Shape in
Chemistry

An Introduction to Molecular
Shape and Topology

Paul G. Mezey

University of Saskatchewan

VCH %



Paul G. Mezey

Mathematical Chemistry Research Unit

Department of Chemistry and Department of Mathematics
University of Saskatchewan

Saskatoon S7N OWO

Canada

This book is printed on acid-free paper. &

Library of Congress Cataloging-in-Publication Data
Mezey, Paul G.
Shape in Chemistry : an introduction to molecular shape and
topology / Paul G. Mezey.
p. cm.
Includes index,
ISBN 0-89573-727-2
1. Molecular structure. 2. Topology. 1. Title,
QD461.M583 1993
541.2'2—dc20 93-15622
CIP

©1993 VCH Publishers, Inc.

This work is subject to copyright.

All rights reserved, whether the whole or part of the material is concerned, specifically those of
translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying

or similar means, and storage in data banks.

Registered names, trademarks, etc., used in this book, even when not specifically marked as
such, are not to be considered unprotected by law.

Printed in the United States of America

ISBN 0-89573-727-2 VCH Publishers, Inc.
ISBN 3-527-27932-6 VCH Verlagsgesellschaft

Printing History
1098765432

Published jointly by

VCH Publishers, Inc. VCH Verlagsgesellschaft mbH VCH Publishers (UK) Ltd.
220 East 23rd Street P.O.Box 10 11 61 8 Wellington Court

New York, NY 10010-4606 69451 Weinheim Cambridge CB1 1HZ

Germany United Kingdom



Preface

Shape is one of the most fundamental concepts in natural sciences. The recognition of
shape is one of the dominant aspects of human visual perception and it plays a primary
role in the process of understanding natural phenomena. Yet, in our everyday experi-
ences this very concept is somewhat subjective and vaguely defined; to each observer
a different aspect of form may appear important. To some degree, shape is in the eye
of the beholder. However, visual inspection is not the only method for characterizing
shapes: it is possible to describe shapes precisely and unambiguously by geometrical
and topological methods. Such precise formulations lead to rigorous mathematical
methods for shape characterization and to algorithmic, computer based approaches,
thereby eliminating the subjective element of shape analysis. The spectacular develop-
ments of computer hardware and software along with the revolution in computer
graphics techniques have made their mark on the evolution of shape analysis and in
making the traditionally rather elusive concept of shape more accessible to rigorous
scientific inquiry. Today, shape is in the computer of the beholder.

Shape in chemistry appears on many levels. The shapes of crystals, the shapes of
titration curves, the shapes of spectral lines, the shapes of potential energy functions
or the multidimensional shapes of potential energy hypersurfaces are some exam-
ples. However, few chemists would dispute that the most important shape problem
of chemistry is that of the three-dimensional shapes of molecules. The study of mol-
ecular shape and molecular shape changes is fundamental to our understanding of
chemical properties and reactions.
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The purpose of this book is to acquaint the reader with the topological methods of
the description and analysis of shapes, in particular, the three-dimensional shapes of
molecules. The topological approach is generally applicable to all aspects of shape
in chemistry, hence the title of the book appears justified, although our focus will be
on the central shape problem in chemistry: on molecular shape.

Throughout the book, the emphasis is placed on the topological characterization of
the shapes of the “fuzzy”, three-dimensional bodies of electronic densities of mole-
cules, as opposed to the more conventional stereochemical description of the shapes of
molecular skeletons obtained when representing molecular structures by formal chemi-
cal bonds. Topological shape analysis methods are of relevance in both theoretical
studies of molecular shapes and in a variety of applications. The mathematical treat-
ment is rather elementary and self-contained. In particular, the reader needs no special
background in topology, and the usual undergraduate exposure of a chemistry student
to mathematics is all that is required to follow the book. The necessary topological
concepts are introduced gradually, starting at the familiar level of ordinary stereo-
chemistry, leading through simple, pictorial concepts to the more advanced topological
shape analysis methods. The topological shape group and shape code methods provide
a precise shape description of fuzzy electronic charge density distributions, numerical
measures of molecular shape similarity, and shape complementarity, as well as the
computational means for a rigorous shape classification of molecules. These methods
are also applicable in the study of shapes of electrostatic potentials, Van der Waals sur-
faces, solvent accessible surfaces, and formal molecular surfaces and molecular bodies
defined by some other criteria. These techniques provide a basis for nonvisual com-
puter analysis of both static and dynamic shape similarity and shape complementarity
in sequences of molecules. Such analyses are important in drug design and Quantita-
tive Structure Activity Relations (QSAR) studies, leading to a shift in emphasis from
the stereochemical bond structure to the three-dimensional shape of molecular bodies
and to Quantitative Shape Activity Relations (QShAR).

Motivation for developing rigorous, nonsubjective molecular shape analysis
methods comes from nearly all branches of chemistry. Most physical and chemical
properties of molecules, reactivity, reaction mechanisms, biochemical activity, and
drug action are strongly dependent on molecular shape. Shape is a fundamental
property of both macroscopic and microscopic objects. However, in the case of mol-
ecules, where quantum mechanics is necessary for a valid description of electron
distributions, the concept of shape is somewhat different from that of macroscopic
objects. Due to the Heisenberg uncertainty relation, there is an inherent fuzziness
associated with molecular electron distributions, which renders the usual, geometri-
cal concepts of macroscopic shape characterization less than ideal for molecular
problems. A generalization of geometry is topology, which is a more appropriate
tool for describing quantum mechanical objects such as molecules. Topology is also
an efficient tool for extracting the essential information from complicated objects,
such as the large scale shape features of tertiary structures of proteins. The power of
topology to focus on the essential features of complex structures is exceptionally
useful when analyzing molecular shape. For both quantum mechanical and practical,
computational considerations, topology appears to be an ideal tool for molecular
shape analysis.
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Research efforts to develop rigorous molecular shape analysis methods based on
three-dimensional topology (which should never be confused with graph theory)
have a relatively short history. Nevertheless, the concept of molecular shape is
nearly as old as the concept of molecule. The importance of stereochemistry and
conformation analysis has led to an early recognition of the need for models of
three-dimensional molecular shapes, and there have been many studies on the sub-
ject. Most of these studies have been based on models of bond skeletons or space
filling models used as representatives of molecular shapes. This book, however, has
a different perspective and a different aim. Our goal is to introduce the reader to the
topological concepts and methods of precise shape characterization that, with the use
of computers, are applicable for direct, nonvisual description and analysis of general
molecular shapes. Systematic and rigorous analysis and characterization of shapes of
molecules are particularly important in computer-aided drug design and molecular
engineering, where the level of detail required often varies, depending on the actual
molecular problem. Consequently, special attention will be given to topological
methods suitable for the study of both the highly detailed and the crude, large scale
shape features of molecular systems, in particular, biologically important molecules
and macromolecules such as peptides and proteins. Whether applied to small or
large molecules, most of the techniques described here are based on some of the ele-
ments of topology, and the book provides a simple, pictorial introduction to all the
topological tools necessary for the subjects discussed. Since the book is aimed at a
wide audience, including advanced undergraduates, graduate students, nonspecialist
organic, physical and medicinal chemists, and research workers in various aspects of
QSAR, QShAR and pharmacological drug design, the mathematical description is
kept at a simple and easily comprehensible level. It is my hope that the reader will
acquire the (presumably addictive) habit of thinking about molecules and reactions
in topological terms, which may lead to further advances in exploiting the seemingly
unlimited potential of topological concepts, the vast collection of the available topo-
logical results, and the emerging topological computational techniques in chemistry.

The structure of this book reflects the author’s desire to bring the reader to an early
appreciation of the power of topology in chemistry. In Chapter 1, the concept of molec-
ular shape is discussed in terms of the conventional, intuitive ideas of stereochemistry.
Internuclear distances, symmetry and chirality give only a partial characterization of
molecular shape, and the fact that molecules are nonrigid, dynamic entities provides the
motivation to search for more general approaches to shape description. In Chapter 2, the
quantum chemical concept of molecular shape is reviewed briefly. Here the Heisenberg
uncertainty relation plays a prominent role by providing the theoretical basis for the
topological approach. A molecular body can be represented by a series of molecular
isodensity contours (MIDCQ’s) for the entire range of chemically relevant electron den-
sity values. A systematic treatment of the quantum chemical information leads to a
novel topological description of bonding in molecules: the Density Domain Approach
(DDA) to chemical bonding. The topological density domains are the basis for a quan-
tum chemical definition and generalization of the functional groups of chemistry.

Chapter 3 is entitled: “Applied Topology: The Mathematics of the Essential”.
This is a brief, mostly pictorial review of the most basic concepts of topology rele-
vant to the problem of molecular shape, relying on many figures and illustrations
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and avoiding most of the formal mathematics. The precise, mathematical formula-
tion of the molecular shape analysis problem is discussed in detail in the original ref-
erences, listed at the end of the book.

In Chapter 4, those physical properties and molecular models are discussed which
may serve as the representatives of a formal molecular body and formal molecular
surfaces, including shape representations of macromolecules and protein folding.
These properties and models include charge density, electrostatic potential, Van der
Waals (fused spheres) models, solvent accessible surfaces, as well as ribbon and
polyhedral representations of the large scale shape features of biopolymers. The
associated contour surfaces serve as the basis for the introduction of the topological
shape groups, shape codes, shape graphs, and shape matrices, as well as the shape
globe invariance maps for quantitative molecular shape comparisons in Chapter 5.
Also in Chapter 5, topological approaches are described for the computer representa-
tion of folding patterns and chirality properties of chain molecules.

In Chapter 6, the merits of visual, computer graphics methods and nonvisual,
algorithmic shape analysis methods are compared, and the principle of Geometrical
Similarity as Topological Equivalence (GSTE) as well as the Resolution Based Sim-
ilarity Measures (RBSM) are reviewed. Topological approaches to the quantification
of molecular similarity and complementarity are presented, formulated as molecular
shape similarity measures and shape complementarity measures, respectively. In
Chapter 7, special methods and computer algorithms are described for molecular
similarity analysis, designed for applications in Quantitative Shape-Activity Rela-
tions (QShAR) studies. Computational methods are proposed for main effect and
multiple side effect analysis by shape correlations, with applications in drug design,
and molecular engineering. In the final section, Chapter 8, the concepts of approxi-
mate symmetry and various generalizations of symmetry are discussed, including
symmetry deficiency measures, syntopy and symmorphy.

I am most grateful for the help I have received from many colleagues, students,
and friends in writing this book. In particular, I thank the contributions of former
and current members of the Mathematical Chemistry Research Unit of the Univer-
sity of Saskatchewan, Drs. S. Arimoto, G.A. Arteca, 1. Balint, J.Y. Choi, G. Heal, V,
Jammal, X. Luo, J. Pipek, C. Soteros, K. Taylor, and P.D. Walker. Special thanks
are due for H. Acton, G. Gates, R. Gerwing, M. Kudel, M. Mawer, and Dr. P.D.
Walker for careful reading of various versions of the manuscript. The financial help
received from the Natural Sciences and Engineering Research Council of Canada
(NSERC) in the form of operating and strategic grants for the development of some
of the shape analysis methods reported, and the support received from The Upjohn
Company are gratefully acknowledged.

Paul G. Mezey
Saskatoon
June 1993
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INTRODUCTION

How would the world appear to you if you were of the size of a water molecule?
Let us take an imaginary journey in that world. Imagine that you are a molecule and
you are living among other molecules. Think of these molecules as intelligent beings;
they are able to detect each other, to describe each other, they understand
mathematics and quantum mechanics, and in general, they know well the physics and
chemistry governing their behavior. Try to imagine what concepts and methods
these intelligent molecules would use to describe each other, to characterize their
shapes, their conformational changes, and their reactions. As macroscopic human
beings, we might find it difficult to understand the mindset of our microscopic
molecular friends. But there are some clues, and in this book an attempt will be
made to give an introduction to a subject that intelligent molecules themselves could
find important: the topological characterization of molecular shape.

Back to our real world, for an understanding of molecular properties we must
use our concepts and the accumulated information obtained by macroscopic means.
Throughout the development of chemistry, pictorial models of molecules have
guided chemical intuition and have often led to important discoveries. The ways in
which chemists imagine molecules have a major impact on our understanding of
molecular behavior and chemical reactions. It is not surprising that macroscopic
analogies are often used, and one is tempted to imagine molecules as microscopic
"bodies", with well defined size and shape properties not fundamentally different
from those of objects we encounter in our everyday life. However, we must be
cautious when using such analogies. Our everyday experiences with macroscopic
bodies are well described by classical mechanics; therefore, macroscopic analogies
are essentially classical mechanical. By contrast, molecules cannot be described by
classical mechanics alone. Quantum mechanics plays a much more important role on
the microscopic, molecular level, than on the macroscopic level of ordinary objects
we can easily perceive with our senses. During the course of human evolution there
has been no apparent need for direct observation of microscopic, quantum
mechanical phenomena; accordingly, human senses, hence also human imagination,
are poorly prepared to deal with some of the quantum mechanical properties of
molecules. We are prone to think and reason using macroscopic examples which are,
by their nature, classical mechanical and in several aspects alien to the microscopic
world of molecules. Consequently, in chemistry, macroscopic analogies may be very
misleading. Although some analogies may work well, perhaps even too well in many
instances, it is much too easy to attempt to stretch the application of such analogies
beyond their range of validity. If a macroscopic analogy is proven to be useful in the
interpretation of some results, then it is tempting to disregard the fact that it is only
an analogy and to use it as if it were an exact representation of reality. In particular,

1



2 SHAPE IN CHEMISTRY

Figure 1.1 A ball and stick model of the allyl alcohol molecule is shown. The formal bonding
pattern is well recognizable in such "skeletal” models, however, the actual three-dimensional shape of
the fuzzy "body"” of the molecular electron density, ultimately responsible for chemical bonding, is not

well represented.

the concept of molecular shape is not a trivial one; it cannot be represented exactly
by classical, macroscopic models, and it must reflect the microscopic, quantum
mechanical nature of molecules.

Most of chemistry is taught using chemical formulas and structural diagrams
expressed in terms of chemical bonds. These bonds are usually drawn as lines, and
molecular shapes are often represented by stereochemical, structural formulas that
are line drawings, with indications of the three-dimensional directions of chemical
bonds. From the early days of stereochemistry [1-3], such sterecchemical bond
diagrams have proved extremely successful in explaining isomerism and the
structural properties of a wide variety of molecules [4-16], molecular optical activity
and chirality relations [17-58,59-72], as well as more general symmetry properties
of molecules [73-82]. Important advances have been made in the study of
stereochemical changes and have lead to systematic approaches to conformation
analysis [83]. Simple stereochemical bond diagrams and "ball and stick” models,
however, do not convey the actual space requirements of molecules and functional
groups. By contrast, various space filling models [841 of partially fused spheres,
Van der Waals surfaces [85-88], or electron density contour surfaces [89-92] provide
a fundamentally different and more realistic picture of molecular shapes.

The introduction of Valence Bond theory has motivated the search for
structural regularities that can be interpreted by models of local electronic features,
such as the powerful model of Valence Shell Electron Pair Repulsion [93,94]
theory. Alternative approaches, based on Molecular Orbital theory, have led to
the discovery of important rules, such as the Woodward-Hoffmann orbital symmetry
rules [95]} and the frontier orbital approach of Fukui [96,97]. As a result of these
advances and the spectacular successes of ab initic computations on molecular
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Figure I.2 The three-dimensional, fuzzy "body" of the charge density distribution of allyl alcohol
can be represented by a series of "nested” molecular isodensity contours (MIDCO's). Along each
MIDCO the electronic density is a constant value. Three such MIDCO's are shown for the constant
electron density values of 0.2, 0.1, and 0.01 (in atomic units), respectively. A contour surface of
lower density encloses surfaces of higher density. These MIDCO's are analogous to a series of
Russian wooden dolls, each larger doll enclosing a smaller one. These ab initio MIDCO'’s have been
calculated for the minimum energy conformation of allyl alcchol using a 6-31G* basis set.

structures, the concept of molecular shape has become a truly three-dimensional,
although still primarily geomertrical notion. This has marked an important stage in
the evolution of the concept of molecular shape, that can be attributed in part to a
more universal appreciation of the Molecular Orbital approach [98], as well as to a
need for a better understanding of biochemical processes [99].

An example of a skeletal ball and stick model of the allyl alcohol molecule is
shown in Figure [.1. Whereas the formal bonding pattern is well recognizable in
the Figure, the actual shape of the molecular electron density distribution ultimately
responsible for bonding is very different. In Figure 1.2, the three-dimensional
charge density distribution of allyl alcohol is represented by a series of molecular
isodensity contours (MIDCO's) that are formal surfaces along which the electron
density is constant. Three such "nested” MIDCQO's are shown in Figure 1.2, for
the arbitrarily chosen constant electron density values of 0.2, 0.1, and 0.01 a.u.
(atomic units), respectively, where the contour surfaces of lower density enclose
those of higher density. The shape of the formal molecular body can be represented
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by an infinite family of such nested MIDCO's, for all possible electron density
values. A series of nested MIDCO's is analogous to a series of Russian wooden
dolls, each larger doll enclosing a smaller one.

The fact that geometrical approaches are not ideally suited to represent the
fuzzy nature of quantum chemical electron distributions and the inherent, quantum
mechanical uncertainties of nuclear arrangements has not made yet a major impact
on the choice of the most commonly used chemical models. Chemical thinking is
still dominated by the traditional structural formulas of bond skeletons, and the
three-dimensional, formal molecular bodies receive less attention than they
deserve. In most molecular beauty contests the jury of chemists still pays more
attention to the X-ray picture of the skeleton of the contestants than to the shape of
their three-dimensional bodies. Molecules themselves ignore human bias and appear
to have more refined taste: molecular recognition and the interactions of reacting
molecules are dominated by the three-dimensional shape features of the bodies of
their electronic charge density distributions. In the conventional interpretation of
chemistry, the shapes of these fuzzy electron distributions are still much too often
relegated to play a role that appears only secondary to the simpler but less revealing
skeletons of structural bond formulas. The fact that the peripheral regions of fuzzy
bodies of electronic charge densities have a dominant role in molecular interactions
is well understood, but it has not yet fully transformed chemical thinking.

The three-dimensional shape of this fuzzy body of the electronic distribution
has many important features not revealed by the simple, skeletal ball and stick
model. One of the most important tasks of topological shape analysis of molecules is
the precise analysis and concise description of the three-dimensional electronic
charge distributions, such as that illustrated by the selected MIDCO's of allyl
alcohol in Figure [.2. Various methods and computational techniques of such
topological shape analyses are discussed in detail in this book.

The evolution of the concept of molecular shape has been mirrored by a
parallel evolution of chemical models and representations in chemistry [100],
ranging from simple, classical analogies through advanced models of
stereochemistry, conformational analysis and MO theoretical descriptions of
molecules to the most recent approaches [101-108]. Early mathematical models used
for the description of molecules and chemical reactions all had their roots in
classical-mechanical, geometrical concepts. Early stereochemistry was formulated in
terms of three dimensional (3D) structural formulas, where chemical bonds of
precise directions in 3D space have accounted for molecular structures. Chemical
reactions have been perceived as processes in which such bonds are created and
destroyed. Again, geometrical concepts, predominantly lines with well defined
orientations, have formed the basis of modeling chemical reactions. Such models
have been of great utility, although they have also led to an unnecessarily
oversimplified perception of chemical bonding. The spectacular development of
quantum chemistry and the major advances in the computation of both ab inirio and
semi-empirical MO wavefunctions have initiated a critical re-evaluation of some
of the fundamental concepts of chemistry, such as chemical bonding, stereochemical
properties of molecules, and molecular shape. All these properties are determined by
fuzzy, quantum mechanical electron distributions, where the classical, geometrical
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concept of a precise position of an electron within a molecule has become
meaningless. To a lesser degree, nuclear positions are also subject to quantum
mechanical fuzziness within a molecule, and this has important consequences for
stereochemistry. In order to describe this inherent fuzziness, it is natural to relax the
classical, geometrical models and replace them with models which can account for
the nongeometrical nature of electronic and nuclear positions within molecules. One
such model, based on a quantum mechanically motivated topological approach, has
been proposed within the framework of the Chemical Topology Program (CTP), or
in short, the Topology Program (TP) [103-112]. This program is a general
framework for a family of concerted research projects suggested for a topological
description of molecules and chemical reactions. The two main components of the
Topology Program are Molecular Tepology, MT, [103,106-112], and Reaction
Topology, RT, {104-107,111].

Topology is a branch of modern mathematics [113-122] that appears ideally
suited for a detailed description of molecules, conformational changes, and chemical
reactions. Topology deals with the continuity of functions, the connectedness of
objects, and with shape, both in a concrete, three-dimensional setting and in a more
abstract sense. Topologists are often teased for being unable to distinguish the
doughnut from the coffee-cup, since both objects have just one hole, and if both
objects are made of soft, malleable material, then each can be deformed continuously
and reversibly into the other, without tearing or gluing any of their parts.
Throughout these reversible deformations, continuity is preserved and,
consequently, the two objects are topologically equivalent. Topological techniques
are suitable for describing aspects of shape much more detailed than the mere
presence of holes, in fact, any finest detail of molecular shape can be analysed within
a rigorous topological framework.

The development of methods and computational techniques of the Topology
Program described in this book has been based on the physical properties of
molecules. This has required the introduction of new topological approaches for
shape analysis. Those readers who are mathematically inclined may note that these
new approaches are different from the methods used for the more general, abstract
shape problem of topology [123-154], where the emphasis is placed on general
techniques for the characterization of objects which may have pathological local
behavior. In particular, the algebraic groups of the molecular Shape Group Method
{(SGM) have been specifically designed for the class of (nonpathological) shape
problems of molecular quantum mechanics [155-158], and should not be confused
with the abstract shape groups [130,143] developed from Borsuk's topological
shape theory [123-127].

Topology is one of the most loosely used words in the contemporary chemical
literature and is often confused with graph theory [159]. Whereas topology typically
deals with continuum problems, graph theory typically deals with discrete problems.
Topology describes continucus shapes of objects such as three-dimensional bodies
and their changes, whereas graph theory is a powerful tool for representing binary,
that is, yes - no type relations, among various entities. Of course, many of the
discrete results of a three-dimensional topological shape analysis can be represented
by graph theoretical means.
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Topology provides unifying links among the most diverse branches of
mathematics, but it is only in the recent past that some of the elementary results of
differential topology and algebraic topology have found applications within
chemistry. In view of the exceptionally strong parallels between the available
repertoire of topological methods and the physical nature of molecules and reactions,
it is somewhat surprising that the discovery of the true range of powers of topology
in chemical applications has occurred only recently. In the context of this book,
topology provides a particularly suitable mathematical approach to molecular shape
problems within both quantum chemistry and molecular modeling. In fact, topology
provides a link between these two sub-disciplines of modern chemistry. These
connections and the general applicability of topology in chemical shape analysis are
expected to provide many new insights as well as new challenges.

Although the nongeometrical nature of quantum chemistry is widely
recognized, the classical, geometrical viewpoint still seems to overshadow somewhat
the information gained from quantum chemistry. The emphasis is often placed on
those aspects of quantum chemistry which can be interpreted easily in terms of
conventional, geometrical concepts, such as lines of chemical bonds between atom
pairs. The dominant means of communicating chemical ideas has remained the
concept of chemical bonds thought of as lines, even after various diffraction
experiments and computational quantum chemistry have clearly established the facts
that

{  molecular electron distributions are rather diffuse and somewhat fuzzy

entities, and

2. only a small fraction of the full 3D information can be represented by

oriented, geometrical lines.
In the recent past, a considerable research effort has been focused on searching for
quantum chemical models that are expected to reconcile quantum mechanics with
most of the traditional, classical and geometrical concepts of chemistry. These
efforts have been somewhat at the expense of the study of the global, delocalized
shape aspects of 3D bodies of actual electron distributions.

Of course, the stereochemical importance of 3D models of formal molecular
bodies of electron distributions was recognized rather early, but for long these
electron distributions have been viewed more or less as the dressing on a 3D
structural skeleton of bonds, and the mathematical tools (precisely defined
geometrical surfaces and bodies) have remained classical and geometrical.
Mechanically constructed 3D "space filling" molecular models, capable of formal
single bond rotations, represented an improvement, but they too could provide only
a fraction of the full, 3D information on real molecules in an easily comprehensible
manner. Perhaps a more significant limitation was the fact that even the most
versatile of these mechanical models could be modified and readjusted only in very
restricted ways. For example, most mechanical models could not account for bond
stretching while preserving the continuity of a formal molecular surface. Modeling
chemical reactions, a problem considerably more complicated than modeling
chemical species, has faced similar difficulties on a larger scale.

The advances in computer hardware and in the methods of molecular graphics
have led to a much better appreciation and to a variety of applications of the new
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knowledge, concepts, and insights gained from quantum chemistry. One of the
important developments is a true breakthrough in the computer modeling of
molecules and chemical reactions. It is now a routine task to generate, modify, and
manipulate virtually without limitation the computer displays of 3D molecular
models. All these can be done with an ease and speed that allows a quick
comprehension and an effortless understanding of the wealth of detail of shapes of
real, 3D molecules. Computer-based molecular modeling has revolutionized the
treatment and analysis of 3D molecular information. This resulted in a new
appreciation and a better understanding of stereochemistry, both on a conceptual
level and on the level of applications to important molecular problems. Instead of
thinking in terms of one-dimensional entities, such as lines representing chemical
bonds, the modern approaches to interpreting molecular properties increasingly rely
on computer models of 2D molecular contour surfaces and 3D molecular bodies.
This development may be more natural than it seems for reasons that go far beyond
chemistry. Before the evolution of the capacity for abstract thinking needed for
two-dimensional representations in planar drawings and writing, prehistoric human
perception and imagination were probably dominated by three-dimensional shape
properties. For a long time following the introduction of writing, the primary aid
in learning and understanding became the two-dimensional, printed paper. This has
led to a severe bias in favor of 2D representations and thought processes involving
2D images. The human skills for 2D thinking, still dominating our education,
have developed in part at the expense of practicing 3D imagination. But, with the
advent of computer modeling, our innate capacity for three-dimensional thinking
and understanding received a well deserved boost. Indeed, by shifting the emphasis
from 1D bonds to 2D contour surfaces and 3D molecular bodies, a "dimension
revolution" has occurred in chemical understanding.

The new computer capabilities of treating 3D molecular models require a new
set of mathematical tools for their analysis. Geometry, in particular differential
geometry, is the natural tool for the detailed description of precisely defined, smooth
surfaces and bodies. This tool is very powerful as long as the molecular model used
is defined in terms of classical mechanical analogies, for example, by assuming the
existence of a molecular surface, and an associated molecular body with a well
defined boundary. Van der Waals surfaces (VDWS's) are models based on the above
assumption and they are exceptionally useful tools for the approximate
representation of molecules, particularly macromolecules. However, real molecules
obey the laws of quantum mechanics and are subject to the Heisenberg uncertainty
relation. Consequently, in the strict sense, one has no unique, precise, physical
definition for the nuclear configuration of a molecule, neither for molecular
surfaces, nor for molecular bodies. No molecule exists, not even for an instant, with
any precise nuclear geometry. Hence, in the strict sense, nuclear configuration is a
nonphysical concept. Instead, an infinite family of formal nuclear conformations
(that is, an infinite family of geometrical models) within a neighborhood of a
potential minimum can be considered as representing a molecule. In a rigorous
description, only some of the essential, common features of the whole family of
possible geometrical models can be regarded as an expression of physical reality.
The common, invariant features within any family of geometrical models are usually
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topological properties, called topological invariants and hence, it is natural to use
topological techniques for their analysis.

If an object has a well-defined geometry, then we shall classify it as a
geometrical object. If an object does not have a precisely defined geometry, but it
preserves some topological features, then we shall classify it as a topological object.
In this context, it is important to keep in mind that an object can have well-defined
topology even if it does not have a well-defined geometry. For example, a
macroscopic, cut diamond is a geometrical object to a very good approximation: its
geometrical descriptors can change only very little without changing the identity of
the diamond, for example, by breaking it into two pieces. By contrast, a cat can
change its geometrical parameters to a great extent while staying the same cat and
preserving its essential topological features. Consequently, a cat is a topological
object. These examples also illustrate the role of the level of resolution. If one views
the diamond on a microscopic, atomic level of high resolution, then its geometrical
features become blurred due to lattice vibrations, and also due to the Heisenberg
relation. On this level of resolution the diamond can alsc be regarded as a
topological object.

Molecular topology, the primary aspect of the topology program, is based on
the following, fundamental principle: molecules are not geometrical but topological
objects [106-108]. Molecular topology provides a general framework for molecular
shape analysis that incorporates both the static and the dynamic aspects of molecular
shape. In a general process of molecular transformation, such as a conformational
rearrangement or a chemical reaction, many shape features of a molecule may
change but some topological shape properties do remain invariant. A topological,
dynamic shape analysis deals with both the variable and the preserved aspects of
shape. Both the static and dynamic aspects of shape can be formulated in terms of
topological shape invariants (the topological features which do not change in minor
conformational changes) and in terms of the families of nuclear arrangements
(configuration space domains) within which these topological shape invariants are
preserved. The topological shape invariants and the corresponding families of
nuclear arrangements (conformational domains) can be characterized topologically
and algebraically, leading to simple algorithms and computer programs for
nonvisual, dynamic shape analysis.

Molecular shape analysis has assumed an increasingly important role in
biochemical research as well as in pharmaceutical drug design [160-189].
Biochemical applications of computational chemistry, in particular, the large variety
of available computer program packages for molecular modeling have added a new
dimension to biochemistry. In addition to in vive and in vitro experiments, it is
now possible to carry out important studies "in computo”, that is, by computer
modeling, an aspect of modern biochemical research that may reduce (but not
eliminate) the reliance on animal experiments. Medicinal chemistry, pharmacology,
the study of the main and side-effects of potential pharmaceuticals, toxicology,
environmental chemistry, pesticide and herbicide research for the development of
new agricultural chemicals as well as polymer chemistry, supramolecular chemistry,
the research efforts for the development of new industrial materials, are all expected
to benefit from these advances.
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Molecular topology [155-158,190-199] presents a systematic framework for
general shape analysis methods applicable, in principle, to all molecules. The same
framework is also the basis for special shape analysis methods designed to exploit the
typical features of some special, distinguished molecular families, such as the folding
properties of polypeptides, proteins, and other chain biomolecules. Molecular
topology and the associated topological shape analysis approaches form the basis of
the present book.



CHAPTER
1

THE INTUITIVE CONCEPT OF MOLECULAR
SHAPE

1.1 Shape in Stereochemistry

1.2 Chirality and Molecular Shape

1.3 Point Symmetry Groups and Framework Groups

1.4 Dynamic Shape Properties: Conformational Freedom
and Electronic Excitation

The idea, which seems so obvious today, that the stoichiometry of atomic
constitution of molecules alone is not sufficient to determine the identity of
molecules, and that the three-dimensional shape of atomic arrangements are of
decisive importance in chemistry, has not taken hold easily among chemists. The
existence of isomerism [200], three-dimensional stereochemistry [1-3], and
conformational diversity (for a review, see [83]) were revolutionary ideas when first
proposed and were fiercely resisted by many in the contemporary chemistry
community. An excellent summary of the early development of stereochemistry can
be found in the historical account of O. B. Ramsay [13]. It is of some interest to
note that the first major hurdle chemical thinking had to clear in developing a
realistic molecular concept was the idea that molecules have three-dimensional shape
properties similar to those of macroscopic bodies. Yet, the newer quantum chemical
evidence appears to force us to clear that same hurdle again, this time from the
opposite direction (and arguably at a somewhat higher, more difficult level) as the
restrictions on the validity of macroscopic shape analogies are becoming more
evident. The shape features of molecules are different from those of macroscopic
bodies in many important aspects. Macroscopic analogies served chemists well on the
first occasion, but today, excessive reliance upon them appears to hinder and restrict
our understanding of the true shape properties of molecules.

1.1 Shape in Stereochemistry

Within the commonly accepted terminology of stereochemistry, molecular shape is
understood as being the three-dimensional arrangement of formal chemical bonds.
Most approaches toward the visualization of stereochemical arrangements of atoms
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within a molecule use ball-and-stick models and similar representations, where the
emphasis is placed on the bonding pattern, that is, on the way atoms appear linked to
one another, eventually forming a molecule. There are good reasons for the success
of this approach. In most instances, the individual steps in the synthesis of larger
molecules involve the formation or destruction of just one or two formal chemical
bonds and highly concerted, simultanecus formation or destruction of several formal
bonds is more the exception than the rule. It is understood that a change in the
bonding pattern within a local neighborhood of a molecule may change the electron
distribution throughout the whole molecule, though perhaps only slightly. Yet, the
qualitative aspects of the presence or the lack of a formal chemical bond between a
given atom pair some distance away from the local neighborhood are not expected to
change. Some heats of formations can be approximated fairly well by assuming
additivity of formal bond energies. Local hybridization schemes account reasonably
well for some of the local shape features of directed chemical bonds. Furthermore,
the simple hybridization model can be much improved by considering the usual
space requirements of lone electron pairs and bonding pairs within the Valence Shell
Electron Pair Repulsicn (VSEPR) method [93,94], while still preserving the essential
aspects of the stereochemical model of bonds between atom pairs. Hence, the concept
of chemical bonds, that is, a formal skeletal model for molecular shape, is an
extremely successful one.

However, the need for a better description of the formal molecular body, the
need to account for molecular velume effects, the necessity to describe finer details
of changes in electron distributions during conformational changes and chemical
reactions, and the requirement of a more precise evaluation of molecular similarity
are the factors which have motivated chemists to move beyond the stereochemical
skeletal shape concept.

Before the computer age, models suitable for representing formal molecular
bodies and velume effects had to be constructed mechanically. The early
space-filling models of molecules [84] have provided a better perspective on
chemistry and, to the surprise of many chemists, a realization of how compact and
closely packed most molecules are. These models have enabled chemists to appreciate
the importance of steric hindrance and nonbonding interactions. The concepts of
ring strain, rotational barrier, neighbor functional group repulsion interactions, and
steric requirements, some of which had often been dismissed as merely speculative,
have gradually gained acceptance, due, in part, to the introduction and success of
space-filling models. Mechanically constructed molecular models had important
roles in chemical discoveries, one prominent example is the insightful use of simple
models of nucleotide bases, leading to the discovery of the double helix.

The stereochemical shape concept covers a wide range of possible resolutions,
from the details of electron density distributions between pairs of nuclei in relatively
small molecules to the structural organization of the tertiary structure of proteins
[201-203], the architecture of supramolecular assemblies [204-230], the problems of
shape selectivity in reactions of large molecules [231-233], and the intriguing shape
features of self-replicating chemical systems [234-239]. In the following chapters we
shall discuss various topological shape analysis techniques, suitable for the relevant
level of resolution.
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1.2 Chirality and Molecular Shape

An object is chiral in the ordinary three-dimensional space if, by translations and
rotations, it cannot be superimposed on its mirror image. Achiral objects are
superimposable on their mirror images. By superimposition we mean a perfect
overlap, that is, we require that the superimposed objects are indistinguishable. The
word "chirality”, meaning "handedness”, is of Greek origin; cheir, or cheiros is
Greek for "hand”. The human hand is an obvious example of a chiral object.
Chirality properties of molecules have implications in a wide variety of chemical
fields; these range from the basic quantum mechanical properties of simple
molecular systems of a few nuclei and electrons to molecular optical activity,
asymmetric synthesis, the folding pattern of proteins, and the topological chirality
properties of certain catenanes and supramolecular structures. Chirality is an
important shape property, in both the geometrical and the topological sense.
Chirality has been the subject of fundamental studies in various branches of
mathematics. In particular, new developments in a branch of topology, called knot
theory, as well as in various branches of discrete mathematics, have led to a novel
perspective on the topological aspects of chirality and to some novel applications to
problems of molecular chirality. Some of the mathematical advances have helped in
the interpretation of many new concepts in theoretical chemistry and mathematical
chemistry. The theoretical advances have motivated novel synthetic approaches
leading to new molecules of exceptional structural properties. Some of the new
developments in molecular chirality have been truly fundamental to the theoretical
understanding and to the actual practice of many aspects of chemistry.

Chirality is one of the shape features of molecules that has been recognized
early as having important chemical consequences [17-58]. Although in the strict
sense, mirror images of chiral molecules have equivalent intrinsic shape features and
they differ only in the way they are embedded in the three-dimensional space,
nonetheless, we shall regard three-dimensional shape in a generalized sense by
considering both intrinsic shape features and embedding properties. Ordinary
chirality in three dimensions is a manifestation of the lack of certain point symmetry
elements (i.e., the lack of reflection planes and the lack of Sy type symmetry
elements for k>0).

Molecular chirality is an energy-dependent property. If sufficient energy is
available, then any chiral molecule can be transformed into its mirror image; if by
no other means, then by a complete dissociation into atoms followed by a reassembly
of the mirror image of the original molecule. What makes chirality properties
special in comparison with other symmetry properties is the fact that chirality is
defined by the lack of certain symmetry elements. By infinitesimal distortions of a
general, nonplanar molecule, any point symmetry element can be eliminated. Hence,
a change of point symmetry properties of molecules does not in general require
much energy. In contrast, it usually takes rather substantial, noninfinitesimal
distortions - and hence, also substantial energy - to convert a chiral molecule into
an achiral molecule by attaining a symmetry element of a mirror plane or that of a
suitable Spy axis. Consequently, chirality is a more stable molecular property than
the point symmetry group of a given formal nuclear arrangement.
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Chirality appears on many levels in chemistry. The simplest of these is
exemplified by the case of a carbon atom with four substituents, where no two
substituents are mirror images of each other. Such carbon atoms are called
chirogenic [62]. Note that this condition differs from the more commonly applied
condition of having four different substituents in the usual Cahn-Ingold-Prelog
(CIP) chirality classification scheme [19]. If two substituents R and S are chiral
mirror images, then the conventional CIP chirality condition is satisfied for the
achiral methane derivative CHFRS (with Fluorine F and the two chiral groups R
and S as substituents) or for a similar local molecular moiety, a disadvantage when
applying the mathematical techniques of chirality for disentangling the local
contributions to the overall chirality of a molecule [62]. The chirogenicity condition
[62] overcomes some of these difficulties.

Chirality also appears on a somewhat higher level, for example, in molecules
which contain no such formal centers of chirality but where the molecule as a whole
is chiral. An example of this case is the molecule of hexahelicene, containing a spiral
arrangement of six fused aromatic rings. Beyond the local chirality of individual
amino acids in a protein, chirality is also exhibited on a higher level by the helices,
the tertiary structure, and the folding pattern of most protein molecules [201-203].
Even if one looks at proteins at a low resolution and regards their helical segments
as mere rods of some thickness while ignoring the (chiral) internal structures of
these helices, most proteins still appear chiral due to the chirality of their tertiary
structures.

If the allowed motions, translations, and rotations are restricted to a plane, it
then becomes meaningful to consider two-dimensional chirality [37,46-54].
Molecules of planar nuclear arrangements adsorbed on a planar surface of a metal
catalyst may be regarded as chemical examples manifesting two-dimensional
chirality. If only those motions are allowed which keep the molecular plane parallel
with the metal surface, then two molecules, identical in three dimensions, may
exhibit planar chirality along the surface. For example, trifluoroethene (achiral in
three dimensions) has two possible adsorbed arrangements along a plane: two mirror
images which are not superimposable if only those motions (planar translations and
rotations) are allowed which preserve their molecular planes parallel with the metal
surface. The nuclear framework of the equilibrium configuration of trifluorcethene
exhibits two-dimensional chirality.

In both three and two dimensions, chirality is a discrete property: a rigid
object is either chiral or achiral. However, a chiral object with a shape that is only
marginaltly different from that of an achiral object may be regarded as being "less
chiral" than another chiral object that has very different shape from that of any
achiral object. Consequently, it is possible to consider the degree of chirality, that
is, it is possible to quantify chirality by numerical chirality measures. Buda, Auf
der Heyde, and Mislow have distinguished two types of chirality measures: those
which compare a chiral object to some achiral reference object, and those which
compare a chiral object to its mirror image [58]. Measures of the former type
involve a choice of reference object; a similar approach of comparing objects to
some chosen chiral reference object has been advocated by Rassat [47]. Measures of
the second type include those described by Kitaigorodskii [46], Gilat [48-50], and
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Mislow and co-workers [51-53,57,58]. There are many ways of measuring the
geometry differences between a chiral object and its mirror image. One method,
introduced by Kitaigorodskii [46], is based on the volume (or area in two
dimensions) of the maximum overlap between an object and its mirror image. The
ratio q of the volume of the maximum overlap to the volume of the object is one
for an achiral object and a smaller value for a chiral object. (Here we assume that
the object is nowhere infinitely thin, such as a chiral line segment attached by one
end to a ball. Although the entire object is chiral in 3D, the infinitely thin line
segment has zero volume, consequently, unless we exclude such pathological
infinitely thin cases, gq=1 is possible for a chiral object.) A smaller ratio q clearly
belongs to an object of more pronounced chirality, consequently, the quantity (1-q)
may serve as a formal measure of chirality. A recent important advance has been
made by Mislow and co-workers who determined the most chiral constrained and
unconstrained simplexes in two dimensions (the most chiral triangles) according to
the above criterion [51-53,58].

For more general objects, several chirality measures have been proposed based
on the concepts of maximal achiral subsets and minimum achiral supersets [240]. A
maximal achiral subset of an object is a subset that cannot be increased within the
object without becoming chiral, and a minimal achiral superset of an object cannot
be decreased while containing the object and staying achiral. Note that for some
objects neither the maximal achiral subset nor the minimal achiral superset is
necessarily unique, and their collection gives a fairly detailed chirality
characterization [240], for example, by measuring the deviation of their volumes
from that of the original object and from one another.

An alternative approach is based on the Hausdorff distance, a formal distance
reflecting the differences between two objects [241]. The Hausdorff distance h{A,B)
between two sets A and B is the smallest value r such that each ball of radius r
centered at any point of either set contains at least one point of the other set. For
example, the Hausdorff distance between two superimposed molecular contour
surfaces is the smallest r value such that any point on either contour surface has at
least one point of the other contour surface within a distance r. The Hausdorff
distance h(A,B) is zero if and only if the two sets are the same, A=B. The
Hausdorff distance is applicable to measure the deviation of a chiral nuclear
arrangement from some arbitrary reference arrangement, as proposed by Rassat
[47]. According to the approach of Mislow and co-workers, the Hausdorff distance
between the object and the optimally overlapping mirror image provides a chirality
measure of the second type [58,242]. Mislow and Buda determined the most chiral
constrained and unconstrained simplexes in two and three dimensions (the most
chiral triangles and tetrahedra) according to the Hausdorff criterion [242].

The chirality quantification technique proposed by Harary and Mezey [54,55] is
motivated by the Resolution Based Similarity Measure (RBSM) approach used in
more general molecular similarity analysis {243]. This method does not rely on a
single reference object. Instead, it characterizes shape on any desired finite level of
resolution by considering various A(J,n)} parts of square lattices, called latrice
animals or P(G,n) parts of cubic lattices called polycubes which can be inscribed
within the two- or three-dimensional objects J or G, respectively. In the above
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notation, n is the number of lattice cells in A(J,n) or P(G,n), and A{J,n) or
P(G,n) is classified as "interior filling" if no animal or polycube of the same lattice
cell size and n+1 cells fits within the object J or G, respectively. Clearly,
decreasing the cell size (hence, eventually increasing n) is equivalent to observing
the object J or G at a higher level of resolution, The chirality of the interior
filling lattice animals or polycubes can be tested by algebraic means for any finite
cell number n. The chirality index ng of the object J or G is defined as the
smallest cell number n at and above which all interior filling animals or polycubes
are chiral.

The concept of topological chirality is best illustrated by chain molecules that
may form knotted loops or chain links, such as some DNA fragments or some
catenanes, respectively. Some of the types of topological molecular chirality can be
characterized by methods of knot theory, an important branch of topclogy. Knots
and links may undergo many geometrical changes without changing their
"knottedness”, (e.g., without changing their topology and fundamental embedding
properties within the three-dimensional space) [59-72]. As long as the string of the
knot or link is not cut, all possible geometrical rearrangements of a given knot or
link lead to an equivalent knot or link, respectively. In spite of this freedom in
motions, many (in fact most) knots are chiral: these topologically allowed motions
are not sufficient to bring the knot or link into perfect superposition with its mirror
image. That is, as long as no bonds are broken, the topologically chiral molecule
remains chiral. By interpreting the concept of conformational change in a broad
sense as any molecular motion preserving formal chemical bonds, all conformations
of a topologically chiral molecule preserve chirality. This freedom in topological
chirality is in contrast with a more common occurrence of molecular chirality
arising at formal chiral carbon centers, where not all motions preserving the formal
bonding pattern preserve chirality. It is possible to force a chiral pyramidal nitrogen
center through a planar bond arrangement converting the molecule to its mirror
image while preserving the formal bonding pattern between the nitrogen atom and
its substituents. Of course, there is still an energy constraint. For example,
tetrahedral-to-planar deformations at carbon centers require very high energies,
comparable to that required for breaking bonds in a topologically chiral molecule.
At all levels, molecular chirality is a function of the available energy.

Whereas some molecules themselves form knots, such as various DNA
segments or certain skillfully synthesized chain molecules [59-72], techniques have
also been proposed for representing some of the stereochemical properties of
arbitrary molecules by knots [62], simply by using knot theory to characterize the
space surrounding the molecule. By regarding the molecule as a sculpture, one may
think of this approach as characterizing the chirality of the hollow casting shell by a
knot [62]). If the molecule is chiral, so is its casting shell. Since various polynomial
invariants can be assigned to knots, the stereochemical properties can be described
by algebraic methods [244]. These polynomials can be generated independently of
the actual geometrical representation of the knot, that is, they depend only on
topological "knottedness" properties. Some of these polynomials, for example, the
Jones polynomial [244], are suitable to detect topological chirality, More details of
topological chirality and these intriguing polynomials are discussed in Chapter 3.
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1.3 Point Symmetry Groups and Framework Groups

Symmetry of molecules is one of the most easily recognizable molecular shape
characteristics, with important consequences for vibrational behavior, spectroscopic
properties, and product distribution in chemical reactions. In colloquial chemical
terminology, "molecular symmetry" usually means the point symmetry of a formal
geometrical arrangement of the nuclei. Point symmetry groups provide a concise
and mathematically precise description of the symmetries of the nuclear
frameworks.

The point symmetry groups of molecules represent obvious constraints on
molecular shapes. However, symmetry alone provides insufficient direct information
for a detailed characterization of the shape ot formal molecular bodies: two bodies
of the same symmetry may show great differences in their shapes. In fact, with the
exception of the spherical symmetry of an isolated atom, for a given symmetry there
exists a family of infinitely many possible shapes. Nevertheless, symmetry is a useful
tool in shape classification, and interrelations between the nuclear arrangement and
the electronic density provide simple rules for the symmetry of formal molecular
bodies and contour surfaces. For example, for a molecular species in its electronic
ground state, the point symmetry group of the nuclear arrangement is usually a
subgroup of the symmetry groups of the various isodensity contour surfaces. Here
each group is regarded as one of its subgroups.

In this book we shall place only limited emphasis on symmetry, since there is
little use of symmetry in the shape characterization of more complicated molecules
most of which have only trivial symmetry. The reader may find many excellent texts
on molecular symmetry in the literature (for a selection see references [73-79]).
Note, however, that deviations from a given symmetry and various symmetry
deficiency measures are important and more generally applicable tools for shape
characterization. These latter subjects are discussed in Chapter 8.

Whereas symmetry describes only a limited aspect of the shape of a molecule,
somewhat more shape information can be deduced from a generalization of
molecular point symmetry groups, often called framework groups. For each
nuclear arrangement, also referred to as nuclear configuration K, the framework
group can be specified by the corresponding point symmetry group, combined with
information on the location of individual nuclei with respect to the symmetry
elements of the configuration and the behavior of the nuclei under the symmetry
operations [245]. The information additional to the point symmetry group can also
be given by assigning a permutation operator P to each symmetry operator R of
the point group according to the following condition: if the permutation operator P
is applied after the symmetry operator R, then operator P rearranges all
indistinguishable nuclei back to their original arrangement [246]. In other words,
the effect of symmetry operator R on the nuclear configuration K is "undone”
by the permutation operator P :

PR K = K. (1.1)

The pairs (P,R) are elements of a group, often called the framework group of
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the nuclear configuration K. The product (Pg,R.) of group elements (Pg,Rg)
and (Pp,Rp) is defined as follows:

(PesRe) = (Pg,Rq) * (Pp,Rp) , (1.2)
where

Rc=Rg*Rp, (1.3)
and

Pc=Pg+Pp . (1.4)

Note that in two different molecules a given common point symmetry operator
R can be associated with two different permutation operators P and P’,
depending on the nuclear arrangements. Consequently, the framework groups do
contain more information on molecular shapes than point symmetry groups.

Whereas framework groups are more informative than point symmetry
groups, they are able to describe only a rather restricted aspect of molecular shape.
Alternative group theoretical methods, notably, the Shape Group Methods (SGM) of
molecular topology, are more suitable for a detailed shape characterization. The
shape groups will be discussed in Chapter 5 of this book.

1.4 Dynamic Shape Properties: Conformational Freedom and
Electronic Excitation

Molecular shape is not a static property. Even at absolute zero temperature,
molecules exhibit formal vibrational properties manifested in a probabilistic
distribution of nuclear positions in any polyatomic molecule. Rotational states of
molecules also influence their shapes. Motion is an inherent property of molecules;
consequently, molecular shapes cannot be described in detail without taking into
account the dynamic aspects of the motion of various parts of the molecule relative
to one another. Within a semiclassical approximation, the dynamic shape variations
during vibrations can be modeled by an infinite family of geometrical arrangements.
At higher temperatures i.e., if more energy is available, molecular vibrations may
cover a wider range of formal molecular geometries, hence a greater variety of
dynamic shapes occur. At even higher energies, sufficient for overcoming the
activation barriers to formal conformational rearrangements, a further increase in
the extent of shape variations can be found. Dynamic shape of molecules is an
energy-dependent property.

The conformational freedom of molecules at various temperatures implies a
temperature dependence of molecular shapes. For individual molecules, it is
meaningful to replace the formal temperature dependence by a dependence on
energy: dynamic molecular shape is a function of the energy content of the
molecule. For a "cold" molecule that has energy not much exceeding the lowest
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possible energy content as provided by the zero-point energies of the various
vibrational modes, only a limited sample of possible nuclear arrangements (nuclear
configurations) are accessible above some probability threshold; hence, only limited
shape variations are allowed. Consequently, the dynamic shape of the system is
strongly constrained. By contrast, if the molecular system has energy much above
the zero-point energy associated with the given potential energy minimum, then the
molecule can access a much larger family of possible nuclear configurations with
significant probability, hence the dynamic shape is less restricted. The accessible
symmetries [247] and the accessible shapes [248] of molecules as a function of the
available energy suggest a family of rules influencing the outcomes of chemical
reactions.

Another important influence of energy on molecular shapes is evident in
electronic excitations. A closed shell molecule with a singlet ground state electronic
configuration usually has a different shape than any of the excited electronic states of
the same molecule. The potential energy surfaces of different electronic states are
usually rather different, their minimum points may occur at different nuclear
arrangements, and even the point group symmetries of the most stable nuclear
arrangements can be different.

One may formally decompose the molecular shape changes associated with an
electronic excitation into separate steps as follows.

1. In an electronic excitation or de-excitation process the electron distribution
changes rapidly. However, the nuclear motions are much slower and right
after the electronic change the nuclear distribution has had no time yet to
rearrange to relax to the neighborhood of the energy minimum of the
potential surface of the new electronic state. In the first step of the process
the formal nuclear geometry is preserved and the shape of the electron
distribution may be regarded as that of the new electronic state at the old
nuclear geometry. The shape change of the electron distribution associated
with this step of the process is called the vertical shape change.

2. In the second formal step of the process, the nuclear arrangement relaxes to
a nearby minimum of the potential energy surface of the new electronic
state. The three-dimensional body of the electron distribution "follows" the
nuclear rearrangement, hence the shape of the electron distribution changes
in this step too. This change is called the shape change due to relaxation.

In some electronic excitation processes an interesting principle applies,
analogous to the Quantum Chemical le Chatelier Principle (QCLCP) originally
proposed [249] for explaining regularities found in changes of energy components
in various chemical processes. In many chemical processes, e.g., in many
conformational changes, various components of the molecular total energy change in
the opposite phase. For example, by changing the nuclear arrangement, the nuclear
repulsion energy component changes, and this change is often accompanied by a
change of opposite sign in the electronic energy component of the total energy.
According to the QCLCP, this may be interpreted as an initial stress of nuclear
geometry change applied to the molecular system, and the readjustment of the system
by changing the electronic energy in the opposite sense, thereby reducing the overall
energy change of the molecule. A formal justification of this principle was derived
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from the variational principle of quantum mechanics [249]. The analogous principle
that appears to apply to many shape changes in electronic excitations [111] can be
stated as the

Quantum Chemical le Chatelier Principle for Molecular Shapes (QCLCP-MS) :
the shape change due to relaxation tends to reduce the effect of the initial vertical
shape change.

In other words, the initial vertical shape change in Step I may be regarded as
a stress applied to the molecular system, and the system appears to readjust in Step 2
by the shape change due to relaxation in such a way that the overall shape change is
reduced to less than that of the vertical shape change.

A qualitative justification of this principle may be given in terms of energy
considerations. Within narrow ranges of energy and electronic density, a monotonic
energy change is usually associated with a monotonic change in the complexity of the
shape of isodensity contours. A higher-energy electronic distribution well below
those invelving molecular Rhydberg states usually has a more complicated shape
than a lower-energy electron distribution. For example, the nodal structures of
higher-energy excited state orbitals (well below Rhydberg orbitals) are usually more
complex than those of lower-energy orbitals, suggesting a similar trend for the
shapes of isodensity contours. Consequently, the initial vertical shape change in
Step | is expected to introduce more complicated shape features. However, this
initial, vertical shape change is unlikely to result in the most stable nuclear and
electron distribution. By relaxation of both the nuclear geometry and the electron
distribution in Step 2, the energy is lowered. Energy lowering is often associated
with a simplification of shape features; consequently, the shape of electron
distribution is also expected to become somewhat simpler. Hence, in Step 2, the
shape change is expected to partially counteract the vertical shape change of Step 1,
thereby reducing the overall shape change. In general, in any electronic excitation
process the initial vertical excitation without a relaxation of the nuclear geometry
involves a larger energy change than the overall energy change after relaxation.
Consequently, as long as the shape complexity is a monotonic function of the energy,
the principle applies.

In the above, qualitative description of the expected trends of interrelations of
changes in molecular shape and electronic state, an important element was missing: a
quantitative description of molecular shape and a numerical measure of shape
changes. A precise, quantitative molecular shape description is also needed in the
study of most other problems of chemistry, as well as in various related subjects,
such as biochemistry, pharmacology, medicinal chemistry, and drug design.

The intuitive, subjective shape concepts and the freedom provided by a
somewhat imprecise shape perception are useful in the process of quick recognition
of major trends and dominant common features. Some degree of vagueness in the
concept of shape may be advantageous when the goal is to recognize the essential
trends and many small details are to be disregarded. However, the needs for clearly
defined shape concepts and for precise shape evaluation are evident if details of
shape are important, and if it is not well understood which shape features are
potentially responsible for a given molecular property. A simple, visual inspection
of shape by a human observer may easily miss some important detail, especially, if
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the relative importance of various details of shape is not yet known. A systematic,
precisely defined shape analysis and a detailed and reproducible shape description by
a well defined procedure (possibly by a computer algorithm) are preferred.

An ideal molecular shape description method S is expected to fulfill several
criteria. An ideal method S
is based on the physical properties of the molecule,
describes the full, three-dimensional shape of the molecule,
leads to numerical shape characterization, such as a numerical shape code,
is easily computable, leading to computer-based molecular shape analysis,
is reproducible, not affected by subjective elements of human perception,
provides tools for the evaluation of shape similarity,
. provides tools for the evaluation of shape complementarity.

ln the following chapters we shall discuss the fundamental physical basis of the
molecular shape concept, and describe several of the computational methods of
molecular shape description, fulfilling some or all of the above criteria.
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CHAPTER
2

THE QUANTUM CHEMICAL CONCEPT OF
MOLECULAR SHAPE

2.1 Electron Distributions and Nuclear Distributions: the
Heisenberg Uncertainty Relation and Molecular Shape

2.2 The Concept of Topological Shape of Molecules

2.3 Molecular Isodensity Contours (MIDCO's)

2.4 The Density Domain Approach (DDA) to Chemical Bonding

2.5 Functional Groups and Their Shapes as Quantum Chemical
Concepts: A Density Domain Criterion for Functional Groups

In this chapter some of the theoretical, quantum chemical, and computational aspects
of molecular shape are discussed. The quantum chemical shape of molecules is
intimately related to the concepts of nuclear configuration and chemical bonding.
Both of these concepts can be reformulated in terms of topology. A topological
representation of nuclear configurations provides a systematic treatment of the
nuclear configuration space and the catchment regions of potential surfaces, leading
to a description of molecular deformations which preserve chemical identity. It is
the "glue" of the fuzzy, three-dimensional body of electronic density that holds
molecules together; chemical bonding is not restricted to formal bonding lines
between atomic components of a molecule. Accordingly, topology also gives a
descriptive method and new insight for the representation of chemical bonding in
terms of the topological Density Domain Approach (DDA), and a quantum chemical
definition of functional groups within molecules.

21 Electron Distributions and Nuclear Distributions: the Heisenberg
Uncertainty Relation and Molecular Shape

The usual image of a molecule invoked in contemporary chemistry is a curious
combination of quantum mechanical and classical mechanical models. Whereas it is
well accepted that even a crude description of the electron distribution within
a molecule must rely on quantum mechanics leading, for example, to various
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molecular orbital approaches, the nuclear distribution, in contrast, is most
commeonly imagined as a classical mechanical arrangement of tiny particles. This
traditional molecular model persists in spite of the failures of the particle model, for
example, when molecular vibrations are considered where the nuclear motions have
clear quantum mechanical character as evidenced by the quantized vibrational energy
levels. Nevertheless, chemical thinking is still guided by the classical model of
nuclear arrangements and few chemists imagine nuclei as formal positive charge
clouds analogous to the image of negative and more diffuse charge clouds of electron
distributions. On an intuitive level, electrons of a molecule are regarded quantum
mechanically, whereas nuclei are often treated classical mechanically. Whereas the
above mixed model is wrong by the standards of rigorous quantum mechanics, this
formal lack of consistency nevertheless has a well justified, practical motivation that
can be phrased in terms of the Heisenberg uncertainty relation.

Molecular shape is the shape of the electron distribution of the molecule. This
electron distribution can be described according to the laws of quantum mechanics
and within a molecule the wave nature of electrons seems to dominate over their
particle-like properties. On the other hand, for atomic nuclei in a molecule, the
particle-like properties often appear dominant over their wave-like properties. The
concept of the position of an electron within a molecule is rather meaningless. In
contrast, the concept of nuclear position within a molecule may serve as a crude, but
still useful, approximation. However, even when using this approximation, for
example, in the most common form of the Born-Oppenheimer approximation [250],
one should remember that both electrons and nuclei obey quantum mechanics. In a
strict sense, just as electrons, nuclear arrangements are also subject to the Heisenberg
uncertainty relation and it is just as misleading to consider precise relative positions
for nuclei as it is wrong to assume precise positions for electrons within a molecule.
Hence, nuclear position in a molecule is also a somewhat artificial concept. As a
consequence of these uncertainties in position, there are two reasons why the body of
a cloud-like fuzzy electron distribution of a molecule is very different from any
macroscopic body [251,252]. A minor, indirect contribution to this fuzziness is due
to the relatively small quantum mechanical uncertainty in the nuclear positions
controlling the electronic distribution, and a major, direct contribution is due to the
etectron distribution having a much greater quantum mechanical uncertainty of its
own. Within a rigorous quantum mechanical description, the above distinction of
various contributions to the fuzziness of molecular bodies is somewhat artificial;
nevertheless, there are valid practical reasons for it. Nuclei have much larger masses
than electrons, they are more particle-like than electrons, and, as a result, the
particle model is a much better approximation for their description than for the
description of the electronic distribution. In many molecular modeling applications
the concept of nuclear position is acceptable for representing reality to a good
approximation, whereas the notion of electronic position within a molecule is clearly
unacceptable in nearly all instances.

Hence, a simple, essentially classical model provides a useful approximation to
the relations between the electronic and nuclear distributions: one may think of the
electron distribution as a formal charge cloud, and the nuclear distribution as an
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arrangement of particle-like nuclei within this charge cloud. The electron
distribution is influenced by the nuclear distribution and by external electromagnetic
fields; in fact, the shape of the electronic cloud is influenced by all the interactions
affecting the molecule. The model is the simplest if there are no external fields. The
nuclei may be thought of as point-like objects moving in the field of the electron
distribution that can nearly instantaneously readjust to follow the changes of the
nuclear distribution. Hence, the shape of the electronic cloud does reflect the nuclear
arrangement, and in most traditional stereochemical approaches the concept of
molecular shape has been interpreted in terms of the nuclear arrangement. If,
however, external fields are applied, then the electron distribution may undergo
changes that may result in a dramatic shape change, affecting both the electronic and
the nuclear distributions. Since the electron distribution is much more mobile than
the nuclear arrangement, the initial stages of these rearrangements are usually
dominated by a rapid rearrangement of the electron distribution. The old nuclear
distribution is no longer favorable for the electronic arrangement, and a slower
nuclear rearrangement follows, accompanied by further, nearly instantaneous,
electronic rearrangement in response to the combined effects of the external field
and the change in the nuclear distribution. Eventually, a new nuclear and electronic
distribution is established that is compatible with the external field. One extreme
example is the external field provided by another, interacting, molecule: the
interaction may result in a chemical reaction changing the shapes of both molecules.

2.2 The Concept of Topological Shape of Molecules

Molecules are dynamic objects undergoing continuous internal motion. Some finite
range of possible deformations with respect to the formal equilibrium shape of the
molecule is an inseparable aspect of any realistic molecular model. Consequently, it
is important to use techniques for molecular shape characterization which can
account for the deformability and the dynamic features of molecular shapes. One
must be able to distinguish the essential shape deformations from those having little
chemical significance. For example, most small molecular deformations do not
change the chemical identity of the molecule, however, extensive deformations may
lead to dissociation or to some other chemical reaction that changes the chemical
identity of the species. For consistency in the description, we shall associate a
separate chemical identity with each stable conformer of a molecule; indeed, as long
as an energy barrier separates two conformers, similar considerations apply as for a
reactant and product pair of molecules separated by an energy barrier. There is a
finite range of possible deformations which preserve the chemical identity of the
conformer.

Two important questions of molecular shape analysis are as follows:

1. What is the range of deformations which preserves chemical identity,

and
2. What shape variations accompany these identity-preserving molecular
deformations?
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For the first question, a topological analysis of molecular potential energy
surfaces can provide an answer, leading to the concept of catchment regions ([106]
and references therein). Below we shall give a brief introduction to the global
topological analysis of chemical identity preserving deformations, using the concepts
of the nuclear corfiguration space, potential energy surfaces, and catchment
regions. A topological study of potential surfaces can be combined with a
three-dimensional topological analysis of molecular shapes, leading to a systematic
approach to the second question.

Within a global approach to the study of molecular deformations and their
relations to molecular identity, it is advantageous to use the nuclear configuration
space approach. The simplest, nontrivial nuclear configuration space is that of a
diatomic molecule. For diatomics there is only one internal coordinate: the most
natural choice for this coordinate is the internuclear distance d. If all the possible
values of internuclear distances are plotted along a line, then each point of this line
represents a nuclear arrangement. This line is a one-dimensional configuration
space, representing the entire family of all possible arrangements of the two nuclei.
In fact, only a half-line is used, since no negative internuclear distances are possible.
For more complicated molecules the description of the nuclear arrangements
requires more than one internal coordinate (for example, several internuclear
distances, bond angles, and dihedral angles), hence the line must be replaced by some
higher-dimensional space, called the nuclear configuration space. One may picture
this space as follows: each point of this space represents a nuclear arrangement so
that points corresponding to similar arrangements are near one another in the space.
A nuclear rearrangement corresponds to a path in this space.

Here we shall justify the nuclear configuration space approach within the
context of the simple semiclassical molecular model of essentially particle-like nuclei
embedded in a quantum mechanical electronic cloud, as described in the previous
section. (One should note, however, that the nuclear configuration space model can
be introduced on a more rigorous quantum mechanical level [106].) Consider all
possible arrangements of a given family of nuclei, called a stoichiometric family of
nuclei. Each stoichiometric family of chemical species is defined by such a set of
nuclei which may take any relative arrangement. These arrangements include those
of all distorted forms of conformations, all isomers, reaction intermediates,
transition structures, and decomposition products of all molecules with the given
atomic composition. The collection of all these arrangements is a stoichiometric
Sfamily of nuclear configurations.

The identity of a molecule, far removed from other molecules and from
sources of external fields, does not depend on its precise location and orientation in
the ordinary, three-dimensional space. Consequently, one may regard nuclear
arrangements obtained from one another by rigid translation and rigid rotation as
chemically equivalent, and consider only the relative arrangement of the nuclei
with respect to one another, that is, the internal configuration K of the
arrangement. The family of all possible internal configurations of a set of nuclei
may be thought to form an abstract space, the internal configuration space. Each
nuclear arrangement corresponds to a point K of this space. Two arrangements
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which differ only slightly, correspond to a pair of points K and K' which are near
each other within this space. This idea can be made precise by introducing a proper
distance (called metric) in this space: the configuration space we shall use is the
metric space M of internal configurations [106]. The metric of the nuclear
configuration space M is interpreted as the distance d(K,K') between any two
points K and K' of the space M, representing a measure of dissimilarity of the
corresponding two internal nuclear configurations K and K'. If the distance
d(K,K) is large, then the two nuclear arrangements K and K' are very
dissimilar; if d(K,K") is small, then K and K' are similar. Note that we use the
same notation K for the internal configuration (the 3D relative arrangement of
the nuclei) and for the point representing it within the configuration space M.
Since we disregard rigid translations and rotations of the molecule as a whole, each
relative arrangement K of N23 nuclei can be described by 3N-6 internal
coordinates. That is, for larger than diatomic systems the dimension of the nuclear
configuration space M is 3N-6, and each point K of M can be described by
3N-6 (local) coordinates.

For example, for the hydrogen peroxide molecule, H»O, there are four
nuclei, hence 3 x 4 - 6 = 6 internal coordinates. A unique label is assigned to each
nucleus, for example, we may choose an assignment H, - O, - O; - Hy. For most
nuclear arrangements of hydrogen peroxide, the six internal coordinates can be
chosen as the three internuclear distances H, - Op, Oy, - O¢, and O, - Hyg, the two
bond angles H, - Oy - O and Op - O - Hy, and the dihedral angle denoted by
H, - Op - O¢ - Hy, i.e, the angle between the planes defined by the first three and
the last three nuclei in the sequence H, - Oy - O¢ - Hyq. One should note that these
internal ceordinates are not well defined for all nuclear arrangements, for example,
the dihedral angle H, - Oy, - O - Hy is not defined if either the H, - Op-0, or
the Op - O¢ - Hy triple of nuclei become colinear. Nevertheless, it is possible to
describe even such nuclear configurations within a consistent framework [106], and
the collection of all possible nuclear arrangements K of the entire H»0,
stoichiometric family of chemical species forms a six-dimensional nuclear
configuration space M.

Most deformations of objects involve a change of their energy. The problems
of molecular deformations are also related to energetic properties. The study of
molecular identity requires the explicit consideration of the energy dependence of
the deformability of molecules. This requirement naturally leads to the molecular
potential energy surface model and to the global analysis of deformability of a
whole range of formal nuclear arrangements. For the simplest, nontrivial case of
diatomics, the potential surface becomes a one-dimensional potential curve, that may
be plotted above the one-dimensional configuration space: the line of the coordinate
of the internuclear distance of the diatomic molecule.

The more general, higher-dimensional potential energy surface model is
motivated by a simple analogy with 2D surfaces of 3D objects. By considering a
given electronic state and the model of infinitely slow motion for the nuclei, a
potential energy value can be assigned to each nuclear configuration K: this defines
a potential energy function called the potential energy surface E(K) over M. Since
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the configuration space M usually has a high dimensionality (3N-6 coordinates)
and energy can be taken as a formal coordinate along one additional dimension, this
surface is often referred to as the potential energy hypersurface E(K) [106].

Consider again the example of H,0; of six internal coordinates, as discussed
above. For a given electronic state of the hydrogen peroxide molecule (in fact, for
the entire H,O, stoichiometric family of chemical species), a potential energy value
can be assigned to each nuclear configuration K, and the resulting potential energy
function E(K) can be thought of as a potential energy surface (a six-dimensional
hypersurface) spanned above the six-dimensional nuclear configuration space M.
Energy may be thought of as the seventh coordinate, and the six-dimensional energy
hypersurface E(K) as being embedded in a seven-dimensional space. Of course, for
a larger molecule of more than four nuclei, N > 4, the dimension 3N-6 of the
configuration space M and the hypersurface. E(K) is also higher; an additional
coordinate, the (3N-5)-th coordinate corresponds to energy. The corresponding
(3N-6)-dimensional potential energy hypersurface E(K) is embedded in a
(3N-5)-dimensional space.

Most of the ordinary notions of surfaces in three dimensions can be generalized
for such hypersurfaces. For example, the slope of a surface at each point can be
described by its partial derivatives, and the slope of the potential energy
hypersurface at each nuclear configuration K can be described by the partial
derivatives of energy according to the internal coordinates, i.e., by the gradient of
E(K) at this point K. This gradient is a formal (3N-6)-dimensional vector in the
nuclear configuration space M. The slope of the energy hypersurface, (i.e., the
negative of the gradient vector) represents a formal force within the nuclear
configuation space M. This formal force acts on the configuration K, forcing it to
change into some nearby lower energy configuration K' found along this force
vector.

A point K of M where the gradient of E(K) vanishes [where the tangent
hyperplane to E(K) is "horizontal"], is a point where the force of deformation is
zero, i.e., point K represents an equilibrium configuration. Such a point is called
a critical point, and is denoted by K(A.,i). Here, the first derivatives being zero,
the second partial derivatives of the energy hypersurface are used to characterize the
critical points. The first quantity in the parentheses, A, isthe critical point index
(and not the "order of critical point" as it is sometimes incorrectly called). The index
A of a critical point is defined as the number of negative eigenvalues of the Hessian
matrix H(K(A,1)), defined by the elements

Hjk (K(A,1)) = d2E(K(A.1))/dqjdqk (2.1

of second partial derivatives of the energy function E(K) at K(A\,i), whereas the
second quantity i in the parenthetical expression is simply a serial index.

Each electronic state of the given stoichiometric family corresponds to a
formal potential energy hypersurface E(K). Clearly, the notions of chemical
species, chemical identity, and molecular deformation are dependent on the
electronic state. A specific nuclear arrangement that is stable for one electronic state
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may be unstable for another. For a given potential energy hypersurface E(K), the
range of deformations that preserves chemical identity of a chemical species defines
a collection of nuclear configurations, which form a subset of the nuclear
configuration space M. This subset is called a catchment region C(MA,i) of the
corresponding potential energy hypersurface. Each catchment region can be taken
to represent the given chemical species within M. A catchment region C(A,i) is
defined as the collection of all those nuclear configurations K from where the path
of an infinitely slow relaxation (a steepest descent path in a mass-weighted
coordinate system) leads to a common critical point K(A,i), representing an
equilibrium nuclear arrangement. (See original references in [106].) A catchment
region C(0,i) of a minimum point K(0,i) of E(K) represents the i-th stable
molecular species of the given stoichiometry and of the electronic state associated
with the given potential energy hypersurface E(K). The steepest descent paths from
all points of the catchment region C(0,i) lead to the unique minimum point K(0,i);
the dimension of C(0,i) is 3N-6. A (3N-7)-dimensional catchment region C(1.,j)
of a saddle point K(1,j) of critical point index A=1 represents the j-th transition
structure (transition state as it is often incorrectly called). Catchment regions C(A,i)
of critical points K(A,i) of higher indices, A > 1, and of dimensions lower than
3N-7, are of lesser direct chemical significance (and are not true chemical species),
nevertheless, for the sake of uniformity in the terminology, they are also referred to
as formal chemical species. In particular, we shall not consider the case of potential
energy maxima, which are single-point catchment regions C(3N-6,i) (also called
singleton sets).

The above catchment region approach provides a general basis for the study of
the interrelations of molecular nuclear arrangements and 3D molecular shape [158],
leading to a common framework for the description of a variety of molecular shape
problems, ranging from molecular similarity to shape changes in electronic
excitations [107-111]. Through the potential energy hypersurface approach, the
three-dimensional molecular shape problem is connected with many other
energy-dependent chemical problems. Electronic and vibrational properties,
conformational freedom, reactivity, bond formation, and bond breaking are all
energy-dependent, and the potential energy surface approach provides an elegant,
conceptually convenient, although rather complicated (multidimensional)
representation of this energy dependence. The topological analysis of potential
energy surfaces in terms of catchment regions simplifies this representation and
provides a unified framework for the study of individual molecular properties, all
conformational changes, as well as chemical reactions [106]. The three-dimensional
topological properties of molecular shape are intimately connected with the
(3N-6)-dimensional topological properties of potential energy hypersurfaces.

The catchment region model provides precise conditions for chemical identity
and for limitations on molecular distortions which preserve chemical identity. It also
provides an approach to our second question: What are the allowed shape variations
which may accompany these identity-preserving molecular deformations?

When considering the shapes of various distorted forms of a molecule, one
must make a choice of a reference form against which all other forms are compared.
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In a classical model of molecules, with some geometrically defined ideal form, all
other forms may be compared to the ideal one. For example, the results of
experimental X-ray structure determination are often interpreted in terms of a
simple classical model of formal, point-like nuclear positions within a molecule and
the point arrangement of this interpretation may be regarded as a molecular
reference form. Even if one disregards the fact that molecular shape in the solid
state can be very different from the shape of a free molecule, the above approach is
limited to one or a few arrangements. The global topological analysis of potential
surfaces provides a more detailed alternative. There is a one-to-one correspondence
between critical points K(X,i) and catchment regions C(A,i) of potential energy
surfaces, which "cover" the entire nuclear configuration space M (i.e., which
involve all possible nuclear arrangements of the stoichiometric family). Each critical
point K(A,i) represents the equilibrium nuclear configuration of the corresponding
catchment region C(A,i), and K(A.,i) may be used as reference for distortions
within each catchment region C(A,i).

The family of 3D shapes available to a given molecule is precisely the family
of 3D shapes occurring within its catchment region C(A,i) [158]. These are the
very shapes attainable by the molecule while undergoing limited deformations
preserving chemical identity.

2.3 Molecular Isodensity Contours (MIDCO's)

For sake of simplicity in describing the essential ideas within this and the following
sections, first we shall consider a simplified model of a formal, static nuclear
arrangement for each molecule. This constraint on the model will be released when
dynamic shape analysis is discussed.

For a given electronic state, the nuclear arrangement K is the dominant factor
that determines the shape of the formal body of molecular electron distribution.
External electromagnetic fields also influence molecular shape, nevertheless, their
effect is usually only secondary. Whereas the nuclear configuration K contains
most of the information necessary for shape analysis, the dependence of the electron
distribution on K is rather complicated, and it is not immediately obvious what
molecular shape can be expected for a given nuclear arrangement. For this reason, it
is advantageous to study the shapes of electronic density distributions directly.

An important tool for the description of 3D electron densities is the concept
of molecular isodensity contours (MIDCO's). For any formal nuclear
configuration K of a molecule we may assume a 3D coordinate system attached to
the chemical species. Within this coordinate system, the electronic charge density
p(r) is a function of the 3D position variable r; this function assigns a density
value p(r) to each point r of the ordinary 3D space. This charge density function
p(r) can be determined experimentally, for example, from X-ray diffraction
experiments [89,90], or it can be calculated by an appropriate quantum chemical
method, for example, using one of the standard quantum chemistry programs [253]
or some approximate technique designed for large molecules [92]. Since the physical
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properties of the peripheral regions of molecules are dominated by the electronic
density, it is natural to associate the concept of molecular shape with the regions of
space enclosing most of the electronic charge density of molecules.

Whereas the charge density function p(r) becomes zero only at infinite distance
from the nuclei of the molecule, this function converges rapidly to zero already at
short distances, becoming negligible at about 10 A from the nearest nucleus. In fact,
the electronic density is well localized within a close neighborhood of the nuclei and
it is justified to regard only those regions of the 3D space as belonging to the
molecule where the density p(r) is larger than some small threshold value. By
choosing a sufficiently small threshold value a, an approximate molecular body
can be defined as the collection F(a) of all those points r of the 3D space where
the electronic density is greater than the thresheld a,

F@)={r: p(r)y>a}. (2.2)

In equation (2.2) some of the standard mathematical notations are used; these
notations are very useful for a precise and concise expression of ideas we shall
describe. The pair of braces { } stands for "collection” or "set”, whereas the
colon : stands for the qualification "such that" ; the expression reads as "the
collection of all points r such that p(r) > a". Using mathematical terminology,
these points r are said to form a level set  F(a), with respect to the threshold
level a. According to the usual convention, a large nregative charge means a large
positive value for the density function p(r). Of course, the size and shape of such a
level set F(a) depend on the choice of the threshold value a. We shall not select
any arbitrary value for a, instead we shall study a whole range of possible a
values for electronic density level sets. In principle, the range for the threshold
parameter a is 0 < a < oo, however, in molecular shape analysis only a more
restricted range of the chemically relevant density thresholds will be considered. It is
clearly not necessary to consider very high a values. Furthermore, in order to
avoid considering a common level set with a single, commen envelope surface for
independent molecules of large but finite distance from one another, a small but
nonzero lower limit will be taken for the a values.

One should notice that according to the definition (2.2), those points r of the
3D space where the value of the electronic density function is equal to the threshold,

p(r)=a, (2.3)

do not belong to the level set F(a). This is a matter of definition, and for some
purposes it is advantageous to adopt an alternative definition by including all points
r of the space where equation (2.3) holds, that is, all the points and all the
boundary points of the level sets F(a) of definition (2.2). Such domains of the 3D
space, closely related to the level sets F(a), are of special importance since they
provide a natural representation of chemical bonding in molecules. These domains,
the density domains [109] are denoted by DD(a) and will be discussed in the next
section, Chapter 2.4.
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It is useful to emphasize that the above representation of a formal molecular
body by a single level set F(a) and a single nuclear arrangement K involves two
simplifications [109]:

1. It is assumed that a fixed nuclear configuration K adequately represents

the actual quantum mechanical distribution of the nuclei.

2. The model refers to a specified density value a along the contour. Those

points of space where the electronic density is less than this threshold value
a are not regarded to belong to the formal molecular body considered.

Both of these constraints can be released in a more general model, where a
family of level sets and a family of nuclear arrangements are considered
simultaneously.

Level sets F(a) [as well as the closely related density domains DD(a), as we
shall see in the next section] provide a representation of formal molecular bodies.
A similar definition gives a useful concept of a formal molecular surface: the
concept molecular isodensity contour surface (MIDCO). For any formal nuclear
configuration K, it is possible to define a surface by choosing a small value a for
the electronic density, and by selecting all those points r inthe 3D space where
the density p(r) happens to be equal to this value a, that is, where equation (2.3)
is fulfilled. For an appropriate small value a, this contour surface may be regarded
as the surface of the essential part of the molecule and, in short, it may be referred
to as the molecular surface. These surfaces, the molecular isodensity contour
surfaces, or MIDCO's, are denoted by G(a) and are defined as

G@y={r: p(ry=al. (2.4)

For a continuous function, such as the electronic density p(r), all points r
fulfilling equation (2.3) do form a continuous surface. Consequently, the terms
contour surface and isodensity surface are appropriate for G(a). For the study
of the 3D shape properties of molecular bodies, represented by level sets F(a) of
electronic charge densities, it is sufficient to study the shape of their boundaries;
these boundaries are the MIDCO's G(a).

In Figure 2.1 four MIDCO's, G(a;), G(az), G(a3), and G(ag) of the
methanol molecule CH3OH are shown for the contour density values aq = 0.20,
ap = 0.10, a3 = 0.01, and a4 = 0.001, respectively, as calculated with the
GAUSSIAN 90 [253] and GSHAPE 90 [254] programs, using a 6-31G*
Gaussian basis set. The first three MIDCO's show characteristic shape features;
the methyl and hydroxyl groups are clearly distinguishable in the first two
MIDCO's, and even in the third, bulkier, MIDCO G(a3) of a3 = 0.01, the
orientation of the OH group is well recognizable. The lowest density MIDCO at
agy = 0.001 shows a rather general feature of low density surfaces: they become
essentially spherical, where the details of functional groups of the molecule are no
longer recognizable. One might ask the question, which one of the above four
MIDCO's is the true representation of the methanol molecule? The answer is that
by itself not any one of them is, and in principle, one needs the entire collection of
all possible MIDCO's for the entire range (0, amax) of contour density values a
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Figure 2.1 Four MIDCO's, G(ay), G(a), G(a3), and G(agq) of the methanol molecule CH30H
are shown for the contour density values a; = 0.20, ap =0.10, a3z = 0.01, and aq = 0.001,
respectively, as calculated with the GAUSSIAN 90 [253] and GSHAPE 90 [254] programs, using
a 6-31G* Gaussian basis set. In all figures, the density threshold values a are given in atomic

units,

in order to have an exhaustive description of the shape of the molecule. Fortunately,
a sufficiently precise shape description is possible by considering only a finite
number of density intervals [a;, aj,.1] instead of the infinitely many different
MIDCO's separately, where, within each such interval [a;, a;,;], the associated
G(a) MIDCO's preserve their essential shape features. This idea, combined with an
algebraic-topological description of the essential shape features, forms the basis of
the Shape Group Method (SGM) [155-158], discussed in later chapters of this book.

It is possible to generalize the MIDCO model and to release the constraints
represented by simplifications 1 and 2. By taking a collection of nuclear
configurations K, as well as a range of small threshold values a, one may
generate a family of formal molecular bodies and investigate their common shape
features. These common features can be described by topology, resulting in a
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topological definition of the molecular body. In the most general case the
geometrical characterization of individual contour surfaces is replaced by a
topological characterization of entire families of MIDCO's, where each family
belongs to a density interval [a;, a;;|] and to a selected family of internal
configurations K, for example to a catchment region C(A,i). For the
corresponding family of MIDCOQO's the common topological features provide a
valid characterization. Since the nuclear configuration K is not fixed within a
catchment region C(A,i), the resulting description involves some dynamic properties
and at least partially circumvents the incompatibility of the more common static
models with the Heisenberg uncertainty relation. Consequently, this approach
provides a more valid model [158].

One can make an interesting comparison between MIDCO's and the simpler
models of fused sphere Van der Waals surfaces (VDWS's) often used in modeling
large molecuies of biochemical interest. For most of the common choices of formal
atomic Van der Waals radii, for example, those suggested by Gavezotti [86], the
resulting fused sphere VDWS shows a strong resemblance to an electronic
isodensity contour surface G(a) of some intermediate threshold value a,
approximately equal to 0.002 a.u. (atomic units). One may exploit this fact and
design fused spheres VDWS representations of approximate molecular surfaces for
any desired density value a, based on atomic charge densities. It is possible to
generate a function of density-dependent radius ra(a) for a spherical representation
of each atom A, and to construct a fused sphere VDWS representation of a
molecule that mimics a G{a) MIDCO for any selected density threshold value a.
By choosing a desired density threshold value a, and calculating the appropriate
ra(a) set of radii for the spheres of each atom A, the fused spheres model provides
an approximation of the G(a) MIDCO of the molecule for this a value [255]. In
addition, for molecular families of common structural features, or for typical
functional groups, it is possible to choose an optimum set of atomic VDW radii,
based on molecular contour surfaces of electronic charge densities [255].

2.4 The Density Domain Approach (DDA) te Chemical Bonding

Formal chemical bonds of a molecule are usually imagined as lines interconnecting
the nuclei, providing a simple model for a molecular skeleton. This model is
certainly an oversimplification, since a bond skeleton cannot fully represent the
molecular body and the shape of the molecule. In reality, molecules are
three-dimensional objects held together by fuzzy bodies of electronic charge
distributions. The actual chemical bonding is not constrained to a set of lines in
space, neither are the interactions between parts of the molecule concentrated along
some narrow bonding channel. Chemical bonding involves a broad interfacing of
molecular fragments. Consequently, a more appropriate description of chemical
bonding must take into account the full molecular body. Since the molecular body is
a 3D object, it appears natural to search for models where chemical bonding is also
represented by 3D entities, such as the actual 3D electron distribution that holds the
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molecule together. Electronic charge densities, regarded as 3D bodies, their level
sets F(a) and their isodensity contour surfaces G(a) offer an alternative to the
classical stereochemical bond diagrams, and a more realistic model for the
representation of chemical bonding,

The study of 3D electronic densities has become a relatively simple task as a
result of advances in computational quantum chemistry, molecular topology, and
computer graphics techniques. Graphical information on calculated 3D molecular
properties can be displayed and manipulated easily on a computer screen, providing
a powerful tool for the study of stereochemistry, molecular shape, reaction
mechanisms, and the evolution of chemical reactions. Whereas 3D representations
and computer plots of individual localized orbitals [256-260] are often invoked in a
qualitative rationalization of molecular properties and reactions, the concepts needed
to describe the true 3D nature of bonding in molecules, as represented by formal
bodies of electronic charge density clouds, are slow to replace the stereochemical
ball-and-stick bonding models. The experimental chemist's concept of the chemical
bond is still rather traditional, it has not yet exploited the potential for evolution
offered by modern quantum chemistry and computer graphics methods. Modern
computer graphics techniques are suitable to describe far more complex 3D
patterns than simple reincarnations of ball-and-stick models on the computer screen.
These advances make it practical to introduce models where chemical bonding is
described by more realistic approaches, taking into account the full 3D body of
molecular electron distributions.

The simple model of bonds between atoms, reducing chemical bonding to
formal atom pair interactions is unsatisfactory for many molecules, since it fails to
represent the actual bonding in conjugated or aromatic systems. In reality, chemical
bonding is a molecular property, not a property of atom pairs.

The Density Domain Approach (DDA) to chemical bonding has been
proposed [109] as a tool that is able to describe the global properties as well as the
fine details of the full, three-dimensional bonding pattern within molecular bodies.

The concept of density domains is related to the concept of MIDCO in a simple
way. A maximum connected part of an isodensity contour surface G(a) and the
corresponding part of the level set F(a) enclosed by it is called a density domain,
DDj(a) [109]. Below we shall give a more formal definition and describe the most
essential properties of density domains.

A level set F(a), as defined by equation (2.2), is an open set; F(a) does not
contain its boundary G(a). A closed variant of a level set can be defined as

DD(@)={r: p(r)y=a}. (2.5)

This set DD(a) contains its boundary, in fact, the set DD(a) is the union of the
level set F(a) and the boundary G(a) of F(a),

DD(a) = F(a) \J G(a). (2.6)

Here the union symbol U is used for indicating that the two families of points,
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F(a) and G(a), are now considered as a single family, denoted by DD(a). A
DD(a) set can be regarded as the molecular body at an electronic density threshold
a. Indeed, if we imagine that we can actually see molecules, and the sensitivity of
our eyes is adjustable to notice only electronic densities that are equal to or greater
than the value a, we would then see these DD(a) sets as the molecular bodies.

A DD(a) body may be a single piece or it may be a collection of several
disconnected parts, called maximum connected components, and denoted by
DDj(a). In general, one may write

DD(a) = U DDjs(a), (2.7)
i

since every DD(a) body must be the union of its maximum connected components

DDj(a). If DD(a) consists of a single piece, then the DD(a) body is the same as its

single maximum connected component DD(a),

DD(a) = DD {a). (2.8)

The DDj(a) maximum components of the DD(a) body are the density domains of
the molecule at density threshold value a. As follows from their definition, their
individual contour surfaces, denoted by G;(a), are also the maximum connected
components of the MIDCO G(a):

G(a) = U Gj(a), (2.9)
1

In fact, the same shape information can be deduced by studying the DDj(a)
density domains or their respective boundary surfaces Gi(a).

The Density Domain Approach to chemical bonding is based on the topological
analysis of the dominant shape variations of the molecular body DD{a) [or,
equivalently, those of the G(a) contour surface] regarded as a function of the
density parameter a.

It is possible to follow the shape changes of the body DIDX(a) and its density
domains DDj(a) as the density threshold parameter value a scans the interval (0,
o). In fact, only a chemically significant subinterval [amin, amax] 18 t0 be scanned.
Very high densities do not occur in most molecules and even those high densities
which do occur have little direct chemical relevance as they represent the core
regions near the nuclei where the changes are negligible in most chemical processes.
Consequently, the upper limit e can be replaced by a finite positive value agay.
Similarly, points r of the space with very low density values, which occur far from
the nuclei, have little direct chemical importance. Furthermore, the chemical
interpretation of level sets with near zero density thresholds can become misleading
and artificial; as an extreme case, the formal density domain of the a=0 threshold is
the whole universe. In order to avoid considering common density domains for
independent molecules of large but finite distance from one another, a small positive
lower limit ap;, is taken. According to the convention adopted, we scan the interval
(amin, 4max] from the right to left, that is, from high to low density values.,
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At a chemically relevant high electronic density threshold value a, the body
DD{a) is composed of several disconnected, nearly spherical density domains
DDj(a). At such high density values a each separate component DD;{(a) of DD(a)
contains one nucleus. As the contour parameter a decreases, the isodensity contours
Gj(a) expand and various parts of the contour surface G(a) become connected,
[i.e., the corresponding density domains DDj(a) unite to form a single, new density
domain]. The sequence according to which various parts of the body DD(a) become
connected provides information on the 3D shape of the molecular electronic charge
density, indicating the pattern by which the electron density bonds the molecular
fragments together. Some molecular fragments retain separate density domains
within a wide interval of density values a; usually, these fragments have a well
established chemical identity as a "functional group". A gradual decrease of the
density threshold value a is accompanied by a characteristic sequence of topological
changes of density domains DDj(a), which eventually leads to the interconnection of
all parts of the body DD(a). The isodensity contour G(a) becomes a single
envelope surface, surrounding all the nuclei of the molecule, [i.e., the body DD(a)
becomes a single density domain DDj(a)]. For the extreme case of very small
isodensity contour values a, the surface G(a) becomes a nearly spherical balloon
and the body DD(a) becomes a single ball.

The most essential, topologically significant changes are the connections
between the density domains DDj(a). These changes occur only at a small, finite
number of selected density threshold values aj. The shapes of various DDj(a)
parts of DD(a) and the pattern of their connections, as a function of the parameter
a, provide a new, systematic approach to 3D chemical bonding. A topological
description of chemical bonding is given by the finite sequence of families of density
domains

{pDiap}, {DDi(az)}. ... {DDi(ep}. ... {DDi@w}, (2.10)

as they occur while the density threshold value is gradually decreased within a
chemically relevant density range [0, apax], where any two families that are
neighbors in the sequence are topologically different.

We call such a sequence a topological sequence of families of density domains
or, since each family {DDj(a;)} represents a formal molecular body DD(aj) at the
density level a=a;, a topological sequence of molecular bodies. Below we shall
discuss several examples as illustrations of the DD approach. The techniques of
actual topological characterization will be described in the following chapters.

One may summarize the essence of the approach as follows. The Density
Domain Approach is a 3D topological tool for a comprehensive description of
chemical bonding [109). By decreasing the contour parameter a from high values
to zero, the various density domains DDj(a), that is, the parts of the body DD(a)
become connected. The isodensity surface threshold values aj; at which such
connections occur are characteristic to the given configuration of the nuclei and to
the electronic state. In actual computations, if the density domains are calculated by
some ab initio technique, then the calculated a values and the associated shapes of
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the isodensity contours G(aj) are also dependent on the level of quantum chemical
approximation, for example, the basis set applied. At a given value a, each density
domain DDj(a) represents a molecular fragment that can be regarded as bound
together by chemical bonding at electronic density level a. One may consider
each density domain DDj(a) as the representative of the body of a part of the
molecule, chemically bonded at electronic density level a. A density domain
DDj(a) that is connected at a higher density value a is likely to be held together by
a stronger chemical bonding than one that is connected only at some lower threshold
value a. At very high density values a, one finds only disconnected atomic
neighborhoods as nearly spherical density domains DDj(a); at such extreme density
levels only individual atomic fragments can be regarded as undivided entities. By
contrast, at low density threshold values a, all the nuclei of the entire molecule
are enclosed by a single contour surface G(a) of a single density domain DD(a);
hence, at such an electronic density level a the entire molecule can be regarded as
chemically bonded, held together within a single envelope. The density domain
concept of chemical bonding is three-dimensional, it is based on the connection
between the various parts of the molecular body at various density values. The actual
bonding is not modeled by some infinitely thin "bonding channel”, such as the
conventional model of a formal chemical bond represented by a line. On the
contrary, chemical bonding is attributed to a whole region of the space, occupied by
an electronic charge cloud, where the density is at or above some threshold value a.
The density domain bonding concept is molecular, it avoids the oversimplifications
involved in traditional bonding concepts reduced to formal atom pairs.

The three-dimensional aspect of the DD approach is reminiscent of some
features of an earlier approach where chemical bonding is described by Berlin
diagrams [261]. Note, however, that in contrast to the formal bonding and
antibonding regions of Berlin diagrams [261], which have different signs, the
electronic density has the same sign everywhere, and the electronic charge present
in any part of a molecular neighborhood can be regarded as bound to the molecule.
The DD approach describes the relative contributions of various regions of space to
chemical bonding of molecular fragments, by considering the pattern of their
stepwise interconnection as the isodensity contour parameter a is varied.

As one of the simplest examples for density domain analysis [262], in Figure
2.2 selected families {DDi(aJ-)} of density domains of the water molecule are
shown, as calculated using the GAUSSIAN 90 ab initio program [253] and the
GSHAPE 90 molecular shape analysis program [254], employing a 6-31G** basis
set. The density threshold values a represented in the figure are given in atomic
units and refer to the 6-31G** ievel of ab initio calculations. These and most
alternative Gaussian basis sets have been designed to provide a good description of
valence shell properties of molecules, somewhat at the expense of the representation
of the core regions near the nuclei. Partly due to this factor, and also due to the lack
of taking into account the full electron correlation, relativistic effects, and the
proper "cusp” condition at the nuclei (not well represented by Gaussian type AO
functions), the wavefunctions and hence the electronic charge densities, are of
somewhat lower quality close to the nuclei than in the peripheral regions of the
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Figure 2.2 Selected families {DDi(aj)] of density domains of the water molecule, as calculated
with the GAUSSIAN 90 ab initio program [253] and the GSHAPE 90 molecular shape analysis
program [254], using a 6-31G** basis set. There are only two topologically different types of
families of density domains: either a single density domain, or a family of three density domains.
The sequence of topologically distinct cases provides a topological description of chemical bonding.

molecules. Nevertheless, the main topological patterns and features of the shapes of
density domains are well represented.

There are only two topologically different types of families of density domains
of water: either a single density domain,
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{DDi@} = {DD(a)}, (2.11)
that is, DD(a)= DDj(a), or a family of three density domains,
{DD;(a} = {DD/(a), DDa(a), DD3(a)}. (2.12)

The first family displayed, {DDj(a;)}= {DDj(a})}, contains only a single density
domain DDj(a;) of density threshold value a;=0.45 at the given 6-31G** level
of ab initio calculations. The corresponding body DD(ay) has only one component,
it is a topological ball, and the only nucleus it encloses is that of the oxygen atom. At
a lower density threshold value ajp, separate density domains about the hydrogen
nuclei appear, hence a topologically different family

{DD;(a;)}= {DD|(a3), DDs(az), DD3(az)} (2.13)

of density domains is obtained, as illustrated by the case of contour of density
a5=0.40. This topological type of three disjoint topological balls persists only in a
rather narrow density range, and at density a3=0.39 one finds again a family

{DDj(a3)} = {DD (a3)} (2.14)

that contains only a single density domain DD;(a3), a topological ball. This ball, as
well as all other bodies DD(a) with a contour density value less than 0.39, encloses
all three nuclei of the water molecule. One may say that at and below the density
value of 0.39 the water molecule is bound together, whereas at the density value of
a=0.40 the water molecule is disconnected. The essential features of the full, 3D
bonding pattern of a water molecule can be characterized by the density domains of
a sequence of three families of topological objects: the first family is a set of a single
ball, the second family is a set of three balls, and the third family, again, is a set of a
single ball. Of course, the first and the third families are topologically equivalent: by
a continuous deformation one can transform the molecular body DD(a) at density
threshold a=0.45 to the ones at and below the density threshold of a=0.39, without
cutting or gluing. (Here topological equivalence refers to the intuitively most
obvious, ordinary metric topology of the three-dimensional space, that, in our case,
distinguishes connected and disconnected objects. Note that alternative choices for
topologies will be described in the forthcoming chapters which are suitable for
discriminating between minute details in the shapes of the density domains. Based on
such topologies, the first and third cases may well be topologically nonequivalent.)

It is worth emphasizing that there are only finitely many (actually only three)
density threshold ranges of the water molecule which are distinguishable using the
simplest topological criterion of identifying maximum connected components, the
density domains DDj(a) of the molecular bodies DD(a).

It is advantageous to assign the nuclear labels A, B, etc., enclosed within each
density domain to the domain DDj(a;), and to use a more descriptive notation
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DDi(aj, A, B, .. .). In terms of this notation, the density domain description of the
bonding of the water molecule can be given as

{DD((a;,0)}; {DDj(a3,H), DDy(a;,0), DD3(ap.H)}; {DD;(a3,H,0,H)}
(2.15)

Of course, there are important shape variations within each of the above three
density threshold ranges. For example, the “catface” shape at a=0.30 changes to a
much rounder shape at a=0.01, and at much lower density thresholds the shape
becomes essentially spherical. All these shape changes can be described in detail by
finer topological techniques, where some geometrical criteria, such as curvature
variations, are used to define patches and domains on each MIDCO. These patches
and domains on the MIDCO surfaces are used to generate topologies, which can
distinguish fine details of shape within the framework of the Shape Group Method
(8GM), discussed in later chapters.

2.5 Functional Groups and their Shapes as Quantum Chemical
Concepts: A Density Domain Criterion for Functional Groups

The density domain approach provides a quantum chemical criterion for deciding
the identity of functional groups. This approach also serves as a tool for the direct
shape analysis of functional groups. Before elaborating on these aspects of the DD
approach, we shall consider an illustrative example: the density domain shape
analysis of chemical bonding in the ethanol molecule, CH3CH,OH, as calculated
with a 6-31G* basis set [263], using the GAUSSIAN 90 [253] ab initio and the
GSHAPE 90 [254] molecular shape analysis programs. Some of the results are
shown in Figure 2.3 (high density thresholds) and in Figure 2.4 (low density
thresholds). The single nucleus density demain DD ((a;,0) of the oxygen atom that
appears first at a high density threshold and the next DD{a) body of the methy!
carbon and oxygen atoms {DD(a3,C), DDs(a3,0)} are not shown in the figures,
The first DD(a) pattern shown in Figure 2.3 is the family

{DD(23.C), DDy(a3,C), DD3(a3,0)} (2.16)

of the three density domains of the heavy nuclei, followed by families showing the
sequential appearance of the hydrogen density domains. At the a;=0.407 threshold
alt nuclear neighborhoods are present as density domains, resulting in the family

{DD|(ajH), DD,(aj,H), DD3(aj,H), DDy4(aj;H), DDs(aj,H),
DDg(aj,H), DD7(2;,C), DDg(a;.C), DDy(a;,0)}. (2.17)

The first merger of density domains in the above sequence occurs at the
threshold value of a;=0.390, where the density domain of the OH proton merges
with that of the oxygen atom. This results in the family
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Figure 2.3 Some of the high density threshold density domains of the ethanol molecule,
CH3CH,OH, as calculated with a 6-31G* basis set, using the GAUSSIAN 90 [253] ab initio and
the GSHAPE 90 [254] molecular shape analysis programs.

{DD/(a;H). DD(ajH), DDa(ajH), DDa(a;H),
DDs(a;,H), DDg(a;,C), DD7(a;,C), DDg(a;;0,H)} (2.18)

of density domains representing the formal molecular body DD(a;j) at this density
threshold. This is the first example in the given sequence for the formation of a
density domain of a typical functional group, the OH group. This density domain
DDg(0.390,0,H)} provides a density-based justification for regarding the OH
functional group as a chemical entity of separate identity: there exists a range of
density threshold values at which the corresponding two nuclei, those of O and H,
are surrounded by MIDCQO's, separating O and H from all other nuclei of the
molecule. This very property is used for the identification and a more detailed
characterization of the functional groups of chemistry [109,262].
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Figure 2.4 Low density threshold density domains of the ethanol molecule, CH3CH>OH, as
calculated with a 6-31G* basis set, using the GAUSSIAN 90 [253] ab initio and the GSHAPE 90
[254] molecular shape analysis programs.

It 1s interesting to note that in the process of gradually decreasing the threshold
a of density domains, it is this most acidic proton of the ethanol molecule that loses
its separate density domain first, at the highest density threshold value where a
merger of density domains occurs. In other words, the minimal electronic charge
density is the highest between this proton and another nucleus of the molecule, in
spite of the fact that as the most acidic proton of the molecule, this is the proton most
easily donated to proton acceptors. The explanation of this apparently
counterintuitive observation lies in the high electronegativity and the resulting, more
extensive high density domain about the oxygen nucleus. What we observe is in fact
the high electron density about the oxygen which engulfs this particular proton.

The next two topologically different families of density domains, represented
by the threshold values of 2;=0.303 and ay=0.293, correspond to the two-step
merger of methylenic carbon and the two methylenic hydrogen density domains. The
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resulting two families,

{DD(a;H), DDj(ajH), DDs(aj,H), DDy(ajH),
DDs(a;,C), DDg(a;,C;H), DD7(a,0H)}, (2.19)

and

{DD(aj.H), DDy(aj,H), DDj3(aj,H), DDy(3j,0),
DDs(aj,C,HH), DDg(aj,0,H)} (2.20)

of density domains represent the formal molecular bodies DD(aj) and DD(a;}) for
the two density threshold values.

The very existence of the density domain DD5(ajr,C,H,H) in the last family
indicates that the methylene group, CHj, is a chemical entity of separate identity
within the ethanol molecule, if one uses the density domains as criterion. There
clearly exists a MIDCO that separates the carbon and the two hydrogen nuclei from
all other nuclei of the ethanol molecule. This justifies regarding the methylene group
as a functional group within the ethanol molecule.

In the most general sense, a collection of all nuclei within a density domain,
together with the density domain DD;(a;) can be regarded as a functional group of
the molecule at the density threshold a;. This provides a physically motivated choice
[109,262] within the general scheme [264] for a functional group analysis of
various molecular arrangements in the nuclear configuration space M. Whereas not
all density domains DDj(aj) and their enclosed nuclei are likely to be transferable
from molecule to molecule without altering the topology of the density domain,
nonetheless, there is justification for this approach. Having a MIDCO separating the
given group of nuclei from the rest of the nuclei of the molecule does indicate a
stronger chemical linkage among the local charge densities surrounding these given
nuclei than the linkage between this group and the rest of the molecule. This is a
property characteristic of the more common functional groups of chemistry. This
concept of functional group does not necessarily coincide with the concept
conventionally used by chemists. In order to avoid confusion, we shall indicate that
we deal with density domain (DD) functional groups whenever ambiguity may arise.
In practical computations, the quality of the calculated charge density (e.g., 6-31G*)
should also be indicated, especially for the high density threshold ranges.

In our example of the ethanol molecule, the next topological change is the
merger of the methyl carbon density domain with one of the methyl hydrogen
density domains, resulting in the density domain family

{DD;(a;,H), DDx(aj,H), DD3(aj,C,H), DD4(a;,C,H,H), DDs(aj,O,H)} (2.21)

as shown by the DD(a;) body at aj=0.292.

It is of some interest that according to the given 6-31G* level of quantum
chemical calculations, the methyl group does not appear as a formal functional
group of separate identity within this molecule. It is evident from the DD(a) body
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at threshold a=0.291 that the next merger occurs between the DD3(aj,C,H) and
DDy(a;,C.H,H) domains of the previous density threshold, resulting in the new
family of density domains

{DD(a,H), DDy(a,H), DD3(,C,H,C,H,H), DD4(a,0,H)}, (2.22)

as shown in Figure 2.4. This observation implies that in the ethanol molecule no
density domain of the type DD;(a,C,H,H,H) exists. That is, there exists no MIDCO
that separates the carbon and three hydrogen nuclei of the formal methyl group
from all other nuclei of the ethanol molecule. If one uses the natural electronic
density domains as criterion, the methyl group has no separate identity within the
ethanol molecule. As a density domain functional group, a methyl group is not a
part of the ethanol molecule.

Anyone with nostalgia for tradition may obtain some consolation from our
next observation: the ethyl group is a density domain functional group of the
ethanol molecule. This is evident if one follows the changes in the density domains as
the density threshold a is further lowered. One by one, the two remaining
hydrogen density demains are linked up with the earlier DD3(a,C,H,C,H,H) density
domain of a=0.291, as shown by the molecular bodies DD(a) at a=0.284 and at
a=(0.282. The DD family making up the molecular body DIX0.282) consists of only
two density domains,

{DD(0.282,C,H,H,H,C,H,H), DD,(0.282,0,H)}. (2.23)

Evidently, DDy(0.282,C,H,H,H,C,H,H) is a density domain of the ethyl functional
group, whereas DD»(0.282,0,H) is a density domain of the hydroxyl functional
group, both manifesting a separate identity at this density threshold value. Both the
ethyl and the hydroxyl groups are present as DD functional groups of the ethanol
molecule, a reassuring observation in view of the conventional name of the
molecule, ethyl alcohol.

The next important topological change is the merger of these two density
domains, as illustrated by the example with a threshold value of a=0.265. The
family of density domains has only a single member,

{DD4(0.265,C,H,H,H,C,H,H,0,H)}. (2.24)

The bonding sequence as given by the topological sequence of families of density
domains is now complete, and this sequence provides a detailed, three-dimensional
description of bonding in the ethanol molecule.

At this stage, the nuclei of the molecule are enclosed by a single density
contour, a feature present at all lower density thresholds. Although no fragmentation
of density domains can occur at lower thresholds, nevertheless, further important
shape changes occur at threshold values below a=0.265, from the shape of a puppy
dog visiting a lamppost at a=0.200 to the shape of an irregular potato at a=0.004,
leading to an eventual spherical shape at very low densities.
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Figure 2.5 Some of the high density threshold density domains of the most stable conformation of
allyl alcohol, CH,=CH-CH,-OH, as calculated with the GAUSSIAN 90 and GSHAPE 90

programs, using a 6-31G* basis set.

Although these shapes are all different, they all represent the same topological
molecular body of a single density domain,

DD(a) = DD (a). (2.25)

The shape changes of this single density domain can be described in detail using the
Shape Group Method (SGM) [155-158], discussed in later chapters of this book.
Our last example of DD analysis of bonding is that of the most stable
conformation of allyl alcohol, CH;=CH-CH,-OH, as calculated with the
GAUSSIAN 90 [253] and GSHAPE 90 programs [254], using a 6-31G* Dbasis set.
The allyl alcohol molecule shows many of the typical local shape features of
organic molecuies, and it represents a useful test case for topological shape analysis
methods [262,263]. A sequence of topologically different families of density
domains of CH2>=CH-CH7-OH is shown in Figures 2.5 and 2.6. This set of DD's
shows the potential of the approach for a detailed analysis of molecular bonding
patterns, exhibiting many chemically interesting features. Starting with a high
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Figure 2.6 Some of the low density threshold density domains of the most stable conformation of
allyl alcohol, CHp=CH-CH»-OH, as calculated with the GAUSSIAN 90 and GSHAPE 90

programs, using a 6-31G* basis set.

density threshold, and considering a gradual decrease of the isodensity contour value
a, the appearance of the DD's of the heavy nuclei is followed by those of the
hydrogen nuclei. One should note that the hydrogenic DD that appears last (at
a=0.390) is that of the OH proton. Interestingly, this is the hydrogenic density
domain that loses its separate identity the earliest (at a=0.377), and other hydrogenic
DD's join those of neighboring carbon atoms at much lower electron density
threshold values (the first one at a=0.297). The eilectronegative oxygen lowers the
electron density about the proton of the OH group, consequently, this hydrogenic
density domain appears last. On the other hand, the oxygen also increases the
electron density in the space between the two nuclei, consequently, the first (i.e.,
highest threshold) density domain linking a proton with another nucleus also
involves the OH group. Note, however, that as expected, the DD's of the double
bonded pair of carbons join first (at the highest density threshold where a merger
occurs, at a=0.386).

Some of the more common functional groups of organic chemistry have
density domains which persist over a wide range of density threshold values. As it



46 SHAPE IN CHEMISTRY

has also been found in the case of ethanol, by far the most persistent DD of the
allyl alcohol is that of the OH group. This density domain preserves its separate
identity within a very wide range of density thresholds, from a=0.377 to a value
slightly below a=0.285 (as the threshold a is decreased). The CH,=CH vinyl
group has its separate DD in the approximate range of density thresholds between
a=0.290 and a=0.286, whereas the CH, methylene group has its own DD in the
range between thresholds a=0.292 and a=0.286. The DD of the CH,=CH-CH,-
allyl group is also prominent as a separate entity within the threshold range of
a=0.285 and a=0.271. At a threshold value of a=0.270, the allyl alcohol molecule
is bound together as a single body DD(a), by having the density domains of the
allyl and hydroxyl groups joined at this threshold. At and below the density
threshold value of a=0.270, the molecule has only a single density domain and the
formal molecular body DD(a) is a topological sphere. The topological sequence of
DD families provides a detailed description of bonding within the allyl alcohol
molecule. The example of allyl alcohol will be used again in later chapters of the
book for illustrating the application of the Shape Group Methods (SGM) to the
study of details of shape and shape variations.

The density domain analysis of several molecules has indicated that the
appearance of individual DD's of hydrogen nuclei and their joining with the DD
of a neighboring atom or functional group follow a trend, especially, if
electronegative heteroatoms are involved. This trend, called the "Last-First Rule”,
can be stated as follows.

The Last-First Rule:

If the threshold density is gradually decreased in a DD analysis of a given
molecule, then the order of joining of various hydrogenic DD's to neighboring
DD's tends to be the reversed order of the appearance of these hydrogenic DD's.

In particular, the hydrogenic DD that appears last is likely to join a
neighboring DD first, an observation that justifies the name of the rule. As has
been discussed above, this is the typical case, illustrated and explained by the
example of allyl alcohol, where the neighboring DD is that of an electronegative
oxygen. This trend, however, is not strictly followed in all instances. For example,
in the case of the ethanol molecule, the last few hydrogenic DD's appear within a
narrow density range, and the DD of the OH hydrogen does not appear last, but is
the first joining a neighboring heavy atom DD. Hence, in a strict sense, the rule is
violated for the calculated example of ethanol. Nevertheless, the DD of the OH
hydrogen joins a neighboring DD much before this happens to the hydrogenic DD
that appeared first, hence the trend, in an approximate sense, is a useful guideline.
Similar, but less reliable Last-First Rules describe the trends for other,
nonhydrogenic atomic neighborhood DD's. For example, for carbon atom DD's
the order of their appearance and the order of their joining to neighboring DD's are
expected to be approximate reverses of each other, however, more deviations from
the rule are likely for nonhydrogenic atomic neighborhood DD's.

The more important functional groups have separate DD identity within an
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Figure 2.7 Classification of density domains according to ranges of the density threshold a.

intermediate range of a values. However, some general trends can be observed in
the entire range of density threshold values. In all molecules, the bonding pattern
shows some characteristic density ranges where typical shape features occur. The
classification of DD's according to various ranges of the density threshold
parameter a is illustrated in Figure 2.7. In the high density range only individual
nuclear neighborhoods appear as disconnected DD's (i.e., there is precisely one
nucleus within each density domain which appears). This density range can be
referred to as the atomic range. In a lower density range some nuclear
neighborhoods join to form DD's containing two or more nuclei, but not all nuclei
of the molecule fall yet within a common density domain. In this density range one
finds the various functional groups as individual entities, hence this range can be
referred to as the functional group range. This is the range where the bonding
pattern of density domains is revealed, consequently, the alternative term bonding
range for density domains also gives a valid characterization for this range. In a
lower density range all nuclei of the molecule fall within a common DD (i.e., the
essential molecular pattern of bonding is established), and this range is called the
molecular density range. The atomic and the functional group ranges together form
the localized range, and when juxtaposed to this range, the molecular density range
can be regarded as a global density range.

The molecular density range can be subdivided into subranges. At the highest
threshold values within the molecular range, the DD has some local "neck"
region, that is, there is at least one topological belt or some other multiply connected
set on the surface of the density domain along which the surface is not locally
convex. (Note that within any multiply connected set there are loops which cannot
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be contracted to a single point.) Within this density subrange the molecule appears
as a single entity, but the corresponding body is "skinny”, hence this range can be
referred to as the skinny molecular range. At even lower densities no such neck
regions occur, but for most molecules there is at least one local nonconvex region
along the surface of the DD. This subrange can be referred to as the corpulent
molecular range. At very low (possibly infinitesimally low) densities the MIDCO's
of all molecules, even those of long chain molecules are convex; the corresponding
range can be referred to as the quasi-spherical molecular range. For the allyl
alcohol molecule all five ranges appear, although no MIDCO of the last two ranges
(i.e., the corpulent molecular range and the quasi-spherical range) is shown in
Figure 2.6. In contrast, for water no functional group range appears due to
symmetry: both protonic neighborhoods join the oxygen DD at the same threshold
density value, hence the atomic range is immediately followed by the skinny
molecular range. For water, the lowest density MIDCO shown belongs to the
corpulent molecular range.

Further subdivision and classification of these ranges are possible. For
example, the atomic range can be subdivided into two subranges, one where all the
atomic density domains are convex, and another where at least one DD is no longer
convex, just before the joining of neighboring density domains occurs. The first
subrange is the strictly atomic range, whereas the second one can be referred to as
the prebonding range.

Based on the theory of catastrophes as applied to the electronic density by
Collard and Hall [265], considerable effort has been made by Bader and co-workers
[266-270] to use the gradient of the electron density to reduce the quantum chemical
concept of bonding to the simple, conventional picture of chemists: bonds as lines
interconnecting atoms in a molecule. This approach has appeal in its simplicity and
in its promise to justify the symbolism of bonds drawn as lines by generations of
chemists. However, this bonding line model does not coincide with a description of
bonding based on the actual energy criteria of bonding [271] and as shown by
Cioslowski and co-workers, in some molecular cases it predicts bonds where no
actual bonding is present [272-277]. If our goal is the description of the shape of the
actual, fuzzy body of the electronic density, then a pattern of lines as formal bonds
between nuclei is insufficient for this purpose. By contrast, the density domain
approach provides a description of chemical bonding in terms of the actual
immersion of the nuclear arrangement within an electronic cloud and the broad
interfacing of molecular fragments bound to one another.
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APPLIED TOPOLOGY:
THE MATHEMATICS OF THE ESSENTIAL

3.1 Topology as "Rubber Geometry"
3.2 Some Basic Concepts of Topology
3.3 Some Relevant Aspects of Knot Theory

3.4 Geometrical Shape and Topological Shape

By using an analogy of human characters, topology is the more tolerant,
broad-minded, more intuitive sibling of geometry. Topology bends where geometry
breaks. Tolerance, however, does not mean imprecision or sloppiness: topology
provides a rigorous description of qualitative aspects of objects. Topology offers
elegant shortcuts to results which would take painstaking effort or could not be
reached using geometrical tools. The term "qualitative" should not be taken as a sign
of weakness or limitation. Most of our accumulated scientific information, even
numerical data, are based on qualitative understanding and qualitative knowledge. In
fact, direct human observation by our senses almost always results in a qualitative
comparison and exact coincidence of an observed property with some reference
seldom occurs. In most physical and chemical measurements the value we obtain and
consider as a quantitative numerical result is, in fact, almost always a qualitative
answer indicating that with some probability the measured property can be classified
qualitatively as belonging to a numerical interval. This numerical interval and the
associated probability are defined by the error bar which is only centered on a
numerical value. In geometrical terms, the central numerical value corresponds to a
point, whereas the probabilistic interval can be regarded as a topological domain. By
choosing finer and finer qualitative classification criteria (e.g., narrower and
narrower intervals), one obtains a more and more unaccommodating, "crisper”
description and, in the limit, one obtains a fully quantitative, rigid, geometrical
description. Few objects of nature measure up to the exact specifications of
geometry, and the more tolerant topology can provide a better, more
accommodating, and more faithful representation of real objects. When compared to
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geometrical models, topological models have fewer inherent constraints that make
them different from the objects they represent, hence, topological models have a
better potential to describe reality. In particular, the nonrigidity of molecules and
the quantum mechanical Heisenberg uncertainty relation suggest topology as an
eminently suitable tool for the description of molecular shape.

The analysis of the three-dimensional topology of formal molecular bodies has
not yet become a standard tool of chemistry, in contrast to the widely used tools of
graph theory of formal chemical bonds. However, the perception of topology as a
difficult and somewhat esoteric subject is rapidly changing among chemists. The
exceptional versatility of applied topological methods is becoming more and more
apparent and many useful chemical applications of topology have been proposed
([59-72, 103-112], and references therein).

From the chemist's point of view, an important aspect of topology is its ability
to provide a discrete description of some essential properties of continuous
problems. This may be used for extracting the most relevant chemical information
from complicated molecular models in a form especially advantagecus for computer
analysis. Algebraic topology is particularly suitable for this task: the essential
properties of continuous functions are described by algebraic means (e.g., by
groups) and various other topological invariants. The topological shape analysis
methods are applicable to formal molecular surfaces, for example, to molecular
isodensity contours (MIDCO's), to molecular electrostatic potential (MEP) contour
surfaces (MEPCQ's), or to Van der Waals surfaces (VDWS'), leading to a family
of algebraic shape groups. The resulting discrete description, a numerical shape
code, can be stored, processed, and compared by a computer, a possibility that
offers an algorithmic approach to such problems as the nonvisual analysis of 3D
molecular shapes, computer evaluation of molecular shape similarity, and the study
of shape complementarity of reacting biomolecules.

31 Topology as '"Rubber Geometry"

Topology is one of the most powerful modern chapters of mathematics. As a
mathematical discipline, topology provides a solid foundation and link for many
diverse areas of mathematics, from continuous functions, through set theory, to
algebra and geometry. Topology is an ideal tool for performing a rigorous analysis
of qualitative features, for extracting the essential information, and to explore
various levels of similarity among objects. Topology provides efficient methods and
computational techniques for a systematic and mathematically rigorous disregard of
those features that are not relevant to the problem at hand. This is especially
important if one is interested in the underlying essential features of a complicated
object like a molecule, while being less interested in its unimportant details, or in
details that are only artifacts of the model used. Topology is often compared to
geometry: its colloquial label, "rubber geometry", does express some of the essence
of topology. For an object made from rubber, just as for any abstract topological
object, many geometrical changes are possible without changing the identity of the
object. In such objects, the exact distance between two points (a geometrical concept)
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is unimportant, whereas the important properties are connectedness, continuity, and
neighborhoods (which are topological concepts). Topology can be regarded as the
mathematics of the essential: the topological properties of a physical object are often
those which are preserved as leng as the identity of the object is preserved.

In this book we shall be concerned only with a very limited selection of the
elements of topology, relevant to the basics of topological shape analysis of
molecules. All the tools we shall use will be described in sufficient detail in the book.
However, for readers interested in more details of the fundamentals, some
introductory and advanced texts are listed among the references [113-122].

One of the fundamental tools of topology is the concept of continuous
deformation: deforming an object without cutting or gluing its parts. Such a
continuous deformation is called a homotopy. Two objects which are related to
each other by a homotopy are homotopically equivalent. A homotopy is allowed to
bring two points into a single point during the deformation, for example, a
homotopy may contract a disk or a ball into a single point. This property can lead to
the loss of important shape information, for example, a homotopy may convert an
entire object into a single point. If, however, we require that different points stay
different during the transformation, and that the assignment of the initial set of
points to the final set of points, as well as the reversed assignment, are continuous,
then many essential features are necessarily preserved. A transformation that can
accomplish this is called a homeomorphism. In other words, a homeomorphism is a
"reversible” continuous transformation that converts each point of the original object
to a unique point of the new object, while the same is true for the inverse
transformation, that is, for the reversed process of continuously transforming the
new object back to the old one. Notice that this condition excludes the possibility of
cutting or gluing, since continuity of the forward and reverse transformations does
not allow points that are very (infinitesimally) near to each other to become very
distant, or very distant points to be placed very near to each other. If there is a
homeomorphism between two objects, we then say that the two objects are
topologically equivalent.

One can find some insight into the topological approach by considering the
standard example used by topologists: the case of the doughnut and the coffee cup.
As illustrated in Figure 3.1, if the doughnut is made from an easily deformable
material, a continuous deformation can convert it into a coffee cup. Note, however,
that no homeomorphism exists between the doughnut and an ordinary potato: neither
punching a hole in the potato nor cutting the doughnut through to its central hole is a
continuous transformation. The doughnut and the potato are not topologically
equivalent, however, the doughnut and the coffee cup are related by a
homeomorphism, consequently, in the ordinary topological sense, they are
topologically equivalent. Hence the saying: a topologist is scmeone who cannot
distinguish a doughnut from a coffee cup. This might appear discouraging for the
reader: what is the power of a mathematical treatment for shape analysis that cannot
distinguish the shapes of two such objects of obviously very different forms?
Fortunately, topology can provide as detailed a shape characterization as desired,
where the doughnut and the coffee cup are recognized as having very different
shapes indeed. For this purpose, the principal tool of topology is a redefinition of
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Figure 3.1 The doughnut and the coffee cup: an example for continuous deformation (homotopy)
and topological equivalence (homeomorphism). If the doughnut is made from an easily deformable
material such as soft clay, then a continuous deformation can convert it into a coffee cup. Such a
continuous deformation is called a homotopy, implying that the doughnut and the coffee cup are
homotopically equivalent. A hometopy may unite several points, for example, it may contract a disk
into a single point; however, special homotopies may also preserve the distinctness of each point of the
object. The deformation can be chosen so that it assigns 1o each point of the doughnut a unique point in
the coffee cup and vice versa. Furthermore, the assignment of points is continuous in both directions:
in the deformation and also in the reverse deformation turning the coffee cup back to the doughnut. A
transtormation with such properties is called a homeomorphism, that is the very condition for
topological equivalence. The doughnut and the coffec cup are related by a homeomorphism, that is,
they are topologically equivalent.

continuity. By adopting various levels of "graininess" a transformation that is
continuous on one level may be discontinuous on another level. That is, two objects
that are topologically equivalent on one level can be topologically nonequivalent on a
different level. Hence, by adopting a suitable choice for continuity, fine details of
shape can be monitored and distinguished by topological means.

In fact, general topology takes an even bolder step. By explicitly declaring
which sets of points can participate in transformations that are going to be called
continuous, these sets are said to form a topology, and from then on continuity is
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regarded within this framework. However, for this general scheme to make practical
sense (to retain some resemblance to ordinary continuity and not to be
self-contradictory), the chosen sets must fulfill some conditions. These conditions are
described in the next section.

3.2 Some Basic Concepts of Topology

One of the most difficult aspects of mathematics is not what it describes but what it
ignores. Mathematical analysis requires definitions which specify some properties
and imply some others, but the abstract objects so defined have no additional
properties. Here lies the difficulty: when compared to real objects, the abstract
mathematical objects we need for precise statements have, in fact, very few
properties. Qur imagination, trained on ordinary objects, often brings up images of
objects which in some of their properties match those defined, but these actual
objects usually have many more properties. It is often difficult to avoid being
influenced by these additional properties and to keep our intuition and reasoning
restricted to the properties present in the abstract object. The temptation to draw
conclusions from actual real life analogies is particularly strong when applying
mathematical models for molecular shape analysis. When dealing with complex
objects of nature, the simplistic approach that everything is important can no longer
be used, and the task is to ignore the unimportant detail while retaining the essential
in a mathematically rigorous way. One avenue to such abstraction is provided by
topology. When referring to the topological definitions and when using them, the
reader is advised to keep in mind that nothing more is meant than said.

Notations. It is advantageous to use the concise and precise mathematical
notations of set theory. A general set will be denoted by X, its elements by x, y,
etc., the fact that x is an element of X is denoted by x € X, and if x is not an
element of set X, we can state this as x ¢ X. In topology, the concept of space is
rather general and, depending on the context, ordinary sets such as the collection of
all points of a potato may be referred to as spaces. Instead of the expression
"element X of set X" we shall often use the term "point x of space X". We
shall use the following common notations: A M B for intersection ("overlap”) of
twosets A and B, A \J B for the union of A and B (considering the members
of A and B as belonging to a common family), and A C B for stating that A is
a subset (subfamily) of B.

Metric and metric space. The concept of metric may be regarded as the
generalization of the familiar concept of distance. If a real-valued function d(x, y)
is defined for every pair of elements, x,y e X, ofaset X, and if this function
d has the properties

(i) d(x,y)=20 for any pair x,ye X, (3.1)

(i) dx,y)=0 ifand only if x=y, (3.2)
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(i) d(x,y) = d(y, x), (3.3)
(iv) d(x, z) £ d(x, y) + d(y, 2), (3.4)

for any three elements x,y, z € X, then this function d(x, y) is a metric of
the set X. The above relations are the natural properties of distance: never
negative, zero if and only if the two points coincide, symmetric (the distance of x
from y is the same as the distance of y from x), and fulfill the (3.4) triangle
inequality (the sum of the lengths of two sides of a triangle cannot be less than the
length of the third side).

A nonempty set X, provided with such a metric d(x,y) forevery pair
of its elements, x,y e X, iscalled a metric space.

Open sets, closed sets, relative complement, and continuity of
Junctions. In a metric space 'Y, a subset A of Y is regarded as an open set if
around every point of A there exists some (perhaps very tiny) ball that is still
within set A. Informally, an open set does not contain its boundary points (e.g., an
open potato is the potato without its skin where the skin is thought to be infinitely
thin). The relative complement of A in space Y is the set Ac of all points of
Y which are not in A. The relative complement can be written as AC=Y\A. A
subset C ofset Y isa closed set in Y if the relative complement C¢ of C is
an open subset in Y. The closure clos{(A) of aset A is the smallest closed set that
contains A.

A function f can be regarded as an assignment of points x of aset X to
points y of aset Y, expressed by the notation

f: X Y. (3.5)

Note that the above notation refers to the simultaneous assignment of all points of
set X to some points of set Y. For an individual point pair x and y one may
write f(x)=y.

A function f may assign points x of aset X to some points x' of the same
set X, a fact expressed as f: X — X. For the special case of the identity

function 1,
I. X-X, (3.6)

where I(x) = x', the points x and x' are the same (i.e., I(x) = x).

Informally, the image of a set A according to the function f is the set
generated from A by f, whereas the inverse image of aset B in Y is the set
needed in X to get B when applying f. In more precise terms, the image
B=f(A) of a subset A of X is the set of all points y=f(x) of Y for which
xe A. The inverse image f-1(B) of asubset B of Y istheset A=f-1(B) of all
points x € X for which f(x) € B; in colloquial terms, the inverse image of B is
the set A where B comes from.



n
tn

APPLIED TOPOLOGY: THE MATHEMATICS OF THE ESSENTIAL

Informally, a function f: X — Y is continuous if, for any point pair x, x'
that are near to each other in X, their images y=f(x) and y'=f(x') are also "near
enough" to each other in Y. A precise definition of continuity can be given as
follows: a function f: X — Y is continwous if and only if the inverse image of
every open subset B of Y is an open subset A of X.

Above we have given definitions of open sets and continuity only within a
metric space. For the definition of open sets we have needed the concept of distance
(defined in a metric space) in order to be able to specify the radius of some balls
around each point. However, distance is not a topological concept and we cannot rely
on it in a general topological treatment. To get around this, we can exploit the fact
that open sets have certain fundamental properties and these very properties may be
used to define which sets are to be regarded as open sets. We shall review these
properties below. If we select a family T of sets which can be declared open sets
without conflict with these general properties, then this family T of subsets of X
is said to form a topology on X. Then continuous functions can also be defined by
the same formal condition as given above (the inverse image of any open set is
open), but now open sets do not have to obey any conditions based on distance, in
fact, we can do away with distance altogether.

Topology and topological space. Topology is the most general
mathematical theory of open sets. Within a set X a ropology T is given if one
specifies in a consistent manner which sets are to be regarded as open sets. Below we
give a formal definition of a topology in terms of the three fundamental properties
of open sets (also valid, of course, for open sets within a metric space):

A class T of subsets of X,

T={Ty: Te C X}, (3.7)
is a topology on X, if
(i) X, 8e T (3.8)

where & is the empty set (a family with no members),

(i) UTge T (3.9)

for any number of sets in T, and
(i) Ty M Tge T (3.10)
for any two sets T, TB e T.

If a set X is provided with a topology T, then the pair (X, T) is called a
topological space. Since there are many ways of selecting a topology T, from a
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given set X we can generate many topological spaces. We can no longer simply say
that a set is open or closed: we have to specify which topology is considered.
Elements Ty of topology T are called T-open sets. Aset C is T-closed if
its complement C¢ =X\C isa T-open set. A set is regarded as an open or a closed
set depending on the topology, in fact, if Ty and T are two different topologies
on set X, then aset A C X may be Tj-open but Tp-closed. The simple
expressions "open set” and "closed set" can only be used if the choice of the topology
is clear from the context.

On a given set X some of the topologies are interrelated in a hierarchical
way. Consider two topologies T; and T, on aset X, where every T;-open
subset of X is also T»-open. Then the topology T is a subfamily of T, (i.e.,
T, € T;) and we say that topology T is weaker (coarser) than T,, or
alternatively, we say that Ty is stronger (finer) than T|. Two topologies are
not comparable if neither is weaker than the other.

Aset N C X iscalleda neighborhood of point xe X if and only if
there exists an openset Ge T suchthat xe G C N.

A subfamily B C T iscalleda base fortopology T if and only if
every open set G € T is a union of some sets in  B.

A family S of sets is a subbase for a topology T if and only if finite
intersections of members of S (the "overlaps" of various collections of a finite
number of sets from subbase S) form a base B for topology T. Of course, each
member of a subbase S isa T-open set of the topology T of base B.

A metric topological space (X, T) is the set X provided with a metric
topology T, where the T-open sets are precisely those which are open in the
ordinary sense according to some metric d, defined on X.

Now we can define continuous functions in topological terms. For two
topological spaces (X, T{) and (X, T2) a function ¢ from set X to set X»
18 continuous  if and only if the inverse image of every Tj-open subset of X, is
a Ty-open subset of Xj:

forevery Ge Ty, ¢! (G)e Tj. 3.1

A function @ is one-to-one if it assigns a unique element P(x) =y e X2 to
each element x € X;. A function ¢ is onto if every element ve Xp is
assigned to some element x € X|. A function ¢ is bijective if it is both

one-to-one and onto.
A function @ isa homeomorphism if it is bijective and both ¢© and ¢! are

continuous,
¢, ¢le C, 3.12)

that is, if both ¢ and -1 are elements of the class C of continuous functions
on X; and Xj, respectively.

Two topological spaces (X1, Ty) and (X, Ta) are topologically equivalent
or homeomorphic if there exists a function f: X| — X, which is bijective and
both f and f-! are continuous.
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Among a family {ab,c,d,...} of objects, some objects may be regarded as
equivalent with respect to some of their properties. Such an equivalence can be
expressed by a relation, called an equivalence relation. An equivalence relation,
here denoted by the symbol ~, must have three properties:

reflexive, a ~ a,

symmetric, if a~b then b~ a, and

transitive, if a~b and b~c, then a~c.

In a family of objects an equivalence relation generates a classification: we can
collect those objects which are equivalent to one another into equivalence classes.
Each object a belongs to precisely one equivalence class.

A property is said to be ropological or a topological invariant ifitis a
property of all topological spaces in an equivalence class generated by the
equivalence relation "topologically equivalent".

A topological space (X, T)is disconnected if X is a union of two,
nonempty, disjoint T-open subsets,

X=AUB, AB=z2Q®, ANB=g, ABeT. (3.13)

A topological space (X, T) is said to be connected if it is not disconnected. A
connected open subset is also called a domain, although the word "domain" is
often used in a more general sense.

Informally, a subset A of X is said to be contractible to a point if a
continuous contraction of the set A to a single point is possible without requiring
any point of A to pass through points not in set X.

A rtopological sphere is an object that is topologically equivalent to a sphere.

An n-dimensional set X is simply connected if and only if every
k-dimensional (k < n) topological sphere kS in X is contractible to a point.

Compactness is a generalization of properties of closed and bounded intervals,
applicable to higher dimensional sets. It is defined in terms of various coverings of
sets.

Consider a subset A C X. If family F={F;} is a class of open subsets of
set X such that

A C UF (3.14)
1

then F iscalled an open cover of set A. If family F contains only a finite

number of F; subsets, then F iscalled a finite cover.

A subset A of a topological space X is compact if every open cover of A
contains a finite subcover. For example, a sphere is compact; but if we remove a
point from the sphere, the generated punctured sphere is no longer compact.
Missing a single point from a sphere may not appear all that important, but due to
the resulting lack of compactness, it has important topological consequences.

Elements of algebraic topology, chains, cycles, and homology
groups.  The techniques of algebraic topology are applicable for the description
and concise characterization of molecular shapes. Homology theory is usually
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introduced in the context of polyhedra, providing a tool for the analysis of the
interrelations among various faces, edges, and vertices of these polyhedra. However,
the methods of homology theory are not restricted to polyhedra, since they are
applicable to objects of curved surfaces, such as formal molecular bodies. Homology
groups are suitable to describe the topological relations among the elements of
various subdivisions of surfaces. These subdivisions can be very general, such as
those obtained by irregular patches, their boundary lines and the joining points of
these lines on various surfaces, including formal molecular surfaces, MIDCQO's, and
VDWS'. One should notice that in a tepological setting the object under study does
not have to have planar boundaries in order to be topologically equivalent to a
polyhedron. Hence, we shall be able to use the terminology of polyhedra for a
topological analysis of the shapes of general irregularly shaped surfaces.

In a general n-dimensional polyhedron, a p-dimensional face is called a
p-face. For example, in a regular tetrahedron embedded in the ordinary
three-dimensional space there are four 2-faces (ordinary faces), six 1-faces (edges),
and four O-faces (vertices). The simplest faces are simplexes, for example, the
simpiest two-dimensional face a polyhedron can have is a triangle, that is a
two-dimensional simplex. If homology theory is directly introduced on objects that
are not polyhedra, one may use a cellular decomposition of the object where the
p-dimensional cells or, in short, the p-cells are analogous to the p-dimensional
faces of a polyhedron, and the development of homology theory is analogous to that
in terms of polyhedra and their faces. An open cell of dimension p is
homeomorphic to the open unit ball of a p-dimensional Euclidean space.

First we shall take a systematic look at polyhedra in terms of simplexes. A
geometrical p-simplex  S(p,i) of any positive dimension (p > 0) 1is a set of
points  xg(1)

S(p.i) = {xg1} (3.15)

defined in terms of p+1 points py(). p;@ ... pp) of the n-dimensional Euclidean
space NE as a convex combination:

p

xo = 2 tox Pk, (3.16)
k=0

where

P

D otk =1 (3.17)

k=0

and

0 < tgx <1, (k=0,1,..p) (3.18)
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Figure 3.2 An example for the subdivision of the surface of a 3D object into 2-cells (surface
patches), 1-cells (line segments on the boundaries of the patches) and 0O-cells (joining points of the
line segments). The patches themselves can be defined by physical conditions (for example, by ranges
of values of some local molecular property such as electrostatic potential), or by some geometrical
condition, such as the ranges of local curvatures of the surface. In the latter case, an interesting
combination of geometrical and topological treatments is obtained: a geometrical condition on the local

curvature is the basis for a topological characterization of shape by homology groups.

and where the set {(p; ) - po(i)), ( pa() - po()), ... ( Pp) - poli)} of vectors is
linearly independent (i.e., not all p + 1 points fall on the same (p-1)-dimensional
hyperplane).

The zero-dimensional case is special: a geometric O-simplex S(0,i} is a
single point by definition.

A geometric simplicial p-complex k(p) is a finite set of disjoint
g-simplices of the n-dimensional Euclidean space "E, where q =0, 1, ... p, such
that, if

S(q.i) € k(p) (3.19)

then all faces of S(q,i) are in k(p), and there are no two distinct simplexes in k(p)
which have all their faces the same.

The polyhedron lk(p)| is the point set union of all points of all simplexes
S(q,i) which belong to the simplicial complex k(p).

Of course, for a general polyhedron not all 2-faces must be 2D simplexes
(i.e., triangles). For example, all 2-faces of a cube are squares. Furthermore, for a
more general object of curved surface, the 2-faces (ordinary faces), 1-faces (edges)
and O-faces (vertices) of a polyhedron are replaced by the 2-cells (surface
patches), l-cells (line segments on the boundaries of the patches), and 0-cells
(joining peints of the line segments) of the object, respectively.

In Figure 3.2 a formal molecular surface G and its subdivision into various
cells are shown. The surface G is subdivided into five locally convex domains,
denoted by A, B, C, D, and E, and the remaining sixth domain F, where the local
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curvature properties of the surface can be characterized as being of the "saddle
type”. Note that here we use the term "domain” in a colloquial and somewhat
imprecise sense. The "domain" F is multiply connected since not every loop can be
contracted within F into a single point. For example, such noncontractible loops in
F can be found around domain E. Hence, F is not a true domain in the strict
mathematical sense; nevertheless, we shall use this colloquial termineclogy for F.
However, the division lines h, i, j, and k convert F into a simply connected
domain. The 2-cells of the resulting subdivision are A, B, C, D, E, and F,; the
I-cells are the line segments a, b, c, d, e, f, g, h, i, j, and k; whereas the 0Q-cells
are the points t, u, v, w, x, y, and z. We shall consider the following index

assignments:

C2,1) = A, C(1,1) = a, C(0,1) = t,
C(2,2) = B, C(1,2) = b, C(0,2) = u,
C(2,3)=C, Cc(1,3) =c, C(0,3) = v,
C(24) =D, C(1,4) = d, C(0,4) = w,
C(2.5) =E, C(1,5) = e, C(0,5) = x,
C(2,6) = F, C(1.6) = f, C(0,6) = v,
C(1.7) =g, C0,7) = z,
C(1,8) = h,
c(1,9) =i,
C(1,10) = j,
C(1,11) = k. (3.20)

Each cell may be given an orientation, formally denoted by +1 or -I.
These orientations can be represented by arrows; for example, a curved arrow can
be assigned to each 2-cell. An arrow with a counterclockwise rotation when viewed
from the interior of the surface can be associated with a +1 orientation, and one
with a clockwise rotation can be associated with a -1 orientation. A 1-cell can be
assigned an arrow along the corresponding line segment, and one can use an
arbitrary (but fixed) convention in assigning orientation numbers +1 or -1 to each
arrow. A (-cell (a point) is usually assigned a formal +1 orientation. For
example, in Figure 3.2, the orientations of 2-cells A, B, and E are +1
(counterclockwise when viewed from the interior of G), whereas the orientations
of 2-cells C,D, and F are -1 (clockwise when viewed from the interior of G).

If cell C'(p) is the same as cell C(p), except its orientation is reversed,
then we may write

C'(p) = - C(p). (3.2

In addition to signs, numerical values can also be assigned to cells, and these
values can be regarded as coefficients of the cells. Now we are in the position to add
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and subtract cells and to define formal linear combinations of various cells. The
generation of homology groups is based on such linear combinations, called
p-chains. Whereas these chains are geometrical or topological objects, we may think
of these linear combinations as formal "shopping lists" of cells.

A p-dimensional chain of p-cells is defined as the following abstract linear
combination of C(p,i) cells of a common dimension p:

cP= 2, u; C(p.i) (3.22)

i=1
where the u; coefficients are scalars. For example, the 2-chain
¢2 = 15C2,1H+0C2,2)+2C(23)-5C2H+....,
that is,
¢2 = I5A+0B+2C-5D+...., (3.23)

of the example in Figure 3.2, is a formal linear combination of 2-dimensional cells
C(2.i). In general, we may think of a p-chain as a linear combination of all
2-cells, some of which may have zero coefficients, such as the 2-cell B =C(2,2) in
the 2-chain ¢2 of Equation (3.23). It is common to omit cells of zero coefficients
when writing these linear combinations. The cP chains of a common dimension can
be added up and multiplied by scalar numbers, resulting in chains of the same
dimension.

Within integer homology theory, sufficiently versatile for our purposes of
molecular shape analysis, we consider only integers as coefficients and multiplying
factors of cells and chains.

The family CP of all such cP chains of cells,

CP = {c4P}, (3.24)
forms an Abelian group with respect to the addition defined as

cP +coP = 2 (uj+ 1) C(pii), (3.25)
i=1

where u; and u;' are the coefficients of cell C(p,i) in the chains c;P and c;P,
respectively. The neutral element of this group (denoted by 0P, or simply by 0) is
the p-chain that has all of its coefficients equal to zero.

The AC(p,i) boundary of a p-dimensional cell C(p,i) is the (p-1)-chain

AC(pi) = X nijp-1C(p-1.j), (3.26)
J

where nj;(p-1) is the incidence number between cells C(p,i) and C(p-1,j).
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The incidence number nij(p-]) is zero if the (p-1)-cell C(p-l1,j) is nrot
on the set theoretical boundary of p-cell C(p,i),

njj(p-1) =0, (3.27)
otherwise, if C(p-1,j) and C(p,i)) meet only on one occasion, then

njj(p-1) =1 (3.28)
if the orientations of the two cells match, and

njj(p-1) = -1 (3.29)

if the orientations do not match. That is, if C(p-1,j) and C(p,i) meet only on
one occasion, then

0 if C(p-1,j) isnoton AgC(p,i) (3.30)
njj(p-1) = § +1 if C(p-1,j) ison AgC(p,i) and orientations match
-1 if C(p-1,)) ison AgC(p,i) and orientations don't match,

where AgC(p,i) denotes the set theoretical boundary of C(p,i), the collection of
points falling on the boundary of C(p,i). Note that the set theoretical boundary is a
set of points, whereas the boundary defined in Equation (3.26) is a chain.

If cells C(p-1,j) and C(p,i) meet on more than one occasion, then the
numbers given by (3.30) give only the local incidence number for one occasion;
for the k-th occasion the local incidence number is denoted by njj(p-1). In this
case, the +1 and -1 numbers on the right-hand side of Equation (3.30) must be
summed up for each occasion C(p-1,j) and C(p,i) meet, and the sum gives the
value of the incidence number:

nij(p-1) = 2 njj(p-1). (3.31)
k

For example, in Figure 3.2, the 2-cell F = C(2,6) stretches over the far side
of the surface G, hence it meets the 1-cell h = C(1,8) on two occasions. When F
meets h from the upper right-hand side, then there is a mismatch of orientations;
hence we obtain a local incidence number of ng g (1) = -1. However, when F
meets h from the lower left-hand side, then orientations match; hence we obtain a
local incidence number of ng g 2(1) = +1. According to Equation (3.31), the sum
of these two values, -1 +1 =0, is the incidence number ng g(1) for these two
cells, F=C(2,6), and h = C(1,8):

n6.g(1) = ]'16‘3,1(1) + n6‘8'2(l) =-1+1=0. (3.32)

In more general, "folded" cases, incidence numbers of higher absolute values can
occur, however, these cases are irrelevant to the molecular shape analysis techniques
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of this book.

The local incidence numbers between |-cells and O-cells conform with the
following convention: -1 or +1 correspond to the oriented |-cell leaving or
entering the O-cell, respectively.

In colloquial terms, the boundary AC(p,i) of a set C(p,i) is a chain of C(p-1,j)
sets where the coefficients of the linear combination are the incidence numbers
between set C(p,i) and sets of dimension one less, p-1 . For example, the
boundary AE = AC(2,5) of 2-cell E =C(2,5) of Figure 3.2 is the l-chain

¢l = AE=AC(2,5) = X ns j(DC(L,j) =
]
= C(1,5+C(1,6)+C(1,7) =-e+f+g. (3.33)

In the above sum, ali other 1-cells participate with a zero coefficient, hence they are
omitted.

The boundary of a zero-dimensional cell C(0,i) is zero by definition. The
boundary of a p-chain cP =X u; C(p,i) of cells is defined as the (p-1)-chain

Acp = X u; AC(p.i) = 2 uinjj(p-1)C(p-1.)). (3.34)

i=1 ij

i.e., as the linear combination of the boundaries of the cells making up the chain.
Since, in the above sum, a given cell C(p-1,)) may enter on several occasions as a
contributor to different (p-1)-chains with positive or negative coefficients, these
contributions may cancel out and then the overall coefficient of C(p-1,j) may turn
out to be zero. In fact, in special cases the coefficients of all cells in the linear
combination may turn out to be zero, then we obtain the zero (p-1)-chain OP-1 that
may be written simply as 0.
An important property of boundaries is expressed by the relation

AAcp =0, (3.35)

i.e., the boundary of a boundary is zero. For example, according to Equation
(3.33), the boundary of the boundary of 2-cell E is

AAE=A(-e+f+g)=-Ae+Af+Ag=
=-(-y+)+(-y+D)+ (-2 +x)=0x+0y + 0z =0 (3.36)

A p-cycle is a p-chain which has no boundary, that is, whose boundary is
zero, AcP = 0. For example, in Figure 3.2 the l-chain (- e + f + g) is a cycle;
according to Equation (3.36), the boundary of this chain is zero. The set of all
p-cycles forms a subgroup ZP of group CP.

The boundary of any (p+1)-chain is a p-cycle but not every p-cycle is a
boundary of a (p+1)-chain. A p-cycleis called a bounding p-cycle if it bounds
something, that is, if it can be given in the form
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cP=Acpt!l | (3.37)

The bounding cycles are special chains, which bound some other chains on the object
(but being cycles, themselves have no boundaries). For example, the cycle (-e + f
+g) of Figure 3.2 bounds cell E, hence (-e+f+ g) isabounding cycle. The
set of all bounding p-cycles is a subgroup BP of Zp.

If for two p-chains cyP and c;P the difference c¢|P-cyP is a bounding
p-cycle then ¢ P and coP are homologous,

1P ~ cpP, (3.38)

where, in the present context, the symbol ~ is used for homology equivalence.
Note that if ¢(P-c»P is a bounding cycle, then cpP -c|P =- (¢|P - c,P) is also a
bounding cycle (of opposite orientation), hence it is immaterial which chain is
written first in the above difference.

If ¢;P is a bounding cycle, and if we take coP = 0, the zero cycle, then the
difference ¢|P-cpP = ciP s, evidently, a bounding cycle. By defining cP ~ 0
for every bounding cycle, homology - is an equivalence relation within set CP of
p-chains.  For the equivalence classes, homology classes [cP], addition is
defined as

[c1P] + [coP] = |cyP + coP], (3.39

in particular

[c1P] + [0] = [cP], (3.40)
and
[ciP] + [-¢P] =[0], 3.41)

where we simply write [0] for class [0P].

With the above addition as the group operation, the family of all homology
classes of dimension p forms a group, the pth (integral) homology group HP
of the object on which the various cells are defined. The p-th homology group is
the difference group ("quotient” group)

HP = ZP - BP. (3.42)

For each dimension p the homology groups HP, just as groups CP, Zp, and Bp,
are finitely generated Abelian groups. The homology groups are topological
invariants.

The Betti numbers are important topological invariants which can be used for

shape characterization. The p-th Betti number by, is the rank of homology group
HP. For topological objects we encounter in this book, the Betti numbers bp can be

¥4
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calculated from the following simple relations:
bp=mp-rp-rp (p>0), (3.43)
by = mg - rg. (3.44)

Here, mp is the number of cells C(p,i) of dimension p. Number rp is the rank
of the incidence matrix HN(p) of elements

N(1);; = njj(p) (3.45)

if p<n, otherwise rp=0.
For closed n-dimensional surfaces a useful property of Betti numbers is
given by the Poincaré index theorem,

bp = bnp- (3.46)

The Betti numbers by are related to the Euler-Poincaré characteristic y ,

n
x = 2 (-1P by, (3.47)
p=0

The Euler-Poincaré characteristic y is an important topological invariant of
the object.

The number of holes of a truncated surface G is an easily visualizable
topological feature. If the number of holes of G is one or more, then it is equal to
b[ + 1.

A sample calculation of homology groups and Betti numbers. As an
example, here we shall consider the special case of two-dimensional surfaces, such as
the example shown in Figure 3.2. First we summarize the special aspects of the
two-dimensional case of homology groups in the context of this example. Consider a
surface G, for example, a MIDCO Gg(a), or a truncated surface derived from it,
that is subdivided into a family of two-dimensional (2D) domatns {C(2,1)}. We
assume that each domain C(2,i) is simply connected, that is, every closed loop
within C(2,i) can be contracted into a point. This subdivision also generates two
additional families, a family {C(l,i)} of the 1D boundary line segments of the
C(2,i) domains, and a family {C(l,i)} of 0D points where these line segments
meet.

Each of these C(p,i) sets is given a formal orientation, denoted by +1 or -1.
For example, each line segment C(1,i) may be regarded as an arrow, whereas to
each domain C(2,i) one may assign a clockwise or counterclockwise rotation, as
viewed from the inside of G(a). In all the following applications the choice of these
orientations is arbitrary, and the final results are not affected by the choice. Each
C(0,i) point may be regarded to have the orientation +1.
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Two incidence matrices, N(l1) and N(0) are defined for the pair of
2D and 1D families {C(2,i)}, {C(1,1)}, and for the pair of 1D and OD families
{C(L)}, {C(0,1)}, respectively, by their elements n;j(p-1} taken according to the
definition (3.31), where the dimension p is either 2 or 1. Pictorially, these
incidence matrices can be represented by incidence graphs [158], and can also be
augmented with numerical information on the size, e.g., the area of each domain
C(2,i).

There are three homology groups for such a 2D surface: H2, H!, and HO,
and their ranks, the Betti numbers b3, by, and by can be calculated from relations
(3.43) and (3.44).

For the cellular subdivision in Figure 3.2 the following incidence matrices are

obtained:
t u v w x y 1z
0 0 0 0 0 o0 O a
0 0 o 0 0 0 O b
o 0 ¢ 0 0 0 0 c
0O 0o 0 0 0 0 0 d
6 o 0 o0 1 -1 o0 e
NGO = 0 0 0 0 0 -1 1 f (3.48)
0O 0 0 o 1 -1 g
16 0 0 -l h
6 -1 0 0 0 1 i
0 10 0O -1 J
0 0O 1t 0 -1
and
a b ¢ d e f g h i k
10 0 0 0 o0 0 0 0 O A
0 -1 o 0 0 0 0 0 0 O B
N(h= 0 -1 0 0 6 0 0 0 0 0 C (3.49)
0 1 0 0 ¢ 0 0 0 © D
0 6 -1 1.1 0 0 0 o0 E
r -1 -1 1 -1 1 1 0 0 0 0 F
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Above and on the right-hand side of these matrices we have indicated in bold face
letters the short-hand symbols for cells of Figure 3.2 corresponding to the columns
and rows of the matrices. From relations (3.43) and (3.44) we can calculate the
Betti numbers by the equivalent formula

bp=mp—rp~rp_1 O£psn=2), (3.50)
where my, is the number of cells of dimension p, and where
m=ry, =0, (3.51)

otherwise rp is the rank of incidence matrix N(p).

The seven columns of N(0) are not independent since their sum is the
11-dimensional zero vector; however, any six of these columns are linearly
independent, hence the rank rg = 6. Similarly, the first five rows of N(1) add up
to the sixth row vector, but any five of these six row vectors are linearly
independent, hence the rank ry =15. Since in the example mp =6, m; = 11, and
mg =7, we obtain

by=6-0-5=1, (3.52)
bij=11-5-6=0, (3.53)
and

bp=7-6-0=1 (3.54)

for the three Betti numbers of the complete surface G shown in Figure 3.2. The
value of the zero-dimensional Betti number, bg= 1, indicates that we deal with a
surface that is a single piece, whereas the value of the two-dimensional Betti number,
bz = 1, indicates that the surface is closed, (i.e., it has no heles). As we shall see
later, the most useful shape information can be deduced from the value of the
one-dimensional Betti number bj.

The two-dimensional (n=2) surface G is closed and the Poincaré index
theorem, by, = by_p, holds.

In the many applications of homology theory to molecular shape analysis, we
shall need only the various Betti numbers and the Euler-Poincaré characteristic %,
whereas the actual homology groups will not be used directly. Nevertheless, these
homology groups can be calculated from the information presented. The Betti
numbers b, are the ranks of the corresponding homology groups HP, and in our
("torsion-free") case, the knowledge of these numbers is sufficient for the
construction of the homology groups. In the example shown in Figure 3.2, the two
homology groups HZ and HO of the molecular surface G are both isomorphic to
the additive group of integers, wheres the one-dimensional homology group H! is
isomorphic to the trivial group.

Consider now a modification of surface G, by removing domain E. We may



68 SHAFPE IN CHEMISTRY

think of this operation as a truncation of a MIDCO G(a), from where a locally
convex domain is excised. Note that cell E is an open set (in the usual sense of a
metric Euclidean space, that is, E is a T-open set in the context of the metric
topology T). Consequently, the l-celis e, f, and g, as well as the O-cells x, v,
and z are not affected by this truncation. Consequently, the resulting truncated
surface has the same incidence matrix N{(0) as the original surface G, but we
shall have a new incidence matrix N(1)} between the family of 1-cells and the new
family of 2-cells:

1 ¢ ¢ 0 0 O 0 0 0 0 o0 A
0 -1 0 o ¢ 0 0 0 0 o0 B
N(I})= 0 0 -1 0 O ¢ 0 O 0 0 o0 C (3.55)
o 0 1 o0 0 0 0 0 0 0 D
r -1 -1 1 -1 1 1 0 6 0 O F

The numbers my; =11 and mg =7 of the 1D and 0D cells, respectively,
have not changed; however, we obtain the new value of my =5 for the number of
2D cells. For the incidence matrix N(0) the rank is rg = 6, as before, and the
value rj; has not changed either. The five row vectors of the new incidence matrix
N(l) are linearly independent, hence we obtain that the rank is r; = 5. By
substituting these values into Equation (3.50), we obtain the following Betti
numbers:

b =5-0-5=0, (3.56)
byj=11-5-6=0, 3.57
and

bp=7-6-0=1. (3.58)

As a result of the removal of domain E, only the two-dimensional Betti number has
changed, from 1 to 0, indicating that the new, truncated surface is no longer a
closed surface, it has at least one hole. In fact, the value of by =0, in combination
with by = 0, tells us that there is one hole, which turns out to be in the place of the
missing cell E.

For the truncated surface the Poincaré index theorem, bp= bn_p, does not
apply. The two homology groups H? and H! of the truncated surface are both
isomorphic to the trivial group, whereas the homology group HO is isomorphic to
the additive group of integers.

Consider now another truncation of G, typical in MIDCO shape analysis.



APPLIED TOPOLOGY: THE MATHEMATICS OF THE ESSENTIAL 69

Eliminate all five locally convex domains, A, B, C, DD, and E. As before, the
families of O-cells and I-cells, hence the incidence matrix N((Q) are not affected
by this truncation of G, i.e., my =11, mg=7, and rg = 6, as before. However,
for the new surface the number of 2-cells has changed to my = |, consequently,
the new incidence matrix N(1) is different,

N(i) = !l -1 -1 1 -1 1 1 0 0 0 O F (3.59)

being a simple row vector of rank | = 1.
Using Equaticn (3.50), we obtain the following Betti numbers:

by=1-0-1=0, (3.60)
bi=11-1-6=4, (3.61)
and

bp=7-6-0=1 (3.62)

The homology groups H2 and HO of the new truncated surface are
isomorphic to the trivial group and the additive group of integers, respectively,
whereas the homology group H! is isomorphic to the Abelian group of four free
generators, denoted by g, g2, g3, and g4. The elements of this group H! can
be written in the form kjg; + kogo + k3gy + kggg , where ki, kp, k3, and kg
are integers.

The two-dimensional Betti number is zero, by = 0, indicating that the new,
truncated surface is not a closed surface, it has at least one hole. The
one-dimensional Betti number b; is four. This value of b; = 4 indicates that
there are 4 + 1 =5 holes, in the places of the missing cells A, B, C, D, and
E. The zero-dimensional Betti number bg = 1 indicates that the truncated surface
has not fallen apart into pieces, it is still a single piece.

In all the examples discussed above, locally concave or convex domains have
been excised from the molecular surface G shown in Figure 3.2. For the actual
molecular surface G, none of these truncations has led to a separation of G into
pieces. In contrast, a rather different result is obtained if we decide to eliminate
domain F together with its internal subdivision lines h, i, j, and k. This step is
equivalent to the excision of the locally saddle type region of a MIDCO surface
G(a). The remaining, truncated object is no longer a single piece, it is a collection
of disconnected surfaces, although one may treat this collection as a single
topological object. For this object the 2-cells are A, B, C, D, and E, the I-cells
are a,b,c, d, e f,and g, whereas the O-cells are the set t, u, v, w, x, y, and
z of the original surface G. For the resulting new topological object one obtains
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the following incidence matrices:

0o 0 o 0o 0 0 O a
O 0 0 0 0 0 0 b
0O 0 0 0 0 0 0 c
NoOy= 0 0 0 0 0 0 O d (3.63)
c 0 o0 0 I -1 O e
o o0 o o 0 -1 1 f
0 o o0 o 1 0 -l g
and
a b ¢ d e f g
1 0 0 0 O 0 O A
¢ -1 0 0 0 0 O B
N(h)= 0 -1 6 0 0 o0 C (3.64)
0 1 0 0 0 D
0 60 -1 1 1 E

The new cell numbers are my =5, m; =7, and mg =7, whereas the ranks
of the new incidence matrices N(1) and N(@) are r; =5, and rg = 2,
respectively. By substituting these values into Equation (3.50), we obtain the
following Betti numbers:

bp=5-0-5=0, (3.65)
bj=7-5-2=0, (3.66)
and

bp=7-2-0=5. ' (3.67)

The zero-dimensional Bettl number bg= 5 indicates that we have five separate
pieces, none of which is a closed surface (bj = 0), and the number of holes is the
minimum (b; = 0) compatible with the above information, i.e., each piece has one
hole. This hole should be interpreted as follows: if any one of these pieces is curled
up at the edges, then one can view this piece as a ball that has a hole.

Two of the homology groups, H?2 and HI!, of the new disconnected object
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are both isomorphic to the trivial group. The zero-dimensional homology group HY
is isomorphic to the Abelian group of five free generators. If these generators are
denoted by g, g2, g3, g4, and gs, then the elements of homology group HO
can be written in the form kg + kygy + kygs + kqgq + ksgs, where Kk, ko,
k3, kg, and ks are integers.

Convexity and curvature properties. In the above discussion and
examples we have already used the concepts of convexity and locally convex domains
in an intuitive manner. Whereas our goal is to provide a topological shape
characterization for molecules, we shall often use geometrical tools at intermediate
steps toward a topological description. These steps often involve the concepts of
convexity, curvature, and a characterization of critical points of functions.

A function f(x) is convex (convex from below) over an interval [x;, xp] if
and only if

flox) + a2x2) S o f(xq) + 02 f(x) (3.68)

for any choice of coefficients o) and ¢, fulfilling the conditions

a)p+ 07 = 1, (3.69)
and
o, &y =0, (3.70)

A function f(x) is concave (concave from below) if in condition (3.68) the strict
inequality of reversed direction holds for coefficients «; and a9 fulfilling (3.69)
and (3.70).

Aset A is convex if and only if for any two elements x{, x»,

X1, X2 € A, 3.71)

and for any pair of coefficients o and o, fulfilling conditions (3.69) and (3.70)
the relation

a1X] + 02 X9 € A (3.72)
holds. That is, set A 1is convex if and only if for any point pair Xx;,X2&€ A any
point of the [x{, xp] line segment is also an element of set A.

A point x, given as the linear combination
X = OpXp + 001X + ... OkX| (3.73)

isa convex combination of points

Xg. X[, ... Xk € A (3.74)



72 SHAPE IN CHEMISTRY

if and only if the «; scalars fulfill the following conditions:

op+ 0+ .. +0 =1, (3.75)
and
o;=20, foreveryi=0,1..k. (3.76)

The set B of all such convex combinations, with reference to a fixed set of
points (3.74),

B = {x=0ogxg+ o X] + ... + Xk} (3.77)
isa closed k-dimensional simplex if and only if the set
{(x1 - x0), (x2 - Xg), ... (Xg -X0)} (3.78)

of vectors is linearly independent. If condition (3.76) is replaced by the strict
inequality

o; >0 forevery i=0, 1, ... k, (3.79)
then set B isan open k-dimensional simplex .

Critical points of functions. If we think of the independent variable(s) of
a function as being plotted along a horizontal line, or a horizontal plane, (or a
horizontal hyperplane, if there are more than two such variables), and think of the
function values as being plotted vertically, then, informally, a critical point is a point
where the function under consideration is locally horizontal, In more precise terms,
a critical point of a twice continuously differentiable function E(r) is a point
rc  where the gradient of function E(r), defined for points r of a set X,
vanishes,

grc)=0. (3.80)

The Hessian matrix H(rc) of a function E(r) is the matrix of the second
partial derivatives of the function, defined by matrix elements

Hij(r) = BZE(r)/ariarj (3.81)

(usually defined only at critical points, that is, where the first derivatives are zero).
The eigenvalues of the Hessian matrix characterize the critical point r¢. If the
rank of the Hessian matrix H(rc) is smaller than the dimension n of X, then
rc is called a degenerate critical point.

The number A of negative eigenvalues of matrix H(rc) is called the index
of the critical point rc.



APPLIED TOPOLOGY: THE MATHEMATICS OF THE ESSENTIAL 73

The Hessian matrix and the index of the critical point are tools for a precise
characterization of curvature properties, important in shape analysis.

3.3 Some Relevant Aspects of Knot Theory

The topologist's concept of a knot is different from the knots used in everyday
practice. Consider a rope with your favorite knot in it. Unless the two ends of the
rope are joined, the knot, however tight, can be untied by allowing one of its ends to
move along the rope. Hence, the initial arrangement is topologically and "knot
theoretically” equivalent to the untied rope stretched along a straight line, with no
knot in it. Consequently, a topologist does not regard a single, open-ended rope as a
knot, no matter how tightly your favorite knot is tied in this rope. On the other
hand, if the two ends of the rope are joined, then in most occasions one cannot untie
the knot without cutting the rope: in such a case no continuous deformation of the
rope can convert it into a circle. In fact, there are infinitely many different ways of
having knots in a rope with endpoints joined, and without cutting the rope, these
knots cannot be converted into one another.

In a topological sense, a knot is a homeomorphic image of a circle in the 3D
space. Consequently, tn a strict sense, all knots are topologically equivalent.
However, this equivalence does not mean that all knots can be deformed into one
another without passing through themselves (i.e., without cutting and gluing).
Knots may differ in their "knottedness”, the way they are embedded in the
three-dimensional space. Some of the simplest knots are the ftrefoil knots and the
figure eight knot, shown in Figure 3.3. Most but not all knots are chiral: no
motion of the rope can convert a chiral knot into its mirror image. The simplest
chiral knots are the left-handed and right-handed trefoil knots, shown in Figure 3.3.

ca -

Left-handed Right-handed
trefoil knot trefoil knot
“Flgure 8 knot " "L" "Lmk" "Unknot"

Figure 3.3 The simplest chiral knots, the left-handed and right-handed trefoil knots T_ and T, :
no mation of the rope can convert a chiral knot into its mirror image. An orientation is specified along
the rope of the two trefoil knots. Also shown are the topologically achiral figure eight knot "8", the
simple link L, and the unknot U.
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X U XK

Left-handed Avoided Right-handed
crossing crossing crossing
X- Xo X+

Figure 3.4 A convention for the characterization of the handedness of crossings is shown. An
orientation, indicated by an arrow, can be assigned to the rope in an arbitrary manner, both choices
lead to the same final result. A crossing of the rope is left-harnded or right-handed if the arrows
show a pattern of the crossing of the thumb and index finger of the left or right hand, respectively.
Note that the classification of the crossing does not change if the orientation is reversed, since the

change of orientation affects both arrows on the two rope segments crossed.

For the characterization of the handedness of these knots, one can use the
convention shown in Figure 3.4. An orientation can be assigned to the rope in an
arbitrary manner; either of the two choices leads to the same final result. The
orientation is indicated by an arrow. A crossing of the rope is left-handed if the
arrows show a pattern of the crossing of the thumb and index finger of the left hand,
and the analogous rule applies for a right-handed crossing. Note that the
classification of the crossing does not change if the orientation is reversed, since this
change affects both arrows on the two rope segments crossed.

We place the rope in such a way that no two crossings appear on top of each
other. The projection of such an arrangement to a plane is called a regular
projection. The minimum number of crossings one can have for a regular
projection of a given knot is called the crossing number of the knot. The crossing
number of both trefoil knots is 3. In such a projection, shown in the top left
diagram of Figure 3.3, all crossings of the left-handed trefoil knot are left handed,
whereas for the analogous projection of the right-handed trefoil knot all crossings
are right handed. This property is not general: for some knots both left- and
right-handed crossings can occur, even in regular projections. Note that the top right
diagram of Figure 3.3 is a knot-theoretically equivalent representation of the
right-handed trefoil knot where there are five crossings: two of these crossings can
be easily removed by flipping a segment of the rope.

The figure eight knot shown in a geometrically chiral representation is in fact a
topologically achiral knot: by appropriate movement of the rope one can obtain the
mirror image of the arrangement shown. In fact, a geometrically chiral arrangement
can be converted into its mirror image without ever becoming geometrically achiral.
These observations demonstrate that geometrical chirality and topological chirality
are fundamentally different, in fact, there are many different levels of topological
chirality [71]. Note, however, that the figure eight knot can be arranged in a
geometrically achiral manner, but this requires an arrangement with more crossings
than the crossing number of 4; for example, a geometrically achiral arrangement
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Figure 3.5  Regular projections and the usual knot theoretical symbols of knots of crossing
numbers less than seven. For each pair of topologically chiral knots only one topological enantiomer
is shown. The geometrical properties of the projections can be misleading. For example, the "figure
eight knot”, denoted by 41, appears chiral since the actual 3D geometrical arrangement of the string
is chiral. However, by moving the left-hand side loop of the string over the rest ot the knot, followed
by minor shifts of the string, one can obtain the mirror image of the arrangement shown.

Consequently, the figure eight knot is not topologically chiral.

of S4 symmetry has eight crossings [71].

In the strict sense neither the link L of Figure 3.3 nor the simple loop U,
informally called the "unknot", is a knot, nevertheless, the generic term "knot" is
often used for them. Links are formed by more than one rope, which ropes may or
may not be knotted, whereas the unknot U is not knotted.

In Figure 3.5, regular projections of knots with crossing numbers less than
seven are shown, together with their symbolic notations commonly used in knot
theory. For each topologically chiral knot only one of the two topological
enantiomers is shown.

There are various knot invariants which are independent of the arrangement of
the rope of a given knot. Some of these invariants are polynomials determined from
the crossings of the projection of the knot. Note that for the calculation of these
invariants the knot does not have to be arranged in any special way beyond the
requirement of having a regular projection. In particular, there is no need to
generate a projection where the number of crossings is minimum (i.e., equal to the
actual crossing number of the knot). The construction of such a polynomial is based
on information (the crossing pattern) that does depend on the actual arrangement
and projection of the knot, nevertheless, as long as the projections are regular, the
resulting polynomial is invariant to changes in the arrangement. Whereas a
rearrangement of the rope can eliminate some crossings and can introduce some new
ones, surprisingly, the resulting polynomial is unaffected by these changes. Such a



76 SHAFPE IN CHEMISTRY

O 3 R

A
A

&

-1 1/2 -1/2 =
VU(t) =1 -t VK-(t) -(t7 -t )VKo(t) + tVK+(t) =0

Figure 3.6 The recursive rules for the construction of the Jones polynomials are shown. By
definition, the Jones polynomial V{j{t) of the unknot U is 1. Consider three knots, denoted by
K_, Ko, and K4, which are identical under the cover Q and differ only in their exposed parts,
having a left-handed crossing, an avoided crossing, and a right-handed crossing, respectively. Their
Jones polynomials, V_(t), Vg, and Vg, (1) are interrelated by the equation shown. These
rules are sufficient to construct the Jones polynomial for any finite knot. (See comment on
normalization convention in the text.) The polynomial can be derived from the crossing information of
any placement of the given knot; interestingly, the same polynomial is obtained for every placement,
even for highly folded and twisted arrangements of the string, with projections showing a large

number of crossings. The Jones polynomial is a knot invariant.

polynomial is an invariant of the knot.

One of the most interesting and useful knot polynomials is the Jones
polynomial Vk(t) discovered in 1985 [244]. This is a polynomial of a rather
general type: it can contain both positive and negative fractional powers of the
variable t. The Jones polynomial V(t) has the following intriguing property: the
polynomial Vk(t) of a knot K and the polynomial Vko(t) of the K¢ mirror
image of the knot K are related in a simple way:

Vo) = V(. (3.82)

The above rule serves as a powerful tool for testing chirality of knots: if the
replacement of variable t by its reciprocal t-! in the polynomial Vg(t) changes
the polynomial into a different one, that is, if

Vi) # Vg (3.83)

then the knot K is topologically chiral. (Note, however, that the converse is not
always true: equality in the above relation does not necessarily imply topological
achirality of the knot K.)

The recursive rules for the construction of the Jones polynomial Vg(t) for
an arbitrary knot K are shown in Figure 3.6. By definition, the Jones polynomial
Vy(t) of the unknot U is I,
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VK3(t) = VKI(t) VKZ(t)

Figure 3.7 If two knots K| and Kp are cut anywhere and then are interconnected orientations
matching, then the Jones polynomial Vi;(t) of the resulting new knot K3 is the product of the
Jones polynomials Vi (1) and Vi,(t) of the two original knots K and K7, respectively.

vy = 1. (3.84)

Consider now three knots, denoted by K_, K, and K,. These three knots are
identical under the cover Q, shown in Figure 3.6, and they differ only in their
exposed parts, where they have a left-handed crossing, an avoided crossing, and a
right-handed crossing, respectively. For any three such knots their Jones
polynomials Vg_(t), Vk.(t), and Vg, (t) are interrelated by the equation

St V() - (172217112 Vig () + t Vi, () = 0 (3.85)

(Note that here we follow the normalization convention used in an early chemical
application [62], where the relation between this normalization and other conventions
has been pointed out.)

Another useful rule is illustrated in Figure 3.7. If two knots, denoted by K;
and K,, are cut anywhere and then are interconnected orientations matching, then
the Jones polynomial V;(t) of the resulting new knot K3 is the product of the
Jones polynomials Vi ,(t) and Vk,(t) of the two original knots K| and Ks:

Vks(t) = V() V(). (3.86)

In Figure 3.8, an illustration of the application of the recursive relation (3.85)
of Jones polynomials is given. For the generation of the Jones polynomial of the
right-handed trefoil knot T, we proceed in three steps. In Step 1, we start with
two unknots U, taking the roles of K. and K., and the third "knot" is the
unlinked double ring denoted informally by "U2", taking the role of K,. As
shown, these three knots can be arranged so that they appear identical under the
cover on their left-hand sides and their exposed parts are precisely a left-handed
crossing, an avoided crossing, and a right-handed crossing, respectively. The
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Figure 3.8 An illustration of the application of the recursive relation for the generation of the
Jones polynomial of the right-handed trefoil knot T,. In Step 1, starting with two unknots, the
recursive relation gives the Jones polynomial of the unlinked double ring "U2", shown in the frame.
In Step 2, the above polynomial and that of the unknot are used to obtain the Jones polynomial of the
linked "engagement rings”, "L". In the final Step 3, the polynomials of the unknot U and the
engagement rings L result in the Jones polynomial of the right-handed trefoil knot T,.

conditions of recursive rule (3.85) shown in Figure 3.6 are fulfilled, and from the
known polynomial of the unknot U, the recursive rule gives the Jones polynomial
(t1/2 + ¢-172) of the unlinked double ring "U2", shown in the frame. This result is
used in Step 2 by applying the same rule for "U2" and U, taking the roles
of K_ and K, respectively, to obtain the Jones polynomial (t-5/2 + t-1/2) of the
linked "engagement rings", informally denoted by "L". In the final Step 3, the
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polynomials of the unknot U and the engagement rings L result in the Jones
polynomial

Vo) = (-t4 + 3 + 1) (3.87)

of the right-handed trefoil knot T,. The Jones polynomial of the left-handed
trefoil knot T_ can be calculated using rule (3.82):

V(0 = V1,0 = Vi), (3.88)

that is, for the left-handed trefoil knot T. the Jones polynomial is

Vpo(t) = (-t+4 + t+3 + ), (3.89)
Clearly,
Vr-() # V), (3.90)

the result we expected: we have reconfirmed that the trefoil knots are topologically
chiral. In chirality studies, the power of these polynomials lies in their ability to
recognize topological chirality even if the knots are very complicated and are
arranged in a highly irregular manner with much more actual crossings than their
crossing number.

In Figure 3.9, regular projections, the common knot theoretical symbols, and
the corresponding Jones polynomials of knots and links of crossing numbers less
than six are shown, where the normalization convention of reference [62] is used.
Only one topological enantiomer and its Jones polynomial are shown for each pair of
topologically chiral knots or links; the Jones polynomial of the mirror image K¢ of
each knot K can be easily obtained from the polynomial of the original knot K by
replacing the variable t with its reciprocal t-1. The Jones polynomial, as a tool for
the detection of topological chirality of a knot can be easily tested for all these
examples: topological chirality is implied if the Jones polynomial of a knot is
different from the polynomial obtained by substituting t with t-1. Note that
topological chirality implies geometrical chirality, but geometrical chirality of a
given arrangement does not imply topological chirality, as we have seen in the
example of the figure 8 knot.

In fact, stronger and more surprising results are known {71], for example,
there are topologically achiral knots which cannot be arranged in a geometrically
achiral manner (i.e., they are not "rigidly achiral” according to the knot theoretical
terminology). When a geometrically chiral arrangement of such a topologically
achiral knot is converted into its mirror image, it is not only possible to do so
without ever making it geometrically achiral, but it is impossible to pass through an
arrangement that is geometrically achiral. In a later chapter we shall discuss the
application of a method of knots and Jones polynomials to a nonvisual analysis of
secondary structure and the topological chirality of the folding patterns of long chain
molecules, such as DNA and proteins.
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Figure 3.9 Regular projections, the usual knot theoretical symbols, and Jones polynomials of
knots and links of crossing numbers less than six. For each pair of topologically chiral knots or links
only one topological enantiomer is shown. The Jones polynomial of the mirror image K° of each knot
K can be obtained from the polynomial of the original knot K by replacing the variable t with its
reciprocal t-1. Consequently, the topological chirality of a knot is implied if the Jones polynomial is
different from the polynomial obtained by substituting t with t-!. For example, the chirality of the
trefoil knot 3| and the achirality of the figure eight knot 4 are properly reflected if one carries out
the above substitution in their Jones polynomials. The method of knots and Jones polynomials can be
applied to a nonvisual analysis of secondary structure and the chirality of the folding patterns of long

chain molecules, such as DNA, proteins, and chains of synthetic polymers.
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3.4 Geometrical Shape and Topological Shape

Geometrical shape is a property of objects which show stable geometrical features
and can be characterized in terms of geometry. In practical terms, solid macroscopic
objects may be thought of as falling into this category, although no solid object is
immune to shape changes due to thermal dilatation, vibrations, and other possible
effects. Consequently, geometrical shape is truly an abstraction that can be applied to
real objects to various degrees of relevance. However, even if the object is not
absolutely stable in terms of geometrical shape, the available geometries (within a
time interval, or within a temperature range) often show common, invariant
topological features. These features define the topological shape of the object. A
good example is provided by knot theory: the geometry of a given knot may show
great variations, but its knottedness, exhibiting, for example, topological chirality, is
an invariant feature. For objects which preserve their identity under great
geometrical variations, such as most molecules, the concept of topological shape is of
great importance. Also, as discussed in earlier chapters, the quantum mechanical
nature of molecules and the associated consequences of the Heisenberg uncertainty
relation imply that localized, geometrical shape characterization can be used only in
an approximate sense for molecules, and that a topological description of molecular
shape appears more appropriate.

One should not, however, discard the tools offered by geometry. One approach
that forms the basis of many of the shape analysis techniques described in later
chapters of this book is based on the principle of geometrical classification and
topological characterization. Geometry is used to define ranges of geometrical
arrangements, for example, ranges of allowed distortions, leading to a geometrical
classification by these ranges, followed by a topeological characterization and
analysis of the invariant topological properties within each range. This principle is
used in combination with the shape group methods, described in Chapter 5.



CHAPTER
4

MOLECULAR BODIES, MOLECULAR SURFACES,
AND THEIR TOPOLOGICAL REPRESENTATIONS

4.1 Geometrical and Topological Models for Molecular
Bodies and Contour Surfaces

4.2 Charge Density and Electrostatic Potential

4.3 Van der Waals Surfaces and Solvent Accessible Surfaces

4.4 Macromolecular Shape and Protein Folding

Molecules are three-dimensional objects and they do occupy some space. When
considering the space requirements of molecules, it is natural to associate with them
a formal molecular body and a formal molecular surface [84-88]. In a simplistic
model, this surface is a formal molecular boundary, a closed surface that separates
the 3D space into two parts: the molecular body enclosed by the surface that is
supposed to represent the entire molecule, and the rest of the 3D space that falls
on the outside of the surface, hence on the outside of the molecule. The above,
intuitive concepts of molecular body and molecular surface are very useful for the
interpretation of molecular size and shape properties within approximate models.

However, real molecules are quantum mechanical objects and they do not have
a finite body defined in precise geometrical terms and a finite boundary surface that
contains all the electron density of the molecule. The peripheral regions of a
molecule can be better represented by a continuous, 3D electronic charge density
function that approaches zero value at large distances from the nuclei of the
molecule. This density function changes rapidly with distance within a certain range,
but the change is continuous. The fuzzy, cloud-like electronic distribution of a
molecule is very different from a macroscopic body [251], and no precise, finite
distance can be specified that could indicate where the molecule ends. No true
molecular surface exists in the classical, macroscopic sense.

Nevertheless, it is possible to construct both classical and approximate quantum
chemical molecular models which take advantage of the concepts of a formal
molecular body and molecular surface. A formal body and its formal boundary
surface can be defined by requiring only that the surface encloses the essential part

82
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of a molecule. Depending on the chemical problem, there are various choices for
what is to be considered the essential part of the molecule. Some of the most
commonly chosen approaches will be reviewed in the next section. Contour surfaces
of electronic charge densities (MIDCO's), molecular electrostatic potential contours
(MEPCO's), contours of molecular orbitals, molecular Van der Waals surfaces
generated by fused atomic spheres, solvent accessible surfaces, and various other
surfaces surrounding some or all of the nuclei of a molecule can be considered as
molecular surfaces and the part of the 3D space enclosed by these surfaces can be
regarded as approximate melecular bodies.

4.1 Geometrical and Topological Models for Molecular Bodies and
Contour Surfaces

Molecular bodies of quantum mechanical electron distributions or some other
molecular functions such as electrostatic potentials can be represented on various
levels of approximation. These representations have two main components: the
physical property or model used to define a formal molecular body, and the
geometrical or topological method used to describe and analyze the model. If a
representation of the molecular body is selected, then the boundaries of these
approximate molecular bodies can be regarded as formal molecular surfaces. Hence,
the molecular shape analysis problem can be formulated as the shape analysis
problem of formal molecular surfaces.

Of course, for any given molecule, a single surface cannot provide a detailed
enough description of the shape of the actual, fuzzy electron distribution or the
entire, 3D molecular electrostatic potential. Often one must consider a whole
continuum of a family of molecular surfaces. That is, individual geometrical models
are insufficient for the description of the shape of molecules, especially if the
conformational flexibility and more general, dynamic molecular properties are
considered. Topology can help in two ways: in providing efficient techniques for
the shape analysis of individual surfaces, and also as a tool to extract the important,
commeon features from an entire family of such surfaces, which can collectively
represent the shape of the molecule. In the above spirit, one can distinguish between
the geometrical models of individual molecular surfaces and their enclosed
molecular bedies, and the topological models describing the common topological
properties of families of contour surfaces and the associated bodies, defined, for
example, by a range of electron density contour values.

In this chapter some of the physical properties and approximate models used
for molecular shape representation will be reviewed.

4.2 Charge Density and Electrostatic Potential
Electronic charge densities p(r) are 3D molecular functions which can be

observed experimentaliy. In fact, X-ray structure determination methods are based
on the scattering of X-rays on the electronic cloud of molecules (see, ¢.g., ref. [89]).
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For molecules within periodic crystal lattices, the measured intensity data of the
X-rays reflected from the (hkl) plane of the crystal can be converted into the Fpy
structure factors, and the observed electronic charge density p(p) can be obtained
by a technique called Fourier synthesis:

o(p) = 2 2, 2 Fry exp [-2mi(hx+ky+lz)] , (4.1)
h k |

where the coordinates of point p = (xa, yb, zc) are given with reference to the a,
b, and ¢ constants characteristic to the unit cell of the crystal.

Electronic charge densities have fundamental influence on a wide variety of
molecular properties. Electron densities are related to the formal sizes of atoms and
the formal bond lengths of molecules, for example, in various crystals [278], and
there are important relations between experimental electron densities and
temperature [279]. Electronic charge densities p(r) can be calculated by various
quantum chemical methods, both ab initic and semiempirical (see, e.g., refs.
[90,91]). Density difference calculations are used for direct comparisons of
electronic structures (see, e.g., ref. [280]), whereas the effects of electron
correlation on charge densities are of special importance in the study of nonbonded
interactions {281].

The electronic charge density p{r} is a 3D function that can be calculated
from the n-electron wavefunction solution Y(ry,rp,.. ry) of the electronic
Schrédinger equation of the molecule:

p(r)=n J | ¥(r,ra,rs,... ry) 12 drodrs...dry, , 4.2)

where the symbol of integration also implies summation for all spin variables. In
most quantum chemical computational studies the electronic charge density is
specified in atomic units, a.u., defined as electrons/bohr3, where the conversion to
SI units gives 1 a.u. of electron density = 1.08121 x 1012 C/m3.

Using an atomic orbital expansion in terms of a set {¢i(r)} of normalized
atomic basis functions, the electronic density function can be calculated from the
relation

p(r) = X X Pjj ¢i(r) *(r) , (4.3)
LI

where Pij is the 1,j element of the density matrix P, obtained from an ab initio
or a semiempirical computation. Note that the accuracy of MIDCO's calculated for
different contour density values a is seldom uniform throughout the whole density
range, nevertheless, ab initio methods with appropriate basis sets are suitable for an
adequate representation of the valence shell regions of electron densities in closed
shell molecules of moderate size.

If molecular shape is represented by the electronic density, then the shape
analysis can be performed on the molecular isodensity contours (MIDCO's) of the
calculated density. Some of the elementary properties of MIDCO's have been
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discussed in Chapter 2.3, with special emphasis on the density domain approach
(DDA) to chemical bonding (Chapter 2.4), and on the quantum chemical definition
of functional groups of chemistry (Chapter 2.5).

The results of the quantum chemical calculations are dependent on the method
used, in particular, the calculated ab initio electron densities and the associated
MIDCOQ's are dependent on the basis set used. The electronic charge density is a
property more sensitive to basis set variations than energy, although it is energy
minimization that leads to the actual approximate wavefunction when using the
variational principle within most ab initioc computational schemes. Some basis sets,
in particular the Gaussian basis sets used within the GAUSSIAN family of ab initio
programs of Pople and coworkers [253], are designed to reproduce valence shell
molecular properties. Consequently, when MIDCO's are calculated within such
ab initio framework, the contours corresponding to the relatively low electron
density values in the peripheral valence shell regions of the molecule are more
accurate than those corresponding to high electron density values in the core region
near the nuclei. In addition, the "cusp condition” of the electronic density is poorly
represented by any wavefunction built from Gaussian basis sets, consequently,
high-density MIDCOQ's are often less accurate than those at low densities, even if
calculated using basis sets that are not specifically designed for valence shells.

A property that is related to the electronic charge density but provides
information often more directly useful in the analysis of interactions between
molecules is the molecular electrostatic potential (MEP). Isopotential contours
(MEPCOQO's) are defined analogously to the isodensity contours (MIDCOQO's), by
selecting appropriate constant values a for level sets of MEP. The electrostatic
potential generated by a molecule has a strong influence on molecular interactions
and chemical reactions. The molecular electrostatic potential can be calculated, at
least approximately, with little computational effort even for large molecules, and it
is frequently used for the representation of molecular shapes and steric interactions
between polar regions of biomolecules [92,155,191,282-308]. For any specified
conformation of the molecule, the MEP function V(r) generated at point r can be
calculated from the nuclear charges Z;, the formal nuclear position vectors R;,
and the electronic charge density function p(r) as follows :

V(r)=2 Zi/Ir- Ryl - I [ p(r')/ir-r'l ] dr', (4.4)

where the integration in the second term is over the whole space and r' is the
variable of integration. The electronic charge density function p(r) and the
electrostatic potential V(r) are related by the Poisson equation:

AV(r) = 4mp(r) . (4.5)

The atomic unit of electrostatic potential is defined as electrons/bohr, where 1 a.u.
of electrostatic potential = 27.2116 V = 3.02770 x 10-2 C/m.

One may use multipolar expansions for an approximate calculation of MEDP,
and it is often convenient to use fractional charges on atoms obtained from ab initio
or semiempirical quantum chemical MO population analyses [288,300].
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A family of molecular surfaces can be defined in terms of the MEP using
methods similar to those applied in the case of the electronic density. Since the MEP
is a continuous function of the three-dimensional position variable r, it can also be
analyzed in terms of level sets F(a) and their contour surfaces G(a) for a selected
constant MEP value a, defined analogously to those of charge density :

Flay={r: Vir)<a}, (4.6)
and
Ga)={r: Viry=a}. 4.7)

The above G(a) surface is a molecular electrostatic potential contour surface,
MEPCO, for the contour value a. Note that in contrast to the case of electronic
charge density contours, in a MEP analysis the function V(r), hence the threshold
parameter a, can take both positive and negative values.

Molecules having similar functional groups and those capable of simtlar
reactions, as well as biomolecules and drug molecules of similar biochemical effects
often have moieties showing similar MEP contour surfaces, indicating the
importance of electrostatic interactions during binding and the initial stages of
chemical reactions. The shapes of MEPCO's often suggest mechanistic explanations
of how a given ligand interacts with a receptor site of an enzyme. Consequently, the
study of the 3D shape of MEPCOQ's is a useful tool in rational drug design
[175,303-308].

The first term in the definition (4.4) of the molecular electrostatic potential is
the potential V,(r) generated by the nuclei, also called the "bare nuclear
potential”;

Vo(r) =2, Z; /Ir - Ryl . (4.8)
1

Parr and Berk [309] have found that the isopotential contours of the nuclear

potential V(r) of simple molecules show a remarkable similarity to the actual

isodensity contours of the electronic ground states of these molecules.

This observation of Parr and Berk provides the basis for a simple approach to
molecular shape analysis and molecular similarity analysis, described below.
Although the molecular shapes, as defined by the electronic density, differ somewhat
from the shapes of the nuclear potentials, their similarity can be exploited: the
nuclear potential contour surfaces provide a simple approximation of the shape of
molecules. We shall refer to the isopotential surfaces of the nuclear potential
contours as NUPCO surfaces. These surfaces have a major advantage: the
computation of NUPCO's is a trivially simple task as compared to the calculation of
electronic densities. Furthermore, nuclear potential is a useful molecular property in
its own right, without any reference to electronic density: a comparison of
NUPCO's of various molecules can provide a valid tool for evaluating molecular
similarity. The superposition of potentials of different sets of nuclei can resuit in
similar composite potentials, consequently, the comparison of NUPCO's is better
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suited for an assessment of molecular similarity than a direct comparison of nuclear
arrangements. In particular, the symmetry of a NUPCO is the same as or possibly
higher than the point symmetry of the nuclear arrangement. (A higher symmetry is
obtained for infinitesimally low potential values.)

A shape analysis of NUPCO's provides a formal "shape signature” of the
collective properties of the nuclear arrangement K. Of course, NUPCO's are
common for all electronic states of the same nuclear arrangement. Consequently,
NUPCOQ's are not suitable to account for the shape differences between various
electronically excited states of molecules, especially in formal "vertical" excitations.
However, electronic excitations are often accompanied by changes of the optimum
nuclear arrangement K, and NUPCO's can be used for an approximate description
of these contributions to the overall shape changes caused by the electronic
excitations.

The nuclear potential V,(r) is a continuous function of the position variable
r. as long as r does not coincide with a nuclear position, r # R; . The level sets
F(a) and their NUPCO boundary surfaces G(a) for any constant potential value a
are defined as

Fa)={r: Vu(ry<a}, (4.9)
and
Ga)={r: Vyr)=a}, 4.10)

respectively. The value of nuclear potential is positive or zero, there are no
NUPCO's G(a) with negative threshold parameter a.

The highest level of shape similarity between NUPCO's and MIDCO's is
expected in the high density and high potential core regions near the nuclei, where
both contours are essentially spherical. In the valence shell regions of electronic
charge density the dominant electron-nuclear interaction is substantially modified by
electron-electron interactions, hence one finds greater differences between the shapes
of MIDCO's and NUPCOQ's. Nevertheless, even in the peripheral, valence shell
regions, the similarity is significant, and NUPCQ's provide a valid approximate
model for molecular shapes. A similarity analysis of NUPCO's describes an
important aspect of molecular similarity.

A variety of molecular surfaces can be defined in terms of the molecular
orbitals ¥;(r) of a molecule. A contour surface of an MO W¥;(r) is defined in
terms of the level sets F(a) and its boundary surface G(a), with respect to a
threshold a of the function value W¥;(r). Similar to the case of MEPCO's, these
threshold values may take both positive and negative values.

The definitions of level sets F(a) and contour surfaces G(a) of an individual
molecular orbital W;(r) are analogous to those of the charge density and
electrostatic potential:

Flay={r: ¥i(r)<al, “.11
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and
G@a={r: ¥i{r)=a }. (4.12)

The usual ab initio Hartree-Fock computations lead to the canonical orbitals
which allow a simple assignment of an energy quantity ("orbital energy") to each
orbital. In particular, the contour surfaces of the highest (highest-energy) occupied
(HOMQO) and lowest unoccupied (LUMO) orbitals, and the frontier orbitals [96,97]
are often used to interpret properties of molecules and reactions.

The actual sign ("phase") of the molecular orbital at any given point r of the
3D space has no direct physical significance; in fact, any unitary transformation of
the MO's of an LCAO (linear combination of atomic orbitals) wavefunction
leads to an equivalent description. Consequently, in order to provide a valid basis for
comparisons, additonal constraints and conventions are often used when comparing
MO's. The orbitals are often selected according to some extremum condition, for
example, by taking the most localized [256-260] or the most delocalized [259,260]
orbitals. Localized orbitals are often used for the interpretation of local molecular
properties and processes [256-260]. The shapes of contour surfaces of localized
orbitals are often correlated with local molecular shape properties. On the other
hand, the shapes of the contour surfaces of the most delocalized orbitals may
provide information on reactivity and on varicus decomposition reaction channels of
molecules [259,260].

4.3 Van der Waals Surfaces and Solvent Accessible Surfaces

Isolated atoms show spherical symmetry, and it is natural to model atoms by spheres
of some suitably defined radii. The potential energy of interaction between two
atoms rises very sharply at short internuclear distances during atomic collisions, not
unlike the potential energy increase in the collisions of hard, macroscopic bodies. In
a somewhat crude, approximate sense, atoms behave as hard balls. This analogy can
be used for a simple molecular model where atoms are represented by hard spheres.
Once a choice of atomic radii is made, the approximate atomic surfaces can be
defined as the surfaces of these spheres.

Molecules are built from atoms, and it is natural to relate the formal concept of
the "“surface of a molecule” to the formal atomic surfaces of the constituent atoms.
The radii of atomic spheres chosen for the representation of the space requirements
of atoms are usually much too large for modeling molecules by simply placing the
atomic hard spheres side by side. This approach would not reflect the internuclear
distances correctly, and the surface obtained would have artificial shape features
much too different from the shape of the actual electronic charge distribution of the
molecule. It is possible, however, to generate various "fused sphere"” models for
molecules [84-88], by allowing the spheres to interpenetrate one another, setting the
distances between the centers of two spheres equal to the formal internuclear
distance in the molecule. The spheres can be positioned according to the 3D,
stereochemical bond pattern of a particular, fixed nuclear arrangement of the
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Figure 4.1 An illustration of a fused sphere Van der Waals surface (VDWS) of a molecule.

molecule. The envelope surface of the properly arranged fused spheres may be
regarded as a formal molecular surface.

In particular, if the atomic radii are taken as some of the recommended values
of the atomic Van der Waals radii, then one obtains a fused sphere Van der Waals
surface (VDWS) of the molecule. Several different sets of atomic radii have been
proposed [85-87,255], and the fused sphere molecular surface obtained depends on
this choice.

The 3D space requirements of most molecules can be represented to a good
approximation by such Van der Waals surfaces. Fused sphere VDWS's are used
extensively in molecular modeling, especially in the interpretation of biochemical
processes and computer aided drug design. These approximate molecular surfaces
are conceptually simple, their computation and graphical display on a computer
screen take relatively short time, even for large biomolecules.

The usual atomic radii [86] for a VDWS of many molecules provide a good
approximation for a MIDCO of an intermediate contour density value a of about
0.002 a.u. One may exploit this fact and design simple VDW representations of
molecular surfaces based on molecular charge densities. The methods of fused
sphere VDWS's can be extended to generate approximate representations of a
family of isodensity contours for a whole range of contour density values [255].
Functions of variable atomic radii, dependent on the desired contour density value
have been constructed. These functions allow one to construct simple, scalable, fused
spheres surfaces for any desired contour density value a, mimicking MIDCO
surfaces G(a) for any a value, using an approximate technique [255] that is
computationally much simpler than a direct ab initio or even semiempirical
calculation of a MIDCO.

In Figure 4.1 an example of a fused spheres Van der Waals surface is shown.
This figure illustrates an important difference between a MIDCO and a VDWS: at
the seam of interpenetration of the spheres the latter surfaces are not differentiable.
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Figure 4.2 A schematic illustration of a solvent accessible surface of the VDWS of a molecule

shown in Figure 4.1.

Consequently, local curvatures cannot be defined at such points, and the usual
curvature-based partitioning of the shape group method is not applicable (see
Chapter 5.2). This property, however, can be exploited for alternative shape analysis
techniques, where the simplifications offered by spherical surface patches are also
utilized [194,195]. Alternatively, by appropriate "smoothing” these surfaces can be
converted into differentiable surfaces [109], and then the usual shape group methods
are applicable. One such approach is based on minimal surfaces, defined as the
minimum area envelope surface of a set of atomic spheres. This technique is equally
applicable for nonintersecting and fused spheres; the minimal envelope surface of a
VDWS is a natural, smooth extension of the simple fused sphere model of molecular
surfaces. One may picture a minimal envelope surface of a fused spheres VDWS as
the surface obtained after dipping a model of the VDWS into a soap solution.

The interactions of a solute molecule with the solvent have important influence
on most molecular properties and reactions. Molecular shape is also affected by such
interactions. One crucial aspect of these interactions is the accessibility of various
regions of the solute molecule by the solvent. A very simple but useful approach is
based on the concept of solvent accessible surface. For the simplest case, the solute
molecule is represented by a fused sphere Van der Waals surface, whereas the
solvent molecule is represented by a sphere. Part of the motivation for this model is
provided by the nearly spherical shape of water MIDCO's at low densities, and by
the fact that solvent molecules are likely to undergo rapid reorientation processes
even within the near vicinity of the solute molecule. An averaging of the various
orientations is expected to result in a nearly spherical time average for many
solvents. Water being the most common solvent, the above model has been used in
many studies of the accessibility of the VDWS by the solvent molecules [310]. A
simple approach to this problem is based on rolling a spherical solvent molecule on
the VDWS, and monitoring the positions of the center of the rolling sphere. These
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Figure 4.3 An example of an interpenetrating molecular surface pair, such as a MIDCO and a

MEPCO pair of the same molecule.

positions define an envelope surface about the VDWS, and this envelope surface is
taken as a formal solvent accessible surface of the molecule. A solvent accessible
surface can be defined for alternative representations of the molecular surface, for
example, solvent accessible surfaces can be obtained for various MIDCO's. A
special generalization of convexity provides a new representation of such solvent
accessible surfaces [262].

In Figure 4.2 a schematic illustration of a solvent accessible surface of the
VDWS of Figure 4.1 is shown. A solvent accessible surface also can have points
where it is not differentiable. This feature may occur for solvent accessible surfaces
of both VDWS' and MIDCO's, even if the latter surfaces themselves are
differentiable. As it is shown in Figure 4.2, the rolling solvent sphere can get
"bogged down" in local bays along the molecular surface, implying that its smooth
motion is interrupted, and it must take a sudden turn. This leads to a discontinuity in
the otherwise smooth change of the alignment of the tangent plane of the solvent
accessible surface. Such bays can occur along both VDWS and MIDCO surfaces,
resulting in nondifferentiable solvent accessible surfaces.

Molecular surfaces representing different physical properties are often
markedly different. These differences, as interrelations among various molecular
surfaces of the same molecule, can be easily represented by the pattern of
interpenetration of two or several such surfaces. The same general technique of
interpenetrating surfaces can be applied for two molecular surfaces of the same
physical property of two different molecules. In this latter case, the interpenetrating
surfaces provide a tool for direct shape comparisons.

For example, the interrelations between the electronic charge density and the
electrostatic potential of a molecule can be studied by this technique. An example of
such an interpenetrating surface pair is shown in Figure 4.3. A pair of superimposed
MIDCO and MEPCO surfaces generates patterns of domains on both surfaces,
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Figure 4.4 A view of the secondary-tertiary structure of myoglobin. The helical segments as well

as the heme group are clearly recognizable.

where, for example, a given domain on the MIDCQO corresponds to locations where
the MEP values are greater then the MEPCO threshold. In general, the shape
analysis of these patterns on each of the interpenetrating surfaces can follow the
general shape group approach, whereas the envelope surface of the interpenetrating
surface pair has points where it is not differentiable,

One approach for the generation of an appropriate superposition of contour
surfaces [311] is based on the distance geometry approaches of Crippen [312], and
Crippen and Havel [313]. Most of the software packages used in drug design (see,
for example, refs. [314-324]) provide a variety of tools for the related computations.
These and related techniques have been applied in medicinal chemistry and in more
general molecular engineering problems (see, for example,refs. [325-337]).

Another family of superimposed surfaces is used in the study of active sites of
enzymes. By superimposing approximate molecular surfaces of several molecules
showing similar activity with respect to the given enzyme, a part of their envelope
surface, called their union surface, can be taken as an object that approximately
fills out the cavity of the enzyme [167,311,338]. The shape of the union surface (in
fact, the shape of its complement) is expected to provide more information on the
shape of the enzyme cavity than a surface of a single active molecule.

4.4 Macromolecular Shape and Protein Folding

The shapes of macromolecules, large and complex molecular systems such as
polypeptides, proteins, and polysaccharides, can be studied considering different
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Figure 4.5 A ribbon model of the secondary-tertiary structure of myoglobin, viewed from the same

perspective as that of Figure 4.4.

levels of organization. Their molecular arrangements can be viewed at various levels
of resolution. Depending on the level of resolution, the relevant shape features can
be represented by different types of models, complementing one another. For
macromolecules a detailed shape characterization in terms of MIDCO's is often
impractical, computationally prohibitively expensive, and in many instances not
really necessary. When detailed shape information is required, then formal
molecular surface models, such as the fused spheres Van der Waals models are often
used to represent a molecule. For macromolecules and long chain molecules the
large scale shape features are often more important than the finer details
[169,339,340], although detailed shape of some local regions, such as reactive sites,
dominant functional groups of macromolecules, and the cavity regions of enzymes
are of special importance.

Figures 4.4 and 4.5 show examples of two common types of representations
of protein structures. In Figure 4.4 some of the global structural features of the
myoglobin molecule are shown from the most commonly used perspective [341]. In
this view the helical segments as well as the heme group are clearly recognizable. In
Figure 4.5 a ribbon model of the same molecule is shown.

For chain molecules, such as peptides and proteins, the three-dimensional
folding pattern is of great importance, and the shape characterization on the
corresponding lower levels of resolution requires techniques different from those
used for small molecules. For proteins this folding pattern has several,
distinguishable levels of complexity. The primary structural arrangement of a
protein is reflected in the sequence of amino acids. The peptide chain may coil up to
form an o—helix, or it may form a structure called B-strand, whose strands may
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Figure 4.6 A simple space curve representation of the central line of secondary structure elements

of myoglobin.

combine to form a f-sheetr, or the chain may remain a random coil exhibiting no
specific pattern. These patterns represent the secondary structure of proteins. The
elements of the secondary structure are often represented by simplified symbols,
such as the ribbon model of Richardson [169,339,340] and alternative models
using, for example, arrows and cylinders [163,172,174,176]. In the ribbon model of
Richardson, o-helices, B-strands, and the nonrepetitive loops (or random coils)
connecting P-sheets and helices are represented by cylindrical helices of solid
ribbons, thick arrows, and thick "ropes", respectively. According to the model of
Lesk and Hardman [163,172], the o-helices are modeled by solid cylinders without
internal structure, and the [B-strands are shown as the arrows of Richardson's
model. The relative arrangements of these structural elements of the secondary
structure of proteins is often called the tertiary structure.

These models disregard many details of the molecular shape, but they are
appropriate to represent the foldings of the macromolecular backbone, the secondary
structure of proteins, and the patterns of the tertiary structure.

A simple 3D representation of the large scale features of a protein is obtained
from the ribbon model of Richardson if one considers only the central line of the
ribbon. This line is a space curve, usually oriented, from the N-terminal toward the
C-terminal of the protein chain. The ribbon model shows the internal turns within a
helical segment, consequently, the central line of the ribbon, as a space curve, also
shows these details.

The representation can be further simplified by considering only the central
lines of secondary structural entities, «-helices and [-strands as a formal space
curve. This curve no longer shows the turns within a helix. Such space curves are
used to model the large scale folding pattern of a protein. Note that the random coil
segments of the protein (and the entire protein if it is irregular, having no
recognizable o-helical segments or -strands) are represented by the central line of
the ribbon or rope as before. As an example, the central line of the myoglobin
structure of Figure 4.4 is shown in Figure 4.6. Such space curves can be viewed
from many directions and the resulting pattern of the planar projection can show
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Figure 4.7 Three views of the space curve representation of the central line of secondary structure

elements of the A - Cro repressor protein.

major variations. In Figure 4.7, three projections of the central space curve of a
small irregular protein, the A - Cro repressor protein are shown. Evidently, the
three projections have very different topological patterns. If we are able to
characterize all possible planar projections of this space curve, then we have a fairly
detailed shape characterization of the folded chain, at least on the level of secondary
structural elements. As we shall see in the next chapter, topology, specifically knot
theory and graph theory, hold the key to a detailed characterization of the family of
patterns of all possible projections [196-198].

An interesting polyhedral representation of helical domains of proteins has
been suggested by Murzin and Finkelstein [201]. In their model the helices are
modeled by solid cylinders not unlike those in the model of Lesk and Hardman
[163,172]. In addition, the random coil segments are modeled by straight line
segments. According to their analysis based on a large family of examples, the large
scale shape features of most globular proteins are well represented by polyhedra
where the edges are the above cylinders and line segments. This technique has been
found very useful for protein classification [202], as well as for the analysis of large
scale chirality properties of globular proteins [203].



CHAPTER
5

TOPOLOGICAL SHAPE GROUPS, SHAPE CODES,
SHAPE GRAPHS, SHAPE MATRICES, AND SHAPE
GLOBES

5.1 Shape Domains of Contour Surfaces

5.2 The Shape Group Method (SGM) for the Analysis
of Molecular Shapes

5.3 Shape Codes, Shape Graphs, and Shape Matrices

5.4 Shape Globe Invariance Maps (SGIM)

5.5 Shape Analysis of Fused Sphere Van der Waals Surfaces
and Other Locally Nondifferentiable Molecular Surfaces

5.6 Dynamic Shape Analysis: Topological Principles

5.7 Chain Molecule Shape Graphs and Shape Polynomials

In this chapter we shall combine some of the ideas described in Chapters 3 and 4:
the applications of topological concepts and methods for the study of various
representations of molecular shapes. Among the shape representations molecular
contour surfaces have a prominent role, but we shall also consider alternatives,
primarily for the purposes of characterizing the large scale shape features of
biological macromolecules.

An important approach to shape analysis is based on generalizations of the
concept of convexity. Consider a formal molecular body B(a), taken as the union
of a MIDCO G(a) corresponding to a density threshold a, and the level set F(a)
enclosed by it. As follows from the definition of convexity discussed in Chapter 3,
this body B(a) is a convex set, if for any two points ry and r, of B(a) all points
r of the straight line segment between ry and r, fall within the body B(a). This
is a global condition for convexity of a formal molecular body B(a). Such
globally convex bodies B(a) represent chemically rather uninteresting electron
distributions, since they correspond to either single atoms or to the low electron
density MIDCO's of molecules. Due to their simplicity, and to the low density
value in the molecular case, their spherical or quasi-spherical shapes are of limited
chemical interest. By contrast, nonconvex formal molecular bodies and the
associated MIDCO's with more intricate shape features provide more chemically
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interesting information. For their shape analysis, local convexity and its
generalizations are important tools. Some of these generalizations are described in
the following sections of this chapter.

Most of the methods discussed in this chapter use the tools of 3D topology. A
shape analysis can be based on the two-step process of Geometrical Classification
and Topological Characterization, and on the principle of Geometrical Similarity as
Topological Equivalence, where the latter is referred to as the GSTE principle.
Geometrical conditions are used to define ranges of geometrical objects (e.g.,
families of points along a MIDCO where the surface is locally convex) leading to a
geometrical classification of these points into domains, followed by a topological
characterization of the various topological properties of the interrelations among
these domains.

5.1 Shape Domains of Contour Surfaces

Most molecular contour surfaces defined in terms of various physical properties,
such as a MIDCO or a MEPCO, are topologically rather simple objects.
Typically, MIDCO's in the molecular density ranges are topologically equivalent to
a sphere (when the ordinary, metric topology of the 3D space is used), or in more
unusual cases to a doughnut or to a few "fused" doughnuts. The direct topological
characterization of such surfaces (using the ordinary, metric topology of the 3D
space) does not reveal much detail about their chemically interesting shape features.
However, one may use various geometrical or physical conditions, denoted in
general by p, to define some domains D, on a contour surface G(a). These
domains can be used to subdivide the surface G(a). By cutting out from G(a) all
domains of some specified properties [e.g., by eliminating all locally convex domains
("bumps") from the contour surface G(a)], a new, topologically more interesting
object, a truncated contour surface G(a,u), is obtained. This truncated surface
G(a,u) is no longer topologically equivalent to the original contour surface G(a),
nevertheless, G(a,p) carries information on the shape of the original surface G(a),
where shape is understood within the context of the physical property used to define
domains on the surface. A geometrical or physical shape condition is used to turn
the original surface G(a) into a topologically different object G(a,u), and a
topological analysis of the truncated surface G(a,u) corresponds to a shape analysis
of the original molecular surface G(a). The topological invariants of the truncated
surface G(a,pn) contain information on the topological interrelations of various
subdivision domains on the original contour surface G(a).

For the characterization of the shapes of molecular contour surfaces, such as
MIDCO's and MEPCO's, one may subdivide the surface into domains fulfilling
some local shape criteria. One can distinguish two types of criteria, relative, and
absolute, leading to a relative shape domain or an absolute shape domain
subdivision of the molecular contour surface.

Relative shape conditions are used when comparing two or several surfaces to
one another. For example, a pair of two superimposed contour surfaces of two
molecules or of two different physical properties for the same molecule generates an
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interpenetration pattern on these surfaces (see discussion in Chapter 4), and the
maximum connected subsets of this pattern can be taken as the relative shape
domains on each surface. The relative shape domains in this pattern can serve as
criteria for local shape characterization in a relative sense: for one molecule relative
to another or for one physical property of a molecule relative to another property.
By a topological analysis and characterization of these relative shape domains, a
direct comparison is possible between the two molecular surfaces.

An absolute shape characterization is obtained if a molecular contour surface is
compared to some standard surface, such as a plane, or a sphere, or an ellipsoid, or
any other closed surface selected as standard. For example, if the contour surface is
compared to a plane, then the plane can be moved along the contour as a tangent
plane, and the local curvature properties of the molecular surface can be compared
to the plane. This leads to a subdivision of the molecular contour surface into locally
convex, locally concave, and locally saddle-type shape domains. These shape domains
are absolute in the above sense, since they are compared to a selected standard, to the
plane. A similar technique can be applied when using a different standard. By a
topological analysis and characterization of these absolute shape domains, an
absolute shape characterization of the molecular surface is obtained.

Several topological methods of shape analysis of molecular contour surfaces
have been designed to take advantage of such relative and absolute shape domain
subdivisions of the contours, according to some physical or geometrical conditions
[155-158,199].

For example, the technique of interpenetrating contour surfaces {157] can be
applied for a relative shape domain subdivision of a pair of MIDCO and MEPCO
surfaces of a molecule. The MIDCO surface can be subdivided into domains using
the contour value of the MEPCO as criterion. This procedure is equivalent to
generating the interpenetration pattern on the MIDCO surface [157].

One may regard the two interpenetrating surfaces shown schematically in
Figure 4.3 asa MIDCO, G| =Gj(a;) and a MEPCO, Gy = Gy(ap) of the same
molecule. We assume that the contour threshold values are a; and ap, respectively.
In general, whether an interpenetration occurs at all depends on the choice of the
threshold values a; and a. If the thresholds are chosen so that an interpenetration
does occur, as shown in the figure, then this interpenetration defines one or several
closed loops on both surfaces. All points along these loops belong to both contour
surfaces, and on each surface the loops define the boundaries of subsets characterized
by the function value of the other physical property. The value of the given
property is either greater than the threshold for all points within the interior of a
subset, or it is lower than the threshold for all points within the interior of the
subset. Of course, the interpenetration patterns can be generated simultaneously for a
series of threshold values, that is, for a series of MEPCOQO's with respect to a given
MIDCO, or vice versa. (Considering the interpenetration of a series of MIDCO's
with a series of MEPCO's simultaneously is also a possibility, but if there are
several members in both sequences, the patterns obtained may rapidly become
intractable.) For example, take k different MEP threshold values, asl, a2,
ap3,.... apk. The corresponding pattern of interpenetration can be used to generate
ranges of MEP mapped onto the MIDCO Gj(a;). These ranges define a subdivision
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Tangent

plane T

surface G(a)

Figure 5.1 The shape domains of local convexity of a MIDCO surface G{(a) are shown. A
geometrical interpretation of the classification of points r of G(a) into locally concave Dy, locally
saddle-type D, and locally convex D3 domains is given when comparing local neighborhoods of
the surface to a tangent plane T. Each point r of G(a) is classified into domains Dy, Dy, and D5
depending on whether at point r a local neighborhood of point r on the tangent plane (r not
included) falls within the interior of the surface G(a), or it cuts into the surface G(a) within any

small neighborhood of point r, or it falls on the outstde of G(a).

of Gi(ay) into relative shape domains, and the interrelations among these domains
can be characterized topologically. We shall see later in this chapter how to generate
a simple numerical shape code, which serves as a concise shape characterization of
the molecule. This numerical shape code can be evaluated, stored, and compared to
that of another molecule by a computer, following the principles of a nonvisual
approach to molecular similarity analysis [108].

As an example of absolute shape criteria, the local curvature properties of a
MIDCO can be used for defining absolute shape domains on it [156], and for a
subsequent global shape characterization. In Figure 5.1 a MIDCO G(a) is shown
as an illustration of some of the concepts discussed. The simplest method [155] is
based on comparisons to a reference of a tangent plane what leads to the
identification of locally convex, concave, and saddle-type domains, as mentioned
previously, although much finer characterizations are also possible [156,199].

For both relative and absolute shape domains, their topological relations (e.g.,
their neighbor relations) are invariant within some range of nuclear arrangements
(i.e., within some domain of the nuclear configuration space M). The similarities of
the shapes of contour surfaces of slightly distorted geometries appear as topological
equivalence of their shape domain relations [108,109,155,156,158,199]). The same
observation applies for the comparison of molecular surfaces belonging to two
different molecules. If the neighbor relations among the corresponding shape
domains on the two molecular surfaces are the same (a topological equivalence), then
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Figure 5.2 A cellular subdivision based on the local convexity shape domains of the MIDCO

surface of Figure 5.1 is shown.

the shapes of the two molecular contour surfaces are similar within the above
context |{108,109,155,156,158,199].

In order to characterize the local curvature properties of a smooth molecular
contour surface Gi(a), one can classify the surface points into curvature types.
Imagine that G(a) is the surface of a planet where the ore distribution within the
planet causes the force of local gravity to act perpendicular to the surface
everywhere. Consequently, the local directions of "up" and "down" are also
perpendicular to the surface everywhere. Consider a small neighborhood of each
point r on the surface as a function expressed as “elevation" above the local
tangent plane T(r) of G(a) at this point r. This function is positive along the
normal vector (of the tangent plane) pointing "up”, i.e., away from the interior of
G(a), the function is zero at point r, and it is negative "below" the tangent plane.
If G(a) isa MIDCO, then this normal vector is the negative gradient vector -g(r)
of the electronic charge density p(r), as shown in Figure 5.1. At point r the
molecular surface G(a) and the plane T{(r) have a tangential contact with each
other, in other words, they osculate. Consequently, the gradient of this "function of
elevation” (not to be confused with the gradient of the electronic charge density) is
zero at r, that is, point r is acritical point of the function of elevation. The
matrix of second derivatives of this function, its local Hessian matrix H(r),
expresses the local curvature properties of the contour surface G(a) at each point
r. The eigenvalues hj(r) and hy(r) of the local Hessian matrix H(r) are the
local canonical curvatures of surtace G(a) at point r [155,156,199].

If u denotes the number of negative eigenvalues of the local Hessian matrix
H(r), then point r is said to belong to a domain D, of the contour surface G(a).
A local curvature analysis along the surface generates a subdivision into varicus D,
curvature domains. For the three possible [t values of 0, 1, and 2, one obtains
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the locally concave, saddle-type, and convex domains Dy, D;, and D»,
respectively. These local curvature domains D, can be further subdivided, leading
to a cellular subdivision of G(a). In Figure 5.2, a cellular subdivision based on
the local convexity of shape domains of the contour surface of Figure 5.1 is shown.
This example will be used in subsequent sections of this chapter, where the shape
groups are introduced, and where the conventions for assigning orientations
{arrows) to various parts of the surface are aiso described.

A more general family of methods for absolute shape domain subdivision of
molecular surfaces with reference to regular standard objects, such as plane, spheres,
and ellipsoids, can be described within the common framework of generalized
convexity [199]. These techniques are applicable for smooth (differentiable)
molecular surfaces.

The local cancnical curvatures can be compared to a reference curvature
parameter b [156,199]. For each point r of the molecular surface G(a) a
number p = p(r,b) is defined as the number of local canonical curvatures [the
number of eigenvalues of the local Hessian matrix H(r)] that are less than this
reference value b. The special case of b=0 allows one to relate this classification
of points to the concept of ordinary convexity. If b=0, then p is the number of
negative eigenvalues, also called the index of critical point r. As mentioned
previously, in this special case the values 0, I, or 2 for p(r,0) indicate that at
the point r the molecular surface G(a) is [locally concave, saddle-type, or
convex, respectively [199].

By generalizing the idea of local convexity for any reference curvature value
b [199], the number p(r,b) is the tool used for a classification of points r of the
contour G(a) into various domains. For any fixed b, each point r of the contour
surface G(a) belongs to one of three disjoint subsets of G(a), denoted by Ag, Ay,
or Az, depending on whether at point r none, one, or both, respectively, of the
local canonical curvatures h; and h, are smaller than the reference value b
[156]. The union of the three sets Ay, A), and A, generates the entire contour
surface, that is,

Gla)=Ag\U A| U A, . (5.1)

Each of these subsets Ag, Aj and Ay of the contour surface G(a) may be
disconnected. A maximum connected component of set Ag, Ay or Ay is denoted
by Dgk. Djx or Dy, respectively, where the first index is the common p(r,b)
value within the subset, whereas the second index k is simply a serial number of
some ordering. Typically, each D, x domain is a two-dimensional subset of the
contour surface G(a). In particular,

re Dok forsome k if and only if b < hy(r), hy(r), (5.2)
re Dy forsome k if and only if hi(r} < b £ hy(r), (5.3)

re Dy for some k if and only if hi(r), ha(r) < b. (5.4)
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MIDCO Tangent
surface G(a)

sphere T

Figure 5.3 The shape domains of relative local convexity of a MIDCO surface G(a) of Figure
5.1, relative to a tangent sphere T of curvature b (radius 1/b) are shown. A geometrical
interpretation of the classification of points r of G(a) into locally concave Dy, locally saddle-type
Dj. and locally convex Do domains relative to b is given when comparing local neighborhoods of
the surface to the tangent sphere T. The classification depends on whether at point r the surface
G(a) is curved more in all directions, or more in some and less in some other directions, or less in all
directions, than the test sphere T of radius 1/b. In the corresponding three types of domains Dgp),
D). and Dygp), orinshort Do, Dy, and D, the molecular contour surface G(a) is locally

concave, of the saddle-type, and convex, respectively, relative to curvature b.

For any fixed curvature parameter b, each point r of the molecular surface
G(a) belongs to one and only one of the D, x domains of some indices p and k.
Consequently, these Dy y domains generate a complete partitioning of contour
surface ‘G(a). The mutual arrangements and interrelations of the resulting local
shape domains of G(a) give a natural, global shape characterization of the entire
surface G(a), where the curvature of the surface G(a) is measured against the
given reference curvature b. In the notation used for the Dy x domains the
reference curvature parameter b is not indicated; note, however, that for a
different b value a different set of Dy x domains is obtained.

In the above discussion we have assumed that the molecular contour surface
G(a) is twice differentiable. This condition is required for gradients and local
Hessian matrices of the local elevation function at all points along the surface, and
for the local canonical curvatures of G(a) at each point r of G{a), needed for
their classification into shape domains.

The case of b=0 corresponds to the shape domain subdivision of G(a) in
terms of ordinary local convexity [155,199]. Geometrically, this case corresponds
to comparing the local regions of the molecular contour surface to a test surface of
zero curvature, that is, to a tangent plane. Local convexity and the corresponding
classification of points r of G(a} into various DM domains, in the present case
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into locally concave Dy, locally saddle-type Dy, and locally convex D> domains,
is illustrated by the example of Figure 5.1 and by the corresponding cellular
subdivision shown in Figure 5.2.

The more general case of b#0 corresponds to a generalization of the concept
of convexity [156,199]. This concept of relative local convexity has a useful
geometrical interpretation. For a fixed value of parameter b, relative local
convexity classifies the points r of G(a) into domains Dy, depending whether
at point r the surface G(a) is curved more in all directions, more in some and
less in some other directions, or less in all directions, than a test sphere T of
radius 1/b. The corresponding three types of domains are denoted by Dby, D),
and Dj(,), where the molecular contour surface G(a) is locally concave, of the
saddle-type, and convex, respectively, relative to curvature b.

A classification of points of a MIDCO surface G(a) of Figure 5.1
relative to a tangent sphere T is shown in Figure 5.3, where the reference to
parameter b-'is omitted from the notation. The two shape domain partitionings show
important differences; in general, the geometrical pattern of domains varies with a
change of reference curvature b. For the entire range of - e < b < = of the
curvature parameter, there are infinitely many geometrical patierns of relative
convexity shape domains on any given molecular contour surface G(a). However,
for a small change of b, the topological pattern of the shape domains does not
change necessarily. In fact, for all but some pathological cases, there are only
finitely many ropologically different patterns of Dby shape domains of G(a) for
the entire range - o < b < o= of curvature parameter b. This is an important
observation that brings about a useful simplification: for a detailed topological shape
analysis within the above framework of relative local convexity, it is sufficient to
consider a finite number of appropriately chosen reference curvature values b. The
shape domains of relative local convexity provide the means for studying fine shape
features of molecular contour surfaces.

Within the general scheme of relative convexity, the conventional, ordinary
local convexity is obtained as a special, degenerate case of relative local convexity,
with a tangent sphere of infinite radius as reference, that is, with a tangent plane of
reference curvature b = 0.

The numerical value of the reference curvature b can be specified in absolute
units or in units scaled relative to the size of the object G(a). If absolute units are
used, then a relative convexity characterization of G(a) involves size information;
if an object G(a) is scaled twofold, then its shape remains the same, but with respect
to a fixed, nonzero b value a different relative convexity characterization is
obtained. That is, the pattern of relative shape domains Dgp), D). and Doy
defined with respect to some fixed, nonzero reference curvature value b (b#0) is
size-dependent. On the other hand, if the reference curvature b is specified with
respect to units proportional to the size of G(a), then a simple scaling of the object
does not alter the pattern of relative shape domains with respect to the scaled
reference curvature b. In this case, the shape characterization is size-invariant, that
is, a "pure” shape characterization is obtained.

A natural, size-independent relative convexity characterization is obtained if
the relative curvature parameter b is scaled by a size parameter of the object G(a),
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for example, by the diameter d(G(a)). In practice, the radius
r(G(a)) = 0.5 d(G(a)) (5.5)

of the smallest sphere enclosing G(a) is used as an internal reference for scaling the
relative curvature parameter:

bg = r(G(a)) b . (5.6)

The relative curvature domains Dgp), Di(bg), and Dypg). specified in terms of
the scaled reference curvature bg provide a size-independent shape characterization
of the object G(a) for all curvatures.

In an alternative approach, the reference curvature b is scaled by the diameter
d(K) of the 3D nuclear configuration K. If r(K)= 0.5 d(K) is the radius of the
smallest sphere that encloses all the nuclei of the given nuclear configuration K,
then the scaled relative curvature parameter by is defined as

bk = (K) b= 0.5 d(K) b . (5.7)

The resulting curvature domains Do), Dipk), and Dy are not invariant with
respect to the size of the G(a) objects (this size is dependent on the contour
parameter a}, nevertheless, the scaling is specific for the size of the nuclear
arrangement K, hence these shape domains provide a valid shape comparison of
MIDCO's or other molecular surfaces of molecules of different sizes. This approach
is simpler than the fully size-invariant approach using the reference curvature bg.
where a new scaling factor r(G(a)) is required for each new MIDCO G(a).

For the special case of reference curvature b =0 (i.e., for the tangent plane
T of ordinary convexity), the pattern of the original curvature domains Doy,
Diqy and Dy is already size-invariant.

As shown in Figure 5.4, the analysis of curvature properties of molecular
contour surfaces can be further refined by testing the local curvatures of a contour
surface G(a) against an oriented rtangent ellipsoid T [199]. This technique is
designed for shape analysis in external fields or with respect to a direction defined
by a nearby molecule. The relative orientation of the reference ellipsoid T and
contour surface G(a) is fixed. At each point r of the surface G(a) the ellipsoid T
of axes of fixed orientation can be brought into tangential contact with G(a) by
applying a suitable translation of T. Similarly to the case of the tangent sphere, at
each point r the G(a) surface is regarded locally as a function of "elevation" over
the tangent ellipsoid T. The second derivatives of this function of elevation define a
Hessian matrix HT(r), and points r of G(a) are classified into domains
according to the oriented relative local convexity properties of their neighborhoods
on G(a), relative to the tangent ellipsoid T. Points with zero, one and two
negative eigenvalues belong to domains Do¢ty, Di¢T), and Dy(1), which are
concave, of the saddle-type, and convex, respectively, relative to the oriented
tangent ellipsoid T. In Figure 5.4 two examples of oriented relative local
convexity shape domain classification of points of the molecular contour surface
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MIDCO Tangent
surface G(a) ellipsoid T
orientation A

I

MIDCO Tangent
surface G(a) ellipsoid T
orientation B

TLELLERLNTY

T

Figure 5.4 Two sets of shape domains of oriented relative local convexity of the MIDCO surface
G(a) of Figure 5.1, relative to two orientations of a tangent ellipsoid T are shown.

G(a) of Figure 5.1 are shown, where the subdivisions are given relative to two
orientations of a tangent ellipsoid T.

The oriented test ellipsoid T may be chosen to represent an external
electromagnetic field, or the main direction of a cavity of an enzyme molecule, or a
polarizability ellipsoid of a molecule, or an alignment on the surface of a catalyst, or
some other internal or external constraint [199].

In a further generalization of the concept of convexity, the ellipsoid T may
be replaced by any other differentiable surface, for example, by a contour surface of
another molecule [199]. The resulting shape domains can be used for a direct shape
comparison and a direct similarity test for these molecules.
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5.2 The Shape Group Method (SGM) for the Analysis of Molecular
Shapes

Consider a family of shape domains defined on a molecular contour surface G(a),
and the truncated contour surface G{a,u) obtained from G(a) by excising a selected
subfamily of Dy, shape domains. The shape groups of the contour surface G(a),
with respect to the given family of shape domains, are the homology groups of the
truncated contour surfaces G(a,u).

For example, if the shape domains are defined in terms of local convexity, and
if we select the locally convex domains, then the shape groups of G(a) are the
homology groups of the truncated isodensity contour surface G(a,2), obtained from
the molecular contour surface G(a) by eliminating all D, domains of index pn = 2.
This family of shape groups, obtained by cutting out all locally convex domains of
G(a), has been studied in most detail for several molecules [192,262,263,342}.

If the shape domains are defined by relative local convexity, then the notation
Hpy(a,b), p=10, 1, 2, 1is used for the shape groups of MIDCO surfaces G(a),
where besides the dimension p of the homology group, the truncation type p, the
charge density contour parameter a, and the reference curvature parameter b are
also specified. For the special case of ordinary local convexity, b=0, the second
argument in the parentheses can be omitted and one may simply write HP(a).
Usually, we are interested in the Betti numbers of the groups HPy(a,b) and HPy(a);
for these numbers the bpy(a,b) and bp,(a) notations are used, respectively.

It should be emphasized that the above shape group methods combine the
advantages of geometry and topology. The truncation of the MIDCOQ's is defined in
terms of a geometrical classification of points of the surfaces, and the truncated
surfaces are characterized topologically by the shape groups.

For many chemists, the concept of group theory is intimately connected to
molecular symmetry properties. Note, however, that the shape groups are not
determined by the point symmetry of the nuclear framework, and these groups give
a symmetry-independent characterization of molecular shape.

As an example, we consider the a=0.01 MIDCO of the allyl alcohol
molecule. Note that a density domain analysis of the bonding and functional groups
of this molecule has been discussed in Chapter 2. In Figure 5.5 the G(0.01)
MIDCO is shown, where the molecule is oriented the same way as in Figures 2.5
and 2.6. The shape of this MIDCO can be characterized by its shape groups
corresponding to the shape domains of relative local convexity. In Figure 5.6 the
shape domains corresponding to three different choices of curvature parameter b
are shown. The shape domains corresponding to b=0 are

- two simply connected domains of type D3 [one on the far side of G(a)],

-one D, domain with two holes in it (near the nuclei of the OH group),

- one Dy domain with three holes in it {(near the vinyl moiety, top left),

- three simply connected domains of type Dy (the smallest near the H of OH),

- and one D] domain with four holes in it.

Following the computation of the homolegy groups as described in Chapter 3, the
u=2 type truncation leads to the family of shape groups HP7(0.01), p=2, 1,0, of
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Figure 5.5 The G(0.01) MIDCO of the equilibrium nuclear configuration of the allyl alcohol
molecule is shown, where the molecule is oriented the same way as in Figures 2.5 and 2.6.

Betti numbers

b2 2(0.01) =0,

b12(0.01) = 3,
and
bp 2(0.01) = 4.

A shape domain partitioning in terms of relative local convexity of parameter
b=0.005 leads to a simpler pattern. We obtain

- one simply connected D> domain (near the OH group),

- two D, domains each with two holes [one such D7 on the far side of G(a)],
two simply connected DD; domains [one on the far side of G(a)],
and one D{ domain with three holes in it.
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The shape groups HP;(0.01,0.005), p=2,1,0, of the u=2 type truncation have the
following Betti numbers:

b7 2(0.01,0.005) = 0,
by 2(0.01,0.005) = 2,
and

bp 2(0.01,0.005) = 3.

The third shape domain partitioning shown has been calculated for the relative
local convexity parameter b= - 0.008. We obtain

- eight simply connected D, domains [one on the far side of G(a)},

-and one D; domain with eight holes in it.
The shape groups HP,(0.01,-0.008), p=2,1,0, of the u=2 type truncation have the
following Betti numbers:

bs 7 (0.01,-0.008) = 0,
by 2 (0.01,-0.008) = 7,
and

bp 2 (0.01,-0.008) = 1.

In the above example of Figure 5.6 only three of the topologically different
relative shape domain patterns of the MIDCO G(0.01) of the equilibrium nuclear
configuration of the allyl alcohol molecule are shown. For all three of these
patterns, their topological properties do not change if the curvature parameter b is
changed by a small amount: the corresponding shape groups and their Betti numbers
are invariant within ranges of the curvature parameter b. However, the topology of
the pattern can change for larger variations of b. Nevertheless, there are only a
finite number of different sets of shape groups which occur for this MIDCO for
the entire range - oo < b < oo of the curvature parameter b. Consequently, a
finite set of Betti numbers of the finitely many shape groups of the MIDCO
provide a detailed shape characterization.

A similar consideration applies if one changes the density threshold a = 0.01
of the MIDCO. For most small variations of the density threshold parameter a the
shape groups of the corresponding MIDCQ's stay invariant. For the entire range of
0 <a<apax of the density threshold value a, there are only a finite number of
possible shape groups for the given molecule of a fixed nuclear configuration.
Furthermore, if one considers limited deformations of the nuclear arrangement K,
for example, by taking the chemical identity preserving deformations within a
catchment region of a potential energy surface, then, again, only finitely many shape
group types Hly of the actual shape groups Hl,(a,b,K) may occur. In the above
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Figure 5.6 Three of the topologically different shape domain patterns of the G(0.01) MIDCO of
the equilibrium nuclear configuration of the allyl alcohol melecule are shown, corresponding to
reference curvature parameter values b=0, b=0.005, and b=-0.008, respectively.

notation the nuclear configuration K is also specified. The shape of the entire
molecular charge distribution, with all its allowed deformations, can be
characterized in detail by a finite number of shape groups.

We can formulate the above ideas more precisely by considering the dynamic
shape properties of molecules within a nuclear configuration space M.

Our interest is to determine what shapes are present within each catchment
region, which shapes are similar and how the shapes change during conformational
changes and chemical reactions. This leads to the study of the shape group
distributions in the nuclear configuration space M. As it has been discussed in
Chapter 2.2, for a general N nucleus system (N23) a configuration can be
specified by 3N-6 internal coordinates. However, for a dynamic shape analysis of
MIDCO surfaces in terms of their shape domains of relative local convexity and the
associated shape groups, some additional parameters are also of importance: the
electron density threshold value a along the MIDCO surface G(a), and the
reference curvature b of the tangent sphere T. For a detailed description of the
dynamic shape properties of the molecule, a range of the 3N-6 internal coordinates,
and a range of the two parameters, a and b, are needed. One may consider
parameters a and b as formal, additional coordinates augmenting the 3N-6
internal coordinates of the nuclear arrangement. The full set of these coordinates
defines a formal space, the dynamic shape space D of 3N-6+2 = 3N-4 dimensions
[158]. Each point of D corresponds to a formal, fixed nuclear arrangement, and



110 SHAPE IN CHEMISTRY

to a pair of a specified density contour value a for the corresponding MIDCO
and a reference curvature value b.

As discussed above, the shape groups H!y(a,b,K) are locally invariant to most
small changes in the coordinates of the dynamic shape space D, that is, to small
changes of the nuclear configuration K, the contour parameter a, and the
reference curvature b. The shape groups do change but only at exceptional points
of the dynamic shape space D (in a formal mathematical sense, these exceptional
points form a subset of measure zero within D). Consequently, a family of shape
group invariance domains of the dynamic shape space D can be assigned to each
shape group type, for example, to the most commonly used 1D homology groups
Hl;(a,b), obtained for the p =2 type truncation of the MIDCO G(a). For each
shape group type H!,, these invariance domains of the actual shape groups
Hly(a,b,K) generate a partitioning of the dynamic shape space D.

In molecular shape analysis it is important to address the question, what shapes
are available for a given molecule? By regarding a nonrigid molecular conformation
of a separate chemical identity (of some energetic stability) as the catchment region
of a given conformational minimum on the potential surface, one may ask what
shapes are avatlable for this conformation? When addressing these questions, one
must take into account the dynamic properties of the species, and all the variations of
the formal molecular geometry which are allowed while preserving the identity of
the species.

Due to the construction of the dynamic shape space D, the nuclear
configuration space M is one of its subspaces. Consequently, it is meaningful to
refer to projections of parts of D onto M, just as it is meaningful to project a part
of the 3D space onto a 2D plane. Such projections can be used for shape
comparisons. One may ask the following question: which shape group invariance
domains of the dynamic shape space D have projections on a given catchment
region C(0,i) of the nuclear configuration space M? This is to ask, what shapes
(as described by shape groups) are available for a given chemical species? The
projection of a part of D onto a catchment region C(0,i) of M can be visualized
to occur along the coordinates a and b [158]. One may expect that the following
trend is true: the more shape domains have projections on a given catchment region
C(0,1), the larger number of different reactions involve the corresponding chemical
species [108].

Consider two different subsets of the same space D, or subsets of two
dynamic shape spaces D and D' of two different stoichiometric families of
molecules. One may compare those domains of the two subsets that belong to the
same shape group HI,. Since within these domains the nuclear configuration is not
fully specified, that is, there exists some configurational freedom within these
domains, the above approach provides a description of the dynamic similarity of
molecular shapes. We shall return to the problems of dynamic shape similarity in
Chapter 6.

For a given nuclear arrangement K the shape group distribution as a function
of the two parameters a and b defines an (a,b)-map for each shape group type.
These maps show the domains of the a,b parameter plane where the given shape
group type, such as the 1D homology group Hl,(ab) obtained for the p =2 type
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truncation of the MIDCO G(a) is invariant. In a formal sense, the shape analysis
can be iterated: one can characterize the shapes of these planar invariance domains
of the given shape group type. The (a,b)-map of the 1D shape group Hly(a,b) of
the W =2 truncation gives a detailed shape characterization of the entire family of
MIDCO's G(a) for the full range of 0 < a < ay,x ©of the density threshold
parameter a, and for the full range of - e < b < e of the relative curvature
parameter b.

Each (a,b)-map can be regarded as a subset of the dynamic shape space D.
Such a subset contains all points of D where the internal coordinates corresponding
to the nuclear arrangement are fixed.

In practice, it is often sufficient to consider a single shape group type for a
specified type of truncation. Then, one may also consider each separate piece of the
MIDCQ's obtained in the truncation process as a separate entity with its own shape
group. An example for such a modified (a,b)-map has been calculated for the allyl
alcohol molecule.

In Figure 5.7, a representation of the (a,b)-map of the shape groups of the
equilibrium configuration charge density of the allyl alcohol molecule is shown, as
calculated with a 6-31G* basis set. Since one has to consider a very wide range of
parameter values, it is advantageous to use a logarithmic scale for both parameters a
and b. In the case of relative curvature parameter b that can take both pesitive and
negative values, the loglbl value is considered. According to the convention used,
the lower half of the logarithmic map corresponds to negative b values. At the
level of resolution used for this logarithmic (a,b)-map, all low absolute values of
curvature parameter b below 10-5 are formally compressed to the horizontal line
at loglbl= - 0.5. Consequently, this line corresponds to the case of ordinary
convexity, i.e, to the case of tangent plane of zero curvature, b=0. (This tangent
plane can be regarded as a reference sphere T of infinite radius.) To consider all
shape groups of all dimensions and all possible truncation types for each (a,b) pair
is inconvenient, consequently, here only the one dimensional shape groups are
specified for the pu =2 type truncation.

For further convenience, instead of considering the entire object obtained after
truncation as a single entity, here each separate piece of the truncated MIDCO
surface is regarded as a new object, and the shape group is specified for each
separate piece. Accordingly, each surface piece of each truncation (for each choice
of density a and curvature b) is characterized by Betti numbers. This approach is
suitable for a better identification of local shape features, especially important in
studies of large molecules and in shape complementarity analysis, discussed in
Chapter 6. However, the number of separate pieces of the surface is not a constant:
if the values of the a and b parameters change, the number of separate surface
pieces can also change. As a consequence of this approach, the number of Betti
numbers assigned to one point of the (a,b)-map can be different from the number of
Betti numbers assigned to some other points of the map. When numerical shape
codes are generated from such (a,b)-maps, some care must be taken to account for
the changes of the number of Betti numbers. According to one of the simplest
options used for a concise shape characterization, families of Betti numbers
associated with a given location of an (a,b)-map are encoded by a single numerical
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code. Using a numerical key, the actual Betti numbers of the various surface pieces
can be recovered.

In the example shown in Figure 5.7, a legend is provided, showing the actual
correspondence between the various families of Betti numbers and the numerical
codes used as entries in the (a,b)-map. Each one of the largest families of Betti
numbers of the example contain four members, corresponding to four separate
surface pieces obtained after truncation. These families are (0,0,0,0), (0,0,0,2),
(0,0,0,4), and (0,0,0,3), encoded as 6, 7, 13, and 15, respectively. The
smallest families each contain just one member; these single Betti number families
are (0), (3), 4, (7), (B), (6), (9), (5), and (10), encoded as 2, 11, 14, 16,
18, 19, 20, 21, and 22, respectively. These single member families correspond
to truncations resulting in a single surface piece. There are three families with two
Betti numbers and four families with three Betti numbers.

Note that in special cases, two negative integers may replace the families of
Betti numbers. If the truncation eliminates the entire MIDCO, a formal no-group
situation, this is indicated by the numerical symbol -2. If at the given level of
resolution an (a,b) point falls on the borderline of two shape group domains of the
map, then the symbol -1 is used to replace the family of Betti numbers. In our
example, these two special cases are encoded as 1 and 5, respectively.

The choice for the single number codes used as entries in the (a,b)-map may
follow an arbitrary convention. The convention used in the example of Figure 5.7 is
based on the frequency of occurrence of the families of Betti numbers and the
special "no group" and "borderline" cases.

In Chapter 6, alternative and more descriptive coding techniques will be
discussed, where a formal "shape identity number" or a "shape identity vector” can
be assigned to objects. The encoding and decoding of these shape identity descriptors
are somewhat cumbersome for all but the smallest molecules. The advantage of the
method illustrated in Figure 5.7 is the fact that a simple numerical key is used.
Each numerical symbol gives a short-hand notation for the corresponding set of the
Betti numbers of the one-dimensional shape groups of the separate pieces of the
truncated surface, or for the case of -2 of a "no-group" situation, or for the case
of -1 when the shape group assignment is ambiguous at the given level of
resolution. The encoding-decoding steps are simple, however, the code itself,
without the key, is not sufficient for a reconstruction of the shape information. It is
possible to construct only slightly more complex numerical codes where the first
entry specifies the size of the legend table, followed by the legend table and a grid of
entries of the actual (a,b)-map. A shape code based on this principle can be decoded
without additional information.

For the study of most intermolecular interactions, valence shell properties, and
for practical applications in drug design, the lower density MIDCO's are more
important than those at high threshold values. Consequently, the [0.001,0.1] density
interval for the a values usually provides sufficient information for shape
comparisons. Furthermore, a finite grid on the (a,b) map appears satisfactory for
shape characterization. In some recent applications [263], a grid of 41 x 21 = 861
points have been used, taking 41 values from the above density interval and 21
values from the {-1,+1] interval for reference curvature value b.
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5.3 Shape Codes, Shape Graphs, and Shape Matrices

After the points of a molecular surface are classified into convex, concave and
saddle-type domains using some relative local curvature properties, the relations of
these domains can be characterized by the topological shape group methods. These
shape groups generate a numerical shape code: one can collect the Betti numbers of
the corresponding shape groups into a vector or matrix, and this vector or matrix
provides a numerical shape characterization. Alternatively, the mutual arrangements
and interrelations of the shape domains can be characterized directly by their
ncighbor relations, leading to another matrix, the shape martrix [109,110,158,193],
or to an equivalent graph representation of the shape, using the shape graph
[109,110,158] of the given MIDCO.

Consider a MIDCO G(a) and a choice for the curvature parameter b, and
assume that the shape domains D, ¢ of relative convexity of G(a) have been
determined. By using an appropriate neighbor relation to describe the mutual
arrangements of the Dy x domains along the MIDCO surface G(a), the
corresponding shape matrix s(a,b) and the associated shape graph gu(a,b) can
be defined [109,110,158,193].

Two Dy ; domains are considered N-neighbors if they have a common
boundary line. For a more precise description, the N-neighbor relation between two
D,,; shape domains is defined in terms of their closures clos(Dy, ;). In accord with
the definitions given in Chapter 3, the closure clos(Dy, ;) of a domain Dy.i
contains all the points of Dy ; as well as all of its boundary points. The formal
definition of the N-neighbor relation is given below:

1 if (clos(Du,i)ﬁDuv,i-)U(Du’iﬁclos(Du',i-)) = @
N(Dy;, Dy = (5.8)

() otherwise.

This neighbor relation is similar to the "symmetric strong neighbor relation"
between some potential surface catchment regions of reaction topology, used in the
analysis of reaction mechanisms [106,343-345].

For the MIDCO surface G(a) of a given nuclear arrangement and for a
selected shape domain partitioning relative to curvature parameter b, the shape
matrix s(a,b) is defined {109,110,158,193] as follows:

s(a,b)i i = N(Dy i, Dy y), iz, (5.9)
and
s(a,b)ii= M , (5.10)

where L is the common p(r,b) index for all points r within the i-th shape
domain Dy, ;.



TOPOLOGICAL SHAPE GROUPS AND SHAPE CODES 115

As long as the assignment of the i indices to the various D ; domains is
arbitrary, any two shape matrices s(a,b) and s'(a,b) related to one another by
simultaneous row and column permutations describe equivalent shapes. One may,
however, choose the assignment of index i to follow the ordering of the Dy j
shape domains according to the size of their surface areas on the MIDCO G(a).
According to one convention [109], one may list them according to decreasing size.
If such an ordering is chosen, then the shape matrix s(a,b) encodes both shape and
size information. In this case, the comparison of molecular shapes (and to some
extent, sizes) can be reduced to a comparison of their shape matrices. The problem
of molecular shape comparison, a task conventionally requiring visual inspection, is
converted to a matrix comparison, a task that computers can perform without
requiring direct human involvement.

As our first example, the rather simple shape matrix s(a,b) = s(a,0) of the
shape domains of ordinary local convexity of the MIDCO surface of Figure 5.1,
is given below:

1 2 0 0 0
saby = 1 0 2 0 0 (5.11)

1 0 0 0

I 0 0 0 0.

In this matrix the index ordering follows the order of decreasing size of the surface
area of the various Dy ; domains.

If a different reference curvature value b is chosen, then the shape matrix
may be different, although the matrix is invariant within small enough intervals of
the b values. As examples, the three different shape matrices s(0.01,0),
§(0.01,0.005), and s(0.01,-0.008) of the three shape domain partitionings of the
allyl alcohol MIDCO G(0.01) shown in Figure 5.6 are given below. The index
ordering of the various D ; domains follows the order of decreasing size of their
surface area:

2 1 0 1 0 0 1

1 1 1 0 1 1 0

0 1 2 0 0 0 0 I

8(0.01,0) = 1 0 0 1 0 0 0 0 (5.12)

0 1 0 0 2 0 0 0
0 1 0 0 0 2 0 0
1 0 0 0 0 1 0
0 1 0 0 0 0 1,
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0 ] 1 0
0 2 i 0 0
5(0.01,0.005) = 1 | 1 1 0 0 (5.13)
0 0 1 2 0 1
1 0O 0 0 ] 0
0 0 0 1 0 1,
and
| I ] I 1 1 1 1 1
1 2 0 0 0 0O 0 0 o
1 0 2 0 0 0o 0 0 0
l 0 0 2 0 0 o0 0 0
s(0.01,-0.008) = 1 0 0 0 2 0 0 0 0 (5.14)
1 0 0 0 0 2 0 0 0
] 0 0 9 0 0 2 0O o0
1 0 0 0 0 0 0 20
1 0 0 0 0 0 O 0 2.

If the entire range of curvature parameter b is considered, then a list of the
finite number of distinct shape matrices and those curvature values bj where a
change of the shape matrix occurs, gives a detailed, numerical shape characterization
of the MIDCO surface G(a). In the most general case of variations in the two
parameters a and b, as well as in the nuclear configuration K, one can study the
dynamic shape space invariance domains, the (a,b)-maps, and various projections of
the invariance domains of shape matrices, following the principles [158] applied for
the shape group invariance domains of the dynamic shape space D.

In general, a graph is fully specified if the entities considered as the vertices
of the graph, and the pairs of the vertices which are connected by edges are defined
[159]. Any square matrix m with offdiagonal elements equal to either zero or one
can be thought of as a representation of a graph. In this graph the vertices
correspond to the diagonal elements m,; ; of the matrix so that each vertex is labeled
by the corresponding diagonal element, and there is an edge between the vertices
corresponding to matrix elements m;; and m;; if and only if the offdiagonal
element m;; = 1.

For the shape graph g(a,b) of MIDCO G(a), the vertex set is the family
of Dy ; domains [158]:

V(gu(a,b)) = { Dy 1, (5.15)

and the edge set of the shape graph g(a,b) is the family of pairs of Dy, ; domains
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D, s D3
Dy,2 Dy.6
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Figure 5.8 Three shape graphs, g(0.01,0), g(0.01,0.005), and g(0.01,-0.008), of the three
shape domain partitionings of the allyl alcohol MIDCO G(0.01) of Figure 5.6 are shown, These
shape graphs correspond to the three shape matrices £(0.01,0), (0.01,0.005), and
8(0.01,-0.008), given by Equations (5.12), (5.13), and (5.14), respectively.

with nonzero N-neighbor relation:
E(g(a,b)) = {(Dy,i, Dypi): Ny, Dy i) =1}. (5.16)

Both the shape matrix s(a,b) and the shape graph g(a,b) give a detailed shape
characterization of the MIDCO surface G(a), with respect to the selected reference
curvature b.

In Figure 5.8, three shape graphs, g(0.01,0), g(0.01,0.005), and
£(0.01,-0.008) are shown. These shape graphs correspond to the three shape
domain partitionings of the allyl alcohol MIDCO G(0.01) of Figure 5.6, thatis,
to the three shape matrices s(0.01,0), s(0.01,0.005), and 8(0.01,-0.008), given
by Equations (5.12), (5.13), and (5.14), respectively.

In most cases, nonzero N-neighbor relations are found for the (Dg;, Dy ;)
and (Dy;, Dz types of pairs of D, domains. Note that each D, ; domain is a
maximum connected component of the set A, of all points of G(a) with index p,
consequently, a nonzero N-neighbor relation is impossible between two Dy, shape
domains of the same index L.

A nonzero N-neighbor relation between a Dy and a D domain is possible
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in exceptional cases. A point r of the MIDCO surface G(a) can simultaneously
belong to a Dy i domain and to the closure clos(Ds;) of a D ; domain,

r e clos(Dy )MDy i, (5.17)

if and only if at this point r both of the local canonical curvatures h{(r) and
ha(r) arc equal to the reference curvature b. This implies a (Dj; , Dg,i) edge
within the shape graph g(a,b) of the given MIDCO.

We have seen that a simple list of Betti numbers of the shape groups can serve
as a  numerical shape code for a partitioned molecular surface. Some of the
alternative topological shape descriptors of molecular surfaces, such as the shape
matrices  5(a,b) and shape graphs g(a,b), can also serve as 3D topological shape
codes 143,109,110,158,199]. In Chapter 6, several examples of shape codes are
described and used as numerical shape similarity measures.

5.4 Shape Globe Invariance Maps (SGIM)

It is natural to imagine molecular shape properties as they would appear to an
observer moving about a sphere enclosing the molecule. If the observer is able to
characterize all possible views, this characterization can provide a detailed shape
description.

A simple approach that may be considered is to project a molecular image (the
chosen molecular model or a shape descriptor P) onto a spherical surface, assuming
a light source in the center of a sphere and regarding the sphere as a screen. This
approach leads to a two-dimensional representation of the molecule on a spherical
surface. However, each point of the spherical image contains only local shape
information and the projected image is not suitable for distinguishing features that
are present in multiply folded patterns along a molecular surface where the light
beam passes through several of these folds before reaching the spherical screen. In
such cases, various side views are more revealing, where features not seen along the
radial lines of the chosen sphere can also be monitored. A technique that overcomes
these problems is employed in the method described below.

The general method of Shape Globe Invariance Maps (SGIM, [196]), and its
special case first employed for protein backbones [112,197,198,346], are based on a
spherical map drawn around the molecular model where each point of the map is
characterized by those shape characteristics of the molecular model which are
“visible” from the given point of the sphere. This is analogous to what actually
happens when one studies the shape of an object like a potato: holding the potato in
one's hand and turning it around, viewing it from many different directions, and
trying to find all the significant shape features of the potato. Each viewing direction
corresponds to a picture, and the totality of ali these pictures for all viewing
directions characterizes the shape of the potato. In addition, if the potato is enclosed
in a sphere, then each viewing direction also corresponds to a point of the sphere,
hence one can assign the picture observed from a given direction to the
corresponding point of the sphere. This fundamental principle is applicable to a wide
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[ REFERENCE CURVATURE b=90]

[REFERENCE CURVATURE b'<0

Figure 5.9 The construction of Shape Globe Invariance Maps (SGIM's), of MIDCO relative
convexity shape domain patterns for two reference curvature values, b=0 and b <0.

variety of primary molecular models and the associated shape representations P,
taken as the object viewed from the surface of the sphere. The possible shape
representations P include the relative convexity domain partitioning of a MIDCO
surface with respect to some reference curvature parameter b, the pattern of
interpenetration of two or several molecular isoproperty surfaces (e.g., MEP ranges
on a MIDCO surface), space curves representing the backbone of biopolymers
([112,196-198], and references therein), ribbon models of the pattern of protein
structural motifs [169,339], or polyhedral models of the folding of helical domains
of proteins [201-203].

A practical implementation of the above approach is the following: a global
shape property of the molecule is assigned to each point of the sphere S, followed
by the determination of those domains of S where this shape property is invariant.
A pair of examples is shown in Figure 5.9, where the shape globe invariance
domains of a MIDCO surface for two relative convexity shape domain partitionings
(P) with respect to two reference curvatures, b=0, and b'<0, are given. As
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before, the molecular shape representation P is enclosed within a sphere S. For
example, one can take the smallest possible sphere S that contains the entire shape
representation P, provided that the center of mass of the molecule is placed so that
it coincides with the center of the sphere. Instead of projecting the molecular
descriptor P onto the spherical surface, project P onto a tangent plane T(s) at
each point s of the sphere. The projection P'(s) of the shape representation P in
each tangent plane T(s) (e.g., each projected pattern of various D, shape domains
of a MIDCO, or the crossing pattern of a protein's backbone as visible from the
given point s) can be characterized topologically, leading to a family of topological
descriptors

Fj(s) = {1(i), i=1,...k}. (5.18)

Usually, along the spherical surface one can find several different families of such
topological descriptors, and the index j is used to distinguish them. For example, if
P is chosen as the local relative convexity domains of a MIDCO surface G(a) of
the molecule, then the topological pattern of the 2D image of the corresponding
curvature domain partitioning of G(a) can be assigned to each point s of S, as it
is projected to the tangent plane T(s) of S at point s. A given family Fj(s) of
topological descriptors, assigned to a point s of the sphere, remains invariant
within some domain C; of the sphere. These projected shape invariance domains
Cj on the sphere S are analogous to countries on a global map, hence the pattern
they generate on the sphere is called a shape globe invariance map  or simply a
shape globe map.

One should note that within each shape globe map an entire family of
topological descriptors Fi(s) = {I(1), i=1,..k} is assigned to each point s of the
sphere S, providing information on a global shape property of the enclosed
molecule.

In the examples of Figure 5.9, one tangent plane and the corresponding
projection is shown for each reference curvature. The topological pattern F, i(s) of
this projection is assigned to the point of tangent s on the shape globe S.
Different points s with the same topological pattern F; j(s) are collected into shape
globe invariance domains C; of the sphere S.

The topological descriptors Fj(s) can be chosen in a variety of ways. One
approach is a direct application of the shape group method to the shape globe S
itself. Truncations of certain domain types of the projected planar image define
various shape groups of the 2D image, and these shape groups may be chosen as the
topological descriptors Fi(s) ultimately assigned to points s. In this case, an
invariance domain C; of the shape globe map is a maximum connected component
of the coliection of all points s of S where the shape groups F; i(s) of the images
of local relative convexity domains projected on the tangent planes T(s) are the
same. Alternatively, neighbor relations of the projected local relative convexity
domains define shape matrices of the 2D images, and these matrices (or the
corresponding shape graphs) may be regarded as the topological descriptors F; i(s)
assigned to points s. In this case, the same shape matrix is assigned to every pomt
of an invariance domain Cj of the shape globe S. Note thatthe SGIM may
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2=

Shape Globe Invariance Map of
Projection of the backbone graph equivalence classes C; of
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Figure 5.10 The two main steps for the generation of an SGIM based on the crossing pattern
graph of the folding of a protein backbone line are shown. The first main step is the projection of a
protein backbone line to all possible tangent planes of a shape globe S and the generation of the
graphs of the projected crossing patterns associated with each tangent point s. These graphs, which
may happen to be multigraphs (having more than one edge between some vertices) or pseudographs
(having edges starting at and returning to the same vertex) are taken as the shape descriptors Fj(s}. In
the second main step, the invariance domains Cj of these graphs are generated on the shape globe S.
The resulting SGIM on the spherical surface S is a two-dimensional characterization of the
three-dimensional shape of the molecular backbone.

appear more complicated than the original curvature domain pattern on the
' MIDCO. However, a SGIM also takes into account the projected silhouette of the
MIDCO, that represents information on all curvature ranges simultaneously.
Consequently, the SGIM contains moere shape information than the given
topological Dy, pattern.

Special cases are discussed in some detail in the literature [112,197,198],
where the shape representation P is chosen as a space curve representing a protein
backbone and the topological descriptors Fj(s) on the local tangent plane
projections are either graphs or knots defined by the crossing pattern on the planar
projection at each tangent plane T(s) of the sphere S.

An example of this approach is shown in Figure 5.10, where the shape
representation P is the space curve representing a protein backbone, and the shape
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descriptors Fj(s) are chosen as the graphs generated by the overcrossing pattern in
the projected image of this backbone. Each crossing, as well as the endpoints of the
projected image correspond to a vertex of the graph, whereas the edges of the graph
are the projected line segments interconnecting these vertices.

These shape descriptors may turn out to be objects that are not graphs in the
strict sense: they may happen to be multigraphs, having more than one edge between
some vertices, or pseudographs, having edges starting at and returning to the same
vertex [159]. For sake of simplicity in the terminology, we shall generally refer to
them as graphs. The resulting SGIM on the shape globe S is a two-dimensional
characterization of the global, three-dimensional shape features of the molecular
backbone.

Whereas the above representations of three-dimensional shape are
two-dimensional, they appear on the surface of a sphere, that is a slight
inconvenience when compared to the easier analysis of planar shapes. For this
reason, it is useful to construct a planar representation of the shape globes, using a
rather simple method. The construction of a planar representation P(SGIM) of a
shape globe invariance map SGIM of a MIDCO surface is illustrated in Figure
5.11. Note that this P(SGIM) itself can be regarded as a new shape representation
of the molecule, replacing the original shape representation P used for the
construction of the original shape map SGIM.

The shape globe S with a shape globe invariance map is placed within a
hemisphere H of radius twice that of shape globe S, with a single common point
of contact with H and with a plane parallel with the perimeter of H, as shown in
Figure 5.11. For simplicity, only one invariance domain Cj of the SGIM is
indicated in the figure. The "North Pole" n of the sphere S is the point
diametrically opposite to the point of contact with the plane. From point n, a line
is issued to each point s# n of the shape globe S, piercing the hemisphere H
at a unique point h. A second line issued from point h perpendicular to the
plane defines a unique point p of the plane. Repeating this procedure for each
point s#n of the shape globe S, an assignment of the points of the shape
globe S to points of the plane is obtained. Consider now a modified shape globe S
from where the point n at the "North Pole" is removed. This object, denoted as
S\n, is a punctured sphere. The above pair of consecutive projections is an
assignment

f: Sm - D (5.19)

between the punctured shape globe S\n and an open disk D of the plane. This
assignment f is a bijection, that is, the assignment of points is one to one in both
directions.

One can extend this assignment for the entire shape globe S: the perimeter of
the hemisphere H, and as a consequence, the perimeter of the open disk D are
assigned to the north pole n of the shape globe S. Note that this extended
assignment is no longer a bijection. This completes the generation of a planar
representation P(SGIM) of the entire SGIM of the shape globe S. An algorithmic
shape analysis of such planar representations is not fundamentally different from that
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Figure 5.11 The constructions of a planar representation P(SGIM) of a shape globe invariance
map SGIM of a MIDCO is shown. The shape globe S with an SGIM is placed within a
hemisphere H of radius twice that of shape globe S, over a plane parallel with the perimeter of H,
as shown. For simplicity, only one invariance domain C; of the shape globe invariance map is
indicated. From the "North Pole” n of sphere § a line is issued to each point s#n of S,
piercing H at a unique point h. A second line issued from point h perpendicular to the plane
defines a unique point p of the plane. This procedure defines an assignment of the points of the
shape globe to points of the plane. The shape globe § with its point n at the "North Pole”
removed, denoted as S\m, is a punctured sphere. The above assignment f: S\n — D between
the punctured shape globe S\n and an open disk D of the plane is a bijection (i.e., the assignment
of points is one to one in both directions). The perimeter of the hemisphere H, and as a consequence,
the perimeter of the open disk D are assigned to the north pole n of the shape globe S. This
completes the generation of a planar representation of the entire SGIM of the shape globe S.

of a spherical representation, however, for visual inspection the planar maps are
more suitable.

The planar representations P(SGIM) of the shape globe maps SGIM can also
be characterized topologically, for example, by their shape groups as defined by a
specified truncation pattern (e.g., by eliminating projected invariance domains of
certain types) or by the neighbor relations of the projected invariance domains on
the planar map P(SGIM). The latter method leads to a treatment analogous to the
shape matrix and shape graph methods. The information on the size of invariance
domains on the planar map P(SGIM) can be encoded by the ordering of the
domains, just as it is done for ordinary shape matrices, discussed above. Such shape
matrices provide alternative numerical shape codes, based on the SGIM and
P(SGIM) approaches.
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5.5 Shape Analysis of Fused Sphere Van der Waals Surfaces and Other
Locally Nondifferentiable Molecular Surfaces

Fused sphere surfaces, such as fused sphere Van der Waals surfaces (VDWS') are
simple approximations to molecular contour surfaces. By specifying the locations of
the centers and the radii of formal atomic spheres in a molecule, the fused sphere
surface is fully defined as the envelope surface of the fused spheres and can be easily
generated by a computer. Although fused sphere VDW surfaces are not capable of
representing the fine details of molecular shape, such surfaces are very useful for an
approximate shape representation.

The nondifferentiability of these surfaces at the seams of interpenetrating
spheres as well as the local nondifferentiability of solvent accessible surfaces or
union surfaces, are a technical disadvantage. Local nondifferentiability limits the
application of the shape group methods in their original form that requires second
derivatives for curvature analysis. For example, at every point r of a VDWS
where two or more atomic spheres interpenetrate one another, the surface is not
smooth and is not differentiable. For such nondifferentiable molecular surfaces,
alternative shape descriptors and shape codes have been introduced.

One such shape descriptor is based on the minimum number of interior points
enclosed by the surface from where the entire interior wall can be illuminated, or, in
an equivalent formuiation, from where the entire interior wall can be seen. A
seeing graph [347] for any closed surface, whether differentiable or not, has the
following properties:

1. any point of the interior of the closed surface is "seen” by at least one

vertex of the graph,

2. each pair of vertices that "see" each other are connected by an edge of

the graph, and

3. the graph has the smallest number of vertices with the above

properties.

The sequence of seeing graphs for families of MIDCO's of the ethanol
molecule has been used for shape characterization [347], and the method is equally
applicable to fused sphere VDW surfaces, and to solvent accessible surfaces.

In an alternative shape characterization of VDW surfaces [195,348-350] the
various spherical faces of the surface are distinguished depending on the number of
circular arcs on their perimeter. A single, separate sphere is regarded as a "0-type
face", both spherical faces of the VDW surface of HF molecule are "1-type faces",
and on many VDW surfaces "2-type", "3-type", and "4-type" faces are common.
By selecting a truncation criterion, for example, by removing all "1-type" faces, and
taking the homology groups of the truncated surface for shape characterization, the
shape group methods are applicable [195,348-350].

In another alternative based on the neighbor relations and mutual arrangements
of the various parts of the atomic spheres which are exposed on the VDW envelope
surface, graphs and matrices analogous to the shape graphs and shape matrices are
obtained [43,110]. Furthermore, by "smoothing” the VDWS near the
interpenetration lines of fused spheres using appropriate "belts" which join smoothly
the spherical surfaces, the curvature domain partitioning and the topological methods
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of similarity analysis of differentiable surfaces are directly applicable. Smooth
surfaces developed from fused sphere VDWS models [109] retain some of the
conceptual simplicity of a VDWS; one of the suggested smoothing techniques is
based on minimal envelope surfaces of fused spheres, as discussed in Section 4.3.

One technique which is applicable for surfaces that are not everywhere
differentiable is also suitable for the shape characterization of dot representations of
molecular surfaces such as the Connolly surfaces [87], which are not only
nondifferentiable, but are not even continuous. The method of T-hAulls [351) is
based on a generalization of the concept of convex hull. The convex hull of a set A
is the smallest convex set that contains A. Consider a three-dimensional body T.
The T-hull of a point set A is the intersection of all rotated and translated versions
of T which contain A. The T-hull method is suitable for shape comparisons with
a common reference shape, chosen as that of the body T. Alternatively, when the
shapes of two molecules, T and A are compared, one molecular body can be
chosen as T and the T-hull of the other molecular body A provides a direct
shape comparison [351].

5.6 Dynamic Shape Analysis: Topological Principles

As discussed in Chapter 1, the concept of molecular shape has important dynamic
aspects, and by contrast to many classical, macroscopic objects, molecular shape is
not a static property. The inherent vibrational and other internal motions of
molecules, and on a more fundamental level, the quantum mechanical uncertainty in
nuclear positions imply that molecular shapes cannot be described in detail without
taking into account dynamic aspects.

On the simplest level, one can consider a semiclassical model of limited
motions of various parts of the molecule relative to one another. Within such
approximation, the dynamic shape variations due to internal motions, for example,
those due to vibrations, can be modeled by an infinite family of geometrical
arrangements. Within this approach, we consider a family of shapes occurring for
these arrangements and study the common, invariant topological features.

As it has been pointed out in Section 5.2, it is natural to formulate dynamic
shape analysis aproaches in terms of the dynamic shape space D described earlier
[158]. The reader may recall that the dynamic shape space D is a composition of the
nuclear configuration space M, and the space of the parameters involved in the
shape representation, for example, the two-dimensional parameter space defined by
the possible values of the density threshold a, and the reference curvature
parameter b of a given MIDCO surface.

We shall distinguish two types of methods for dynamic shape analysis. The
methods of the first type are used to determine which nuclear arrangements are
associated with a given topological shape. The methods of the second type determine
the available topological shapes compatible with some external conditions, for
example, with an energy bound.

Within the simplest formulation of a dynamic shape analysis method of the first
type, the invariance of topological descriptors within domains of the dynamic shape
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space D is exploited. The subsets of the dynamic shape space with a common shape
group, that is, the shape group invariance domains of D, can serve as tools for a
dynamic shape analysis. Within these subsets a limited change of nuclear
configurations, hence a limited change in the geometrical shape of the MIDCO
surface is permitted, yet these changes are small enough so that within the given
topological context the topological shape remains invariant (i.e., the shape group is
preserved). The same principle is applicable for other tools of topological shape
description, such as the shape matrices, shape graphs, and SGIM's of a given
molecule, The dynamic shape space invariance domains of SGIM's serve as tools
for analyzing dynamic shape properties.

In one example of a dynamic shape analysis method of the second type, a
family of nuclear arrangements is selected, using an upper limit for energy as
criterion. By identifying those invariance domains of topological descriptors in the
dynamic shape space D which incorporate these nuclear configurations, an
energy-dependent family of allowed shapes is obtained, as defined by the given
topological descriptors. One may replace the energy criterion with formal
termperature, using properties of Boltzmann distributions, for example, by assigning
the average eriergy to each formal temperature value. At a higher temperature, that
is, if more energy is available, the molecular vibrations may cover a wider range of
formal molecular geometries, hence a greater variety of dynamic shapes occur. At
an even higher temperature, where the energy is sufficient for overcoming the
activation barriers to conformational rearrangements, a further (usually more
significant) increase in the extent of shape variations is found.

Evidently, the dynamic shape of molecules is an energy-dependent property:
the changes in the conformational freedom of molecules at various temperatures
imply a temperature dependence of molecular shapes. For a "cold” molecule with
energy not much exceeding the zero-point energy associated with the various
vibrational modes, only a limited choice of possible nuclear arrangements (nuclear
configurations) can occur with significant probability. Consequently, only limited
shape variations are allowed and the dynamic shape of the system is strongly
constrained. By contrast, if the molecule has energy much above the zero-point
energy, then it can access a much larger family of possible nuclear configurations
with significant probability, and the dynamic shape of the molecule is less restricted.
The energy dependence of the accessible shapes [248] and the accessible symmetries
{247] of various molecules suggests a family of rules influencing the mechanism and
outcome of chemical reactions.

Methods of the second type for the dynamic shape analysis of molecules can
also be formulated within the shape globe invariance map framework. The dynamic
shape space invariance domains of SGIM's serve as tools for analyzing dynamic
shape properties. Clearly, if conformational rearrangements of the nuclei occur,
then a given peint s on the sphere S may correspond to different families of
topological descriptors before and after the change of nuclear arrangement. After
the conformational change is completed, the point s may be relabeled as a member
of a different invariance region on the sphere S. One approach involves assigning
specific labels to those points changing their allegiance between shape globe
invariance domains in the course of the conformational change and considering these
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"no man's land" areas on the shape globe as new, separate domains. The topological
characterization of the shape globe may follow the steps described in the previous
section. The shape matrices of the resulting dynamic shape globe maps are shape
codes including some information on the dynamic shape properties of the molecule.

5.7 Chain Molecule Shape Graphs and Shape Polynomials

In this section we shall describe two approaches to the shape characterization of the
large-scale features of chain molecules: one based on a graph-theoretical method, the
other on a family of knot theoretical polynomials [112,197,198].

The chosen primary representation of the large-scale features of the chain
molecule is a smooth space curve, describing, for example, the central line of rods
representing the helical domains of proteins and their interconnecting random coil
segments. We may think of this space curve,

r(t), 0<t<1, (5.20)

as being parametrized by the scalar parameter t, where t=0 and t=1 correspond
to the N-terminal and the C-terminal ends of the protein backbone, respectively. As
a simple characterization, one can consider three orthogonal projections of this
curve to planes, for example, to three planes, each perpendicular to one of the three
axes of inertia of the molecule. The results of these projections are three plane
curves,

g, 0sts1, =123 (5.21)

These planar curves may show various crossings, and the pattern of these crossings
provides a simple shape characterization of the planar curves q;(t), i=1,2,3, and as
a consequence, of the space curve r(t).

The crossing patterns can be characterized by graphs. For each plane curve
qi(v), i=1,2,3, a graph g;j is defined as follows. The vertices of the graph gj are
the two endpoints and the crossover points of the projected backbone curve q;(t).
(Note that in degenerate cases entire line segments may be projected on one another;
in such a case, each maximum connected component of the planar set covered more
than once by the projected image is regarded as a vertex, in addition to the
endpoints.) The vertices are numbered according to their occurrence when moving
along the curve, from (=0 to t=1l. The edges of the graph gj are the projected line
segments interconnecting the vertices. In most cases the resulting construction gj
will not be a graph in the strict sense [159], since multigraphs as well as
pseudographs are likely to occur. We recall that in a multigraph more than one edge
can connect two vertices, and in a pseudograph an edge may start and end at the
same vertex. Nevertheless, for simplicity in the terminology, we refer to g; asa
graph.

Since a natural orientation is assigned to the curves, from =0 to t=1, the
crossings can be characterized as right handed or left handed, following the standard
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Figure 5.12 Examples of the characteristic graphs of the crossing patterns of three orthogonal views
of the chain molecule backbone of the A-Cro Repressor protein. The chain is oriented from the
N-terminal to the C-terminal and the vertices of the graphs are labeled according to the handedness of
the crossing: - for left handed crossings, + for right handed crossings, 0 for the two terminals of

the chain (no crossing).

convention shown in Figure 3.4. These crossings can be used as vertex labels for
the graphs. If the j-th vertex of the graph g; is denoted by vij, then its crossing
label Cj; is defined as follows:

1, if the vertex corresponds to a right-handed crossover,
Cij = -1, if it corresponds to a left-handed crossover, and (5.22)
0, if it corresponds to an endpoint of the curve.

Note that vertices of degenerate cases can be distinguished by an appropriate label.
Also note that in earlier works [112,197,198] a somewhat different convention was
used, where the endpoints were omitted. If the graph gi has n vertices, then these
labels can be stored in an n-dimensional crossing vector C; :

Ci=Cigi) = (G, G2, ..., Cin). (5.23)

The crossing vector is well defined as long as the projections of all the crossings are
regular.

As an illustration, in Figure 5.12 we consider the example of a small irregular
chain molecule, the A-Cro Repressor protein, discussed in refs. [112,197]. The
space curve corresponds to a model with structureless helices where only the central
line of helices is considered. Such simple molecular space curves show the
large-scale arrangement of the folding pattern but not the details of the elements of
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Figure 5.13 A topological characterization of the progress in a folding process of a molecular
backbone {represented by a space curve), using vectors C of crossing indices. For comparisons with
knot theoretical characterizations, a closed curve is chosen. In order to obtain a closed loop for
open-ended chain molecules, the two ends can be formally closed by a straight line segment. If in a
special projection of the molecular backbone one endpoint is projected on the top of the other, then
their interconnecting line is perpendicular to the viewing plane, and the line segment is represented by a
dot on the projections, as shown. Otherwise, two dots are used to mark the endpoints of the straight
line segment. (An alternative convention is described later for knot generation from open chain
molecular models.) The sequence of crossing vectors belonging to various stages of the molecular

rearrangement provides information on shape changes during the folding process.

the secondary structure (helices, B-strands, and loops). On the left-hand side of the
figure, three orthogonal projections are shown, and the corresponding characteristic
graphs g1, go, and gz are given on the right hand side. On these graphs the labels
+1 and -1 are given by symbols +, and -, respectively. These three graphs
characterize the essential folding pattern as viewed from the three chosen directions.

In a conformational change of a chain molecule, for example, in a continuous
folding of a protein backbone, the various projections can change, leading to a
change in both the graph and the set of crossing labels. However, these graphs and
labels remain invariant along segments of the path of the conformational change, and
typically there are only a finite number of labeled graphs in each folding process.
The sequence of graphs and the sequence of crossing vectors (the vertex labels of
these graphs) can be used to characterize the large-scale features of the folding
process.

As an example, in Figure 5.13 a topological characterization of five stages in
a folding process of a molecular backbone (represented by a space curve) is shown,
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using vectors C of crossing indices for topological characterization. In order to
facilitate comparisons with alternative, knot theoretical characterizations, a closed
curve is chosen. In one of the simplest representations, a special projection of the
molecular backbone is chosen where one endpoint is projected on the top of the
other. For open-ended chain molecules, the two ends can be formally closed by a
straight line segment. If the special projections are chosen, then the interconnecting
line is perpendicular to the viewing plane, and the line segment is represented by a
dot on the projections, as shown in the figure. The sequence of crossing vectors
belonging to various stages of the molecular rearrangement provides information on
shape changes during the folding process. An alternative convention for generating
closed loops to model chain molecules will be described in the following. This
alternative convention is used for the construction of knots and the associated
polynomials.

In Chapter 3 some aspects of knot theory have been described. One may recall
that a mathematical knot K (not to be confused with a nuclear configuration K) is
a closed space curve in 3D, where the "degree and type of knottedness”" can be
characterized by various projections of the curve onto planes and by the
corresponding crossing pattern. Here we shall use a polynomial characterization of
chain molecule folding patterns, based on the Jones polynomial Vg(t) of a knot
K representing the molecular backbone. These polynomials provide a nonvisual
shape characterization of curves in the 3D space, hence they are useful tools in the
computer-based algorithmic comparison of space curves representing the backbone
structure of chain molecules.

Knot theoretical techniques are easily applicable to polymer chains that do
form actual knots or links, such as some DNA fragments or various catenanes
[59-72,204-213]. By appropriate modifications, the knot theoretical polynomials are
also applicable to the analysis of chirality properties of general molecules that may
not form knots by themselves, but the space around them can be represented by a
knot. This approach has led to the concept of chirogenicity, and to a nonvisual,
algorithmic, computer-based analysis of molecular chirality {62].

An alternative technique is used for general chain molecules [197,198]. Most
biologically important chain molecules do not form knots or links, yet knot
theoretical methods are applicable for their shape characterization. One can take a
projection of the molecular backbone and characterize the projection (where for
simplicity, we shall assume that all crossings of the projection are nondegenerate).
For example, the space curve of the median line of a ribbon model of a protein is
not in general a knot, since the two endpoints of the median line are usually not
joined. Nevertheless, for the given projection we may convert the space curve of the
median into a knot K, by the following steps:

I. Attach to each endpoint of the molecular space curve a straight line

segment, perpendicular to the viewing plane and pointing away from the
viewer. If these line segments are long enough then they must reach a
plane that is parallel with the viewing plane and lies beyond the most
distant point of the original space curve.

2. Join the far ends of these line segments by another straight line segment

within the second plane.
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This procedure converts the molecular space curve into a closed curve. The
resulting simple loop (unknot U) or knot is denoted by K, (recall that for sake of
simplicity, the unknot U is also referred to as a knot). We shall analyze the
resulting knot K, on two levels:

a. by taking the corresponding Jones polynomial VE,(t) of the knot Ky,

and

b. by considering the projection of knot K, to the original viewing plane,

and finding new knots Kj  which are compatible with the projection
and preserve the most crossings; the Jones polynomials VKu(t) of the
new knots Ky, are used to characterize the projection.

For most chain molecule problems, level a does not provide much
information, since in most actual cases the simple unknot of the trivial polynomial
Vyu(t) = 1 is obtained. More information on the geometrical pattern of folding is
retained on level b, that characterizes the given projection.

In fact, the characterization on level (b) is a special case of a more general
characterization and reconstruction problem. If only a projection of a closed curve is
given, and the crossing types are not specified, then one may ask the question: what
is the family {Kp} of knots compatible with a given projection, assuming no
degenerate crossings? It is common that from experimental results such as images of
knotted DNA fragments obtained by electron microscopy, only a single projection
is available, where the crossing information is ambiguous, partially or fully missing.
In these instances one faces a partial or the full reconstruction problem of knots
from a given projection. Of course, the original knot K, obtained in Steps 1 and
2 is sufficient to generate the given projection; however, there may be many more
knots with the same projection. The family of all these knots gives a topological
characterization of the projection.

On level b the task is to characterize the projection, without direct reference
to the actual space curve K,. By selecting one or several of the knots Ky that
generate the same 2D projection (with crossing information supressed), and by
using their Jones polynomials VKp(t), a nonvisual, algorithmic characterization of
the projection is obtained.

The actual projection to the viewing plane may well contain more crossings
than the crossing number of the knot K, of level a. Since the Jones polynomial
VK a(t) is independent of the actual number of crossings shown by the given
projection, and it depends only on the identity of the knot K, the characterization
of the knot K, oflevel a by the Jones polynomial VEK,(t) does not provide a
detailed enough characterization of the projection itself. By contrast, a more
detailed characterization of the projection is obtained by the family of Jones
polynomials {Vgp(t)} of the family {Ky} of knots compatible with a given 2D
projection (with crossing information supressed). In a somewhat simpler approach, a
characterization of the projection is obtained using the polynomials of few, selected
knots K}, from the family {Ky}.

In the general reconstruction problem we assume that the extension lines of
Steps 1 and 2 of the conversion of the molecular space curve into the knot K,
add, at most, nondegenerate new crossings to the projection. This can always be
achieved by an infinitesimal distortion of the molecular space curve model. The
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actual geometrical arrangement of the original knot K, obtained in Steps | and 2
provides a description of the given projection. All n crossings of the projection can
be characterized by the numbers Cj = +1 or -1, which are collected into a
crossing vector

C=(C;,Ca...Cp. (5.24)

By suitably modifying some or all n of these C; numbers, all possible knots Ky,
with the same 2D projection (where the crossing information is suppressed) can be
reconstructed, with arbitrarily chosen handedness for their crossings. By taking an
n-dimensicnal swirching vector

v= (Vl, Vo, . .. Vn), (5.25)
with elements
vi = +1, or -1, (5.26)

a new crossing vector CV is generated from the reference crossing vector C, by
taking

CV=(Cv,Cvy,...CvY (5.27)
of elements
Cvj=Cj v;. (5.28)

If crossing information for a reference projection is not available, then all
elements of the reference crossing vector C may be chosen as unity. By taking all
the 20 possible n-dimensional vectors v of form (5.25), one obtains the
crossing vectors CV of all possible knots (and links) compatible with the given 2D
projection (with crossing information supressed). The family of knots obtained is
{Kp}, and the corresponding family of Jones polynomials is {Viy(t)}. Note that
the same knot may be obtained by two or more different choices of vectors v and
CV, and some choices of switching vectors v may be inconsistent with the 2D
projection in the sense that they cannot lead to any knot.

In order to exploit the full characterization power of the Jones polynomials, it is
of some interest to find those knots K%, of family {Kg} that cannot have simpler
2D projections than the actual 2D projection of knot K, These are the knots Kny
of family {Ky} that have crossing numbers equal to n. If no such knot (or link)
exists, then one may take KN, as a knot which has a crossing number that differs
the least from the number of crossings in the projection.

Frequently, certain crossings of the projection cannot contribute to
knottedness. These crossings can be eliminated from the knot model. We shall take
n as the number of crossings obtained after eliminating those crossings that cannot
contribute to knottedness. The actual Jones polynomials of these knots are in most
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Figure 5.14 Four reference knots of the tertiary structure of the myoglobin molecule are shown. In
part A of the figure, the oriented median line and its extension into knot is shown, where the
endpoints are joined according to the rules described in the text. The crossings of the given planar
projection are numbered consecutively from 1 to 8, whereas the actual crossing pattern is displayed in
part B of the figure. For the construction of all possible knots compatible with the given planar
projection shown in part A, the crossings 3,4, and 8 are not essential and can be omitted. These
crossings cannot contribute to knottedness in any of the possible knots compatible with the given
planar projection. After eliminating these crossings, the reference projection of part C is obtained,
where the remaining crossings are renumbered from 1 to 5. The actual crossing pattern can be
specified by the crossing vector C=(1,-1,1,-1,1), where the elements 1 and -1 represent
right-handed and left-handed crossings, respectively. The elements of vector v indicate the switching
of handedness relative to the reference vector C, where elements 1 and -1 indicate no switch and
switch, respectively. The actual crossing pattern is displayed in part D of the figure, where the actual
switching vector v, with reference to the reference projection of part C is also shown. The reference
knot does not have to have the same handedness of crossings as those present in the actual 3D
pattern; for example, if no 3D crossing information is available, then the reference vector C may be
chosen with all its elements equal to 1.

instances different from, and more complicated than the polynomial of the knot K,
hence they provide more detailed information on the projection.

The entire family of all the Jones polynomials VK np(t) can be used for
characterization. Alternatively, one may select just one of these polynomials
according to the following criteria. The switching vectors v can be ordered by the
lexicographic order (the order that would be used in a dictionary of n-letter words
of an alphabet of just two letters, 1 and -1). This provides an ordering of the
knots Kp, hence of knots Kn,.  One may choose the first Ky  knot from the
family {Ky} for the characterization of the projection, and use its Jones polynomial
VKnp(t) as a concise, nonvisual descriptor of the folding pattern.

In the example of Figures 5.14 and 5.15, a knot theoretical polynomial
characterization of the folding pattern of myoglobin is given. In Figure 5.14, the
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folding of the myoglobin tertiary structure is represented by the projection A of
knot B, generated following Steps 1 and 2. Among the eight crossings of the
projection A, one can eliminate those of serial numbers 3, 4, and 8, since for no
combination of the possible choices of crossings can they contribute to knottedness.
The remaining crossings generate the reference projection C and the corresponding
knot D. The reference crossing vector C of reference projection C is chosen as
the actual crossing vector C=(1,-1,1,-1,1) of the reference knot D, however, in
the general case the reference crossing vector C can be chosen arbitrarily. If no
crossing information is available, then the vector C=(1,1,1,1,1) is chosen. For the
actual choice of C=(1,-1,1,-1,1) there is no switch, and the switching vector v of
reference knot D is v=(1,1,1,1,1).

In Figure 5.15, all knot types that are compatible with the reference projection
C (where crossing information is suppressed) and their Jones polynomials are
shown. The switching vectors v, given with respect to reference crossing vector
C=(1,-1,1,-1,1), are also specified. In the figure the standard knot theoretical
symbols, listed in Figure 3.5 are used. The "cake knot" denoted by 5,°, where the
symbol ¢ indicates that this knot is the mirror image of the standard “"cake knot”
5,, is the first knot in the lexicographic order of switching vectors v that has the
maximum possible crossing number. In the case of the example this number is n=5.
The corresponding Jones polynomial

V(t)= 6451442032417 (5.29)

is obtained from that of the standard "cake knot" 5,, by following the rule for
knot pairs that are mirror images, and replacing the variable t with t-1. This
polynomial provides a simple, nonvisual characterization of the given projection of
the backbone of the myoglobin tertiary structure.

Figure 5.15 The collection of knots compatible with the planar reference projection of the
myoglobin tertiary structure of Figure 5.13 and their Jones polynomials are shown. All the knots
compatible with the projection can be constructed by generating all possible assignments of switching
vectors v to the reference vector C. The ordering of switching vectors can follow the lexicographic
order (i.e., the list of all five letter words in a dictionary where the alphabet has only two letters, |
and -1, in this order). Most of the resulting knots are equivalent to the unknot U, whereas in the
remaining cases the following knots are found: both trefoil knots 31 and 319, the "figure 8 knot" 4,
the "cake knot" 37, and its mirror image, 520. Here the notations of Figure 3.5 are used. Besides
the original reference unknot U of switching vector v=(1,1,1,1,1), only those knots are shown
which are different from U and precede the unknot of vector v=(1,-1,-1,-1,-1) in the order provided
for the vectors v. Beyond this vector in the lexicographic order, the remaining knots are the mirror
images of those already obtained. The first occurrence of the highest possible crossing number has
special significance: the corresponding knot is selected if no crossing information is available. For this
projection, the highest crossing number 5, first occurs for the "cake knot” 54°. This knot is obtained
using the switching vector v=(l,-1,1,-1,1). If only the projection of the backbone is given (i.c., if no
crossing information is available), then the standard version 57 of this knot (i.e., not the mirror

image 559 and its Jones polynomial are selected for the topological characterization of the projection.
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Figure 5.16 A direction-independent SGIM characterization of a space curve C, regarded as a
molecular backbone. On the left-hand side the shape globe S of radius R is shown enclosing the
space curve C. The centre of the sphere is chosen as the centre of mass of chain molecule C. On the
right-hand side the shape invariance domains of the sphere are shown, as defined by the knot types
derived from the projections. There are only two knot types in this example: unknots and trefoil

knots.

In Figure 5.16, an illustration of the shape characterization of a molecular
space curve by a knot polynomial SGIM is shown. The shape globe invariance
domains are those derived from the projected knot patterns onto tangent planes of
the shape globe S [112]. On the left-hand side of the figure a bounded molecular
space curve is shown, surrounded by the shape globe S. On the right-hand side, the
resulting subdivision of sphere into shape invariance regions is shown, with respect
to the projected knots. Each of the regions is characterized by a different knot
assigned to the curve C from the given viewing direction. In the particular case
shown in the figure, the curve is rather simple, and the characterization requires
only the unknot and the trefoil knot. The distribution of shape invariance regions on
the shape globe S enclosing the molecular curve C provides a simple description
of its shape. This approach eliminates the problems associated with the choice of a
few arbitrary projections, since all the possible projection directions are taken into
account.
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MOLECULAR SIMILARITY MEASURES AND

MOLECULAR COMPLEMENTARITY MEASURES
THE QUANTIFICATION OF MOLECULAR
SIMILARITY AND COMPLEMENTARITY

6.1 Absolute and Relative Shape Analysis

6.2 Visual, Computer Graphics Methods for Similarity
Assessment by Inspection

6.3 The Principles of Nonvisual, Algorithmic Similarity
Analysis: Automated Similarity Assessment by Computer

6.4 The GSTE Principle: Geometrical Similarity as
Topological Equivalence

6.5 Whispered Messages and Similarity Sequences

6.6 The Fundamentals of Resolution Based Similarity
Measures (RBSM)

6.7 Molecular Similarity Measures and Chirality Measures
Based on Resolution and Fuzzy Set Theory

6.8 Semi-Similarity Measures and Scaling-Nesting Similarity
Measures (SNSM)

6.9 Molecular Similarity Measures Based on Shape Codes

6.10 Local Shape Codes and Local Similarity Measures

6.11 Molecular Shape Complementarity Measures

Similarity and complementarity are two fundamental aspects of all comparisons.
When making comparisons, it is usual to search either for similarity or for
complementarity. It is not a mere play on words that in most compariscns the merits
of similarity and complementarity are similar: similarity and complementarity
complement each other. The Latin saying "Similis simili gaudet”, or "like likes
like”, as well as the saying "opposites attract” clearly apply in chemistry. For
example, similarity is one of the guiding principles in solution chemistry ("like
dissolves like"), whereas complementarity of shapes is important in many
biochemical processes.,

Molecular similarity is a concept often used, yet seldom clearly specified. If
two objects are only similar but not equal, then the lack of equality to cne another
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seems to invite the perception of some vagueness in their relation. This need not be
so, but a precise definition of what is meant by the term similarity is seldom given.
Notable early exceptions are various forms of the Hammond Postulate, interrelating
stable species and transition structures occurring along reaction paths [352-360], and
the precise wavefunction similarity measures of Carb6 and co-workers [361-365]
and Richards and co-workers [366,367].

It is only in recent years that systematic, comprehensive frameworks have been
proposed for assessing molecular similarity and for quantifying the degree of
similarity in chemistry (for critical expositions, see refs. [368,369]), using, in some
instances, the concepts of topology [108,155-158,191,192,240,243,262,370]. The
main difficulty lies in the complexity of molecules and their behavior: similarity
may refer to one or another particular type of molecular property or process.
Whether two molecules are judged similar or dissimilar is dependent on the context:
the molecules of water and methane are similar in size, yet their chemical properties
are very different. Even if one is concerned with a limited aspect of similarity such
as molecular shape similarity, still some ambiguities prevail, since, depending on the
context, different aspects of shape may be important. An assessment of similarity
depends on the relative importance of these shape features.

6.1 Absolute and Relative Shape Analysis

In principle, absolute shape analysis methods do not rely on similarity arguments.
For example, an (a,b) parameter map of a shape group analysis describes the shape
of the given molecule without reference to any other similar or dissimilar molecule.
Most of the shape analysis techniques described in Chapter 5 are applicable to
single molecules, and a family of shape descriptors can be computed for each
molecule. In their final form, the shape descriptors are usually given as numerical
shape codes. These shape codes belong to the given molecule and they provide an
absolute shape characterization. For n molecules, there are n shape codes of any
given type and these codes can be stored in molecular data banks. If one is interested
in assessing molecular shape similarity, a shape comparison between two molecules
can be carried out at the level of the shape codes by considering these codes as
vectors or matrices and comparing them numerically. The important advantage of
absolute shape descriptors is that, once they are determined, there is no need to
recompute them each time a molecule is compared to another. Shape similarity
measures based on absolute shape descriptors are called similarity measures of the
first kind.

By contrast, relative shape analysis and relative shape descriptors can change
for each molecule, depending on the other molecule used for comparison. For n
molecules there are n{(n-1)/2 molecule pairs, hence n(n-1)/2 families of relative
shape descriptors of the given type. Consequently, in the study of shape similarities
in large molecular families, the quadratic dependence of the number of relative
shape descriptors on the number of molecules is a disadvantage and the use of
relative shape descriptors is often impractical. Shape similarity measures based on
relative shape descriptors are called similarity measures of the second kind.
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6.2 Visual, Computer Graphics Methods for Similarity Assessment by
Inspection

The conventional approach of visual inspection is one of the simplest methods for
similarity assessment. Using advanced computational chemistry and computer
graphics techniques, three-dimensional images of molecular models, contour
surfaces, or macromclecular representations can be displayed on the computer
screen. For such computer images of molecular models, simple visual comparison
can be used to judge molecular similarity. Visual comparisons are simple and are
much enhanced by the chemical knowledge of the observer, who can take into
account the known or assumed relative importance of various shape features seen on
the computer screen. Nevertheless, such visual comparisons are often subjective and
seldom reproducible. For example, while visually inspecting models of several
hundred molecules during a long time interval, it is difficult to recall the details of a
picture seen hours ago, in order to compare it to a current image. Furthermore,
two different observers are likely to judge molecular similarity differently.
Regarding the models of a thousand molecules, and trying to order them according
to their similarity to a target molecule, two different observers are likely to order
these molecules differently. These are potentially serious drawbacks of visual
similarity search and assessment methods.

6.3 The Principles of Nonvisual, Algorithmic Similarity Analysis:
Automated Similarity Assessment by Computer

In view of the subjective elements and the lack of reproducibility of visual inspection
methods, it has appeared useful to develop computer techniques for evaluating the
degree of similarity by reproducible algorithmic methods. By such nonvisual,
computer-based algorithmic methods, similarity can be assessed and determined
numerically. Seeing is only believing, but computing is determining.

Algorithmic determination, evaluation, and comparison of shapes are not
simple problems. When dealing with shape, many of the relevant aspects are not
easily representable numerically, as long as the full wealth of the detailed
geometrical information is considered. This is the point where the power of
topology becomes important, by focusing on the essential features and by describing
them in terms of topological invariants. In fact, topological shape analysis methods
incorporate many elements of visual inspection methods in a systematic and
mathematically precise way. By quantifying shape and shape similarity topologically,
the algorithmic computational methods of similarity assessment provide objectivity,
reproducibility, and a justifiable degree of confidence in the results.

Consider a family of solid objects with well-defined boundaries. Their size can
be characterized numerically. The topological shape group methods and related
techniques are suitable for an algorithmic determination of their dominant shape
features. However, this characterization becomes more complicated if the objects
have no proper boundaries, for example, if fuzzy charge density clouds are
compared. Nevertheless, the advantages of algorithmic techniques and automated
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similarity assessments by computer over visual inspection are evident in these cases
too. By relying on isodensity contours, the shape similarity problem of the
"boundaryless", fuzzy charge distributions can be solved by a repeated application
of the shape analysis methods of continuous surfaces.

6.4 The GSTE Principle: Geometrical Similarity as Topological
Equivalence

Several of the shape analysis methods described in the previous chapters had some
common features:

1. infinitely many possible geometrical patterns and arrangements were

classified by a combination of geometrical and topological criteria, and

2. the resulting classes were characterized by topological means.

For example, the changes in the nuclear geometry of a molecule are likely to alter
the size, the location, and even the existence of shape domains (e.g., local curvature
domains) on a MIDCO surface, but for most small changes of the nuclear geometry
the existence and mutual neighbor relations of the shape domains remain invariant.
There is a range of geometrical arrangements of the molecules with a common
topological pattern of shape domains on their MIDCO surfaces, and the infinitely
many geometrical arrangements within this range are regarded to belong to a single
class. For this class of infinitely many different geometrical arrangements of the
nuclei, the classification is based on a geometrical condition of certain bounds of
the local curvature of the surface, and on the topological condition of having a
certain pattern of neighbor relations of the various curvature domains. This
combination of geometrical and topological conditions is in fact a shape condition,
and the entire class of infinitely many nuclear arrangements satisfying this shape
condition is characterized topologically by having a common family of shape groups.
Within this class of nuclear arrangements the topological properties of the actual
geometrical classification remain invariant, and all nuclear geometries of the
molecule having the same topological relations among their MIDCO shape domains
can be characterized by the same topological invariants as their shape descriptors.
One can associate an abstract topological object with the entire class of geometrical
arrangements, and characterize the class by the topological properties of the abstract
object. The initial geomerrical classification by curvature properties leads to an
eventual topological characterization.

If the topological characterization gives the same results for two different
nuclear arrangements of a given molecule then the two arrangements are similar in
a geometrical sense. The same principle applies to two different molecules: if their
topological shape characterizations give equivalent topological results, then the two
molecules are similar in a geometrical sense. The similarities of the nuclear
geometries within a range of the nuclear configurations of a given molecule, as wetl
as the similarities in the shapes of two different molecules, are manifested in a
topological equivalence, for example, in a topological equivalence of the shape
domain patterns of a sequence of their MIDCO surfaces, resulting in a family of
identical shape groups.
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The above example illustrates a general principle of similarity analysis:
geometrical similarity corresponds to a topological equivalence [108]. In order to
formulate the above principle in more precise terms, we have to specify a general
framework applicable to most molecular shape similarity problems. The
(P,W)-similarity concept [108] provides such a general framework.

As we have seen in Chapters 2 and 4, there are various possibilities to select
physical functions or molecular models for the representation of molecular shapes,
and in Chapter 5 we have reviewed a variety of topological methods which can be
applied and lead to topological shape descriptors for their characterization. When
quantifying similarity of molecular shapes by topological techniques, it is necessary
to specify the following [108]:

(i) the choice of shape representation P, taken as the physical property or
model used to represent molecular shape [e.g., the complete 3D electronic
charge density function p(r), or a MIDCO surface G(a), or a MEPCO
surface, or a fused sphere Van der Waals surface, or the backbone space
curve of a folded protein],

(ii) the choice of the actual topological shape descriptor W, taken as the tool
used for the characterization of P [e.g., the shape groups, or shape codes,
or shape matrices of MIDCO's, or the distribution of Jones polynomials
V(K) compatible with the folding pattern of a protein on a shape globe
invariance map, SGIM].

This allows one to define the similarity of molecular shapes within the given (P,W)
context in terms of a topological equivalence [108]. Informally, if we agree on
which physical property or model P is to be used for comparison, and which
topological features W of P are essential, then a topological equivalence of these
features defines the similarity of the molecular shapes. Below we shall give a more
formal definition.

The context within which similarity of molecular shapes is considered is
defined by the choice of the pair (P,W) for a given property P and topological
descriptor W. Consider two molecules, A and B. We can think of two abstract
topological objects, denoted by App w) and B(p w), representing all the essential
features of shape within the above (P,W) context and defined by the actual
topological descriptor W  for property P of molecules A and B, respectively.
These abstract topological objects can be thought of as having no other properties
except those specified and implied by the (P,W) pair. The shapes of two molecules
A and B are (P,W)-similar [i.e., similar within the contextr (P,W)], denoted by

A (P,W) B, (6.1

if and only if the corresponding topological objects Awrp,w) and Bpp w) are
topologically equivalent:

Apw) B Bpw) ., (6.2)

where h stands for the existence of a homeomorphic transformation h between
the two objects [108].
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Alternatively, if shape characterizations of molecules A and B are given by
an actual (P5,Wj) pairand a (Pg,Wpg) pair, respectively, then

Pj =Ppg, (6.3)
and

Wa =Wpg (6.4)
imply that the two molecules A and B are (P,W)-similar,

A (P,W) B. (6.5)

Similarity relation A (P,W) B is an equivalence relation. Clearly, any
homeomorphism h realizing # in the definition (6.2) is reflexive, that is

Arw) B Apw) (6.6)
hence

A (P,W) A. (6.7)
Also, h is symmetric, that is

if Aippwyh Bp,w) then Bppwyh A, W), (6.8)
hence

if A(PW)B, then B (P,W)A. (6.9)
Furthermore, A is transitive, that is, for three molecules A, B, and C,

if Apw)h Bpwy, and  Bpw)h C(p,w), then Ar,w) b Cpw). {(6.10)
hence

A((PW)B, and B (P,W)C implythat A (P,W)C, (6.11)

that is, if A is (P,W)-similar to B, andif B is {(P,W)-similar to C, then A
is also (P,W)-similar to C.

The above general scheme [108] serves as the basis of constructing algorithms
for nonvisual algebraic shape characterization. For a given (P,W) choice, a whoie
family of possible geometrical arrangements of different molecules may have a
common actual realization of the shape descriptor W (e.g., all these arrangements
may have a common shape group, or a common shape matrix). This implies that
they can be represented by a common, abstract topological object App,w). Of
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course, for each family of arrangements, it is sufficient to find the topological
invariants of the abstract object A(p w). That is, all these arrangements can be
collected into a family and the entire family can be represented by the given,
common realization of the shape descriptor W, the actual shape descriptor W of
the abstract topological object A(p,w). Each different realization of W is called a
(P,W)-shape type, denoted by T(p,w), or simply by t if the (P,W) pair is implied
from context. For a given (P,W) pair, the various shape types 1Tj are distinguished
by some index i. With the exception of some degenerate cases, there are only a
finite number of different shape types ti. Having a common shape type tj is in
fact the same as having a (P,W)-similarity relation, that is, a ropological equivalence
relation representing a geometrical similarity of the chosen shape representations.

The above treatment of similarity is the basis of the GSTE Principle: treating
Geometrical Similarity as Topological Equivalence [108].

The shape types Tj are usually specified by various algebraic methods, for
example, by a shape group or a shape matrix, or by some other algebraic or
numerical means. The algebraic invariants or the elements of the matrices are
numbers, and these numbers form a shape code. The (P,W)-shape similarity
technique provides a nonvisual, algebraic, algorithmic shape description in terms of
numerical shape codes, suitable for automatic, computer characterization and
comparison of shapes and for the numerical evaluation of 3D shape similarity.

6.5 Whispered Messages and Similarity Sequences

One may note that our intuitive concept and actual evaluation of similarity used in
everyday life do not necessarily follow the transitivity property (6.11) of the
(P,W)-shape similarity relation. In a sequence of n objects, each object may appear
similar to its immediate neighbors, but an observer may find the two objects at the
two ends of the sequence as rather dissimilar. For example, the popular party game
of lining up people and sending a whispered message through the line often produces
a final message strikingly different from the initial cone, to the amusement of the
guests. Yet, assuming no deliberate mischief, the messages sent by two people who
are neighbors in the line are likely to be similar. In some parts of Canada, the above
game is known as "gossip". Indeed, true gossip also has the quality of gradual change
as it is passed along, retaining some similarity between the stories heard and said by
an individual, yet changing considerably throughout the grapevine. In such
examples, the actual criteria we use to judge similarity may gradually change along
the sequence of objects (in the actual example, along the sequence of messages) and
the sequence may represent a whole range of similarities of varying nature.

Within the framework of (P,W)-shape similarity, the above problem can be
treated by allowing the (P,W) pair to change gradually along the sequence of
objects. We may require only that there exist some (P,W) pair that applies for each
pair of objects that are neighbors in the sequence, and that the (P,W) pairs applied to
pairs of objects not far from one another along the sequence are not too different.
This approach conforms with our intuitive expectations and illustrates the generality
and versatility of the (P,W)-shape similarity concept.
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In the above problem, we require that similar (P, W) criteria, that is, similar
similarity criteria, be used for pairs that are near to one another along the sequence.
Hence, our task is to assess the similarity of the (P,W) criteria applied to the
original objects. It is natural then to regard the similarity criteria as a set of new
objects to be compared, and to use the very same method for assessing their
similarity. The above scheme can be regarded as an iterated similarity analysis, since
some similarity criterion is applied to the very similarity criteria (P,W) used for
comparing the n original objects Oj, 1= 1,2,...n,

The n-1, possibly different, (P,W) pairs applied to the n original objects
(; can be denoted by

(P WD), (PO, Wy), .. (P Wy ). (6.12)

These are the similarity criteria of level one within the iterative scheme, as indicated
by the superscript (1). By regarding the above sequence of n-1 criteria as a new
set of objects, a new higher-level similarity criterion [denoted as (P, W{2N] is
applicable to them. Of course, when judging the similarity of P, W) to
(P(1),,W(1)5) and the similarity of (P(1)2,W(D3) to (P(1)3;W(1)3), the similarity
criterion [i.e., the (P(2),W(2)) pair] does not have to remain constant, and one may,
again, use different criteria. Consequently, further iterations are also possible, and
the n-2 pairs of neighbors of the (n-1)-member sequence (6.12) can be judged by
a sequence of n-2 similarity criteria

Here (P(2);,W(2)|) is used to compare (P(D);,W(Dy) to (P(L);,W(1);), whereas
(P(2),W(2)5) is used to compare (P(1),W(l}3} to (P(D3,W(Ds3), and soon. The
variations (in fact, the similarities) in the new sequence (6.13) of n-2 members can
be judged by a further (P(3),W(3) similarity criterion, now applied to the n-3
neighboring pairs of the sequence of (P(2);,W(2);) criteria. This (PG W(3))
similarity criterion can also vary, resulting in yet another sequence

(PG), W), (PG, W), . .. (PO 3 W)y 3),

and possibly further sequences on subsequent levels, leading to the following
iterative scheme:

0, O», O3, O4. Os, ... On-15 On
(P(L), WD), (P()p,W(D)y), (P(D3 WD), (P, W(ly),. ... (P, W,
(P(2);,W(2))), (P25, WQ2)y), (PR3, W2)3), ... ... (P2 2, W2), 5)

(P(3)| ,W(3)l)s (P(3)2!W(3)2)5 ''''' (P(3)n—37w(3)n-3)
(Pk-1y Wik-1)yy, oo (P-Dp ey, WD q)

P, WK, (PO, WD 1),
....... (6.14)
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Here the original objects, denoted by O;, i = 1,2, ... n, can be regarded as the
sequence at level zero, j=0. In general, on the j-th level (j>0), there are at most
n-j different criteria (PQ);,W@@;), 1 i < n-j, and the criterion (PU0);,W0);) is used
to compare the neighboring members (PU-D);,W({-1);) and (PU-1);,1,WG-1);, ) of
the (n-j+1)-member sequence on the previous level j-1.

The first level k where a common criterion

(P(k),W(k)) = (P(k)l’w(k)l) =.,..= (P(k)i,W(k)i) = ... = (P(k)n-kvw(k)n-k)
is already applicable for the entire previous sequence
(P-D) W(k-1) ), (Pk-1), W(k-1)5), . (P(k-1} | Wk-1) )

at level k-1 is analogous to the factorial level of difference sequences of powers of
integers.

In order to use this analogy, we describe a result of some interest in number
theory. In general, for the sequence

d(0)0=0k , d(O)lzlk, d(0)2= 2k, d(0)3= 3k, d(0)4= 4k, d(0)5= sk, ... (6.15)

of the k-th powers of integers, the k-th difference sequence turns out to be the
constant k! These difference sequences are defined iteratively, for example, the ith
element d(); of the jth sequence is

d(j)iz d(j'l)i+1 - d(i'])i. (616)

For example, the sequence 0, 1, 4, 9,16, 25, ... of squares of integers
0, 1, 2, 3, 4, 5,... has the first difference sequence 1, 3, 5, 7, 9,..., and
the second difference sequence (the sequence of differences between subsequent
elements of the first difference sequence) is 2, 2, 2, 2,.... That is, for the
second powers the second difference sequence is constant, and is equal to 2!=2. In
general, in the k-th difference sequence one obtains a constant, the factorial k! of
the exponent k of the k-th powers of integers. For example, for the seventh
powers the seventh difference sequence contains the constant 7! In the scheme
below, the case of the fourth powers is shown in detail:

04, 14, 24, 34, 44, 54 64, 74, 84, 94 104,...
0, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, ..
(k=1) I, 15, 65, 175, 369, 671, 1105, 1695, 2465, 3439, ...

(k=2) 14, 50, 110, 194, 302, 434, 590, 770, 974, 1202...

(k=3) 36, 60, 84, 108, 132, 156, 180, 204, 228,...

(k=4) 24, 24, 24, 24, 24, 24, 24, 24, 24, ...
6.17)

In the fourth difference sequence (k=4) the constant difference 4!=24 is obtained.
By virtue of this analogy, the serial number k of the first level where a
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common criterion (PU),W()) is already applicable is called the power of the
similarity sequence, and the final condition (P(X),W(K)) is called the factorial
similarity condition.

If the two molecules A and B turn out to be dissimilar by a given
(P,W)-shape similarity criterion [i.e., if they do not fulfill the equivalence relation
A (P,W) B], then the differences between their numerical shape descriptors can
serve as a dissimilarity measure. That is, for a (P,W)-dissimilar molecule pair A
and B, the (P,W)-similarity concept allows one to quantify how different their
topological invariants are. A simple and straightforward approach is based on a
simple vector comparison of the lists of Betti numbers of the shape group technique,
or on the numerical comparison of shape matrices.

The technique of shape globe invariance maps (SGIM) leads to a particular
realization of the (P,W)-similarity concept. The actual shape representation P, for
example, an isodensity contour with relative local convexity domains or a space
curve representing a backbone of a chain molecule, is enclosed within a shape globe
S. The topological characterization is given by a shape descriptor W, where W is
the shape globe S, together with a topological descriptor of the pattern of spherical
domains of a selected invariant. For example, the shape descriptor can be chosen as
the shape matrix of the pattern projected to tangent planes of S, or as the knots
derived from the crossing pattern of chain molecule images projected to the tangent
planes of the shape globe. The final result of such analysis is a numerical shape code
that can be compared by algorithmic methods to those of other molecules.

6.6 The Fundamentals of Resolution Based Similarity Measures
(RBSM)

The principle of the resolution based similarity measures is illustrated in Figure 6.1.
Consider three objects, A, B, and C, of comparable sizes, observed from a great
distance. For a distant observer, all three objects appear as mere points, and the
objects cannot be distinguished. If the objects are somewhat closer, then A may
already show some distinctive shape feature, yet B and C may still appear
indistinguishable. In this case the observer must approach B and C much closer in
order to distinguish them. We may conclude that B and C are more similar to
each other than A isto B or A isto C, simply, because it took a closer look to
distinguish B from C. Alternatively, the observer may use a series of binoculars,
and in order to distinguish the objects, a higher level of resolution of the observed
picture is required if the objects are more similar. One can define a similarity
measure based on the level of resolution required to distinguish objects. This
conclusion and the above example illustrate the principle of Resolution Based
Similarity Measures (RBSM's), described in detail in [240] and [243].

The concept of resolution can be approached within a general topological
framework. Consider a family of objects and a hierarchy of topologies defined for
cach object, where the hierarchy is ordered by the finer-cruder relations of the
topologies (see Section 3.2). Considering finer topologies is analogous to
considering higher levels of resolution. For example, take a family of MIDCO
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S IS IS

A B C

Figure 6.1 Illustration of the principle of resolution based similarity measures (RBSM). Three
objects, A, B, and C, appear indistinguishable at a great distance (low resolution). At some closer
distance (medium resolution), object C 1is already distinguishable from A and B, but the latter two
still appear indistinguishable. At a close distance (high resolution) A and B are also distinguishable.
A numerical similarity measure can be defined in terms of the resolution required to distinguish objects:
if two objects are very dissimilar, they are distinguishable at a low resolution; if they are more similar,
then a higher resolution is required to distinguish them; and if the shapes of the two objects are

identical, then they are indistinguishable even at infinite resolution.

surfaces, and several shape domain partitionings for each surface. For each shape
domain partitioning, the set of shape domains can be regarded as a defining subbase
for a topology on the MIDCO, turning the MIDCO into a topological space. If the
shape domains of a cruder partitioning can be constructed as unions of the shape
domains of a finer partitioning, then the corresponding topologies are also related by
a cruder-finer relation, as described in Chapter 3. If all partitionings can be
ordered by such relations, then the corresponding hierarchy of topologies also
provides a hierarchy of resolutions. Two MIDCO's with shape groups identical at a
finer shape domain partitioning are more similar than two MIDCOQ's which have
different shape groups already at a cruder shape domain partitioning. The
complexity of the partitioning, that is, a measure of how fine is the corresponding
topology, gives a resolution based measure of similarity of MIDCO surfaces.

6.7 Molecular Similarity Measures and Chirality Measures Based on
Resolution and Fuzzy Set Theory

The first example of similarity measure we shall consider is a resolution based
similarity measure (RBSM). This particular realization of a RBSM is conceptually
simple, but it is not recommended for highly detailed shape comparisons since its
practical applications are computationally feasible only for relatively low levels of
resolution [240,243].
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Figure 6.2 Lattice animals of less than six cells. The mirror images of chiral animals are given in

pairs, with respect to horizontal reflection planes. The animals of four cells are "Skinny", "Fatty",
"Knobby", “"Elly", and "Tippy", in the order listed in the figure.

For simplicity, we shall first consider the shapes and similarities of a finite
number of different planar domains. The level of resolution of observing these
domains can be quantified by placing these domains on square grids of various sizes
in the plane, and observing which squares of the grid fall within the planar domains.
The pattern of these squares gives a discretized approximation to the shape of the
planar domain, and the grid size can be considered as a measure of resolution. Such
square grid patterns, if connected by edge contacts between the squares, are called
square cell configurations or lattice animals. The lattice animals which contain no
more than five squares of the underlying square lattice are listed in Figure 6.2.
Such lattice animals have interesting mathematical properties and provide simple
models for a great variety of chemical problems; for example, for modeling the
patterns of adsorbed molecules on metallic surfaces, and for the description of
percolation problems [54,240,243,371-380]. Note that, in the present context,
animals that are chiral mirror images of each other are considered different. For
each planar domain to be characterized, the initial grid size can be chosen large
enough so that no square fits within the domain, but a small decrease of this grid size
permits one or more squares to fit within. In Figure 6.3 the relations of three
planar domains and various lattice animals enclosed by them are considered. For
each of these three domains, the case of a single cell, n=1, corresponds to the initial
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dq

Figure 6.3 Some of the interior filling animals of three Jordan curves, I {, J», and I3, enclosing
three planar domains, Dj, D, and D3, of different shapes. For cell numbers 1 and 2 the the
resolution is not sufficient to distinguish these curves. For cell number n=3 and for any higher cell
number, the third curve, J3, has interior filling animals different from those of curves J; and Jo,
but curves 11 and Jo are distinguishable only for cell number n=8 and beyond. Accordingly, the
greatest degree of similarity is found between curves J| and J (and the respective domains D and

D9), in agreement with expectation based on visual inspection.

grid size. As shown by the example, this initial grid size can be different for
different domains. In order to avoid dealing with domain-dependent grid sizes, the
resolution can be defined relative to each domain, and can be characterized by the
number of squares ("cells") occurring in the animals associated with the domain.
Clearly, scaling the domain as well as the animal inscribed within the domain by a
factor of two will not change their mutual relations. The level of resolution will be
judged by the number of square cells which fit within the domain and not by the
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actual grid size directly; this allows one to compare the shapes of domains of very
different sizes. By gradually increasing the number of cells, higher and higher
levels of resolutions can be obtained, where the resolution is always relative to the
size of the individual domain. At higher resolution, fine details of shape and
similarity can be recognized.

A fit is characterized by the following condition: an animal A fits a planar
domain D if no animal of the same cell size and more cells can be inscribed within
D. Starting with the initial grid size for each domain, and simultaneously and
gradually decreasing these grid sizes (i.e., increasing the number of cells), one can
monitor which lattice animals fit within the domains. In the early stages of this
process, typically, many common lattice animals occur for all the domains. For
example, in the first stage the single cell animal is likely (but not necessary) to
appear for each domain. However, for a greater number of cells, a given lattice
animal is likely to appear for fewer domains, and eventually, for a large enough
number of cells, no common lattice animals are found within the given finite family
of different planar domains.

Consider just two different planar domains. For low resolutions (i.e., for grid
sizes allowing only a few cells to fit within the domains), many of the inscribed
animals are likely to be common for the two planar domains. However, the number
of cells of animals fitting within the two domains can be increased by gradually
decreasing these two grid sizes. A special stage in this process is of particular
importance: the stage with the smallest number of cells, such that for this and for
any larger number of cells all the lattice animals inscribed within the two planar
domains are different. The number of squares of the corresponding inscribed
animals at this stage can serve as a grade of similarity of the two planar domains
(in a formal treatment, this number is referred to as the similarity index).
Evidently, no such number can be found for two domains of identical shapes (but
possibly of different sizes), hence for identical shapes the grade of similarity is
infinite.

An implementation of this idea is described below in more detail, providing a
size-independent scale for the level of resolution [240,243]. We shall use the concept
of Jordan curves. A Jordan curve ] divides the plane into two parts: a bounded
domain (the interior of the Jordan curve) and the remaining, unbounded subset of
the plane (the exterior of the Jordan curve). For example, in Figure 6.3, the
boundaries of planar domains are such Jordan curves, denoted by J;, J, and J3,
respectively. Consider a Jordan curve J in the plane. The interior D of J is the
planar domain we wish to characterize at various levels of resolution. Domain D can
be modeled by square-cell configurations; for example, one may place ] on a
square grid and consider the family of all square cells falling within the interior of
J. Subject to the constraint of edge-connectedness of cells and the requirement that
the planar set covered by the cells considered must be simply connected, the
corresponding square-cell configurations are called lattice animals (or in short,
animals). Two animals which can be converted into each other by scaling, translation
and rotation, are considered the same; consequently, animals provide natural,
size-independent tools to determine the level of resolution of various shape
descriptions. Since we shall use the term "animal” only for simply connected square
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cell configurations, all configurations with "holes” or separate, disconnected parts
are excluded.

The smaller the squares of the grid, the better the resolution of the
representation of D by the animals. By approximately filling up the interier D of
J by animals at various levels of resolution, a shape characterization of the
continuous Jordan curve J can be obtained by the shape characterization of animals.
The animals contain a finite number of square cells, consequently, their shape
characterization can be accomplished using the methods of discrete mathematics. As
a result, one obtains an approximate, discrete characterization of the shape of the
Jordan curve (i.e., the shape of a continuum). The level of resolution can be
represented indirectly, by the number of cells of the animals. In particular, one can
show [240,243] that the number of cells required to distinguish between two Jordan
curves provides a numerical measure of their similarity.

If one chooses a small enough size s for the length of the side of the square
cells, then any finite animal can fit within the given planar domain D. Whether an
animal A fits within the interior D of a given Jordan curve ] depends on the
relative size of J and the cells of the animal. For a given Jordan curve J and a
given cell size s there exists a countable family F(J,s) of animals which fit within
domain D. Clearly, if the size s is too large, then this family is empty. With
reference to J and s, the members Aj(J,s) of this family F(J,s) are called the
inscribed animals of D [240,243].

For a given J and s pair there exists a maximum number n of cells for
inscribed animals. A smaller cell size s is associated with the same or a larger
number of cells and with a better resolution, hence with a better approximation.
However, a small change of cell size s does not necessarily change n. For this
reason, it is advantageous to refer directly to n instead of s. The n-cell animal
Aj(J.,n) inscribed in the interior D of Jordan curve J is an interior filling animal
of J if and only if no animal of the same cell size s and more than n cells can be
inscribed in J [240,243]. In particular, none of the interior filling animals A;(J,n)
can be enlarged by a cell and still fit within the interior D of J.

With respect to size, the actual level n of resolution depends on the relative
size of D as compared to size s of the cells of the animals. This relative size is
implied by the maximum number n of cells which fit within domain D, and in the
Aj(J,n) notation the cell size information s is not given directly.

The family F(J,n) of all interior filling animals Aj(J,n) of the given Jordan
curve J,

FJ,n) = {Ai(J,n)}, (6.18)

provides an absolute shape characterization of J and its interior D at the level n
of resolution. These F(J,n) sets are also suitable to introduce a relative measure for
shape similarity of two Jordan curves J; and Js.

In Figure 6.3, three Jordan curves, J;, J;, and J3, are shown, with some of
their interior filling animals. At both levels n=1 and n=2 there is only one
interior filling animal, common to all three curves. Hence, at these levels of
resolution the shapes of Iy, J», and J3 appear the same. At level n=3, however,
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only the two curves J| and J; have the given interior filling animal in common; it
is different from the animal shown for the curve J3. At this and at all higher levels
of resolution, all interior filling animals of curve J3 are different from those of
curves J; and J,. However, one must reach the level n=8 in order to find that all
interior filling animals of curves J{ and J, are different. For the actual curves, J;
and J,, this difference prevails at all higher levels. Since it requires a higher level
of resolution (n=8) to distinguish the shapes of the pair J; and J; than the level
(n=3) needed for either of the pairs J; and J3 or J, and J3, we conclude that
the closest similarity is between the shapes of J; and J,. Most observers would
find the same conclusion based on visual inspection.

The above example illustrates the motivation for the choice of a similarity
index ig(J1,J3) of two Jordan curves J; and J,, defined as the smallest ne value
at and above which all interior filling animals of Jordan curves J; and J, are
different, that is,

min {nc: FJ1,n) M FJ,,n)=@ if n 2 nc}, if such minimum
io(J1.J2) = exists, (6.19)
oo otherwise.

If the shapes of the two domains enclosed by the Jordan curves J; and Jo are
identical (i.e., if they can be obtained from one another by scaling), then no finite
nc value exists and the similarity index ig(J1,J2) = ec. For curves J; and J5 of
different shapes, the more similar their shapes, the greater the cell number n of the
largest common interior filling animals. Consequently, the similarity index i5(J1,J7)
is a large number if the two Jordan curves J; and J, are very similar, and
ip(J1,J2) is a small number for highly dissimilar curves.

The degree of dissimilarity d(J1,J3) is defined in terms of similarity index
ig(d1,J2) as follows:

dJJa) = 1 /(ig1,J2) - 2). (6.20)

The smallest cell number n at which there exist different animals is three, hence the
smallest possible value for ig(J1.J7) is also 3; that justifies the inclusion of the
number 2 in the denominator. As a consequence of this definition, the degree of
dissimilarity d(J;,J2) may take values from the [0,1] interval, where greater
values indicate greater dissimilarity. For two Jordan curves J; and J, of identical
shapes d(J{,J7) =0.

The degree of similarity s(J;,J2) is defined in terms of the degree of
dissimilarity d(J;,J») as

s(J1,J2) =1 -d(J.37). (6.21)

If two Jordan curves J; and J; have identical shapes, then their degree of
similarity s(Jj,J2) = 1, otherwise s(J,J2) is a smaller positive number.

The similarity index ig(J1,J2) and the degree of similarity s(Jj,J5) of two
Jordan curves J; and J, are of general applicability for the evaluation of the
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Figure 6.4 Mirror image pair of the smallest chiral polycubes.

similarities of planar domains D and D, regarded as the interiors of these
Jordan curves. In chemistry, these tools for the quantification of similarity are
applicable in a wide variety of fields, for example, for the shape comparison of
curves defined as cross-sections of molecular contour surfaces, or contours of
molecular aggregates, or patterns of molecules adsorbed on metallic surfaces,
important in studies of catalysis.

The main ideas of the above shape characterization technique and the concept
of the degree of similarity have been extended to three-dimensional objects such as
formal molecular bodies and molecular boundary surfaces [240,243]. The actual
tools for this purpose are polycubes which are the three-dimensional analogues of
square-cell configurations [240,243].

A connected arrangement of a finite number n of impenetrable cubes C of
uniform edge length s is called a polycube, if only three types of contacts between
cubes are allowed: common face, common edge, and common vertex. If n>1, then
each cube of the polycube P must have a face contact with another cube of P. One
may regard polycubes as parts of a cubic lattice. In Figure 6.4, the pair of smallest
chiral polycubes is shown. These polycubes contain four cubes.

The polycubes P we consider for similarity analysis fulfill the following three
restrictions:

1. if there is an edge contact between two cubes C and C' of P then there

must also be a face contact between C and C', or there must exist a cube
C" having face contact with both C and C,

2. if there is a vertex contact between two cubes C and C' of P then there
must also be either an edge contact between them, or there must exist two
cubes C" and C™ with face contact to each other and cube C" having
face contact to C and cube C™ having face contact to C' (see illustration
in Figure 6.4),

3. the polycube P, regarded as a single body, is topologicaily equivalent
(according to the metric topology of the 3D space) to the 3D body it
represents. In the most common case, a formal molecular body B(a) is
topologically equivalent to a solid ball, however, toroidal or other, more
complicated topologies are also possible.
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Conditions 1. and 2. ensure that the polycubes are facewise connected,
whereas condition 3. is the natural requirement that the three-dimensional
molecular body and its representations at various levels of resolution are not
incomparably different.

By analogy with the perimeters of animals and Jordan curves, the surface
G(P) of a polycube P is the point set union of all those faces of the cubes C of P
that are on precisely one cube. The surfaces of polycubes are used to approximate
MIDCO surfaces G(a), and to characterize the shapes of the formal molecular bodies
B(a) enclosed by them.

The size of the cubes C is characterized by the uniform edge length s. By
gradually decreasing s and increasing the number n of cubes in the polycubes P
inscribed within G(a), one can approximate the formal molecular body B(a) at
increasing levels of resolution.

Consider a given molecular contour surface G(a). If the size s of the cubes is
chosen small enough, then any finite polycube P can fit within G(a). As in the
two-dimensional case, we do not consider orientation constraints and we assume that
the contour surface G(a) and polycube P may be translated and rotated with
respect to one another; the relative orientation of G(a) and the cubic grid is not
fixed. In this model, the identity of a polycube is independent of its orientation. Two
polycubes P and P' are regarded identical if and only if they can be superimposed
on one another by translation and rotation in 3D space. Note, however, that the
polycube method of shape analysis and determination of resolution based similarity
measures can be augmented with orientation constraints, suitable for the study of
molecular recognition and shape problems in external fields or within enzyme
cavities [240,243].

A polycube Pj(G(a),n) of n cubes is an interior filling polycube of the
contour surface G(a) if and only if no polycube P of the same cube size s and of
n+1 cubes can be inscribed in G(a).

The three-dimensional RBSM method relies on the shape properties of
interior filling polycubes Pj(G(a),n) inscribed in molecular contour surfaces G(a)
when assessing the similarity of the G(a) contours and the formal molecular bodies
B(a) enclosed by them. In order to define levels of resolution scaled relative to the
molecular size, the absolute size parameter s is not used directly. One obtains more
comparable shape characterizations of both small and large objects when using the
same number of cubes. Consequently, each level of resolution is defined by the
number n of cubes of interior filling polycubes P3(G(a),n), which depends on the
relative size of the object G(a) as compared to the cube size s.

The family of all interior filling polycubes Pj(G.,n) of the molecular contour
surface G at level n is denoted by F(G,n),

F(G,n) = {Py(G,n)}. (6.22)

This set F(G,n) provides an absolute shape characterization of G and the body B
enclosed by it. By analogy with the two-dimensional case, we may use these F(G,n)
sets to introduce a relative measure for shape similarity of two molecular contour
surfaces G| and Gj. These surfaces may belong to two different molecules, or
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they can be two MIDCOQO's of the same molecule with two different contour density
values a; and ap.

The similarity index i5(G1,G2) of two molecular contour surfaces G and
G is the smallest nc value at and above which all interior filling polycubes of
contour surfaces Gy and Gj are different,

[ min {nc: F(G{,n) M F(Ga,n) = if n 2 ng}, if the minimum
io(G1,G2) = 1 exists  (6.23)
l o otherwise.

if, for two contour surfaces G and Go of nonidentical shapes, the cell
number n of a largest common interior filling polycube is a large number, then we
perceive these surfaces as similar. This perception is reflected in the similarity index
i5(G(,G>), which is a large integer number if the two contour surfaces G| and Gj
are very similar, and a smaller integer value if G| and G, are highly dissimilar.
If two molecular contour surfaces, G; and G, can be obtained from one another
by scaling, then their shapes are identical. For contour surfaces G| and G; of
identical shapes no finite n; value exists, consequently, their similarity index
16(G1,G2) = o=

The degree of dissimilarity d(G1,G7) has been defined [240,243] as follows:

d(G.G2) = 1/(i5(G1,G2)-2). (6.24)

The smallest cube number n at which there exist different polycubes, hence the
smallest possible similarity index i5(G;,G3) is 3; this is reflected by the inclusion
of the number 2 in the denominator. Note that the same number appears in the
formula for the two-dimensional degree of dissimilarity. The degree of dissimilarity
d(G1,G3) takes values from the [0,1] interval, greater values indicating greater
dissimilarity. Evidently, if the contour surfaces G; and G, have identical shapes
then their degree of dissimilarity is zero, d(G;,G) =0, even if the sizes of G
and G» are different.

The degree of similarity s(G1,G3) of two molecular contour surfaces G
and Gp is defined as

$(G1,G2) = | - d(G1,G2). (6.25)

If the two molecular contour surfaces G and Go have identical shapes then their
degree of similarity s(G,Go) = 1, otherwise it is a smaller positive number.

The quantification of chirality has been discussed in Chapter 1. A family of
intuitively appealing chirality measures is based on the maximum overlap between a
chiral object and its mirror image, as described by Kitaigorodskii [46], Gilat and
Schulman [48-50], and Mislow, Buda, and Auf der Heyde [52,53,57,58]. Alternative
approaches have been proposed using reference objects and the Haussdorf distance of
point sets for characterization by Rassat [47], or using fuzzy set representations [381]
of chirality with reference to fuzziness in an epistemological sense by Mislow and
Bickart [27], or using the principle of energy-weighted fuzzy achirality resemblance



156 SHAPE IN CHEMISTRY

of Mezey [55], based on the syntopy model developed by Mezey and Maruani [252].
For more detail on the subject the reader should consult references [46-57], and the
review by Mislow and coworkers [58].

Here we shall consider a quantification technique of chirality based on the
degree of resolution. In the context of RBSM's, one should note that the detection of
the presence or the lack of chirality is also resolution-dependent. Although chirality
is an absolute property, its detection is not, and this resolution-dependence allows
one to introduce a formal scale for chirality. If chirality is already detectable at a
low level of resolution, then it is justified to regard the object "more chiral" than
another object that reveals its chirality only at a much higher level of resolution.

For both two- and three-dimensional chirality, a formal degree of chirality has
been introduced [54,55], based on a discretization of shape features using lattice
animals and polycubes [240,243]. These definitions are based on chiral animals and
chiral polycubes, for which chirality can be detected by simple algebraic means.

An animal A is achiral if and only if A can be superimposed on its mirror
image A? by translation and rotation within the plane:

A=A, (6.26)

Otherwise the animal A is chiral.

We say that Jordan curve J is chiral at and above cell number n, if each
interior filling animal A;j{J,n) is chiral if n> n,. The chirality index n,(J) is the
smallest cell number n, =n,(J) at and above which all interior filling animals
Aj{J,n) are chiral,

[ min{ n, : each Aj(J,n) is chiral if n2 n,}, if the minimum
n,(J) = 4 exists (6.27)

[ oo otherwise.

Since the smallest chiral lattice animals have four cells [54], the minimum possible
value for chirality index is n,(})=4. The degree of chirality X(J) of a Jordan
curve J is defined as

X(J) =1/(n,(N-3). (6.28)

This measure of chirality gives the value 1 for "very chiral" curves and 0 for

achiral ones.

A similar treatment has been applied for the three-dimensional case {55], using
polycubes. A polycube Pp is achiral if and only if P, can be superimposed on its
mirror image P°, by translation and rotation:

Py = POy . (6.29)

Otherwise the polycube Py is chiral.
A molecular contour surface, such as a MIDCO surface G(a) is chiral at
and above cube number n, if each interior filling polycube Pp(G(a)) of G(a) is
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chiral if n 2n,. The chirality index n,(G(a)) is the smallest n, value at and
above which all interior filling polycubes Pp(G(a)) are chiral:

( min{n,: each Pp(G(a)) ischiral if n > n,}, if the minimum
n, (G(a) = 1 exists (6.30)
| e otherwise.

The degree of chirality X(G{a)) of a molecular surface G(a) is
X(G(a)) = 1 / (ny(G(a))-3). (6.31)

The smallest chiral polycube has four cubes (as shown in Figure 6.4), and the
number 3 in the denominator ensures that the dey e of chirality takes values from
the [0,1] interval.

The principle of the RBSM method is also applicable for a more direct
quantification of chirality. The degree of similarity between an object and its
mirror image can be used as a simple measure of chirality. In particular, such a
measure can be based on the degree of similarity s(G,G%) or s(J,J°) between the
object G or J and its mirror image G° or JO, in the three- or two-dimensional
cases, respectively.

The similarity based measures 0g(G) and og(J) of achirality are defined as

og(G) = 2 s(G,GY) - 1 (6.32)
and

o= 2s(3,J9 -1, (6.33)
respectively.

At very low resolutions most chiral objects appear achiral. The measures
a5(G) and og(J) refer to the lowest resolutions at which the objects already appear
chiral, as measured by their similarity to their mirror images. Note that in the
general case the smailest possible value of both the two- and three-dimensional
similarity indices is 3. However, for mirror images, the smallest possible value for
both similarity indices is 4. This is the value obtained for the enantiomeric pair of
one of the smallest chiral animals, (called "Tippy", see, e.g. ref. [54]), and also for
the enantiomeric pair of the smallest chiral polycubes, the four-cube screws shown
in Figure 6.4, where the four cubes of the polycube are arranged as in the "vertex
contact” condition 2. discussed above. Since a similarity index value of 3 is
unattainable, a rescaling of the s(G,G®) and s(J,J?) measures is required, as given
in Equations (6.32) and (6.33). The coefficient 2 and the term -1 in the above
expressions ensure that these achirality measures are taking values from the [0,1]
interval. Objects which are "fully achiral”, that is, objects which appear achiral at
any level n = 4 of resolution, have an achirality measure of og = 1|, whereas
objects showing the greatest dissimilarity with their mirror images have an achirality
measure of ag=0.
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Using the above achirality measures, the similarity based measures Xg(G) and
Xs(D) of chirality are defined as

Xg(G) =1 - 05(G) (6.34)
and
(D =1-04), (6.35)

respectively. Objects with prominent chirality have Xg measures close to |1,
whereas achiral objects have Xg measures equal to 0.

The above similarity based measures Xg(G) and X (J) of chirality are related
to animals and polycubes of maximal chirality by the X(J) and X(G) criteria,
since these are the very animals and polycubes having maximum chirality of 1 by
the measures Xg(G) and Xg(J). However, the measures Xg(G) and Xg(J) of
chirality are different from the measures X(J) and X(G). It is possible that for
some curve J only chiral interior filling animals occur at some level nc and above,
yet the same chiral interior filling animal A of n¢ cells and its mirror image A°
may occur for both J and its mirror image J°. Hence, at this level of resolution,
the test of full dissimilarity fails, whereas the test of chirality by chiral interior
filling animals already gives n, <n¢. In such cases, the measures X3(G) and Xg(J)
provide more discrimination than X(J) and X(G).

Pictures of high resolution appear crisp, whereas pictures of low resolution
appear fuzzy. A decrease of resolution is accompanied by an increase of fuzziness.
Consequently, similarity measures based on the minimum level of resolution
required to distinguish objects can be formulated in terms of the maximum level of
fuzziness at which the objects are distinguishable. Similarity can be regarded as
Juzzy equivalence. This principle provides an alternative mathematical basis for
using the methods of topological resolution [262] in similarity analysis: the theory
of fuzzy sets [382-385].

Fuzzy sets serve as mathematical tools for the description of problems where
the classification criteria are not clearly defined. In ordinary set theory a point p is
either an element or not an element of a set A, i.e., the membership function of a
point p can have values of either 1 or 0. By contrast, in fuzzy set theory the
membership function of a point p is regarded as the "degree of belonging” to the
fuzzy set A, and this membership function can take any value from the interval
[0,1]. In some sense, fuzzy set theory can be regarded as probability theory turned
inside out, where events are considered with "a posteriory” certainty after they
have occurred, but some uncertainty is associated with judging and classifying these
events.

The theory of fuzzy sets [382-385] has numerous contemporary applications in
various fields of engineering [386-388], in the description of quantum mechanical
uncertainty [389-393], in the study of molecular identity preserving deformations
[106,251], in new approaches to the description of approximate symmetry
[252,394,395], as well as in both static and dynamic shape characterization and
dynamic shape similarity analysis of molecules [55,3906].
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Figure 6.5 A two-dimensional example of the Scaling-Nesting Similarity Measure (SNSM),
applied to the planar objects A and B. A scaling of sgA)=0.80 is sufficient for fitting object B
within A, whereas a scaling of s(4g)=0.68 is needed for fitting object A within B. Note that,
according to these one-sided measures (semi-similarity measures), A is less similar to B than B is
to A. A symmetric SNSM of sap=0.74 is obtained as the average of the above one-sided

scaling-nesting similarity measures.

In a general formulation, similarity measures taking values from the [0,1]
interval can be regarded as fuzzy set membership functions, expressing the degree of
belenging of one object to a class represented by the other object. On intuitive
basis one expects that such a relation is symmetric for any two objects: their degree
of belonging to the class of the other object is expected to be the same. However, this
need not be so, as illustrated by the asymmetric semi-similarity measures described
in the next section.

6.8 Semi-Similarity Measures and Scaling-Nesting Similarity
Measures (SNSM)

A general family of shape similarity measures of the second kind is based on the
principle of rescaling the size of one object until it fits within the other object. The
degree of scaling required gives a similarity measure.

These similarity measures are referred to as "Scaling-Nesting Similarity
Measures" (SNSM), and are illustrated in Figure 6.5. If the initial volumes of the
two objects are the same, then the scaling factor provides a numerical similarity
measure. In general, one expects that for objects of different shapes the larger the
scaling factor the greater their perceived similarity, and for objects of identical
shapes no scaling is required (i.e., the scaling factor is 1). Before the method can
be applied for objects of different initial volumes, one of the objects must be scaled
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until its volume becomes identical to that of the other object. In the most general
case, one object can be shifted as well as rotated with respect to the other while the
fitting is attempted. However, various constrained shape similarity measures can be
obtained if some motions are disallowed. For example, orientation-dependent shape
similarity measures can be obtained if no rotations, only translations of the objects
are allowed, or if no full rotation but only certain rotational angles are permitted
while the fitting is attempted. Alternatively, if complete or limited rotation is
allowed but the centers of the masses of the two objects are fixed or are restricted to
limited domains of the space, then a position-dependent similarity measure is
obtained.

The simplest cases of these similarity measures are not symmetric. In general,
a different scaling may be required to fit A within B than that needed to fit B
within A. That is, the above measures are semi-similarity measures, where the
numerical value obtained depends on whether object A is tested against object B
or vice versa. Note, however, that by taking the average of the two scaling factors,
a symmetrized scaling-nesting similarity measure can be constructed.

For optimal fitting, rotation and translation of the objects are usually
necessary. If an object Ay can be exactly superimposed on object A by translation
and rotation (in general, by motions allowed by the actual orientation and position
constraints), then we regard A, asa version of object A.

A definition of the unconstrained scaling-nesting similarity measures is given
below; the constrained measures can be derived easily from these by applying the
appropriate constraint while determining the maximum scaling factor.

Consider two bounded and closed 3D objects, A and B°. If V(A) and
V(B®) denote the volumes of these objects, then first a uniform scaling

B =5(B°) (6.36)
is applied to B° so that the volume of the new object B is equal to that of A:

V(A) = V(B). (6.37)
The uniform scaling s(B°) can be characterized by a single scaling factor s:

V(B) = s"V(B°). (6.38)

In the above equations, the same letter symbol s is used to denote the scaling
operation (in Equation (6.36)), and the numerical value of the scaling factor (in
Equation (6.38)). In general, the n-dimensional volumes are scaled by the n-th
power sh of the scaling factor s. In the example of Figure 6.5, the dimension is
n=2, and the 2D "volumes" (areas) are scaled by the squares of the scaling factors.

Note that the shapes of B° and B are regarded identical; these two objects
differ only in size.

In the next step, additional scalings saA(A) and sg(B) are carried out on all
possible rotated and translated versions A, and B, of objects A and B, leading
to two scalar numbers soB) and S(BA):
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S(AB) = max { sa :exists Ay suchthat sa(Ay) C B}, (6.39)
s(BA) = max { sp: exists By suchthat sg(By) C A}. (6.40)

The above two numbers sap) and S(pa) are scaling-nesting semi-similarity

measures, or one-sided scaling-nesting similarity measures, sap) expressing the

semi-similarity of A to B and s@ga) expressing the semi-similarity of B to A.
A symmetric scaling-nesting similarity measure is obtained by

SAB = (S(BA) + S(BA)) /2. (6.41)

Alternatively, one may take the greater (or the smaller) of the one-sided similarity
measures for any two objects; this method also provides a symmetrized version of
the one-sided similarity measures.

These similarity measures of the second kind are applicable to mirror images.
The quantity saa¢ can be taken as a measure of achirality, leading to a new measure
of chirality:

Xsan(A) = 1-5sa40. (6.42)

The quantity Xg,p(A) 1s zero for achiral objects, and it i1s a positive value for chiral
objects. In general, Xg,5(A) tends to have larger values for objects perceived as
having more prominent chirality. This measure differs from measures based on
maximum overlap between mirror images [{46,48-53,57,58,242].

6.9 Molecular Similarity Measures Based on Shape Codes

The comparison of numerical shape codes based on the curvature domain
partitionings of molecular surfaces provides a natural definition for similarity
measures. One of the simplest of these is based on the shape groups, where the (a,b)
parameter maps generated by the shape groups are compared. The shape groups
distributed along an (a,b) parameter map can be characterized by numbers, for
example, by their Betti numbers, and the entire map can be represented by a
sequence of numbers ordered into a matrix or a vector. The same method applies if
each separate piece of the molecular surface obtained after truncation is regarded as
a separate entity with its separate group [192,262,263]. In this case, the Betti number
of each piece is specified separately, and the set of these Betti numbers is assigned to
the given location of the (a,b) parameter map.

A simple coding technique has been based on an ordering of the separate pieces
of the truncated molecular surface according to their decreasing size ([193], see also
[109]). For a given molecule, different MIDCO surfaces G(a) are obtained for
different density threshold parameters a, and a different curvature criterion b
leads to a different curvature domain partitioning of the MIDCOQO. Consequently,
the truncation of MIDCO's of various threshold density values using various
curvature criteria may lead to a great variety in both the number and the actual
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shape properties of the pieces, hence in most cases, the size ordering of the pieces
must be repeated for each selected (a,b) parameter pair. For each given (a,b) pair,
the size-ordering of the surface pieces implies an ordering of their one-dimensional
Betti numbers (informally called their "first” Betti numbers) into a sequence;

B(l), B(2), ..., B(k), ..., B(m). (6.43)

Usually, the surface piece with the largest Betti number is the one with the largest
surface area, implying that the sequence of Betti numbers in the above ordering is
approximately the same as the decreasing sequence of the Betti numbers.

Such a decreasing sequence is associated with each point of a grid on the (a,b)
parameter map. The grid itself can be regarded as a matrix with the sequences of
Betti numbers as elements. This matrix is a shape code for the molecule that can be
used for storing shape information in molecular data banks and can be retrieved for
shape similarity assessment by numerical methods.

In the following paragraphs alternative numerical representations of these
shape codes are described, where the shape information is given by a "shape ID
vector” of a specified dimension, or it is compressed into a single number that can
be regarded as a "shape ID number” of the given molecular conformation. For
larger molecules these shape ID numbers often turn out very large and somewhat
clumsy for practical applications, however, they are of some theoretical importance.

In general, for different (a,b) pairs, both the number m of Betti numbers,
and the actual value of the Betti numbers may change. Consequently, coding methods
relying on simple listings of the sequences (6.43) for each selected (a,b) pair lack
uniformity, since lists of greatly varying lengths are to be coded. Although such
direct coding methods are simple and useful, it is advantageous to use methods which
are uniform for all {a,b) pairs.

For each parameter pair (a,b), a single number c'(a,b) can be used to store
the information on the entire sequence (6.43) of ordered Betti numbers. One
coding-decoding method relies on the prime factorization of integers. If p; denotes
the i-th prime number in the sequence

1,2,3,5 7, 11,13, 17, . ..... (6.44)
of primes, then the code c'(a,b) is defined as the following product:
c'(a,b) = 2B(i)+1 x 3B(2)+1 % ... % (Pk+1)B(k)+1 X e X (pm+])B(m)+1 . (6.45)

This single number c'(a,b) contains all information present in the values and
the ordering of the original sequence of Betti numbers. The code c'(a,b) can be
decoded easily by virtue of the prime factorization theorem: the code c¢'(a,b) has a
unique representation as a product of primes. For the given value c¢'(a,b), the
exponents r(k+1) obtained in the prime factorization

c'(a,b) = 2r(2) x 3r(3) x .- x (pk+l)r(k+l) X een X (pm+1)r(m+1) (6.46)
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of the code c¢'(a,b) provide the set (6.43) of original Betti numbers which can be
computed by the following simple relation:

B(k) = r(k+1) - 1. (6.47)

For example, consider a given electron density threshold and reference
curvature parameter pair (a,b), and assume that the associated truncated contour
surface falls into seven pieces. Furthermore, assume that a shape group analysis
gives the sequence

6,3,3,0,0,0,0 (6.48)

for the corresponding Betti numbers, ordered according to the decreasing size of
the arecas of the surface pieces. Note that a decreasing sequence of surface areas is
not necessarily accompanied by a decreasing sequence of Betti numbers, although
such parallel trends are common, as indicated by the example. For this example, the
code is

2641 % 3341 » §3+1 5¢ FO+1 3¢ F110+1 % [30+1 % 170+1
= 110270160000. (6.49)

c'(a,b)

This numerical code, representing shape information for the given (a,b) parameter
pair, is assigned to the associated (a,b) point of the (a,b) parameter map.

When needed, this single integer c'(a,b) can be decoded. Of course, the
number 110270160000 has a unique prime factorization,

110270160000 = 27 x 34 x 54 x 7x 11 x 13 x 17, (6.50)

and using the relation B(k) = r(k+1) - 1, and the actual values of the exponents
r(k+1), the Betti numbers, as well as their ordering, are easily calculated. For
example, 7 is the fifth prime number,

7 =ps, (6.51)

and the prime factor of 7 occurs on the first power in the number 110270160000,
consequently,

r(5) = 1. (6.52)

The above result implies that the surface piece of serial number 5-1 =4 according
to decreasing size has a Betti number equal to 1-1 =0,

Bd)=r(5)-1=1-1=0. (6.53)

This method encodes some size information in addition to shape. Note,
however, that the method often leads to large numbers for the code c'(a,b). For
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large numbers, the prime factorization can become somewhat time consuming;
hence, the decoding process is somewhat less efficient than in alternative methods

which ignore size information.
One such alternative coding method is described below, where the Betti

numbers are ordered into a sequence
B(1), B(2), ..., B@, ..., Bm) (6.54)

according to their increasing magnitude [263], without consideration of the size of
the surface pieces they represent. A single number c¢(a,b) can be used to store this
information. If p; denotes the i-th prime number as before, then the code c(a,b) is
defined as the following product:

c(a,b) = pB(1)+2 X PB(2)+2 X - X PB(j)+2 X - X PB(m)+2- (6.55)

If a Betti number B(j) occurs t times in the sequence, then it is represented by a
factor (pp(j)+2)'. and the code c(a,b) can be taken as the product of all these

factors.
The number c(a,b) can be decoded easily. By virtue of the prime factorization

theorem, the original set of Betti numbers can be calculated from the prime factors
of the number c¢(a,b). If the prime factorization gives

c(a,b) = (PPt X (Pi2)HP) X - X (Pis))Us) X -+ X (Pyew)) W), (6.56)

then the Betti numbers which occur are

B() = i(s) - 2, (6.57)
where
t(l.) +t(2)+ ..+ ts-1) < j < (D +U2)+ ...+ t(s-1) + 1(s). (6.58)

For the example considered above, the sequence is
0,0,0,0, 3,3, 6. (6.59)

For this example, the evaluation of the code c(a,b) according to the definition
(6.55) gives

c(a,b) =24x 72x 17 =13328. (6.60)

This value is taken as the code for the set 0, 0, 0, 0, 3, 3, 6 of Betti numbers. The
sequence 0, 0, 0, 0, 3, 3, 6 can be recovered easily from the unique prime factors
of the number 13328. One should note that this number is much smaller than the
number 110270160000 of the c'(a,b) code described above; hence, in general, the
prime factorization in the decoding step takes much less time. However, this code
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does not contain direct size information, although the approximate parallel trend in
the magnitudes of the Betti numbers and surface areas can be used as a less than fully
reliable guideline.

Both of the above coding techniques compress several integers into a single
integer number that can be decoded by prime factorization. The advantage of these
techniques lies in the fact that the same method is applicable to all choices of a and
b values, allowing large variations in the length of the sequence of the Betti
numbers.

For either code, c(a,b) or c'(a,b), the corresponding number can be assigned
to the (a,b) location of the parameter map (a,b). Since most small changes in the
values of a and b do not change the shape groups of the actual truncated molecular
surfaces, the entire (a,b) map will contain only a finite number of different values
for the c{a,b) or c'(a,b) code. A list of these code values can be regarded as a
vector, providing a numerical shape code for the entire (a,b) map {i.e., for all
relevant electron density values a and test curvature values b).

For practical purposes, it is useful to consider a rectangular grid on the (a,b)
map. In one implementation [263], a 41 x 21 grid is considered, covering a range
of [0.001 - 0.1 a.u.] (a.u. = atomic unit) of density threshold values a, and a
curvature range of [(-1) ,1.0] for the test spheres against which the local curvatures
of the MIDCO are compared. At each of these grid points the c(a,b) code or the
c'(a,b) code is calculated, and the actual shape code of the entire 3D electron
density is taken as the resulting 41 x 21 matrix C of integers, stored either as a
matrix or as an integer vector C of 861 components.

A simple numerical similarity measure is defined by the number of matches
between the components of two such shape code vectors. If C(M;) and C(M>)
are the shape code vectors of molecules (or conformers) M| and M,, then the
similarity measure sc(Mj, Mj) is defined as

861
sc(Mj, Mp) = 2, Biciyka) / 861, (6.61)
i=1

where ;) is the Kroenecker delta, with indices
J) = Ci(My), and k(i) = Cj(M>), (6.62)

that is, sc(Mj, Mj) is the number of matches divided by the dimension 861! of the
code vectors C(M;) and C(M»).

A somewhat cruder shape similarity measure is obtained by considering the
sequence of topologically different sets of density domains (DD) occurring as the
electronic density threshold value a is gradually decreased [262]. For two
molecules (or conformers) M; and M,, the maximum number of matches along
their sequences, divided by the number of different sets in the longer sequence
provides a numerical similarity measure [262]. Since most topological changes of
density domains occur at high electron density thresholds, this similarity measure
focuses on the relatively high values of electron density, whereas the more versatile
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measure based on the shape codes c(a,b) or c¢'(a,b) discussed above allows an
optional choice for the density interval considered.

One of the most useful shape codes is based on shape matrices. As we have seen
in Chapter 5, the N-neighbor relation N(Dy i, Dy i) of various curvature
domains Dy and Dy i, given by Equation (5.8), leads to a shape matrix
representation of the shape of the molecular surface. The shape matrix s(a,b)
depends on the two parameters a and b. The off-diagonal elements of this
matrix s(a,b) are defined as s(a,b);j = N(Du,i R Du',i') and its diagonal elements
s(a,b)j i = pi(a,b) are the p(r,b) indices of points r within the ith shape domain
Dy, of the MIDCO G(a).

The assignment of the index i to the curvature domains Dy, ; can be used to
encode additional information; for example, some indication of relative sizes of the
shape domains. In one implementation [109], the index i follows the ordering of all
the D) ; shape domains according to the decreasing size of their surface areas on
the MIDCO G(a). In this case, the shape matrix s(a,b) encodes both shape and
size information. The comparison of molecular shapes (and to some extent,
molecular sizes) can be accomplished by a comparison of their shape matrices.

The corresponding shape code vector c¢(s(a,b)), a three-dimensional vector,
is constructed in three steps.

I. The first component c|(s(a,b)) of the shape code vector e¢(s(a,b)) is the

dimension n of the n X n matrix s(a,b).

2. The n diagonal elements ui(a,b) of the matrix s{a,b) are encoded by
concatenating them into a single number. For example, a diagonal of
elements (2, 2, 1, 2, 0, 2 ) is encoded as the decimal number 221202.
(Since the only numerical values that occur along the diagonal are 0, 1,
and 2, a ternary number system can also be used). The number so
obtained is the second component co(s(a,b)) of the shape code vector
c(s(a,b)).

3. The upper off-diagonal triangle of the shape matrix has elements 1 and O
only, and these n(n-1)/2 numbers concatenated according to columns form
a binary number that is the third component c3(s(a,b)) of the shape code
vector c¢(s(a,b)).

The resulting code vector c¢(s(a,b)) is assigned to the (a,b) point of the

parameter map (a,b).

Note that if the element s(a,b)| | of the shape matrix is different from zero,
then the information on the dimension n of the matrix can be deduced from the
second element ca(s(a,b)) of the shape code vector c(s{a,b)). The special case of
s(a,b);,; = 0 seldom occurs, since this implies that the largest Dy domain is a
locally concave D domain relative to the curvature parameter b. Nevertheless, in
order to avoid ambiguity in such cases, the dimension n is specified as the first
component c;{s(a,b)) of the shape code vector ¢(s(a,b)).

Also note that concatenation of the upper off-diagonal triangle of the shape
matrix by columns instead of rows ensures that shape matrices of different
dimensions can be easily compared: if a k-th digit is present in both of the resulting
binary numbers, then they correspond to the same pair of row and column indices
in the two shape matrices. Evidently, this feature is of importance when comparing
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two molecules, and also when comparing the shapes of two different conformers of
the same molecule: in both cases the dimensions of the shape matrices may differ.

As an example, the shape matrix §(0.01,0) of the b=0 shape domain
partitionings of the allyl alcohol MIDCO G(0.01) shown in Figure 5.6 belongs to
the (0.01,0) point of the parameter map (a,b). If the index ordering of the various
Dy ,i domains follows the order of decreasing size of their surface area, then the
shape matrix £(0.01,0) has the form given by Equation (5.12):

2 1 0 1 0 0 1

1 1 1 0 1 1 0

0 1 2 0 0 0 0
8(0.01,0) = I 0 0 1 0 0 0 0]

0 1 0 0 2 0 0 0

0 1 0 0 0 2 0 0

1 0 0 0 0 1 0

0 0 | 0 0 0 0 1

The first element of the corresponding shape vector c¢(s(a,b)) is the dimension 8
of the shape matrix:

c1(s(0.01,0)) = 8. (6.63)

The digits of the number cy(s(a,b)) are the p;(a,b) diagonal elements of the shape
matrix s(0.01,0):

c2(s(0.01,0)) = 21212211. (6.64)

In order to determine the third component ¢3(s(0.01,0)) of the code vector
c(s(a,b)), the elements of the upper off-diagonal triangle of the shape matrix
5(0.01,0) are concatenated column-continuously. This results in the binary number
1011000100010001000000010000, equal to the ten-base number of 371335200,
hence

c3(s(0.01,0)) = 371335200. (6.65)

That is, the code vector c(s(a,b)) for the b=0 curvature analysis of the allyl
alcohol MIDCO G(0.01) is

¢(s(0.01,0)) = (8, 21212211, 371335200). (6.66)
This shape code vector can be decoded easily by simply reversing the above

process. In view of the relation n = ¢(s(0.01,0)), the reconstruction of the diagonal
elements of matrix $(0.01,0) from ¢2(s(0.01,0)) is a trivial task, whereas the
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conversion of the third component c3(s(0.01,0)) into a binary number of digits d,
leads to the off-diagonal elements s(0.01,0);; = d; of shape matrix s(0.01,0),
where the relations 1 = i+(j-1)(3-2)/2 and i< j assign a unique pair of indices i,
to each index r.

In practice, only a finite number of parameter pairs (a,b) are considered, for
example, those at the grid points of the 41 x 21 grid of the parameter map (a,b)
described above. The entire map of shape matrix codes can then be represented by
three 861-dimensional vectors, C{1), C(2), and C{3), containing all first, all
second, and all third components, respectively, of the individual c(s(a,b)) vectors.
Alternatively, a single (3 x 861) - dimensional vector C can be assigned to the
(a,b) parameter map, where C is obtained by concatenating the components of
C(), C2), and C3) into a single vector.

A similarity assessment of the shapes encoded by these vectors can be carried
out on various levels. For two molecules (or conformers) M{ and M, the
number of matches along their C(M;) and C(Mj) vectors, divided by the
dimension (3 x 861), provides a simple, numerical similarity measure [262]. The
comparison of the first 2 x 861 components [i.e., the comparison of vectors
C(H(M;) and C2)(M;) to CUXM3) and C2)(M3), respectively] appears the
most important for a crude shape analysis, since these vectors store the information
on the number and type of shape domains occurring for various a and b
parameter values. By contrast, a direct comparison of vectors CG)XM;) and
CG3XM,) gives information on the similarities of the patterns of different shape
domains on the two families of molecular surfaces.

More detailed shape comparison is possible if the decoded elements of the two
vectors C(M;) and C(M,) are compared directly. For example, by taking the
number of matches along the diagonals and within the off-diagonal upper triangles
of the two shape matrices s(a,b,M{) and s(a,b,M3), divided by n(n+1)/2, where
n is the dimension of the larger of the two matrices, an elementary similarity
measure s(a,b) is obtained, characteristic to the point (a,b) of the parameter map.
Clearly,

0<s(ab) <. (6.67)
These s(a,b) values generate a similarity map over the (a,b) parameter plane.

These maps, or on a simpler level, the average, minimum, and maximum s(a,b)
values provide more general similarity measures,

sa(M1,M»), (6.68)
sm(M1,M2), (6.69)
and

sm(M1.Mp), (6.70)

respectively.
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In the above discussions, a size ordering of the shape domains has been
considered. It is possible that a better overall match is achieved if deviations from a
strict size ordering are allowed. In the most general case, all simultaneous row and
column permutations of the larger shape matrix are considered, and the actual
permutation providing the best match is selected.

A rather general similarity measure is provided by a comparison of the vertex
labeled graphs of shape globe invariance maps (SGIM's). As discussed in Section
5.4, these maps are applicable to molecular contour surfaces, e.g., MIDCO's or
MEPCO's, and also for chain molecule backbones, such as those used in the study of
the folding patterns of proteins. The number of elementary changes required to turn
one such graph into another one gives an indication of their dissimilarity. The
elementary changes, that is, the elementary vertex labeled graph operations are the
following: addition or deletion of a vertex, addition or deletion of an edge, and a
change of vertex label. Accordingly, a similarity measure for two such SGIM's is
defined as

sscim{M1,M2) = 1 - c¢/max(2v+e), (6.71)

where c¢ is the minimum number of elementary vertex labeled graph operations
needed to convert the vertex labeled graph of one map to that of the other map, and
v and e are the number of vertices and the number of edges, respectively, of the
graph considered. Note that the larger of the two possible sums (2v+e) is used in
the definition.

6.10 Local Shape Codes and Local Similarity Measures

In many chemical problems the comparisons of local molecular regions are more
important than global comparisons. The presence of functional groups or other
molecular moieties with specified shape properties often imply similar chemical
behavior even if the molecules compared have very different global shapes. For this
reason, local molecular shape descriptors and local shape codes are of major
importance.

The general methods applied for shape codes based on shape matrices are
especially suitable for developing local shape codes.

For a given choice of parameters a and b, a local moiety of molecule M;
involves only a subfamily of the family of D, ; shape domains of the molecular
surface. For example, if the moiety corresponds to a DD functional group, then at
some density threshold a separate DD is assigned to this moiety. This implies that
even in lower-density ranges where this DD is already joined to other DD's, the
curvature domains which beleng primarily to the moiety are distinguishable from
other curvature domains of the MIDCO's. Let us assume that for the given
(a,b) parameter pair there are k shape domains in the subfamily corresponding to
the molecular moiety. These k domains may have very different sizes and the
indices i of size ordering of members of this subfamily do not necessarily appear
consecutively along the diagonal of the shape matrix s(a,b,M;) In such cases,
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simuitaneous row and column permutations in the shape matrix s(a,b,M1) may be
needed in order to arrange these shape domains consecutively while preserving the
size ordering among themselves. We assume that the actual ordering in the shape
matrix s(a,b,M;) fulfills these criteria. Then, the shape of the local molecular
moiety can be represented by a k-dimensional diagonal block b(a,b,M;) of the
n-dimensional global shape matrix s(a,b,M;) of molecule M;.

The very same procedure that has been used to construct the global C(Mj)
codes for the global shape matrices s(a,b,M;) along the parameter map (a,b) can
also be applied to the set of local shape matrices b(a,b,M;) along the parameter
map (a,b), resulting in a local shape code vector

CL(M)) (6.72)

of the given molecular moiety.
When searching for local similarities of two molecules, the decoded local shape

matrices [(a,b,M;) of molecule M; are compared to various diagonal blocks of
the global shape matrix s(a,b,M;) of molecule M;. In the most general case, the
local shape matrix b(a,b,M|) is used as a template, and it is compared to
k-dimensional blocks of s(a,b,M;) obtained by all possible simultaneous row and
column permutations. If the size ordering is considered important then only those
permutations are taken which preserve the monotonicity of size ordering in the
permuted diagonal block that is compared to the template. A local similarity measure

s.(M1,M3) (6.73)

is the ratio of the number of matches to the total number of entries in the local shape
codes.

The global and local shape codes can be used for measuring global and local
shape compexity, respectively. Let w(s(a,b,M)) and w(b(a,b,M)} denote the
number of different entries of the n-dimensional global shape matrix s(a,b,M)
and a k-dimensional local shape matrix [b(a,b,M), respectively. Simple global and
local shape complexity measures of molecule M are defined as the following ratios:

Xglobal(M) = w(s(a,b,M)) / n , (6.74)
and for the local molecular moiety specified by the k-dimensional block b(a,b,M),

Xlocal{M) = w(lb(a,b,M)) / k . (6.75)

6.11 Molecular Shape Complementarity Measures

In nearly all chemically important problems, shape complementarity refers to local
shape properties. Most of the typical molecular interactions where shape
complementarity is relevant involve only some local moieties of the molecules.
Global shape complementarity is more difficult to achieve and seldom plays a role,
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0.025

internal H-bond

Figure 6.6 A toroidal MIDCO G(a) of a = 0.025 a.u. (atomic unit) of one of the stable
conformers of the [-alanine molecule. The torus is completed by a hydrogen bond formed between
the terminal N atom and the OH group. The Dy ; shape domains indicated are those corresponding
to the b=0 reference curvature parameter (ordinary convexity). The torus is much narrower along the
hydrogen bond than along formal single bonds of the ring. The hole of the torus is rather small, hence
the topology of any surrounding chain molecule is unlikely to complement the correct toroidal topology

of the enclosed conformer of the f-alanine molecule.

one exception is the special case of one molecule, such as a long, folded chain
molecule entirely surrounding another, usually simpler molecule.

A properly folded chain molecule can form a cavity with a shape globally
complementing the shape of an enclosed, quasi-spherical molecule. If, however, the
enclosed molecule has a toroidal or more complicated topology, where the hole of
the torus is small so the surrounding chain molecule cannot enter this hole, then an
approximate global complementarity by a chain molecule is unlikely to reflect the
correct topology of the enclosed molecule.

Typically, global shape complementarity for molecules with toroidal
MIDCO's can be achieved only to a much lesser degree than for quasi-spherical
molecules. An example of a toroidal MIDCO where the torus is completed by an
internal hydrogen bond is shown in Figure 6.6. In this example, the hydrogen bond
is formed between the terminal N atom and the OH group of one of the stable
conformers of the [B-alanine molecule [263]. The Dy ; shape domains indicated
are those corresponding to the b=0 value of the reference curvature parameter
(case of ordinary convexity). Although the torus is much narrower between the H
and N nuclei of the hydrogen bond than along formal single bonds of the ring,
nevertheless, the hydrogen bond is clearly recognizable. The hole of the torus is
rather small, hence approximate global shape complementarity by any surrounding



172 SHAPE IN CHEMISTRY

chain molecule is unlikely to reflect the correct toroidal topology of the enclosed
[B-alanine molecule.

There are, however, important potential applications of global shape
complementarity if the analysis is not restricted to a molecule pair. Clearly, one
molecule can be surrounded by several other molecules and their mutual
arrangements are expected to be favourable in the case of a high degree of shape
complementarity. Such shape complementarity of one molecule with a family of
molecules plays an important role in solute-solvent interactions. A solvated molecule
can be regarded as being surrounded by a family of solvent molecules forming
various solvate layers, and the spatial arrangements of solvent molecules in these
solvate layers are influenced by the shape of the solute molecule. Solvate layers are
dynamic entities undergoing continuous rearrangements, furthermore, hollow
solvate layers without the solute molecule seldom have any stability at all.
Nevertheless, these solvate layers can be regarded as molecular aggregates of some
identity. The shapes of the cavities of solvate layers and the degree of global shape
complementarity with the solute molecules provide important insight. In liquid phase
chemical reactions such as reactions in the aqueous phase, the reactants usually
undergo major shape changes until they reach the shapes of the product molecules.
These shape changes of the reacting molecules are approximately mirrored in the
complementary shape changes of the solvate layers. However, this complementarity
is not uniform in all stages of the reaction; the degree of complementarity may
change during the process. It is expected that the mediating effect of solvents in
liquid phase reactions is strongly influenced by the changes of the degree of shape
complementarity of solvate layers throughout the reaction.

The catalytic activity of zeolites also involves shape complementarity. The
cavities of zeolites are interconnected by various channels, consequently, in a strict
sense, a cavity does not fully surround a molecule that enters the zeolite. As a result,
for high density zeolite MIDCO's only local shape complementarity is possible.
Nevertheless, the low density MIDCO's of zeolites contain closed internal contour
surfaces corresponding to the cavities and for these parts of MIDCO's global shape
complementarity is relevant. The shapes of these MIDCO's may approximately
complement the shapes of the MIDCO's of a molecule inside the cavity.

For the simpler case of molecule pair interactions, such as the interactions
between two reactants, local shape complementarity is of importance. The basic
principle of local shape similarity measures is also applicable for the construction of
local shape complementarity measures.

Shape complementarity of molecular electron densities represented by
MIDCQO's involves complementary curvatures, as well as complementary values of
the charge density contour parameters a. In general, a locally convex domain
relative to a reference curvature b shows shape complementarity with a locally
concave domain relative to a reference curvature -b. Furthermore, shape
complementarity between the lower electron density contours of one molecule and
the higher electron density contours of the other molecule is of importance.

In the course of molecular interactions, the interacting molecules penetrate
each other only to a limited extent. For stronger interactions, this interpenetration is
assumed to be greater than that for weaker interactions. For the given interaction,
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one may consider a common electronic density value a, of the two isolated
molecules that corresponds to the threshold density of two formal "contact"
MIDCO's of the interacting systems. If, in a crude model, the electronic density of
the interacting pair of molecules M; and M, is approximated by the superposition
of the electronic densities of the two isolated molecules, then a pair of MIDCO
surfaces G(a, M) and G{a,M53) of the same a value can have one of the three
possible relative arrangements:

1. they have no common points, or

2. they have a finite number of common points (usually, one common point),

or

3. they have a continuum of common points.

For the given mutual arrangement of the two molecules M; and M5, the contact
density ay corresponds to the unique electron density threshold value of the
MIDCO's of case 2.

If in an approximate model of molecular interactions a contact density
value ay can be chosen, then the local shape complementarity between G(ay, M)
and G(ag, M»j) is of relevance. In a more general model, one considers the local
shape complementarity of MIDCO's G(ap-a', M) and G(ag+a', M3) in a narrow
density interval

[ag - Aa, ay + Aa]. (6.76)

In this model, the complementarity of the local shapes of MIDCOQ's deviating in the
opposite sense from the contact density value a; is analysed.

Complementarity involves matches between locally concave and locally convex
domains, as well as matches between saddle-type domains with proper alignment.
Taking into account the conditions for density thresholds and curvature parameters,
the task is to find local matches between curvature domain pairs

Doby,i(ag - a', M), Daep),i(ag+a’, Ma); (6.77)
Diw),i(ap - @', M), Dj(py,i(ag+a’, Myp); (6.78)
and

Dy p),i(ap - @', M), Djy(pyi{ap+a’, Mp). (6.79)

The above considerations can be incorporated within a simple model using the
(a,b) parameter map approach. The complementarity of curvature domain types (for
example, Dy and Dg) can be tested by taking complementary shape groups, that is,
by taking complementary truncations for molecule M; and Mj. In general, this
leads to an (a,b) map for the HP,(a,b) shape groups of molecule M; and to an
(a,b) map for the complementary HP; (a,b) shape groups of molecule M5. For
example, one may take the most useful one-dimensional shape groups (p = 1) for
both molecules, with reference to the @ = 2 truncation for molecule M;, and to
the complementary p'=2-pu =0 truncation for molecule M». This choice leads to
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the (a,b) map of the H!3(a,b) shape groups of molecule M; and to the (a,b) map
of the Hlp(a,b) shape groups of molecule M».

Whereas the curvature types for truncation are complementary, the above two
(a,b) maps cannot yet be compared directly, since in a direct comparison of these
maps, identical, and not complementary, a and b values occur for the two
molecules. However, the complementarity of density thresholds and curvatures can
be taken into account by a simple transformation: by inverting the (a,b) parameter
map of molecule My centrally with respect to the point (ag,0), and by comparing
the centrally inverted (a,b) map of My to the original (a,b) map of M. This
transformation ensures that domain types, density thresholds, and curvature
parameters are matched properly, as required by the pairing scheme (6.77) - (6.79).
For example, the locally convex domains of MIDCO G(ay-a', M;) relative to the
reference curvature b are tested for shape complementarity against the locally
concave domains of MIDCO G(ag+a', M3) relative to a reference curvature - b.

This Centrally Inverted Map Method (CIMM) of molecular shape
complementarity analysis allows one to use the techniques of similarity measures. In
fact, the problem of shape complementarity is converted into a problem of similarity
between the original (a,b) parameter map of shape groups HP;(a,b) of molecule
M; and the centrally inverted (a,b) parameter map of the complementary
HP;_,(a,b) shape groups of molecule Mj.

For most practical applications, CIMM is used within the framework of local
measures. These measures are based on local shape matrices or on the shape groups
of local moieties, defined either by the density domain approach mentioned earlier,
or by alternative conditions, such as the simple truncation condition replacing the
“remainder” of the molecule by a generic domain [192]. For proper
complementarity, identity or close similarity of the patterns of the matched domains
is an advantage, hence the parts CL3)(M{) and CpL(3)(Mj) of the corresponding
local shape codes are compared directly. For shape complementarity only the
specified density range [ag - Aa, ap + Aa] and a specified curvature range of the
(a,b) parameter maps is considered. A local shape complementarity measure,
denoted by

cL.(M|,Mp), (6.80)

is analogous to the local version sp(M{,M3) of the similarity measure given by
Equation (6.61). This local shape complementarity measure c; (M1,M>) is defined
as the number of matches between the entries of maps obtained by CIMM, divided
by the total number of comparisons.
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QShAR
(QUANTITATIVE SHAPE - ACTIVITY RELATIONS)
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7.1 Computer Screening of Molecular Sequences by Shape
Code Comparison
7.2 Integrated Main and Side Effect Analysis by Shape

Correlations

7.3 Shape-Driven Molecular Design and Molecular
Engineering

7.4 A Summary of the Main Components of the QShAR
Approach

In the continuing effort to understand the reactions of biomolecules and to design
new drugs for medicine, large data bases of most major pharmaceutical drug
companies are routinely searched for structural motifs as defined by functional
groups, bonding patterns, and substructures of molecular structural diagrams. Such
data bases provide input information for molecular modeling. In particular, the
integration of experimental data with computer-based molecular modeling has
become a powerful tool for the interpretation of biochemical processes, drug design,
and molecular engineering (see, e.g., references [85-88,160-198,282-341]). A
systematic survey and handling of the available structural data of molecular bonding
patterns, such as that available in the discrete representations of the DARC system
[397-406], allows one easy access to such information. These techniques also pinpoint
the areas where our knowledge is lacking, which is an important consideration when
establishing research goals.

Molecules of similar biochemical activity often show common 3D shape
features. Consequently, the characterization of the shapes of formal molecular bodies
and the recognition, description, and, ultimately, the numerical evaluation of
similarity among molecules are of major importance in modern pharmaceutical
research, as well as in pesticide and herbicide chemistry. The analysis of molecular
shape is an important component of research aimed at the elucidation of
drug-receptor interactions and in studies of quantitative structure-activity
relationships in contemporary drug design.

175
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The molecular data bases organized according to chemical formulas and
bonding patterns are complemented by molecular data bases which can be searched
using the three-dimensional shapes of formal molecular bodies as criterion.
Molecular shape effects, with particular emphasis on the 3D body aspect of
molecules, as opposed to the skeleral aspect of steric arrangements of formal bonds,
are of primary importance in biochemical processes (e.g., in enzyme-drug
interactions). Shape similarity and shape complementarity are fundamental principles
of biochemistry, relevant to the properties of both stable macromolecular structures
and transition structures of biochemical reactions. In particular, the suggestion of
Linus Pauling concerning the shape complementarity of the enzyme active site and
the transition structure of the reaction catalyzed by the enzyme gives important
insight.

In most chemical processes, the initial stages of molecular interactions are
dominated by the 3D shapes and shape changes of the low electron density ranges of
molecular bodies. These low density ranges of the fuzzy electronic clouds are at
some distance from the nuclei as well as from the imaginary bonding lines
interconnecting the nuclei. Consequently, the initial interactions can be similar even
for molecules containing rather different nuclei and different formal bonding
patterns, as long as their peripheral electronic clouds have similar static and dynamic
shape features. This is the reason why data on the shape features of 3D molecular
bodies, as represented by their fuzzy electronic clouds [108,155-158], are more
directly relevant to the analysis and prediction of molecular interactions than the
more conventional graphs depicting the bonding patterns of molecules. The shape
analysis methods based on the topological features of 3D molecular bodies provide
computational tools applicable for a variety of small- and large-scale chemical and
biochemical problems [43,155-158,190-199,254,262,342,345,407,408].

There is a strong tradition in research efforts towards the quantitative
interpretation of chemical properties in terms of structural features of molecules
(see, e.g., references [409-411]). In most physical organic chemistry studies, as well
as in most synthesis design, molecular design and conventional QSAR (Quantitative
Structure - Activity Relations) analysis (see, e.g., references [412-442]), the concept
of structure is usually interpreted in terms of graphs depicting formal bonding
patterns and structural diagrams depicting the 3D versions of these bonding patterns.
In view of the special importance of 3D shape features of formal molecular bodies,
an improved performance is expected from a more recent proposal on QShAR
(Quantitative Shape - Activity Relations) analysis [262], based on rigorous 3D
molecular shape analysis techniques. Data bases containing easily retrievable,
comparable, and interpretable 3D shape data on molecular bodies appear to have an
important future role in molecular engineering and drug design, and in systematic
studies on the relations among functional groups in organic chemistry [262,264].

One practical aspect of the systematic shape analysis approach is of special
importance for drug design and molecular engineering applications. Even though the
actual relations between molecular shapes and chemical or biochemical properties
may be very complex and poorly understood in some cases, for molecular design
purposes a detailed understanding is not always necessary. The shape analysis of
sequences of molecules of known chemical properties or known biochemical and
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pharmacological activities can answer the question of what molecular shape
features are important for a given effect, even if one does not fully understand why.
Hence, the results of shape analysis can be used directly to predict biochemical
activity of new molecules. Of course, by learning better answers to the question of
what, we are going to be able to give a more comprehensive answer to the question
of why.

7.1 Computer Screening of Molecular Sequences by Shape Code
Comparison

Most of the current approaches to the evaluation of the results of molecular
modeling rely on visual inspection. Consequently, these approaches have a strong
subjective component and the results are not necessarily reproducible, especially if a
large number of molecular models are compared visually. The molecular Shape
Group Method (SGM) [108,155-158] provides an alternative to visual evaluation
of the results of molecular modeling. As it has been shown in the previous chapter,
SGM and the related shape code methods are suitable for nonvisual, algorithmic
evaluation of molecular shape similarity and shape complementarity in large families
of molecules. The associated local shape matrix and shape code techniques are
suitable for both local similarity and local shape complementarity analysis. A
similarity ranking of molecular sequences, or a ranking of these sequences according
to a shape complementarity measure with respect to a reference molecule such as an
enzyme, helps to make predictions on the expected biochemical activity and drug
potency.

The above topological shape analysis techniques can replace visual shape
comparisons of molecular models on the computer screen with precise, reliable, and
reproducible numerical comparisons of topological shape codes. These comparisons
and the similarity or complementarity rankings of molecular sequences can be
performed by the computer automatically. This eliminates the subjective element of
visual shape comparisons, a particularly important concern if large sequences (e.g.
several thousands) of molecules are to be compared. In the data banks of most drug
companies there is information stored on literally hundreds of thousands of
molecules, and their detailed shape analysis by visual comparison on a computer
screen is clearly not feasible. By contrast, automatic, numerical, topological shape
analysis by computer ts a viable alternative.

The input data for the shape analysis methods are provided by well-established
quantum chemical or empirical computational methods for the calculation of
electronic charge distributions, electrostatic potentials, fused spheres Van der Waals
surfaces, or protein backbones. The subsequent topological shape analysis is equally
applicable to any existing molecule or to molecules which have not yet been
synthesized. This is precisely where the predictive power of such shape analysis lies:
based on a detailed shape analysis, a prediction can be made on the expected activity
of all molecules in the sequence and these methods can select the most promising
candidates from a sequence of thousands of possible molecules. The actual expensive
and time-consuming synthetic work and various chemical and biochemical tests of
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new compounds can be focused on a few of the most promising molecules, leading to
important savings in human efforts, financial resources, and reducing (but not
eliminating) the need for animal and human experiments. Indeed, to the arsenal of
methods of in vitro and in vivo experiments, one can add the methods of "in

computo” techniques.

7.2 Integrated Main and Side Effect Analysis by Shape Correlations

There is an important parallel between the complexity of molecular shape and the
complexity of multiple biochemical effects of molecules. Molecular shape is a
multiparameter property: in order to characterize in any detail the shape of a
molecule, a single number is insufficient. Even a crude description of molecular
shape requires several numbers. Similarly, a molecule seldom, if ever, has just a
single biochemical effect; most often, a molecule can interact in many different
ways with numerous enzymes and biochemical systems. In QSAR studies the
importance of side effects is well recognized (see, e.g., references [439-442]), yet in
many current drug design applications of molecular modeling, one-dimensional
correlations are sought between a specified type of biochemical activity and a
specified aspect of molecular shape. When correlating shape properties with a given
type of biochemical activity in a series of molecules, a molecular ordering is usually
established based on experimentally observed activities, and the goal is to establish a
parallel or nearly parallel ordering of molecules based on some shape property. If
such parallel orderings are found for a set of experimentally tested molecules, then
the corresponding shape features are thought to be important and are used in a
predictive sense: for a new molecule of enhanced shape features a high biochemical
activity is predicted. This is essentially a one-dimensional "shape calibration"”
approach that fails to exploit the multidimensional (multiparameter) nature of
molecular shapes, and the multiple biochemical activities of molecules.

Whereas most drug design efforts up to date have been focused on the main
biochemical effects of potential drug molecules, the Shape Group Method and related
shape code techniques are also applicable for multiple similarity ranking based on
local and overlapping molecular shape features. For a combined main effect and
multiple side effect analysis, several different shape orderings can be generated,
based on the information of a few molecules of experimentally known side effects.
These multiple shape orderings can be defined by the shapes of functional groups, by
individual local shape motifs, or by combinations of shape motifs which enhance a
particular side effect. This approach provides the basis for a systematic analysis of
both main effects and of several potential side effects in large sequences of potential
drug molecules.

If sufficient input data, experimental or theoretical information on the main
biochemical effect and also on various side effects are available for a series of
molecules, then these molecules can serve as the basis for a detailed, multiparameter
(multidimensional) shape-biochemical property analysis.

In a computational sense, the problem is converted into a multidimensional
discrete shape optimization problem in a space spanned by the various orderings of
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the molecular sequence, according to the main and side effects. If the total number
of experimentally measured biochemical properties (the main and side effects) is k,
then, based on these measured properties, the molecular shapes in the given
molecular series can be assigned to various points of a formal k-dimensional
parameter space. A multidimensional (multiparameter) distribution of shape codes
for main and multiple side effect QShAR analysis is the basic tool for the study of
integrated main and side effect correlations. The distribution, clustering, and various
patterns of the arrangements and interrelations of shape codes in the parameter space
provide a detailed multiparameter correlation between shape and multiple
biochemical effects. Such multidimensional analysis gives more information than a
simple combination of individual single effect correlations. Since the entire family of
biochemical activities is treated in an integrated manner, the predictive value of the
approach is enhanced.

7.3 Shape-Driven Molecular Design and Molecular Engineering

All properties of molecules and molecular aggregates, industrial materials,
agricultural chemicals, and drugs for medicine are influenced by the shapes of their
atomic arrangements and their shape changes in chemical processes. These shapes
are determined by two main components: the arrangements of atomic nuclei and the
arrangements of the electronic charge clouds, generating a formal molecular body.
Any chemical or biochemical process (reaction) is, in fact, a rearrangement of these
shapes. Hence, shape analysis of three-dimensional bodies of electron distributions is
of fundamental importance in systematic approaches towards actually designing new
molecules, novel drugs, and industrial materials. This realization has been a
motivating factor for the development of local convexity and relative convexity
analysis of molecular surfaces leading to the Shape Group Methods
{155-158,199,254], as well as for efficient numerical implementations of local
convexity analysis developed for large molecules [443].

Molecular shapes and shape changes determine chemical properties. Even
without knowing how a given shape feature leads to a particular chemical property,
if a correlation is found, then the mere presence of the shape feature can already be
used to suggest the corresponding chemical property. For the computer based design
of new molecules, drugs, and industrial materials, it is usually sufficient to know
what are the important shape features, and by combining these features in computer
designed molecular models, one is able to propose new molecular structures for
specific purposes.

In multiple shape comparisons, efficient, algorithmic shape analysis methods
are of particular importance. The shape group and shape code methods provide a
framework for such analysis; however, the input information they require, such as
the 3D electron densities or electrostatic potentials often involve time consuming
calculations. This is the case for large molecules or molecular systems, important in
drug design and molecular engineering applications. Efficient calculation and
representation of these molecular functions is of special importance in such cases.

Dot representations of formal molecular surfaces are useful tools for the
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visualization of molecular shapes [87,177]. Most of these methods use either standard
atomic radii and fused sphere representations [86] or a few discrete density or
potential values for displaying a selection of isoproperty surfaces. It is advantageous
to augment these approaches with methods capable of a continuous variation of dot
representations of molecular contours, Such a technique is useful for modeling the
change of a MIDCO G(a) if the contour density value a continuously changes
from a high value to a value near zero.

Below we shall describe a technique proposed [43] for the generation of a
simple density scalable ("inflatabie") dot representation of MIDCO's.

The Fused Sphere Guided Homotopy method (FSGH) has been designed for
continuous transformations between dot representations of different isodensity
surfaces of a given molecule [43]. This is a simple and rather fast computational
method for representing families of isodensity contour surfaces of large molecules,
for any desired density value. The FSGH method gives a faithful approximation for
a whole family of MIDCQO surfaces. The main idea of the method is based on the
observation that actual MIDCO's of small (e.g., 0.002 a.n.) electron density values
are well approximated by fused sphere model surfaces using the customary values of
atomic Van der Waals (VDW) radii [86]. By selecting a quasi-uniform point
distribution on each sphere and by scaling the radii of the atomic spheres, a linear
charge density interpolation can be carried out between points obtained from one
another by the scaling. By repeating this interpolation for all such point- pairs for a
selected charge density value a, an easily computable dot representation of the
moelecular isodensity surface is obtained, approximating the MIDCO G(a) of the
corresponding density threshold value a. Since the scaling of the radii and the
interpolation correspond to homotopy transformations, whereas the interpolation of
isodensity surfaces is guided by the fused spheres, the technique is called the Fused
Sphere Guided Homotopy (FSGH) method [43].

Fortuitously, for most molecules, the MIDCO's G(a) of the chemically most
important small density threshold values a are those where the deviations are small
from the simple fused sphere model surfaces. The usual Van der Waals surfaces fall
within this range. For a molecule containing N nuclei, these VDWS's are obtained
as the envelope surfaces of N interpenetrating spheres

S$1.82,...,8Ns (7.1)

of suitably chosen radii

r,rn,...,N. (7.2)
The spheres are centered on the N atomic nuclei of position vectors
r;,ro, ..., N, (7.3)

respectively.
The close resemblance between such fused sphere models and MIDCO's is
valid not only for a specified density threshold value a, such as a = 0.002, but for
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Three families of
spheres and their
envelope surfaces
for H,O

Two MIDCO dot
representations
interpolated along
guiding lines

Figure 7.1 [Illustration of the principle of the Fused Spheres Guided Homotopy Method
(FSGH), applied for the generation of dot representations of density scalable MIDCQO surfaces for
the water molecule. Three families of atomic spheres (thin lines) and their envelope surfaces (heavy
lines) are shown in the upper part of the figure. In the lower part of the figure, the selected point sets
on the innermost family of spheres are connected by interpolating lines to the exposed points (black
dots) on the envelope surfaces of two enlarged families of spheres. Linear interpolation along the lines
for two selected density values leads to two families of white dots, generating approximations of two

MIDCO's (heavy lines in the lower figure).

a wide range of density threshold values. This can be exploited in generating point
sets for simple computer representations of MIDCO's, and for representing
transformations between such contour surfaces G(a) and G(a') if the density value
of the contour changes from a to a

An illustration of the principle of the Fused Spheres Guided Homotopy
Method (FSGH) for the generation of dot representations of density scalable
MIDCO surfaces is shown in Figure 7.1. The starting model of the FSGH dot
representations is the Van der Waals surface (VDWS). We assume that the location
of the center of each sphere from which the VDWS is generated is fixed, as given
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by Equation (7.3). A suitably small, common constant factor k < 1 is applied to
the radii of each sphere so that, with the new radii

pOi=kry, pO2=kry, ..., pON= kI, (7.4)
no two of the new spheres have common points. These new spheres, denoted as
S0, 80,5, ...,89, ..., SOy, (7.5)

are collectively referred to as the set of smallest spheres or the set of spheres of
serial index t=0, where t is indicated as a superscript.

Based on these spheres, n new sets of spheres are generated by applying a
series of increasing scaling factors ki, ko, ..., ki ..o, Ky,

l<ki<kr<...< kg<...<kp (7.6)
for the radii poj of Equation (7.4). The resulting envelope surfaces
Fi,F,...,F,...,Fy (7.7)

of these sets of spheres will approximate a sequence of MIDCO's G(a) of
decreasing density threshold values a.

However, this sequence of envelope surfaces of gradually enlarged fused
spheres will not, in general, approximate the MIDCO's adequately for some
practical applications; in particular, at the seams of interpenetrating spheres this
representation does not follow the corresponding MIDCO G(a) well.

A different approximation is obtained by an interpolation method that uses
selected points on subsequent spherical surfaces to define lines along which
one-dimensional interpolations are carried out for charge density. For this purpose,
on each sphere SO; of the set t=0, a set of m points,

PO, = {r0;1, r0, .. ., rOn} (7.8)

is chosen from a quasi-uniform distribution along the spherical surface. The
interpolation uses the point images that the enlargement process of the spheres
creates from these points {r0;y, 03, ..., r0;,} selected on the set of smallest

spheres. That is, in each step t of the enlargement process by the scaling factor
ki, a new set of points

PY = {r%, rlig, . . ., rlim} (7.9)
is generated on each new sphere
SY, Sty, ..., 8Y, ..., SiN. (7.10)

These points are images the enlargement (scaling by k{) creates from the surface
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points of sets PO; = {r0;, r0, ..., r0;} on the smallest spheres. We refer to the
members of set PY; as the selected points on the t-th set of spheres.
Let us denote by

Pt]:-:{l‘tl,l‘tz,,..,l‘tu,...,l'tw} (7.11)

the set of all those v; surface points of all Pt; sets in step t which fall on the
envelope surface F¢. This is the subset of all the selected points on all the spheres of
step t that are not buried inside F,. For the initial disjoint spheres of family t=0,
all the selected points are on the surface of the envelope surface Fg of the spheres:
this envelope is, in fact, the collection of the spheres. Hence, POg is the union of all
PO; sets.

The point pair rt; and rt+1ij on two subsequent envelope surfaces F; and
Fiy1, respectively, is referred to as a pair by enlargement, if point r‘“ij is the
image of point r%; when the sphere SY is scaled by the factor ke / k.

In order to generate a scheme for density interpolation, the points occurring in
subsequent sets Ptp and Pt*1g on subsequent envelope contours F, and Fii1s
respectively, are interconnected according to the following criterion:

Line generation criterion. Each point rt+l, of set P%lg of envelope
Fi41 is connected by a straight line segment s(rt, , rt+!,) to its unique pair by
enlargement, rt,, if the point rt, falls on the previous envelope surface F.
Otherwise, each remaining point of set P'p or set Pt+lp on either envelope
surface, not yet assigned a pair by the above condition, is connected by a straight
line segment s(rt, , rt*l,) tothe nearest point of the point set Pt+Ig or Pty ,
respectively, of the other envelope surface.

If the above rule is applied to the entire sequence of envelope surfaces, then
one obtains a collection of at most (n x m x N) line segments generating a set of
piecewise linear broken lines of approximately uniform distribution and
approximately perpendicular to the tangent plane of each local spherical domain
where the lines cross the envelope surfaces. Some of these lines may merge and
possibly separate again as some of the selected points get buried and possibly
reappear in the enlargement process of the spheres.

Each of these lines is composed of straight line segments s(rt, , rt+1,),
connecting subsequent envelope surfaces. We assume that function values of the
electronic charge density p(r) are available at each rt; point of each envelope
surface Fy. One can use linear interpolation between the endpoints rt, and rt+l,
of each line segment s(rty , rt+1 ;) in order to find points with a desired electronic
charge density value a.

The points located by this procedure along the line segments generate a dot
representation of the electronic isodensity contour (MIDCO) surface G(a) for any
value a of the contour density, aslongas a, < a < apg, where a,, is the
maximum density value for points along the low density envelope F,, in the union
of all the Pn; sets, and ag is the minimum density value for points along the
high density envelope Fp in the union of all the PY; sets.
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The task is to locate all the points r(a) on each of the generated line segments
s(rt,, rt+1 ) that fulfill the following conditions:

r(a) e s(ri,, rt+l,), (7.12)
and
p(r(a)) = a. (7.13)

If such a point exists along the line segment s(rt, , rt+1 ), then it can be
located by linear interpolation. In practice, it is sufficient to attempt interpolations
for those line segments which fulfill either one of the following two conditions:

p(rty) < a < p(rt+lyy, (7.14)
or
p(rty) > a > p(rt+ly). (7.15)

The resulting set P(a) of all interpolated points r(a) can be regarded as a
dot representation of the MIDCO surface G(a), a representation useful in drug
design, molecular engineering, and some more general computer graphics
applications of molecular modeling. However, the above representation has some
further advantages: along each of the (m x N) lines a simple, analytic functional
form is available for the approximation of electronic density. This allows one to
explicitly construct a relatively simple function for an approximate representation of
the continuous deformations of MIDCO surfaces G(a), regarded as functions of
the contour density value a. Such continuous deformations, homotopies, are
advantageous in the analysis of the dependence of molecular shape properties on
electronic charge density. The name of the method, Fused Spheres Guided Homotopy
Method (FSGH), reflects the fact that the homotopy transformation is obtained by
following the changes in envelope surfaces of families of fused spheres of gradually
increasing sizes [43].

Note that the same FSGH technique is applicable to many other molecular
functions which can be approximated by contour surfaces not drastically different
from a fused sphere VDWS. This condition is not in general valid for electrostatic
potentials since MEP surfaces may show even sign changes in various regions of
the space. However, the method is applicable for local regions of the electrostatic
potential (e.g., one may apply the FSGH technique separately for some positive
and negative domains).

The FSGH representations provide a practical tool for the implementation of
a variety of techniques suggested for molecular shape analysis. In particular, the
FSGH method is applicable to approximate the entire charge density clouds and to
generate the complete topological shape codes for large molecules, using
semi-empirical or empirical charge density functions, even if for such large systems
direct, high quality quantum chemical electron density calculations are not feasible.
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The related recent development of Density Scalable Atomic Spheres, DSAS
[255] allows one to build VDWS-like fused sphere approximations of MIDCO's
for any density threshold value a (with the exception of very high densities such as
those in the immediate vicinity of the nuclei). The basis of this technique is a family
of scaling functions [255] developed for generating radii ra(a) of formal atomic
spheres along which the electronic density of atom A is any selected constant value
a, within a chemically important range of electronic densities. These "density
scalable" radius functions ra(a) have been determined [255] for all the atoms A
commonly encountered in molecular modeling problems.

The technique of density scalable atomic spheres provides an inexpensive
approximation for MIDCO's of large molecules, such as those studied in typical
drug design and molecular engineering problems, if direct quantum chemical density
calculations are not feasible. Furthermore, the density scalable radii also serve as
natural starting points for the construction of the families of spheres required for the
FSGH technique described above.

Isopotential contours of the composite nuclear potentials (NUPCO's, see
Chapter 4), provide an inexpensive, approximate shape representation that can be
computed easily even for very large molecules. Although NUPCO's only
approximate the MIDCO's of molecules, the family of NUPCO's of a molecule
describes an important molecular property that has a major effect on the actual
molecular shape. Consequently, NUPCO's can be used for direct comparisons
between molecules, and similar NUPCO's are likely to be associated with similar
molecular shapes. All the shape analysis techniques originally developed for
MIDCO's are equally applicable to NUPCO's. The shape groups, the (a,b)
parameter maps [where a is the nuclear potential threshold of a NUPCO G(a)],
the shape matrices, shape codes, and the shape globe invariance maps of NUPCO's
of molecules can serve as inexpensive methods for the detection and evaluation of a
particular aspect of molecular similarity.

7.4 A Summary of the Main Components of the QShAR Approach

The QShAR (Quantitative Shape-Activity Relations) method, combined with the
integrated main and side effect modeling of bioactive molecules, forms the
conceptual basis of the approaches described in this chapter. The density scalable
FSGH method for a simple representation of molecular bodies, in combination with
the Shape Group Method and various other shape code approaches for quantitative
shape analysis, as well as the multiple shape ranking methods for integrated main and
side effect analysis, are the components of a computational implementation of the
basic concepts.

The resulting framework is a computer modeling approach for a systematic
treatment of multiple biochemical effects in drug design, herbicide, fungicide, and
pesticide design, preventive environmental toxicology, and shape-driven molecular
engineering. These methods can serve as tools in the construction of new
supramolecular materials with prescribed shape-dependent chemical and biochemical
properties.
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The list below is a brief summary of the basic theoretical and the main
methodological components of the QShAR approach.

1. The GSTE Principle: Geometrical Similarity as Topological Equivalence
is a general principle for similarity analysis [108].

2. The method of (P,W)-similarity assessment [108] is a general scheme for
the quantification of molecular similarity in terms of shape representations
P (e.g., electronic charge isodensity surface) and shape descriptor W
(e.g., molecular shape groups).

3. SGM: the Shape Group Methods [155-158,199]. The original shape groups
are the homology groups of molecular contour surfaces, truncated
according to local curvature criteria or according to ranges of values of
other molecular functions (e.g., electrostatic potential) mapped on an
isodensity contour (MIDCO) surface. The shape groups are the basic tools
for converting 3D shape information, through a topological filter, to
numerical shape codes {43,109,196,351].

4. Shape codes [43,109,196,351,408]. The simplest topological shape codes
derived from the shape group approach are the (a,b) parameter maps,
where a is the isodensity contour value and b is a reference curvature
against which the molecular contour surface is compared. Alternative shape
codes and local shape codes are derived from shape matrices and the
Density Domain Approach to functional groups [262], as well as from
Shape Globe Invariance Maps (SGIM).

5. Dynamic shape description of nonrigid molecules [107,158,197,199,408] is
accomplished by the calculation of shape code preserving conformational
domains of flexible molecules, leading to Dynamic Shape Codes. Similar
dynamic shape codes are obtained from Shape Globe Invariance Maps
(SGIM) for global shape analysis: this method is applicable for a complete
mapping of all topologically different views of a molecule enclosed within
a sphere, while moving the observer along the sphere. Shape Globe
Invariance Maps (SGIM) are applicable for nonvisual characterization of
dynamic shape properties of protein folding.

6. Resolution Based Similarity Measures (RBSM). These methods are based
on evaluating the level of resolution required to distinguish molecules; the
higher the required level of resolution, the more similar are the molecules
[240,243, see also 54,55].

7. The FSGH method (Fused Sphere Guided Homotopy method) [43]. This
method has been designed for the construction of approximate,
density scalable ("inflatable") isodensity contour surfaces and their dot
representations (i.e., for continuous transformations between different
isodensity surfaces of a given molecule).

8. Density Scalable Atomic Sphere (DSAS) surfaces [255]. This technique
generates radii for atomic spheres for any desired electron density at the
surface. The method is used for inexpensive representations of MIDCO's
of large molecules, in combination with the Fused Sphere Guided
Homotopy method (FSGH) [43].
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10.

11.

The integrated main effect and multiple side-effect analysis by multiple
shape ranking of bioactive molecules, based on the density scalable FSGH
and Shape Group Methods, are suitable for shape analysis of large
molecules.

Multiple shape ranking of protein structures, based on local FSGH analysis
of active sites, is combined with global shape analysis of folding patterns
using a version of the SGIM (Shape Globe Invariance Map) method. This
latter method generates a map of all topologically distinguishable views of
the folded chain, represented by a space curve. The spherical map, now
analogous to a molecular contour surface, can also be analyzed by the
Shape Group Method, hence a common methodology can be applied for
both problems.

Isopotential contours of the composite nuclear potentials (NUPCO's),
provide an inexpensive approximate shape representation that can be
computed easily even for very large molecules.



CHAPTER
8

SPECIAL TOPICS:
SYMMETRY AND APPROXIMATE SYMMETRY,
SYMMETRY DEFICIENCY MEASURES,
SYNTOPY, AND SYMMORPHY

8.1 Symmetry and Imperfect Symmetry

8.2 The Quantification of Approximate Symmetry:
Symmetry Deficiency Measures

8.3 Syntopy and Syntopy Groups

8.4 Symmorphy and Symmorphy Groups

This chapter presents a brief review of some special aspects of the topological theory
of molecular shape, with emphasis on various treatments of approximate symmetry.
If a molecular arrangement has some nontrivial symmetry, then this symmetry can
be exploited for the simplification of the study and prediction of many physical and
chemical properties of the molecule. In many cases, however, the molecular
arrangements may deviate from their ideal symmetry, yet many molecular
properties remain similar to those present in the symmetric arrangement.
Approximate symmetry, symmetry deficiency, the methods for their quantification,
and various algebraic treatments of approximate symmetries preserving some of the
features of the standard group theoretical description of point symmetry, are the
subject of this chapter.

8.1 Symmetry and Imperfect Symmetry

Consider two molecular arrangements, K| and Kj, both of C» nuclear point
symmetry, and both derived from the same equilibrium molecular structure Ky of
Cay point symmetry. Let us assume that arrangement K; differs only slightly
from Kgp, whereas K; is very different from Kg. Furthermore, we assume that it
takes a large distortion of Kz to convert it into any arrangement K that has Csy,,

188
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point symmetry. Intuitively, one may regard K; of C, symmetry as having
"almost” Cj3, point symmetry, whereas Kj, also of Cy symmetry, has little
resemblance to any arrangement of Cj3, peint symmetry. The two arrangements,
nuclear configurations K; and K> of the same point symmetry, show different
levels of symmetry resemblance to Cj, point symmetry, in other words, they
exhibit different levels of imperfect Cp, symmetry.

A rather simple measure of such symmetry imperfection has been defined
[345] as the minimum distortion required for converting a given molecular
arrangement into one with the specified point symmetry, where the distortion is
measured by the distance in M space, a metric nuclear configuration space [106].
Here we shall use the configuration space formalism of the original approach [345],
where d represents the distance in the metric configuration space M [106]. As
discussed in Chapter 2, if K; and K, are two conformations of a molecule, or
two arrangements of two different molecules with the same stoichiometry, then their
M space distance d(Kip, K;) is a well-defined numerical measure for the degree of
their dissimilarity. As described in [345], using the above distance as a dissimilarity
measure [106], one can answer questions of the following type [345]:

1. how different is an actual molecular arrangement K; from another

arrangement Kj ?

2. how much is the deviation of an actual configuration K; from a family F

of molecular arrangements?

For question 1 the distance d(K;, K;) provides the answer, whereas for
questions of type 2 the following minimum distance

d(Ki, F) = min { d(K{, K3): K3 € F} (8.1)

can be used to define an appropriate measure of deviation [345].

In our actual problem, the family F of special arrangements is the set G of
all molecular arrangements K of the given stoichiometry with the specified point
symmetry group g. The distance

d(Ki, G)= min { d(Ky, K3): K2 e G} (8.2)

defines a mathematically proper measure of the deviation of configuration K| from
symmetry G. Consequently, d(K|,G) is a well-defined symmetry deficiency
measure.

In another application of the same method, the quantity

d(Kj, A)= min { d(K|, K3): K2 e A} (8.3)

is a measure of chirality, where family A contains all achiral molecular
arrangements K of the given stoichiometry.

Note that the distance function d of the nuclear configuration space M
involves a mass-scaling of nuclear coordinates [106], hence d incorporates a
"natural rescaling" of differences between various nuclear arrangements. Consider
two different distortions of a given molecular arrangement K, one involving the
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displacement of a light nucleus, the other a displacement of a heavy nucleus. For
equal displacements in the ordinary 3D space, the displacement of the heavy
nucleus is more significant. Due to the mass-scaling of coordinates, the displacement
of the heavy nucleus also leads to a greater d distance in the nuclear configuration
space M {106].

Imperfect symmetry can be viewed in the broader context of molecular
distortions. In this book the emphasis is on descriptions and measures based on
topological arguments [54,55,106,108,158,240,243,247,248,345,444,445], or on the
related concepts of syntopy [252,394,395] and symmorphy [43,108] discussed
briefly in subsequent parts of this chapter. For a variety of alternative approaches
and important additional insight, the reader may consult references [58,446-449].

8.2 The Quantification of Approximate Symmetry:
Symmetry Deficiency Measures

Chirality can be regarded as the lack of certain symmetry elements, and chirality
measures are in fact measures of symmetry deficiency. In the case of
three-dimensional chirality, the lacking point symmetry elements are reflection
planes ¢ and rotation-reflections Sjy of even indices. Note, however, that the
lacking symmetry elements can be of different nature in different dimensions, and at
the end of this section, a proof will be given for an elementary result [240] on the
dimension-dependence of chirality.

By analogy with chirality and various chirality measures, more general
symmetry deficiencies and various measures for such symmetry deficiencies can be
defined with reference to an arbitrary collection of point symmetry elements. We
shall discuss in some detail only the three-dimensional cases of symmetry
deficiencies, however, as it has been pointed out in reference [240], all the concepts,
definitions, and procedures listed have straightforward generalizations for any finite
dimension n.

Following the approach of the original description [240], we shall first
consider chirality. For a chiral object T, the largest achiral object that fits within
T, as well as the smallest achiral object that contains T are of special importance.
We shall compare the volumes v of these objects, and use these comparisons to
assess the degree of the deviation of the object T from achirality.

The above is a simple idea; however, as the following example shows, some
caution is in order. Consider two solid balls of the same radius, where one ball has a
spiral line issued from its surface. The first object is achiral whereas the second one
is chiral, and the first object is the largest achiral object that fits within the second
one. Clearly, the two objects have the same volume, hence comparing volumes is not
appropriate for assessing the degree of chirality (i.e., the degree of "achirality
deficiency") of the second object. This problem is caused by the presence of the
infinitely thin spiral line of zero volume. In order to avoid such pathological cases,
we shall consider only objects T that are "nowhere infinitely thin" and have finite,
nonzero volume [240].

Following the original framework described in detail in reference [240], we



SPECIAL TOPICS 191

list some of the relevant concepts and definitions below. The objects defined lend
themselves naturally for vartous measures of chirality and in a more general sense,
for measures of more general types of symmetry deficiency.

Set M' is a maximal achiral subset of T if M' is achiral, M'CT and if no
achiral set M" exists such that M'CM", M # M", and M"C T. Note that such
a subset M' is not necessarily unique for a given set T.

Set M is a maximal volume achiral subset of T if M is achiral, MCT
and if for all maximal achiral subsets M' of T, v(M') £ v(M). Note that, for a
given set T, such a subset M is not necessarily unique either, however, the
volume v(M) is a unique number for each T.

Set N' is a minimal achiral superset of T if N' is achiral, TCN' and if
no achiral set N" exists such that N"C N', N'# N", and TCN". Note that such
a subset N' is not necessarily unique for a given set T.

Set N is a minimal volume achiral superser of T if N is achiral, TCN
and for all minimal achiral supersets N' of T, v(N) < v(N'). For a given set T,
such a set N is not necessarily unique either, however, the volume v(N) is a
unique number for each T.

If T is achiral then both M and N are unique and M=N=T.

The expressions

Am(T) =1 - vIM)/v(T) (8.4)
and
An(D =1 - v(T)/v(N) (8.5)

define two chirality measures, where the first measure, Xpm(T). agrees with the
measure obtained using the maximum overlap criterion between mirror images
[46,48-53,58,242].

The actual determination of a set M for some chiral set T and the calculation
of the volume v(T) are usually rather difficult problems (see some relevant
comments in references [51-53,58,240,242]), and the same applies for superset N.
However, within a RBSM framework, the analogous chirality measures given in
terms of a discretization procedure using polycubes (or lattice animals in 2D) [240]
do not require the explicit determination of a maximal volume (area) achiral subset
M and the calculation of its exact volume (or area) v(M).

Recalling that chirality is just a special case of symmetry deficiency, the above
concepts and ideas are applicable for more general symmetry deficiencies. Consider
a family

R=(R{,Ra, ..., Ry) (8.6)

of point symmetry elements. We say that set U is an R-ser if U has all point
symmetry elements of family R. Set V is an R-deficient set if V has none of
the point symmetry elements of family R. Note, however, that it takes only
infinitesima! distortions to lose a given point symmetry element, hence, unless
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further restrictions are applied, the volume difference between a set of a specified
point symmetry and another that does not have this symmetry can be infinitesimal.
Consequently, R-deficient subsets and R-deficient supersets of an R-set can be
almost identical. Nevertheless, the definitions involving symmetry deficient sets lead
to nontrivial results if the sets considered can differ only by fixed, positive volume
increments, such as is the case for polycubes. The actual symmetry deficiencies of
more general continuum sets, such as formal molecular bodies enclosed by MIDCO
surfaces, are defined in terms of deviations from maximal R-subsets and minimal
R-supersets.

Set M' is a maximal R-subset of T if M' isan R-set, M'C T and if no
R-set M" exists such that MCM", M' = M", and M"CT. Note that M' is
not necessarily unique for a given set T.

Set M is a maximal volume R-subset of T if M isan R-set, MCT, and
if for all maximal R-subsets M' of T, v(M') < v(M). Set M is not necessarily
unique for a given set T; however, the volume v(M) is already a unique number
for each T.

Set N' is a minimal R-superset of T if N' isan R-set, TCN', and if no
R-set N" exists such that N"CN', N'# N", and TC N". Set N' is not
necessarily unique for a given set T.

Set N isa minimal volume R-superset of T if N isan R-set, TCN, and
if for all minimal R-supersets N' of T, v(N) < v(N'). A set N is not
necessarily unique for a given set T; however, the volume v(N) is a unique
number for each T.

If T isan R-set then both M and N are uniqueand M=N=T,

Set M' is a maximal R-deficient subset of T if M' is an R-deficient set,
M'C T, and if no R-deficient set M" exists such that M'C M", M' =z M", and
M"C T. Set M' is not necessarily unique for a given set T.

Set M is a maximal volume R-deficient subset of T if M is an
R-deficient set, MCT, and if for all maximal R-deficient subsets M' of T, the
relation v(M')} € v(M) holds. Set M is not necessarily unique for a given set T;
however, the volume v(M) is a unique number for each T.

Set N' is a minimal R-deficient superset of T if N' is an R-deficient set,
TCN', and if no R-deficient set N" exists such that N"'C N', N'# N", and
TCN". Set N' is not necessarily unique for a given set T.

Set N is a minimal volume R-deficient superset of T if N is an
R-deficient set, TC N, and if for all minimal R-deficient supersets N' of T, the
relation v(N) € v(N") holds. Set N is not necessarily unique for a given set T;
however, the volume v(N) is a unique number for each T,

If T is an R-deficient set then both M and N are unique and M =N =T.

If M is a maximal volume R-subset of T, and N is a minimal volume
R-superset of T, then the expressions

SRM(T) = 1 - v(M)/v(T) (8.7)

and
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SR.N(T) =1 - W(TH/V(N) (8.8)

define two R-deficiency measures, the internal R-deficiency measure Sg pm(T),
and the external R-deficiency measure Ogr N(T), respectively. Their average
defines the R-deficiency measure

Or,M(T) = (Br M(T) + g N(T)) / 2. (8.9

For any R-subset M’', R-superset N', maximal volume R-subset M, and
minimal volume R-superset N of any set T the relations

v(M') = v(N") (8.10)
and

v(N) - v(M) < v(N') - v(M") (8.11)
hold.

Evidently, if the family R contains a symmetry element of reflection ¢ or
one of the rotation-reflections Sk, then the R-sets are achiral sets. For any set T
(chiral or achiral), the various extremal achiral sets can be generated by special
R-sets which are extremal over all choices of families R containing at least one of
the above point symmetry elements of 6 or Spk. Following the notation of
reference [240], subscripts ¢ and R are used to distinguish achiral sets and

R-sets.
If Mg, Mr, Ng, and Nr are maximal volume achiral subset, maximal

volume R-subset, minimal volume achiral superset, and minimal volume
R-superset of a set T, respectively, then

viMg) = maxg { v(IMR) : MRC T, 6 R or Sk e R for k>0) (8.12)
and
v{iNg) =ming { v(NR) : TC NR, 6 € R or Syke R for k>0}. (8.13)

All the above concepts and considerations of symmetry deficiency and chirality
have straightforward generalizations for any finite dimension n. Note, however,
that the lack of different families of symmetry elements causes chirality in different
dimensions, and chirality is obviously dimension dependent. If a given object is
achiral when embedded in a space of n-dimensions, it may be chiral if embedded in
a space of some different dimensions. Below we shall describe a related elementary
result in more precise terms.

Following the proof given in reference [240], we shall use the standard
notations: EnP+! denotes an (n+1)-dimensional Euclidean space and EnP is an
n-dimensional subspace of ER+1l. If we refer to the n-dimensional chirality of an
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object A, then we consider its embedding in an Euclidean space En and reflections
as well as all motions are restricted to this space.
As it has been shown in reference [240], the following holds:

Any object A thatis chiral in n-dimensions is achiral in (n+))-dimensions
and in any higher dimensions. Chirality may occur only in the lowest dimension
where A is embeddable.

Proof: The object A is chiral in n-dimensions (i.e., when embedded in space En).
Let us denote the mirror image of A by A% and the corresponding mirror image
of point pe A by p®. By translations and rotation, we can always arrange A and
A% in En so that for all their point pairs p and p® their coordinates fulfill the
relations

P%1 = -pi (8.14)
and
pi=pi (i=23,.., n). (8.15)

For this arrangement, the (n-1)-dimensional reflection hyperplane En-! in En is
defined by

x; =0 (8.16)

where x; is the first coordinate of a point x € En.

Consider now the same arrangement of A and A% embedded in En+l1, by
regarding E" as a subspace of Entl. A two-dimensional rotation in En+! is
defined by its (n-1)-dimensional axis and by the angle o of rotation in the
remaining two dimensions. [Note that in a k-dimensional space, the axis of rotation
is (k-2)-dimensional.] Choose the rotation axis in En+1 as the (n-1)-dimensional
subset defined as the reflection hyperplane En-1 of condition x; = ¢ in En. With
respect to this axis, a rotation of angle o = ® in the two-dimensional plane spanned
by coordinates (x|, Xp41) superimposes A on A¢ in (n+1)-dimensions.
Consequently, the object A is achiral in (n+1)-dimensions (i.e., when embedded
in space En+1). Furthermore, the superimposition of mirror images performed in
En+l is a possible motion in any Euclidean space Entk | k>1, of which En+l jsa
subspace, hence A is achiral in any higher dimensions. Consequently, chirality may
occur only in the lowest dimension where A is embeddable. Q.E.D.

8.3 Syntopy and Syntopy Groups

As discussed in Section 6.7, fuzzy sets are tools for treating classification problems
with imprecisely defined classification criteria [382-385]. We recall that for an
ordinary set A, a point p either does or does not belong to the set A. This can be



SPECIAL TOPICS 195

restated in terms of membership functions: the membership function of the point p
in set A is either one or zero. For points of ordinary sets, "belonging” is a discrete
concept, resulting in a binary membership function. In fuzzy set theory, the concept
of belonging is further qualified, resulting in the continuous concept of the "grade of
belonging"” to a given fuzzy set; the fuzzy membership function of a point can take
any value from the [0,1] interval.

Imperfect symmetry can be regarded as fuzzy symmetry. The theory of fuzzy
sets has found applications in many fields of engineering and natural sciences (see,
e.g., references [386-393]), in particular, for the description of fuzzy molecular
arrangements [103,106,251]. It is natural to consider fuzzy sets for a continuous
extension of the discrete point symmetry concept to quasi-symmetric molecular
structures [252,394,395].

There is strong motivation for such a generalization of symmetry. A nuclear
configuration K of a molecular conformation either has or does not have a given
point symmetry. This feature of symmetry is in contrast with most other molecular
properties which vary continuously with the nuclear configuration. The discrete
nature of the presence or absence of symmetry elements hinders the application of
point group symmetry methods for general molecular arrangements. However, the
discrete concept of point symmetry can be converted into a continuous one and
extended to cover cases of "almost" symmetric or quasi-symmetric molecular
structures and arrangements. In such a conversion some of the advantages of the
group theoretical treatment of truly symmetric structures can be retained for most
(in the extreme case for all) possible molecular arrangements.

One framework for this conversion is the syatopy group approach
[252,394,395], where the sharply defined families of nuclear arrangements having a
specified point symmetry are replaced by fuzzy sets (syntopy sets}) of nuclear
arrangements having some degree of symmetry resemblance to arrangements of
perfect point symmetries. This replacement is carried out within a formalism that
provides the syntopy sets with a group theoretical characterization, retaining some of
the group theoretical, algebraic relations among the peint symmetry operators of
arrangements of some precise symmetry. This approach leads to the characterization
of fuzzy syntopy sets by the syntopy groups [252,394,395]. In the syntopy model, the
various algebraic groups of symmetry operations of individual configurations K
are extended into larger groups. These groups are also provided with additional,
continuous features, as a result of the replacement of the binary membership
functions of ordinary sets with the continuous membership functions of the fuzzy
syntopy sets.

There have been two types of syntopy proposed, one based on energetic
[252,394], the other on purely geometric [395] resemblance of nuclear arrangements
to those of specific point symmetries.

The original syntopy concept was based on an energetic criterion and on the
formalism of fuzzy set theory, leading to energy-dependent syntopy groups of
quasi-symmetric, general nuclear arrangements [252,394]. The fuzzy membership
functions were defined for ail possible nuclear configurations, expressing their
"grade of belonging" to each possible ideal symmetry. These membership functions
are parametrized by a threshold for the energy cost of converting each nuclear
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configuration to structures of ideal symmetry. The parametrization allowed to
convert the syntopy model into the conventional point symmetry group model in a
continuous manner, indicating that syntopy is, indeed, a generalization of point
symmetry. Since the energy cost of a given geometric interconversion is, in general,
different for each potential energy surface, a different syntopy model is obtained for
each potential surface, that is, for each electronic state of the given stoichiometric
family of atoms.

In the second approach [395], a common syntopy model is derived for all
potential surfaces, that is, for all electronic states of all possible arrangements of the
given collection of atoms. This syntopy is the underlying syntopy for the given
stoichiometry, that is, the fundamental syntopy of the nuclear configuration space
M specified for the given stoichiometry. The fundamental syntopy is independent of
energetic considerations of individual potential surfaces, it does not depend on the
energy cost of interconversions. The fundamental syntopy is parametrized in terms
of a universal geometrical criterion that defines the fuzzy membership functions and
the syntopy groups. The fundamental syntopy model provides the connection among
all possible energy based syntopies generated by the various potential energy
surfaces of the given family of atomic nuclei, that is, of the given stoichiometry.

A fuzzy set generalization of nuclear point symmetry in terms of the syntopy
models is applicable to all nuclear arrangements. Using appropriate membership
functions [252,394,395], syntopy provides a measure of symmetry resemblance of
actual, general molecular arrangements to ideal, fully symmetric arrangements. The
approach takes into account the quantum mechanical, nonlocalized nature of nuclei.
The syntopy groups can be regarded as generalizations and continuous extensions of
ordinary point symmetry groups from a restricted family of symmetric nuclear
arrangements to all possible nuclear arrangements.

Within the syntopy model outlined above, the generalization of point symmetry
is achieved by considering the symmetry resemblance of actual molecular
arrangements to those of some ideal symmetry. In principle, any one of the
similarity measures and symmetry deficiency measures discussed in the previous
chapters is suitable to serve as parameter in the definition of fuzzy syntopy
membership functions, leading to further generalization of syntopy.

8.4 Symmorphy and Symmorphy Groups

Within the syntopy model, the essential algebraic structure of point symmetry
groups is retained (in fact, this structure is extended), and the elements of syntopy
groups are derived from ordinary point symmetry operators [252,394,395]. There
are, however, alternative approaches for the generalization of symmetry, where
fundamentally different algebraic structures are used.

One such approach, the symmorphy group approach [43,108], is based on the
extension of the family of point symmetry operators to a much richer family of
operations which preserve the general morphology of objects. (Note that the term
"symmorphy” is used in a different sense in the crystallography literature, with
reference to the symmorphic space groups of crystallography, also called semi-direct
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products or split extensions in mathematics, see, e.g., reference [450]. The
symmorphy model described in this chapter should not be confused with the
symmorphic space groups of crystallography.)

Point symmetry groups provide at least a partial characterization of molecular
shapes. This characterization can be improved considerably by extending the family
of point symmetry operators to a much larger family of continuous transformations.
Symmorphy is a particular extension of the point symmetry group concept of finite
point sets, such as a collection of atomic nuclei, to a complete algebraic shape
characterization of continua, such as a three-dimensional electron distribution of a
molecule.

First we shall return to the concept of symmetry, taking a special approach that
lends itself for generalization. Consider a fixed nuclear geometry K of a molecule,
and the collection of all possible planes, lines and points in the 3D space. These
planes define infinitely many reflections of the space onto itself, but only few, if any,
of these reflections are actual symmetry operations for the given configuration K:
those along planes that happen to be symmetry elements of the configuration.
Reflections of the nuclear configuration with respect to any other of the planes lead
to nuclear arrangements that are distinguishable from the original one (i.e., the
original and the reflected image are not exactly superimposed). The configuration K
provided a selection criterion for classifying all possible reflection planes: those
which leave the appearance of K invariant, and those which do not. Similarly,
among the infinitely many rotations about all the possible straight lines in the space,
by all possible angles, only few, if any, are actual symmetry operations for the given
configuration. Among the infinitely many points of the space only one, if any, is a
point of inversion for this configuration K. All the reflections, all proper and
improper rotations and all inversions, with respect to all planes, lines and points of
the space, respectively, form a group G'. However, only a subgroup g'k of this
group G' is relevant to the actual configuration K; this subgroup g'k is the point
symmetry group of nuclear arrangement K. The generalization of symmetry to
symmorphy can be based on the following observation: [t is the configuration K
that selects these special reflections, rotations, and inversions from the set of
infinitely many such operations of the space. The condition for selection is the
indistinguishability of the original and transformed configurations.

The above selection principle can be extended in two ways:

1. from the family of reflections, proper and improper rotations and
inversions to a family G of more general transformations: to the set of all
the possible homeomorphisms of the 3D space (i.e., to all continuous
assignments of the points of the space to the points of the space,
with continuous inverse transformations).

2. from a nuclear point distribution to more general 3D objects [e.g.,
to molecular charge density functions p(r)].

Among the transformations in family G one finds all the symmetry
operations, but also all reflections in curved mirrors, nonlinear stretchings, and all
continuous distortions of the space. Evidently, all possible homeomorphisms of the
3D space form a group G. Any two such transformations applied consecutively
correspond to one such transformation (closure property); the unit element is the
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identity transformation; inverse exists for each transformation; and associativity is
also guaranteed.

With reference to a given 3D object such as a molecular charge density
function p(r), one can take a selection from the transformations in family G,
based on the same general condition used above in the case of point symmetry
operations: indistinguishability of the original and transformed objects.

We make one concession: only the original object is required to have direct
physical meaning. We assume that all mathematically possible transformations of the
space can be performed, and that the original and transformed spaces and the
original and transformed objects can be compared. For the example of a 3D
molecular charge density function p(r), all those transformations t of family G
are selected for which

p(tr) = p(r) (8.17)

for every point r of the 3D space.

If the density function p(r) has some symmetry element, then the
corresponding symmetry operation t is among the selected transformations.
However, there are many more homeomorphic transformations t of the 3D
space that leave the appearance of molecular charge density function p(r)
indistinguishable from the original. For example, all homeomorphic distortions t
of the space that assign the points of each MIDCO G(a) to some points of the same
MIDCO  will leave the appearance of the density function p(r) unchanged. These
transformations are special with respect to the charge density p(r); itis, in fact, the
"object” p(r) that selects these transformations from the very large family G of
all possible homeomorphic transformations of the 3D space.

These special transtormations are the symmorphy transformations [43,108] of
the given "object”, for example, of the electronic charge density function p(r). The
terminology is justified by the analogy with symmetry: in symmetry the metric
properties are preserved, in symmorphy the morphology, the appearance of shape,
is preserved.

In symmorphy transformations the shape of the object is invariant: in our
example, the shape of the continuous charge density p(r) remains the same.
Nevertheless, the metric properties, such as the distance between two points may
change.

A simple example, taken from reference [108], illustrates this point. Assume
that the object undergoing a symmorphy transformation has a circular cross-section
of radius equal to 1, where the circle is parametrized by an angle variable o,
taken from the interval 0 < o < 27. If a selected transformation t of the space
has the effect of leaving all points of this circle on the same circle, but shifting points
along the circle in a nonuniform manner, then the appearance of the circle will not
change. For example, this is the case if t transforms the parameter ¢ into the
angle variable (3, where

B = 2nsin2(o/4). (8.18)
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If the angle variable « changes monotonically from 0 to 27 then the new,
transformed angie variable 3 also changes monotonically from 0 to 2, but ata
rate that is slower in some and faster in some other subintervals, when compared to
the rate of change of o. In this transformation t the shape remains the same, a
circle, but the metric properties do change. The distance between two points may
change as a result of the transformation.

For example, the distance of 0.517638... between the pair of points
characterized by

o =20,
and
o' =xr/6 =0.523599... ,

respectively, will change to the distance of 0.106996... of their transformed
counterparts, characterized by the new angle values

B = 2rsin2(a/4) = 0,
and
B' = 2nsin2(a'/4) = 2rsin2(n/24) = 0.1070471...,

respectively.

The family of all symmorphy transformations of the given object p(r) form
a subgroup g, of the group G of all homeomorphic transformations of the 3D
space. This subgroup g, s, in fact, defined by the shape properties of the 3D
object, and it provides a complete characterization of its shape, in our case, the shape
of the molecular charge density function p(r).

However, the group g, is much too complicated for practical purposes of
moiecular shape characterization. Fortunately, the behavior of transformations t
of family g, far away from the object p(r) is of little importance, and one can
introduce some simplifications. Let us assume that the 3D function considered
fe.g., an approximate electron density function p(r)], becomes identically zero
outside a sphere S of a sufficiently large radius. As long as two symmorphy
transformations t; and t; have the same effect within this sphere, the differences
between these transformations have no relevance to the shape of p(r), even if they
have different effects in some domains outside the sphere. All such transformations
t of equivalent effects within the relevant part of the 3D space can be collected into
equivalence classes. In the symmorphy approach to the analysis of molecular shape,
these classes are taken as the actual tools of shape characterization.

A more precise formulation of the above idea is given as follows. At every
point r where p(r)# 0, the effects of transformations t of family gp are
compared to the effects of a selected transformation t;. The effects of some
transformations t agree with the effects of the selected transformation ty. All
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transformations t for which

tr =tr (8.19)
for every point r such that

p(ry =0, (8.20)

belong to the same equivalence class T|. In general, there are infinitely many
transformations in each equivalence class T. Since the transformations in these
classes preserve the morphology of the object, for example, the morphology of the
charge density p(r), they are called the symmorphy classes T of the object p(r).

If two transformations t; and t, are related to each another as t is related
to t; in conditions (8.19) and (8.20), then t; and t, are said to be symmorphy
equivalent, or in short, symmorphic to one another with respect to the given object
p(r). Symmorphy equivalence is denoted by

t1 mp tp, (8.21)

and as the notation m, indicates, it is dependent on the object p(r). The
symmorphy relation mp is reflexive, symmetric, and transitive, hence it fulfills
the conditions for an equivalence relation.

The family of all symmorphy equivalence classes of a given object p(r)
form the symmorphy group hy of the object p(r). This group hy is formally
defined [43,108] as the quotient group of group gp with respect to the symmorphy
equivalence mg. The product of two symmorphy classes T; and Ty in the
symmorphy group hg, is defined as the class Tj,

Tz =T+ T, (8.22)

which contains all the products of form tjt, of any two transformations t; and
to from classes T and Tp, respectively.

The symmorphy groups are generalizations of the point symmetry groups.
This generalization is twofold: on the one hand, from discrete point sets to continua
of general shapes that may show no symmetry properties at all and, on the other
hand, from the algebraic structure of linear point symmetry operations to an
algebraic structure of a much richer family of homeomorphisms of the 3D space,
selected by the shape of the given object. The symmorphy group hp of a continuum
object such as the electronic charge density p(r) provides a complete shape
characterization of the object p(r).

Most symmorphy groups hj are rather complicated and their direct use for
molecular shape characterization and shape similarity analysis is not a trivial task.
Some simplifications are possible using a technique based on the Brouwer fixed
point theorem, as described in reference [43].

Another simplification of more technical nature [108) is obtained using the
FSGH methed, outlined in Chapter 7. The electronic charge density function p(r)
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is represented by a finite family of points, approximately uniformly distributed
along a sequence of MIDCO's. The set of selected points along a MIDCO G(a) is
denoted by P(a) and the entire 3D electronic density p(r) is represented by the
collection of point sets P(aj), i=1,2,...k, where each P(aj) set represents a G(aj)
MIDCO for some selected a; value. The actual density function p(r) is replaced
by the resulting collection of a finite number of points as the object defining the
symmorphy transformations. If symmorphy equivalence and symmorphy groups are
restricted to a finite point set, then the resulting algebraic structure is considerably
simpler than that of the 3D continuum of the full charge density function p(r).
The fate of points of the space that are not included in the selection is immaterial
during symmorphy transformations, since the selected points can transform only into
one another. As it has been pointed out in [108], for such finite point sets the
symmorphy group is isomorphic with a permutation group of those permutations as
elements which interchange selected points that belong to the same MIDCQ. This
symmorphy group is a finite group that provides a full description of the shape of
the selected point set, and a faithful description of the variation of the charge density
from the P(a;j) point set of one MIDCO G(aj) to that of another.



CLOSING REMARKS

The main goal of this book is to convince the reader that molecular shape is
accessible to rigorous study, and that much can be learned from such analysis.
However, molecular shape is just one special aspect of shape in chemistry. The
concept of shape is universal and it is my hope that some of the ideas and methods
presented in this book will find applications not only in molecular shape analysis but
in a broader chemical context, perhaps beyond chemistry and perhaps beyond
natural sciences. Within the sciences, shape is a powerful interdisciplinary subject, as
witnessed by the rich variety of applications described in Forma, the official journal
of The Society for Science on Form [451]. Seme of the approaches originally
developed for shape analysis can lead to unexpected interrelations between symmetry
and energy [452], and to conjectures and open problems in mathematical chemistry
[453]. Shape is useful, and shape is beautiful. Felix Klein, the mathematician of The
Erlangen Program fame, was intrigued by the connections between shape and
beauty: he drew all the lines of parabolic points (in our terminology, the boundaries
of Du domains of ordinary convexity} on the surfaces of sculptures [454], and
tried to find regularities in order to explain the esthetically pleasing aspects of shape.
One of the sculptures he analyzed, the bust of the Apollo of Belvedere with lines of
parabolic points marked, still can be found in the Institute of Mathematics of the
Gottingen University. Klein did not publish his thoughts and apparently gave up the
idea, but his study is referred to in a work by no lesser mathematicians than D.
Hilbert and S. Cohn-Vossen [454]. Whether mathematics will ever be able to grasp
the essence of beauty or not, the concept of shape is one of the most fundamental
connections between the sciences and arts. Shape is everywhere.
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fixed points, 200

Fourier synthesis, 84
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FSGH, see Fused Sphere Guided Homotopy
Method.

functional group range, 47
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Fused Sphere Guided Homotopy Method
(FSGH), 180, 186, 200

fused sphere surfaces, 83, 89, 124, 180, 186

fuzzy body, 3, 82, 139

fuzzy electronic distribution, 22, 82

fuzzy sets, 158, 194, 196

fuzzy similarity measures, 147, 155, 156, 158
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global shape property, 120
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grade of similarity, 150
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graph theory, 5

graphs, 117, 121

GSTE principle, 97, 140, 186

Hammond Postulate, 138
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Hartree-Fock method, 88
Hausdorff distance, 14
Heisenberg uncertainty relation, 21
helix, 93

heme, 93

herbicides, 8

Hessian matrix, 72, 100
homeomorphism, 51, 56, 141, 197
homology, 64

homology classes, 64

homology equivalence, 64
homology groups, 64
homotopical equivalence, 51
homotopy, 51

identity, 54

identity function, 54

image, 54

imperfect symmetry, 189

“in computo,” 8

in vitro, 8

in vivo, 8

incidence matrix, 65

incidence number, 61

inscribed animals, 151

inscribed polycubes, 154

integer homology theory, 61

integrated main and side effect analysis by shape
comparison, 178, 187

interior filling animals, 15, 149, 151

interior filling polycubes, 15, 154

internal configuration, 24

internal coordinates, 25, 109

internal R-deficiency measure, 193

interpenetrating molecular surfaces, 91

intrinsic shape, 12

invariance domains, 116

inverse image, 54

isomerism, 2

iterated similarity, 144

Jones polynomial, 15, 76, 131
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knot invariants, 75
knot polynomials, 15
knot theory, 12, 73, 121, 131

A-Cro repressor protein, 95, 128
large scale chirality of proteins, 95
Last-First Rule, 46

lattice animals, 14, 148
left-handed crossing, 74, 128

level set, 29

levels of complexity, 93
lexicographic order, 133

line generation criterion in FSGH, 183
links, 15

local canonical curvatures, 100
local convexity, 97

local incidence number, 62

local shape codes, 169

local shape complementarity, 171, 174
local shape complexity, 170

local similarity measures, 169
localized orbitals, 88

localized range, 47

locally concave domain, 99, 101
locally convex domain, 99, 101
locally saddle type domain, 99, 101

M space, 24, 109
macromolecular backbone, 94
macromolecular shape, 92
macroscopic analogies, 1
macroscopic bodies, 1, 10
mass-scaling, 189
maximal
achiral subset, 191
R-deficient subset, 192
R-subset, 192
maximal volume
achiral subset, 191
R-deficient subset maximum connected
component, 34
R-subset, 192
medicinal chemistry, 92
membership function, 158
MEP, see electrostatic potential.
MEPCO’s, see molecular electrostatic potential
contours.
methanol, 30-32
methyl group, 43
metric, 53
metric space, 53
metric topology, 56
MIDCO’s, see molecular isodensity contours.
minimal
achiral superset, 191
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R-deficient superset, 192
R-superset, 192
minimal envelope surfaces, 90
minimal surfaces, 90
minimal volume
achiral superset, 191
R-deficient superset, 192
R-superset, 192
minimum point, 27
mirror images, 13
molecular body, 3, 29, 30, 32, 82, 96
molecular deformations, 5, 12, 23, 27
molecular electrostatic potential contours
(MEPCQ’s), 83, 86
molecular engineering, 175
molecular graphics, 6
molecular identity, 23
molecular isodensity contours (MIDCQ’s), 2, 3,
28, 83, 96, 106, 180, 186, 201
molecular mechanics, 5
molecular modeling, 5, 32
Molecular Orbital Theory, 2
molecular range, 47
molecular recognition, 172, 174
molecular skeleton, 32
molecular surface, 7, 30, 82
Molecular Topology (MT), 5, 33
molecular vibrations, 17, 125
morphology invariance, 198
most delocalized orbitals, 88
MT, see Molecular Topoloty.
multigraphs, 127
myoglobin, 92, 133, 135

N-terminal, 94

nested MIDCO’s, 3, 30

nonbonded interactions, 84

nonconvex molecular bodies, 96

nondifferentiable surfaces, 90

nonvisual similarity analysis, 99, 139

nuclear configuration, 7, 22, 24, 188

nuclear configuration space M, 24, 109

nuclear distribution, 22

nuclear “position,” 22

nuclear potential contours (NUPCQO’s), 86, 185,
187

numerical shape codes, 118

NUPCO’s, see nuclear potential contours.

open cell, 58

open cover, 57

open sets, 54
one-to-one function, 56
onto function, 56

orientation, 60
oriented relative local convexity, 104
osculation, 100

p-cell, 58

p-chain, 61

p-cycle, 63

p-complex, 59

p-face, 58

p-simplex, 58

(P,W)-similarity, 141, 186

pairs by enlargement, 183
particle-like nuclei, 23

peripheral regions, 3

permutation operator, 16
pesticides, 8

pharmaceuticals, 8

planar projection, 94, 122, 127, 131
planar representation, 122
Poincaré index theorem, 65

point symmetry group, 12, 16, 188
Poisson equation, 85

polycubes, 14, 153

polyhedra, 58

polyhedral model of globular proteins, 95
polymers, 8

polypeptides, 92
polysaccharides, 92

population analysis, 85

potential energy hypersurface, 26
potential energy surfaces, 24
prebonding range, 48

primary structure, 93

prime factorization, 162
probabilistic distribution, 17
projected silhouette, 121

protein folding, 92, 128, 129
proteins, 9, 92, 119
pseudographs, 127

punctured sphere, 57, 122

QCLCP, see Quantum Chemical le Chatelier
Principle.

QCLCP-MS, see Quantum Chemical le Chate-
lier Principle for Molecular Shapes.

QSAR, see Quantitative Structure—Activity
Relations,

QShAR, see Quantitative Shape-Activity
Relations.

Quantum Chemical le Chatelier Principle, 18

Quantum Chemical le Chatelier Principle for
Molecular Shapes, 19

Quantitative Shape—Activity Relations
(QShAR), 175, 176, 185
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quantum chemistry, 4, 28

quantum mechanical properties of molecules, 1,
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quasi-spherical molecular range, 48, 96

quasi-uniform distribution, 182

quotient group, 64

RBSM, see Resolution Board Similarity
Measures.

RT, see Reaction Topology.

R-deficiency measure, 193

R-deficient set, 191

R-set, 192

random coil, 94

Reaction Topology (RT), 5

receptor site, B6

reference curvature b, 101

reference knot, 132, 133

reflection planes, 12

reflexive relation, 57, 142

regular projection, 74

relative complement, 54

relative convexity, 102, 106

relative shape domains, 97

Resolution Based Similarity Measures (RBSM),
14, 146, 186

ribbon model, 93, 119

right-handed crossing, 74, 128

rubber geometry, 56

SGIM, see Shape Globe Invariance Maps.

SGM, see Shape Group Method.

SNSM, see Scaling—Nesting Similarity Mea-
sures.

saddle type domain, 99

Scaling—Nesting Similarity Measures (SNSM),
159

secondary structure, 94

self-replicating molecules, 11

semi-empirical MO, 3, 84

semi-similarity measures, 159

shape and beauty, 202

shape calibration, 178

shape change due to relaxation, 18

shape code, 99, 111, 118, 138, 143, 162, 165,
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shape code matrix, 165, 166

shape code vectors, 165, 166

shape complementarity, 170

shape complexity, 170

shape description criteria, 20

shape descriptor W, 141
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shape domain partitioning, 106
shape-driven molecular design, 179
Shape Globe Invariance Maps (SGIM), 118,
120, 122, 123, 126, 186, 187
shape identity number, 112, 162
shape identity vector, 112, 162
shape matrices, 114
shape polynomials, 127
shape representation P, 119, 141
shape selectivity, 11
shape signature, 87
side-effects, 8
similarity, 137, 140
as fuzzy equivalence, 158
similarity based measures of achirality and chi-
rality, 157
similarity context, 141
similarity index, 150, 152, 155
similarity measures
based on SGIM, 169
based on shape codes, 161, 169
constrained, 160
of the first kind, 138
of the second kind, 138
one-sided, 161
orientation dependent, 160
position dependent, 160
resolution based, 146
using fuzzy sets, 147, 155, 156
similarity sequences, 143
simplex, 72
simply connected object, 57
size-dependent and size-independent shape char-
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size ordering, 115
skeletal models, 2, 11, 32
skinny molecular range, 48
smoothing, 124
solvate layer, 172
solvent accessible surface, B3, 88
space curve, 94
space filling models, 2, 11
square cell configurations, 148
stereochemistry, 2, 10
stoichiometric family, 24
stoichiometry, 10
strictly atomic range, 48
stronger topology, 56
structural formulas, 2
structure factors, 84
supramolecular chemistry, 8
switching vector, 132
symmetric relation, 57, 142
symmetry, 12
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symmetry elements, 12
symimnetry operators, 16
symmorphy, 196
symmorphy classes, 200
symmorphy equivalence, 200
symmorphy group, 196
symmorphy transformation, 198
syntopy, 194
syntopy groups, 194, 195

TP, see Topology Program.
T-closed, 56
T-hull, 125
T-open, 56
tangent ellipsoid, 104
tangent plane, 99, 111
tangent sphere, 103, 111
tertiary structure, 94
test ellipsoid, 104
test sphere, 103
theory of catastrophes, 48
topological characterization principle, 81, 97
topological chirality, 15, 74, 76
topological equivalence, 51, 56, 99
topological invariant, 57
topological object, 8
topological resolution, 158
topological shape, 3, 81

analysis, 3

descriptors, 120
topological space, 55
topology, 49, 55
topology of potential energy surfaces, 27

Topology Program (TP), 5
toxicology, 8

transition “state,” 27

transition structure, 27
transitive relation, 57, 142
trefoil knot, 73
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union surface, 92
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VDWS, see Van der Waals surfaces.

VSEPR, see Valence Shell Electron Pair Repul-
sion Maodel.

Valence Bond theory, 2

Valence Shell Electron Pair Repulsion model
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valence shell region, 84

Van der Waals radii, 32, 89
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124, 181

vertex set, 116, 127
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visual inspection, 19, 139
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