OXFORD SCIENCE PUBLICATIONS

BONDING AND
STRUCTURE OF

MOLECULES
AND SOLIDS

DAVID PETTIFOR

ko

o



Bonding and Structure

of Molecules
and Solids

W ISWA W W ililwAw

D. G. PETTIFOR

Isaac Wolfson Professor of Metallurgy
Department of Materials
University of Oxford

CLARENDON PRESS - OXFORD

1995



Oxford University Press, Walton Street, Oxford 0X2 6DP

Oxford New York
Athens Auckland Bangkok Bombay
Calcutta Cape Town Dar es Salaam Delhi
Florence Hong Kong Istanbul Karachi
Kuala Lumpur Madras Madrid Melbourne
Mexico City Nairobi Paris Singapore
Taipei Tokyo Toronto

and associated companies in
Berlin 1badan

Oxford is a trade mark of Oxford University Press

Published in the United States
by Oxford University Press Inc., New York

© D. G. Petzifor, 1995

All rights reserved. No parts of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, without the prior permission in writing of Oxford
University Press. Within the UK, exceptions are allowed in respect of any
Jfair dealing for the purpose of research or private study, or criticism or
review, as permitted under the Copyright, Designs and Patents Act, 1988, or
in the case of reprographic reproduction in accordance with the terms of
licences issued by the Copyright Licensing Agency. Enquiries concerning
reproduction outside those terms and in other countries should be sent to
the Rights Department, Oxford University Press, at the address above.

This book is sold subject to the condition that it shall not,
by way of trade or otherwise, be lent, re-sold, hired out, or otherwise
circulated without the publisher’s prior consent in any form of binding
or cover other than that in which it is published and without a similar
condition including this condition being imposed
on the subsequent purchaser.

A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data
Pettifor, D. G. (David G.), 1945-

Bonding and structure of molecules and solids | D.G. Pettifor.
1. Solid state physics. 2. Electronic structure. 3. Molecules.
4. Chemical bonds. 5. Composite materials—Bonding. 1. Title.
QC176.P443 1995 541.2'2—dc20 95-32183

ISBN 0 19 851787 4 (Hbk)
ISBN 0 I9 851786 6 (Pbk)

Typeset by Integral Typesetting, Gt. Yarmouth, Norfolk
Printed in Great Britain by Bookcraft (Bath) Ltd
Midsomer Norton, Avon



Preface

‘As simple as possible but not simpler’
Albert Einstein

Einstein’s caveat is indeed an apt warning for those who wish to explain the
structure of molecules and solids within a simple theory or set of rules. The
difference in energy between competing structure types is very small, often being a
mere hundredth or thousandth of the total cohesive energy. Simple valence bond
arguments, for example, can rationalize the well-known 8-N rule for the structures
of sp-valent elements by assuming that single covalent bonds are formed between
neighbouring atoms, thereby completing the stable octet shell of electrons about each
atom. But how do we account for the many exceptions to the 8-N rule such as group
IV carbon and lead being most stable in the non-fourfold coordinated graphitic and
cubic close-packed structure types respectively? The common assertion that the
graphitic structure is stabilized by the formation of sp? hybrids on the carbon atoms
is far too simplistic as the carbon atoms could equally well have formed sp3
hybrids to stabilize the diamond structure instead. In practice, the most stable
structure is determined by a delicate balance between opposing terms in the total
binding energy.

The ab initio prediction of which structure is the most stable by computing
and comparing total energies appears at the outset to be a formidable task.
The fundamental equation of quantum mechanics, the Schrédinger equation, can be
solved exactly for the hydrogen atom. Its solution for the hydrogen molecule and
for all other systems is a many-body problem. The wave function is now no longer
dependent on the coordinates of a single electron but on the coordinates of all the
electrons. Unfortunately, the traditional Hartree—-Fock approximation to solving the
many-body Schrédinger equation was found to be insufficiently accurate for reliable
structural predictions to be made for bulk materials, especially metals. A breakthrough
occurred, however, in the mid-1960s when Pierre Hohenberg, Walter Kohn, and Liu
Sham proved that the total ground state energy of a many-electron system is a
functional of the density. This seemingly simple result, by focusing on the electron
density rather than the many-body wave function, allowed them to derive an effective
one-electron Schrodinger equation which could be solved within the so-called local
density approximation. Extensive computations during the past two decades have
demonstrated the accuracy of local density functional theory in predicting the
structural properties of a wide range of ionic, covalent, and metallic systems.

This success of density functional theory allows the whole question of bonding
and structure to be formulated within an effective one-electron framework that is so
beloved by chemists in their molecular orbital description of molecules and by
physicists in their band theory description of solids. In this book I have tried to
follow Einstein’s dictum by simplifying the one-electron problem to the barest
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essentials necessary for understanding observed trends in bonding and structure. In
particular, the chemically intuitive tight binding approximation is shown to provide
a unified treatment of the covalent bond in small molecules and extended solids,
whereas the physically intuitive nearly free electron approximation is found to give a
natural description of the metallic bond in sp-valent metals. Emphasis is placed on
recent theoretical developments that link structural stability to local topology or

connectivity of the lattice through the moments of the electronic density of states.
This moments approach creates a powerful bridge between the physicists’ view of
the global electronic structure in reciprocal space and the chemists’ view of local
bonding in real space. We will see that it leads to a fundamental understanding of
the structural trends within the periodic table for the elements and within the AB
structure map for binary compounds, experimental trends that are presented and
discussed in the first chapter.

This book is directed at final-year undergraduates and first-year postgraduates in
physics, chemistry, and materials science who have already attended introductory
courses on quantum mechanics and molecular orbital and/or band theory. I assume,
therefore, that the reader is familiar with concepts such as the covalent bond, hybrid
orbitals, and electronegativity. However, in order to understand the structural trends
- that are observed amongst the elements and binary compounds, it is necessary not
only to quantify these old concepts but also to introduce new concepts that extend
our physical and chemical intuition. Both the quantification of old concepts
and the development of new concepts requires the reader to take the plunge
and to be swept along by the internal logic and predictive power of the simple models
presented in this book. Most of the illustrative examples in the text require no more
mathematical ability than the solution of a quadratic equation. By working through
these examples readers will gain insight and experience that allows the newly learned
concepts to become part of their everyday intuition and vocabulary. This intuition
may be further honed by problems at the end of the book. The plunge required for
understanding the elegant second-order perturbative treatment of the structure of
sp-valent metals is deeper and more bracing than that needed for solving a
2 x 2 secular equation, so that Chapter 6 could be omitted on a first reading
of the book.

This book is the product of many people’s input and ideas. The importance
of my past and present research students and postdocs is reflected in the credits to
many figure captions. I should, however, like to mention in particular Nguyen Manh
Duc and Paul Lim who helped with a number of the illustrations. I should also like
to acknowledge the very helpful comments of Sir Alan Cottrell, Volker Heine, and
John Jefferson on the first draft of this book which had been magnificently typed by
Béatrice May from a nearly illegible original text. And finally my warmest thanks to
C. T. Liu who was amongst the first to appreciate the beauty and usefulness of the
phenomenological structure maps, Masato Aoki who kept faith with the bond order
potentials, Adrian Sutton who shares the dream of modelling materials across all the
length scales, and Di Gold who provided love and support during the summer of *94
when this book was written.

Oxford D.G.P.
June 1995
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Note on the choice of units

The energy and length scales that are appropriate at the atomic level are
those set by the 1onization potential and first Bohr radius of the hydrogen
atom. In SI units the energy and radius of the nth Bohr stationary orbit

are given by
1 me*
E=-—-——|——= 1
n’ (327:23%&2) M
and
2
a, = (4’“"’5 )nz )
me

where m is the electronic mass, e is the magnitude of the electronic charge,
&0 is the permittivity of free space, and 4 is Planck’s constant divided by 2=
Substituting in the values m = 9.1096 x 103" kg, e = 1.6022 x 10~ *° C,
dmeoe? = 107, ¢ = 29979 x 10° m/s and ki = 1.0546 x 1073* Js, we have

E,=-Z J 3)

and
a,= 52918 x 1070’ m 4)

Therefore, the ground state of the hydrogen atom, which corresponds to
n=1, has an energy of —2.18 x 107! J and an orbital Bohr radius of
0.529 x 107 1%m or 0.529 A. The first value defines the Rydberg unit (Ry),
the latter one the atomic unit (au).

Thus, 1n atomic unts we have

E,= —n"2Ry (5
and
a, =n?au (6)

where ] Ry=2.18 x 10718 J=13.6eVand 1 au=529 x 10" ' m=0.529 A
It follows from (1), (2), (5), and (6) that #%/(2m) = 1 and e?/(4ne,) = 2 in
atomic units.

The total energy of the molecule or solid will usually be given in either
Ry/atom or eV/atom. Conversion to other units may be achieved by using
1 mRy/atom = 1.32 kJ/mol = 0.314 kcal/mol.
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Experimental trends in bonding
and structure

1.1. Introduction

The crystal structures of the elements display well-known trends within
the periodic table. On a broad scale the close-packed structures that are
characteristic of the metallic bond on the left-hand side give way to the more
open structures of the covalent bond on the right-hand side. On a finer scale,
specific trends are observed such as the hcp — bec — hep — fec sequence
across the transition-metal series or the 3-fold coordinated graphitic - 4-
fold coordinated diamond — 12-fold coordinated fcc sequence down group
IV from C to Pb. The crystal structures of isostoichiometric binary com-
pounds also display well-defined trends when the experimental data base is
presented within a two-dimensional structure map. In addition to structural
domains reflecting close-packed metallic or open covalent bonding, ionic
domains of stability appear, such as NaCl and CsCl regions amongst the
alkali halides.

This chapter presents the experimental structures of the elements and
binary AB compounds and highlights the dominant structural trends. Each
structure type will be characterized not only by one of the fourteen Bravais
lattices, which defines the basic building block for global three-dimensional
periodicity, but also by the local coordination polyhedron about each
non-equivalent site, which reflects the bonding type. Further, since our
understanding of the nature of the chemical bond in solids must be
compatible with a theory of the bonding and structure of molecules, the
ground-state structural data base on trimers and elemental sp-valent
molecules with up to six atoms will be given."

1.2. Structures of the elements

Table 1.1 gives the structures of the elements at zero temperature and
pressure. Each structure type is characterized by its common name (when
assigned), its Pearson symbol (relating to the Bravais lattice and number of
atoms in the cell), and its Jensen symbol (specifying the local coordination
polyhedron about each non-equivalent site). We will discuss the Pearson
and Jensen symbols later in the following two sections. We should note,
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Structures of the elements 3

(a) (b) (©

Fig. 1.1 The three commonest elemental structure types: (a) face-centred cubic,
(b) hexagonal close-packed, and (c) body-centred cubic. From Wells (1986).

however, that the periodic table has been arranged slightly differently from
usual: the noble gases appear in the first column rather than in the last; Be
and Mg have been grouped with Zn, Cd, and Hg rather than with the alkaline
earths Ca, Sr, and Ba; and the divalent rare earths Eu and Yb have been
assigned under the alkaline earths. We will see that this arrangement of the
periodic table leads to a simple scheme for presenting the structural data
on isostoichiometric binary compounds within a single two-dimensional
structure map.

The most frequently occurring structure types are the close-packed
metallic lattices hcp (hexagonal close-packed), fcc (face-centred cubic), and
bee (body-centred cubic) with packing fractions of 0.74, 0.74, and 0.68
respectively, where the packing fraction equals the ratio of the volume
occupied by touching hard spheres to the total crystalline volume. Their
crystal structures are drawn in Fig. 1.1 where the local bonding arrangement
has been emphasized. We see that fcc and hcp have local coordination
polyhedra comprising twelve nearest neighbours. On the other hand, bec
has fourteen nearest neighbours as the six second nearest neighbours are
only 14% more distant than the eight first nearest neighbours. As is well
known the hcp and fcc lattices can be built up by stacking close-packed
layers on top of one another in the sequences ABABAB. .. and ABCABC. ..
respectively, the former being clearly apparent in Fig. 1.1(b). The earlier
lanthanides and later actinides take the stacking sequence ABACABAC. ..
whereas samarium takes the sequence [ABABCBCAC]JAB. . ., the structure
repeating itself every nine layers. The environment of each successive layer
in the La structure type changes from cubic (c) to hexagonal (h) to cubic
(c) ... so that the stacking sequence can be denoted chchch ... whereas in
the Sm structure type the sequence reads chhchhchh.... Thus the La
structure type can be thought of as being 50% cubic whereas the Sm structure
type is only 33%.

The most frequently occurring open structures types are shown in Fig. 1.2.
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O—_“O X , (halogens)

(V1)

S; Se, Te

(VD

diamond.
Si,Ge Sn{grey)

Fig. 1.2 The commonest open structure types, illustrating the 8-N rule. From
Wells (1986).

The halogens in group VII or column 17 of the periodic table crystallize as
tightly bound dimers that are held together only weakly by van der Waals
forces. They may, therefore, be described as having a local coordination of 1.
The chalcogenides in group VI are famous for their numerous polymorphs.
Sulphur in its most stable form comprises eight atom puckered rings, whereas
selenium and tellurium consist of infinite helical chains. They may be
described as having a local coordination of 2, although the interchain
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coupling in Se and Te is not negligible. (The interchain distance is 459 and
24% longer than the intrachain distance in Se and Te respectively.) The
pnictides in group V also form numerous polymorphs. Metastable white
phosphorus condenses from the vapour as regular tetrahedral P, molecules,
whereas arsenic, antimony and bismuth take the stable puckered layer
structure which is shown in Fig. 1.2, Conventionally the pnictides are
assigned a local coordination of 3 even though the interlayer distance is only
15% larger than the intralayer distance for antimony and bismuth. Carbon,
silicon, germanium, and tin in group IV take the diamond structure with its
local coordination of 4. (The most stable form of carbon is, of course,
three-fold coordinated graphite.) These structure types illustrate the 8-N rule,
namely that the number of bonds (or local coordination) equals § minus
the number of the periodic group. This rule may be rationalized by assuming
that single covalent bonds are formed with the neighbours, thereby completing
the stable octet shell of electrons about each sp-valent atom.

1.3. Lattice types: the Pearson notation

The structure types in Table 1.1 have been characterized by their Pearson
symbol which gives the Bravais lattice followed by the number of atoms in
the unit cell. There are only 14 different space or Bravais lattices that are
compatible with an infinitely repeating three-dimensional crystal. The basic
building blocks or unit cells of the Bravais lattices are shown in Fig. 1.3.

Depending on their symmetry they may be grouped into seven different
crystal systems: triclinic (a), monoclinic (m), orthorhombic (0), tetragonal (t),
trigonal (h), hexagonal (h), and cubic (c). The triclinic unit cell is a general
parallelepiped with no special relation between the lengths of the sides and
angles. The remaining six crystal systems satisfy the symmetry constraints
listed in Table 1.2. If there is a lattice point only at the corners of the unit
cell, then the Bravais lattice is said to be simple or primitive (P). If there is
a lattice point at the centre of the unit cell, then it is said to be body-centred
or ‘innen’ (I). If there is a lattice point at the centre of all three pairs
of faces it is said to be face-centred (F), whereas if there is a lattice point at
the centre of only one pair of faces it is denoted by C. The primitive trigonal
cell is rhombohedral and denoted by R (see Fig. 1.3).

The Pearson symbol gives the Bravais lattice with the associated number of
atoms in the unit cell. Thus, the simple cubic lattice is designated cPl1,
whereas the body-centred and face-centred cubic lattices are designated cI2
and cF4 respectively. The diamond lattice, which comprises two inter-
penetrating fcc lattices, is designated cF8. The hexagonal close-packed lattice
is designated hP2, whereas the La and Sm structure types are designated
hP4 and hR3 respectively. The complex structures of boron and manganese
are designated hR105 and cIS8 respectively.
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mP mC

cl cF

=
1]
il
]
-

Fig. 1.3 The fourteen Bravais lattice unit cells and associated lattice symbols.

1.4. Local coordination polyhedra: the Jensen notation

The Bravais or space lattice does not distinguish between different types of
local atomic environments. For example, neighbouring aluminium and
silicon both take the same face-centred cubic Bravais lattice, designated cF,
even though one is a close-packed twelve-fold coordinated metal, the other
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Table 1.2 The fourteen Bravais lattices in three dimensions

Crystal Lattice Relation between cetl Characteristic
system symbols edges and angles symmetry
Trictinic aP azb#c 1-fold (identity or
a#zfpf#y#90° inversion} symmetry
only
Monoclinic mP, mC a#b#c 2-fold axis in one
a=y=980°#§ direction only
Orthorhombic oP, oF, oC, ol a#b#c 2-fold axes in three
a=f=1y=90° mutually perpen-
dicular directions
Tetragonal tP, tl a=b+#c 4-fold axis in one
a=f=y=90° direction only
Trigonal hR a=b=c 3-fold axis in one
a=f=y<120°, #£90° direction only
Hexagonal hP a=b#c 6-fold axis in one
a=f=290°y=120° direction only
Cubic cP, cl, cF a=b=c Four 3-fold axes along
a=f=y=90° body diagonals

an open four-fold coordinated semiconductor. Each structure type in Table
1.1 is, therefore, characterized not only by its Bravais lattice but also by the
local coordination polyhedra about each non-equivalent site, These are
shown in Fig. 1.4, following the notation suggested by Jensen (1989). He
labelled twenty-seven different polyhedra, and Villars et al. (1989) extended
the notation to all the other polyhedra which are considered in this chapter.
We see, therefore, that the twelve-fold coordinated fcc and hep lattices are
given the labels 12 and 12’ respectively. The cuboctahedral arrangement of
the former and the twinned cuboctahedral arrangement of the latter are
clearly evident from Fig. 1.1(a) and (b) respectively. The twelve-fold co-
ordinated icosahedral arrangement of atoms is labelled 12”. This is taken by
24 of the 58 atoms in the unit cell of a-Mn. The four-fold coordinated
diamond lattice, on the other hand, is designated the Jensen symbol 4,
reflecting the tetrahedral coordination which is illustrated in Fig. 1.4.
There is sometimes ambiguity as to which nearest neighbours to assign
to the local coordination polyhedron. This is illustrated by the two different
puckered layer structure types which are displayed by the most stable
polymorphs of phosphorus and arsenic respectively. They may both be
thought of as resulting from the breaking of three bonds about each atom
on a simple cubic lattice as shown in Fig. 1.5. The layers then distort. Black
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rhombic dodecahedron

Fig. 1.4 The local coordination polyhedra and associated Jensen symbols that
characterize the elemental ground-state structure types. After Villars and Daams
(1993).
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Fig. 1.6 The breaking of three-bonds about each simple cubic site that leads to
the black phosphorus and arsenic structure types. After Burdett and Lee (1985).

phosphorus has two bond angles of 102° and one of 96.5°, whereas arsenic
has three bond angles of 96.7°. We saw earlier that the arsenic structure type
is conventionally assigned a local coordination number of 3, consistent with
the 8-N rule, even though in antimony and bismuth the interlayer dlstance

1e nnlv 1<°/ lnrgnf than the 1nfr9|nynf A1¢tﬂq(‘f-‘

AW4AR LAAW Ad1AL,

Thc ass1gnat10n of atoms to the local coordination polyhcdra in Table 1.1
was made by Villars and Daams (1993) using the maximum-gap rule. Each
neighbouring shell is assigned a weight proportional to the number of
atoms it contains. A plot of these weights (represented by vertical bars)
versus nearest-neighbour distance usually reveals a clear maximum gap, the
atoms to the left of the gap forming the coordination polyhedron. As seen
in Fig. 1.6 this maximum gap rule gives black phosphorus the three-fold
pyramidal coordination 3, whereas arsenic takes the six-fold octahedral
coordination 6, characteristic of the simple cubic lattice.

We should note that since the coordination polyhedra reflect the local
topology or connectivity of an atom, minor distortions of a given polyhedron
are designated by the same Jensen symbol. This is an important simplification
when seeking order or trends within the very large structural data base.
Whereas ‘small distortions in the positions of the atoms within a given
crystal ¢an lower the symmetry (for example, from cubic to tetragonal),
these changes do not usually affect the connectivity and hence the local
coordination polyhedron Thus, face-centred tetragonal indium with an axial
ratio ¢/a = 1.08, is labelled in Table 1.1 by the same Jensen symbol 12
as fec.
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Fig. 1.6 Black phosphorus and arsenic nearest neighbour histograms, showing
the number of atoms in a given neighbouring shell versus the normalized shell
distance (d,,, is the nearest neighbour distance). Note the different location of
the ‘maximum gap’ between phosphorus and arsenic. After Daams et a/, (1991).

1.5. Bonding and structural trends within the elements

The variation of the cohesive energy across the periodic table is illustrated
by Fig. 1.7. We see the very marked trend across the short periods of the
cohesion increasing until the valence shell is half-full at carbon or silicon,
thereafter decreasing to almost zero when the valence shell is full for the
noble gas solids neon or argon. A similar trend is exhibited across the 4d
and 5d transition metal series where the cohesion peaks at niobium and
tungsten respectively in the vicinity of a half-full valence d shell, the minima
at cadmium and mercury corresponding to the d shell being full and nearly
core-like. Surprisingly the largest cohesive energy is not shown by carbon
with its strong saturated covalent bonds but by the transition metal tungsten.
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Fig. 1.7 Cohesive energy across the short periods (upper panel) and long
periods (lower panel).

We will see that the bonding in tungsten arises from the strong unsaturated
covalent bonds between the valence 5d orbitals.

Regarding the structural trends in Table 1.1 we would like theory to be
able to explain at least the following:

1. on the broad scale the change from close-packed structures on the
left-hand side and middle of the periodic table to the more open structures
on the right-hand side;

2. the 8-N rule which gives the number of neighbours expected for N > 4;

3. the exceptions to the 8-N rule, in particular the fact that the most stable
form of carbon is graphitic (3'), lead is fcc (12), and nitrogen and oxygen
are dimeric (1);
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4. structural trends within the sp-valent metals, in particular the fact that
magnesium is hcp but isovalent calcium and neighbouring aluminium are fec;

5. the structural trend from hcp — bec — hep — fee across the 4d and 5d
transition metal series;

6. the exceptions to the above trend shown by the magnetic 3d transition
elements manganese, iron and cobalt;

7. the structural trend from the La structure type [ch] to the Sm structure
type [chh] to hcp [h] across the lanthanides.

1.6. Bonding and structural trends within AB compounds

The experimental data base on the ground state structures of binary
compounds with a given stoichiometry may be displayed within a single two-
dimensional structure map. This is achieved by running a one-dimensional
string through the two-dimensional periodic table as shown in Fig. 1.8 (where
the arrangement of the elements is the same as that in Table 1.1). Pulling
the ends of the string apart orders all the elements along a one-dimensional
axis, their sequential order defining the relative ordering number .#. This
simple procedure, which defines a purely phenomenological coordinate, is
found to provide an excellent structural separation of all isostoichiometric
binary compounds A, B, within a single map (.#,, #g).

The AB structure map where all structure types with four or more
representative compounds have been included is given at the end of the book.
The Pearson and Jensen symbols for each structure type are given, the latter
not being listed when the A or B constituents are associated with more than
one local coordination polyhedron. (An exception has been made for TiAs
7/6,6’ since we wish to discuss this structure type later as some arsenic sites
have six-fold octahedral coordination 6 whereas others have six-fold trigonal
coordination 6'.) Figure 1.9 presents the local coordination polyhedra that
have not already been found earlier amongst the elemental ground-state
structure types. These include the six-fold coordinated trigonal prism €', the
seven-fold coordinated pentagonal bipyramid 7, the eight-fold coordinated
bicapped trigonal prism 8” and capped octahedron 8", and the nine-fold
coordinated tricapped trigonal prism 9. _

The bare patches within the structure map indicate that nearly three-
quarters of all possible binary AB compounds do not form due to either
positive heats of formation or the competing stability of neighbouring phases
with different stoichiometry. For example, amongst the transition metals,
ScTi, ScV, ScCr, ScFe and ScMn do not form whereas ScCo and ScNi
crystallize with the CsCl structure type. We should note that the boundaries
between the domains do not have any significance other than they were
drawn to separate compounds of different structure type. In regions where
there is a paucity of compounds the boundary is usually chosen as the line
separating adjoining groups in the periodic table.
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trigonal prism pentagonal bipyramid bicapped trigonal prism

bicapped octahedron

Fig. 1.9 Additional local coordination polyhedra and associated Jensen symbols
that characterize the ground-state binary AB structure types. After Villars, Mathis
and Hulliger (1989).
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The ten most commonly occurring structure types in order of frequency
are NaCl, CsCl, CrB, FeB, NiAs, CuAu, cubic ZnS, MnP, hexagonal ZnS,
and FeSi respectively. Structures cF8 (NaCl) and cP2 (CsCl) are ordered
with respect to underlying simple cubic and body-centred cubic lattices
respectively, as is clear from Figs 1.10(a) and 1.11(a). The Na, Cl sites and
Cs, Cl sites are, therefore, six-fold octahedrally coordinated and fourteen-fold
rhombic dodecahedrally coordinated, respectively, as indicated by the Jensen
symbols 6/6 and 14/14.

Structure tP4 (CuAu) is ordered with respect to an underlying face-centred
cubic lattice, so that it takes the Jensen symbol 12/12. The CuAu lattice does
show, however, a small tetragonal distortion since the ordering of the copper
and gold atoms on alternate (100) layers breaks the cubic symmetry. Zinc
blende (cF8(ZnS)) and wurtzite (hP4(ZnS)) are ordered structures with
respect to underlying cubic and hexagonal diamond lattices respectively.
Since both lattices are four-fold tetrahedrally coordinated, differing only in

(a) (b)

Fig. 1.10 The sodium chloride (a) and nickel arsenide (b) structure fypes. From
Waells (1986).

CsCl ¥TICu NaTl

Fig. 1.11 The cP2(CsCl), tP4(TiCu) and cF16(NaTl) structure types which
order with respect to an underlying bcc lattice.
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Fig. 1.12 The iron boride structure type. From Wells (1986).

their dihedral angles, cubic and hexagonal ZnS are labelled by the same
Jensen symbols 4/4. We, therefore, expect the energy difference between cubic
and hexagonal ZnS structure types to be very small. This is indeed observed
as the two structures frequently occur as polymorphs.

Structures oC8(CrB) and oP8(FeB) also have identical Jensen symbols,
namely 17/9. Again we expect them to have very similar energies which is
" reflected in the fact that they occur in neighbouring domains within the AB
structure map. The crystal structure of FeB is shown in Fig. 1.12, where we
see that the B sites link together in zigzag chains. Each B atom is surrounded
by six Fe atoms at the vertices of a trigonal prism, the iron—boron distances
being about 20%, larger than the boron—boron distances along the chain.
Thus, each B site is surrounded by a local coordination polyhedron that is
a tricapped trigonal prism, labelled 9 in Fig. 1.9. Each Fe site is seventeen-
fold coordinated as given by the local coordination polyhedron 17 in Fig.
1.9. The fifth most frequently occurring structure type, hP4(NiAs), is
illustrated in Fig. 1.10(b). We see that each As site is six-fold coordinated
by a trigonal prism of Ni atoms. On the other hand, each Ni site is
surrounded octahedrally by six As atoms with two near Ni neighbours
situated vertically above and below, so that the local coordination polyhedron
is a bicapped octahedron. Thus NiAs takes the Jensen symbols 877/6’. The
variant of NiAs oP8(MnP) is severely distorted and has the Jensen symbols
10”/8". The tenth most frequently occurring structure type, cP8(FeSi), is not
unrelated to the CsCl structure, having seven near neighbours of opposite
type (instead of eight) and six neighbours of like type. The thirteen-fold
local coordination polyhedron is illustrated by 13’ in Fig. 1.9.

We see in the AB structure map at the end of the book that the two most
common structure types, NaCl and CsCl, are well ordered into separate
domains. The ionic alkali halides containing NaCl and CsCl are themselves
located in the upper left-hand corner of the map. Running across to the right
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we move from the large cF8(NaCl) 6/6 domain through the sizeable
hP4(NiAs) 87Y/6’ domain to the smaller cF8(ZnS) 4/4 and hP4(ZnS) 4/4
domains. Running down to the bottom we move from the cF8(NaCl) 6/6
domain through the relatively narrow oC8(CrB) 17/9 and oP8(FeB) 17/9
domains to the extensive metallic cP2(CsCl) 14/14 domain. Thus, broadly
speaking, the coordination decreases as we move from the top left-hand
corner to the right, whereas it increases as we move down to the bottom.
This behaviour is consistent with the fact that as we approach the diagonal
where #, = My we expect to find structures that are similar to those of the
elements. Thus, the diagonal runs close to the CsCl, CuAu, and cubic ZnS
domains where the elemental bec, fcc, and diamond lattices are stable.

The Jensen symbols are very important in helping to unravel the relation-
ship between the different structure types in neighbouring domains. For
example, it is not fortuitous that the NaCl and NiAs domains adjoin each
other. Their Jensen symbols 6/6 and 87V/6’ tell us immediately that in NaCl
the Na and Cl sites are octahedrally coordinated, whereas in NiAs the Ni
site is octahedrally coordinated (but with two extra capping atoms), and the
As site is trigonally coordinated. It is also not surprising that at the boundary
between cF8 (NaCl) 6/6 and hP4(NiAs) 87%/6’ we find the two much smaller
domains of hP8(TiAs) 7/6, 6' and tI8(NbAs) 6/6'. Nor is it unexpected to
find the two islands of oP8(MnP) 10”/8" stability in the hP4(NiAs) 8'V/6’
domain. A distorted NiAs structure type, MnP leads to the bicapping of the
trigonal prismatic coordination about the As site, that is 6" — 8" (cf Fig.
1.9). Further, we see that the cP8(FeSi) 13'/13’ domain adjoins a cP2(CsCl)
14/14 domain; they are related structure types as mentioned earlier.

The Jensen notation, however, can say nothing about different possible
ordering arrangements of the chemical constituents with respect to a given
underlying lattice. For example, CsCl, TiCu, and NaT] all carry the same
Jensen symbols 14/14 because they are different ordered structure types with
respect to an underlying bec lattice as shown in Fig. 1.11. The Pearson
symbol is then essential for differentiating between the lattices, namely
cP2(CsCl), tP4(TiCu), and cF16(NaTl). We see that the AB structure map
does an excellent job in separating out these ordered bec structure types into
their respective domains of stability.

We would like theory to be able to explain at least the relative structural
trends that are observed amongst the ten most frequently occurring structure
types which we have discussed above.

1.7. Structural trends within molecules

The concepts required for understanding the bonding and structure of the
elements and binary compounds are most easily introduced by considering
first the nature of the chemical bond in small molecules. We will use theory
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Fig. 1.13 The Pettifor structure map for sp-valent AB, triatomic molecules with
N < 16 where N is the total number of valence electrons. The full triangles and
circles correspond to bent and linear molecules respectively whose shape is well
established from experiment or self-consistent quanturn mechanical calculations.
The open symbols correspond to ambiguous evidence. The data base has been
taken from Andreoni et a/. (19856).

to address the following two questions:

1. Why are some triatomic molecules linear whereas others are bent? For
example, carbon dioxide is linear but water is bent with a bond angle of
104.5°. Figure 1.13 shows the structure map for one hundred and eieven
sp valent AB, trimers with N < 16 where N is the total number of valence
electrons. We see that good structural separation is obtained, only Al,O
and Li,O being in the wrong domain.

2. What determines the structural trends amongst the homovalent sp valent
molecules with up to six atoms that are displayed in Fig 1.14? In
particular, why amongst the many possible structural variants does Na,
take a bent configuration, Na, a rhombus, Nas; a two-dimensional
close-packed arrangement and Nag a three-dimensional pentagonal
pyramid?

Before addressing these questions we need to remind ourselves of some of
the pertinent concepts of quantum mechanics.
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Fig. 1.14 The most stable structures of the homovalent 3s-, 3p-valent molecules
that are predicted by ab initio calculations. Distortions may occur from the
idealized structure types drawn. Data compiled by H. S. Lim.
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2
Quantum mechanical concepts

2.1. Introduction

The experimental trends in bonding and structure which we have discussed
in the previous chapter cannot be understood within a classical framework.
None of the elements and only very few of the thousand or more binary AB
compounds are ionic in the sense that the electrostatic Madelung energy
controls their bonding. And even for iomic systems, it is a quantum
mechanical concept that stops the lattice from collapsing under the resultant
attractive electrostatic forces: the strong repulsion that arises as the ion cores
start to overlap is direct evidence that Pauli’s exclusion principle is alive and
well and hard at work!

In this chapter we will briefly outline the key experiments which led to
the breakdown of the classical world view and the birth of quantum
mechanics. The concept of a wave packet will be used to resolve the problem
of wave-particle duality and to underpin Heisenberg’s uncertainty principle. -
A plausibility argument will then be given for the derivation of the
Schrodinger equation. It will be solved both for the free-electron gas and free
atoms as the former is the starting point for our treatment of the bonding
and structure of sp-valent metals, the latter for our treatment of covalent
systems. Although this chapter is primarily concerned with introducing the
concepts behind quantum mechanics, we will end with a short section on the
recent predictive power of first principles calculations. It is these compu-
tationally intensive calculations that have given credence to the simple
modeis which are developed and presented in subsequent chapters.

2.2. Wave-particle duality

At the end of the nineteenth century classical physics assumed it had achieved
a grand synthesis. The universe was thought of as comprising either matter
or radiation as illustrated schematically in Fig, 2.1. The former consisted of
point particles which were characterized by their energy E and momentum
p and which behaved subject to Newton’s laws of motion. The latter consisted
of electromagnetic waves which were characterized by their angular frequency
o and wave vector k and which satisfied Maxwell’s recently discovered
equations. (w = 2nv and k = 2n/A where v and A are the vibrational frequency
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UNIVERSE
MATTER RADIATION
PARTICLES WAVES
Characterized by their Characterized by their
energy, £ angular frequency, @
momentum, p wave vector, k
Newton's Laws of Motion Maxwell’s Electromagnetic Theory
Lorentz Law

Fig. 2.1 The grand synthesis of the universe as viewed at the end of the
nineteenth century.

and wavelength respectively). The two were coupled together by the Lorentz
law F = g(e + v x B) where g and v are the charge and velocity of the point
particle, £ and B are the electric and magnetic fields, and F is the resultant
force acting on the particle in an electromagnetic field. In this classical
description of the universe the point particles then moved under their electro-
magnetic and gravitational forces according to Newton’s laws of motion.
Alas, this grand synthesis soon became unstuck because waves were dis-
covered to display particle-like properties and particles wave-like properties.
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/] /
/— Rayleigh-Jeans

Fig. 2.2 The intensity of black-body radiation as a function of angular frequency,
w, for two different temperatures, 7, and 7, where 7, > 7,. The dashed curve
gives the classical Rayleigh—Jeans law at temperature, T,.

We will consider four key experiments which led to the unravelling of the
classical world view, namely black-body radiation, the photoelectric effect,
Compton scattering, and electron diffraction.

1. Black-body radiation: Figure 2.2 shows the frequency dependence of the
intensity of the radiation that is emitted from a black body at two different
temperatures, T; and T,, where T, > T,. We see that at high frequencies the
emitted intensity, I, is much less than that predicted by the Rayleigh—Jeans
law, namely

1= Aw?*kyT 2.1)

where kg is the Boltzmann constant and A is a given constant. This law
follows from the fact that the number density of oscillating modes is
proportional to w?, and each mode has associated with it an average energy
of kg T by the equipartition of energy, 3k T each for the average kinetic and
potential energies of a classical oscillator. The deviation of theory from
experiment implied the existence of some barrier to the emission (or
absorption) of radiation at higher frequencies. To account for this, Planck
assumed in 1900 that electromagnetic energy is not emitted or absorbed
continuously but in discrete packets or quanta of energy

E=hv=ho (2.2)

where h is Planck’s constant and A = h/2n. A given oscillating mode of
angular frequency, w, then has associated with it a discrete spectrum of
allowable energies E, = nfiw rather than the continuous spectrum of a
classical simple harmonic oscillator. As illustrated schematicaily in Fig, 2.3
this leads to the high-frequency oscillators not being thermally activated at
low temperatures. By Boltzmann statistics, the probability that the nth level
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Fig. 2.3 Schematic illustration of how the quantization of the electromagnetic
energy leads to the high-frequency modes being less easily thermally excited
than the low frequency.

is excited depends exponentially on its energy, E,,, so that the average energy,
{E), of a quantum oscillator of angular frequency, w, is given by

®[srewd[zem] e
which with E, = nkw simplifies to
(E) = [(hw/ksT)/(™>T ~ 1)1kgT. (24)

At low frequencies (or high temperatures) when Aw/kgT « 1, this reduces to
the classical limit, {E)> = kgT, since the prefactor in square brackets tends
to unity using the Taylor expansion, exp x = 1 + x + - - -. At high frequencies
(or low temperatures) when hw/kgT > 1, this reduces to the exponential
form, {E)> = hw exp(— hw/kgT), which accounts for the drop in intensity at
high frequencies observed in Fig. 2.2. Fitting Planck’s constant to the
experimental curves gave ki = 1.055 x 10734 Js. This very smalil but non-
vanishing number has important consequences. The comforting image of red
hot coals at 1000°K is associated with radiation being emitted at a
wavelength of 7000 A, corresponding to Aw/kgT = 18¢eV/0.1eV =18 In a
classical world, therefore, this red-hot radiation would be more than a million
times more intense. At the same time the total energy in the ultraviolet
spectrum would diverge catastrophically.

2. The photoelectric effect: Light incident on a clean metal surface ejects
electrons with energies that depend only on the frequency but not on the
intensity of the light. The intensity affects the number of electrons emitted.
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This is impossible to understand within a wave description of light since
an electromagnetic wave would exert a force on a stationary electron at
the metallic surface that is proportional to the electric field and, hence, the
electron would be emitted with a velocity dependent on the intensity of the
incident light. In 1905 Einstein explained the photoelectric effect by regarding
the incident radiation as a beam of particles comprising Planck’s quanta
with individual energies of Aw. A single light quantum or photon would then
kick out an electron from the surface with velocity, v, according to

imv? = ho — & (2.5)

where m is the electronic mass and &F is the surface work function. Equation
(2.5) expresses the conservation of energy; the photon is annihilated during
collision, giving up its energy, kw, to the electron, thus overcoming the work
_function barrier, ¢J. The photon escapes into the vacuum with kinetic energy,
imy?. Increasing the intensity of the light increases the number of incident
photons. This leads to the emission of a greater number of electrons, but the
velocities of these electrons remain unchanged as observed experimentally.

3. The Compton effect. A photon is characterized not only by its energy,
E = how but also by a momentum, p. The latter may be evaluated directly
by using the relativistic expression for the energy of a particle in terms of
its rest mass, m, and momentum, p, namely

E = (m*c* + p*c?)!/?, (2.6)

where ¢ is the velocity of light. For a particle at rest, the famous identity,
E = mc?, is recovered. For a photon with zero rest mass, E = pc. Hence, the
momentum of a photon is given by

p=-=—="=1k @7

where we have used ¢ = Av and k = 2xn/4, or in vector form
p = Fk. (2.8)

In 1923, Compton measured the change in momentum of X-ray photons
during scattering by stationary electrons as illustrated schematically in
Fig. 24. He found that the change in the wavelength of a photon, A4, was
related to the scattering angle, 6, through the very simple relation

Al = 24, sin? g, (2.9)

where A, was a constant. This result could not be understood within classical
electromagnetic theory since A, is then predicted to be a function of the
incident wavelength rather than a universal constant. However, eqn (2.9) is
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photon P,

Recoifing
eiectron

Fig. 2.4 The scattering of a photon by a stationary electron in the Compton
effect.

a direct consequence of applying energy and momentum conservation to the
photon-electron scattering processing illustrated in Fig. 2.4. Using the
relativistic expression eqn (2.6), the conservation of energy gives

cp, + me? = cp, + (m*c* + p2c?)V/2, (2.10)

where p, and p, are the incident and scattered photon momenta, and m and
p. are the rest mass and scattered momentum of the electron respectively.
The conservation of momentum, p, = p, + P.. gives

p: = pi + p3 — 2p, P, cos f. (2.11)

Substituting eqn (2.11) into eqn (2.10), and taking cp, to the left-hand side
and squaring yields

., 0
me(py — p2) = 2p1 P2 sin’ 5 (2.12)

Dividing by p, p, and using p = h/4, Compton’s result, eqn (2.9), is recovered
with A, = h/mc. The term A is thus a constant as found experimentally,
taking the value of 0.024 A, the so-called Compton wavelength.

4, Electron diffraction: In 1924, de Broglie postulated his principle of wave-
particle duality. Just as radiation displays particle-like characteristics, so
matter should display wave-like characteristics. It followed, therefore, from
eqs (2.2) and (2.7) that a particle with energy, E, and momentum, p, has
associated with it an angular frequency, w, and wave vector, k, which are
given by

w = E/h (2.13)
and

k = p/h. (2.14)

The latter equation implies that a particle of momentum, p, has an associated
wavelength, 1 = h/p, the de Brogliec wavelength. This was verified a year
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or so later by Davisson and Germer who demonstrated that electrons were
diffracted from a nickel crystal as though they had the wavelength postulated
by de Broglie.

2.3. Heisenberg’'s uncertainty principle

How do we nnderctand and decerihe thig mqvn_nnrhnlp ﬂllth’v‘) Clearly a
AAVYY WAV AW WAL LA ClllWd W WAWL A Y LALLM FY &t ¥ W P A LAWAW Wb wid. Molwliily @

plane wave, A exp[i(kx — wt)], has a well-defined angular frequency, @ (or
energy), and wave vector, k (or momentum). But it is infinite in extent, with
its intensity, |4[%, being uniform everywhere in space. In order to create a
localized disturbance we must form a wave packet by superposing plane
waves of different wavevectors. Mathematically this is written

1 (= .
¥(x, ) = — k) etk o® g, 2.15
(x. ) Jz—nf_ pkc) e (2.15)

where the ¢(k) are the amplitudes of the individual plane waves. The angular
frequency, o, is a function of the wave vector, k, through the dispersion
relation, w = w(k). At the time, ¢ = 0, the wave packet, ¥(x, 0), is given by

1 © :
Y(x,0) = — (k) e™** dk, 2.16
o= | o0 10

where by Fourier analysis
Ly . 1 (‘m \F

blk) = —=
V) e

Let us consider the simple Gaussian wave packet,

>
—~~

bo

(S
-’

W(x, 0) = A eikox g~ (x~ 30?22 (2.18)

which from eqn (2.17) has the associated Gaussian amplitude
Ay . AYI7 oilko —k)xg o~ W2(k— knlzl2 £ 10N
(k) = AW e € (2.19)

We see from Fig. 2.5 that the Gaussian wave packet has its intensity, |'¥|%,
centred on x, with a half width, W, whereas |¢(k)|? is centred on k, with a
halif width, 1/W. Thus the wave packet, which is centred on x, with a spread
Ax = + W, is a linear superposition of plane waves whose wave vectors are
centred on k, with a spread, Ak = +1/W. But from eqn (2.8), p = kk.
Therefore, this wave packet can be thought of as representing a particle that
is located approximately within Ax = W of x, with a momentum within
Ap = k/W of p, = hk,. If we try to localize the wave packet by decreasing
W, we increase the spread in momentum about p,. Similarly, if we try to
characterize the particle with a definite momentum by decreasing 1/W, we
increase the uncertainty in position.
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Fig. 2.5 The relation between a Gaussian wave packet, ¥, and its Fourier
transformation, ¢. The quantity, [¥|2, has a half width of W, where |¢}? has a
half width of W™,

This is a statement of Heisenberg’s uncertainty principle, namely
Ax x Ap = h. (2.20)

This lies at the heart of the difference between classical and quantum physics.
Classically, at any instant in time we can characterize a particle by its exact
position, x, and exact momentum, p, at least in principle. Quantum
mechanically, on the other hand, if we know the position x, with a high
degree of certainty, then there will be a large uncertainty in its momentum,
and vice versa.

This uncertainty is an inescapable fact of the world we live in, which is .
illustrated beautifully by the following gedanken experiment suggested by
Bohr. Suppose we wish to measure the position of a stationary electron using
a microscope as shown in Fig. 2.6. Then from optics the resolution of the
microscope will be given by

Ax ~ ifsin 0, (2.21)

the resolution is improved by using shorter wavelengths or by increasing the
aperture of the lens. But when the stationary electron is illuminated, so that
it may be seen, the electron will recoil by the Compton effect. The direction
of the photon after scattering is undetermined within the angle subtended
by the aperture, so that the photon will have an uncertainty in its momentum
in the x direction given by

Ap, ~ psin @ (222)

as seen from Fig. 2.6. Hence, by the conservation of momentum, the
magnitude of the recoil momentum of the electron will also be uncertain by

Ap, ~ ;sin 0, (2.23)

x
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Fig. 2.6 Schematic illustration of Bohr's gedanken experiment. The scattering
triangle relates the uncertainty in the momentum of the scattered photon, Ap,,
to the angle subtended by the aperture, §, and momentum, p, of the photon.

since p = h/1 from eqn (2.7). Thus, from egs (2.21) and (2.23), we have

h
Ax x Ap,mh>— = h, (2.24)
Y1

which is consistent with Heisenberg’s uncertainty principle.

It is just not possible-—in principle—to measure position and momentum
with absolute certainty. If we try to determine whether an electron is a wave .
or a particle, then we find that an experiment which forces the electron to
reveal its particle character (for example, one using a very short wavelength
microscope) suppresses its wave character as Ap and hence Ak are large.
Alternately, when an experiment focuses on the electron’s wavelike behaviour,
as in electron diffraction, Ak is small, but there is a correspondingly
large uncertainty in the position of any given electron within the incident
beam.

What does the wave function, W(r, t), actually represent? Consider the
diffraction of an electron beam by two slits as illustrated in Fig. 2.7. Experi-
mentally it is found that the diffraction pattern is not the result of the
electrons travelling through slit 1 interfering with those from slit 2. The
pattern persists even for the case when the intensity of the incident beam is
so low that the particles travel singly through the system, being recorded as
individual ‘flashes’ on the screen which build up to give the diffraction
pattern observed. This led Born in 1926 to interpret |\P(r,t)|?dr as the
probability of finding the electron at some time, ¢, in the volume element
dr = dx dy dz, which is located at r = (x, y, z). Since the probability of
finding a given electron somewhere in space is unity, the wave function of
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Fig. 2.7 Diffraction of an electron beam by two slits.

a single electron must satisfy the normalization condition

J ¥(r, )2 dr = 1. (2.25)
all space

2.4. The Schrodinger equation

In classical mechanics, Newton’s laws of motion determine the path or time
evolution of a particle of mass, m. In quantum mechanics what is the
corresponding equation that governs the time evolution of the wave function,
¥(r, t)? Obviously this equation cannot be obtained from classical physics.
However, it can be derived using a plausibility argument that is centred on
the principle of wave-particle duality. Consider first the case of a free particle
travelling in one dimension on which no forces act, that is, it moves in a
region of constant potential, V. Then by the conservation of energy

E=p*2m+ V. (2.26)

But by de Broghe’s principle of wave-particle duality, this free particle has
associated with it a wave vector, k = p/k, and angular frequency, w = E/k
(cf eqs (2.13) and (2.14)), which substituting into the above equation gives

hw = h2k2/2m + V. (2.27)

However, this dispersion relation is just that obtained by solving the partial
differential equation

" o¥(x, t) _ _hi *¥(x, t)
ot 2m  0x?

This can be seen directly by substituting into it the plane wave solution,

W(x,t) = Aeltx—on, (2.29)

+ V¥(x, 1). (2.28)
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We now make the ansatz that the form of this partial differential equation
does not change if ¥ = ¥(x, t) rather than a constant. Generalizing eqn (2.28)
to three dimensions, we find the time-dependent Schrédinger equation,

2
ik a—\l—, = —f—- V¥ + VY, (2.30)
ot 2m
where
2 62 62
vy

+
ox?  0y* 0z?

We note the very important property that this equation is linear so that if
¥, and ¥, are solutions, so also is 4,¥, + 4,¥,, generalizing the linear
superposition of plane waves we saw earlier.

The time-dependent Schrodinger equation may be solved by the method
of separation of variables if the potential does not depend explicitly on time,
that is, ¥ = V(r). Writing W(r, t) = y(r)7(t), substituting it into eqn (2.30)
and dividing by y(r)7(t) we have

2
i}i}-d—J—q=l[—f—V2rﬁ+ Vn//]=a, (2.31)
Tdt yL 2m
where « is the usual separation constant. Thus
T(t) = e =/ (2.32)

represents an oscillatory function of angular frequency, «/A. But by de
Broglie’s equation (2.13), w = E/h, so that « = E. Hence

We(r, 1) = Yrg(r) e 757, (2.33)

where from eqn (2.31) the spatially dependent term, y/¢(r), is an eigenfunction
of the time-independent Schrodinger equation

2
—zh—m V2e(r) + Vigg(r) = Efg(r). (2.34)

A system is said to be in a stationary state of energy, E, when it is represented
by a wave of type eqn (2.33), since then the probability density is independent
of time as |WE(r, t)¥g(r, 1)| = |¥=()%

We should note that the Schrédinger equation is non-relativistic since we
derived it from the non-relativistic expression for the energy eqn (2.26). The
Dirac equation is the relativistic analogue that is based on the relativistic
expression for the energy, namely eqn (2.6). It led directly to the novel
concept of electron spin. Since the valence electrons, which control the
cohesive and structural properties of materials, usually travel with velocity
v « ¢, they are adequately described by the Schrodinger equation. For the
heavier elements, such as the lanthanides and actinides, relativistic effects
can be included perturbatively when necessary. Photons, the quanta of the
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electromagnetic field, travel at the speed of light and have zero rest mass,
so they require the separate treatment of quantum electrodynamics.

2.5. The free-electron gas

The sp-valent metals such as sodium, magnesium and aluminium constitute
the simplest form of condensed matter. They are archetypal of the textbook
metallic bond in which the outer shell of electrons form a gas of free particles
that are only very weakly perturbed by the underlying ionic lattice. The
classical free-electron gas model of Drude accounted very well for the
electrical and thermal conductivities of metals, linking their ratio in the very
simple form of the Wiedemann-Franz law. However, we shall now see that
a proper quantum mechanical treatment is required in order to explain not
only the binding properties of a free-electron gas at zero temperature but
also the observed linear temperature dependence of its heat capacity.
According to classical mechanics the heat capacity should be temperature-
independent, taking the constant value of 3k per free particle.

The Schrodinger equation for a free-electron gas takes the form
(e & &2

( P + 5y + 622) Y(r) = EY(r). (2.35)

2m

If the electrons are confined within a box of side L, then the normalized
eigenfunctions are the plane waves

hh(r) = L3 e*7, (2.36)

which can be seen by writing k-r as k,x + k,y + k,z and substituting into
eqn (2.35). The corresponding eigenvalue is given by

h? K
= (k2 +k2+ k%)= - k2. (2.37)

For a free electron this energy is purely kinetic, so that E = p?/2m. Hence
p = hk = h/A, as we have already found experimentally for free partlcles
namely eqs (2.8) and (2.14).

The wavelength, 4, of the plane wave is constrained by the boundary
conditions at the surface of the box. Imposing periodic boundary conditions
on the box, which corresponds physically in one dimension to joining
both ends of a metallic wire of length, Z, into a closed ring, we have that
b(x+L,y,2) = Y% 3, 2) Y%y + L, 2) = ¥(x,,2), and Y(x, y,z + L) =
Y (x, y, z). Hence, from eqn (2.36),

k R (nxs yo z)’ (2‘38)
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Fig. 2.8 The fine mesh of allowed k-values. At zero temperature only the states
k within the Fermi sphere are occupied.

() MEIR

@ TE /

/

/
. 0
K Er E

Fig. 2.9 (a) The free electron dispersion, £(k). (b) The density of states, n(E).

where n,, n,, and n, are integers. Thus, the allowed values of the wave vector,
k, are discrete and fall on a fine mesh as illustrated in Fig. 2.8.

Following Pauli’s exclusion principle, each state corresponding to a given
k can contain at most two electrons of opposite spin. Therefore, at the
absolute zero of temperature all the states, k, will be occupied within a sphere
of radius, kg, the so-called Fermi sphere because these correspond to the
states of lowest energy, as can be seen from Fig. 2.9(a). The magnitude of
the Fermi wave vector, kg, may be related to the total number of valence
electrons N by

$7k32(L/2n)* = N, (239)

since it follows from eqn (2.38) that unit volume of k-space contains (L/27)>
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states capable of holding two electrons each. Thus,
ke = (3n%p)'7° = (9n/4)'*/r,, (2.40)

where p is the density of the gas of free electrons, p = N/L? and 7, is the
radius of the sphere containing on average one electron, that is

$nrd = L3N =p~ 1. (241)

The corresponding Fermi energy, Eg, equals A2kZ/2m. This takes the values
3.2, 7.1, and 11.6 eV at the electronic densities. of sodium, magnesium, and
aluminium, which are close to the experimental values for the occupied
bandwidths, namely 2.8, 7.6, and 11.8 eV respectively.

The free-electron density of states n(E) may be obtained directly from eqn
(2.39) by writing it in the form

N(E) = (2m/R?)**(L*/372)E¥?, (2.42)

where N(E) is the total number of states of both spins available with energies
less than E. Differentiating with respect to energy gives the density of states

n(E) = 2m/h2)¥*(L3/2n)E'2, (2.43)

which is illustrated in Fig. 2.9(b).

We can now see why the experimental electronic heat capacity did not
obey the classical result of 3k; per electron. Following Pauli’s exclusion
principle, the electrons can be excited into only the unoccupied states above
the Fermi energy. Therefore, only those electrons within approximately kg T
of Eg will have enough thermal energy to be excited. Since these constitute
about a fraction kgT/E; of the total number of electrons we expect the
classical heat capacity of 3kzN to be reduced to the approximate value

Cy ~ (T/T¢3kg N, (2.44)

where the Fermi temperature is defined by Ep = kgTg. (If the calculation is
performed exactly, using the square-root dependence of the density of states,
then the prefactor changes by the amount, n%/3.) For the simple metals
magnesium and aluminium, the Fermi temperature is of the order of
100,000 K, so that the electronic heat capacity at room temperature is
dramatically reduced compared to the classical prediction for a free-electron
gas.

The above model of an sp-valent metal as a gas of free electrons would
exhibit no bonding because the only contribution to the energy is the
repulsive kinetic energy. It takes an average value per electron, which is given
by

U, = (JE En(E) dE) / N = 2E.. (2.45)
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Using eqn (2.40) this may be written explicitly in terms of 7, as
U, = 2.210/r2, (2.46)

where atomic units have been used so that length is measured in units of
the first Bohr radius of hydrogen, namely 1 au = 0.529 A, with energy in
units of the ionization potential of hydrogen, namely 1 Ry = 13.6 V.

We have so far made two implicit assumptions. The first of these is that
the gas of electrons is not scattered by the underlying ionic lattice. This can
be understood by imagining that the ions are smeared out into a uniform
positive background. The second assumption is that the electrons move
independently of each other, so that each electron feels the average repulsive
electrostatic field from all the other electrons. This field would be completely
cancelled by the attractive electrostatic potential from the smeared-out ionic
background. Thus, we are treating our sp-valent metal as a metallic jelly or
jellium within the independent particle approximation.

In practice, however, the motion of the particles is correlated: parallel spin
electrons keep apart from each other following Pauli’s exclusion principle,
and anti-parallel spin electrons keep apart to lower their mutual coulomb
repulsion. For interacting electrons the former leads to a lowering in the
energy by an amount called the exchange energy, the latter by an amount
called the correlation energy. For a homogeneous electron gas, the average
exchange-correlation energy per electron is given in atomic units by

U, = —0916/r, — (0.115 — 0.03131n 1,), (2.47)

where the first and second terms represent the exchange and correlation
energies respectively.

In order to understand this lowering in energy, imagine each electron
accompanied by its own mutual exclusion zone or exchange-correlation hole,
as illustrated schematically in Fig. 2.10. Each electron now sees an additional
attractive potential from the surrounding positive jellium background, which
" is not screened by electrons. Since the potential at the centre of a sphere of
uniform charge varies inversely with the sphere radius, we expect the electron
to feel an additional attractive potential proportional to 1/r,. This is, indeed,
the dominant term in the expression for the exchange-correlation energy,
namely eqn (2.47). The latter has been obtained by using the correct form
of the exchange-correlation hole, which has a diffuse boundary rather than
the sharp boundary assumed in Fig. 2.10.

The resultant binding energy of the free-electron gas,

lJeg = Uke + chs (248)

is now attractive, as shown in Fig. 2.11. The maximum cohesion corresponds
to a value of 0.16 Ry or 2.2 eV per electron at an effective electronic radius
of 4.23 au or 2.2 A. This is not a bad description of the simple metal sodium,
for at equilibrium, it has an experimental cohesive energy of 1.1 eV and an
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Fig. 2.10 Schematic illustration of the mutual exclusion zone or exchange-
correlation hole about a given electron within a free-electron gas. The hole has
a radius, r,, corresponding to exactly one electron being excluded, thereby
revealing one positive charge of underlying jellium background. The electron plus
its positive hole move together through the gas of other electrons as though they
are a neutral entity or quasi-particle.
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Fig. 2.11 The binding energy of a free-electron gas as a function of r,.

effective electronic radius of 4.0 au. However, although the other simple
metals also have approximately 1 eV per valence electron of binding energy,
they show marked variation in their equilibrium atomic volumes and
corresponding values of r,. This reflects the discrete size of the ions which
has been lost in the jellium model. The important influence of the ion cores
on the bonding and structure of the simple metals will be considered in detail
in Chapters 5 and 6 respectively.

2.6. The free atoms

The free-electron gas model is a good starting point for the sp-valent metals
where the loosely bound valence electrons are stripped off from their ion
cores as the atoms are brought together to form the solid. However, bonding
in the majority of elements and compounds takes place through saturated
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or unsaturated covalent bonds that form between relatively tightly bound
valence orbitals describing, for example, the sp* hybrids in semiconductors
or the d electrons in transition metals. The constituent free atoms then
provide the most natural starting point for characterizing the bonding in
these tightly bound systems.

The one-electron Schrédinger equation for an isolated free atom takes
the form

2
_:_m V2) + VW) = EY(), (249)

where V(r) is an effective potential representing the interaction with the
nucleus and the other electrons present (cf eqn (2.61)). Since the potential,
V(r), is spherically symmetric the solution takes the separable form

¥ um(®) = Ru(n) Y76, 9), (2.50)

where r, 6, and ¢ are spherical polar coordinates and Y7(60, ¢) are spherical
harmonics. Just as the eigenfunctions for an electron in a cubic three-
dimensional box are characterized by the three quantum numbers, n,, n,,
and n,, that enter through the boundary conditions (cf eqn (2.38)), so the
eigenfunctions of an electron in a spherically symmetric three-dimensional
atom are characterized by three-quantum numbers, namely

n, the principal quantum number, with n =1,2,3,...
I, the orbital quantum number, with I =0,1,...,n—1

m, the magnetic quantum number, withm =0, +1,..., +1].

The principal quantum number, n, determines the energy of the hydrogen
atom. The orbital quantum number, I, gives the magnitude of the orbital

angular momentum, namely ./I(l + 1)A. Electrons with orbital quantum
numbers, [ =0, 1, 2, and 3 are referred to as s, p, d, and f respectively, after
the old terminology of sharp, principal, diffuse, and fine spectroscopic lines.
The magnetic quantum number, m, specifies the component of the angular
momentum in a given direction, taking the (2! + 1) values, mh, with jm| < 1.
Because the energy of an electron cannot depend on the direction of its
angular momentum in a spherically symmetric potential, these (2] + 1) states
have the same energy and are said to be degenerate. The magnetic quantum
number, m, is so called because this degeneracy is lifted in a magnetic field,
which fixes a unique direction.

In addition, a relativistic treatment of the electron introduces a fourth
quantum number, the spin, m,, with m, = +3. This is because every electron
has associated with it a magnetic moment which it quantized in one of two
possible orientations: parallel with or opposite to an applied magnetic field.
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The magnitude of the magnetic moment is given by

p=200./5(s + 1) g, (2.51)

where s = |m,| =1 and ug = ehi/2m (the Bohr magneton). Each eigenstate
nlm may, therefore, be doubly occupied by an up (m, = +3) and down
(m, = —1) spin electron. Consequently any given I-state of a free atom will
be 2(2! + 1) fold degenerate so that an s-shell can hold 2 electrons, a p-shell
6 electrons, a d-shell 10 electrons, and an f-shell 14 electrons. This electronic
shell structure, of course, underpins the periodic table.

The Schrddinger equation can be solved exactly for the case of the
hydrogen atom (see, for example, Chapter 12 of Gasiorowicz (1974)). If
distances are measured in atomic units, then the first few radial functions
take the form

Ry(r) =277, (2.52)
R, = % (1—43ine"?, (2.53)

and

Ry, () = L e, (2.54)

J

They are given by the dashed line curves in Fig. 2.12. A conceptually useful
quantity is the probability of finding the electron at some distance, r, from
the nucleus (in any direction) which is determined by the radial probability
density, P,(r) = r’R%(r). We see from the full line curves in Fig. 2.12 that
there is a maximum probability of locating the electron at the first Bohr
radius, a,, for the 1s state and at the second Bohr radius, a,, for the 2p state.
The average or expectation value of the radial distance, r, is given by

fu = [1+2(1 = I( + 1)/n?)]n?, (2.55)

so that 7, = 1.5a,, 7, = 1.5a,, and ,, = 1.25a,. Therefore, the 2s orbital is
more extended or diffuse than the corresponding 2p orbital as is evident from
Fig. 2.12. This is due to the fact that all solutions of the Schrédinger equation
must be orthogonal to one another, that is, if ¥, and ¥, are any two
solutions and y* is the complex conjugate of i, then

J'/’:tm'f’n'rm' dr = 0. (2.56)

If the states have different angular momentum character then the angular
integration over the spherical harmonics guarantees orthogonality. But if the
states have the same angular momentum character then the orthogonality
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Fig. 2.12 The radial function, R,, (dashed lines) and the probability density,
P,, (solid lines) as a function of r for the 1s, 2s and 2p states of hydrogen.

constraint implies that

ke 4]
J R (R, (r)r* dr = 0. (2.57)
0
Thus, for the 2s radial wave function to be orthogonal to the 1s radial
function, it must change sign, thereby accounting for the node at r = 2 au
in Fig. 2.12. Similarly, the 3s radial function must be orthogonal to the 2s
and, therefore, has two nodes, the 4s has three nodes, etc. Just as the
energetically lowest 1s state has no nodes, so the 2p, 3d, and 4f states are
nodeless, since they correspond to the states of lowest energy for a given I.
The concept of the size of an atom is not well defined within quantum
mechanics. An atom has no sharp boundary; the probability of finding an
electron decreases exponentially with distance from the atom’s centre.
Nevertheless, a useful measure of the size of the core is provided by the
position of the outer node of the valence electron’s radial function, since we
have seen that the node arises from the constraint that the valence state
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Fig. 2.13 The negative of the inverse s and p pseudopotential radii of Zunger
(1980).

must be orthogonal to the more tightly bound core states. This reflects Pauli’s
exclusion principle, which states that no two electrons may occupy the same
quantum state. A not-unrelated measure of size has been adopted by Zunger
(1980), who determined I-dependent radii, R,, directly from first principles
pseudopotentials (cf Chapter 5).

Figure 2.13 shows his values of —R; ' and —R_! for the sp-bonded
elements. We see that the inverse Zunger radii of the free atoms vary linearly
across the periodic table unlike the nearest-neighbour distance in diatomic
molecules or the equilibrium atomic volume in bulk systems, which varies
parabolically due to the bonding between neighbouring atoms (cf Chapters
3 and 7). As expected, the s and p radii contract across a period as the
nuclear charge increases, and they expand down a column as additional full
orbital shells are pulled into the core region. One notable exception, however,
is given by the crossing of the valence 3s and 4s radii, and also the valence
3p and 4p radii, at group IIIB. This corresponds to Ga having a smaller
core than Al due to the fact that the former sits at the end of the 3d transition
metal series across which the size of the core has shrunk due to the increase
in the nuclear charge. It is not surprising, therefore, that the string through
the periodic table in Fig. 1.8 reverses the order of Al and Ga. In addition,
we see that the sizes of the second-row elements B, C, N, and O are a lot
smaller than those of the other elements in their respective groups, which is
again reflected by the string in Fig. 1.8 not linking B, C, N, and O to the
isovalent elements in their respective groups.
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Table 2.1 Atomic and ionic radii across the lanthanides. (The former
corresponds to a bulk coordination of 12, the latter to an M3* ion with
coordination of 6.) (After Douglas et al. (1983).)

Radii (A) La Ce Pr Nd Pm Sm Eu Gd

Atomic 1877 182 1828 1821 — 1.802 2.042 1.802
lonic 1172 115 1130 1123 111 1098 1.087 1.078
Radii (A) Tb Dy Ho Er Tm Yb Lu

Atomic 1.782 1773 1.766 1.757 1.746 1.940 1.734
lonic 1.063 1.052 1041 1.030 1020 1.008 1.001

Another important example of the influence of core contraction on structural
properties is provided by the lanthanides. Table 2.1 gives both their atomic
and ionic radii, the former for a bulk coordination of 12, the latter for the
triply charged positive ion with a coordination of 6. Firstly, we note that Eu
and Yb have much larger atomic volumes than the other lanthanides. This
is because they behave as divalent elements in the bulk metal due to the
extra stability that arises from a half-full (f”) or completely full (f'#) shell.
We see in Fig. 1.8 that they are separated out and grouped after the
divalent alkaline earths. Secondly, we note the marked contraction across
the series, lutetium’s atomic and ionic radi being 8% and 15% smaller than
lanthanum’s. This so-called lanthanide contraction causes the subsequent 5d
valent element Hf to have a 19, smaller atomic radius than 4d isovalent Zr.
This is reflected by the ordering of the string through group IV in Fig. 1.8.

The 4d trivalent element, Y, has an atomic radius that is about midway
between that of La and Lu. It is, therefore, not surprising that it is found to
be slotted in between Tb and Dy in Fig. 1.8. What is surprising, however, is
that the string runs from Lu to La across the series rather than from La to
Lu. The latter would have been in the direction of decreasing core size, which
is refiected eisewhere in the periodic tabie as the string moves from left to
right. In the last chapter we will see that this apparently anomalous ordering
is due to the change in the relative population of the 5d and 6s valence states
across the trivalent lanthanides. |

The angular character of the orbitals, which is central to directional
bonding, is determined by the appropriate spherical harmonic m eqn (2. 50).
For m = 0 the first few spherical harmonics are given by

(2.58)

\/_
\/7 cos 8, (2.59)

1|
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Fig. 2.14 The angular dependence of the s, p, and d,._,- orbitals. The origin of
the Cartesian axes passes through the centre of each individual orbital in the
directions drawn.

and

Y? = {—§— (3 cos? 6 — 1). (2.60)
16m

These are plotted in the yz plane in Fig. 2.14. We sec that the s state is
spherically symmetric, taking the same positive value in all directions. The
p state (I = 1, m = 0), on the other hand, has a positive lobe pointing out
along the positive z direction, but a negative lobe pointing out along the
negative z direction. Note that these two lobes are spherical, since the
plot, r = |cos 8], corresponds to x? + y* + (z + 4)®> = § using the relation
z = r cos 8. This state is not surprisingly referred to as a p, orbital. The d
state (/ = 2, m = 0) has positive lobes along the z axis with a negative lobe
in the equatorial xy plane. This state is referred to as a ds,.-,> orbital, or
simply d,.. We will see later that the signs of the lobes are very important
when considering the overlap of orbitals during bonding. It is clear from
Fig. 2.14 that the sign of the s and d states are unchanged on inversion about
the origin (i.e. they are even or gerade) whereas the p state changes sign (i.e.
it is odd or ungerade).

Figure 2.15 shows the corresponding probability clouds | ¥7'(, ¢)|* that
give the angular dependence of the probability density i/ ,;(r)|>. Comparing
with the previous figure we see that the s state remains spherical whereas
the lobes of the p, state are distorted from sphericity along the z.axis,
reflecting the change from cos @ to cos® 6. Since we often deal with atoms
in a cubic environment, it is customary to form p, and p, orbitals by taking
linear combinations of the two remaining I =1 states corresponding to
m = 1. They are illustrated in Fig. 2.15(b). Note that a full p shell has
spherical symmetry since x2 + y* + z% = r?. The probability clouds of the
five d orbitals corresponding to | =2 are shown in Fig. 2.15(c). As might
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Fig. 2.15 The probability clouds corresponding to s, p and d orbitals are shown
in (a), (b), and (c) respectively.

be expected from Fig. 2.15, we will find in the following chapters that
the structure of molecules and solids is very sensitive to the angular character
of the valence orbitals.

The energy levels of the hydrogen atom are determined solely by the
principal quantum number, n, through E, = —n? Rydbergs. In general,
however, states with the same principal quantum number n, but different
orbital quantum numbers, /, have their degeneracy lifted because the presence
of more than one electron outside the nucleus leads to the potential ¥(r) no
longer showing the simple inverse distance-dependence of the hydrogenic
case. This is illustrated in Fig. 2.16 where it is clear, for example, that
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Fig. 2.16 Thevalences and p energy levels (after Herman and Skillman (1963)).

the valence 2s level of the second-row elements B to Ne lies well below that
of the corresponding valence 2p level. These atomic energy levels of the
valence electrons were taken from the tables compiled by Herman and
Skillman (1963) who solved the Schrodinger equation numerically for all
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Figure 2.16 illustrates several important features to which we will be
returning throughout this book.

1. The valence energy levels vary linearly across a given period just like the
inverse radii in Fig. 2.13. As the nuclear charge Ze increases, the electrons
are bound more tightly to the nucleus. However, rather than varying as Z?,
which would be the result for the energy levels of a hydrogenic ion of charge
Ze, the presence of the other valence electrons induces the linear behaviour
observed.

2. The valence s and p energy levels become less strongly bound as one
moves down a given group, and the value of the principal quantum number
increases. This is to be expected from the 1/n? dependence of the hydrogenic
energy levels. But there is an exception to this rule: the 4s valence level has
come down and crosses below the 3s valence level to the left of group
VB. This is a direct consequence of the presence of the occupied 3d shell
whose electrons do not completely screen the core from the valence 4s
electrons, which therefore feel a more attractive potential than their 3s
counterparts in the preceding row. This reversal in the expected ordering of
the valence s energy levels is reflected in the ordering of the string between
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Fig. 2.17 The valence s and d energy levels across the 3d and 4d transition
metal series (after Herman and Skillman (1963)).

Al and Ga in Fig. 1.8, an anomalous ordering that also reflects their relative
core sizes as we saw earlier.

3. Ttisclear from Fig. 2.16 that the energy difference E, — E, decreases as one
goes from right to left across a given period. This will strongly infiuence the
nature of the energy bands and the bonding in the bulk, since if the energy
difference is small, s and p electrons will hybridize to form common sp bands.

Figure 2.17 shows the valence s and d energy levels across the 3d and 4d
transition metal series. The energy levels correspond to the atomic con-
figuration d¥ ~'s, where N is the total number of valence electrons, because
this is the configuration closest to that of the bulk metal. Again there are
several important features. '

1. We see that the energy variation is linear across the transition metal series
as the d shell is progressively filled with electrons. However, once the noble
metal group IB is reached, the d shell contains its full complement of ten
electrons, so that any further increase in atomic number Z adds the
additional valence electrons to the sp outer shell and pulls the d energy
rapidly down, as is evidenced by the change of slope in Fig. 2.17.

2. Whereas the valence s energy level becomes slightly less strongly bound
as one moves down a given group, the valence 4d energy level becomes more
strongly bound than the valence 3d away from the beginning of the -
transition-metal series. This behaviour appears to be related to the mutual
coulomb repulsion between the negatively charged valence electrons. The
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3d orbitals are much more compact than the 4d orbitals, so that the putting
of electrons into the 3d shell leads to a more rapid increase in repulsive
energy than in the 4d shell. This leads to an increase in the relative separation
of the valence s and d energy levels in going down a column from 3d to 4d
away from the left-hand side of the series. For example, E, — E, is about
3eV in Cu but 6eV in Ag, which is reflected in their different elemental
colours,. Relativistic effects, however, which are not included in the Schrédinger
equation (2.49), reverse this trend on proceeding down to the 5d row. Unlike
p and d orbitals, s orbitals have weight at the origin (cf Fig. 2.12), so they
experience the singularity in the unscreened nuclear potential. For the large
atomic numbers of the 5d transition elements this is sufficiently strong to
accelerate the s electrons to relativistic speeds and to lower the energy of the
valence 6s orbital by several electron volts, thereby decreasing the sd
separation. This change in the relative s to d stability on moving down a
given column is demonstrated by Ni, Pd and Pt whose most stable free
atomic configuration changes from 3d®4s? to 4d'° to 5d°6s respectively. This
is reflected by the ordering of the string within this column in Fig. 1.8,

3. We see from the values of the s—d separation in Fig. 2.17 that we expect
the bonding and structural influence of the d states to be much more marked
for the divalent alkaline earths Ca and Sr at the beginning of the transition
series than for the divalent elements Zn and Cd at the end. Thus it is not
unreasonable that purely sp-valent Be and Mg are found to be grouped in
Fig. 1.8 with Zn, Cd and Hg rather than Ca, Sr and Ba.

2.7. Quantum mechanicali structurai predictions

The trends in the free atomic energy levels and core sizes have helped us
rationalize a posteriori some of the observed anomalies in the running of the -
string through the periodic table in Fig. 1.8. However, the a priori prediction
of which crystal structure is most stable for any particular element or
compound requires a careful comparison of the total energies of many
different competing structure types. At the outset this appears a formidable
task. The Schrodinger equation can be solved exactly for the hydrogen
atom. Its solution for the hydrogen molecule and for all other atoms is a
many-body problem. The wave function is no longer dependent on the
coordinates of a single electron but on the coordinates of all N electrons
that are present. For a thimble full of bulk material, N would typically be
of the order of 10?3,

The way forward has already been hinted at in our discussion of the
electron gas. The simplest approximation due to Hartree in 1928 is to assume
that the individual electrons move independently of each other, so that each
electron feels the average electrostatic field of all the other electrons in
addition to the potential from the ionic lattice. This average field has to be
determined self-consistently in that the input charge density, which enters
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the electrostatic potential on the left-hand side of the Schrédinger equation,
depends on the probability density or wave function of the individual
electrons that is predicted as output. Alas, just as for the simplest case of
jellium, the independent particle approximation fails to describe bonding.
The bond in aluminium, for example, is predicted to be more than two orders
of magnitude smaller than that observed experimentally.

In 1930 Fock extended the theory by including exchange which lowered
the total binding energy by keeping parallel spin electrons apart through
Pauli’s exclusion principle. The so-called Hartree-Fock approximation,
however, still made a sizeable error because it neglected correlations in the
motion between anti-parallel spin electrons. This error leads to the electronic
heat capacity of metals varying with temperature as T/log T whereas
experimentally we have already seen it displays a simple linear temperature-
dependence. But to go beyond the Hartree~Fock approximation seemed very
hard except for the simplest system of the free-electron gas. Even quite
recently, Hume-Rothery (1962) was stressing in the preface of his textbook
Atomic Theory for Students of Metallurgy ‘the extreme difficulty of producing
any really quantitative electron theory’.

The breakthrough came two years later when Hohenberg, Kohn and Sham
proved that the total ground-state energy of a many-electron system is a
functional of the density (Hohenberg and Kohn 1964; Kohn and Sham 1965).
(A functional is a function of a function, the electron density being the
function p(r).) This seemingly simple result, by focusing on the electron
density rather than the many-body wave function, allowed them to derive
an effective one-electron-type Schrédinger equation, namely

2
~ o V) + K0 + KlOY0) = B @61)

It is directly analogous to Hartree’s, except that in addition to the average
electrostatic potential ¥y(r), each electron also feels a further attractive
potential, the so-called exchange-correlation potential ¥, (r). Just as we saw
earlier for the free-electron gas this exchange-correlation potential arises
from each electron being surrounded by its own mutual exclusion zone or
hole from which other electrons are kept out (cf Fig. 2.10). In practice, the
exact shape of this exchange-correlation hole is not known except for the
homogeneous free-electron gas. Hohenberg, Kohn and Sham, therefore,
replaced the exact hole by the hole which an electron would have in a
free-electron gas with the same density as that seen locally by the given
electron at any particular instant—the so-called local density approximation
(LDA).

Although initially it was thought that this approximation would only
work well for those systems with nearly uniform or homogeneous electron
densities, in practice, extensive computations have demonstrated the sur-
prising accuracy of LDA in predicting the structural properties of a wide
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Fig. 2.18 The binding energy curves of (a) Si and (b) Ge for seven different
crystal structures. The volume has been normalized by the equilibrium atomic
volume. The dashed line is the Common tangent of the energy curves for the
diamond and B-tin phase, the system moving from 1 - 2 -3 — 4 under
pressure. (From Yin and Cohen (1982).)

range of ionic, covalent and metallic materials. This accuracy of prediction is
due to the robustness of the concept of the exchange-correlation hole—
even though its shape might be poorly represented by LDA, the attractive
potential which the electron sees at its centre is well described as the
approximate and exact holes both exclude precisely one electron each.

We illustrate the accuracy of the LDA in making structural predictions
with two examples. The first example compares the behaviour of covalently
bonded Si and Ge under pressure. We see from Fig. 2.18 that LDA predicts
that the semiconducting diamond cubic phase transforms to the metallic
B-Sn phase under pressure as observed experimentally. We also find the
lowering in the stability of the close-packed structure types fcc, bee, and hep
with respect to the diamond lattice on going from Si to Ge that reflects the
known trend down group IV in Table 1.1. The second example compares
the structural behaviour of the four neighbouring intermetallics ScA1, TiAl,
YAI and ZrAl. We see from Fig. 2.19 that LDA predicts that from amongst
the nine structure types considered, ScAl takes the ground-state structure
cP2(CsCl) 14/14, TiAl takes tP4(CuAu) 12/12, and YAl and ZrAl take
oC8(CrB) 17/9 as observed within the AB structure map, Fig. 1.9.

Thus, we have come a long way from the exactly soluble problems of
quantum mechanics, the free-electron gas and the hydrogen atom. The
concept of the exchange-correlation hole linked with the LDA has allowed
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reliable numerical predictions to be made on the bonding and structure of
ionic, covalent and metallic systems. Moreover, it has placed the many-body
quantum mechanical problem within an effective one-electron framework so
beloved of chemists in their molecular orbital description of molecules
and physicists in their band theory description of solids. We pursue these
one electron ideas further in the following chapters.
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3
Bonding of molecules

3.1. Introduction

The concepts which we need for understanding the structural trends within
covalently bonded solids are most easily introduced by first considering the
much simpler system of diatomic molecules. They are well described within
the molecular orbital (MQ) framework that is based on the overlapping of
atomic wave functions. This picture, therefore, makes direct contact with the
properties of the individual free atoms which we discussed in the previous
chapter, in particular the atomic energy levels and angular character of the
valence orbitals. We will see that ubiquitous quantum mechanical concepts
such as the covalent bond, overlap repulsion, hybrid orbitals, and the relative
degree of covalency versus ionicity all arise naturally from solutions of the
one-electron Schrodinger equation for diatomic molecules such as H,, N,,
and LiH.

3.2. Bond formation in s-valent dimers

Let us consider what happens as two s-valent atoms A and B are brought
together from infinity to form the AB diatomic molecule as illustrated
schematically in Fig. 3.1. The more deeply bound energy level E, could
represent, for example, the hydrogenic 1s orbital (E, = —13.6 eV), whereas
the less deeply bound energy level E; could represent lithium’s 2s orbital
(Eg = —5.5¢V. o Fig. 2.16). Each free atomic orbital satisfies its own
effective one-electron Schrodinger equation (cf eqn (2.59)), namely

hz
—Z_mp V2Ua(r) + Va(PYa(r) = E ya(r) (3.1)
and
hz
— 5= VA(0) + H(O(0) = Elao) (32)

where V(r) is the total potential seen by the electron, including both the
Hartree and exchange-correlation contributions.
We wish to solve the one electron Schrodinger equation for the AB dimer,
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Fig. 3.1 The potential of the AB diatomic molecule may be approximated by the
overlapping of the free atom A and B potentials. £, and Eg are the valence s
electron energy levels.

namely ,

= VAs(®) + Faa®)¥ao®) = B0 33)
where ¥,(r) is the molecular potential. In principle, this potential should be
determined self-consistently in that both the Hartree and exchange-correlation
potentials which enter as input on the left-hand side of egn (3.3) depend on
the average electronic charge density, and hence on the output electronic
wave function, ¥,5. In practice we will approximate this self-consistent
molecular potential by the sum of the individual free atomic potentials,
so that

Vis=W+ W, (3.4)

as sketched in Fig. 3.1. This is a good approximation for the covalently
bonded systems that are of prime interest in this book. However, it is a
poorer approximation for systems towards the ionic end of the bonding
spectrum where explicit shifts in the energy levels due to the flow of electrons
from one atom to the other must be incorporated, as is done later in our
treatment of the heats of formation of transition metal alloys in §7.6.

The molecular Schrodinger equation can be solved exactly for the case of
H; when ¥,p is simply the sum of two hydrogen ion potentials. In general,
however, an exact solution is not possible. Following the well-worn tracks
of MO theory we look instead for an approximate solution that is given by
some linear combination of atomic orbitals (LCAQ). Considering the AB
dimer illustrated in Fig. 3.1 we write

Yap = CalWa + CaYs (3.5)

where ¢, and cg are two constant coeflicients to be determined. It then follows
from the Schrédinger equation (3.3) that

(A - E)(ca¥a + cg¥) =0, (3.6)
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where H is the Hamiltonian operator for the AB dimer, namely

A k2
H = —_V2 + KB'
2m

Premultiplying by ¥, (or y3) and integrating over all space we find the
LCAO secular equation (taking y* =y as y is real for s orbitals)

[ Ha,—E Hy— ESAB:II:CA:I _o, 37
Hy, — ESgy Hgg — E Cs

where the Hamiltonian and overlap matrix elements are given by

o

H, = 'l’aﬁll’ﬂ dr (38)

and
Sas = | V¥, dr. (3.9

The Hamiltonian matrix elements can be evaluated directly by assuming
Vig = Vi + Vg asin eqn (3.4). The diagonal element H,, may then be written

Hy, = J‘/’A(&s + Va)¥adr = J..!’A(EA + Va)y, dr (3.10)

where H, = —(h*/2m)V? + ¥, is the Hamiltonian operator for the free atom,
A, and the last identity follows from the Schrédinger equation 3.1,
Thus,

HAA = EA <+ JPAI/B dl', (3.11)

where p, = 2 is the electronic probability or number density of free atom,
A. The diagonal element, H, ,, is, therefore, given by the free atomic energy
level, E,, shifted by the so-called crystal field term, which reflects the lowering
in energy of the electron on atom A due to the attractive tail of the potential
from the neighbouring atom, B (cf the right-hand sketch in Fig. 3.1). We
shall neglect the crystal field in the following discussion as it does not affect
the fundamental description of the covalent bond. We shall, therefore,
approximate H,, and Hgg by the free atomic energy levels E, and Eg
respectively.
The off-diagonal element H,; may be written as

Hyp = '['/IA(I?A + Wp)ypdr = J"/’A(EA + Vg)yp dr, (3.12)

where we have used the fact that the Hamiltonian operator, ﬁA, is hermitian
to act with it to the left on y, under the first integral sign. However, we



Bond formation in s-valent dimers 53

could equally well have written H,y as

Hyg = JWA(ﬁB + R)ypdr = J'/’A(EB + W)y dr, (3.13)

where Hy = —(5%/2m)V? + ¥, is the Hamiltonian operator for the free atom,
B.

Thus, treating the A and B atoms on an equal footing by adding equations
(3.12) and (3.13), we have that

Hyg = J!l/A(V+ E)yy dr, (3.19)

where ¥V = 4(¥V, + ¥,) and E = }(E, + Ej) are the average values of the
atomic potentials and energy levels respectively. Finally, therefore, the
off-diagonal element is given by

H,,=h+ ES, (3.15)

where h = [, PAypdr and S = |y, dr = S, are the bond and overlap

integrals respectively. The bond integral is negative, since the two positive s

orbitals are overlapping in the negative molecular potential of Fig. 3.1.
The LCAO secular equation then takes the form

[—%AE—(E—E) h—(E—E)S][cA:I=O (316)
h—(E—E)S 3AE—(E—E)]lcg ’ ’

where AE = E, — E, is the atomic energy level mismatch (cf E, = E — 3AE,
Egz = E + JAE). Unlike eqn (3.7) we see that the eigenvalues, E, are now
measured explicitly with respect to the average energy, E. Equation (3.16)
has non-trivial solutions if the secular determinant vanishes, that is

—IAE-(E~-E) h—(E—E)S

_ =0. (3.17)
h—(E_FE\S iAE —(E— )
L) 4 \u u}u zu \‘-’ ‘-‘II

The resuitant quadratic equation may be solved directly to yield
E* = E + {h|S F i[4h* + (1 — S2(AE)*]V?}/(1 —8Y).  (3.18)

As we are interested in extracting the essential ingredients that characterize
bond formation, we may neglect second-order terms in the overlap integral,
S. By expanding (1 — §%)"! as 1 4+ S2 + --- we see from eqn (3.18) that
these S terms lead to eigenvalue shifts such as hS® which are third-order
or higher in the small quantities h and S that vanish as the bond is pulled
apart. The eigenvalues may, therefore, be approximated by

E* = E + [h|S T ${4h* + (AE)*]*2. (3.19)
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Fig. 3.2 The bonding and antibonding states for (a) the homonuclear and
(b) the heteronuclear diatomic molecule. The shift in the energy levels due to
overlap repulsion has not been shown.

Therefore, as illustrated by the left-hand panels of Fig. 3.2, s-valent
diatomic molecules are characterized by bonding and antibonding states that
are separated in energy by the amount w, g, such that

w2y = 4h? + (AE)?. (3.20)

It is now clear why h is referred to as the bond integral, since for homonuclear
diatomic molecules the bonding state has been shifted downwards by the
amount |h|. We also see from egn (3.19) that the molecular eigenvalues are
shifted upwards by the amount [h|S due to overlap repulsion that reflects
Pauli’s exclusion principle. These are the two key ingredients of the covalent
bond: an attractive bond energy pulling the atoms together, which is
balanced at equilibrium by a repulsive overlap potential keeping the atoms
apart. .

It follows from the LCAO secular equation (3.16) that the eigenfunctions
corresponding to the eigenvalues E* are given to first order in S by

Wik = caya + chyp, (3.21)
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where 2
1 0—3S
ct = ——[1 =+ ——] (3.22)
* ﬁ J1+ 8
and
1/2
= 1 [1 T j_i] (3.23)
f J1+8

with & = AE/2|h| being the normalized atomic energy-level mismatch. Thus,
as shown by the upper right-hand panel of Fig. 3.2, the bonding and
antibonding states of a homonuclear diatomic molecule are given by
the symmetric and antisymmetric combinations of the atomic orbitals ¥/,
and g respectively. (Note that from egs (3.22) and (3.23)

k= +cf %(1 F 517
2

which is equivalent to first order in S to the usual normalization prefactor

of hydrogenic molecular orbitals, namely (1 /\/5)(1 + §)”2). As expected,
the lower right-hand panel of Fig. 3.2 shows that the bonding electrons in
a heteronuclear diatomic molecule spend more time on the more attractive
site than on the less attractive site.

We see that the formation of the bond is accompanied by a marked
redistribution of the electronic charge. Since the bonding state g is
occupied by two valence electrons of opposite spin the electronic probability
or number density of the diatomic molecule will be yvcu uy pAB\l )= LLtp XB(‘I')]Z
with the corresponding electronic charge density —ep,p(r) where e is the
magnitude of the electronic charge. From eqgs (3.21)—(3.23), the electronic
density may be written in the form (neglecting second-order terms in the

overlap S)

Pa(® = (1 + %) pa(r) + (1 — ) pp(K) + 2 Prona(F). (3.24)
where
PA(B)(") = [\[’A{B)(r)]z (3.25)
and
Prond(T) = 2Ya (DY) — S[pa(®) + pa(r)]. (3.26)

The terms «; and o, are determined by the normalized energy-level mismatch
d through
o = 8/(1 + 62 3.27)
and
= 1/(1 + 6%V, (3.28)

For homonuclear diatomic molecules the atomic energy-level mismatch
vanishes so that a; =0 and «, = 1. Hence, the change in the electronic
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charge distribution on forming the molecule is given solely by the bond
charge contribution —ep, 4. This is illustrated in Fig. 3.3 for the case of
the hydrogen molecule where we see that, as expecied, the electronic charge
has moved from the outer region of the molecule into the strongly attractive
bond region between the atoms. This is a truly quantum mechanical effect,
since it reflects the constructive interference between the wave functions i, (r)
and yy(r) that are centred on the two atomic sites. We should note that the
total charge associated with p,,4 over all space is identically zero since from
egs (3.9) and (3.26)

J Poong() dr = 25 — 25 = 0. (3.29)

For heteronuclear diatomic molecules, the atomic energy-level mismatch
does not vanish, so that & # 0. Hence, the ¢lectronic charge distribution
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—ep,p(r) contains the ionic contributions —ea;p,(r) and + ea;pg(r) in
addition to the covalent bond charge contribution — ex,py,.4(r). Thus the
amplitude of the ionic charge is proportional to «;, whereas the amplitude of
the covalent bond charge is proportional to o.. This has important impli-
cations: the strongest possible covalent bond between isovalent atoms occurs
when the valence energy levels on the two sites shows zero mismatch, so
that 6 =0, and a, takes its maximum allowed value of unity. As the
energy-level mismatch increases the electron spends more time on a given
site rather than being shared equally between the two sites in the covalent
bond region. This is illustrated by the very different behaviour of the
homonuclear and heteronuclear bonding state eigenfunctions in Fig. 3.2.
The terms «; and «_ are said to measure the degree of ionicity and
covalency of the bond. From eqs (3.27) and (3.28) they satisfy the constraint

a? +o>=1. (3.30)

For a homonuclear diatomic molecule, the bond is purely covalent (o; =0,
o, = 1) whereas for-a heteronuclear diatomic molecule the bond shows mixed
covalent-ionic character («; # 0, o, # 0). In the limit as the separation
between the atomic energy levels on the two atoms becomes very large the
bond becomes purely ionic (o; = 1, o, = 0).

3.3. Electronegativity scales

The degree of ionicity of an s-valent bond can be written explicitly from eqn
(3.27) in terms of the bond integral h and atomic energy-level mismatch AE as

o, = AE/[4h? + (AE)*]"2, (3.31)

A not unrelated definition of o, for sp-valent octet AB compounds has been
given by Phillips and Van Vechten (1969). These octet compounds such as
NaCl and ZnS have eight valence s and p electrons per AB unit. Phillips
and Van Vechten assumed that the average energy gap E, of these
semiconducting or insulating compounds is made up of covalent and ionic
contributions, E, and E, respectively, that are related via eqn (3.20) by

E2=E? + EZ. (3.32)

The average energy gap or the splitting between the bonding and antibonding
states may be loosely thought of as the energy difference between the centres
of gravity of their valence and conduction bands, which was determined
using photoemission spectroscopy. Thus, by measuring E, for the elemental
group IV semiconductors and E, for the octet compound semiconductors
or insulators, the appropriate values of E; could be deduced from eqn (3.32).
For example, the isoelectronic series of compounds Ge, GaAs, ZnSe, and
CuBr were found to take values of the ionic component E,; equal to 0.0, 1.9,
3.8, and 5.6 eV respectively. This linear increase across the isoelectronic
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series is not unexpected from the linear behaviour of the 4s and 4p atomic
energy levels that are shown in Fig. 2.16. These values of E; should be
compared to the value of the covalent component for this isoelectronic series,
namely E_= 5.6 ¢V (the value for elemental Ge).

The degree of ionicity of the bond in these octet compounds is then defined
by analogy with eqn (3.31) as

EJTE2 4 E21112 (213
ifb&ec T X441 . \J2I)

o =
Thus as we go across the isoelectronic series Ge — GaAs — ZnSe —» CuBr,
the degree of ionicity increases from 0 — 0.32 — 0.56 — 0,71 as expected. A
noteable achievement of the Phillips—Van Vechten ionicity scale was that it
also allowed an excellent structural ordering of the sp-valent octet com-

pounds. As shown in Fig. 3.4, the structure map (E, E;) separates all those
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Fig. 3.4 The Phillips—Van Vechten structure map (£, £;) for the sp-valent octet
AB compounds. The four-fold coordinated zinc blende and wurtzite structure
types are separated from the six-fold coordinated NaCl structure type by the
straight line corresponding to the degree of ionicity «; = 0.785. (After Phillips
and Van Vechten (1969).)



Electronegativity scales 59

compounds with the four-fold zinc blende or wurtzite structure types from
those with the six-fold NaCl structure type. In fact, the boundary is the
straight line given by E; = 1.27E_ that corresponds to the degree of ionicity
a; = 0.785. All those sp-valent octet compounds with ionicities less than this
critical value are tetrahedrally coordinated; all those with ionicities greater
than this are octahedrally coordinated. This is consistent with conventional
wisdom that zinc blende and wurtzite are covalent structure types, whereas
NaCl is an ionic structure type.

We have seen from egn (3.24) that the degree of ionicity «; reflects the
relative ability of two different atoms to attract electrons to themselves. It
is, therefore, a direct measure of their electronegativity difference AX, where
X is the electronegativity of the individual atom. We could, therefore, set up
two restricted electronegativity scales, the one for s-valent atoms that implies
AXaAE (assuming that h is approximately constant), and the other for
sp-valent atoms in tetrahedral or octahedral environments that implies
AXaE, (assuming that E_ is approximately constant). It is more common in
practice, however, to work with general electronegativity scales that can in
principle be applied to all atoms within the periodic table.

Figure 3.5 shows the two most widely used scales according to Pauling
(1960) and Mulliken (1934) respectively. Pauling based his scale on the
known experimental heats of formation AH of binary molecules and
compounds. Assuming that the excess AB bond energy was ionic in origin,
he defined AX through (in its simplest, earliest form)

AH = UAB - %(UAA + UBB) = —k(AX)2 (3.34)

where k is a constant and U, ,, Ugg and U, are the dissociation or binding
energies of the A,, B, and AB diatomic molecules respectively. Mulliken, on
the other hand, based his scale on the known ionization potentials I and
electron affinities 4 of the individual free atoms, defining

X =4I+ 4) (3.35)

This was justified as follows. The energy required to take an electron from
a neutral atom Y to a neutral atom Z is I, — 4,, whereas the energy
cost to take an electron from a neutral atom Z to a neutral atom Y 1s
I, — Ay. Hence, the two atoms Y and Z would have an equal propensity
for attracting electrons or equal electronegativity if I, — A, = I, — Ay, that
is if Iy + Ay = I; + A;. This is consistent with the Mulliken definition,
eqn (3.35), the factor 1/2 being arbitrary. As can be seen by comparing the
two different scales in Fig. 3.5, the Mulliken values are approximately 2.8
times the Pauling values.

The concept of electronegativity is easy to visualize but difficult to apply
quantitatively. Mulliken’s definition, based on free-atomic properties, does
not account for the influence of the local atomic environment on the ionic
state that is reflected, for example, in the fact that the degree of ionicity o,
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Fig. 3.6 The Pauling (left-hand panel) and Mulliken (right-hand panel) electro-
negativities for the sp-valent elements. Note that the electronegativities scales
run vertically downwards in order to emphasize the similarity with the free-atom
energy levels in Fig. 2.16 and negative inverse core sizes in Fig. 2.13.

depends on both the atomic energy-level mismatch, AE, and the bond
integral, h. Pauling’s definition, based on the heat of formation, implies that
all binary compounds form since —(AX)? is negative (or at most zero).
However, we have already seen in Fig. 1.9 that nearly three-quarters of all
possible binary AB compounds do not form. The problem is that electro-
negativity is essentally a classical concept with electrons flowing from
electropositive to electronegative atoms, thereby setting up an attractive ionic
bond. In practice, as we shall demonstrate in future chapters, the bonding
and structure of most binary systems are controlled by quantum mechanical
rather than classical contributions to the energy.

3.4. Dissociation of the hydrogen dimer

In the early days of quantum mechanics, MO theory received a very bad
press compared to valence bond (VB) theory because it predicted the
incorrect dissociation behaviour of the hydrogen molecule. This is illustrated
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Fig. 3.6 Binding energy curves for the hydrogen molecule (lower panel). HF
and HL are the Hartree—Fock and Heitler—London predictions, whereas LDA and

LSDA are those for local density and local spin density approximations respect-
ively. The upper panel gives the local magnetic moment within the LSDA
self-consistent calculations. (After Gunnarsson and Lundquist (1976).)

by Fig. 3.6. We see that a variational Heitler—~London VB solution (to be
discussed below) gives not only about 809, of the observed binding energy,
but also dissociates correctly as the atoms are pulled apart to infinity. A
variational Hartree~Fock MO solution, on the other hand, not only provides
slightly less binding energy at equilibrium, but more seriously dissociates to
the wrong limit.

The origin of this discrepancy is easy to track down. The MO description
of the hydrogen molecule places the two electrons with opposite spin into
the bonding state ¥, so that the two-electron wave function can be written

¥(L, 2) = Yp(D)¥ie2) = i[¥a(1) + Ye(DI¥a@ + ¥p(2)], (3.36)

where for simplicity we have neglected the overlap contribution to the
normalization prefactor. Thus, multiplying out we have -

¥(1,2) = [Wa(D¥e(2) + 2Ws()Ya@)] + [¥a(D¥a@) + () ys2)]. (337)

The two terms in the first square brackets represent covalent configurations
in which electron 1 is associated with atom A, electron 2 with atom B and
vice versa. The two terms in the second square brackets represent ionic
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configurations in which both electrons 1 and 2 are associated with atom A,
none with atom B and vice versa.

It is clear, therefore, that as the atoms are pulled apart the Hartree—Fock
MO solution does not go over to that of two neutral-free atoms H°H®, but
instead goes over to a mixed configuration, schematically represented by
2H°H® + H*H™ + H™H™). Since the energy cost for the ionic configur-
ationis I — A = (13.6 — 0.8) eV = 12.8 eV, the Hartree~Fock MO solution
dissociates incorrectly to + 6.4 eV rather than zero! (We have assumed the
Hartree-Fock treatment of H™ is exact.) The Heitler—-London VB solution
avoids this problem by working with only the covalent configurations in the
first square bracket of eqn (3.37), so that it dissociates correctly.

Local Density Functional MO theory dramatically improves the predicted
equilibrium binding energy compared to the Hartree—Fock solution, since
it includes correlation effects explicitly through the exchange-correlation
potential in egn (3.3). However, the local density binding energy curve still
dissociates incorrectly. This problem can be overcome by allowing the
density functional solution to become spin-polarized by removing the
constraint that the eigenfunctions for the up and down spin electrons must
be the same. This is illustrated in Fig. 3.7(d) where we can look for an up-spin
solution that is weighted on atom A, a down-spin solution on atom B. We

(a) (b)

(1) (1)
A A

= -—
i 1n(2) v, (2) ;
(c) (d)
v (1)+ wg(1)
A A

PALNESACS

WY

v, (2)+ yp(2)

Fig. 3.7 The Heitler-London configuration y, (1) yg(2) and Y4 (2)yg(1) (a) and
{b) respectively, where Y, and ¥z represent the atomic 1s orbitals centred on
atoms A and B respectively, and 1 and 2 represent the coordinates of the two
(indistinguishable) electrons. (¢) The molecular orbital basis function in the
singlet state where electrons 1 and 2 have opposite spin. (d) The up and down
spin sigenfunctions corresponding to local exchange fields of opposite sign on
A and B,
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could then imagine that, as the atoms are pulled apart, the up-spin electron
spends more and more of its time on atom A, the down-spin electron on
atom B, so that in the limit of infinite separation we go over to the correct
limit of two neutral hydrogen atom configurations.

We see from Fig. 3.6 that local spin density functional theory indeed gives
an excellent binding energy curve at all internuclear separations. The upper
panel of Fig. 3.6 shows that a spin polarized solution exists for R > 3.2 au,
the degree of spin polarization becoming almost unity by R = 5 au. As might
be expected by comparing Fig. 3.7(d) with Fig. 3.2(b), this onset of spin
polarization as the hydrogen molecule is pulled apart can be understood by
extending the simple model of the heteronuclear diatomic molecule already
discussed. From eqn (2.51), a net imbalance in the number of up and down
spin electrons on a given atom will correspond to a net magnetic moment
m on that site which for the configuration illustrated in Fig. 3.7(d) will be
given by

m=N]— Ny =Ni— N} (3.38)

in Bohr magnetons (where N} + N} = N} + N} = 1). By Pauli’s exclusion
principle, electrons with spin parallel to the local magnetic moment will see
a more attractive potential on that site than those with spin antiparallel. We
expect this difference in on-site energy to be directly proportional to the
magnitude of the magnetic moment, namely

E\—E|=E} —Ef=1Im (3.39)

where the constant of proportionality / is called the Stoner exchange integral.
Thus, as can be seen from the left-hand panel of Fig. 3.8, the spin-
polarized solution for the hydrogen molecule is equivalent to that for a

E AE
| A -——————
If ¥ | /-
m —|———F m
1 __T. __‘p
A B

1 12 th|

Fig. 3.8 Left-hand panel: The on-site atomic energy levels for up and down spin
electrons due to the exchange splitting /m where / and m are the Stoner exchange
integral and local moment respectively. Right-hand panel: The local magnetic
moment, m, as a function of //2|h| where / and A are the exchange and bond
integrals respectively. Compare with the self-consistent LSDA solution in the
upper panel of Fig. 3.6.



64 Bonding of molecules

heteronuclear diatomic molecule with atomic energy-level mismatch

A=E},—E|=Ef— E{=1Im (3.40)
Consequently, we have from the eigensolutions, egs (3.22) and (3.23), that
m=N] — Nf =N] — N} =[ci* — le5[?, (3.41)

so that
m = A/[4h? + A?]/?, (3.42)

(with the overlap integral, S cancelling to first order). We, therefore, have to
solve for A self-consistently: an initial choice of the exchange splitting, A,
implies a net magnetic moment, m, given by eqn (3.42) which leads via Pauli’s
exclusion principle to an exchange splitting, A, given by eqn (3.40).

This simple example of a self-consistent field problem has an analytic
solution, since substituting eqn (3.42) into eqn (3.40), we find the exchange
splitting, :

A = [I? — 4h?]'12, (3.43)

It follows that no self-consistent solution exists, unless the exchange integral,
I, is greater than the initial bonding—antibonding energy-level separation,
2|h|. This reflects the fact that the non-spin polarized state becomes unstable
to spin polarization when the energy gain from flipping a spin (given by ~I)
overcomes the resultant increase in kinetic energy (given by 2[h[). Finally,
substituting eqn (3.43) into eqn (3.42), we have the self-consistent moment

m = [1— 2WI)*1"'* = [(1/2h)* — 17'/(I/2IH]). (3.44)

This is plotted in the right-hand panel of Fig. 3.8 as a function of I/2[h|.
Remembering that k(R) — 0 as R — oo, we see that it shows the same square
root distance-dependence as that displayed by the numerical self-consistent
solution of the local spin density functional Schrédinger equation in Fig. 3.6.
Thus, as the hydrogen molecule is pulled apart, it moves from the singlet
state S = 0 at equilibrium to the 1solated free atoms in doublet states with
S=1

The local density approximation (LDA) binding energy curve in Fig. 3.6,
which accurately follows the exact curve around equilibrium, can be
approximated by the sum of five terms, namely

U(R) = [Pu(R) + O,(R) + D.(R)] — 2[A(R)| + U, (3.45)

which are shown in the left-hand panel of Fig. 3.9. U, is a constant which
accounts for the fact that the LDA binding energy curve dissociates
incorrectly at infinity. The two dominant contributions are those expected
from our earlier treatment of the covalent bond (cf eqn (3.19)): the overlap
repulsion, ®,(R) and the covalent bonding 2h(R) (where the prefactor
of 2 accounts for both electrons being in the bonding state). Both these
terms are quantum mechanical in origin, as too is the much weaker
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Fig. 3.9 Left-hand pansl: The overlap ®,, electrostatic ®_,, exchange-correlation
®,. and bond integral 2ss¢ contributions to the binding energy of the hydrogen
molecule (where sso = /). Right-hand panel: The binding energy curve (full line)
is the sum of the three contributions ®,,,, 2ssc and U, (see text for details).
{After Skinner and Pettifor {1991).) '

exchange-correlation contribution ®,.(R). The term ®.(R), on the other
hand, is the classical electrostatic interaction between two hydrogen atoms
in which the electronic charge densities are ‘frozen’ as the atoms come
together to form the bond (cf the lower panel in Fig. 3.3). We see that this
classical contribution imparts negligible binding at the equilibrium separation,
although it does contribute noticeably to the repulsion at smaller distances
when the two positive nuclei become less well screened from each other by
the valence electrons.

We will simplify eqn (3.45) by representing the three terms in the square
bracket by the single contribution @, (R). This is repulsive for R < 5 au, as
shown in the right-hand panel of Fig. 3.9. We thus write

U(R) = ®,.,(R) — 2Ih(R)] + U, (3.46)

Since the dominant contribution to @, is the overlap repulsion, we expect

from egn (3.19) that

rep

@..(R) = [H(R)IS(R) = A[KR)P. (3.47)

- The second equality follows by making the so-called Wolfsberg-Helmholtz
approximation, that S(R) is proportional to h(R). Equation (3.47) is a good
approximation for the hydrogen dimer around its equilibrium internuclear
separation, since from Fig. 3.9 @, ah?®-!. We will see in the next chapter that
the particular power-law relation between @, ,(R) and h(R) plays an
important role in determining the relative stability of different competing
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molecular structures types. We should note that a Lennard—-Jones potential
also has its repulsive R ~ 2 contribution varying as the square of its attractive
R~ ¢ contribution, as in eqn (3.47).

3.5. o, n, and ¢ bonds

A diatomic molecule has cylindrical symmetry about the internuclear axis,
so that angular momentum is conserved in this direction. Quantum mech-
anically, this implies that the state of the molecule is characterized by the
quantum number m where m/ gives the component of the angular momentum
along the molecular axis. However, unlike the free atom, in which the (21 + 1)
different m values arc degencrate, thc degeneracy is lifted in the molecule.
By analogy, with the s, p, d, . .. states of a free atom representing the orbital
quantum numbers [ =0, 1, 2,. .., it is customary to refer to g, 7, 9, . .. states
- of a molecule as those corresponding to m =0, -1, +2, ... respectively.
Figure 3.10 illustrates the different characteristics of the o, z, and é bonds.
We have seen from our previous discussion on the homonuclear diatomic
molecule that a given atomic energy level will split into bonding and
antibonding states separated by 2|h| where h is the bond integral that couples
W, and ¥ together through the average molecular potential ¥ (cf. eqn (3.15)).
If ¥, and yy are spherically symmetric s orbitals, then a sse bond is formed
as shown schematically in Fig. 3.10(a). If , and y are p orbitals, whose
probability clouds are drawn in Fig. 2.15, then the three-fold degenerate free
atom level (excluding spin degeneracy) splits into the singly degenerate ppo
molecular state (m =0) and the doubly degenerate ppz molecular state
(m = +1) as shown in Fig. 3.10(b). If ¢, and ¥y are d orbitals, whose
probability clouds are sketched in Fig. 2.15, then the five-fold degenerate
free atom level splits into the singly degenerate dde molecular state (m = 0)
and the two doubly degenerate molecular states ddz (m = +1) and ddé
(m = +2) as shown in Fig. 3.10(c). For the case of a heteronuclear diatomic

ss (a)
-
ssg pp~
(m=0) (m —0) (m=t1)
o (e .
SYRY?2 Y-
S L %—%- - % o ‘,‘
dda ddn dds pdo pdn
{m=0) {(m=t1) (m=t2) (m=0) (m=£1)

Fig. 3.10 The formation of ¢, n, and é bonds (see text).
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molecule, such as TiC, where the carbon p orbitals overlap the titanium d
orbitals, a pd bond will be formed from the pde and pdn states illustrated
in Fig. 3.10(d).

It is clear from Fig. 3.10 that a ¢ bond is relatively strong, since the angular
lobes point along the molecular axis and can give rise to a large overlap in
the bonding region. On the other hand, the ppn and ddé bonds will be
relatively much weaker since angular lobes extend in the plane perpendicular
to the molecular axis. This can be seen explicitly by making the Wolfsberg—
Helmholtz approximation and writing h(R) = — S(R) in units of energy for
each bond, such that the constant of proportionality is unity. Then for the
overlap of hydrogenic-like 2s and 2p orbitals (cf eqs (2.51) and (2.52)),
we have

ss¢ = —(1 + kR + $x?R? + &R® + Fs*R¥) e™*R (3.48)
spo = kR(1 + kR + k’R?¥) e~ *R (3.49)
ppo = (—1 — kR — 3x?R? + 4x°R® + £x*RY) e™*F (3.50)
ppr = —(1 + kR — 2k?R? 4+ k3R e R (3.51)

x? is the magnitude of the appropriate atomic energy level and R is the
internuclear separation,

These are plotted in Fig. 3.11 and illustrate three important characteristics
of s- and p-bond integrals. Firstly, ssc and ppn are negative due to

— overlap integral

Bond integral

10

Fig. 3.11 The bond integrals sso, spo, pps, and ppn as a function of xR where
k% is the magnitude of the appropriate valence energy level and R is the
internuclear separation (see eqs (3.48)—(3.51) and the text for details).
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lobes of the same sign overlapping in the negative molecular potential,
whereas spo and ppo (at intermediate and large distances) are positive due
to lobes of opposite sign overlapping in the negative molecular potential (cf
Fig. 3.10). Secondly, ppo saturates as the bond distance decreases and
changes sign at small internuclear separations because eventually there is
more overlap between orbital regions of identical sign than of opposite (cf
Fig. 3.10(b)). Thirdly, spc also saturates as the bond distance decreases, since
it must eventually vanish at R = 0 due to s and p orbitals on the same site
being orthogonal. It follows from this behaviour that in the vicinity where
ppo saturates, as is observed for carbon and silicon bonds at their equilibrium
separation, we have from Fig. 3.11 that

ppo x spo = [ssa| (3.52)

and
(3.53)

We will use these values when discussing the behaviour of sp-valent dimers
in the next section.

Ippn| = 3lsso|.

3.6. Bond formation in sp-valent dimers

The binding properties across a given row of sp-valent dimers show the very
marked triangular variation with valence shell occupancy that is observed
in Fig. 3.12 for the 2Zs, 2p valent diatomic molecules. We see that the nitrogen
molecule with its five valence electrons per atom displays the maximum
binding energy, minimum internuclear separation, and maximum vibrational
frequency (or curvature of the binding energy curve about equilibrium). We
can understand this behaviour by extending our earlier treatment of s-valent
diatomic molecules to that for sp-valent.

The cylindrical symmetry about the inter-nuclear axis leads to the
solutions of the molecular Schrédinger equation, eqn (3.3), having either ¢
or 7 character. Taking the z axis along the axis of the molecule, the ¢
eigenfunctions will comprise linear combinations of the Y., ¥,,, ¥, and ¥y,
atomic orbitals so that we can write the molecular orbital as

Yap= 2, (ca¥a. + co¥s.)

X=8,Z

(3.54)

By analogy with our previous treatment of the s-valent dimer, substituting
eqgn (3.54) into the Schrodinger equation (3.3) leads to the LCAO secular
equation (neglecting the overlap integral, §)

[~ "1r -
E,— E 0 Sso Spo Ca,
0 E,—E —spo c c
p P PP S (3.55)
SSa —spc E,— E 0 Cg,
| spo ppo 0 E,—E || cs,_
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Fig. 3.12 The binding eneargies, equilibrium internuclear separations and vibra-
tional frequencies across the first-row diatomic molecules. Note the good
agreement between the self-consistent local density approximation calculations
and experiment for R and w, but the larger systematic error of up to 2 eV for the
binding energy. (After Gunnarsson et al. (1977).)

Since the potential is unchanged with respect to inversion about the centre
of the molecule (i.e. ¥ g(r) = Vig(—r), with the origin at the molecular
centre), the solutions will be either even (gerade) or odd (ungerade). The
even solutions correspond to (c,, = cg,, €4, = —Cp,), the odd solutions to
(¢a, = —c¢g,, €a, = Cp,)- Substituting into the LCAO secular equation above,
we find that the even solutions are given by

I:Es +ssc — E —spo :”:CA,:I o (3.56)
—Spg E,—ppoc — E]lLc,

¥ 3

whereas the odd solutions are given by

[Es ~sso — E spa :||:CA{| ~0. (357)
spo E,+ppc — E |Lca,

The resultant two quadratic equations can-be solved directly. However,
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to keep the expressions simple without affecting our fundamental under-
standing, we make the approximation suggested by eqn (3.52), namely

ppo = spc = —ssad = —h, (3.58)

so that h < 0 as for the s-valent dimer. The even (g) and odd (u) eigenvalues,
resulting from substituting eqn (3.58) into egs (3.56) and (3.57), are

— i 1t ¢ lraz2 . AT \2'\!!2 £ =
E,=E — |h £ 3[40 + (AE,;)*] (3.59
and

E,=E + |n + 3[4h* + (AE,,)*]"?, (3.60)

where E = 3(E, + E,) is the average value of the s and p atomic energy levels
and AE_, = E_, — E, is the splitting between the free atom s and p valence
energy levels (given by comparing the curves on the right- and left-hand
sides of Fig. 2.16).

The behaviour of these eigenvalues can best be understood by considering
the two limiting cases: (i) AE,,/|h| — oo and (ii) AE,,/|h| — 0. For the case
where the sp splitting is large we have from eqs (3.59) and (3.60) that

Eg - {Es - Ihl
Ep - ’h,

E, + |h

E > { s+ [h]

E, + [hl.
Thus, we recover the expected result that the free atomic s and p levels split
- independently of each other into bonding and antibonding states, with

energies E, F ssc and E, + ppo respectively (since ss¢ = h, ppa = —h). For
the case where the sp splitting is small, on the other hand, we have

{E — 2[h|
E

as AE_/|h| — o0 (3.61)

E -

as AE, /Il -0  (3.62)

£ - E
e iE + 2IH].

Thus, in this case where the s and p energy levels mix together or hybridize,
we recover the bonding state E — 2[h|, the antibonding state E + 2[h|, and
the doubly degenerate non-bonding state, E. (Note that for the particular
case where spo is given by the geometric mean of the magnitudes of ss¢ and
ppo, that is spog = (|sso|ppcs)/?, the bonding and antibonding states for
AE,, =0 are given by E + (jsso| + ppo), which for [sso| = ppo = |H| is
consistent with eqn (3.62) above).

This behaviour is illustrated schematically by the left-hand panel of Fig.
3.13. We see that for large internuclear separations the ¢ states go over to
bonding and antibonding states around the free atomic energy levels E,
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Fig. 3.13 Left-hand panel: The electronic structure of an sp-valent diatomic
molecule as a function of the internuclear separation. Labels £; and £, mark the

positions of the fres-atomic valence s and g levels respectively and £ = (£, + E).
The quantity R, is the distance at which the =, and upper g, levels cross. The
region between the upper and lower = levels has been shaded to emphasize the
increase in their separation with decreasing distance that is responsible for this
crossing. Right-hand panel: The self-consistent local density approximation
electronic structure for C, and Si, whose equilibrium internuclear separations are
marked by R, and Rg;, respectively. (After Harris 1984.)

and E, respectively. However, as the two atoms come together, the bond
integral increases, causing AE, /|h| to decrease and the s and p states to
hybridize. As a result, as the internuclear separation decreases, the initially
antibonding s state o, and bonding p state o, tend towards the nonbonding
state E. We have also sketched the doubly degenerate = levels that
correspond to the overlap of the p, and p, orbitals on the two atoms. We
observe that at large separations they split about the atomic p level, E_, with
a width that is approximately half that of the o states as suggested by eqn
(3.53). Note that because of the symmetry of the = orbitals, which are
displayed in Fig. 3.10(b), the bonding state is odd under inversion about the
molecular centre, the antibonding state even. Hence, they are labelled =, and
n, respectively.

A very important feature of the energy levels in Fig. 3.13 is the crossing
of the =, and upper o, levels at the internuclear separation R,. This crossing
must occur as the bond length gets smaller since the upper o, level is bounded
from below by E (cf eqn (3.62)), whereas the =, level carries on falling due
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Fig. 3.14 The occupancy of the molecular orbital energy levels across the first
row diatomic molecules. (After Cotton and Wilkinson (1980).)

to |ppn| increasing with decreasing distance (cf Fig. 3.11). As illustrated
schematically by Fig. 3.14, the =, level lies below the upper o, level for the
sp-valent dimers to the left of nitrogen, whereas it lies above for the sp-valent
dimers to the right of nitrogen. This switch in ordering of the =, and upper
o, levels as one moves across the period is not unexpected, since AE, /|h|
increases on going across from Li, to F, (cf Fig. 2.16).

The ordering of the energy levels in Fig. 3.14 allows us to understand the
cohesive properties of the sp-valent dimers that are displayed in Fig. 3.12.
The two valence electrons in Li, both go into the lowest bonding state o,
whereas the extra two valence electrons in Be, would occupy the antibonding
state o, thereby leading to zero net bonding. Thus, although Li, is a stable
molecule with about 1eV of binding energy, Be, is not observed in the
gaseous state. The additional two electrons in B, occupy the doubly
degenerate =, state with both spins parallel by Hund’s rule. Hence, whereas
Li, is a diamagnetic molecule, B, is observed to be paramagnetic. B,
will have a bond strength of unity, since it has a pair of electrons in
the bonding = state, with the four electrons in the bonding and antibonding
o states contributing zero. The doubly degenerate =, state is fully occupied
by four electrons in C, so that the carbon dimer is dtamagnetic with a bond
strength of two. The further two electrons in N, occupy the upper o, level,
thereby contributing a further unit to the bond strength (cf Fig. 3.13). Thus,
the nitrogen dimer has a total bond strength of three, which leads it to having
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the largest binding energy and smallest equilibrium internuclear separation
of the sp-valent series in Fig. 3.12.

The ordering of the 7, and upper o, levels switches over at oxygen. The
extra two electrons in O, go into the doubly degenerate antibonding =,
level with parallel spins, following Hund’s rule, so that the oxygen dimer
is paramagnetic as observed with a bond strength of two. Finally, the
additional two electrons in F, fully occupy the antibonding =, level, causing
the fluorine dimer to be diamagnetic with a bond strength of only unity. The
variation in bond strength from 1 -2 — 3 — 2 — 1 as we go across from
B, - C, - N, = O, = F, accounts beautifully for the observed variation
in cohesion and bond length across the sp-valent series in Fig. 3.12.

The right-hand panel of Fig. 3.13 shows the variation of the electronic
structure as we go down the group IV column from C, to Si,. We see that
if we were to shift the valence s and p atomic energy levels for silicon so that
the corresponding horizontal dashed lines joined smoothly onto those of
carbon, then the electronic structure would vary fairly smoothly from silicon
to carbon, the bonding—antibonding energy level separations increasing
with decreasing distance. The behaviour of their electronic structure, therefore,
is not markedly different, C, having larger bond integrals than Si, due to
its shorter bond length.

The crucial difference between C, and Si, is that at their equilibrium
inter-nuclear separations, the relative ordering of the n, and upper o, levels
are reversed. This is seen from the fact that in Fig. 3.13 :

R¢, <R, < Rg,. (3.63)

We should note in passing that the electronic structure is sensitive to
the particular electronic configuration chosen through the self-consistent
potential Vg in eqn (3.3). The right-hand panel of Fig. 3.13 has been drawn
for the =, and upper o, levels each being doubly occupied as n;o7. If instead,
all four electrons had been placed in the =, state, as for C, in Fig. 3.14, then
this =} configuration would have caused the =, level to shift upwards and
the o, state to move downwards compared to their positions in Fig. 3.13,
so that R (n}) < R, (nle?).

The relative ordering that is observed in eqn (3.63) is due to the
anomalously small core size of the carbon atom (cf Fig. 2.13). This allows
the carbon atoms to approach together much more closely than might be
expected from a simple extrapolation of the bond lengths of the other
isovalent elements in group IV. Since for the carbon dimer at equilibrium
the =, level lies below the o, level, it is found that placing all four electrons

'in the pi state is more stable than placing two electrons in the pi state and
two in the sigma state. On the other hand, for the silicon dimer at equilibrium
the pure pi configuration z is less stable by 1.5 eV than the mixed sigma-pi
configuration n2o? Thus, the well-known fact that carbon favours pi bonded
configurations whereas silicon prefers sigma bonded configurations may be
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traced to the anomalously small core size of carbon leading to a switching
in the relative ordering of the o, and =, energy levels at the equilibrium bond
length.

3.7. Hybrid orbitals

The s and p, orbitals mix or hybridize as the free atoms are brought together
to form the molecular bond. This can be seen directly from the behaviour
of the o, eigenfunction that corresponds to the most bonding state in

Fig. 3.13. Substituting eqn (3.59) into eqn (3.56) we find

1
ca, =cp,=—=[1 + A, /(1 + Afll,)”z]“r2 (3.64)
/2
and
1
Ca, = —Cp, = ﬁ [1—A,/(1+ Aszp)”z]”z, (3.65)

where A, = AE, /2|h|. Thus, from eqn (3.54) the most bonding eigenfunction
can be written in the form

1
Yap = 7—5 (@a + @8), (3.66)
where ¢, and ¢ are the hybrid orbitals
ba = [0+ AL+ ALY T2, + —[1— A /(L + ATy,
J2 V2
(.67)

¢ = % [1+ Agp/(1 + AL)YV2T Py, — iz[l — Ay /(1 + AZ)2] 2y,

NG NG
(3.68)

These are shown in Fig. 3.15 for the case of maximum mixing or hybridization
that occurs for A;, =0, when E, = E_, so that the two hybrids are given by
(1/\/5)(:‘[/_‘1 + ,). It follows from eqs (3.67) and (3.68) that the fraction of s
character in the hybrid is given by 3[1 + A, /(1 + AZ)"?] which, therefore,
varies from 0.5 for A;, = 0 to 1 for A, = co.

We see from eqn (3.66) that the bonding combination of the two sp hybrids

(1//2) + ¥.) and (1/./2)(¥, — ) does not give the correct solution in
general due to the non-vanishing sp splitting. (This splitting can be large, cf
C, and Si, in Fig. 3.13.) Although these are the most directed hybrids that
lead to the largest overlap and bond integral (for the particular choice
ssa| = ppo), a penalty has to be paid because electrons must be promoted
from the low-lying s state into the high-lying p state that is mixed in. The
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Fig. 3.15 Formation of the two sp hybrids, (1/ﬁ)(¢si ¥,). (After Huheey
et al. (1993).)

eigenfunction optimizes the energy gain from overlap against the energy loss
from promotion.
In fact, we can split the energy of the most bonding state into two parts as

1 “
E, = 2 I(‘bA + ¢p)H(s + ¢p) dr= 3(Hyp + Hpp) + Hyp  (3.69)

where H, ,, Hgg, and H,p are the Hamiltonian matrix elements with respect
to the hybrid orbitals ¢, and ¢g. Substituting eqs (3.67) and (3.68) into
(3.66) and neglecting the overlap contributions we find

AL

%(HAA + HBB) = Ci,Es + CizEp = E_ - mﬁ |h| (3.70)
and
H,p = —ri +——————1 —Iihi (3.71)
AB I_ (1 + Ag'p)llz_l ’ .
where we have used eqn (3.58), namely ppo = spoc = —sso = —h. Thus,
adding eqgs (3.70) and (3.71) we recover
E, = E—|hl— (1 + AZ)'3H (3.72)

as expected from eqn (3.59). This energy is lower than the energy of E — 2|h|

that would have resulted from using the sp hybrids, (1/\/5)(111s + ).
Although the bond integral |H,g| is decreased from 2|h| to

{1+1/(1 + AL)*]1Al,

the cost in promoting electrons into p states is reduced by the larger amount
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[AZ,/(1 + AZ)'/*]|h|. This leads to the total energy being lowered by the
amount [(1 + A2)'/? — 1]|h| which is observed in eqn (3.72).

It is commonly asserted that hybrid orbitals are responsible for the
ground-state structures that are observed. For example, carbon takes the
graphitic structure due to sp? hybrids, whereas silicon takes the diamond
structure due to sp® hybrids. However, as has been shown by the above
discussion, the actual hybrid chosen is a delicate balance between two
opposing factors—the one trying to maximize the bond overlap with
neighbouring atoms, the other trying to minimize the promotion energy.
Structural prediction requires a careful treatment of the different competing
terms in the total energy. We address this area for the case of molecules in

the next chaptcr.
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4
Structure of molecules

4.1. Introduction

Molecules show a wide variety of structure, the number of variants increasing
dramatically with number of atoms in the moleculc. Thus, whereas the dimer
displays only one structure type, the trimer can be either linear like CO, or
bent like H,0. Molecules with four atoms, on the other hand, can take the
one-dimensional linear chain structures like H,, the two-dimensional square
ring structure like S, or the rhombic close-packed planar structure like Sig,
the three-dimensional tetrahedral structure like P,, or numerous other
distorted structural variants. The five-atom molecule, as we have already
seen in Fig. 1.15, chooses the close-packed plane as its ground state structure
for Na,, the trigonal bipyramid for Mgs and Sis, the regular pyramid for
Als, and the envelope structure for S5 respectively. The six-atom molecule
can choose between the one-dimensional linear chain, the two-dimensional
hexagonal ring or close-packed plane, the three-dimensional pentagonal
pyramid, trigonal tripyramid, trigonal prism, or octahedron—to name but
a few!

The energy difference between these competing structure types is usually
very small, often being of the order of 19 of the binding energy or less.
Hence, the reliable prediction of the ground-state structure of a particular
molecule requires self-consistent quantum mechanical calculations of high
precision that expend large amounts of computer time. In this chapter we
will instead extend the simple ideas of dimeric bonding to larger molecules
with up to six atoms, in order to study the structural trends that are observed
as a function of the electron count or total number of valence electrons. We
will see that the oscillatory trends in structural stability can be linked directly
to the topology of the molecule through a very important moments theorem,
which was first introduced into this area by Ducastelle and Cyrot-Lackmann
in 1971.

4.2. Structural stability: an illustrative example

The relative stability of different structures is determined by a delicate
balance between competing contributions to the total energy. This is
illustrated by the following example in which we examine the stability of
four-atom molecules with respect to the ideal linear chain, square, rhombus
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Fig- 4.1 The linear chain, square, rhombus, and tetrahedron geometries of
four-atom molecules.

or tetrahedron as shown in Fig. 4.1. We will simplify the problem by
assuming that the energetics is describable by inter-atomic pair potentials
so that the binding energy of the molecule may be written

U= %iZ' D(R;;), (4.1)

where ®(R;;) is a central pair potential that is only dependent on the
internuclear separation, R;;, between atoms i and j in the molecule.
Following our discussion of the dimeric bond centred on eqn (3.46), we
will divide up the pair potential into a repulsive and a bonding contribution,
namely
(D(R) = (Drep(R) + (Dbond(R)- (42)

(The constant shift, U, in eqn (3.46) need not concern us here since it is the
relative stability of the different structures that we wish to predict in this
chapter.) Around the equilibrium bond length, R, the two contributions in
eqn (4.2) may be related by

(Drep(R) = Alq)bond(R)lzs (43)
where A is a constant and the exponent 4 is given explicitly by

IJH

D
A

M Y@ /D o (44N
'rep/ = rep// \'= bond/ =bond /R = Rp* Ty

T

This can be expressed as the ratio of dimensionless logarithmic derivatives,

namely
d d
A= {[R 4R (ln @, )} / [R dR (In ‘Dbond)J}R=Ro' 4.5)

It follows from eqs (4.2) and (4.3) that the curvature of the potential about
equilibrium can be written as

D"(Ro) = (4 — 1)n*|@pona(Ro)I/R3, (4.6)

where 7 is the dimensionless logarithmic derivative of the bonding contri-
bution to the potential. Hence, we have a normalized curvature about the



Structural stability: an illustrative example 79
equilibrium bond length R, that is given by -
®"(Ro) = [R3/n*|Dyona(Ro)J"(Ro) = (A — 1). 4.7

We will define the degree of normalized hardness of an interatomic poten-
tial by

%=afn. (4.8)
A

This normalized hardness scale runs from zero (for a totally soft potential
when A = 1) to unity (for a totally hard potential when 4 = o0).

For evaluating the binding energy curves of the four-atom molecules, we
now assume that the bonding potential falls off algebraically with distance,
in particular

®yona(R) = —B/R. (4.9)

This inverse-square dependence is chosen because the magnitude of the sso
bond integral in Fig. 3.11 decreases approximately as R™? in the vicinity of
kR =~ 5. We are identifying the attractive contribution to the pair potential
with covalent bonding as in eqn (3.46). From eqn (4.2) we have

®(R) = AB*/R** — B/R?, (4.10)

or in terms of the more physically transparent parameters, ¢ and R,

o) -4 ( ’—}) _ ( BR-)} @11)

| SN

where ¢ = A7VA~1 apnd R, = AV2A~DBLU2 Thys, ¢ sets the energy scale,
whereas R, sets the length scale. The pair potential, ®/e, is plotted in Fig. 4.2
as a function of R/R, for different values of A or degree of normalized
hardness, «;,. We see that for a;, = 0 corresponding to 4 = 1, the potential is
totally soft (in fact ®(R) vanishes everywhere!) whereas for o, = 1 corre-
sponding to A = oo the potential is totally hard (in fact ®(R)) is infinite inside
R,;, corresponding to twice the hard core radius).

The binding energy curves for the four-atom molecules shown in Fig. 4.1
will be sensitive to the degree of normalized hardness, «,. Summing over all
the bonds in eqn (4.1), the total binding energies of the tetrahedron (t),
rhombus (r), square (s), and linear chain (1) are given by

UYR) = 60(R), (4.12)
U(R) = 50(R) + ®(/3R), (4.13)
U%R) = 4B(R) + 2®(,/2R), (4.14)

and
' UY(R) = 3®(R) + 20(2R) + O(3R). (4.15)
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Fig. 4.2 (a) The full curve shows the normalized pair potential, ®/e, versus the
normalized interatomic distance, R/R,. for the degree of normalized hardness,
o, = 3, corresponding to A = 2. The two dashed curves show the repulsive and
attractive contributions respectively. The shaded region delineates the hard-core
potential with «, = 1 corresponding to A = c0. The two vertical arrows mark the
equilibrium nearest-neighbour distances for a, = 1 and 3} respectively. (b) The
normalized pair potential, ®/s, versus the normalized interatomic distance for
different values of the degree of normalized hardness, a,. Note that a, =0
corresponds to a totally soft potential, «, = 1 to a totally hard potential.

Substituting eqn (4.11) into the above equations we can write them in the
form

R 24 R 2
U'(R) = e{ [elp(A)] ( ?"-) — [#ond] ( —Dﬂ) } (4.16)

L NI/ NI/ )
with y=t, 1, s, or L. #),, and ] .4 are effective coordination numbers for
the repulsive and bonding contributions respectively. «).,(4) is dependent
on 4, reflecting the A dependence of the repulsive potential. Table 4.1 gives
the resultant values of «},,4 and 4], the latter for the degrees of normalized
hardness, o, =0, 1, 3, and 1, corresponding to A =10, 1.5 2, and

respectively.

Figure 4.3 shows that the relative energy differences between the tetra-
hedron, rhombus, square and linear chain are dependent on the degree of
normalized hardness «,. For a hard-core potential with a, =1, all four
molecules take the same equilibrium bond length R,. We see that the most
stable four-atom molecule is the tetrahedron with six nearest neighbour
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Table 4.1
7 xzond x:?cp
ah=0 ah=% ah=12 ah=1
t 6.000 6.000 6.000 6.000 6.000
¢ 5.333 5.333 5.192 5.111 5.000
s 5.000 5.000 4.707 4.500 4.000
I 3.611 3.611 3.287 3.137 3.000

The values of the effective coordination numbers «},nq and «J, for
the tetrahedron (t), rhombus (r), square (s), and linear chain (l). The
degrees of normalized hardness a, =0, 4, 3, and 1 corespond to
A=1,1.5, 2, and o respectively.

bonds, followed in order by the rhombus with 5.333 effective bonds, the
square with 5.000 effective bonds, and the linear chain with 3.611 effective
bonds (cf Table 4.1). However, as the degree of normalized hardness of the
potential decreases, we see that the more open structures take shorter bond
lengths at equilibrium than the most close-packed tetrahedral atomic
configuration. This gives increased cohesion to the more open structures.
Although the tetrahedron always remains the most stable molecule for this
pair potential description of bonding, the relative stability of the rhombus
and the square switches over when the degree of normalized hardness
changes from a, = 4 to &, = }. Therefore, for a sufficiently soft interatomic
potential, the more open planar structure, the square, becomes more stable
than the close-packed planar structure, the rhombus.

As we have already mentioned in the previous chapter, the carbon core
behaves anomalously. Although the carbon interatomic potential has a much
stronger curvature about equilibrium than is the case for silicon, the bond
length and inverse bond integrals that normalize the potential in eqn (4.7)
are much smaller (cf Fig. 3.13). Hence we find that A takes a value of about
1.8 for carbon but about 2.2 for silicon, so that af/xy! = 0.444/0.545 = 0.81.
This relative softness of the normalized interatomic potentials of the first-row
elements carbon, nitrogen, and oxygen will be shown, in the last chapter, to
account for their taking more open ground-state structures than the other
elements in their respective groups in the periodic table.

4.3. The structural energy difference theorem

The energy difference between two competing structure types is usually
very small compared to the total binding energy. Moreover, the simplest
assumption that the first nearest-neighbour bond length is structure-
independent can lead to incorrect predictions. For example, for the degree
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Fig. 4.3 The normalized binding energy curves, {//|U§|, versus the normalized
nearest-neighbour bond length, R/R}, for different values of the degree of
normalized hardness, «,. Terms U§ and R} are the equilibrium binding energy
and nearest-neighbour bond length of the tetrahedron for a given value of a,.

of normalized hardness, o, = 4, in Fig. 4.3, the square is found to be more
or less stable than the rhombus, depending on whether the fixed bond length
is taken as that of the equilibrium square or rhombus respectively. In order
to separate out the delicate interplay between the repulsive and bonding
contributions in establishing equilibrium bond lengths and hence energies,
we now derive a theorem that expresses the structural energy differences
within a well-defined two-step procedure (Pettifor (1986)).
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In general, as we have seen, the binding energy can be written as the sum
of a bonding and a repulsive contribution, namely

U = U + Ubond' (4.17)

rep

The structural energy difference theorem states that the energy difference,
AU, between two structures is given to first order by

(4.18)

e =10
uuuuu p- v

Proof: Consider two structures I and II with equilibrium first nearest-
neighbour bond lengths, R} and RY, respectively. Then

AU = UYRY) — UYR)). (4.19)

Let R" be the distance at which structure II displays the same
repulsive energy as structure, I, at equilibrium, that is

Urp(R™) = UL ,(Ry). (4.20)
But by expanding U"(R) in a Taylor series about R}, we have
ypll Iy plil 1 d2 Ull I 2
UMRY = UNRY) + (=5 ) (RU—=RI? +--- (421)
2\dR? /,

where the linear term does not appear on the right-hand side since
dUYdR vanishes at the equilibrium separation Rj. Therefore, the
substitution of eqn (4.21) into eqn (4.19) yields

AU = UNR™ — UYR]) + O(RY — RD)? (4.22)
where the third term on the right-hand side represents second-order
contributions. Consequently, substituting eqn (4.17) into eqn (4.22)
and using the identity eqn (4.20), the energy difference is given to

first order by
AU = U (RY) — Upona(R0), (4.23)

which may be expressed more compactly by eqn (4.18). This completes
the proof.

This theorem is very important. It generalizes the usual procedure for
studying the structural stability of ionic molecules or compounds by first
packing together hard spheres until they touch and then comparing their
electrostatic or Madelung energies in order to see which is most stable. The
structural energy difference theorem allows us to extend this two-stage
process to the case of realistic atoms or ions which do not exhibit hard-core
behaviour (cf the left-hand panel of Fig. 4.2). In the first step, analogous to
packing together hard spheres, the bond lengths of the competing structure
types are adjusted to guarantee the same repulsive energy. In the second
step, analogous to evaluating the ionic Madelung energies, the bond energies
are computed and compared.
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This theorem can be applied to our previous example of the relative
stabilities of four-atom molecules. We shall compare the linear chain (1),
square (s), and rhombus (r) with the tetrahedron (t) which we will take as
our reference structure. From eqn (4.16) it has a bond length that is given by

RY(1) = AV2G-DR, (4.24)

Thus, the tetrahedron has equilibrium bond lengths of 1.5R,, \ﬁR,._, and R,
for the degrees of normalized hardness o, = §, 4, and 1 that correspond to
A =15, 2, and oo respectively. As required by the first step of the theorem,
we prepare the bond lengths, R?, of the three structures, y =1, s, and r, so

that they display the same repulsive energies as the tetrahedron, t, that is
lep/(R?)** = a1, [(RG)*. (4.25)

Then, following the second step of the theorem, we compare the bond
energies of the different structures, 7, at these prepared bond lengths with
that of the tetrahedron, t, that is

AU = — e[ #fona(Ra/R")* ~ 24ona(Ra/R0)*]. (4.26)

Substituting in for R? from eqn (4.25) and for R} from eqn (4.24) and using
Zhond = #1ep = 6.000 from Table 4.1, we have that the energy differences are
given by

(¢
-,

AU = — e~ P[(6/xl,,)" *sona — 61 (4.27)

where y=1,s,0rr.
We see from Table 4.2 that the theorem gives the energy difference between -
the square or rhombus and the ground-state tetrahedron to within 2% of the

Table 4.2
ah = & ah ='12 Clh = 1
“ AU AU”) Error AU AU(l) Error AU —_ AU(”
! £ & 7 o & & o & - &

r 0.065 0.056(b) 2%, 0.109 0111 2% 0.667
s 0053 0.054 - 2% 0111 0113 27, 1.000
I 0.244 0.270 119, 0.461  0.503 9% 2.389

The equilibrium energy difference AL = Uy — U}, where y =1, s, or l. (t, 1, s, and
| correspond to the tetrahedron, rhombus, square and linear chain configurations
respectively). The columns AU/t give the exact energy differences, whereas the
columns AU /e give the first-order energy differences from the structural energy
difference theorem eqn (4.18). The degrees of normalized hardness «, =3, 3,
and 1 correspond to 4 =15, 2, and oo respectively. The structural energy
difference theorem is exact for a, = 1, so that AU = AU.
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exact values. Moreover, it predicts correctly the delicate switch in relative
stability between the rhombus and the square when the degree of normalized
hardness changes from a, =4 to a, = 3. This example demonstrates the
accuracy of the structural energy difference theorem, which will be used
extensively throughout the rest of this book.

4.4. The structure of s-valent moiecules

An understanding of the structure of molecules requires a proper quantum
mechanical description of the covalent bond that cannot be captured by the
use of central pair potentials. We therefore extend our linear combination
of atomic orbitals (LCAQO) treatment of the s-valent dimer to three-, four-,
five-, and six-atom molecules respectively. Following egs (3.46) and (4.17),
we write the binding energy per atom for an 4™-atom molecule as

U = Ij;‘ep + Ubond' (4.28)

The first term, U,,,, is an empirical pairwise repulsive contribution, namely
1

Uep = — 3 D, (Ry;). 4.29

» =5 ;Z} o(Rs) (4.29)

The second term U, 4 is the covalent bond energy that arises from occupying
the molecular eigenstates, n, with electrons, namely

1 1
Uhnné = }?g (En - Es)_fn == :V_-g 8;!1;!5 (430)

where f, is the electron occupancy. The term &, gives the energy of the
eigenvalue E, with respect to the on-site atomic energy level E,. Thus, ¢, is
negative for bonding states but positive for antibonding states. Equations
(4.28)-(4.30) reduce to eqn (3.46) for the dimer when A" = 2, since in this
case ¢; = h = ssg. (We will again ignore the constant shift in energy, U, in
eqn (3.46) because we are interested in predicting the relative stability of
different structures.)

The molecular eigenvalues are obtained by looking for the LCAO solution

¥= 3 oy (4.31)
i=1,.4

where ¥, is the atomic s orbital on site i. We shall evaluate the resultant
LCAO secular equation within the so-called nearest-neighbour, orthogonal,
two-centre tight binding (TB) approximation. This is indeed an appropriate
connotation. Firstly, unlike our earlier illustrative example with pair poten-
tials, we will assume that there is bonding only between first nearest
neighbours within the molecule, since the valence orbitals are so tightly
bound to their parent atoms. Secondly, we will ignore all overlap integrals,
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Si; = | ¥, dr (i # j). Thirdly, we will neglect all three centre integrals of the

form | y;V¥, dr (G # j # k).
The resultant TB eigenvalue equation takes the determinantal form,

|H — &l =0, (4.32)

where H is the nearest-neighbour, two-centre Hamiltonian matrix and [ is
the unit matrix. H may be written down directly as we now illustrate for the
four-atom molecules whose sites are labelled 1, 2, 3, and 4 as shown in Fig.
4.1. With nearest-neighbour bonding only, the linear chain, square, rhombus,
and tetrahedron have

0100

1 010
H = H, (4.33)

01 0 1

0 01 0

01 0 1

1 010
ke, (4.34)

01 0 1

1 010

0 1 0 1
Lot K (4.35)
\01 01/ ’ ST

1 110

and

0 1 1 1
Lo 11 ht 4.36
11 o0 1] ° (4.36)

1 10/

where R, I, b, and h' are the bond integrals for the respective molecules.
The eigenvalue equation may, therefore, be solved to yield the four energy
levels of each molecule, namely

e' = +3(1 + /5K, (4.37)
g =0,0,+2K, (4.38)
e =0, —h, {1+ . /1K, (4.39)

and
g'= —h, —h', —h, 3. (4.40)
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Fig. 4.4 The eigenspactra of three-, four-, five-, and six-atom s-valent molecules
in units of |#’|, where A" is the nearest-neighbour bond integral for the given
molecule y. The numbers in parentheses give the degeneracy of the level. (From
Shah and Pettifor (1993).)

These are plotted in the upper right-hand panel of Fig. 4.4, remembering
that sso integrals are negative. We see that the square has a pair of
nonbonding states, whereas the tetrahedron has a triplet of antibonding
states. We have also plotted the eigenspectra of three-atom, five-atom, and
six-atom molecules. The molecules include all the most stable ground-state
geometries of neutral and singly ionized s-valent systems, which were found
by Wang et al. (1987) in their global search over all geometries constrained



88 Structure of molecules

by equidistant nearest-neighbour bonds. Thus, we consider the linear chain
and equilateral triangle for the three-atom molecules; the linear chain, square,
rhombus, and tetrahedron for the four-atom molecules; the linear chain,
pentagon, close-packed layer, square pyramid, monofinned tetrahedron, and
trigonal bipyramid for the five-atom molecules; and the linear chain,
hexagon, close-packed layer, trigonal prism, pentagonal pyramid, octahedron,
and trigonal tripyramid for the six-atom molecules.

The relative stability of these molecules may be predicted using the
structural energy difference theorem which we have proved in the previous
section. That is, the differences in the total energies per atom are simply the
differences in the bond energies provided that the bond lengths have first
been adjusted, so that the molecules have identical repulsive energies. We
will assume, as in eqn (4.3), that

®,..(R) = AlKR)*, (4.41)

where A is a constant. Then taking the dimer as the reference molecule with
bond integral h,, we have from eqn (4.29) on equating the repulsive energies
per atom that

B = [A7/Q2A )] ko (442)

where 4" and A"} are the number of atoms and number of first nearest-
neighbour bonds in cluster y respectively. Thus, for example, the 4 =4
linear chain, square, rhombus, and tetrahedron have A4, =3, 4, 5, and 6
respectively, whereas the 4" = 6 trigonal prism and pentagonal pyramid
have A, =9 and 10 respectively. It follows from eqn (4.42) that in the
hard-core limit with 2 = oo, the bond integrals take the same value for all
molecules as expected, since the first nearest-neighbour bond length is
invariant at twice the hard-core radius.

Figures 4.5 and 4.6 show the predicted bond energies per atom (in units
of |he|) for three-, four-, five-, and six-atom clusters as a function of the
electron count N for the three different values of the degree of normalized
hardness a, = 3, 4, and oo (corresponding to 4 = 2, 3, and oo respectively).
The influence of the degree of normalized hardness, a,, is clearly illustrated
by the upper panel of Fig. 4.5. We see that for a, = 1, when both three-atom
molecules take the same nearest-neighbour bond length, and hence have
identical bond integrals, h,, the triangle is predicted to be the more stable
molecule for the neutral monovalent system, whereas for o, = 4 and %, the
linear chain is more stable. Thus, whereas the alkalis with their relatively
hard cores take a (Jahn—Teller distorted) triangular configuration, hydrogen
remains linear, since a, = 3 corresponding to A =2 (cf eqn (3.47)). As
expected, decreasing the degree of normalized hardness favours less topo-
logically close-packed structures with lower coordination.

The o, = 1 panels in Figs. 4.5 and 4.6 show that neutral three-, four-, five-,
and six-atom molecules would take the triangle, rhombus, close-packed
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Fig. 4.5 The average bond energy per atom (in units of the magnitude of the
dimer bond integral |4,|) as a function of the electron count N for three-, four-,
and five-atom molecules. The pentagon and square pyramid five-atom molecules
have been omitted for clarity. (After Shah and Psttifor (1993).)
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Fig. 4.6 The average bond energy per atom (in units of |hy|) as a function of
the electron count, N, for six-atom molecules. (After Shah and Pettifor (1993).)

plane, and pentagonal pyramid as their respective ground-state structures.
This is in agreement with the first-principles self-consistent predictions for
Na that are recorded in Fig. 1.15, We see that the first three-dimensional
geometry occurs for A& = 6. On the other hand, singly ionized molecules
would take the triangle, rhombus, monofinned tetrahedron, and trigonal
tripyramid geometries respectively. Again we find that a decrease in the
degree of normalized hardness «, stabilizes lower-coordinated structures.
Thus, for o, = }, the most stable geometry is the one-dimensional linear chain
for three, four-, and five-atom neutral molecules and the two-dimensional
hexagonal ring for six-atom neutral molecules. First-principles calculations
do indeed show, for example, that the symmetric linear chain for H, is about
1 eV more stable than the square geometry. We also see from Figs. 4.5 and 4.6
that for a, = 4, the dimer has the lowest binding energy per atom, namely
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|ho|, whereas for a, =1, the dimer has the highest energy of all the
ground-state molecules. This is consistent with hydrogen being dimeric but
the alkalis being close-packed metals.

4.5. Origin of structural trends: a moments theorem

What is the origin of the structural trends that are observed in Figs. 4.5 and
4.6 as a function of the number of valence electrons or electron count N?
For example, why do four-atom molecules with «, = 4 show the structural
trend from tetrahedron — rhombus — linear chain — square as N runs from
0 to 87 Moreover, why do the curves for the square and the linear chain
cross each other twice whereas those for the tetrahedron and the linear chain
cross only once? To answer these questions we now show that the moments
of the eigenspectrum can be related directly to the topology of the molecule
as was first done within a TB framework by Cyrot-Lackmann in 1967. We
will then state a moments theorem that allows us to understand the origin
of the structural trends in Figs. 4.5 and 4.6.

The pth moment of a given eigenspectrum {¢,} is defined by
=Y el (443)

where n runs over all N states, whether occupied or unoccupied by electrons.
But the Hamiltonian matrix, H, is diagonal with respect to the basis of
eigenfunctions ¥ ™, that is

H,, =¢&,0,.. (4.44)
Hence, we can write the pth moment as the trace over H?, since
pp =Y (H,)” =} (H?),, = TrH®. (4.45)

However, as is well known, the trace is invariant with respect to choice of
basis functions that are related by a unitary transformation. Thus, rather
than working with the basis of eigenfunctions ™, we may, following eqn
(4.31), work with respect to the basis of atomic orbitals, y;, to write

p,=Tr H? = Z (HP);;. (4.46)
Performing the matrix multiplication explicitly we have
o= Y HyH - Hy,. (447)
i2yee0ip
We see, therefore, that the pth moment of the eigenspectrum is given by the

sum over all bonding paths of length, p, that start and finish on the same
atom within the molecule.
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This is a key result since it links the moments of the eigenspectrum
directly to the local topology of the molecule. Let us consider the first five
moments, fg, jy, U2 U3, aDd p,, respectively. The moment, u, gives the total
number of states in the eigenspectrum or, equivalently, the total number of
atomic orbitals, since from eqn (4.46)

po=TrH =TrI =4, (4.48)

The ratio u,/u, gives the centre of gravity of the eigenspectrum. From
eqn (4.47)

Mifuo = H 1Y Hy= E, =0, (4.49)

since H;; = E, for all i, and we have taken E, as our present zero of energy
(cf eqn (4.30)). The ratio p,/pn, gives the mean square width of the eigen-
spectrum. From eqn (4.47)

Halto = A1 Z H;H; = N Z hz(Rij)’ (4.50)

ij i#j
as H; = 0 and H;; = h(R;;) for i # j within the two-centre TB approximation.
The ratio u,/u, reflects the skewness of the eigenspectrum. From eqn (4.47)

Halko = Vs Z Hinijki =1 Z h(Rij)h(Rjk)h(Rki)- (4.51)
ijk i#j*k
The degree of skewness is measured by the dimensionless third moment,
f3/03/%, where the normalized moment £, = p,/u, so that 2, = 1. The ratio
Ua/lto gives a measure of unimodal versus bimodal behaviour in the eigen-
spectrum, as we will show later.

The four-atom molecules in Fig. 4.1 provide an excellent example of this
direct connection between the moments of the eigenspectrum and the local
topology. Firstly, as predicted by eqn (4.49), we see from Fig. 4.4 that the
centre of gravity of all the eigenspectra is identically zero. Secondly, the root
mean square width of the eigenspectrum is predicted by eqn (4.50) to be

(u3/u))"? = (N YD) || (4.52)

which, therefore, takes the values ./3/2, ﬁ, \/5/—2, and ﬁ fory=1,s,1,
and t respectively (in units of |”]). This checks with a direct summation over
the square of the eigenvalues, &', in eqs (4.37)-(4.40). Note that for the
particular case of a, = 3 corresponding to A = 2, all four eigenspectra have
the same normalized second moment, u}/ul, since substituting eqn (4.42)
into eqn (4.52) we have

uh/ub = h3. 4.53)

This is true for all the eigenspectra shown in Fig. 4.4 for the choice of i’
that is given by eqn (4.42) with A =2. It is a direct consequence of the
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structural energy difference theorem, since
AU/S? = 0= A(py/po) =0 (4.54)
as @, ah?ap,.
Thirdly, the skewness of the eigenspectrum is predicted by eqn (4.51) to
be the sum over all three-membered rings within the molecule. Thus, the

linear chain and the square have symmetric eigenspectra, since there are no
three-membered rings and g, = 0. The rhombus, on the other hand, has

=204 + 2)(h")? = — 12|k, (4.55)
whereas the tetrahedron has
py = 4(6)(h')> = —24|h'?, (4.56)

remembering that we can hop either clockwise or anticlockwise around a
triangle. Hence, as is clear from Fig,. 4.4, the eigenspectrum of the tetrahedron
is more skewed than that of the rhombus. The eigenspectra are skewed
downwards since g, < 0. Note that the eigenspectra in Fig. 44 have first
been ordered from left to right according to whether the molecules are
three-dimensional, two-dimensional, or one-dimensional respectively. For a
given dimension they are then ordered from left to right according to their
degree of skewness, fi;/A3/%, where fi, = u,/uo. For three-atom molecules,
the triangle and linear chain have a degree of skewness of —0.71 and 0
respectively. For four-atom molecules, the tetrahedron, rhombus, square, and
linear chain have a degree of skewness of —1.16, —0.76, 0, and 0 respectively
(which follows directly from eqs (4.52), (4.55), and (4.56)). For five-atom
molecules, the trigonal bipyramid, monofinned tetrahedron, square pyramid,
close-packed layer, pentagon, and linear chain have a degree of skewness of
—1.23, —1.05, —0.85, —0.76, 0, and O respectively. For six-atom molecules
the trigonal tripyramid, octahedron, pentagonal pyramid, trigonal prism,
close-packed layer, hexagon, and linear chain have a degree of skewness of
—1.25, —1.00, —0.83, —0.39, —0.76, 0, and O respectively.

Fourthly, counting all paths of length four within the linear chain, square,
rhombus, and tetrahedron, we find

14) 1)
32 S
pp=__ "¢ fory=_). 4.57)
50 r
84 ) t

The different types of paths are shown in Fig. 4.7 for the tetrahedron.
We see that per starting atomic site there are 3 two-atom paths, 12
three-atom paths, and 6 four-membered ring paths, leading to a total of
4(3 + 12 + 6) = 84 paths per tetrahedral molecule as in eqn (4.57). The
fourth moment measures the unimodal versus bimodal behaviour of the
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3 x 2 three-atom paths 3 x 2 three-atom paths

Fig. 4.7 Examples of nearest-neighbour paths of length four that contribute to
the fourth moment of the tetrahedron’s eigenspectrum. The solid atom indicates
the site from which the path starts and to which it eventually returns. The number
under each tetrahedron gives the total number of such paths starting and ending
on the solid atom.

spectrum through a dimensionless shape parameter, s, namely

s = (Aa/02) — (A3/h3) — 1 (4.58)

I} My | 1 4l PUUIS. [0 [ VI P e W
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whereas if s > 1, it shows unimodal behaviour. The values of the normalized
moments fi,, i, fi;, and the shape parameters, s are given in Table 4.3 for
the linear chain, square, rhombus, and tetrahedron. We see that the
tetrahedron shows perfect bimodal behaviour with s = 0, corresponding to
the eigenspectrum in Fig. 4.4, splitting into a deep singly degenerate bonding
level and a triply degenerate antibonding level. The square, on the other

Qﬂf‘ I1PQ FVQ(“'I‘I nn th nn1mnr|n|_l'\1mnrln| hnfflﬂfliﬂﬂ (liii‘"l o — 1 “\Q‘Tlﬂﬂ
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Table 4.3 The normalized moments, fi,, fi;, and
fi, and the shape parameter, s, for the linear chain,
square, rhombus, and tetrahedron (cf eqn (4.58)).

Y 1 s Ay §

t 3 —6 21 0
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its sizeable bonding-antibonding level splitting neutralized by two non-
bonding levels. The rhombus and linear chain take the values s = 0.424 and
0.555 respectively.

We are now in a position to understand why the bond energy curves in
Figs 4.5 and 4.6 cross each other. Let us first consider the relative stability
of the two three-atom molecules, the linear chain and the triangle. Their
eigenspectra have identical first three moments p,, 1y, and u, for the case
of o, = § corresponding to A =2 (cf eqn (4.54)), so that Au, =0 for p < 2.
However, the eigenspectrum of the triangle is skewed downwards due to a
negative third moment resulting from the three-membered ring contributions,
whereas the linear chain’s eigenspectrum is symmetric. Thus Ay, # 0. This
results in the two-bond energy curves crossing once as a function of electron
count as is seen in the upper left-hand panel of Fig. 4.5.

Let us now consider the relative stability of the two four-atom clusters
with symmetric eigenspectra, namely the linear chain and the square. Since
i3 = 0, they have identical first four moments po, i, 5, and p, for a, = 4,
so that Ay, = 0 for p < 3. However, we see from Table 4.3 that Au, # 0; the
linear chain’s eigenspectrum shows marked bimodal behaviour compared to
that of the square. This is reflected in the eigenspectra in Fig. 4.4: the linear
chain has a distinct bonding-antibonding gap at the centre of the spectrum,
whereas the square has a two-fold degenerate nonbonding level exactly at
the centre. Moreover, this increased weight at the centre of the square’s
eigenspectrum is compensated for by a wider overall spectrum than that of
the linear chain, in order that their second moments remain identical. Thus,
as the electron occupancy increases, we expect to find the structural trend
from square — linear chain — square; that is, the two bond energy curves
for the square and the linear chain will cross twice as a function of electron
count, as is indeed observed in the middle left-hand panel of Fig. 4.5.

In 1971 Ducastelle and Cyrot-Lackmann proved a very important moments
theorem that captures this crossing behaviour of the bond energy curves.
Their moments theorem states that if two eigenspectra have moments that
are identical up to some level p,, that is Au, =0 for p < p,, then the two
bond energy curves must cross at least (po, — 1) times as a function of electron
count. Thus, we have seen in Fig. 4.5 that the triangle and the linear chain
CUrves Cross once, since p, = 2, whereas the square and the linear chain
curves cross twice, since p, = 3.

We can, therefore, understand the origin of the four-atom structural trend
from tetrahedron — rhombus — linear chain — square as a function of the
electron count for the case of o, = 1. The presence of three-membered rings
in a given geometry skews the eigenspectrum asymmetrically downwards.
Hence, the close-packed structures, the tetrahedron and the rhombus, are
stabilized for fractional electron occupancies less than one-half but de-
stabilized for fractional electron counts more than one half On the-other
hand, the open structures, the square and the linear chain, have symmetric
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eigenspectra. In addition, the linear chain has fewer paths of length four
than the square, so that its eigenspectrum is more bimodal. Hence, the linear
chain is stabilized for a fractional electron occupancy around one-half but
destabilized with respect to the square for fractional electron counts around
three-quarters or greater. We see from the middle panel of Fig. 4.5 that as
the degree of normalized hardness increases from a, = %, the open structures
become destabilized with respect to the close-packed structures until for
a, = 1, corresponding to a hard-core potential, the linear chain is no longer
found anywhere as a ground-state structure. This general feature of moving
from close-packed to open structures as the electron count increases is
displayed by the N = 3, 5, and 6 bond energy curves in Figs 4.5 and 4.6. We
will see in Chapter 8 that the third moment skewing is also responsible for
the observed trend from close-packed to open ground-state structure types
across the sp-valent elements within the periodic table. Further examples of
the application of moments to understanding structural trends within
molecules can be found in Burdett (1985) and Lee (1991).

4.6. The bond order

The total bond energy of the molecule has been written as a sum over the
occupied eigenvalues ¢,. The eigenvalues (and eigenfunctions) are a global
property of the molecule that results from diagonalizing the LCAO or TB
secular equation. In practice, when comparing the bonding in molecules and
solids, we would like to define a local bond energy between individual pairs

nf atame Thic can ha aschiavad hy dacamnneine the anarov ac fallawe:
Ol awoms. 1iis €all 0 aCnlCyCd OY GCCOMPOsIg (¢ COCTEY a5 10u0WS.

N Upona = 3, Jubn =2 [ jt]/""*ﬁt]/"" dr (4.59)

= Zj (Z f,.c%"’*c}"’) J YrAY; dr (4.60)

where the ¢ (i=1,2,..., &) are the components of the nth eigenfunction
Y™ (cf eqn (4.31)). Hence, the total bond energy can be written as a sum
over the individual bond energies as

N Usona = 52 Ubhaas (4.61)
i, j :
where
Ufna = —2IA(R;))|O;; (4.62)
with
O, =Y filef*ei + c*c)/2. (4.63)

The term ®,; is called the bond order between atoms i and j.
The bond order has a simple physical interpretation. The eigenfunction,
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Y™, can be written from eqn (4.31) as
1
v =3 (T e+ T, (450
i

as i and j are dummy variables. Hence,

+ % (e — CE"’)I;—[-IE W — !llj)]} (4.65)

Therefore, the total probability of locating an electron in the bonding state

(1/\/— )(r; + ;) compared to the antibonding state (1/\/5)(% ;) will be
given by

2
e — e

zf{ 7

=20, 4.67)

(™ + ) 2} (4.66)

Thus, the bond order is one-half the difference between the number of
electrons in the bonding state compared to the antibonding state. It takes
its maximum value of unity when the bonding state is totally occupied with
two electrons of opposite spin and the antibonding state has no electrons

.
aQ 'fnr AVYamMm f\‘F 1m i‘"IF vrlrnnpn A mar
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Usually, however, the covalent bond is not saturated with a bond order
of unity but is unsaturated with a bond order less than unity. This is
illustrated by Fig. 4.8, which shows the bond orders for the linear chain,
square, thombus, and tetrahedron as a function of the electron count, N.
The curves were evaluated from eqn (4.63) using the eigenfunctions of the
TB secular equation that correspond to the eigenvalues eqs (4.37)-(4.40).
The -eigenfunctions for the square and the rhombus are given explicitly in
Fig. 4.9. When the lowest bonding energy level of the square is occupied
with two electrons of opposite spin, we see that the bond order between
any pair of neighbouring atoms is given by 2(3)(3) = 0.5 as plotted in the
upper right-hand panel of Fig. 4.8. Adding a further four electrons into the
doubly degenerate nonbonding state contributes nothing to the bond order,
since one or other of the neighbouring components of the eigenfunction
vanishes. Finally, occupying the antibonding state reduces the bond order
by 2(H)(—%) = —0.5, so that the bond order returns to zero at N = 8 when
all the states are occupied.

The eigenspectrum of the rhombus is related to that of the square as shown
in Fig. 4.9. The creation of three-membered ring contributions leads to the
skewing of the eigenspectrum and the lifting of the degeneracy of the
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Fig. 4.8 The bond order for the linear chain, square, rhombus, and tetrahedron
as a function of the electron count, N.

nonbonding orbital. As can be seen from the nature of the two nonbonding
eigenfunctions of the square, the degeneracy is lifted by one state moving
away upwards due to the creation of an antibond across the rhombus, the
other nonbonding state remaining unperturbed since it has no weight on
the atoms terminating the shorter diagonal of the rhombus, The bond order
of the outer bonds 12, 23, 34, and 41 is very similar to that of the square,
its maximum value being slightly reduced from 0.5 to 2(0.557)(0.435) = 0.485.
The bond order of the inner bond, however, is dramatically different,
dropping from its maximum value of 2(0.557)(0.557) = 0.620 for N = 2 and
4 to a negative value of —0.380 for N = 6. This is due to occupation of a
fully saturated antibonding state with a contribution to the bond order of
2[(1/ﬁ)(— 1 /\/5)] = —1. From eqn (4.62) this corresponds to a repulsive
rather than an attractive bond energy. Thus, whereas the sum of the global
eigenvalues ¢, is always negative for 0 < N < 8, the local bond energies can
be positive. Hence, a four-atom rhombic molecule with N = 6 would have
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Square Rhombus

Y

nd eigenfunctions of the square and rhombus. The
tical first three moments g, p1q, and ji,.

its inner diagonal bond experiencing strong compressive forces from the
outer bonds of the rhombus.

Figure 4.8 shows that the individual bonds in four-atom s-valent clusters
are unsaturated, taking bond orders that are much less than unity. The two
end bonds of the linear chain provide the only exception. This reduction in
bond order compared to the isolated dimer is, of course, due to a given
spherically symmetric s orbital forming bonds with all its neighbours.
However, we will see later in Chapter 7 that the angular character of hybrid
orbitals allows some sp-valent solids to exhibit saturated bond behaviour.
Thus, the concept of the bond order is important because it not only
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quantifies the degree of saturated versus unsaturated character of the bond,
but it also links the bonding of small molecules to that of extended solids.
This latter theme has been explored recently in books by Hoffmann (1988)
and Sutton (1993).

4.7. Linear versus bent triatomic molecules

The fact that H,O is a bent molecule but CO, is linear is directly related to
the angular character of the valence orbitals which we have neglected so far
in this chapter. We will first consider the simplest class of triatomic molecules,
namely AH,. It is known, for example, that BeH, is linear but that BH, like
OH, is bent. Figure 4.10 shows the geometry of the molecule with bond
angle 28 and our choice of coordinate axes with O, along the 2-fold
rotational axis of the molecule and O, normal to the molecular plane. The
hydrogen atoms are located at sites B and C respectively whereas the A atom
is located at the origin, O. Since the molecular potential, Vg, is symmetric
with respect to reflection in the xz plane, the allowed molecular orbitals, ¥,
must be either symmetric or antisymmetric across this plane. We, therefore,
look for symmetric solutions

Yo = % (U, + V) + <. 468)

and asymmetric solutions

Y =¥ —\7_5 (U, — Vc,) + ¢3Ya, (4.69)
We have assumed that the valence s state on the A atom lies sufficiently far
below the valence p state that it may be treated as a nonbonding level (cf
Fig. 2.16). The bonding will be taken to be between the p, and p, valence

v

Fig. 4.10 The geometry of the molecule AH, with bond angle 28. The two
hydrogen atoms are located at sites B and C respectively, whereas atom A is
located at the origin. The x-axis is along the 2-fold rotational axis of the molecule
whereas the z-axis is normal to the molecular plane.
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orbitals on the atom A and the 1s orbitals on the two hydrogen atoms. The
p, orbital on atom A has not been included amongst the symmetric solutions
in eqn (4.68) since it remains nonbonding due to the zero overlap between
itself and the hydrogenic s orbitals.

The orthogonal TB secular equation corresponding to the symmetric
solutions, therefore, takes the form

(Eq—E  H, \/c®\
( H s )( y )= 0, (4.70)
H, E, —E/\c®

where Ey and E, are effective s and p on-site energy levels for hydrogen
and atom A respectively. The Hamiltonian matrix element H,, is given by

1 ~
H,= _\/—5 J (Wg, + Y )Hipy, dr. (4.71)
But choosing new axes x’, ', z’, so that Ox’ lies along AC, we have from
Fig. 4.11 where & = §, that

JWQﬁ¢Ax dr = Jd/cﬁ [cos By, — sin By, ] dr = —spo cos B, (4.72)

since | (quﬁ Y5, dr = 0 by symmetry. Moreover, because xz is a mirror plane,
replacing ¥ ¢, by ¥y, in eqn (4.72) leaves the integral unchanged. Hence, from
eqs (4.71) and (4.72),

H, = —ﬁspa cos fB. (4.73)
The 2 x 2 TB secular equation may now be solved to yield the eigenvalues
E® = E 4 4{(AE)? + 8spo? cos® B]'/? (4.74)

where E = §(Ey + E,,) and AE = E, — E,_. Similarly, the eigenvalues for
the asymmetric solutions are given by

E® = E + Y (AE)? + 8spo? sin? f]/? (4.75)

? x=x'cosB-y’sineé

y=y 'cos 8+x’sin ¢

e

Y

Fig. 4.11 The transformation of (x,y) into (X, ¥) by a rotation of the axes
through 6.
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m»

1 e
90° 120° 150° 180°
Bond angle 25

Fig. 4.12 The normalized eigenvalues, £ of the triatomic molecule AH, as a
function of the bond angle, 28, for the particular choice of normalized atomic
energy level mismatch, 6 = 1. The symmetries of the eigenfunctions are also
shown for the bent and linear configurations.

The energy may be measured with respect to the average energy level E
and normalized by the bond integral spo, so that

£8) = (E® — E)/spo = +162 + 8 cos? p)/2 (4.76)
and

£® = (E® — E)/spe = +3(6* + 8sin? f) 4.77)
where 6 = AE/spe. These normalized eigenvalues are plotted in Fig. 4.12 for
the particular choice of normalized atomic energy-level mismatch & = 1. Also
drawn are the nonbonding y,, and V¥, levels assuming (E, — E)/sps = —2
for the former. For the linear molecule with a bond angle of 180°, the bonding
and antibonding states are labelled, ¢,, since their eigenfunctions are odd
with respect to inversion about the centre of the molecule. The two
nonbonding s states are labelled, o, (corresponding to the low-lying s levels
on atom A with energy £, = —2 and the even combination of the two
hydrogenic 1s orbitals with energy &4 = 4/2). The nonbonding p states are
labelled I, (corresponding to the p, and p, orbitals with their odd inversion
symmetry with energy £, = —4/2).
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For the bent molecules the states are labelled a,, b; or b, according to
their symmetry. The state, a,, is unchanged by a 180° rotation about the
2-fold rotational axis along Ox or by reflection in either of the two mirror
planes xz or xy respectively. The state, b,, is unchanged by reflection in xz
but is changed by a 180° rotation about Ox or reflection in xy. The state,
b,, is unchanged by reflection in xy and is changed by a 180° rotation about
Ox or reflection in xz. Thus, the most bonding and antibonding levels in
Fig. 4.12 are denoted by the symmetry label, b,, whereas the least bonding
and antibonding levels are denoted by the symmetry label, a,. The non-
bonding p, orbital has b; symmetry.

Figure 4.12 correlates the energy levels in the bent molecule with those in
the linear molecule. This correlation diagram or Walsh diagram allows us
to understand the origin of the change from linear to bent behaviour that
is observed amongst the AH, trimers as the valence electron count increases.
BeH , has four valence electrons, so that the two lowest-lying molecular states
a, and b, are both doubly occupied with a pair of opposite spin electrons.
We see that, whereas the energy of the lowest lying state a, is essentially
independent of bond angle, the energy of state b, becomes more bonding as
the bond angle increases due to the increased overlap between the central
p, orbital and the outer hydrogenic s orbitals. Thus, the ground state of
BeH, takes the linear configuration corresponding to maximum overlap for
the b, /o, state. _

CH,, on the other hand, has six valence electrons, so that it takes the
ground-state singlet configuration (a,)?(b,)%(a,)?. It follows from egs (4.76)
and (4.77) that the normalized bond angle-dependent contribution to the

energy can be written '
2(6™ + £9) = —[(6* + 8 cos? B)* + (6% + 8sin® B)V%], (4.78)

which has its minimum value for the bond angle 28 = 90°. This is consistent
with Fig. 4.12 where we see that the average value of the o, and I, levels
of the linear molecule is —1.000, whereas the degenerate a,/b, level for
2B =90° is —1.118. Thus, CH, will be a bent molecule. The structure of BH,
with one less valence electron than that of CH, is not so clear cut as the

simple TB model will predict a bent molecule for |4 < 1/\/6 but a linear

molecule for |6| > 1/,/6. In practice, the ground state of BH, is found
to be bent but the excited state (a,)?(b2)?(b,)! is linear or nearly linear. As is
clear from Fig. 4.12, NH, and OH,, with seven and eight valence electrons
respectively, will be bent. The fact that H,O has a bond angle of 104° and
not the predicted 90° is due partly to our neglect of any sp hybridization or
mixing on the oxygen site (cf. question 4.4 in the Problems section at the
end of the book). Molecules H,S, H,Se, and H,Te do, however, take
the bond angles of 92°, 91°, and 90° respectively.

The structural trend from linear to bent (to linear) as the energy levels
are filled progressively with electrons reflects the behaviour of the fourth
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2sp o 2spo?[(cos2B)spo)?

Fig. 4.13 Examples of nearest-neighbour paths of length four that contribute to
the fourth moment of the AH, eigenspectrum for the case of vanishing atomic
energy-level mismatch. The solid atom indicates the site from which the path
starts and to which it eventually returns. The number prefactor under each trimer
gives the total number of such paths starting and ending on the solid atom. The
three-atom paths involve the square of cos 2f due to a reduction in magnitude
of the p, orbital on rotation through 28 as in Fig. 4.11.

moment. We see from Fig. 4.13 that the fourth moment comprises both
two-atom and three-atom contributions. The two-atom contributions are of
the type spe*, whereas the three-atom contributions vary with the bond angle
as spo? cos? 2f. The angular factor in the latter reflects the cos 28 reduction
in strength of the p, orbital on rotating it through 28 as shown in Fig. 4.11.
The total fourth moment (for the case of 6 = 0, for simplicity) is, therefore,

.
I arm k‘?
Blyvil v

1ty = 41 + cos? 2B)spa*?, 4.79)

which can be checked by evaluating 2[(¢®)* + (£®)*] from eqs (4.76) and
(4.77). The second moment y,, on the other hand, involves only self-returning
paths between nearest neighbours and is bond angle independent, namely
i, = 4spo?.

Thus, the dimensionless shape parameter in eqn (4.58) takes the value
s = cos? 2f. Therefore, the bent molecule with a bond angle of 90° has a
perfectly bimodal eigenspectrum corresponding to s = 0, as is reflected by
its two degenerate levels in Fig. 4.12. The linear molecule with a bond angle
of 180° takes a value of s= 1 and lies on the bimodal-unimodal borderline
as is reflected by its four evenly spaced levels in Fig. 4.12. Hence, the bent
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Fig. 4.14 (a) The energy levels of the n states for a single free atom A, two
non-interacting atoms B, and the triatomic molecule AB,. (b) The Walsh diagram
for the AB, molecule. (After Williams (1979).)

molecule will be stabilized for fractional occupancies around one-half, the
linear molecule for fractional occupancies away from one-half. This demon-
strates the importance of the angular dependence of the bond integrals in
structural determination. Spherically symmetric s orbitals would have bond
angle independent moments, thereby providing no differentiation (within a

first nearest-neighbour model) between the bent and linear geometries
considered above (for 28 > 60°).

The Walsh diagram for AB, molecules such as CO, or NO, is shown in
Fig. 4.14(b). It is similar to Fig. 4.12 for the AH, trimers except for the
presence of extra n-related levels that result from the valence p orbitals on
the two B sites that were, of course, absent from the two hydrogen sites. In
addition, the very deep valence s state on the two B sites is also sketched
and labelled s, s’. The p states are drawn in Fig. 4.14(a) to be at a lower level
on the B site than on the central A site, since this is expected from the
ordering of the atomic energy levels in C and O, for example (cf Fig. 2.16).
We have already seen in Fig. 3.13 than the p, and p, orbitals on the two B
sites can be combined in either m, or n; symmetry that is consistent with a
linear geometry. These p levels then split in the AB, linear molecule as
indicated in the middle panel of Fig. 4.14(a) with the bonding n, wave
function being weighted mainly on site B, the antibonding =, wave function
mainly on site A,

We can now understand why CO, is observed to be linear but NO, to be
bent. From Fig. 4.14(b) the sixteen valence electrons in CO, will take the
electronic configuration (s)?(s)%(a,)?(b;)%(b,)*(a,)*(b,)% Due to the marked
increase in bonding of the b, /s, state with increasing bond angle, the ground
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state of CO, will be linear. On the other hand, the additional valence electron
in NO, occupies the a /x, state whose binding energy decreases strongly with
increasing bond angle, so that NO, will be bent. CO, and NOj are both
observed to take a bond angle of 180°, whereas CO; and NO, are found
with bond angles of 134° and 127° respectively. As expected from the Walsh
diagram, increasing the number of valence electrons further reduces the bond
angle. Thus, NO;, Oy, SO,, and CF, with eighteen valence electrons have
bond angles of 115°, 117°, 120°, and 105° respectively.

We should note, however, that the direct correlation between the electron
count N and molecular structure is not always found amongst the sp-valent
trimers. For example, although BeF,, MgF,, ZnF,, CdF,, and HgF, are linear
as expected for N =16, CaF,, SrF,, and BaF, are bent. The latter are,
therefore, located in the bent domain at the upper left-hand corner of the
AB, structure map in Fig. 1.14, As we have already seen in our comparison
of the Si, and C, energy levels in Fig. 3.13, the exact ordering of the states
can be sensitive to the particular elements under consideration. The alkaline
earths Ca, Sr, and Ba fall at the beginning of the transition metal series.
They, therefore, contain unoccupied d states that influence the relative
hierarchy of levels within the conventional Walsh diagram for the sp-valent
triatomic molecules. We will see in the next chapter that the presence of
these d states dramatically changes the shape of the electronic density of
states of the alkaline earth metals Ca, Sr, and Ba compared to the isovalent
metals Mg, Zn, and Cd.
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5

Bonding of sp-valent
metals

5.1. Introduction

A metal is often pictured as a gas of free electrons into which has been
immersed a lattice of positive ions. The metallic bond is, therefore, thought
of as having no directional character in contrast to saturated covalent bonds
with their hybrid orbitals resistant to bond bending. The metal atoms behave
like hard spheres that are held together by the all-pervasive electron glue,
taking close-packed structures such as fcc, bec, or hep. Unlike valence
compounds with their restrictive requirement of electron-pair bonding
between neighbouring sites, metals can form alloys over a wide range of
composition, atoms of one type replacing those of another with comparative
ease within the electron gas.

We will see in this chapter that this conventional view of the metallic bond
is indeed an excellent description of sp-valent metals such as sodium,
magnesium, and aluminium. We will begin, therefore, by linking the world
of small molecules and extended solids together by applying the jellium
model to a study of cohesion in atomic clusters. We will find that it predicts
special stability for alkali metal clusters containing magic numbers of atoms
that correspond to electronic shell closings. However, as we have already
seen in Chapter 2, jellium is only in equilibrium at one specific electron
density. The underlying ionic lattice is required for differentiating between
the elements and predicting the properties of the sp-valent metals. The
influence of a periodic crystalline potential on the electronic structure
is introduced through the one-dimensional Kronig—Penney model that
illustrates all the essential features of band theory. The key concept of the
pseudopotential is presented in order to account for the well-known but
surprising fact that the free-electron gas is only very weakly perturbed by
the ionic lattice. This allows us to develop a quantitative nearly free electron
(NFE) model of the metallic bond that is entirely consistent with the usual
picture of a metal as a gas of free electrons into which has been immersed
a lattice of positive ions.
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5.2. Jellium: from small molecules to the bulk

The jellium model of the free-electron gas can account for the increased
abundance of alkali metal clusters of a certain size which are observed in
mass spectroscopy experiments. This occurrence of so-called magic numbers
is related directly to the electronic shell structure of the atomic clusters.
Rather than solving the Schrédinger equation self-consistently for jellium
clusters, we first consider the two simpler problems of a free-electron gas
that is confined either within a sphere of radius, R, or within a cubic box of
edge length, L (cf. problem 28 of Sutton (1993)). This corresponds to

imposing hard-wall boundary conditions on the electrons, namely

r=R (sphere)

(5.1)
x==+L/2,y=+L/2, z= +L/2 (cube).

Y(x) =0 for {

The sphere radius, R, and edge-length, L, may be written in terms of the
radius of the sphere containing one electron, r,, and the number of
monovalent atoms in the cluster A4/, as

4R = L = $nrd A (5.2)

The eigenfunctions of the free-electron Schrédinger equation with spherical
boundary conditions can be written in separable form like that for the
hydrogen atom, eqn (2.48), namely

¥ (r) = Aj(xr) YT'(6, ¢), (5.3)

where A is a normalization constant, x is related to the eigenvalue E through
E = (F*/2Zm)x?, and ji(xr) is a spherical Bessel function (see, for example,

" Gasiorowicz (1974)). This latter function is oscillatory, as is evident from the
s- and p-related functions which are given by

jo(Kr) = (sin kr)/xr (54)
and
ji(kr) = (sin xr)/x?r? — (cos kr)/kr. (5.5)

The boundary condition eqn (5.1) then determines the eigenvalues E; since,
for example, for | = 0 we must have sin kR = 0, so that x,, = nn/R, where
n is a positive integer. The eleven lowest roots of j(xR) = 0 are given in
Table 5.1. We see that the three roots corresponding to I = 0 are xR = =,
27, and 37 as expected. Note that | = 4 and /| = § states are referred to as g
and h respectively following as they do after the f states corresponding to
=3

The eigenspectrum of the free-electron gas confined within a sphere of
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Table 5.1 The eleven lowest roots xR of j(kR) =0

1=0 /=1 =2 /=3 =4 /=5
n=1 3.14 4.49 5.76 6.99 8.18 9.36
n=2 6.28 7.73 9.10 1042
n=3 9.42

radius, R, is, therefore, given by

hz hz
E K,?I = W (Knl R)Z. (56)

L il
2m

This may be compared with that for a free-electron gas confined within a
cube of side, L, namely

E - h*n?

"= 2 (nF + 1y + 1), (5.7

where n = (n,, n,, n,) and n,, n,n, > 1. This result follows directly from
imposing infinite-barrier boundary conditions on the cube rather than the
periodic boundary conditions which we considered earlier in section 2.5.
Since R and L are related through eqn (5.2), the eigenvalues of the cube and
the sphere may be plotted on the same normalized energy scale (2mL?/A*n?)E,
as displayed in Fig. 5.1. We see that the electronic structure of the spherical
free-electron gas shows shell closing for the magic numbers 2, 8, 18, 20, 34,
40, 58, 68, 90, 92, 106, . .., whereas the cubic free-electron gas displays the
many more magic numbers 2, 8, 14, 20, 22, 34, 40, 46, 52, 64, 70, 76, 88, 96,
108, . .. respectively. The former ordering is the same as that predicted by
the simplest shell model of the nucleus in which the protons and neutrons
are confined by a spherical hard-wall barrier. .

We expect the sphere to be more stable than the cube, since it has a 20%,
smaller surface area and hence less surface energy. This is indeed the case.
The average kinetic energy of a sphere containing .4/ monovalent atoms can
be written from egs (5.6) and (5.2) as

Uspbere( ) = {0.452[2 (R fa /x5f3]} Upe(20), (5.8)
ni

where f, is the electronic occupancy of energy level E,;. The term U, (o0)
is the average kinetic energy per electron of an infinite free-electron gas,
which from eqn (2.44) is given by

R 2210

Uke(w) = 5';‘_ r2

(59)
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Fig. 5.1 The eigenspectrum of a free-electron gas confined to a cube (left-hand
panel) or a sphere (right-hand panel). The magic numbers corresponding to shell
closings are given in the middle panel.

Similarly, the average kinetic energy of a cube containing 4" monovalent
atoms can be.written from eqs (5.7) and (5.2) as

( r 1 ]
Usube( A7) = 11.719@ (12 + n2 + n?) j:,J //ijk Ue(0), (5.10)

where f, is the electronic occupancy of energy level, n = (n,,n,, n.). The
infinite limit for the sphere and the cube are identical, since the ratio of
surface to bulk atoms varies as A4 ~!/3, which vanishes in the limit of
infinite A"

Figure 5.2 plots the average kinetic energy as a function of the number of
monovalent atoms, .4, for the cube and sphere respectively. We see that the
sphere is everywhere more stable than the cube as expected. Interestingly,
however, even for the sizeable 100-atom cluster, the kinetic energy has still
not yet fallen to the infinite free-electron gas value, being some 40°; larger.
For metallic sodium with an average kinetic energy of 3/5Eg = 1.9 eV, this
implies that the Na,,, atomic cluster would be about 0.8 eV per atom less
stable than the bulk.

In practice, this large difference is reduced by about one-quarter because
the boundary condition is not infinitely hard as implied by eqn (5.1) but
much softer. Within the jellium model the positive ions are smeared out
uniformly within a sphere of radius, R, so that there is indeed an abrupt
discontinuity in background charge density at r = R. However, the free-
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Fig. 5.2 The ratio of the kinetic energy of an .# monovalent atom cluster to
that of the infinite bulk as a function of 4" for cubic (solid curve) and spherical
(dashed curve) boundary conditions.

electron gas is free to spill out across this spherical boundary into the
attractive region outside where the ionic potential falls off inversely with
distance. Exactly how far the electrons “spill out’ and by how much their
energy is lowered compared to the hard-boundary case requires the numerical
self-consistent solution of the Schrodinger equation. Figure 5.3 shows the
computed binding energy per atom for sodium clusters (assuming r, = 4.0 au)
as a function of the number of atoms .4#". An infinite sample of jellium would
have a binding energy per atom of 2.2 eV approximately {(cf Fig. 2.11). Thus,
we see that the binding energy of the Na,,, atomic cluster is within about
10%, of that of bulk jellium.

The simple hard-wall boundary condition, eqn (5.1), does yield the correct
ordering of the energy levels as shown in Fig. 5.1. The only exceptions are
the 3s and 1h states, which have their sequence reversed compared to that
of the self-consistent jellium predictions. Experimentally, the most frequently
occurring sodium clusters are indeed Nag and Na,,, as expected from their
special stability in Fig. 5.3.

5.3. General principles of band theory

The variation in equilibrium bulk properties between one sp-valent metal
and the next cannot be understood within the jellium model, since it has
obscured the chemical behaviour of the elements by smearing out the ion
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Fig. 5.3 The total energy per atom of sodium clusters versus the number of atoms
in the cluster, evaluated within the self-consistent jellium model, (From Cohen

(1987).)

Fig. 5.4 The one-dimensional Kronig—Penney potential.

cores into a uniform positive background. In practice, the ionic lattice
introduces an attractive periodic potential, which scatters the electrons as
they travel through the crystal, thereby resuiting in the band gaps that open
up in the free-electron eigenspectrum. In this section we will illustrate the
principles of band theory by considering the one-dimensional Kronig-Penney
model. This model is sufficiently general that it spans all the way from the
nearly free electron (NFE) regime (in which the band gaps are small and
the electronic states are free-electron-like) to the tight binding (TB) regime
(in which the band gaps are large and the electronic states are free-atom-like).

Figure 5.4 shows the one-dimensional potential ¥{x) of the Kronig-Penney
model, which comprises square wells that are separated by barriers of height,
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V5, and thickness t. It is periodic with repeat distance @ so that
V(x + na) = V(x) (5.11)

where 7 is an integer. Because all the wells are equivalent, the probability of
locating the electron in a given well must be the same for all wells, so that

W(x + na)l* = [(x). (5.12)
For n = 1 this implies that
Y(x + a) = e*Y(x), (5.13)

where k is a number (in units of 1/a) which specifies the phase factor ¢'*
linking the wave functions in neighbouring wells. Repeating eqn (5.13) n
times gives

Vilx + na) = ™y, (x) (5.14)

which is the usual statement of Bloch’s theorem in one dimension. Thus, the
translational symmetry of the lattice leads to the eigenfunctions being
characterized by the Bloch vector k. It is only defined modulo (2n/a) since
k + m(2rn/a) results in the same phase factor in eqn (5.14) as k alone. It is,
therefore, customary to label the wave function y, by restricting k to lie
within the first Brillouin zone that is defined by

—7nfa < k< +7/a. (5.15)

We note that in one dimension na is a direct lattice vector, whereas m(2n/a)
1s a reciprocal lattice vector. Their product is an integral multiple of 2.
Bloch’s theorem enables us to solve the infinite one-dimensional problem
directly by looking for the solution y,(x) in a given square well and then
repeating it periodically through the lattice using eqn (5.14). Consider,
therefore, the region of the first square well 0 < x < a. Inside the well where
the potential vanishes for ¢t < x < g the solution can be written as a linear
combination of plane waves travelling to the right and to the left, namely

Y (x)=A4 e!k* 4 Be k= (5.16)
where
K = (2mE/h2)” 2 (5.17)

with E the eigenvalue corresponding to eigenfunction, y,. We note that K
is a direct measure of the energy of the electron E, being directly proportional
to its square root E'/2, Under the potential barrier ¥, for 0 < x < ¢ the
solution can be written as a linear combination of exponential functions,
namely

Yu(x) =Ce~”* + De™™, (5.18)
where

x = [2m(V, — E)/h*]"2, (5.19)
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The coefficients A4, B, C, and D are found in the usual manner by matching
¥, and its first derivative, y, across the boundaries at x=1¢ and x=a
respectively. Matching at x =t using eqs (5.16) and (5.18) we have

AeX f Be Kt =Ce" + De™™ (5.20)
and
iK(Ae® —Be ) = g(Ce* — De™™). (5.21)

Matching at x = a using Bloch’s theorem to provide the solution for
a < x < a+tin terms of the solution eqn (5.18) for 0 < x < t, we have

A ¢ike 4 B eika — gika(C 4 D) (5.22)
and
iK(A e'%¢ — Be k%) = g e*4(C — D). (5.23)

These four equations, egs (5.20)-(5.23), have a solution only if the determinant
of the coefficients of A, B, C, and D vanishes. After non-trivial determinantal
manipulation we find

[(x* — K?)/2xK] sinh xt sin K{a — t) + cosh xt cos K(a — t) = cos ka
(5.24)

This equation may be simplified by considering the limit in which the
barrier thickness becomes increasingly thin (i.e. ¢ — 0) but the barrier height
becomes increasingly high (ie. ¥, = o0) in such a way that the area
under the barrier remains constant, that is

Vat = constant = (h%/ma)p. (5.25)

The parameter, u, measures the strength of the Kronig-Penney barrier
between neighbouring square wells. In this limit x ~ 2mV,/A*)Y'2 - oo,
whereas kt ~ (2m¥V,t?/h*)'/? - 0. Thus, substituting into eqn (5.24) and using
the small argument Maclaurin expansions, sinh xt &~ kt and cosh kt =~ 1,

we have
cos Ka + p sin Ka/Ka = cos ka, (5.26)

which links the energy, E = (h*/2m)K?, to the Bloch vector, k.

Bloch-like solutions or travelling waves, therefore, only exist for those
values of K, and hence energy E, for which the magnitude of the left-hand
side of eqn (5.26) is less than or equal to unity, since |cos ka| < 1. Thus, as
illustrated by Fig. 5.5(a), energy gaps open up in the spectrum as travelling
solutions are only found between a and b, c and d, e and f, g and h, etc. The
plot, Fig. 5.5(b), of the eigenvalues, E(k), as a function of the Bloch vector,
k, within the first Brillouin zone is called the band structure. It accounts
naturally for the division of materials into metals (when the uppermost
occupied band is partially filled) and semiconductors or insulators (when the
uppermost occupied band is totally filled with a small or large gap to the
next unoccupied band of states).



General principles of band theory 115

W
d

—
d

«

Eigenvalue E(k)

P

.

cosKa + u sinKa/Ka

C
b a b
] L] 0 pol
K8=[(2’,’,’§2 )E] ’ Bloch vector k )

(@) (b)

Fig. 5.6 (a) Plot of the function cos Ka + usin Ka/Ka that appears on the
left-hand side of eqn (5.26). Travelling wave or Bloch-like solutions are
forbidden for those ranges of Ka for which the magnitude of the function is
greater than unity as shown by the shaded regions. (b) The resultant band

structure £ versus X.

The Kronig-Penney band structure can range from free-electron-like
behaviour to free-atom-like behaviour by changing the strength of the
barrier, p. It follows from eqn (5.26) that as g — 0, cos Ka — cos ka, and

E = (B*/2m)K? — (B*/2m)[k + n(2n/a)}?, (5.27)
which is, of course, the free-electron result {where the energy levels have been

‘folded back’ into the first Brillouin zone, —n/a < k < n/a). On the other
hand as y — o0,

sin Ka = Ka(cos ka — cos Ka)/u — 0, (5.28)

so that
E = (B*/2m)K?* — (B*/2m)(nn/a)?, (5.29)

which is, of course, the result for electrons confined within a one-dimensional
hard-walled box (cf eqn (5.7)). In this latter case the band structure
shows no dispersion, since E(k) = constant, corresponding to a discrete
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Fig. 5.6 Schematic illustration of the behaviour of the energy bands as the
strength of the Kronig—Penney barrier u varies between zero and infinity. The
so-called free-atom limit in fact corresponds to a free or isolated square well.

eigenspectrum like that of a free atom. This change in behaviour of the energy
bands, which takes place as the strength of the barrier y varies is illustrated
schematically in Fig. 5.6. This chapter and the next are concerned with those
sp-valent metals that are well described by the NFE approximation, whereas
the last two chapters of the book deal with sp-valent semiconductors,
d-valent transition metals, and pd-valent intermetallics, which are well
described by the TB approximation.

Tha fanAd
These fundamental ideas of band theory can be ¢

dimensions. In particular, Bloch’s theorem takes the form
Yilr + R) = e* Ry (r) (5.30)

where R is any direct lattice vector which may be expressed in terms of the
fundamental transiation vectors a,, a,, and a, as

R= n;a, + n,a, + i, 531

where n,, n,, and n, are integers. The corresponding reciprocal lattice vectors
are defined by

G = m,b, + m;b, + m;b,, (5.32)

where m,, m,, and m, are integers, and the fundamental basis vectors are
b, =(2n/7)a, x a,

b, = (2n/7)a; X a, (5.33)
b, =(2n/7)a, x a,

with 7 = |a, *(a, X a,)| being the volume of the primitive unit cell defined by
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a,, a,, and a,. It is apparent from their definition, eqn (5.33), that

ai'bj = Znéij, (5.34)

where d;; = 1 for i = j but zero otherwise.

The phase factor in eqn (5.30) only defines the Bloch vector within a
reciprocal lattice vector G, since it follows from eqs (5.31)-(5.34) that G-R
is an integer multipie of 2x. Just as in the one-dimensional case it is
customary to label the wave function ¥, by restricting k to lie within the
first Brillouin zone, which is the closed volume about the origin in reciprocal
space formed by bisecting near-neighbour reciprocal lattice vectors. For
example, consider the simple cubic lattice with basis vectors a,, a,, a, along
the Cariesian axes X, y, z respectivcly. Because a, = a, = a, = a, it follows
from eqn (5.33) that the reciprocal space basis vectors, b,, b,, b, also lie
along x, y, z respectively but with magnitude 2n/a.

Thus, the reciprocal lattice of a simple cubic lattice is also simple cubic.
It is shown in Fig 5.7 in the xy plane, where it is clear that the bisectors of
the first nearest-neighbour (100) reciprocal lattice vectors from a closed
volume about the origin which is not cut by the second or any further
near-neighbour bisectors. Hence, the Brillouin zone¢ is a cube of volume
(2n/a)? that from eqn (2.38) contains as many allowed k points as there are
primitive unit cells in the crystal. The second, third, and fourth zones can
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Fig. 6.7 The first four zones of the simple cubic lattice corresponding to &, = 0.
The dotted circle represents the cross-section of a spherical Fermi surface.




118 Bonding of sp-valent metals

fce

Fig. 5.8 The fcc and bece Brillouin zones. The symbol I' labels the centre of the
zone. The intersections of the [100) and [111) directions with the Brillouin zone
boundary are labelled X and L in the fcc case and A and P in the bcc case.

be ‘folded-back’ into the first zone through the action of appropriate
reciprocal lattice vectors as illustrated in Fig. 5.7. Consequently, as shown
in the lower part of Fig. 5.7, the spherical Fermi surface of a free-
electron gas would be broken up into segments by the presence of a weakly
perturbing periodic potential that opens up small energy gaps across the
zone boundaries.

The Brillouin zones for the fcc and bee lattices are drawn in Fig. 5.8. We
see that it is customary to assign high symmetry k points with specific
symbols. Thus, the centre of the Brillouin zone is labelled I', whereas the

intersections of the [100) and |111) directions with the zone boundary are
lakp“prl ). 4 Clﬂf" r in the frn case, I—I ﬂr‘l D in the I‘n"r‘ casge rPcppr‘hvp]v

441 RLllwW AW

5.4. The nearly free electron approximation

The bandstructure of fcc aluminium is shown in Fig. 5.9 along the directions
I'X and TI'L respectively. It was computed by solving the Schrddinger
equation selfconsistently within the local density approximation (LDA). We
see that aluminium is indeed a NFE metal in that only small energy gaps
have opened up at the Brillouin zone boundary. We may, therefore, look
for an approximate solution to the Schrédinger equation that comprises
the linear combination of only a few plane waves, the so-called NFE
approximation.

In particular, let us consider the band structure along I'X where
kr =(0,0,0) and ky, = (2n/a)(1,0,0) with a the edge length of the face-
central cubic unit cell. (Note that the X point for fcc is 2n/a not n/a like
for simple cubic.) In this direction the two lowest free-electron bands
correspond to E, = (h?/2m)k? and Ey, ,, = (A*/2m)(k + g)? respectively. The
term g is the reciprocal lattice vector (2n/a)(2, 0, 0) that ‘folds-back’ the
free-electron states.into. the Brillouin zone along I'X, so that E, and E, .,
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Fig. 5.9 The band structure of fcc aluminium. (After Moruzzi et a/. (1978).)

are degenerate at X (cf ky + gl = [ky|). We expect the weak underlying
potential of the fcc aluminium lattice to mix those two free-electron states
together. Hence, we look for the NFE solution

=it + Y, (5.35)
where
Y = [ 32 gl (5.36)
and
'I"iz) — [-32 pik+a)er (5.37)

Substituting eqn (5.35) into the Schrédinger equation, premuitiplying by
Yi* or Yy{P*, and integrating over the volume of the crystal yields the NFE
secular equation

~ 2
5 k:—-E v(200) ¢,

=0. (5.38)

2
5(200) ;—m(k +g)?— EJ ¢

The element v(200) is the (27/a)(2, 0, 0) Fourier .component of the crystalline
potential normalized by the volume of the crystal, namely

v(q) = L3 J H(r) e~ dr. (5.39)

The element (200) is real due to the symmetry of the fcc lattice. The energy,
E, in eqn (5.38) is measured with respect to the average potential, v(000).
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Non-trivial solutions to the NFE secular equation exist if

hz

—k*-E v(200)
2m
= 0. (5.40)
hz
v(200) —(k+g?—E
2m
This quadratic equation has solutions
2 K ]
E = k? + —(k+
k=3 [2m m k + g)
14| #* S 172
+ - 5 {[— k+g)y?— o kz] + 4[v(200)]2} : (5.41)

Therefore, at the zone boundary X where k? = (k + g)?, the eigenvalues are

given by
= (h%/2m)(2n/a)* + v(200), (5.42)

and the eigenfunctions are given from eqs (5.35) and (5.38) by
1/2 i2xx/a —~i2xxfa 2 2 1/2 2
Vi = ( 2 ) {(e' +e )/ - (ﬂ) {c.os( nx/a) (5:43)

L (ei2ria _ g=i2nxiay 9] \L3 sin(2nx/a).

Thus, the presence of the periodic potential has opened up a gap in the
free-electron band structure with energy separation
= 2{v(200)]. (5.44)

Egap

From Fig. 5.9 the energy gap of aluminium at X is about 1 eV, so that eqn
(5.44) implies that the magnitude of the Fourier component of the potential
is only 0.5 eV. This is small compared to the free-electron Fermi energy of
more than 10eV for aluminium. Hence the band structure E, and the
corresponding density of states, n(E), are nearly-free-electron-like to a very
good approximation.

The NFE behaviour has been observed experimentally in studies of the
Fermi surface, the surface of constant energy, Eg, in k space which separates
filled states from empty states at the absolute zero of temperature. It is found
that the Fermi surface of aluminium is indeed very close to that of a spherical
free-electron Fermi surface that has been folded back into the Brillouin zone
in a manner not too dissimilar to that discussed earlier for the simple cubic
lattice. Moreover, just as illustrated in Fig. 5.7 for the latter case, aluminium
is found to have a large second-zone pocket of holes but smaller third- and
fourth-zone pockets of electrons. This accounts very beautifully for the fact
that aluminium has a positive Hall coefficient rather than the negative value
expected for a gas of negatively charged free carriers (see, for example, Kittel
(1986)).
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Fig. 5.10 The upper figure shows the electron density corresponding to the
eigenfunctions 5 and y; at the fcc Brillouin zone boundary, X. We see that ¥/
piles up charge into the core regions where the potential, V(x), in the middle
panel is large and negative. V(x) is the averaged potential over all the atoms in
the yz plane of the fcc lattice shown in the lower figure.

5.5. Pseudopotentials

There is a major difficulty with the NFE picture which we have presented
above for the sp-valent metals that is glossed over in most text books. The
state at the bottom of the energy gap at X in Fig. 5.9 is X, which has p-like
symmetry, whereas the state at the top of the energy gap is X, which has
s-like symmetry {see, for example, Tinkham (1964)). We have seen from eqn
(5.43) that the predicted NFE eigenfunctions are the two standing waves,
cos kyx and sin kyx, that result from the interference of the right- and
left-travelling plane waves e'*** and e ~™*** respectively. Their corresponding
probability densities, p5 = [¢5|* and py = [¥ x| are plotted in the upper
part of Fig. 5.10. We see that p5 piles up charge onto the atomic centres in
a manner that is characteristic of s orbitals (cf R, (r = 0) # 0 in Fig. 2.12).
On the other hand, py has zero charge at the atomic centres in a manner
that is characteristic of p orbitals (cf R,,, (r = 0) = 0 in Fig 2.12).

Thus, the p-like state, X,., at the bottom of the energy gap must be
associated with the NFE eigenfunction, px, which pushes charge away from
the atomic centres, whereas the s-like state, X, at the top of the energy gap
must be associated with the NFE eigenfunction, p,, which pulls charge onto
the atomic centres. From eqn (5.42) it follows that in order for the NFE
approximation to fit the observed band structure, the (200) Fourier com-
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ponent of the potential must be repulsive. In fact, for aluminium with a
band gap of 1 eV we have

oNFEQ200) = +0.5eV. (5.45)

But this contradicts our picture of the crystalline potential, F{(x), that is
sketched in the middle of Fig 5.10. It comprises to a good approximation

PR DS #aecn b smntn matantiale il e thAaca dAvassm fars tha
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diatomic molecule in Fig. 3.. The (200) Fourier component of such a
potential is large and negative, the ab initio crystalline potential for aluminium
taking the value

v(200) =~ —5eV. (5.46)

Thus, we have a paradox: although the band structure of aluminium is
nearly-free-electron-like, the actual Fourier components of the crystalline
potential are large and negative, not small and positive as required by the
NFE model.

The resolution of this paradox is easily obtained once it is remembered
that the NFE bands in aluminium are formed from the valence 3s and 3p
electrons. These states must be orthogonal to the s and p core functions, so
that they contain nodes in the core region as illustrated for the 2s wave
function in Fig. 2.12. In order to reproduce these very short wavelength
oscillations, plane waves of very high momentum must be included in the
plane wave expansion of .. Retaining only the two lowest energy plane
waves in eqn (5.35) provides an extremely bad approximation.

In 1940 Herring circumvented this problem by starting at the outset with
a basis of plane waves that had aiready been orthogonalized to the core
states, the so-called orthogonalized plane wave (OPW) basis. Retaining only
the two lowest orthogonalized plane waves we can look for the OPW -
solution that is analogous to eqn (5.35), namely

¥y = e i + e, (5.47)

where y{! and x{?’ are the orthogonalized plane waves
W=yP -3 %, (@=12). (5.48)

The sum c runs over all the core states ¥, within the crystal. The prefactor
B@ is chosen to guarantee that y\® is indeed orthogonal to any core state,
that is

I Y dr = 0. (5.49)

Substituting eqn (5.48) into eqn (5.49) and using the fact that the core states



Pseudopotentials 123

are all orthogonal to each other we have at once

B = J P dr = S, (5.50)

That is, the prefactor, 8%, is the overlap integral between the core state i,
and the plane wave state with wave vector k, (where k; =k and k, = (k + g)).

The energy gap arises from the off-diagonal element in the resulting 2 x 2
OPW secular equation coupling the states y{ and x{? together. From eqn
(5.48) it has the form

[ e

)
Jlﬁi‘.’*(ﬁ — Ey®dr -} P J yO*(H — E)y, dr
= ¢

— 2 B j WA - EY@ dr + Y pO*D j v*H - E)W, er
\ ¢ c, ¢
(5.51)

The first term on the right-hand side is just the usual NFE off-diagonal
element, namely v(200) (cf eqn (5.38)). The remaining three terms on the
right-hand side may be grouped together by using the Schrédinger equation
for the core states, namely .

(H — E), = E_y,, (5.52)

where E, is the energy level of the core state c. Remembering that H is a
hermitian operator that may act to either the right or to the left, eqn (5.51)
simplifies to

[x£1)*(ﬁ _ E)XEZ) dr = 0(200) + Z (E _ Ec)ﬂgl)*ﬁgZ)_ (553)

v

The energy gap at X will be given by twice the modulus of this off-diagonal
matrix element for k = k. Thus, within the OPW approximation we can
write

Egp = 2|0(200) + Y (Ex — E.)Sd|s (5.54)

where we have replaced E on the right-hand side of eqn (5.53) by the energy
at the centre of the gap, namely, E,, which is an excellent approximation
for small gaps. Since Ey — E, > 0, the core-orthogonality term in eqn (5.54)
is repulsive, the individual core contributions being proportional to the
square of their overlap integrals (choosing the core functions ¥, to be real).
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It is yet again another manifestation of Pauli’s exclusion principle, valence
electrons being forbidden from entering core states that are already occupied.
This resolves the paradox. The energy gap at X is small because the large,
negative Fourier component of the crystalline potential, v(200), is countered
by an equally large but positive core-orthogonality contribution. Thus, we
can retain the NFE description of the sp-valent metals, provided we replace
the true crystalline potential, ¥(r), by a pseudopotential, V,,(r), which includes
intrinsically the core-orthogonality effects. In practice there is almost total
cancellation between the repulsive core-orthogonality term and the attractive
coulomb potential within the core region. We will, therefore, approximate
the ionic pseudopotential using the Ashcroft empty core pseudopotential,

namely
0 for r <R,

viOn ) =
w (1) {—Ze"/4nsor forr > R,
where Z is the valence. This is drawn in Fig. 5.11.

The Fourier components of the resulting ionic lattice will oscillate in sign,
since from eqn (5.39)

(@) = —(Ze?/eoQ)(cos qR.)/q* (3.56)

where Q is the volume per atom. In the absence of the core the Fourier
components are negative as expected, but in the presence of the core the
Fourier components may become positive. As ¢ increases from zero, the
first change from negative to positive behaviour occurs at g, such that
cos goR, = 0, that is

(5.55)

== 55
do 2R (5.57)
A Yion
PN Rc r
\ ,’
\ !
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Fig. 5.11 The Ashcroft empty core pseudopotential.
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Fig. 5.12 The Heine-Abarenkov (1964) pseudopotential for aluminium which
has been normalized by the Fermi energy. The term g, gives the position of the
first node. The two large dots mark the zone boundary Fourier components,
Vps(111) and v,.(200).

As is seen from the behaviour of the more sophisticated Heine—Abarenkov
pseudopotential in Fig, 5.12, the first node g, in aluminium lies just to the

left of (2n/a)\/3 and g = (2n/a)2, the magnitude of the reciprocal lattice
vectors that determine the band gaps at L and X respectively. This explains
both the positive value and the smallness of the Fourier component of the
potential, which we deduced from the observed band gap in egqn (5.45).
Taking the equilibrium lattice constant of aluminium to be ¢ = 7.7 au and
reading off from Fig. 5.12 that g, ~ 0.8(4n/a), we find from eqn (5.57) that
the Ashcroft empty core radius for aluminium is R, = 1.2 au. Thus, the ion
core occupies only 6% of the bulk atomic volume. Nevertheless, we will find
that its strong repulsive influence has a marked effect not only on the
equilibrium bond length but also on the crystal structure adopted.

Figure 5.13 shows the densities of states n{E) for the sp-valent metals that
have been computed by solving the Schrodinger equation self-consistently
within the local density approximation. We see that Na, Mg, and Al across
the second period and Al, Ga, and In down group III are good NFE metals
because their densities of states are only very small perturbations of the
free-electron densities of states shown in Fig. 2.9(b). However, we see that
Li and Be display very strong deviations from free-electron behaviour, This
is a direct consequence of these first-row elements having no p core electrons,
so that from eqn (5.54) there is no repulsive core-orthogonality component
to cancel the attractive coulomb potential which 2p-like states such as X
feel. This leads to sizeable Fourier components of the pseudopotential and
hence very large band gaps, the p-like state at the bottom of the gap being
lowered considerably compared to its free-electron value. For example, in
fec Be the gap at L is 5.6 eV compared to the Al gap of only 0.34¢V in
Fig. 5.9. In fact, the band gaps in different directions at the Brillouin zone
boundary are nearly large enough for a gap to open up in the Be density of
states at the Fermi energy in Fig. 5.13, thereby leading to semiconducting
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Fig. 5.13 The densities of states of sp-valent metals. (After Moruzzi et al.
(1978).)

behaviour. It is this absence of core p electrons and their corresponding
repulsive influence that causes the interatomic potentials for the first-row
elements such as C, N, and O to be characterized by softer normalized cores,
as discussed earlier in Chapter 3.

The occupied energy levels of the heavier alkalis K and Rb and the alkaline
earths Ca and Sr are affected by the presence of the respective 3d and 4d
band, which lies just above the Fermi energy (cf the relative positions of
the s and d free atom energy levels in Fig. 2.17). In particular, we see from
Fig. 5.13 that a gap has nearly opened up at the Fermi energy in Sr.
Theoretically it is predicted that Sr becomes a semiconductor at 0.3 GPa of
pressure, which agrees reasonably with high-pressure resistivity data (Jan
and Skriver (1981)). The group IIB elements Zn and Cd, on the other hand,
have their valence states strongly distorted by the presence of the filled d
band. In Fig. 2.17 we see that the 5s—4d energy separation in Cd is larger
than the 4s—3d separation in Zn, which results in the Cd 4d band lying about
1 eV below the bottom of the valence Ssp band. We will see in the next
chapter that the proper inclusion of d states within the pseudopotential is
required to explain why Ca and Sr are fcc but Zn and Cd are hcp with their
large axial ratios of 1.86 and 1.89 respectively. Such an I-dependent pseudo-
potential is said to be non-local, whereas the simple Ashcroft empty-core
pseudopotential, which does not differentiate explicitly between states of
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different angular momentum, is said to be local (see, for example, Ashcroft
and Mermin (1976)).

5.6. The nature of the metallic bond in sp-valent metals

Wigner and Seitz were the first to apply quantum mechanics to a study of
the metallic bond in sodium in 1933, They began by locating the bottom of
the conduction band which is determined by the average potential, »(000).
They argued that since the bottom of the band corresponded to the most
bonding state, it satisfied the bonding boundary condition that the gradient
of the wave function across the boundary of the Wigner—Seitz cell vanished.
This cell is formed in real space about a given atom by bisecting the
near-neighbour position vectors in the same way that the Brillouin zone is
formed in reciprocal space. The Wigner—Seitz cell of the bec lattice is the fcc
Brillouin zone and vice versa (see, for example, Kittel (1986)). Since there
are twelve nearest neighbours in the fcc lattice and fourteen first and second
nearest neighbours in the bec lattice, it is a very good approximation to
replace the Wigner—Seitz cell by a Wigner—Seitz sphere of the same volume
(cf Fig. 5.8).

The energy of the bottom of the sodium conduction band, denoted by I';,
is determined by imposing the bonding boundary condition across the

Wigner—Seitz sphere of radius, Rys, namely
[dR;4(r, E)/dr]), = gys,e=5; =0 (5.58)

where R, (r, E) is the n = 3,1 = 0 solution of the radial Schrddinger equation
within the Wigner-Seitz sphere. The free sodium atom radial function, R4(r),
is the solution of the same Schrédinger equation but with the different
boundary condition that R, (r) ~ 0 as r —» co. Having located the bottom
of the conduction band, Wigner and Seitz then added to it the average kinetic
energy per electron of a free- electron gas, in order to obtain the total binding

At ahn | 2 1A T
CnCrgy per atom as saowi in F ig. >.14. 1huy found values of the cohesive

energy, equilibrium atomic volume, and bulk modulus that were within 109,
of experiment.

‘We can understand the behaviour of the binding energy curves of
monovalent sodium and other polyvalent metals by considering the metallic
bond as arising from the immersion of an ionic lattice of empty core
pseudopotentials into a free-electron gas as illustrated schematically in Fig.
5.15. We have seen that the pseudopotentials will only perturb the free-
electron gas weakly so that, as a first approximation, we may assume that
the free-electron gas remains uniformly distributed throughout the metal.
Thus, the total binding energy per atom may be written as

U=2U,+ U, (3.39)
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Fig. 5.14 The binding energy U as a function of the Wigner—Seitz radius Ayg
for sodium. The bottom of the conduction band, I, is given by the lower curve
to which is added the average kinetic energy per electron (the shaded region).
(After Wigner and Seitz (1933).)

Fig. 5.15 An ionic lattice of Ashcroft empty core pseudopotentials immersed in
a free-electron gas.

where Z is the valence. The quantity, U,,, is the sum of the kinetic and
exchange-correlation energies per electron that has already been given
explicitly as a function of the average electron radius, r,, through eqns (2.46),
(2.47), and (2.48), namely

2210 0916

e
4 r2

—(0.115 — 00313 In 1), (5.60)
r. .

s

where atomic units have been used. U, is the electrostatic energy of
interaction between the ions and the electrons. This is evaluated by neglecting
the coulomb interaction between different Wigner—Seitz cells as they are
electrically neutral and by approximating the electrostatic energy of a single
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Wigner—Seitz cell by that of a sphere. Thus,

j j LT (5.61)

r —r'|

jon
U, = jp(r)v (r)dr + 2 Iy
where the integrals are carried out within the Wigner—Seitz sphere. The first
contribution is the electron-ion interaction whereas the second contribution
is the electron—electron interaction. Substituting into eqn (5.61) the Ashcroft
empty core pseudopotential vi>" from eqn (5.55) and the density of the
free-electron gas, p = Z/Q = Z/(3nR35), we find

2 R \*] 1222
ch=—3_z—[1—( )]+ 22" (5.62)
RWS RWS

since e = 2 and 4ney = 1 in atomic units.
Consider first the monovalent alkali metals when Z = 1 and r, = Rys. It
then follows from eqs (5.60) and (5.62) that

R.\? 2.2
Uz——B—[l—( )]+_19 (5.63)
Rys Rys rsz

since the electron—electron self-energy contribution 1.2/Ryy is almost exactly
cancelled by the exchange-correlation contribution

—0916/r, — (0.115 — 00313 In 1;).

We see that eqn (5.63) mirrors the behaviour found in Fig. 5.14 for sodium
by Wigner and Seitz. At metallic densities the bottom of the conduction band
is well described by the first contribution in eqn (5.63). As the atoms are
brought together, the bonding state I, becomes more bonding until eventually
the repulsive core contribution dominates, and the bottom of the conduction
band rises rapidly. From eqn (5.63) the maximum binding energy of this
state I'; occurs for

(Rys)m = /3R, (5.64)

Since for sodium R, ~ 1.7 au, eqn (5.64) predicts that I', has a minimum at
about 2.9 au. This is in good agreement with the curve in Fig. 5.14 that was
obtained by solving the radial Schrédinger equation subject to the boundary
condition egn (5.58).

In general, the equilibrium Wigner—Seitz radius R%s can be found from
eqn (5.59) by requiring that U is stationary with respect to Rys. It is found
to depend explicitly on the core radius R, through the equation

( R, )2_1 0.102 0.0035R%  0.491
RS/ 5

‘gtz " ZiARLy (5.65)
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where the first four terms are the coulomb, exchange, correlation, and kinetic
contributions respectively. Girifalco {1976) has taken the experimental values
of the Wigner-Seitz radius R%; to determine the Ashcroft empty core radius
R, from eqn (5.65). The resultant values are listed in Table 5.2 where, as
expected, the core size increases as we go down a given group in the periodic
table but decreases as we go across a given period. It is clear from Table 5.2
that only sodium has an equilibrium value of r, that is close to the
free-electron gas value of 4.2 au.

The equilibrium bulk modulus, which reflects the curvature of the binding
energy curve through B = ¥(d*U/dV?), may be written from eqs (5.59) and
(5.65) in the form

B/B,, = 0.200 + 0.815R%/r,, (5.66)

where the correlation contribution has been neglected since it contributes less

Table 5.2 Equilibrium bulk properties of the simple and noble metals

Metal Quantity
Z U/ Rivs® 15 R. 8/B\q 8/By,
(eV/electron)  {au) (au) (au) (egn 5.66) (expt.)

Li 1 17 3.27 327 132 063 0.50
Na 1 11 3.99 399 175 083 0.80
K 1 09 4.86 486 222 1.03 1.10
Rb 1 09 5.31 5.31 247 114 1.56
Cs 1 08 5.70 570 276 1.29 1.43
Be 2 17 2.36 1.87 076 045 0.27
Mg 2 08 3.36 266 1.31 0.73 0.54
Ca 2 09 412 327 173 095 0.66
Sr 2 09 449 357 193 1.05 0.78
Ba 2 09 4,67 3.71 203 1.1 0.84
Zn 2 07 2.91 2.31 1.07 0.60 0.45
Cd 2 06 3.26 259 127 071 0.63
Hg 2 03 3.35 266 131 0.3 0.59
Al 3 11 2.99 207 111 069 0.32
Ga 3 09 3.16 219 120 094 0.33
In 3 09 3.48 2.41 1.37 083 0.39
Tl 3 06 3.58 249 143 087 0.39
Cu 1 35 2.67 267 091 045 2.16
Ag 1 30 3.02 3.02 137 OM 2.94
Au 1 38 3.01 3.01 1.35 0.69 4.96

2 From Girifaico (1976).
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than a few percent. The quantity, B,., is the bulk modulus of the non-
interacting free-electron gas, namely

B, = 0.586/r;. (5.67)

It follows from eqn (5.66) and Table 5.2 that the presence of the ion core is
crucial for obtaining realistic values of the bulk modulus of sp-valent metals,
However, we see that the sd-valent noble metals Cu, Ag, and Au are not
describable by the NFE approximation, the theoretical bulk modulus being
a factor of five too small. We will return to the noble metals at the end of
the next chapter.

5.7. Embedded atom potentials

This concept of metallic cohesion as arising from embedding ions in a gas
of free electrons suggests that the binding energy of a collection of atoms
with position vectors R; may be approximated in the form of an embedded
atom potential, namely

%Z (Ryy) + 3. Flp) (5.68)
where
= Z’ patom(Rij) (5.69)
J

(Daw and Baskes 1984; Finnis and Sinclair 1984; Jacobsen et al. 1987). The

first term D(R) 15 a pairwise interatomic pnfpnhal that represents the electro-

A Wl il TN .l\} “ pe A ol WNT A,

static interaction and overlap repulsion between neighbouring atoms. The
second term F(p,) is a many-body embedding potential that represents the
energy of embedding an atom at site i in the local charge density p; which
comes from the tails of the atomic charge clouds p,,,, on neighbouring sites j.
The behaviour of the embedding function F(p) is illustrated in Fig. 5.16
for the case of hydrogen and the rare-gas atoms helium and neon. The curves
were evaluated within the local density approximation (LDA) by embedding
the atom in a homogeneous electron gas of density p. We see that He and
Ne display a positive embedding energy at all densities because their closed
electronic shells repel the free electron gas through orthogonality constraints.
Moreover, the variation with density is linear so that from eqn (5.69)

‘F;:losed(pi) = api =ada Z’ patom(Rij) (5‘70)
J

where g is an element dependent constant. Thus, the embedding function is
pairwise and may be combined with the first contribution in eqn (5.68),
leading to the well-known result that the interaction between rare-gas atoms
is accurately described by pair potentials. On the other hand, the open-shell
hydrogen atom shows a minimum in Fig. 5.16 at an attractive embedding
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Fig. 5.16 The embedding energy F(p) for H and the rare gas atoms He and Ne
in a free-electron gas of density p. (After Puska et a/. (1981).)
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term of the closed-shell atoms, namely

open(p ) = ap; — bplfz (571)

where a and b are positive constants. The presence of this second term leads
to the non-pairwise, many-body character of the embedding function in
open-shell systems

This I‘lOii-pairWiSE behaviour is most caauy demonstrated by COﬁSidEIiﬁg
the coordination number dependence of the binding energy. It follows from
eqs (5.68), (5.69), and (5.70) that the binding energy per atom of a lattice

with coordination number » may be written in the form

U= Az — Bx'/? (5.72)
where
A = (R, + @poom(Ro) (5.73)
and
B = bp,icn(Ro) (5.74)

with R, being the nearest neighbour distance. Thus, if we plot the binding
energy of different lattices with identical nearest neighbour distances R, as
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Fig. 5.17 The binding energy per atom U as a function of the coordination
number « for aluminium. The crosses correspond to LDA predictions, whereas
the curve is a least-squares fit of the form of egn (5.72). The lattice types
considered are the linear chain (x =2), graphite (« = 3), diamond (« = 4),
two-dimensional square mesh («=4), square bilayer (« =5), simple cubic
(« = 6), triangular mesh (x = 6), vacancy lattice (« = 8) and face centred cubic
(# =12). (After Heine et al. (1991).)

a function of coordination number » then we expect the results to fall on
the curve given by eqn (5.72) since 4 and B will be constants. This is indeed
the case for sp-valent aluminium where we see in Fig. 5.17 that the predicted
LDA values of the binding energy of different lattices with nearest neighbour
distances equal to that of fcc follow the simple curve of eqn (5.72) surprisingly
well.

The square-root dependence of the attractive contribution to the binding
energy is a consequence of the unsaturated nature of the metallic bond. If all
the bonds were saturated then we would expect the binding energy to be
directly proportional to the number of bonds present as the electrons in each
bond would be localized between their parent atoms. However, in an
sp-bonded metal there are not enough valence electrons to form saturated
bonds with all close packed neighbours so that the electrons resonate
between all bonds in a delocalized fashion. Increasing the local coordination
about a given atom reduces the strength of neighbouring bonds as the
electrons are spread more evenly between them. This is reflected in the fact
that from eqn (5.72) the attractive binding energy per bond decreases as 1/+'/2
as the coordination number # increases.

This has important consequences for the energetics of defects in metals.
For example, the vacancy formation energy within a nearest neighbour pair
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potential approximation is given by
AUPS = — . ®(R,) + 3«D(Ry) (5.75)

where the first term represents the loss in binding energy due to the breaking
of + bonds when the atom is removed to create the vacancy, whereas the

second term represents the energy gain equal to the cohesive energy U,
when the removed atom is placed at the metal surface. We see, therefore,

=A% ARALIUDIVLSS 4LR0222 22 Lo Ll i1

that a pair-potential model predlcts a vacancy formation energy equal to
the cohesive energy, i.e.

AUPH = —1.0(R,) = U,y (5.76)

vVac

This disagrees with experiment where the vacancy formation energy in metals
is typically only about one-half the cohesive energy.

Using embedded atom potentials, however, there will be an additional
lowering in the vacancy formation energy compared to that of pair potentials
due to the fact that the » atoms surrounding the vacancy have one less
neighbour and, therefore, experience a bond strengthening with their re-
maining (» — 1) neighbours. This contributes an additional term

AU = oz — 1){—B[(x — 1) 712 — x~ 123}, (5.77)

vac

The prefactor outside the curly brackets gives the number of bonds that are
strengthened by the absence of the atom at the vacancy site. The contribution
inside the curly brackets gives the change in the bond energy due to the
change in coordination from = to (x — 1). For close-packed lattices « » 1 so
that using the binomial expansion

AU —1Bu1? = —3U,,, (5.78)

vac

where we have assumed that the cohesive energy is provided mainly by the
attractive contribution — Bz'/? in the binding energy. Thus, the embedded
atom potential predicts the total vacancy formation energy
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This is in good agreement with experiment.

Embedded atom potentials have been extensively used for performing
atomistic simulations of point, line and planar defects in metals and alloys
(e.g. Vitek and Srolovitz 1989). The pair potential ®(R), atomic charge
density p,,,.(t), and embedding function F(p) are usually fitted to reproduce
the known equilibrium atomic volume, elastic moduli, and ground state
structure of the perfect defect-free lattice. However, the prediction of ground
state structure, especially the competition between the common metallic
structure types fcc, bee, and hep, requires a more careful treatment of the
pair potential contribution ®(R) than that provided by the semiempirical
embedded atom potential. This is considered in the next chapter.
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6
Structure of sp-valent metalis

6.1. Introduction

The description of the metallic bond in the previous chapter assumed that
the free-electron gas remained homogeneously distributed as the pseudo-
potential lattice of ion cores was immersed within it. In practice, of course,
the free electrons will respond to screen the ion cores, thereby leading to a
modulation of the electron density. This modulated electron density then
acts in turn on the underlying ionic lattice to give rise to a structure-
dependent contribution in the total energy. We will see in this chapter that
this small structurally dependent contribution to the binding energy can be
evaluated quantitatively using second-order perturbation theory within the
nearly free electron (NFE) approximation.

Second-order perturbation theory provides a reciprocal space represen-
tation of this structural energy, since it mixes together all plane wave states
that are linked by the reciprocal lattice vectors of the underlying perturbing -
lattice. It is, therefore, the appropriate representation for describing those
few NFE systems such as the Hume-Rothery electron phases that are
stabilized in k-space by the unperturbed free-electron Fermi sphere making
contact with a zone boundary. More frequently, ground-state structural
stability is determined by interaction between nearest-neighbour shells of
atoms in real space. The beauty of second-order perturbation theory is that
it also allows this structural energy to be written as a sum over oscillatory
interatomic pair potentials. We will use this real space representation to
provide an explanation for the structural trends within the sp-valent metals
that are observed in Table 1.1.

6.2. Screening: the Thomas—Fermi approximation

Metals are characterized by an infinite static dielectric constant, so that any
potential disturbance will be screened out by the electron response. This can
be demonstrated most simply by considering a point ion of charge, Ze,
immersed at the origin in a free-electron gas of charge density —ep,. The
presence of the ion will induce a new electron density, p(r), which can be
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related to the new potential, V(r), by Poisson’s equation
VZV(x) = e’[Z5(r) + po — p(1)]/%0. (6.1)

The three contributions to the charge density on the right-hand side are the
positive charge Ze at the origin (represented by the delta function, 4(r)), the
compensating positive background charge, ep,, of jellium, and the perturbed
electronic charge density, —ep(r). Note that strictly we should refer to ¥(r)
as the potential energy, but we will maintain our previous custom and call
V(r) the potential. In this chapter we will use atomic units throughout,
so that e? = 2, 4ngy = 1, and A%/2m =1 (cf. Note on the choice of units,
page (xi)). Hence, Poisson’s equation can be written

V2V(r) = 8n[Z£4(r) — dp(¥)], (6.2)
where dp(r) is the induced change in electron density, namely
dp(r) = p(r) — po. (6.3)

We will solve eqn (6.2) within the Thomas—Fermi approximation by
linking the change in electron density, dp(r), to the local potential, F{(r). At
equilibrium the chemical potential or Fermi energy must be constant
everywhere as illustrated in Fig. 6.1, so that

T(r) + Wr) = Eg, (6.4)

where T(r) and V{(r) are the values of the kinetic and potential energies
respectively at the position r. The term, E2, is the chemical potential of the

undisturbed uniform electron gas of density p,, which from eqn (2.40) is
EA

Fig. 6.1 The local -potential energy, V(r), and local kinetic energy, 'T(r), such
that the chemical potential is constant everywhere, taking the value £2.
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given by
EQ = (3n%po)*. (6.5

The Thomas-Fermi approximation assumes the variation in the potential,
H(r), to be sufficiently slow that the local kinetic energy, 7(r), is equal to
that of an homogeneous free electron gas with the same density p(r) as seen
IQna]lv that is

wazdlew

T(r) = [3np()]** = (1 + 8p/pe)*EX. (6.6)

Hence, using the binomial expansion and substituting eqn (6.6) into (6.4),
we have

EX[1 + ¥(dp/po) + -1+ V(1) = E, 6.7
so that
op(r) = —(3po/2ER)V(¥). (6.8)

Thus, Poisson’s equation (6.2) takes the simpler form

VZV(r) = 87Z6(r) + x3V(r), 6.9

where
kre = (12294 /EQ) Y72 = 2(3/m)!/5p}S. (6.10)
Poisson’s equation (6.9) can be solved dlrectly by writing the potentlal

2hoy Tlimccces mme doemon ol T/
ItS rOurier LlalldiVLlnl, V\q}, I.I.ld.l. lb

1 iqlf
V() = pRE I V(q) e dq (6.11)
with
g = f V(r)e 'e-rdr. (6.12)
J

The delta function, &(r), can similarly be written

1 iga.r
50) = 53 I e'ar g, (6.13)

since d(q) = 1. Substituting eqs (6.11) and (6.13) into (6.9) we have

—g*V(qQ) = 8nZ + k1 V(q), (6.14)
which has the solution

@) = —8nZ/(g* + x7g). (6.15)
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This has the well-known Fourier transform

V() = —-2—2— e Tl (6.16)
,

Thus, the ionic coulomb potential is damped exponentially within a Thomas—

Fermi screening length Arg = 1/x1p. It follows from eqs (2.41) and (6.10)
that

AL

Arg = (m/12)13r}12, (6.17)

Screening in metals is very efficient: even the low-density metal sodium with
r, = 4 au has a Thomas—Fermi screening length as small as 1.3 au.

The screening in metals is also perfect. This follows from the fact that the
total number of electrons associated with the screening density, dp(r), is
identically equal to Z, which can be seen by integrating

Sp(r) = Z(x2:/4m) e " /r (6.18)
over all space. The static dielectric constant, &(q), is defined through

9 = Vu(@/e@), (6.19)

where V,_(q) is the external potential which the free-electron gas experiences,

that is, ¥, (q) = —8nZ/q® corresponds to the point ion potential, ¥V, (r) =
—2Z/r. Substituting eqn (6.15) into (6.19) we see that the Thomas—Fermi

dielectric constant is given by

2
KTF

err(@ =1+ —qT (6.20)

Thus the static dielectric constant diverges in the long wavelength limit as

~ N
gy 7 .

6.3. Screening: linear response theory

The Thomas—Fermi approximation is, unfortunately, a poor approximation
for the sp-valent metals. It is based on the assumption that the potential
varies much more slowly than the screening length of the electrons themselves,
so that the local approximation for the kinetic energy, eqn (6.6), is valid. In
practice, however, the variation in the ionic potential is measured by the
core radius, R, (cf Fig. 5.11), which is not large but of the same size as the
screening length, A;z. Thus, we do not satisfy the criterion for the validity
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of the Thomas—Fermi approximation, since
R, ¥ Arp. 6.21)

We will find that the Thomas—Fermi approximation totally fails to distinguish
correctly between the different competing close-packed structure types such
as fcc, becc or hep. We must, therefore, go beyond the Thomas—Fermi

armernvitmatinm and avalinta the nranar corasning hahavianr of tha frea_
anyUAuuauuu anG cvaiudiC uC proper SCITCiillg oCniaviOur Of e IIce

electron gas at equilibrium metallic densities.

We have seen in the previous chapter that that the underlying ionic lattice
only perturbs the electrons weakly. We may, therefore, use linear response
theory to write

- ép(q) = (@ V(@) (6.22)

that links the Fourier component of the screening electron density dp(q) to
the Fourier component of the total potential ¥(q) through the linear response
function x(q). The dielectric constant &(q) may be expressed in terms of the
linear response function x(q) as follows. We have that

V(@) = V@ + V() = Vero(9)/e(Q) (6.23)

where 6V(q) is the potential corresponding to the screening density 6p(q)
induced by the presence of the external potential, V. (q). The terms, 6¥(q)
and dp(q), may be related to each other by taking the Fourier transform of
Poisson’s equation, namely

&n
Vg = pe op(q). (6.24)
Substituting eqs (6.24) and (6.22) into eqn (6.23) we find that
V(@) = Vi.d@)/[1 — 8n/g*) x(@)], (6.25)
so that finally from egs (6.23) and (6.25) we have
8
Q) =1- E’; 2@)- (6.26)

Within the Thomas-Fermi approximation, the linear response function is
independent of the wavevector g, since from eqn (6.20) it is given by

x1r(Q) = —"C%F/ 8% = X1F (6.27)

The wave vector dependence of the linear response function, x(q), may be
found by using perturbation theory to evaluate the change in the electronic
density in the presence of the weakly perturbing potential

V(r) = [V(q) e!** + complex conjugate], (6.28)
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where the complex conjugate is required to make the potential real. As
proven in most textbooks on quantum mechanics (see, for example, Chapter
16 of Gasiorowicz (1974)) the addition of a perturbation A’ to the Hamiltonian
operator of a system causes the unperturbed eigenfunctions , (with corre-
sponding eigenvalues E, ) to mix together. To first order in the perturbation
H' it is easily shown that the eigenfunctions of the perturbed system are
given by

VOO = D+ T —E (), 629)

v#k Exy — Ep
where Hj, is the matrix element coupling the states, ¥, and y,., together
through the perturbation, A, that is

A, = '[ WAy, dr. (6.30)

For the perturbing potential, F(r), in eqn (6.28) this matrix element takes
the form

Hiw = V@dp x1q + V@O 1 g (6.31)

which follows immediately from eqn (6.30) on the imposition of periodic
boundary conditions on the free-electron gas within a cube of side, L. Thus,
substituting egn (6.31) into eqgs (6.29), we have

- . V) ik+q) Vg - ]
(1) — 32 ik*r ikt+q)r ik—q)-r
@) =L [e +k2—-(k+q)2e +k2—(!t.—q)2e .
(6.32)
The change in the electron density is, therefore, given by
op(r) = Y, W @F — Wu@I*1 £, (6.33)
k
tha Aratiena sy A tlhn ctatal Idamma tn Aot Ardaries tha smastebe ~
WHCIT Jk lb uic UL lpalivy O1 Ui€C StdiC K IV, LU LIDL ViUl 1] Ul 11U UlLE
potential,
_ JA A ]}
Sp(r) =<L™3 +
R P A==
x [¥(q) e"F + complex conjugate]. (6.34)
It follows from the definition of the linear response function in eqn (6.22) that
Xo(®) = Z —Jisa 5 (6.35)
(k +9

where we have used the fact that k is a dummy variable that runs over all
k-space to replace k — q by k’ in the second summation in eqn (6.34).
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The subscript zero on yx, refers to the fact that we have performed our
perturbation theory as though the electrons were independent particles. In
practice, as we have seen in §2.5, the motion of each electron is correlated
through the exchange-correlation hole. This leads to an enhancement of the
response function which can be written

2@ = xo@/[1 — Lxo(@)] (6.36)

where I, is an enhancement factor that can be estimated within the local
density approximation (see, for example, Taylor (1978)).

The summation in eqn (6.35) was first evaluated by Lindhard in 1954.
Using the density of k-points given by eqn (2.38) the summatlon can be
replaced by an integration

' kg n :
Iy K _ 2 j dk2k? f Sm0d0 - 6a7)
LYk—-—&+9* (2n) ), o —q° — 2kqcos 8

where the coordinate system used is shown in Fig. 6.2. This may be integrated
directly to give

£ 1 (% _lg+2k
=¥ — = kInl=——1 dk
L kk (k'l'q) 47tq.0 q 2k
ke 1—n* |1+4]
~+ In , 6.38
 4n? [2 4y 1— g (6.38)

where n = q/2kg. Replacing g by —q in the initial summation leaves the final
result unchanged, so that from eqn (6.34) the Lindhard response function
for the free-electron gas can be written

=

1 1-— 1+
Xo(n = q/2kg) = [5 + l I ”|:|xTF’ (6.39)

Fig. 6.2 The coordinate system chosen for evaluating the linear response
function, the integration being with respect to k whilst q is kept fixed.
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Fig. 6.3 The wave-vector dependence of the Lindhard response function,
x(q/2ke), which has been normalized by the constant Thomas—Fermi response
function, yre. The dashed curve shows an approximation (eqgn (6.89)) to the
Lindhard response function that does not include the weak logarithmic singularity
in the slope at g/2kg = 1. (From Pettifor and Ward (1984).)

since the prefactor
— (kp/27%) = —(xc7¢/87) = x1¢ (6.40)

from eqs (2.40), (6.17), and (7.27).

The wave vector dependence of the Lindhard function is shown in
Fig. 6.3. We see that for -very long wavelength disturbances as g — 0 the
response of the free-electron gas is that predicted by the Thomas—Fermi
approximation as expected, since 27/q » Arr. However, we see that for very
short wavelength disturbances as ¢ — oo, the electrons are unable to screen
out the potential, since the shortest unperturbed free-electron wavelength is
2n/k:. We observe that the response function has fallen to half of its
Thomas—Fermi value at g = 2kg. Although not discernible in Fig. 6.3, the
slope of the curve diverges logarithmically for this value of ¢ = 2kg, as can
be found directly by differentiating eqn (6.39). This very weak logarithmic
singularity in g-space is picked up in the real-space Fourier transform of the
electron density as very long range oscillations of wave vector 2kg. Thus,
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Fig. 6.4 The radial charge distribution of the screening clouds around sodium,
potassium, magnesium, and aluminium ions in free-electron environments of the
appropriate equilibrium metallic densities. The arrows mark the positions of the
first nearest neighbours in hcp Mg and fcc Al the first and second nearest
neighbours in bcc Na and K. (After Rasolt and Taylor (1975) and Dagens et al.
(1975).)

rather than the screening cloud of electrons falling off exponentially around
an ion core as in eqn (6.18), the screening cloud falls off algebraically as

Sp(r) ~ Ay cos 2ker/r®, (6.41)
as first predicted by Friedel in 1952. Figure 6.4 shows the oscillations in the
screening clouds around sodium, potassium, magnesium, and aluminium
ions in free-electron environments of the appropriate equilibrium metallic
densities. The coulomb interaction between these oscillatory screening clouds
and the neighbouring ions gives rise to oscillatory interatomic pair potentials
that account for the observed structural trends within the simple metals; we
will examine these oscillatory interatomic pair potentials later in this chapter.

The physical origin of these asymptotic Friedel oscillations of wave vector,
2k, can be traced back to eqn (6.35) for the response function, y,(q). We
see from the numerator that there are only contributions to the sum for the
states, k, that are occupied and the states k + q that are unoccupied, or vice
versa. This is to be expected considering Pauli’s exclusion principle in that
an electron in state, k, can only scatter into state, k + g, if it is empty.
Moreover, we see from the denominator in eqn (6.35) that the individual
contributions will be largest for the case of scattermg between states that
are very close to the Fermi surface, since then k? — (k + q)? ~ 0. We deduce
from Fig. 6.5 that the maximum number of such scattering events will occur
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Fig. 6.5 Scattering between filled and empty states near the Fermi surface. For
the Fermi sphere of a free-electron gas the maximum number of such events
occurs for g = 2kg. For a Fermi surface with flat regions the number of such
events is dramatically enhanced for g = Q, the spanning wave vector.

when q just spans the free-electron Fermi sphere, that is g = 2kg. Although
this leads to only a very weak logarithmic singularity in the slope of the
linear response function of a free-electron gas, it can lead to much larger
singularities in non-simple metal systems such as Cu—Pd alloys. In this latter
case flat regions of the Fermi surface allow many states to contribute to the
response function at the spanning wave vector, Q. This leads to a so-called
charge density wave of wave vector, Q, that provides a modulation of the
charge density, which is usually incommensurate with the underlying fec
jattice.

6.4. The reciprocal lattice representation

The total binding energy of a NFE metal can be evaluated within second-
order perturbation theory. In the presence of a perturbation H’ to the
Hamiltonian operator of a system, the energy of state k is given by

A~ ﬁ" 2
B = B+ B+ 3

_— 6.42
k'#k Ek - E;,' ( )

(see, for example, Chapter 16 of Gasiorowicz (1974)). The matrix element
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coupling states k and k' = k + q together in a NFE metal can be written
from eqs (6.12) and (6.19) as

Blyqx = L73V(Q) = L™3Vi(q)/2(g), (6.43)

where Vio'(q) is the Fourier transform of the ionic potential

p

Ve @) = Y v’ — R,). (6.44)
Substituting eqn (6.44) into (6.43) and interchanging the ordering of
integration and summation, we have

1

Y - —ig-Ri N fon —iq.(r—
Brar= @1 S e m( %) [ - Ry eeRoar, (69

where we have introduced the total number of atoms, 4"
This can be expressed in a form which is familiar in X-ray diffraction,

namely
Ao = S@0,4@), (6.46)

where S(q) is the structure factor
S =H"1Ye iRy (6.47)
v,5(q) is the screened pseudopotential form factor,

Dps(@) = Vs (@)/2(Q) = [ﬂ i j Vps (r) €71 drj|/8(¢l), (6.48)

and Q is the volume per atom. For a periodic crystalline lattice with n basis
vectors I; (i = 1, n) the structure factors simplifies to

S(q = E Ye -‘G"f]aqc, (6.49)

that is, the structure factor vanishes unless q = G. For the Ashcroft
empty-core pseudopotential the screened pseudopotential form factor can be
written from eqgs (5.56) and (6.20) as

8nZ\ cos gR,
"erl®) = _( Q )qz + r3e

(6.50)

so that using eqn (2.40)
v(q = 0) = —3EQ. (6.51)
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Thus, the screened pseudopotential form factor of aluminium normalized by
the Fermi energy will approach q =0 at —2/3 as observed in Fig. 5.12.

The zeroth- and first-order contributions to the perturbed energy level,
E{, are independent of the particular arrangement of the atoms. The
structure dependence resides in the second-order contribution. Summing
over all the occupied energy levels the structure-dependent contribution
takes the form

, 1S@)I2 (@)
Zﬁz TR (6.52)

where the prime on the summation indicates that the q = 0 term is omitted.
From eqn (6.35) this may be written in terms of the Lindhard response
function as

UQ = 1Q Y IS@F Dro(@/e* @1lves (@1 (6.53)
q

However, summing over all the occupied energy levels has counted the
coulomb interaction between any pair of electrons, i and j, twice. This follows
since

f PAOVi(E) dr + J P, Vi(r) dr = 2[ f f pB)[eX/Ansolt — ¢l p,(x) dr dr'],
(6.54)

. | tha wilas
where ¥ and rJ are the electrostatic contributions to the potential, which

enter the Schrédinger equation from electrons, i and j, respectively. We have
written the coulomb interaction explicitly as e?/4ne,|r — r') on the right-hand
side, in order to avoid the confusion that e> = 2 in atomic units. Thus, we
must subtract off the total electrostatic energy of interaction between the
electrons that has been double-counted in U®). From the right-hand side of
eqn (6.54), the second-order contribution may be written in g-space as

——Z pg(87/q*)opg = ——ZIS(QJI {[8mxd@/a’ Ve @} ve' @), (6.55)

since 6p, = x(Q) V(@). ,
The so-called band-structure contribution to the total binding energy per
atom is given by subtracting this double-counting term, eqn (6.55), from U{2.

Using eqgn (6.26) we have
Z IS@P*[x@)/(@)Ivir @), (6.56)

where we have replaced the Lindhard response function, y,, by the exchange-
correlation enhanced response function x(q) (cf eqn (6.36)). By convention
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Fig. 6.6 The wave-vector dependence of the energy-wavenumber characteristic,
®,.(q). which has a node at g, and a weak logarithmic singularity in its slope at
q = 2kg. Also shown are a set of degenerate cubic reciprocat lattice vectors that
are centred on g,. A tetragonal distortion would lift their degeneracy away from
the node at g, as shown, thereby lowering the band-structure energy. (After
Heine and Weaire (1970).)

this simplifies as
Upe = X ISP @0e(9) (6.57)
q

by defining the energy-wave number characteristic ®,(q) by

& feoy — LOMwda) /ofe T vion w2
Ppet§) = 2321 XQ)/8G) 01V ps G (6.58)

The energy-wave-number characteristic, ®,,(q), depends only on the density
of the free-electron gas and the nature of the pseudopotential core but not
on the structural arrangement of the atoms. Its behaviour as a function of
the wave vector, q, is illustrated in Fig. 6.6, where we see that it vanishes at
do as expected. It also has a weak logarithmic singularity in its slope at
q = 2kg.

The total binding energy per atom of the NFE metal can then be written
as the sum of the three terms:

U=ZU, + U, + Uy, (6.59)

which extends eqn (5.59) to include the second-order band-structure contri-
bution. The electrostatic contribution U, is formally given by

Ues = UMadclung + Ucores (660)
where
UMadclung = —dZZ/RWS, (661)
and
Usere = lim {Z[vis(q) — 87Z/Qq*]}. (6.62)

q—0



The reciprocal lattice representation 149

Table 6.1 The Madelung constant
o for various structures

Structure o

bee 1.79186
fcc 1.79175
hcp (ideai) 1.79168
simple hexagonal 1.77464
simple cubic 1.76012

The Madelung energy is the electrostatic encrgy of point ions with charge,
Ze, that are immersed in a neutralizing uniform distribution of electrons.
We had evaluated this term within the Wigner—Seitz sphere approximation
in eqn (5.62), obtaining the value of the Madelung constant, s = (3 — 1.2) = 1.8.
In practice, close-packed metals have Madelung constants that are about
0.4%, smaller than this as can be seen from Table 6.1. The core energy may
be evaluated explicitly for Ashcroft empty-core pseudopotentials, since
substituting eqn (5.56) into eqn (6.61) we then have

2 _ 1 2R2 R 1
U, = lim {8’;12 [-(1 W), —2]} 663)
g-0 q q

so that

U= 2 (R Y,
7 Rws\Rys/

which is just the core contribution we had found earlier in eqn (5.62).

Second-order perturbation theory has allowed us to write the band-
structure energy of a perfect crystal as a sum over reciprocal lattice vectors,
since the structure factor vanishes unless ¢ = G (cf eqn (6.59)). Thus, within
the reciprocal lattice representation we have

Ups = %: IS(G)F*®ys(G). (6.65)

(6.64)

This demonstrates immediately the importance of the location of the first
few reciprocal lattice vectors with respect to the node at g, in the energy-
wavenumber characteristic, ®,,(q), which is illustrated in Fig. 6.6. Vectors
lying at q, would contribute nothing to the band-structure energy, which is
consistent with zero band gaps opening up at the appropriate zone boundary.
We found earlier that the G(111) and G(200) reciprocal lattice vectors of
aluminium lay just to the right of g, in Fig. 5.12, so that small negative
contributions to the band-structure energy in eqn (6.65) are obtained.
However, on going down group III in the periodic table from Al - Ga — In
we see from Table 6.2 that G(200) moves closer to ¢, and G(111), in fact,
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Table 6.2 Values of G/q, for fcc aluminium,
gallium, and indium. (From Heine and Weaire

(1970).)

Al Ga In
G(111)/q, 1.04 0.94 0.93
G(200)/q, 1.20 1.09 1.08

passes right through g, to the other side. This is reflected by a change in the
symmctry of the state at the bottom of the gap at L = (2n/a) (1, 1, 1) on the
Brillouin zone boundary. Whereas this state has the p-like symmetry, L,., in
aluminium (cf Fig 5.9), it has the s-like symmetry, L,, in fcc gallium and
indium, This behaviour in G/gq, causes the reciprocal lattice vectors across
the first Brillouin zone in fcc gallium and indium to lie closer to g, on average
than those for fcc aluminium. It is, therefore, not implausible that the gallium
and indium lattices distort from fcc in order to gain a marked lowering in
their band-structure energy as their distorted reciprocal lattice vectors move
away on either side from the node at g,. A cubic to tetragonal distortion is
illustrated schematically in Fig. 6.6, as is indeed observed for indium with
c/a = 1.08.

In practice, the degree of distortion is obtained by a balance between the
electrostatic Madelung energy, which increases with distortion, and the
band-structure energy, which decreases with distortion. The real-space
representation presented in the next section allows these two opposing
contributions to be combined together into a single term, thereby facilitating
an understanding of the observed structural trends within the elemental
sp-valent metals.

6.5. The real-space representation

The total binding energy can be rewritten as a sum over real space rather
than g-space vectors by changing the order of their summation in U,,. From
eqn (6.57) the band-structure energy is given by

Ubs = 2, S*(@S@P0(@) — lin:) D.(q) (6.66)
q q—
where the q =0 term has been included explicitly in the summation.
Substituting in for the structure factor from eqn (6.47) and separating out
the R; = R; terms we have

1 2 . 1
Up=— Y { =Y "--“*f.-kf*}+- B, (q) — lim B,,(q). (6.67
b Mw{mg bs(@) € /ng bs(®) Jim 0s(@). (6.67)
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This allows us to define the band-structure contribution to a pair potential,
namely

2 .
@, (R) =— 3 Dp(q) T (6.68)
N 'q
Thus, we can write
1 .
Ups = = 2. Do(Ryy) + 1Pu(R = 0) — lim D (q). (6.69)
2N i*j q—0

The Madelung energy, eqn (6.61), can also be expressed as a pairwise sum
over coulomb interactions between the point ions, plus a ¢ — 0 contribution
arising from the electron—ion and electron—electron interactions. Grouping
this together with the band-structure contribution we have

1 . 1 87:22
Uos + UMadetung = ﬁ ; (D(Rij) + 20, (R =0) — hn:) (O ()) + - 2 )
i#j g

(6.70)

where the interatomic pair potential ®(R)is given by the sum of the ion—ion
and band-structure terms, namely

®(R) = 2Z%/R + @ (R). 6.71)
In 1974 Finnis showed that the ¢ — 0 limit could be evaluated directly by

tha ailil nla ~f +
1131115 tnc vuu1y1uamuxut_y sum rule of the free-electron gas, which relates the

long wavelength behaviour of the dielectric constant to its compressibility.
He found that

18nZ2
1 i) ZQB + Usores 6.72
lm[ bs(@) + 3 ng] (6.72)

q—0

where B,, = Qd*U,,/dQ? is the electron—gas bulk modulus or inverse
compressibility, and U, is the core contribution to the binding energy,
eqn (6.61).

Thus, the total binding energy per atom of a NFE metal can be expressed
in a physically transparent form, as the sum of a volume-dependent contribution
and a pair-potential contribution in a manner that is reminiscent of the
semi-empirical embedded atom potential of eqn (5.68). It follows from eqgs
(6.59)—(6.72) that

1
U=U,Q)+ % > O(R;;, ), (6.73)

i#]
where
Up()) = Z(U,, ~ 1QB,S) + 10, (R = 0). (6.74)
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The electron—gas term in eqn (6.74) is given from eqn (5.60) by

U, — 3QB,, = 0.982/r? — 0.712/r, — (0.110 — 0.031Inr). (6.75)
The band-structure term is given from egs (6.68) and (6.58) by

1
70, (R=0) = 5[ Z op(@) v'°"(¢1)j| (6.76)

as dp(q) = x(q)v,,(@). This contribution is, therefore, one half of the electro-
static interaction between an ion and its own screening cloud, so that it
represents the binding energy of a screened pseudoatom. This expression is
consistent with the virial theorem, where the equilibrium binding energy of
all the clectrons in a free atom is just one half of the total potential energy.
It may be approximated by the simple expression (Finnis (1974))

10, (R = 0) = — Z2,/n = —$ZYR, 6.77)

where the last equality holds for the Ashcroft empty-core pseudopotential
from eqn (5.57). We see from Table 6.3 that eqn (6.77) reflects the large
variation in the binding energy of the pseudoatoms in going across the period
from Na - Mg — Al

The interatomic pair potential ®(R # 0) in eqn (6.73) represents the
electrostatic interaction between an ion and a second ion and its screening
cloud some distance, R, away. From eqn (6.71) it is given by

2Z* 20

®(R) = R —+— 2 )3 f ®,,(q) e''R dq, (6.78)

Table 6.3 Contributions to the binding energy (in Ry per atom) of

sodium, magnesium, and aluminium within the second order real-space

representation, egn (6.73), using Ashcroft empty-core pseudopotentials.

U%’ is defined by eqn (6.75). The numbers in brackets correspond to the

simple expression, egn (6.77), for 3®,.(R = 0) and to the experimental

values of the binding energy and negative cohesive energy respectively.
(From Hafner (1987).)

1
Rofaw) ZUZ  10,(0) Up@ —TOR) U U,
Na 171 —-019 —029 -048  —0.02 ~0.49 —
(~0.29) (—0.46) (—-0.08)
Mg 131  -042 —149 —1.91 ~0.02 ~1.92 —
(~1.52) (-1.78) (—0.11)
Al 111 -061 —-391 -452  +0.03 ~4.49

(—4.05) (—4.16) (—(_)._25)
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where we have replaced the summation in eqn (6.68) by an integral in the
usual way. Because the energy-wave-number characteristic, ®@,,, depends
only on the magnitude of q (cf eqn (6.58)), the integration over the solid
angle may be carried out in eqn (6.78) to yield

272 Q

© sin gR
OR) = -+ — cbbs(q)( d )q’ dg. (6.79)
R 0 gR

Defining the normalized ion-core pseudopotential matrix element by
be(q) = [(Qg*)/87Z]vi(g), (6.80)
and using eqn (6.58) for ®,(qg), the interatomic pair potential may be written

O(R) = Ei— {1 _ 2 f i [“‘f(;) 1][ fn( )] s“’qu dq}, (681)
0

which can be regrouped as

O(R) = zi{ _Z j [oien(g)? 229k dq}

42 { f Le(a)] ™~ [8"(g)]? s‘“q“’R } 682)

The term within the first set of curlv brackets vanishes as can be seen hy

AAMFE UWE WA wweddy AL T

converting the integral to the usual semi-circular path within the complex
plane and notlng that 6%°(g = 0) = 1 (cf eqn (5.56)).
Thus, the pair potent1a1 can be expressed by the single term
47> qR

(D(R) - 'ﬁ_ ps(q)
0

dg, (683)

where 0,(q) = ﬁ“"‘(q)/s(q) As expected, this integral represents the interaction
between a bare ion and a screened ion or pseudoatom some distance, R,
away. The very weak logarithmic singularity in the slope of the response
function at g = 2k leads to the asymptotic Friedel oscillations

®(R) ~ A cos 2kzR/R?, (6.84)

which are similar to those already observed in the screening cloud of
eqn (6.41). Figure 6.7 shows the interatomic pair potentials for sodium,
magnesium, and aluminium at their respective equilibrium volumes. They
were computed using non-local pseudopotentials whose use requires a
generalization of the formalism presented above. The oscillatory nature of
the pair potential with respect to the first few nearest-neighbour shells of
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atoms is clearly observed. We see that, whereas sodium and magnesium have
an attractive pair potential of about —2mRy at the nearest-neighbour
distance, aluminium has a repulsive pair potential of about +2mRy. Thus,
just as was predicted by the local Ashcroft empty-core pseudopotentials in
Table 6.3, the pair potential contribution to the total binding energy in
aluminium is repulsive not attractive as for sodium and magnesium.

Table 6.3 illustrates the very important fact that the structurally dependent
part of the energy contributes only about 19; to the total binding energy of
sp-valent metals. This is not unexpected given the similarity between their
densities of states and that of a free-electron gas. The largest contribution is
the energy of the screened ion or pseudoatom, which varies approximately
as —7Z2/2R.. We should note that the cohesive energy cannot be predicted
by second-order perturbation theory since this would require a prediction of
the binding energy of the free atom. This, of course, cannot be approximated
as a weak perturbation of a jellium sphere. The eigenspectrum of a free atom
and a jellium sphere are totally different as is reflected by their very different
magic numbers or closed-shell occupancies (cf §§2.6 and 5.2).

However, second-order perturbation theory can compare one bulk situation
with another, since errors in the absolute prediction of the binding energy
(usually residing in the energy of the individual pseudoatoms, 1@, (R = 0))
often cancel out. Thus, for example, the heat of formation of a binary AB
compound can be evaluated reliably since AH compares the binding energy
of the AB compound with that of the A and B elemental metals, that is

This can be written within the real-space representation as
AH = AH, + AH,, + AH, . (6.86)

where the electron gas, pseudoatom, and structure-dependent contributions
correspond to the three different terms resulting from eqs (6.73) and (6.74).
Assuming that the binding energy of the pseudoatoms is given by eqn (6.77)
and that the structure-dependent contribution is small and can be neglected,
the heat of formation will be determined by the electron-gas term alone.
Taking the equilibrium atomic volume, €2, of the compound to be equal to
the average elemental atomic volumes (2, + Q) by Zen’s law, we find from
eqn (6.75) that the electron—gas contribution can be written to second order as

AH,, = Z(—1.228 + 0356r, + 0.031r3)[A(1/r,)]? (6.87)

where Z is the average valence, (Z, + Z3).

We may express this in terms of the more commonly used variable, the
electron density, as from eqn (2.41) p'” = (3/4n)'>(1/r,). The heat of
formation in ¢V per atom is then given by

AH ~ AH,, = Z(—4339 + 7.81p™ ' + 0.17p ) Ap'P)%.  (6.88)
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Fig. 6.8 The normalized heat of formation, AH/[Z(Ap'/3)?], as a function of the
average cube root of the electron density, p'/3, for sp-valent AB compounds.
The solid curve is the electron—gas contribution, eqn (6.88). The open cirCles
are the self-consistent local density approximation predictions for the CsCl lattice.
(From Pettifor and Gelatt (1983}.)

The three terms inside the brackets are the kinetic, exchange and correlation
contributions respectively. Mixing together two electron gases of equilibrium

densities p, and pg respectively to form a new electron gas of average density,

p, lowers the kinetic energy but raises the exchange and correlation energies.
Figure 6.8 shows that this electron—gas contribution indeed reproduces the
broad behaviour in the heats of formation of simple metal compounds. In
particular, we note that AH changes sign from positive at low densities
(where the exchange and correlation dominates) to negative at high densities
(where the kinetic energy dominates).

6.6. Structural trends

The beauty of the real-space representation is that it separates out the very
small structure-dependent contribution to the total binding energy as a single
sum over pair potentials. As illustrated in Fig. 6.7, these metallic pair
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potentials oscillate with respect to the nearest-neighbour positions, so that
an understanding of relative structural stability requires an understanding
of the origin of these oscillations. These near-neighbour oscillations are not
due to the weak logarithmic singularity at 2k, since this determines the very
long range asymptotic behaviour of eqn (6.84). Instead they are determined
by the overall shape of the Lindhard response function.

This can be demonstrated by replacing the Lindhard function by a rational
polynomial, which has the correct low and high g behaviour, and is such that
it passes through iy ¢ at ¢ = 2kg. Such a rational polynomial, correct to
third order in both ¢? and 1/42 is given by the dashed curve in Fig. 6.3. It
has the form (Pettifor and Ward (1984))

Xo(ﬂ)=
XTF
61 4b 3c 16 b 8¢
1+ +| —+———= |t +| —=+-—= |+ cn®
o (315+15 35) (63 3 35)” “
1 13 3b 3c 3 3b 9 16 9¢ ’
1+ b+ )+ =+ —~=* ———) 6+(—+b——) +3
( 3) (35 5 35) +(7+5 35)1 H gt e

(6.89)

where the arbitrary constants b and ¢ were chosen to minimize the rms error,
namely b = —0.5395 and ¢ = 0.3333. This rational polynomial was obtained
by expanding the logarithms in the Lindhard function, eqn (6.39), to yield

r oo il
1 — 7 1")2(2 D forn<1
e — 1(2n
Xo()/xre = § ml " Uy (6.90)
D (1/m) forn>1.
\ n=1(2n—1D2nr + 1)

It is easy to verify that a binomial expansion of eqn (6.89) about # = 0 or
about 1/7 =0 yields eqn (6.90) correct to the third order in #* or 1/4?
respectively. Clearly, the fit of the Lindhard function can be made as accurate
as one pleases by including further terms in the numerator and denominator
of eqn (6.89).

The integral defining the pair potential in eqn (6.83) may now be evaluated
directly. The poles of the inverse dielectric function, ¢~ '(g), are first found
by substituting eqn (6.89) into eqn (6.36) and writing

e = Y D.a’/¢" — q2) (6.91)
n=1

The weights, D,, and poles, g,, are, in general, complex, so that we may write

D, = d, e (692)
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and
q, =k, + ix,. (6.93)

Substituting eqn (6.91) into eqn (6.83) and performing conventional contour
integration we find

&
®(R) = (2Z*/R) Zl D, [0 (gn)]? €%, (6.94)

At normal metallic densities, the six poles are complex, so that we may assign
i = (aD* 45 = (g3)* and ¢ = (g3)*.
The pair potential may thus be approximated by the sum of three damped

oscillatorv terms. namely
3

®(R) = 2Z*/R) ¥ A, cos(k,R + a,) e ™R, (6.95)

n=1
where the amplitude, A4,, 18 given by
A, = 2d,657(a,)P, | (6.96)

ps
and the phase, «,, is given by
o, = 0, + 2 arg 01°(q,). 697

The wave vector, k,, and the screening length, 1/k,, depend only on the
density of the free-electron gas through the poles of the approximated
inverse dielectric response function, whereas the amplitude, A,, and the phase
shift, e, depend also on the nature of the ion-core pseudopotential through
eqs (6.96) and (6.97). For the particular case of the Ashcroft empty-core
pseudopotential, where fio*(g) = cos gR,, the modulus and phase are given
explicitly by

, 1
B (ga)l = 7 (cos 2k, R, + cosh 2x,R)!/? (6.98)
2 .
and
tan[arg 619°(g,)] = —tank,R, tanh k,R.. (6.99)

The resultant pair potentials for sodium, magnesium, and aluminium are
illustrated in Fig. 6.9 using Ashcroft empty-core pseudopotentials. We see
that all three metals are characterized by a repulsive hard-core contri-
bution, ®,(R) (short-dashed curve), an attractive nearest-neighbour contri-
bution, ®,(R) (long-dashed curve), and an oscillatory long-range contribution,
®;(R) (dotted curve). The appropriate values of the inter-atomic potential
parameters A,, ¢,, k,, and x, are listed in Table 6.4. We observe that the
total pair potentials reflect the characteristic behaviour of the more accurate
ab initio pair potentials in Fig. 6.7 that were evaluated using non-local
pseudopotentials. We should note, however, that the values taken for the
Ashcroft empty-core radii for Na, Mg, and Al, namely R, = 1.66, 1.39, and
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Fig. 6.9 The analytic pair potentials ( ) for sodium, magnesium, and
aluminium, The short-range (~~~}, medium-range (——), and long-range (~—-},
oscillatory terms are also given. The full (dotted) arrows mark the positions
of the first four (five) nearest-neighbour shells in fcc (ideal hcp). (From Pettifor
and Ward (1984).)

1.12 au, are different from those obtained by fitting to the equilibrium atomic
volumes in Table 5.2, namely R, = 1.75, 1.31, and 1.11 au respectively. It is
not possible with this one-parameter Ashcroft potential to fit both the
observed equilibrium volume and crystal structure. This could be achieved
by using a smooth two-parameter parabolic model potential rather than the
discontinuous Ashcroft potential, but the analytic expressions are too
complicated for the simple treatment attempted in this book.

The three contributions to the pair potential can be analysed in more
detail.

(i) The short-range potential ®,(R) can be approximated by a Yukawa
screened potential, namely

®,(R) ~ (2Z%/R)A ¢ "*1R~2R3, (6.100)
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Table 6.4 Pair potential parameters for sodium, magnesium, and
aluminium at their equilibrium volumes. {(From Pettifor and Ward

(1984).)
Na Mg . Al
n 1 2 3 1 2 3 1 2 3

k,/2ke 0.291 0.715 0958 0.224 0.664 0958 0.156 0.644 0.958
Kn/2Ke 0.897 0.641 0.271 0.834 0675 0.277 0.793 0.698 0.279

1.961 0.806 0.023 5.204 1.313 0.033 7.964 1.275 0.030
o, /% —0294 -0750 -0995 -0401 0932 0499 -0.441 0832 0431

This follows directly from egs (6.95)—(6.99) using cosh x = § exp x for large
values of x. The prefactor A has absorbed the oscillatory contribution
cos(k,R + a,) in eqn (6.95) since it varies only slowly with distance due to
the small value of k, (cf Table 6.4). At high metallic densities ¥, — k7. Thus,
the short-range potential reflects the repulsive interaction between two ion
cores of radius R,, the range of the repulsion being determined by the
Thomas—Fermi screening length App = k&

(i) The medium-range potential ®,(R) is characterized by an attractive
minimum close to the nearest neighbour separation for sodium, magnesium
and aluminium in Fig. 6.9. Differentiating ®,(R) with respect to distance
neglecting its weak inverse R dependence, the position of the minimum R,
satisfies :

R_;, = —[tan™Y(xc,/k,) + a,]/k,. (6.101)

The core dependence of R_;, can then be found by differentiating eqn (6.101)
with respect to R_, namely

6Rmn lacx 2 a on
o 100520 g (6.102)

2 %o Tvi vake

since k,, k,, and &, depend only on the electron density and not on the core
radius R.. But it follows from eqn (6.99) that

arg Opr(g,) = — kR, (6.103)

since tanh x,R. = 1 within 10%, at equilibrium metallic densities. Thus,
substituting eqn (6.103) into (6.102) we have

R
ORomin . 2. (6.104)
R,

This is consistent with Hafner and Heine (1983) who found numerically that
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the minimum in the total potential satisfied

Roin=20R +33 1+ 0.1 (6.105)

min
in atomic units. This minimum only arises because of the oscillatory
wave-like character of the screening clouds in Fig. 6.4. It is not predicted
within the Thomas—Fermi approximation.

(111\ The lnna-» range po ntial d_(RPY Aomina ateg goon aftar the Fn'cf rnlrnmnm
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in the total potcntlal It is characterized by a wavevector kj that is to within
4% of the wavevector 2kg that describes the very long-range asymptotic
Friedel behaviour in eqn (6.84). Using the high-density limiting values of k,
and k4 (cf Table 6.4), the long-range potential takes the form

®4(R) = (2Z%/R)A; cos[0.958(2ks R) + 03] e~ O374R_ (6.106)

The argument kiR is independent of electron density or atomic volume since
it can be written from eqn (2.40) in terms of the Wigner—Seitz radius Rys as

R = (9n/4)'PR/r, = (97/4)PZ PR /Rys. (6.107)

Thus, whereas the asymptotic Friedel oscillations in eqn (6.84) have their
phase fixed with respect to the underlying lattice for a given valence Z, the
oscillations of the long-range potential are electron density or atomic volume
sensitive through the phase shift «; which from eqs (6.97) and (6.99) is
given by

oy =83 — 2tan” 1[t:~.1n(3.68R /r,) tanh(1.10R_/r,)]. (6.108)

Hence, a reduction in volume will cause the phase shift to decrease as shown
in Fig. 6.10. This decrease in a5 causes the long-range oscillations to move
out with respect to the nearest neighbour positions in Fig. 6.7 and Fig. 6.9,
thereby causing a possible change in the relative stability of different
competing metallic structure types.

This is illustrated by considering the relative stability of the fce, bee, and
hep lattices of sodium, magnesium, and aluminium with respect to a decrease
in atomic volume about their equilibrium volumes Q,. The upper panel of
Fig. 6.11 shows the energy difference between bee and fec (full curve) and
hep and fce (dashed curve) as a function of the relative atomic volume Q/Q,
that are obtained by summing over the ab initio interatomic potentials
displayed in Fig. 6.7. We see that they predict that at equilibrium sodium
and magnesium will be hcp but aluminium will be fcc. (At very low
temperatures sodium, in fact, takes the samarium structure type with its
mixed chh stacking sequence (cf §1.2) and transforms to bee at 5 K. This is
not inconsistent with the very small energy differences found theoretically
in the upper left-hand panel.) Since fcc and the ideal close-packed hcp
lattices have the same twelve first and six second nearest neighbour distances
their relative structural stability is determined by the third, fourth and
further neighbours that are marked in Fig. 6.11. We can see immediately
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Fig. 6.10 The phase shift, a5, of the long-range contribution to the pair potential
for sodium, magnesium, and aluminium as a function of their relative atomic
volume, Q/Q,. (After Ward (1985).)

why magnesium is hcp but aluminium is fcc, since fcc magnesium and hep
aluminium would both have their twelve fourth nearest neighbours falling
near maxima in the interatomic potentials. Under pressure all three metals
mentally for magnesium.

The volume dependence of the fcc, bec, and hep curves in the upper panel
of Fig. 6.11 can be understood by using the analytic interatomic potentials
of eqn (6.95). The middle panel demonstrates that they are capable of
reproducing qualitatively the general features of the ab initio predictions.
Remarkably, as is demonstrated by the lower panel, the behaviour of these
structural energy difference curves is driven almost entirely by the long-range
contribution to the pair potential ®,(R) since this osciflates with the shortest
wavelength of the three contributions to ®(R) (cf Table 6.4). We have already
seen in Fig. 6.10 that the phase shift a5 decreases under pressure so that the
long-range oscillations move out with respect to the nearest neighbour
positions in Fig. 6.7 and Fig. 6.9. This can cause a change in structural
stability that is most easily demonstrated by considering the close packed
structures fcc and hcp. Focusing on the position of the twelve fifth nearest-
neighbour hcp atoms in either figure, we see that as the oscillations move
out under pressure the hcp phase in magnesium will initially have its stability
increased with respect to fcc, whereas in sodium and magnesium it will be
decreased. However, under still further compression, the phase shift o, will
eventually change by z so that the relative hcp—fcc stability will reverse as
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Fig. 6.11 The structural-energy differences between bcc and fcc (full curves)
and hcp and fcc (dashed curves) as a function of the relative atomic volume,
Q/Q,, for sodium, magnesium, and aluminium. The curves in the upper panel
(a) were predicted by Moriarty and McMahan (1982) using their first principles
interatomic potentials. The curves in the middle and lower panels (b) and (c)
were predicted by Pettifor and Ward (1984) using three terms (@, + ©, + ©5)
and one term ®; respectively in their analytic interatomic potentials.

found in Fig. 6.11. The behaviour of the bec—fce curves, on the other hand,
is driven by the competition between the fourteen first and second nearest-
neighbour contributions in bcc and the twelve first nearest-neighbour
contributions in fcc (cf. question 6.1 in the Problems section at the end of
the book). |

Figure 6.12 shows the structure map, (Z, a3), that is predicted using the
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Fig. 6.12 The structure map, (Z, a3), that is predicted using the long-range pair
potential, ®;(R). The three dots indicate the values of the phase shifts for sodium,
magnesium, and aluminium corresponding to Z =1, 2, and 3 respectively, the
arrows indicating the direction the phase shift changes under pressure. (After

Wyatt (1991).)

long-range pair potential, ®;(R), from eqn (6.100). In agreement with the
lower panel of Fig. 6.11, we see that under compression sodium moves from
bee — fee — hep, magnesium moves from hep — bee — fec, and aluminium
moves from fcc — bee — hep. This map allows us to rationalize the structural
trends that are observed down group III from Al - Ga — In — TI, since
these are conventional NFE metals with almost free-electron-like densities
of states (cf Fig. 5.13). Experimentally it is found that (2z/a)/g, decreases
down the group as is shown in Table 6.2. Therefore, from eqn (5.57) we
expect R_/r, to decrease and hence a5 to increase, so that the oscillations in
®, will move in with respect to the nearest-neighbour positions. This drives
the stability from the fcc domain (of aluminium) to the nearby hcp domain
(of thallium). However, as emphasized by Hafner and Heine (1983), this
transition from fcc to hep is accompanied by an instability of the close-
packed lattices. This is due to one or more of their elastic shear constants
becoming negative as the nearby maximum in ®; moves into the first
nearest-neighbour position (cf the lower panel of Fig. 6.9). Thus, gallium and
indium have distorted structures types with the twelve close-packed nearest
neighbours splitting about the maximum in ®4(R).

The structural trends within the group II elements can only be understood
. by including the influence of the valence-d electrons explicitly through the
use of non-local pseudopotentials. This is not unexpected considering our
earlier discussion in §5.5 of their densities of states. Figure 6.13 shows the



20
"i ! { { (a)
| Ca
15 |- i .
_ \
z \ 8
g1 | lg= .
3 1518 @
e b2 -
: VB
- — 4 -
Q S ‘ || l
LV
‘m
[=13
e 0 3
S \\_—/
e
£ I
-10 -
| | | f
15 20 25 30 35
Reiative separation (R/R,c)
20 - zr .
' g
a
o
15— T
N
a
Q
10— < 7

Interatomic pair potential (mRy)

0 B S
-5 { | 1 A |
15 2.0 25 3.0 35
Relative separation {R/Ryc)

Fig. 6.13 The interatomic pair potentials for (a} Ca and (b) Zn. The full and
dashed curves correspond to including and excluding an explicit /=2, 3d
contribution, respectively. The positions of the fcc first and bee first and second
nearest neighbours are marked in the upper panel. The positions of ideal hcp first
four nearest neighbours are given in the lower panel, the horizontal arrows
indicating the directions these neighbours move as the ¢/a axial ratio is increased
above ideal. Ry is the Wigner—Seitz radius. (From Moriarty (1983).).
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resultant interatomic pair potentials for calcium and zinc. We see that the
influence of the unfilled 3d band in calcium causes the potential to deepen,
thereby stabilizing the fcc structure, whereas the filled 3d band in zinc
suppresses the nearest-neighbour minimum in ®(R), thereby causing the ideal
hep lattice to relax to the much larger axial ratio of 1.86. This suppression
of the local minimum becomes even more marked as one proceeds down
group IIB, so that Hg is unstable with respect to all three lattices bec, fec,
and ideal hcp, as illustrated in Fig. 6.14 for the case of Q/Q, = 0.824. The
body-centred-tetragonal phase, f-Hg, is predicted to be most stable in
agreement with experiment (cf Table 1.1).

6.7. Hume—-Rothery electron phases

The most famous example of the crystal structure correlating with the
average number of valence electrons per atom or band filling, N, is the
Hume-Rothery alloy system of noble metals with sp-valent elements, such
as Zn, Al, Si, Ge, and Sn. Assuming that Cu and Ag have a valence of 1,
then the fcc a-phase is found to extend to a value of N around 1.38,
the bcc f-phase to be stabilized around 1.48, the y-phase around 1.62,
and the hcp e-phase around 1.75, as illustrated for the specific case of
Cu-Zn alloys in Fig. 6.15. In 1936 Mott and Jones pointed out that the fcc
and bcc electron per atom ratios correlate with the number of electrons
required for a free-electron Fermi sphere first to make contact with the fcc
and bcc Brillouin zone faces. The corresponding values of the Fermi vector,
ke, are given by

ke = {%]G(lll)] = /3nja for fec (6.109)
31G(110)] = \/2n/a for bec

Hence, since kg = (322N/Q)*/3 from eqn (2.40), the critical number of valence
electrons, N, will be 1.36 and 1.48 for the fcc and bcc lattices respectively.
These values, corresponding to 2k = |GJ, lead to the asymptotlc Friedel
oscillations being in phase with the lattice, thereby giving rise to an
additional stabilizing energy.

In 1937 Jones extended the model by including a realistic value for the
copper energy gap at L, namely 4 eV, which had just been deduced from
photoemission experiments. This is more than five times larger than the small
energy gaps of NFE metals such as aluminium (cf Fig. 5.9). The large gap
in copper arises from the orthogonality constraints imposed by the underlying
valence 3d band. Jones found that this large gap caused the spherical
free-electron Fermi surface to be so distorted that within his model it first
makes contact with the fcc Brillouin zone boundary at N = 1.04 electrons.
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Fig. 6.15 The Cu-Zn phase diagram. (After Massalski (1986).)

(Experimentally, it has already made contact in copper corresponding to
N = 1.00 electrons). The resulting fcc and bcc densities of states look very
similar to those for beryllium and lithium in Fig. 5.13 because Jones neglected
the explicit presence of the copper 3d band. Comparing the fcc and bee band
energies, Jones found that the fcc lattice was indeed the more stable for
1 <N <143

Figure 6.16 shows recent results of a Jones-type analysis of the stability
of Cu~Zn alloys within the rigid-band approximation. This latter approxi-
mation assumes that the bands of fcc, bee, and hep copper remain unchanged
(or rigid) on alloying, so that the structural energy difference between any
two lattices is given by

AU = A[JEF En(E) dE] (6.110)
where

Er
N = J n(E)dE. ~(6.111)
It follows from eqn (6.109) that

Ec;\? (AU) = AI:%% EFn(EF)] = AEg, (6.112)

since on differentiating eqn (6.110) with respect to N we have immediately

dE
—d—ATFn(EF) =1. (6.113)
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Further, it follows from eqs (6.111) and (6.112) that

d2
dN?

(AU) = AI: ] (6.114)

n(Eg)

Thus, the shape of the band energy difference curves in Fig. 6.16(a) can

be understood in terms of the relative behaviour of the densities of states in

AARAWAL WL WSS Wb LA WA RAAL WA LAdw 4 walew -~ aals

the middle panel. In particular, from eqn (6.111), the stationary points in
the upper curve correspond to band occupancies for which AEg vanishes
in panel (c). Moreover, whether the stationary point is a local maximum or
minimum depends on the relative values of the density of states at the Fermi
level through eqn (6.113). Thus, the bee~fcc energy difference curve has a
minimum around N = 1.6 where the bcc density of states is lowest, whereas
the hep—fce curve has a minimum around N = 1.9, where the hcp density of
states is lowest. The fcc structure is most stable around N = 1, where
AEg ~ 0, and the fcc density of states is lowest.

We see that the structural trend from fcc — bee — hep is driven by the
van Hove singularities in the densities of states. These arise whenever the
band structure has zero slope as occurs at the bottom or top of the energy
gaps at the Brillouin zone boundaries. The van Hove singularities at the
bottom of the band gap at X and at the top of the band gap at L in fcc
copper are marked X,. and L,, respectively, in the middle panel of Fig. 6.16.
It is, thus, not totally surprising that the reciprocal-space representation

N

AU (mRy/electron)
o —

i
—

- 1
21.0 1.5 2.0 2.5 3.0

N
Fig. 6.17 The structural-energy differences of a model Cu~Al alloy as a function
of the band filling NV, using an average Ashcroft empty-core pseudopotential with
R.=1.18 au. The dashed curves correspond to the three-term analytic pair-
potential approximation. The full curves correspond to the exact result that
is obtained by correcting the difference between the Lindhard function and the
rational polynomial approximation in Fig. 6.3 by a rapidly convergent summation
over reciprocal space. {After Ward (1985).)
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of second-order perturbation theory predicts energy difference curves in
Fig. 6.17 that are very similar to those in the top panel of Fig. 6.16 (away
from the copper-rich end where the local Ashcroft pseudopotential finds hep
the most stable structure). The strong curvature of the bee—fec and hep-fee
curves can be reproduced as a function of band fllling only by including
explicitly the weak logarithmic singularity in the slope of the Lindhard
response function at g = 2kg. It is for this reason that these Hume-Rothery
alloys are correctly termed electron phases, since this singularity is driven
solely by the electron per atom ratio (through 2kz) and does not depend on
the particular chemical constituents (through the pseudopotential). The
actual prediction of the phase diagram in Fig. 6.15 requires a proper
trcatment of the total free energies of the different phases (see, for example,
Turchi et al. (1991)). This takes us beyond the scope of the present
chapter, but the interested reader can find the field reviewed in the excellent
book by Ducastelle (1991) which brings together the recent developments
in electron theory with those in statistical mechanics.
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7

Bonding of transition metals
and semiconductors

7.1. Introduction

The only elements with cohesive energies greater than 7 eV per atom are
sp-valent carbon (7.37eV) and the sd-valent transition metals niobium
(7.57 eV), tantalum (8.10eV), tungsten (8.90¢V), rhenium (8.00¢V), and
osmium (8.17 eV), as can be seen from Fig. 1.7. Interestingly, carbon with
its saturated covalent ¢ bonds does not have the highest cohesive energy,
this honour belonging to the transition metal, tungsten. The transition metals
are not describable by the conventional NFE model of the metallic bond
since their valence d electrons remain relatively tightly bound to their parent
atoms, forming unsaturated covalent bonds with their neighbours. These d
bonds are responsible for the structural and cohesive properties of transition
metals.

The bonding between d electrons in transition metals and sp electrons in
semiconductors can thus be described within the same tight binding (TB)
framework. We will begin this chapter, therefore, with an introduction to
thé TB prediction of energy band structure that extends our earlier linear
combination of atomic orbitals (LCAQ) treatment of molecules. Although
the full band structure of transition metals requires the NFE sp band and
its hybridization with the TB d band to be included, we will see, nevertheless,
that the parabolic vanation in the cohesive energy across the 4d or 5d
transition-metal series is driven by the unsaturated bonding of the d electrons
alone. Unlike the Pauling expression, eqn (3.34), the d bond contribution
will be shown to drive not only the observed negative heats of formation
but also the positive heats of formation that are found between certain pairs
of transition metals. Finally, we will discuss the saturated covalent bond in
sp-valent semiconductors and give an expression for the tetragonal shear
constant that reflects the bond-bending resistance of the sp* hybrids.

7.2. The tight binding approximation

The application of the TB method to bulk systems is most easily introduced
by first considering a lattice of atoms with overlapping s orbitals, ¥, and
corresponding free atomic energy levels, E,. Generalizing the LCAO method
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for the diatomic molecule to a periodic lattice of A" atoms, we look for a
crystal wave function, y, , that is a linear combination of the atomic orbitals,
namely

) = 412 Y %Ry (r — R). (7.1)
R
The phase factor automatically guarantees that y,(r) satisfies Bloch’
theorem, eqn (5.30), since

W(E+8) =Sy YRRy @ R)=eSy,m).  (12)

R'=R-S
The Schrodinger equation
ﬁ'/’k = Ek‘!’k (7.3)
then has the solution .
¥Hy, d
E, = M};ﬂ‘i’l‘_[ (7.4)
j Yy dr

Making the usual assumption that the crystalline potential, ¥, is given by
the sum of overlapping atomic potentials, v, we have

ijﬁ'f’u dr = 41 Z gl (RS

Jd/ (r— S)I:———V2 + Zv(r — ]lf;s(r —R)dr (7.5
and

J v dr = 41 Y e RS J U —S—Rydr,  (16)
R.S .

since yXr) =y (r) as y, is real. Neglecting the three centre integrals
corresponding to R # S # T in eqn (7.5) and the overlap integrals, R # S,
in eqn (7.6), we find the TB expression for the eigenvalue E,, namely

.7

The second contribution on the right-hand side is the shift in the on-site
energy due to the neighbouring atomic potentials. In the spirit of our earlier
treatment of diatomic molecules we will neglect this crystal field term. It
does not fundamentally alter the band structure of either transition metals
or semiconductors. The band structure, E(k), can, therefore, be written within
the TB approximation as

E, =E, +) ¢ Fsso(R), (7.8)
R

where sso is the usual ¢ bond integral between s orbitals.
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The band structure for a simple cubic lattice may now be quickly found.
Assuming that the bond integrals couple only to the six first nearest
neighbours with position vectors, R, equal to (+4,0,0), (0, +4,0), and
(0,0, +a), eqn (7.8) gives

E, = E, + 2ssa(cos k.a + cos k,a + cos k,a), (7.9

where k = (k.. k,, k;) and sso =ssa(R = a). Thus, the eigenvalues vary
sinusoidally across the Brillouin zone. In particular, in the {100) and 111}
directions we have

2+coska fork=1(k0,0)

(7.10)
3 cos ka fork =(k k, k).

E . =E + 2530{
Therefore, as shown in Fig. 7.1(a), the bottom of the band is at the centre
of the Brillouin zone (0, 0, 0), whereas the top of the band is at the zone
boundary (w/a)(1, 1, 1), since ss6 < 0. It follows from eqn (7.1) that the
bottom and top of the band correspond to perfect bonding and antibonding
states, respectively, between all six neighbouring atoms, so that the width of
the s band is 2|6ssag|, as expected. The corresponding density of states is
shown in Fig. 7.1(b). The van Hove singularities, arising from the flat bands
at the Brillouin zone boundaries, are clearly visible.
The structure of the TB p band may be obtained by writing y, as a linear
combination of the three p Bloch sums corresponding to the atomic p,, p,,
and p, orbitals. That is,

Y= A ~H2 N - Vaik'Ry v R (711)
¥ k\rJ b i Ya iy a =’ ik
A=X.5.2 R
6 + 6
I i
2 2
= =
u’® o u
| |
N W
1} [
W W
-6 -6
§(111) r £(100) n(E)

Fig. 7.1 Left-hand panel: The s band structure for a simple cubic lattice in the
(100> and |111) directions. Right-hand panel: The s band density of states for
a simple cubic lattice.
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Substituting eqn (7.11) into the Schrédinger eqn (7.3) leads to the 3 x 3 TB
secular determinant for the p band, namely

I(E, — Ey)0uy + Tow| =0, (7.12)

where the matrix elements are given by
To=)' "k Jf Yz (o), (r — R)dr. (7.13)
R

The bond integrals | Y vy, dr depend not only on the distance, R, but also
on the direction, R = (I, m, n), where I, m, and n are the direction cosines, just
as we have already found for the bent triatomic molecule AH,, where from

eqn (4.72)
j Yoy, dr = Ispo. (7.14)
(The sign change between eqs (4.72) and (7.14) is due to the origin being

located on the p orbital in Fig. 4.10 whereas above it is on the s orbital
through eqn (7.13).) Similarly, as first shown by Slater and Koster in 1954,

y*up, dr = ’ppo + (1 — I*)ppn, (7.15)

ytoy, dr = Imppo — Imppn, (7.16)
and )

Yoy, dr = Inppo — Inppm. (7.17)

LY

All the other pp bond integrals, | ¥¥vy, dr can be obtained from egs
(7.15)—(7.17) by cyclic permutation.

The band structure for a simple cubic lattice of p orbitals may now be
found. Assuming only first nearest-neighbour hopping, the diagonal matrix
elements are given by

T, = 2ppo cos k.a + 2ppn(cos k,a + cos k,a) (7.18)

with T, and T, obtained from T,, by cyclic permutation. The off-diagonal
matrix elements vanish for the simple cubic lattice. Hence in the |100)
direction with k = (k, 0, 0) we have

2ppo cos ka + 4ppn
E, = E, + { 2pp= cos ka + 2(pps + ppr) (7.19)
2ppr cos ka + 2(ppo + ppn).

The ratio of the bond integrals for sp-valent elements was found by Harrison
(1980) by fitting a nearest-neighbour TB model to the first principles band
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Fig. 7.2 The p band structure for a simpie cubic lattice in the {100 direction.

structure of bulk silicon and germanium. He obtained
ppo:ppn:spo:sse = 2.31:—0.58:1.31: —1.00 (7.20)

Therefore, as a first approximation, we may neglect ppn with respect to ppoa,
and write

2ppo cos ka
E,=E, +{2ppo (7.21)
2ppo.
This band structure is sketched in the |100) direction in Fig. 7.2. We see

22222 LJLAR3 ALY e LR22 --— 22 - | =N S

that, at the centre of the Brillouin zone, the eigenvalues are trlply degenerate
due to the cubic symmetry of the lattice. This degeneracy is partially lifted
along the |100> symmetry direction. The singlet corresponds to bonding
between the p, orbitals, whereas the doublet corresponds to the non-
dispersive bonding between the neighbouring p, or p, orbitals. The degeneracy
is totally lifted along a general k direction, as from eqs (7.12) and (7.17),
there will then be three distinct eigenvalues.

Finally, the structure of the TB d band may be obtained by writing yr, as
a linear combination of the five d Bloch sums corresponding to the five
atomic orbitals illustrated in Fig. 2.15. This results in a § x 5 TB secular
determinant,

|2 — EI| =0, (7.22)

where

Dy = Egdgp + Y, ™R j Y@ o)y, (r — R) dr (7.23)
R

with a = xy, yz, xz, x?> — y?, and 3z? — r? respectively. The matrix elements
can be expressed in terms of the three fundamental bond integrals dde, dd=,
and ddé by using Table 1 of Slater and Koster (1954). The ratios of these
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Fig. 7.3 The fcc and bce d band structure. (After Andersen {(1973).).

bond integrals are given within the canonical band theory of Andersen
(1973) by
dde:ddn:ddé = —6:4: —1. (7.24)

Figure 7.3 shows the resulting band structure of the fcc and bec lattices along
the [111) and [100) directions in the Brillouin zone. We see that there are
two energy levels at the centre of the Brillouin zone, I', one of which is triply
degenerate, the other doubly degenerate. The former comprises the T,,
orbitals xy, yz, and xz, which from Fig. 2.15 are equivalent to one another
in a cubic environment. The latter comprises the E, orbitals x? — y* and
3z2 — r? which are not equivalent to the T,, orbitals because they point along
the cubic axes. The degeneracy is partially lifted along the [111) and |100)
symmetry directions as indicated in Fig. 7.3 because eigenfunctions which
are equivalent at k = 0 may become non-equivalent for k # 0 due to the
translational phase factor, exp(ik-R) (see Fig. 8.8 of Tinkham (1964)).

7.3. Hybrid NFE-TB bands

Transition metals are characterized by a fairly tightly bound d band of width
W that overlaps and hybridizes with a broader nearly-free-electron sp band
as illustrated in Fig. 7.4. This difference in behaviour between the valence
sp and d electrons arises from the d shell lying inside the outer valence s
sheil, thereby ieading to smaii overiap between the d orbitals in the buik.

EAt
i
H 4
Egp! W
EF A, !
r
>
ni{t)

Fig. 7.4 A schematic representation of transition metal sp (dashed curve) and
d (solid curve} densities of states when sp-d hybridization is neglected.
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For example, from eqn (2.55), the average radial distance of the hydrogenic
3d and 4s wave functions are in the ratio 0.44:1. Thus we expect the band
structure of transition metals to be represented accurately by a hybrid
NFE-TB secular equation of the form

% — El H

=0, 7.25
#' 9 —El (.25

where € and 2 are the sp-NFE and d-TB matrices respectively (cf egs (5.38)
and (7.22)). The hybridization matrix, 5#, couples and mixes together the sp
and d Bloch states that have the same symmetry.

A secular equation of this form can be derived directly from scattering
theory, as first shown by Heine (1967), Hubbard (1967), and Jacobs (1968).
They solved the Schrodinger equation (7.3) by regarding the lattice as a
periodic array of scattering sites which individually scatter the electrons with
a change in phase n, (see, for example, chapter 24 of Gasiorowicz (1974)).
Transition metal sp-valence electrons are found to be scattered very weakly
by the lattice, so that they exhibit NFE behaviour, with 5, and 5, close to
zero. Transition-metal d electrons, on the other hand, are strongly scattered,
the [ = 2 phase shift exhibiting a resonance given by

tan 11,(E) = 3I'/(E; — E), (7.26)

where E; and I" determine the position and width of the resonance,
respectively. This resonant behaviour allows the scattering theory solution
of the Schrédinger equation to be transformed exactly into the hybrid
NFE-TB form. As a consequence, the numerous TB-bond integrals and
hybridization-matrix elements are determined explicitly in terms of only the
two resonant parameters, E; and T

The band structure of nonmagnetic fcc and bece iron is shown in Fig. 7.5,
being computed from the hybrid NFE-TB secular equation with resonant
parameters E; = 0.540 Ry and I' = 0.088 Ry. The NFE pseudopotential
matrix elements were chosen by fitting the first principles band structure
derived by Wood (1962) at the pure p states N;. (v,;, = 0.040Ry), L,.
(vy,; = 0.039 Ry), and X,. (v;00 = 0.034 Ry). Comparing the band structure
of iron in the |100) and |111) directions with the canonical d bands in Fig.
7.3, we see that there is only the one level with symmetry A; and A,
respectively, which hybridizes or mixes with the lowest NFE band, with
the other four d levels of different symmetry unperturbed. Because of the
canonical nature of the pure TB d bands reflected in eqn (7.24), the band
structure of all the nonmagnetic fcc and bec transition metals will be very
similar to that shown in Fig. 7.5 for iron.

The transition-metal density of states n(E) is not uniform throughout the
band, as shown schematically in Fig. 7.4 but displays considerable structure
that is characteristic of the given crystal lattice. This is seen in Fig. 7.6,
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E f(Ry)

Fig. 7.6 The hybrid NFE-TB band structure of fcc and becc iron in the non-
magnetic state. The solid circles represent the first principles energy levels of
Wood (1962). (From Pettifor (1970a).)

which gives an early histogram of densities of states for bcc, fcc, and hep
lattices that were calculated from the hybrid NFE-TB secular equation with
E,=0.5Ry and I" = 0.06 Ry. This structure in the densities of states is
reflected in the observed behaviour of the electronic heat capacity across the
nonmagnetic 4d and 5d transition-metal series. It follows from eqgs (2.42),
(2.43), and (2.44) that the electronic heat capacity varies lincarly with
temperature as
C,=7T, (1.27)
where
y = in’kgn(Eg). (7.28)

We see from Fig. 7.7 that the experimental values of y show the same trends
across the series as that predicted by the model calculation. We will find
later in subsequent sections that this structure in the densities of states is
responsible for the ferromagnetism in bee iron and the structural trend from
hcp — beec — hep — fec across the nonmagnetic 4d and 5d series.

7.4. The nature of the metallic bond in transition metals

The behaviour of the transition-metal bands as the atoms are brought
together to form the solid may be evaluated within the Wigner—Seitz
sphere approximation by imposing bonding, R, = 0, or antibonding, R, = 0,
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Fig. 7.7 A comparison of the theoretical and experimental 4d and 5d electronic
heat capacities. The theoretical values were obtained directly from eqn (7.28)
and Fig. 7.6, neglecting any changes in the density of states due to bandwidth
variation within the 4d and 5d series.

K

Fig. 7.8 The energy bands as a function of Wigner—Seitz radius R for (a) Y,
(b) Tc, and (c} Ag. The observed equilibrium Wigner—Seitz radii are marked
eq. £4. E,, and £, mark the centre of gravity, and top and bottom of the d band
respectively. (After Pettifor (1977).)

boundary conditions at the Wigner—Seitz radius, Ryg. Figure 7.8 shows the
resultant energy bands for Y, Tc, and Ag that were computed by solving the
local density approximation (LDA) Schrédinger equation self-consistently
within the Wigner—Seitz sphere. We note six important features that
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influence the bonding and structural properties of transition metals:

1. We see that, whereas the 5s free-atom levels remains almost constant
across the series, the 4d free-atom level drops from above the 5s level in Y
to far below the Ss level in Ag, mirroring the behaviour already displayed
in Fig. 2.17.

2. The bottom of the sp NFE conduction band, I';, behaves in a similar
fashion to that found by Wigner and Seitz in Fig. 5.14 for the alkali metal
Na. Its volume dependence is also well described by a modified variant of
the first term in eqn (5.63), namely

3 R, \?
Bn= - 22 (e, (129)
My Rys Rws
where Z_ is the effective ionic charge which the sp conduction electrons see.
The effective mass of the NFE bands, m, takes a value of approximately 0.8
across the 4d series. Table 7.1 shows that the fitted value of Z_ is surprisingly

close to unity. The fitted value of the Ashcroft empty-core radius, R, reflects
the variation in the outer node of the free-atom 5s wave function, R, .,

R, = 1.26R,, (1.30)

to within 1% across the series. This demonstrates unambiguously the
importance of the repulsive core orthogonality constraints on the behaviour
of the NFE sp band.

3. The centre of gravity of the d band E; moves up under compression as
the electronic charge is confined into yet smaller Wigner—Seitz sphere
volumes. The value of the potential, v(Rys), at the Wigner—Seitz radius drops
as approximately —2Z_/Rys due to the exchange-correlation hole excluding
one electron from the Wigner—-Seitz sphere. The Hartree contribution to the
LDA potential in eqn (2.61) is identically zero at the Wigner—Seitz radius
because the Wigner—Seitz sphere is electrically neutral. It sets the energy
zero in Fig. 7.8.

4. The volume dependence of the d band width is expected from a simple
approximation within resonant scattering theory (Heine (1967)) to behave as
dw/idQ  21+1 5

-, 731
w/Q 3 3 (7.31)

d
0L taw)=
aq ="

where the last equality follows for d electrons with [ = 2. We see from Table
7.1 that this five-thirds relation is approximately satisfied across the series.
The early transition elements have less tightly bound orbitals than the later
transition elements, which is reflected in the magnitude of the logarithmic
derivative increasing across the series from 3.86/3 for Y to 5.56/3 for Ag.
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Table 7.1 Band parameters for the 4d transition metals at their equilibrium
atomic volumes. W' is the logarithmic derivative of the bandwidth with
respect to volume. (From Pettifor (1977).)

Rws NFE sp band TB d band
(au)
zc Rc(au) Rnode(au) W(R\/) - 3w
(eqn 7.31)

Y 3.76 1.02 3.00 2.39 0.462 3.86
Zr 3.35 1.05 2.83 2.25 0.574 3.97
Nb 3.07 1.08 2.69 2.16 0.687 4.08
Mo 2.93 1.10 2.58 2.06 0.702 4.30
Tc 2.84 1.09 2.49 1.98 0.669 4.49
Ru 2.79 1.07 2.41 1.91 0.624 4.61
Rh 2.81 1.03 2.32 1.83 0.558 4.81
Pd 2.87 0.99 2.24 1.79 0.440 5.07
Ag 3.02 1.02 2.20 1.73 0.284 5.56

5. The relative occupancy of the NFE and TB bands varies under com-
pression. We see from Fig 7.9 that the d band occupancy N, increases
dramatically for compressions about equilibrium for the early transition
metals but that it holds steady for the later transition metals. For less than
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Fig. 7.9 The d band occupancy N4 as a function of the Wigner-Seitz radius,
Rws. The circles mark the equilibrium values.

Number of d slectrons, Ny
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half-full d bands, the Fermi energy moves down with respect to the centre
of gravity of the d band as the d band widens, whereas the bottom of
the conduction band moves up due to core orthogonality constraints as
shown in Fig. 7.8. This causes NFE sp electrons to flow into the TB d band.
We will find in the next chapter that this has important implications for
structural transitions under pressure and for the observed structural trend
at normal pressure across the lanthanides in Table 1.1.

6. The values of the band edges and d band centre at the observed
equilibrium atomic volumes of the 4d transition metals are shown in
Fig. 7.10. We see that the Fermi energy displays a maximum near the middle
of the series. Even though the d band is filling as we move across to the
right, its centre of gravity is falling sufficiently fast to cause the Fermi energy
to drop from molybdenum to silver. This trend is very important for
understanding catalytic behaviour, since the interaction of molecules such
as CO with a metal surface will depend on how the metallic states near the
Fermi energy line up with the molecular states in vacuo (see, for example,
Hoffmann (1988)).

0.5 I~ ,/’ \\\
I’d ~.'\\
d ™ E,
Ec \/
E4 N
0251 | b\

2 ’ \
5 L7 il
- Y ,Zr/ Nb/ Mo’ ,Tc” Ru’ )
@ "7/ 7;/
[1T]
E, / , '
025t/ / / ~
4
l«1
-0.5}

Fig. 7.10 The variation of the energy bands across the 4d series at the equilibrium
atomic volumes. Quantities I'; and £, are the bottom of the sp band and centre
of the d band respectively. Terms £¢, £,. and £, represent the Fermi energy,
and energy at the top and bottom of the d band respectively. (From Pettifor

(1977).)
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Fig. 7.11 The contributions to the cohesive energy of the 3d and 4d transition
metals. (After Gelatt et al. (1977}.)

The binding energy of the transition metals may now be evaluated by
summing over all the occupied states in the NFE and TB bands and
subtracting off the large double-counting term which we mentioned earlier
around eqn (6.54). Figure 7.11 shows the predicted cohesive energy across
the 3d and 4d transition-metal series, which has been broken down into five
physical contributions:

1. The atomic preparation energy is the energy required to take the observed
ground state of the free atom and promote it into a singlet state with one
valence s electron, this being the situation closest to the nonmagnetic bulk
transition metal. We see that it is a positive contribution (or zero for the
noble metals Cu and Ag). It is largest in the middle of the series where Hund'’s
rule coupling leads to the special stability of the half-full d shell atoms.

2. The renormalization energy is the difference between the large repulsive
contribution coming from the shift in the centre of gravity of the d band as
the atoms bond together and the large double-counting term. The cancellation
between these two terms is nearly complete leading to the small positive
contribution of about one electronvolt that is shown in Fig. 7.11.

3. The sp band energy is the energy of the electrons in the NFE conduction
band. It is small and negative at the ends of the series, decreasing to zero.in
the middle of the series due to the large core-orthogonality repulsion. Unlike
the simple metals such as sodium, we see in Fig. 7.8 that the bottom of the
transition metal band rises rapidly under compression due to the large
fraction of the equilibrium atomic volume occupied by the core. The sp
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electrons, therefore, exert a large outward pressure in transition metals at
equilibrium.

4. The d bond energy is the energy of the d electrons that is measured with
respect to the centre of gravity of the TB band, that is

Usona = JTF (E — Ey)ny(E)dE (7.32)

where ny(E) is the TB d band density of states. It is analogous to the covalent
bond energy defined earlier in eqn (4.30) for s-valent molecules. We see that
it is large and negative in the middle of the series. Following Friedel (1969),
and assuming a rectangular density of states of width, W, as illustrated in
Fig. 7.4, the density of states per atom will take the constant value, 10/W,
because the d band must hold exactly ten electrons when it is full. The integral
in eqn (7.32) may now be evaluated to give

Ubond = "E%WNd(IO - Nd) (7—33)

which displays the parabolic variation across the 3d and 4d series shown in
Fig. 7.11. We see that it vanishes for the noble metals Cu and Ag with their
nominally full valence d shells.

5. The sp-d hybridization energy is the contribution that results from turning
on the hybridization matrix elements in eqn (7.25), resulting in the mixing
between the NFE sp and TB d bands. As expected, it is negative, taking the
approximately constant value of about 2 eV across the series.

7.5. The rectangular d band model of cohesion

The parabolic variation in the cohesive energy across the 4d series is driven
by the d-bond contribution alone, as is clearly demonstrated by Fig. 7.11.
The sizeable drop in the cohesive energy towards the middie of the 3d series
is a free-atom phenomenon, resulting from the special stability of Cr and
Mn atoms with their half-full d shells. The simplest model-for describing the
bonding of transition metals is, therefore, to write the binding energy per

atom as .
U= Uep + Usonas -(7.34)

where, following eqn (4.29), the repulsive contribution is assumed to be
pairwise, giving
1
U, =— 5" @, (R,). 735
p ) ./ng p( ij) ( )

The d bond energy depends on the strength of the bond integrals dde, ddr,
and ddd, which determine the TB density of states in eqn (7.32).

Within the rectangular d band model the bond energy is proportional to
the bandwidth, W, through eqn (7.33). We may relate the bandwidth to
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the bond integrals by considering the second moment of the local density of
states associated with atom i. Generalizing eqn (4.47) to the fact that we
now have five d orbitals per site corresponding to a = xy, yz, xz, x? — y?
and 3z2 — r?, we can write

pP = J e'ne)de =2 % Hy 1pHip,ia (7.36)
i w

- w0

where ¢ = E — E,, and the prefactor, 2, accounts for the spin degeneracy.
Giving the local density of states its constant value 10/W and realizing that
in hopping from atom i to atom j the matrix, H,, ;. is diagonal with elements
dde, ddn, ddn, ddé, and ddé, if the z axis is chosen along R,j, we have for
a lattice with coordination, x, that

) = 19W? = 24(5h?), (1.37)

%)
where
= {(dde? + 2ddn? + 2dds?). (7.38)

Thus, the bandwidth, W, can be written in terms of the root mean square
bond integral, h, as

W = (12x)'/%h, (7.39)

where we have chosen h as a negative value like the dominant dde contri-
bution. Hence, the bond energy varies as the square root of the number of
neighbours rather than linearly, thereby reflecting the unsaturated nature of
the covalent bond in metals as discussed earlier in §5.7.

The cohesive energy, equilibrium atomic volume, and bulk modulus across
a transition metal series may now be evaluated by choosing the following
simple exponential forms for ®(R) and h(R), namely

®(R) = aN3 e~ **R (7.40)
and
h(R) = —bN,e™ "R (7.41)

where a and b are constants for a given series. The prefactors N2 and N, are
suggested by the respective dependence of ®(R) and A(R) on the atomic
charge density. The explicit influence of the singie valence s electron per atom
is neglected, In the spirit of our earlier treatment of molecules, we have
chosen ®(R) proportional to [h(R)]? which corresponds to a degree of
normalized hardness of the potential, a, = 1. In practice, due to the large
core-orthogonality repulsion, «, is closer to two-thirds for transition metals.
We will, however, retain the value, a, = 4, in our following treatment of
transition-metal cohesion and heats of formation, since it simplifies the
algebra without affecting the basic underlying physical concepts. Substituting
eqs (7.39)—(7.41) into eqs (7.35) and (7.33), the equilibrium expressions
for the bandwidth, nearest-neighbour distance, cohesive energy, and bulk



The rectangular d band model of cohesion 189
Y Zr NoMo Tc RuRh'Pd Y Zr Nb Mo Te Ru'Rh'Pd

I S S I‘[—I’__r_r L]

1

o theory 14

W(eV)
Ry s(au)

61

1U,qn(€V/atom)
W
8 (10"Nm™)

Fig. 7.12 The theoretical (@} and experimental ( x ) values of the equilibrium
band width, Wigner-Seitz radius, cohesive energy, and bulk modulus of the 4d
transition metals. (From Pettifor (1987).}

modulus are given by

W = (3b/5a)N,(10 — N,) (7.42)
R, = k™ In{10a./#/[/3b(10 — NI} (7.43)
U, = (30%/200a)[Ny(10 — Ny)T? (7.44)
B = (2,/2k*/9R) U,y (745)

Figure 7.12 compares the theoretical predictions with the experimental
values across the 4d series, assuming one valence s electron per atom and
taking « = 12 corresponding to close-packed lattices. The ‘experimental’
values of the bandwidth are taken from the first principles LDA calculations
in Table 7.1. The ratio b?/a is obtained by fitting a bandwidth of 10 eV for
Mo with N, = 5, so that from eqn (7.42) b%*/a = % eV. The skewed parabolic
behaviour of the observed equilibrium nearest-neighbour distance is found
to be fitted by values of the inverse decay length x that vary linearly across
the series as

x = 0435 + 0.075N,. (7.46)



190 Bonding of transition metals and semiconductors

This linear dependence is not unexpected from the linear variation in the
free atomic d level that is observed across the 4d series in Fig. 2.17. The
ratio, a/b, in eqn (7.44) is obtained by fitting the observed Wigner—Seitz
radius of molybdenum, giving a/b = 18.0. It follows that a = 216 eV and
b = 12 eV for the 4d series.

Thus, we see from Fig. 7.12 that the rectangular d band model is able to
account qualitatively for the observed trends in cohesive energy, equilibrium
nearest-neighbour distance, and bulk modulus across the nonmagnetic 4d
(and 5d) transition-metal series. In particular, the parabolic behaviour of the
cohesive energy reflects the initial filling of the bonding d states, followed
by the antibonding states in Fig. 7.4. The skewed parabolic behaviour of the
equilibrium nearest-neighbour distance, on the other hand, refiects the
competition between the attractive bonding term, which varies parabolically
with band filling, and the repulsive overlap term, which at a fixed internuclear
separation decreases monotonically across the series as the size of the free
atom contracts. We should note, however, that the d band model is
a poor description of behaviour at the noble-metal end of the series, where
the neglect of an explicit sp-d hybridization contribution leads to sizeable
errors in the predicted cohesive energy and bulk modulus. Nevertheless, since
the sp-d hybridization term is approximately constant across the 4d series
at about 2eV/atom as seen in Fig. 7.11, it may be neglected to a good
approximation when predicting the trends in transition-metal heats of
formation in the next section.

An interesting feature of this simple rectangular band model with o, =1
is that the cohesive energy in eqn (7.44) is independent of the coordination
number, z, So that the diamond, = = 4, simple cubic, (x = 6), and close-
packed, (x = 12), lattices, for example, would all be equally stable. The origin
of this unexpected result may be traced back to the form of the binding
energy, namely

U(R) = xCe >R — /2D e™*R (147)

where C and D are constants. The pairwise repulsive term is proportional
to the number of nearest neighbours as expected, whereas the bonding term
is proportional to the square root of the number of neighbours resulting
from the unsaturated nature of the metallic bond. The equilibrium condition
U'(R = R,) = 0 gives immediately

e~k = (D/2C)/ /. (148)
so that on substituting into eqn (7.47) the equilibrium binding energy is
given by

U(R,) = D%/ C — 1D?/C = —1D¥/C, (7.49)
which is independent of the coordination of the lattice. This result is far

from unsatisfactory, however, since we would not expect to make reliable
structural predictions with a model in which the density of states has been
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smeared out into a uniform rectangular band, whose mean-square width is
characterized by the second moment, y,. Just as for the case of molecular
structures, we will see in the next chapter that the structural trends within the
transition metals are driven by higher moments, such as pu, and g,.

The equilibrium nearest-neighbour distance does depend on the coordi-
nation number, =, through either eqn (7.43) or eqn (7.48). We may write it
in terms of the bond number, n = N,/«, which gives the number of electrons
per bond contributed by a given atom. The equilibrium nearest-neighbour
distance then takes the identical form to that proposed by Pauling (1960)
namely

R, = R, — (1.15/x) log,q n, (7.50)

where R, is the bond length associated with a single pair of electrons. For
molybdenum, x = 0.81 au™!, so that the prefactor, (1.15/«), takes the value
0.75 A, which compares with Pauling’s empirical value of 0.6 A for the
metallic bond. The values of x that are used by the simple rectangular band
model in eqn (7.46) lead, in fact, to a volume dependence of the bandwidth,
W, that is in good agreement with the first principles LDA calculations in
Table 7.1. For example, the model and first principles logarithmic derivatives
for Y, Mo, and Rh are (—1.3, —1.3), (—~1.4, —1.4), and (—1.7, —1.6),
respectively, which are close to the value of —3 predicted by Heine (1967).
This demonstrates the fundamental correctness of this simple rectangular d
band model for describing cohesion in transition metals.

7.6. The rectangular d band model of heats of formation

The heats of formation of equiatomic AB transition-metal alloys may be
predicted by generalizing the rectangular d band model for the elements to
the case of disordered binary systems, as illustrated in the lower panel of
Fig. 7.13. Assuming that the A and B transition elements are characterized
by bands of width W, and W, respectively, then they will mix together in

the disordered AB alloy to create a common band with some new width,

W,s. The alloy bandwidth, W, may be related to the elemental bond

integrals, h, , and hgg, and the atomic energy level mismatch, AE = Eg — E,,
by evaluating the second moment of the total alloy density of states per atom
nag(E), namely

pu® = Jw (E — E)’nyp(E) dE (7.51)

where E = {E, + Eg). Following a similar argument to the derivation of
eqn (7.37) we find

{ 2 AE
o (29 o ()

(7.52)
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Fig. 7.13 Schematic representation of the ionic rigid-band and metallic common-
band models of bonding in binary AB systems. The quantities £2 and £3 give the
free-atom energy levels, whereas the positions of £, and £ in the metallic bond
reflect the small shift which takes place on alloy formation in order to maintain
local charge neutrality.

The first term inside the first set of square brackets is due to the electron
hopping between a central A atom and its » neighbours, half of which are
A and half of which are B on average in a disordered AB alloy. The second
term inside the first set of square brackets arises from hopping twice on the
same central atom A. The second set of square brackets is the corresponding
central B atom contribution. The prefactor, 4, outside the curly brackets
results from the total alloy density of states being calculated per atom. We
now make the realistic assumption that h,5 is given by the geometric mean
of h,, and hgg, that is

has(R) = [Faa(R) hgp(R)]/2. (7.53)
This is supported by the exponential form of the bond integrals in eqn (7.41).
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Then

- AE\?
2Wis = #his + (7) , (1.54)
where h,g = 3(haa + hgg) is the average of the AA and BB bond integrals
at the same first nearest-neighbour separation as the binary AB alloy. Thus,
from eqn (7.39), we can write

Wig = W25 + 3(AE)?, (7.55)

where W,g = 3{(WAB + WAB) is the average bandwidth of the elemental
transition metals at the same atomic volume as that of the AB alloy. Equation
(7.55) generalizes expression (3.20) for the AB molecule to the bulk. Hence,

Wig = (1 + 36%)Y2 W, (7.56)

where § = AE/W,j is the normalized atomic energy-level mismatch.

This common band model of the binary alloy is very different from the
ionic model that is illustrated in the upper panel of Fig. 7.13. In the ionic
picture the density of states of the binary alloy is assumed to be a rigid
superposition of the elemental densities of states, so that charge flows from
the B site to the A site in order to equilibrate the Fermi energy, thereby
setting up an ionic bond through the electrostatic Madelung interaction. In
the common band picture, on the other hand, the local density of states on
a given atom changes when the atom is taken from its elemental environment
to that of the alloy. The band in the alloy is formed by the quantum
mechanical overlap of neighbouring atomic wave functions, so that all the
local densities of states have a common bandwidth. Moreover, we know
from moment theory, eqn (4.49), that the centre of gravity of the local density
of states must coincide with the local on-site energy level. Thus, we may
represent the local densities of states, n,(E) and ng(E), by skewed rectangular
bands as shown in the lower panel of Fig. 7.13. If the skew rectangular
density of states n,(E) takes the values 10(1 + a)/W,5 and 10(1 — a)/W,5 at
the bottom and top of the band respectively, then for the centre of gravity
to coincide with E,, we must have that the degree of skewing is given by

o« = 3AE/W,g. (1.57)

The charge transfer, — Q4e, which accompanies a given atomic energy-level
separation, AE, in the binary AB alloy may be obtained by filling the local
densities of states up to the Fermi level as shown in Fig. 7.13. For the skew
rectangular local densities of states this gives

Q4 = AN + $5N(10 — N)AE/W,4, (7.58)

where N = 4(N* + NB)and AN = N® — N2 The positions and labelling of
the bands in Fig. 7.13 correspond to AE > 0 and AN < 0. Thus, the first
term represents the charge flowing from the high-valence A atom to the
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low-valence B atom, whereas the second term represents charge fiowing in
the opposite direction from the higher to lower atomic energy level.

We have seen in the previous chapter that metals exhibit perfect screening.
Therefore, the atomic energy-level mismatch will adjust itself in the metallic
alloy to maintain local charge neutrality (LCN). This is a problem of self-
consistency in that the alloy bandwidth, W,g, on the right-hand side of eqn
(7.58) depends on the atomic energy-level mismatch, AE, through eqn (7.56).
Solving both equations with @, = 0 yields the value of the normalized atomic
energy-level mismatch for local charge neutrality, namely

Sren = — {#5[N(10 — N)]? — 3(AN)?} ~12AN. (7.59)

Thus, for bands that are nearly half-full with N ~ 5, we have that the atomic
energy-level mismatch for LCN will be given by

AE on ~ —fsWisAN =~ —2AN €V, (7.60)

where we have chosen a value of 10 eV for the average bandwidth. This is
to be compared with the difference in the d energy levels of free transition
metal atoms of about —1 eV per valence difference across the 4d.series
(cf Fig. 2.17).

The binding energy per atom of the AB alloy may, therefore, be written
very simply as

UAB = UAY + ULE,, (7.61)

since no ionic Madelung term appears as a result of local charge neutrality.

If the alloy is completely disordered, then the repulsive energy per atom is
given by

Utep = 3#[H(Pan + Pap) + 3(Ppa + Pps)]/2 (7.62)

where « is the coordination. The first term inside the square brackets
corresponds to the repulsion between the central A atom and its « neighbours,
half of which are A and half of which are B, on average. The second term
inside the square brackets is the corresponding central B atom contribution.
The quantity inside the square brackets is divided by two because we are
considering energies per atom. Assuming that @, is given by the geometric
mean of ®,, and ®gy as suggested by the exponential form of the repulsive
pair potential, we have from eqs (7.40) and (7.41) that

D.4(R) = (a/b") hig(R), (7.63)

where « and S can take either the values A or B. Hence, the repulsive energy
per atom of a disordered binary AB alloy with » nearest neighbours a
distance, R, apart can be written

UAS = Ka/b?) xhdp = Fa/b>) Wig. (7.64)
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The d bond energy for the disordered AB alloy is defined by

UAB [ f " (E ~ Eyma(E)dE + f " (E — Eg)ng(E) dE]. (7.65)

It may be written in terms of the total density of states, n,g(E), as

Er
rTAR o ' AU 1ray = AT ¥V O\ e B4y
Ubond = J Enyp(BE)dE — 5(INyE, + Nglg). (/.00)

Hence, within the rectangular d band model for the AB alloy density of
states, from eqgs (7.33) the bond energy becomes

bond(AE) = '—20 ABN(IO N) - 'LANYAE (7.67)

This expression is stationary with respect to small variations in AE for just
that value of AE = AE, .y, which results from filling up the skew rectangular
partial densities of states and requiring local charge neutrality. Thus, this
simple model is internally consistent.

The bond energy per atom, when the local charge neutrality condition
eqn (7.59) is satisfied, is given by

Utna = fo(N, AN)Upona(N), (7.68)
where
foN,AN) = {1 — Z(AN)*/[N(10 — N)]*}1/2 (7.69)
and
Unona(N) = —F5Was N(10 — N). (7.70)

The bond energy, U, .4(N), is just that of the AB alloy within the virtual
crystal approximation (VCA) in which the electrons see only the average
potential § = 3(v, + vg) at each site, so that all atoms would be characterized
by the same atomic energy level E = {(E, + Eg). The prefactor f,(N, AN)
represents the loss of bond energy with respect to this average VCA state
resulting from the actual mismatch in the atomic energy levels on the A and
B sites, AE,p.

The heat of formation AH may now be found by comparing the binding
energy of the AB alloy at its equilibrium nearest-neighbour separation, R5®
with that of the A and B elemental transition metals at their equilibrium
nearest neighbour distances, Ry and R§, respectively, as shown in Fig. 7.14.
We may use the structural energy difference theorem of §4.3 to write down

this small energy difference directly as
AH = UR((RE®) — ${UL(RE) + Ugona(RD)], (7.71)

where RAB is the nearest-neighbour separation in the AB alloy, such that
the alloy and the elemental metals display the same repulsive energy, that is

UAB(RS®) = $LUA(RS) + UB,(RD]. C(1.72)
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Fig. 7.14 The binding energy curves for the elemental A and B transition metals
and the binary AB alloy. The heat of formation is given by AH = {/,p —3(Up+ Up),
where the binding energies are evaluated at the appropriate equilibrium positions
as shown.

This repulsive energy constraint implies from egn (7.64) that the bond energy
for the AB alloy must be evaluated for a value of

Wi = [HW2 + W2, (7.73)

Substituting eqs (7.68) and (7.33) into eqn (7.71) and using eqn (7.42) for
the elemental bandwidths, the heat of formation can be expressed as the sum
of two terms, namely

AH = AHm::ral + AH?:;;: (774)
where _
AHE | = (3b%/200a)(5 — N)*(AN)? (7.75)
and
AHERS — —(b%/400a)[3N(10 — N) — 50](AN)?. (7.76)

Fourth-order contributions and higher have been neglected. The first contri-
bution gives the change in the elemental bond energies as their bond integrals
are changed to take the elemental bandwidths, W, and Wj, to the new
common bandwidth, 7y, that is

AH a1 = —3{76(Was — WAINA(10 — Ny) + 26(Was — Wa)Ne(10 — N)].
(7.77)

The second contribution gives the change in the bond energy as the elemental
bands of width, W,z mix together to form the new common band in the
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AB alloy. Since the AA and BB bond integrals have already been adjusted
to give identical elemental bandwidths, this contribution reflects from eqn
(4.62) the change in bond order that accompanies alloy formation. It is
given by

AHSS = UbS, — [ —F6Waa Na(10 — N,) — 7 Wi Na(10 — Ng)1,  (7.78)
which to second order in (AN)? can be written
AHYS = {—d5 + ZHIN(10 — N)] 7'} Wan(AN). (7.79)

order —

The first contribution inside the curly brackets represents the change in the
bond energy within the virtual crystal approximation, that is

AHyca = —Wap{N(10 — N) — 4[N,(10 — N,) + Ng(10 — Np)]}. (7.80)

The second contribution inside the curly brackets of eqn (7.79) represents
the loss of bonding due to the atomic energy-level mismatch in the alloy.
Since from eqs (7.73) and (7.42) Wz = (3b*/5a)N(10 — N), to the zeroth
order in AN, egs (7.79) and (7.76) are identical to second order.

Figure 7.15 shows the different contributions to the normalized heats of
formation AH/(AN)? as a function of the average d band filling, N, for the
case of 4d transition-metal alloys, where b%/a = % eV. We see that, whereas
the dashed VCA curve is always negative, the dotted bond order curve is
negative only for average d band occupancies, 2 < N < 8, because otherwise
the loss in energy due to the atomic energy-level mismatch drives this
contribution positive. The bond integral contribution due to differences in
the elemental bandwidths is always positive. The resultant total heat of

formation is negative for average band fillings, such that
3L < N <6, (7.81)

as can be proved by setting AH in egn (7.74) equal to zero. The prediction
of positive heats of formation within the TB model accounts for the bare
patches that are observed amongst the transition-metal compounds within
the AB structure map at the end of the book. The experimental values for
NbMo and RhPd, and the values predicted by Miedema’s semi-empirical
scheme for disordered 4d transition-metal alloys with AN = 1 or 2, have also
been plotted in Fig. 7.15. Larger values of AN have been excluded for
comparison, since terms beyond second order have been neglected in eqs
(7.75) and (7.76).

We see that the simple rectangular d band model reproduces the behaviour
found by experiment and predicted by Miedema’s semi-empirical scheme.
However, we must stress that the TB model does not give credence to any
theory that bases the heat of formation of transition-metal alloys on ionic
Madelung contributions that arise from electronegativity differences between
the constituent atoms because in the metallic state the atoms are perfectly
screened and, hence, locally charge neutral. Instead, the TB model supports
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Fig. 7.15 The contributions to the normalized heats of formation, A4/(AN)?, for
the case of 4d transition metal alloys. The experimental and semi-empirical values
of Miedema et a/. (1980) for AN = 1 and 2 are given by the solid dots and crosses
respectively. (From Pettifor (1987).)

the earlier suggestion by Brewer in 1968 that the most stable transition-metal
alloys would comprise elements from groups at the opposite ends of the
transition-metal series, such as Y and Pd. These groups have very few
bonding electrons, since they have nearly empty or full d shells. Mixing these
elements together results in a dramatic increase in their bond order as the
electrons would be shared in the bonding states of the alloy corresponding
to a half-full band, thereby leading to a sizeable lowering of their covalent
bond energy.

7.7. The saturated bond in semiconductors

The energy gap in tetrahedral semiconductors, such as carbon, silicon, and
germanium, is neither a consequence of the long-range periodicity of the
lattice (as in the p « 1 regime of the Kronig—Penney model in Fig. 5.6) nor
a result of the atomic energy levels not yet having broadened enough to
form a continuous band (as in the y > 1 regime of the Kronig—Penney model
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Sn Ge Si
1 11
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Fig. 7.16 Schematic illustration of the opening-up of the hybridization band gap
in the energy bands of tetrahedral sp-valent solids once the strength of the bond
integral becomes sufficiently large. The positions of C, Si, Ge, and Sn along the
horizontal axis are marked according to the relative values of their experimental
band gaps. (After Cox (1991).)

in Fig 5.6). It is instead a hybridization gap that opens up within the very
broad band of sp? states as illustrated schematically in Fig. 7.16. The free
atom sp splittings in C, Si, Ge, and Sn fall within the range 7.5 + 1 eV, so
that we can regard AE,, = E, — E, as being approximately constant within
these tetrahedral semiconductors. However, the bond integrals increase by
about a factor of two in going from tin to carbon as a result of the decreasing
nearest-neighbour bond length (cf Fig. 3.13 for the dimers, C, and Si,).
Figure 7.16 is, thus, drawn approximately to scale for silicon with an sp
splitting of 7 eV, a band gap of 1.1 ¢V, and a total bandwidth of about 20 eV,
Elements, C, Ge, and Sn have been marked on this schematic diagram to
correspond to band gaps of 5.5, 0.7, and 0.1 eV, respectively.

The origin of this hybridization gap in tetrahedral semiconductors can
best be understood by taking the four sp® hybrid orbitals as our starting
basis rather than the four free atomic orbitals s, p,, p,, and p,. As is
well known (see, for example, McWeeny (1979)), the former are linear
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combinations of the latter, such that
¢1 =%{¢s + 'l’x+ d’y+ Wz)\
b2 =3 + ¥ — ¥, +¥.) >
¢3=%('}’s_d’x+ d’y_vlz)
¢4 =%('}’s_ 'l’x_ d’y+ vlz)J
These four orbitals point out towards the four first nearest neighbours along
the tetrahedral bonds. If we consider only the interaction between the two
hybrids on neighbouring atoms that point towards each other along the
same bond, then the hybrid energy level E, will split into bonding and

anti-bonding levels separated by 2|h| as shown in Fig, 7.17. It follows from
eqn (7.82) that the energy of the hybrid orbital is given by

(7.82)

E, = %(E, + 3E,), (7.83)
and the hybrid bond integral is given by,
h = Ysso — 2./3spa — 3ppo). (7.84)

AE

Ol <
<>@®°°®°

Atoms " Hybrids Bonds Bands

Fig. 7.17 Successive transformations of linear combinations of atomic orbitals,
beginning with atomic s and p orbitals, proceeding to sp® hybrids, forming bond
orbitals and antibond orbitals, then coupling to form the valence band and
conduction band respectively. (After Harrison (1980).).
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These two sharp bonding and antibonding levels are then broadened into
a band of states by coupling between different hybrids on the same atom,
since

J¢,ﬁ¢ﬂ dr = —{E, — E;) = —3AE,,, fora # B, (7.85)

which we have seen in Fig. 7.16 is a sizeable matrix element for the tetrahedral
semiconductors. This coupling allows an electron in a given bonding state
between atoms i and j to hop via atom i into a neighbouring bonding state
between atoms i and k, and thence on through the lattice. Writing the bond
orbital between atoms i and j as

Vi =—= (83 + o), (7.86)

Nl

where ¢{? and ¢{J are the appropriate hybrids on atoms, i and j which point
along the bond ij, then we can evaluate the coupling between the bond
orbitals on neighbouring bonds as

J%’}ﬁlﬁ?& dr = %f @9 + oD H@SR + o) dr. (7.87)

Since we are neglecting overlap between hybrids on different atoms unless
they point along the same bond, only one contribution remains in eqn (7.87),
so that

. 1 -
f!lf:}’Hl/lfi dr=2 f PHPR dr = —3AE,, (7.88)

from eqgn (7.85).

The energy of the bottom of the valence band E; may now be found,
since it corresponds to the most bonding state illustrated in the top panel
of Fig. 7.18, in which each bond orbital is in phase with the six neighbouring
bond orbitals. Hence, its energy is given by

E}=Ey+ h + 6(—3AE,,) = Eq + h — 3AE,,. (7.89)

Similarly, the energy of the top of the valence band, E;, may be found, since
it corresponds to the most antibonding combination of the bond orbitals in
which neighbouring bond orbitals are 180° out of phase, as shown in the
lower panel of Fig. 7.18. Hence, its energy is given by

E!=Eo+h+ (2 —4)(—3%AE,) = E, + h + }AE,,. (7.90)
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Fig. 7.18 The upper figure illustrates the most bonding state of the valence barid
in which all bond orbitals between neighbouring pairs of atoms are in phase.
The fower figure illustrates the most antibonding state of the valence band in
which the bond orbitals between neighbouring pairs of atoms are 180° out of
the phase. (After Heine (1971).)

Thus we find a valence band of width
E! - E; =AE,, (7.91)

as sketched in Fig. 7.17. Similarly, by considering the antibond orbitals,

= (1 /\/_ )@Y — ¢P), the conduction band may be shown to broaden in

a s1m11ar fashion. Hence, a hybridization gap opens up in the sp® band
provided

AE,,/2|h] < 1. (7.92)

We see from Fig. 7.16 that this condition is only just satisfied for tetrahedral
tin.

This description of the opening-up of the hybridization gap has neglected
any coupling between the bond orbitals, y;}, and the antibond orbitals, ;;,
so that the bond would remain totally saturated with a bond order from
eqn (4.67) of

=§N} - Nj) =42-0)=1. (7.93)

In practice, just as we have already found for the isolated sp-valent dimer
in §3.7, there will be mixing between the bond and antibond orbitals that
becomes increasingly marked as the sp splitting, AE,, increases from zero.
The influence of both the sp splitting and the local atomic environment on
the bond order may be estimated by taking the model density of states shown
in Fig.-7.19-The left-hand panel illustrates schematically the delta-function
density of states associated with the bond and antibond orbitals, ¥} and
Wi;, respectively for the isolated sp-valent dimer with AE,, = 0. The right-
hand panel shows that mixing between the bond and antibond orbitals
occurs as the atomic energy-level splitting, AE,, is turned on and the dimer
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Fig. 7.19 Model densities of states representing the mixing between the bond
orbitals, y;, and antibond orbitals, y;;, when AE_, # 0. The shaded rectangles
represent delta functions with weights given by the attached numbers. The
left-hand panel corresponds to AE_, = 0 when there is no mixing between the
bond orbitals with energy —|h| and the antibond orbitals with energy +|A|. The
right-hand panel corresponds to AE,, # 0 when the mixing between the states
pushes them apart by the factor (1 + 4) and reduces their original weights by
the factor (1 — a).

is embedded in its bulk environment. This mixing or hybridization causes
the energy levels to move apart as shown by the factor (1 + 1) and the weight
in the bond orbital to be reduced in the lower level by the factor (1 — «)
and to be increased in the upper level by a, so that the corresponding density
of states per spin is given by

ni(e) = (1 — a)ole + (1 + A)Ih[] + ad[e — (1 + A)A[], (7.94)

. — .Y

where ¢ = E — E,. Similarly, the density of states per spin associated with
the antibond orbital can be written
n;(e) =adle + (1 + A1+ (1 — x)é[e — (1 + AlAI]. (7.95)

The mixing parameters, « and 4, may be obtained from the first and second
moments of the densities of states. The first moment of n;] (¢) gives the bond
orbital energy with respect to E, of —|h|, so that from eqn (7.94)

pr = —(1 = 20)(1 + A)h| = —|h|. (7.96)
Hence
1 —20=(+ 471, (1.97)

Similarly, the second moment of the total density of states per orbital,
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ny; = 3(n; + ng), is given by

wo=3(us +uz) =1+ DIHP, (7.98)
so that substituting into eqn (7.97) we have
1 — 200 = (hl/u}/? (7.99)

But from eqs (7.94) and (7.95), the bond order for a half-full band is given by
so that from eqn (7.99)
= |h(R;;)/u2"* (7.101) .

The second moment u, can be written explicitly in terms of the atomic
energy-level splitting AE,, and any interaction between the bond ij and its
local atomic environment. It follows from eqs (7.86) and (7.98) that

py = Hud + ud), (7.102)

where pf’ and uf are the second moment of the local density of states
associated with the hybrid ¢{) and ¢{ on atoms i and j respectively. By
summing over all paths of length two that start and end on these two orbitals
we find

Hy = 1_36(AEsp)2 + hz(Rij) + Z %[hz(Rik)Q(gjik) +. hz(Rjk)g(Gijk)]: (7.103)

K#1,j
where the angular factor is
g(9) = 32 + 8 COS 0 + 33 COS§ 26. (7104)

The first term in eqn (7.103) corresponds to hopping twice on the same atom,
so that from eqn (7.82) it takes the value,

HE? + 3E]) = H(—3AE,)" + 3GAE, )], (7.105)

since the zero of energy has been taken as E, = {(E, + 3E,). The second
term in egn (7. 103) corresponds to hopping back and forth along the bond
ij. The third term in eqn (7.100) corresponds to hopping from atoms i or j
to a neighbouring atom k, and back again. The angular factor, g(6), follows
from the angular dependence of the bond integrals that is given in egs
(7.14)-(7.17). 1t is plotted in Fig. 7.20, where we see that both g(#) and g'(8)
vanish at the tetrahedral angle, 8, = cos™}(—%).

The bond order for tetrahedral elemental semiconductors at equilibrium
may, therefore, be written as

® = [1+ HAE,,/2h?] 712, (7.106)
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Fig. 7.20 The angular factor g(f) as a function of the bond angle 6. Note that
both g and g’ vanish at the tetrahedral angle 6, = cos™' (—1).

Consequently, the bond is fully saturated for AE,, = 0 with a bond order
of 1, but it is only partially saturated by the time the gap closes for
AE,,/2|h| = 1 (cf eqn (7.92)) when the bond order equals 0.76. This simple
second moment model has been extended to include the compound semi-
conductors. The resultant values of the bond order are given in Table 7.2.
We see that the bonds in tetrahedral carbon and silicon are almost fully
saturated, but those in zinc selenide and cadmium telluride are only about
75 saturated due partly to the mismatch in the sp orbitals between
chemically distinct atoms.

The binding energy per atom of an elemental semiconductor can be
written as

1
U=_—— Z' [D(R;;) + 2h(Rij)®ij] + Uproms (7.107)
2455

Table 7.2 The bond order for tetrahedral
semiconductors. (From Alinaghian et a/.

1994).)
Elemental Compound
C 0.94 AlP 0.83
Si 0.86 GaAs 0.79
Ge 0.81 inSb 0.77
Sn 0.79 ZnSe 0.75

CdTe 0.73
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where we have used eqn (4.62) to write the bond energy as the product of
the bond integral and the bond order. The energy, U, is required to
promote the free-atom s2p? state into the state appropriate for the bulk. For
the hybrid sp’ state thisenergy is AE,, = E, — E,, which is large and positive,
taking the value of 8.5 eV for carbon. The promotion energy is responsible
for the fact that even though diamond has saturated sp-valent bonds, it has
less cohesive energy than unsaturated sd-valent niobium, which requires only
about 1 eV of the promotion energy (cf Fig. 7.11).

The expression for the binding energy, eqn (7.107), is not a simple sum
over pair potentials, since, three-body interactions enter through the environ-
ment dependence of the bond order that is given by eqs (7.101) and (7.103).
The bond angle-dependent function, g(0), in fact, plays a crucial role in
determining the stiffness of the tetrahedral bonds to bending. For example,
under tetragonal shear the second-order change in energy may be evaluated
analytically (Alinaghian et al. (1994).) Neglecting any second-order changes
in the promotion energy, the tetragonal shear constant is given by

C’ = (3./3hol/4RD)O3 9" (Bo), (7.108)

where hy, ©(, Ry, and 6, are the equilibrium values of the bond integral,
bond order, bond length, and bond angle respectively, and g”(6,) is the
curvature of the angular function, which takes the value unity, from egn
(7.104), since cos 8y = —13. Thus, as is well known, it is the angular character
of the bonding that stabilizes the tetrahedral lattice against shear.

An expression of the type (7.101), which gives the bond order explicitly
in terms of the positions of the neighbouring atoms, is called a bond order
potential (BOP). Angularly dependent bond order potentials were first
derived heuristically for the elemental semiconductors by Tersoff (1988). We
will see in the next chapter that a many-body expansion for the bond order
may be derived exactly within the TB model.
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8
Structural trends within solids

8.1. Introduction

Elemental solids and binary compounds display numerous well-defined
structural trends. We saw in chapter 1 that we would like theory to be able
to explain at least the following:

(1) the change from close-packed structures on the left-hand side of the
periodic table to the more open structures on the right-hand side;

(2) the 8-N rule which gives the number of neighbours expected for N > 4,
and exceptions to the rule such as graphitic carbon and dimeric nitrogen
and oxygen;

(3) the structural trend from hcp — bee — hep — fec across the transition-
metal series, and exceptions to the trend such as manganese and iron;

(4) the structural trend from the La structure type to the Sm structure type
to hcp across the lanthanides; and

(5) the structural trends within the AB structure map between NaCl, CsCl,
CrB, FeB, FeSi, NiAs, and MnP structure types that are taken by
pd-bonded binary compounds.

In this chapter we will show that the tight binding (TB) description of the
covalent bond is able to provide a simple and unifying explanation for the
above structural trends and behaviour. We will see that the ideas already
introduced in chapter 4 on the structures of small molecules may be taken
over to these infinite bulk systems. In particular, we will find that the trends
in structural stability across the periodic table or within the structure maps
can be linked directly to the topology of the local atomic environment
through the moments theorem of Ducastelle and Cyrot-Lackmann (1971).

8.2. Saturated versus unsaturated bonds

The 8-N rule states that the number of bonds (or local coordination, z) equals
8 minus the number of the periodic group. This rule is illustrated in Fig. 1.2
where we see that for N = 7 the halogens take dimeric structure types with
# = 1, for N = 6 the chalcogenides selenium and tellurium take helical chain
structures with = = 2, for N = 5 the pnictides arsenic, antimony, and bismuth
take a puckered layer structure with » = 3, and for N = 4 the semiconductors
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Fig. 8.1 The eigenspectra of diamond (» = 4), graphite or arsenic (+ = 3), linear
or helical chain (= = 2), and dimer (« = 1) for the case of zero sp splitting (upper
panel) and large sp splitting (lower panel). The = bonding is assumed to vanish
(i.e. ppr = 0) and the interaction between hybrids on different atoms that do
not point along the same bond has been neglected.

silicon and germanium take the tetrahedral diamond structure with » = 4.
This 8-N rule is usually rationalized within a valence bond framework by
assuming that single saturated covalent bonds are formed with neighbours,
thereby completing the stable octet shell of electrons about each sp-valent
atom.

A molecular orbital (MO) or tight binding (TB) description appears to
provide a similar conclusion. For simplicity let us consider the case, ppn = 0,
and let us neglect any interaction between hybrids on different atoms that
do not point along the same bond. The upper panel in Fig. 8.1 shows the
resultant energy levels for zero sp splitting, thatis, AE_, = E, — E, = 0. The
N = 4 panel gives the splitting of the sp® hybrids into the bonding and
antibonding levels that we found earlier in Fig. 7.17. These two energy levels
remain sharp because there is no coupling of the neighbouring bond orbitals
or antibond orbitals together, since AE,, = 0. Thus, these levels are four-fold
degenerate, corresponding to the four uncoupled neighbouring bonds about
a given atom. With four valence electrons per atom the bonding level
will be fully occupied, so that there will be a single saturated covalent o
bond between every neighbour in the tetrahedral solid.

The tetrahedral crystal structure is assumed to change if another valence
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electron is added to the system because this extra electron would go into
the destabilizing antibonding level. Instead, for N = 5 the lattice chooses the
graphitic structure because it can then form fully saturated sp? hybrid ¢
bonds with its three neighbours with the remaining two valence electrons
per atom going into the nonbonding = states, as shown in the upper panel
of Fig. 8.1. The addition of a further electron is similarly argued to destabilize
the graphitic structure because it would go into the antibonding o level.
Instead, for N = 6 the lattice chooses the linear chain structure, because it
can then form fully saturated sp hybrid ¢ bonds with its two neighbours,
the remaining four electrons per atom going into the nonbonding = states
as shown in the upper panel of Fig. 8.1. Finally, the addition of a further
electron would destabilize the linear chain so that N = 7 takes dimeric
structure types with their six-fold degenerate nonbonding level comprising
the non-bonding ¢ state in addition to the = states (cf eqn (3.62)). The lower
panel of Fig. 8.1 shows the most stable structures expected if AE,, is large;
then the bonding will be driven by the valence p orbitals alone, so that we
may expect bond angles of 90° to be formed between the three orthogonal
orbitals p,, p,, and p,. Similar arguments as for AE,, = 0 account for the
pnictides taking the puckered three-fold coordinated layer structure (cf Fig.
1.5) and the chalcogenides taking the helical two-fold coordinated chain
structure (cf Fig. 1.2) as shown in the lower panel of Fig. 8.1.

The above argument that sp-valent solids will take saturated single bonds
according to the 8-N rule is, however, flawed. The alert reader will already

have noticed that there is no difference in energy between the two competing
structure types for a given N with the energy levels as drawn in Fig. 8.1.
Putting an extra electron in the antibonding level cancels the presence of one
electron in the bonding level, so that it is exactly equivalent to putting two
electrons into the nonbonding level of the neighbouring structure type. This is
seen explicitly in the left-hand panel of Fig. 8.2 where for N = 5 the three-fold
and four-fold coordinated structure types have the same bond energy, for
N = 6 the two-old, three-fold, and four-fold coordinated structure types
have the same bond energy, and for N = 7 all four structure types have the
same bond energy. Thus, no structural differentiation can be made for N > 5.

It might be argued that the structural trend across the top panel of
Fig. 8.1 is driven by the increasing strength of the hybrid bond integral as
the percentage of s character changes from sp®> — sp? — sp. If we choose
the z-axis along the axis of the bond 1j, then the bonding hybrids may be

written as

\/1_1:1_; (W + W) @®.1)

oY = ﬁ Yy — A¥5) (8.2)

# =

and
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Fig. 8.2 The bond energy per atom of the four-fold, three-fold, two-fold and
one-fold coordinated lattices as a function of the number of valence electrons
per atom, A, for the cases of degrees of normalized hardness of the potential,
a, = 1 (left-hand panel) and «, = ¥ (right-hand panel}. The hard core potential
of the left-hand panel cannot differentiate between different structure types for
N = 5, whereas the realistic 2, = % potential gives the structural sequence for
4- - 3- - 2- - 1-fold coordination of the (8-N) rule.

where the fraction of s admixture in the hybrid is 1/(1 + 42). Thus, sp, sp?,

and sp> hybrids correspond to 4 = 1, \/5, and \/3 respectively. The bond
integral between these directed hybrids then takes the value,

ssg — 2Aspo — A’ppo
1+ 42 '

This is plotted in Fig. 8.3 as a function of the percentage of s character,
100/(1 + A2), for two different choices of the ratios ppa:spa:ssa, namely the
solid curve where their magnitudes are all equal (cf eqn (3.58)), and the
dashed curve where their magnitudes are set according to Harrison’s (1980)
prescription for the bulk band structure (cf eqn (7.20)). The full curve indeed
predicts that [k, | > |h,| > |hsl, which would drive the structural trend
across the top panel of Fig. 8.1. Unfortunately, the more realistic dashed
curve provides no such justification for the (8-N) rule, since |h,,| < |hgp:| = |hgpsl.

In fact, the origin of the (8-N) rule resides in the delicate balance between
the repulsive overlap forces and the attractive covalent bond forces. The
bond lengths are not invariant as drawn in Fig. 8.1, since the atoms do not
behave as hard spheres with fixed nearest-neighbour distances. Assuming a
repulsive pair potential

h, = J¢‘£’ﬁ¢&” dr = (8.3)

®(R) = A[K(R)]?, (8.4)
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Fig. 8.3 The bond integral, h,, between directed hybrids as a function of the
percentage of s character of the hybrid, 100/(1 + 42), for two choices of the
ratios ppag:spo.ssa.

which is a good approximation for the sp-valent elements (cf eqn (3.47)),
then the difference in the equilibrium binding energies between the two
structure types is given by the structural energy difference theorem as

AU = [AUbond]Auz=0 (8.5)

(cf eqn (4.54)). That is, the bond energies must be compared only once the
bond lengths have been adjusted, so that all the eigenspectra have the same
second moment or mean-square width. Taking the tetrahedral bond integral
h, as reference, the other bond integrals h,, h,, and h, for the dimer, linear
chain, and graphitic sheet will satisfy :

h? = 2h2 = 3h2 = 4h2. (8.6)

The resultant bond energies are shown in the right-hand panel of Fig. 8.2,
where we see the trend from 4-fold — 3-fold — 2-fold — 1-fold coordinated
structure types as N changes from 4 —» 5 — 6 — 7 respectively.

The (8-N) rule is driven by the fact that, although the bond energy initially
remains the same in Fig. 8.1 on going from the diamond to the graphitic
structure for N = 5, or from the graphitic structure to the linear chain for
N = 6, or from the linear chain to the dimer for N = 7, the repulsive energy
decreases due to the lower coordination number. This causes the bond
lengths to shrink, thereby providing the additional cohesion that is reflected
in the right-hand panel of Fig. 8.2. Of course, after the bond lengths have
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equilibrated in their new local environment, we would then have from
eqn (8.6) that

|hsp| > |hsp2| > |h593| (87)

as found experimentally.

There are many exceptions to the (8-N) rule: for N = 4 carbon takes the
graphitic ground state structure with » = 3 and lead takes the fcc structure
with » = 12; for N = 5 nitrogen is dimeric with x = 2; and for N = 6 oxygen
is dimeric with » = 2 and polonium is simple cubic with » = 6. It might have
been hoped that the simple analytic expression for the bond order, eqn
(7.101), might have provided some structural differentiation for N =4
between the diamond lattice with its saturated bonds and either the simple
cubic, simple hexagonal, or close-packed lattices with their unsaturated
bonds. In fact, it predicts that they have identical equilibrium binding
energies (Nishitani et al. (1994)).

This totally unexpected result can be proved as follows. Within a first
nearest-neighbour model, the bond order of these lattices may be written
from eqs (7.101) and (7.103) as

-1/2
®ij = likzj: g(Bjik)jl ) (8.8) .

where k sums over the z nearest neighbours to atom, i, 0;;, is the
corresponding bond angle, and g(8) is the bond angle dependent function,

g(0) =4 + 3cos 8 + (2 cos? § — 1), (8.9)

as cos? § =2 cos? 0 — 1. Summing the angular function over the nearest
neighbours yields

2° 905 = 3% + 0 + $5[2(}) — 1]« (8.10)
k=1

so that
©=2//x (8.11)

for these three-dimensional lattices. The bond orders of the diamond (x = 4),
simple cubic (x = 6), simple hexagonal (x = 8), and close-packed (x = 12)
lattices are predicted to take the values 1.00, 0.82, 0.71, and 0.58 respectively.
Thus, the bonds in the open diamond lattice are saturated, whereas those
in the close-packed lattices are unsaturated, as expected. Nevertheless, since

there are » bonds, the total bond energy per atom will vary as ﬁ, so that
from §7.5 the cohesive energy will be independent of the local coordination
(with the realistic choice of the degree of normalized hardness of the
potential, o, = ).

Thus, there is no a priori reason for saturated bonds to form a more stable
structure than unsaturated bonds. Although the individual bond energy is
larger, there are fewer neighbours in the open structures with saturated
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bonds. It is, therefore, not surprising that there are many exceptions to the
8-N rule. In the next section we will show how the structural trends within
the sp-valent elements can be rationalized within a simple TB model.

8.3. Structura!l trends within the sp-valent elements

We have seen in the previous chapter that the total binding energy per atom
of an elemental sp-valent system may be written within the TB approximation
as the sum of three terms, namely

U= Urep + Ubond + Uprom' (812)

The repulsive energy U,., is assumed to be pairwise in character, as in
eqn (4.29) or eqn (7.35). The covalent bond energy, following eqn (4.30) or
eqn (7.32), is defined by
Er
Ubond = Z (E - Ea) na(E) dEa (813)

®=s,p

where n, (E) are the local s, p density of states, E; , are the effective s, p
atomic energy levels, and E; is the Fermi energy. In this section we will be
considering only those lattices in which all sites are equivalent so that n(E)
does not require a site-specific label. The densities of states will be evaluated
assuming Harrison’s (1980) parameterization for the bulk band structure,
namely

ppo(R)y —231)
pp7(R) 0.76

— (R), 8.14
spa(R) —1.31 P RCR) (8.14)
sso(R) J 1.00 /

except that the value of ppn in eqn (8.14) has been chosen 309 larger than
Harrison’s suggested value, in order to stabilize the close-packed structures
with respect to the dimer for the case of the alkali metals with N =1
(Cressoni and Pettifor (1991)). The promotion energy, Uy, o, iS given by

= (E, — E;)AN, = AE_AN,, (8.15)

Uprom

where AN, is the change in the number of p electrons between the free-atom
ground state and the bulk.

The energy difference between two structure types is then given by the
structural energy difference theorem as

AU = [AUbond + A(-]pmm]AUrq,=0‘ (816)
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Defining the band energy as

Er
Uband = J EH(E) dEa (817)

where n(E) is the total sand p density of states per atom, the energy difference
may be written as the difference in the band energy, namely

AU = [AUband]AUr¢p=0' (8.18)

Further, assuming that the repulsive pair potential varies as the square of
the bond integrals, as in eqn (8.4), we have

AU == [AUband]Aaz=0' (8.19)

Thus, the energy difference between two structure types is given by the
difference in their band energies, provided the bond integrals have been
adjusted, so that each band has the same second moment or mean-square
width. Taking the simple cubic lattice with = = 6 as reference with an
equilibrium nearest-neighbour ss¢ bond integral hg, then the appropriate
bond integral &, for any other lattice with coordination « will satisfy

«h? = Gh2. (8.20)

Figure 8.4 shows the resultant pure s and hybridized sp band densities of
states corresponding to zero sp splitting AE,, = E, — E, = 0 for structures
with nearest-neighbour coordinations, z = 2 (the zig-zag linear chain with
90° bond angles), z = 3 (the single graphitic sheet or honeycomb lattice),
z =4 (both the diamond cubic and diamond hexagonal lattices), z = 6
(simple cubic), z = 8 (simple hexagonal), and z = 12 (both fcc and ideal hep
lattices). In addition, the densities of states are shown for the bec lattice with
z = 14 corresponding to eight first and six second nearest neighbours, where
the bond integrals of the second nearest neighbour have been assumed to
be one-third of the first nearest neighbours. The energy is measured in units
of |hy|, so that the simple cubic s band, for example, runs from —6 to +6
as expected. The sp densities of states for the linear chain (z = 2), the
graphitic sheet (z = 3), and the diamond cubic lattice (z =4) may be
compared with our earlier simpler model with AE_, = 0 in the upper panel
of Fig. 8.1. The influence of the bonding between the non-directed hybrids
on neighbouring atoms is immediately apparent in the broadening of
the earlier ¢ bond energy levels, as too is the broadening of the non-
bonding = states for the linear chain and graphitic sheet. We see that a
hybridization gap indeed opens up in the sp-valent diamond cubic and
hexagonal densities of states. It is interesting to note that the pure s bands
for the cubic and hexagonal diamond or close-packed lattices are identical
as they have identical moments, which has been proved by Burdett and
Lee (1985). It is the angular character of the valence orbitals which
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Fig. 8.4 The s (upper panel) and sp (lower panel) density of states for different
lattices in energy units of |Ay| with £, = £,=0. The broken curves give the
integrated density of states, provided the numbers on the vertical scale are
multiplied by five for the s case and eight for the sp case respectively. (From

Cressoni and Pettifor (1991).)
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distinguishes between cubic and hexagonal systems within a first nearest-
neighbour TB model.

Figure 8.5 shows the structural energy for s-, p-, and sp-valent systems as
a function of band filling which results from occupying the TB densities of
states n(E). The structural energy has been defined as the difference between
the band energy for a given structure {cf eqn (8.17)) and that corresponding
to a reference rectangular s, p, or sp density of states with the same second
moment (cf the smooth parabolic variation of eqn (7.33)). This procedure
allows the very small energy differences between the different structure types
to be displayed more clearly. We see that, as the s band is filled with electrons,
the most stable ground-state structure is predicted to change from close-
packed — linear chain — dimer — linear chain — simple cubic. As the p
band is filled with electrons, the most stable ground-state structure is
predicted to change from fcc — hep — fcc — puckered graphitic sheet —
diamond cubic — liner chain — simple cubic — dimer — simple cubic, where
the puckered graphitic shcet is a single three-fold coordinated layer of the
arsenic structure with 90° bond angles (cf Fig. 1.5). As the sp band is filled
with electrons, the most stable ground-state structure is predicted to change
from fcc — hep — fee — simple hexagonal — graphitic sheet — diamond
cubic — graphitic sheet — puckered graphitic sheet — linear chain — dimer.

The panels in Fig. 8.5 allow the rationalization of the structural trends
that are observed within the sp-valent elements in Table 1.1. In particular,
beginning on the right-hand side of the periodic table where the assumptions
of the TB model are most appropriate, we see that the theory correctly
predicts the dimeric structures of the halogens with N = 7 and the helical
linear chain structures of the chalcogens with N = 6. The exceptions are
oxygen with its dimeric behaviour and polonium with its simple cubic
structure (sulphur exhibits structures based on helical chains at high
temperatures). Nevertheless, we observe that both the dimeric and simple
cubic structures are nearby in energy. The softer core of the 2p-valent oxygen
atom would favour the lower coordinated structure type, whereas the larger
sp splitting of the heavy polonium atom induced by relativistic effects and
a harder core could favour the six-fold coordinated simple cubic lattice
(which for the large sp splittings in the middle panel of Fig. 8.5 is stable for
6.3 < N < 6.8).

The middle panel of Fig. 8.5 for large sp splittings shows that a single
puckered graphitic sheet of the arsenic lattice is indeed the most stable
structure for half-full p bands. This stability of the arsenic structure type for
N =5 persists almost to vanishingly small values of AE_, as can be seen in
the lowest panel of Fig. 8.5. The exceptions are nitrogen with its dimeric
form, which i1s probably stabilized by its soft core, and phosphorus with its
own variant of cutting three nearest-neighbour bonds within the simple cubic
lattice (cf Fig. 1.5). The group IV elements are predicted to change from the
open four-fold coordinated diamond cubic structure for small values of AE_,
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(lower panel) to the close-packed twelve-fold coordinated fcc structure for
large values of AE,, (middle panel). This is consistent with the observation
in Table 1.1 that silicon, germanium, and tin are diamond cubic, whereas
lead is fcc. The latter has a larger value of AE_, than might be expected due
to a 3 eV relativistic contribution which weakens the binding energy of the
tetrahedral lattice due to an increased positive promotion energy (cf eqn
(8.15)). Again the 2p element is exceptional with carbon taking the graphitic
structure. Nevertheless, this latter structure is nearby in energy and could
easily be stabilized by a softer core through a choice of «, < 4. Finally, even
though the sp-valent metals with N = 1, 2, and 3 are not accurately described
by a first nearest-neighbour orthogonal TB model, we see that the simple
model does predict correctly the occurrence of close-packed structures in
this region.

8.4. Interpretation in terms of moments

The structural trends within the sp-valent elements are a direct result of
the oscillatory behaviour of the energy curves displayed in Fig. 8.5. These
oscillations can be understood in terms of the topology of the lattice by
using the Ducastelle—Cyrot-Lackmann moments theorem that we introduced
in Chapter 4. We saw that if two densities of states have moments that are
identical up to some level, p, (ie. Apy = Au; =+ - = Au,, = 0), then the
energy difference as a function of band filling must have at least (p, — 1)
nodes over and above the zeroes corresponding to the empty or full band.
Thus, since the reference rectangular density of states and all the crystal
densities of states have the same values of ug, u,, and u, (the latter through
the structural energy difference theorem, eqn (8.19)), any structural energy
curve in Fig. 8.5 must cross zero at least once. A single crossing implies that
the structural energy is dominated by a difference in the third moment from
that of the uniform rectangular band, a double crossing implies a dominant
difference in the fourth moment, a triple crossing indicates a dominant
difference in the fifth moment, etc. Further, since the pth moment is related
to closed paths of p steps through eqn (4.47), one node will be related to
closed paths of length three, two nodes to closed paths of length four, three
nodes to closed paths of length five, etc.

This allows us to understand the oscillatory behaviour illustrated in
Fig. 8.5. All those lattices which contain only even-membered rings will have
all their odd moments identically zero (taking E, = E, as the reference
energy). Consequently, the densities of states and structural energy curves
for the linear chain, graphitic layer, diamond, and simple cubic lattices will
be symmetric as observed in Figs. 8.4 and 8.5. On the other hand, the simple
hexagonal, fcc, hep, and bece structures have a sizeable third moment, u,,
due to the presence of odd three-membered rings within their lattices, so that
their densities of states and structural energy curves will be asymmetric as
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Fig. 8.6 The number of different contributions to the fourth moment about a
given atom on a Bethe lattice with local coordination, z.

observed in Figs. 8.4 and 8.5. Thus, the stability of close-packed structures
over the more open structures for less than half-full bands is due to the
presence of three-membered rings, which are absent in the latter structure
types. We see in Fig. 8.5 that the difference in energy between the cubic and
hexagonal close-packed structure types is very small, as expected. Moreover,
since the curves cross three times for the sp-valent case, we deduce the
importance of the fifth moment, us, in controlling the cubic versus hexagonal
stability of close-packed sp-valent lattices.

The relative stability of structural types with even-membered rings can
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eqn (4.58) is given by
s=fa/f3 - 1, (8.21)

since fi; = 0 (cf fi, = u,/uo). We saw in Chapter 4 that if s < 1, the density
of states shows bimodal behaviour, whereas if s > 1, the density of states
shows unimodal behaviour. For the case of s orbitals, the fourth moment

contribution for a Bethe lattice with no rings is easy to evaluate, From
Fig. 8.6
,u&B) =2z - 1) + x]h4, (8.22)
so that
s=1—2"1, (8.23)

This is the sole contribution for the dimer (« = 1), linear chain (x = 2),
graphitic sheet (x = 3), and diamond lattice (x = 4), so that they take shape
parameter values s =0, 3, 4, and 3 respectively. Their densities of states,
therefore, will display bimodal behaviour as is observed in the upper panel
of Fig. 8.4. The four-membered ring contributions play an important role in
the close-packed lattices as can be seen from the upper curve in Fig. 8.7,

which plots the values of (s + 1), normalized by its value for the dimer,
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Fig. 8.7 Plotting (s + 1)/(s + 1)_-, versus local coordination « for the pure s
and sp cases, where s is the dimensionless shape parameter. The dashed curve
gives the Bethe lattice result, eqn (8.23}, in which there are no ring contributions.
(After Cressoni and Pettifor (1991).)

versus the coordination, x. (Note that for s-valent orbitals (s + 1) = 1 for
z = 1). Therefore, the close-packed lattices, in particular, will display marked
unimodal behaviour as is indeed apparent from the fcc, hep, and bee densities
of states in Fig. 8.4. As expected, the dimer is the most stable structure for
half-full bands because it displays the most bimodal behaviour (s = 0Q),
whereas the simple cubic lattice is the most stable structure for nearly-full
bands because it displays the most unimodal behaviour (s = 1.5) of the
even-membered ring lattices.

The structural sequences in Fig. 8.5 change between the s-valent, p-valent
and sp-valent cases because the shape parameter, s, is very sensitive to the
angular character of the orbitals, We have already seen in Fig. 4.13 for the
triatomic molecule AH, that the three-atom contributions to the fourth
moment are dependent on the bond angle. It follows from eqs (7.14)-(7.17)
that hopping along a three-atom path and back again amongst sp-valent
orbitals will lead to the fourth-moment contribution

ps = [sso* + spa* + pprn* + 2ssa?spa? + 2ppr(spo? + ppo)]
+ 2spo?(sso® — 2ssappo + ppo?) cos 6

+ [spo® + ppo* + ppn* + 2spa?ppa? — 2ppr(spa? + ppo?)] cos? 6.
(8.24)

Figure 8.8 shows the resultant angular dependence of this three-atom contri-
bution for the s, p, and sp cases respectively. As expected, the s orbitals
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Fig. 8.8 The angular dependence of the three-atom fourth moment contribution,
eqn (8.24) for the pure s, pure p and sp cases. (From Cressoni and Pettifor
(1991).)

display no bond-angle dependence because the only contribution from eqn
(8.24) is the first term sso*. On the other hand, the pure p case shows a
marked minimum at 90°, since then

(1), = ppr(ppn® + 2ppo?) + (ppo* — ppr)* cos? 6. (8.25)

Thus, we expect the puckered graphitic sheet with 90° bond angles to have
the smallest normalized fourth moment and shape parameter, s, and hence
to be the most stable structure for the half-full p band as is indeed observed
in the middle panel of Fig. 8.5. We should also note that if the = bonding
is neglected then this three-atom contribution is identically zero for 6 = 90°,
so that s = 0 and we have the total bimodal behaviour of the p eigenspectrum
that is observed in the lower panel of Fig. 8.1 for the arsenic structure type.

For sp-valent orbitals, the minimum in Fig,. 8.8 is skewed to higher angles,
the minimum occurring for 6 = 117° for the bond integrals chosen in eqn
(8.14). This minimum is responsible for the diamond and graphite lattices
with 8 = 109° and 120° respectively having the smallest and second smallest
values of the normalized fourth moment, and hence the shape parameter,
s, in Fig. 8.7. This is reflected in the bimodal behaviour of their densities of
states in Fig. 8.4 with a gap opening up for the case of the diamond cubic
or hexagonal lattices. Hence, the diamond structure will be the most stable
structure for half-full bands because it displays the most bimodal behaviour,
whereas the dimer will be the most stable structure for nearly-full bands
because it has the largest s value and hence the most unimodal behaviour
of all the sp-valent lattices in Fig. 8.7. We expected to stabilize the graphitic
structure as we move outwards from the half-full occupancy because this
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lattice has the second smallest value of s, whereas we expect to stabilize the
linear chain as we move inwards from nearly-full occupancy because this
lattice has the second largest value of s. This is indeed observed in Fig. 8.5.
It is the same trend as displayed by the simpler model in the right-hand
panel of Fig. 8.2 where it is easy to show that the corresponding values of
s for the diamond, graphitic, linear chain, and dimeric eigenspectra in the
upper panel of Fig. 8.1 are s =0, 3, 1, and 3 respectively. Unlike the other
lattices, the puckered graphitic layer and the simple cubic lattice have
structural energy curves in Fig. 8.5 that cross each other four times, so that
their relative stability is determined by the sixth moment. Their similarity in
energy is not unexpected because they are two closely related structure types
as indicated in Fig. 1.5,

8.5. Structural trends within the sd-valent elements

We saw in §7.5 that the rectangular d-band model was unable to differentiate
between different structure types because it had approximated the true
density of states by a constant value that was determined by the second
moment, 4,, through the rectangular bandwidth, . In practice, the densities
of states of the transition metals display structure that is characteristic of
the crystal lattice. In particular, the bcc density of states in Fig. 7.6 splits
into definite bonding and antibonding regions around N = 6, corresponding
to the band filling of bec Cr, Mo, and W. On the other hand, the fcc and
hep densities of states are broadly similar as might be expected from their

hmtlh hncime trwalua an~iidict ¢+ + iohly 1 4
both having twelve equidistant nearest neighbours (assuming an ideal hep

lattice with an axial ratio, c¢/a = J@). The hcp density of states, unlike the
fcc, does have, however, marked local minima around N =4 and N =8
corresponding to the band fillings of hep Ti, Zr, and Hf and hep Ru and Os
respectively. Since this structure in the hybrid NFE-TB density of states
reflects that of the pure TB d band, it is not surprising that the observed
crystal structure sequence from hcp — bec — hep — fec across the non-

magnetic transition series is driven by the d bond contribution alone. As
shown in Fig. 8.9 the structural trend is correctly reproduced apart from the
noble metal end of the series where sp-d hybridization is required to obtain
the correct fcc crystal structure of Ni, Pd, and Pt.

The strong stability of the bec lattice with respect to either fcc or hep for
half-full bands is indicative of the bimodal behaviour that is displayed by
the bee density of states in Fig. 7.6. This can be tracked down to the
differences in the four-membered ring contribution to the fourth moment,
namely

yf{“:Tr H,, H,; H;, Hg (8.26)

where the Hj; are the 5 x 5 TB matrices that link the five d orbitals on atom
i to those on the neighbouring atom j. For the particular case of equilateral
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Fig. 8.9 The d bond energy of the bcc (solid line) and the hcp (dotted line)
lattices with respect to the fcc lattice as a function of the d band filling /4. (From

Pettifor (1972).)

planar rings with bond angle 6
u$ = 5[(1757 — 60460x? + 327870x* — 563500x° + 300125x8)/5792]h*,
(8.27)

where x = cos 0 and h* = (dde* + 2ddn* + 2dd5*)/5. This analytic expres-
sion was derived by Moriarty (1988) assuming the canonical parameters
ddo:ddn:ddé = —6:4:—1. The upper panel of Fig. 8.10 shows the resultant
rapid oscillations as a function of bond angle. They reflect the interference
between the angular lobes of the d orbitals as the electron hops around the
ring from 1 - 2 —» 3 —» 4 — 1. This angular prefactor would, of course, be
totally absent for s orbitals, since then this four-membered ring contribution
would be simply ssa*. The bec and fce planar rings, which are shown in the
lower panel of Fig. 8.10, have bond angles of 70.5° (109.5°) and 90°, so that
they provide negative and positive contribution to u, respectively. Conse-
quently, we find u5°® < ufec, which implies the greater bimodal behaviour of
the bee density of states. The difference in energy between the fcc and hep
lattices in Fig. 8.9 is about a factor of five smaller than the bcc—fce energy
difference and is more than two orders of magnitude smaller than the
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Fig. 8.10 Upper panel: the four-membered ring contribution to the fourth
moment of a d band as a function of the bond angle 6. (After Moriarty (1988).)
Lower panel: A four-membered ring contribution in the fcc and bcc lattices
respectively. Note that from the upper panel the fcc and bcc rings shown
contribute positive and negative contributions respectively to the fourth moment.

cohesive energy itself. The energy difference curve crosses zero essentially
four times, so that cubic versus hexagonal close-packed stability is driven
by the sixth moment .

The trivalent rare-earth crystal structure sequence from hcp — Sm type —
La type — fcc, which is observed for both decreasing atomic number and
increasing pressure, is also determined by the d-band occupancy. Figure
8.11(a) shows the self-consistent LDA energy bands of fcc lanthanum as a
function of the normalized atomic volume Q/Q,, where Q, is the equilibrium
atomic volume. We see that the bottom of the NFE sp band I', moves up
rapidly in energy in the vicinity of the equilibrium atomic volume as the free
electrons are compressed into the ion core region from where they are
repelled by orthogonality constraints (cf eqn (7.29)). At the same time the d
band widens, so that the number of d electrons increases under pressure
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Fig. 8.11 (a) The energy bands of La about the equilibrium atomic volume Q,
and the corresponding d band occupancy, N,. of La and Lu. £y, £,, and £, label
the centre of gravity, the top and bottom of the d band respectively; Iy is the
bottom of the NFE sp band. and £¢ is the Fermi energy. (b) The relative d bond
energies in units of the d bandwidth, W, of hcp (full curve), La structure type
(dashed curve), and Sm structure type (dot-dashed curve) with respect to fcc
as a function of the d band occupancy Ny4. The resulting stable structures for the
ideal and a non-ideal axial ratioc are also shown. (From Duthie and Pettifor
(1977).)

(as shown in the upper panel of Fig. 8.11(a)). Moreover, since La has a larger
ion core than Lu (cf Table 2.1), the number of d clectrons will also increase
on moving from right to left across the rare earth series from Lu to La (as
shown in the upper panel of Fig. 8.11(a)). This increase in the number of d
electrons drives the structural trend from hcp — Sm type — La type — fcc
as is demonstrated by Fig. 8.11(b), which compares the TB d bond energy
of the four different close-packed lattices. We see, therefore, that the running
of the string in Fig. 1.8 backwards through the periodic table from Lu to La
is consistent with its direction through the transition elements, since both
are in the direction of increasing N;.

8.6. Anomalous structures due to magnetism

The presence of magnetism amongst the 3d transition elements causes
magnanese, iron, and cobalt not to obey the structural trend that is observed
across the nonmagnetic 4d and 5d series. Manganese takes the a-Mn
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Fig. 8.12 The rectangular d band model of the (a} nonmagnetic, (b) ferro-
magnetic, and (c) antiferromagnetic states. (From Pettifor (1980).)

structure type with 58 atoms in the unit cell rather than the hcp lattice
displayed by isovalent technetium and rhenium. Iron and cobalt take the
bee and hep ground-state structures respectively, rather than the hep and
fcc lattices expected.

The magnetism amongst the 3d transition metals is well described by the
theory of band magnetism, which was proposed by Stoner in 1939. As we
have already seen in §3.4, a nonmagnetic system will become magnetic if the
lowering in the exchange energy due to the alignment of the electron spins
more than compensates for the corresponding increase in kinetic energy.
This may be demonstrated by the rectangular d-band model of Fig. 8.12. In
the nonmagnetic state, the up and down spin electrons are equivalent and,
therefore, have identical density of states, n; and n, as shown in Fig. 8.12(a).
In the magnetic state, the presence of a local magnetic moment, m, produces
an exchange field A on the atom of strength

A= Im, (8.28)

where I is the Stoner exchange integral and m = N] — N{in Bohr magnetons
(up) (cf eqn (3.40)). In the ferromagnetic state, all the atomic moments are
aligned in the same direction, so that an up-spin electron sees the atomic
level, E,4, shifted by —1A on every site and the down-spin electron shifted
by + 3A. Therefore, the densities of states, n, and n, are shifted rigidly apart
by A, as shown in Fig. 8.12(b). On the other hand, in the antiferromagnetic
state half the atoms have their moments aligned up and the other half have
their moments aligned down, so that an electron sees two types of sites with
energies E; + 1A. The problem is, therefore, analogous to that of the AB
alloy discussed in section 7.6 (cf Fig. 7.12) and the densities of states, n; and
n, (corresponding to an atom with net moment up) are obtained by skewing
the rectangular nonmagnetic densities of states as shown in Fig, 8.12(c).
The magnetic energy which accompanies the formation of a local moment,
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m, at each site, may be written as
Upag = 0T — 5Im? (8.29)

where the first term is the change in the kinetic energy and the second is the
lowering in energy due to exchange. The ferromagnetic (fm) state is created

by flipping m down-spin electrons from just below the nonmagnetic Fermi
level into the unoccunied un- s:nm states just above the nonmaonen(_: Fermi

Asd NS ALV My A= Y 222 SRR LR £ LI 411

level. This is accompanied by an increase in kinetic energy of (3m)/n(Ey.) per
electron, so that to second order

Un = 4m°/n(Ey) — &Im’ (8.30)

where in this present discussion n(Ey) refers to the nonmagnetic density of
states per spin. Therefore, the nonmagnetic state will be unstable to ferro-
magnetism if Uy, <0, that is 1if

In(Ez) > 1, (8.31)

which is the famous Stoner criterion. The equilibrium value of m in the ferro-
magnetic state is determined by the condition

In(N;, m) =1, (8.32)

where n(N,, m) is the average of the nonmagnetic density of states per spin
between the two energies corresponding to a band-filling of n; and n,
respectively (see, for example, Gunnarsson (1976)).

The magnetic energy of the antiferromagnetic (afm) state can be obtained
by adding up the band energies in Fig. 8.12(c) and subtracting off the
exchange energy that has been double-counted, that is

Ut = —36(Watm — WINS(10 — Ny) — (—3Im?), (8.33)
where from eqn (7.56)
= {1+ 3/W)}PW. (8.34)

Expanding eqn (8.34) to second order and using eqn (8.28), the nonmagnetic
state i1s found to be unstable to antiferromagnetism if

/W > [£N,(10 — N1~ L (8.35)

This is the rectangular d-band model criterion equivalent to the exact
second-order result, namely

afm

where x,(Eg) is the response function corresponding to the afm ordering
wave vector, q. The usefulness of the present model is that egs (8.33) and
(8.34) include terms beyond the second order, so that the equilibrium value
of the magnetic moment and energy may bé obtained explicitly. Equation
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(8.33) is stationary for

m = (1/y/3{[HNe(10 — N)T* ~ (W/1)?}72 (837)

when
Uitm = = [36WN,(10 — N;) — 1W2/I] (8.38)
The first term in eqn (8.38) represents the change in kinetic energy, 6T. The

LT
value of the moment given by eqn (8.37) is identical to that obtained by

filling the up and down spin bands in Fig. 8.12(c) and solving eqn (8.28)
self-consistently.

Figure 8.13 shows the regions of stability of the ferromagnetic and anti-
ferromagnetic phases as a function of the normalized exchange integral, I/ W,
and band filling N, for the rectangular d-band model. The ferromagnetic
(fm) and antiferromagnetic (afm) phases are stable for values of I/ above
the critical curves, ABC (fm) and DBE (afm), which are defined by eqn (8.31)
with n(E,.) = 5/W and eqn (8.35) respectively. In the region where both
phases are stable, the ferromagnetic and antiferromagnetic states have the
lower energy in region FBE and ABF respectively. The magnetic behaviour
across the 3d series can be accounted for qualitatively by assigning the 3d
transition metals values of N, in Fig. 8.13, which fix nickel with 0.6 holes as
found experimentally. The corresponding values of I/W are marked by the
crosses in Fig. 8.13, with their magnitude increasing across the series, since
the bandwidth decreases from Cr to Ni just as observed in Table 7.1 for the
corresponding 4d series from Mo to Pd. The Stoner exchange integral, I, is
approximately constant across the series, taking the value, I ~ 1 eV, so that

W = UA COITeSPOIIClS to a rcCIangmar d bandwidth of 5 eV wmcn 1S a
reasonable estimate for iron (cf Fig. 7.5).
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Fig. 8.13 The regions of stability of the ferromagnetic and antiferromagnetic
states as a function of the normalized exchange integral //W and d band filling
Ny. The crosses mark plausible values of //W across the 3d series. (From Pettifor
(1980).)
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The positions of the crosses in Fig. 8.13 imply that Cr, Mn, and Fe are
antiferromagnets with moments of 0.7, 1.6, and 0.9u; respectively, whereas
cobalt and nickel are ferromagnets with moments of 1.6 and 0.645 respectively
(resulting from fully occupying the up-spin d band with five electrons). This
is in reasonable agreement with experiment where beec Cr and fec Fe
are antiferromagnets with moments of about 0.6u5, whereas hcp cobalt and
fcc nickel are ferromagnets with moments of 1.7 and 0.6up respectively.
Although the Stoner criterion for ferromagnetism is not satisfied within the
rectangular d band model for iron (cf Fig. 8.13), the nonmagnetic density of
states of bce iron has a large peak at the Fermi energy (cf Fig. 7.6), thereby
driving the bcc lattice ferromagnetic.

The anomalous crystal structures of iron and cobalt may now be under-
stood. Assuming that the up-spin d band in the ferromagnetic state is full
with 5 electrons (cf Fig. 8.12(b)), then the down-spin d band will contain 2.4
and 3.4 clectrons in iron and cobalt respectively, taking the 7.4 and 84 d
electron total assigned in Fig. 8.13. Therefore, the up-spin electrons contribute
nothing to the d-bond energy. The down-spin electrons, on the other hand,
are equivalent to a fractional d-band occupancy of 4.8/10 and 6.8/10
respectively, so that from Fig. 8.9 they will drive the ferromagnetic iron lattice
beec and ferromagnetic cobalt lattice hep as is observed experimentally.

In fact, iron exhibits all three common metallic crystal structures bcece, fec,
and hcp within its pressure—temperature phase diagram, as is shown by the
inset of Fig. 8.14. The transition from the bcc « phase to the hcp ¢ phase
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Fig. 8.14 The theoretical phase diagram of iron compared with the experimental
(inset). (From Hasegawa and Pettifor (1983).)
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Table 8.1 Coordination polyhedra of the a-Mn structure type

Site Number of Local coord. Magnetic Size of atom
atoms per polyhedron moment
unit cell

I 2 16 Large Large

i 8 16 Large Large

I 24 13 Small Small

v 24 12" Small Small

under pressure follows from eqn (8.30) because the stabilizing magnetic
cnergy of the bee lattice with respect to the nonmagnetic hep lattice falls as
the density of states at the Fermi level decreases with increasing bandwidth.
The transition from the bce o phase to the fcc y phase as the temperature is
increased is due to large magnetic fluctuations building up within the iron
atoms on the fcc lattice, which can be modelled qualitatively by a finite
temperature theory of band magnetism (see Fig. 8.14). The return to the bce
& phase at still higher temperatures is driven by the additional magnetic
entropy for the bcc lattice that arises from the gradual destruction of the
short-range magnetic order as the temperature increases above the Curie
temperature (Kaufman et al. (1963)).

The anomalous ground-state structure of elemental manganese is also
stabilized by magnetism. The a-Mn structure is taken by alloys of the
isovalent 4d and S5d elements, technetium and rhenium, with transition
elements to their left in the periodic table, the so-called y phases, such
as Nbg 35Tcq 75, Z19.14TCo 86, Tg.25R€q. 75 and Hi, 14Reg g6- The structure
is characterized by four non-equivalent sites as listed in Table 8.1. Amongst
the binary y-phases the two sites with 16-fold coordination are found to
contain on average the larger alloying atoms to the left of Tc and Re, whereas
the 12-fold and 13-fold coordinated sites contain on average the smaller
majority atoms Tc or Re. Elemental manganese, on the other hand, has
- atoms with large moments situated at the centre of the 16-fold coordination
polyhedra and atoms with small moments at the centre of the 12- and 13-fold
coordination polyhedra. This is consistent with the fact that the onset of
magnetism is accompanied by an expansion of the lattice that scales roughly
as the square of the local magnetic moment. Thus, the presence of magnetism
allows elemental manganese to behave like the neighbouring binary y-
phases, where the atomic size difference between the constituent atoms helps
stabilize this structure type for favourable electron-per-atom ratios or band

filling.
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8.7. Structural trends within the pd-bonded
AB compounds

The atomic size difference plays an important role in helping to stabilize
different structure types within binary systems. This is most easily demonstrated
by considering the relative stability of the NaCl, CsCl, and cubic ZnS
structure types within a hard-core ionic model, in which all the bonding
arises from the electrostatic interaction between the positive and negative
ion cores. These long-ranged coulomb interactions may be summed over all

the lattice to give the Madelung energy per AB unit, namely
UMadelung = - a(2262/47[80R), (839)

where R is the nearest-neighbour distance, a is the Madelung constant, taking
the values o = 1.748, 1.763, and 1.638 for the NaCl, CsCl, and cubic ZnS
lattices respectively (see, for example, Kittel (1986)).

The relative stability of the different structure types may now be calculated
as a function of the radius ratio, R, /R _, where R, and R _ are the hard-core
radii of the positive and negative ions respectively. Figure 8.15 shows that
when the ions are of equal size, the CsCl lattice with eight nearest neighbours
and the largest Madelung constant is the most stable. However, as the radius
ratio decreases, the structural trend from CsCl — NaCl — ZnS is found. The
structural transition from CsCl to NaCl is a direct consequence of the fact
that the volume of the CsCl lattice is determined solely by the second

nearest-neighbour anion-anion interactions for

o
i S aCigil - i i i i

R,/R_ <32 -1=0732, (8.40)

rather than by the first nearest-neighbour anion—cation interaction. For
small values of R, satisfying eqn (8.40) the cations rattle around inside
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Fig. 8.15 The Madelung energy in ionic compounds as a function of the radius
ratio for CsCl, NaCl and cubic ZnS lattices (assuming the anion radius, R _, is held
constant).



Structural trends within the pd-bonded AB compounds 233

the simple cubic cage of anions, so that the volume and hence the Madelung
energy is constant (for fixed R_). This accounts for the discontinuity at 0.732
in the CsCl curve in Fig. 8.15. A similar discontinuity in the NaCl curve
occurs for the much smaller ratio of

R,/R_= _ 242 _ 1 = 0414 (8.41)

In practice, this hard-core model is too simple to predict reliably the
ground-state structure of ionic compounds such as the alkali halides that
are located in the upper left-hand corner of the AB structure map in
Fig. 1.9. Nevertheless, it provides a simple introduction to the importance
of the radius ratio in determining structural stability.

Most of the binary compounds within the AB structure map are not good
insulators that are held together by ionic bonds but are metals or semi-
conductors whose bonding 1s well described by the TB model. In this section
we will, therefore, consider the relative stability of the seven most frequently
occurring structure types amongst the pd-bonded AB compounds that are
displayed in the upper panel of Fig. 8.16. The explicit contribution of the
valence-s electrons will be neglected, so that we need only consider the
bonding between the valence p and d states on the metalloid and transition
element sites respectively. Within the canonical TB theory of Andersen (1975)
the bond integrals are given explicitly by

dd(s, 7, 8) = (=6, 4, — 1)(ra/R)? (8.42)
pp(o, m) = (2, — 1)(ry/R)’ (8.43)
pd(o, ) = (=3, 3V/)(rgra)/*/R%, (8.44)

where R is the internuclear separation and r, and r, are constants character-
istic of the particular A and B constituents Choosing a degree of normalized
hardness of the potential, a, = 1, the repulsive pair potentials fall off with
distance as the square of the corresponding bond integrals, that is

®,4(R) = C2/R'® (8.45)
@, (R) = C%/R® (8.46)
D4(R) = [D,,(R)D4a(R)]Y? = C,C,/R® (8.47)

where C, and C, are constants characteristic of the particular A and B
constituents.

The structural energy difference theorem requires that we prepare the
lattices so that they all display the same repulsive energy. It follows from
eqs (8.45)—(8.47) that the repulsive energy per AB unit may be written

rep (C Cd/QSIG )(apd %g— 1add + %’Qapp) (848)
where
o = A1) (QAE/RYPATIHY (8.49)
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Fig. 8.16 (The upper panel shows the structure map (,,, x4) for 169 pd bonded
AB compounds, where y, and x4 are values for the A and B constituents of a
certain chemical scale y which orders the elements in a similar way to the

relative ordering number, 4. The lower panel shows the theoretical structure map

(N, Ng), where N, and Ny are the number of p and d electrons respectively.
(From Pettifor and Podloucky {1984).)

with 49 = @55, &,, = «;;, and a,3 = ¢;, and with the sum in eqn (8.49)
extending over the relevant dd, pp, or pd interactions on the lattice. The
quantity, Q,p, is the volume per AB unit. The relative size factor, & is
defined by

R = (C,/C)Q3E (8.50)

where the volume dependence enters as the result of the different distance
behaviour of the p and d potentials ®,, and ®,, respectively. It is a measure
of the relative size of the p and d atoms as can be seen as follows. Consider
a pair of transition-metal atoms a distance 2Ry = Q17 apart. Then from egs
(8.45) and (8.46) a pair of metalloid atoms will show the same repulsive
energy when they are separated by the distance 2R, such that

(R,/Ry)* = A. (8.51)

Thus, # generalizes the concept of the relative size of hard spheres to the
case where the mutual interaction varies smoothly rather than discontinuocusly.
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The repulsive coefficients, a,., depend only on structure and not on
volume. They are given in Table 8.2, where the measured internal coordinates
of MnP, FeB, CrB, and FeSi have been used to characterize the corresponding
structure types. Two choices of the axial ratio, c¢/a, have been chosen for the
NiAs structure types; the first corresponds to the observed ratio of 1.39 for
the NiAs compound, the second to the ideal ratio of (8/3)!/2. The repulsive
potential in eqn (8.49) has been summed over the nearest neighbours only,
other than for the pp coefficients of CsCl and FeSi, where further neighbours
were included to generate better than 59 accuracy. The values of the
repulsive coefficients in Table 8.2 reflect the local atomic environment. The
metal (M) and metalloid (X) sites on the cF8 (NaCl) 6/6 lattice are both
sixfold octahedrally coordinated with X and M atoms respectively, which
form two interpenetrating cubic close-packed lattices. NaCl can, therefore,
be described as a cubic close-packed arrangement of X atoms with all the
octahedral holes occupied by M atoms. Structure type hP4 (NiAs) 87%/6’, on
the other hand, consists of a hexagonal close-packed arrangement of X atoms
with the octahedral holes occupied by M atoms as shown in Fig. 1.10. The
X sites are, thus, sixfold coordinated by a trigonal prism of M atoms, which
themselves reside on a simple hexagonal lattice with eight nearest neighbours.
The oP8 (MnP)10™/8"” structure type is an orthorhombically distorted

Table 8.2 The repulsive coefficients a,. The

number in brackets gives the number of atoms .

included in the repulsive sum in eqn (8.49).
(From Pettifor and Podloucky (1986).)

%pd Udd %pp
NaCl 38.2 3.8 6.0

(6) (12) (12)
NiAs 36.5 15.2 6.2
(c/a = 1.39) (6) (8) (12)
NiAs 38.2 6.7 6.0
(c/a = 1.633) (6) (8) (12)
MnP 33.3 7.8 10.0

(6) (8) (12)
CsCl 25.2 6.0 7.5

(8) (6) (6 +12)
FeSi 26.6 7.9 7.7

(7) (6) (6 +12)
FeB 2562 5.1 194

(7) (10) (10)
CrB 24.0 5.2 22.4
(7) (10) (10)
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variant of NiAs in which the X and M sites are surrounded by distorted
trigonal prisms and octahedra respectively (cf. Fig. 1.9). The metal and
metalloid sites on the cP2 (CsCl) 14/14 structure type are both surrounded
by eight unlike atoms at the corners of a cube. The like atoms lie on a simple
cubic lattice with six first- and twelve second-nearest neighbours respectively.
The cP8§ (FeSi) 13’/13’ structure type is related to CsCl but has seven nearest
neighbours of opposite type instead of eight (cf. Fig. 1.9). The very similar
oP8 (FeB) 17/9 and oC8 (CrB) 17/9 structure types are built up from
zigzag chains of X atoms, which are surrounded by trigonal prisms of M
atoms as shown in Fig. 1.12. The stacking together of these chains leads to
an additional metal atom entering the coordination shell of the X site so
that there are seven unlike nearest neighbours.

The relative prepared volumes, which are required to satisfy the structural
energy difference theorem, may be obtained from eqn (8.48) by setting
AU,., = 0. The resultant first-order change in volume AQ is given by

AQ  6Aayy + 3R ' Aagy + 3RAx,

= — , (8.52)
Q 160,3 + 102~ “0gg + 6%uy,

where the Aa,,. are the corresponding changes in the repulsive coefficients.
Therefore, the fractional change in volume is a function only of the relative
size factor, #, so that a universal curve may be plotted for each structure
with a given set of internal coordinates. Figure 8.17 shows these curves with
the CsCl lattice as reference, using the values of the repulsive coefficients
in Table 8.2. As expected, the NaCl lattice has the smallest volume at either
end of the # scale because, as C, or C; tends to zero, the repulsion 1s
dominated by one or other of the close-packed fcc sublattices. On the other
hand, in the middle of the scale where the nearest-neighbour pd repulsion
dominates, the volume of the NaCl lattice with six nearest neighbours is
about 139 larger than the CsCl with eight nearest neighbours. The packing
of hard spheres would have predicted the much larger volume difference
of 30%.

The upper NiAs curve in Fig. 8.17, which corresponds to the observed
axial ratio of 1.39 for NiAs, shows an increase in fractional volume with
decreasing # due to the large value of ay, in Table 8.2. This arises from the
strong dd repulsion within the chain of atoms lying along the c-axis of the
simple hexagonal metal sublattice. If the small Ni atoms are replaced by the
larger transition metal atoms such as Ti or V from near the beginning of
the series, then the axial ratio is observed to increase markedly in order to
accommodate the increased dd repulsion. The lower NiAs curve is drawn
for ¢/a = 1.633, with this ideal axial ratio being adopted by MnTe. We see
from Table 8.2 that oy, now assumes a value more typical of the other
structure types. The FeB, CrB curve in Fig. 8.17 is very strongly dependent
on & as a result of the strong pp repulsion along the zigzag chains of p
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tan 1 R

Fig. 8.17 The fractional change in volume AQ/Q with respect to the CsClI
lattice versus the relative size factor, #. The upper and lower NiAs curves
correspond to c/a = 1.39 and (8/3)'/? respectively. (From Pettifor and Podloucky
(1984).)

atoms that thread the boride lattices. This is reflected in the anomalously
large value of «,, for FeB and CrB in Table 8.2.

The structural stability of the pd-bonded AB compounds may now be
predicted by comparing the TB bond energy of the different lattices at the
volume determined by the relative size factor, #. Apart from the borides
and NiAs, the fractional volume changes in Fig. 8.17 are not too sensitive
to the particular choice of £ for 0.3 < # < 3, so that the value # = 0.8 has
been chosen that is characteristic of the 4d and Sp elements. Figure 8.18
shows the resultant structural energies as a function of band filling N for
the case where the atomic p level on the A site and the atomic d level on
the B site are equal, that is AE,; = E; —~ E, = 0. As N increases we find the
structural sequence from CsCl — FeSi — CrB —» NaCl -» NiAs — NaCl. The
low band-filling stability of the CsCl, FeSi, and CrB lattices results from a
sizeable third moment, p,, which arises from the presence of many three-
membered rings in these close-packed structure types. On the other hand,
the absence of nearest-neighbour three-membered rings in the more open
NaCl and NiAs structure types accounts for their stability for N > 5.5. The
minimum in the NaCl and NiAs curves at N = 6 corresponds to a minimum
in their density of states at the Fermi energy when all the pd-bonded orbitals
are occupied.

The structural energy curves depend not only on the electron-per-atom
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Fig. 8.18 The structural energy as a function of band filling N of the
seven different structure types with AE 4 = 0. (From Pettifor and Podloucky

(1984).)

ratio or N but also on AE 4 = E4 — E,, which is a measure of the Mulliken
electronegativity difference. However, rather than plotting the most stable
predicted structure on a structure map of AE_, versus N, the rotated frame
of N, versus Nj is used instead in order to make direct comparison with the
experimental results in the upper panel of Fig. 8.16. The terms, N, and Nj,
stand for the number of p and d valence electrons associated with atoms A
and B respectively. The resulting theoretical structure map is shown in the
lower panel of Fig. 8.16. We observe that the structural sequence from
CsCl — FeSi —» CrB — NaCl — NiAs - NaCl is found along the diagonal
from the lower left-hand corner to the upper right-hand corner, which is
consistent with Fig. 8.18 for AE,; = 0.

We see that the TB model predicts the broad topological features of the
experimental pd-bonded AB structure map. In particular, NaCl, situated in
the top left-hand corner of the map adjoins NiAs running across to the right
and boride stability running down to the bottom. The stability of MnP is
found in the middle of the NiAs domain and towards the bottom right-hand
corner, where it joins CsCl towards the bottom. The main failure of this
simple pd TB model is its inability to predict the FeSi stability of the
transition-metal silicides, which is probably due to the neglect of the valence
s electrons within the bonding. Thus, the observed stability of the NaCl,
CsCl, NiAs, MnP, and boride domains amongst the pd-bonded AB com-
pounds is determined solely by the quantum mechanical covalent bond
energy, once the bond lengths have been adjusted to account for atomic size
differences. The classical electrostatic Madelung energy plays no role in these
metallic systems because the atoms are perfectly screened and, hence, locally
charge neutral.
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8.8. Bond order potentials

The link between the oscillatory behaviour of the structural energy curves
and the moments of the local density of states can be made explicit by writing
the bond order of a given bond as a many-atom expansion about that bond
(Pettifor (1989)). Considering for simplicity the case of s orbitals, on a lattice
where all sites are equivalent, the bond order can be expressed exactily (Aoki

(1993)) as

2
© = <= {12(N) + Z5(N s ) + £NLAW B = B3/ = 20 + -,
NV E '

(8.53)

where « is the coordination of the lattice and f,(N) represent normalized
response functions that depend on both the band filling, N, and the local
atomic environment through the moments, y,. If the local density of states
falls on the unimodal-bimodal boundary with the dimensionless shape
parameter, s = 1, then the response functions take the particularly simple
form

sin(n ~ 1)¢¢ _ sin(n + 1)¢F:| (8.54)

2
(N ==
B(N) [ n—1 n+ 1

T
where ¢y is related to the band filling, N, through
N = 2¢e/m)[1 - (sin 26¢)/2¢¢]-

These response functions are plotted in Fig. 8.19 where we see that the
number of nodes (excluding the end points) equals (n — 2).

The many-atom expansion for the bond order, therefore, formulates
mathematically what we have already found earlier regarding the close link

0.8 A
c [: A L2
A
'% 0.4 X3 » Xs
c d X6 N
5 --.__.-\. - .\-
L] N ""-Jr — ———y _}-"'-.
o “"‘--.,““___.,_...-"'. =
;c.'? ~0.4} £
4
-0.8 . s -
0.0 0.5 10 1.5 2.0

Number of valence electrons

Fig. 8.19 The normalized response function £,, as a function of the number of
valence s electrons per atom for the case of the dimensionless shape parameter,
s = 1. (From Pettifor and Aoki (1991).)
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Fig. 8.20 Convergence of the bcc—fcc d bond energy (full curve) and hep-fee
d bond energy (dashed curve) with respect to the number of terms in the bond
order potential expansion. The left, middle and right panels correspond to keeping
terms up to fourth, sixth and eighteenth moments respectively. (From Aoki

(1993).)

between the oscillatory behaviour of the structural energy curves and the
moments of the local density of states. The first term in eqn (8.53)
corresponds to our previous bond order potential expression, eqn (8.11), if
#2(N) = 1. This term reflects the second moment of the density of states and
gives rise to the inverse square-root dependence on the local coordination
that is outside the curly brackets in eqn (8.53). The second term in the
many-atom expansion results from the skewness of the bands, fi;/43/2, so
that the prefactor, §;(N), increases the bond order for less than half-full
bands but reduces it for more than half-full (cf Fig. 8.19). The third
term in eqn (8.53) reflects the unimodal-bimodal behaviour of the bands,
since the moment expression inside the square brackets is (s — 1), where s
is the dimensionless shape parameter, eqn (4.58). Thus, for s < 1 the prefactor

£4(N) will lead to this contribution enhancing the bond order for near]y
1‘\!\"‘.‘. 1l lhande it sadn tha hand Aardar far naarlv amnt

'lu.ll Udalivio UulL ].U\.IUUILJ.E LI.I.U UUI..I.\-I Wl Wwl IV ll\wullj UIILPLJ Ul llball! fu}}.

bands, as expected. Figure 8.20 shows that the bond order expansion
converges rapidly, the hcp — bec — hep — fee structural trend across the
nonmagnetic transition metal series being found by keeping terms only
up to . These angularly dependent many-atom bond order potentials may
thus be used for performing realistic atomistic simulations of defect behaviour
in intermetallics and semiconductors.
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Problems

The first digit in the question number gives the corresponding chapter to
which the problem relates.

1.1

1.2

2.1

Plot the nearest neighbour histogram, showing the number of atoms
in a given neighbouring shell versus shell distance, up to and including
fourth nearest neighbours for the following structure types: (1) face-
centred cubig; (ii) body-centred cubic; (iii) hexagonal close-packed with
ideal axial ratio; and (iv) diamond. Hence, using the maximum-gap rule
assign the appropriate nearest neighbour atoms to the local coordination
polyhedron of each structure type, sketch and label with the relevant
Jensen notation. Show that the fcc and ideal hep histograms differ only
beyond the second shell of neighbours.

Discuss what is meant by a Bravais lattice and the Pearson notation.
Sketch the unit cells for fcc, bec, hep and diamond giving the corre-
sponding Pearson notation.

(i) NaCl and NiAs are the first and fifth most frequently occurring
AB structure types respectively. By referring to Fig. 1.10 explain why
the key to the AB structure map labels them cF8 (NaCl) 6/6 and hP4
(NiAs) 8'V/6' respectively. Comment on why it is not unexpected that
the small TiAs and NbAs domains are located at the boundary between
the main NaCl and NiAs domains within the AB structure map.

(i1) CsCl, TiCu and NaTl are three different ordered structure types
with respect to an underlying bec lattice. By referring to Fig. 1.11
explain why they are assigned the Pearson notation cP2, tP4 and cF16
respectively. Locate the small domains of TiCu and NaTl stability in
the AB structure map and show that they occur, as expected, near
domains of CsCl stability. Show that the T1 sites in NaTl form the
tetrahedrally coordinated diamond lattice. Hence, give an explanation
for the occurrence of this Zintl phase by assuming that all the valence
electrons transfer from the less electronegative to the more electro-
negative sites.

Describe how the photoelectric effect and electron diffraction demon-
strate the particle-like character of radiation and the wave-like character
of particles respectively. Show how Heisenberg’s uncertainty principle
embraces the concept of wave -particle duality.
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An electron, moving in one dimension, is confined by rigid walls to
the region 0 < x < L. By solving the Schrodinger cquation find the
eigenvalues E, and the eigenfunctions ,. Show that the eigenfunctions
are orthogonal in that the overlap integral between the different states
vanishes, i.e.

L
f Y, dx =0 for n # m.

¢

Evaluate the first excitation energy of the electron from its ground state
for the cases L = 1 A (an atomic sized ‘quantum-dot’) and L = 1 ¢m
(a short metallic pin), giving the answers in eV.

Estimate the ground state energy using Heisenberg’s uncertainty
principle and compare with the exact result.

The dominant contributions to the binding energy per electron of
jellium can be written in the form

U = A/r2 — B/r,

where 4 and B are constants and r, is the radius of the sphere containing
one electron on average. Show that the two terms correspond to the
repulsive kinetic energy of a free electron gas and the attractive potential
energy arising from the exchange-correlation hole respectively. Evaluate
the constants 4 and B (in atomic units) assuming for the latter case
that one electron is excluded from a sphere of radius r, about the given
electron. Find the value of the effective electronic radius and binding
energy at equilibrium-and compare with the values of 4.0 au and 1.1 eV,
respectively, for metallic sodium.

The radial functions for the 1s, 2s, and 2p states of the hydrogen atom
are given by

Ri(r) =2e7",

o |,
Rofr) =— (1 —3re "7,

2
1
\/2_4

Plot these radial functions and the corresponding radial probability
densities. By differentiation of the radial probability density show that
the maximum probability of locating the electron a distance r from the
nucleus occurs at the first and second Bohr radii for the 1s and 2p
states respectively. Where does the maximum probability occur for the
2s state? Why does the 2s radial function have one node but the 2p
radial function is nodeless (outside the origin)?

RZp(r) = —r/2'

rec
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3.1

3.2

4.1

Show that the average or expectation values of the radial distance r
for these three radial functions satisfy

fo=[1+41 ~ Il + 1)/n*]n

Show that the LCAO secular equation for the AB dimer can be written
in the form of eqn (3.16), namely

r = N/

(—iAE —(E—~E) h-(E-E)S C“\~0
(h~(E~E)S %AE~(E~E))(CB)

stating clearly any approximations made and the significance of the
terms h, S, and AE. Hence, show that the bonding eigenfunction is given
to first order in § by

Wap = Cal¥a + Cp¥p
where

R
1+

1
CA“ﬁ_ J1+ 6%

1 ’1 §+8 V2

CB:\/i_ JI+ 6

with & = AE/2}h}. Write down the corresponding electronic charge
density ‘and show that it leads naturally to definitions for the degree of
ionicity «; and the degree of covalency o, that satisfy

ﬂ; -+ Nz =1
WI ] wc Bl d

Obtain the ¢ and n molecular orbital eigenstates for the O, dimer with
a bond length of R = 2.3 au and s and p atomic energy levels E; and
E, of —29.1 and —14.1¢V, respectively, using Harrison’s matrix
elements, namely
(ssa, ppo, spo, ppr) = (—2.80, 6.48, 3.68, —1.62)13.6/R*eV.

Show that the oxygen dimer is predicted to be paramagnetic since the
highest occupied level is a doubly degenerate = state in which the two
electrons will have parallel spin by Hund’s rule. (This agrees with
experiment unlike valence bond theory’s prediction of diamagnetism
due to all electrons being paired spin-up—spin-down.)

The interaction between noble gas atoms can be represented by the
Lennard-Jones-type potential

- {521

where ay = (4 — 1)/A defines the degree of normalized hardness of the
interatomic potential. Plot this potential for a;, = 4, 4, and 1, respectively,



42

4.3
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where a, = 4 corresponds to the usual Lennard-Jones potential and
a, = 1 corresponds to a hard-core potential.

Show that the equilibrium bond length for a tetrahedron of four
noble gas atoms is given by

RY(A) = AL/66a = l)th

Hanro ncn-\n the ctrictural ensrov A1Ffprpnr~p thearem comnare fhp
A LALW [ W § b 4 4L ™ ULEJ llllllll LAlW WL Wwill whS L llyu;v

energies of the four-atom linear chain, square, and rhombus with that
of the tetrahedron for values of the degree of normalized hardness
a, = 1 1 and 1, respectively. Comment on how the relative stability of
the different four-atom clusters is affected as the interatomic potential
becomes softer. Check that your results are consistent with the direct
evaluation of the binding energy curves.

Find by diagonalizing the TB Hamiltonian matrix the eigenvalues for
four s-valent atoms arranged as a linear chain, square, rhombus or
tetrahedron, assuming only nearest neighbour bonding. Check your
answer against the eigenspectra shown in Fig. 4.4 in units of h_, the
bond integral corresponding to cluster c¢. Use the structural energy
difference theorem to evaluate the appropriate value of h, for each
cluster in terms of that for the dimer h, assuming the distance
dependence of the repulsive pair potential varies as the square of the
hopping integral. Plot the bond energy per atom as a function of the
number of valence electrons for the four different clusters. Using your
predicted eigenspectra evaluate the moments u,, u;, and yu, for each
cluster. Why does each cluster have the same value of u,? Check your
predicted values for 5 and i, by evaluating them directly by counting
all paths of length 3 and 4 in the clusters respectively. Hence, explain
why we find the structural trend from tetrahedron to rhombus to linear
chain to square as the energy levels are occupied with electrons.

Discuss what is meant by the bond order. Why is it a powerful concept?

Derive by yourself the variation of the bond order with electron
count that is shown in Fig. 4.8 for the case of four s-valent atoms that
are configured as a linear chain, square, thombus, and tetrahedron,
respectively.

Find the eigenspectra of the trimer AH, as a function of the bond angle
28, neglecting any direct hydrogen—hydrogen bonding and ignoring the
valence s orbitals on atom A. Why are the eigenfunctions either even
or odd with respect to the mirror plane of the trimer? Show that within
this approximation you expect BeH, to be linear whereas H,O should
be bent with a bond angle of 90°. Why do you think water has the
larger bond angle of 104°? (The more theoretical student can demon-
strate the role of sp hybridization in increasing the bond angle above
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5.1

Ln
ro

5.3

6.1

90° by including the 2s orbital explicitly and finding the new eigenspectra
and energy variation with bond angle, assuming Harrison’s values for
the bond integrals which are given in Question 3.2 using R = 1.8 au.)

Using the spherical jellium model explain the expected special stability
of sodium clusters containing the ‘magic number’ of atoms 2, 8, 18, 20,
34, 40, 58, .. ..

Explain the concept of a pseudopotential. Aluminium is fcc with a
lattice constant of a = 7.7 au. It is well described by an Ashcroft empty
core pseudopotential of core radius 1.1 au. Show that the lattice must
be expanded by 14% for the 27/a(200) Fourier component of the
pseudopotential to vanish.

The total energy (in Rydbergs) per atom of a NFE metal with valence
Z may be written to first order in the pseudopotential as U = ZU,, + Uy
where

221 0916
Usg = =5~ —
rS rS

and

_372 R \2 2
U, - Z[l—( c)]+1_25_
RWS RWS RWS

., R., and Ry are the electronic, Ashcroft and Wigner—Seitz radii,
respectively.

Derive the contribution U,, by making the Wigner—Seitz sphere
annrAavimatian 1 whinh ;nl'nrinn" alantrAactatis intarastinne ara naglastad
any VALILIAQLIVLL, 111 YWilivl]l 1Ll Tl Vvivvllvalallv llilviavlivilo alv llbs.lb\-rl.bu

and the intra-cell potential energy is approximated by that of the
Wigner—Seitz sphere.

Show that at the equilibrium volume the bulk modulus
B = Vd2U/dV?
may be written
B = (0.200 + 0.815RZ%/r)B,.
where
B,. = 0.586/r3.

Evaluate B/B,, for Na and Cu by fitting R_ to their Wigner—Seitz radii
of 3.99 and 2.67 au respectively (assuming Z = 1 in both cases).
Compare with the experimental values of 0.80 and 2.16 respectively and
comment on the large discrepancy for Cu.

The relative structural stability of a NFE metal is determined by an
oscillatory pair potential of the type

e—x;R

¢(R) = A cos(2k;R + a5)
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where ky, =096 ke and ky = 0.29 kg (kg is the Fermi wave vector).
Assuming that only the twelve first nearest neighbours contribute in a
close-packed lattice (fcc or ideal hep) and the fourteen first and second
nearest neighbours in a bee lattice, find the expected domains of bec
or close-packed stability within the (Z, «3) structure map where «,
ranges from —7 to # and Z runs from 1 to 4. Assume that bce takes
the same equilibrium volume as close-packed. Comment on any
differences from the structure map shown in Fig. 6.12.

Discuss the origin of the Hume—Rothery electron phases within the
framework of Jones’ original nigid-band analysis. How does second-
order perturbation theory help quantify Mott and Jones’ earlier
supposition on the importance of the free electron sphere touchlng a
Brillouin zone boundary?

Consider a simple cubic lattice of p valent atoms which form nearest

neighbour bonds only. Show that the bandstructure E(k, 0, 0) is given
within the tight binding approximation by

E, + 2ppo cos ka + 4ppn
E(k, 0,0) = { E, + 2ppr cos ka + 2(pps + ppr)
E, + 2ppn cos ka + 2(ppo + ppn)

where E, is the atomic energy level. Show that ppe is positive whereas
ppr is negative and that we expect |pp7n| « ppo. Hence, taking ppn = 0,
plot the bandstructure from the centre of the Brillouin zone to the zone
boundary at n/a(100). Noting that the crystal has cubic symmetry,
comment on why the bands are triply degenerate at (0, 0, 0) but split
into a single and a doubly degenerate level for (k # 0, 0, 0).

Consider an infinite linear chain of sp-valent atoms lying along the
z-axis with lattice spacing a. The atomic s and p, orbitals form strong
o bonds between nearest neighbours along the chain. The p, and p,
orbitals form much weaker = bonds and may be neglected. The Bloch
functions may, therefore be written as linear combinations of the atomic
s and p, orbitals, namely

Yu(r) = cYilr) + c¥k(r)

where

Vi) = ——Y B (r — R)
NR

wherea = s,p,and k = (0,0, k), R = (0, 0, na) (n an integer). Show that
the resultant tight binding secular determinant takes the form
E, + To(k) — E(k) Toolk)
T, (k) E, + T,,(k) — E(k)
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where

];a.’ = Z eik.R f‘pa(r) Vatom(r)q&a'(r - R) dr.
R#0

Derive the matrix elements T, in terms of the nearest neighbour bond
integrals, sso, ppo and spo, namely

T.. = 2sso cos ka,

T,, = 2ppo cos Kka,
and
I,, = Ty, = 2i spo sin ka.

Assume that |ssg| = ppe = h and that the atomic s and p energy levels
are the same and may be taken as the zero of energy (ie. E, = E, = 0).
Show that the bandstructure is given by

E(k) = +2[spa? + (h*> — spc?) cos? ka]'/2.

Plot the bandstructure from k = 0 to k = n/a in the absence of any
sp-hybridization (i.e. spe = 0) and deduce that there is a single continuum
of states of width 4h. Show that in the presence of sp-hybridization of
strength spe = h the bandstructure splits into two flat bands which are
separated by a hybridization or energy gap of 2spo.

(i) Discuss the origin of the different contributions to the binding
energy of transition metals that are indicated in Fig. 7.11. Show how
the parabolic variation of the cohesive energy with band filling is
accounted for by Friedel’s rectangular d-band approximation.

(ii) Discuss the origin of the observed negative heats of formation of
transition metal alloys with average d-band fillings around half-full but
positive heats of formation for nearly empty or full d-bands.

Discuss the origin of the hybridization gap in sp-valent semiconductors.
Show that within a simple model the hybridization gap exists provided

AE,, < 2|h

where AE,, = E, — E, and h s the hybrid bond integral. Using Fig. 2.13
and Harrison’s values for the bond integrals in Question 3.2, estimate
the value of AE,,/2|h| for C, Si, Ge, and Sn with respect to the diamond
structure with lattice constant 6.75, 10.26, 10.70 and 12.27 au respectively.

(i) Show that the second moment approximation is unable to
differentiate between the stability of different.structure types within an
s-valent nearest neighbour model with ®(R)a[h(R)]>.
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(ii) Show that the fourth moment contribution from hopping out and
back along three p-valent atoms with bond angle 4 is given by

) = ppo* cos?

for the case where ppn = 0.

Calculate the normalized fourth moments p,/u3 for the dimer,
helical linear chain with bond angles of 90°, graphitic sheet with bond
angles of 120°, and diamond lattice with bond angles of 109° (assuming
ppr = 0). Amongst these structures which do you expect to be the most
stable and the least stable for a half-filled p shell?

(iii) Explain why s-valent hydrogen is dimeric but sp-valent silicon
is diamond-like. In group IV, why are the graphitic form of carbon and
the close-packed form of lead more stable than diamond?
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equilibrium bulk properties 130
pair potential 154, 159
screening cloud /44
structural stability 161-3
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band width
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volume dependence 183—4
barium, equilibrium bulk properties 130
basis vector 116
beryllium
atomic energy levels 45
density of states 125, 126
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equilibrium bulk properties 130
structure 3
Bessel function, spherical 108
B-tin, binding energy curve 47
Bethe lattice 220
bimodal versus unimodal behaviour, see
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binding energy
coordination number dependence 132,
133, 190
within first order perturbation theory
127-9
jellium 34
within second-order perturbation theory
148-56
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binding energy curves
of Ge and Si 47
of hydrogen dimer 62
of jellium 35
of sodium 128
of transition metal aluminides 48
black-body radiation 22-3
Bloch's theorem 113, 116, 174
body-centred cubic structure
relative structural stability 161-4, 169,
215-23, 224
see also structure types
Bohr radius xi, 37
bond angle
of arsenic and black phosphorus 9
bond charge density 56
bond energy
definition 85
of d-valent metals 186, 187
of sp-valent clements 214
of s-valent molecules 89, 90
bond integrals
ddé 66, 178, 233
ddr 66, 178, 233
ddo 66, 178, 233
pdn 66, 233
pdo 66, 233
ppn 66, 67, 68, 177, 214, 233
ppo 66, 67, 68, 177, 214, 233
spo 67, 68, 177, 214
ssa 33, 65, 66, 67, 68, 177, 214
bond length
first row dimers 69, 73
within second moment approximation 189
bond number 191
bond orbitals 2014
bond order
angular dependence of 204
definition 96
of four-atom s-valent molecules 97, 98
saturated versus unsaturated bonds 97,
208-14
of semiconductors 202-5
bond order potentials
Tersoff 206
within tight binding approximation 23940
bonding state 54, 70, 71
boron
core size 39
dimer 69, 72
structure 5
boundary conditions
for bottom of band 127, 180
for free atom 36
for hard-wall 108
periodic 31
for top of band 180
Bravais lattice 1, 5, 6, 7

Brillouin zone
bee 118
contact with Fermi sphere 166
fec 118
one-dimensional 113
simple cubic 717
bulk modulus
of sp-valent metals 130-1
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of transition metals /89

cadmium
atomic energy levels 45
density of states 126
equilibrium bulk properties 130
cadmium telluride, bond order 205
caesium chloride structure, see structure types
caesium, equilibrium bulk properties 130
calcium
atomic energy levels 45
density of states 126
equilibrium bulk properties 130
pair potential 165
structure 12
canonical band theory 178, 233
carbon
band gap 199
bond order 205
cohesion 10
core hardness 219
core size 39
dimer 69, 71, 72-3
structure 5, 11, 219
carbon dioxide 18, 105
centre of gravity of d band 184
centre of gravity of eigenspectrum,
see moments
chalcogenides 4, 217
charge density waves 145
charge transfer 183
chemical potential 137
chemical scale 234
chromium, magnetism 230
chromium boride structure, see structure
types
clusters
alkali metal 108-11
see also molecules
cobalt, magnetism 230
cohesive energy
of elements 17
of first-row dimers 69, 72-4
rectangular d band model 187-91
of sp-valent metals 130
of transition metals 186, 189
compressibility sum rule 151
Compton effect 24-5
conduction band, bottom of 127-9, 182-3



connectivity versus symmetry 9
coordination polyhedra, see local
coordination polyhedra
copper
atomic energy levels 45
density of states 169
equilibrium bulk properties 130
copper bromide, band gap 57
copper gold (CuAu) structure, see structure
types
core contraction 40
core-orthogonality constraints 1224, 186
core radius
anomalous behaviour 73, 81
Ashcroft 130, 183
of lanthanides 40
of sp-valent elements 38-40
Zunger 39
correlation diagram, see Walsh diagram
correlation energy 34
covalency, degree of 57
covalent bond 50-7
crystal field term 52, 174
crystal system 35, 7

d band
band parameters 183
centre of gravity 184
volume dependence 182
see also band structure; band width
d bond energy, see bond energy
de Broglie wavelength 25
degeneracy, lifting of 42, 97, 98, 117-18
degree of covalency 57
degree of ionicity 57
degree of normalized hardness
carbon versus silicon 81
definition 79
and exceptions to 8N rule 213
influence on structural stability 81, 97,
212
for s-valent molecules 85-91
delta function 138, 203
density functional theory 46
density of states
of free-electron gas 32, 33
of sp-valent elements 216
of sp-valent metals 125, 126
of s-valent elements 216
of transition metals 181
diamond cubic structure
relative structural stability 215-23
see also structure type
diamond hexagonal structure
relative structural stability 215-23
diatomic molecule, see molecules
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dielectric constant
definition 139
poles of inverse 157
Thomas-Fermi approximation 139
dispersion relation 29
dissociation of dimers 60-6
double-counting 147, 186

effective charge 183
effective coordination number 834
effective mass 183
8-N rule 4, 5, 208-14
electron affinity 59
electron diffraction 25-6
electronegativity

Mulliken 59, 60

Pauling 59, 60

Philipps and Van Vechten 57
electronic heat capacity 31, 46, 180, 182
electronic structure, see energy levels
electron phases 166, 168-71
electron spin 30
electrostatic energy

for hydrogen dimer 64, 635

for sp-valent metals 128-9
embedded atom potential 131-4
embedding function 131, 132
energy gap, see band gap
energy level crossing, of sp dimers 71
energy levels

of AB, trimer 105, 106

of AH, trimer 101, 102

of carbon dimer 7]

of first row dimers 72

of hydrogen atom 42

of jellium cluster 109, 110

of silicon dimer 7!

of sd-valent atoms 44, 45

of sp-valent atoms 43, 44

of sp-valent dimers 70, 71

of s-valent molecules 53, 54, 86, 87, 99
energy-wave number characteristic 148
equipartition of energy 22
europium 3, 40
exchange-correlation energy

for free-electron gas 34

for hydrogen dimer 64, 65
exchange-correlation enhancement factor 142
exchange-correlation hole 34, 35, 46
exchange-correlation potential 46
exchange energy 34
exchange field 227
exchange integral, see Stoner exchange

integral
exclusion principle, see Pauli’s exclusion
principle
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face-centred cubic structure
relative structural stability 161-4, 169,
215-23, 224
see also structure types
Fermi energy
definition 33
variation across 4d metals 185
Fermi sphere, contact with Brillouin zone
166
Fermi surface
definition 120
spanning of 145
Fermi temperature 33
Fermi wave vector, definition 32
fluorine dimer
energy levels 73
LDA predictions 69
Fourier analysis 26
Fourier component of potential,
definition 119
fourth moment, see moments
free-electron gas
energy of 31-5
response function of 142
Friedel oscillations 144, 153, 166

gallium
atomic energy levels 44
core size 39

Aangityv Af ctatae
WwlidiLy Ui Sitaiwo 1

125, 126
equilibrium bulk properties 130
structural stability 164
value of G/gq, 150

gallium arsenide
band gap 57
bond order 205

gedanken experiment 27-8

germanium
band gap 57, 199
binding energy curve 47
bond order 205
structure 4, 5, 219

gold
atomic energy levels 45
equilibrium bulk properties 130

graphite structure
relative structural stability 215-23
see also structure types

ground-state energy 46

Hall coefficient, positive 120
halogens 4, 217
Hamiltonian matrix 86, 91

Hamiltonian matrix elements
with respect to hybrid orbitals 75
for s-valent dimer 52
Hamiltonian operator 52
hard-core ionic model 232-3
hard-core potential 8¢
hard-core radius 79
hardness of potentials 79
Hartree approximation 45
Hartree-Fock approximation 46, 61
Hartree potential 46
heat of formation
of AB compounds 12
Miedema predictions 198
rectangular d band models 191-8
of sp-valent metals 155, 156
of transition metals 198
Heine-Abarenkov pseudopotential,
see pseudopotentials
Heisenberg’s uncertainty principle 26-8
Heitler-London valence bond solution 61-2
helium, embedding function 132
hermitian operator 52, 123
hexagonal close-packed structure
relative structural stability 161-4, 169,
215-23, 224
see also structure types
holes 120
honeycomb lattice, see graphite structure
Hume-Rothery electron phases 166, 168-71
Hund’s rules 186
hybrid bond integral 200
hybrid energy 200
hybridization 44, 70, 187
hybridization gap 799, 202
hybrid NFE-TB bands 178-80
hybrid orbitals 74-6, 75, 200, 210
hydrogen atom
embedding function 132
see also atomic eigenstates
hydrogen molecule '
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see also molecules

icosahedron, see local coordination polyhedra
independent particle approximation 46
indium

axial ratio 9

density of states 125, 126

equilibrium bulk properties 130

structural stability 164

value of G/g, 150
indium antimonide, bond order of 205
interatomic potentials

hardness 79

many-body 131

see also pair potentials



ionic core radius of lanthanides 40
ionicity, degree of 57, 58
ionization potential 59
iron

band structure 180

magnetism 230

phase diagram 230

structure 12
iron boride structure, see structure types
iron silicide structure, see structure types

Jahn-Teller distortion 88
jellium 34-5, 108-11
Jensen symbol 2, 6-9, 12-17

Jones model of electron phases 166, 168-70

kinetic energy

of free-electron gas 33-4

of jellium cluster 109, 110, /11
Kronig-Penney model 112-16

lanthanide contraction 40
lanthanides
atomic radii 40
energy bands 226
ion core radii 40
under pressure 225
structure 3
lead 11, 219
Lindhard function 142, 143
linear chain
of four s-valent molecules 78
relative structural stability 215-23
linear combination of atomic orbitals
for AH, trimers 100
for bulk bands 173-8
for sp-valent dimers 68
for s-valent molecules 51, 85
linear response theory 139-45
linear superposition 30
local charge neutrality 194, 238
local coordination polyhedra
bicapped octahedron 12, 14, 16,17
bicapped trigonal prism 12, /4
cuboctahedron 7, 8
icosahedron 7, 8
octahedron 8, 16, 17, 59, 235
pentagonal bipyramid 12, 14
pyramid 8
rhombic dodecahedron 8
tetrahedron 7, 8, 59
tricapped trigonal prism 12, 14, 16
trigonal prism 12, 14, 16, 17, 235
twinned cuboctahedron 7, 8
see also Jensen symbol
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local density approximation 46
local spin density approximation 61-2
logarithmic singularity

in energy-wave number characteristic 148

in Lindhard function 143

Madelung constant 149, 232
Madelung energy 20, 148-9, 151, 232
magic numbers 108-11
magriesium
atomic energy levels 45
band width 33
density of states 125, 126
equilibrium bulk properties 130
pair potential 154, /59
screening cloud 144
structural stability 12, 161-3
magnetic moment
of electron 36-7
of hydrogen dimer 63
of 3d transition metals 230
magnetic quantum number 36
magnetism
and anomalous structures 12, 226-31
antiferromagnetism 228-31
ferromagnetism 228-31
Stoner band theory 227
Stoner criterion 228
manganese
magnetism 230
structure 5, 7, 12, 231
manganese phosphide structure, see
structure types
many-body problem 45-8
matrix element
Hamiltonian 52
between hybrids 201
overlap 52
maximum gap rule 9, /0
metallic bond
in sp-valent metals 127-31
in transition metals 180-98
unsaturated behaviour of 132-3, 188
Miedema predictions for heat of
formation 198
molecular orbital theory 50-1, 209 -
molecules
diatomic
dissociation of 60-6
sp-valent 68-76
s-valent 50--7

electronic structure 54, 71, 72, 87, 99, 102

five-atom 85-91
four-atom 77-81, 85-100
six-atom 835-91
triatomic 18, 100-6
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molybdenum
band parameters 183
bulk properties 189
moments
definition 91
and electron count 95
fifth moment 220
first moment 92
fourth moment
of AH, molecules 104
of d-valent rings 2234, 225
of four-atom molecules 92-6
and modality 92, 104
and shape parameter 94, 104, 220
of sp-valent elements 22/
of s-valent elements 220, 221
second moment
of alloy d band 191-3
of elemental d band 188
and mean square width 92
and structural prediction 1901
sixth moment 223, 225, 240
third moment
of four-atom molecules 92-35
and pd bonded AB compounds 237
and skewness 92, 219
and sp-valent elements 219-20
moments theorem
interpretation of structural trends 91-100,
219-23
statement of 95

nearest neighbour histogram 10
nearly free electron approximation
band structure 118-21
justification 121-6
secular equation 119
neon, embedding function 132
nickel
atomic energy levels 45
nickel arsenide structure, see structure types
niobium
band parameters 183
bulk properties 189
cohesive energy 10
nitrogen
core hardness 217
core size 39
dimer 69, 72
structure 11, 217
noble gas solids 3, 10
noble metals, atomic energy levels of 44-5
nodes
in energy-wave number characteristic 149
in Fourier component of
pseudopotential 125

in radial function 38, 183
in spherical Bessel function 109
nonbonding state 70, 71, 87, 98
normalization condition 29
normalized atomic energy mismatch 55
normalized hardness, see degree of
normalized hardness

one-electron Schrodinger equation 46
orbital quantum number 36
orbitals, angular dependence of 4/
orthogonality constraint 37, 1224, 131
orthogonalized plane waves 122
overlap integrals 53, 85
overlap matrix elements 52
overlap repulsion 54, 64, 65
oxygen

core hardness 217

core size 39

dimer 69, 73

structure 11, 217

packing fraction 3
pair potentials

for Al, Mg, Na 154, 159

analytic damped oscillatory 158

for Ca and Zn 165

phase of oscillatory potential 158-64

range dependence 159-61

repulsive 85

within second-order perturbation theory

150-66

and stability of four-atom molecules 77-81
palladium

atomic energy levels 45

band parameters 183

bulk properties /89
Pauli’s exclusion principle

and closed-shell repulsion 131

and exchange energy 34

and Fermi wave vector 32

and Hartree-Fock approximation 46

and magnetism 63

and overlap repulsion 20, 54
Pearson symbol 2, 5, 12—17, end of book
periodic boundary conditions 31
periodic table 2, 13
perturbation theory

change in eigenfunctions 141

change in eigenvalues 145

real-space representation 150-6

reciprocal-space representation 145-50
Pettifor structure maps

for AB compounds end of book

for AB, sp-valent molecules I8



phase diagram
of copper-zinc 168
of iron 130
phase shift 179
Phillips- Van Vechten structure maps 58
phosphorus 4, 5, 9, 217
photoelectron effect 23—4
pi bonds, see bond integrals
pi states of sp-vaient dimers 71, 72
platinum, atomic energy levels of 45
pnictides 5
Poisson’s equation 137
Fourier transform of 140
polonium
relativistic effects 217
structure 217
potassium
density of states 126
equilibrium bulk properties 130
screening cloud /44
pressure
and resistivity 126
of sp conduction band 187

and structural transformations 47, 162,225

probabilistic interpretation of quantum
mechanics 28

probability clouds 42
probability density

of atoms 37, 38

definition 28

of dimers 55

of NFE eigenstates 121
promotion energy 74, 205-6, 214
pseudoatom 152
pseudopotential form factor 146
pseudopotentials

Ashcroft empty core 124

concept 121-7

Heine-Abarenkov 125

non-local 153, 164, 166

non-local versus local 126-7

quantum mechanical concepts 20-35
quantum numbers 36
quasiparticles 35

radial functions 37, 38
radius ratio 233
Rayleigh-Jeans law 22
reciprocal lattice vector, definition 116
rectangular d band model
of cohesion 187-91
of heats of formation 191-8
of magnetism 227-30
relative ordering number 12, I3
relative size factor 234
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relative volume difference 236
relativistic energy conservation 25
relativistic shifts of energy levels 45, 217
renormalization energy 186
resonant phase shift 179
response function

for afm ordering 228

for bond order potential 239

definition 140

exchange-correlation enhancement

factor 142

see also Lindhard function
rhodium

band parameters 183

bulk properties /89
rigid band approximation 168
rings

and fourth moment 223-4, 225

odd-numbered and skewness 93
root mean square width, see moments
rubidium

density of states 126

equilibrium bulk properties 130
ruthenium

band parameters 183

bulk properties /89

saturated bond 97
see also bond order
scattering theory 179
Schrodinger equation
for diatomic molecules 50
effective one-electron 46
for free atoms 36
for free-electron gas 31
for periodic lattices 174
plausibility derivation 29-31
screening
clouds /44
within linear response theory 13945
within Thomas-Fermi approximation
136-9
screening length, Thomas-Fermi 39
second moment, see moments
secular equation
hybrid NFE-TB 179
LCAO 52, 53, 68, 69
NFE 119
OPW 123
TB 86, 101, 176-7
selenium 4
self-consistency 51, 64, 194
self-consistent field approximation 45-6
shape parameter, see moments
shear constant of semiconductors 206
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shell

closed versus open 131

closing and magic numbers 1/0

octet 5

see also local coordination polyhedra
sigma bonds, see bond integrals
sigma states of dimer 54, 71, 72
sigma versus pi bonds 73
silicon

band gap 199

binding energy curves 47

bond order 205

dimer 71,73

structure 4, 5, 10, 219
silver

atomic energy levels 45

band parameters 183

energy bands 82

equilibrium bulk properties 130
simple cubic structure

relative structural stability 215-23

see also structure types

simple hexagonal structure, relative stability

of 215-23
size of atom, see atomic size
size of core, see core radii
skewness of eigenspectrum, see moments
sodium
band width 33
binding energy curve 128
clusters 111, 112
density of states 125, 126
equilibrium bulk properties 130
molecules and structure 18
pair potential 154, 159
screening cloud 144
structural stability 161-2

sodium chloride structure, see structure types

space lattice, see Bravais lattice
sp atomic energy level splitting 70, 74
spherical harmonics 36, 40-1
spin of electron 30
spin polarized solution 624
spin quantum number 36
sp-valent elements, see structural trends
sp-valent metals, see structural trends
stacking sequence 3
stationary state 30
Stoner band theory of magnetism 227
Stoner criterion for ferromagnetism 228
Stoner exchange integral 63, 227
strontium
atomic energy levels 45
density of states 126
equilibrium bulk properties 130
structure 3
structural energy
for pd-bonded AB compounds 238

for s-, p-, and sp-valent elements 217, 218

structural energy difference theorem
derivation 83
and 8-N rule 212
illustrative example 84
and pd-bonded AB compounds
and sp-valent elements 214-15
and s-valent molecules 88
structural trends
within AB compounds 16-17, 232~8
within AB, trimers 17-19, 100-6
within lanthanides 12, 225-6
within sp-valent elements 214-23
within sp-valent metals 12, 156-66
within s-valent molecules 88-96
within transition metals 12, 223-5, 240
structure factor, definition 146
structure maps
Pettifor 12-18, 18, end of book
Phillips-Van Vechten 58
(Xps Xd) 234
(Z, o3) 163, 164
structure types
of AB compounds end of book
g-manganese 7, 12
arsenic 4, 5, 9
B-tin 47
black phosphorus 9
body-centred cubic 3, 5, 12, 17, 47
caesium chloride 15, 16, 17, 47, 235
chromium boride 15, 16, 17, 47, 235
copper—gold (CuAu) 15, 47
diamond ¢, 5, 17, 47
face-centred cubic 3, 5, 7, 12, 17, 47
graphite 5,7

hexagonal close-packed 3, 5,7, 12, 17, 47

iron boride 15, 16, 17, 235

iron silicide 15, 16, 235
lanthanum 3, 5, 12, 225
manganese phosphide 15, 16, 235
nickel arsenide 15, 16, 17, 235

gamariiit 2 £ 19 99<
samarium J, J, 1z, 223

simple cubic 5, 9
sodium chloride 135, 16, 17, 57-9, 235
sodium thallium (NaTl) 13, 17
titantum arsenide 12
titanium copper (yTiCu) 15, 17
wurtzite 15, 17, 57-9
zinc blend 15, 17, 57-9
see also individual entries
sulphur 4
symmetry
of Brillouin zone k points 118
cylindrical 68
even versus odd 41

gerade versus ungerade 41, 69, 71, 102-5

of NFE states 121
rotational



spherical 36

symmetric versus antisymmetric 55, 102
translational 5

see also Bravais lattice

technetium
band parameters 183
buik properties 189
energy bands 182
tellurium 4
tetragonal distortion 9, 15, 150
tetragonal shear constant 206
thallium
equilibrium bulk properties 130
structural stability 164
third moment, see moments
Thomas-Fermi approximation 136-9
Thomas-Fermi screening length, definition
139
three-centre integrals 86, 174
tight binding approximation
for AH, trimers 101
for d band 177-8
and §-N rule 209
for p band 176-7
for s band 173-5
for sp band 214-23
for s-valent molecules &5
tin
band gap 199
bond order 205
structure 4, 5, 219
transition metal aluminides, binding
energy curves 48
transition metals
band structure 180
density of states /81
electronic heat capacity 182
equilibrium bulk properties /89
heats of formation 198
AAAAAA
structure 12
triatomic molecules, see molecules
tungsten, cohesive energy of 10

uncertainty principle, see Heisenberg’s
uncertainty principle

unimodal versus bimodal behaviour, see
moments

unit cell 116
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units xi
unsaturated bond 97, 132-3, 188
see also bond order

vacancy formation energy 1334
valence band width 202
valence bond theory
of dimer 60, 61
of 8-N rule 209
van der Waals forces 4
van Hove singularities
for fec, bee, hep copper 169, 170
for simple cubic s band 175
vibrational frequencies of dimers 69
virtual crystal approximation, definition 195

Walsh diagram

for AB, trimer 103, 106

for AH, trimer 102, 103
wave packet 26, 27
wave-particle duality 20-8
Wigner-Seitz cell, definition 127
Wigner—Seitz sphere, definition 128-9
Wigner-Seitz radius

for 4d metals 183, 189

for sp-valent metals 130

in terms of core radius 129
Wolfsberg-Helmholtz approximation 65
work function 24
wurtzite structure, see structure types

ytterbium 3, 40
yttrivm
band parameters 183
bulk properties 189
energy bands 182

atomic energy levels 45
density of states 126
equilibrium bulk properties 130
pair potential 165
zinc selenide
band gap 57
bond order 205
zirconium
band parameters 183
bulk properties 189



