specified by its coordinates
(x, y). Any other choice of direction for the two axes (x ′ and y′) will change the coordinates, but
the distance will not change, so x2 + y2 = x ′2 + y′2.

The orbital ψ1s is positive everywhere, so the 1σ molecular orbital (called a bond-
ing orbital) is also positive everywhere, and has an enhanced probability of putting the
electron between the two protons. This orbital is lower in energy than the 1s orbitals
were by themselves. On the other hand, the 1σ ∗ orbital (called an antibonding orbital)
is higher in energy, because the probability of finding the electron in the energetically
favored region is reduced. It has a nodal plane (a region where ψ = 0) which bisects
the line between the two protons. As we saw with the particle-in-a-box wavefunctions,
nodal surfaces are generally a good indication of increased energy. So as the separa-
tion between the two atoms decreases, the 1σ and 1σ ∗ states begin to be separated in
energy, and in the H+

2 molecule, the electron goes into the 1σ orbital. In the hydrogen
molecule, a second electron goes into the same orbital, with the opposite value of ms

(just as in the helium atom). Additional electrons would have to go into the antibond-
ing orbital, so the net energy gain from the bonds is reduced; in fact, the molecule He2,
which would need two electrons in 1σ and two in 1σ ∗ is not stable.

This description of the 1σ and 1σ ∗ orbitals is an oversimplification, since it is based
on the 1s hydrogen-atom atomic orbitals, which are not stationary states for this more
complicated problem. The shapes of the 1σ and 1σ ∗ orbitals (and the higher energy
states) can be calculated by computer, and to some extent higher lying atomic orbitals
have to be mixed in as well. However, the energy difference between the 1s state and
the higher atomic orbitals is so large that the additions are quite small. For higher
molecular orbitals, such as the ones used for bonding in molecules such as oxygen, the
mixtures are more complicated; but the basic idea is still correct, and molecular orbitals
are widely used to describe chemical bonding.

In a hydrogen atom, the 2s and 2p orbitals are degenerate. Therefore, as discussed in
the last section, any other combination of these orbitals would also be a stationary state
with the same energy. The only reason for writing these orbitals as we did in Equa-



tions 6.27 was mathematical convenience. In fact, as noted earlier, the orbital pictures
in general chemistry books do not correspond to a well-defined value of ml because
those orbitals are complex functions. For example, the px orbitals are proportional to
the sum of ml = +1 and ml = −1; p orbitals are proportional to the difference between
ml = +1 and ml = −1 orbitals.

In forming molecules, it often makes sense to combine orbitals with different val-
ues of l as well, thus creating so-called hybrid orbitals. Consider, for example, the
molecule BeH2. Each hydrogen atom can contribute its 1s orbital to a molecular or-
bital, just as in the H+

2 example in the last section. The beryllium atom in its ground
state has two electrons in the 2s orbital, and since that orbital is already filled, it is not
likely to contribute much stability to a molecular orbital (just as the filled 1s orbitals in
two helium atoms did not create a bond for He2).

The 2p orbitals still exist for a beryllium atom; they are simply empty. The atom
could promote one electron to a 2p orbital, at the cost of some added energy. If this
allowed it to contribute electron density to make two separate bonds, the added stability
of the two bonds might be sufficient to justify the promotion energy.

The strengths of these bonds will be determined in large part by the overlap between
the beryllium and hydrogen orbitals. Electrons repel one another, so multiple bonds
will be most stable if the electron density is spread out over a wide region (without
lengthening the bonds, which would decrease the overlap). A linear arrangement, say
along the z-axis in space, with the beryllium in the center of the two hydrogens would
achieve this. Unfortunately, the 2s orbital has equal electron density in all directions.
Only the 2pz orbital is aligned to overlap with either hydrogen, and the 2pz orbital can
only accept two of the four electrons available.

We can improve the overlap by combining the 2s and 2pz orbitals to make two sp-
hybrid orbitals (Figure 6.8):

ψsp+ = (ψ2s + ψ2pz )√
2

ψsp− = (ψ2s − ψ2pz )√
2

(6.34)

The
√

2 factor is for normalization, just as in Figure 6.3. One orbital points more
to the right in Figure 6.8, so it can overlap well with the hydrogen atom to the right;
the other orbital overlaps well with the hydrogen atom to the left. Notice that the nodal
surface (the surface between the positive and negative lobes where ψ = 0) for these
orbitals is neither a plane (as it is for the 2p orbitals) nor a sphere (as it is for the 2s
orbital).

Strictly speaking, these sp hybrids are not stationary states, because they were cre-
ated by combining orbitals with different energies. However, the energy difference is
relatively small, and we can treat these hybrids as approximately valid. In fact, the two
bonds in BeH2 are identical and the molecule is linear, so the bonding orbital must look
very much like what is pictured here.
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� Two sp hybrid orbitals, formed by taking the sum or the difference of the 2s and
2pz orbitals.

More complicated hybrid orbitals are used in many other problems. For example,
the bonding in methane is best described by combinations of one s orbital and three p
orbitals, which make a set of four equivalent orbitals which point to the corners of a
tetrahedron:

ψ1 = (ψ2s + ψ2px + ψ2py + ψ2pz )/2

ψ2 = (ψ2s − ψ2px − ψ2py + ψ2pz )/2

ψ3 = (ψ2s − ψ2px + ψ2py − ψ2pz )/2 (6.35)

ψ4 = (ψ2s + ψ2px − ψ2py − ψ2pz )/2

and in some cases, hybrids with d orbitals are used as well. These orbitals use the com-
bination of s and p to make give the hybrid orbitals directionality, thus improving the
overlap with orbitals from other atoms. They look similar to Figure 6.6, except that
the decreased amount of s character in each orbital somewhat diminishes the imbal-
ance between the positive and negative lobes.

Hybridization is a wonderful, intuitive concept, and is taught in every general chem-
istry class. It also has serious limitations, particularly for elements below the first full
row of the periodic table. For example, the structure of H2O (bond angle 104.5◦) is
generally explained using the sp3 orbitals in Equation 6.35 as a starting point, and then
assuming that extra repulsion between the two oxygen lone pairs reduces the bond an-
gle. Oxygen in the ground state has the configuration 1s22s22p2, with 2s lower than
2p in energy; but creating bonds with a larger overlap with the hydrogen (making sp3

orbitals instead of just using p orbitals) makes up for the energy lost by replacing a pair
of nonbonding electrons in the 2s orbital with a nonbonding pair in a higher-energy sp3

hybrid orbital.
By this argument, H2S, H2Se and H2Te should have about the same structure as

water. Instead, the bond angle in these three molecules is nearly 90◦, as if the p orbitals
were not hybridized at all! One important reason for the difference is the extra radial



nodes in hybridized orbitals with n > 2. Even the 3pz orbital has four lobes instead of
two and the 3s orbital has two radial nodes, so it is much more difficult to create hydrids
which produce a large, node-free region for a favorable σ bond. The energy gained by
creating a slightly improved bonding region does not overcome the energy difference
between 3s and 3p.

�

6-1.� Use Equation 6.1 to prove the following results:

(a)
∣∣eiθ

∣∣ = 1

(b) eiθ and e−iθ are reciprocals of one another (eiθ = 1/e−iθ )

(c) eiθ and e−iθ are complex conjugates of one another (eiθ = (e−iθ )∗)

6-2. Use the Taylor series expansions in Chapter 2 to verify Equation 6.1.
6-3.� Equation 6.11 can be applied to a wavefunction ψ which is already one of the sta-

tionary states, thus giving

�(t) = e−i Et/h̄�(0)

where E is the energy of the stationary state. Use this to show that the probability
distribution of a stationary state is independent of time.

6-4. Use Equation 6.11 to show that changing the definition of the zero point of energy
(which is arbitrary, because potential energy is included) by an amount 	 changes
ψ(t) by a factor e−i	t . Also show that this arbitrary choice has no effect on the
probability distribution, or on the expectation values of position, momentum, or
kinetic energy.

6-5.� Use Equation 6.4 to verify that the expression for the particle-in-a-box wavefunc-
tion (Equation 6.20) is correctly normalized.

6-6. Explain why 〈K 〉 �= 〈p〉2 /2m for the particle in a box.
6-7.� Graph the probability P(x) for wavefunction � = 1√

2
(ψ1 −ψ2), where ψ1 and ψ2

are the first and second stationary states for the particle in a box (Equation 6.20).
6-8. Graph the wavefunction � = 1√

2
(ψ1 + iψ2), where ψ1 and ψ2 are the first and

second stationary states for the particle in a box (Equation 6.20).
6-9.� Graph the wavefunction � = 1√

2
(ψ1 + ψ3), where ψ1 and ψ3 are the first and

third stationary states for the particle in a box (Equation 6.20), and verify that it
satisfies Equation 6.4 (the definite integral needed to verify this can be found in
Appendix B). Without doing any explicit integrals, determine 〈x〉 and 〈p〉.

6-10. Equation 6.11 can be used to solve for the time evolution of a superposition state.
Suppose we start at time t = 0 with the superposition state in Figure 6.3, �(t =
0) = 1√

2
(ψ1 −ψ2). We can simplify the mathematics a bit by choosing the energy



of the bottom of the well as U = −h2/8mL2 instead of zero; this makes the total
energy of the lowest state (kinetic plus potential) equal to zero (E1 = 0) and makes
E2 = 3h2/8mL2.

(a) Write out an explicit expression for �(t) which is valid at all later times t ,
and an expression for the probability distribution P(t). Verify that P(t) is real
and nonnegative everywhere.

(b) Use Equation 6.5 and Equation B.25 in Appendix B to evaluate the expecta-
tion value of the position, 〈x〉, at any time t .

(c) Use Equation 6.6 and Equation B.26 in Appendix B to evaluate the expecta-
tion value of the momentum, 〈p〉, at any time t .

(d) Your results in parts (b) and (c) above should show that 〈p〉 vanishes when
〈x〉 is at a maximum or minimum, and 〈x〉 = L/2 when 〈p〉 is at a maximum or
minimum. Explain this classically.

6-11. (a) The harmonic oscillator (mass m, potential energy U = kx2/2) is also an
exactly solvable problem in quantum mechanics. Substitute this form for U into
Schrödinger’s equation (Equation 6.8) to show that ψ = Ce−x2

√
mk/2h̄ is a station-

ary state (C is just the normalization constant).

(b)� Find the energy of this stationary state. If you have the correct expression, it
will look simpler if you introduce ω0 = √

k/m, where ω0 is the classical vibra-
tional frequency discussed in Chapter 3.

(c) The stationary state ψ is actually the lowest energy solution for the harmonic
oscillator, and can be applied to diatomic molecules (substituting the reduced mass
μ for the mass m, as in Chapter 3). This lowers the dissociation energy from what
would be predicted classically, because a molecule cannot be sitting in the bottom
of the potential well. For the hydrogen molecule, use the force constant and well
depth from Table 3.2 to verify the actual minimum dissociation energy.

6-12. The probability of finding an electron between r and r + dr from the nucleus
(graphed in Figure 6.3 for the He+ atom) is given by squaring the wavefunction
and multiplying by r2. The most probable value is found by taking the derivative
of this expression.
Calculate the most probable value of r for a 1s electron, a 2s electron and a 2p
electron.

6-13.� Here is yet another bizarre result of quantum mechanics for you to ponder. The 1s
wavefunction for a hydrogen atom is unequal to zero at the origin. This means that
there is a small, but nonzero probability that the electron is inside the proton. Cal-
culation of this probability leads to the so-called “hyperfine splitting”—the mag-
netic dipoles on the proton and electron interact. This splitting is experimentally
measurable. Transitions between the hyperfine levels in the 1s state of hydrogen
are induced by radiation at 1420.406 MHz. Since this frequency is determined by



nature, not man, it is the most common choice as a transmission frequency or a
monitored frequency in searches for extraterrestrial intelligence.

The proton has a diameter of approximately 10−15 m. Explain why it is not pos-
sible to design an experiment which would measure the location of a 1s electron
and find it to be inside the nucleus.

6-14. Use the hydrogen wavefunctions to find the value of z where the wavefunction
ψsp+ = (ψ2s + ψ2pz )/

√
2 is most positive, and the position where it is most neg-

ative.



Chapter 7

Democritos (ca. 460–370 BC)

Every chemistry student is familiar with the “ideal gas equation” PV = n RT . It turns
out that this equation is a logical consequence of some basic assumptions about the
nature of gases. These simple assumptions are the basis of the kinetic theory of gases,
which shows that the collisions of individual molecules against the walls of a container
creates pressure. This theory has been spectacularly successful in predicting the macro-
scopic properties of gases, yet it really uses little more than Newton’s laws and the sta-
tistical properties discussed in the preceding chapters.

The ideal gas law has been used in many examples in earlier chapters, and some of
the important physical properties of gases (the one-dimensional velocity distribution,
average speed, and diffusion) were presented in Chapter 4. This chapter puts all of these
results into a more comprehensive framework. For example, in Section 7.3 we work
out how the diffusion constant scales with pressure and temperature, and we explore
corrections to the ideal gas law.

7.1 COLLISIONAL DYNAMICS
Collisions provide a particularly simple application of Newton’s laws, which we dis-
cussed in Chapter 3, because we can often say that long before and long after the col-
lision (when the colliding bodies are separated by large distances) that the forces be-
tween them are zero. It is also often a good approximation to say that the forces during
the collision did not significantly reduce the kinetic energy (such collisions are called
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elastic). Then for a collision between two particles with masses m1and m2 we have
conservation of momentum:

�ptot = m1�v1,initial + m2�v2,initial = m1�v1,final + m2�v2,final (7.1)

which is actually three separate equations in x , y, and z:

px,tot = m1vx1,initial + m2vx2,initial = m1vx1,final + m2vx2,final

py,tot = m1vy1,initial + m2vy2,initial = m1vy1,final + m2vy2,final

pz,tot = m1vz1,initial + m2vz2,initial = m1vz1,final + m2vz2,final

We also have conservation of energy:

E =
(

m1

∣∣�v1,initial

∣∣2 + m2

∣∣�v2,initial

∣∣2
)

/2

=
(

m1

∣∣�v1,final

∣∣2 + m2

∣∣�v2,final

∣∣2
)

/2 (7.2)

which can be written in Cartesian coordinates as

E = m1
(
v2

x1,initial + v2
y1,initial + v2

z1,initial

)
/2

+m2
(
v2

x2,initial + v2
y2,initial + v2

z2,initial

)
/2

= m1
(
v2

x1,final + v2
y1,final + v2

z1,final

)
/2

+m2
(
v2

x2,final + v2
y2,final + v2

z2,final

)
/2

Equations 7.1 and 7.2 do not assume any particular form for the potential energy,
except that Equation 7.2 only applies at times when the interaction energy is negligible
(long before or after the collision). In most cases, they do not completely determine
the final trajectories, and the interaction potential has to be included to get a complete
answer.

The simplest models view the interacting bodies as “hard spheres” (e.g., billiard
balls). Mathematically, if r is the separation between the center of two molecules, we
write the potential energy of interaction between them as:

U (r) = ∞ (0 ≤ r ≤ σ); U (r) = 0 (r > σ) (7.3)

In this case σ is the distance of closest approach between the centers of the two
molecules, which is the same as the diameter of a single molecule. This potential gen-
erates no forces for r > σ . The discontinuity at r = σ implies an infinitely large force
(and hence collisions are instantaneous). There are really no perfect hard spheres, but
this approximation often simplifies calculations dramatically, and often gives good ap-
proximate results.

It is worth illustrating the uses of Equations 7.1 and 7.2 with a few examples. Sup-
pose two balls, each with mass 1 kg and diameter σ = 0.1 m, are moving along the
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FIGURE 7.1 � Collisions between two particles that interact through a hard-sphere potential
(left) can be described by conservation of momentum and energy. A potential that is more realistic
for atoms and molecules (right) changes the trajectories.

x-axis with equal and opposite speeds of 10 m · s−1 (Figure 7.1, left). After the balls
collide (elastically), what will be their speeds and directions?

The total momentum and kinetic energy are:∣∣ �ptot,initial

∣∣ = ∣∣ �p1,initial + �p2,initial

∣∣
= (1 kg)(+10 m · s−1) + (1 kg)(−10 m · s−1)

= 0 kg · m · s−1 = ∣∣ �ptot,final

∣∣ (7.4)

Einitial = (1 kg)(+10 m · s−1)2

2
+ (1 kg)(−10 m · s−1)2

2
= 100 J = Efinal

Since the masses are equal, the only way �ptot,final can vanish is if �v1,final = −�v2,final.
Since the speeds are then equal, Equation 7.4 shows that both speeds must be 10 m · s−1,
but the direction is unknown. For hard spheres the additional information needed to
determine the direction comes from the impact parameter b, defined as the minimum
distance of separation between the centers of the two balls if they were to follow their
initial trajectories. In Figure 2.4, the impact parameter is the distance between the two
dotted lines.

If b = 0 the balls hit head on, and reverse direction. If b > 0 the balls do not interact
at all. For intermediate values of b the balls are deflected into different directions; any
direction is possible.

The trajectories are still more complicated if the balls interact with a realistic po-
tential. The right side of Figure 7.1 illustrates a case that is realistic for atoms and
molecules, as we discussed in Chapter 3: the interaction potential is attractive at long
distances and repulsive at short distances.

Now suppose the two colliding partners have quite different masses. For example,
suppose a helium atom (mass 6.64 × 10−27 kg) is traveling perpendicular to the flat
wall of a container (mass 1 kg) at a speed of 1000 m · s−1. Choose the z-axis as the
initial direction of motion of the helium atom. The motion after the collision will also
be along the z-axis, since the atom is moving perpendicular to the wall—no force is
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ever exerted in the x or y directions. Now the momentum and velocity vectors have
only one nonzero component (the z component), so we can write the momentum and
velocity as numbers instead of vectors.

The momentum and kinetic energy conservation equations are then:

ptot,initial = (6.64 × 10−27 kg)(1000 m · s−1)

= 6.64 × 10−24 kg · m · s−1

= pHe,final + pwall,final

= (6.64 × 10−27 kg)vHe,final + (1 kg)vwall,final (7.5)

E = (6.64 × 10−27 kg)(1000 m · s−1)2

2
= 3.3 × 10−21 J

= (6.64 × 10−27 kg)(vHe,final)
2

2
+ (1 kg)(vwall,final)

2

2
(7.6)

We can do an exact algebraic solution to Equations 7.5 and 7.6 (Problem 7-1), or just
look at these equations and simplify things dramatically. Because of the large dif-
ference in mass, it is obvious that the wall does not move very fast after the colli-
sion. In fact, if all of the kinetic energy went into the wall, its speed would be s =√

2E/m = 8.1 × 10−11 m · s−1. But if that were the case, the final momentum would
be 8.1 × 10−11 kg · m · s−1—almost thirteen orders of magnitude too large. The only
way to conserve the total momentum is to make almost all of the kinetic energy stay
in the helium atom, which thus bounces back with a speed very close to 1000 m · s−1

(Figure 7.2, top).
Since the helium atom’s direction has reversed, pHe,final = −6.64 × 10−24 kg ·m

·s−1. Conservation of momentum implies that pwall,final = 1.33 × 10−23 kg · m · s−1

to balance Equation 7.5. The wall acquires a kinetic energy of p2
wall,final/2m= 8.8 ×

FIGURE 7.2 � When a light particle collides with a heavy wall, very little energy is transferred.
The component of the velocity perpendicular to the wall is reversed; the other components are
unaffected.
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10−47 J. We can now be more quantitative—all but about 10−23 of the kinetic energy
stays in the atom.

Notice that we did not assume a specific functional form for the interaction poten-
tial, except to assume that the direction of the force exerted by the wall is perpendicular
to the wall, hence opposite to the initial velocity vector. If the helium atom is approach-
ing from some other direction, the component of the atom’s velocity perpendicular to
the wall will be reversed but the other components are unaffected (as shown at the bot-
tom of Figure 7.2).

7.2 PROPERTIES OF IDEAL GASES
7.2.1 Assumptions Behind the Ideal Gas Law

The simplest treatment of the properties of gases starts with the following assumptions,
which will determine the limits of validity of the ideal gas equation PV = n RT :

1. Gases are mostly empty space at normal pressures. At standard temperature and
pressure (STP; 1 atm pressure, temperature 273K), the same amount of matter
will occupy about 1000 times more volume if it is in the gaseous state than if it
is a solid or liquid. At much higher densities (for example, pressures of several
hundred atmospheres at 273K) this assumption will not be valid.

2. Intermolecular forces between gas molecules are assumed to be negligible, and
collisions between gas molecules are ignored (in our initial treatment). Collisions
with the container are assumed to be elastic, meaning that both momentum and
energy are conserved, as described in Section 7.1 above.

3. Gas molecules are constantly moving, with a random distribution of directions
and speeds. This is also a very reasonable assumption, unless the molecules in
the gas were prepared in some way which (for example) made all of them move at
nearly the same speed—and even then, collisions with the walls would randomize
the distribution in practice. This distribution of speeds will be found using the
Boltzmann distribution we discussed in Chapter 4.

4. The gas has evolved to a state, commonly called equilibrium, where none of the
macroscopic observables of the system (temperature, pressure, total energy) are
changing. Equilibrium is a macroscopic and statistical concept, as noted in Chap-
ter 4. For example, the pressure cannot be perfectly constant, since this pres-
sure comes from molecules hitting the wall of the container. If we look on a fine
enough time scale (for example, 1 femtosecond at a time) the number of collisions
cannot be exactly constant. However, as we will see, the number of collisions per
second against the wall is so large that replacing the instantaneous (rapidly fluc-
tuating) pressure with its average is a reasonable assumption.
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7.2.2 Calculating Pressure

Pressure is defined as force per unit area. The pressure exerted by a gas comes from
the forces exerted by collisions of gas molecules with the walls of the container. Since
the mass of the walls of the container is much larger than the mass of each particle, the
assumption of elastic collisions implies that the velocity component perpendicular to
the wall is exactly reversed, and the other two components are unaffected as discussed
in Section 7.1.

Let us consider what this means for one molecule, which we will initially assume
is moving at t = 0 in the +y direction (vx = vz = 0) in a cubic box of side length L
(Figure 7.3). The molecule hits the right wall with velocity vy and bounces back with
velocity −vy . The y-component of the momentum, py , is the product of mass times
vy , so we have

pinitial = +mvy pfinal = −mvy (	p)molecule = −2mvy (7.7)

Since total momentum is conserved, this implies the wall also picks up momentum
to compensate for the molecules’ change in momentum,

(	p)wall = −(	p)molecule = 2mvy (7.8)

This change in the wall’s momentum in a very short time (the duration of the collision
	tcoll) implies the wall exerts a large force (F = 	p/	tcoll). If it is not obvious to you
that F = 	p/	t , review Section 3.1; F = dp/dt is actually Newton’s Second Law.
We use “	p” and “	t” instead of the differentials dp and dt because the collisions,
while brief, are not infinitesimal. If gas molecules and container walls really were in-
compressible, they would be in contact with the wall for an infinitesimal time, and the
force would have to be infinite.

L

L

L

FIGURE 7.3 � Simple model system for derivation of the ideal gas law. We start by assuming
there is only one molecule in a cube of length L , and it is moving directly along the y-axis. We will
generalize these results in the next section.
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In reality, atoms and molecules (and container walls, made of atoms and molecules)
can be somewhat compressed, and collisions last for a time on the order of picoseconds.
The force is concentrated on a spot which is about the same size as the molecule (typ-
ically on the order of 1 nm2) which still makes the pressure (force per unit area) at the
point of impact quite high (Problem 7-2). So the wall deforms briefly, but in general
the impact is not large enough to break chemical bonds, so it quickly recovers its shape.

Now we will switch over to a macroscopic view, looking at the average force and
pressure, rather than the instantaneous values. Collisions with the right wall (and thus
force on the wall) happen every time the molecule makes a round trip between the left
and right walls, thus traveling a total distance 2L; the time between collisions is then
2L/vy . So the average force on the right wall from these collisions is the momentum
transferred to the wall per unit time:

F = 2mvy

2L/vy
= mv2

y

L
(7.9)

The force per unit area (pressure) can now be written as

P = F

A
= mv2

y

L3
= mv2

y

V
(7.10)

since A = L2, and L × A (length times area) is the volume of the box V .
If the molecules do not interact with each other, the pressure exerted by the i th

molecule is independent of the pressure exerted by any other molecule, and the total
pressure is the sum of the pressures exerted by each molecule. Thus:

P = m

V

N∑
i=1

v2
y = Nm

V
v2

y (7.11)

Of course, not all of the molecules are moving straight along the y-axis. If vx or vz �= 0,
molecules also bounce off the top, bottom, front, or back walls (Figure 7.4). But those
collisions only change vz (if the molecule hits the top or bottom) or vx (if the molecule
hits the front or back). The rate of collisions with the left wall and the momentum trans-
fer to that wall are unaffected. So Equation 7.11 is independent of the initial velocity
directions of the individual molecules. It is also independent of the size or shape, al-
though we would have to make a more complicated argument for some other geometry.

In general, we expect the velocity distributions in the x-, y-, and z-directions to be
the same, and thus we can relate the pressure to the mean-squared speed s2:

v2
x = v2

y = v2
z ; s2 = v2

x + v2
y + v2

z = 3v2
y (7.12)

The total energy is given by:

E =
N∑

i=1

ms2
i

2
= N

(
ms2

2

)
= 3Nmv2

y

2
(7.13)
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y

x

vx  vz 0, vy 0:
collisions with the left

wall occur every
2L/vy seconds

vz 0, vx, vy 0:
collisions with the left
wall still occur every

2L/vy seconds

FIGURE 7.4 � Only the velocity component perpendicular to a wall contributes to the pressure,
since other components do not change the round-trip time.

so we have:

PV = 2

3
E (7.14)

The product of pressure and volume has units of energy—which normally is not obvi-
ous because we usually think of volume in liters and pressure in pascals or atmospheres.
But this will become very important later in considering energy and work.

7.2.3 The One-Dimensional Velocity Distribution and the Ideal Gas
Law

In order to get from Equation 7.14 to the ideal gas law, we need to relate v2
y to the

temperature. As discussed in Chapter 4, we can use the Boltzmann distribution, Equa-
tion 4.26, to give the probabilities of observing different velocities:

P(vy) dvy =
{√

m/2πkT
}

e−mv2
y/(2kB T ) dvy (7.15)

The term in {brackets} in Equation 7.15 is the normalization constant, chosen so
that

∫
P(v) dv = 1. Equation 7.15 is a Gaussian peaked at vy = 0 with standard

deviation σ = √
kT/m. We also showed in Chapter 4 that

v2
y = kB T

m
;

(
v2

y

)1/2
=

√
kB T

m
(7.16)

E = 3

2
NkB T = 3

2
N RT (7.17)
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where n is the number of moles, and the relation between R and kB is R =
NAvogadrokB = (6.022 × 1023)kB = 8.3144 J/(mole · K). Combining Equations 7.14
and 7.17 gives

PV = NkB T = n RT (7.18)

7.2.4 The Three-Dimensional Speed Distribution
So far we have only talked about the velocity in a single direction, but Equation 7.12
also lets us relate this velocity to the speed:

s2 = 3kB T

m
;

(
s2

)1/2
=

√
3kB T

m
(7.19)

Equation 7.19 gives a root-mean-squared speed (“rms speed”) at 273K of 1840 m/s
for H2, 493 m/s for N2, and 206 m/s for Br2. To get the rms component in any particular

direction (for example,
(
v2

y

)1/2
, divide by

√
3.

The properties of the three-dimensional speed distribution can be readily derived
as well. This speed distribution turns out to be:

N (s) ∝ s2 exp(−ms2/2kB T ) (7.20)

which looks very similar to Equation 7.15 except for an extra factor of s2. This extra
factor comes because the number of different ways to get a particular speed goes up as
we increase the speed. To see this, let us draw a “velocity space” where the coordinates
correspond to the velocity components along x-, y-, or z-axes. Thus every possible
velocity corresponds to a single point (vx , vy, vz) in this three-dimensional space. In
this velocity space, the surface of a sphere corresponds to all molecules with the same
speed, but traveling in different directions (Figure 7.5). Thus there is a purely geometric
factor—the fact that shell volume increases as |�v| increases—that adds an additional
term to the velocity distribution.

Another way to see this is to assume, for the moment, that the velocity in the x-,
y-, or z-directions is restricted to discrete values (say integral numbers of meters per
second). Then the number of ways to have a speed between 10 m · s−1 and 11 m · s−1

is the number of solutions to the equation

102 < v2
x + v2

y + v2
z < 112 (x, y, z integers) (7.21)

There are many solutions to this equation. For example, just for vx = ±10 m · s−1,
we can have these values of (vx , vy, vz) and many others:

(±10, 0, 0) (±10, ±1, 0) (±10, 0, ±1) (±10, ±1, ±1) (±10, ±2, 0) (±10, 0, ±2)

(±10, ±1, ±2) (±10, ±2,±1) (±10, ±2, ±2) (±10, ±3, 0) (±10, 0, ±3) (±10, ±3, ±1)

(±10,±1, ±3) (±10,±2, ±3) (±10, ±3, ±2) (±10, ±3, ±3) (±10, ±4, 0)

(±10, 0, ±4) (±10, ±4, ±1) (±10, ±1, ±4) (±10, ±4, ±2) (±10, ±2, ±4)
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Constant speed:
surface of a sphere

(s2  vx2  vv2  vz2)

v  dv

vz

vv

vx

FIGURE 7.5 � Schematic illustration of a “velocity space.” Each possible velocity corresponds
to a single point (vx , vy, vz) in three dimensions. The total number of possible velocities (the
volume) in a shell near some speed s is proportional to s2. Thus the three-dimensional speed
distribution has an extra factor of s2.

There are a total of 1328 solutions. However, there are only 380 solutions for a
speed between 5 m · s−1 and 6 m · s−1; there are 5240 solutions for a speed between
20 m · s−1 and 21 m · s−1. The number of solutions scales approximately as s; with
a finer grid of discrete values (say tenths or hundredths of a meter per second) the s
scaling would be nearly exact.

P(s) ds gives the probability of finding the speed to be between s and s+ds. There-
fore it must be normalized,

∫
P(s) ds = 1. The integral is given in Appendix B, and

can be used to show that:

P(s) ds = 4π

{
m

2πkB T

}3/2

s2(e−ms2/2kB T ) ds (7.22)

Note that the probability of finding v ≈ 0 is very low because of the geometric
factor. The most probable speed smost probable is found by differentiation of P(s)

d P(s)

ds

∣∣∣∣
s=smost probable

= 0

which gives (Problem 7-3):

smost probable =
√

2kB T/m (7.23)

Note that smost probable is not exactly the same as
(

s2
)1/2

, which we found to be√
3kB T/m (Equation 7.19). For that matter, we could find the average speed s to be√
8kB T/πm using Equation 4.15. The differences between these measures of the dis-

tribution are small, but real.
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7.2.5 Other ideal Gas Properties
� Mixture Velocities and Effusion

In a mixture of two or more gases, collisions eventually make the molecules achieve the
same temperature, and hence the same kinetic energy. However, this implies that they
have different velocities. If the two gases are labeled A and B, Equation 7.19 implies(

s2
A

)1/2

(
s2

B

)1/2 =
√

m B

m A
(7.24)

The rate at which molecules “pour out” of a small hole into a vacuum (see Fig-
ure 7.6) is proportional to the velocity of the molecules in the direction of the hole (or,
equivalently, if the hole were filled with a plug, it is proportional to the rate at which
molecules hit the plug). This process, which creates a “molecular beam” into the vac-
uum, is called effusion. A mixture of two gases with two different masses will have
different mean velocities in the direction of the wall, and the lighter gas will leave the
box more rapidly.

Gaseous effusion can be used to separate different masses. For example, the Man-
hattan project during World War II required separation of uranium isotopes, since only
about 0.7% of naturally occurring uranium is the fissionable isotope 235U. It was sepa-
rated from the 99.3% abundant isotope 238U by making the two hexafluorides and ex-
ploiting effusion through porous membranes. The mass difference is extremely small,
so the effusing gas is only very slightly enriched in 235UF6 ; the process has to be re-
peated many times to produce a large enrichment.

Molecular beams are very important tools for characterizing intermolecular and in-
tramolecular reactions. In fact, the 1988 Nobel Prize in Chemistry was awarded to Yuan
Lee, Dudley Herschbach, and John Polanyi for studies which were mostly made possi-
ble by this technique. A particularly useful variant is the supersonic molecular beam,
which in the simplest case pushes a high-pressure mixture of helium and trace amounts
of some larger “guest” molecule through a nozzle. When the helium atoms enter the

Box with high
pressure gas

FIGURE 7.6 � Gases “pour out” of a box into an evacuated region at rates proportional to their
speeds, hence proportional to 1/

√
m. Thus a mixture of gases with different masses can be

separated by this method.
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vacuum to form the supersonic beam, they convert most of their random energy into
kinetic energy in one direction. This also cools the guest molecules, so reactions can
be monitored without complications from the wide range of initial energies associated
with chemical reactions in a bulb or a flame.

� Heat Capacity

Equation 7.17 shows that the total kinetic energy of one mole of a monatomic gas is
E = 3RT/2. Unfortunately the total energy of a system is a difficult quantity to mea-
sure directly. It is much easier to measure heat capacities—for example, the number of
joules necessary to raise the temperature of one mole of gas by one degree Kelvin.

Because of the ideal gas relation PV = n RT , we cannot raise the temperature
while keeping both the pressure and volume constant. Chemical reactions are com-
monly done under one of two limiting conditions: constant volume (for example, in a
steel container) or constant pressure (for example, in a balloon or in a piston which can
expand). The heat capacity depends on what is kept constant. Expanding a gas changes
the potential energy. Raising the temperature of gas inside a piston will push the piston
out, thus doing work on the surroundings, so only a portion of the added heat will be
converted into a temperature increase.

Equation 3.12, the work-energy theorem, can be converted into a more convenient
form for a gas in a piston in the geometry, as we showed in Equation 3.14:

U (r2) − U (r1) = −
r=r2∫

r=r1

(−Pext

∑
A) dr

=
∫

Pext

∑
(A dr) =

V2∫
V =V1

Pext dV

If the volume is held constant, the integral vanishes. The added energy required to
heat one mole of gas from temperature T1 to temperature T2 (q(T2) − q(T1)), and the
constant-volume molar heat capacity cv , are given by:

q(T2) − q(T1) = E(T2) − E(T1) = 3R

2
(T2 − T1);

cV =
(

dq

dT

)
V

= 3R

2
(7.25)

The subscripted V is there to remind us that the volume is assumed to remain constant.
If the pressure is instead held constant (at the external pressure), the work done from
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Equation 3.14 is P(V2 − V1), so the added energy becomes:

q(T2) − q(T1) = E(T2) − E(T1) + {P(V2 − V1)}
= 3R

2
(T2) − 3R

2
(T1) + {R(T2 − T1)} (7.26)

= 5R

2
(T2 − T1)

where the term in brackets is converted from pressure and volume to temperature using
the ideal gas law. Sometimes Equation 7.26 is written in a different form by defining
the enthalpy H = E + PV

q(T2) − q(T1) = E(T2) − E(T1) + {P(V2 − V1)}
= H(T2) − H(T1) = 5R

2
(T2 − T1) (7.27)

Thus the constant-pressure heat capacity cp is given by

cp =
(

dq

dT

)
q

=
(

d H

dT

)
p

= cv + R (7.28)

Equations 7.25 and 7.28 agree very well with experiments for monatomic gases. The
relation between cv and cp in Equation 7.28 also works for polyatomic gases, but calcu-
lating cv and cp requires a much more sophisticated treatment which explicitly includes
the vibrational energy levels. As noted in Chapter 5, for virtually all diatomic gases at
room temperature cv ≈ 5R/2.

� Speed of Sound
Another quantity which is closely related to the average molecular speed is the speed of
sound, which we will write as ssound. As noted in Chapter 3, sound waves are actually
waves of gas pressure (Figure 3.6)—the density of gas molecules is alternately slightly
higher or lower than the equilibrium value. This disturbance travels at a characteristic
speed which is clearly not very different from the average molecular speed, but getting
the precise numerical value requires a fairly sophisticated treatment. The answer turns
out to be

ssound =
√

γ kB T

m
(7.29)

where γ = cp/cv . From the discussion in the last section, γ = 5/3 for a monatomic
gas and γ ≈ 1.41 for a diatomic gas. The quantity γ also appears in some other equa-
tions for ideal gas properties, such as in the expression for adiabatic expansion (see
Problem 7-11).



162 The Kinetic Theory of Gases

In air, ssound is approximately 330 m/sec. A common lecture trick involves speaking
into a bag filled with a helium/oxygen mixture, which is breathable but raises the speed
of sound dramatically compared to air (essentially a nitrogen/oxygen mixture):

ssound(He)

ssound(N2)
≈ 2.9 (7.30)

Since the speed rises while your “voice box” remains the same size, the frequency ν =
ssound/λ of the sound disturbances you make goes up. As the sound exits the bag, it
creates a pressure wave in the air with the same characteristic frequency (if the sound
wave inside is hitting the wall of the bag 1000 times per second, the bag will vibrate a
little 1000 times per second), and hence you hear a higher pitched note.

7.3 ASSUMPTIONS OF THE KINETIC THEORY—A SECOND
LOOK

7.3.1 Fluctuations from Equilibrium Values

The kinetic theory relied on converting the momentum transfer from individual colli-
sions (which are very abrupt) into an average pressure. This will only be valid if the
pressure we observe is the average of many events on an everyday timescale—in which
case the fluctuations are small. This is a reasonable approximation, as we can illustrate
by an example which might reflect an attempt to measure these fluctuations.

For example, suppose we measure the pressure with a simple U-tube manometer
filled with mercury. Suppose the manometer is set up with a 1 cm diameter tube ex-
posed to 1 atm nitrogen at room temperature (298K) on one end, and exposed to vac-
uum on the other end (which of course will be approximately 760 mm higher). The
observed pressure can only change when the column of mercury has time to flow: the
device (and any other measuring device) will have a nonzero response time. A reason-
able estimate for the response time of a manometer might be 0.1 seconds, so the amount
the pressure will appear to fluctuate will depend on the number of collisions with the
top of the column in that time.

A pressure of 1 atm is approximately 105 Pa = 105 kg · m−1 · s−2 which is the force
exerted by the gas per unit area by definition (Equation 7.3). The area of the top of the
column is π × (0.005 m)2 = 7.85 × 10−5 m2 so the average force on the column from
the gas is

F = P · A = (105 kg · m−1 · s−2)(7.85 × 10−5 m2)

= 7.85 kg · m · s−2

which means that the amount of momentum which is transferred to the mercury column
in t = 0.1 second is F · t = 0.785 kg · m · s−1.
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The average collision generates a momentum transfer of 2 m
〈∣∣vy

∣∣〉 (Equation 7.7)
which for N2 is roughly

2

(
0.028 kg · mol−1

6.02 × 1023 molecules · mol−1

)
(297 m · s−1) = 2.76 × 10−23 kg · m · s−1

So, in order to maintain this pressure, there must be (0.785 kg · m · s−1)/(2.76 ×
10−23 kg · m · s−1) = 2.8 × 1022 collisions in 0.1 second.

Finally, the rule of thumb given in Chapter 4 is that fluctuations in random processes
scale roughly as the square root of the number of events. So the number of collisions
will fluctuate by about

√
2.8 × 1022 ≈ 1011, and the pressure will fluctuate by about 1

part in 1011—in other words, it will stay the same in the first ten or eleven digits of its
value!

Realistically, fluctuations are larger than this because the atmosphere is not at equi-
librium; both air currents and temperature variations will generate larger effects. But
these examples show that the macroscopic average effect (the pressure) can be quite
uniform, even though each molecule provides its contribution to the pressure only in
the instant it collides with the walls, and thus the individual contributions are not at all
uniform. Statistical averaging has dramatically simplified the apparent behavior.

7.3.2 Thermal Conductivity
Another assumption we made—that all collisions with the wall are elastic and transfer
no energy because of the large mass difference—may strike you as quite strange if you
think about it carefully. Heat transfer between gases and solids is readily observed. The
air in your refrigerator will cool down food; the air in your oven will heat it.

Gas molecules do not actually bounce off the wall of a container (or your skin) as if
it were a uniform massive structure, the way we sketched it in Figure 7.2: they collide
with individual atoms at the wall surface, which are also moving because of vibrations.
If the temperature of the wall and the gas are the same, on average the gas kinetic energy
is as likely to increase or decrease as a result of any single collision. Thus a more accu-
rate statement of the assumption required to derive the ideal gas law is that the walls and
gas molecules are at the same temperature, so there is no average energy flow between
the two.

If two plates with area a and separation d are maintained at temperatures T1 and T2,
for a time t , the average heat flow q/t is given by

q/t = K (T1 − T2)a/d (7.31)

K is called the thermal conductivity, which for air at STP is .023 W/(m · K). One
way to reduce this energy flow is to decrease the pressure. Cryogenic liquids (such as
liquid nitrogen, which boils at 77K) are commonly stored in Dewar flasks, which are
double-walled containers with an evacuated region between the walls.
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7.3.3 Collisions and Intermolecular Interactions
Very little had to be assumed to get to Equation 7.18—the most significant assumption
was that the energy of the molecules could be written entirely as kinetic energy, with
no potential energy. Thus we effectively pictured the molecules as infinitesimally small
“hard spheres,” which do not take up any space. This let us scale up Equation 7.10 by
asserting that N molecules exert N times the pressure.

In reality, molecules each occupy some space, so the “empty” volume of the con-
tainer decreases as the concentration N/V increases. In addition, there is generally
some attraction even at distances substantially larger than the nominal diameter of the
molecules, and the repulsive part is somewhat “soft” so that collisions are not instan-
taneous. The exact form of this interaction must be calculated by quantum mechan-
ics, and it depends on a number of atomic and molecular properties as discussed in
Chapter 3. For neutral, nonpolar molecules, a convenient approximate potential is the
Lennard-Jones 6-12 potential, discussed in Chapter 3; Table 3.5 listed parameters for
some common atoms and molecules.

U (r) = 4ε
((σ

r

)12
−

(σ

r

)6
)

(7.32)

The most important difference between this potential and the hard-sphere potential
is the addition of an attractive term at long distances. Thus molecules could stick to-
gether, just like you stick near the surface of the Earth. You remain on the Earth because
the depth of the well generated by the Earth’s gravitational field is larger than the ki-
netic energy you can achieve by jumping (see Problem 3-5). We refer to loosely bound
pairs of molecules as complexes. For such a complex to survive, the total energy (ki-
netic plus potential) must be less than the potential energy as r → ∞, just as it is for
you on Earth.

We have defined the potential energy such that U (r) → 0 as r → ∞. Thus, with
this definition of the zero of potential energy, forming a complex requires the total en-

U(r)

0

r 0 r

r

rmin

U(r)

FIGURE 7.7 � Comparison of a hard-sphere potential (dashed line) with a Lennard-Jones 6–12
potential (solid line).
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U(r)
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Kinetic energy

Total energy

r
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r

FIGURE 7.8 � As the separation between two interacting molecules decreases, some of the total
energy is converted into kinetic energy (in the region where U (r) < 0) and the molecules
accelerate. Once they reach the point where U (r) equals the total energy, the molecules must be
motionless. Then they bounce back. If the total energy is positive, the two molecules cannot remain
trapped in the potential well.

ergy to be negative. However, conservation of energy (as discussed in Section 3.1) can
be used to prove that two molecules cannot stick after a collision. Figure 7.9 illustrates
the case of two molecules with equal mass m viewed in a frame of reference moving
with a velocity such that the total momentum �p = m�v1 + m�v2 = 0 (so �v1 = −�v2),
but the result is quite general. Long before the collision, when the two molecules are
separated by a large distance, the potential, kinetic, and total energies are:

U ≈ 0 (because U (r) → 0 as r → ∞)

K = m |�v1|2
2

+ m |�v2|2
2

(7.33)

E = K + U ≈ m |�v1|2
2

+ m |�v2|2
2

> 0

As the molecules come closer U (r) goes negative, and the kinetic energy must then
increase to conserve the total energy. The molecules move towards one another more
rapidly, but the total energy (kinetic plus potential) will be positive, hence sufficient at
all times for the two molecules to eventually escape the attractive well.

Thus the only way to make a complex is to transfer some of the internal energy to
another system. In practice, this means three or more molecules have to all be close
enough to interact at the same time. The mean distance between molecules is approxi-
mately (V/N )1/3 (the quantity V/N is the amount of space available for each molecule,
and the cube root gives us an average dimension of this space). At STP 6.02 × 1023

gas molecules occupy ≈ 22.4 L (.0224 m3) so (V/N )1/3 is 3.7 nm—on the order of 10
molecular diameters. This is expected because the density of a gas at STP is typically a
factor of 103 less than the density of a liquid or solid. So three-body collisions are rare.
In addition, if the “well depth” V (rmin) is not much greater than the average kinetic en-
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ergy (3kB T/2) molecules will not stick for long; even if two molecules combine, the
next collision will probably blow the complex apart. At room temperature (300K), the
average kinetic energy is 2 × 10−21 J, which is comparable to the well depth for all of
the molecules listed in Table 3.5.

Nevertheless, the existence of an attractive part to the potential has important con-
sequences, particularly at low temperatures or high densities. It prevents us from re-
maining in the gaseous state all the way down to absolute zero, because it permits con-
densation if the temperature is low enough. For an ideal gas, the energy E = 3kB T/2 is
independent of volume. For a real gas, since increasing the volume increases the aver-
age intermolecular distance (and thus changes the average potential energy), the inter-
nal energy actually depends on the volume as well as the temperature. This can permit
cooling by expansion. To take an extreme case, a carbon dioxide fire extinguisher at
room temperature sprays out CO2 at its freezing point (−78◦C)—which in some cases
does more damage to equipment than the fire it is intended to extinguish. Air condi-
tioners also work by expanding gas into a low pressure region (which becomes colder if
the conditions and the gas are chosen correctly) and then recompressing the gas (which
takes work, hence heats it) in a second region which is outside of the zone to be cooled.

� Mean Free Path and Mean Time Between Collisions
The ideal gas relation was derived under the assumption that each molecule travels
undisturbed from wall to wall, which is certainly not true at common pressures and
temperatures. To see this, we need to get some estimate of the mean free path λ (the
mean distance a molecule travels before it undergoes a collision), and the mean time
between collisions.

The mean separation between molecules is just (V/N )1/3 as noted in the last sec-
tion. However, the mean free path is not the same as the mean separation, because the
molecule probably is not moving directly towards its nearest neighbor. λ depends on
the size of the molecules as well. If we go back to this idea of molecules as hard spheres,
big spheres are big targets and undergo collisions more often. A rigorous calculation
requires some complicated algebra, but it is not hard to see how λ depends on phys-
ical parameters such as pressure or temperature. Calculating the expected functional
form of some expression is often much easier than getting exact numerical values, and
it provides a crucial “reality check.”

If you double the concentration N/V (= P/kB T ), on average you expect to go
only half as far before you encounter another molecule. We thus predict that λ is pro-
portional to V/N = kB T/P . If you double the “size of the target” (expressed as the
collisional cross-section σ 2, where σ is the size in the hard-sphere potential), on av-
erage you will also only go half as far before you undergo a collision. Thus we also
predict that λ is inversely proportional to σ 2.

These predictions are correct. The precise expression turns out to be:

λ = (3.1 × 107 pm3 · atm · K−1)
T

σ 2 P
(7.34)



Assumptions of the Kinetic Theory—A Second Look 167

for hard spheres. The expression is more complicated for a Lennard-Jones potential,
but the functional dependences are the same. As an example, for N2 we get λ =
6.6 × 104 pm at 293K and 1 atm pressure, which is substantially larger than the mean
separation.

We also sometimes evaluate the “mean time between collisions” τ , which is the

mean free path λ divided by the mean speed
(

s2
)1/2

. The reciprocal of τ gives the

number of collisions per second, called Z :

τ = λ(
s2

)1/2 ; Z = τ−1 =
(

s2
)1/2

λ
(7.35)

For N2 at 1 atm pressure and 293K, τ ≈ 100 ps.

� Diffusion
Intermolecular collisions do not cause large deviations from the ideal gas law at STP
for molecules such as N2 or He, which are well above their boiling points, but they do
dramatically decrease the average distance molecules travel to a number which is far
less than would be predicted from the average molecular speed. Collisions randomize
the velocity vector many times in the nominal round trip time, leading to diffusional
effects as discussed in Chapter 4. If all of the molecules start at time t = 0 at the
position x = 0, the concentration distribution C(x, t) at later times is a Gaussian:

C(x, t) ∝ exp(−x2/{4Dt}) (7.36)

where D is called the diffusion constant (technically the self diffusion constant, be-
cause we assumed all molecules are identical) and appears in many other problems as
well. The functional dependence of D on pressure, temperature, mass, and molecular
size can also be predicted by some simple substitutions. Let us go back to the analogy
of the “coin toss” model for a random process, which we first made in Section 4.3. The
number of “tosses” per second is analogous to the number of times the velocity gets
randomized per second (the number of collisions per second, Z ); the distance traveled
between collisions, λ, is analogous to the length of the step we took after each toss in
the earlier problem.

Doubling the step length λ would obviously double the distance you end up from
the starting point (if the number of random events is constant) so

〈
x2

〉1/2
is proportional

to λ. Doubling the number of random events (if the step length is constant) would raise
the expected deviation by

√
2, because of the nature of random processes as explained

in Section 4.2, so
〈
x2

〉1/2
is also proportional to

√
Z . So we would predict〈

x2
〉1/2 ∝ λ

√
Z ; D ∝ λ2 Z (7.37)
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We can combine the relations
〈
v2

x

〉1/2 = √
kT/m, λ ∝ T/(σ 2 P) (Equation 7.34)

and λZ = (
s2

)1/2 ∝ √
T/m (Equation 7.35) to give

D ∝ λ2 Z = λ(λZ) ∝ {
T/(σ 2 P)

} {√
T/m

}
=

{
T 3/2

Pσ 2
√

m

}
(7.38)

A detailed derivation would give the full expression, which is

D = (2/3)(kB/π)3/2 (T )3/2

Pσ 2
√

m
(7.39)

in accord with our predictions.

� Nonideal Gas Laws
The results of the last section showed that, for any macroscopic container at normal
pressures, it is not reasonable to conclude that the molecules proceed from wall to wall
without interruption. However, if the interaction potential energy between molecules
at their mean separation is small compared to the kinetic energy, the speed distribution
and the average concentration of gas molecules is about the same everywhere in the
container. In this limit, the only real effect of collisions is the “excluded volume” oc-
cupied by the molecule, which effectively shrinks the size of the container. At 1 atm,
only about 1/1000 of the space is occupied (remember the density ratio between gas
and liquid), so each additional molecule sees only 99.9% of the container as free space.
On the other hand, if the attractive part of the interaction potential cannot be totally ne-
glected, the molecules which are very near the wall will be pulled slightly away from
the wall by the other molecules. This tends to decrease the pressure.

Corrections to the ideal gas law can be introduced in many different ways. One
well-known form is the van der Waals equation for a nonideal gas:(

P + a

(V/n)2

) (
V

n
− b

)
= RT (7.40)

We can compare a quite nearly ideal gas (He, a = 0.034 L2· atm/mole2, b =
.0237 L/mole with a much less ideal gas (CO2, a = 3.59 L2· atm/mole2, b =
.0427 L/mole). The b term reflects the excluded volume and does not change by much.
The a term, reflecting intermolecular attractions, can change dramatically as the gas is
changed.

The ideal gas law implies that at STP V/n is 22.4141 L/mole, so the b term leads
to a correction of about 0.1% at STP. The a term at STP leads to a correction of about
1% for He. In fact, the experimental volume of one mole of He at STP is 22.434 L. The
volume of CO2 is 22.260 L, instead of the “ideal gas” value of 22.41410 L.

Another modified form of the ideal gas law is the virial expansion:

PV

n RT
= 1 + B(T )

( n

V

)
+ · · · (7.41)
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This expansion in principle also includes terms proportional to (n/V )2 and all
higher powers of (n/V ). However, when the density n/V is much smaller than the
density of a solid or liquid, so that most of the container is empty space, this expansion
converges rapidly and the higher terms can be ignored. B(T ) is called the second virial
coefficient, and is a function of temperature.

The virial expansion has a far more solid theoretical justification than does the van
der Waals equation. It can be shown quite generally that:

B(T ) = −2π NAvogadro

r=θ∫
r=0

(e−U (r)/kB T − 1)r2 dr (7.42)

If we completely ignore intermolecular interactions, U (r) ≈ 0, e−U (r)/kB T − 1 = 0,
and hence B(T ) = 0. For a hard sphere potential, when r > σ , U (r) = 0, so again
e−U (r)/kB T − 1 ≈ 0; but when r < σ , U (r) is infinite and e−U (r)/kB T = 0. Thus for
hard spheres we can reduce Equation 7.42 to

B(T ) = −2π NAvogadro

r=σ∫
r=0

(−1)r2 dr = 2π NAvogadro
σ 3

3
(7.43)

If the distance of closest approach between two molecules is σ , the radius of each
molecule must be σ/2, and the volume of each molecule would then be 4π(σ/2)3/3 =
πσ 3/6. Thus B is four times the excluded volume, the part of the container occupied
by the gas molecules themselves. The pressure is always higher than the ideal gas law
would predict, and independent of temperature.

The integral in Equation 7.41 must be calculated by computer for a Lennard-Jones
potential (Figure 7.9). This curve agrees remarkably well with experimentally mea-
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FIGURE 7.9 � B(T ) for a Lennard-Jones 6-12 potential. B* is the ratio between B(T ∗) and the
hard-sphere value 2π NAvogadroσ

3/3. T ∗ is the ratio of the thermal energy kB T to the well depth ε.
B* and T * make Figure 7.10 a “universal curve,” valid for any gas. This curve agrees well with
experiments on many molecules.
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sured values of B(T ) for a large number of gases. As a result, second virial coefficients
can be used to measure ε and σ . Note that B(T ) is negative at low temperatures, pos-
itive at high temperatures, and levels off as the temperature gets extremely large. This
is expected because the major effect of the attractive part of the potential—the acceler-
ation of molecules as they grow closer—becomes less significant as the relative initial
velocity increases, and this velocity is proportional to

√
T .

The temperature at which B(T ) = 0 is the temperature at which a gas behaves most
nearly like an ideal gas, and is called the Boyle temperature TB . From Figure 7.9 we
can see that

TB ≈ 3.4ε/kB (7.44)

Finally, we should note that the a and b coefficients in the van der Waals equation are
related to B(T ) in the virial expansion. In the limit that b � V/n, it can be shown with
some algebraic manipulation (Problem 7-7) that

B(T ) ≈ b − a

RT
(7.45)

7.4 SUMMARY
The kinetic theory of gases, coupled with the Boltzmann distribution, lets us predict
a wide variety of the macroscopic properties of gases, and the agreement with experi-
ment is excellent—even though we are making extremely crude approximations to the
microscopic structure of the individual molecules. Molecules are much more compli-
cated than tiny billiard balls, yet at standard temperature and pressure, the answers we
get from the simplest theories are good to within a few percent.

PROBLEMS �

7-1.� Solve Equations 7.5 and 7.6 algebraically to find the momentum transferred in the
collision between a 1 kg wall and helium atom moving at 1000 m · s−1.

7-2. Assume that a methane molecule hits a surface with impact velocity 250 m · s−1

(perpendicular to the surface). Assume further that the impact lasts for approx-
imately 1 ps, and that the force is applied over an area of approximately 1 nm2.
Estimate the peak pressure at the point of impact.

7-3.� Suppose the density of a gas is kept constant, but the temperature is doubled. Pre-
dict what would happen to (a) the mean free path λ; (b) the mean time between
collisions τ ; (c) the diffusion constant D. If you can, use your intuition about the
physical process, rather than substitution into equations derived in this chapter.
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7-4. According to the ideal gas law, doubling the temperature while keeping the den-
sity N/V constant (for example, keeping the gas in a rigid container) doubles the
pressure.

(a) For a nonideal gas (use the van der Waals equation), when the temperature
is doubled at constant density, does the pressure exactly double? If not, is the in-
crease in pressure larger or smaller than doubling?

(b) Illustrate the result in part (a) by calculating the pressure of one mole of helium
in a 22.4 L container at 273K and 546K.

7-5.� Use the three-dimensional speed distribution to show that smost probable = √
2kT/m

and that 〈s〉 = √
8kT/πm.

7-6. Assume that you have a sample of uranium hexafluoride with the natural abun-
dance (0.7%) of 235U, and that you want to use gaseous effusion to separate the
isotopes.

(a) What will be the concentration of 235U in the gas after it effuses from the
chamber?

(b) How many times must you repeat this process to produce 90% 235U?

7-7.� We noted earlier that one mole of carbon dioxide, at STP (1 atm and 273K), oc-
cupies 22.260 L, instead of the “ideal gas” value of 22.41410 L. Use this result to
calculate the second virial coefficient B(273K) for carbon dioxide.

7-8. The diffusion constant for hydrogen at STP was given in Chapter 4 (D = 1.5 ×
10−4 m2·s−1). Use this information to predict:

(a) the diffusion constant at 0.1 atm and 273K

(b) the hard-sphere cross section σ

(c) the mean free path between collisions at STP

(d) the mean time between collisions

7-9. Repeat the calculations in Problem 7-8 for carbon dioxide (D = 1.0 ×
10−5 m2 · s−1).

7-10. If we assume that (V/n) 
 b, then the term ((V/n) − b) in the van der Waals
equation can be written as

V

n
− b = V

n

(
1 − bn

V

)
≈

V
n

1 + bn
V

using the relation 1 − x ≈ 1
1+x for x � 1, Equation 1.41. Use this result to prove

Equation 7.34.

7-11. Would your voice sound higher or lower in an 80% argon/20% oxygen mixture
than in dry air (approximated as 80% nitrogen/20% oxygen)?
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7-12. We went from the one-dimensional velocity distribution to the three-dimensional
speed distribution by adding in an extra v2 factor to account for the added degen-
eracy in “velocity space.” The one-dimensional diffusion equation 7.36 has a form
which is mathematically very similar to the one-dimensional velocity distribution
(also a Gaussian). By analogy with the speed distribution, find an explicit equa-

tion for the rms displacement in any direction
(

r2
)1/2

. (You can solve this without

integrating!)

7-13. Suppose a gas in a piston expands slowly from pressure P1 and volume V1 to pres-
sure P2 and volume V2, in the process doing work against the atmosphere. In many
cases we can assume the expansion is adiabatic, meaning that no heat enters the
gas during the expansion. If the heat capacity is independent of temperature, it
can be shown that P1V γ

1 = P2V γ

2 , where the ratio γ = cp/cv is the same quantity
encountered in the speed-of-sound expression, Equation 7.29.

(a) If V2 > V1, does the gas temperature increase or decrease in an adiabatic ex-
pansion? Why?

(b) Suppose P1 = 2 atm, V1 = 10 L, the initial temperature is 273K, and the gas
is adiabatically expanded until it reaches 1 atm. What will the final volume and
temperature be if the gas is helium? What will they be is the gas is nitrogen?

7-14. Suppose we have a beam of light at λ = 248 nm (which turns out to be a convenient
wavelength for a high-power laser). This laser pulse has 1 J of energy, lasts 10−12 s,
and can be focuses to a spot with diameter 10 μm.
Assume this laser pulse is completely absorbed by a black wall. Use the relation
E = cp to calculate the momentum it transfers to the wall. By analogy with the
calculations we did to derive the ideal gas law, calculate the “radiation pressure”
the pulse exerts on the 10 μm spot while it is on.



The Interaction of Radiation
with Matter

If you want to understand function, study structure.

Francis H. C. Crick (1916–)
Co-discoverer of the double

helix structure of DNA.

Controlled radiation sources provide the most important modern tools for studying
molecular structure and chemical dynamics. Virtually everything we know about the
ways atoms interact has been deduced or confirmed by irradiation at a wide variety of
wavelengths, from radiowaves to X-rays. In fact, protein and DNA structural deter-
minations were the most important driving force in creating the modern chemical and
molecular basis for the biological sciences.

Two important applications of radiation to determine molecular structure—X-ray
crystallography and magnetic resonance—were discussed in Chapters 3 and 5. In this
chapter we will discuss a variety of other techniques. Microwave absorption usually
forces molecules to rotate more rapidly, and the frequencies of these absorptions pro-
vide a direct measure of bond distances. Individual bonds in a molecule can vibrate, as
discussed classically in Chapter 3. Here we will do the quantum description, which ex-
plains why the greenhouse effect, which overheats the atmosphere of Venus and may
be starting to affect the Earth’s climate, is a direct result of infrared radiation inducing
vibrations in molecules such as carbon dioxide.

Molecular absorption of visible or ultraviolet light usually excites electrons into
higher energy states. Chemicals used as dyes absorb only a portion of the visible spec-
trum, and thus appear colored. Many of these dyes also generate spontaneous emission
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after their absorption, giving off a photon with somewhat lower energy. In fact, laun-
dry detergents usually contain dyes that absorb ultraviolet light and glow in the visible;
such dyes make white clothes look brighter in sunlight. Color comes from many other
effects as well, as we discuss in Section 8.3. For example, the atmosphere transmits
most of the visible radiation from the Sun, but scatters enough light to color the sky
blue. The primary constituents of the atmosphere (oxygen and nitrogen) also transmit
ultraviolet photons that are energetic enough to damage cells; ozone depletion in the
upper atmosphere is dangerous because ozone absorbs some of this light.

Absorption is an intuitively reasonable process. If you have a large number of pho-
tons with the right energy, it makes sense that molecules can absorb some of those pho-
tons, and in the process move from a lower state L to an excited state U , in accord with
Bohr’s relation

h̄ω = (EU − EL) (8.1)

The reverse of this process—molecules in an excited state dropping down to the ground
state, and in the process amplifying a light field—is called stimulated emission and is
the critical process involved in making a laser. Einstein predicted the existence of stim-
ulated emission in 1916, but the first lasers were not built until 1960. The reason for
the difficulty is Boltzmann’s distribution (Chapter 4), which implies that under ordinary
circumstances (e.g., at equilibrium) the lower state is always more populated than the
higher state. So ordinarily, absorption is much more prominent than stimulated emis-
sion. Nonetheless, today there are dozens of different types of lasers, with wavelengths
ranging from the microwave (“masers”) all the way up to the X-ray region.

As discussed in Chapter 3, light and other radiation sources produce electromagnetic
fields (electric and magnetic fields along perpendicular axes, oscillating between pos-
itive and negative values). In the next few sections, we will only consider the electric
field, and we will begin by considering a very simple system: a hydrogen atom in its
ground (1s) state. A constant electric field would exert a force on the electron, and an
oppositely directed force on the proton (Figure 8.1). Because of the great mass differ-
ence, the electron is accelerated far more than is the proton. The net effect is to produce
a charge distribution with the center of mass of the electron separated from the proton
by an amount δ (the electric field induces a dipole moment).

Now imagine that the electric field were instantaneously turned off. The electronic
cloud is distorted from the lowest energy state δ = 0, so there will be a restoring force.
It would be difficult to calculate the exact form of the potential energy, but we know
that δ = 0 gives the minimum energy, so the derivative vanishes there (U ′(0) = 0).
We can do a Taylor expansion about the δ = 0 potential energy minimum as we did in
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� Left: a hydrogen atom in the ground 1s state. The center of the electronic cloud is
on top of the nucleus, so there is no net dipole moment (average charge separation). Center: an
electric field would push the electron and proton in opposite directions, creating a dipole moment
proportional to the distance δ between the proton and the center of the electronic charge distribution.
Right: if the electric field were then removed, the value of δ would oscillate with time.

Chapter 3. This predicts that for a small enough distortion, the potential energy function
looks essentially like that of a harmonic oscillator:

U (δ) ≈ U (0) + U ′′(0)
δ2

2

Thus the electron cloud will oscillate back and forth, just like a mass on a spring, or a
child on a swing.

Suppose we want to make a large displacement. One way to do this would be to
apply an electric field which is strong enough to compete with Coulombic attraction
over the 50 pm radius of a hydrogen atom. Unfortunately, this corresponds to an electric
field strength of about 1011 V · m−1, which is only achievable with extremely large
laser systems. A simpler approach would be to take advantage of resonance. Driving
the atom with an electromagnetic field which oscillates at the same frequency as the
perturbed electron cloud will make the displacement grow larger with each cycle—just
as periodically pushing a child on a swing eventually builds up a large motion with little
effort.

To find the frequency of oscillation for the perturbed electron cloud, recall that any
hydrogen wavefunction can be written as some superposition of the stationary states.
The stationary states by themselves have no dipole moment, since each of the hydrogen
stationary states is centered at the nucleus. However, combinations of the stationary
states can have a dipole moment. In particular, Figure 6.8 from the discussion of hybrid
orbitals (Section 6.4.3) shows that combinations of s and p orbitals produce a charge
separation (Figure 8.2). In fact, starting from an s state, the only way to produce a
charge separation in the z-direction is by adding in a pz state. So the perturbed orbital
is a combination of 1s with a variety of pz states.

As discussed in Section 6.3, a superposition of two states gives a probability distri-
bution which oscillates at frequency ω = (EU − EL)/h̄, and this is the same frequency
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1s
orbital

1s 2pz
( 1)

2pz
orbital

� Both 1s and 2p orbitals give symmetric probability distributions. Combining the
two into a superposition state breaks this symmetry, because the 2p orbital constructively interferes
with 1s in one lobe and destructively interferes in the other.

as a photon that matches the energy difference between the two states (Equation 8.1).
Every time one photon is absorbed, one atom moves to the excited state. We can ex-
press this process by the equation

Nh̄ω + L → (N − 1)h̄ω + U (8.2)

which says that N photons (each with energy h̄ω) interact with one molecule, which is
raised from L to U as the light weakens by one photon.

A light source with its electric field in the z-direction (z-polarized light) will excite hy-
drogen atoms from the ground 1s state (n = 1, l = 0, ml = 0) to one of the states npz

(n arbitrary, l = 1, ml = 0) if the energy of the photons matches the energy differ-
ence from 1s to the desired state. The frequencies in the absorption spectrum reflect
the energy differences in these allowed transitions. Starting from 1s, a single photon
of z-polarized light will essentially never cause absorption to 2s, or 3d, or 110g, or any
state other than npz .

This is the first example we will encounter of selection rules for allowed transitions.
Physically, the selection rules arise because the electric field needs a dipole moment in
order to interact with the atom, and only these specific changes in the quantum num-
bers create a dipole moment. More generally, the selection rules for absorption in a
hydrogen atom are

Absorption,
z-polarized radiation

: 	n > 0, 	l = ±1, 	ml = 0, 	ms = 0 (8.3)

There is nothing special about the choice of the z-axis for a hydrogen atom. If we
had used x-polarized radiation, we would have excited npx states; y-polarized radi-
ation would have excited npy states. Either of these are combinations of ml = +1 and
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z  polarized light
x  or y  polarized light

n  2

n = 1

0
ml

l

0 1 0 1 1 02 1 2 1 023 1 2 3
Dissociation
energy

1 2 3

n  3
n  4

� Allowed absorptions from the 1s state for hydrogen (levels with n > 4 omitted
for clarity) which satisfy the selection rules presented in Equations 8.3 and 8.4.

ml = −1. So with unpolarized radiation (field coming from all directions), the selec-
tion rules become

Absorption,
unpolarized
radiation

: 	n > 0, 	l = ±1, 	ml = 0, ±1, 	ms = 0 (8.4)

If we start with excited molecules or atoms, we can observe spontaneous emission—
generation of light as the atom or molecule drops down to a lower energy level. Equa-
tion 8.1 also dictates the possible frequencies in the emission spectrum. Spontaneous
emission in general gives radiation in all directions, and the selection rules are almost
the same as in Equation 8.4. The only difference is that we must have 	n < 0 for the
final state to be lower in energy than the initial state.

Spontaneous
emission

: 	n < 0, 	l = ±1, 	ml = 0, ±1, 	ms = 0 (8.5)

A hydrogen atom with its electron in a 2p orbital will decay back down to the 1s
orbitral in approximately 1 nanosecond, giving off a photon with λ = 121 nm (deter-
mined by the energy difference between the two states). On the other hand, an electron
in a 2s state is “stuck” (we call 2s a metastable level), since emission to the only lower
state (1s) is forbidden by the 	l = ±1 selection rule. On average, it takes about 100 ms
for the electron to get back down to the ground state from 2s.
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In spontaneous emission the emitted light goes in a wide variety of directions. If two
different atoms start from the same energy level and end up in the same level, they each
produce photons at the same frequency; however, there is generally no correlation be-
tween the directions of these photons, or the phases of the two electric fields.

If a large number of photons are initially present at the right frequency, a fundamen-
tally different process can be observed—stimulated emission. Here the existing light
can “force down” additional molecules out of the excited state, and the newly created
photons reinforce the existing light. Thus the material amplifies the light, which leads
to the acronym “laser”—for “light amplification by stimulated emission of radiation.”
Modern laser applications range all the way from eye surgery to optical communica-
tions to laser fusion.

At high intensities, stimulated emission can be much stronger than spontaneous
emission, and the important competition is between absorption and stimulated emis-
sion (Figure 8.4). If the population of the lower state is greater than the population of
the upper state, more photons are absorbed than emitted, and the energy of the light
beam decreases. If the population of the upper state is greater (which we call a popu-
lation inversion), the energy of the light beam increases.

Hydrogen and other one-electron atoms can be made into lasers because the state
lifetimes vary so greatly. For example, an X-ray laser can be built by blasting carbon
rods with an intense field, stripping off all the electrons. When the first electrons recom-
bine with the nuclei, one-electron C5+ atoms are created in a wide variety of stationary
states. Any population in the 2p states rapidly decays to the ground state; population
in 3s or 3d decays more slowly. Thus the 3s → 2p and 3d → 2p transitions develop
an inverted population distribution, and lase at the energy difference between the two
states (λ = 13.6 nm).

Upper
state

Lower
state

Light
wave

� If more population is in the lower state than the upper state (left), absorption is
stronger than stimulated emission, and radiation is absorbed from an external field. If the upper
state is more populated (right), which never happens at equilibrium because of the Boltzmann
distribution, an external field will be amplified. The situation on the right will create a laser.
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This section extends the basic spectroscopic concepts we developed in Section 8.1 from
hydrogen atoms to molecules. As we noted in Chapter 6, we cannot completely solve
Schrödinger’s equations for anything more complicated than a hydrogen atom, except
by computer. However, many properties of the spectra of the simplest molecules (di-
atomic molecules) are quite simple and very useful.

The classical description in Chapter 2 separated molecular motions into transla-
tions, rotations, and vibrations. Each of these motions is treated differently in a quan-
tum mechanical picture. In addition, electrons in molecules can be moved to higher
energy levels, just as electrons in a hydrogen atom had multiple energy levels. We will
treat each of these cases in turn.

As we showed in Section 6.2, the stationary states for a particle in a box have specific
values for kinetic (translational) energy. For a one-dimensional box, we showed that
En = n2h2/8mL2. For a three-dimensional box (side length L , volume V = L3)
each of the three degrees of freedom (motion in the x-, y-, and z-directions) has its
own quantum number, usually called nx , ny , and nz respectively. The energy is given
by

E(nx , ny, nz) = (n2
x + n2

y + n2
z )h

2

8mL2
= (n2

x + n2
y + n2

z )/h2

8mV 2/3
(8.6)

For a macroscopic box (say L = 0.1 m) and realistic molecular masses, the separation
between these levels is far less than kB T . As a result, the distribution of energy levels
appears virtually continuous, and quantum corrections to (for example) the ideal gas
law are generally extremely small. However, it is possible to use Equation 8.6 to derive
the ideal gas law from quantum mechanics instead of using the kinetic theory of gases
(see Problem 8-10).

If a molecule rotates, it must have angular momentum. But one of the most important
results of Chapter 6 was the observation that angular momentum is quantized. For a
hydrogen atom, we showed that the allowed orbitals satisfied the conditions∣∣∣ �L∣∣∣2

= h̄2l(l + 1); l = 0, 1, 2, . . . (n − 1)

Lz = h̄ml , ml = −l, −l + 1, . . . l − 1, l

This reflects the orbital motion of the electron around the nucleus.
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For a diatomic molecule, the orbital motion of the two nuclei about each other (the
rotational motion) satisfies exactly the same equations, except that the upper limit im-
posed on l by the principal quantum number n does not apply. By convention, we write
the angular momentum of a molecule as J , to distinguish it from the atomic angular
momentum L: ∣∣∣ �J

∣∣∣2
= h̄2 j ( j + 1); j = 0, 1, 2, . . .

Jz = h̄m j ; m j = − j, − j + 1, . . . j − 1, j (8.7)

Furthermore, the wavefunction describing the bond direction for quantum numbers j
and m j is identical to the angular portion of the hydrogen orbitals for quantum numbers
l and ml . So the ground state j = m j = 0 is spherically symmetric, just like an s
orbital; the j = 1 states look like p orbitals, and so on.

We showed in Chapter 6 that for a classical orbit E =
∣∣∣ �J

∣∣∣2
/2I , where I = μr2

and μ = m1m2/(m1+m2) are the moment of inertia and the reduced mass respectively.
Combining these relations with Equation 8.7 gives

E = h2 j ( j + 1)

2μr2
; μ = m1m2

m1 + m2
(8.8)

Notice that the lowest energy state j = 0 has E = 0, but it does not correspond
to a bond which is merely pointing in one direction in space; just like an s orbital, it
is simultaneously pointing in all directions. This is yet another manifestation of the
Uncertainty Principle. If a bond is known to point in one direction, the positional un-
certainty perpendicular to the bond direction is zero, and the momentum uncertainty is
infinite!

Any molecule with a permanent electric dipole moment can interact with an elec-
tromagnetic field and increase its rotational energy by absorbing photons. Measuring
the separation between rotational levels (for example, by applying a microwave field
which can cause transitions between states with different values of j) let us measure
the bond length. The selection rule is 	 j = +1—the rotational quantum number can
only increase by one. So the allowed transition energies are

E( j = 1) − E( j = 0) = h̄2

μr2

E( j = 2) − E( j = 1) = 2h̄2

μr2
(8.9)

E( j = 3) − E( j = 2) = 3h̄2

μr2

and so forth.
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Rotational transitions are found in the microwave region of the electromagnetic
spectrum. For example, 12C16O absorbs microwave radiation at ν = 115.27 GHz
and at multiples of this frequency, which corresponds to an absorbed photon energy
of E = hν = 7.6380 × 10−23 J, and a wavelength of λ = c/ν = .0026 m. Since the
masses of the different isotopes are known to high accuracy, we can use this number
to determine the bond length. The reduced mass μ for 12C16O is 1.1385 × 10−26 kg
(see Section 3.5). The energy difference between the two lowest states (h̄2/μr2 from
Equation 8.9 above) then becomes

7.6380 × 10−23 J = (1.05457 × 10−34 J · s)2

(1.1385 × 10−26 kg)r2

which gives r = 112.8 pm as the bond length in 12C16O. Different isotopes of carbon
or oxygen will give the same bond length, but the frequency of the absorbed radiation
changes because μ changes (Problem 8-11).

For historical reasons, the energy differences between rotational levels are usually
characterized by the quantity ν̃ = E/hc, with c expressed in centimeters per second
(c = 2.99793238 × 1010 cm · s−1). So most textbooks will write:

ν̃ = E

hc
= h̄ j ( j + 1)

8πcμr2
= B j ( j + 1); B = h̄/8πcμr2 (8.10)

Both ν̃ and B have units of (1/cm). You should verify that B for 12C16O is 1.9225 cm−1,
and that ν̃ for the lowest frequency transition in 12C16O is 3.845 cm−1. For light, ν̃ =
1/λ, the reciprocal of the wavelength (λ = 0.26 cm = .0026 m as described above).
ν̃ = 1 cm−1 corresponds to a wavelength of 1 cm, or a frequency of 29.979 GHz.

For most molecules, the energies of the lowest rotational states are substantially
less than kB T at room temperature, so the Boltzmann distribution implies that many
rotational levels are populated (Problem 8-6). In fact, since states with different values
of m j are degenerate, the ground state j = 0 is only the most populated state at very
low temperatures. The relative population of different levels is given by

N ( j)

N ( j = 0)
= (2 j + 1)e−hcB j ( j+1)/kB T (8.11)

where the (2 j + 1) factor arises because each value of j gives (2 j + 1) different m j

states with the same energy. A convenient quantity to remember is the value of kB T/hc
at room temperature (300K), which is 208 cm−1. Thus for CO at room temperature

N ( j = 1)

N ( j = 0)
= 3e−2B/(kB T/hc) = 3e−2×1.9225/208 = 2.94

This kind of microwave spectroscopy is the best technique available for determin-
ing the structure of small molecules in the gas phase. Microwave frequencies can be
measured with extremely high accuracy, permitting bond length measurements literally
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to four or five significant digits. All of the bond lengths in Table 3.2 were found from
the experimentally measured rotational frequency.

Polyatomic molecules have more complex microwave spectra, but the basic princi-
ple is the same; any molecule with a dipole moment can absorb microwave radiation.
This means, for example, that the only important absorber of microwaves in the air is
water (as scientists discovered while developing radar systems during World War II).
In fact, microwave spectroscopy became a major field of research after that war, be-
cause military requirements had dramatically improved the available technology for
microwave generation and detection. A more prosaic use of microwave absorption of
water is the microwave oven; it works by exciting water rotations, and the tumbling
then heats all other components of food.

For our classical model of a molecule (two balls connected by a spring), the potential
energy is given by U (r) = k(r − re)

2/2, where k is the force constant and re is the po-
sition of the potential minimum (the rest length of the spring), and oscillation occurred
at frequency ω = √

k/μ.
The potential energy function for a chemical bond is far more complex than a har-

monic potential at high energies, as discussed in Chapter 3. However, near the bottom
of the well, the potential does not look much different from the potential for a harmonic
oscillator; we can then define an effective “force constant” for the chemical bond. This
turns out to be another problem that can be solved exactly by Schrödinger’s equation.
Vibrational energy is also quantized; the correct formula for the allowed energies of a
harmonic oscillator turns out to be:

E(v)

hc
= ν̃ = ωe

(
v + 1

2

)
, ωe = 1

2πc

√
k/μ, v = 0, 1, 2, . . .

(8.12)

as graphed in Figure 8.5. Note that ωe also has units of (1/cm). We introduced ωe in
Equation 8.12 for the same reason we introduced B in Equation 8.10—consistency with
conventional usage—although it presents potential for confusion with the classical vi-
brational frequency ω = √

k/μ which is written in radians per second. We thus have
the (exceedingly ugly) relationship

ωe = ω

2π · (
2.9979 × 1010 cm · s−1

) (8.13)

For example, molecules of 12C16O can be excited from v = 0 to v = 1 by a photon
with energy 4.257 × 10−20 J (ω = E/h̄ = 4.037 × 1014 radians per second; ωe =
2140 cm−1). This energy difference corresponds to the infrared region of the spectrum.
This means the force constant for the C = O bond is k = 1855 N · m−1. All of the
force constants in Table 3.2 were found from the experimentally measured vibrational
frequency.
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� Left: A harmonic oscillator (potential energy U (x) = kx2/2) has equally spaced
energy levels, separated by the same energy as a photon with the classical vibrational frequency√

k/μ. The energy separation between adjacent levels is independent of ν. The lowest state has
E > 0; the system cannot be motionless. Right: For a realistic potential energy function, the energy
levels grow closer as ν increases. The first ten energy levels for H35Cl are shown here.

The lowest lying level (v = 0) has E = hc̃ν/2 = h̄ω/2, not zero. In Problem 6.11
we showed that the wavefunction for the lowest state is

�ν=0 = Ce−x2
√

mk/2h̄ (8.14)

which is a Gaussian. This implies that the atoms do not sit at a fixed separation (Prob-
lem 8-9). It is impossible for the two masses to simply sit at their equilibrium distance,
even at absolute zero. This is another consequence of the Uncertainly Principle—
motionless masses would imply exact knowledge of the distance between them, hence
an infinite uncertainty in the momentum. Notice also that the energy separation be-
tween adjacent levels E(v + 1) − E(v) = h̄ω is independent of v, and is the same as
the energy of a photon with the classical vibrational frequency ω.

For any real molecule the potential looks significantly different from a harmonic
oscillator at high energies, and the spacing decreases. Measurement of the energies of
a large number of vibrational levels permits calculation of the actual potential energy
function U (r) and this has been done for many diatomic molecules (Figure 8.5) .

A harmonic oscillator can only change its vibrational quantum number by one when
it absorbs a photon (	v = 1); therefore, the only frequencies which can be absorbed are
near the classical vibrational frequency ω = √

k/μ. The absorption will also change
the rotational quantum number (	 j = ±1). In practice, this means that the infrared
spectrum of a small molecule has rotational structure, which permits bond length mea-
surement as well as force constant measurement (Figure 8.6).
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� High-resolution infrared spectrum of HCl gas. All the transitions here have
	v = +1, but the lines divide into two “branches,” corresponding to 	 j = +1 or 	 j = −1. A few
lines are labeled. Note that each line is actually slightly split, because the separation between
rotational states is difference for H35Cl (75% natural abundance) and H37Cl (24% natural
abundance). The force constant and the bond length can both be extracted from the line positions.

A molecule can only absorb infrared radiation if the vibration changes the dipole
moment. Homonuclear diatomic molecules (such as N2) have no dipole moment no
matter how much the atoms are separated, so they have no infrared spectra, just as they
had no microwave spectra. They still have rotational and vibrational energy levels; it
is just that absorption of one infrared or microwave photon will not excite transitions
between those levels. Heteronuclear diatomics (such as CO or HCl) absorb infrared ra-
diation. All polyatomic molecules (three or more atoms) also absorb infrared radiation,
because there are always some vibrations which create a dipole moment. For example,
the “bending” modes of carbon dioxide make the molecule nonlinear and create a dipole
moment, hence CO2 can absorb infrared radiation.

The vibrational frequency depends on the reduced mass and the force constant.
Often the individual bonds in polyatomic molecules generate vibrational frequencies
which depend only slightly on the rest of the molecule. For example, carbon-oxygen
double bonds are found in a wide variety of organic molecules (such as acetone,
(CH3)2C=O). The C=O “stretch” is excited at ν̃ = 1750 cm−1 in virtually any such
molecule, and is often used to confirm the existence of a C=O group in an unknown
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sample. Other bonds have quite different frequencies; for example, the C–H stretch in
methanol (H3C–O–H) is observed around 3000 cm−1. Thus infrared spectra are com-
monly used to extract structural information about complex molecules.

Vibrational excitations play an enormously important role in the world around us.
For example:

1. Water is blue because of vibrations. The vibrational frequencies of the three nor-
mal modes of water are 3657, 3756 and 1595 cm−1 respectively (see Figure 3.13;
recall that 1 cm−1 is 29.979 GHz). Since water is not a perfect harmonic oscil-
lator, transitions with 	v > 1 are possible, although very weak. Transitions
with 	v ≈ 6 of the two stretching modes are in the visible region of the spec-
trum. These transitions are stronger in the red than in the blue. Hence the light
which travels through many meters of water (and then gets scattered) is domi-
nantly blue.

2. As discussed in Chapter 6, most of the Sun’s energy reaches the Earth in the form
of visible radiation, which is not absorbed by any of the major constituents of
the atmosphere. However, the Earth has a mean surface temperature of approx-
imately 290K, so the peak of its radiated energy is at λmax ≈ 10 μm (see Chap-
ter 5), or ν̃ ≈ 1000 cm−1. Thus the most important mechanism for the Earth’s
cooling is emission of infrared radiation into space.

Absorption or reflection of infrared radiation serves to keep in heat. For example,
the interior of a car or a greenhouse can get quite warm on a sunny day. This is
called the greenhouse effect, and arises because glass is transparent to sunlight but
absorbs and reflects much of the infrared radiation. In fact, semiconductor coat-
ings for windows have recently become commercially available; these coatings
are transparent in the visible but reflect still more infrared radiation, and dramat-
ically decrease heat loss (hence energy consumption) in homes.

Infrared absorption in the atmosphere can have the same effect. Over the last cen-
tury the concentration of carbon dioxide in the atmosphere has risen dramatically
because of combustion. As a result, the atmosphere now absorbs more infrared
radiation than it did in the past, and cooling into space is less efficient. A likely
consequence is global warming , although a detailed calculation of the magnitude
of the expected effect is far from simple. For example, while is it not difficult to
estimate total CO2 emissions from combustion, most of these molecules end up in
the ocean as carbonates or bicarbonates, and do not directly contribute to global
warming. Nonetheless, there is broad consensus in the scientific community that
carbon dioxide emissions will tend to increase the Earth’s temperature over the
next few decades, with environmental consequences which may be severe.

Color—the selective absorption, emission, or reflection of components of the visible
spectrum—can be produced by a variety of mechanisms. We already noted that water
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is blue because of vibrational excitation. The sky is blue because light gets scattered
more strongly as the wavelength decreases (the scattering rate is proportional to λ−4),
hence the atmosphere is indirectly illuminated more by the blue components of sunlight
than by the red components. Sunsets are red for the same reason; as the sun gets lower
in the sky, the path that light travels through the atmosphere increases, and eventually
the loss of blue light becomes noticeable. Rainbows are created because water droplets
bend blue light more than red; peacock feathers are brilliantly colored because nature
gave them diffraction grating on their feathers.

By far the predominant origin of color, however, is electronic excitation. We have
already seen that the different orbitals of a hydrogen atom have different energies,
and transitions between these orbitals (observed, for example, in a hydrogen discharge
tube) can create colored light. The electrons in molecules lie in orbitals as well. Tran-
sitions from the molecular orbitals which are occupied at equilibrium to unoccupied
orbitals can cause selective absorption of specific wavelengths; emission of light after
the electrons have been excited can cause a colored “glow.”

All molecules absorb light at short enough wavelengths. However, the energy dif-
ference between the highest occupied molecular orbital (HOMO) and the lowest un-
occupied molecular orbital (LUMO) is difficult to calculate accurately for even small
molecules. We can estimate this gap (and hence the absorption wavelength for elec-
tronic excitation) by a modification of the “particle-in-a-box” model considered in
Chapter 6. We can view the Coulomb’s law attraction between electrons and nuclei
as confining the electrons (mass me = 9.109 × 10−31 kg) to a region comparable in
size to a chemical bond (L ≈ 200 pm). In that case, the formula for the energy levels
of a particle-in-a-box (Equation 6.21) would give:

En = n2h2/8mL2 ≈ n2(1.5 × 10−18 J) (8.15)

The separation between the n = 1 and n = 2 levels is then 4.5 × 10−18 J, which is
the energy of a photon with frequency ν = E/h = 6.79 × 1015 Hz—well into the
vacuum ultraviolet region of the spectrum. This suggests (and experiments confirm)
that the vast majority of molecules do not undergo electronic excitation with visible
light; the energy per photon is far too small. For example, oxygen and nitrogen are
nearly transparent for λ ≥ 190 nm.

Since the separation between energy levels is proportional to L , the minimum en-
ergy per photon needed for absorption decreases if the electron can be “delocalized”
over several chemical bonds. A series of alternating single and double bonds (called
conjugated double bonds creates exactly such a delocalization. Consider, for example,
the molecule 11-cis-retinal (Figure 8.7). The term “cis” refers to a double bond with
substituent groups on the same side of the bond, as shown by the arrow; a double bond
with substituent groups on opposite sides of the bond is called “trans.” The “11” just
identifies the location of the bond. Notice that this molecule has a total of six double
bonds (five trans, one cis), each one of which is created by p orbitals from two separate
atoms. Thus twelve consecutive atoms have p orbitals which contribute to this chain
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� The central event in human vision is absorption of a visible photon by
11-cis-retinal, which then rearranges about one of its double bonds. The chain of alternating
(conjugated) single and double bonds permits absorption in the visible.

(all of which are pointed out of the plane of the paper, as the molecule is drawn on the
page). These orbitals together create a highly extended “box” which reduces the energy
needed to excite an electron down into the range of visible light.

When this molecule absorbs light, it rapidly isomerizes (changes its structure) to
the all-trans form. This specific chemical reaction is the central event in human vision.
The molecule is bound within a protein (the combination is called rhodopsin); the iso-
merization triggers a series of later processes, ultimately leading to an electrical signal
which is sent to the brain.

Virtually all dyes are organic molecules which get their colors either from a conju-
gated linear chain (like the one in retinal), from rings of conjugated bonds (Figure 8.8),
or a combination of these structural features. This figure shows three simple molecules
(benzene, anthracene and pentacene) which have progressively more rings fused to-
gether. We explicitly show here only one of several structures which can be drawn with
alternating single and double bonds for each molecule. The actual structure is better
represented as a superposition of these different structures, which are called resonance
hybrids. As the number of alternating single and double bonds increases, the separa-
tion between the energy levels decreases. This means that λmax, the wavelength of the
most intense absorption, increases as well.

Some, but not all, molecules emit light after they are excited. This is called fluo-
rescence (if it happens quickly, nanoseconds to microseconds) or phosphorescence (if
it takes a long time, milliseconds to minutes). Molecules generally fluoresce or phos-
phoresce at longer wavelengths than they absorb, because of energy conservation—
a molecule can absorb a photon with energy h̄ω1 and emit a photon with energy
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benzene (l max  200 nm)
colorless;  no visible flourescence

anthracene ( max  376 nm)
colorless;  violet flourescence

pentacene ( max  575 nm)
blue;  red flourescence

� Comparison of the wavelength of maximum absorbance λmax, the color, and the
emission from three molecules in a series with 1, 3, and 5 fused aromatic rings respectively. The
emission and absorption shift to longer wavelengths as the molecule grows.

h̄ω2 < h̄ω1, leaving h̄ω1 − h̄ω2 behind as rotational, vibrational, or electronic energy.
Thus pentacene absorbs red light (making it appear blue) and gives off still redder flu-
orescence; anthracene absorbs ultraviolet light (λ < 400 nm) and gives off violet flu-
orescence. Phosphorescent compounds are used for “glow-in-the-dark” paints, which
in effect store energy during the day and release it slowly at night. Such compounds
often can also be made to glow by bombarding them with electrons, and are used for
television screens.

At room temperature, all but the smallest molecules have very broad absorption
and fluorescence spectra (typically absorption or fluorescence spectra have linewidths
	λ ≈ 100 nm). Molecules start in a large number of different vibrational states (re-
call that the number of distinct vibrations for a N -atom nonlinear molecule is 3N −6),
electronically excited molecules relax quickly (particularly in solution or solids), and
many different final vibrational states are possible.

The invention of the laser in the late 1950s, and demonstration of the first practical laser
in 1960, were immediately recognized as scientific accomplishments of the first mag-
nitude, but for years the laser was derided as “a solution in search of a problem.” Early
sources were difficult to use and maintain, and the range of available wavelengths was
quite limited. Massive efforts in laser source development eventually paved the way
for important commercial applications. By 1994, the U.S. National Academy of Sci-
ences estimated the overall annual economic impact of lasers and related products at
$100 billion.
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In the early 1990s a technological revolution occurred with the development of tun-
able solid-state lasers. As of this writing, the most important tunable laser system is the
titanium-doped sapphire laser, which can be made to operate throughout the deep red
and near infrared (λ = 700–1000 nm). At one extreme limit, continuous lasers can
be made monochromatic (consisting of only a single wavelength or frequency) to ex-
tremely high precision; commercially available lasers have fractional bandwidths of
one part in 109, and specialized lasers in laboratories can do at least a factor of 1000
better than this. Such lasers have an electric and magnetic field which looks very much
like a single sine wave, oscillating for trillions of cycles with a single, well-defined pe-
riod. Average powers of 1–10 W are readily produced.

Continuous lasers are important tools for measuring molecular spectra in stable
molecules, which can then give information about structure. Consider, for example,
the molecule I2, which is a stable gas at room temperature. Suppose we wish to deter-
mine the structure of this molecule. The molecule vibrates and rotates, and as discussed
earlier, measurement of the differences in energy between the different vibrational and
rotational levels can give the bond length and force constant. Since I2 has no dipole
moment, it does not absorb infrared or microwave radiation. However, it does absorb
visible light, which excites the molecule into a higher, normally empty electronic state.
In the process, vibrational and rotational quantum numbers change, so the exact posi-
tions of the spectral lines reveal the vibrational and rotational energy level differences
in both the excited and ground states. Measurement of the positions of these lines gives
the complete vibrational potential energy function U (r) in either state and the rotational
constant (B = .037 cm−1 in the ground state, B = .027 cm−1 in the excited state).

Other types of lasers can generate extremely short pulses. As of this writing, the
shortest laser pulses ever generated had a duration of 3.5 fs, although pulse lengths of
50–100 fs are more common. Such laser pulses are not monochromatic; they have a
very large bandwidth (hence a broad distribution of wavelengths in a single pulse) from
the uncertainty relation 	ν	t ≈ 1/4 (Problem 5-12). However, they can concentrate
an enormous amount of energy into a short burst. Commercially available laser systems
give very short pulses as rapidly as once every 10 ns, or as rarely as once per second.
Again the average power is generally in the 1–10 W range, so the peak power is vastly
higher with low repetition rate. A common compromise between high pulse energy and
high repetition rate would be to give one pulse per millisecond, with pulse energies of
a few mJ.

The titanium-sapphire wavelength itself is too short for vibrational excitation in
most molecules, and too long for electronic excitation. However, these high peak pow-
ers permit efficient frequency conversion. For example, certain crystals can convert
two photons with frequency ω into a single photon with frequency 2ω. In many ways
this can be viewed as similar to a second-order chemical reaction, such as the dimer-
ization of NO2 to form N2O4. The rate of that reaction is proportional to the square of
the NO2 concentration; the rate of thisfrequency doubling is proportional to the square
of the “photon concentration” (the intensity), so high powers are very useful. It is also
possible to combine two photons with different frequencies ω1 and ω2 in either sum-
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frequency generation (creating a single photon with frequency ω1 + ω2) or paramet-
ric oscillation (destroying one photon with frequency ω1 while creating two photons
at lower frequency, one with frequency ω1 −ω2, the other with frequency ω2). The up-
shot of all of this is that pulsed titanium-sapphire lasers can serve as the starting point
to efficiently make laser pulses all the way from the deep ultraviolet to the far infrared.

For example, pairs of extremely short (ultrafast) laser pulses have characterized
the dynamics of the cis-trans isomerization of rhodopsin (Figure 8.7). The first pulse
of visible light (called a “pump” pulse), which lasts for 35 femtoseconds, puts the cis
molecule into an electronically excited state. The second pulse (called a “probe” pulse)
is only 10 femtoseconds long, so it contains a broad distribution of wavelengths. The
absorption of this pulse at different wavelengths is measured, and the delay between the
two pulses is varied. When the delay between the pulses is very short (� 200 fs) only
the absorption spectrum of cis-11-retinal is seen. The absorption spectrum of trans-11-
retinal, which is not initially present in the sample, is seen for delays longer than 200 fs.
Thus, the researchers were able to conclude that the first chemical step of vision is one
of the fastest photochemical reactions known, and is essentially complete in 200 fs.
Such “pump-probe experiments” are widely used in chemical physics laboratories. The
value of such “femtochemistry” experiments was recognized by the awarding of the
1999 Nobel Prize in Chemistry to Ahmed Zewail.

Lasers also have many research applications outside of chemistry. They can be
modulated (turned on or off, or changed in frequency) in tens of femtoseconds, and
this means that they can transmit many “bits” of information in a very short time. In-
tense laser beams can cut metal or human tissue with high precision. They can even
generate high pressures (photons have momentum, so bouncing light off a surface ex-
erts a pressure, just as bouncing gas molecules off a surface exerted pressure), and this
is used to induce nuclear fusion.

�
Note: Some of these problems require high resolution atomic masses, listed in Ap-
pendix A.

8-1.� For the molecule 1H35Cl, the microwave spectrum consists of a series of equally
spaced lines at ṽ = 21.18 cm−1 and at 2̃v, 3̃v, . . . . Find the length of the H-Cl
bond.

8-2. Equation 8.6 gives the energy levels for a particle in a three-dimensional box. Sup-
pose L = 1 meter, and m corresponds to a small atom such as a helium atom. We
treated this problem classically by the kinetic theory of gases in Chapter 5, which
is equivalent to assuming that a continuous distribution of energies is allowed. To
see if this approximation is valid, use the Boltzmann distribution to find the en-
ergy level which is most highly populated at T = 300K, and how large n has to
be before you get to levels which are only half as populated at T = 300K as this
most populated level.
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8-3.� The bond length in 127I35Cl is 232.1 pm. Find the frequency of light absorbed when
the molecule makes a transition from j = 0 to j = 1.

8-4. Find the minimum vibrational energy for 23Na35Cl, using the data in Table 3.2.
Also find B and ωe for this molecule.

8-5.� Find B and ωe for the nitrogen molecule, using the data in Table 3.2.

8-6. There are (2 j +1)m j levels for each value of j , so the Boltzmann distribution tells
us that the total number of molecules with rotational number j is given by:

n( j)

n(0)
= (2 j + 1) exp(−E j/kT )

For HCl, which rotational level is most populated at room temperature (T =
300K)?

8-7.� Predict the color of the molecule tetracene, which has four fused rings and thus is
intermediate in size between anthracene and pentacene. Also predict the color of
the molecule’s fluorescence.

8-8. As noted in Section 8.3, the rotational constant for I2 is B = .037 cm−1 in the
ground state and B = .027 cm−1 after excitation to the electronic state which
makes the vapor purple. Calculate the change in bond length upon electronic ex-
citation.

8-9.� As noted in Chapter 3, we can use the work-energy theorem to describe the change
in energy upon expansion of a gas. For a gas which is nearly at the same pres-
sure as its surroundings, the work done by expansion is 	w = P	V ; by con-
servation of energy, this work must come from the internal energy of the gas, so
	E = −P	V . In the limit of very small changes, this means (d E/dV ) = −P .
Combine this result with the expression for the particle in a box (Equation 8.6) to
show that PV = 2E/3. (We have already shown from the Boltzmann distribu-
tion that the translational energy of one mole of gas is E = 3RT/2, so combining
these results gives the ideal gas law without resorting to the kinetic theory.)

8-10. As noted in the text, the average bond length in a diatomic molecule can be de-
termined to high precision by microwave measurements. However, even in the
ground state the molecule still has total energy E = h̄ω/2, so it is still vibrating.
Use the force constant for CO from Table 3.2 to predict the spread 	x in the prob-
ability distribution.

8-11.� Predict the line positions (in cm−1) in the rotational spectrum of H127I.

8-12. Find the change in B and ωe in carbon monoxide if the carbon isotope is carbon-13
instead of carbon-12.

8-13.� What would be the color of a very deep pool of D2O?



Uncertainty
Name of Constant Symbol Value (ppm)

Speed of light in vacuum c 2.997 924 58 × 108 m·s−1 (exact)
Permittivity of free space μ0 4π × 10−7 m·kg·C−2 (exact)
Permittivity of free space ε0 = (c2μ0)

−1 8.854187 . . . × 10−12 C2·J−1· m−‘ (exact)
Gravitational constant G 6.673 × 10−11 m3·kg−1·s−2 1500
Elementary charge e 1.602 176 462 × 10−19C 0.039
(charge on proton or electron)
Planck constant h 6.626 068 76 × 10−34 J· s 0.078

h̄ = h/2π 1.054 571 596 × 10−34 J· s 0.078
Avogadro constant NA 6.022 141 99 × 1023 mol−1 0.079
Faraday constant F = NAe 9.648 534 15 × 104 C· mol−1 0.04
Electron mass me 9.109 381 88 × 10−31 kg 0.079
Bohr radius a0 = 4πε0h̄2/mee2 5.291 772 083 × 10−11 m 0.0037
Atomic mass unit (amu) mu = m(12C)/12 1.660 538 73 × 10−27 kg 0.079
Proton mass m p 1.672 621 58 × 10−27 kg 0.079
Neutron mass mn 1.674 927 16 × 10−27 kg 0.079
Deuteron mass md 3.343 583 09 × 10−27 kg 0.079
Electron magnetic moment μe −9.28 476 362×10−24 J·T−1 0.04
Proton magnetic moment μp = γ h̄/2 1.410 606 633 × 10−26 J· T−1 0.041
Proton gyromagnetic ratio γp 2.675 222 12 × 108rad·s−1·T−1 0.041
Molar gas constant R 8.314 472 J· mol−1· K−1 1.7
Boltzmann constant kB = R/NA 1.380 650 3 × 10−23 J·K−1 1.7
Molar volume,

T0 = 273.15 K, p0 = 105 Pa Vm RT0/p0 22.710 981 × 10−3 m3· mol−1 1.7
T0 = 273.15 K, p0 = 1 atm 22.413 996 × 10−3 m3· mol−1 1.7
(1 atm = 101 325 Pa)

Stefan-Boltzmann constant σ = (π2/60)k4
B/h̄3c2 5.670 400 × 10−8 W· m−2· K−4 7



Energy: 1 kJ· mol−1 = 1.660540 × 10−21 J
1 electron volt (eV): 1.602177 × 10−19 J = 96.4853 kJ·mol−1

1 calorie (cal): 4.184 J
Length: 1 Angstrom (Å) = 10−10 m = 100 pm
Mass: 1 atomic mass unit (amu) = 1.6605402 × 10−27 kg
Pressure: 1 atmosphere (atm) = 101.325 Pa

1 bar: 100,000 Pa
1 torr: 1/760 atm; 133.32 Pa

Temperature: degrees Celsius (◦C) = K −273.15
Volume: 1 liter (L) = .001 m3

�
1H 1.0078250 2H (also called D) 2.0141018
12C 12 (exactly) 13C 13.0033548
14N 14.0030740 15N 15.00010897
16O 15.9949146
19F 18.9984032
23Na 22.989768
35Cl 34.9688527 37Cl 36.9659026
39K 38.963707
79Br 78.918336 81Br 80.916289
127I 126.904473



�∫
xn dx = xn+1/(n + 1), n �= −1 B-1∫
dx
x = log x B-2∫

eax dx = eax/a B-3∫
log x dx = x log x − x B-4∫
(sin ax) dx = − 1

a cos ax B-5∫
(cos ax) dx = 1

a sin ax B-6∫
(tan ax) dx = − 1

a log cos ax B-7∫
(sin2 ax) dx = − 1

2a cos ax sin ax + 1
2 x = 1

2 x − 1
4a sin 2ax B-8∫

(cos2 ax) dx = 1
2a sin ax cos ax + 1

2 x = 1
2 x + 1

4a sin 2ax B-9

∫
(sin mx)(sin nx) dx = sin(m − n)x

2(m − n)
− sin(m + n)x

2(m + n)
, (m2 �= n2) B-10

∫
(cos mx)(cos nx) dx = sin(m − n)x

2(m − n)
+ sin(m + n)x

2(m + n)
, (m2 �= n2) B-11

∫
(sin mx)(cos nx) dx = −cos(m − n)x

2(m − n)
− cos(m + n)x

2(m + n)
, (m2 �= n2) B-12

*For each equation, an arbitrary constant C may be added to the result.



∫
(sin2 ax)(cos2 ax) dx = − 1

32a sin 4ax + x
8 B-13

∫
(sin ax)(cosm ax) dx = −cosm+1 ax

(m + 1)a
B-14

∫
(sinm ax)(cos ax) dx = sinm+1 ax

(m + 1)a
B-15∫

(log x) dx = x log x − x B-16

∫
xeax dx = eax

a2
(ax − 1) B-17

�
In the expressions below, a, L , and σ are real constants.

x=∞∫
x=−∞

e−x2/2σ 2
dx = σ

√
2π B-18

x=∞∫
x=−∞

|x | e−x2/2σ 2
dx = 2σ 2 B-19

x=∞∫
x=−∞

x2e−x2/2σ 2
dx = σ 3

√
2π B-20

∞∫
0

x2ne−ax2
dx = 1 · 3 · 5 · · · (2n − 1)

2n+1an

(π

a

)1/2
(n positive integer) B-21

∞∫
0

x2n+1e−ax2
dx = n!

2an+1
(a > 0) B-22



�

z less than +zσ between ±zσ greater than +zσ

0 0.500 0.000 0.500
0.5 0.695 0.383 0.305
1.0 0.841 0.682 0.159
1.282 0.900 0.800 0.100
1.5 0.9332 0.866 0.0668
1.645 0.950 0.900 0.050
1.960 0.975 0.950 0.025
2.0 0.9772 0.954 0.0228
2.326 0.990 0.980 0.010

2.5 0.9938 0.988 0.00621
3.0 0.9986 0.997 0.00135
3.5 0.9998 0.999 0.000233
4.0 0.9999609 0.9999 0.0000391
5.0 1–2.87 × 10−7 1–5.74 × 10−7 2.87 × 10−7

10.0 1–7.62 × 10−24 1–1.52 × 10−23 7.62 × 10−24

When z 
 1, the following approximate formula is useful:

1

σ
√

2π

∞∫
zσ

e−x2/2σ 2
dx ≈ e−(z2/2)

z
√

2π
(z 
 1)



It would be possible to compile a list of additional readings for the range of subjects in
this text which would be as long as the text itself. Instead, I choose to err on the side of
brevity. The books listed below provide general information on most of these subjects.
Links to other, more specialized texts are included on the Web page.

The original source of most of the quotations in the text (if it is not listed with the
quote) can be found in Alan McCay, A Dictionary of Scientific Quotations (Institute of
Physics Publishing, Bristol, 1992).

1. Handbook of Chemistry and Physics (D. R. Lide, editor; CRC Press, Boca Ra-
ton, FL; published biannually). This book is probably the reference work which
is most universally owned by physicists and chemists. Most of the information
never goes out of date, and it is often possible to purchase a previous edition at a
large discount.

2. I. S. Gradshetyn and I. M. Ryzhik, Tables of Integrals, Series and Products (Aca-
demic Press, New York, 1980) is one of many reference tabulations of integrals
and derivatives.

3. A Physicist’s Desk Reference (H. L. Anderson, editor; American Institute of
Physics, New York, 1989) collects useful formulas, constants, and facts from all
branches of physics, from the undergraduate to the graduate level. It is also far
more compact (and less expensive) than reference [1] above.

4. J. C. Polkinghorne, The Quantum World (Princeton University Press, Princeton,
NJ, 1989) has a wonderful treatment of the philosophical consequences of quan-
tum mechanics.



5. Thomas S. Kuhn, Black-Body Theory and the Quantum Discontinuity (Oxford
University Press, New York, 1978) provides an overview, with references to the
original works, of the beginnings of the quantum theory.

6. Gordon Barrow, The Structure of Molecules (W. A. Benjamin, New York, 1963),
despite its age, is still an excellent introductory treatment of molecular spec-
troscopy at this level.

7. A good starting point for understanding laser design and chemical applications
is D. L. Andrews, Lasers in Chemistry (Springer-Verlag, Berlin, 1990).

8. Roland Omns, Quantum Philosophy: Understanding and Interpreting Contem-
porary Science (Princeton University Press, 1999) presents an excellent treat-
ment of the philosophical consequences of quantum mechanics.

This book is written at a far lower level than any physical chemistry text, but most
of those books also cover all of the material presented here. In addition, an excursion
through the catalog of a good college or university chemistry library is recommended.



Chapter 1

1-1. The volume is 22.414L

1-3. First find the number of grams of silicon in the unit cell, by multiplying the density
of silicon by the volume of the unit cell. Then use the atomic weight of silicon to
determine how many moles of silicon are in the unit cell. This is eight atoms.

1-5. 1.47 × 10−4 moles per liter

1-7. 1.05 × 10−4 moles per liter

1-9. 1.39 × 10−8 moles per liter. The assumption is that iodide from the dissolved
lead iodide does not affect the concentration of iodide in solutions—an excellent
approximation in this case.

1-11. r = 1, θ = 0, φ = π/2

1-13. a) plane; c) plane; e) cone

1-15. a) 70.5◦

1-17. domain [−1, 1], range [−π/2, π/2]

1-19. log 50 = log(100/2) = log 100 − log 2 = 2 − .301 = 1.699

Chapter 2

2-1. dy/dx = −2 − 2x

2-3. a) d f (x)/dx = 2 sin x cos x
b) d f (x)/dx = 1/x



2-5. ln(1 + x) ≈ x

2-7. ln(1 + x) = x − x2/2 + x3/3 + . . . − x2n/(2n) + x (2n+1)/(2n + 1) + . . .

2-9.
x=π/2∫
x=0

sin x dx = (− cos x)|x=π/2
x=0 = (0) − (−1) = 1

x=1∫
x=0

e2x dx = (e2x/2)
∣∣x=1
x=0 = e2/2 − 1/2

2-11.
∞∫
0

e−ax2
dx =

( π

4a

)1/2

2-13.
d[C4H6](t)

dt
= −k {[C4H6](t)}; half-life = 1

k[C4H6](t = 0)

Chapter 3

3-1. The gravitational force between a proton and an electron is about 4 × 10−40 of the
Coulombic force.

3-3. Escape velocity is 11.179 km·s−1

3-5. x(t) = L cos(ωt); v(t) = −ωL sin(ωt); ω = √
k/m

K = mv2/2 = mω2L2 sin2(ωt)/2 = kL2 sin2(ωt)/2 (since ω2 = k/m)

U = kx2/2 = kL2 cos2(ωt)/2
K + U = kL2/2

3-7. This spacing gives d = 8.33 × 10−7 m. For λ = 4.88 × 10−7 m and N = 1,
the diffraction equation gives θ = 0.6259 radians. After one meter this beam is
deflected by 1 m·(tan(.6259)) = 0.723 m. For λ = 5.14×10−7 m, the diffraction
equation gives θ = 0.6650 radians (a larger angle at longer wavelength), and after
one meter the beam is deflected by 0.784 m. So the beams are separated by 61
mm.

3-9. Near-grazing incidence gives much higher resolution. A common lecture demon-
stration is to use the lines on a ruler at near-grazing incidence to measure the wave-
length of a helium-neon laser (0.633 microns).

3-11. The pressure is 133 kPa. The pressure exerted by a 760 mm column will work out
to be exactly one atmosphere.

3-13. The vibrational frequencies of H2, HD, and D2 are 132, 114, and 93 THz respec-
tively.

3-15. The reaction of H2 and Cl2 is highly exothermic, releasing 185 kJ per mole.

Chapter 4

4-1. The probability of getting 100 heads is 2−100

The probability of getting 99 heads and one tail is 100 · 2−100

The probability of getting 98 heads and two tails is (100 · 99/2) · 2−100



The probability of getting 97 heads and three tails is (100 · 99 · 98/6) · 2−100

The probability of getting 96 heads and four tails is (100 · 99 · 98 · 97/24) · 2−100

The probability of getting 95 heads and five tails is (100·99·98·97·96/120)·2−100

The sum of all of these numbers is 6.26 × 10−23.

4-3. Either of these is the probability of |M| ≥ 4σ , which is 3.91 × 10−5.

4-5. c) Using the formulas presented in the problem, you should calculate a mean of
100.4283, a variance of 0.93105, and 95% confidence limits of 0.97724. So you
would report the mean as 100.4±1.0 mL, and you cannot say with 95% confidence
that the average is above 100 mL.

4-7. From the Boltzmann distribution, the ratio of pressures (assuming constant tem-
perature) should be e−mgh/kB T . Since mg/kB T = 1.26 × 10−4 m−1 (see text), at
a height of 1500 m, mgh/kB T = .189, and the pressure is predicted to be about
83% of the pressure at sea level.

4-9. If we assume that boys and girls have equal birth probabilities, for two children
there are four equally likely outcomes: boy-boy, boy-girl, girl-boy, and girl-girl.
Three of these fit Mary’s description (at least one boy) so the chance that she has
two boys is 1/3. Two of them fit Jane’s description (the first child is a boy) so the
chance that she has two boys is 1/2.

4-11. K = 4

4-13. If the errors in A and B are random and uncorrelated with one another, sometimes
A will be larger than its true value and B will be smaller, or A will be smaller than
its true value and B will be larger. In either case the product AB is then accidentally
closer to the true value than one might expect. In the product A·A, this accidental
cancellation of errors does not happen.

Chapter 5

5-1. These numbers give M2O3, with atomic weight 56 g· mol−1.

5-3. Neither the warm engine nor the surrounding grass gives off much visible light
by blackbody radiation, but both radiate in the infrared. Assume the grass has a
temperature of 290K and the engine has a temperature of 320K. For perfect black-
bodies, the warm engine would radiate (320/290)4 = 1.48 times as much energy.

5-5. cv = d〈E〉
dt

= kB
ehν/kB T (hν/kB T )2(

ehν/kB T − 1
)2 , so cv approaches kB at very high tempera-

tures, and is very small at low temperatures.

5-7. λ = 650 nm implies E = hc/λ = 3.05 × 10−19 Joules per photon, or 184 kJ·
mol−1. At 5 mW average power (.005 J/s) it would take about 10, 200 hours to
produce one einstein.



5-9. The relation 	E	t ≥ h/4 gives an uncertainty in the energy, and Einstein’s re-
lation E = mc2 converts this into a mass. Substituting in 	t = 12 min (720 s)
gives 	 m ≥ 10−54 kg—not a serious limitation.

5-11. a) K = 2.18 × 10−18 J.
b) The momentum vector of length (2mK )1/2 is random in direction, so 	p ≈
(2mK )1/2 = 1.99 × 10−24 kg·m·s−1.
c) Plugging this into the Uncertainty Principle relationship gives 	x ≥ 8.3×10−11

m, which is greater than a0 itself. This is only a crude calculation (replacing a
three-dimensional distribution with a one-dimensional uncertainty) but the result
is essentially correct—the electron must be delocalized over a wide region of space
(as we will see in Chapter 6).

5-13. Note from Equation 5.48 that the spin up state has the lower energy. The ratio of
populations between the two states is

Nα

Nβ

= eh·(426 MHz)/kB T = e6.8×10−5 = 1.000068

so the fraction of population in the higher state (β) is

Nβ

Na + Nβ

= 1

Nα/Nβ + 1
= 1

1.000068 + 1
= .499983

The populations of the two states are very nearly equal.

5-15. En = n2h2

8mL2

Chapter 6

6-1. a)
∣∣eiθ

∣∣ = |cos θ + i sin θ | =
√

cos2 θ + sin2 θ = 1

6-3. Since �(t) = e−i Et/h̄�(0), we can take the complex conjugate to show �∗(t) =
e+i Et/h̄�∗(0). The probability distribution at any time t is given by P(t) =
�(t)�∗(t) = e−i Et/h̄e+i Et/h̄�(0)�∗(0) = �(0)�∗(0) = P(0), so the proba-
bility distribution is independent of time.

6-5. Equation [B-8] in Appendix B,
∫
(sin2 ax) dx = 1

2
x − 1

4a
sin 2ax , can be used

with a = nπ/L . This integral is made even simpler by realizing that sin(2ax) =
sin(2πx/L) vanishes at the upper and lower limits of the integral, so in fact the
integral from x = 0 to x = L is equal to L/2. The normalization constant must
then be (2/L)1/2.

6-7. Your graph should give a wavefunction localized in the right side of the box—the
mirror image about x = L/2 of Figure 6.3.

6-9. Your graph should be symmetric about x = L/2, so 〈x〉 = L/2, and 〈p〉 = 0
because the wavefunction is real.



6-11. b) E = h̄ω0/2

6-13. As with many of the paradoxical results of quantum mechanics, the Uncertainty
Principle comes to the rescue. You cannot localize the position of the electron in-
side the nucleus (very small 	x) without creating a huge uncertainty in the mo-
mentum, and thus losing any knowledge of the orbital you are in.

Chapter 7

7-1. The momentum and kinetic energy conservation equations are:

6.6 × 10−24 kg · m · s−1 = (6.6 × 10−27 kg)vHe,final + (1 kg)vwall,final

3.3 × 10−21 J = (6.6 × 10−27 kg)(vHe,final)
2/2 + (1 kg)(vwall,final)

2/2

Rearrange the first equation to give:

vHe,final = 1000 m · s−1 − (1.52 × 1026)vwall,final

and substitute into the second equation to give a quadratic equation:

3.3 × 10−21 J = (6.6 × 10−27 kg)(1000 m · s−1 − (1.52 × 1026)vwall,final)
2/2

+(1 kg)(vwall,final)
2/2

or

(7.6 × 1025 kg)(vwall,final)
2 − (1000 kg · m · s−1)vwall,final = 0

This has two solutions:

vwall,final = 0, vHe,final = 1000 m · s−1 (the initial condition)

vwall,final = 1.31 × 10−23 m · s−1, vHe,final = −1000 m · s−1 (the final condition)

7-3. (a) The mean free path stays constant. The distance in any direction to the nearest
obstacle is independent of temperature.
(b) The mean time between collisions decreases by a factor of

√
2, because the

speed goes up by that factor and the mean free path is constant.
(c) The diffusion constant increases by

√
2, because the collision frequency (the

inverse of the mean time between collisions) increases by
√

2. Note that this is
not what you would predict by just doubling the temperature in Equation 7.41—
the assumption here was that the temperature was doubled while keeping N/V
constant, so the pressure doubles as well. If you double both the temperature and
the pressure in Equation 7.41 you get the same answer.

7-5. The integral for evaluating 〈s2〉 has the form
∞∫
0

x4e−ax2
dx (= 3

√
π/8a5/2); the

integral for evaluating 〈s〉 has the form
∞∫
0

x3e−ax2
dx (= (2a2)−1). Both integrals

can be found in the more general form in Appendix B.



7-7. PV/n RT = 1+B(t)(n/V )+. . . ; the problem specifies that at T = 273K, P = 1
atm and n = 1 mole, PV/n RT = (22.260/22.41410) = .9931 instead of 1. So

B(T ) ∗ (1/22.260) = .9931 − 1 = .0069

B(T ) = −0.153 liters per mole

Chapter 8

8-1. 128 pm (see Table 3.2)

8-3. ν = 6.84 GHz

8-5. B = 2.01 cm−1; ωe = 2359.61 cm−1. Note that neither of these values can be
obtained from infrared or microwave spectra, because the molecule has no dipole
moment—infrared or microwave radiation will not induce transitions between the
different vibrational and rotational levels. They are obtained from electronic spec-
tra.

8-7. Tetracene looks orange-red. It gives off blue-green fluorescence.

8-9. For the particle in a box we have

E = (n2
x + n2

y + n2
z )/h2

8mV 2/3
; P = −d E

dV
= +2

3

(n2
x + n2

y + n2
z )h

2

8mV 5/3
= 2E

3V

8-11. The lines are at multiples of 13.102 cm−1.

8-13. The vibrational frequencies are lower, so it requires still higher values of 	ν to
get absorption in the visible. These transitions are still weaker, so the prediction
is that while red light is still absorbed more than blue (lower 	ν to get to red), all
transitions are weaker and the pool would be more nearly colorless.



Absorption, 174
and emission, 174–178
microwaves, 173
of single photon, 176
spectrum, 176
visible and ultraviolet light, 173

Acetone, 184
Activation energy, 18, 81
Adiabatic expansion, 161, 172
Air conditioners, 166
Allowed transitions, 176

selection rules for, 176
Angular

momentum, 99–101
importance of, 101
quantization, 179

nodes, 138
velocity, 9

Anode, 106
Antibonding orbital, 143
Antiderivative, 28
Arc welding, 94
Arrhenius

equation, 82
Svante, 82

Average force, 155
Avogadro, 73

hypothesis, 88
number, 2, 48, 73, 88
postulate, 140

Azimuthal quantum number, 137

Big Bang, 95
Binomial distribution, 61, 75, 84
Blackbody, 91

radiation, 91–96
radiator

efficiency of, 95
Bohr

atom, 125
model, 102–104, 126
Niels, 102
radius, 103, 137
relation, 174

Boltzmann
constant, 14, 77
distribution, 61, 74–80, 90, 126, 174,

178, 190
applications of, 78–80

factor, 98
Ludwig, 76

Bond
angle, 145
cis-, 186
covalent, 140–143
length, 141

measurement of, 180
σ , 146
trans-, 186

Bonding orbital, 143, 144



Boyle
temperature, 170

Brightness, 94

c (speed of light)
definition, 2

Candela, 2
Cartesian coordinates, 10
Cathode

ray, 106
tube (CRT), 106

Chain rule, 23
Chemical shift, 118
Classical

determinism
destruction of, 107
and quantum indeterminacy,

107–113
mechanics, 33
physics, 32
uncertainty, 107

Closed system, 34
Collisions

dynamics of, 149–153
elastic, 150
and intermolecular interaction,

164–166
Common ion effect, 7
Complex

conjugate, 129, 146
number, 129

magnitude of, 129
phase of, 129

plane, 129
magnitude and phase, 129

Complexes, 164
Confidence limits, 69
Conjugated double bonds, 186
Conservation

of energy, 150
of momentum, 35, 150

Constant
self diffusion, 167

Constraints
on random processes, 74

Constructive interference, 46
Contour, 137, 138

Coordinates
Cartesian, 10
spherical, 11

Cosine
definition, 8

Cosmic Background Explorer (satellite), 95
Coulomb

force, 33
law, 33, 36, 186
potential, 136

Covalent bond, 140–143
Crick, Francis, 173
Critical angle, 17
Cubic equation, 6
Curie, Marie and Pierre, 31

da Vinci, Leonardo, 1
Dalton, 5
Dark current, 127
de Broglie, 104

formula, 113
relationship, 127
wavelength, 105

Definite integral, 29
Degenerate

stationary states, 142
wavefunction, 137

Degrees of freedom, 52
Democritos, 149
Derivative, 8, 20

applications of, 24–27
definition of, 19
second, 23

Destructive interference, 46
Deuterium, 5, 59
Dewar flasks, 163
Dielectric constant, 59
Differential equations, 25
Diffraction

equation, 47
grating, 46

Diffusion, 67–68, 167–168
constant, 67, 167, 171
equation

one dimensional, 172
Dimerization, 31
Dipole moment, 56



DNA, 56
Domain, 5
Dot product, 125
Dulong and Petit, 88

rule of, 88, 89, 97, 98
Dyes, 173

e (base of natural logarithms), 12
Effusion, 159, 171
Eigenstate (stationary state), 131
Einstein

Albert, 87
diamond and heat capacity, 98
photoelectric effect, 96
prediction of lasers, 174
and quantum theory, 124

Electromagnetic
field, 174
force, 33
wave, 42–44

Electron
affinity, 51
delocalized, 186
diffraction, 107
spin resonance, 120
spin states, 117

Electronegativity, 56
Emission

spectrum, 177
spontaneous, 173, 177, 178
stimulated, 174

Enthalpy, 161
Entropy, 77
Equation

cubic, 6
quadratic, 6

Equilibrium, 77
constant, 80, 82–83
macroscopic and statistical, 153

Ernst, Richard, 120
ERP paradox, 124
Error bars, 5
Error function, 29, 84
Escape velocity, 57
ESR (electron spin resonance), 120
Euler

exponential and trigonometric
functions, 129

Excluded volume, 169
Expectation value, 130
Expected

average value, 63
deviation

absolute vs. fractional, 66
Experimental uncertainty, 68
Exponentials, 12–15

Factorial, 26
Femtochemistry, 190
Field

electromagnetic, 174
static, 43

Fluctuation, 65
Fluorescence, 187
Force, 33

conservative, 35
constant, 182
electromagnetic, 33
gravitational, 33
strong, 33
weak, 33

Free will
and Newtonian mechanics, 108

Frequency, 40
conversion, 189
doubling, 189
fundamental, 42
of sine wave, 9

Fringes, 46
Function

definition of, 5
error, 29, 84
exponential, 12
Gaussian, 29
inverse

definition of, 6
logarithmic, 12
potential energy, 35
smoothly varying, 19
trigonometric, 8

Functional MRI, 120

Gaussian
distribution, 61, 64–74

applications of, 66–74
function, 29



Global warming, 95, 185
Glow-in-the-dark paint, 188
Gravitational

constant, 33
force, 33

Gravity, 36
Greenhouse effect, 53, 95, 173, 185
“Guest” molecule, 159
Gyromagnetic ratio, 116, 126

Halogen lamp, 91, 92, 94
Harmonic(s), 42

motion, 39–40
oscillator, 147

Heat capacity, 160–161
constant pressure, 161
constant-volume molar, 80, 88, 160

Heisenberg
Uncertainty Principle, 107, 110–115,

117
applications of, 113–115

Uncertainty relationship, 126
Werner, 128

Helium, 90
atom, 143
discovery of, 89
liquid, 99
nuclei, 102

Herschbach, Dudley, 159
Highest occupied molecular orbital

(HOMO), 186
HOMO, 186
Hybrid

orbitals, 144
resonance, 187

Hybridization, 143–146
limitations of, 145

Hydrogen, 87
atom, 102, 103

energy of, 103
orbitals, 132
Schrödinger’s equation for, 136

atomic number of, 102
bond, 56
emission spectra for, 103
spectrum, 89

Hyperfine splitting, 147

Ideal gas
law

assumptions behind, 153
properties of, 153–162

Imaginary number, 129
Impact parameter, 151
Incandescent light bulb

halogen, 91
Index of refraction, 16, 44
Inertial frame of reference, 34
Integral

definite, 29
indefinite, 29

Integration, 19
numerical, 27
principles of, 27–29

Interference, 45, 104
constructive, 46
destructive, 46
patterns, 105

Internal reflection, total, 17
Iodine, 94
Ionization

energy, 102
potential, 51

Isomerization, 80, 187
Isotopes, 126

separation, 159, 171

J- (scalar) coupling, 118

Kinetic energy, 35–39
of atoms, 89
of gas molecules, 74

Kinetic theory
assumptions of, 162–170
of gases, 88, 149–172

Laser
acronym, 178
continuous, 189
pulse

ultrafast, 190
tunable (Titanium-doped sapphire), 189

Laser pulse
shortest, 126
ultrafast, 44

Lee, Yuan, 159



Lennard-Jones 6–12 potential, 48, 58, 164,
167, 169

parameters, 56
Light, 10
Logarithms, 12–15
Lowest unoccupied molecular orbital

(LUMO), 186
Luminous intensity, 2
LUMO, 186

Magnetic
dipole

force on, 116
Resonance

imaging (MRI), 120
spectroscopy, 117–122

Maser, 174
Mass

deuterium, 57
neutron, 57
proton, 57

Maxima, 24
Maxwell’s equations, 42
Mean free path, 166–167
Mean time between collisions, 166–167
Measurement

spatial resolution of, 107
Mendeleev, 88

periodic table, 87
Metastable level, 177
Meter

definition of, 2
Methanol, 185
Microwave oven, 182
Minima, 24
Mixture velocities, 159–160
Molecular

beams, 159
supersonic, 159

biology, 122
orbitals, 142

Molecules
polar, 56

Moment of inertia, 101
Monochromatic light, 189
MRI (magnetic resonance imaging), 120
Multielectron atoms, 139–146

energy levels of, 139

Multinomial expansion, 75

Newton
Issac, 19
laws, 24, 33–39, 57

NMR
spectra, 118, 119
spectrometers, 119

Nodal
plane, 143
surface, 143, 144

Nodes
angular, 138
radial, 138

Nonideal gas laws, 168–170
Normal (Gaussian) distribution, 61, 64–74

applications of, 66–74
Normal modes, 54
Number

complex, 129
imaginary, 129

Numerical integration, 27

Octave, 42
One-dimensional velocity distribution, 149,

156–157
Orbitals

hybrid, 144
molecular, 142
s, 137
sp hybrid, 144

Oscillation
parametric, 190

Particle-in-a-box, 186
one dimensional, 113, 132

Particles
as waves, 104
wavelength of, 104

Period
of sine wave, 9

Periodic table, 87–90, 98
Permittivity of free space, 33
Phosphor, 106, 109
Phosphorescence, 187
Photocathode, 97
Photoelectric effect, 96–99
Photomultiplier tube, 96, 97, 127



Photon, 10, 93, 96, 97
counting, 97
Einstein of, 125
energy per, 126
frequencies, 118

Planar orbits, 114
Planck

constant, 93
relationship, 112

Polonium, 59
Polyani, John, 159
Population inversion, 178
Potential energy, 35–39

function, 35
Preexponential factor, 82
Pressure, 149, 153

calculation of, 154–156
Principal quantum number, 115, 136
Probability, 130
Pump-probe experiments, 190

Quadratic equation, 6
Quantum

computing, 123
cryptography, 123
mechanics, 10, 25, 91
number, 115

azimuthal, 136, 137
orbital angular momentum, 136, 137
principal, 115, 136, 139

Radial
nodes, 138

Radians, 8
Radon, 31
Random walk, 61

problem, 61
Range, 5
Rayleigh-Jeans law, 93, 124
Reduced mass, 40
Resonance, 175

hybrid, 187
Rhodopsin, 187
Rotation, 53
Rutherford, Ernest, 32

Scalar
coupling, 118

Schrödinger
equation, 113, 131–133
Erwin, 128

Second
definition of, 2
derivative, 23

Secondary units, 3
Selection rules, 176
Self diffusion constant, 167
Shroud of Turin, 17
SI system, 2
Signal averaging, 70
Snell’s law, 16
Solubility product, 6
Sound

loudness, 93
Spark, 43
Spectra

absorption, 89
blackbody, 91
emission, 89
NMR, 119
quantization of energy, 102–103
temperatures, 91
visible, 89

Spectroscopy
laser, 188–190
microwave, 181
molecular, 179–188
MRI, 120

functional, 120
NMR, 119
two dimensional, 120

Speed
distribution

three-dimensional, 157, 158
of light, 2
most probable, 158
sound, 161–162

Spherical coordinates, 11
Spherical shell

net attraction, 37
Spin, 115

-1/2 particles, 116
angular momentum, 115, 136
down, 122, 123, 136
left, 122, 136
right, 122, 136



Spin (cont.)
up, 119, 122, 123, 136

Spontaneous emission, 173, 177, 178
Springs, 36
Standard

deviation, 29, 127
temperature and pressure (STP), 15,

153
Static field, 43
Stationary, 115

states, 131
degenerate, 142

Stimulated emission, 174, 178
Stretch

antisymmetric, 55
symmetric, 55

Strong force, 33
Sum-frequency direction, 190
Superposition states, 136
Supersonic molecular beam, 159
Systematic errors, 71

Tangent line, 20
slope of, 20

Taylor series, 26, 30, 129
Temperature

definition of, 77
extreme low, 98

Thermal conductivity, 163
Three-dimensional speed distribution,

157–158
Transition state, 81
Translating system, 52
Trigonometric functions, 8
Triple point, 2
Tritium, 17
Tungsten

as light source, 94
vapor pressure and light bulb, 94

Turkeys, aerodynamics of, 58
Two-dimensional spectroscopy, 120

Ultraviolet catastrophe, 93
Universal curve, 169

van der Waals equation, 168
Variance, 84

Vector, 10–12
quantity, 10, 99, 115
unit, 10

Velocity
distribution,

one-dimensional, 78, 149, 172
space, 157, 172

Vibrating system, 53
Vibration, 39
Virial

coefficient,
second, 169

expansion, 168
Vision

animal
peak sensitivity of, 94

human
central event in, 187
peak sensitivity of, 125

Wave-particle duality, 104, 109
consequences of, 104–107

Wavefunction, 130
complex, 131, 132
and expectation values, 130–131
left side, 135
phase variation of, 130
right side, 135

Wavelength, 41
X-ray, 47

Waves
amplitude of, 105
electromagnetic, 43
mechanics, 128–132
plane, 41
properties of, 45–47
sound, 41
spherical, 41

Weak force, 33
Well depth, 165
Wells, H.G., 60
Work-energy theorem, 37

X-ray crystallography, 47

Zero-order rate law, 31
Zewail, Ahmed, 190
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