Chemical Ther modynamics:

Advanced Applications

by J. Bevan Ott, Juliana Boerio-Goates

Chermical ;
Thermodynamics

- ISBN: 0125309856
- Pub. Date: June 2000

- Publisher: Elsevier Science & Technology Books



Preface to the Two-Volume Series
Chemical Thermodynamics:
Principles and Applications

and Chemical Thermodynamics:
Advanced Applications

We recently completed the construction of a new chemistry building at Brigham
Young University. The building is located just below a major geological fault
line that runs parallel to the magnificent Wasatch Mountains. As a result,
special care was taken to establish a firm foundation for the building to ensure
that it would withstand a major earthquake. Massive blocks of concrete,
extensively reinforced with metal bars, were poured deep in the earth, and the
entire building was built upon these blocks. Resting on this foundation are the
many classrooms, offices, and laboratories, with their wide variety of specialized
functions. Each of the principal areas of chemistry is housed on a separate floor
or wing in the building.

Thermodynamics is, in many ways, much like this modern science building.
At the base of the science is a strong foundation. This foundation, which
consists of the three laws, has withstood the probing and scrutiny of scientists
for over a hundred and fifty years. It is still firm and secure and can be relied
upon to support the many applications of the science. Relatively straightfor-
ward mathematical relationships based upon these laws tie together a myriad of
applications in all branches of science and engineering. In this series, we will
focus on chemical applications, but even with this limitation, the list is extensive.

Both our new chemistry building and the science of thermodynamics are
functional, but beautiful. The building is a very modern combination of glass,
steel, concrete, and brick, set on the edge of a hill, where it projects an image of
strength, stability, and beauty. The aesthetic beauty of thermodynamics results
from the rigor of the discipline. Thermodynamics is one of the pre-eminent
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examples of an exact science. The simple mathematical relationships that are
obtained from the laws enable one to derive a very large body of mathematical
equations that can be used to describe and predict the outcome of the many
processes of interest to chemists. One rests assured that if the laws are true, then
the equations describing the applications are valid also.

Einstein recognized the fundamental significance of thermodynamics. He
said,

A theory is the more impressive the greater the simplicity of its premises,
the more different are the kinds of things it relates, and the more extended
is its range of applicability. Therefore, the deep impression which classical
thermodynamics made upon me. It is the only physical theory of universal
content which I am convinced, that within the framework of applicability
of its basic concepts, will never be overthrown.?

A tension is always present in writing a thermodynamics book, between
writing a textbook that the beginning serious student can easily follow, and
writing a reference book that the established investigator on the cutting edge of
the discipline can find useful. We do not think that the two goals are mutually
exclusive and have tried very hard to address both audiences. The division into
two volumes represents an attempt to organize material into two levels of
sophistication and detail. To continue the metaphor of the chemistry building,
we build the exterior and framework of the discipline in the first volume. In the
second volume, we furnish the various floors of the “building” with applications
of thermodynamic principles to a diverse set of specialized but broadly-defined
problems involving chemical processes. :

The first volume entitled Chemical Thermodynamics: Principles and
Applications is appropriate for use as a textbook for an advanced undergraduate
level or a beginning graduate level course in chemical thermodynamics. In the
ten chapters of this volume, we develop the fundamental thermodynamic
relationships for pure-component and variable-composition systems and apply
them to a variety of chemical problems.

One does not learn thermodynamics without working problems and we have
included an ample supply of exercises and problems at the end of each chapter.
The exercises are usually straightforward calculations involving important
equations. They are intended to move the reader into an active engagement with
the equations so as to more fully grasp their significance. The problems often

4Taken from Albert Einstein, Autobiographical Notes, page 33 in The Library of Living
Philosophers, Vol. VII; Albert Einstein: Philosopher-Scientist, edited by P. A. Schilpp, Evanston,
Illinois, 1949.
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involve more steps, and possibly data analysis and interpretation of the resulting
calculations. Computer manipulation of the data for fitting and graphical
representation is encouraged for these. Also, the chapters contain worked out
examples within the body of the text. They illustrate problem-solving techniques
in thermodynamics, as well as furthering the development of the topic at hand
and expanding the discussion, and should be considered as an integral part of
the presentation.

The intended audience of the second volume entitled Chemical Thermo-
dynamics: Advanced Applications is the advanced student or research scientist.
We have used it, independently of the first volume, as the text for an advanced
topics graduate level course in chemical thermodynamics. It can also serve as an
introduction to thermodynamic studies involving more specialized disciplines,
including geology, chemical separations, and biochemistry, for the research
scientist in or outside of those disciplines. We hope it will be especially helpful
for non-thermodynamicists who might be unfamiliar with the power and utility
of thermodynamics in diverse applications. Given the more advanced nature of
the material covered here, only problems are provided at the end of the chapters
in this volume. Taken together, the two volumes make an excellent reference
source for chemical thermodynamics.

Even a thermodynamics book that contains much aqueous chemistry can be
dry to read. We have tried to adopt a somewhat informal style of writing that
will carry (rather than drag) the reader along through the derivations and
reasoning processes. In the first volume, we have kept the beginner in mind by
filling in the gaps in derivations to the point that they are easy to follow; as we
move along, more and more is left to the reader to fill in the intermediate steps.
It is a difficult line to tread — to give enough detail to be informative, but not
so much that the discussion becomes repetitive. We hope we have succeeded in
providing the proper balance. In order not to interrupt the flow of the dialogue,
we have relegated some of the details and reminders to footnotes at the bottom
of the pages.

As much as possible, we have used “real” examples in our discussions.
We present many examples of contemporary scientific phenomena in which
analysis along thermodynamic lines offers a unique and valuable perspective.
Examples include laser cooling, properties of high temperature superconduc-
tors, theories of continuous phase transitions, theories of electrolyte solutions,
and (fluid + fluid) phase equilibria. However, we have also chosen to feature
some descriptions of the very old experiments that helped lay the foundation
of the science. For example, Linhart’s classic 1912 work on the determination
of cell E° values is described, along with Haber’'s ammonia synthesis, and
Giauque’s 1930 study of the third law applied to glycerine. These are the
result of exceptionally high quality investigations by investigators who worked
under difficult circumstances. It is humbling to see the quality of the work
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accomplished by these pioneers and reminds us that the field of thermo-
dynamics has been built on the shoulders of giants.

A complete set of references to all sources of data are included, so that the
reader can go to the original source if more detail is needed. We have also tried
to include references to more advanced and specialized texts, monographs,
reviews, and other compilations that the reader who is looking for more detail,
can go to for supplementary reading.

We have generally used SI units throughout both volumes, and, as much as
possible, have followed the recommendations of the TUPAC publication
Quantities, Units, and Symbols in Physical Chemistry. An exception is the use of
the bar in describing the standard state pressure for the gas. In our estimation
the simplicity gained by using the bar more than compensates for the small
compromise of SI units that this substitution entails. As we do this, we are
careful to remind the reader continually of what we have done so that confusion
can be avoided. It seems to us that [IUPAC has set the precedent for such
compromises of convenience by retaining the definition of the normal boiling
point and normal freezing point as the temperature where the pressure is one
atm. We have followed this convention also. In Chapter 10, we have used
w in cm~! for energy in statistical thermodynamics calculations. Again, the
simplicity introduced by this choice overshadows the advantages of going to SI
units. Besides, we think it will be a long time before our spectroscopy friends
stop using cm™! as the unit for expressing energy. Since we are invading their
discipline in this chapter, we feel inclined to go along.

With few exceptions, we have used SI notation throughout. One exception is
in the use of yr (instead of f) for the activity coefficient with a Raoult’s law
standard state. It seems to us that using f would cause serious problems by
confusing the activity coefficient with fugacity. We do not use the symbol K°
(or K% for what IUPAC describes as the ““standard equilibrium constant™. Such
a choice of symbol and name seems confusing and redundant to us. Instead we
use the symbol K for what we refer to as the ‘“‘thermodynamic equilibrium
constant”, a choice that is acknowledged by IUPAC as acceptable. We have
also chosen to keep the “free” in “free energy” while recognizing that many
readers have grown up with free energy and would be confused by “Helmholtz
energy’’ or “Gibbs energy”.

Our science building at Brigham Young University is not complete. We are
still adding equipment and modifying laboratories to accommodate the latest of
experiments. In the same way, these two volumes do not represent a
completed study of chemical thermodynamics. This is especially true in
Chapters 15 and 16 where we have chosen to use the “case study” approach
in which we introduce selected examples where we apply thermodynamics to the
study of processes of an industrial, geological, and biological nature. It is
impossible to cover these broad fields in one book. The examples that we have
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chosen, some of which are of historical interest while others represent very
recent applications, should ailow the reader to see how the discipline applies in
these areas and be able to extrapolate to other related problems.

Our hope is that the foundation has been built strong enough and the rooms
completed to the point that new additions and changes can be easily
accommodated and supported. It has been our experience that each time we
have taught thermodynamics, we have found a new corridor to follow, leading
to a new room to explore. This is one of the things that excites us most about
studying thermodynamics. The science is old, but the applications (and
implications) are endless.

The collaboration with many scientists over the years has had a major
influence on the structure and content of this book. We are especially indebted
to J. Rex Goates, who collaborated closely with one of the authors (JBO) for
over thirty years, and has a close personal relationship with the other author
(JBG). Two giants in the field of thermodynamics, W. F. Giauque and E. F.
Westrum, Jr., served as our major professors in graduate school. Their passion
for the discipline has been transmitted to us and we have tried in turn to pass it
on to our students. One of us (JBG) also acknowledges Patrick A. G. O’Hare
who introduced her to thermodynamics as a challenging research area and has
served as a mentor and friend for more than twenty years.

We express appreciation to Brigham Young University for providing
ongoing support for the thermodynamics related research that has served as
the foundation for this project. It is significant that this has happened in an
age when it is not fashionable to support research that involves making
measurements with a calorimeter, densimeter, or thermometer. We especially
appreciate the commitment and support of the university that has led directly to
the creation of the two volumes that have resulted from this project. We
recognize the help of Samuel Kennedy in composing many of the 137 figures, of
Danielle Walker for help in preparing the manuscript, including composing over
1500 equations, and especially to Rebecca Wilford for continual support
throughout the project. Finally, we recognize our spouses, RaNae Ott and
Steven Goates, for their ongoing support and encouragement throughout what
has become a long term project.

J. Bevan Ott and Juliana Boerio-Goates



Preface to the Second Volume
Chemical Thermodynamics:
Advanced Applications

This book is the second volume in a two-volume set that describes the principles
of thermodynamics and its applications. In the first book: Thermodynamics —
Fundamentals and Applications, we laid the foundation for the science through a
rigorous development of the fundamental principles, and we illustrated how
those principles lend themselves to applications in a variety of areas of study.
The applications featured in that volume tended to be of a broad nature and
often on a limited experimental scale.

In this second volume Chemical Thermodynamics: Advanced Applications,
we illustrate in more depth, but with a narrower focus, applications of a more
specialized nature. The book extends the range of a thermodynamics text to
cover topics and applications that are not usually covered in the beginning text.
In a sense, the book covers a “middle ground” between the basic principles
developed in the beginning thermodynamics textbook and the very specialized
applications that are a part of an ongoing research project. As such, it could
prove invaluable to the practising scientist who needs to apply thermodynamic
relationships to aid in the understanding of the chemical process under
consideration. It would also be well suited for use as a text in a special topics
course in thermodynamics that may be taught from time to time in the
university. One of our major goals has been to write a comprehensive
thermodynamics text that can serve as a major reference set that the student or
the research scientist can use to learn or review thermodynamic principles. With
this two volume set, we hope that we have accomplished this goal.

Thermodynamics is a broad subject, with applications in many areas, and
there are many possible topics we could have chosen to emphasize in this book.
Some of the areas chosen clearly reflect our own research interests and areas of
expertise in solutions and solid-state properties. We happen to think that these
are areas of broad interest to scientists. The book, of course, is broadly based,



xx Preface to the Second Volume

and includes topics that cover a wide range of applications. We have enlisted the
aid of experts in those fields to read and criticize these parts of the manuscript.
We are indebted to Kenneth Breslauer from Rutgers University, Alexandra
Navrotsky from the University of California at Davis, Guiseppe Arena from
Catania University, and Earl Woolley, William Evenson, and Brian Woodfield
from 3righam Young University for their assistance in this regard.

This volume begins as Chapter 11 in the two-volume set. This Chapter
summarizes the fundamental relationships that form the basis of the
discipline of chemical thermodynamics. This chapter can serve as a review
of the fundamental thermodynamic equations that are necessary for the
more sophisticated applications described in the remainder of this book. This
level of review may be all that is necessary for the practising scientist who has
been away from the field for some time. For those who need more, references
are given to the sections in Principles and Applications where the equations
are derived. This is the only place that this volume refers back to the earlier
one.

The text is written in a somewhat informal style, although more technical
than in the earlier volume, to make it more appealing to the reader and
hopefully, dispense with the myth that the study of thermodynamics must be
boring. Thermodynamics is an old science with modern applications and the
authors give flavor to an old science by including and emphasizing modern
applications that demonstrate that thermodynamics is an on-going and lively
discipline, while at the same time, including examples that are of important
historical interest. As much as possible *“real” systems are used in the discussion
and figures, in contrast to the “generic”” examples that are often used in other
textbooks. Examples of the “old” are the discussions of the Haber cycle, the
synthesis of diamond, and the thermodynamic description of metabolism.
Examples of the ‘“new” include the use of critical exponents to describe
continuous transitions, thermodynamic studies of oligonucleotides, and the use
of Pitzer’s equations to describe electrolyte solutions.

Problems are included at the end of each chapter that demonstrate the
principles developed in the chapter. A complete set of references is included with
each chapter that the reader can go to for obtaining more detail and
understanding.

The remainder of this book applies thermodynamics to the description of a
variety of systems that are of chemical interest. Chapter 12 uses thermo-
dynamics to describe the effects of other variables such as gravitational field,
centrifugal field, and surface area on the properties of the system. Most of the
focus of the chapter is on surface effects. The surface properties of pure
substances are described first, including the effect of curvature on the properties
of the surface. For mixtures, the surface concentration is defined and its
relationship to the surface properties is described.
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Chapters 13 and 14 use thermodynamics to describe and predict phase
equilibria. Chapter 13 limits the discussion to pure substances. Distinctions are
made between first-order and continuous phase transitions, and examples are
given of different types of continuous transitions, including the (liquid + gas)
critical phase transition, order—disorder transitions involving position disorder,
rotational disorder, and magnetic effects; the helium normal-superfluid
transition; and conductor—superconductor transitions. Modern theories of
phase transitions are described that show the parallel properties of the different
types of continuous transitions, and demonstrate how these properties can be
described with a general set of critical exponents. This discussion is an attempt
to present to chemists the exciting advances made in the area of theories of
phase transitions that is often relegated to physics tests.

Chapter 14 describes the phase behavior of binary mixtures. It begins with
a discussion of (vapor + liquid) phase equilibria, followed by a description of
(liquid + liquid) phase equilibria. (Fluid + fluid) phase equilibria extends this
description into the supercritical region, where the five fundamental types of
(fluid + fluid) phase diagrams are described. Examples of (solid + liquid)
phase diagrams are presented that demonstrate the wide variety of systems
that are observed. Of interest is the combination of (liquid + liquid) and
(solid + liquid) equilibria into a single phase diagram, where a quadruple point
is described.

Chapters 15 and 16 apply thermodynamics to a variety of chemical
processes. A ‘“‘case study” approach is used in these two chapters to demonstrate
the application of thermodynamics to such diverse fields as biochemistry,
geochemistry, and industrial chemistry. In these chapters, no attempt is made
to be comprehensive in covering the field. Instead, examples have been chosen
that demonstrate the thermodynamic principles as they apply to problems in
different disciplines.

Chapter 15 begins with a description of the Haber process, a chemical
reaction of great importance in industrial chemistry, followed by a discussion of
a determination of the conditions that apply in the synthesis of diamond.
Applications of thermodynamics to geological systems are described next,
beginning with a discussion of the effect of temperature on the solubility of
calcite, followed by a discussion of the energetics of ternary oxides of
mineralogical significance. Finally, the thermodynamics of complexation with
macrocyclic ligands, a system of interest in inorganic chemistry and chemical
separations, is described.

Chapter 16 applies thermodynamics to problems of biological interest. The
metabolic processes leading to mechanical work performed by a living organism
are described first, followed by discussions of the role of thermodynamics as a
tool for understanding the stabilities of biopolymers such as proteins, and
oligonucleotides as model compounds for DNA.
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Chapters 15 and 16 especially demonstrate the broad range of application
of thermodynamics to chemical processes. In the discussions of the Haber
cycle, synthesis of diamond, solubility of calcite, and the thermodynamics of
metabolism, techniques are used to solve a specific problem for a particular
substance. On the other hand, in the discussion of macrocyclic complexes, the
description and interpretation involves the comparison of the properties of a
number of complexes. This global approach is particularly helpful in the
description of the energetics of ternary oxides in Chapter 15 and the stabilities
of proteins and DNA in Chapter 16, where useful conclusions are obtained only
after the comparison of a large amount of experimental data.

Thermodynamic measurements are often regarded by those who do not
make them as being incapable of providing information about microscopic
details. Spectroscopy or crystallography are proclaimed as the techniques of
choice for such information. A common characteristic of the work of the
scientists we have chosen to feature, especially in Chapters 15 and 16, is that the
databases of thermodynamic information they have constructed by system-
atically varying chemical and/or physical properties and analyzing the effect on
thermodynamic stabilities, enthalpies, and entropies, have provided valuable
insights into microscopic factors that complement those provided by conven-
tional structural techniques. The systematic studies of mineral energetics, for
example, provide information concerning the relative contributions of various
structural features like cation size to phase stabilities. As a second example, the
pairing of NMR and optical spectroscopy with calorimetric measurements of
the melting of small segments of synthetic DNA has made significant
contributions to the understanding of the factors involved in mutations and
drug binding in DNA.

Chapters 17 and 18 use thermodynamics to describe solutions, with
nonelectrolyte solutions described in Chapter 17 and electrolyte solutions
described in Chapter 18. Chapter 17 focuses on the excess thermodynamic
properties, with the properties of the ideal and regular solution compared with
the “real” solution. Deviations from ideal solution behavior are correlated with
the type of interactions in the liquid mixture, and extensions are made to
systems with (liquid + liquid) phase equilibrium, and (fluid + fluid) phase
equilibrium when the mixture involves supercritical fluids.

Chapter 18 describes electrolyte solutions that are too concentrated for
the Debye—Hiickel theory to apply. Gugenheim’s equations are presented
and the Pitzer and Brewer tabulations, as a method for obtaining the
thermodynamic properties of electrolyte solutions, are described. Next, the
complete set of Pitzer’s equations from which all the thermodynamic
properties can be calculated, are presented. This discussion ends with an
example of the extension of Pitzer’s equations to high temperatures and
high pressures. Three-dimensional figures show the change in the thermo-
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dynamic properties with concentration, pressure, and temperature, for this
representative system.

Also included in Chapter 18 is a discussion of ion association at high
temperatures and the properties of surfactant solutions, which are described in
terms of the pseudo-phase model and the mass action model.

The three appendices in this volume give selected sets of thermodynamic
data (Appendix 5), review the statistical calculations covered in Principles and
Applications (Appendix 6), and summarize the equations and parameters
required to calculate the properties of electrolyte solutions, principally from
Pitzer’s equations (Appendix 7).



Chapter 11

Summary of Thermodynamic
Relationships

This is the second of a two-volume series in which we continue the description of
chemical thermodynamics. The first volume, titled Chemical Thermodynamics:
Principles and Applications, contained ten chapters and four appendices, and
presented the basic thermodynamic principles and applied these principles to
systems of chemical interest. We will refer to that volume in this chapter as
Principles and Applications. We begin this second volume that we have titled
Chemical Thermodynamics: Advanced Applications, with Chapter 11 where we
summarize and review the thermodynamic principles developed in the first
volume, and then focus in subsequent chapters on a discussion of a variety of
chemical processes in which we use thermodynamics as the basis of the
description.

If you have had the opportunity to follow through the rigorous
development of thermodynamic principles in a manner such as is presented in
Principles and Applications, you can relate to the statement made very near the
beginning of that volume.

Thermodynamics starts with two basic laws stated with elegant simplicity
by Clausius.

e Die Energie der Welt ist konstant
e Die Entropie der Welt strebt einem Maximum zu

These statements are “laws of experience”. That is, no one has been able
to find exceptions to them (although many have tried). If one assumes that
these two laws are valid, then four fundamental equations, referred to as
the Four Fundamental Equations of Gibbs, can be obtained. From these
four, more than 50,000,000 equations relating the thermodynamic
properties of the system can be derived using relatively simple
mathematics. The derivations are rigorous. Thus, if the two laws are true,
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then the four equations are correct, and hence, the 50,000,000 equations
are valid. These are the conditions ... that qualify a discipline as an exact
science. By starting with a very few basic laws or postulates, a large body
of rigorous mathematical relationships can be derived.

Most of the 50,000,000 equations have little use. However, a
significant number are invaluable in describing and predicting the
properties of chemical systems in terms of thermodynamic variables.
They serve as the basis for deriving equations that apply under
experimental conditions, some of which may be difficult to achieve in
the laboratory. Their applications will form the focus of several chapters.

The derivation of the thermodynamic relationships ranks with similar
developments in only a very limited number of other disciplines in its exactness.
The idea that one can start with two fundamental “laws of experience” and
rigorously derive a large body of mathematical relationships that must be true if
the laws are true is almost unique in science.?

In this volume, we will apply the principles developed in Principles and
Applications to the description of topics of interest to chemists, such as effects
of surfaces and gravitational and centrifugal fields; phase equilibria of pure
substances (first order and continuous transitions); (vapor + liquid), (liquid +
liquid), (solid + liquid), and (fluid + fluid) phase equilibria of mixtures; chemical
equilibria; and properties of both nonelectrolyte and electrolyte mixtures. But
do not expect a detailed survey of these topics. This, of course, would require a
volume of immense breadth and depth. Instead, representative examples are
presented to develop general principles that can then be applied to a wide
variety of systems.

We will not attempt to derive in this volume the thermodynamic principles
and relationships that form the basis of our descriptions. These derivations can
be obtained by referring to Principles and Applications, or to other elementary
textbooks in thermodynamics.! Instead, we will simply summarize in this
chapter most of the useful equations, and refer the reader to the appropriate
sections of Principles and Applications for the details of the derivations.

11.1 Thermodynamic Relationships

The fundamental thermodynamic variables® are the pressure (p), temperature (T),
internal energy (U), and entropy (S). Added to this list are the derived variables

2 Newtonian mechanics is a discipline of equal rigor. There are few others.

bSee Section 1.3 from Chapter 1 of the first volume of this series titled Chemical Thermodynamics:
Principles and Applications, by J. B. Ott and J. Boerio-Goates. For the remainder of this chapter,
we will refer to this volume as Principles and Applications.
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enthalpy (H), Helmholtz free energy (4), and Gibbs free energy (G). These last
three are defined in terms of the fundamental variables through the equations

H=U+pV, (11.1)

A=U-TS, (11.2)
and

G=U+pV-TS. (11.3)

The first two (p and T) are intensive variables, while the others are extensive.
The extensive properties can be made intensive by dividing by the number of
moles (n) to give the molar quantities Vy,, Uy, Sm, Hm, Am, and G,

11.1a The Gibbs Equations

The laws of thermodynamics can be expressed mathematically by the equations
that involve changes in the fundamental thermodynamic variables U and S:°
For the universe:

> AU=0 (11.4)

E:AS>0 (11.5)

For the system:
dU = éq + ow (11.6)
dS>6q/T, (11.7)

where w is the work and ¢ is the heat that flows in the process. For pressure—
volume work,

ow= —PDext dV,
which in the reversible process becomes

ow=—pdV. (11.8)

¢See Chapter 2, Principles and Applications.



4 Chemical Thermodynamics: Advanced Applications

For a temperature change, ¢ is obtained from
6q=CdT, (11.9)

where C is the heat capacity. In equations (11.5) and (11.7), the equality applies
to the reversible process and the inequality applies to the spontaneous process.

For the reversible process limited to pressure-volume work, the above
equations can be combined to give the four fundamental equations of Gibbs?

dU=TdS-pdV (11.10)
dH=TdS+ Vdp (11.11)
d4d=-SdT-pdV (11.12)
dG=—-SdT+ V dp. (11.13)

11.1b Differential Relationships

Starting with the above equations (principally the four fundamental equations
of Gibbs), the variables U, S, H, A, and G can be related to p, T, V, and the heat
capacity at constant volume (Cy) and at constant pressure (C,) by the
differential relationships® summarized in Table 11.1. We note that in some
instances, such as the temperature derivative of the Gibbs free energy, S is also
an independent variable. An alternate equation that expresses G as a function of
H (instead of S) is known as the Gibbs—Helmholtz equation. It is given by
equation (11.14)

(a(G/T)) __ 7 (11.14)
P

oT T?

Representing the dependent variables in Table 11.1 by Z, we find that the
relationships apply to the molar quantities, Z,, and to the differences AZ. For
example,

OH OV
=Vu—T | — |, (11.15)
ap oT
T p

dSee Problem P11.1. For more details, see Section 3.1, Chapter 1, Principles and Applications.
€See Problem P11.2 For more details see Section 3.2, Chapter 3, Principles and Applications.
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OAH =AC 11.16)

or | " (1.
P
and

0

(M) __oH (AL17)
oT T2

P

Table 11.1 Thermodynamic relationships.

0z 0z
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They also apply to the partial molar properties Z;, a quantity that we will define
and describe next. For example, it can be shown that

oG

o
P Jr

so that

aa, _

— | =V (11.18)
Op A

The partial molar property’ Z; referred to above is defined as
Z 0z (11.19)
T 6n,~ ’ .
T,p, Nisti

where Z is any of our extensive thermodynamic variables. It represents the
contribution per mole of the component / in a solution to the thermodynamic
property Z, so that

Z= Z nZ;. (11.20)
i

For a pure substance, the molar Gibbs free energy is also known as the chemical
potential® u. In a solution, the partial molar free energy is the chemical potential
ui. Hence,

G=>_ mu. (11.21)
i

. The partial molar properties of the different components in a solution are
related by the Gibbs—Duhem equation” given by

> nidZ;=0. (11.22)

fSee Section 5.3, Chapter 5, Principles and Applications.
8See Section 5.2, Chapter 5, Principles and Applications.
R See Problem P11.3. For more details see Section 5.4, Chapter S, Principles and Applications.
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When applied to the chemical potential in a binary mixture, this equation
becomes

mduy + nadpz = 0. (11.23)

11.2 Phase Equilibria Relationships

For a phase transition between two phases A and B of a pure substance
represented by

A=B,
the condition for equilibrium' is

AG=0
or

HA = UB. (11.24)

In a mixture, equilibrium is established when the chemical potential of each
component is the same in each phase. That is,

Mi, A = i, B, (11.25)

where i indicates the ith component.

Equation (11.25) is true for both first-order and a continuous (or second-
order) phase transition. A first-order transition’ is one for which the first and
successive derivatives of AG are not equal to zero. That is,

OAG

— | =-AS#0, 11.26)
pre # (
P
and
OAG
— | = AV #0. , (11.27)
ap -

iSee Section 5.6, Chapter 5, Principles and Applications.
JSee Section 8.1e, Chapter 8, Principles and Applications.
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An example of a second derivative equation is

9’AG AS AC,
= =-—2L0. (11.28)
aT? oT T
p p

In a continuous (second-order) phase transition, the first derivatives of G
{equations (11.26) and (11.27)} are equal to zero, but subsequent derivatives,
such as the one represented by equation (11.28), are not zero at a critical
temperature where the continuous transition is complete .k

The equality of chemical potentials in a first-order phase transition leads to
two important relationships. The first is the Clapeyron equation!

dp ASn
ar AV,

(11.29)

where AS, and AV, are the molar entropy and volume changes for the
transition.™ At equilibrium,

AH,
AS, = , (11.30)
T

so that the Clapeyron equation can also be written as

dp AH,
dT TAV,

(1131

The Clausius—Clapeyron equation” is an integrated version of the
Clapeyron equation that applies to equilibrium between an ideal gas vapor
phase and a condensed phase, with the conditions that the volume of the

kIn Section 8.1d, Chapter 8, Principles and Applications, we describe (vapor + liquid) equilibria in
the region of the critical temperature as an example of a continuous transition. In Chapter 13 of
this volume we will describe a number of other continuous transitions.

YSee Section 5.6¢, Chapter 5, Principles and Applications.

™1In a solution, the partial molar quantities are involved. That is
dp AS;

dT AV,

"See Problem P11.4. For more details see Section 8.1c, Chapter 8, Principles and Applications.
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condensed phase is negligible in comparison to the volume of the gas phase and
the enthalpy difference between the gas phase and the condensed phase is
constant with temperature. When applied to (vapor + liquid) equilibrium, this
equation is given by

= e f (11.32)

or

AvapHm [ 1

Inp=- + const, (11.33)

where AyapHpy, is the molar enthalpy of vaporization and p is the vapor pressure.
For (vapor+solid) equilibrium, Ay,pHp, in equations (11.32) and (11.33) is
replaced by A Hy, the molar enthalpy of sublimation.

The second relationship that is useful in describing phase equilibria is the
Gibbs phase rule®

f=C—-P+2, (11.34)

where C is the number of components, P is the number of phases in equilibrium,
and f'is the number of degrees of freedom in the system.
The Clapeyron equation does not apply to a continuous transition, since
both the entropy (or enthalpy) change and the volume change are zero. For such
- a transition, in the region of the critical point, the change in the thermodynamic
variable given by the second derivative of G can be represented by an
exponential equation. For example, in the region of the (vapor + liquid) critical
point, AVy,, and T are related by

(' T - Tc l)ﬂ
Vg=V)~ | — |, (11.35)
T,

where T, is the critical temperature and 8 = 0.32 is the critical exponent. In
Chapter 13, we will show that 3 appears to have this same value for a variety of
critical phenomena.

°See Section 5.6b, Chapter 5, Principles and Applications.
PSee Section 8.1d, Chapter 8, Principles and Applications.



10 Chemical Thermodynamics: Advanced Applications

11.3 Fugacity
The fugacity f of a gas is defined by the relationships?

dpy=RT dInf (11.36)
and

lim £= . (11.37)

p—0 p

The ratio f/p is the fugacity coefficient ¢, so that fand p are related by
f=¢p. (11.38)
Using equation (11.38), at low pressures, equation (11.37) becomes

ph_gno $=1,

and f and p become equal.
For a mixtures of gases, equation (11.36) becomes

dyi = RT dInf; (11.39)

for the ith component, and the total fugacity is given by
=Y 5 (11.40)

For condensed phases, it is the fugacity in the equilibrium vapor phase (vapor
fugacity or very nearly vapor pressure) that gives the fugacity of the condensed
phase. Equation (11.39) applies to relate this vapor fugacity to the chemical
potential in the condensed phase.

11.3a Effect of Temperature and Pressure on the Fugacity
The effect of temperature on the fugacity” is given by equation (11.41)

al HY —H,
/) _Hn i (11.41)
oT RT?

14

9See Problem P11.5. For more details see Section 6.1, Chapter 6, Principles and Applications.
" See Section 6.1d, Chapter 6, Principles and Applications. ’
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For a gas, H}n — Hy, is the change in enthalpy as the gas at pressure, p, is
expanded into a vacuum. For a liquid (or solid), H} — H,, is the enthalpy
change as the liquid (or solid) is vaporized (or sublimed) into a vacuum. It
has been called the ideal enthalpy of vaporization (or sublimation) since it
represents the enthalpy change as the liquid (or solid) becomes an ideal
gas.

The effect of pressure on fis given by®

a1 V.
nfy _Vm (11.42)

apT RT

where Vi, is the molar volume for a pure substance, or the partial molar volume
for a component in solution. Equation (11.42) leads to the following equations
for calculating the fugacity coefficient ¢ in the gas phase

1 P
1n¢=——J o dp (11.43)
RT Jo
or
P | —2z
1“¢=“j dp, (11.44)
o p
where
RT e
a= "L Y=yl _y, (11.45)
p
and
v
,Pm (11.46)
RT

$See Section 6.1b, Chapter 6, Principles and Applications.
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In a gaseous mixture, equation (11.43) becomes (for the ith component)

/4
ln¢-=J — ——] dp, 11.47
= \&r 75 p ( )

where V; is the partial molar volume. The simplest approximation for obtaining
¢; uses the Lewis and Randall rule given by

fi=yif} (11.48)

where f; is the fugacity of the component in the mixture, y; is the mole fraction
in the gas, and f7 is the fugacity of the pure gaseous component at the same
temperature and total pressure, p. The result of the Lewis and Randall rule is
that ¢; has the same value as the pure gas would have at the same temperature
and total pressure.

11.3b Raoult's Law, Henry's Law, and the Ideal Solution

Raoult’s law and Henry’s law are expressions" that relate the vapor fugacity of a
component in a solution to composition. Raoult’s law is given by

fi=xif}, (11.49)

where f; is the vapor fugacity of the component in the solution, x; is the mole
fraction, of i in the solution and f7 is the vapor fugacity of the pure substance.

Henry’s law states that the vapor pressure of a solute in solution is
proportional to the concentration (mole fraction x,, molality m, or molarity c).
That is,

S2=kn,xx2 (11.50)
or

fr =ky,mm (11.51)
or

S2=ky, cc, (11.52)

See Section 6.1e, Chapter 6, Principles and Applications.
Y See Section 6.1e, Chapter 6, Principles and Applications.
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where f; is the vapor fugacity and ky, x, ku,m and ky . are the Henry’s law
constants. They are related by

kv, m = Miky, « (11.53)
and
Mk
g o = —— (11.54)
10-3 pff

where M, and p{ are the molecular weight and density of the solvent.
An ideal solution is one for which all components obey Raoult’s law

fi=xiff (11.49)

over the entire range of composition at all pressures and temperatures. In a real
solution, Raoult’s law and Henry’s law are limiting laws that apply exactly only
in the infinitely dilute solution. That is, if we designate component 1 as the
solvent and component 2 as the solute, then fj = x; as x; — 1 and f, — x5, m,
or c as xp, m, or c—0.V

11.4 Activity and Standard States

The activity” g; is defined as

fi

1 (11.55)
7

a;

where f7 is the fugacity in a reference or standard state. It is related to the
chemical potential x; and the standard state chemical potential p; by the

relationship

pi = ul + RT Ina;. (11.56)

Y Henry’s law applies only if the solute is a nonelectrolyte. For strong electrolyte solutes, Henry’s
law is replaced by expressions of the type

fr=km"

where v is the total number of ions resulting from the dissociation of the solute.
" See Section 6.2, Chapter 6, Principles and Applications.
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11.4a Effect of Pressure and Temperature on the Actuv:ty
The effect of pressure on the activity* is given by

dln a; I_/,‘
= (11.57)
op A RT

where V; is the molar volume for a pure substance or the partial molar volume
in solution. The effect of temperature on g; is given by’

8lna,~ I_,,-
P

where L; = H; — H? is the relative partial molar enthalpy. That is, it is the
enthalpy relative to the value in the standard state. We will describe it more fully
in a following section.

11.4b Choice of Standard States

Standard states are usually chosen? so that the activity reduces to the pressure
for gases at low pressures, and to concentrations in dilute solution. The
choices are summarized in Table 11.2.22 We note that for a gas, the standard
state is the ideal gas at a pressure of 1 bar (0.1 MPa), in which case, the
activity differs from the pressure (expressed in bars) by the fugacity coefficient.
That is,

a=d¢p.

For a pure substance, or for a solvent in solution, the standard state is
the pure substance at 1 bar total pressure. This is known as a Raoult’s law
standard state. With this choice, a = 1 for the pure substance (including pure
solvent) at a total pressure of one bar. For pressures other than one bar, a is
give by

a=T(1), (11.59)

*See Problem P11.6(a). For more details see Section 6.2a, Chapter 6, Principles and Applications.
Y See Section 6.2b, Chapter 6, Principles and Applications.
2See Section 6.3a, Chapter 6, Principles and Applications.

#The choices of standard states given in Table 11.2 for the solutes are only for nonelectrolyte
solutes. We will summarize the choices for electrolyte solutes in the next section.
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where the activity coefficient I' can be obtained from

P Vin
InT = J — dp. (11.60)
1 bar RT
Table 11.2 Choice of standard states (a; = fi/f})

State of Standard Standard Activity Limiting
matter state state fugacity coefficient relationship
Gas Ideal gas f° =1 bar a=¢p ¢—1

at p =1 bar as

p—0

Pure solid Pure substance fo=rf* a=T r—1
or at p=1 bar as
pure liquid p—1
Solvent (Raoult’s law) fi=ff a = YR, 1X R,1— 1
in a Pure substance as
mixture at p =1 bar x—1
Solute* (Raoult’s law)* 5=r% a; = YR, 2X2 TR,2— 1
in a Pure substance as
mixture at p = 1 bar x;— 1

or

(Henry’s law) f3 =ku,x az = Y, xX2 M,x 1

Hypothetical as

solution with x;—0

x2 =1 that

obeys

Henry’s law

or

(Henry’s law) f3=kim a=mam w1

Hypothetical as

solution with m—0

m =1 that

obeys

Henry’s law

* A Raoult’s law standard state for the solute is often chosen for nonelectrolyte mixtures that

cover the entire concentration range from x; =0 to x; = 1.
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It is easy to show that I differs little from one for a condensed phase unless the
pressure differs significantly from one bar.

For a solvent in solution, the activity q; is related to the mole fraction x,
through the activity coefficient 4g 1, with g ;1 —1 as x;—1. For non-
electrolyte solutes, a Henry’s law standard state is often chosen so that activity
a, is related to the mole fraction x; or the molality m by the activity coefficient
YH, x OF YH,m, With (vH,x OF YH,m) — 1 as (x2 or m) —0.

11.4c Choice of Standard States for Strong Electrolyte Solutes

Strong electrolyte solutes®® follow a different limiting law than do nonelectrolyte
solutes. For example, for a 1:1 electrolyte such as HCI, the limiting law is

fr=km?.

With this limiting law, it is advantageous to consider the chemical potential to be
the sum of the chemical potentials of the ions. That is,

My =ps 4 pul.
With this choice,
a=a.a_ (11.61)
= (y+my)(y-m-)
=yim?. (11.62)
where m, =m_ = m and ~. is the geometric mean activity coefficient given by
1= (172 (11.63)

Activity coefficient relationships for the different types of strong electrolyte
solutions are summarized in Table 11.3.

11.4d Debye-Hiickel Predictions of the Thermodynamic
Properties of Strong Electrolyte Solutions®®
Debye—Hiickel theory can be used to predict 4. for a solution containing a

Y5 See Section 6.5a, Chapter 6, Principles and Applications.
¢ See Section 7.2, Chapter 7, Principles and Applications.



Table 11.3 Activity coefficient relationships for electrolyte solutions (single electrolyte)

Type Nonelectrolyte 1:1 2:1orl:2 3:1lorl:3 3:20r2:3 General
example sucrose NacCl Na,S04 AlCl; Lay(SOy)3 A,y B, _
MgSO4 CaClz Na3PO4 Cag(PO4)2
Limiting law
L= km km? km?® km?* km? km®+ +v-)
a= a (a+)(a-) (@a)a)or  (a@yor  (aaYor  (a)ta.)”
(as)(a-) (a)(a-) (a)(a-)
or or or or or
[yim?] [4yim’) [27y4m*] [108y3m’]  [we)" (o) Myam]® +*)
a = - [@)@N'"? (@)@ la)@ )" @)@ )] [(a)H(a) 7]/ +v)
or or or
[@ @)1 (e @’ Ka @)
my = B m 22/3m 33/4m 44/5m [(V+)u+(y_)u—]1/(v++u_)m
a+ a+ a+ at a4+
V= - — — — — —
my my my my my

sdrysuonefey dsnweudpousay [ jo Arewung

L1
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strong electrolyte solute that dissociates according to the reactiond¢
A, B, =v, A" +v_B*. (11.64)

The resulting equation is

C, Il
Inyy=—|z42z_ |———’"—l/5, (11.65)
1 + Byalp
where I,, is the ionic strength given by
Ly=1>" z2m;, (11.66)
J

with m as the molality and z the charge on each ion in the mixture. The
constants C, and B, are given by

. , 2 3/2
= (2mNapA) pmmprd I (11.67)
and
12
B =e (2NA’°A) . (11.68)
eoeakT

In equations (11.67) and (11.68), Na is Avogadro’s number, k is the Boltzmann
constant, T is the temperature, pa is the density of the solvent (in kg - m~3), ¢ is
the permittivity of vacuum, and e, is the relative permittivity (dielectric
constant) of the solvent. For aqueous solutions at 7= 298.15 K, the values are

C,=1.174 kg'/* - mol ~'/2
B, =3.32384 x 10° kg'? . mol /2 . m !,

The coefficients vary slowly with temperature. In water at 273.15 K, CT::
1.133 kg'/? - mol ~'/2, while at 373.15 K, it has a value of 1.372 kg'/? - mol~'/2.

d4dSee Section 7.2a, Chapter 7, Principles and Applications.
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The a in equation (11.65) is the distance of closest approach between the
ions in solution. It has a value that typically ranges from (3 x 10710 to
8 x 10719 m, with most ions around 3 x 10~!® m. The product aB, has a value
of (3 x10719)(3.3 x 10°) ~ 1. Equation (11.65) is often simplified by letting
aB, =1 so that

Cylzez_ | I)?

1412

Inqg =— (11.69)

A further simplification is made by noting that at low m, I ,‘n/ 2 <1 and can be
neglected in the denominator of equation (11.69). The resulting equation, valid
only at very low m, is given by

Inye=-C,|z¥z7 | 1}/2. (11.70)

Values for C, as a function of temperature for aqueous solutions are tabulated
in Appendix 7 of this volume.

Debye—Hiickel theory also predicts other thermodynamic properties. The
equation for the osmotic coefficient®® {equivalent to equation (11.69) for ~4)
is

11/2
m
1-—¢=C¢|z+z_[—l—+—'ln/5, (11.71)
where Cy = C,/3, and the osmotic coefficient ¢ is given by
In aj
=— . (11.72)
Mivm

In equation (11.72), M, is the molecular weight of the solvent, m is the molality,
and v =v, + v_ is the total number of ions in the solution resulting from the
dissociation. The limiting law equation for ¢ {equivalent to equation (11.70)
for v1} is

1—¢=Cylzez | I}/% (11.73)

¢ See Section 7.2c, Chapter 7. Principles and Applications.
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The Debye—Hiickel limiting law prediction™ of the volumetric and thermal
properties of the electrolyte solute are given by

V,-V3=C, (2> | zyz | 112, (11.74)

L,=Cy (2> | zyz_ | I}/, (11.75)

L=C; (2) | zyz_ | IL/2, (11.76)

where 7, the partial molar volume, L, is the relative partial molar enthalpy, and
J, is the relative partial molar heat capacity.

The Debye—Hiickel equations work only in very dilute solution. In Chapter
18, we will extend the description to include the Guggenheim and Pitzer
equations, which can be used in successively more concentrated solutions.

and

11.5 Thermodynamics of Mixtures

11.5a Change in the Thermodynamic Properties in Forming
Nonelectrolyte Mixtures®?

We start by describing and calculating A,,;;Z, the change in the thermodynamic
variable Z, when liquids (or solids) are mixed to form a solution. For the
process

mA + nB + - .- = Solution (11.77)

the change in Gibbs free energy AnixG is given by

AmixG=RT > nilna, (11.78)

TSee Section 7.2d, Chapter 7, Principles and Applications.
88 See Section 7.1, Chapter 7, Principles and Applications.
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where g; is the activity in solution. With
= VR, iXi,

where R ; is the (Raoult’s law) activity coefficient and x; is the mole fraction,
equation (11.78) becomes

AmixG =RT Z (niInx; 4 n;Ing ;).
i

For a mole of solution, this equation becomes

AmixGm=RT > _ (x;Inx; + x;In g, ). (11.79)

Thermodynamic Properties of Ideal Solutions: Equation (11.79) is the
starting point for deriving equations for Am,xZ the change in Z,, for forming
an ideal mixture.'® For the ideal solution, YR,i = 1 and equation (11.79) becomes

AmixGia=RT > x;Inx;. (11.80)
i

The change in other thermodynamic properties to form the ideal mixture are
easily obtained from equation (11.80). The results are

AmixSiy = —R Z xiInx;, (11.81)
AmixH =0, (11.82)
AmixUS =0, (11.83)

and
Amix V4 = 0. (11.84)

Effect of Temperature and Pressure on (Solid + Liquid) Equilibrium in an
Ideal Solution: Useful relationships for the ideal solution are the equations that

thSee Problem P11.6(b) and P11.6(c). For more details see Section 7.1a, Chapter 7, Principles and
Applications.
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relate the equilibrium temperature 7T (melting temperature) and equilibrium
pressure p (melting pressure) to the mole fraction x; of the component that freezes
from the solution to form a pure solid. This composition is often known as the ideal
solubility, since it represents the composition of a saturated solution at a particular
temperature and pressure. The equations that apply are'

Olnx; ApsHp, i

11.85
oT RT? ( )
14
and
dlnx; AgsVi. i
= CheTmi (11.86)
op - RT

where the pure solid that freezes from solution has a molar enthalpy of fusion
AgpsHpy, i and a molar volume of fusion Ags Vi, i.

Excess Thermodynamic Functions: The excess molar thermodynamic
function® Z,% is defined as the difference between AmixZm, the change in Zp,
for mixing components to form a real solution, and AmixZ}g, the change in Z,
to form the ideal solution. Thus,

ZE = AninZm — Amin ZY9. (11.87)

The combination of equation (11.87) with equations (11.79) to (11.84) gives

GE=RT ) xln,i (11.88)

HE = ApixHn, (11.89)

UE = AnixUn, (11.90)
and

VE = AmixVin- 119D

iiSee Section 8.2c, Chapter 8, Principles and Applications where integrated forms of equations
(11.85) and (11.86) can be found.

i See Section 7.1b, Chapter 7, Principles and Applications.
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The excess entropy is obtained from

HE_GE
Sﬁ::-ll;—Jﬂ. (11.92)

11.5b Relative Partial Molar Thermal Properties

The heat absorbed or evolved when liquids or solutions are mixed or diluted is
obtained from the calculation of AH for the solution process.X* The calculation
of AH is usually obtained from the relative partial molar enthalpy defined as

Li=H -H:, (11.93)

where H? is the enthalpy in the standard state. The L; can be combined to give
the total relative enthalpy L in a solution

L=3 nL (11.94)

from which AH can be calculated for the mixing process through the
relationship

AH=AL. (11.95)

Equation (11.95) can be applied to a variety of mixing processes. For mixing
involving a solute B with a solvent A, the different types can be summarized as

Integral enthalpy of solution:

n;B + n A = Solution (n;B + n1A).
Integral enthalpy of dilution:

ni A + solution (n;B + n;A) = solution’ [n;B + (n; + n)A].
Differential enthalpy of solution:

n,B + solution (m A + nyB) = solution [m A + (n2 + n%)B].

In the differential process, 7 and n; are much larger than ») so that the final
solution does not differ significantly from the initial solution.

kkSee Section 7.3, Chapter 7, Principles and Applications.
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11.5¢ Relative Apparent Molar Properties
An apparent molar property ¢Z is defined as'

Z--'anik .
¢Z = e (11.96)

n;

where Z is the total thermodynamic property, Z7 is the value for the pure
solvent, and n; and n are the moles of solvent and solute. For example,

H—an’[k
$H =——,
ny
V—InV’lk
PV =—-,
ny
and
Cp —n|C,’f|
¢C,=——2
4 1

The relative apparent molar enthalpy ¢L is given by™™
oL =¢H — ¢H°. . (11.97)

Thus, ¢L is the difference between the apparent molar enthalpy of the mixture,
and the apparent molar enthalpy in the standard state. Relative apparent molar
enthalpies can be used to calculate AH for a process through the relationship

AH=AL=nA¢L. (11.98)
11.6 Chemical Equilibrium
The generalized chemical reaction™

VA + 1A+ =UnAp U1 Appr + -0

'See Problem P11.7. For more details see Section 5.5d, Chapter S, Principles and Applications.
MM See Section 7.3c, Chapter 7, Principles and Applications.
" See Problem P11.8. For more details see Section 9.1, Chapter 9, Principles and Applications.
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can be written as

> uiAi=0, (11.99)
where the coefficients v; are positive for the products of the reaction and

negative for the reactants.
The condition for equilibrium in a chemical reaction is given by

> v =0, (11.100)

where the y; are the chemical potentials of the species in the reaction. The Gibbs
free energy change in the chemical reaction is given by

AG = A;G° + RTIn [[ af (11.101)
i
where A;G° is the Gibbs free energy change with reactants in their standard
states, and g; is the activity.

11.6a The Equilibrium Constant
At equilibrium, equation (11.101) applies so that A;G =0 and

AG° =—RTIn K (11.102)

with K, the thermodynamic equilibrium constant, equal to
k=1]] at (11.103)

The activities in equation (11.103) are now the equilibrium activities.

11.6b Alternate Forms of the Equilibrium Constant
For a gas-phase reaction, equation (11.103) can be written as

K= Hf,f"' (11.104)

where f; is the fugacity, expressed in bars with the usual choice of standard states.
Alternate forms of the equilibrium constant for the gas-phase reaction are®

K,= H Py, (11.105)

K=]] (11.106)

%°See Section 9.1a, Chapter 9, Principles and Applications.
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and

K.= ] ¥ (11.107)
i

In equations (11.105) to (11.107), p; is the partial pressure, ¢; is the molar
concentration, and x; is the mole fraction. These three equilibrium constants are
related to the thermodynamic equilibrium constant K through the relationship

K Ty Ty,
—=K,=K.-(RT)* =K, - p*, (11.108)
Iy

where J,, is the fugacity coefficient ratio given by

Jp= qu;"' and p is the total pressure (11.109)

At low pressures J, = | and equation (11.108) becomes
K=K,=K.-(RT)* =K, -p™. (11.110)

Alternate expressions can be written for reactions involving condensed
phases. For example, for the ionization of water

H,0(l) = H*(aq) + OH ~(aq) (11.111)

the thermodynamic equilibrium constant X is related to the ionization constant
for water

Kw=aH+a0H— (11112)

through the relationship
ay+aon- K,
g=HH _ v (11.113)

ay,o ay,o

With the usual choice of standard states
an,o = I'n,o(D), (11.114)

where I'y,0 is the activity coefficient for pure water. When the total pressure is
1 bar, I'y,0 becomes equal to one, in which case

K=K,.
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In a solution, a combination of equations (11.113) with (11.114) gives

2m +M -
k= o™ (11.115)

FHzO
where ~4 is the mean ionic activity coefficient in the solution.

11.6¢c Effect of Pressure and Temperature on the Equilibrium
Constant

The Effect of Pressure: The thermodynamic equilibrium constant is
independent of pressure. That is,

9K o, (11.116)
6pT

Alternate forms of the equilibrium constant do vary with pressure. For
example,

OnkK, A( V}d"a' -V)
5 = (11.117)
P ). RT
and
dln Ky | 24
=—, (11.118)
ap A RT

where V9@l jg the molar volume of the ideal gas, V; is the partial molar volume
in the gaseous mixture, and V' is the molar volume of the pure (liquid) water.

The Effect of Temperature: The effect of temperature on K is given byPP
o0lnkK AH®
= ) (11.119)
oT RT?
P

PP See Problem P11.8(b). For more details see Section 9.1b, Chapter 9, Principles and Applications.
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where A H° is the standard enthalpy change for the reaction. Over a small
temperature range, A H° can often be assumed as constant with temperature, in
which case, equation (11.119) becomes

K AH (1 1
n—=—— — | ———]. (11.120)

Over extended temperature ranges, A H° is expressed as a function of
temperature by integrating the equation expressing A.C, the heat capacity
change for the reaction as a function of temperature. The result is

AH® = AH + (Z u,-ai) T+ (Z Vibi) 72 _ (Z ViCi)

2 T

i

z),

3

+ (11.121)

where A Hj is a constant of integration, and a;, b;, ¢;, and d; are constants of the
heat capacity equation given by

C;‘ m,i=a+ bT + L‘iT—2 + diTz-

Values for a;, b;, ¢;, and d; can be found in tables.99
Substitution of equation (11.121) into equation (11.119) and integrating

gives an equation for In K of the form
Z l/,'b,' Z ViC;
Ran——I—(A—H—I—)+ Zu-a- InT+ i !
T ( ' ) 2 272

i

e

AN 72
6

where I is a constant obtained from integration of equation (11.119).

T+

+ TR (11.122)

99 See Table A5.5 of Appendix 5 to obtain values for the heat capacity coefficients needed for
equation (11.122).
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11.6d Enthalpies and Gibbs Free Energies of Formation

We represent AyH® and AyG° as the standard enthalpy and Gibbs free energy
changes for the reaction in which the chemical substance is formed from the
elements in their stable form, as they occur in nature at 7= 298.15 K.™ For ions
in solution, the values tabulated are relative to the standard enthalpy and Gibbs
free energy of formation of the H* ion being set equal to zero.*

The standard enthalpy and Gibbs free energy changes for a chemical
reaction can be calculated from Ay H° and A,G° data using the relationships

AH =) vAHY, (11.123)

i

and

AG =" vidGy (11.124)

1

11.7 Electrochemical Cells
For the cell reaction given by

VAr+ Ayt = UnAm + Un 1 Ampr 0
or

Z V,'A,' = 0,

the reversible voltage E of the cell is related to the Gibbs free energy change by"

A.G = —nFE, (11.125)

See Section 9.2, Chapter 9, Principles and Applications. Values for A/H° and AsG° at
T =298.15 K for selected substances and ions are tabulated in Tables AS5.2 and AS5.3 of Appendix
5 of this volume, with some AcH° values also given in Table A5.1 of the same appendix.

5 See Section 9.2b, Chapter 9, Principles and Applications. Values for the standard enthalpies and
Gibbs free energies of formation of selected ions at 7= 298.15 K are summarized in Table AS5.3
of Appendix 5 of this volume.

*See Problem P11.9. For more details see Section 9.4, Chapter 9, Principles and Applications.
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where n is the moles of electrons transferred in the cell reaction. Under the
standard state conditions the relationship becomes

A,G° = —nFE®°, (11.126)

where E° is the voltage of the cell with reactants and products in their standard
states. The relationship of E to the activities of the reactants and products in the
cell reaction is given by the Nernst equation

RT .
E=E°——ZIn [[a". (11.127)
nF i

Other thermodynamic variables can be related to the voltage E and its
temperature and pressure derivatives. They are as follows:

OE
AS=nF | —1, (11.128)
oT
/4
(6E)
AH=—-nF |E-T| — s (11.129)
oT
{4
A,C, =nFT O’E (11.130)
r =n —_— s .
i oT?
P
and
OE
AV=—-nF|—|. (11.131)
ap A

The equilibrium constant X for the cell reaction can also be obtained from E°
through the relationship

RTInK = nFE®. (11.132)



Summary of Thermodynamic Relationships 31

11.8 Calculations From Statistical Thermodynamics

11.8a The Boltzmann Distribution Equation

The calculation of the thermodynamic functions of a substance is based upon
the™ Boltzmann distribution equation, which predicts the most probable
distribution"¥ of molecules (or atoms) among a set of energy levels. The
equation is

n; n i
e -2, (11.133)
g &o kT

where #; is the number of molecules in the energy level ¢; and g; is the statistical
weight factor (degeneracy) of that level, while ny and gy are the same quantities
for the ground state.

In the calculation of the thermodynamic properties of the ideal gas, the
approximation is made that the energies can be separated into independent
contributions from the various degrees of freedom. Translational and electronic
energy levels are present in the ideal monatomic gas.** For the molecular gas,
rotational and vibrational energy levels are added. For some molecules, internal
rotational energy levels are also present. The equations that relate these energy
levels to the mass, moments of inertia, and vibrational frequencies are
summarized in Appendix 6.

11.8b The Partition Function
The partition function™ for a set of energy levels in an atom or molecule is given
by

6.
z=)_ giexp —é . (11.134)

" See Section 10.3, Chapter 10, Principles and Applications.

Y For Avogadro’s number of molecules, fluctuations from the most probable distribution are very
small, and the Boltzmann distribution equation can be relied upon to predict the correct
distribution.

“%The electronic energy levels contribute to the thermodynamic properties only at high
temperatures, or if unpaired electrons are present.

**See Section 10.4, Chapter 10, Principles and Applications.



32 Chemical Thermodynamics: Advanced Applications

Combining equation (11.134) with (11.133) gives

- . (11.135)

The partition function tells us the fraction, n;/ N, of the molecules in energy state
¢;. It is a measure of the extent to which energy is partitioned among the
different states. The partition function can be related to the thermodynamic
properties Un, Hm, Cy,my, Cp,ms Sm,» Am, and Gp. These relationships are
summarized in Appendix 6.

11.8¢ Relationships for Calculating the Thermodynamic
Functions of the Ideal Gas

Expressions for the partition function can be obtained for each type of energy
level in an atom or molecule. These relationships can then be used to derive
equations for calculating the thermodynamic functions of an ideal gas. Table
11.4 or Table A6.1 in Appendix 6 summarize the equations for calculating
the translational, rotational, and vibrational contributions to the thermo-
dynamic functions, assuming the molecule is a rigid rotator and harmonic
oscillator.¥Y Moments of inertia and fundamental vibrational frequencies for
a number of molecules are given in Tables A6.2 to A6.4 of Appendix 6. From
these values, the thermodynamic functions can be calculated with the aid of
Table 11.4.

For diatomic molecules, corrections can be made for the assumption used in
the derivation of the rotational partition function that the rotational energy
levels are so closely spaced that they can be considered to be continuous. The
equations to be used in making these corrections are given in Appendix 6. Also
given are the equations to use in correcting for vibrational anharmonicity and
nonrigid rotator effects. These corrections are usually small.”

11.8d Contributions of Internal Rotation to the Thermodynamic
Functions of the Ideal Gas

For some (nonlinear) molecules, a vibrational degree of freedom may be

replaced by a rotation of parts of the molecule about a bond. The contribution

of this internal rotation to the thermodynamic functions is determined by the

¥ See Problem P11.10. For more details see Section 10.7, Chapter 10, Principles and Applications.

Z We refer the reader to Section 10.7b of Principles and Applications for the procedures to follow
and the information that is needed to make these corrections.
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Table 11.4 Thermodynamic functions of an ideal gas (in J - K~! - mol ™)

(Use R =8.314510 J - K~' - mol~! and SI units for pressure, temperature, and all
molecular data)

Translation

3 5 5 (2rk)*?
Sm,trans =— RInM+~ RInT— Rlnp+ |- R+ Rln + RInR
2 2 2 h3N5/2

- s

+172.3005

Gnm — HO,m 3 5 27Tk)3/2
—_— =—~RInM—-RInT+Rlnp+ | — RIn — RInR
T | 2 2 h3N5/2
rans

Um - Uo,m 3
( T ) =5 R= (CVy m)trans
trans

—151.5142
Hp — Hom 5
(—_T__) =£ R= (CPy m irans
trans

Rotation

(Rigid Molecule Approximation)
Linear Polyatomic or Diatomic Molecules:

82k
S, =RInT+ Rinl~ Rino+ |Rin | —— | + R

s

+87;.,3950
Gy — H, 82k
Jm MY _RInT-RInI+Rlno+ | —Rln
T ‘ h?
ro

—869.0805

Un — U H, — H
m 0,m — m 0,m - (Cm)rot. =R
T T
rot. rot.

(continued)
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Table 11.4 Continued

Nonlinear Polyatomic Molecules

h3 2

- s

3 1 8n2(2nk)¥? 3
Sm,,m,=-2-RlnT+5RlnIAIBIC—Rlna+ Rn——~ _4+_R

+1320.8515

Un—Upm Hy, — Hyn 3
- =} — _ (C) == R
( T ) ( T ) ° 2
rot. rot.

Gm — Uo,m 3 1 8w 2(2mk)*/2
—_—— =—-RInT—- RIlnlplglc + Rno+ | -Rln———
T 2 2 h3
rot O &,
~1308.3797

Vibration (Harmonic Oscillator Approximation)

hed; Wi .. -1
Sm,vib =R —In(l —exp(—x)) |; x; = —E = 1.43877—;(use wiincm™)

(=),
(tege) - (Fogtte) -n

& xlexp(x) ~ .
(Cmyvib =R —_ where n = (31— 6) or (3n — 5), with 5 equal to the

=i lexp(x) = 1> pumber of atoms in the molecule.

n X;

n kT .
Z RIn(1 — exp(—x)) = Z ( - Rln———_—) (High temp. approx.)

i=1 i=1 hew;
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magnitude of kT, the energy available to thermally excite the molecule, relative
to Vy, the height of the potential barrier.?*® For large V), the rotation becomes a
torsional motion and is treated as a vibration.

The relationship between the internal rotational energy levels and internal
moments of inertia in the molecule are given with the other energy level
expressions in Appendix 6. Starting with the energy level equation, a partition
function can be written and the contribution to the thermodynamic functions
can be calculated.

For restricted rotation, the thermodynamic functions can be calculated as a
function of the height of the potential barrier V. Pitzer has assumed a potential
of the form

1
V,=E Vo(l — cos nsg), (11.136)

where ¢ is the rotational angle, ¥ is the height of the potential barrier and nyis
the number of equivalent orientations. The resulting energy levels and hence the
partition function, are complicated, but they can be evaluated. Pitzer? tabulated
results for the various thermodynamic quantities as a function of two variables:
Vo/RT and 1/zs, where zy is the value the partition function would have for a
free rotator (Vo = 0). His table, which is reproduced as Table A6.6 of Appendix
6, can be used to calculate the internal rotation contribution to the
thermodynamic properties.

11.8e The Debye Heat Capacity Equation

In deriving the Debye heat capacity equation, one assumes that the atoms in an
atomic solid are vibrating with a range or frequencies v varying from v =0to a
maximum v = vp,. The resulting equation for calculating Cy n, is

Cvm 3 oo/T  x%exp (x
ym _ 3J _Xexp(x) dx, (11.137)
3R (@p/T)° Jo {exp(x)—1}
where
h (11.138)
X=— )
kT

422 See Section 10.7c, Chapter 10, Principles and Applications.



36 Chemical Thermodynamics: Advanced Applications

with k as the Boltzmann constant, / as Planck’s constant, and fp as the Debye
temperature given by

0p =—-. (11.139)

The integral in equation (11.137) must be evaluated numerically. Table A6.7 of
Appendix 6 gives the heat capacity and other thermodynamic properties as a
function of 6p/T. It can be used to obtain values for the thermodynamic
properties as a function of the temperature.

High-temperature and low-temperature limiting values can be obtained
analytically. At high-temperatures, the limiting value is Cy m =3R. At low
temperatures, the heat capacity varies with temperature according to the
relationship

3
1274 (T

5 \6p

Cym= (11.140)

We have now completed our summary of the thermodynamic relationships
developed in the first volume of this series, Chemical Thermodynamics:
Principles and Applications. We will use these relationships as we apply
thermodynamics to the understanding and description of chemical processes.
We refer those who are interested in the details of the principles leading to the
derivations and descriptions of these relationships to the earlier volume.
References to the appropriate sections are given in the footnotes of this
chapter.

Problems

P11.1 The first of the four fundamental equations of Gibbs {equation
(11.10)} is obtained by combining equation (11.6)}, the statement of
the First Law applied to the system, with equation (11.7), the
Second Law statement for a reversible process, again applied to the
system, and equation (11.8) that calculates reversible pressure-
volume work. Start with equation (11.10) and the defining
equations for H, A, and G {equations (11.1), (11.2), and (11.3)},
and derive the other Gibbs equations {equations (11.11), (11.12), and
(11.13)}.
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P11.2 (a) Start with the Gibbs equations and the appropriate Maxwell
relation®® to show that

as\  fov
oT |
§4

BpT

(b) Start with the appropriate Gibbs equations and the result in (a) to

show®* that
OH oV
ap | oT

T i4

Most of the relationships summarized in Table 11.1 are obtained in
this manner.

(c) Start with the relationship G = H — TS, divide by T, differentiate,
and make substitutions as needed from Table 11.1 to derive the
Gibbs—Helmholtz equation

&(G/T) H

oT T2
4

bbb When a differential of the form dZ = M dX + N dY is exact, the coefficients are related by

(o))

This relationship is known as the Maxwell relation.

¢To derive the equation that follows, you will need to make use of the relationship that a
total derivative with a specified variable held constant is equal to the partial derivative. For
example,

(%))
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(d) The Joule—Thomson coefficient y; 1. is defined as

oT

mr=1—1.
Op ;

Use the equations summarized in Table 11.1 to showdd that

OVm

pr=—— Vo =T [ —
Com | aT
P

P11.3 (a) Start with the Gibbs—Duhem equation written in the form of
equation (11.23)

ndpy + nadpp =0,

and substitute vapor fugacity for chemical potential, using the
relationship in equation (11.39), to obtain the Duhem-Margules
equation

Olnf dlnf;
X = X3

Ox 1 6)62
p.T

p. T

(b) Start with the Duhem-—Margules equation and show that if
component 1 obeys Raoult’s law over the entire composition
range, then component 2 must do likewise. In other words, a
sufficient condition for ideal solution behavior is that one of the
components must obey Raoult’s law over the entire range of
composition.

4dd To derive this expression, you will need to make use of the following relationship between
partial derivatives
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P11.4 (a) Start with the condition for phase equilibrium for a pure
substance given by equation (11.24), differentiate, and combine
with the appropriate Gibbs equation, to derive the Clapeyron
equation

dp AS. AH,

dT AV, TAVy

(b) Start with the Clapeyron equation applied to (vapor + liquid)
equilibrium and derive the Clausius—Clapeyron equation

Inp=-— —7: + const.

In making the derivation, you will need to assume that (i) the molar
volume of the liquid is negligible when compared to that of the gas;
(i) the gas behaves ideally; and (iii) the molar enthalpy of
vaporization is constant with temperature.

P11.5 Start with the defining equations for the fugacity f and the fugacity
coefficient ¢ {equations (11.36), (11.37), and (11.38)}, along with the
relationships given in Table 11.1, and show that ¢ is related to the
compressibility factor z by equation (11.44)

r ] -z
lnqb:—J
o p

dp.

P11.6 (a) Start with equation (11.56) relating chemical potential to activity,
differentiate with respect to p with T held constant, and apply
relationships given in Table 11.1 to show that activity varies with
pressure according to the equation

Blnai [—/,'
o | RT

T

(b) Assume a Raoult’s law standard state and an ideal solution, and
start with equation (11.56) to show that

wi — pi= RTInx;.
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P11.7

P11.8

(c) Start with the equation in (b) and show that for the mixing of
components to form a mole of solution, the ideal Gibbs free energy
change, ideal enthalpy change, and ideal entropy change are given by

AmixGig = RT Z Xi lnx,~,
i
AmixHig =0,

and
Amixsig =—R Z Xi lnx,-.
i

Start with equation (11.96) applied to the apparent molar volume ¢V,
solve for V, and differentiate to show that ¢V is related to the partial
molar volume of the solute by

_ (6¢V)
Viy=¢V+m|— )
om
Typynl

where m is the molality (moles of solute per fixed amount of solvent).
(a) Start with equations (11.56) and (11.99) and derive equation (11.101)

AG = A:G° + RTIn ] a7
i

(b) Apply the condition for chemical equilibrium {equation (11.100)}
to equation (11.101) and show that
A/G° =~ RTInK,

where K is the equilibrium constant for the reaction. Divide this
equation by T, differentiate with respect to T, and use the Gibbs—
Helmholtz equation to show that '

olnkK AH®
oT |  RT?’
4
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P11.9 (a) Start with equation (11.101) and the relationship between A,G, the
free energy change for a cell reaction, and the voltage E of the cell
{equation (11.125)}, and derive the Nernst equation {(equation
(11.127)}.
(b) Use equation (11.125) and the relationships in Table 11.1 to derive
the Jollowing equations relating the cell voltage to the thermo-
dynamic properties:

5]
ArS = nF he— y
oT
f
15)))
AH=—-nF|E-T| — ,
oT
P
9*E
AGC = nFT e 3
012
P
and
OE
AV =-nF|—].
op a

P11.10 Use the relationships in Table 11.4 and the molecular data in Tables
A6.2 to A6.4 of Appendix 6 (along with a table of atomic weights) to
calculate
(a) The entropy of ideal N, gas at T=298.15 K and p =0.100 MPa.
(b) The heat capacity of N,O ideal gas at T=1000 K and

p = 1.000 MPa. (N,O is a linear molecule.)
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Chapter 12

Thermodynamics of Other
Variables

In Chapter 11 we summarized relationships among the thermodynamic
variables® p, V, T, U, S, H, A, and G, along with the composition variables
ny, ny .. In this chapter we introduce additional variables to tie our
thermodynamic equations to other types of processes. Consider as a simple
example, the stretching of a rubber band® as shown in Figure 12.1. If one takes
the rubber band and introduces a stress by hanging a weight on it as shown in
Figure 12.1a, and then blows hot air on the rubber band, one discovers that with
the constant force, the rubber band contracts with heating.®

Thermodynamics can be used to understand this effect. We start with the
First Law relationship

dU = éq + ow. (12.1)
In the reversible process

6g=TdS (12.2)
and

bw=—pdV+fdl (12.3)

where —p dV is the pressure~volume work and fd/ is the work involved in
using a force f to change the length of the rubber band by an amount d/.

4 We also included in the earlier discussion, the application of thermodynamics to electrochemical
cells, for which we introduced into our thermodynamic equations the work involved when a
quantity of electricity flows through a cell against an electrical potential or voltage.

®One must use natura! rubber. A synthetic rubber band will not respond like the real thing.

¢Intuitively, one would probably expect the rubber band to sag and stretch with heating.
Thermodynamics predicts otherwise, a prediction that is realized.
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Figure 12.1 Heating a rubber band stretched by a weight causes the band to contract.

Substitution of equations (12.2) and (12.3) into equation (12.1) gives
dU=TdS—pdV+fdl (12.4)
We can add d(p ) and subtract d(7'S) from both sides of equation (12.4) to get
dG=-SdT+VdP+fdl. (12.5)
At constént T and p, equation (12.5) becomes
dG=fdl

This equation is a specific example of a more general expression that relates the
Gibbs free energy change to work,

dG = 6w/, (12.6)

where w’ is work other than pressure—volume work that occurs in a reversible
constant temperature and constant pressure process.



Thermodynamics of Other Variables 45

Returning to equation (12.5), we can use the Maxwell relationships to

write
oS 5]
— = — -f- . (12.7)
ol orT
», T p.

But from the properties of the exact differential,

)

.6{ = — . (12.8)
or A ol
of A
Substitution of equation (12.8) into (12.7) gives
( 8S) ~ BTf
ol . ﬂ
af A
= (ﬁ) (_6[) . (12.9)
or ] \ ol
f T

If one assumes that the rubber band obeys Hooke’s law, we can write
f=kl

where k is a constant so that

(f’f) k.
ol
T
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Substitution into equation (12.9) gives

(as) (61)

Pl Z). (12.10)
al aT

T 'f

From our experiment, we know that (8//0T),< 0 since the length decreases as
we increase the temperature. Hence, (0S/0/)r<0. This relationship can be
understood from a molecular point of view. Rubber consists of long polymer
molecules held together by sulfur crosslinking. Stretching the rubber lines up the
strands of polymer, which increases the order and decreases the entropy. This
decrease in entropy releases heat that increases the temperature of the rubber
until the heat is removed.

Equation (12.4) can be generalized to include any type of work that may
occur in a process. We can write

dG=-SdT+Vdp+ Y _ ¢ dg (12.11)

where d§; is a generalized displacement against a generalized force ¢;. When
chemical work is involved, equation (12.11) becomes

dG=—SdT+ Vdp+ > pudn;

where dn; is the displacement of moles in a chemical process resulting from a
chemical potential y;.

Equation (12.11) can be derived in a different manner that helps in
understanding the nature of ¢;. We start with

G=f(p, T7§h§27'")

so that

oG oG oG
dG=|—] dT+|—] dp+ > |— de;. (12.12)
oT Op 7\ 0%
psE T,{ p!T)§i¢i
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Comparing coefficients between equations (12.11) and (12.12) shows that

oG
(—) =S (12.13)
oT
P € )
(66) V (12.19)
dop ¢

(86) =¢ (12.15)
¢ - ‘
Py T, &z

Thus, the generalized potential is the derivative of G with respect to the
generalized displacement as given by equation (12.15).

Our plan is to apply equation (12.11) {or equation (12.12)} to a variety of
processes. In each case, we will write an expression for ¢; d¢; that is consistent
with the work done in the process.

12.1 Effect Of Gravitational Fields
A gravitational field affects the chemical potential of a system. The work

required to displace a sample vertically against the earth’s gravitational field is
given by

éw' = mg dh,

where mg is the force, with m as the mass of the sample, g is the gravitational
constant, and di is the displacement against the force. Hence, d§é = dh and
¢ =mg, and equation (12.11) for one mole of sample (dG =du, m = M, the
molecular weight) becomes

dp=—Sm dT + Vi, dp + Mg dh. (12.16)

12.1a Effect of Height on Atmospheric Pressure

Equation (12.16) can be used to derive an expression relating the change in
atmospheric pressure to the distance above the surface of the earth. We will
assume that temperature is constant (d7 = 0), and that equilibrium is present so
that du = 0, in which case, equation (12.16) becomes

Vm dp+ Mg dh =0.
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If we assume the atmosphere is an ideal gas, we can write

Substituting into the above equation gives

RT
—dp+ Mg dh=0.
4

Integrating, assuming g does not change with & gives

)4 Mgh
In—=-—
Po RT
or
P = p.exp(—Mgh/RT) (12.17)

where p, is the pressure at the surface of the earth (# = 0). Equation (12.17) is
known as the barometric formula. It predicts an exponential decrease in pressure
with height. For example, at a height of 9 km (approximately the elevation at
the top of Mount Everest), equation (12.17) calculates a value p/p ,=0.32. In
making this calculation,? we have assumed T is constant at 273.15 K and the
average molecular weight of air is 0.029 kg - mol ',

12.1b Effect of Gravity on Composition

In a solution, the equilibrium concentration (mole fraction x;) of solute is
affected by the gravitational field and varies with height 4. To find this effect we
write

p2=f(p, T, h, x2) (12.18)

4 The barometric formuta is not very reliable for calculating the ““actual’ atmospheric pressure
p, since T is far from constant with elevation, and M and g also vary. It gives a poor
approximation at best. Experimental values for p/p, at the top of Mount Everest are
approximately 0.31. The agreement with the value calculated above from the barometric
formula is somewhat fortuitous.
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where u; is the chemical potential of the solute. Starting with equation (12.18),
we can write

7] 0 g,
dm= 2] ap+ |22 ar+|Z22]
op aT oh
T, h» X2 P, ,’7 X2 P, T7 X2

19
N (L) o 1219
BX2
p, T, h

where du; is the change in chemical potential. At constant temperature, d7 =0,
and at equilibrium, dy, = 0. Also, (Fp2/0p)r 4, x, = V,, the partial molar volume
of the solute in the solution, and from equation (12.16), (Ou2/0h), r, ., = Mag,
where M, is the molecular weight of the solute. Substitution of these relationships

into equation (12.19) gives

— Oz
Vodp+ Mg dh+ | — dx, =0. (12.20)
Ox T.p, h
s Ps

Equation (12.20) can be applied to an ideal solution for which

and

The hydrostatic pressure i