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Preface

Our goal is to develop automated methods for the segmentation of three-

dimensional biomedical images. Here, we describe the segmentation of con-

focal microscopy images of bee brains (20 individuals) by registration to one

or several atlas images. Registration is performed by a highly parallel imple-

mentation of an entropy-based nonrigid registration algorithm using B-spline

transformations. We present and evaluate different methods to solve the corre-

spondence problem in atlas based registration. An image can be segmented by

registering it to an individual atlas, an average atlas, or multiple atlases. When

registering to multiple atlases, combining the individual segmentations into a

final segmentation can be achieved by atlas selection, or multiclassifier decision

fusion. We describe all these methods and evaluate the segmentation accuracies

that they achieve by performing experiments with electronic phantoms as well

as by comparing their outputs to a manual gold standard.

The present work is focused on the mathematical and computational the-

ory behind a technique for deformable image registration termed Hyperelastic

Warping, and demonstration of the technique via applications in image registra-

tion and strain measurement. The approach combines well-established princi-

ples of nonlinear continuum mechanics with forces derived directly from three-

dimensional image data to achieve registration. The general approach does not

require the definition of landmarks, fiducials, or surfaces, although it can ac-

commodate these if available. Representative problems demonstrate the robust

and flexible nature of the approach.

Three-dimensional registration methods are introduced for registering MRI

volumes of the pelvis and prostate. The chapter first reviews the applications,

xi



xii Preface

challenges, and previous methods of image registration in the prostate. Then

the chapter describes a three-dimensional mutual information rigid body reg-

istration algorithm with special features. The chapter also discusses the three-

dimensional nonrigid registration algorithm. Many interactively placed control

points are independently optimized using mutual information and a thin plate

spline transformation is established for the warping of image volumes. Nonrigid

method works better than rigid body registration whenever the subject position

or condition is greatly changed between acquisitions.

This chapter will cover 1D, 2D, and 3D registration approaches both rigid

and elastic. Mathematical foundation for surface and volume registration ap-

proaches will be presented. Applications will include plastic surgery, lung can-

cer, and multiple sclerosis.

Flow-mediated dilation (FMD) offers a mechanism to characterize endothe-

lial function and therefore may play a role in the diagnosis of cardiovascular

diseases. Computerized analysis techniques are very desirable to give accuracy

and objectivity to the measurements. Virtually all methods proposed up to now

to measure FMD rely on accurate edge detection of the arterial wall, and they

are not always robust in the presence of poor image quality or image artifacts.

A novel method for automatic dilation assessment based on a global image

analysis strategy is presented. We model interframe arterial dilation as a super-

position of a rigid motion model and a scaling factor perpendicular to the artery.

Rigid motion can be interpreted as a global compensation for patient and probe

movements, an aspect that has not been sufficiently studied before. The scal-

ing factor explains arterial dilation. The ultrasound (US) sequence is analyzed

in two phases using image registration to recover both transformation models.

Temporal continuity in the registration parameters along the sequence is en-

forced with a Kalman filter since the dilation process is known to be a gradual

physiological phenomenon. Comparing automated and gold standard measure-

ments we found a negligible bias (0.04%) and a small standard deviation of the

differences (1.14%). These values are better than those obtained from manual

measurements (bias = 0.47%, SD = 1.28%). The proposed method offers also

a better reproducibility (CV = 0.46%) than the manual measurements (CV =
1.40%).

This chapter will focus on nonrigid registration techniques. Nonrigid regis-

tration is needed to correct for deformations that occur in various contexts:

respiration or organ motion, disease progression over time, tissue deformation
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due to surgical procedure, intersubject comparison to build anatomical atlases,

etc. Numerous registration techniques have been developed and can be broadly

decomposed into intensity-based (photometric) and landmark-based (geomet-

rical) techniques. This chapter will present up-to-date methods.

This chapter will then present how segmentation and registration methods

can cooperate: accurate and fast segmentation can be obtained using nonrigid

registration; nonrigid registration methods can be constrained by segmentation

methods. Results of these cooperation schemes will be given.

This chapter will finally be concerned with validation of nonrigid registration

methods. More specifically, an objective evaluation framework will be presented

in the particular context of intersubject registration.

This chapter concerns elastic image registration for biomedical applications.

We start with an overview and classification of existing registration techniques.

We revisit the landmark interpolation and add some generalisations. We develop

a general elastic image registration algorithm. It uses a grid of uniform B-splines

to describe the deformation. It also uses B-splines for image interpolation. Mul-

tiresolution in both image and deformation model spaces yields robustness and

speed. We show various applications of the algorithm on MRI, CT, SPECT and ul-

trasound data. A semiautomatic version of the registration algorithm is capable

of accepting expert hints in the form of soft landmark constraints.

The chapter will include algorithms based on landmark and intensity-based

image registration. It will compare traditional unidirectional registration algo-

rithms to those that are bidirectional and minimize the inverse consistency error.

It will discuss how small deformation models can nonrigidly be used for medical

image registration in the brain, skull, and inner ear. It will also discuss how to

extend the small deformation model to the large deformation model to accom-

modate locally large deformation image registration problems. We will provide

examples using phantom images and brain images to demonstrate the large

deformation case.
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Chapter 1

Medical Image Registration: Theory,

Algorithm, and Case Studies in Surgical

Simulation, Chest Cancer, and

Multiple Sclerosis

Aly A. Farag,1 Sameh M. Yamany,2 Jeremy Nett,1 Thomas Moriarty,3

Ayman El-Baz,1 Stephen Hushek,4 and Robert Falk5

1.1 Introduction

Registration found its application in medical imaging due to the fact that physi-

cians are frequently confronted with the practical problem of registering medical

images. Medical registration techniques have recently been extended to relate

multimodal images which makes it possible to superimpose features from differ-

ent imaging studies. Registration techniques have been also used in stereotactic

surgery and stereotactic radiosurgery that require images to be registered with

the physical space occupied by the patient during surgery. New interactive,

image-guided surgery techniques use image-to-physical space registration to

track the changing surgical position on a display of the preoperative image sets

of the patient. In such applications, the speed of convergence of the registration

technique is of major importance.

1 Computer Vision and Image Processing Laboratory, Department of Electrical and Com-
puter Engineering, University of Louisville, Louisville, KY 40292, USA

2 System and Biomedical Engineering Department, Cairo University, Giza, Egypt
3 Department of Neurological Surgery, University of Louisville, KY 40292, USA
4 MRI Department, Norton Hospital, Louisville, KY, USA
5 Medical Imaging Division, Jewish Hospital, Louisville, KY, USA
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2 Farag et al.

Table 1.1: Most important nomenclature used throughout the chapter

x Vector function denoting a point on the model surface
y Vector function denoting a point on the experimental surface
S General surface
T Transformation matrix
R Rotation matrix
t Translation vector

d(yi, S) The distance of point yi to shape S

F() Registration objective function
C() The closet point operator

GCP() Grid Closest Point transform
G 3D space subset
�r Displacement vector in the GCP grid

{R,C, H} Coordinates of the GCP grid
δ Grid resolution

Cijk Grid cell
c0

ijk Centroid of the cell Cijk

α, β, and γ 3D-angles of rotations
θ Simplex mesh angle
P 3D point on a free-form surface
H Mean curvature of the surface
�UP Normal vector at point P

A Set of landmarks
λ Curvature threshold
E2

n Matching value
O Overlap ratio
s Scale factor
F A medical volume

h() Entropy function
Rf A reference medical volume.

Another example of the use of medical image registration is in neurosurgery

where it is useful to identify tumors with magnetic resonance images (MRI), yet

the established stereotaxy technology uses computed tomography (CT) images.

Being able to register these two modalities allows one to transfer the coordinates

of tumors from the MR images into the CT stereotaxy. It is similarly useful to

transfer functional information from SPECT or positron-emission tomography

(PET) into MR or CT for anatomical reference, and for stereotactic exploitation.

The currently used imaging modalities can be generally divided into two

main categories, one related to the anatomy being imaged and the other to

the functionality represented in the image. The first one includes X-ray, CT



Medical Image Registration 3

(computed tomography), MRI (magnetic resonance imaging), US (ultrasound),

portal images, and (video) sequences obtained by various catheter scopes, e.g.,

by laparoscopy or laryngoscopy. Other prominent derivative techniques include,

MRA (magnetic resonance angiography), DSA (digital subtraction angiography,

derived from X-ray), CTA (computed tomography angiography), and Doppler

(derived from US, referring to the Doppler effect measured). Functional modal-

ities include (planar) scintigraphy, SPECT (single photon emission computed

tomography), PET (positron emission tomography), which together make up

the nuclear medicine imaging modalities, and fMRI (functional MRI).

An eminent example of the use of registering different modalities can be

found in the area of epilepsy surgery [1]. Patients may undergo various MR, CT,

and DSA studies for anatomical reference; ictal and interictal SPECT studies;

MEG and extra and/or intra-cranial (subdural or depth) EEG, as well as PET

studies. Registration of the images from practically any combination will benefit

the surgeon. A second example concerns radiotherapy treatment, where both

CT and MR can be employed. The former is needed to accurately compute the

radiation dose, while the latter is usually better suited for delineation of tumor

tissue.

Yet, a more prominent example is the use of medical registration for the

same modality, i.e., monomodale registration. For example, in the qualitative

evaluation of multiple sclerosis (MS) studies, where multiple MRI scans of the

same patient at different times must be compared with one another. Due to

the largely arbitrary positioning of the anatomy in the scanner, in a slice-by-

slice comparison between studies, quite different anatomy can by chance be

located on the same slice numbers in different studies. The goal of registration,

therefore, is to align the anatomy from one scan, to the anatomy from another.

Medical registration spans numerous applications and there exists a large

score of different techniques reported in the literature. In what follows is an

attempt to classify these different techniques and categorize them based on

some criteria.

1.2 Medical Registration Classifications

The classification of registration methods used in this chapter is based on the

criteria formulated by van den Elsen , Pol and Viergever [2]. Maintz and Viergever
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[1] provided a good survey on different classification criteria. In this section we

will summarize seven basic classification criteria commonly used (for more

details and further reading see the Maintz and Viergever review).

The seven criteria are:

1. Dimensionality

2. Nature of registration basis

3. Nature of transformation

4. Interaction

5. Optimization procedure

6. Modalities involved

7. Subject

1.2.1 Dimensionality

The main division here is either the scope of the registration involves spatial

dimension only or is time series also involved. For spacial registration, there

are the (i) 3D/3D registration where two or more volumes of interest are to be

aligned together, the (ii) 2D/2D registration where two medical images are to be

aligned together. In general, 2D/2D registration is less complex than the 3D/3D

registration. A more complex one is the (iii) 2D/3D registration which involves

the direct alignment of spatial data to projective data (e.g., a preoperative CT

image to an intraoperative X-ray image), or the alignment of a single tomographic

slice to spatial data. Time can be another dimension involved when the patient’s

images and volumes are to be tracked with time for analysis or monitoring.

1.2.2 Nature of Registration Basis

In this category registration can be divided into extrinsic, i.e., based on foreign

objects introduced into the imaged space, and intrinsic methods, i.e., based

on the image information as generated by the patient. Extrinsic methods rely

on artificial objects attached to the patient, objects which are designed to be

well visible and accurately detectable in all of the pertinent modalities. As such,
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the registration of the acquired images is comparatively easy, fast, can usually

be automated, and, since the registration parameters can often be computed

explicitly, has no need for complex optimization algorithms. The main draw-

back of extrinsic registration is that, for good accuracy, invasive maker (e.g.,

stereotactic frame or screw markers) objects are used. Non-invasive markers

(e.g., skin markers individualized foam moulds, head holder frames, or dental

adapters) can be used, but as a rule are less accurate.

Intrinsic registration can rely on landmarks in the images or volumes to be

aligned. These landmarks can be anatomical based on morphological points on

some visible anatomical organ(s), or pure geometrical based. Intrinsic registra-

tion can also be based on segmentation results. Segmentation in this case can be

rigid where anatomically the same structures (mostly surfaces) are extracted

from both images to be registered, and used as sole input for the alignment pro-

cedure. They can also be deformable model based where an extracted structure

(also mostly surfaces, and curves) from one image is elastically deformed to fit

the second image. The rigid model based approaches are probably the most pop-

ular methods due to its easy implementation and fast results. A drawback of rigid

segmentation based methods is that the registration accuracy is limited to the ac-

curacy of the segmentation step. In theory, rigid segmentation based registration

is applicable to images of many areas of the body, yet, in practice, the application

areas have largely been limited to neuroimaging and orthopedic imaging.

Another example of intrinsic registration are the voxel based registration

methods that operate directly on the image gray values, without prior data re-

duction by the user or segmentation. There are two distinct approaches: the first

is to immediately reduce the image gray value content to a representative set

of scalars and orientations, the second is to use the full image content through-

out the registration process. Principal axes and moments based methods are

the prime examples of reductive registration methods. Within these methods

the image center of gravity and its principal orientations (principal axes) are

computed from the image zeroth and first order moments. Registration is then

performed by aligning the center of gravity and the principal orientations. The

result is usually not very accurate, and the method is not equipped to handle dif-

ferences in scanned volume well. Despite its drawbacks, principal axes methods

are widely used in registration problems that require no high accuracy, because

of the automatic and very fast nature of its use, and the easy implementation.

On the other hand, voxel based registration using full image content is more
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flexible, yet more complex and the methods range from using cross correlation,

variance minimization, histogram clustering and the famous maximization of

mutual information (discussed later in details).

1.2.3 Nature of Transformation

Since the registration process tries to recover the optimal transformation be-

tween two candidate subjects, the nature of such transformation categorize the

registration procedure to be used. The most commonly used is the rigid reg-

istration where the transformation involves only translations and rotations. If

the transformation maps parallel lines onto parallel lines it is called affine. If it

maps lines onto lines, it is called projective. Finally, if it maps lines onto curves,

it is called curved or elastic. Each type of transformation contains as special

cases the ones described before it, e.g., the rigid transformation is a special

kind of affine transformation. A composition of more than one transformation

can be categorized as a single transformation of the most complex type in the

composition, e.g., a composition of a projective and an affine transformation

is a projective transformation, and a composition of rigid transformations is

again a rigid transformation. Also a transformation is called global if it applies

to the entire image, and local if subsections of the image each have their own

transformations defined.

Rigid and affine transformations are generally global, and curved transfor-

mations are local. This is due to the physical model underlying the curved trans-

formation type. Affine transformations are typically used in instances of rigid

body movement where the image scaling factors are unknown or suspected to

be incorrect, such as in MRI images due to geometric distortions. The projective

transformation type has no real physical basis in image registration except for

2D/3D registration, but is sometimes used as a constrained-elastic transforma-

tion when a fully elastic transformation behaves inadequately or has too many

parameters to solve.

1.2.4 Interaction

Three levels of interaction can be involved in registration procedures. Auto-

matic, where the user only supplies the algorithm with the image data and pos-

sibly information on the image acquisition. Interactive, where the user does the
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registration himself, assisted by software supplying a visual or numerical impres-

sion of the current transformation, and possibly an initial transformation guess.

Semi-automatic, where the interaction required can be of two different natures:

the user needs to initialize the algorithm, e.g., by segmenting the data, or steer

the algorithm, e.g., by rejecting or accepting suggested registration hypotheses.

1.2.5 Optimization Procedure

There exists two possible ways of finding the transformation parameters. Either

they are computed directly from the available image information, or they are

looked for based on a certain optimization criterion. Many applications use more

than one optimization technique, frequently a fast but coarse technique followed

by an accurate yet slow one (as shown later).

1.2.6 Modalities Involved

Four classes of registration tasks can be recognized based on the modalities

that are involved. In monomodal applications, the images to be registered be-

long to the same modality, as opposed to multimodal registration tasks, where

the images to be registered stem from two different modalities. The other two

are modality to model and model to modality registration where only one image

is involved and the other modality is either a model or the patient himself. The

model to modality is used frequently in intraoperative registration techniques.

Monomodal tasks are well suited for growth monitoring, intervention verifica-

tion, rest-stress comparisons, ictal-interictal comparisons, subtraction imaging

(also DSA, CTA), and many other applications. The applications of multimodal

registration are abundant and diverse, predominantly diagnostic in nature. A

coarse division would be into anatomical-anatomical registration, where images

showing different aspects of tissue morphology are combined, and functional-

anatomical, where tissue metabolism and its spatial location relative to anatom-

ical structures are related.

1.2.7 Subject

There can be intrasubject registration involving images for the same pa-

tient, intersubject registration involving images for different patients and atlas
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registration where one image is acquired from a single patient, and the other

image is somehow constructed from an image information database obtained

using imaging of many subjects.

1.3 General Registration Theory

In general, registration is the process by which two or more data sets are brought

into alignment. Registration can be defined as “the process of finding a set

of transformation operations between two or more data sets such that the

overlap between these sets in a certain common space minimizes a certain

optimization criterion”.

The registration problem can be mathematically represented as follows:

A parametric shape S, either a curve segment or a surface, is a vector function,

x : [a, b] → �3 (1.1)

for curves where a and b are scalars and

x : �2 → �3 (1.2)

for surfaces. Both curve and surface data sets are usually in the form of, or can

be easily converted to, a set of 2D or 3D points, which represent the most general

form of 2D or 3D curves and surfaces including free-from curves and surfaces.

Let the points in the first, or model data set, S, be denoted by {xi|i = 1, . . . ,m},
and those in the second, or experimental data set, S′, be denoted by {y j| j =
1, . . . ,n}. We want to find a transformation matrix T such that when applied to

S′, the distance from each point on the resulting surface and its corresponding

point on the model surface S is zero in the noise free case.

For the case of rigid registration (without considering the scaling factor),

the transformation matrix T consists of two components: a rotation matrix R,

and a translation vector t. The objective of registration is to determine R and t

such that the following criterion is minimized

F(R, t) =
n∑

i=1

d2(Ryi + t, S). (1.3)

where d(yi, S) denotes the distance of point yi to shape S.

If we add the scaling factor as a third component, then the matrix T rep-

resents a matrix called the similarity transformation matrix. In this case the
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new shape will be similar to the original shape but at a different scale. It should

be noticed that we will use the term similarity transformation to represent a

rotation, translation and scaling only, no shear or torsion or other deformable

transformations are included.

The minimization of Eq. (1.3) is very difficult because d(Ryi + t, S) is highly

nonlinear since the correspondence between yi and S is not known beforehand.

To understand the challenges involved in solving the registration problem

one needs to understand the following:

1. For two data sets, if the transformation from one to the other is pre-

cisely known, then the registration process would be trivial. But when

the transformation is only approximately known, the problem becomes

more difficult. It is here that most researchers have addressed this prob-

lem. However, few researchers have attempted to solve the problem when

the transformation is totally unknown.

2. The search for an unknown, optimal transformation invariably assumes an

initial transformation which is iteratively refined through the minimization

of some evaluation function. Such search may lead to a local minimum and,

unless a global optimizer is used [3], it is difficult to reach a global solution.

3. For many applications (e.g., intraoperative registration), the registration

time can be very critical and near real-time registration process is still

needed.

The registration process must compensate for three very important problems,

which are translational offset, rotational misalignment, and partial data sets.

Error due to translational offset occurs when the coordinate origins of the data

sets are not the same point in N-dimensional space. This can be demonstrated by

calculating the point by point error of two identical surfaces located at different

locations in the N-dimensional space. Even though the data sets are identical,

the average experimental data error will be equal to the distance of the offset

between the two sets.

Registration must also correct for error due to rotational misalignment be-

tween the data sets. This can be visualized by viewing a non-symmetrical surface

from two different angles. The two different views may appear very different

even though they come from the same surface. Once the views are rotated into

correct alignment, an accurate value for the error measure can be obtained.
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The last major problem that the registration process must address is aligning

data sets that represents only a portion of the model data. A correspondence

between the experimental data set and the corresponding portion of the model

data set must be established before correcting for translation and rotation errors.

Once this is accomplished, the error measure must be calculated for only the

overlapping portions of the two sets. For example, consider scanning a tooth

and attempting to calculate the error between the scanned tooth and a model

of an entire human jaw. The registration process must be able to determine

which region of the jaw coincides with the scanned tooth, assuming the tooth

is distinct enough to distinguish between the other teeth, and then calculate the

error measure using only the overlapping regions.

In terms of algorithmic implementations, all of the registration techniques

fall under two global implementation categories: distance-based and feature-

based approaches. In the distance-based approach, the goal is to calculate the

transformation by minimizing a criterion relating the distance between the two

data sets. In the feature-based approach some differential properties invariant

to rigid transformation (such as gray level value, histogram, curvature, mutual

information, entropy, etc.) are often used.

In the following sections we will discuss in some details examples of algo-

rithms in both the approaches.

1.4 Distance-based Registration Techniques

Among the distance-based techniques, Besl and McKay [4] proposed the Itera-

tive Closest Point (ICP) algorithm which establishes correspondences between

data sets by matching points in one data set to the closest points in the other

data set. ICP is an elegant way to register different data sets because it is intu-

itive and simple. Besl and McKay’s algorithm requires an initial transformation

that places the two data sets in approximate registration and operates under the

condition that one data set be a proper subset of the other. Since their algorithm

looks for a corresponding scene point for every model point, incorrect registra-

tion can occur when a model point does not have a corresponding scene point

due to occlusion in the scene. Attempts at solving these problems have led to

several variants of the original algorithm.

The ICP algorithm matches points in the experimental data set after applying

the previously recovered transformation (R, t), where R is a matrix represent-
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ing the rotation transformation and t is a vector representing the translation

transformation, with their closest points in the model data set. A least-squares

estimation is then used to reduce the average distance between the matched

points in the two data sets. The algorithm is relatively straightforward and can

be summarized as follows:

1. Given a motion transformation that initially aligns two data sets to some

degree, a set of correspondence is developed between the points in each

set. This is done using a simple metric: for each point in the first data set,

pick the point in the second set which is closest to it under the current

transformation.

2. From this set of correspondence an incremental motion can be computed

which further aligns these points to one another.

3. Those two steps are iterated until some convergence criterion is satisfied.

Figure 1.1 illustrates these steps. The ICP algorithm tries to find the opti-

mal transformation matrix T between two shapes S and S′ such that Eq.

(1.3) is minimized using the closest point operator in distance calculations as

follows:

d(yi, S) = ||yi − C(yi, S)|| (1.4)

where C(·) is defined as the closest point operator, i.e., C(·) finds the closest

point in shape S to the point yi. At each step of the minimization process, a

correspondent point on S has to be found for each point Ryi + t on S′. This

makes the operation of registration of order O(mn) and as a result ICP has

many drawbacks:

1. One of the main disadvantages of the ICP algorithm is its computation

complexity. This makes the algorithm not suitable for applications where

near real-time performance is required.

2. The algorithm converges successfully to a local solution but there is no

guarantee that it will reach a global solution.

3. Proper convergence only occurs if one of the data sets is a subset of the

other. The presence of points in each set that are not in the other leads

to incorrect correspondences, which subsequently generates nonoptimal

transformations.
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The initial two surfaces

1– Initial alignment

2– Find correspondence between
     closest points 

3– Calculate an incremental  motion

4– Iterate until some convergence criterion
     is satisfied

Figure 1.1: A diagram illustrating the distance-based registration algorithm

steps which start by an initial alignment and then finding correspondence from

which incremental motion is calculated and this process iterates until conver-

gence.

Attempts at solving these problems have led to several variants of the original

algorithm. In what follows, we provide a review of these improvements. Another

good review can be found in [5].

1.4.1 Improving Correspondence

The first improvement to the basic algorithm changes the simple point-to-point

correspondence used in many of the methods [4, 6, 7, 8, 9] to that between a

point and a location on the surface represented by the other data set. This poten-

tially increases the integration accuracy beyond that of the sampling resolution.
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The first such effort was by Chen and Medioni [7]. They have improved the

ICP algorithm by minimizing the distance from the sensed point to the nearest

estimated plane approximating the model surface. They begin by finding the

data point in the second set that is closest to a line through the point in the

first set in the direction of its estimated surface normal. Then the tangent plane

at this intersection point is used as the surface approximation. Yet finding the

estimated plane involves another iterative procedure which further adds to the

computation complexity. They reduced the complexity by selecting some impor-

tant points on the smooth surfaces of the object and used these points for the

registration. This works well if the smooth surfaces are uniformly distributed

over the object, which is not the case for many free-form objects. More accu-

rate but time-consuming estimates of the surface have also been used, such as

octrees [10], triangular meshes [11], and parametric surfaces [12].

Most researchers have used, the simple Euclidean distance in determining

the closest point [3, 4, 6, 7, 8, 9, 11, 12, 13, 14]. Fewer have used higher dimensional

feature vectors, such as including the estimated surface normal [15].

1.4.2 Thresholding Outliers

Most of the early algorithms were limited by the original assumption that one

data set was a subset of the other [4, 7, 8, 11, 12, 14]. Proposals to bypass this

limitation have involved imposing a heuristic threshold on either the distance

allowed between points in a valid pairing [6, 9, 10, 13, 15] and the deviation of

the surface normals of corresponding points [15]. Any point pairs which exceed

these thresholds or constrains are assumed to be incorrect. These thresholds

are usually predefined constants related to the estimated accuracy of the initial

transformations and can be difficult to choose robustly. Dynamically adjustable

thresholds have been based on both the distribution of the distance errors at

each iteration [6] and a fuzzy set classification of inlier and outliers correspon-

dences [16].

1.4.3 Computational Requirements

In all of the techniques, computing potential correspondences is generally the

most time-consuming step. In a brute-force approach [4, 15, 12], an O(N2)

number of comparisons is performed to find N pairings. One way to reduce
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the actual time, with a potential loss of accuracy [11], is to subsample the

original data sets. Criteria for sub-sampling include taking a simple fraction

of the original number [13], using multiple scales of increasing resolution [3],

or taking points in areas away from surface discontinuities [7], in areas of fine

detail [8], and in small random sets for robust transform estimation [14]. A

more accurate and slower alternative is to use the full original data sets, but

organize the closest point search using efficient data structures such as the

octree [10] and k-d tree [6]. The k-d tree is even more efficient, O(NlogN),

when higher order features of the points are incorporated in the distance

metric.

1.4.4 Computing Intermediate Motions

Once a set of correspondences has been determined, a motion transform must

be computed that best aligns the points. The most common approach is to use

one of several least squares techniques to minimize the distances between corre-

sponding points [4, 6, 8, 11, 14, 7]. In certain cases [6], individual point contribu-

tions are weighted based on the suspected noise of different portions of the data

sets. More robust estimation using the least median squares technique (cluster-

ing many transforms computed from smaller sets of points) has been tried by

Masuda et al. [14]. Alternatively, a Kalman filter has been used to track the inter-

mediate motion at each iteration as new correspondences are computed [6].

More involved techniques compute the motion transform via some form of

search in the space of possible transforms, trying to minimize a cost function

such as the sum of distance errors across all corresponding points. Movements

in transform parameter space are computed based on the changing nature of

the function. Such standard search strategies as Levenberg-Marquardt [10, 12],

simulated annealing [13] and genetic algorithms [9] have been used. Correspon-

dences must be periodically updated during the search to keep the error function

current. Updating too frequently can drastically increase the amount of compu-

tation, while too few updates can lead to an incorrect minimization.

1.4.5 Initialization and Convergence of Searches

As mentioned earlier, an ICP-based refinement occurs after some initial set

of transformations has been determined. Some researchers assume that this



Medical Image Registration 15

estimate is determined by a previous process [6, 7, 11, 12, 14], possibly cal-

culated using feature sets. Other prior estimates can be given by a rotary ta-

ble [10], a robot arm [13], or even the user. Most such estimates are assumed

to be quite accurate so that using one of the various distance thresholds during

matching will prune outliers correctly. Other researchers do their own feature-

based alignment prior to refinement using such characteristics as principal mo-

ments [4] or similar triangles on a mesh representation of the data [8]. If these

distinguishing features are absent, a uniform distribution of starting points can

always be processed [4]. All of the ICP algorithms must use some set of cri-

teria to detect convergence of the final transformation. For those techniques

that compute intermediate motions using least squares methods, convergence

is achieved when the transform implies a sufficiently small amount of mo-

tion [6, 8, 14] or the distance between corresponding points becomes suitably

close [4, 7, 11, 14]. The iterative searches of parameter space typically converge

based on small changes in the parameters or error value, or if the shape of the

cost function at the current value indicates a function minimum. Any method

can be terminated if convergence is not detected after some maximal number of

iterations [3].

1.4.6 A Genetic Distance-based Technique

Another enhancements on the ICP algorithm for fast registration of two sets of

3D curves or surfaces was done by applying a distance transform to the model

surface [3, 9]. The distance transform essentially converts the 3D space sur-

rounding the two data sets into a field in which every point stores the magnitude

and direction of a displacement vector from this point to the nearest surface

element. Thus the cost function is largely precomputed. Such a transform is

called the grid closest point (GCP) [9]. A genetic algorithm (GA) is then used to

minimize the cost function.

Genetic algorithms (GAs) [17] provide a powerful and domain-independent

search method for complex, poorly understood search spaces. Genetic algo-

rithms have been applied to a wide diversity of problems such as combinatorial

optimization [18], VLSI layout [19], machine learning [20], scene recognition [21],

and adaptive image segmentation [22].

As mentioned in the previous section, to perform registration most of the

computation time is spent in finding the closest point in the model set to every
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point in the experimental data set. This time can be significantly reduced by

applying the following grid closest point (GCP) transform.

The GCP transform GCP : �3 → �3 maps each point in the 3D spaceG ⊂ �3 that

encloses the two surfaces S and S′ to a displacement vector, �r, which represents

the displacement from the closest point in the model set S. Thus for all z ∈ G

GCP(z) = �r = xm− z (1.5)

such that

d(z,xm) = min
xi∈S
{d(z,xi) (1.6)

where d(·) is the Euclidean distance. For each point inG, the transform calculates

a displacement vector to the closest point in the model data set which can be used

subsequently to find matching points between S and S′ during the minimization

process.

In the discrete case, assume thatG consists of a rectangular box that encloses

the two surfaces. Furthermore, assume that G is quantized into a set of L ×W ×
H cells of size δ3

{Cijk | 0 ≤ i ≤ L , 0 ≤ j ≤ W, 0 ≤ k ≤ H} (1.7)

such that

W = (Wmax −Wmin)/δ (1.8)

L = (Lmax − Lmin)/δ (1.9)

and

H = (Hmax − Hmin)/δ (1.10)

Figure 1.2 shows a 2D illustration of such a grid.

Each cell Cijk will hold a displacement vector �rijk which is a vector from its

centroid, denoted by c0
ijk, to its closest point in the model set.

The GCP transform is applied only once at the beginning of the registration

process. After its application, each cell in G has a displacement vector to its

closet point in the model set. During the minimization, to calculate the closest

point x̃ = C(yv, S) to a point yv ∈ S′, you first have to find the intersection of yv

and G. Assuming uniform quantization, the indices of the cell Cijk in which the
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Figure 1.2: (Left) superimposing a uniform grid G of size δ onto the space that

encloses the model and experimental data sets. (Right) for each cell Cijk ∈ G,

calculate a displacement �rijk, from the cell centroid, c0
ijk, to its closet point

on S.

point yv = {u, v, w} lies can be found by

i = u− Lmin

δ
, j = v −Wmin

δ
, k = w − Hmin

δ
(1.11)

If the content of the cell Cijk is �rijk then

x̃ = C(yv, S) = �rijk + c0
ijk (1.12)

An approximation of the closest point can be obtained by using the point itself

instead of the centroid of the cell in which it lies

x̃ = C(yv, S) ≈ �rijk + yv (1.13)

Equation (1.13) introduces an error which is a function of δ, the quantization step.

This error can be reduced to some extent by using a non-uniform quantization.

It should be noted that the GCP transform is spatially quantized and its accuracy

depends largely on the selection of δ. The error in the displacement vector is

≤ 3
4δ

2. Therefore, smaller values for δwill give higher accuracy but on the extent

of larger memory requirements and larger number of computations of the GCP

for each cell. To solve this problem, you can select a small value for δ in the

region that directly surrounds the model set, and a slightly larger value (in this

work 2δ) for the rest of the space G. This enables a coarse matching process
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at the beginning of the registration and fine matching toward the end of the

minimization.

The next step is to search for the transformation parameters using genetic

algorithms (GAs). GAs, pioneered by Holland [23], are adaptive, domain inde-

pendent search procedures derived from the principles of natural population

genetics. GAs borrow its name from the natural genetic system. In natural ge-

netic system whether a living cell will perform a specific and useful task in a

predictable and controlled way is determined by its genetic makeup, i.e., by the

instructions contained in a collection of chemical messages called genes [24].

Genetic algorithms are briefly characterized by three main concepts: a Dar-

winian notion of fitness or strength which determines an individual’s likelihood

of affecting future generations through reproduction; a reproduction operation

which selects individuals for recombination to their fitness or strength; and

a recombination operation which creates new offspring based on the genetic

structure of their parents.

Genetic algorithms work with a coding of a parameter set, not the parameters

themselves and search from a population of points, not a single point. Also ge-

netic algorithms use payoff (objective function) information, not derivatives or

other auxiliary knowledge and use probabilistic transition rules, not determinis-

tic ones. These four differences contribute to genetic algorithms’ robustness and

resulting advantage over other more commonly used search and optimization

techniques (see Fig. 1.3).

Since the genetic algorithm works by maximizing an objective function, the

fitness function, Fr(R, t), can be defined as in Eq. (1.3).

Combining (1.3) with the GCP transform to find matching points between

the two data sets, Eq. (1.3) can be rewritten as

Fr(R, t) = −
n∑

i=1

d2(y′,GCP(y′i)+ y′i) (1.14)

where y′i = Ryi + t. By maximizing (1.14) we effectively minimize (1.3).

The objective of the registration process is to obtain the rotation matrix R

and the translation vector t. Thus in 3D space, there are six parameters that

need to be evaluated; the three angles of rotation around the three principal

axes α, β, and γ , and the displacement �x, �y, and �z in the x, y, z directions,

respectively.
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Figure 1.3: An example of a non-uniform grid G.

In the 2D space, the parameter set is reduced to �x, �y, and the angle of

rotation θ . These parameters are represented by binary notation to minimize as

much as possible the length of the schemata d(H) and the order of the schemata

O(H). The number of bits np, assigned to each parameter, p, depends on the

type of application and the required degree of accuracy. The number of bits

should be chosen as small as possible to minimize the time of convergence of

the genetic algorithm. For example, you can assign 8 bits each, thus allowing a

displacement of ±127 units. A range of ±31 can also enforced over the angles

of rotation. Therefore 6 bits are assigned for each angle of rotation. As shown

in Fig. 1.4, the genes are formed from the concatenation of the binary coded

parameters.

The selection operator chooses the highest fitted genes for mating using a

Roulette wheel selection [24]. The crossover and mutation operators are imple-

mented by choosing a random crossover and mutation point with probabilities

P
p

c and P
p

m, respectively, for each coded parameter p. The generated strings

are concatenated together to form one string from which the populations are

formed (see Fig. 1.5).

More details and error analysis of the GCP technique can be found in [9]. The

major drawback of the GCP/GA algorithm is that the range of the transformation
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Figure 1.5: An illustration of the GA use in calculating the transformation pa-

rameters. The process starts by coding the transformation parameters into one

string. An initial population of strings is randomly generated. Applying the se-

lection, crossover and the mutation operations, new generations are obtained.

Notice how the registration fitness function average increases with the genera-

tions. Maximum fitness can be reached eventually.
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parameters needed to be known beforehand to efficiently code them into a string.

Also if the range is large, the GA convergence can be slow.

1.5 Feature-Based Registration Techniques

Feature-based registration techniques rely on extracting and matching similar

features vector between two or more data sets in order to find corresponding

data points. So the two critical procedures involved in feature-based registra-

tion is feature extraction and feature correspondence. Feature representations,

which are invariant to scaling, rotation, and translation, are more desirable in

the matching process.

One of the most successful feature-based registration techniques, espe-

cially for multimodal registration, is by maximization of mutual information

(MI) [25]. This technique works well for both MR and CT since they are infor-

mative of the same underlying anatomy and there will be mutual information

between the MR image and the CT image. Such a technique would attempt to find

the registration by maximizing the information that one volumetric image pro-

vides about the other. It requires no a priori model of the relationship between

the modalities, it only assumes that one volume provides the most information

about the other one when they are correctly registered.

Unfortunately, if initial transformation between the two modalities is un-

known, the MI will converge slowly. So, we will demonstrate how to use a com-

posite registration procedure that integrates another feature-based registration

technique, mainly a surface-based [26] registration technique, to estimate the

initial transformation. Surface-based registration techniques use features avail-

able on the data set surface mesh such as density or curvature. The surface-

based registration techniques work better for free-form surfaces, such as the

skin contours, while MI works better for voxel-based volumes. Such compos-

ite registration procedures have become recently the state-of-the-art in most

registration applications due to the fact that most feature-based techniques are

complementary in nature.

1.5.1 Surface-Based Registration Algorithm

In order for any surface-based registration algorithm to perform accurately and

efficiently, an appropriate representation scheme for the surface is needed.
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Most of the surface representation schemes found in literature have adopted

some form of shape parameterization especially for the purpose of object

recognition. However, free-form surfaces, in general (e.g., CT/MRI skin con-

tours), may not have simple volumetric shapes that can be expressed in terms

of parametric primitives. Some representation schemes for free-form surfaces

found in literature include the “splash” representation proposed by Stein and

Medioni [27] in which the surface curvature along the intersection of the sur-

face and a sphere centered at the point of interest is calculated for different

sphere diameters and a signature curve is obtained for this point. Also the work

of Chua and Jarvis [28], who proposed the “point signature” representation

which describes the local underlying surface structure in the neighborhood of

a point. This is obtained by plotting the distance profile of a circle of points

to a plane defined by that circle of points. Dorai and Jain [29] proposed an-

other representation called “COSMOS” for free-form objects in which an ob-

ject is described in terms of maximal surface patches of constant shape index

from which properties such as surface area, curvedness and connectivity are

built into the representation. Johnson and Hebert [30] recently introduced a

new representation scheme called the “spin image”. This image represents

the histogram of the surface points relative to a certain oriented point. This

image is generated for each oriented point on the surface and matching be-

tween two surfaces is done by matching the spin images of the points in the

two surfaces. Yamany and Farag [26] introduced another technique based on

surface signatures. Surface signatures are 2D images formed by coding the

3D curvature information seen from a local point. These images are invariant

to most transformation. In what follows are some details for some of these

algorithms.

1.5.1.1 The “Splash” Surface Registration

Geometric indexing have been one of the most used surface indexing techniques

because it used the geometrical relationships between invariant features. How-

ever, another form of indexing that uses local shape information has become

more popular. As it is based on structural information local to the neighborhood

of a point, this indexing method is called “Structural indexing”.

Circle of points was first used to describe the underlying surface structure

around a given point. This can be done by decomposing the local surface patch
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Figure 1.6: An illustration of the “splash” representation scheme. At specific

points on the surface, the intersections of the surface patches and the spheres

of prefixed radii are obtained. For each intersection a curve representing the

average normal of the points in the intersection and the point in study is obtained.

These curves are further used for matching.

around a specific point into a series of contours, each of which is the locus of

all points at a certain distance from the specific point.

Stein and Medioni [27] extended this idea further. Instead of decomposing

a surface patch into a series of contours of different radii, a few contours at

prefixed radii are extracted as shown in Fig. 1.6. On each contour of points,

surface normals are computed. This contour is called a “splash”. A 3D curve is

constructed from the relationship between the splash and the normal at the

center point. This curve is converted into piecewise linear segments. Curvature

angles between these segments and torsion angles between their binormals are

computed. These two features are used to encode the contour.
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Matching is performed using the contour codes of points on the two surfaces.

Fast indexing was achieved by hashing the codes for all models in the library

into an index table.

At runtime recognition, the splashes of highly structured regions are com-

puted and encoded using the same encoding scheme. Models which contain

similar codes as the splashes appearing in the scene are extracted. Verification

is then performed for each combination of three correspondences.

1.5.1.2 The “Point Signature” Surface Registration

This approach was introduced by Chua and Jarvis [28] for fast recognition.

They establish a “signature” for each of the given 3D data points rather than

just depending on the 3D coordinates of the point. This is similar to the “splash”

representation but instead of using the relationship between the surface normals

of the center points and its surrounding neighbors, they used the point set itself.

For a given point p, they place a sphere of radius r, centered at p (simi-

lar to the method used in splash as depicted in Fig. 1.6). The intersection of

the sphere with the object surface is a 3D space curve whose orientation can

be defined by a directional frame formed of the normal to the plane fitted to the

curve, a reference direction and their cross product. The next step is to sample

the points on this curve starting from the reference direction. For each sampled

point there exist two information, the distance from itself to the fitted plane and

the clockwise angle about the normal from the reference direction. Figure 1.7

shows some typical examples of point signatures for different surface types.

Due to this simple representation, the 3D surface matching is transformed

into 1D signature matching. In their paper they analyze this signature matching

and estimate the accepted error tolerance in the matched signature. Prior to

recognition, the model library is built by computing the point signatures for

each point in the model and for every model. They also used hashing to index

the signatures in a table. At runtime, the surface under study is sampled at a

fixed interval and the sampled points are used in the matching process.

1.5.1.3 The “COSMOS” Surface Registration

The goals of the COSMOS (Curvedness-Orientation-Shape Map On Sphere) rep-

resentation scheme were, first, to be a general representation scheme that can
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Figure 1.7: Examples of point signatures: (a) peak, (b) ridge, (c) saddle, (d)

pit, (e) valley, (f) roof edge.

be used to describe sculpted objects, as well as objects composed of simple

analytical surface primitives. Second, to be as compact and as expressive as

possible for accurate recognition of objects from single range image.

The representation uses the “shape index” to represent complex objects. An

object is characterized by a set of maximally sized surface patches of constant

shape index and their orientation dependent mapping onto the unit sphere.
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The patches that get assigned to the same point on the sphere are aggregated

according to the shape categories of the surface components.

The concept of “shape spectrum” features is also included in the COSMOS

framework. This allows free-form object views to be grouped in terms of the

shape categories of the visible surfaces and their surface areas.

For the recognition purpose, COSMOS adapted a feature representation con-

sisting of the moments computed from the shape spectrum of an object view. This

eliminated unlikely object view matches from a model database of views. Once

a small subset of likely candidate views has been isolated from the database, a

detailed matching scheme that exploits the various components of the COSMOS

representation is performed to derive a matching score and to establish view

surface patch correspondence.

1.5.1.4 The “Spin Image” Surface Registration

Johnson and Hebert [30] presented an approach for recognition of complex

objects in cluttered 3D scenes. Their surface representation, the “spin” image,

comprises descriptive images associated with oriented points on the surface.

Using a single point basis, the positions of the other points on the surface are de-

scribed by two parameters. These parameters are accumulated for many points

on the surface and result in an image at each oriented point which is invariant

to rigid transformation.

Through correlation of images, point correspondences between a model and

scene data are established. Geometric consistency is used to group the corre-

spondences from which plausible rigid transformations that align the model

with the scene are calculated. The transformations are then refined and verified

using a modified ICP algorithm.

The spin image is generated by first considering an oriented point (a 3D point

with a normal direction) and defining its basis. The basis is defined using the

tangent plane perpendicular to the point direction and the point direction itself.

A spin-map is then defined using the point basis. In this spin map, any other

point on the surface is related to the oriented point by two parameters, one is

the perpendicular distance to the oriented point line direction and the other

is the signed perpendicular distance to the plane passing through the oriented

point and perpendicular to the point direction.



Medical Image Registration 27

Figure 1.8: The spin image generation process can be visualized as a sheet

spinning around the oriented point basis, accumulating points as it sweeps space.

The term “spin-map” comes from the cylindrical symmetry of the oriented

point basis; the basis can spin about its axis with no effect on the coordinates

with respect to the basis. To create a spin image, first an oriented point on the

surface is selected. Then for each other point on the surface, the spin-map pa-

rameters are computed. These parameters are then accumulated in a 2D array.

Once all the points on the surface have been processed, the 2D array is converted

into a gray image. Figure 1.8 shows the spin-image generation process and vi-

sualizes it as a sheet spinning around the oriented point basis, accumulating

points as it sweeps space. Figure 1.9 shows examples of spin images generated

for the surface of a statue. The darker the pixel, the higher the number of points

projected into this location.

They compared spin images using linear correlation coefficients. They used

the magnitude of the correlation coefficients as well as the confidence in the

correlation results which is measured by the variance of the correlation coeffi-

cient. They also modeled the effect of clutter and occlusion to predict a lower

bound on the correlation coefficient.



28 Farag et al.

Figure 1.9: Examples of spin images generated for the surface of a statue. The

darker the pixel, the higher the number of points projected into this location.

1.5.1.5 The “Surface Signature” Surface Registration

The surface signature algorithm captures the 3D curvature information of any

free-form surface and encodes it into a 2D image corresponding to a certain

point on the surface. This image is unique for this point and is independent from

the object translation or orientation in space.

The process starts by identifying special points on the surface. These points

are called Important points due to the information they carry. Then an image

capturing the surface curvature information seen from each important point,

is formed. This image is called the Surface Signature at this point because it is

almost unique for each point on the surface. Surface registration is then per-

formed by matching signature images of different surfaces and hence finding
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corresponding points in each surface. A point P on a surface/curve S, is called

important point, PI , if and only if the absolute value of the curvature at this

point is larger than a certain positive value (a threshold).

A = {PI} = {P ∈ S| |Curv(P)| > ε, ε > 0} (1.15)

As the important points are landmarks, one may expect that they are stable

for the same object. However, due to scanning artifacts, their number and loca-

tions may vary. By adjusting the curvature threshold, a common subset can be

found. Otherwise, the object has either suffered from non-rigid transformations

or its visible surface has no landmarks.

The signature, computed at each important point, encodes the surface cur-

vature seen from this point, thus giving it discriminating power. As shown in

Fig. 1.10 (a), for each important point P ∈ A defined by its 3D coordinates and

the normal UP at the patch where P is the center of gravity, each other point Pi

on the surface can be related to P by two parameters: The distance

di = ||P − Pi|| (1.16)

and the angle

αi = cos−1
(

UP · (P − Pi)
||P − Pi||

)
(1.17)

Also you can notice that there is a missing degree of freedom in this represen-

tation which is the cylindrical angular parameter. At each location in the image,

the gray value encodes the angle

βi = cos−1(UP ·UPi
) (1.18)

This represents the change in the normal at the surface point Pi relative to

the normal at P . Figure 1.10 (b) shows some signature images taken at different

important points on the skin model of a patient’s head.

The next step in the registration process is to match corresponding signature

images of two surfaces. The ultimate goal of the matching process is to find at

least a three-points correspondence in order to calculate the transformation pa-

rameters. The benefit of using the signature images to find the correspondence is

that we can now use image processing tools in the matching, hence reducing the

time taken to find accurate transformation. One such tool is Template Matching

in which a value defines how well a portion of an image matched a template.
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Figure 1.10: (a) For each important point on the surface a signature image is

obtained. This image encodes the angle difference between the normal at the

point in focus and the normal at each other point on the surface. (b) Examples

of signature images taken at different important points locations. Notice how

the image provides features the curvature information. The dark intensity in the

image represents a high curvature seen from the point while the light intensity

represents a low curvature. Also notice how different the image corresponding

to a location is from images of other locations.
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The end result of the matching process is a list of groups of likely three-

points correspondences that satisfies the geometric consistency constraint. The

list is sorted such that correspondences that are far apart are at the top of the

list. A rigid transformation is calculated for each group of correspondences and

a verification stage [9] is performed to obtain the best group. Detailed discus-

sion concerning the surface signature sensitivity and robustness can be found

in [26].

1.5.2 Maximization of Mutual Information

(MI) Algorithm

MI is a basic concept from information theory, measuring the statistical depen-

dence between two random variables or the amount of information that one

variable contains about the other. The MI registration criterion used states that

the MI of corresponding voxel pairs is maximal if the two volumes are geometri-

cally aligned [31]. No assumptions are made regarding the nature of the relation

between the image intensities in either modality.

Consider the two medical volumes to be registered as the reference volume

R and the floating volume F . A voxel of the reference volume is denoted R(x),

where x is the coordinates vector of the voxel. A voxel of the floating volume

is denoted similarly as F(x). Given that T is a transformation matrix from the

coordinate space of the reference volume to the floating volume, F(T(x)) is

the floating volume voxel associated with the reference volume voxel R(x).

MI seeks an estimate of the transformation matrix that registers the reference

volume R and floating volume F by maximizing their mutual information. The

vector x is treated as a random variable over coordinate locations in the refer-

ence volume. Mutual information is defined in terms of entropy in the following

way [25]:

I(R(x), F(T(x))) ≡ h(R(x))+ h(F(T(x)))− h(R(x), F(T(x))). (1.19)

where h(R(x)) and h(F(T(x))) are the entropy of R and F , respectively.

h(R(x), F(T(x))) is the joint entropy. Entropy can be interpreted as a mea-

sure of uncertainty, variability, or complexity. The mutual information defined

in Eq. (1.19) has three components. The first term on the right is the entropy in

the reference volume, and is not a function of T . The second term is the entropy

of the part of the floating volume into which the reference volume projects. It
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encourages transformations that project R into complex parts of F . The third

term, the (negative) joint entropy of R and F , contributes when R and F are

functionally related. Maximizing MI tends to find as much of the complexity that

is in the separate volumes (maximizing the first two terms) as possible so that at

the same time they explain each other well (minimizing the third term) [25, 31].

1.5.2.1 Computation of MI Metric

Based on the definition of relative entropy, also known as Kullbak Leibler dis-

tance, between two probability mass functions, Eq. (1.19) can be written in terms

of probability distribution functions as follows

I(R(x), F(T(x)))

≡
∑

R(x),F(T(x))

p(r(x), F(T(x))) · log2
p(r(x), F(T(x)))

pR(x)(r(x) · pF(T(x))(F(T(x)))
. (1.20)

where p(x, y) is the joint distribution function and px(x) is the marginal prob-

ability mass functions. The marginals can be obtained directly from the joint

probability function. The joint probability mass function p(r(x), F(T(x))) will

be approximated by the normalized joint histogram H(r(x), F(T(x))). Here,

normalization refers to scaling of the histogram, such that the sum of approxi-

mated probabilities equals 1.0. The marginals are then approximated from H( )

by summation over the rows, and then the columns. Computation of H( ) in-

volves a complete iteration over each sample in the floating volume. For each

sample, the transformation T is applied, to arrive at a coordinate set in the im-

age coordinate system of the reference volume. If the transformed coordinate

is outside the measured reference volume, then the remaining operations are

not executed, and the process starts again with the next sample in the floating

volume. Otherwise, a sample in the reference volume at the transformed coor-

dinates is approximated using trilinear interpolation, and discretized. The two

samples, one from the floating volume, and one from the reference volume, are

then binned in the joint histogram.

Computation of the joint histogram involves the processing of each sample

in the floating volume, application of a transformation to the coordinate of the

sample in the floating volume to obtain a coordinate in the reference volume,

interpolation in the reference volume, and binning in the joint histogram. For a

typical 256 by 256 by 20 MRI volume, there are thus 256 by 256 by 20= 1,310,720
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samples to process. Following computation of the joint histogram, normalization

and computation of the marginal histograms must be performed. This involves

one pass over the joint histogram, therefore processing 256 by 256 = 65,536

elements from the joint histogram. This processing consists of normalization,

and summation to compute the marginal histograms. Following this operation,

the mutual information metric itself may be computed. This processing involves

computation of the sum given in Eq. (1.19), and involves one pass over the joint

histogram, therefore processing 256 by 256= 65,536 elements that compose the

sum given in Eq. (1.19). Therefore, computation of the joint histogram is by far

the most computationally costly component in computation of the mutual infor-

mation metric. Therefore, performance may be best increased by decreasing the

execution time of the computation of the joint histogram. Computation of the

joint histogram is an amenable problem for parallel execution, as computation

of a part of the joint histogram does not depend on the computational results of

any other part of the joint histogram, allowing individual bins, or entire regions

of the joint histogram to be computed independently, and then merged to form

the total joint histogram. Figure 1.11 illustrates such parallel architecture.
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Figure 1.11: Illustration of the parallel computation of the joint histogram nec-

essary for computation of the mutual information metric.
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1.5.2.2 Optimization Methods

The mutual information metric provides a quantitative measure of spatial align-

ment between two volumes, given a choice of registration parameters. To obtain

the best alignment, it is necessary to maximize the metric. Maximization of the

metric, which is parameterized in terms of the registration parameters, is numer-

ically accomplished with the use of an optimization algorithm. In the original for-

mulation of registration by maximization of mutual information in [31], Powell’s

multidimensional optimization method, with Brent line minimizations was used

for maximization of the mutual information metric [32]. Subsequently, [33] com-

pares different classical optimization methods maximizing the mutual informa-

tion metric. One such method included was the use of the classic Nelder and

Mead or simplex algorithm for maximization. This method solely uses the ob-

jective function directly for optimization, and therefore does not require the ex-

pensive computation of derivatives. This method is a geometry-based method,

using the geometric operations of contraction, expansion, and reflection to ma-

nipulate a simplex to a maximum of the objective function. GA was also used as

an optimization criteria in maximizing the mutual information metric as demon-

strated in [34].

1.6 Practical Examples

1.6.1 Composite Approach for Mutlimodal Registration

A composite registration approach can perform a fast, six degrees of freedom

registration and accurately locate the position and orientation of medical vol-

umes (obtained from CT/MRI scans for the same patient) with respect to each

other. The technique uses surface registration technique followed by a volume

registration approach. The advantage of this combination is to have an accurate

alignment and to reduce the time needed for registration. The surface regis-

tration uses the surface signature approach and for the volume registration,

the maximization of mutual information (MI) is used as a matching criterion

and is enhanced by a genetic based optimization technique. Figure 1.12 shows a

block diagram of the composite registration. Figure 1.13 shows some results and

Table 1.2 shows approximate registration time for both single and composition

registration.
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Figure 1.12: Two different volumes are fed into the system. Surface registra-

tion provides an estimate transformation between them. This result is further

enhanced by maximizing the mutual information. A Genetic Algorithms tech-

nique is used in the optimization process.

1.6.2 Multiple Sclerosis (MS) Application

Multiple sclerosis is a disease of the human central nervous system, affecting ap-

proximately 250,000 to 350,000 people in the United States alone [35]. MS results

Before Registration

After RegistrationAfter Registration

Before Registration

Figure 1.13: Two different signature samples. The upper two images are from

the MR dataset; while the lower two are from the CT dataset. This figure shows

similarity of the signature images of each matched pair, although they are pro-

duced from two different datasets (CT and MR) with a different 3D volume size

(number of slices).
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Table 1.2: Comparison between approximate times for single and composite

volume registration

Composite

Surface Matching

Case Features Extraction Matching

Single-Stage
No. of Volume Total time MI-GA
slices Matching (sec) (sec)

CT/CT 236 20 sec 30 sec 100 sec 150 300
CT/MR 33/19 8 sec 20 sec 80 sec 108 250

in a variety of clinically observable deficiencies, such as speech difficulties, pain,

impairment of senses, loss of muscle control, and cognitive abnormalities [36].

In the brain, MS results in the inflammation and destruction of myelin, a fatty

covering insulating nerve cells [36]. This damage results in decreased ability

of the nervous system to control the body, leading to the clinically-observable

symptoms of the disease. The causes of MS are not clearly accepted in the med-

ical community. Geographic, genetic, and environmental factors all seem to be

present [35]. Many researchers have proposed that MS is an autoimmune dis-

ease [35]. Though there are promising research developments, at this time, no

cure is known for this disease. Several treatment options are available, and allow

for management of the disease. Despite this, most patients progress in disability

over the course of their life [35]. Though not usually a fatal disease in and of

itself, the resulting disabilities may contribute to accidental mishaps [35].

When patients with MS are imaged using MRI modalities, lesions (also re-

ferred to as plaques or deficits) can be contrasted against surrounding, normal

brain tissue, by choice of appropriate scan parameters, and depending on the

state of the lesion [37]. Figure 1.14 shows several slices of different FLAIR MR

images of patients with MS. MS lesions appear as hyper intense regions in the

patient’s brain.

The use of MR imagery in the evaluation of MS involves the identification of

abnormal brain tissue (MS lesions), and normal, non-diseased brain tissue (gray

and white matter). MRI has been found to be a sensitive marker to changes

in disease progression, and evaluation of MRI studies of MS patients can be

useful as an outcome measurement in MS studies [4]. Despite these statements,

evaluation of the disease cannot be completely based upon MRI findings. MS

lesion activity observed in MRI studies of the brain does not always correspond
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Figure 1.14: Sample slices from FLAIR MRI studies of patients with MS. Hy-

perintense regions in the brain are indicative of plaques caused by MS.

to clinically observed deficits [37]. As well, quantification of MRI studies of MS

have yet to be perfected, and most studies of MS do not generate enough MRI

data to evaluate the nuances in the application of MRI to study MS.

It is desirable to develop computer tools to assist experts in the study of MS

using MR imaging. Allowing a computer to automatically identify normal and

abnormal brain tissue would free an expert from the arduous task of manually

examining each slice of a study, while generally increasing the reproducibility of

the identification by removing the subjectivity of the human observer. Medical

registration tools would also be useful for automatic, retrospective alignment of

patient studies, taken at different points in time, to allow for qualitative compar-

ison of different studies of a patient of the course of his or her treatment. This

type of analysis would aid the expert in deciding if the disease is responding

well to the present treatment, or if a change in the treatment is warranted.

Typically in an MRI study, a patient is placed in the scanner with little regard

for positioning of the anatomy of interest. The only constraints are that the
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anatomy of interest falls within the scanning volume, and that the patient is

generally placed in some orientation such that gross anatomical features are

placed in some direction (for example, the patient’s nose points upward in the

scanner). In the context of qualitative evaluation of MS studies however, this

arrangement leads to hindrances in evaluation, due to the fact that multiple scans

must be compared with one another. Due to the largely arbitrary positioning of

the anatomy in the scanner, in a slice-by-slice comparison between studies,

quite different anatomy can by chance be located on the same slice numbers in

different studies.

It is desirable to be able to perform registration using the intrinsic ap-

proaches, rather than imposing limitations in the scanning procedure, or affixing

artificial fiducial markers on the patient’s head. For best accuracy, artificial mark-

ers would likely be affixed to the skull, and therefore would be inconvenient and

potentially painful for the patient. Additionally, this procedure would also intro-

duce a risk of infection. Furthermore, using intrinsic registration techniques, it is

also desirable to be able to apply registration retroactively, allowing for current

data sets to be aligned with data sets taken previously in a patient’s history, or

perhaps with an imaging modality that prevents the use of artificial markers. In

the study of MS using MRI, for comparison of scans taken at different points of

time in a clinical study, of the same patient, a registration technique is necessary.

Such a tool would allow for alignment of the patient’s anatomy in different scans.

When this alignment is accomplished, qualitative comparison of scans becomes

easier to an expert viewer, as image slices will now contain the same anatomy,

and quantitative comparison between studies is enabled in the same manner.

Registration can also be used to assist in segmentation. For example, if a model

of the patient’s anatomy is known, then a study can be registered to that model,

allowing for segmentation of certain classes of problems to be made trivial, as

the segmentation of the data set is then known a priori from the model. In the

MS research, this approach is used for segmentation of a patient’s brain from

his head. In this context, registration is performed by maximization of mutual

information. This technique has generally been found to perform well, and is

useful in the MS clinical settings. This technique was studied, implemented, and

tested using MS patient studies. Additionally, the performance of this method

was enhanced by application of parallel programming techniques.

Figure 1.15 shows sample slices from the registration studies. Each row of

the figure corresponds to a single study. The first column of the figure shows a

sample slice from the floating volume used for each study. The second column of
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Figure 1.15: Sample registration results from each samples of MS data sets.

The first column is a sample slice from the floating volume used. The second

column is the corresponding slice from the re-sampled reference volume. The

third column is the checkerboard composite image of the two corresponding

slices from the floating and resampled reference volumes. The floating volume

and reference volumes used in each trial were from the same patient.

the figure shows the corresponding slice from the re-sampled reference volume.

Finally, the third column of the figure shows the checkerboard composite image

formed by fusion of the corresponding floating and re-sampled reference volume

slices.

1.6.3 Lung Cancer Application

Another practical application for monomodal registration in the lung cancer

diagnosis. Lung cancer remains the leading cause of mortality cancer. In 1999,

there were approximately 170,000 new cases of lung cancer [38]. The five-year

survival rate from the diseases is 14% and has increased only slightly since the

early 1970s despite extensive and costly research efforts to find effective therapy.

The disparity in survival between early and late-stage lung cancer is substantial,

with a five-year survival rate of approximately 70% in stage 1A disease compared

to less than 5% in stage IV disease according to the recently revised lung cancer
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Figure 1.16: (a) CT scan June 2000 (b) CT scan June 2001 (c) CT scan June

2002.

0 5 10 15 20 25 30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9I(α)

Generation number 

Figure 1.17: MI fitness function at different GA iterations.

staging criteria [38]. The disproportionately high prevalence and mortality of

lung cancer has encouraged attempts to detect early lung cancer with screening

programs aimed at smokers. Smokers have an incidence rate of lung cancer that

is 10 times that of nonsmokers and accounts for more than 80% of lung cancer

cases in the United States [38]. One in every 18 woman and every 12 men develop

lung cancer, making it the leading cause of cancer deaths. Early detection of lung

tumors (visible on chest film as nodules) may increase the patient’s chance of

survival.
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Figure 1.18: (a) Result of registration of data in Figs. 1.16.a and 1.16.b. (b)

Result of registration of data in Figs. 1.16.a and 1.16.c.

The Jewish Hospital Foundation in Louisville, KY., proposed a cancer screen-

ing and early detection study in a randomized trial with the following specific

aims: (1) to determine whether the use of spiral CT scanning of the chest detects

early lung abnormalities that lead to cancer, which are not visible on chest X-rays

in patients at high-risk for developing lung cancer; and (2) to determine whether

annual spiral chest CT scans of the chest in high-risk patients result in an im-

provement in survival. To test and prove these hypothesis, data was collected

from 1000 symptomatic patients above 60 years of age with positive smoking

history will undergo screening with low dose spiral CT (LDCT) and chest ra-

diography. Screening was performed every three months on the selected 1000

symptomatic patients. The role of the image registration process was to help in

studying the development of abnormalities.

Again, maximization of mutual information enhanced by using genetic algo-

rithms was used in this application. Figure 1.16 shows different CT images for

the same patient taken at various periods. Registration of these images using

the mutual information criterion was performed fully automatically on a PC

computer with microprocessor 2.4 GHz. The algorithm took less than 8 min.

to register all data. The recovered rotational transformation parameters were

generally smaller than 15 degrees, while the translational parameters varied up

to 20 mm. Figure 1.17 shows how the GA iterations improve the MI measure

overtime until maximum fitness is reached. Figure 1.18 shows the results of
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registration for the data shown in Fig. 1.16. The registration process was able to

show that new parts of abnormality appeared in later scans between the period

June 2001 to June 2002.

Questions

1. Based on the classification defined in this chapter, define all the possible

classifications of the following registration techniques:

(a) Registration by maximization of Mutual Information.

(b) Surface Signature registration.

(c) Grid Closest Point registration.

2. Using the formulation for the Surface Signature images, derive and draw

the signature image for the following parametric shapes. (choose points

of interest on each shape)

(a) a sphere of radius r

Sph(u, v) =

⎡⎢⎣ r cos(2πu)

r sin(2πu)cos(2πv)

r sin(2πu)sin(2πv)

⎤⎥⎦ (1.21)

(b) a cylinder of radius r and height h

Cyl(u, v) =

⎡⎢⎣r cos(2πu)

r sin(2πu)

v/h

⎤⎥⎦ (1.22)

3. Describe how the Genetic Algorithm technique can be used as an optimizer

for the MI registration technique.

4. Derive Eq. (1.19) from Eq. (1.20).
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Chapter 2

State of the Art of Level Set Methods in

Segmentation and Registration of Medical

Imaging Modalities

Elsa Angelini,1 Yinpeng Jin,1 and Andrew Laine1

2.1 Introduction

Segmentation of medical images is an important step in various applications

such as visualization, quantitative analysis and image-guided surgery. Numer-

ous segmentation methods have been developed in the past two decades

for extraction of organ contours on medical images. Low-level segmentation

methods, such as pixel-based clustering, region growing, and filter-based edge

detection, require additional pre-processing and post-processing as well as con-

siderable amounts of expert intervention or information of the objects of inter-

est. Furthermore, the subsequent analysis of segmented objects is hampered

by the primitive, pixel or voxel level representations from those region-based

segmentation [1].

Deformable models, on the other hand, provide an explicit representation of

the boundary and the shape of the object. They combine several desirable fea-

tures such as inherent connectivity and smoothness, which counteract noise and

boundary irregularities, as well as the ability to incorporate knowledge about

the object of interest [2, 3, 4]. However, parametric deformable models have two

main limitations. First, in situations where the initial model and desired object

boundary differ greatly in size and shape, the model must be reparameterized

dynamically to faithfully recover the object boundary. The second limitation

1 Columbia University, New York, NY, USA
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is that it has difficulty dealing with topological adaptation such as splitting or

merging model parts, a useful property for recovering either multiple objects

or objects with unknown topology. This difficulty is caused by the fact that a

new parameterization must be constructed whenever topology change occurs,

which requires sophisticated schemes [5, 6]. Level set deformable models [7,

8], also referred to as geometric deformable models, provide an elegant solu-

tion to address the primary limitations of parametric deformable models. These

methods have drawn a great deal of attention since their introduction in 1988.

Advantages of the contour implicit formulation of the deformable model over

parametric formulation include: (1) no parameterization of the contour, (2) topo-

logical flexibility, (3) good numerical stability, (4) straightforward extension of

the 2D formulation to n-D. Recent reviews on the subject include papers from

Suri [9, 10].

In this chapter we give a general overview of the level set segmentation

methods with emphasis on new frameworks recently introduced in the context

of medical imaging problems. We then introduce novel approaches that aim at

combining segmentation and registration in a level set formulation. Finally, we

review a selective set of clinical works with detailed validation of the level set

methods for several clinical applications.

2.2 Level Set Methods for Segmentation

A recent paper from Montagnat, Delingette, and Ayache [11] reviews the gen-

eral family of deformable models and surfaces with a classification based on

their representation. This classification has been reproduced to some extent in

Fig. 2.1. Level set deformable models appear in this classification diagram as

part of continuous deformable models with implicit representation.

2.2.1 Level Set Framework

Segmentation of an image I via active contours, also referred to as snakes [2],

operates through an energy functional controlling the deformation of an initial

contour curve C(p), p ∈ [0, 1] under the influence of internal and external forces

achieving a minimum energy state at high-gradient locations. The generic energy
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Figure 2.1: Geometric representations of deformable surfaces.

functional for active contour models is expressed as:

E(C) = α
∫ 1

0

∣∣C ′(s)
∣∣2ds + β

∫ 1

0

∣∣C ′′(s)
∣∣ds − λ

∫ 1

0

∣∣∇ I(C(s))
∣∣2ds (2.1)

where (α, β, λ) are positive parameters. The first two terms control the rigidity

and elasticity of the contour (defining the internal energy of the deformable

object) while the last term attracts the model to high-gradient locations in the

image I (defining the external energy of the model).

Active contour segmentation via minimization of the energy functional in

Eq. (2.1) is typically implemented with a parametric framework in which the de-

formable model is explicitly formulated as a parameterized contour on a regular

spatial grid, tracking its point positions in a Lagrangian framework [11].

In their original paper from 1988 [7], Osher and Sethian introduced the con-

cept of geometric deformable models, which provide an implicit formulation

of the deformable contour in a level set framework. To introduce the concept

of the level set framework we focus on the boundary-value problem of a close
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contour C deforming with a speed V along its normal direction:

|∇C | V = 1, V > 0 (2.2)

Their fundamental idea is, instead of tracking in time the positions of the front

C(x, y) on a regular grid as:


(t) = {(x, y)|C(x, y) = t} (2.3)

to embed the curve into a higher dimension function φ(x, y, t) such that:

1. at time zero the initial contour C0 corresponds to the level zero of the

function φ:

C0 = {(x, y)/φ(x, y, 0) = 0}. (2.4)

2. the function φ evolves with the dynamic equation:

∂φ

∂t
= |∇φ|V . (2.5)

In this framework, at any time t, the front implicitly defined by:


(t) = {(x, y)/φ(x, y, t) = 0} (2.6)

corresponds to the solution of the initial boundary value problem defined para-

metrically in Eq. (2.3). This result is illustrated in Fig. 2.2.

Figure 2.2: Correspondence between a parametric and implicit level-set for-

mulation of the deformation of a contour with a speed term oriented along the

normal direction.
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In their pioneer paper, Osher and Sethian focused on motion under mean

curvature flow where the speed term is expressed as:

V = div

( ∇φ
|∇φ|

)
. (2.7)

Since its introduction, the concept of deformable models for image segmentation

defined in a level set framework has motivated the development of several fami-

lies of method that include: geometric active contours based on mean curvature

flow, gradient-based implicit active contours and geodesic active contours.

2.2.2 Geometric Active Contours

In their work introducing geometric active contours, Caselles et al. [12] proposed

the following functional to segment a given image I:

∂φ

∂t
= |∇φ|g(|∇ I|)

(
div

( ∇φ
|∇φ|

)
+ ν

)
, (2.8)

with

g(|∇ I(x, y)|) = 1
1+ |∇Gσ (x, y)∗ I(x, y)|2 , (2.9)

where ν ≥ 0 and Gσ is a Gaussian convolution filter of standard deviation σ . The

idea defining geometric deformable models is to modify the initial mean curva-

ture flow of Eq. (2.7) by adding a constant inflation force term ν and multiplying

the speed by a term inversely proportional to the smooth gradient of the image.

In this context the model is forced to inflate on smooth areas and to stop at

high-gradient locations as the speed decreases towards zero.

2.2.3 Gradient-Based Level Set Active Contours

In their initial work on applications of the level set framework for segmentation

of medical images, Malladi et al. [8] presented a gradient-based speed function

for the general Hamilton-Jacobi type equation of motion in Eq. (2.5).

Their general framework decomposed the speed term into two components:

V = Va + VG, (2.10)

where Va is an advection term, independent of the geometry of the front and VG

is a remainder term that depends on the front geometry.
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The authors studied the design of the speed term to stop the front propagation

at high-gradient locations depending on the value of VG .

In the first case, for VG = 0 they proposed the following speed term:

V =
(
−Va + Va

(M1 − M2)
(|∇G∗

σ I| − M2)
)
, (2.11)

where (M1,M2) are the maximum and minimum values of the smooth gradient

image
∣∣∇G∗

σ I
∣∣.

In the case where VG = 0, the speed term needs to be multiplied by a gradient-

based term to stop the front evolution, as follows:

V =
(

1

1+ ∣∣∇G∗
σ I
∣∣
)
× (Va + VG) . (2.12)

Numerical schemes for approximation of spatial derivatives with theses speed

terms must respect the appropriate entropy condition for propagating fronts as

discussed in detail in [13] and [14]. This entropy condition ensures that the prop-

agating front corresponds to the boundary of an expanding region. An analogy

invoked by Sethian to illustrate the entropy principle is to consider the moving

front as a source for a burning flame and expand the flame thus ensuring that

once a point in the domain is ignited, it stays burnt. The entropy principle puts

some constraints in the choice of particular numerical schemes for temporal

and spatial derivatives of the level set function. In their work, Malladi et al. [8]

used a forward difference in time, upwind scheme for the constant inflation term

and central differences for the remainder term (see Fig. 2.3).

A second issue with this framework arises from the fact the image-based

speed terms are only defined on the zero-level of the moving front, as it was

designed to stop the evolution of this level at high-gradient locations. On the

other hand, the energy functional is defined over the entire domain and the

speed term must have a consistent definition over all values of the level set

function. This is done by extending the speed term from its values defined only

on the level zero. There are several methods available to perform the extension.

One of the most popular methods assigns the values of the closest point on the

level zero to a given point of the domain.
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Figure 2.3: Illustration of extension for gradient-based speed terms. (a) Region

of interest from a chest MRI scan with a level set curve initialized inside the spine.

(b) Gradient map of the MRI image with prior smoothing with a Gaussian filter.

(c) Multiplying term for speed function, proportional to the inverse edge map

from (b). (d) Extension of the speed term in (c) from values under the zero level

contour.

2.2.4 Geodesic Active Contours

Geodesic active contours were introduced simultaneously by Kichenassamy

et al. [15] and Caselles et al. [16] as a segmentation framework, derived from

energy-based snakes active contours, performing contour extraction via the

computation of geodesics, i.e., minimal distance curves in a Riemannian space

derived from the image. Given an image I and for a given differentiable curve

C (p) , p ∈ [0, 1] they define the following energy:

E (C) =
∫ 1

0
g (|∇ I (C (p))|) |C (p)| dp, (2.13)
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where g is a positive decreasing function. Segmentation is achieved via mini-

mization of this energy functional equivalent to the computation of geodesics in

a Riemannian space according to a metric that weights the Euclidian length of

the curve with the term g (|∇ I (C (p))|).

Minimization of the functional is performed via derivation of the Euler-

Lagrange system:

∂C

∂t
= g (|∇ I|) κ �N − (∇g(|∇ I|). �N) �N, (2.14)

where κ is the Euclidian curvature of the curve C and �N is the unit normal

vector to the curve. Implementation with a level set framework is performed by

embedding the curve C into a level set function φ. Using the following property

on the curvature term:

κ = div

( ∇φ
|∇φ|

)
, (2.15)

and the following equivalence of relationships between a curve C and its asso-

ciated level set function φ:

∂C

∂t
= α �N

∂φ

∂t
= α |∇φ| ,

(2.16)

the level set formulation is expressed as:

∂φ

∂t
= |∇φ|

(
g (|∇ I|) div

( ∇φ
|∇φ|

)
+ ∇g (|∇ I|) ∇φ|∇φ|

)
(2.17)

= |∇φ|div

(
g (|∇ I|) ∇φ|∇φ|

)
To improve convergence speed and allow the detection of non-convex objects,

the authors also introduced a modification of the initial formulation with the

introduction of a constant inflation term νg (|∇ I|) |∇φ| leading to the following

functional:

∂φ

∂t
= |∇φ|

(
div

(
g (|∇ I|) ∇φ|∇φ|

)
+ νg (|∇ I|)

)
= g (|∇ I|) (κ + ν) |∇φ| + ∇g (|∇ I|)∇φ.

(2.18)

Applications of the geodesic deformable model to medical imaging have been

tested by both groups of pioneering authors. Yezzi et al. tested their geodesic

deformable model in [17] on 2D images for cardiac MRI, breast ultrasound with
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a cyst and bone CT. No clinical validation was performed. Caselles with Malladi

et al. in [18] compared 2D geometric and 3D geodesic deformable models with

applications on 3D CT of human thighs and 3D cardiac MRI data sets. Measure-

ment of soft tissue and ventricular cavity volumes are reported but no clinical

validation was performed. A recent review of the use of geodesic deformable

models for medical image analysis is provided in [19] with comparison of per-

formance between geometric and parametric deformable models.

2.2.5 Tuning Level Set Speed Functions

for Segmentation

The main problem of the boundary-based level set segmentation methods is re-

lated to contour leakage at locations of weak or missing boundary data informa-

tion. An illustration of the phenomenon is provided in Fig. 2.4 for segmentation

of a high-resolution abdominal MRI slice.

Several efforts have been performed to add stopping criteria on the entire

front [20, 21] and local pixel freezing rules [21], or combine gradient with region

Figure 2.4: Leakage of level set deformable model at location of weak edges

with gradient-based speed terms. (a) T2-weighted abdominal MRI with region

of interest selected to contain subcutaneous fat. (b) Edge map derived from

gradient computation to define speed term. (c) Leakage of front outside the fat

compartment at two locations due to interstices with poor edge contrast. The

level zero curve used to initialize the segmentation is displayed with a thick

line.
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information [22, 23] to make the segmentation process more robust to poor

edge definition. When dealing with weak boundaries the most radical solution

to leaking problems is to remove the expansion term at the cost of requiring an

initialization close to the final solution [24]. An alternative to this approach was

proposed by Jin et al. [25] initially keeping the expansion term for pushing the

model and turning it off as it approaches the object boundary. Detection of the

boundary location was performed using a homogeneity map derived from scale-

based fuzzy connectivity [26]. A more recent effort to address the problem of

segmentation of an object with missing boundaries was presented by Sarti et al.

in [27] introducing a new geometric model for subjective surfaces. Starting from

a reference point inside the object to segment, the “point of view”, a geometric

deformable model is evolved with mean curvature flow and image-derived speed

terms until a piecewise constant solution is reached. This piecewise constant

solution is the subjective surface defined by the segmentation process that is

flat inside the object and has boundaries defined by geodesic curves. The au-

thors also introduced the notion of “modal” contours which are contours that

are perceived in the visual context and “amodal” contours which are associated

with partially occluded objects. Segmentation of amodal contours can be per-

formed with their subjective surface framework through iterations of edge-map

computation and contour extraction. The authors produced very nice illustra-

tions of the performance of their subjective surface segmentation on three-

dimensional ultrasound data with a fetal echogram, recovering the shape of the

fetus.

All the level set segmentation methods presented above are based on image

gradient intensity making them prone to leaking problems in areas with low

contrast. A second problem related to the use of the image gradient as the

only image-derived speed term is that it makes the segmentation process very

sensitive to the initial position of the level set function as the model is prone

to converge to false edges that correspond to local minima of the functional.

Medical images typically suffer from insufficient and spurious edges inherent to

physics of acquisition and machine noise from different modalities.

Two approaches can be followed to address these limitations. The first ap-

proach is to fuse regularizer terms in the speed function as reviewed in [9]. A

second approach is to reformulate the problem in terms of region-based seg-

mentation methods derived from the Mumford-Shah functional implemented in
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a level set framework. We give an overview of these two families of methods in

the next section.

2.2.6 Level Set Speed Functions with Regularizers

Suri et al. review in [9] recent works on the fusion of classical geometric and

geodesic deformable models speed terms with regularizers, i.e., regional statis-

tics information from the image. Regularization of the level set speed term is

desirable to add prior information on the object to segment and prevent seg-

mentation errors when using only gradient-based information in the definition

of the speed. Four main types of regularizers were identified by the authors of

the review:

1. Clustering-based regularizers

2. Bayesian-based regularizers

3. Shape-based regularizers

4. Coupling-surfaces regularizers

We give in the next section a brief overview of each method.

(1) Clustering-based Regularizers: Suri proposed in [28] the following en-

ergy functional for level set segmentation:

∂φ

∂t
= (εκ + Vp) |∇φ| − Vext∇φ, (2.19)

where Vp is a regional force term expressed as a combination of the inside and

outside regional area of the propagating curve. This term is proportional to a

region indicator taking value between 0 and 1, derived from a fuzzy membership

measure as described in [29].

(2) Bayesian-based Regularizers: Recent work from Baillard et al. [30] pro-

posed an approach similar to the previous one where the level set energy func-

tional expressed as:

∂φ

∂t
= g (|∇ I|) (κ + V0) |∇φ| (2.20)

uses a modified propagation term V0 as a local force term. This term was de-

rived from the probability density functions inside and outside the structure to
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segment. The authors also modified the data consistency term g (|∇ I|) as ex-

pressed in Eq. (2.9) using a transitional probability from going inside to outside

the object to be segmented.

(3) Shape-based Regularizers: Leventon et al. [31] introduced shape-based

regularizers where curvature profiles act as boundary regularization terms more

specific to the shape to extract than standard curvature terms. A shape model is

built from a set of segmented exemplars using principle component analysis ap-

plied to the signed-distance level set functions derived from the training shapes.

The principal modes of variation around a mean shape are computed. Projec-

tion coefficients of a shape on the identified principal vectors are referred to as

shape parameters. Rigid transformation parameters aligning the evolving curve

and the shape model are referred to as pose parameters. To be able to include a

global shape constraint in the level set speed term, shape and pose parameters

of the final curve φ∗ (t) are estimated using maximum a posteriori estimation.

The new functional is derived with a geodesic formulation as in Eq. (2.18) with

solution for the evolving surface expressed as:

φ (t + 1) = φ (t)+ λ1 (g (|∇ I|) (c + κ) |∇φ (t)| + ∇g (|∇ I|) .∇φ (t))
(2.21)

+ λ2(φ∗(t)− φ(t)),

where (λ1, λ2) are two parameters that balance the influence of the gradient-

curvature term and the shape-model term. In more recent work, Leventon et al.

[32] introduced further refinements of their method by introducing prior in-

tensity and curvature models using statistical image-surface relationships in

the regularizer terms. Limited clinical validation have been reported using this

method but some illustrations on various applications including segmentation

of the femur bone, the corpus callosum and vertebral bodies of the spine showed

efficient and robust performance of the method.

(4) Coupling-surfaces Regularizers: Segmentation of embedded organs

such as the cortical gray matter in the brain have motivated the introduction

of a level set segmentation framework to perform simultaneous segmentation

of the inner and outer organ surfaces with coupled level set functions. Such

method was proposed by Zeng et al. in [33]. In this framework, segmentation is

performed with the following system of equations:{
φin + Vin |∇φin| = 0

φout + Vout |∇φout| = 0
(2.22)
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where the speed terms (Vin, Vout) are functions of the surface normal direction

(e.g., curvature of the surface), image-derived information and the distance be-

tween the two surfaces. When this distance is within the desired range, the two

surfaces propagate according to the first two terms of the speed term. When

the distance is out of the desired range, the speed term based on the distance

controls the deformation as to correct the surface positions.

When defining the initial level set function as the signed distance function

to its level zero, and ensuring that the distance function is preserved during the

deformation process of the front through reinitialization, the distance of any

point on the inner surface to the outer surface is directly read as the value of

the outer level set function and vice versa.

Defining the speed terms as:

{
Vin = Finh (φout)

Vout = Fouth (φin)
(2.23)

with (Fin, Fout) speed terms derived from image and curvature properties and

h ( ) a smooth approximating the windowing step function defined for a range

of distance [d1 d2] that is equal to one inside this interval and 0 outside.

Zeng et al. [33] applied this framework for the segmentation of brain cortical

gray matter (GM) surfaces. In this application, the speed terms were defined as:

{
Vinside = S− (I − Iin)+ S+ (φout + ε)
Voutside = S− (I − Iout)+ S+ (φin − ε) ,

(2.24)

where I is the intensity of the MRI, Iin is a threshold value corresponding to the

white matter and Iout a threshold value corresponding to the gray matter, ε is the

desired thickness of the gray matter layer,
(
S−, S+

)
are two sigmoid functions,

respectively, decreasing and increasing with bounded value between [−1, 1]. If

the curve evolution is implemented with Eq. (2.5), the magnitude of the gradients

(|∇φin| , |∇φout|) will increase and the estimation of the distance between the

zero-levels of the two functions will be overestimated, leading (φin, φout) to get

closer as they evolve and eventually collide until the level set functions are

reinitialized. Results are illustrated on three regions of interest from three MRI

slices and show very interesting results but no quantitative evaluation of the

accuracy of the method was performed.
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2.2.7 Reconciling Level Set and Distance Function

In a recent paper [34], Gomes and Faugeras introduced a reformulation of the

Hamilton-Jacobi equation of Eq. (2.5) underlying the level set initial formulation

from Osher and Sethian [7] to eliminate problems related to reinitialization of

the distance function and the need to extend the velocity field away from the

level zero.

The fact that the solution to Hamilton-Jacobi equations of the form in Eq. (2.5)

are not distance functions has been demonstrated formally in [35]. In [34] the

authors provide two simple examples illustrating this result. There are both

theoretical and practical reasons pointed out by the authors to motivate the

preservation of the signed distance function during the segmentation process.

Theoretically, the signed distance function gives a unique equivalence to the

implicit description of the moving front. From a practical point of view, the

use of a signed distance function enables to directly extract from the level set

function geometrical properties of the front and guarantees bounded values of

the level set function gradient, ensuring numerical stability of the segmentation

iterative process.

To derive the new dynamic equation, the authors initialize the level set func-

tion φ0 = φ (x, 0) at t = 0 as the signed distance function from the initial front.

The goal is to redefine a speed function F such that ∂φ
∂t
= F which (1) preservesφ

as the signed distance function from the level zero, and (2) ensures that the level

zero of φ evolves as in Eq. (2.2). These constraints are expressed mathematically

as: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
F/φ=0 = V

∂φ

∂t
= F

|∇φ| = 1

(2.25)

where F/φ=0 denotes the restriction of F to the zero-level of φ. The authors

derived the following dynamic equation as the solution to this system:

∂φ

∂t
= V (x− φ∇φ) (2.26)

for any point x ∈ R
3, which is not a Hamilton-Jacobi equation.

Implementation of the equation is proposed with a narrow-band framework,

shock-detecting gradient computation and as described in [14].
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The authors provide a very nice application for segmentation of cortical

gray matter surfaces from MRIs derived from the initial work of Zeng et al.

[33]. With this method, if the curve evolution in Eq. (2.24) is implemented with

model in Eq. (2.5), the magnitude of the gradients (|∇φin| , |∇φout|) will increase

and the estimation of the distance between the zero-levels of the two func-

tions will be overestimated, leading (φin, φout) to get closer as they evolve and

eventually collide until the level set functions are reinitialized. Results are illus-

trated on three regions of interest from three MRI slices and show very inter-

esting results but no quantitative evaluation of the accuracy of the method was

performed.

2.2.8 Region-based Level Set Active Contours

Region-based active contour were derived from the Mumford-Shah segmenta-

tion framework initially proposed in [36]. In their initial work, Mumford and Shah

defined a new segmentation framework performing segmentation of a given im-

age I into a set of contours S and a smooth approximation f of the image via

minimization of the following framework:

E (S, f ) = α
∫
�

( f − I)2dx+ β
∫
�\S
|∇ f | dx+ Hn−1 (S), (2.27)

where Hn−1 (S) is the (n− 1) dimensional Hausdorff measure, and (α, β) are

positive real parameters. In this functional, the first term ensures that f is a good

approximation of the original image I, the second term ensures that f is smooth

and the last term minimizes the length of the set of contours of the segmentation.

This type of region-based segmentation method relies on the homogeneity of the

object to segment. This assumption is often violated with medical images due

to motion of the organ, presence of corrupting machine noise or acquisition

artifacts that introduce flat field inhomogeneities.

Based on the Mumford-Shah segmentation framework, Chan and Vese intro-

duced in a series of papers a new type of active contour models without gradient

information [37–41]. In the simplest case, assume that an image I defined on� is

composed of two regions (e.g., an object and a background) with homogeneous

intensities around values c0 and c1. Given a curve C that defines the boundary

of a region inside the image I, they introduce the following homogeneity-based
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functional:

E (C) =
∫

insideC

|I − C0|2 d� +
∫

outsideC

|I − C1|2 d�, (2.28)

where (C0,C1) are the average intensity values of I inside and outside the curve

C . With this functional, the boundary between the two regions is defined by its

minimum state. They further combined this homogeneity-based fitting term with

regularizing terms that put constraints on the length and the area of the curve

with the following functional:

E (C0,C1,C) = λ0

∫
insideC

|I − C0|2 d� + λ1
∫

outsideC

|I − C1|2 d�

(2.29)
+ µ length(C)+ µ Area(C).

Details for the mathematical definitions of the length and the area of the bound-

ary curve C can be found in [40].

In a level-set framework implementation, the functional (2.29) is expressed

as:

E (C0,C1, φ) = λ0

∫
|I − C0|2 H (φ) d�+λ1

∫
|I − C1|2 (1− H (φ)) d�

(2.30)
+ µ

∫
δ (φ) |∇φ| d�+ ν

∫
H (φ) d�

Advantages of this method include the possibility of segmenting objects with

discontinuous edges and robustness of the method to arbitrary initialization,

avoiding the problem of local minima at spurious edge locations or leakage of

the model at missing edge locations. The initial work from these authors have

generated many applicative research works for segmentation of medical images,

starting with works from the authors themselves in [37] with illustration of their

method on brain MRI, three-dimensional ultrasound.

A simultaneous and parallel effort to the work of Chan and Vese, from Tsai

et al. [42] proposed a reformulation of the Mumford-Shah functional from a

curve evolution perspective using a gradient flow formulation and a level set

framework implementation. Recent works applying this segmentation method

to three-dimensional cardiac ultrasound include Angelini et al. [43], and Lin et al.

[44].

We note two powerful extensions of this region-based implicit deformable

model for applications to medical images:
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(1) This method is easily extended to segmentation of vectorial images with

integration of the multiple channels information in the homogeneity mea-

sure. This property, described in detail in [45], has potential applications in

segmentation of multiprotocols MRI brain data sets or any co-registered

multimodality data sets where combination of spatial information can

assist the definition of a particular organ contours.

(2) This method is extensible to multiphases segmentation using a system of

n coupled dynamic PDEs with {φ1, . . . , φn} level set functions defining 2n

phases in the segmented data. Extensive description of the multiphase

method is provided in [41]. Potential applications of the multiphase for-

mulation include segmentation of brain MRIs into multiple tissue types.

An illustration of this application is provided in Fig. 2.5.

2.3 Joint Image Registration

and Segmentation

2.3.1 Motivations

Combining registration and segmentation has been motivated by the need to

incorporate prior information to guide and constrain the segmentation process.

The quality of the images acquired by the various medical screening modalities

is often poor due to the presence of multiple noise sources in the acquisition

system, degradation of data content during reconstruction processes (e.g., tomo-

graphic reconstruction with Radon transform), motion and respiratory artifacts

introduced by motion of the patient, and inherent limitations of system acqui-

sition accuracy. The combination of these factors degrade the signal to noise

ratio of the data, limit the spatial resolution, introduce inhomogeneities in the

tissue appearance across volumetric slices, and deteriorate boundary defini-

tions between specific organs and their surrounding tissues. These issues are

encountered with other medical imaging modalities such as ultrasound, MRI,

PET and SPECT and CT.

In the context of brain MRI segmentation for example, incorporation of atlas

information to assist the segmentation task of a particular data set has been a

very successful and popular approach for many years as reviewed in [46]. For

organs with very characteristics shapes such as cardiac ventricles, the corpus
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Figure 2.5: Multiphase segmentation of brain MRI with region-based implicit

deformable model. (a) Diagram illustrating the definition of two phases with one

level set function. (b) Diagram illustrating the definition of 4 phases with 2

level set functions. (c) Original axial slice from 3D brain MRI data set with

initialization of the two level set functions. (d) Results of implicit deformable

model for from each phase: WM (1st line), GM (2nd line), CSF (3rd line) and

background (4th line). (e) Manually labeled data. (f) TP/FP error maps.

callosum in the brain, or cartilages of the knee, shape priors (including active

shape models, active appearance models and statistical shape descriptors) have

been used with great success in the context of constrained segmentation [47–50].

The use of an atlas (or a shape model) to assist the segmentation process

requires that the target image data and the atlas (or the model) are being aligned

via either preregistration or via a new concept of combined registration and

segmentation. When considering registration as a pre-processing step, common

atlas-based segmentation methods use warping of the atlas to the target data via
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minimization of mean square errors of image pair intensities at control points.

Alternative popular techniques use robust estimators, optimization of correla-

tion ratios, optical flow, fluid-flow non-rigid deformation models and mutual

information methods to construct statistical deformation models. An extensive

review of registration methods applied to medical imaging can be found in [51].

Among recent work in this area we mention here the method of Vemuri et al.

[52] who derived a novel curve evolution approach in a level set framework for

image intensity morphing and non-linear associated PDE for the correspond-

ing coordinate registration between an atlas and an image. Applications of the

method included a clinical study on segmentation of the corpus callosum via

morphing of a shape model defined in the atlas space, after registration of the

data with the proposed method.

In this chapter we focus on methods that explicitly combine segmentation

and registration in a variational framework. By combining registration and seg-

mentation, one can recover the image region that corresponds to the organ of

interest, given a model of this structure. Level set deformable models offer a

very flexible framework to propagate a moving front with segmentation-driven

constraints while registering the segmentation result (i.e., the level zero curve)

to a given model. Distance transforms have been successfully applied in the

past to registration problems [53–55]. In a level set framework, Paragios has

published several papers recently focusing on matching geometric shapes in a

variational framework for global as well as local registration [56–58]. The first

attempt at combining segmentation and registration in a single geometric de-

formable model framework might be attributed to Yezzi et al. in [59]. Their key

observation is that multiple images may be segmented by evolving a single con-

tour as well as the mappings of that contour into each image. In the context of

level set framework, multiple recent works can be referenced that incorporate

shape priors in the segmentation process as reviewed in [60]. The main trend

of the reported efforts uses a shape model and incorporates a constraint in the

energy of the geometric deformable model that forces the evolving contour to

fit to the shape model [56, 61, 62]. In an effort to derive a rigorous and complete

scheme, Paragios and Rousson [56] focused on the integration of a shape model,

defined directly in a level set space, to derive a shape prior in an energetic form

and integrate it with a data-driven variational segmentation framework. Appli-

cations of their combined registration and segmentation framework focused on

the segmentation of physically corrupted or incomplete natural images.
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In this chapter we selected to focus on recent works applied to segmentation

and registration of medical images as this application typically involves tuning

of a general framework to the specificity of the task at hand. We describe in

details two different approaches in the next sections.

2.3.2 Shape Priors into a Variational

Segmentation Framework

Several applications in medical imaging can benefit from the introduction of

shape priors in the segmentation process using deformable models [49; 63–65].

Only few works on segmentation of medical imaging with level set framework

attempted to perform simultaneous registration and segmentation into a single

energy functional and we review three of them in this section.

We first review the work of Chen et al. [60, 66, 67] that proposes a Mumford-

Shah type energy functional plus a parameterized registration term embedded in

a level set formulation for segmentation of brain MRI. Their approach consists

of constraining the segmentation process with a level set framework by incorpo-

rating an explicit registration term between the detected shape and a prior shape

model. They proposed two approaches either with a geodesic, gradient-based

active contour or with a Mumford-Shah region-based functional.

The geodesic active contour minimizes the following functional:

E (C, s, R, T) =
∫ 1

0

{
g (|∇ I|) C (p)+ λ

2
d2 (sRC (p)+ T)

}
|C (p)| dp (2.31)

with C (p) a differentiable curve parameterized with (p ∈ [0, 1]) defined on im-

age I, g a positive decreasing function, (s, R, T) are rigid transformation pa-

rameters for scale, rotation and translation and d (C (p)) = d (C∗,C (p)) is the

distance between a point C (p) on the curve C and the curve C∗ representing

the shape prior for the segmentation task. A level set formulation is derived

by embedding the curve C into a level set function φ positive inside the curve.

Let’s introduce the Heaviside function H (z) = 1 if z≥ 0, H (z) = 0 otherwise,

and the Dirac measure δ (z) = H (z) (with derivative in the distribution sense),

the energy functional in Eq. (2.31) is reformulated as:

E (φ,µ, R, T) =
∫
�

δ (φ)
(

g (|∇ I|)+ λ
2

d2 (µRx+ T)
)
|∇φ| . (2.32)
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Four evolution equations are derived for the Euler-Lagrange system for tem-

poral derivatives of the level set function φ and the rigid registration parame-

ters (µ, R, T) with detailed numerical implementation described in [68]. In this

paper the authors also report on experiments performed with this method to

segment the endocardial borders of the left ventricle on an ultrasound image

and segment the corpus callosum on misaligned functional MRI images in a time

series.

In [60], the authors proposed a second functional for combining registration

and segmentation in an implicit deformable model framework where the image

gradient term is replaced by an homogeneity measure. Their approach is derived

from the Mumford–Shah functional [36] in a similar fashion as described in the

previous section of region-based level set methods. They proposed the following

functional:

E (φ, c0, c1, µ, R, T) = α
∫
�

H (φ)
(
I − S+

)2 + α (1− H (φ))
(
I − S−

)2
(2.33)

+ βH (φ)
∣∣∇S+

∣∣+ β (1− H (φ))
∣∣∇S−

∣∣+ δ (φ) d2 (µRx+ T) |∇φ| d�

with
(
S+, S−

)
smooth approximations of the image I on, respectively,

{x/φ (x) > 0} and {x/φ (x) < 0} and (α, β) a set of positive parameters.

In a similar effort to combine registration and segmentation Paragios et al.

[69] proposed a level-set approach for knowledge-based registration and seg-

mentation of the left ventricle. In their method a level set framework was used

to perform simultaneous segmentation of the epicardial and the endocardial sur-

faces of the myocardium muscle via coupling two level set functions (φ0, φ1).

The proposed functional is generalized as:

E (φ0, φ1, A0, A1) = αEG (φ0, φ1)+ βER (φ0, φ1)+ γ EA (φ0, φ1)
(2.34)

+ δES (φ0, φ1, A0, A1) .

This functional integrates four components:

1. EG is a constraint on the regularity of the contour via minimization of its

length.

2. ER is an intensity-based region component. This component identifies the

partition of the image into regions that maximizes the posterior segmen-

tation probability given a priori gray level histogram distribution for the

endocardium, the epicardium and the background;
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3. EA is an anatomy-driven constraint. It preserves the distance between the

myocardium border surfaces within an admissible range of values.

4. ES is a shape-driven global consistency constraint. This knowledge-based

term performs a registration of the evolving contour to a prior shape model

(A0, A1) via rigid deformation. The prior shape models were defined in a

pixel-wise stochastic level set representation [56].

The authors reported some experiments on segmentation of the endocardium

from 2D cardiac MRI images. These experiments revealed that the anatomical

constraint played a minor role in controlling the deformation of the segmenting

surface and that the regularity term was overwritten by the shape prior term.

Final segmentation results showed a reliable performance of the method but

no quantitative validation was performed. It was pointed out by the authors

that the integration of the different modules was difficult and that future refine-

ments of the approach were considered such as the use of a single level set

function for segmentation of the myocardium, and tracking contours in time

by replacing the prior shape model with the segmentation from the previous

frame in the context of consecutive time frames segmentation over a cardiac

cycle.

In two related papers, Paragios [63, 70] proposed modified versions of the

method.

In [70] Paragios had proposed a version of the method where the regularity

term consisted of a boundary component derived from gradient vector flow [71]

to detect cardiac boundaries and curvature constraints on the segmented shape.

No shape-driven constraint was proposed in this early work.

In a posterior work [63], Paragios modified the method for segmentation of

the endocardial surface on ultrasound. The model was first modified to replace

the regularity term ER by a boundary constraint EB derived from a geodesic

active contour formulation [16]. The model was further modified to integrate

temporal tracking of the segmented contours between consecutive time frames.

A time-tracking constraint, in the form of a bounded error function using a robust

norm ρ was introduced as:

ET (φt, φt+1, T) =
∫

H(φt)ρ(It − It+1(T))d�

+
∫

H(φt+1)ρ(It(T−1)− It+1)d�
(2.35)
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where H refers to the Heaviside function (equal to 1 for negative values and

0 on positive values) and T is an optimal transformation to track the targeted

structure of interest between to consecutive time-frames images It and It+1

satisfying the visual consistency constraint:

It (x, y) ≈ It+1(x, y), ∀ (x, y) /H(φt (x, y)) ≥ 0 (2.36)

with φ defined with negative values inside the object to segment (i.e., the ven-

tricle blood cavity in this case).

This work uses a shape-model defined in a level set framework. Several in-

teresting recent efforts have focused on the use of level set framework for shape

modeling and registration toward model-based shape-driven object extraction

as reviewed in [58].

2.3.3 Registering Contours for Multimodalities

Segmentation

In a recent paper Yezzi et al. [59] introduced a new variational deformable

model framework that interleaves segmentation and feature-based registration

for combined segmentation of a single organ from multiple screening modalities

(e.g., skin surface from head CT and MRI).

They defined their problem as follows: They want to find closed surfaces S

and Ŝ to segment an object in images I and Î so that the curves, segmenting the

same organ, are related through a geometrical mapping: Ŝ = g (S). The authors

used rigid registration for the mapping (i.e., combination of rotation and trans-

lation) and defined the following coupled functionals for the surface S and the

registration parameters g = [g1, g2, . . . , gn] :

∂S

∂t
=
(

f (x)+ f̂ (g (x))
)

N − κN

dgi

dt
=
∫

S

f̂ (g (x))
〈
∂g (x)

∂gi

, N̂

〉
dA

(2.37)

where κ and dA denote the mean curvature and area element of the surface

S,
(

N, N̂

)
are the unit normals of

(
S, Ŝ

)
. The registration vector is modelized

as:

g (x) = Rx+ T (2.38)
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with R = RX RY RZ is the combination of rotations around the three orthogonal

axis (X,Y, Z) defining the 3D domain, and T = [TX, TY , TZ] is the translation

vector in each axis direction.

The function f (x) is defined in a homogeneity-based framework [40] as:

f (x) = fin (x)− fout (x) . (2.39)

The functions fin and fout are defined as:

fin = (I − u)2

fout = (I − v)2
(2.40)

where u and v denote the mean values of the image I inside and outside the

surface S. Analogous definitions of f̂ with statistics on Î are also derived.

The authors reported three experiments on simultaneous segmentation and

registration of MRI/CT images of the head and the spine both in 2D and 3D.

Validation via visual inspection showed accurate contour extraction for these

limited experiments.

2.4 Review of Clinical Validations

In this section we review in detail several recent papers that apply level set

segmentation and registration methods to medical images and provide a detailed

validation of their method through a clinical study for qualitative and quantitative

assessment of the accuracy of the method in assisting or performing a particular

clinical diagnosis task.

2.4.1 Important Clinical Segmentation Problems

We introduce in some details the two major applications in the domain of seg-

mentation of clinical images: Segmentation of the brain and segmentation of the

left ventricular cardiac cavity.

2.4.1.1 Segmentation of Brain Images

The two major modalities used for brain screening are MRI and SPECT/PET.
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Regarding MRI brain imaging, the paper in [72] gives a very nice review of the

potential applications of MRI in quantification of brain disease. The brain cortex

is a highly convoluted layer of gray matter that lies between the white matter

and the cerebrospinal fluid (CSF). Clinical applications require reconstruction

of the cerebral cortex from MRI data for:

1. brain visualization

2. analysis of brain geometry

3. registration with other data sets (multimodality or repetitive scans of a

single patient)

4. surgical planning

5. cortex mapping

The interface between WM and GM is clearly visible on T1-weighted MRIs. Diffi-

culties of MRI segmentation arise from imaging noise, inhomogeneities, partial

volume effects and the highly convoluted geometry of the cortex.

Regarding quantitative measurements of the brain anatomy [33] using MRI,

whole brain volume, cortical gray matter volume, white matter volume, corti-

cal surface area, cortical shape characteristics and cortical thickness map are

among the most interesting to study brain anatomy and function. Such measure-

ments can typically assist in characterizing, predicting or assessing neurological

and psychiatric disorders via correlation to abnormality in the measurements.

These measurements are all easily derived from the final level set function in a

distance-preserving framework (typically ensured by reinitialization of the level

set function during the iterative deformation process).

Two sources of MRI brain data for testing segmentation algorithms are avail-

able as open source databases on the web:

� The Internet Brain Segmentation Repository (IBSR) available

at http://www.cma.mgh.harvard.edu/ibsr/. This repository provides

manually-guided expert segmentation results along with magnetic reso-

nance brain image data. Its purpose is to encourage the evaluation and

development of segmentation methods. The IBSR is supported by the

National Institute of Neurological Disorders and Stroke at the NIH part

of a grant that funds research in MR brain segmentation by researchers
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at Boston University, Draper Laboratory, Northeastern University, Mas-

sachusetts Institute of Technology, and Massachusetts General Hospi-

tal/Harvard Medical School. The IBSR is a World Wide Web resource

providing access to magnetic resonance brain image data and segmen-

tation results contributed and utilized by researchers from all over the

world. Its purpose is to encourage the development and evaluation of

segmentation methods by providing raw test and image data, human

expert segmentation results, and methods for comparing segmentation

results.

� The Brain Web: Simulated Brain Database (SBD) from the McConnell

Brain Imaging Centre Montréal Neurological Institute, at McGill University

(http://www.bic.mni.mcgill.ca/brainweb/). This database contains a set of

realistic MRI data volumes produced by an MRI simulator [73–76]. These

data can be used by the neuro-imaging community to evaluate the per-

formance of various image analysis methods in a setting where the truth

is known. Currently, the SBD contains simulated brain MRI data based

on two anatomical models: normal and multiple sclerosis (MS). Full three-

dimensional data volumes have been simulated using three sequences (T1-,

T2-, and proton-density- (PD-) weighted) and a variety of slice thicknesses,

noise levels, and levels of intensity non-uniformity. These data are available

for viewing in three orthogonal views (transversal, sagittal, and coronal),

and for downloading. Customization of the MRI simulations is also avail-

able allowing the user to run his own custom MRI simulation with any of

several pulse sequences and source digital phantoms, and arbitrary values

of the acquisition artifacts.

Regarding PET imaging, this modality uses small amounts of tracer drugs chem-

ically attached to glucose or other compounds injected into the patient. As the

tracer travels through the body, it emits signals and eventually collects in the

organs targeted for examination. If an area in an organ is cancerous, the signals

will be stronger than in the surrounding tissue. A scanner records these signals

and transforms them into pictures of chemistry and function.

PET modality is used for brain screening for:

� diagnosis of Alzheimer’s disease,

� location of tumors and scar tissue in the brain,
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� location of seizures focus for patients with epilepsy, and

� accurate assessment of tumor sites in the brain for surgery planning.

In practice, segmentation of PET brain data is difficult to perform in an au-

tomatic fashion because of the poor contrast and high noise level in the im-

ages. A standard procedure to delineate structures from PET brain images is

to segment structures from the corresponding anatomical magnetic resonance

images and then to superimpose them on the PET images. This method re-

lies on an accurate registration between the two imaging modalities, handling

the incongruity of structures and functions. Thresholding methods can pro-

vide a direct way to segment PET images with locally uniform radioactivity

concentration and consistent structures. For more noisy data, advanced meth-

ods such as deformable models have been studied for segmentation of cortical

structure [77]. These methods must adapt to changes in individual radioactivity

concentrations.

2.4.1.2 Segmentation of Cardiac Images

A reliable noninvasive imaging modality is essential for evaluating and monitor-

ing patients with cardiac disease. Traditional screening techniques for quantita-

tive assessment of cardiac function include the following modalities:

� Multigated Angiography (MUGA): This is a slow screening modality that

requires the injection of a radiopharmaceutical agent by a clinician. The

purpose of MUGA screening is to examine the pumping function of the

heart. After injection of a radioactive agent that labels red blood cells, a

nuclear camera creates an image of the heart’s chambers by counting these

cells over numerous cardiac cycles. The information obtained can quantify

ejection fraction but not ventricular volumes.

� Magnetic Resonance Imaging (MRI): Because of its complexity and even

though MRI machines abound in the United States, cardiac MRI has largely

been limited to university hospitals where there is a strong interest in

research. This screening modality has proven very useful in evaluating

patients’ cardiac anatomy prior to surgery, in locating and characterizing

cardiac tumors and in identifying and treating cardiac abnormalities for

children with complex congenital heart disease. These clinical situations
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are relatively rare and cardiac MRI has yet to become a commonly used

tool in clinical medicine.

� Computerized Tomography (CT): Multidetector technology has made car-

diac CT possible enabling angiography, perfusion and function studies. The

main limitation of this screening modality remains the acquisition time

with multirow detectors, which may be solved with upcoming spiral CT,

electron beam CT and ultrafast CT technologies.

� Single Photon Emission Computed Tomography (SPECT): Commonly

referred to as myocardial perfusion imaging, this technique is used to vi-

sualize myocardial blood flow distribution using intravenous injection of

a radionuclide detected by single crystal gamma camera rotating around

the patient’s body. This modality can be used to assess ejection fraction

and regional wall motion but cannot provide detailed views of anatomical

structures.

� Positive Emission Tomography (PET): Similar to SPECT, this technique

visualizes myocardial blood flow using intravenous injection of positron-

emitting tracers detected by multiple rings of stationary detectors encir-

cling the patient’s body to produce a series of multiple tomographic im-

ages encompassing the heart. Specific tracers have been developed for

the evaluation and quantification of numerous physiological processes,

including regional myocardial blood flow, metabolic processes, oxygen

consumption, receptor activity, and membrane function. When compared

to SPECT, PET images have been shown to be more accurate in clinical

studies but PET scanners remain costly and therefore less widely available

than standard SPECT systems.

� Two-Dimensional Echocardiography (2DE): Two-dimensional echocar-

diography is the fastest, least expensive, and least invasive screening

modality for imaging the heart. Because of the three-dimensional struc-

ture and deformation of the heart muscle during the cardiac cycle, anal-

ysis of irregularly shaped cardiac chambers or description of valve mor-

phology using 2D images is inherently limited. A second existing prob-

lem with 2DE, constrained to planar views, is that highly trained clini-

cians are required to perform the studies. But, despite its limited image

quality and its limitation to planar acquisition, 2DE is one of the most
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popular cardiac screening modalities, available at hospitals, medical cen-

ters and cardiologists’ offices. Critical information for assessment of car-

diac pathology such as ventricular shape, wall deformation, valve motion,

and blood flow (via Doppler acquisition mode) can be quickly assessed

with this non-invasive, portable and relatively inexpensive screening

modality.

� Three-dimensional Echocardiography (3DUS): Three-dimensional ultra-

sound was introduced in the late 1980s with offline 3D medical ultrasound

imaging systems. Many review articles have been published over the past

decade, assessing the progress and limitations of 3D ultrasound technol-

ogy for clinical screening [78–81]. These articles reflect the diversity of 3D

systems that were developed for both image acquisition and reconstruc-

tion. The evolution of 3D ultrasound acquisition systems can be divided

into three generations:

– Freehand scanning. With freehand probes, planar images are ac-

quired at arbitrary spatial positions and orientation with a 2D trans-

ducer. A positioning device, attached to the transducer, tracks its lo-

cation in space and time during the acquisition. A three-dimensional

volume can then be reconstructed by associating each acquired image

with its 3D spatial position and integrating in 3D space. This method

offers a great scanning flexibility and provides high quality images.

The principal limitations of this method are related to the precision of

the positioning device (either mechanical, acoustic or magnetic) and

the experience of the clinician in positioning the device to acquire

sufficient amount of information for an accurate 3D reconstruction.

These issues are most critical when scanning small moving structures

such as valves and myocardium wall defect in cardiac applications.

– Mechanical scanning. With mechanical scanning, a 2D transducer

is moved at regular intervals along a specified path, ensuring an ac-

curate sampling of the volume to reconstruct with a probe whose

position is controlled in space and time. The three most common

scanning paradigms use linear, fan, and rotational sweep. This tech-

nology provides a more accurate three-dimensional reconstruction of

the anatomy than freehand scanning at the cost of a slower acquisition
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rate, and a smaller field of view. When screening the beating heart,

gating is necessary for both modalities in order to acquire data corre-

sponding to similar instants in the cardiac cycle, so that the anatomy

is approximately the same, assuming a periodic movement, for each

planar view.

– Phased arrays. Real-time three-dimensional (RT3D) volumetric

imaging is the only true three-dimensional ultrasound modality [82–

87]. This technology, pioneered by Dr. Olaf Von Ramm and Dr. Stephen

Smith at Duke University, is fundamentally different from the former

generations of 3D systems as a volume is acquired with a 2D array of

pulse transmitter and receiver elements, enabling the cardiologist to

view moving cardiac structures from any given plane in real-time [82,

87–91]. Electronic scanning controls the acquisition depth allowing

real-time signal acquisition through a pyramidal shape volume. This

existing technique is still limited by hardware component size and

speed. The low spatial resolution and high noise level have prevented

this technology from meeting its initial expectation and reaching its

full potential. It remains, nevertheless, the only true 3D ultrasound

modality that can enable accurate temporal visualization of cardiac

deformation during a single cardiac cycle.

In current clinical practice, cardiologists use anatomical images from CT, US

and MRI modalities to quantify cardiac function through measurements of ven-

tricular volumes at end diastole (ED) which corresponds to the end of the blood

filling phase in the cardiac cycle, and end systole (ES) which corresponds to

the end of the blood ejection phase, stroke volume (SV) which is equal to the

difference of blood volumes and ED and ES and ejection fraction (EF) which

is equal to SV over ED volume. These measurements are performed via simple

visual inspection or manual tracing of 2D slices extracted from the 3D data.

A second phase of analysis of the images aims at analyzing myocardium wall

deformation and localization of abnormalities. Physiological images provided

by MUGA, SPECT and PET/SPECT modalities aim at quantifying myocardium

tissue blood perfusion for localization of ischemic tissue.

All these diagnostic tasks require the intervention of an expert cardiologist

familiar with the modality for quick visual inspection. A more detailed process-

ing of the data always require segmentation of the myocardium tissue versus
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the blood pool and sometimes the outside tissues. Few automated segmentation

algorithms, with minimal manual intervention, are available on clinical consoles

to assist the segmentation task with a significant saving of time. Segmentation

of cardiac images is still a very active research area and level set segmenta-

tion methods have proved in the recent years to offer a very flexible three-

dimensional tool that can handle the volumetric and dynamic nature of the

data.

2.4.2 Open Source Software Tools for Level

Set Segmentation

2.4.2.1 Snake Automatic Partitioning (SNAP)

This software was developed by the Medical Image Display and Analysis Group

at the University of North Carolina and is available for download at www.

midag.cs.unc.edu. SNAP is a segmentation tool for volumetric image data using

3D level set methods with either a region-probability deformable model or a

gradient-based deformable model framework. Some interaction with parameter

settings of the segmentation method and prior-filtering is available. Interactive

visualization of the deformation process in provided.

2.4.2.2 Insight Segmentation and Registration Toolkit (ITK)

The National Library of Medicine Insight Segmentation and Registration Toolkit

(ITK) is an open-source software system to support the Visible Human Project.

The toolkit is available for free download at www.itk.org. Under active devel-

opment, ITK employs leading-edge segmentation and registration algorithms

in multiple dimensions. The Insight Toolkit was developed by six principal or-

ganizations, three commercial ( Kitware, GE Corporate R&D, and Insightful)

and three academic ( UNC Chapel Hill, University of Utah, and University of

Pennsylvania). Additional team members include Harvard Brigham & Women’s

Hospital, University of Pittsburgh, and Columbia University. The funding for the

project is from the National Library of Medicine at the National Institutes of

Health. NLM in turn was supported by member institutions of NIH (see spon-

sors). Several level set segmentation methods are implemented in this toolkit

including: fast marching methods, shape detection segmentation, geodesic
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active contours, threshold level set, canny-edge level set and Laplacian level

set methods.

2.4.3 Applications to Clinical Studies

2.4.3.1 Robust Adaptive Segmentation of 3D Medical Images

with Level Sets

This work was published by Baillard et al. in [30].

Method: The proposed method uses a 3D level set algorithm with the intro-

duction of an adaptive adjustment of the time step and the external propagation

force at each iteration. A region-based force is derived from intensity proba-

bility density functions over the data. Assumptions are made on the input data

which is modeled as a mixture of distributions. Mixture of Gaussian distribu-

tions for MRI and Gaussian and Rayleigh distributions for ultrasound data are

validated through two experiments. Each distribution defines a class ck through

a parameter vector that contains the distribution parameters and the proba-

bility pk that a voxel belongs to class ck. The parameters vector is estimated

from the data using the stochastic expectation-maximization (SEM) algorithm

[92], which is a stochastic version of the EM algorithm that utilizes probabilistic

learning stage. Advantages of the SEM over the EM algorithm include: (1) Only

an overestimation of the number of classes is required, (2) it is less dependent

on the initialization. The stopping criterion for the deformation process is based

on the stabilization of the average segmented volume size.

Experiments: Experiments were performed on brain MRI volumes. The

statistical model was initialized with seven classes.

1. A first experiment used simulated brain MRIs from the MNI group [93].

Brain MRI volumes of size (181× 217× 181) simulating WM, GM and CSF were

generated under noiseless conditions and three different combinations of noise

and inhomogeneities. The segmentation method was applied to extract together

GM and WM volumes. Initialization was performed by defining a large cube of

size (100× 70× 70) inside the data volume. Gaussian distribution parameters

for WM + GM were automatically estimated prior to segmentation. Quantita-

tive validation was performed using overlapping measurements [94] between

the result and the known ground truth on these phantom data sets. The mea-

sures included estimation of the number of true-positive (TP) true-negative (TN),
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false-positive (FP) and false negative (FN) voxels and the definition of the fol-

lowing measures:

sensitivity = T P
/

(T P + F N)

specif icity = T N
/

(F P + T N)

total per f ormance = (T P + T N)
/

(T P + F P + T N + F N)

(2.41)

These measures are very helpful to assess the global performance of a segmen-

tation method such as under-segmentation characterized by a low sensitivity of

over-segmentation characterized by a low specificity. The total performance of

the proposed algorithm stabilized around 98.3% under all noise conditions. The

authors further compared their segmentation performance to morphological op-

erators performance and reported an improvement of sensitivity performance

with the level set method.

2. A second set of experiments with a database of 18 real brain MRIs of

size (256× 256× 176) was performed. Results reported a 94% success ratio of

segmentation convergence (one case failed), requiring on an average 1,000 iter-

ations. Segmentation of individual tissue classes (WM, GM and CSF) required a

coarse approximation of tissue segmentation for class definition and computa-

tion of a priori statistical models.

Limitations: The proposed segmentation method has a performance limited

by the fact that the SEM algorithm does not guarantee an optimal solution. In

practice, an initial partitioning roughly representative of the inside and outside

distributions of the organs to segment lead to a correct solution. This means that

tissue classes need to be initialized with relatively accurate average intensity

values.

2.4.3.2 Topology Preserving Geometric Deformable Models

for Brain Reconstruction

This research work was published by Han et al. in [72].

Method: The authors proposed a 3D level set segmentation method with

a speed term based on binary flow forces, mean curvature flow and gradient

vector flow. The originality of the method was to focus on the topology of the

evolving front and use the notion of simple points and update the front deforma-

tion only at their locations. Given a set of points defining a 3D surface, a point is

simple if its addition or removal from the object does not change the topology of



80 Angelini, Jin, and Laine

either the object or the background. The topology of an object is defined through

its number of connected components, cavities and handles. The algorithm was

implemented with a narrow-band update and 3D level set fast marching prop-

agation scheme for computational efficiency. The final object surface, which

corresponds to the zero-level of the level set function is extracted with a con-

nectivity consistent marching cubes algorithm (CCMC) [95, 96]. This algorithm

is a modification of the standard marching cubes algorithm where the resolution

of ambiguous cubes depends on predefined digital connectivity rules.

Experiments: The authors performed two sets of experiments on brain

MRIs.

1. The first experiment compared visual quality of segmented data with

the topology preserving deformable model to a standard geometric deformable

model and a parametric deformable model using the same initialization scheme.

Results showed very similar looking surfaces for the three methods but close

inspection revealed critical differences:

� the parametric deformable model surface had self-intersection points,

� the number of handles with the simple geometric deformable model was

40 versus 0 for the two other methods (corresponding to the correct

manifold).

In this experiment the authors also provided an example from a brain MRI

data set where part of the WM seemed to display a handle when viewed in 3D

corresponding to an incorrect topology. This type of errors, mostly due to MRI

noise, can only be corrected with a topology preserving segmentation method

such as the proposed level set framework.

2. A second set of experiments employed 21 T1-weighted MRI volumes with

voxel size (0.9375× 0.9375× 1.5 mm) from the public database of the Baltimore

study on aging [97]. Volumes were preprocessed to remove extracranial tissues,

cerebellum and brain stem. The experiments were performed with digital con-

nectivity defined as: 18-connectivity for the object (WM) and 6-connectivity for

the background. The experiments focused on the extraction of central cortical

surfaces. Prior to segmentation, the volumes were processed with fuzzy con-

nectedness [98] for labeling into memberships to different tissue types. The

result of this labeling was used as an initial segmentation of the WM and used

to fill the ventricles and the sub cortical structures (including the thalamus,
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hypothalamus, caudate nucleus and putamen). The filled WM volume was then

binarized via thresholding of the fuzzy values at 0.5. This binary volume was fur-

ther processed for topology correction with a multiscale graph-based algorithm

[99]. The CCMC was then used to extract the WM surface of the volume. At this

point, the WM surface was used as the initial level zero of the level set segmenta-

tion to extract three cortical surfaces: WM/GM surface, central cortical surface,

and pial (CM/CSF) surface.

Segmentation accuracy was assessed through error measurements at 10 land-

mark points manually selected on major sulci and gyri on six MRI cases. Land-

mark error was measured as the minimum distance between the landmark points

and the segmented surfaces. The overall average error was 0.87 mm (std 0.5 mm)

outperforming a previous method from the same group based on a parametric de-

formable model that produced an average error of 1.22 mm (std 1.01 mm) [100].

Visual inspection of the segmented data did not reveal any self-intersection on

the extracted surfaces. The algorithm computational time was about 40 min-

utes on a SGI O2 workstation for reconstruction of the three surfaces. This

performance compares favorably to typical deformable model algorithms with

arbitrary initialization as claimed by the authors.

Limitations: The main limitation of this algorithm is the involvement of

the preprocessing for initialization of the WM that make the process difficult to

reproduce.

2.4.3.3 Segmentation and Measurement of the Cortex from 3D

MR Images using Coupled-Surfaces Propagation

This research was published by Zeng et al. in [33].

Method: The authors proposed the segmentation and measurement of the

cortical GM thickness from brain MRI data with a level set method using coupled-

surfaces propagation. As stated by the authors, coupling surfaces can prevent

two problems:

� The inner cortical surface can collapse with the CSF due to higher contrast

at the CSF/GM interface than at the WM/GM interface.

� The presence of eye sockets with no CSF signal can drive the outer cortical

surface to expend outward from the brain.
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Constraining the cortical thickness during the segmentation process prevent the

collapse of leakage of the surfaces.

The level set segmentation method with surface coupling is described in the

first section of this chapter. The traditional gradient features in the speed term

were replaced with tissue interface probability measurements based on statisti-

cal priors summarized here. The statistical models are based on the assumption

of Gaussian independent distribution functions of voxel intensities in MRI vol-

ume data for WM, GM, and CSF. Let us assume the presence of two tissue types

A and B in the data with independent Gaussian probabilities G (µA, σA) and

G (µB, σB). For each voxel s, a set of 26 immediate 3D-neighborhood voxels can

be defined. For each neighbor voxel, a normal direction θ along the line passing

through the center voxel and the neighbor voxel is computed which defines a

plane that separates the neighborhood into two regions (R1, R2). The probabil-

ity of the center voxel belonging to an interface between the two tissue types

(A, B) is then computed as:

pAB (θ) = �
r∈R1

1√
2πσA

exp

(
− (I (r)− µA)2

σ 2
A

)
(2.42)

× �
r∈R2

1√
2πσB

exp

(
− (I (r)− µB)2

σ 2
B

)

where I (r) is the intensity value of the data at neighbor voxel r. The final den-

sity probability at voxel s is set to the highest value of pAB (θ) over all the 26

directions. An illustration of a feature map based on this tissue interface prob-

ability measure is provided on a single brain MRI slice computed with (R1, R2)

containing only one voxel. The example illustrates well the better performance

of the interface probability feature at extracting locations of tissue transitions

for WM, GM, and CSF when compared to standard gradient maps.

Experiments: Validation was performed on T1-weighted MRIs. The seg-

mentation process was initialized with several pairs of concentric spheres with

a constraint on starting inside the WM for robust behavior.

1. The first experiment used simulated MRI data from the McConnell Brain

Imaging Center at the Montreal Neurological Institute [93]. The authors simu-

lated T1-weighted brain MRIs with 3% noise and 1 mm3 voxel size. The distance

range between two surfaces was set to [1.5 mm 5.5 mm] leading to bandwidth

ranges for the inner and outer surfaces of [−3 mm 6 mm] and [−6 mm 3 mm],

respectively. Segmentation was validated by comparing the binary segmented
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volumes to the thresholded membership values of the corresponding voxels

(with reference to WM, GM, and CSF) above 0.5 from the database ground truth

data. The authors computed TP, FP rates and total volume ratios (VR) to com-

pare segmented volumes and thresholded ground truth volumes. Results with

[TP FP VR] were: [92.3% 2.0% 96.3%] for (WM + GM), [92.8% 6.0% 103.2%] for

cortical GM and [92.4% 3.3% 98.1%] for WM showing good performance of the

algorithm in isolating brain tissue and segmenting the cortex.

2. A second experiment was performed using 20 T1-weighted spoiled gradi-

ent MRIs of normal brain subject from the Internet Brain Segmentation Reposi-

tory (IBSR) of the Center for Morphometric Analysis at the Massachusetts Gen-

eral Hospital [101]. Cases were acquired with two different scanners and all

registered to a standard 3D brain coordinate system. Manual segmentation from

medical experts was available. An overlap metric was defined by the IBSR to

evaluate the performance of automatic segmentation methods, measuring the

ratio TP/(1 + FP). Such ratio ranges from 0 for no agreement to 1 for perfect

agreement with the manual segmentation considered as the ground truth. MRI

data was interpolated from 3 mm thick coronal slices (as provided) to 1 mm

thickness, achieving isotropic voxels. The GM overlap metric on the whole brain

was 0.657. It outperformed other reported segmentation performances on the

same data sets from [102] with overlap ranking from 0.47 to 0.56. Overlap metric

specifically computed on the cerebral cortex (excluding brain stem and cere-

bellum) was further improved to 0.701. The authors pointed out that if applied

to the phantom data, the overlap metric was 0.875 that compared to the manual

segmentation variability of 0.876 reported in the IBSR database.

3. A third experiment was performed for a study of the frontal lobe anatomy

on 7 high-resolution MRI data sets acquired with SPGR with isotropic voxel

size of 1.2 mm3. The patient population of this study included young autistic

and control subjects for comparison of frontal lobe volumes. The MRI volumes

were preprocessed for inhomogeneity correction. Segmentation was performed

with coupled level set functions and the frontal lobe was manually isolated with

anatomical landmarks. Segmentation accuracy was compared to expert manual

tracing. TP and FP on entire frontal lobe averaged 94.1% and 2.1%. TP and FP

for cortical GM on frontal lobe averaged 86.7% and 20.8%. The authors further

evaluated the reliability statistics on the volume measurements obtained on

the segmented frontal lobe volumes using the method proposed by Schultz and

Chakraborty [103]. The agreement between the expert tracing and the level set
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segmentation method was very strong for both the entire frontal lobe and only

the GM but the level set algorithm systematically underestimated the frontal

lobe volume with a mean difference of 4%.

4. In a fourth experiment, regional cortical thickness was quantitatively ana-

lyzed on seven high-resolution MRI data sets acquired with SPGR and isotropic

voxel size of 1.2 mm3. Cortical measurements were performed in four lobes to

compare level set segmentation and expert manual tracing. The authors first

compared the mean thickness of each lobe to the results from the study of 63

postmortem males by Pakkenberg and Gundersen [104]. The new segmentation

produced similar results with a frontal cortex thicker than the occipital cortex.

On overall, postmortem data was 5–14% thinner than the new results while vari-

ability of thickness was equal to 1.5 mm for both studies. Statistical tests also

showed that frontal and temporal lobes were thicker than parietal and occipital

lobes.

This method relies on prior statistics for WM, GM, and CSF for the construc-

tion of interface probability maps. The method also requires manual initialization

by clicking center points of concentric spheres on slices. The authors demon-

strated on one example that the number of spheres or their localization does

not have a critical influence on the accuracy or reproducibility of the method.

On the other hand, major advantages of the method include the fact that it does

not require stripping of non-brain data, its performance was demonstrated on a

wide range of MRI image quality and it offers fast computation times compared

to existing methods.

2.4.3.4 Segmentation of RT3D Ultrasound with Geodesic

Deformable Models

This research was published by Corsi et al. in [105].

Method: The proposed method uses a geodesic deformable model as defined

in Eq. (2.17), with weighting parameters associated with the two terms and a

function g ( ) defined as in [8]. To handle the noisy nature of the ultrasound data

and the poor definition of the myocardium wall borders in some frames, the

authors did not use any inflationary force in the speed term. This type of model

requires an initialization close to the final endocardial surface to ensure that the

moving front is attracted to local high data gradient locations. The algorithm

was implemented with the narrow-band technique for computation efficiency.
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Experiments: The authors performed 3D segmentation of echocardio-

graphic real-time three dimensional (RT3D) ultrasound data for extraction of

ventricular volumes. Prior to segmentation, a clinician roughly defined endocar-

dial contours on a limited set of short-axis views. The polygonal surface defined

by this manual tracing was then used to initialize the level set segmentation

process. Deformation of the moving front required about 40s for a single vol-

ume on a PC and initial manual tracing less than 1 min. The authors performed

three experiments for assessment of the method accuracy and robustness to the

initialization:

1. In the first experiment the authors performed multiple segmentation of the

same RT3D volume using manual initialization from six different users. Compar-

ing volume measurements to precise manual tracing they report a mean square

error of 3.8% and a maximum error of 4.38%. They concluded from these results

that the segmentation is rather sensitive to the manual initialization.

2. In the second experiment, the authors segmented invitro phantom data

of 18 balloons filled with water and immersed in a tank of water. To take into

account the sensitivity of the segmentation technique to the initialization, two

operators performed two separate tracings and the segmentation was run with

these different initializations. A linear regression coefficient of 0.99 was reported

between true volume values and measurements from 70 level set segmentations.

The standard error of estimate was equal to 9.35 ml, the average error of mea-

surement was −2.63 ml (std 10.81 ml). Intraobserver variability was estimated

for each operator as: 1.66% and−1.36%. Interobserver variability was estimated

as 1.63%. This experiment reported a maximum error of measurement of 40 ml

for large volumes (above 200 ml). Errors of measurements decreased signifi-

cantly with balloons’ true volumes suggesting that ventricular volumes can be

accurately measured with this technique for physiological volume ranges.

3. An invivo study was also performed on about 18 RT3D cases (exact num-

ber not specified in the paper) using again two different manual tracings from

two operators. The ventricular volume range for this study was [151–467 ml]

which suggest that it included dilated cardiomyopathy patients with enlarged

ventricular cavity. Volume measurements were compared to measurement from

manual tracing on MRI. Linear regression was performed with a correlation

coefficient of 0.97. The standard error of estimate was 20.13 ml, average error

was −15.58 ml (std 20.55 ml). Intraobserver variability was 0.16% and −2.04%,

and inter-observer variability was−2.16%. Ejection fraction measurements were
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performed on nine RT3D cases. The correlation coefficient was 0.87 when com-

pared to MRI measurement. The main limitation of this study is the absence of

testing on normal physiological ventricular volume in the range [40–150 ml] for

which the behavior of the level set segmentation can be significantly different

as these volumes are much smaller.

2.4.3.5 Segmentation of RT3D Ultrasound with Implicit

Deformable Models Without Gradients

This research was published by Angelini, Holmes, Laine and Homma in [43].

Method: This study focused on the same clinical problem as the previous

study for segmentation of echocardiographic RT3D ultrasound data. The pro-

posed method uses the homogeneity-based implicit deformable model proposed

by Chan and Vese in [40] as an extension of the Mumford-Shah segmentation

functional. Motivations for selection of this method include robustness with ar-

bitrary initialization of the object anywhere in the image, topology adaptation for

multiobject segmentation (for potential cosegmentation of ventricles and atria,

for example), self-adaptation of the deformation flow to inward and outward

flows. Minor modifications of the method were performed to adapt the design

to the specificity of the 3D ultrasound data. The homogeneity terms from Eq.

(2.28) were weighted by the mean intensity value as:

E (C) =
∫

insideC

(
I − c0

c0

)2

d� +
∫

outsideC

(
I − c1

c1

)2

d�. (2.43)

A similar approach was followed by Lin et al. [44] for segmentation of 3D echocar-

diographic data where they normalized the homogeneity term by the variance

of the data inside and outside the object segmented, after pre-processing with

multiscale Gaussian filtering.

Parameters were set to υ = 0 (no constant inflation force was used), µ = 1,

λ1 = 0.25, λ2 = 0 (no homogeneity constraint on the outside of the ventricle

to reduce the effect of the noisy myocardium texture), �x = �y = �z = 1,

�t = min(�x,�y,�z)/|υ + µ+ λ1 + λ2| (to respect CFL condition with explicit

numerical scheme). The system was let to deform over 20 iterations.

Experiments: A clinical study was performed on 10 patients with pulmonary

hypertension to segment both right and left ventricular volumes. A 2D para-

metric deformable model and a 3D level set deformable model illustrated in
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Figure 2.6 were used for segmentation of the ultrasound data after denoising

with a spatio-temporal brushlet expansion [106]. The model was initialized with

a cone in which dimensions were defined manually on slices at the base and

apex. Manual tracing on ultrasound data was performed by an expert clinician.

MRI data were also acquired on the patients and manually traced by a second

expert. Absolute errors of measures were computed for RV and LV ejection-

fraction. Mean-error values and standard deviation over the 10 cases for the two

ventricles were equal to [Mean Std Max Min]: [8.6% 5.7% 17.8% 0.3%] for manual

tracing on ultrasound vs. MRI, [4.9% 4.1% 12.21% 0.2%] for 2D parametric de-

formable model vs. MRI, [4.6% 4.2% 13.9% 0.8%] for 3D level set deformable

model vs. MRI. Improvement of correlation measurements with deformable

models (with good statistical significance) was reported when compared to

MRI as well as better accuracy with a Bland-Altman analysis. The study con-

cluded that errors of EF measurements using deformable models were within

Figure 2.6: Segmentation of right and left ventricular volumes with a 3D implicit

deformable model on RT3D ultrasound data. (a) Initialization of the segmenta-

tion with a cone shape surface (dashed line) and final position of the contour

(continuous line) on the endocardial surface. (b) Illustration of diversity of right

and left ventricular shapes and sizes extracted for the clinical study reported in

[43].
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the range of inter- and intraobserver variability for both ventricles and com-

pared favorably to similar studies performed by other groups using RT3D ul-

trasound for quantification of cardiac function. Manual tracing measures were

significantly less reliable with large standard deviation of errors and low cor-

relation coefficients. Finally, the 3D level set deformable model achieved the

highest degree of accuracy, which can be explained by a more accurate segmen-

tation of small and distorted ventricular shapes when integrating the third spatial

dimension.

2.5 Conclusion

Level set methods for segmentation and registration of medical images have

been the focus of intense research for the past decade producing very promising

results. Major advantages of the method include its robustness to noisy condi-

tions, its aptitude in extracting curved objects with complex topology and its

clean numerical framework of multidimensional implementation. Despite their

success, these methods still need to be refined to address two limitations:

1. Computation time needs to be further reduced, for viability of the method

in clinical application where interactivity (and therefore close to real-time

computation) is critical. This optimization will have to handle the con-

stant increase in data size observed in medical imaging applications with

improvements of spatial resolution, temporal resolution and now the in-

troduction of combo scanners such as PET/CT machines.

2. Robustness to variation in image quality and organ anatomy needs to be

studied. Unfortunately, the methods described in this chapter were only

rarely validated in clinical studies. On the other hand, it is well known

that these methods require tuning of their parameters to adapt to the na-

ture of the image data to segment. In that optic, it is therefore critical to

evaluate robustness of the performance on a set of data that covers the

range of quality encountered in clinical practice for a particular exami-

nation. For methods based on shape models, it is also critical to test the

method on a variety of abnormal (e.g., disease) cases that differ from the

average anatomy that they typically represent. Such validation for medical

application should always clearly specify the context of the problem at
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hand in terms of anatomy of interest (e.g., endocardial surface of my-

ocardium muscle), imaging modality (e.g., three-dimensional real-time ul-

trasound) and clinical application targeted (e.g., quantification of volume).

Only in this context can a segmentation method be really tuned, tested,

and validated for clinical application [107].

Questions

1. Define the principle idea of the level set framework for segmentation of an

image given an initial contour C and a speed function V > 0. What are the

advantages of using an implicit formulation of the problem?

2. What are the limitations associated with gradient-based speed terms? Why

is it especially problematic with medical images?

3. What is a regularization term? What is its main functionality? Give some

examples.

4. What is the entropy principle for implementation of a level set deformable

model with finite difference? In what case does it apply?

5. Explain the concept of speed extension for image-based speed terms? Why

is it necessary? Propose a simple algorithm to implement it.

6. Is the standard level set framework preserving the distance function? Why

is this an important concept for segmentation applications?

7. Why is there a need for reinitialization of the distance function?

8. Outline in a flowchart the structure of an iterative level set segmentation

algorithm using a gradient-based speed term. Use a convergence criteria

(without detailing it) to stop the iterations.

9. Design a level set segmentation algorithm for extraction of the endocardial

and epicardial surfaces of the left ventricle from an MRI volume? What are

the properties of the data that can be used to define the speed function? Is

there a way to perform simultaneous segmentation of the two surfaces?
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Chapter 3

Three-Dimensional Rigid and Non-Rigid Image

Registration for the Pelvis and Prostate

Baowei Fei,1 Jasjit Suri,1 and David L Wilson1,2

3.1 Introduction

Several important applications require registration of images of the pelvis and

prostate [1, 2]. First, comparison of registered MR images acquired before and

immediately after therapies can be used to determine whether a tumor is ade-

quately treated. This is particularly helpful in instances where the edematous

response to treatment can be confused with a highly perfused tumor. Second,

registration of serial examinations can be used to follow regression/progression

of tumor. Third, registration of functional, biochemical images such as single

photon emission computed tomography (SPECT), positron emission tomog-

raphy (PET), and MR spectroscopy with anatomical MR images is useful for

detecting and localizing cancer. Fourth, incorporating the functional, biochemi-

cal images into the interventional magnetic resonance imaging (iMRI) paradigm

will aid image-guided treatments. Fifth, on a low-field magnet system during

iMRI treatments where fast imaging is important, it might be highly desirable to

register high quality MR image from a conventional MR scanner to the live-time

iMRI images [3, 5].

There are challenges for registration in the pelvis and prostate that might

reduce the effectiveness of automatic voxel-based registration. First, the

1 Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH,
44106, USA

2 Department of Radiology, University Hospitals of Cleveland & Case Western Reserve
University, Cleveland, OH 44106, USA
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abdomen has irregular boundaries, unlike the head to which registration has

been most often applied. Second, the normal prostate is a small organ that

when healthy measures only about 38.0 mm in its widest dimension trans-

versely across the base [6]. Third, different patient positions such as legs

flat and raised significantly change the legs in lower portions of image vol-

umes as well as cause movement and deformation of internal organs in the

pelvis. Fourth, the prostate might move relative to the pelvic bones due to

changes in bladder and rectal filling [7, 8]. The alignment of the pelvic bones,

a most prominent anatomical feature in MR grayscale images, does not nec-

essarily mean that the prostate is aligned. In addition, it is more difficult to

evaluate pelvic and/or prostate registration because no external markers are

available.

Many reports describe methods and evaluations for registration in the

brain [9]. A few describe results for the pelvis or prostate. For example, man-

ual registration has been used where an operator cues on segmented vascu-

lar structures [10] or other anatomical landmarks [11, 13]. Others have used

automated 3D schemes that match contours of bones and sometimes other

structures that are extracted using manual or interactive segmentation [14,

16]. Manual segmentation has also been used to create surfaces for auto-

matic registration [17, 18]. All of these methods require either segmentation

or visual identification of structures. Voxel based methods, particularly those

based upon mutual information, are robust, require no segmentation that can

be prone to error, are suitable for multimodality registration, are highly ac-

curate for brain registration [19], and are suitable for abdominal registra-

tion [20]. For registration of brain and other organs, registration accuracy

has been assessed using fiducial markers [21, 22] and anatomical landmarks

[23, 25].

The next section will describe a three-dimensional mutual information

rigid body registration algorithm with special features for MRI volumes

of the pelvis and prostate. Section 3.3 describes a three-dimensional non-

rigid registration algorithm that is based upon independent optimization

of many interactively placed control points using mutual information and

a thin plate spline transformation. Detailed implementation, comparisons

with rigid body method, and discussions are reported at the end of the

section.
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3.2 Three-Dimensional Rigid Body

Registration Algorithm with

Special Features

3.2.1 Similarity Measurements

Two similarity measures, mutual information and correlation coefficient (CC),

are used in the registration. Suppose one volume R is the reference, and

the other F is floating. Their mutual information MI(R,F) is given below

[19]:

MI(R, F) =
∑
r, f

pRF (r, f ) log
pRF (r, f )

pR(r) · pF ( f )

The joint probability pRF (r, f ) and the marginal probabilities pR(r) of the ref-

erence image and pF ( f ) of the floating image, can be estimated from the nor-

malized joint and marginal intensity histogram, respectively. The correlation

coefficient CC(R, F) is given below [26]:

CC(R, F) =
∑

(R(r)− R(r))(F( f )− F( f ))√∑
(R(r)− R(r))2

∑
(F( f )− F( f ))2

Here R(r), F( f ) denote the average intensities of the reference and floating

volumes and the summation includes all voxels within the overlap of both

volumes.

In Fig. 3.1, we compare the two similarity measures at different resolutions.

Plotted are MI and CC values as a function of translation along the transverse

axis where the origin is the optimal transformation. For images at a resolution

of 1/4 voxels along a linear dimension, the CC curves are much smoother than

MI, which is noisy and contains many local maximums as shown in Fig. 3.1a.

In addition, there is a false global maximum in Fig. 3.1a at 18 voxels. At full

resolution, Fig. 3.1c shows that MI is much more peaked than CC, but there is

high frequency noise in the MI curves far from the optimum that give rise to

local maximums that must be avoided. From these figures, we infer that CC is

better at low resolution and that MI is better at full resolution when one is close
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Figure 3.1: MI and CC similarity functions are plotted to show their relative

advantages for registration at different resolutions. Two high-resolution MRI

volumes were registered to obtain the optimal parameters. We then computed

similarity values as a function of translation along the transverse axis. MI is

plotted in (a) and (c); CC is plotted in (b) and (d). Graphs on the top, (a) and

(b), are at a resolution of 1/4 voxels along a linear dimension, giving a distance

between voxel centers of ≈5.5 mm. MI gives a noisy plot having many local

maximums, and a false global maximum occurs at 18 voxels. Graphs on the

bottom are obtained at full resolution. MI has a much sharper peak than CC,

which is relatively flat. The voxel size is 1.4 mm. Images are from volunteer V2

in the diagnostic and reference conditions.

to the optimum value. As described in Section 3.2.2, our registration algorithm

makes use of these features.

3.2.2 Registration Algorithm with Special Features

The algorithm shown in Fig. 3.2 include special features to improve robustness

for registration of MR prostate images. We use a multiresolution approach and
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Figure 3.2: Registration algorithm. Capital bold words are computer lan-

guage. The outer loop from DO to END gives the multiresolution approach.

The interloop from REPEAT to UNTIL is for restarting registration. Regis-

tration results and number restarts are used to store temporary values in

the program. See text for details. * CC is used at lower resolutions, 1/4 or
1/2 number of voxels. ** MI is used only at high resolution, full number of

voxels.

perform registration from low to high resolution. At low resolution, we resam-

ple both images at 1/4 or 1/2 number of voxels along each linear dimension,

respectively. Iterative optimization of the similarity is used to vary the six rigid

body transformation parameters (three translations and three angles). We use

the correlation coefficient at the two lower resolutions because of two superior-

ities: (a) it gives fewer local maximums and (b) it can be calculated faster than

MI. We use MI at full resolution because the peaked similarity function gives a

more precise solution than CC.

We create a method to avoid local minima by restarting the registration with

randomly perturbed parameters obtained from a uniform distribution about the
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very first initial guess at each resolution. The distribution is centered on the ini-

tial guess because we want to use the best solution from the lower resolution.

The algorithm restarts until the absolute correlation coefficient between the

reference and registered volumes is above a threshold or the maximum number

of restarts is reached. The perturbation range is±5◦ and±5 voxels correspond-

ing to ±27.3 mm, ±13.7 mm or ±6.8 mm for resolutions 1/4, 1/2, or full voxels,

respectively. Absolute CC is used for the restart test rather than MI because of

three reasons: (a) CC has a well-defined range between 0 and 1, (b) CC provides

an independent check of the MI result, and (c) CC has fewer problems with local

and incorrect global maximums for registrations at low resolution far from the

optimum value.

We record all important results following an optimization cycle including

the CC and/or MI values, the number of restarts, and the transformation pa-

rameters. At the end of processing at a lower resolution, we always select

the transformation parameters having the maximum CC value. We then scale

the translation parameters appropriately and assign the new parameters to be

initial values at the next higher resolution. At the highest resolution, we se-

lect the final transformation parameters to be those with the maximum MI

value.

There are several implementation details. We use rigid body transformation

(three translations and three angles) and trilinear interpolation. For optimiza-

tion, we use the downhill simplex method of Nelder and Mead [27]. Optimiza-

tion of alignment ends either when the maximum number of MI calculations is

reached (typically 500) or the fractional change in MI is smaller than a tolerance

(typically 0.001). The very first initial guess at the lowest resolution is all zeros

for the three displacements and three angles. The CC thresholds can be 0.65,

0.70, and 0.75, and the maximum numbers of restarts be 20, 10, and 5, from low

to high resolutions, respectively.

There are several preprocessing details. Isotropic voxels are created using

3D linear interpolation or higher order interpolation methods [20]. From the top

and bottom of the volume, we optionally crop transverse slices that are over

35 mm away from the prostate rim. Cropping is done to remove slices having

reduced brightness due to sensitivity fall off from the receiver coils, artifacts

from a small field of view, displacement of the legs in the treatment position,

and/or bladder deformation.
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Figure 3.3: MR prostate image with labeled features used to analyze registration

error. This transverse image is from the reference volume of prostate cancer

patient P3. The prostate boundary was manually segmented near the image

center. The four vertical dash lines from left to right indicate the rim of the

right acetabular socket, the right and left rims of the prostate, and the rim of

the left acetabular socket, respectively. The five crosses from bottom to top

indicate the coccyx, the prostate posterior rim, the 2D centroid automatically

calculated from the segmented prostate area, the anterior rim, and the pubic

symphysis. The image also shows the bottom of the bladder, the rectum, the

pubic symphysis, and hip joints.

3.2.3 Evaluation of Registration

3.2.3.1 Registration Accuracy Based on Bony Landmarks

We evaluate the registration of the pelvis by measuring the displacement of

bony landmarks following registration. There are six easily found bony land-

marks consisting of two great sciatic notches, two lesser sciatic notches, the

pubic symphysis, and the coccyx, some of which are illustrated in Fig. 3.3. Pre-

viously, sciatic notches and the pubic symphysis were used to register CT and

MRI images for prostate conformal radiation [28]. To measure landmark dis-

placements, we use visualization software such as RegViz, a program written
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in IDL (Interactive Data Language, Research System Inc., USA) and created in

the authors’ laboratory for visualizing and analyzing registered image volumes.

We navigate transverse, coronal, and sagittal MR images slice-by-slice to search

the landmarks. The same unique features such as corners and intersections are

identified with a cursor on magnified images. A single person repeats this sev-

eral times over a few weeks, and results are averaged to give a 3D location

for each landmark. A radiologist confirms the landmark selection. Following

registration, we calculate the root-mean-squared (RMS) distance over the six

landmarks [21].

Although this method provides an independent means for evaluating skeletal

registration accuracy, there is error in localizing the bony landmarks. To deter-

mine the effect of localization error, we perform least-squares point-to-point reg-

istration [22] and compare results to MI registration. The rationale is that if we

could identify point landmarks without error on the bony pelvis, point-to-point

registration would be perfect. Hence, any displacement left after registration

is introduced by localization error. We determine the optimal transformation

for matching the six corresponding landmarks. Points are transformed, and dis-

tances between corresponding points are determined. RMS values are computed

and compared to the RMS values from MI registration.

3.2.3.2 Registration Consistency

We use the registration consistency as proposed by [29] for registration eval-

uation. For each of the three volunteers, we use three volumes: reference,

diagnosis, and empty bladder, all of which are obtained with the subject in

the similar position. We call these three volumes A, B, and C, respectively.

They give three pairs of registrations (A–B, B–C, and C–A) and three sets of

transformation parameters (Tab, Tbc, Tca). Using the transformation parameters,

we transform voxel positions in A to B, and then to C, and then back to A. The

distance between the original location and the final position is calculated. Since

this is introduced by three transformations, we estimate the error for a single

transformation, by multiplying by 3−1/2 [29].

3.2.3.3 Voxel Displacements

To test the dependency of registration on algorithmic features such as image

cropping, one can compare transformation parameters. However, we choose a
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more meaningful approach that consists of finding the average displacement of

voxels in a region-of-interest (ROI) [20]. The 3D distances between transformed

voxels are calculated in millimeters and averaged over a cubic ROI just covering

the prostate.

3.2.3.4 Other Evaluation Methods Including Displacement

of Prostate Centroids

A variety of other methods are used to evaluate the registration of the pelvis and

prostate. First, we measure potential displacements of the 3D centroid of man-

ually segmented prostates. Second, we use multiple visualization and analysis

methods found in RegViz such as contour overlap and color overlay. Third, we

calculate the intensity difference between the reference and registered volumes

on a voxel-by-voxel basis and compute statistics. Fourth, we calculate the cor-

relation coefficient (CC) between corresponding voxels to measure the quality

of registration of two MR volumes acquired with identical parameters.

3.2.4 Examples and Results

3.2.4.1 Data Acquisition

We acquired MRI volumes from a 1.5 T Siemens MRI system (Magnetom Sym-

phony, Siemens Medical Systems, Erlangen, Germany). An 8-element phased

array body coil was used to ensure coverage of the prostate with a uniform sensi-

tivity. Typically two anterior and two posterior elements were enabled for signal

acquisition. We used two different MR sequences. First, we used a 3D RF spoiled

gradient echo steady state pulse sequence (FLASH) with TR/TE/flip parameters

of 12/5.0/60 which give 256× 256× 128 voxels over a 330× 330× 256-mm field

of view (FOV) to yield 1.29× 1.29× 2.0-mm voxels oriented to give the highest

resolution for transverse slices. The acquisition time was 5.63 min. This sequence

was good for pelvic imaging but was not ideal for the prostate. Second, we used

a 3D rapid gradient echo sequence (PSIF) designed to acquire the spin-echo

component of the steady state response, rather than the free induction decay.

The spin echo component formed immediately prior to the RF pulse, and it was

shifted toward the prior RF pulse through appropriate gradient waveform de-

sign. The sequence with 9.4/5.0/60 (TR/TE/flip) yielded 160× 256× 128 voxels
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over a 219× 350× 192-mm rectangular FOV and 1.37× 1.37× 1.5-mm voxels

oriented to give the highest resolution for transverse slices. There was oversam-

pling at 31% in the slice direction to reduce aliasing artifacts. The acquisition

time was 4.25 minutes. Most often, we used the second sequence, which gave

excellent image contrast for the prostate and its surroundings.

3.2.4.2 Image Volumes for Registration

We acquired 3D MRI volume images from three prostate cancer patients and

three normal volunteers under four conditions simulating anticipated situa-

tions in diagnostic and treatment applications. They are diagnostic position,

treatment position, empty bladder, and diagnosis 1 week. In the diagnostic

position,the subject laid supine throughout MR scanning. The reference volume

was always obtained in the diagnostic position. In the treatment position,the

subject was supine, and his legs were supported at 30◦–60◦ relative to the hori-

zontal and separated in a “V” with an angle of 60◦–90◦ between the legs. This is

similar to the lithotomy position used in some prostate therapies, and it should

provide access for needle insertion in brachytherapy or RF thermal ablation. In

some experiments, the subject micturated to create an empty bladder prior to

imaging. For each subject, volumes were typically obtained within an imaging

session of 1–2 hours. We imaged one subject (V2) a week before the standard

imaging session, and we refer to this volume as diagnosis 1 week. Between vol-

ume acquisitions, subjects got off the MRI table, stretched, and walked around

to ensure that they would assume a different position on the table. The coil array

was centered on the prostate. All images of a subject were acquired using the

same pulse sequence and acquisition parameters so as to ensure very similar

gray values. In total, we registered 22 volume pairs consisting of one pair for each

patient, six pairs for each volunteer, and one additional pair for volunteer V2.

3.2.4.3 Assessments of Pelvic Registration

Following registration, we determined displacements between the six bony land-

marks. For each subject, there was no consistent displacement of landmarks in

one direction versus another. Hence, we measured 3D distances and determined

RMS values over the six landmarks. Registration results are plotted in Fig. 3.4.

The smallest errors are obtained when subjects are in the diagnostic position for
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Figure 3.4: Registration error as determined from bony landmarks. Plotted

are RMS distances as well as maximums and minimums that show the spread

of the data. Conditions along the x-axis such as the “treatment” position are

described in Methods. P’s and V’s refer to patients and volunteers, respectively.

Averaging data across all subjects for the best case (diagnosis-reference) gives

1.6±0.2 mm. Averages are 2.9±0.7 mm and 2.0±0.1 mm for treatment-reference

and empty bladder-reference, respectively.

both imaging sessions, labeled diagnosis-reference. The average error across the

three patients and three volunteers is only 1.6± 0.2 mm. Consistently larger er-

rors are obtained when we compare volumes acquired in the treatment position

with those in the reference position. Even though the MR acquisition technique

used for the patients gave inferior image quality as compared to that for the

volunteers, errors were small.

Additional error analyses are performed on the volunteer images to assess the

accuracy of point landmark localization. We used images obtained with the rapid

gradient echo sequence, which have improved contrast of the prostate and bony

landmarks and which give us more confidence in measurements. The isotropic

voxels are 1.4 mm on a side, almost as large as the 1.7± 0.5 mm error obtained for

the volunteer diagnosis-reference data. We assess the error in localizing the bony

landmarks by performing point-based registration on 4–6 points per volume pair.

The RMS distances after registration averaged across the three volunteers was
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Figure 3.5: Image intensity difference between registered volume pairs. Plotted

are means and standard deviations calculated over the entire volumes. Other

details are given in the legend of Fig. 3.4. Eight out of 10 registrations have a

mean absolute gray level difference less than 1.5 gray levels. Average results are

0.9 ± 1.8, 1.5 ± 3.9, and 0.4 ± 2.6 gray levels, or 1.0%, 1.7%, and 0.4% of typical

mean values of 90 gray levels, for diagnosis-reference, treatment-reference, and

empty bladder-reference, respectively.

1.5± 0.2 mm, very nearly the value obtained with MI registration. Hence, the

“error” reported for MI is probably overestimated due to landmark location error.

This analysis was prompted by ideas in a previous report [22] that numerically

demonstrated the relationship between point localization uncertainty and point-

based registration uncertainty.

Figure 3.5 shows image intensity differences between reference and regis-

tered volumes. The means are quite small with 8 out of 10 registrations giving

a mean absolute value <1.5 gray levels, or only 1.7% of typical mean values of

90 gray levels for these 3D MR acquisitions. Again, the only consistent outliers

occur when we compare the treatment position to the reference. For the case

diagnosis-reference, extremely small image differences are found with V1 giv-

ing 0.1± 1.6 gray values, a standard deviation that compares favorably to the

expectation from image noise alone, or 1.5 gray values. For this volume pair, the

subtracted images have very little structure except at the skin surface, indicating
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excellent registration (not shown). We know that 3D alignment is achieved be-

cause all slices across the entire pelvis are well aligned and because rendered

images show that the prostate matches well.

Registration consistency, as described in Section 3.2.3.2, provides yet another

means of evaluating the quality of registration. Values were 0.4, 0.8, and 0.7

mm for volunteers V1, V2, and V3, respectively. The average is 0.6± 0.2 mm, a

value less than half the dimension of a voxel indicating excellent registration

consistency.

3.2.4.4 Assessment of Prostate Registration

We determined the quality of prostate registration by visually examining nearly

all of the roughly 800 registered image slices using one or more of the methods

found in RegViz. A typical example for the case of diagnosis-reference is shown

in Fig. 3.6 where the boundary overlap is excellent and probably within the

manual segmentation error. In some other cases such as treatment-reference,

small displacements of the prostate were observed. In a typical volume pair, the

prostate is displaced to the posterior direction by ≈3.0 mm when the legs are

raised. There are no obvious displacements in other directions.

Centroid vector displacements can also be analyzed following registrations.

For the case of diagnosis-reference, centroid displacements are only 1.4± 0.2

mm. In the case of treatment-reference, there is a consistent displacement (≈3

mm) in the posterior direction with relatively little change in the two orthogonal

directions. In the case of empty bladder-reference, two of the three volume pairs

show a displacement in the posterior direction while the other is displaced in the

anterior direction. Finally, in the case of a diagnostic volume obtained one week

before the reference, there was a 4 mm displacement in the caudal direction

due mostly to changes in rectal and bladder filling. Because the 3D centroid of

the prostate averages over a large region, we believe these measurements to be

relatively insensitive to segmentation error. Even so, we consider the uncertainty

to be at least 1 mm, and displacements less than this should be disregarded. All

significant results above can be visually confirmed.

Prostate volumes were measured for each subject. The typical difference

between volumes in an imaging session was <1.5%, indicating that segmenta-

tion errors were small and that prostate volumes did not change. The average

prostate volume for the healthy volunteers was 23.9± 3.2 cm3. Volume mea-

surements are particularly useful for clinicians when assessing the response
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Figure 3.6: The prostate overlap between reference and registered images.

Following registration, the prostate was manually segmented in reference (a)

and diagnosis (b) images. The rectangular region in (b) is zoomed in (c) with

both boundaries superimposed. Images are from volunteer V2.

of prostate cancer treatments such as brachytherapy, chemo- or radiation

therapy.

3.2.4.5 Effects of Image Cropping

In Figure 3.7, we plot registration error as determined from bony landmarks

with and without the cropping operation described in Methods. For the case

treatment-reference, cropping always improved registration accuracy, and for

V3, error reduced greatly from 12.6 mm to 3.4 mm. For all other cases, subjects

were always in the supine position with legs flat on the table, and there was

no consistent effect of cropping. If anything, cropping tends to increase error

in these cases, with an increase in 5 of 7 volume pairs. Correlation coefficient

always improves with image cropping.
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Figure 3.7: The effect of image cropping on registration accuracy. The light

and dark bars are RMS distances between bony landmarks with and without

image cropping, respectively, as defined in Methods. Conditions on the x-axis

are described in Methods.

Displacements of bony landmarks might significantly overestimate the

change near the prostate. Hence, as described in section 3.3, we investigated

the displacement of voxels in a ROI surrounding the prostate between registra-

tions with and without cropping. For 9 of 10 analyzed volume pairs, the average

voxel displacement was<0.5 mm indicating that prostate registration is fairly in-

sensitive to cropping. However, for V3 treatment-reference, a much larger voxel

displacement of 7.4 mm was obtained indicating that cropping is critical for this

volume pair.

3.2.4.6 Implementation Issues

The algorithm was quite robust and always gave very nearly the same transfor-

mation parameters (less than 0.01 voxels and 0.01◦) for the 22 volume pairs in

this study using a wide variety of initial guesses. The restarting and multiresolu-

tion features are important, and we report some results for a typical volume pair
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registration. The multiresolution approach enabled the program to get close to

the final value quickly because of the reduced number of calculations. That is,

the time for reformatting at the lowest resolution (1/4) was 9.8 sec, which was

less than 1/59 times that at the highest resolution, a value nearly equal to the

1/64 expected from the change in the number of voxels. The number of restarts

was 5, 1, and 1 for resolutions at 1/4, 1/2, and the full number of voxels. Each

call to the simplex optimization resulted in 55 to 94 MI evaluations before the

tolerance (0.001) was reached. The simplex optimization method worked about

1.5–2.0 times faster than the Powell method in our implementation. The time for

registration using Simplex, typically 5 minutes on a Pentium IV, 1.8GHz CPU,

with 1GB of memory, could probably be greatly improved with optimized C code

rather than IDL.

3.2.5 Discussion

3.2.5.1 Registration Accuracy

Our results suggest that MI can be used to accurately register, with an error on

the order of a voxel, MR pelvic images obtained under similar conditions. Be-

cause it gives an independent, true 3D measurement, we like to use the method of

point bony landmarks to assess accuracy. However, as argued in section 3.2.4.3,

the true MI registration accuracy might be better than our ability to measure it

with point bony landmarks. That is, following point landmark registration, the

distance between registered, corresponding landmarks was on the order of that

following MI registration. Very possibly, MI is more accurate than point regis-

tration using bony landmarks. Additional, independent evidence of excellent MI

accuracy comes from the very low error value from the registration consistency

measurement (0.6 ± 0.2 mm). Interestingly, this is obtained even though the

interpolation artifact present in MI similarity surfaces should reduce the likeli-

hood of subvoxel accuracy [30]. Our results for the pelvis with image volumes

obtained under the same conditions compare favorably with those for the brain,

where MI registers images very accurately giving errors as small as 0.7–0.8 mm

for CT-MR [31].

Visual and quantitative evaluation of prostate organ movement showed

good registration even when we acquired images under conditions that greatly

stressed the ability to register the images. The small prostate displacements in
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our study are consistent with earlier reports on respiration-induced prostate

movement of ≤1 mm for most patients in supine position with “quiet” respira-

tion [32]. The difference between the treatment and diagnostic positions resulted

in the most consistent and largest displacement of the prostate. When images

were acquired in the diagnostic position one week apart, there was significant

displacement of the prostate due to a change in rectal filling. This is consis-

tent with previously reported results [8, 14], which found rectal filling to be a

significant factor in prostate displacement.

There are ways to limit the small displacements of the prostate. One obvious

remedy is to acquire images in the same position. That is, if we want to register

an image with one obtained in the treatment position, we should obtain it in

the treatment position. Although it is unknown how accurately one must repeat

the treatment position, a device to support and constrain the legs is probably

required. In addition, there is a dependence of registration error on bladder

and rectum content. One solution is use clinical preparations often employed to

void the bladder and rectum prior to prostate imaging or therapy. We anticipate

that this might even lessen prostate displacements between the diagnostic and

treatment positions.

We must consider our results with regard to potential applications such

as those described in section 3.1. First, registered images acquired before and

immediately after treatment can be used to determine whether a tumor is ad-

equately treated. Second, serial examinations can be registered to determine

tumor progression or regression. Third, registration of functional images from

other modalities such as nuclear medicine or from MR spectroscopy can give

molecular markers for prostate cancer [33, 34]. Fourth, we want to register high

quality MR images with a few live-time interventional MR images to aid treatment

decisions [4, 5]. Our results indicate that registering images from the treatment

and diagnostic positions can lead to errors, and potential steps are described

above to limit this error. With images acquired in the same position, our results

place a lower limit on registration error of about 1 voxel.

3.2.5.2 Assessment of Registration

We are involved in a long-term effort to use registration for detection, assess-

ment, and therapy of prostate cancer. Hence, we have developed and used sev-

eral methods to assess pelvic and prostate registration.
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It is highly desirable to have an automatic method for evaluating the quality

of a registration so that a poor one can be flagged before it is used clinically.

The correlation coefficient would be applicable whenever one uses MR images

obtained with identical pulse sequences. It compares favorably with the bony

landmark results. Registration consistency provides an additional means to eval-

uate registration accuracy that does not rely on operator interaction.

Other evaluation methods are applicable for clinical or research applica-

tions. RegViz provided visual inspection tools for quick evaluation of the quality

of registration and potential prostate displacement. Such methods can be used

to verify the quality of registration and possibly account for small displacements

in some applications. Boundary overlays provide a good means to evaluate or-

gan deformation as well as displacement. Point anatomical landmarks provide

a useful, independent test, but it is time consuming to identify them and MI

might be more accurate than the point landmarks. Centroids are obtained re-

liably because small segmentation errors are removed by integrating over the

entire prostate volume. Centroids provide a good means of quantifying prostate

displacements.

3.2.5.3 Algorithm with Combined Similarity Measures

Using both CC and MI at different resolutions was an important feature that

increased robustness. When only mutual information was used, registrations

at low resolution sometimes gave false solutions that mislead registration at

the next higher resolution. However, CC performed well and gave many fewer

local maximums at the lower resolutions (Figs. 3.1a and 3.1b). But MI gave

a more accurate solution at the full resolution due to the peaked MI surface

(Figs. 3.1c and 3.1d). Our registration algorithm combined advantages from the

two similarity measures.

There are probably several reasons why mutual information does not work

well at low resolution. First, the similarity curve is noisy with periodic oscilla-

tions from the so-called interpolation artifact [30] that is accentuated at reduced

resolutions [35]. This results in the many local maximums in Fig. 3.1a that can

trap the optimization. A similar result was reported for brain registration [19,

36]. Second, when images are of low resolution and there is only a small region

of overlap, the mutual information function can even contain incorrect global

maximums [35]. Such a result was found in Fig. 3.1a where the global maximum
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was obtained at very large displacements where the overlap was reduced. This

occurs because MI is not only a function of how well the images match in the

overlap, but also by how much information is provided by the two images in the

overlap [37].

3.2.5.4 Computer Implementation

Accuracy is an important issue for automatic registration, but there are oth-

ers such as robustness, speed, and requirements for operator interaction. With

the multiresolution and restarting features, our modified MI algorithm is quite

robust. For a wide range of initial guesses, it worked well for all 22 volume

pairs reported here. Three of the volume pairs were from patients, and we are

confident that routinely acquired clinical images will have sufficient quality for

registration. Because good starting values are unimportant, operator interaction

is minimal. In one instance, cropping of the legs was important for registering

an image volume obtained in the treatment position with that in the diagnos-

tic position. It is not surprising that legs in a very different position have to be

cropped. Although this is easy to do manually, we can probably determine an

automated method if it is deemed desirable.

The mutual information similarity measure is quite robust. Even though our

images are very similar, we had less success with some other measures such

as the sum of the squared image difference. An advantage of MI is that it can

be used with images from different modalities, a feature that we are starting

to use.

3.3 Three-Dimensional Non-Rigid Body

Registration Algorithm

3.3.1 Why Non-Rigid Registration

In the previous section, we discussed rigid body registration of the prostate. For

volume pairs acquired over a short time span from a supine subject with legs flat

on the table, registration accuracy of both prostate centroids (typically<1 mm)

and bony landmarks (average 1.6 mm) was on the order of a voxel (≈1.4 mm).
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We obtained somewhat larger prostate registration errors of about 3.0 mm when

volume pairs were obtained under very different conditions, e.g., legs flat and

legs raised, or with and without bladder or rectal filling. Rigid body registration

of the pelvis cannot follow prostate movements due to changes in the postures

of legs and deformation of the bladder and rectum [8]. In this section, we discuss

the ability of non-rigid registration to express this deformation.

Non rigid registration studies are reported for the brain [38, 39], for the

breast [40, 41, 41, 42, 42], for a variety of other organs [23, 43, 45], and for

excised tissue [46]. Far few reports described results of the pelvis and prostate.

Bharaha et al. reported a method using manually segmented prostate for rigid

body registration followed by finite element-based warping in the application

of prostate brachytherapy [47]. Voxel based methods, particularly those based

upon mutual information, are robust, require no segmentation that can be prone

to error, are highly accurate for brain registration [31], and are suitable for

abdominal registration where there can be deformation [20]. We are discussing

voxel-based non-rigid registration for the particular application in the pelvis and

prostate.

In this section, we perform experiments to compare non-rigid and rigid body

registration for the prostate and pelvis. By using high-resolution MR images giv-

ing distinctive anatomic detail, we test the ability of a non-rigid algorithm to cor-

rect anatomical variations throughout the pelvic region. We include conditions

with very significant changes in posture possible in interventional applications,

that is, we attempt to register image volumes from a diagnostic scan with legs

flat to those from a treatment acquisition with legs raised. We qualitatively and

quantitatively evaluated registration results using 17 volume pairs from three

volunteers.

3.3.2 Non-Rigid Registration Algorithm

Figure 3.8 outlines the non-rigid registration algorithm that includes three major

steps: control point selection, control point optimization, and thin plate spline

warping. Prior to non-rigid registration, we perform rigid body registration as

reported in Section 3.2. Again, the unchanging volume is the reference, and the

one to be warped is floating.

The manual selection of CP’s is an important step. We used RegViz for vi-

sualizing and analyzing image volumes. Following rigid body registration, the
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Figure 3.8: Flow chart of the warping registration algorithm. Following rigid

body registration, N control points are selected in both the reference and float-

ing volumes. A small cubic volume of interest (VOI) is centered on each control

point. Optimization is performed by varying the x, y, and z locations of the

floating VOI until the mutual information between corresponding voxels is max-

imized. Each control point is optimized independently, and then the optimized

control points are used to establish a three-dimensional thin plate spline trans-

formation for the entire volume.

aligned two volumes are displayed in two rows slice-by-slice. Images can be

transverse, coronal, or sagittal slices. It is quite straightforward to find cor-

responding features at the pelvis, prostate, bladder, and rectum. We normally

select control points (CPs) using recognizable organ features such as corners

and intersections of edges because of their unique positions. Corresponding CPs

in the two volumes are placed using a cursor, and sometimes they are in differ-

ent image slices. The 3D coordinates are automatically stored in a file. Because

of the optimization that occurs later, the correspondence can be up to 15 mm

or ≈10 voxels in error. Experiences with CP selection are described in Section

3.3.4.4. Typically, we used 180 CPs for a volume with 256× 256× 140 isotropic

voxels.

The next step of the non-rigid algorithm (Fig. 3.8) is the CP optimization.

We define a small cubic volume of interest (VOI) centered at each CP. The VOI
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can be 16, 32, 48 or 64 voxels on a side. As reported later, the selection of the

VOI size depends on the amount of warping required. A simplex optimization

algorithm varies the x, y, and z transformation parameters of the floating VOI

until the mutual information with the reference VOI is optimized. Each control

point is optimized independently and the 3D coordinates of the optimal CPs are

recorded.

The final major step is to warp the floating volume using the corresponding

optimal CPs coordinates to establish a three-dimensional thin-plate spline (TPS)

transformation [48, 49]. We now briefly go through the three computing steps

for the TPS transformation.

First, let P1 = (x1, y1, z1), P2 = (x2, y2, z2), . . . , Pn = (xn, yn, zn) be n control

points in the image coordinate of the reference volume. Write rij =
∣∣Pi − Pj

∣∣ for

the distance between point i and j. We define matrices:

P =

⎡⎢⎢⎢⎢⎣
1 x1 y1 z1

1 x2 y2 z2

· · · · · · · · · · · ·
1 xn yn zn

⎤⎥⎥⎥⎥⎦ , n× 4;

K =

⎡⎢⎢⎢⎢⎣
0 r12 r13 · · · r1n

r21 0 r23 · · · r2n

· · · · · · · · · · · · · · ·
rn1 rn2 rn3 · · · 0

⎤⎥⎥⎥⎥⎦ , n× n;

and

L =
[

K P

PT O

]
, (n+ 4)× (n+ 4);

where T is the matrix transpose operator and O is a 4× 4 matrix of zero.

Second, let Q1 = (u1, v1, w1), Q2 = (u2, v2, w2), . . . , Qn = (un, vn, wn) be n

corresponding control points in the image coordinate of the floating volume.

We get matrices:

V =

⎡⎢⎣ u1 u2 · · · un

v1 v2 · · · vn

w1 w2 · · · wn

⎤⎥⎦ , 3× n,

Y =
(

V |0 0 0 0
)T

, 3× (n+ 4),
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and define the vector W = (w1, w2, . . . , wn) and the coefficients α1, αx, αy, and

αz by the equation

L−1Y = (W |α1 αu αv αw )T .

Third, use the elements of L−1Y to define a function f (u′, v′, w′) everywhere

in the entire volume:

f (u′, v′, w′) = α1 + αuu+ αvv + αww +
n∑

i=0

wi |Pi − (u, v, w)|.

Thus, any voxel (ui, vi, wi) in the floating volume is transformed to a new coordi-

nate (u′i, v
′
i, w

′
i) and a warped volume can be obtained by trilinear interpolation.

Additional algorithm details are now described. For both VOI optimization

and rigid body registration, we use trilinear interpolation. Optimization of sim-

ilarity ends either when the maximum number of calculations is reached (typ-

ically 500) or the fractional change in the similarity function is smaller than a

tolerance (typically 0.001). We use IDL as the programming language.

3.3.3 Registration Evaluation

We used the multiple visualization features of RegViz to visually evaluate reg-

istration results. First, we manually segmented prostate boundaries in image

slices and copied them to corresponding slices from the other volume. This en-

abled visual determination of the overlap of prostate boundaries over the entire

volume. We applied the same method to evaluate pelvic registration. Second,

color overlay displays were used to evaluate overlap of structures. One image

was rendered in gray and the other in the “hot-iron” color scheme available in

IDL. To visualize potential differences, it was quite useful to interactively change

the contribution of each image using the transparency scale. Third, we used a

sector display, which divided the reference and registered images into rectan-

gular sectors and created an output image by alternating sectors from the two

input images. Even subtle shifts of edges could be clearly seen [1].

Voxel gray value measures were calculated as indicators of registration qual-

ity. Mutual information and correlation coefficient between registered volumes

were computed. Since volumes to be registered were acquired using the same

acquisition parameters, high absolute CC values were obtained when registra-

tion was good [41]. Because voxel intensities were comparable, we created
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difference images and calculated statistics such as the voxel mean and standard

deviation following registration.

Finally, we used a variety of tools in RegViz to evaluate registration quality.

We used contour overlap and color overlay to assess the prostate registration. We

manually segmented the prostate across all slices and calculated the potential

displacements of the prostate 3D centroid.

3.3.4 Examples and Results

3.3.4.1 Image Acquisition

All MRI volumes were acquired using a 1.5 T Siemens MRI system (Magne-

tom Symphony, Siemens Medical Systems, Erlangen, Germany). As described

in Section 3.2.4.1, we used two MR sequences. First, a 3D FLASH sequence

with TR/TE/flip parameters of 12/5.0/60 gave 256× 256× 128 voxels over a

330× 330× 256-mm field of view (FOV) to yield 1.29× 1.29× 2.0-mm voxels

oriented to give the highest resolution for transverse slices. This sequence was

used for volunteer S1. Second, a 3D PSIF sequence with 9.4/5.0/60 (TR/TE/flip)

yielded 160× 256× 128 voxels over a 219× 350× 192-mm rectangular FOV and

1.4× 1.4× 1.5-mm voxels oriented to give the highest resolution for transverse

slices. The second sequence was used for volunteers S2 and S3.

3.3.4.2 Imaging Experiments

We acquired 3D MRI volume images from three normal volunteers under a va-

riety of conditions simulating anticipated conditions in diagnostic and treat-

ment applications. Before image acquisition, each volunteer drank water and

had a relatively full bladder. In the diagnostic position, the subject laid supine

throughout MR scanning. In the treatment position, the subject was supine, and

his legs were supported at 30◦–60◦ relative to the horizon. In some experiments,

the subject micturated to create an empty bladder prior to imaging. We imaged

volunteers a week before the standard imaging session, and we refer to these

volumes as diagnosis 1 week. Between volume acquisitions, volunteers got off

the MRI table, stretched, and walked around to ensure that they would assume

a different position when they laid back on the table. All images of a volunteer

were acquired with the same MRI acquisition parameters so as to ensure very
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similar gray values. In total, there are 4, 4, and 8 volumes for volunteer S1, S2, and

S3, respectively. The permutation of the volumes gives many possible volume

pairs for registration experiments.

3.3.4.3 Volumes for Registration Experiments

We registered 17 volume pairs under five different conditions as defined above.

Five pairs are treatment-diagnosis; seven pairs are full bladder-empty blad-

der; two pairs are diagnosis 1 week-diagnosis; and three pairs are diagnosis-

diagnosis. For each case, other conditions were controlled. For example, for

the case of diagnosis 1 week-diagnosis, both volumes were acquired with empty

bladder and comparable conditions. Rigid body and warping registration were

applied to each of the volume pairs. Results were evaluated as described

next.

3.3.4.4 Effect of Control Point Selection

on Registration Quality

In well over 100 registration experiments using different numbers and place-

ment of CPs, we investigated effects on non-rigid registration quality. For each

of the three volunteers, we selected one typical volume pair from the diagnostic-

treatment positions for systematic experiments. We progressively increased the

number of CPs from 15 to 250. We found that less than 120 CPs did not produce

good visual matching of our high-resolution MR images showing great anatom-

ical detail. More than 220 CPs did not give significantly improved results but

required more time for manual selection and optimization. When we used≈180

CPs placed strategically using rules described later, we obtained excellent re-

sults over the entire pelvis and internal organs. As a result of our experience,

we modified the registration method to be suitable for many CPs.

Some rules follow for strategic placement of CPs. For registration of treat-

ment and diagnostic image volumes, most CPs were selected using trans-

verse slices because they best showed the pelvic displacement when mov-

ing the legs to the treatment position (Fig. 3.9). About 25 CP pairs were

placed near the edge and point features having recognizable correspondence

on each of 5–8 transverse slices with a z interval of ≈8 mm, covering the en-

tire pelvic region. Additionally, we placed about 25 CPs from sagittal slices
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Figure 3.9: Control point selection when images are acquired in the treatment

and diagnostic positions. Image (a) is from the reference volume acquired in

the treatment position with legs raised. Image (b) is to be warped and is from

the volume acquired in the diagnostic position with the subject supine on the

table. Transverse slices best show the deformations, especially at the legs. As

described in the text, control points indicated by the white dots are selected

around the pelvic surface and the prostate. Each control point is located at

one voxel but displayed much bigger for better visualization. Volumes are from

volunteer S2.

because they provided other structures that can be missed in the transverse

images. It was also important to include CPs from organs other than the

prostate because they constrained warps. We always placed CPs at critical re-

gions such as the prostate center, pelvic surface, bladder border, and rectal

walls.
For registration of image volumes with full and empty bladder, most CPs

were placed from sagittal slices because they best showed the deformation of

the bladder and rectum (Fig. 3.10). About 10–20 CPs were placed at the borders

of the bladder and rectum on each of 8–10 sagittal slices with an equal interval

of≈8 mm, covering the entire pelvic region including the prostate, bladder, and

rectum.
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Figure 3.10: Control point selection when images are acquired with a week’s

interval between them. Image (a) is from the reference volume acquired one

week later with an empty bladder. Image (b) is to be warped and is from the

volume acquired earlier with a full bladder. Sagittal slices best show the defor-

mations at the bladder (vertical arrow) and rectum (horizontal arrow) where

most control points are placed. Volumes are from volunteer S3.

3.3.4.5 Registration Quality of Non-Rigid and Rigid

Body Registration

In Fig. 3.11 we compare non-rigid and rigid body registration for a typical volume

pair in the treatment and diagnostic positions. Following non-rigid registration,

the prostate boundary overlap is excellent (Fig. 3.11e) and probably within the

manual segmentation error. Similar results were obtained in other transverse

slices throughout the prostate. The prostate 3D centroid calculated from seg-

mented images displaced by only 0.6 mm, or 0.4 voxels, following warping.

Following rigid body registration, the prostate was misaligned with a displace-

ment to the posterior of≈3.4 mm when in the treatment position (Fig. 3.11d), as

previously reported by us [1]. Using rigid body registration, there is significant

misalignment throughout large regions in the pelvis (Fig. 3.11f) that is greatly

reduced with warping (Fig. 3.11g). Note that warping even allows the outer sur-

faces to match well. Other visualization methods such as two-color overlays and

difference images, quickly show matching of structures without segmentation

but do not reproduce well on a printed page.
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Figure 3.11: Comparison of warping and rigid body registration for volumes

acquired in the treatment and diagnostic positions. Image (a) is from the refer-

ence volume acquired in the treatment position, and the prostate is manually

segmented. Images in the left and right columns are from the floating volume

acquired in the diagnostic position following rigid body and warping registra-

tion, respectively. To show potential mismatch, the prostate contour from the

reference in (a) is copied to (b) and (c) and magnified as the dashed contours

in (d) and (e). The 3 mm movement of the prostate to the posterior is corrected

with warping (e) but not rigid body registration (d). Pelvic boundaries manually

segmented from the reference show significant misalignment with rigid body

(f) that is greatly improved with warping (g). Images are transverse slices from

subject S2.

We next examine the effect of conditions such as bladder and rectal filling

that might change from one imaging session to the next. In Fig. 3.12 we compare

non-rigid and rigid body registration for a volume pair with one-week between

imaging sessions. One volume is with an empty bladder and the other is with

a relatively full bladder. There is also a difference in rectal filling. Non-rigid

registration closely aligns the prostate (Fig. 3.12e) while rigid body does not
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Figure 3.12: Comparison of rigid body and warping registration for volumes

acquired with an interval of one week between imaging sessions. The reference

image (a) with a manually segmented prostate was acquired later with an empty

bladder (vertical arrow) and partial rectal filling (horizontal arrow). Images in

the left and right columns are from the floating volume acquired earlier following

rigid body and warping registration, respectively. To show potential mismatch,

contours from the reference are shown on images following registration, as

described in Fig. 3.11. The full bladder in (d) has pushed the prostate, shown by

the continuous curve, in the caudal direction. After warping, prostate contours

match closely (e). The bladder, rectum, and other organs closely align following

warping (g). With rigid body (f), proceeding from left to right, the front of the

pelvis, the bladder (arrow), and the rectum are all misaligned. Images are sagittal

slices from S3.

(Fig. 3.12d). In addition, rigid body registration does not align the bladder and

parts of the rectum (Fig. 3.12f). With warping, the bladder closely matches the

reference, and the rectum is better aligned (Fig. 3.12g). Other visualization meth-

ods showed excellent alignment of internal and surface edges. Difference images

show that warping greatly improves alignment of internal structures as com-

pared to rigid body registration (Fig. 3.13). The difference image following rigid

body registration shows bright regions indicating misalignments (Fig. 3.13d)

that are removed with warping (Fig. 3.13e).

We also examined volume pairs with both volumes acquired in the diagnos-

tic position under comparable conditions. In the current data set, five volume
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Figure 3.13: Comparison of registration quality for rigid body and warping reg-

istration. The reference image (a) was acquired with a relatively empty bladder

(arrow). Images (b) and (c) are from the floating volume acquired with a full

bladder following rigid body and warping registration, respectively. Images (d)

and (e) are the absolute difference images between the reference and registered

images, respectively. Bright regions following rigid body indicate misalignments

(d) that are removed with warping (e). Images (d) and (e) are displayed using

the same grayscale window and level values. Images are coronal slices from S3

volumes shown in Fig. 3.12.

pairs fit these criteria. In all such cases, rigid body registration worked as well

as warping. There were no noticeable deformations in the pelvis, and prostate

centroids typically displaced less than 1.0 mm between the two registered vol-

umes. Note that this was obtained even though subjects always got up from the

table and moved around before being imaged again.

3.3.4.6 Quantitative Evaluation of Non-Rigid Registration

Figure 3.14 shows the correlation coefficient and mutual information values

between registered volumes. Warping increased CC and MI values in every

case, and a paired two-tailed t-test indicated a significant effect of warping

at p < 0.5%. The most significant improvement was in the case of treatment-

diagnosis where improvements in CC and MI were as high as 102.7% and 87.8%,

respectively.

Statistics of image differences following rigid body and non-rigid registra-

tion are shown in Fig. 3.15. Warping reduces the absolute intensity difference

between corresponding voxels (Fig. 3.15a), and the mean across all image vol-

umes is only 4.2 gray levels, a value corresponding to only 4.7% of the mean

image value of 90. We used the absolute intensity difference because signed
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Figure 3.14: Voxel similarity measures for rigid body and warping registration.

Correlation coefficient (CC) (a) and mutual information (MI) (b) following regis-

tration with (light bars) and without (dark bars) warping are plotted. Conditions

described in Experimental Methods are listed on the x-axis. Warping increase

CC and MI in all cases. The most significant increases occurred in the case of the

treatment-diagnosis volume pairs where maximum increase in CC and MI are

101.7% and 87.8%, respectively. For volumes acquired within the same diagnostic

position and comparable conditions (two right-most groups), warping did not

have significant improvement over rigid body method.
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Figure 3.15: Image statistics of absolute intensity difference images for rigid

body and warping registration. The mean (a) and standard deviation (b) are

plotted. See the legend of Fig. 3.14 for other details. Warping decreased the

mean and standard deviation in each case, but the most significant decreases

occurred in the case of the treatment-diagnosis volume pairs. After warping, the

intensity averaged over all data is 4.2± 1.9 gray levels, a value corresponding to

only ≈4.7% of the mean image value of ≈90 gray levels.
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Figure 3.16: Optimization time and mutual information as a function of VOI

size. The left vertical axis is mutual information, and the right vertical axis is

the total VOI’s optimization time. The horizontal axis is the size of the VOI on

a side. In each case, the VOI is centered on the CP, but since even numbers of

voxels are used, the CP is displaced consistently to the upper left-hand corner

by one voxel. With increasing VOI size, time increases linearly with the number

of voxels within the VOI. The peak mutual information value is at a VOI size of

64 on a side. A treatment-diagnosis volume pair is used from S2 with 180 CPs.

values canceled when averaged over the entire image. The standard deviation

of absolute difference is also reduced (Fig. 3.15b).

These quantitative measures match observation from visual inspection. For

example, the third pair of the first group (diagnosis-treatment) in Figs. 15 and

16 correspond with the images in Fig. 3.11. After warping, registration greatly

improved. Another interesting example is the difference images in Figs. 3.13d

and 3.13e that correspond to the last pair of the second group (full-empty blad-

der) in Fig. 3.15. Once again, the statistical measures reflect the great change in

visual quality.

3.3.4.7 Algorithmic Implementation

In rigid body registration, the multiresolution approach and restarting algorithm

were important modifications. First, these two features improved robustness.
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The algorithm always gave very nearly the same transformation parameters

(<0.01 voxels and 0.01◦) for the 17 volume pairs in this study using a wide va-

riety of initial guesses. We also found that MI was more accurate than CC at

the highest resolution [1]. Second, the multiresolution approach enabled the

program to get close to the final value quickly because of the reduced number

of calculations. That is, the time for reformatting at the lowest resolution of 1/4

number of voxels in a linear dimension was 0.16 minute, less than 1/63 times

that at the highest resolution, a value nearly equal to the 1/64 expected from the

change in the number of voxels. In a typical example, the number of restarts

was 5, 1, and 1 for resolutions at 1/4, 1/2, and the full number of voxels in a linear

dimension, respectively. When we checked the restarts at the resolution of 1/4

number of voxels, we determined that none of the five restarts converged to the

same transformation. It has been our experience that more restarts are desirable

at the lower resolutions, and the algorithm includes this feature. Each call to

the Simplex optimization resulted in 50 to 100 MI evaluations before the toler-

ance (0.001) was reached. In some experiments on multiple volumes, we reduced

the tolerance value but found little difference in registration quality, probably

because of the restarting and multiresolution features. The time for rigid body

registration, typically 5–10 min on a Pentium IV, 1.8 GHz CPU, with 1.0 GB of

memory, could possibly be reduced to within one minute with optimized C code

rather than the high level language IDL.

Some technical aspects of non-rigid registration are of interest. Fig. 3.16

shows the optimization time and MI values between registered volumes as a

function of VOI size. The optimization time for 180 CPs increases roughly linearly

with the number of voxels within a VOI, about 0.5 minutes for VOIs with 16 voxels

on one side and 30 minutes for VOIs with 64 voxels on a side. In Fig. 3.16, the MI

curve saturates at the VOI size of 64 voxels on a side which means the size of 64

gave better MI value. These curves are for the case of treatment-diagnosis for

volunteer S2. When we examined the cases of full-empty bladder and volumes

acquired over one week time interval, we found that the VOI size of 16 voxels

on a side worked best. Using the same computer above, for a volume with

256× 256× 140 voxels and 180 CPs, the non-rigid registration typically takes

about 15–45 minutes depending on the VOI size.

We report some details on VOI optimization for a typical treatment-

diagnosis volume pair from subject S2. Following rigid body registration, the

mean distance between the manually selected reference and floating CPs was
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15.5± 0.7 mm, where the latter number is the standard deviation. The maximum

distance was 53.2 mm. After VOI optimization, the algorithm moved the floating

CPs an average of 9.0± 6.5 mm. This value shows that one does not have to be

very careful in marking corresponding CPs.

3.3.5 Discussions

3.3.5.1 Applicability of Non-Rigid Registration

For MR images of the pelvis and prostate, non-rigid registration is desirable

whenever images are acquired in different positions or with different conditions

of bladder and rectal filling. Local deformations throughout the pelvis can be

corrected, and, more importantly, the prostate can be accurately registered.

However, when images are acquired in the same position under comparable

conditions such as our case called diagnosis–diagnosis, rigid body registration

worked satisfactorily as previously reported by us [1]. Similarly, if one were

to reproduce the treatment position with reasonable accuracy, we believe that

prostate registration would be very good.

Our goal is to get good matching throughout the entire pelvic region not

just at the prostate because proper localization of other organs is important

for interpretation of some functional images and because anatomical spatial in-

tegrity is important for treatment planning. Hence, we used high-resolution MR

images that provide a very stringent test for warping. Many anatomical details

are evident, and even a small mismatch can clearly be seen. As a result, we

found that ≈180 control points were required to get excellent quality registra-

tion. When we applied the method to register CT images with PET images of

the lung having much less resolution, many fewer points (≈50) were required

[50]. With a sufficient number of control points, the TPS transformation excel-

lently approximated the deformations of the pelvis and internal structures of

our MR images. Even when we warped the volume in the diagnostic position to

one in the treatment position, most organs were closely aligned, despite very

significant movements. The method performed equally well for correcting the

deformation and organ displacement arising from changes in bladder and rectal

filling.

With our graphical user interface, interactive control point selection is quite

easy after training. It usually took an experienced user about 15 minutes to
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select 180 CPs. Based on our experience, we think that it is possible to create

an automatic or semiautomatic method for selection of appropriate CPs in the

pelvis. For example, one might use a grayscale threshold to detect the pelvic

outer boundaries and apply edge enhancement to extract feature of internal

structures. CPs would be placed on such structures automatically. We are inves-

tigating this and other methods for CP selection followed by automatic non-rigid

registration.

One way to adjust the movement of control points is to change the size of the

VOI. In the case of treatment-diagnosis volume pairs, a large VOI size of 64 on a

side worked better than smaller ones because displacements were large, because

larger VOIs tend to give a more robust optimization, and because no small local

deformations were required. However, a size of 16 on a side worked better for

the case of full-empty bladder volume pairs because small VOIs better capture

the small, local deformations. VOIs with a size of 64 on a side covered most

of the bladder and could not generate small local deformations. For volumes

with both large and small-scale deformations, we suggest using different VOI

sizes for different CPs.

With non-rigid registration, we have to be concerned about potential warping

errors affecting the application of interest. For the prostate, we used 3–5 CPs

near the prostate center because we desired to maintain the spatial integrity of

the organ and to preserve the tissue volume. We placed many CPs around the

pelvic surface to produce reasonable warping.

3.3.5.2 Evaluation of Non-Rigid Registration

Since there is no gold standard for non-rigid registration of anatomical images,

we used a variety of methods to evaluate registration quality. First, for routine

evaluation, a color overlay is simple, fast, and intuitive. To better visualize the

two data sets, we interactively adjust the transparency scale of each image.

Second, for illustration of subtle difference along an edge, we recommend a

sector display because it best shows small shifts. Third, for visual evaluation of

a specific organ such as the prostate, we like to superimpose manually marked

contours from one image onto another as shown in Figs. 3.12 and 3.13. This

clearly shows any displacement or deformation even in a printed figure. Fourth,

a more quantitative approach is obtained by calculating the displacement in
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millimeters from the 3D centroid of a segmented organ such as the prostate.

Finally, when images have comparable gray levels, a difference image can

provide a visual evaluation or a quantitative evaluation from image statistics.

A downside with MR difference images is that the inhomogeneity of the signal

response and interpolation can introduce artifacts in difference images. Since

MR image intensity can vary with different MR sequence parameters and the

signal response of MR coil, gray value statistic may have some limitations when

image acquisitions are not carefully repeated.

3.3.5.3 Algorithmic Robustness and Efficiency

The rigid body algorithm is robust for a global registration. Because of two

principal design features, the algorithm is quite robust and accurate for volume

pairs acquired in the same positions and with comparable conditions [1]. First,

using both CC and MI at different resolutions was an important feature that

increased robustness. CC gave fewer local minimums at low resolutions and

MI was more accurate at high resolution [1, 5]. Second, the restarting mecha-

nism was also quite important. Without restarting, we found that registrations

sometimes failed in cases of volumes with large mismatches and significant de-

formation. Even these cases resulted in a proper solution when restarting was

employed.

Based upon our initial experiments with interactive CP selection, we deter-

mined that many CPs were required for good matching throughout the pelvis.

As a result, we designed algorithm features to be computationally efficient for

TPS warping with hundreds of CPs. First, the optimization of small VOIs is very

fast. Second, we optimized each CP separately because the optimization of three

parameters (x, y, and z) is simple and fast. Conversely, as previously reported

by others [43, 44], the simultaneous optimization of many CPs leads to a much

more complicated error surface and local maximums. If one were to use 180 CPs

and optimize the 540 free parameters simultaneously, the optimization process

would become extraordinarily complex. Third, we applied the TPS transforma-

tion once to the final, optimal CPs, which saved considerable time. If TPS was

applied in each iteration, the registration time would be unacceptable for our

application. If we were to use optimized C code, the total time for rigid body

and non-rigid registration should reduce to within 5 minutes.
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3.3.5.4 Applications

The flexibility introduced with manual selection of CPs makes the current soft-

ware suitable for non-rigid registration in many applications in addition to the

clinical procedures described in the Introduction. We have successfully applied

it to human MR-MR prostate images as shown here, rat CT-CT images, and CT-

PET lung images [50]. We believe that the registration method can be applied

to many organs other than the pelvis and prostate, multimodality images, and

intersubject images. In addition, we think it applicable to a variety of animal

experiments in which we are involved, including iMRI-guided thermal ablation

in pig and rabbit, prostate imaging studies in dog, and controlled drug release

studies in rat.

We conclude that our mutual information non-rigid registration is fast and

can be applied to a variety of applications. For prostate and pelvic imaging,

it works better than rigid body registration whenever the subject position or

condition is greatly changed between acquisitions. It will probably be a useful

tool for many applications in prostate diagnosis, staging, and therapy.

3.3.6 Summary

Many applications in prostate cancer management such as tumor localization,

possibly tumor staging, tumor targeting during therapy, assessment of adequate

treatment, and treatment follow up, require image registration of MRI volumes

and/or volumes from other imaging modalities. With regard to interventional MRI

guided radiofrequency thermal ablation for the minimally invasive treatment of

prostate cancer, registration applications include the comparison of registered

MR images acquired before and immediately after RF ablation to determine

whether a tumor is adequately treated. When images are acquired in different

patient positions and/or different conditions, the pelvis, prostate, bladder, and

rectum can deform and displace. Non-rigid registration is desired to correct for

such deformations.

We created a two-step, three-dimensional registration algorithm using mu-

tual information and thin plate spline warping for the prostate MR images.

First, automatic rigid body registration was used to capture the global trans-

formation. Features included a multiresolution approach, two similarity mea-

sures, and automatic restarting to avoid local minimums. Second, local non-rigid
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registration was applied. Interactively placed control points were automatically

optimized by maximizing the mutual information of corresponding voxels in

small volumes of interest and by using a three-dimensional thin plate spline to

express the deformation throughout the image volume. More than 100 registra-

tion experiments with 17 MR volume pairs determined the quality of registration

under conditions simulating potential interventional MRI-guided treatments of

prostate cancer. Evaluations included visual inspection; voxel gray value mea-

sures such as mutual information, correlation coefficient, and intensity differ-

ence; and displacement of the centroids of segmented prostates. For image

pairs that stress rigid body registration (e.g., supine, the diagnostic position,

versus legs raised, the treatment position), both visual and numerical evalua-

tion methods showed that warping consistently worked better than rigid body.

Non-rigid registration rectified the misalignment in the pelvis following rigid

body registration. The prostate centroid displacement for a typical volume pair

was reduced from 3.4 mm to 0.6 mm when warping was added. Experiments

showed that ≈180 strategically placed control points were sufficiently expres-

sive to capture important features of the deformation. When only 120 control

points were used, warping throughout the pelvis was visually less satisfactory

but the prostate was aligned reasonably well. For volume pairs with images ac-

quired in the same position (diagnosis-diagnosis) and comparable conditions,

the rigid body method worked sufficiently well, and the prostate centroid dis-

placements were <1.0 mm. In conclusion, the non-rigid registration method

works better than rigid body registration whenever patient position or condi-

tion is greatly changed between acquisitions. It is very computational efficient

for hundreds of control points and can very well approximate the deformation

of the pelvis and internal organs. It will probably be a useful tool for many

applications.

Questions

1. Describe the concept of image registration.

2. Describe the steps for voxel-based image registration.

3. Given two images A and B, describe how to compute their mutual infor-

mation value.
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4. Describe three visual inspection methods for the evaluation of prostate reg-

istration.

5. Describe the quantitative evaluation methods for the prostate and pelvic

registration.

6. Given two sets of corresponding control points, describe how to compute

the thin plate transformation.
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Chapter 4

Stereo and Temporal Retinal Image

Registration by Mutual Information

Maximization

Xiao-Hong Zhu,1 Cheng-Chang Lu,2 and Yang-Ming Zhu3

4.1 Introduction

Image registration is the process of determining a one-to-one mapping be-

tween the coordinates in one space and those in another such that points in

the two spaces that correspond to the same point are mapped to each other.

The mappings, which are also called transformation, are two dimensional (2D)

for 2D spaces and three dimensional (3D) for 3D spaces. The simplest exam-

ples are the rigid-body transformations, which are transformations in which

the distances among all points are preserved. The rigid-body transformations

are typically used to compensate for different imaging orientations of rigid ob-

jects. Other possible transformations include affine where parallel lines remain

parallel, projective that is from 3D to 2D, and warping which is nonlinear in

general.

The most prominent application of image registration is multimodality med-

ical image fusion. Different image modalities can provide different informa-

tion about the imaged organs, and most of the time this information is comple-

mentary in nature. For example, computer tomography (CT) image reveals the

anatomical structure of the organ, magnetic resonance (MR) image is capable of

1 X.H. Zhu, Zircoa, Inc., 31501 Solon Rd., Solon, OH 44139
2 C.C Lu, Dept of Computer Science, Kent State Univ., Kent, OH 44242
3 Y.M. Zhu, PET Engineering, Philips Medical Systems, Cleveland, OH 44143
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depicting soft-tissue anatomy, and photon emission tomography (PET) and sin-

gle photon emission computed tomography (SPECT) show the functional prop-

erty of the organ under study. Before different types of images are fused, these

images have to be registered. After registration, the skeletal structures and ar-

eas of contrast enhancement seen in CT images can be overlaid on MR images,

and likewise, functional lesions detected with PET or SPECT can be viewed in

the context of anatomy imaged with CT or MR. Image registration can also be

applied to multiple data sets obtained with the same modality at different times

for the purpose of quantitative comparison, which increases the precision of

treatment monitoring with serial images.

Another major biomedical application of image registration is to retinal im-

age matching. Retinal or fundus photographs are standard diagnostic tools in

ophthalmology. In the follow-up of age-related macular degeneration, drusen

deposits need to be tracked and compared (see Sbeh et al. [1], Rapantzikos

et al. [2]). Screening of diabetic retinopathy can involve a follow-up over many

years (see [3, 4]). To determine the progression of glaucoma, a series of optic-

nerve-head topographies are assessed and compared [5]. Serial photographs

of the flow of fluorescein dye are also used to determine areas of ischemia,

hemorrhaging, neovascularization, and occlusions in diseases such as diabetic

retinopathy (see [5]). A noise reduction technique is reported for laser scan-

ning ophthalmoscope using image registration [6]. Multimodality registration

is also performed in retinal imaging. In glaucoma diagnosis, for example, the

optic-nerve-head is assessed from color stereo images and the nerve fiber layer

is assessed from red-free images [7]. In retinal analysis, two types of images,

fluorescein images (angiographic images taken under ultra violet light after in-

jection of fluorescein dye) and green images (taken under natural light with a

green filter), are often used for the diagnosis of the gravity of diabetic retinopa-

thy [3]. Physicians often use more than one image to identify a lesion and assess

its seriousness, or base their diagnosis on detection of various image features in

different modality images. To make this comparison and assessment objective,

it is necessary that all images be registered.

The research of image registration has a relatively short history. Due to di-

verse applications, many registration algorithms have been developed from dif-

ferent perspectives. Brown summarized the research work before 1992, mostly

for 2D-2D registration [8]. Since the most important and fruitful application of

image registration is in medical imaging, several authors reviewed registration
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algorithms from a medical imaging perspective. Gerlot-Chiron and Bizais have

presented a unified description of existing registration methods [9]. Maurer and

Fitzpatrick later adopted a similar scheme when they reviewed the registration

algorithms within the neurosurgery context [9]. Van den Elsen et al. reviewed

and classified medical image registration algorithms [10]. Their classification

criteria have been augmented and detailed by Maintz and Viergever recently

[11]. In addition to various survey articles and book chapters (e.g. Fitzpatrick

et al. [12]), a monograph on image registration has also been published [13]. For

further elaboration, the reader is advised to refer to the original surveys, book

chapters, and monograph.

The increasingly complex schemes for classification reflect the sheer amount

of literature on image registration methodologies. It is impossible for us to de-

tail these algorithms here. However, we do want to point out a recent trend in

image registration research and practice, i.e., the voxel property-based registra-

tion methods have become increasingly popular. Compared to other registration

algorithms, the voxel property-based methods using the full image content offer

several advantages: they work on the image gray-value without any prior data

reduction; they can be automated and the results are objective; they require no

segmentation and involve little or no user interaction.

To this category, various paradigms have been reported, including cross-

correlation in spatial or (Fourier) transformed domain, minimization of variance

of intensity ratios, minimization of variance of gray values within segments,

histogram clustering and minimization of histogram dispersion, minimization

of the joint histogram entropy of different images, and maximization of mutual

information, among many others. Studholme et al. [14] compared five similarity-

based algorithms and Fitzpatrick et al. [15] compared 16 of these algorithms. The

reports from various independent groups confirm that the mutual information

maximization approach to image registration is one of the most robust and has

superior performance.

Mutual information image registration was independently proposed by Maes

et al. [16] and Wells et al. [17]. However, their development is a natural con-

sequence of early effect on the analysis of voxel value joint histogram (see

[18]). Hill et al. [19] used third-order moments of the joint histogram as well

as other measures to characterize the clustering of the joint histogram at reg-

istration. Collignon et al. [20, 21] used joint entropy as a criterion for registra-

tion, but reported that it had a small capture range, i.e., only when the initial
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position of two images is sufficiently close to the optimal alignment can they be

registered well. To increase the capture range, naturally the next step is to exploit

mutual information. Due to its super performance, mutual information becomes

the first choice for automatic image registration. The advancement on mutual

information registration has been reviewed recently by Pluim et al. [22].

4.1.1 Review of Retinal Image Registration

Retinal image registration is the main focus of this chapter. This registration gen-

erally involves large x translation, due to changes between sittings and smaller

y translation from changes in position of the chin cup. Rotation occurs due to

tilting of the head and through ocular torsion, and scaling is caused by changes

in the distance between the camera and the head, due to equipment changes

or differing head positions (see [5, 23]). This section reviews some registration

methods as applied to retinal images. By no means is this review complete. The

interested readers may refer to [3, 5, 23] and references therein for more related

work.

Peli et al. [24] reported on a correlation method that preprocesses the images

using an adaptive threshold procedure to select vessel points. The normalized

sum of differences is then calculated with these vessel points. Via an exhaustive

search, this method produces pixel-level registration for x- and y-translation

only. It is not robust toward large changes in image intensity and white noise. The

absolute value of difference of pixel intensities was also used as a comparison

measure for retinal image registration. The images can be processed twice, using

optic discs as features for coarse alignment and the blood vessels as features

for fine alignment [25].

If one image is a scaled, rotated, and translated version of another image,

then the Fourier transform of that image is a scaled and rotated version of the

Fourier transform of the other image. Thus, image registration can also be done

in Fourier transformed space. Cideciyan et al. [26] computed the scaling and

rotation differences of the Fourier transformed images by cross-correlation.

These results are then used to transform one image in spatial domain. The final

translation differences in spatial domain are then found via cross-correlation.

When the images are taken at different times, where the translation difference

and the image intensity difference may be large, this approach is problematic.

This approach is not applicable to multimodality image registration.
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Hart et al. [27] exploited a blood vessel filter to detect the ends of blood

vessel segments and then used them as control points to register retinal images.

A specific scheme was designed to eliminate erroneous point pairs until either

there are four control points left or the mean square error given by the least

square fitting drops below five pixels. This method has some problems as pointed

out by Ritter et al. [5].

Ritter et al. [5] recently applied the mutual information maximization to

retinal image registration. To find a global optimum, simulated annealing is used

in the multiresolution optimization. Although this method can successfully find

the global optimum registration with translation, rotation, and scaling, it is time

consuming. To assess the accuracy of registration, Ritter et al. compared the

registration results against the solutions obtained by an exhaustive search. This

comparison has an intrinsic drawback. What they studied is how the simulated

annealing behaves which is an implementation artifact, not how the mutual

information maximization behaves as a registration criterion.

Matsopoulos et al. [28] used matched filters (see [29]) to segment the vessel

trees and registered the segmented trees automatically. To ensure that a global

optimal registration is found, simulated annealing and genetic algorithms were

employed. They also studied the suitability and efficiency of different image

transformation models. The criterion used in the optimization is a correlation

function defined on the segmented, binary images.

Zana et al. [3] reported on a multimodal retinal registration scheme based

on vessels detection and Hough transform. The vascular tree is segmented first,

and then the bifurcation points are detected. Those tree and points are features

used to register the images. Although their algorithm is attractive, it involves a

fair amount of user interaction in the preprocessing and in the final registration

selection (the solution given by Bayesian selection is not necessarily the best).

Laliberte et al. developed a similar technique that also used the blood vessel

bifurcation points, but did not need the assumption of a Gaussian shape vessel

intensity profile which is inappropriate for low resolution optical images (see

[23]). In spite of about 10 adjustable parameters in the algorithm, it seems that

the success rate for this latter method is low (36 out of 61 pairs). Can et al. [30]

developed a hierarchical scheme to match the feature points in two images, using

a progressively complex transformation model and a reduced set of matching

points. This algorithm is attractive when one builds the retinal map since warping

is generally required.
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This chapter reports on our development of an object-oriented software

system for automatic retinal image registration by mutual information maxi-

mization. For maximum portability the software is written in Java which “is

written once, but runs everywhere”, using MVC (model-view-control) frame-

work. We use the simplex downhill method (see [31]) as the optimization al-

gorithm which is easy to implement, and is quick in practice. We demonstrate

that this algorithm registers temporal and stereo retinal image pairs of four pa-

tients with a very high success rate (86%), a satisfactory registration accuracy

compared to point matching results, and within a clinically acceptable time

(12 ± 3 sec.).

4.2 Registration by Mutual Information

Maximization

4.2.1 Mutual Information

For two random variables A and B, the mutual information is

I(A, B) =
∑

A

∑
B

pAB(a, b) log
pAB(a, b)

pA(a)pB(b)
,

where pAB(a, b) is the joint probability density function (pdf), and pA(a) and

pB(b) are marginal pdfs, Gonzalez et al. [32]. I(A, B) is related to entropy [H(A),

H(B)], conditional entropy [H(A|B), H(B|A)], and joint entropy [H(A, B)] by

I(A, B) = H(A)+ H(B)− H(A, B)

= H(A)− H(A|B)

= H(B)− H(B|A).

Mutual information measures the interdependence of two random variables.

If two variables are independent, then their joint pdf is the product of their

marginal pdfs, i.e., pAB(a, b) = pA(a)pB(b). Substituting this into the definition

of mutual information one gets zero. That is to say, the mutual information is

minimal. On the other hand, if two random variables are related by a one-to-

one mapping, the mutual information is maximal. In fact, in the latter case,

H(A) = H(B).
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Two images involved in registration are called reference and floating images.

The floating image has undergone scaling, rotation, and translation to match the

reference image. In the mutual information image registration context, we treat

the voxel values a and b at corresponding points in two images that are to be

registered as random variables A and B. Mutual information measures the inter-

dependency between the reference image and floating image. We assume that the

mutual information of random variables A and B has a maximum value when two

images are registered (i.e., maximum interdependency). That is, the uncertainty

of one image given another image is minimized, and we have more confidence in

using one image to interpret another. Note that, the voxel values a and b are re-

lated by the registration transformation T . The mutual information registration

states that the images are registered under transformation T∗ for which I(A, B)

is maximal.

If both marginal pdfs are independent of the registration parameters (i.e., no

matter what T is, they would not change much), then mutual information maxi-

mization is reduced to minimization of joint entropy. If either pdf is independent

of the registration parameters, which is the case when one image geometrically

contains another image, maximization of mutual information is reduced to min-

imization of conditional entropy. However, if both images only partially overlap,

which is very likely during the optimization as we will see later, the overlap will

change as the transformation changes and both marginal entropies generally

depend on the transformation. Mutual information takes overlapping explicitly

into account.

Sometimes retinal images are not grayscale images. They have RGB color

channels. One has three options to handle this multichannel registration. (1)

Define the mutual information for each channel and maximize the sum of these

mutual information values. (2) Convert the color images to luminance images

and then register the converted images. (3) Pick a color channel and register this

channel and other two channels are presumably registered once that selected

channel has been registered. Since the green channel has the highest contrast,

it can be registered first if one chooses the third option.

In Fig. 4.1 we illustrate the procedures involved in the mutual information

maximization approach to image registration. In the following sections we

discuss what kind of transformation we pose, how to compute the mutual

information, how to update the transform and what is the criterion for optimal

transform, etc.
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Figure 4.1: Flow-chart of image registration by mutual information maximi-

zation.

Our implementation is based on Java, using a lot of Java 2D graphics and

image processing capabilities. Java 2D API includes a set of classes that can be

used to create high quality graphics. It has features like geometric transforma-

tion, alpha composition, and image processing (see [33, 34]).

4.2.2 Transformation

In image registration different transformations can be considered: rigid-body

transformation, affine, and nonlinear warping, with increasingly technical dif-

ficulty. In this chapter we consider affine transformation with a scaling factor,

rotation angle, and two translational offsets. It is reported that the affine trans-

form is sufficient for most retinal registration [23].
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In homogeneous coordinate systems, an isotropic scaling transformation

matrix is

S =

⎡⎢⎣s 0 0

0 s 0

0 0 1

⎤⎥⎦ ,
where s is the scaling factor. The rotation matrix is

R =

⎡⎢⎣ cos θ sin θ 0

− sin θ cos θ 0

0 0 1

⎤⎥⎦ ,
where θ is the rotation angle. The transformation matrix corresponding to the

translation is

T =

⎡⎢⎣1 0 tx

0 1 ty

0 0 1

⎤⎥⎦ ,
where tx and ty are translation offsets.

A successive transformation amounts to multiplication of corresponding

matrices. We enforce the order of operations as scaling, rotation, and then

translation, in matrix form, T · R · S. We seek (s, θ, tx, ty) parameters and these

parameters are applied to the floating image in the order discussed above.

An affine transform can be easily composed in Java:

AffineTransform at = new AffineTransform ();

at.translate(tx, ty);

at.scale(scale, scale);

at.rotate(Math.PI/180.0*angle);

To create a transformed image, one can invoke the filter method of the

AffineTransformOp, which can be constructed from the rendering hints and

affine transform. The Java code is similar to

RenderingHints rh = new RenderingHints(/* specify here */);

AffineTransform at = new AffineTransform();

// define transform here

AffineTransformOp atop = new AffineTransformOp(at, rh);

BufferedImageOp biop = (BufferedImageOp) atop;

BufferedImage bi = biop.filter(bi, null);
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For retinal image registration, the maximum horizontal translation tx is

100 pixels, the vertical translation ty is in the order of 10 pixels, the maximum

rotation angle θ is 5◦ and a typical scaling factor falls in [0.95, 1.05]. In the op-

timization process, we clamp the scaling factor to a certain range. A negative

scaling factor is relatively impossible. A zero scaling is also impractical and Java

2D would generate a runtime exception.

4.2.3 Interpolation

After a transformation is applied, the grid point in the floating image will typically

not coincide with another grid point in the transformed space. For a simple

example, consider translation tx = 0.25. Grids (0, 0), (1, 0) become (0.25, 0), and

(1.25, 0). Since the pixel values of the reference image are known on grid, and

under certain transformations, only the pixel value of the transformed floating

image on grid are of interest, the pixel values of the transformed floating image

on grid have to be estimated. The technique is called interpolation, which is to

estimate a pixel value based on the pixel values of its surrounding pixels.

There are different kinds of interpolation methods: nearest neighbor

(0-order), bilinear (first-order), etc. Tsao evaluated the interpolation effects on

registration performance [31]. Nearest neighbor uses the pixel value at the near-

est grid pixel to approximate the pixel value at the new position. That is, the

pixel value at (x, y) is approximated by that at ((int)(x+ 0.5), (int)(y+ 0.5)).

The nearest neighbor interpolation is insensitive to the magnitude of transla-

tion up to one pixel. Therefore, it is not sufficient in order to achieve subpixel

registration accuracy.

Bilinear interpolation assumes the pixel value in each x and y direction

changes in a linear fashion. To get the pixel value at point (x, y), one can (a)

interpolate the value at (x, j) from (i, j) and (i+ 1, j), (b) interpolate the value

at (x, j + 1) from (i, j + 1) and (i+ 1, j + 1), and (c) interpolate the value at

(x, y) from (x, j) and (x, j + 1), where integer i and j satisfy i ≤ x < i+ 1 and

j ≤ y< j + 1.

In Java 2D, the interpolation method is governed by the rendering hints. To

specify a nearest neighbor interpolation, the rendering hints can be defined by

RenderingHints rh=new RenderingHints (

RenderingHints.KEY-INTERPOLATION,

RenderingHints.VALUE-INTERPOLATION-NEAREST-NEIGHBOR);
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Similarly, to use a bilinear interpolation, the rendering hints can be specified

as

RenderingHints rh=new RenderingHints (

RenderingHints.KEY-INTERPOLATION,

RenderingHints.VALUE-INTERPOLATION-BILINEAR);

Both interpolation methods were used. If a nearest neighbor interpolation is

used, the optimization process tends to be quicker, but the success rate of regis-

tration tends to be lower. Thus, all results reported in this chapter are obtained

using bilinear interpolation.

4.2.4 Estimation of Joint and Marginal Distributions

To calculate the mutual information, one has to have the marginal and joint pdfs.

Since they are unknown, they have to be estimated from the data under study.

We estimate these pdfs from their corresponding histograms.

To compute the histograms, the pixel pairs at the same grid are binned.

Assume the bin size is Br·B f , where Br and Bf are the bin size for the pixels in

reference image and floating image, respectively.

A fixed bin size (32) is used. We will not discuss bin size effect since our

preliminary results indicate that there are no apparent effects on the registration

performance. For the byte image as the retinal GIF files normally are, there are

256 values in each color channel. However, when images are digitized and then

translated from color to grayscale, there is some error. The image does not have

very bright and very dark regions. Moreover, the lossy JPEG image compression

is frequently used. These facts lead to a sparsely filled histogram if a 256× 256 bin

is used. Therefore, before we bin the pixel pairs their values are processed and

then binned.

Assume the maximum pixel value is Imax and the minimum pixel value

is Imin. Since we only have B bins, each bin needs to accommodate step =
�(Imax − Imin)/B� different pixel values. Given a pixel value v, obviously it will

be binned to bin (v− Imin)/step. Notice that we did not distinguish reference and

floating images. The formula and schemes are applicable to both images. Also

notice that interpolation never increases or decreases the max and min pixel

values (except it may introduce zero-valued pixels due to transformation). This

assertion is clear for the nearest neighbor interpolation. It is also true for the
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bilinear interpolation since, based on the formula, the new pixel value is a con-

vex combination of old ones. This property is used in the implementation and

steps are only calculated once and never changed thereafter.

The overlapping pixels are scanned and the joint histogram is then computed.

Let the joint histogram be H(i, j). The marginal histograms are then

Hr(i) =
∑

j

H(i, j),

Hf ( j) =
∑

i

H(i, j).

Here the subscripts r and f stand for reference and floating, respectively. Let N

be the total number of pixel pairs examined in the overlapping region then the

joint and marginal pdfs are estimated as

p(i, j) = H(i, j)
N

,

pr(i) = Hr(i)
N
,

pf ( j) = Hf ( j)
N

.

Substituting those estimated joint and marginal pdfs into the definition of mutual

information, its value can be readily computed. Since the iterative optimization

routine is for minimization problem, the negated mutual information is actually

computed.

4.2.5 Optimization

The sole goal of mutual information approach to image registration is to find a

transformation under which the mutual information between the reference im-

age and the transformed floating image is maximized. This is a typical optimiza-

tion problem and many optimization methods have been employed, including

exhaustive search, gradient descent, simplex downhill, Powell’s method, simu-

lated annealing, and genetic algorithms [36]. This chapter studies the simplex

downhill optimization since it is reported that it is faster than other algorithms

with similar accuracy [36]. Simplex is also the easiest method to understand and

does not require any derivative calculation.

The simplex downhill method may be trapped at local minimum. Simulated

annealing method can avoid the problem, but it is computationally expensive. To

avoid that we incorporate multiresolution strategies into the iterative process.
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4.2.5.1 Exhaustive Search

The exhaustive search can be used to find the true global optimum solution.

This brute-force search is very expensive. If we want 0.1 pixels, 0.1 rotations,

and 0.001 scaling accuracy, we would have 1010 iterations.

4.2.5.2 Simplex

The downhill simplex method implements an entirely self-contained strategy

and does not make use of any 1D optimization algorithm [31]. It requires only

function evaluation, not derivatives.

A simplex is a geometrical figure, consisting of N + 1 vertices in N dimen-

sions and all their interconnecting line segments, polygonal faces, etc. In the

optimization process, a simplex reflexes, expands, and contracts, around a ver-

tex, trying to enclose the optimum point within its interior.

The downhill simplex method must be started with N + 1 points, defining

an initial simplex. For our image registration problem, there are four unknown

registration parameters. Given an initial guess of the registration parameters

vector (tx, ty, θ , s), a non-degenerate simplex can be formed by points (tx + 1, ty,

θ , s), (tx, ty+ 1, θ, s), (tx, ty, θ + 1, s), and (tx, ty, θ, s+ 0.1). In our implementa-

tion, the initial registration parameter vector is (0, 0, 0, 1), i.e., all translation

offsets are 0, rotation angle 0, and the scaling factor 1.

Note that we use different guesses for the problem’s characteristic length

scale in different directions since we don’t expect that the optimized scaling

factor will be significantly deviated from 1. We use degrees rather than radians

such that the characteristic length scale of rotation angle is comparable with

those for translations (1 radian amounts to 57.3◦). In Java a zero scaling factor

will generate an exception. In reality, a non-positive scaling factor does not make

any sense. From the characteristic of the retinal image registration problem,

one knows that the scaling factor falls in the range of 0.95–1.05. The simplex

optimization routine cannot guarantee that. Thus, at each iteration the proper

range of the scaling factor is checked. A relaxed lower and upper bounds is used.

We clamp the scaling factor at a lower bound of 0.9 and an upper bound of 1.10.

The termination condition in any multidimensional optimization routine can

be delicate. One can terminate the iterative process when the vector distance

moved in a step is fractionally smaller in magnitude than some preset tolerance.

Alternatively, one can require that the decrease in the function value in the
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terminating step be fractionally smaller than a preset tolerance. In the simplex

optimization, the relative difference between the highest and lowest vertices is

compared against a tolerance (0.0001).

4.2.5.3 Multiresolution Strategies

The above optimization process can be attracted to a local minimum (thus local

maximum of mutual information). To avoid that multiresolution or subsampling

optimization scheme can be used. The idea of multiresolution strategy is simple:

Find the optimal registration on coarse images first. Then using the found solu-

tion as the starting point, find the optimal registration for the fine images. The

coarse images are derived from the original images, by averaging several pixels

in the original images. As a variation of this multiresolution, subsampling is also

used sometimes. Instead of taking the average, a single pixel is picked to form

a coarse image. In the subsampling scheme, the images are never scaled down.

The original images are subsampled periodically, with a gradually increasing

sampling frequency. The optimization result at the lower sampling frequency is

used as the starting point for the higher sampling. Since the images are subsam-

pled, some information is lost.

We propose a multiresolution subsampling scheme. The idea is to combine

the advantages of multiresolution and subsampling. Our experimental results

indicate that this scheme can increase the convergence speed considerably. The

pseudo code for this scheme follows:

For resolution r1 > r2 > ... > rn

Rescale the translation offsets (divided by the

folding number)

Prepare the coarse images

For sampling s1 > s2 ... > sm

Do simplex optimization

Rescale translation offsets to correct different

resolution effect

In the implementation, all these resolutions r and sampling frequencies s can be

adjusted. In the experimental results reported below, the resolutions are 27, 9,

3, 1 and the sampling frequencies are 3 and 1.

The simplex optimization in the inner loop is identical to the one described

earlier, except the images are scaled down by some folding factor which is equal
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to the resolution. To carry the registration parameters to different resolution,

the parameters are also scaled down before entering the optimization loop and

scaled up after leaving the loop. Only translation offsets need scaling. When

the sampling is not 1, s − 1 pixels are skipped over when the pixel pairs are

binned. In the inner simplex optimization, the “reference image” and “original

floating” image should be understood as the down-scaled reference image and

down-folded floating image at each resolution.

4.2.6 Object-Oriented Software Implementation

and Architecture

The MVC framework is adopted to facilitate the software design [37]. Models rep-

resent the information, views present information, and controllers interpret user

manipulation. Since the algorithm is automatic and there are not many user inter-

actions, the control and view can be combined, which is similar to the document-

view pattern used in Microsoft Foundation Class Doc-View Framework.

In our case the model has the information on the two images to be registered,

i.e., the reference image and the floating image and the current registration

parameters. Both images are stored as Buffered Image. The view object gets

two images as well as the registration parameters from this model and displays

the images properly. The registration object also gets two images from the model

object and sets the registration parameters after a solution is found.

The iterative optimization is implemented with two classes. Simplex is an ab-

stract base class and implements the logic of simplex optimization. The method

to calculate the objective function (mutual information in this case) is not im-

plemented in the class and thus is abstract. Its subclass should implement the

objective function calculation method. The subclass, MIMax, extends the Sim-

plex abstract class and provides all necessary methods to compute the mutual

information.

4.3 Registration Results and Discussion

4.3.1 Description of the Image Files

The retinal images used in this study were provided by Dr. Nicola Ritter of the

Lions Eye Institute of Perth and the Glaucoma Foundation of Perth. The images
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were taken using a Nidek stereo fundus camera. The original images were taken

with color slide film and then digitized with a Polaroid slide digitizer. The images

used for registration had 256-gray levels and comprise about 5% of the total

surface of the retina centered on the optic nerve head.

Following is a brief description of the image files. All image files are labeled

based on the patient identification, l/r, l/r, and a number. The first “l” or “r”

indicates that those are the images of the patient’s left or right eye. The second

“l” or “r” designates the left or right stereo images. These images were taken

simultaneously onto a single photographic slide and were separated into two

images manually after digitization. The last digits, 5, 6, or 7, indicate whether

the images were taken in 1995, 1996, or 1997.

Image set 1 . There are four images in this patient file: ll5, ll7, lr5, and lr7. They

are the same images as in Fig. 4.2 [5]. These images of left eyes were taken in

1995 and 1997, 18 months apart, during which time the patient had an operation

to relieve pressure related to glaucoma. They are displayed in Fig. 4.2 here. This

image set gives us two stereo image pairs (ll5/lr5, ll7/lr7) and two temporal pairs

(ll5/ll7, lr5/lr7).

Image set 2 (B853). There are six images in this set: ll6, ll7, lr6, lr7, rl7 and rr7,

which gives us three stereo pairs (ll6/lr6, ll7/lr7, and rl7/rr7) and two temporal

pairs (ll6/ll7 and lr6/lr7).

Image set 3 (H3397). There are four images in this set: ll6, ll7, lr6, and lr7,

which gives us two stereo pairs (ll6/lr6 and ll7/lr7) and two temporal pairs (ll6/ll7

and lr6/lr7).

Image set 4 (P374). There are eight images in this set: ll5, ll6, lr5, lr6, rl5, rl6,

rr5, and rr6, which gives us four stereo pairs (ll5/lr5, ll6/lr6, rl5/rr5, and rl6/rr6)

and four temporal pairs (ll5/ll6, lr5/lr6, rl5/rl6, and rr5/rr6).

All together we have 11 stereo image pairs and 10 temporal image pairs,

which is a subset of the images used by Ritter et al. [5].

4.3.2 Mutual Information as a Measure

In this section we study mutual information as a measure for retinal image regis-

tration. Look at an extreme case first: an image registers to itself. At registration,

the pixel values in two images have an exact one-to-one (identical) relation.

In their joint histogram, there would be a straight, diagonal line. For any two
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(a)

(b)

Figure 4.2: Typical temporal and stereo retinal images. (a) ll5, (b) lr5, (c) ll7,

and (d) lr7 in image set 1.

images, we would not expect to see any structure in the joint histogram when

they are not registered.

For two images of the same modality, one would expect a similar situation.

However, due to noise, change of imaging condition, or change of the imaged
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(c)

(d)

Figure 4.2: (Cont.)

scene itself, the pixel values for the same point at registration would not be

identical. It is safe to expect that the majority of them will follow some simple

and most likely linear relation. When the images are not registered, it is difficult

to justify the existence of a simple structure in the joint histogram.

For two images of different modality, one would expect the pixel values

at registration to still be related since they are the images of the same scene.
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(a)

(b)

Figure 4.3: Joint histogram of images (c) and (d) in Fig. 4.2. (a) Before regis-

tration; (b) after registration by mutual information maximization (registration

parameters: x and y translations are −4.62 and −2.21 pixels, rotation angle is

0.50◦, and scaling factor is 0.9979).

However, the relationship becomes convoluted. Again, the joint histogram at

registration is more structured than at misregistration.

As a demonstration of this joint histogram aggregation concept, we display

some joint histograms at registration and at misregistration in the following

figures. Figure 4.3 depicts the joint histograms of images (c) and (d) (stereo

registration) in Fig. 4.2 before and after registration. The registration parameters

are shown in the figure caption. The horizontal direction corresponds to the pixel
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values in image (c) and the vertical direction corresponds to the pixel values

in image (d). The histogram size is 256× 256. Since the minimum pixel value is

not 0 and the maximum pixel value is not 255, the low end and the high end are

virtually black, i.e., there are no pixel value pair aggregations there. Along the

diagonal, Fig. 4.3b is brighter than Fig. 4.3a, indicating the histogram in (b) is

more aggregated.

Figure 4.4 shows the joint histograms of images (b) and (d) (temporal reg-

istration) in Fig. 4.2 before and after registration. Again we put the registration

(a)

(b)

Figure 4.4: Joint histogram of images (b) and (d) in Fig. 4.2. (a) Before regis-

tration; (b) after registration by mutual information maximization (registration

parameters: x and y translations are 65.00 and −4.56 pixels, rotation angle is

0.31◦, and scaling factor is 0.9858).
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parameters in the figure caption. The histogram after registration (Fig. 4.4b) is

more aggregated than that before registration.

Those joint histograms were normalized before being displayed. The maxi-

mum histogram value may be larger or smaller than 255, depending on the image

contents and the image size. The maximum histogram value is always normal-

ized to 255 with a nonlinear transformation. The nonlinear transformation is

relatively simple. First a linear transformation (x/max) is used to normalize the

histogram such that the maximum histogram value is 1.0. A nonlinear transform

x0.25 is used to change the histogram such that the small values are enhanced.

The resultant histogram values are multiplied by 255 afterwards. Alternatively

one can use a logarithmic operation to rescale the dynamic range of the his-

togram, as employed to display the Fourier transform of an image.

The joint histogram aggregation at registration can be studied and charac-

terized by entropy. Entropy is a measure of randomness. A higher disordered

system has larger entropy. If the histogram is well structured, then the entropy of

the joint pdf of the pixel values has smaller entropy. In fact, entropy minimization

was exploited as a measure for image registration. However, it is too sensitive

to the overlapping size of two images. To overcome that mutual information is

now used instead. In practice, mutual information maximization proves to be a

robust measure for image registration.

For retinal image registration there are four registration parameters. It is

difficult to visualize how the mutual information as a registration measure be-

haves. We use mutual information maximization to register images (b) and (d)

(temporal registration) and calculate the mutual information in the vicinity of

the optimized solution. For this particular image pair the registration parameters

are: x translation of 65.00 pixels, y translation of −4.56 pixels, rotation angle of

0.31◦ and scaling factor of 0.9858. To visualize the mutual information surface in

the hyperspace, we fix three registration parameters and change the other one

in the neighborhood of the optimal.

Figure 4.5 shows the mutual information values in the vicinity of the op-

timal x translation while other three registration parameters are fixed. Fig-

ure 4.6 shows the results when the y translation is varied around the opti-

mal value. The rotation angle dependent behavior is illustrated in Fig. 4.7. Fig-

ure 4.8 displays how the mutual information changes when the scaling factor

varies. It can be seen that the mutual information indeed has a maximum value

around a good registration. Note that the mutual information is very sensitive
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− − −

Figure 4.5: Mutual information as a function of x-translation offset from a good

registration.

− − −

Figure 4.6: Mutual information as a function of y-translation offset from a good

registration.
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−

Figure 4.7: Mutual information as a function of rotation angle offset from a

good registration.

− − −

Figure 4.8: Mutual information as a function of scaling offset from a good

registration.
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to the change in the rotation angle as revealed by the sharp peak in Fig. 4.7.

This is expected since a slight change in rotation angle can amount to a very

large offset in pixel positions if the distance from the rotation center is large.

It is very important to have an accurate estimation of the rotation angle in

registration.

4.3.3 Success Rate, Speed, and Accuracy

Our implementation of mutual information maximization for retinal image reg-

istration works relatively well. Figure 4.9 shows the registration results of

Figs. 4.2a and 4.2b (temporal registration). The registration images can be dis-

played side by side (not shown here). Figure 4.9a shows the two registered

images in a checkerboard format, where the size of each checkerboard can be

adjusted. Figure 4.9b shows these two images in a moving curtain format, where

the vertical line can be moved left or right to check the continuity of the image

features (vessels) across the dividing lines. The lines can also be horizontal. To

the left of the line is the reference image. The part of the reference image to

the right of the line is clipped out by the line and not displayed. To the right of

the line is the registered floating image. The left side of the matched floating

image is also clipped out by the line and is not displayed. Figure 4.9c shows

these two images in an overlay format, where the alpha is 0.5 so one can see

one image through the other image. The maximum, minimum, average, absolute

difference, color composition, and other fusion methods are also implemented

in our software. The color composition selectively extracts the color channels

and assigns them to the composite image which is very useful when one inspects

the registration and presents the fusion results of color images (for example,

red-free and angiograph).

In this section we compare our results against Ritter et al. [5] in terms

of success rate, registration speed, and registration accuracy. They used the

simulated annealing as the optimization routine. Their program was written in

C and their results were obtained on a Pentium Pro 200 running Linux. Our

program was written in Java (JDK 1.4.0) and the results were obtained on a

Pentium IV running Windows XP. We also ran the program on a Pentium 233 run-

ning Windows 95. Their success rate is 100%. On average it takes 1240 seconds.

In their implementation they used the nearest neighbor interpolation first and

then bilinear interpolation in the last layer of iteration. As one would expect, if
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Figure 4.9: Two registered retinal images displayed in (a) checkerboard,

(b) moving curtain, and (c) overlay formats.
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Table 4.1: Comparison of Ritten et al. and our implementations of

mutual information maximization for retinal image registration

Ritter et al. Our implementations

Operating system Linux Windows XP
CPU Pentium Pro 200 Pentium IV, 2.4 GHz
Language C Java (JDK 1.4.0)
Interpolation Nearest neighbor + bilinear Bilinear only
Optimization Simulated annealing Simplex
Multiresolution Yes Yes
Subsampling No Yes

bilinear interpolation were used in all iterations, it would take longer. Table 4.1

summarizes the differences.

Ritten et al. reported the root mean square error (RMSE) of the registration

parameters. For the stereo registration, they are 0.59, 0.52, 0.31, 0.0058 for x

and y translations, rotation angle, and the scaling factor, respectively; for the

temporal registration, they are 0.29, 0.29, 0.15, 0.0038, respectively.

For this kind of registration the ground truth is unknown. Therefore, it

is hard to evaluate its accuracy. Ritter et al. compared their results against

the results obtained from the exhaustive search in a limited area [5]. What

they assessed is not the mutual information maximization as a registration

method, but the simulated annealing as a global optimization scheme. It is

well known that the simulated annealing has a large chance to find the global

optimal solution. Rather than comparing the results against those of an ex-

haustive search, we compare our results against the point matching results.

In CT/MR/PET/SPECT image registration, point matching is regarded as the

gold standard [15], as long as one can identify the corresponding points

correctly.

It is possible to identify the corresponding points in retinal images if there

are enough vessel trees. Our images are about 5% of the total surface of the retina

centered on the optic nerve head. Some retinas have severe degradation. Some

images are blurred. The vessels are usually very thick. Thus the corresponding

points are not always easy to identify.

The point matching results of temporal image pairs and stereo image pairs

were obtained as the average of 4 or 5 independent registrations performed by
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two operators. As we mentioned earlier, it is difficult to pair the correspond-

ing points in some image pairs. Thus we have less confidence in their results.

For example, in temporal registration, it is difficult to register the images in

Set 1. In general, the stereo images are difficult to register by point matching.

Nevertheless, the average registrations seem reasonable.

4.3.3.1 Registration of Temporal Images

Visual inspection of the registration results reveals that mutual information max-

imization succeeded 9 times out of 10 and it failed on lr6/lr7 of set 3. Thus the

success rate is 90%. The average registration time was 12.5 seconds with a stan-

dard deviation of 3.3.

We can compute the speedup of our implementation against Ritter et al. [5].

Considering the CPU difference and ignoring all other differences, we define the

speedup as

speedup = RittersTime · TheirCPUClockRate

OurTime · OurCPUClockRate
− 1

Substituting all numbers in, our speedup is 7.27. It is worth pointing out that

Pentium Pro and Pentium IV processors have different architectures, thus, this

comparison only has indicative meaning.

Define the misregistration as mutual information registration—“true” reg-

istration. The mean and standard deviation of these temporal misregistration

parameters are (−0.18± 1.17, 0.33± 0.56, 0.01± 0.15, 0.0000± 0.0040). Overall,

the estimation of the rotation angle and the scaling factors are very accurate. The

large errors in the translation offsets are primarily due to those errors related

to the first image set.

We also compute the RMSE and they are (1.17, 0.65, 0.15, 0.0040). Those

RMSE numbers shall be very much close to the standard deviation reported

above for a large dataset. The translation RMSE numbers are larger than what

Ritter et al. reported, but the rotation and scaling are better than their re-

sults. As we mentioned earlier, it is difficult to register image set 1. Excluding

set 1, the RMSE numbers are (0.34, 0.40, 0.06, 0.0020). The RMSE numbers of

the translations are comparable to those of Ritter et al., while the rotation and

the scaling factor are much better than theirs.
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4.3.3.2 Registration of Stereo Images

Visual inspection of the registration results reveals that mutual information max-

imization registration succeeded 9 times out of 11 and it failed on ll5/lr5 of set 1

and ll7/lr7 of set 3. The success rate is 82%. The average registration time is 11.0

seconds with a standard deviation of 1.5, which amounts to a speedup of 8.39.

Again, the speedup value is only indicative.

For the stereo registration, the mean and standard deviation of misregistra-

tion parameters are (−0.46± 1.69,−0.67± 1.72,−0.02± 0.24, 0.0043± 0.0082).

The estimation of the rotation angle and the scaling factors are very accurate.

The RMSE numbers are (1.75, 1.85, 0.25, 0.0090). The translation RMSE num-

bers are larger than what Ritter et al. reported, but the rotation and scaling are

comparable to their results. As we mentioned earlier, it is hard to pair the points

in two stereo images.

4.3.3.3 Registration for Temporal and Stereo Images

If we combine all results discussed above, then the success rate is 86%. The

average time for registration is 11.7 seconds with a standard deviation of 2.6,

which is about 7.83 speedup against Ritter et al. [5].

The average misregistrations are (−0.32, −0.17, −0.01, 0.0021) for x and y

translations, rotation angle, and scaling factor, respectively. The RMSE are (1.49,

1.39, 0.21, 0.0070).

4.4 Summary

Retinal image registration and fusion is an important tool in ophthalmology for

diagnosis, lesion progression assessment, and treatment monitoring. Registra-

tion by mutual information maximization is one of the most popular automatic

algorithms. We implemented such a software system for automatic retinal image

registration by mutual information maximization. The software was written in

Java and Java 2D for maximum portability. The robust software architecture

(MVC framework) was employed to ensure software maintainability and ex-

tensibility. The simplex downhill method was exploited to optimize the mutual

information function as a function of the registration parameters. To increase

the search range and to avoid being trapped by local optimal, multiresolution
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and subsampling optimization schemes were explicitly employed. Other imple-

mentation strategies were also tested, including nearest neighbor and bilinear

interpolation and histogram estimation. Our implementation has an 86% success

rate. Compared to the published results, our implementation is about 7.83 times

quicker with comparable accuracy (mean of misregistration parameters) and

precision (standard deviation of misregistration parameters).

Besides the improved registration performance, our system also provided

new representation tools to visualize the registration results. The registered im-

ages can be displayed side by side to allow direct comparison. Moreover, the

registered images can be displayed in a moving curtain fashion and in a checker-

board format, where parts of two images are displayed together. Furthermore,

two images can be overlaid to allow one to see one image through the other.

These tools were integrated seamlessly to allow the user to check and interpret

the registration findings.

We attribute our fast registration speed to the multiresolution and subsam-

pling scheme. To our knowledge this is the first time anyone has taken advantage

of the benefits of both in a single implementation. Depending on the image size,

the coarse image can be very coarse, thus the registration can be very fast.

While Ritter et al. reported a 100% success rate, we only achieved an 86% rate.

We found that the resolutions and subsampling frequencies in our multiresolu-

tion and subsampling scheme can be adjusted so that the failed registrations

can be registered successfully. Our implementation provides a facility to allow

the user to change them at runtime. Considering that the registration can be

done in less than 15 seconds, it is practical and acceptable to register the failed

image pairs with a different set of parameters. Another approach to achieve a

higher success rate is to bring the images close to the optimal alignment before

starting the automatic alignment. This prealignment proves to be useful in 3D

registration and our preliminary results indicate that it is helpful in 2D retinal

registration too.
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Questions

1. What is image registration?

2. How is the image registration used in retinal imaging?

3. What are the characteristics of retinal image registration?

4. What is mutual information?

5. What is mutual information based registration?

6. What is image interpolation? Why is it important in image registration

process?

7. Why is the exhaustive optimization not feasible in the mutual information

registration process?

8. What is a multiresolution optimization? Why is it needed? How is it

applied in the registration process?

9. Why is the mutual information registration algorithm written in Java?

10. What is the MVC framework?
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Chapter 5

Quantification of Brain Aneurysm

Dimensions from CTA for Surgical

Planning of Coiling Interventions
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Abbreviations

nD n dimensional, n ∈ {2, 3}
3DRA Three dimensional Rotational Angiography

ACA Anterior Cerebral Artery

ACoA Anterior Communicating Artery

ANOVA Analysis Of Variance

BA Basilar Artery

CTA Computed Tomography Angiography

DSA Digital Substraction Angiography

GAC Geodesic Active Contours

GAR Geodesic Active Regions

GDC Guglielmi Detachable Coil

ICA Internal Carotid Artery

kNN k-Nearest Neighbor

MAP Maximum A Posteriori
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MCA Middle Cerebral Artery

MIP Maximum Intensity Projection

MRA Magnetic Resonance Angiography

NA Not Applicable

PCA Posterior Cerebral Artery

PCoA Posterior Communicating Artery

PDF Probability Density Function

SAH Subarachnoid hemorrhage

SD Standard Deviation

5.1 Introduction

5.1.1 Brain Aneurysms

Brain aneurysms are pathological dilatations of cerebral arteries. These dilata-

tions consist in a progressive enlargement and deformation of the vessel wall

produced by blood flow pressure. Brain aneurysms tend to occur at or near arte-

rial bifurcations, mostly at the Circle of Willis, the vascular system that irrigates

the basis of the brain.

The Circle of Willis is made up of several vascular segments (Fig. 5.1). The

precommunicating segments (A1, A2) of the left and right Anterior Cerebral Ar-

teries (ACA) and the Anterior Communicating Artery (ACoA) form the anterior

part of the circle. The postcommunicating segments (P1, P2) of the left and right

Posterior Cerebral Arteries (PCA) with the Posterior Communicating Arteries

(PCoA) form the posterior part of the circle. The left and right PCoAs emerge

from the left and right Internal Carotid Arteries (ICA). The Basilar Artery (BA)

and the Middle Cerebral Arteries (MCA), complete the description of the Circle

of Willis.

Brain aneurysms are classified into saccular and non-saccular types accord-

ing to their shape (Fig. 5.2). Non-saccular aneurysms include atherosclerotic,

fusiform, traumatic, and mycotic types. Saccular, or berry, aneurysms typically

arise at a bifurcation or along turns of the parent vessel, or they point in the

direction in which the blood flow would proceed if the turn were not present.

Brain aneurysms are named according to the artery or segment of origin. For

example, anterior communicating aneurysms are located at the ACoA, and
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Figure 5.1: Three-dimensional model of the Circle of Willis. Image courtesy of

Dr. Juan R. Cebral, George Mason University. (Color Slide)

posterior communicating aneurysms are usually located at the ICA, near the

origin of the PCoA.

The prevalence of unruptured cerebral aneurysms is unknown, but it is esti-

mated to be as high as 5% of the population [1]. The most serious complication

of a brain aneurysm is its rupture and the consequent aneurysmal subarachnoid

hemorrhage (SAH) with an incidence of sudden death of the 12.4% and rates

(a) (b)

Figure 5.2: Models of aneurysm. (a) Saccular aneurysm. (b) Non-saccular

(fusiform) aneurysm.
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of fatality from 32% to 67% after the hemorrhage [2, 3]. Morbidity rates reach

10.9% due to intra cranial bruise, subsequent recurrent bleeding, hydrocephaly

and spasms in the surrounding brain vessels [4].

5.1.2 Planning Endovascular Interventions

The treatment of cerebral aneurysms aims at their complete elimination from the

circulation. The traditional surgical technique consists in clipping the aneurysm.

In the case of subarachnoid hemorrhage (SAH), early management prevents re-

bleeding and future rupture. More concretely, it has been observed that an early

treatment of the aneurysm reduces the risk of SAH, mortality and morbidity [5].

Nevertheless, the risk of lesions during the intervention is still high in surgically

unfavorable locations.

In the past years, there has been a growing trend to practise minimally in-

vasive endovascular procedures to treat cerebral aneurysms [6]. In cases of

potential aneurysm rupture, these techniques stabilize the patient and facili-

tate further aggressive treatments with the purpose of preventing the spasm

after intra-cerebral bleeding. Aneurysm coiling with Guglielmi detachable coils

(GDC) is probably the most widespread technique for permanent aneurysm

embolization. The placement of coils inside the aneurysm promotes blood clot-

ting by electrothrombosis, thus avoiding blood flow and pressure, and ham-

pering its rupture [7]. Figure 5.3 shows a picture of a GDC, and two digi-

tal substraction angiographies of a brain aneurysm before and after patient

embolization.

A correct size selection and placement of the GDC inside the aneurysm is

crucial for the success of the treatment, for which it is highly desirable to have

pre-surgical knowledge of the dimensions as well as from the three-dimensional

morphology of the aneurysm and connected vessels. For example, the amount

of aneurysm filling following the coiling is strongly dependent on the geometry

and dimensions of the aneurysm. In particular, it has been shown that knowl-

edge about the maximum neck diameter and the main axes dimensions of the

aneurysm, dome width and depth, play an important role in the selection of

patients and materials for an appropriate treatment with GDCs [8]. Figure 5.4

shows the traditional measurements used for the planning of the endovascular

procedures.
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Figure 5.3: Process of endovascular embolization with GDCs. (a) An example

of GDC. (b) Digital substraction angiography of an embolized aneurysm using

GDC coils. Introduction of the GDC inside the aneurysm by catheterization.

(c) Final result of the embolization. The placement of the coil promotes blood

clotting inside the aneurysm. The clot avoids blood flow inside the aneurysm

as is appreciated in the DSA image. The progressive reduction of intracranial

blood flow pressure avoids its rupture.

Figure 5.4: Maximum Intensity Projection (MIP) of a brain aneurysm recon-

structed from a CTA image. The measurements of the neck, dome width and

depth needed to carry out the selection of the coil size in the endovascular

treatment are indicated over the MIP.



190 Hernández, Frangi, and Sapiro

Two-dimensional digital substraction angiography (DSA) is considered the

gold standard technique for the detection and quantification of brain aneurysms.

However, other less invasive acquisition techniques like Computed Tomogra-

phy Angiography (CTA) or Magnetic Resonance Angiography (MRA) are also

used as complementary methods for these aims [9, 10]. In order to estimate

the dimensions of an aneurysm from 3D CTA or MRA, it is customary to per-

form lineal measurements on Maximum Intensity Projections (MIP) of the

original volumetric scan. The MIP provides a 2D image of the 3D data in an

angle considered optimal by the neuroradiologist. The optimal viewpoint is

chosen so that the magnitudes of interest are maximum. Manual measure-

ments are then carried out on the basis of this 2D image using electronic

callipers.

The selection of the optimal view angle, introduces a high degree of subjec-

tivity to the quantification of the aneurysm. Window levelling is often used to

enhance the arterial structures of interest thus increasing the subjectivity in the

quantification of the aneurysm morphology. In some images, the presence of

nearby bony structures imposes restrictions to the selection of the viewpoint.

This forces, in some cases, the selection of suboptimal views to perform the

measurements. In MIP images, it is often difficult to determine depth relation-

ships between the aneurysm and the surrounding and sometimes overlapping

vessels. Therefore, the use of computerized 3D segmentation techniques is cru-

cial for accurate quantification of the aneurysm dimensions as well as for a

correct interpretation of the 3D morphology.

5.1.3 Implicit Deformable Models

Many of the recent approaches used to segment vascular structures from medi-

cal images use deformable models. The use of implicit deformable models com-

bined with level set methods in arterial structures has become very popular

over the last few years. The ability to capture the topology of complex struc-

tures makes it a very suitable technique for the extraction of the shape of arte-

rial structures. Loncaric et al. [11] use classic Geodesic Active Contours (GAC)

model combined with level set methods in the segmentation of aortic abdomi-

nal aneurysms (AAA). However, classic GAC methods are not able to deal with

narrow and twisted vessels. To this end, some improvements to the traditional

method have been proposed in the literature.
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For example, Lorigo et al. [12, 13] use codimension two GACs for the ex-

traction of the cerebral vasculature. This method successfully obtained a seg-

mentation of the whole tree. However, the final segmentation shows relatively

thinner vessels compared to MIP images and thresholding schemes, and the

model seems to be not able to capture abnormal vessel lumina.

Other authors propose to combine implicit deformable models with a smart

initialization of the evolving surface inside the vessels of interest. Van Bemmel

et al. [14, 15], for instance, compute the central axis of the artery and use it as

initialization for the GAC model in the segmentation of carotid arteries and the

aorta. Deschamps et al. [16] use the output of a vessel enhancement filter [17]

as speed for the Fast Marching method for a fast and rough initialization of the

model. The evolved surface is used as initialization of the implicit deformable

model to obtain a more accurate segmentation.

Classical deformable models depend on the gradient of the image as stopping

force. The front in evolution usually suffers from leakage or bleeding in places

with weak or inhomogeneous image gradient, and does not provide good results

in brain vessels. Since the method of region competition proposed by Zhu and

Yuille [18], there have been several efforts to include statistical region-based

information in the process of segmentation. Paragios made a wide study about

the inclusion of this information in the GAC model [19]. In places with weak

gradient, regional information drives the evolution of the front, thus avoiding

leakage in the edges of the object of interest. Similar work including statistical

information on the implicit model was done by Yezzi et al. [20]. Deschamps

successfully used Paragios’ Geodesic Active Regions (GAR) model in the seg-

mentation of brain aneurysms [16].

Although a number of algorithms based on implicit deformable models have

addressed the problem of cerebral vessels segmentation [13, 16], these do not

produce satisfactory results when confronted with images of standard qual-

ity in average radiology departments. For example, the work reported by De-

schamps [16] deals with rotational angiography (3DRA) where the background

and bone tissues have a well differentiated contrast with respect to vessels

(Fig. 5.5a). On the other hand, the ranges of vessel and bone intensities in CTA

ususally overlap (Fig. 5.5b). Most of the previous attempts to solve this problem

have presented segmentation results only on few selected images. Unfortunately,

there is a general lack of larger evaluation studies on image databases acquired

under routine clinical conditions.
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Figure 5.5: (a) Histogram from a 3DRA image of a brain aneurysm. (b) Histogram from
a CTA image of a brain aneurysm. In the first case, the distributions from background-bone
(intensity values from −20,000 to −10,000 approximately) and vessels (intensity values from
−10,000 to 0) are well differentiated. In the second case, the limit of the distribution from
background (intensity values from 1000 to 1200 approximately) is not differentiated from the
distributions of vessel (intensity values from 1100 to 1600) and bone (intensity values from
1100 to 2400) that are totally overlapped.

5.1.4 Chapter Outlook

This chapter presents a method to address the problem of brain aneurysm seg-

mentation in CTA images. Due to the limited resolution of CTA brain images,

the front is usually not able to evolve through narrow and twisted objects as,

for example, the thinnest brain vessels of the Circle of Willis. For this reason, a

two-stage algorithm is devised. In the first stage, a fast and rough segmentation

of all the tissues present in the image is obtained using a Maximum a posteri-

ori (MAP) classifier. In the second stage, a GAR method is used to obtain the

final segmentation with sub-voxel accuracy. The novelty of the method consists

in the use of differential image descriptors of high order, and the inclusion of

non-parametric information in the GAR model. This is done using a k-Nearest

Neighbor (kNN) classifier to estimate the underlying probability density func-

tions of the main tissue types that are present in the CTA images. The result is an

algorithm that provides accurate segmentations with very little user intervention

in the selection of its parameters.

The method has been evaluated on a database of 39 brain aneurysms

placed within the Circle of Willis. The technique is compared against

manual measurements of three geometrical descriptors of the aneurysm
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morphology, which are standard in assessing the viability of surgical treatment

with GDCs.

The chapter is organized as follows. Section 5.2 introduces the proposed

method to address the segmentation of brain aneurysms. Section 5.3 describes

the materials and methods used in clinical practise to obtain the measurements

for the planning of the endovascular intervention. The procedures for manual

and computerized measurements are also described. The evaluation of the com-

puterized technique is reported in section 5.4. Finally, in section 5.5 the results

of the evaluation study are discussed and some concluding remarks are made

in section 5.6.

5.2 Aneurysm Segmentation

The GAR model includes region-based information into the classical GAC model.

This is done using region descriptors, which are defined in terms of the negative

logarithm of a Probability Density Function (PDF) associated with the region

and the image inside that region. The generation of the PDF for each region,

involves the definition of the features that characterize the image inside the

region and a suitable PDF estimation technique. Classically, region descriptors

were defined using the intensity values of the image inside the region as features,

and a Gaussian PDF model [18, 19]. However, higher order information was not

used while we argue that it could provide a more complete description of regional

properties.

5.2.1 Image Features

A common approach to analyze the local behavior of an image, I(x), is to con-

sider its Taylor expansion in the neighborhood of a point x0 at scale σ

Iσ (x0 + δx0) ≈ Iσ (x0)+ δxT
0 ∇σ I(x0)+ δxT

0 Hσ (x0)δx0 (5.1)

where Iσ , ∇σ I, and Hσ are the image intensity function, the gradient vector, and

the Hessian matrix of the image computed after convolution with a Gaussian

kernel of scale σ . While the intensity provides information about the tissue

properties (i.e., X-ray absorption in CTA), and the norm of the gradient indicates

the amount of contrast between neighboring tissues, the second order structure
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provided by the Hessian matrix indicates local curvature and bending [17, 21].

We argue that all this information can be relevant in characterizing a region.

5.2.2 Non-parametric Tissue Probability Estimation

Pattern recognition techniques can be used to obtain non-parametric PDF esti-

mators. In this framework, the PDF is computed using classifiers. The estima-

tion is usually done using a sparse set of neighboring samples. For example,

the Parzen density estimation method computes the probability for a point x to

belong to a region by computing the number of samples belonging to that region

in a fixed neighborhood of radius k. The k-Nearest Neighbor (kNN) estimation

technique can be interpreted as a Parzen approach with a neighborhood size

adjusted automatically depending on the location of the point. It is reasonable

to assume that points with similar local image structure belong to the same tis-

sue class. For this reason, we use kNN rule for the generation of the PDF in our

algorithm.

The nearest neighbor principle is one of the best studied techniques for

pattern classification [22]. A classifier based on this principle uses a training set

of vectors as a collection of labelled cases. For a given pattern, it searches for

the nearest vector in this learning set according to a given metric. The traditional

classification consists in assigning to the pattern the label of the most voted class.

Combinations of number of votes (kNN rule) and distances can be also used for

classification. A PDF estimation can be derived from these voting systems.

5.2.2.1 Training Set Construction

We use the kNN rule to estimate the probability density function for each tissue

class as follows. For the construction of the training set, some representative

CTA images are selected from the whole data base. Then, N points are manually

picked from these images, and labelled with one of these three tissue classes:

vessel, background or bone. A label and a feature vector is associated with each

point in the training set. The feature vector is derived from the local differential

structure of the image at a small scale σ (Eq. (5.1)). For a point x̂ in the training

set, we associate the feature vector

f(x̂) = (Iσ , |∇ Iσ |, λ1σ , λ2σ , λ3σ ) (5.2)
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where Iσ represents the convolution of the image with a Gaussian kernel and

∇ Iσ its gradient. The parameters λiσ represent the eigenvalues of the Hessian

matrix of the image Iσ , ordered by increasing magnitude.

5.2.2.2 Training Set Normalization

As is classical in pattern recognition theory, the feature vectors of the training

set are normalized. We applied the normalization

f̂n

m = f m
n − µn

σn

(5.3)

where f m
n , µn and σn are the value of the n-th component of the mth feature

vector, and the mean and the standard deviation of the nth component over the

training set, respectively [23].

5.2.2.3 Probability Density Function Estimation

The kNN rule is used to estimate the underlying PDF as follows. For a given voxel

x, the feature vector f(x) is defined as in Eq. (5.2) and normalized as in Eq. (5.3).

Then, the k nearest feature vectors are found in the training set according to

the Euclidean distance. The probability for a voxel of intensity i to belong to a

tissue class C j , is computed from the formula

P(I(x) = i|C j) =
∑

x̂∈L j∩Nk(x) d(f(x), f(x̂))∑
x̂∈Nk(x) d(f(x), f(x̂))

(5.4)

where L j represents the set of points in the training set that belongs to the class

C j , Nk(x) is the set of the k nearest neighbors and d represents the Euclidean

distance. Figure 5.6 shows an example of the probability density functions es-

timated by the kNN rule. In the sequel, C0, C1 and C2 will stand for vessel,

background and bone class, respectively.

5.2.3 Maximum A Posteriori Tissue Classification

A MAP tissue classifier is used to obtain a partition of the image domain into

regions matching with vessel, background and bone. The probabilities estimated

from the kNN rule provide a learned prior probability for a particular voxel to
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(a) (b)

(c) (d)

Figure 5.6: Cross-section of the PDF images estimated by the kNN rule. Brighter

areas correspond to higher probabilities. (a) Gray level image. (b–d) Probability

for vessel, background and bone, respectively.

belong to a certain class, P(I(x) = i|x ∈ C j). All tissue classes are assumed to

be equiprobable.

The Bayes rule is then applied to calculate the posterior probability for a given

voxel to belong to a particular class given its intensity, P(C j = c j|I(x) = i).

The MAP classifier uses the maximum a posteriori probability estimate after

anisotropic smoothing [24] to obtain a classification of the voxels of the image

C∗j = arg max
c j∈{C0,C1,C2}

P∗(C j = c j|I(x) = i) (5.5)

where P∗ corresponds to the posterior probabilities after diffusion driven by

the equation

∂P

∂t
= div

( ∇P

|∇P|
)1/3

|∇P| (5.6)
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Figure 5.7: Maximum a posteriori classification. Cross-section with the MAP

labels. Black corresponds to the vessel tissue, white to bone and gray to the

background.

This Partial Differential Equation verifies the Maximum Principle [25]. There-

fore, the posteriors remain being probability functions after diffusion. Applying

anisotropic diffusion introduces spatial coherence before the MAP decision thus

improving the classification results [26]. Figure 5.7 shows one example of the

MAP classification. Voxels labelled as vessel are used as initialization of the GAR

method introduced in the next section.

5.2.4 Geodesic Active Regions

5.2.4.1 Geodesic Active Contours

Caselles et al. proposed an implicit deformable model known in the literature as

Geodesic Active Contours [27]. It conciles Parametric Models and the Level Set

Theory. It is based on the idea from geodesic snakes [28] of evolving an initial

curve to a local minimum of an energy functional.

The GAC energy functional is defined for surfaces as

E(S) =
∫ ∫

g(S) da (5.7)

where S represents a parametrization of the evolving surface, g is an inverse

edge detector function, and da is the surface area element. This energy functional

defines a Riemannian Space, with metric associated to the edge detector function

g. The geodesic surfaces on this space, are defined by the edges of the image.

To compute the differential equation that drives the evolution of the sur-

face, traditional variational techniques are used. The Euler-Lagrange equation
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associated to the functional is

(κg − 〈∇g,−→n 〉)−→n = 0 (5.8)

where κ is the mean curvature of the evolving surface and −→n is its outer uni-

tary normal vector. So, the evolution of the surface is driven by the associated

gradient descent equation

St = (κg − 〈∇g,−→n 〉)−→n (5.9)

Following this equation, the surface evolves toward the minimum of the

functional, which is achieved at the edges of the image. The resulting steady-

state surface is a model of the object of interest. The level set method [29] is used

to track its motion, allowing topological changes in the surface and avoiding

numerical instabilities. Basically, the level set method consists in embedding

the evolving surface in a manifold one dimension higher than S, and implicitly

represented by a function φ. The surface S can be reconstructed as the level set

zero of φ. If the manifold evolves following the equation

φt = g · div

( ∇φ
|∇φ|

)
|∇φ| − 〈∇g,∇φ〉 (5.10)

then the evolution of the zero level set of φ is equivalent to the evolution of S

driven by Eq. (5.9).

5.2.4.2 Introduction of Region-Based Information

in the GAC Model

The GAR model [19] combines the classical GAC model [27] with region-based

statistical information incorporated into the classical energy functional. There-

fore, in places where the gradient is weak, regional information drives the evo-

lution of the surface thus being more robust than GAC.

A surface S provides a partition of the space in three regions: inside (�in),

outside (�out), and the boundary itself (S). Considering the surface evolving in

the domain of a three-dimensional image, the surface provides the following

partition at each time:

�(t) = �in(t) ∪�out(t) ∪ S(t). (5.11)
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Given a partition of the image domain defined by S(t), the descriptor of the

inner region is defined as

kin(x; t) = −log(Pin(x; t)) (5.12)

where Pin is the probability for a voxel x to belong to�in. An analogous definition

holds for the outer region.

Following the ideas of the theory of GAC, the energy functional associated

to the region-based model is defined as

E(t) = ζ
∫
�in(t)

kin(x; t) dx+ ζ
∫
�out(t)

kout(x; t) dx+ η
∫

S(t)
g(x)da (5.13)

where ζ andη control the contribution of the regional and boundary information,

respectively.

The evolution of the regions in which the domain is divided can be simplified

by expressing it in terms of the evolution of the boundary S(t). So the evolution

can be expressed by the partial differential equation

∂S(x; t)
∂t

= F(x, t)−→n (5.14)

where F(x; t) is the evolution speed.

The gradient descent flow associated to the minimization of the functional

E(t) is4

∂S(x; t)
∂t

= ζ (kout − kin)−→n − η(gκ + 〈∇g,−→n 〉)−→n (5.15)

So the associated level set equation will be

φt + ζ (kout − kin)|∇φ| − η(gκ|∇φ| + ∇g∇φ) = 0. (5.16)

As region descriptors, we propose to use the negative logarithm of the prob-

abilities learned from the kNN rule. When using multiple features, like in our

approach, a non-linear PDF estimation technique can better adapt to the distri-

butions of the underlying tissues than the traditionally used Gaussian PDFs. So,

the probability of the inner region is computed as

Pin = P(I(x) = i|C0) (5.17)

4 In the case of time-dependent region descriptors, other additive terms extracted from∫
�in(t)

∂kin
∂t

dx and
∫
�out(t)

∂kout
∂t

dx appear in the Euler Lagrange equation. In the case of Gaussian
and kNN descriptors, it can be shown that these terms have zero contribution (see [16] for the
case of Gaussian descriptors).
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The outer probability combines the region information of the bone and

background tissues. If we assume this distributions to be independent (i.e.,

C1 ∩ C2 = ∅), then

Pout = P(I(x) = i|C1 ∪ C2) = P(I(x) = i|C1)+ P(I(x) = i|C2) (5.18)

5.2.4.3 Considerations of Implementation

kNN Algorithm. For the construction of the classifier, six images were selected,

and a total of N = 1830 points were manually picked and labelled. Image features

were computed with a Gaussian aperture of σ = 0.8 mm. In our approach, we

used k = 10 as size of the kNN neighborhood.

For the-extraction of the nearest neighbors, a brute-force computation is

highly time-consuming, specially if the size of the training set or the dimen-

sion of the feature vector are large. For this reason, we used the approxi-

mate nearest neighbors (ANN) algorithm [30], that computes efficiently the k-

nearest neighbors from a given vector. The ANN library implements a number of

different data structures, based on kd-trees and box-decomposition trees, and

employs different search strategies for speeding-up the search process.

Numerical Schemes for GAR. The level set equation φt = F |∇φ| is an hyper-

bolic equation that belongs to the family of Hamilton-Jacobi equations. Only in

one dimension, the level set equation is an hyperbolic conservation law. Never-

theless, the numerical methodology developed to solve conservation laws can

be generalized to obtain numerical schemes that solve Hamilton-Jacobi equa-

tions and, in particular, the level set Equation [31]. The Courant-Friedrichs-Levy

(CFL) condition is used to compute the optimal time step for the GAR level

set equation [32]. The term ζ (kout − kin)|∇φ| represents a motion in the normal

direction. An upwind numerical scheme is used to select the correct solution.

The term gκ|∇φ| represents a motion involving mean curvature. This term acts

as a viscous force so a scheme with central differences is sufficient to select

the correct solution. The term ∇g∇φ represents a motion in an externally gen-

erated velocity field. This term is also called advection term. Upwind numerical

differences are also used to select the correct solution in this case.

Initialization and Reinitialization with the Fast Marching Method. The

Fast Marching algorithm is an efficient method to compute the solution of the

Eikonal equation F · |∇T | = 1 with initial condition T0 = 0. If F = 1, the solution
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of the equation is the distance transform to the surface represented by the initial

condition, T0 = 0. The initial surface is computed as the boundary vessel voxels

in the MAP classification. The Fast Marching algorithm is used to compute the

distance transform to this surface. This function is used as initialization to the

level set algorithm.

The level set equation, Eq. (5.16), does not preserve the distance transform

through the iterations. The numerical approximations described below may

cause a numerical deterioration of the solutions if the evolving front φ is not

smooth enough. To avoid this phenomenon, φ is replaced in each iteration by

a distance transform φ̂ with the same level set zero as φ. To do this, the Fast

Marching algorithm is used. The values of the voxels where there is a change of

sign define the evolving surface. These voxels are introduced in the Fast March-

ing algorithm as initial condition instead of explicitly computing the zero level

set and then use it as initial condition. The result is also a distance transform to

the evolving surface.

Curvature Constraints. The mean curvature of a surface is defined in dif-

ferential geometry as the inverse of the radius of the osculant sphere. If the

minimum grid size is �x, it makes no sense considering osculant spheres of

sizes less than �x. So, the discrete values of the curvature are limited to the

interval [− 1
�x
, 1
�x

]. The numerical approximation introduces singularities in the

calculus of the curvature function. To avoid their propagation in the GAR algo-

rithm, a Gaussian smoothing with σ = 0.8 mm was applied to the curvature.

Parameter Selection. Parameters ζ and η control the influence of the region

and boundary based forces in the motion of the surface. The choice of these

parameters depends on the confidence of the user in the different descriptors.

For this application, ζ and η were chosen equal to 1.0.

Regarding the selection of the edge detector function g, there is an interest-

ing property that relates the parameters involved in the level set equation to a

bound on the curvature of the front in evolution. The front evolution is driven

by Eq. (5.15). At the steady-state, St = 0, so ζ (kout − kin)− η(gκ + ∇g−→n ) = 0.

This formula gives upper and lower bounds for the curvature

|κ| ≤
∣∣∣∣ ζgη

∣∣∣∣ · |kout − kin| +
∣∣∣∣∇g

g

∣∣∣∣ (5.19)

In the case of segmentation of narrow vessels, the curvature of the model is

high at certain locations. Therefore, the selection of the parameters has to be
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such that the curvature is not limited by the right-hand term of inequality (5.19).

Remember that the curvature was also bounded by 1
�x

, so the resolution of the

image grid provides another constraint to the algorithm in the capture of narrow

structures.

Traditionally, two functions have been used as contour detectors

g(x) = 1
(1+ |∇σ I(x)|)p

, p = 1, 2 (5.20)

g(x) = e−ε|∇σ I(x)|, ε > 0 (5.21)

where ∇σ I = ∇(I ∗ Gσ ) and Gσ is a Gaussian kernel. In this work, the Leclerc

function (Eq. (5.21)) was used with σ = 0.8 mm, as edge detector function. For

the selection of ε, we noted that in places where kout ≈ kin, Inequality (5.19) leads

to |κ| ≤ ε||∇σ I||∞. So if ε1 < ε2, the steady-state model associated with ε2 will

be able to capture narrower structures than the steady-state model associated

to ε1. Therefore, in all the experiments, the Leclerc contour detector function

g was selected with ε = 10. Less than 20 iterations were then enough to assure

convergence of the algorithm.

5.3 Evaluation: Materials and Methods

5.3.1 Clinical Protocol

The evaluation study was performed on a data base of 39 brain aneurysms

located mostly at the Circle of Willis; more specifically, at the Anterior Commu-

nicating (16), Posterior Communicating (10) and Middle Cerebral (10) Arteries.

There were also three aneurysms located at the Pericallosal (1) and Internal

Carotid Arteries (2). Aneurysm sizes (dome depth size) varied from 2.9 to 16.3

mm. Table 5.1 shows the distribution of sizes, manually measured, according to

the location of the aneurysm.

Image acquisition was performed using an Helical Elscint CT Twin scanner

(Marconi; Haifa, Israel) with 120 kV/300 mA for the amplifier tube, 1.2-mm col-

limation with an helical pitch of 1 and slice spacing of 0.65 mm. Images were

reconstructed on a 512 × 512 matrix with a square Field Of View (FOV) of 20.8

cm yielding an in-plane resolution of 0.4 mm. A total of 140 ml of non-ionic

contrast fluid was intravenously administrated (Omnitrast 300 mg; Schering,
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Table 5.1: Overview of aneurysm dimensions present in our database

assessed via manual measurements done by a neuroradiologist. The table

shows mean ± SD of the mean of the manual measurements by two

observers. Aneurysms were stratified according to their location

n Neck (mm) Width (mm) Depth (mm)

ACoA 16 2.67± 0.98 5.73± 4.18 7.27± 4.22
ACoP 10 3.03± 0.88 4.45± 1.79 5.50± 1.99
MC 10 2.71± 1.11 5.40± 2.01 6.07± 1.91
Pericallosal 1 3.50± N A 8.27± N A 9.52± N A

ICA 2 3.13± 1.46 6.01± 2.20 6.63± 4.47

Berling, Germany) at a rate of 3 ml/s, starting the scanning 20 seconds after the

onset of contrast administration.

The acquired images were transferred to a SGI Indigo2 workstation (Sili-

con Graphics, Mountain View, CA) for viewing and postprocessing. The man-

ual quantification of the aneurysms was performed using 2D MIP images and

measuring tools provided by the console software Omnipro (Marconi; Haifa,

Israel). The clinical parameters needed for the planning of the endovascular

intervention were the maximum neck diameter, the maximum dome width,

and maximum dome depth of the aneurysm. As it is customary in clinical

routine, the measurements were carried out along several projection angles

and, from those, the neuroradiologist chose the view-angle producing maximal

measurements.

5.3.2 Computerized Protocol

Using the marching cubes algorithm, a 3D model of the aneurysm was recon-

structed from the zero-level set of φ. To make the computerized measurements

comparable to the manual gold standard, the models were rendered with a view-

point selected according to the criterion of maximality used to generate the MIP

images. Two points were manually pinpointed in the 3D scene, corresponding

to the end-point of the measured magnitude from that angle. Measurements

are then performed by projecting this points into the camera plane to emulate

MIP-based measurements.
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5.4 Results

5.4.1 Examples

In Fig. 5.8 and 5.9 we show some examples of the segmentations of some repre-

sentative aneurysms from our data base.

5.4.2 Evaluation

Two experts carried out the manual measurements twice per aneurysm with

enough delay between sessions to consider them independent. The average of

the manual measurements is considered as gold-standard and compared to the

measurements obtained by the model based approach. Analysis of variance

is used to estimate the reproducibility of the manual method. Bland–Altman

analysis [33] is used to obtain the repeatability of the manual method for each

of the two observers, the agreement between the observers, and the agreement

between the manual and the computerized method.

5.4.2.1 Analysis of Variance

In the ANalysis Of VAriance (ANOVA) model, measurements are considered

samples from a random variable that follows a linear statistical model. The asso-

ciated variance is factored out into the components of the variance according to

σ 2 = σ 2
S + σ 2

O + σ 2
H + σ 2

W (5.22)

where σ 2
S is the variance due to inter-subject differences, σ 2

O is the variability

introduced by the observers, σ 2
H is the variability introduced by the observer-

subject interaction, and σ 2
W is the within-subject random variation. The analysis

of variance allows to estimate the significance that each component has in their

contribution to the total variance of the measurements and the intra- and inter-

observer variation.

A first analysis of variance reported no statistically significant interaction

between the observer and the subject (σH) with p > 0.55 in all cases. The results

of the analysis of variance with the suppression of this term are presented in

Tables 5.2–5.4. Table 5.5 presents the results of the intra- and interobserver

variation.
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(a)

(b)

(c)

Figure 5.8: Some representative examples of the models obtained by the algo-

rithm. (a), ACoA, (b), PCoA, and (c) MCA aneurysms. (Color slide).
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Figure 5.9: More representative examples of the models obtained by the algo-

rithm. (a), ACoA, (b), PCoA, and (c) MCA aneurysms. (Color slide).
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Table 5.2: Two-way ANOVA of manual measurements for the necka

Source of variation SSq DF MSq F p

Observer 19.462 1 19.462 9.51 0.0026
Subject 1462.977 38 38.499 18.81 <0.0001
Session 237.431 116 2.047
Total 1719.869 155

a SSq (Sum of Squares), DF (Degrees of Freedom), MSq (Mean Squares), F (F of Snedecor) and

p (Snedecor test significance).

Table 5.3: Two-way ANOVA of manual measurements for the dome

widtha

Source of variation SSq DF MSq F p

Observer 4.743 1 4.743 3.47 0.065
Subject 1331.455 38 35.038 25.64 <0.0001
Session 158.542 116 1.367
Total 1494.740 155

a SSq (Sum of Squares), DF (Degrees of Freedom), MSq (Mean Squares), F (F of Snedecor) and

p (Snedecor test significance).

Table 5.4: Two-way ANOVA of manual measurements for the dome

deptha

Source of variation SSq DF MSq F p

Observer 19.462 1 19.462 9.51 0.0026
Subject 1462.977 38 38.499 18.81 <0.0001
Session 237.431 116 2.047
Total 1719.869 155

a SSq (Sum of Squares), DF (Degrees of Freedom), MSq (Mean Squares), F (F of Snedecor) and

p (Snedecor test significance).

Table 5.5: Intra- and inter-observer variability of manual

measurements

Neck (mm) Width (mm) Depth (mm)

Intraobserver 1.43 1.16 1.43
Interobserver 1.50 1.18 1.50
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Table 5.6: Repeatability and agreement study within observers

and methods, respectively. ObsI and ObsII stand for each observer,

and MB indicates the model-based technique. The table shows

µ± SD of the difference of the measurements in mm. The standard

deviation has been corrected for repeated measurements in the

agreement study [33]

Neck (mm) Width (mm) Depth (mm)

ObsI −0.07± 1.09 0.94± 1.87 −0.65± 2.41
ObsII −0.51± 0.86 −0.34± 1.35 0.18± 1.50

ObsI vs ObsII −0.03± 1.22 0.34± 1.91 −0.70± 2.45
ObsI vs MB −0.47± 1.05 0.23± 1.86 −0.69± 2.12
ObsII vs MB −0.44± 0.91 −0.11± 1.43 0.00± 1.55

5.4.2.2 Bland–Altman Study

The Bland–Altman plot is a statistical method of comparison of two clinical

measurement techniques. The agreement between the two techniques can be

quantified using the standard deviation of the differences between observations

made on the same subjects. Bland–Altman graphs show the distribution of the

differences by plotting the mean against the differences of paired measurements.

The information of the Bland–Altman graphs can be summarized by providing

the bias (µ) and standard deviation (SD) of the differences of the measurements.

The limits of agreement, defined as µ± 1.96 · SD, provide an interval within

which the 95% of the differences between measurements are expected to lie.

When repeated measurements from two techniques are available, a corrected

standard deviation is computed [33]. A very similar analysis to the limits of

agreement approach can be applied to quantify the repeatability of a method

from replicated measurements obtained from the same measurement technique.

The results of the Bland-Altman study are shown in Table 5.6. Figure 5.10

shows the Bland-Altman graphs.

5.5 Discussion

Classic GAC approaches were unsatisfactory for segmenting the cerebral vascu-

lature from CTA and more sophisticated speed functions introducing statistical
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Figure 5.10: In the first column, Bland–Altman graphs comparing the two man-

ual measurements of each observer. Symbols© and� stand for ObsI and ObsII,

respectively. In the second column, Bland–Altman graphs comparing the inter-

session measurement for manual and computerized methods. Symbol© stands

for ObsI vs ObsII study, ∇ for ObsI vs MB and� for ObsII vs MB. In all plots the

horizontal axis of the plot indicates the average and the vertical axis indicates

the difference between measurements. The bias and the limits of agreement are

indicated.
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(a) (b)

(c) (d)

Figure 5.11: Cross-section with the probability density function estimated from

the Gaussian model. Brighter areas correspond to higher probabilities. (a) Orig-

inal gray level image. (b–d) Probability density functions for vessel, background

and bone, respectively.

information from the image were required to improve them. Most of the ap-

proaches found in the literature use a Gaussian model for the intensities of each

region. Figure 5.11 shows an example of the tissue probability density functions

modelled by Gaussian distributions. Compared to Fig. 5.6, it can be appreciated

that the probability of vessel is higher in the transition between bone and back-

ground. The probability of bone in the interior of the aneurysm is also higher.

Background tissue inside the bone has high probability for vessel tissue. The

introduction of these features in the region-based term makes the model less

robust and very sensitive to the parameter settings of the algorithm, which have

to be tuned for each patient to compensate the effect of the misclassification.
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The use of non-parametric statistical information provides more accurate seg-

mentations with minimal sensitivity to the selection of the parameters. In the

case of Gaussian distributions, the region descriptors are time and front depen-

dent. In contrast, the non-parametric approach presented in this work does not

impose these two constraints.

The features used by the kNN rule are computed at a single scale. It would

seem that, due to the nature of the object to be segmented, a multiscale ap-

proach should provide better results. However, it was observed that results

were worse than when using a single scale. This could be explained by the fact

that as the number of scales increases, the dimensionality of the feature space

also increases. This may deteriorate the performance of the classifier owing to

the peaking phenomenon [34]. We are currently working on improvements on

the PDF estimation technique using a multiscale approach and dimensionality

reduction strategies.

The aneurysms involved in the study had a mean size of 2.81 mm for the

neck diameter, 5.40 mm for the width, and 6.44 mm for the depth with standard

deviations of 0.84, 2.95 and 3.10 mm, respectively. The ANOVA reported an intra-

and inter- observer standard deviation of less than 1.50 mm in all the cases.

Results obtained in the Bland-Altman study with the manual method showed

that both observers have a similar performance in independent sessions. The

repeatability study shows a bias less than 0.94 mm in all the cases. The standard

deviation is larger in the measurements of the aneurysm width and depth than

in the neck diameter.

The agreement study indicated a bias less than 0.70 mm in all cases. The

standard deviation is larger in the measurement of the aneurysm width and

depth than in the neck diameter as happened in the repeatability study. This is

logical as minimal variations in the selection of the view angle can yield large

variations in the saccular dimensions of the aneurysm when measured on the

2D projection images. These variations are less significative at the neck due to

its smaller size and symmetry.

When comparing manual and computerized measurements, it can be ob-

served that the bias is, in the worst case, approximately of the order of a voxel

(−0.69 mm). The standard deviations are lower than in the agreement study be-

tween observers in all cases. Therefore, the computerized method has a higher

agreement with each observer separately than the agreement achieved between

the observers themselves.
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In some of the patients, MIP images tended to induce misinterpretation of

the overlapping vessels leading to wrong estimates of the neck size. Therefore,

particularly in these cases, aneurysm quantification from 3D models may help in

a more accurate determination of coil dimensions for the surgical intervention.

5.6 Conclusion

We have presented a method for three dimensional quantification of brain

aneurysms for the purpose of surgical planning and the corresponding eval-

uation study. This study demonstrates the feasibility of using implicit de-

formable models combined with non-parametric statistical information to quan-

tify aneurysm morphology and to obtain clinically relevant parameters. In sum-

mary, the technique presented in this work will contribute to the computerized

surgical planning of coiling procedures by allowing more accurate and truly 3D

quantification of brain aneurysms.
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Questions

1. Why are normalized the feature vectors? In the normalization of the sam-

ple feature vectors, the mean and standard deviation extracted from the

training set are used. Explain why.
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2. Infer the gradient descent flow of the surface S associated with the kNN

region-based energy functional

Eregion(t) =
∫
�in(t)

kin(x; t) dx+
∫
�out(t)

kout(x; t) dx (5.23)

3. Explain the influence of each of the terms involved in the evolution of the

surface driven by

∂S(x; t)
∂t

= ζ (kout − kin)−→n − η(gκ + 〈∇g,−→n 〉)−→n (5.24)

4. How could we determine the convergence of the level set algorithm?

5. Explain what could be the advantages of using 3D models for quantification

against 2D MIP images. Regarding the evaluation study presented in this

chapter, was it taking real profit of the 3D measurement capability?
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Chapter 6

Inverse Consistent Image Registration

G. E. Christensen1

6.1 Introduction

Image registration has many uses in medicine such as multimodality fusion,

image segmentation, deformable atlas registration, functional brain mapp-

ing, image guided surgery, and characterization of normal vs. abnormal anatom-

ical shape and variation. The fundamental assumption in each of these

applications is that image registration can be used to define a meaningful corre-

spondence mapping between anatomical images collected from imaging devices

such as CT, MRI, cryosectioning, etc. It is often assumed that this correspon-

dence mapping or transformation is one-to-one, i.e., each point in image T is

mapped to only one point in image S and vice versa. A fundamental problem

with a large class of image registration techniques is that the estimated transfor-

mation from image T to S does not equal the inverse of the estimated transform

from S to T. This inconsistency is a result of the matching criteria’s inability

to uniquely describe the correspondences between two images. Inverse con-

sistent registration seeks to overcome this limitation by jointly estimating the

transformation from T to S and from S to T while minimizing the correspondence

inconsistencies between the forward and reverse transformations. Forward and

reverse transformations that are inverses of each other are defined to be inverse

consistent with each other. The inverse consistency error is a measure of the

difference between the forward transformation and the inverse of the reverse

transformation, and vica versa.

1 Department of Electrical and Computer Engineering, The University of Iowa, Iowa City,
IA 52242 USA
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T(x) S(x)h(x)

g(x)

Figure 6.1: Consistent image registration is based on the principle that the

mappings h from T to S and g from S to T define a point by point correspon-

dence between T and S that are consistent with each other. This consistency is

enforced mathematically by jointly estimating h and g while minimizing the in-

verse consistency error (||h− g−1|| + ||g − h−1||). The inverse consistency error

is minimized when h and g are inverse mappings of one another.

The forward transformation h from image T to S and the reverse transfor-

mation g from S to T are pictured in Fig. 6.1. Ideally, the transformations h and g

should be uniquely determined and should be inverses of one another provided

the images only differ in shape and not structure. Estimating h and g indepen-

dently very rarely results in a consistent set of transformations due to a large

number of local minima. To overcome this deficiency in current registration sys-

tems, we jointly estimate h and g while minimizing the inverse consistency error

defined as ||h− g−1|| + ||g − h−1||. Notice that the inverse consistency error is

minimized when the transformations h and g are inverse mappings of one an-

other. Jointly estimating the forward and reverse transformations provides addi-

tional correspondence information and helps ensure that these transformations

define a consistent correspondence between the images. Although uniqueness

is very difficult to achieve in medical image registration, the joint estimation

should lead to more consistent and biologically meaningful results since infor-

mation from one registration direction minimizes registration ambiguities in the

other direction.

Image registration algorithms use landmarks [1–4], contours [5–7], surfaces

[8–11], volumes [6, 12–21], or a combination of these features [22] to manually,

semi-automatically or automatically define correspondences between two im-

ages. The need to impose the invertibility consistency constraint depends on the

particular application and on the correspondence model used for registration. In

general, registration techniques that do not uniquely determine the correspon-

dence between image volumes should benefit from the consistency constraint.
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This is because such techniques often rely on minimize/maximize a similarity

measure which has a large number of local minima/maxima due to the corre-

spondence ambiguity. Examples include methods that minimizing/maximizing

similarity measures between features in the source and target images such as

image intensities, object boundaries/surfaces, etc. In theory, the higher the di-

mension of the transformation the more local minima these similarity measures

have. Methods that use specified correspondences for registration will benefit

less or not at all from the invertibility consistency constraint. For example, land-

mark based registration methods implicitly impose an invertibility constraint at

the landmarks because the correspondence defined between landmarks is the

same for estimating the forward and reverse transformations. However, the

drawbacks of specifying correspondences include requiring user interaction to

specify landmarks, unique correspondences can not always be specified, and

such methods usually only provide coarse registration due to the small number

of correspondences specified.

In this chapter, we will restrict our analysis to the class of applications that

can be solved using diffeomorphic transformations. A diffeomorphic transfor-

mation is defined to be continuous, one-to-one, onto, and differentiable. The

diffeomorphic restriction is valid for a large number of problems in which the

two images have the same structures and neighborhood relationships but have

different shapes.

Diffeomorphic transformations maintain the topology and guarantee that

connected subregions of an image remain connected, neighborhood relation-

ships between structures are preserved, and surfaces are mapped to surfaces.

Preserving topology is important for synthesizing individualized electronic at-

lases the knowledge base of the atlas maybe transferred to the target anatomy

through the topology preserving transformation providing automatic labeling

and segmentation. If the total volume of a nucleus, ventricle, or cortical sub-

region are an important statistic it can be generated automatically. Topology

preserving transformations that map the template to the target can also be used

to study the physical properties of the target anatomy such as mean shape

and variation. Likewise, preserving topology allows data from multiple indi-

viduals to be mapped to a standard atlas coordinate space [23]. Registration

to an atlas removes individual anatomical variation and allows information

from many experiments to be combined and associated with a single canonical

anatomy.
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Other investigators have proposed methods for enforcing pairwise consis-

tent transformations. For example, Woods et al. [24] computes all pairwise reg-

istrations of a population of image volumes using a linear transformation model,

i.e., a 3× 3 matrix transformation. They then average the transformation from

T to S with all the transformations from T to X to S. The original transformation

from T to S is replaced with average transformation. The procedure is repeated

for all the image pairs until convergence. This technique is limited by the fact

that it can not be applied to two data sets. Also, there is no guarantee that the

generated set of consistent transformations are valid. For example, a poorly reg-

istered pair of images can adversely affect all of the pairwise transformations.

The method described in this chapter is most similar to the approach de-

scribed by Thirion [6]. Thirion’s idea was to iteratively estimate the forward h,

reverse g, and residual r = h ◦ g transformations in order to register the images

T and S. At each iteration, half of the residual r is added to h and half of the

residual r is mapped through h and added to g. After performing this opera-

tion, h ◦ g is close to the identity transformation. The advantage of Thirion’s

method is that it enforces the inverse consistency constraint without having

to explicitly compute the inverse transformations as in Eq. (6.2). The resid-

ual method is an approximation to the inverse consistency method in that the

residual method approximates the correspondences between the forward and

reverse transformations while the inverse consistency method computes those

correspondences. Thus, the residual approach only works under a small defor-

mation assumption since the residual is computed between points that do not

correspond to one another. This drawback limits the residual approach to small

deformations and it therefore can not be extended to nonlinear transformation

models. On the other hand, the approach presented in this paper can be ex-

tended to the nonlinear case by modifying the procedure used to calculate the

inverse transformation to include nonlinear transformations.

6.2 Inverse Consitent Image Registration

6.2.1 Problem Statement

Assume that T and S correspond to two continuous images defined on the co-

ordinate system � = [0, 1)3. Traditionally, the image registration problem has
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been stated as: Find the transformation h : �→ � that maps the template im-

age volume T into correspondence with the target image volume S. Alterna-

tively, the problem can be stated as: Find the transformation g : �→ � that

transforms S into correspondence with T . For inverse consistent registration,

the previous two statements are combined into a single problem and restated

as:

Problem Statement: Jointly estimate the transformations h and g

such that h maps T to S and g maps S to T such that the inverse

consistency constraint ||h− g−1|| + ||g − h−1|| is minimized.

The image volumes T and S can be of any dimension such as 1D, 2D, 3D, 4D, or

higher dimensional and in general can be multivalued. Image data sets may rep-

resent information such as anatomical structures like the brain, heart, lungs,

etc., or could represent symbolic information such as structure names, ob-

ject features, curvature, brain function, etc., or could represent image frames

in movies that need to be matched for morphing, interpolating transitional

frames, etc., or images of a battlefield with tanks, artillery, etc., or images col-

lected from satellites or robots that need to be fused into a composite image,

etc.

The transformations are vector-valued functions that map the image coor-

dinate system � to itself, i.e., h : � �→ � and g : � �→ �. Regularization con-

straints are placed on h and g so that they preserve topology. Throughout

it is assumed that h(x) = x+ u(x), h−1(x) = x+ ũ(x), g(x) = x+ w(x) and

g−1(x) = x+ w̃(x) where h(h−1(x)) = x and g(g−1(x)) = x. The vector-valued

functions u, w, ũ, and w̃ are called displacement fields since they define the

transformation in terms of a displacement from a location x. All of the func-

tions h, g, h−1, g−1, u, ũ,w, and w̃ are (3× 1) vector-valued functions defined on

the �.

Registration is defined using a symmetric similarity cost function that de-

scribes the distance between the transformed template T ◦ h and target S, and

the distance between the transformed target S ◦ g and template T . To ensure the

desired properties, the transformations h and g are jointly estimated by minimiz-

ing the similarity cost function while satisfying regularization constraints and

inverse transformation consistency constraints. The regularization constraints

can be enforced on the transformations by constraining them to satisfy the laws

of continuum mechanics [25].
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The image registration problem can be stated mathematically as finding the

transformations h and g that minimize the cost function

C(µ, η) =
∫
�

|T(x+ u(x))− S(x)|2 + |S(x+ w(x))− T(x)|2dx

+χ
∫
�

||h(x)− g−1(x)||2 + ||g(x)− h−1(x)||2dx

+ ρ
∫
�

||Lu(x)||2dx+ ||Lw(x)||2dx

The constants σ , χ and ρ are used to enforce/balance the constraints (see [26]

for complete details on how to minimize this cost function).

6.2.2 Symmetric Similarity Cost Function

A problem with many image registration techniques is that the image similarity

function does not uniquely determine the correspondence between two image

volumes. In general, similarity cost functions have many local minima due to

the complexity of the images being matched and the dimensionality of the trans-

formation. It is these local minima (ambiguities) that cause the estimated trans-

formation from image T to S to be different from the inverse of the estimated

transformation from S to T. In general, this becomes more of a problem as the

dimensionality of the transformation increases.

To overcome correspondence ambiguities, the transformations from image T

to S and from S to T are jointly estimated. This is accomplished by defining a cost

function to measure the shape differences between the deformed image T ◦ h

and image S and the differences between the deformed image S ◦ g and image

T . Ideally, the transformations h and g should be inverses of one another, i.e.,

h = g−1. In this work, the transformations h and g are estimated by minimizing

a cost function

CSIM(T ◦ h, S)+ CSIM(S ◦ g, T) =
∫
�

|T(h(x))− S(x)|2dx

+
∫
�

|S(g(x))− T(x)|2dx (6.1)

where the intensities of T and S are scaled between 0 and 1. To use this similarity

function, the images T and S must correspond to the same imaging modality

and they may require preprocessing to equalize the intensities of the image. In

practice, MRI images require intensity equalization while CT images do not. A
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simple but effective method for intensity equalizing MRI data is to compute the

histograms of the two images, scale the axis of one histogram so that the gray-

and white-matter maximums match, and then apply the intensity scaling to the

image.

This joint estimation approach applies to both linear and non-linear trans-

formations. In general, the squared-error similarity functions in Eq. (6.1) can

be replaced by any suitable similarity function—mutual information [27, 28],

demons [6], an intensity variance cost function [24], etc.—where the choice is

dependent on the particular registration application.

6.2.3 Inverse Consistency Constraint

Minimizing a symmetric cost function like Eq. (6.1) is not sufficient to guarantee

that h and g are inverses of each other because the contributions of h and g to

the cost function are independent. In order to couple the estimation of h with

that of g, an inverse consistency constraint is imposed that is minimized when

h = g−1. The inverse consistency constraint is given by

CICC(u, w̃)+ CICC(w, ũ) =
∫
�

||h(x)− g−1(x)||2dx+
∫
�

||g(x)− h−1(x)||2dx

=
∫
�

||u(x)− w̃(x)||2dx+
∫
�

||w(x)− ũ(x)||2dx. (6.2)

Notice that the inverse consistency constraint is written in a symmetric form

like the symmetric cost function for similar reasons.

6.2.4 Computation of the Inverse Transformation

The procedure used to compute the inverse transformation of a transformation

with minimum Jacobian greater than zero is as follows. Assume that h(x) is

a continuously differentiable transformation that maps � onto � and has a

positive Jacobian for all x ∈ �. The fact that the Jacobian is positive at a point

x ∈ � implies that it is locally one-to-one and therefore has a local inverse. It

is therefore possible to select a point y ∈ � and iteratively search for a point

x ∈ � such that ||y− h(x)|| is less than some threshold provided that the initial

guess of x is close to the final value of x.

The inverse transformation is computed in the following way [26]. First,

note that all images including transformed images are discrete. Therefore, it is
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only necessary to compute the transformations and the inverse of the trans-

formations at the discrete voxel locations. Let �d denote the discrete center

locations of the voxels in the coordinate system �. The discrete inverse trans-

formation is computed using the following procedure only at the discrete voxel

points.

For each y ∈ �d do {
Set δ = [1, 1, 1]T , x = y, iteration = 0.

While (||δ|| > threshold) do {
δ = y− h(x)

x = x+ δ
2

iteration = iteration + 1

if (iteration > max iteration) then

Report algorithm failed to converge and exit.

}
h−1(y) = x

}

The threshold is typically set between 10−2 and 10−4 and the maximum num-

ber of iterations is set to 1000. In practice, the algorithm converges when the

minimum Jacobian of h is greater than zero although we have not proved this

mathematically. Reducing the value of the threshold gives a more accurate in-

verse but increases the iteration time. This algorithm normally converges quickly

and is computationally efficient. However, this algorithm has a tendency to get

stuck in osciations and is detected by the if statement. The inverse at these oscil-

latory points can be estimated using gradient descent to solve the minimization

||y− h(x)|| for x keeping y fixed. Alternatively, the failure of the algorithm to

converge at a point can be ignored since it will not have a signficant effect on

the registration and will be corrected at the next iteration.

6.2.5 Regularization Constraint

Minimizing the cost function in Eq.(6.2) does not ensure that the transforma-

tions h and g are diffeomorphic transformations except for when CICC = 0.

Continuum mechanical models such as linear elasticity [22, 29] and viscous

fluid [15, 22] can be used to regularize the transformations. For example, a
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linear-elastic constraint has the form

CREG(u)+ CREG(w) =
∫
�

||Lu(x)||2dx+
∫
�

||Lw(x)||2dx (6.3)

and can be used to regularize the transformations. The linear elasticity op-

erator L has the form Lu(x) = −α∇2u(x)− β∇(∇ · u(x))+ γu(x) where ∇ =[
∂
∂x1
, ∂
∂x2
, ∂
∂x3

]
and ∇2 = ∇ · ∇ =

[
∂2

∂x2
1
+ ∂2

∂x2
2
+ ∂2

∂x2
3

]
. In general, L can be any non-

singular linear differential operator [30]. The limitation of using linear differen-

tial operators is that they can’t prevent the transformation from folding onto

itself, i.e., destroying the topology of the images under transformation [31]. This

includes the linear elasticity and thin-plate spline models. The linear elasticity

operator is used in this work to help prevent the Jacobian of the transforma-

tion from going negative. At each iteration the Jacobian of the transformation

is checked to make sure that it is positive for all points in�d which implies that

the transformation preserves topology when transforming images.

The purpose of the regularization constraint is to ensure that the transforma-

tions maintain the topology of the images T and S. Thus, the elasticity constraint

can be replaced by or combined with other regularization constraints that main-

tain desirable properties of the template (source) and target when deformed.

An example would be a constraint that prevented the Jacobian of both the for-

ward and reverse transformations from going to zero or infinity. A constraint

that penalizes small and large Jacobian values is given by CJac(h)+ CJac(g) =∫
�

(J(h(x)))2 +
(

1
J(h(x))

)2
+ (J(g(x)))2 +

(
1

J(g(x))

)2
dx where J denotes the

Jacobian operator. Further examples of regularization constraints that

penalize large and small Jacobians can be found in Ashburner et al. [21].

6.2.6 Transformation Parameterization

Until now, the forward and reverse transformations have been described as

general functions. In order to estimate the transformations, they must be pa-

rameterized. Examples of transformation parameterizations that are used in

practice include the 3D Fourier series [26], polinomials [32], b-splines [19, 24],

wavelets [17], and vector displacements [14, 15]. We will concentrate on a 3D

Fourier series parameterization in this chapter. In a 3D Fourier series param-

terization, each basis coefficient is interpreted as the weight of a harmonic

component in a single coordinate direction. The discretized displacement fields
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are given by

ud[n] =
∑
k∈G

µ[k]e j〈n,θ [k]〉 and wd[n] =
∑
k∈G

η[k]e j〈n,θ [k]〉 (6.4)

for n ∈ G and G = {(n1,n2,n3) : 0 ≤ n1 < N1, 0 ≤ n2 < N2, 0 ≤ n3 < N3}. The

displacement fields associated with the inverse of the forward and reverse trans-

formations are given by replacing u, w, µ, and η in Eq. (6.4) with ũ, w̃, µ̃, and

η̃, respectively. The Fourier series parameterization is periodic and therefore

imposes cyclic boundary conditions on the boundary of �.

6.2.7 Multiresolution Registration

Multiresolution formulation of the registration problem has the benefit of min-

imizing computation time and helps to avoid local registration minima. The

Fourier series parameterization in Eq. (6.4) is an example of a multiresolution

decomposition of the displacement fields in parameter space. Let G[r] = G\G[r]

represent a family of subsets of�d where G[r] = {n ∈ G|r1 < n1 < N1 − r1; r2 <

n2 < N2 − r2; r3 < n3 < N3 − r3} and the set subtraction notation A\B is defined

as all elements of A not in B. In practice, the low frequency basis coefficients

are estimated before the higher ones allowing the global image features to be

registered before the local features. This is accomplished by replacing Eq. (6.4)

by

ud[n, r] =
∑

k∈�d[r]

µ[k]e j〈n,θ [k]〉 and wd[n, r] =
∑

k∈�d[r]

η[k]e j〈n,θ [k]〉. (6.5)

where r ∈ G determines the number of harmonics used to represent the dis-

placement fields. The components of r are initially set small and are periodi-

cally increased throughout the iterative minimization procedure. The set G[r]

can be replaced by G when all of the components of r are greater than or equal

to (N − 1)/2 since the set G[r] is empty. The constants r1, r2, and r3 represent

the largest x1, x2, and x3 harmonic components of the displacement fields. Each

displacement field in Eq. (6.5) is efficiently computed using three N1 × N2 × N3

FFTs, i.e., each component of the 3× 1 vectors ud and wd are computed with a

FFT after zeroing out the coefficients not present in the summations.

The approach of spatial multiresolution is to register two images at a course

spatial resolution initially and then to refine the registration at a higher spatial
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resolution later to get the final transformation. The advantage of solving the

problem on a course grid is that the algorithm requires fewer computations

per iteration than a finer grid. This results in reduced computation time at low

resolution. Each time the resolution of the grid is increased by a factor of two

in each dimension, the computation time increases by a factor of eight. The

drawback of solving the problem at low resolution is that there can be significant

registration errors due to the loss of detail in the down sampling procedure. The

trade-off between quicker execution times at low resolution and more accurate

registration at higher resolution can be exploited by solving the registration

problem at low spatial resolution during the initial iterations to approximate the

result and then increasing the spatial resolution to get a more accurate result at

the later iterations.

The spatial multiresolution approach works well with the frequency mul-

tiresolution approach provided by increasing the number of harmonics used

to represent the displacement fields. The number of harmonics used to rep-

resent the displacement fields is initially set small and then increased as the

number of iterations are increased. A low-frequency registration result is an

approximation of the desired high-frequency registration result. Computing the

gradient descent for a low-frequency basis coefficient at low spatial resolution

gives approximately the same answer as using high spatial resolution but the

computational burden is much less.

6.2.8 Tracking the Jacobian During the

Estimation Procedure

It is important to track both the minimum and maximum values of the Jacobian

during the estimation procedure. The Jacobian measures the differential vol-

ume change of a point being mapped through the transformation. At the start of

the estimation, the transformation is the identity mapping and therefore has a

Jacobian of one. If the minimum Jacobian goes negative, the transformation is

no longer a one-to-one mapping and as a result folds the domain inside out [31].

Conversely, the reciprocal of the maximum value of the Jacobian corresponds

to the minimum value of the Jacobian of the inverse mapping. Thus, as the max-

imum value of the Jacobian goes to infinity, the minimum value of the Jacobian

of the inverse mapping goes to zero.
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Figure 6.2: Notation used to describe transformations from one coordinate

system to another.

6.3 Transformation Properties

The following definitions will be used throughout this section. Let Ti for i ∈ Q =
{A, B,C, . . .} denote a set of homogeneous, topologically-equivalent anatomical

images defined on the coordinate system or domain � = [0, 1]3. For example,

TA, TB, etc., may correspond to a set of 3D MRI brain images collected from age

and sex matched normals or abnormals or some other suitable classification

criteria. Let hAB represent the transformation from the coordinate system of

image TA to that of image TB in terms of the coordinate system of image TB

as shown in Fig. 6.2. Let the linear transformation x = hAB(y) deform image

TA(x) into a new image T̃(y) = TA(hAB(y)) that resembles the shape of image

TB(y) by transforming the coordinate system of image TA to that of image TB.

Define H as the set of all transformations hAB(x) for A, B ∈ Q and x ∈ �. Let

||x|| =
√

x2
1 + x2

2 + x2
3 denote the standard 2-norm.

6.3.1 Invertibility Property

Many nonlinear image registration algorithms have difficulty producing inverse

consistent transforms because they use a finite set of basis functions (eigen-

functions of an operator, polynomials, etc.) that are not always closed under

composition. This observation is a major reason why it is important to measure

the inverse consistency error produced by different registration algorithms. This

fact motivates the minimization of the inverse consistency constraint error that

is used by the consistent linear elastic registration error since it is not possible

to reduce the inverse consistency error to zero when using the a finite set of

complex exponential basis functions.
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Another reason why it is difficult to produce inverse consistent transforma-

tions is that numerical optimization techniques used to find the optimal image

transformation often take a long time to converge or get stuck in local minima.

The large number of parameters estimated and the nonlinearity introduced by

the images being mapped makes it very difficult to find the optimal transforma-

tion. Placing a limit on the acceptable inverse consistency error may be one way

of specifying the stopping criteria for a particular optimization technique.

Formally, transformations hAB : �→ � and hBA : �→ � are said to

be inverses of one another if the transformation hBA exists and satisfies

hAB(hBA(x)) = x and hBA(hAB(x)) = x for all x ∈ �. A set of linear transfor-

mations H is said to have the invertibility property if hAB(hBA(x)) = x for all

A, B ∈ Q and x ∈ �.

The average Inverse Consistency (IC) error within a region of interest (ROI)

M is defined as

EAIC(hAB, hBA,M) = 1
M

∫
M

||hAB(hBA(x))− x||dx (6.6)

and the maximum IC error is defined as

EM IC(hAB, hBA,M) = max
x∈M

||hAB(hBA(x))− x||. (6.7)

Eqs. (6.6 and 6.7) are discretized for implementation.

It is important to define a ROI because the amount of padding applied to

the image data can have a significant effect on the average error calculation.

The ROI restricts the error measurements to areas of interest preventing the

situation where the largest error occurs in the background of the image.

6.3.2 Transitivity Property

Image registration algorithms that have a difficult time producing inverse consis-

tent transformations have an even harder time producing transformations that

satisfy the transitivity property. In the paper we investigate how an algorithm

that reduces the inverse consistency error compared to another also reduces

the transitivity error.

A set of image transformations H is said to have the transitivity property if

hC B(hBA(x)) = hC A(x) or equivalently if hAC(hC B(hBA(x))) = x for all A, B,C ∈
Q and x ∈ �.
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These transitivity relationships are illustrated in Fig. 6.2. Assume that

the points x, y, and z correspond to the same landmark in images A,

B, and C , respectively. Assume that the set of transformations H = {hAB,

hBA, hBC , hCB, hAC , hCA} has the invertibility and transitivity properties such

that

y= hBA(x), z= hCB(y), x = hAC(z).

Substituting the first equation into the second and the second into the third

equation gives the result

x = hAC(hCB(hBA(x))).

The average transitivity error is defined as

EATRAN(hAB, hBC, hCA,M) = 1
M

∫
M

||hAB(hBC(hCA(x)))− x||dx (6.8)

and the maximum transitivity error is defined as

EMT RAN(hAB, hBC , hC A,M) = max
x∈M

||hAB(hBC(hC A(x)))− x||. (6.9)

Equations (6.8) (6.9) are discretized for implementation.

Figure 6.3 demonstrates an advantage of producing transformations that

satisfy the transitivity property. The left panels show that the minimum num-

ber of invertible transformations required to map information from one coordi-

nate system to another is N − 1 where N is the number of image volumes. The

Figure 6.3: The left panel shows the minimum number of pairwise transfor-

mations needed to map a point from one brain to its corresponding location

in another. The right panel shows all of the pairwise mappings between the

brains.
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correspondence between any two coordinate systems is determined explicitly

by one of the displayed transformations or indirectly by concatenating two of

the transformations. For example, a point x in coordinate system B is mapped

to y in coordinate system C by the mapping y= hBA(hAC(x)), etc.

Figure 6.3 demonstrates that it is advantageous to design pairwise registra-

tion algorithms rather than N-wise registration algorithms that satisfy the tran-

sitivity property. The first advantage is that a pairwise algorithm only needs to

compute N − 1 pairwise transformations as opposed to (N − 1)! pairwise trans-

formations. This reduces computation time and computer storage requirements

by a factor of (N − 2) factorial. Another advantage is that a pairwise algorithm

only requires one additional set of pairwise transformations to be computed to

add a new data set to the population. An N-wise registration algorithm requires

that all of the transformations to be recomputed to produce a set of transforma-

tions with the transitivity property.

In general, pairwise image registration algorithms do not produce trans-

formations that have the transitivity property. The degree of transitivity can

be evaluated by measuring the difference between the identity mapping

and the composition the transformations from image A-to-B, B-to-C , and C -

to-A.

6.4 Inverse Consistent Registration

Algorithms

6.4.1 Intensity-Based Small Deformation Inverse

Consistent Linear Elastic (I-SICLE) Image

Registration

The intensity-based small deformation inverse consistent linear elastic (I-SICLE)

image registration algorithm [26,33–35] jointly estimates the forward and reverse

transformations h and g by minimizing Eq. (6.1). The image intensity alone

is used to register the images with this algorithm. A small deformation linear

elastic continuum mechanical model is used to regularize the transformations.

A generalization of this technic allows for multiple template image modalities

or subvolumes to be registered to corresponding target modalities. The cost
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function for the multimodality I-SICLE algorithm is given by

C =
I∑

i=1

σi

∫
�

|Ti(h(x))− Si(x)|2

+ |Si(g(x))− Ti(x)|2dx

+ ρ
∫
�

||Lu(x)||2 + ||Lw(x)||2dx (6.10)

+χ
∫
�

||u(x)− w̃(x)||2 + ||w(x)− ũ(x)||2dx

where σi are relative weighting factors for each of imaging modalities and ρ and

χ define the relative importance of the bending energy minimization and the

inverse consistency terms. The constants σi, define the relative importance of

each modality with respect to the regularization terms of the cost function. The

I-SICLE algorithm has been applied to registration of brain images [35], skull

images [26] lung images [36, 37], and inner ear images [38].

6.4.2 Inverse Consistent Landmark-Based Thin-Plate

Spline (CL-TPS) Image Registration

Before describing the inverse consistent landmark-based, thin-plate spline

(CL-TPS) image registration algorithm, we discuss the traditional unidirec-

tion thin-plate spline registration algorithm. The unidirectional landmark-based,

thin-plate spline (UL-TPS) image registration algorithm [1,2,39] registers a tem-

plate image T with a target image S by matching corresponding landmarks iden-

tified in both images. Registration at non-landmark points is accomplished by

interpolation such that the overall transformation smoothly maps the template

into the shape of the target image.

The unidirectional landmark image registration problem can be thought of

as a Dirichlet problem [40] and can be stated mathematically as finding the

displacement field u that minimizes the cost function

C =
∫
�

||Lu(x)||2dx (6.11)

subject to the constraints that u(pi) = qi − pi for i = 1, . . . ,M where pi and qi

are corresponding landmarks in the target and template images, respectively.

The operator L denotes a symmetric linear differential operator [41] and is used

to interpolate the displacement field u between the corresponding landmarks.
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When L = ∇2, the problem reduces to the thin-plate spline image registration

problem given by

C =
∫
�

||∇2u(x)||2dx =
2∑

i=1

∫
�

(
∂2ui(x)
∂2x1

)2

+ 2
(
∂2ui(x)
∂x1∂x2

)
+
(
∂2ui(x)
∂2x2

)2

dx1dx2 (6.12)

subject to the constraints that u(pi) = qi − pi for i = 1, . . . ,M .

It is well known [1, 2, 39] that the thin-plate spline displacement field u(x)

that minimizes the bending energy defined by Eq. (6.12) has the form

u(x) =
M∑

i=1

ξiφ(x− pi)+ Ax+ b (6.13)

where φ(r) = r2 log r and ξi are 2× 1 weighting vectors. The 2× 2 matrix A =
[a1,a2] and the 2× 1 vector b define the affine transformation where a1 and a2

are 2× 1 vectors.

The thin-plate spline interpolant φ(r) = r2 log r is derived assuming infinite

boundary conditions, i.e.,� is assumed to be the whole plane R2. The thin-plate

spline transformation is truncated at the image boundary when it is applied to

an image. This presents a mismatch in boundary conditions at the image edges

when comparing forward and reverse transformations between two images. It

also implies that a thin-plate spline transformation is not a one-to-one and onto

mapping between two image spaces. To overcome this problem and to match the

periodic boundary conditions assumed by the intensity-based consistent image

registration algorithm, approximate periodic boundary conditions are imposed

on the registration problem (see [34] for details).

The inverse consistent landmark-based, thin-plate spline (CL-TPS) image

registration algorithm is solved by minimizing the cost function given by

C = ρ
∫
�

||Lu(x)||2 + ||Lw(x)||2dx

+χ
∫
�

||u(x)− w̃(x)||2 + ||w(x)− ũ(x)||2dx

subject to pi + u(pi) = qi and qi + w(qi) = pi for i = 1, . . . ,M (6.14)

The first integral of the cost function defines the bending energy of the thin-

plate spline for the displacement fields u and w associated with the forward
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and reverse transformations, respectively. This term penalizes large derivatives

of the displacement fields and provides the smooth interpolation away from

the landmarks. The second integral is the inverse consistency constraint (ICC)

and is minimized when the forward and reverse transformations are inverses

of one another. This integral couples the estimation of the forward and reverse

transformations together and penalizes transformations that are not inverses

of one another. The constants ρ and χ define the relative importance of the

bending energy minimization and the inverse consistency terms of the cost

function.

The cost function in Eq. (6.14) is iteratively minimized until the landmark

error and the inverse consistency error fall below problem specific thresholds

or until a specified number of iterations are reached. In practice, this algorithm

converges to an acceptable solution within five to 10 iterations and therefore

we use a maximum number of iterations as our stopping criteria. See [34] for

more details of this algorithm.

6.4.3 Combined Intensity and Feature-Based Inverse

Consistent Registration

Landmark based registration algorithms provide good registration at landmark

points where correspondence is known, but use interpolation away from the

landmarks to define correspondence. The correspondence defined by the inter-

plolation function does not always give acceptable correspondence away from

the landmarks. On the other hand, intensity based registration provides good

registration of intensity features contained in the images. However, intensity

based correspondence funtions provide correspondence without regard to the

structure of the objects being matched causing noncorresponding structures to

be registered. Combining landmark and information from other features such as

contours, surfaces, and subvolumes with intensity information helps avoid regis-

tration errors in uncertain or ambiguous areas of the respective cost functions.

For example, landmarks are good at getting corresponding points registered

and the intensity based cost function is good at registering points in between

landmarks. In general, the more information that the registration algorithm has

to define correspondences, the better the registration result will be. Examples

of inverse consistent image registration combining landmark, subvolume, and

intensity information can be found in [34–38].
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6.5 Results

6.5.1 Landmark Registration

The first experiment compares the inverse consistency error associated with the

traditional unidirectional landmark thin-plate spline (UL-TPS) algorithm to that

of the consistent landmark thin-plate spline (CL-TPS) algorithm. This simple

experiment is designed to show that the UL-TPS algorithm can have significant

inverse consistency error while this error is minimized using the CL-TPS algo-

rithm. The experiment shown in Fig. 6.4 consisted of matching eight landmarks

in one image to their corresponding landmarks in a second image using both

Figure 6.4: The location of local displacements at the landmarks points for the

forward, and reverse transformations of images with 100× 100 pixels. Applica-

tion of the thin-plate spline deformation fields to uniformly spaced grids for the

forward and reverse transformations.
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the UL-TPS and the CL-TPS algorithm. The arrows in the first and second panels

show the displacement between the corresponding landmarks in the forward

and reverse directions, respectively. The four landmarks in the corners of the im-

ages were fixed. The forward transformation h maps the four inner points to the

four outer points and the reverse transformation g maps the outer points to the

inner points. Applying the CL-TPS transformations to a rectangular grid shows

that the forward transformation—defined with respect to a Eulerian frame of

reference—causes the center of the image to expand (third panel of Fig. 6.4)

while the reverse transformation causes a contraction of the central portion of

the image (fourth panel of Fig. 6.4).

The top row of Fig. 6.5 shows the spatial locations and magnitudes of the

inverse consistency errors of the forward and reverse transformations generated

by the UL-TPS algorithm. The images in the left column were computed by taking

the Euclidean norm of the difference between the forward transformation h

and the inverse of the reverse transformation g−1. The images in the center

column were computed in a similar fashion with g and h−1. The CL-TPS result

Figure 6.5: The left and center panels show the inverse consistency errors of

the forward and reverse transformations, respectively. The tables in the right

columns list the landmark errors associated with selected image points. The top

and bottom rows are the inverse consistency errors associated with the unidirec-

tional (UL-TPS) and consistent (CL-TPS) landmark thin-plate spline algorithms,

respectively.
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was created using AUL-TPS initialization and minimizing for 100 iterations with

α = 0.5 and β = 0.012.

The tables in Fig. 6.5 tabulate the inverse consistency error at four repre-

sentative points in the images. The points A and C are located at points away

from landmarks while the points B and D are located at landmark locations. The

inverse consistency error at the landmark points is small for both algorithms.

However, the landmark error is quite large away from the landmark locations in

the UL-TPS algorithm. The range of intensities on the color bar for each method

shows that the range of inverse consistency errors for the UL-TPS algorithm was

in the range of 0.002 to 4.9 pixels while this same error for the CL-TPS algorithm

ranged from 0.00 to 0.009. This shows that the CL-TPS algorithm reduced the

inverse consistency error by over 500 times that of the UL-TPS algorithm for

this example.

A pair of transformations are point-wise consistent if the composite function

h(g(x)) maps a point x to itself. Spatial deviations from the identity mapping can

be visualized by applying the composite mapping to a uniformly spaced grid. The

grid is deformed by the composite transformation in regions where the forward

and reverse transformations have inverse consistency errors. The composite

transformation does not deform the grid for a perfectly inverse consistent set

of forward and reverse transformations. Fig. 6.6 shows the composite mapping

Figure 6.6: Deformed grids showing the error between the forward and reverse

transformations estimated with the landmark-based thin-plate spline algorithm

(left panel) and the CL-TPS algorithm (right panel). The grids were deformed

by the transformation constructed by composing the forward and reverse trans-

formations together, i.e., g(h(x)). Ideally, the composition of the forward and

reverse transformations is the identity mapping which produces no distortion

of the grid as in the right panel. The fuzziness associated with the grids are due

to the bilinear interpolation.
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produced by the UL-TPS (left) and the CL-TPS (right) applied to a rectangular

grid for this experiment. Notice that there is a considerable amount of inverse

consistency error in the UL-TPS algorithm while there is no visually detectable

inverse consistency error produced by the CL-TPS algorithm. The blurring of

the grid is due to bilinear interpolation used to deform the grid images with the

error displacements. Both images are created with the same technique, but the

inverse consistent image needs very little interpolation since there is nearly zero

displacement error.

The minimum and maximum Jacobian values of the forward (reverse)

transformation specify the maximum expansion and contraction of the trans-

formation, respectively. The Jacobian error, calculated as 1
2 |min{Jac(h)} −

1/max{Jac(g)}| + 1
2 |min{Jac(g)} − 1/max{Jac(h)}|, provides an indirect mea-

sure of the inconsistency between the forward and reverse transformations. The

Jacobian error is zero if the forward and reverse transformations are inverses

of one another, but the converse is not true. Table 6.1 shows that the Jacobian

error was 1000 times smaller for the CL-TPS algorithm compared to the UL-TPS

algorithm.

6.5.2 Landmark and Intensity Registration

The five 2D transverse MRI data sets shown in Fig. 6.7 were used to compare

the performance of the unidirectional landmark (UL-TPS); consistent landmark

(CL-TPS); consistent intensity (CI-TPS); and consistent landmark and intensity

Table 6.1: Comparison between the unidirectional (UL-TPS) and consistent

(CL-TPS) thin-plate spline image registration algorithms. The table columns are

the Experiment, (ICC), transformation Direction (TD), average landmark error

(ALE) in pixels, maximum landmark error (MLE), maximum inverse error

(MIE) in pixels, average inverse error (AIE) in pixels, minimum Jacobian value

(MJ), inverse of the maximum Jacobian value (IJ), and the Jacobian error (JE)

Experiment ICC TD ALE MLE AIE MIE MJ IJ JE

UL-TPS No Forward 0.010 0.016 2.2 4.1 2.4 4.8 1.4
Reverse 0.0056 0.010 2.0 4.9 2.9 3.2

CL-TPS Yes Forward 0.00055 0.0011 0.0028 0.0078 0.28 0.48 0.0012
(100 iter.) Reverse 0.00046 0.00094 0.0024 0.0088 0.48 0.28
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Figure 6.7: Five corresponding image slices from MRI acquired brains with

manually identified points of correspondence.

(CLI-TPS) thin-plate spline algorithms. These 256× 320 pixel images with 1 mm

isotropic pixel dimension were extracted from 3D MRI data sets such that they

roughly corresponded to one another. Each data set was registered with the

other four data sets for each of the four algorithms producing 10 forward and

reverse transformations for each algorithm. For brevity of presentation, we only

present some of the results of the experiments that are representative of all of

the results. A set 39 of the corresponding landmarks were manually defined in

data sets B2 and B4 and a subset of the 39 landmarks were manually defined

in the additional three datasets (see Fig. 6.7). Only data sets B2 and B4 had all

39 landmarks identified on them since it was not possible to locate the corre-

sponding locations for all the landmarks on the other data sets due to missing

or different shaped sulci. Only corresponding landmarks between two images

were used for registration and calculating the landmark error, i.e., if one image

set was missing landmark 15, then landmark 15 was not used for registration or

for calculating the landmark error.

The result of transforming MRI data set B5 in to the shape of B2 using each

of the four registration algorithms is shown in Fig. 6.8. These results are typical

of the other pairwise registration combinations. The images are arranged left to

right from the worst to the best similarity match as shown by the corresponding

difference images shown below the transformed images. The UL-TPS and CL-

TPS algorithms perform almost identically with respect to similarity matching.

The CI-TPS and CLI-TPS intensity based registrations produce better similarity

match than the two landmark only methods. In particular, the intensity based

methods match the border locations and non-landmark locations better than

the landmark thin-plate spline or CL-TPS algorithms. The difference between

the CI-TPS and CLI-TPS methods is that the CLI-TPS method produces much
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No Registration UL-TPS CL-TPS CI-TPS CLI-TPS

Figure 6.8: Intensity matching results for registering dataset B5 to dataset B2

with the four registration algorithms. The top row shows the data set B5 trans-

formed into the shape of B2 using each algorithm and the bottom row shows the

absolute difference image between the transformed B5 image and the target B2

image. Note that the intensity difference images of the CI-TPS and CLI-TPS are

very similar since both algorithms minimize the intensity differences between

the deformed template and target images. However, the difference between

these two results is that the CLI-TPS also produces much smaller landmark

errors which cannot be seen in the intensity difference images.

smaller landmark errors than the CI-TPS method which cannot be seen in the

intensity difference images.

The images in Fig. 6.9 show the Jacobian of the forward and reverse transfor-

mations between images B2 and B1 produced by the CL-TPS (left two panels)

and CLI-TPS (right two panels) algorithms, respectively. The value of the Jaco-

bian at a point is encoded such that bright pixels represent expansion, and dark

pixels represent contractions. Notice that the intensity pattern of the forward

and reverse Jacobian images appear nearly opposite of one another since ex-

pansion in one domain corresponds to contraction in the other domain. These

images show the advantage of using both landmark and intensity information

together as opposed to just using landmark information alone. Notice that the

CL-TPS algorithm has very smooth Jacobian images compared to the CLI-TPS
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CL-TPS CLI-TPS
For.  Tns.  Jac. Rev.  Tns.  Jac. For.  Tns.  Jac. Rev.  Tns.  Jac.

Figure 6.9: This figure shows the Jacobians of the forward and reverse trans-

formations for the registration of data sets B2 and B1 for the CL-TPS (left two

panels) and CLI-TPS (right two panels) algorithms. The bright pixels of the Jaco-

bian images represent regions of expansion, and dark pixels represent regions

of contraction.

algorithm. This is because the CL-TPS algorithm matches the images at the cor-

responding landmarks and smoothly interpolates the transformation between

the landmarks. Conversely, the patterning of the local distortions in the CLI-TPS

registration resemble the underlying intensity patterning. This indicates that

combining the intensity information with the landmark information provides

additional local deformation as compared to using the landmark information

alone. This improved registration between landmarks produces more distortion

of the template image and therefore there is a larger range of Jacobian values

for the CLI-TPS algorithm than the CL-TPS algorithm as shown by the color bar

scales.

Inverse consistency error images are computed by taking the Euclidean norm

of the difference between the forward and the inverse of the reverse transforma-

tions at each voxel location in the image domain. Figure 6.10 shows the inverse

consistency error images for the registration of data sets B2 and B5 using the

UL-TPS, CL-TPS, CI-TPS, and and CLI-TPS algorithms. Note that each image is

on its own color-scale and that the UL-TPS algorithm has 10 to 200 times more

maximum inverse consistency error than the consistent registration algorithms.

The UL-TPS algorithm had 50 to 500 times more average inverse consistency

error than the consistent registrations algorithms. This can be seen by compar-

ing large regions of bright pixels in the UL-TPS image to the small regions of
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Inverse Consistency Error (x)
CI-TPS CLI-TPSCL-TPS

h(x) – g–1

Figure 6.10: Images that display the magnitude and location of forward trans-

formation inverse consistency errors for matching data sets B2 and B5 with

UL-TPS, CL-TPS, CI-TPS, and CLI-TPS registration algorithms.

bright pixels in the other images. This figure shows that consistent registration

algorithms produced forward and reverse transformations that had sub-voxel

inverse consistency errors at all voxel locations. The inverse consistent errors

in the UL-TPS and CL-TPS algorithms are greatest away from the landmark driv-

ing forces because the landmark driving forces are implicitly inverse consistent.

The largest inverse consistency errors in the CI-TPS and CLI-TPS algorithms

occur near edges where there is a correspondence ambiguity associated with

the intensity matching solution.

Table 6.2 summarizes the representative statistics collected from the exper-

iments. Comparing the results of the UL-TPS and CL-TPS algorithms shows that

the addition of inverse consistency constraint (ICC) improved the inverse con-

sistency of the transformations with no degradation of the landmark matching.

Note that for the UL-TPS algorithm, the inverse consistency error tends to be

larger as one moves away from landmarks and that the inverse consistency error

can be decreased by defining more corresponding landmarks.

Table 6.2 also demonstrates that the CI-TPS and CLI-TPS registrations have

a smaller average intensity difference but larger landmark errors. The CLI-

TPS has smaller average intensity difference and smaller landmark errors than

the CI-TPS registration algorithm. The CLI-TPS algorithm produces a better

similarity match because the landmark driving force pulls the intensity driv-

ing function out of local minima. It should be noted that the large number

of landmarks used in the CLI-TPS registration limits the effect of the inten-

sity driving force in neighborhoods of the landmarks. In practice, when the
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Table 6.2: Experimental results produced by mapping MRI brain image 2 into

images 1, 3, 4, and 5 (see Fig. 6.7). The thin-plate spline algorithms compared

in this table are the unidirectional landmark (UL-TPS), consistent landmark

(CL-TPS), consistent intensity (CI-TPS), and consistent landmark and intensity

(CLI-TPS) algorithms. The statistics computed for these experiments were the

average landmark error (ALE) in pixels, maximum landmark error (MLE),

maximum inverse error (MIE) in pixels, average inverse error (AIE) in pixels,

masked average intensity difference (MAID), minimum Jacobian value (MJ),

inverse of the maximum Jacobian value (IJ) and the Jacobian error (JE)

Algorithm Exp. ALE MLE AIE MIE MAID MJ IJ JE

None b2b1 6.9 12 0.23
b2b3 4.9 13 0.19
b2b4 8.8 21 0.22
b2b5 8.7 19 0.26

UL-TPS b2b1 0.066 0.087 0.90 2.7 0.16 0.56 0.75 0.053
b2b3 0.073 0.098 0.78 3.1 0.18 0.50 0.57 0.092
b2b4 0.062 0.088 0.94 3.4 0.13 0.51 0.66 0.090
b2b5 0.030 0.061 1.2 3.8 0.16 0.56 0.67 0.050

CL-TPS b2b1 0.000030 0.00011 0.0012 0.028 0.16 0.59 0.73 0.0011

20 iter. b2b3 0.000034 0.00014 0.0016 0.022 0.18 0.55 0.53 0.0014
b2b4 0.0083 0.083 0.079 0.42 0.13 0.54 0.62 0.0011
b2b5 0.000006 0.00037 0.0024 0.015 0.16 0.56 0.62 0.00021

CI-TPS b2b1 1.5 3.1 0.0045 0.048 0.097 0.26 0.47 0.011

1000 iter. b2b3 1.6 2.9 0.0043 0.052 0.11 0.25 0.29 0.017
b2b4 1.0 2.2 0.0040 0.063 0.084 0.26 0.44 0.0075
b2b5 1.4 3.4 0.0044 0.099 0.092 0.18 0.32 0.0091

CLI-TPS b2b1 1.1 2.0 0.020 0.40 0.091 0.19 0.37 0.036

300 iter. b2b3 1.1 2.0 0.021 0.62 0.10 0.13 0.23 0.030
b2b4 0.75 1.6 0.017 0.61 0.080 0.12 0.39 0.025
b2b5 1.1 2.8 0.021 0.96 0.088 0.10 0.17 0.034

landmark points are more sparse the intensity driving force plays a more impor-

tant role.

6.6 Acknowledgments

This work was supported in part by the NIH under grants NS35368, CA75371,

and DC03590, and a grant from the Whitaker Foundation.



246 Christensen

Questions

1. What is the main benefit of using inverse consistent image registration

compared uni-directional registration?

2. How much computation time is added by converting a uni-directional reg-

istration algorithm into a inverse consistent image registration algorithm?

3. How do you compute in the inverse of a transformation?
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Chapter 7

A Computer-Aided Design System

for Segmentation of Volumetric Images

Marcel Jackowski1 and Ardeshir Goshtasby2

7.1 Introduction

Image segmentation is the process of partitioning an image into meaningful re-

gions. For the regions to be meaningful, they should represent objects or their

parts. Difficulties arise when properties within objects vary or boundaries of

objects become blurred. The problem is worsened when sensor inaccuracies

exist and noise is present in the image. These variations, which are often unpre-

dictable, make it impossible to develop an automatic method that can segment

all images correctly. Because a high accuracy is demanded in the segmenta-

tion of medical images, the user has a critical role in examining the results and

correcting the possible errors.

Image segmentation is perhaps the most studied area in image analysis. A

large number of papers on this topic is published annually in image analysis

journals and conference proceedings. The developed methods often take into

consideration various properties of images or objects, and when such properties

deviate from the anticipated ones, errors occur. Even for a limited class of

images, for instance MR brain images, various methods have been developed,

none of which is guaranteed to work correctly on a new image. This may be

because there are sensor variations; variations in the brain’s shape, size, and
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intensity distribution; and variations in intensities of tissues surrounding the

brain. Since an error-proof image segmentation method cannot be developed,

user assistance is needed to correct the obtained errors. At present, the best

one can hope for is to have a segmentation method that can correctly find most

areas of an object of interest, and in areas where it makes a mistake, allow the

user to correct them.

We have developed a computer-aided design system that allows a user to

revise the result of an automatically determined segmentation. We assume the

region obtained by an automatic method has a spherical topology. We also as-

sume the region represents voxels forming the bounding surface of an object of

interest in a volumetric image. The developed system fits a parametric surface

to the voxels and overlays the surface with the volumetric image. By viewing

both the image and the surface, the surface is edited until the desired shape is

obtained. The idea behind the proposed method is depicted in Fig. 7.1.

Various user-guided and interactive segmentation methods have been devel-

oped. Barrett, Falcão, Udupa, Mortensen, and others [1, 8, 21, 22, 26] describe

Automatic
Segmentation

ROI
Modeling

3-D interactive
Editing

volumetric
image

digital shape surface model

segmentation
result

revisions

Figure 7.1: The computer-aided design system used in region editing. The sys-

tem starts with a region obtained from an automatic segmentation method.

It then represents the region by a free-form parametric surface and overlays

the surface with the volumetric image. The user then revises the surface while

viewing both the volumetric image and the surface. The final result is generated

parametrically or in digital form.
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a method known as “live-wire” with which a user roughly draws the boundary

of a region of interest. An automatic process then takes over and revises the

boundary by optimizing a cost function. An alternative method is introduced

that allows the user to select a number of points on the region boundary, and

the program then automatically finds boundary segments between consecutive

points, again by minimizing the related cost functions. These methods have

been optimized for speed [9]. They have also been extended to 3D [7]. In 3D,

the program receives boundary contours in a few strategically placed slices and

produces contours in other slices.

Cabral et al. [4] describe editing tools that are associated with a region-

growing method, enabling a user to add or remove image voxels in a region to

revise the region. Hinshaw and Brinkley [14] developed a 3D shape model that

uses prior knowledge of an object’s structure to guide the search for the object.

Object structure is interactively specified with a graphical user interface.

Höhne and Hanson [15] developed low-level segmentation functions based

on morphological operators that interactively delineate regions of interest. Pizer

et al. [24] describe a method that segments a volumetric image into regions at

a hierarchy of resolutions. Then, the user, by pointing to an object in a cross-

sectional image at a certain resolution, selects and revises a region. Welte et

al. [27] describe an interactive method for separating vessels from each other

and from the background in MR angiographic images. To reduce the complexity

of the displayed structures during the interactive segmentation, a capability to

select substructures of interest is provided.

Energy-minimizing models or “snakes” are another set of tools that can be

used to guide a segmentation and revise the obtained results [18, 20]. With an

energy-minimizing model, a contour or a wireframe is initiated approximately

where an object of interest is believed to exist. An optimization process is then

activated to iteratively revise the contour or the wireframe to minimize a local

cost function that defines the energy of the snake. Since some points in a snake

may trap in local minima, the globally optimal solution may be missed. To avoid

this, often the user is allowed to intervene and either move some of the snake’s

points that are thought to have converged to local minima, or guide the snake

to the optimal position by interactively controlling the external forces.

An interactive segmentation method based on a genetic algorithm is de-

scribed by Cagnoni et al. [5]. In this method, the boundary contour of a region

of interest is manually drawn in one of the slices. The boundary contour is then
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considered an initial contour in the subsequent slice and the contour is refined

by a genetic algorithm using image information. The refined boundary is then

considered an initial contour in the next slice and the process is repeated until all

slices in a volumetric image are segmented. Interactive segmentation methods

provide varying levels of user control. The control can be as little as selecting

a contour among many [19] or as much as manually drawing a complete region

boundary. Methods that require a lot of user interaction are highly reliable, but

they also have a high interuser variability. On the other hand, methods that re-

quire very little user interaction are not as reliable, but they have a low interuser

variability. A survey of interactive segmentation methods providing different

levels of user control is given by Olabarriaga and Smeulders [23].

The new idea introduced in this paper is to use the capabilities of a computer-

aided design system to quickly and effectively refine the result of a 3D segmen-

tation, just like editing a 3D geometric model. By having a mental picture of an

object of interest and viewing the information present in a volumetric image, the

user interactively modifies the result of an automatically obtained segmentation

until the desired shape is sculpted. This is achieved by representing the region

by a parametric surface and overlaying the surface with the volumetric image.

Then, the user views both the image and the surface together and modifies the

surface until the satisfactory region is obtained.

We assume an automatic segmentation method that correctly finds most

parts of a region of interest is available. The capability introduced in this paper

enables the user to revise parts of the region that are believed to be inaccurate.

This revision is achieved through a mechanism that sculpts a desired shape from

a rough initial one. The proposed method is not the same as a dynamic snake

model that creates a desired shape by interactively changing the external forces

that guide the snake [20]. Rather, it is based on a parametric surface fitting and

editing model.

7.2 The Computer-Aided Design System

We assume a volumetric image has been segmented and a region of interest

has been extracted. We also assume the given region is composed of connected

voxels that represent the bounding surface of an object of interest. We will call

such a region a digital volumetric shape, or a digital shape. In the following, a
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method that approximates a digital shape by a parametric surface is described.

Since voxels belonging to a digital shape do not usually form a regular grid, we

choose the rational Gaussian (RaG) formulation [11, 12], which does not require

a regular grid of control points to represent a free-form shape. We will show

how to parametrize voxels in a digital shape and how to determine the control

points of a RaG surface that approximate the digital shape by the least-squares

method. The obtained RaG surface is then overlaid with the volumetric image

and the user is allowed to revise the surface by moving its control points.

7.2.1 Surface Approximation

Given a set of (control) points {Vi : i = 1, . . . ,n}, the RaG surface that approxi-

mates the points is given by [11, 12]

P(u, v) =
n∑

i=1

Vigi(u, v), u, v ∈ [0, 1], (7.1)

where gi(u, v) is the ith blending function of the surface defined by

gi(u, v) = Gi(u, v)∑n

j=1 G j(u, v)
, (7.2)

and Gi(u, v) is a 2D Gaussian of height 1 centered at (ui, vi):

Gi(u, v) = exp{−[(u− ui)2 + (v − vi)2]/2σ 2}. (7.3)

{(ui, vi) : i = 1, . . . ,n} are the parameter coordinates associated with the points.

The parameter coordinates determine the adjacency relation between the points.

In the subsequent section, we will see how to estimate them. Formulas (7.1)–

(7.3) are for an open surface. If a surface is required to close from one side, like

a generalized cylinder, formula (7.3) should be replaced with

Gi(u, v) =
∞∑

k=−∞
exp{−[(u− ui)2 + (v − vi + k)2]/2σ 2}. (7.4)

If the opening at each end of a generalized cylinder converges to a point, a

closed surface will be obtained. In a cylindrical surface, a 2D Gaussian wraps

around the closed side of the surface infinitely. However, since a Gaussian ap-

proaches zero exponentially, its effect vanishes after a few cycles. Therefore,

in practice, the ∞ in formula (7.4) is replaced with a small number such as

1 or 2 [11]. An alternative method for obtaining a closed surface is to use the
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formulation of a torus, which is closed along both u and v. Staib and Duncan

[25] make a torus that closes at two points and separate the segment between

the points by selecting proper weights in the formulation of the torus. An al-

ternative method [13] is to transform a torus to a sphere by giving the exterior

and interior circles that define the torus the same center and the same radius,

allowing parametrization of an object with spherical topology using parameter

coordinates of the torus.

The standard deviation of Gaussians in formulas (7.3) and (7.4) determines

the smoothness of a generated surface. A surface with a smaller standard

deviation represents local details better than a surface with a larger standard

deviation. The larger the standard deviation, the smoother the obtained surface.

When the control points are the voxels representing a closed 3D region, the

region can be represented by a parametric surface by mapping the voxels to a

sphere. RaG surfaces described by Eqs. (7.1), (7.2) and (7.4) represent surfaces

with a spherical topology. Assuming parameters φ ∈ [−π/2, π/2] and θ ∈ [0, 2π ]

represent spherical coordinates of voxels defining an object, we will need to set

u= (φ + π
2 )/π and v = θ/2π in the equations of a half-closed RaG surface. In

the following section, we will show how to spherically parametrize voxels in a

closed digital shape, and in the subsequent section, we will show how to find

the control points of a RaG surface in order to approximate a digital shape while

minimizing the sum of squared errors.

7.2.2 Parametrizing the Shape Voxels

Brechbühler et al. [2, 3] describe a method for mapping simply connected shapes

to a sphere through an optimization process. Although this method can find pa-

rameters of voxels in various shapes, the process is very time consuming. We

use the coarse-to-fine method described in [17] to parametrize a digital shape. In

this method, first, a digital shape is approximated by an octahedron and at the

same time a sphere is approximated by an octahedron. Then, correspondence

is establishes between triangles in the shape approximation and triangles in

the sphere approximation. By knowing parameters of octahedral vertices in the

sphere approximation, parameters of octahedral vertices in the shape approxi-

mation are determined. This coarse approximation step is depicted in Fig. 7.2.

The process involves placing a regular octahedron inside the shape and extend-

ing its axes until they intersect the shape and replacing the octahedral vertices
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(a) (b)

Figure 7.2: (a) Approximation of a digital shape by an octahedron. (b) Ap-

proximation of a sphere by an octahedron. Parameter coordinates of octahedral

vertices in the sphere are assigned to the octahedral vertices in the shape.

with the obtained intersection points. The center of the octahedron is placed at

the center of gravity of the shape and its axes are aligned with the axes of the

shape [10]. If the shape is very irregular so that the center of gravity of the shape

falls outside the shape, the intersection of the major axis of the shape with the

shape is found and the midpoint of the longest segment of the axis falling inside

the shape is taken as the center of the octahedron.

Next, the voxels associated with each triangle in the octahedral approxima-

tion are determined. This is achieved by finding the bisecting plane of each octa-

hedral edge and determining the shape voxels that lie in that plane. In Fig. 7.3b,

the bisecting planes passing through the edges of a triangle and intersecting the

shape are shown. The bisecting plane passing through each octahedral edge and

intersecting the shape will be an edge contour. A triangle, therefore, produces

three edge contours that start and end at the vertices of the triangle and enclose

the shape voxels that belong to that triangular face in the octahedral approxima-

tion. The triangles obtained in the octahedral subdivision are entered into a list.

After this initial step, a triangle is removed from the list and is subdivided into

smaller triangles and the triangles whose distances to the associating triangular

patches are larger than a given tolerance are again entered into the list. In this

manner, the triangles are removed from the list, one at a time, and processed

until the list becomes empty.
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(a) (b)

Figure 7.3: (a) Octahedral approximation of a shape. (b) Edge contours delim-

iting a triangular patch.

Subdivision of a triangle is achieved as follows. If distances of voxels in an

edge contour to the associating edge are all within the required tolerance, that

edge is not subdivided. Otherwise, the farthest voxel in the contour to the edge

is used to segment the contour, producing two smaller contours. The farthest

contour point is then connected to the end points of the contour to produce two

new edges. In this manner, a triangular face is subdivided into 2, 3, or 4 smaller

triangles depending on whether 1, 2, or 3 edges of the triangle are replaced with

smaller edges. This is depicted in Figs. 7.4a–7.4c. If distances of voxels in all edge

contours to corresponding edges in a triangle are below the required tolerance,

a test is performed to determine whether or not distances of voxels associated

with the triangle are within a required tolerance to that triangle. If all distances

(a) (b) (c) (d)

Figure 7.4: (a)–(c) Subdividing one, two, or three of the triangular edges, re-

spectively. (d) When no more triangular edges can be subdivided, error between

the triangular patch and the associating triangle is determined and, if that error

is above the given tolerance, the farthest voxel in the patch to the triangle is

determined and used to subdivide the triangle.
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are below the required tolerance, the triangle is not subdivided. Otherwise, the

voxel that is farthest from the triangle is connected to the three vertices of the

triangle to obtain three smaller triangles. This is depicted in Fig. 7.4d. The reason

for subdividing the edge contours first is to avoid very long and narrow triangles

in the final subdivision.

By subdividing a triangle, finer triangles are obtained. The process is repeated

until distances of all shape voxels to the associating triangles become smaller

than the required tolerance. Note that this subdivision is performed in parallel in

the sphere as well. Therefore, whenever a triangle in the shape approximation

is subdivided, the corresponding triangle in the sphere approximation is also

subdivided. For that reason, there always exists a one-to-one correspondence

between triangles in the shape approximation and triangles in the sphere ap-

proximation. By knowing the parameters of mesh vertices in the sphere, we will

know the parameters of corresponding mesh vertices in the shape. This process

assigns spherical parameters to the mesh vertices approximating the shape. The

process is graphically shown in Fig. 7.5. The only requirement of the described

parametrization is for the given shape to have spherical topology.

By knowing the parameters at vertices of a triangle, parameters at points

inside the triangle can be computed from barycentric coordinates [16] of

parameters at the vertices. Parameters of voxels in a triangular patch are ob-

tained by projecting the voxels to the associating triangle and assigning param-

eters of the triangle points to the voxels. If a triangular patch does not fold over,

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

Figure 7.5: (a) A sphere. (b–e) Subdivision of the sphere. (f) A digital shape.

(g–j) Subdivision of the shape. The shape and the sphere are subdivided in

parallel.
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this mapping will be unique. If fold overs occur, the subdivision process should

be continued until all fold overs disappear. When the maximum distance between

a triangle and the associating patch is less than two voxels, fold overs cannot

occur. More details about this parametrization algorithm and its characteristics

can be found in [17].

The parameters obtained by this algorithm uniquely map shape points to

triangular faces. The mapping is continuous but not smooth. To obtain a smooth

parametrization, the parameters obtained here should be used as initial values to

the nonlinear optimization described by Brechbühler et al. [3]. The surface-fitting

method used in this work, however, does not require a smooth parametrization

of the points. It only requires that the parameters vary continuously.

If the vertices of a triangular mesh approximating a digital shape are used as

the control points of a RaG surface and the parameters at mesh vertices are used

as the nodes of the surface, a smooth parametric surface can be obtained that

approximates the shape. The surface obtained in this manner only approximates

the mesh vertices. We can improve this shape recovery process by making the

surface interpolate the mesh vertices. In the following section, a least-squares

method that determines the control points of a RaG surface interpolating the

mesh vertices is described.

7.2.3 Least-Squares Computation of the Control Points

Suppose a digital shape is available and the shape voxels are parametrized

according to the procedure outlined in the preceding section. Also, suppose

the shape is composed of N voxels: {P j : j = 1, . . . , N} with parameter co-

ordinates {(uj, v j) : j = 1, . . . , N}. We would like to determine a RaG surface

with control points {Vi : i = 1, . . . ,n} that can approximate the shape points

optimally in the least-squares sense. Let’s suppose P j = (X j,Yj, Z j), P(u, v) =
[x(u, v), y(u, v), z(u, v)], and Vi = (xi, yi, zi). Then the sum of squared distances

between the voxels and the approximating surface can be written as

E2 =
N∑

j=1

{[x(uj, v j)− X j]2 + [y(uj, v j)− Yj]2 + [z(uj, v j)− Z j]2} (7.5)

=
{ N∑

j=1

[x(uj, v j)− X j]2 +
N∑

j=1

[y(uj, v j)− Yj]2 +
N∑

j=1

[z(uj, v j)− Z j]2 (7.6)

= E2
x + E2

y + E2
z . (7.7)
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Since the three components of the surface are independently defined, to

minimize E2, we minimize E2
x, E2

y, and E2
z , separately. To minimize

E2
x =

N∑
j=1

[x(uj, v j)− X j]2, (7.8)

since

x(uj, v j) =
n∑

i=1

xigi(uj, v j), (7.9)

we minimize

E2
x =

N∑
j=1

[ n∑
i=1

xigi(uj, v j)− X j

]2
. (7.10)

This involves determining the partial derivatives of E2
x with respect to the xi’s,

setting the partial derivatives to zero and solving the obtained system of equa-

tions. This results in

N∑
j=1

gk(uj, v j)
n∑

i=1

[xigi(uj, v j)− X j] = 0; k = 1, . . . ,n. (7.11)

This represents a system of n linear equations, which can be solved for {xi :

i = 1, . . . ,n}. Since RaG basis functions monotonically decrease from a center

point, if σ is not very large, Eq. (7.11) will have a diagonally dominant matrix

of coefficients, ensuring a solution. In the same manner, {yi : i = 1, . . . ,n} and

{zi : i = 1, . . . ,n} can be determined by minimizing E2
y and E2

z , respectively. Note

that the above process positions the n control points of a RaG surface so that

the surface will approximate the N image voxels with the least sum of squared

errors. n depends on the size and complexity of the shape being approximated.

n is typically a few hundred.

Since shape voxels are mapped to a sphere, spherical parameters are ob-

tained for them. Assuming the approximating surface is represented by P(u, v),

the distance of voxel Vi = (xi, yi, zi) to the surface is estimated from E(ui, vi) =
||Vi − P(ui, vi)||. The adjacency information between the control points is pro-

vided in the u and v parameter coordinates. Therefore, index i is arbitrary and

the control points with their associated nodes can be rearranged in Eq. (7.1)

without having any effect in the obtained surface.

When the standard deviation in a RaG surface is very small, the surface fol-

lows individual voxels. The selected standard deviation should be large enough
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to smooth digital and image noise in segmentation. As the standard deviation of

Gaussians is increased, a smoother surface will be obtained approximating the

same set of voxels. Usually, the standard deviation of Gaussians in a RaG surface

should be made proportional to the average distance between adjacent nodes.

The denser the control points, the smaller the distance between their nodes, and

thus, a smaller standard deviation should be used. Experimental results show

that standard deviations from the average distance between adjacent nodes to

five times that are appropriate for surface fitting. We will select this parameter

interactively during shape editing.

Figure 7.6a shows a region representing the bounding surface of a brain tu-

mor. Subdivision of this region to a triangular mesh with a tolerance of 3 voxels

is shown in Fig. 7.6b. The tolerance shows the maximum distance between the

given digital shape and the approximating triangular mesh. Approximation of

the tumor with a RaG surface of standard deviation 0.002 is shown in Fig. 7.6c.

Increasing the standard deviation to 0.0025, 0.003, and 0.004, we obtain the

Figure 7.6: (a) A segmented brain tumor in an MR image. (b) Approximation

of the tumor by a triangular mesh with a tolerance of 3 voxels. (c)–(f) RaG

surfaces approximating the tumor with standard deviations 0.002, 0.0025, 0.003,

and 0.004, resulting in RMSE of 1.9725, 1.9711, 2.1439, and 2.2497 pixels,

respectively.
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results shown in Figs. 7.6d, 7.6e, and 7.6f, respectively. Root-mean-squared-error

(RMSE) for Figs. 7.6c–7.6f are 1.9725, 1.9711, 2.1439, and 2.2497 voxels, respec-

tively. The RMSE obtained in a RaG approximation of a digital region is usually

much smaller than the tolerance used to approximate a digital shape by a trian-

gular mesh. Figures 7.6c–7.6f appear very similar, but from the RMSE obtained,

we see that their local geometries are somewhat different. The shape in Fig. 7.6f

is much smoother and rounder than the shape in Fig. 7.6c.

At the standard deviation that matches the level of detail in a shape, the

smallest surface-fitting error is obtained. This minimum error can be determined

by a steepest-descent algorithm. However, since the given region is known to

contain errors, finding the surface that is very close to the region may not be

of particular interest. Currently, after the control points of an approximating

surface are determined, the user interactively varies the smoothness (standard

deviation) of the surface and views the obtained surface as well as the associating

RMSE. In this manner, the standard deviation of Gaussians can be interactively

selected to reproduce a desired level of details in a constructed shape.

7.2.4 Shape Editing

Once the result of an automatic segmentation is represented by a free-form

parametric surface, the surface can be revised to a desired geometry by appro-

priately moving its control points. In the system we have developed, an obtained

surface is overlaid with the original volumetric image. Then, by going through

different image slices along one of the three orthogonal directions, the user vi-

sually observes the intersection of the surface with the image slices and verifies

the correctness of the segmentation. When an error is observed, one or more of

the control points are appropriately moved to correct the error. As the control

points are moved, the user will observe changes in the surface immediately.

An example of shape editing by the proposed method is shown in Fig. 7.7.

Figure 7.7a shows the surface approximating a brain tumor within the original

volumetric image. The user selects a number of control points using a small

sphere that is attached to the cursor and whose center lies in the image slice

being reviewed. By placing the cursor near the area where an error has occurred

in one of the slices and pressing the mouse button, the sphere is activated and the

control points falling in the sphere are selected. By changing the radius of sphere,

the number of control points selected for movement are changed. Control points



264 Jackowski and Goshtasby

(a) (b)

Figure 7.7: (a) Overlaying of the approximated tumor surface and the volumet-

ric image. The blue dots show the selected control points during surface editing.

The upper-left window shows the 3D view of the image volume with all three or-

thogonal slices. The other three windows show the individual orthogonal views

in axial, sagittal, and coronal directions. (b) Another 3D viewing mode showing

the surface in wireframe form to enable viewing of image information inside

and behind the surface. The red dots show the control points of the surface.

selected by the sphere are then moved with the motion of the mouse. Control

points inside the sphere are not all moved by the same amount and in the same

direction. A point is moved in the appropriate direction by connecting the point

to the center of the sphere and by using the amount proportional to the cosine of

the angle between that direction and the direction of the motion of the mouse.

Only those control points falling inside the hemisphere with positive cosines

are moved. This avoids motion of control points with negative cosines in the

opposing direction. It also ensures that discontinuities will not occur between

points that are moved and points that are not. Intermediate results in surface

modification are shown in Fig. 7.7a. Surface revision can be performed gradually

and repeatedly while observing the image information. The sensitivity of the

surface to the motion of the mouse can be changed by increasing or decreasing

the weights assigned to the control points. To better view the intersection of the

surface with the image planes, the surface can be shown in wireframe form as

depicted in Fig. 7.7b. The edited surface can be digitized as shown in Fig. 7.8b

to create the final segmentation in digital form.
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(a) (b)

Figure 7.8: (a) The tumor after necessary modifications. This is the final result

in parametric form. (b) Digitization of the tumor. This is the final result in digital

form.

7.3 Results

A few examples of image segmentation by the proposed method are shown in

Fig. 7.9. The first column shows the original images, the second column shows

the initial segmentation results, and the third column shows the results after the

necessary revisions. The images represent a short-axis cardiac MR image (first

row), an MR brain image containing a tumor (second row), an MR image con-

taining only the brain (third row), and a PET image of the head (fourth row). The

ventricular blood pool and the brain tumor were initially obtained by a smooth-

ing operation and an optimal intensity thresholding method. In the thresholding

method, first a subvolume including the object of interest is selected. Then the

intensity threshold value that produces the minimum change in the region of

interest as a result of change in threshold value by 1 is determined. The optimal

threshold value is considered to be the intensity where the most stable segmen-

tation is obtained. At the optimal threshold value, a small change in threshold

value will change the segmentation result minimally. This threshold value cor-

responds to the intensity at object boundaries where intensities change sharply.

Therefore, a slight error in estimation of the threshold value will not change the

segmentation result drastically.

The brain image was roughly segmented slice by slice by hand, and the PET

image was segmented by our 3D implementation of the Canny edge detector
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Figure 7.9: First row: A short-axis cardiac MR image and segmentation of

the left ventricular cavity. Second row: An MR brain image and segmentation

of the tumor. Third row: An MR brain image and segmentation of the brain.

Fourth row: A PET image and extraction of the surface of the head. The first

column shows the original images, the middle column shows the initial seg-

mentation results, and the right column shows the results after the necessary

modifications.
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Figure 7.10: An abdominal CT image.

[6]. The Canny edge detector produces a large number of edges. First, weak

edges were removed by interactively varying the gradient threshold value and

observing the obtained edges. Then, an edge surface of interest was selected

by pointing to the surface with the mouse and extracting it from the image. In

these figures, results of the initial segmentation are shown after RaG surface

fitting by the least-squares method. RaG surfaces were then interactively re-

vised as needed while viewing the overlaid surface and volumetric image. Final

segmentation results are shown in the third column of Fig. 7.9.

Another set of examples is shown in Figs. 7.10 and 7.11. Figure 7.10 is an

abdominal CT image. Segmentation of different regions via intensity threshold-

ing or edge detection, subdivision of obtained regions to triangular meshes, and

fitting of RaG surfaces to the mesh vertices are shown in Fig. 7.11. Regions cor-

responding to the liver, one of the kidneys, and the spleen were selected one at a

time and, after representing each by a RaG surface, were edited to remove inac-

curacies in segmentation. Final segmentation results are shown in the column

on the right in Fig. 7.11.

The time needed to obtain an initial segmentation and the time needed to

modify the initial segmentation to obtain the final result vary from image to

image. In the image shown in Figs. 7.9 and 7.11, approximation of the initial
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Figure 7.11: First row: Polygon mesh and RaG surface approximation of the

liver. Second row: Polygon mesh and RaG surface approximation of the kidney.

Third row: Polygon mesh and RaG surface approximation of the spleen.

regions by triangular meshes took from 10 to 30 seconds and approximation of

the regions with RaG surfaces by the least-squares method took from 40 to 60

seconds. Interactive revision of the initial surfaces to obtain the final surfaces

took from 1 to 2 minutes. All these times are measured on an SGI Octane com-

puter with R10000 processor and 128 MB RAM. Although the time to subdivide

a region into a triangular mesh and the time to fit a RaG surface to a volumetric

region are fixed for a given region, the time needed to revise an initial surface

to a desired one depends on the speed of the user and the severity of errors in

the initial segmentation.

The final result of a segmentation obtained by the proposed system is user

dependent. In a typical image, the user judges what a correct segmentation is

based on his/her past experiences while taking into consideration the infor-

mation present in the image. Since users have different experiences in image

interpretation, results obtained by different users will be different. Even the

same user may segment an image differently at different times. The intrauser

variability and interuser variability are not the characteristics of the proposed

system, but rather those of the users. The proposed system provides tools with
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which a user can modify the result of a segmentation in any way desired. There

are no limitations in shape, size, or complexity of a region under consideration.

The only requirement is that the given region have a spherical topology.

7.4 Conclusions

Image segmentation is an important component of any image analysis system.

In medical imaging, it is essential that an image is accurately segmented so

that different measurements about the region are accurately determined. In this

paper, the idea of using a computer-aided design system to effectively revise

the result of an automatically determined segmentation was introduced. In the

proposed system, a RaG surface is fitted to voxels representing a 3D region by

the least-squares method. The surface and the original volumetric image are then

overlaid and the surface is interactively revised until the desired segmentation

is achieved.

The system provides the option of using the output of an automatically ob-

tained segmentation as the input or manually creating an initial segmentation

by selecting a number of 3D points in the given image volume. In the latter case,

an initial surface is created from the points and overlaid with the image. The

user can then observe the image data and revise the surface to a desired shape.

Because a region of interest is represented by a parametric surface, the surface

may be sent to a computer-aided manufacturing system for construction of an

actual 3D model of the region.
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Chapter 8

Inter-Subject Non-Rigid Registration:

An Overview with Classification and

the Romeo Algorithm

Pierre Hellier1

8.1 Introduction

Registration is basically the process of estimating the spatial transformation

that matches two images. Registration is especially important when analyzing

motion and deformations of natural phenomena. Registration is a very active

field of research. Various techniques have been proposed so far, concerning

rigid and non-rigid methods.

Rigid registration is adapted in many applications except in some situations:

complex deformations such as soft tissue deformation, evolution of lesions over

time, matter appearance or dissipation and so on. Therefore, non-rigid registra-

tion methods (also called deformable registration) have been developed. This

chapter will be mostly concerned with non-rigid registration methods and more

particularly with a specific application: registration of brains of different sub-

jects.

During the last few years, the development of electronic brain atlases has

emerged by overcoming some limitations of traditional paper-based atlases [49,

62, 81, 92, 97, 139]. To do so, non-rigid intersubject registration methods have

been developed in order to account for the intersubject variability [92].

1 IRISA-INRIA, Campus de Beaulieu, 35042 Rennes, France
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Electronic atlases have two main purposes:

� Automatic segmentation of a given subject by matching the segmentation

and labeling of anatomical structures of a template. Labels of the template

can be deformed into another subject, under the assumption that there is a

total relation between the points of the atlas (source) and the points of the

studied subject (target). This objective has been pursued for a long time

in medicine and was traditionally treated by paper atlases with generally

rather simple transformations. The most known example is the atlas of

Talairach with its famous AC-PC referential and its related proportional

squaring [131].

� Understanding of brain functions. Many techniques have been developed

to record brain activity (SPECT, PET, MEG/EEG, fMRI). However, the links

between anatomy and functional organization are often not well known:

the superimposition of multiindividual neurofunctional recordings on the

same anatomy is useful to better understand the human brain functional or-

ganization. In this case, inherent anatomical variability between individu-

als may disturb this interpretation. Therefore, spatial normalization, which

is the goal of non-rigid registration methods, makes it possible to study the

functional variability. A better knowledge of this anatomy-function rela-

tionship is of great interest for the researcher in cognitive neuroscience,

as well as for the surgeon and the neurologist who intend to delineate

relevant functional areas before surgery.

This chapter is divided into two sections: an overview with classification

of non-rigid registration techniques will be presented first. The Romeo algo-

rithm (robust multigrid elastic registration based on optical flow) will then be

described.

8.2 Overview of Non-Rigid Registration

Methods

8.2.1 Introduction

Non-rigid registration is a very active field of research and numerous methods

have been proposed. This section does not intend to propose an exhaustive
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list of methods but to present generic and up-to-date methods. The interested

reader will refer to [19, 60, 61, 87, 90, 91, 140, 143, 151] for a complete survey

on this subject. This section will therefore be restricted to an overview with

classification of non-rigid registration methods, more particularly applied to

non-rigid registration of brains of different subjects.

Methods can generally be classified according to the following criteria:

� Features that will be matched. This includes both the dimension of the

data (classically from 2D to 4D) as well as the homologous structures that

are chosen for matching.

� Transformation type. This includes the transformation domain: local or

global. A transformation is called “global” when the modification of one

parameter affects the entire image. This also includes the transformation

type (rigid, affine, projective and so on).

� The similarity measure. The similarity models the interaction between the

data (features used for matching defined above) and the variables to be

estimated (parameters of the transformation for instance).

� The regularization. The regularization can be implicit (regularized trans-

formation model for instance) or explicit (first-order regularization for

instance).

� The optimization method. Once the registration problem has been formal-

ized, the optimization plays a crucial role in estimating the registration

variables.

We have chosen to divide non-rigid registration methods into two classes:

geometrical methods that are based on the extraction and matching of sparse

features; and photometric (or intensity-based) methods that exploit luminance

information directly.

8.2.2 Geometric Methods

The amount of data in a 3D MR image is enormous: it contains more than 10

million voxels. The computation of a dense deformation field is a tough problem:

more than 40.106 variables have to be estimated. This complexity has motivated

geometric methods: sparse anatomical features reduce the dimension of the
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problem. Methods that are presented here extract geometrical features from

images and compute a transformation that matches these features while inter-

polating smoothly the deformation throughout the image.

8.2.2.1 Points

Earliest methods rely on points. The most famous one, which is still a reference in

the field of neuroscience, is the Talairach stereotaxic space [130]. It has then been

extended to the Talairach proportional squaring system [132]. Both methods rely

on the identification of the anterior comissure AC and posterior comissure PC,

as well as five brain extrema which makes it possible to specify a partition of the

volume into 12 subvolumes. The transformation associated with the Talairach

proportional squaring system is a piecewise linear one that makes it possible

to embed the brain into a “box” centered at AC and whose anatomical axes are

known. This framework is known to be quite accurate in the central region but

less accurate for cortical areas.

Other authors have proposed methods based on anatomical points to register

brains of different subjects [16, 26, 50, 116]. However, the number of points that

can be reproducibly identified among a population of subjects is limited. It has

been evaluated as 36 [38] or 26 [50]. This number of points seems limited to

understand the intersubject variability; in addition to this, the extraction step

might be erroneous. To limit the dependency toward extraction, some authors

have proposed differential geometry operators to automate the process [135,

114, 115].

8.2.2.2 Curves

Guéziec [66], Subsol [126] and Declerck [41] describe methods to register two

volumes thanks to curves: smoothing and curve matching in [66], application to

the registration of brains in [41], building of skull atlases in [126]. Crest lines,

introduced by Monga et al. [100], are defined as maximal curvature points and

can be automatically extracted using the marching lines algorithm [137].

Gueziec et al. [66] approximate curves using B-splines. This enables the

direct computation of features such as position, curvature and so on. Curves are

then registered using an iterative approach like the Kalman filter. Subsol [126]

and Declerck [41] have extended the ICP algorithm (Iterative closest points
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proposed by Zhang [150] and Besl [12]). The iterative approach matches each

point with the closest point on the target curve. [41] models the transformation

as a B-spline while [126] estimates successively a rigid, affine, polynomial and

spline transformation.

8.2.2.3 Surfaces

In 3D medical imaging, anatomical structures are likely to be closed surfaces

than points or curves. Several authors [51, 56, 138, 128] have therefore proposed

methods to register brain surfaces (like ventricles, central nuclei, brain surface).

In a nutshell, deformable models have been extensively used for segmentation

of medical images [8, 15, 94]. They can lead either to an explicit representation

of contours (e.g., snakes) or to an implicit representation of contours (e.g., level

sets [124]).

Thompson and Toga [138] have proposed an original method based on the

extraction and matching of the cortical surface. Surfaces are first modeled by

a superquadric [25] than refined by the “balloons” method [32]. Feldmar et al.

[52] have extended the curve matching methods (see Section 8.2.2 to the regis-

tration of free-form surfaces. The iterative approach matches points of similar

curvature.

8.2.2.4 From “Contour” to Volume

We have previously presented registration methods based on the extraction

and matching of sparse features. The next step is to extrapolate smoothly the

deformation to the entire volume. To do so, two kinds of approaches can be

used: thin plate spline methods and free form deformations.

The thin plate spline (TPS) approach consists in minimizing a functional

under constraints. Initiated by Duchon [47] and Meinguet [95], this method is

now widespread, thanks to the work of Bookstein [16]. The problem can be

formulated as the minimization of:

min
u

∫
|∇mu(x)|dx, under the constraint ∀i ∈ E,u(ai) = αi,

where u is the deformation field, E is the set of contour points, ai being

matched with αi. Bookstein describes the TPS method that minimizes the en-

ergy of a thin plate under constraint. The solution can be expressed as local
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solutions of the biharmonic equation �2U = 0 at different scales. Solutions are

expressed as z(x, y) = −U(r) = −r2 log(r2) in dimension 2 (with r =
√

x2 + y2)

and z(x, y) = |r| in dimension 3 (with r =
√

x2 + y2 + z2). This spline transfor-

mation ensures the matching of landmarks as well as a smooth interpolation

of the deformation. Chui and Rangarajan have proposed the TPS-RPM algo-

rithm [30] where they address both the correspondence and the transformation

problem. They propose the softassign algorithm to solve the correspondence

problem and the TPS for the transformation.

Another approach is the use of free-form deformations [123]. Initially intro-

duced to model and deform objects [6, 148], they have also been used to model

deformations [43, 64, 70, 96, 107, 117, 129, 134]. Splines models are quite powerful

to extrapolate deformations indeed.

8.2.3 Photometric Methods

The number of features that can be extracted reproductively among a population

of subjects is rather low. Therefore, photometric (also called “intensity-based” or

iconic) methods have been developed to take into account the entire information

of the volume. Photometric methods rely on a similarity (or dissimilarity) that

measures the dependency between two volumes. We have chosen to present the

registration methods according to the following classification: methods that de-

rive from the laws of continuum mechanics; methods that use cross-correlation;

the demon’s method; methods based on optical flow, and finally methods that

estimate jointly an intensity correction and a geometrical transformation.

8.2.3.1 Models Based on Continuum Mechanics

Considering two MR images of two different subjects, the estimation of a “plau-

sible” transformation must be sought. The notion of a “plausible” transforma-

tion in this context being particularly difficult to state, some authors have pro-

posed to comply with the laws of continuum mechanics, either elastic or fluid

(Section 8.2.3).

8.2.3.2 Elastic Models

Elastic models have been introduced by Broit [18] and extended by Bajcsy and

Kovacic [4, 5]. These models are nowadays used by various authors [39, 38, 54,
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59, 104, 105, 118, 121, 146]. The estimated deformation field should basically

obey the rule of the Navier equation:

µ∇2u+ (λ+ µ)∇(div(u))+ F = 0,

where u is the deformation field to estimate, λ and µ are the Lame coef-

ficients and F is the sum of forces that are applied on the system. The

problem is to specify the forces F that will lead to a correct registration.

Bajcsy proposes to compute these forces so as to match the contours [5].

Davatzikos [39] and Peckar [104] do not compute any forces but segment the

brain surface and the ventricles using two different methods. The matching

of these surfaces provide boundary conditions that make it possible to solve

the problem. These two approaches are therefore sensitive to segmentation

errors.

The use of elastic methods raises the following questions:

� What should be the values of Lame coefficients? The choice of these coef-

ficients influence the deformation. Earliest work proposed that λ = 0 but

it appears nowadays to be a limitation.

� This modeling cannot handle large deformations. As a matter of fact, the

equation of Navier is only valid for small displacements. To solve this

problem, two kind of approaches can be used. A rigid registration can

provide a good initialization (Bajcsy [5] uses principal inertia axes and

Davatzikos [38] uses the stereotaxic space). Another way [104] is to solve

the problem iteratively using a multiresolution approach.

� The topology of present structures will be preserved. This may be inter-

esting in some applications but more questionable when matching brains

of different subjects. Ono [103] has shown that cortical structures are not

topologically equivalent among subjects indeed.

8.2.3.3 Fluid Models

Following the same inspiration as elastic models, Christensen and Miller [27]

propose to compute a deformation that obeys the rule of fluid mechanics (equa-

tion of Navier–Stokes). The major difference with the elastic modeling is the

fact that the fluid continuously “forgets” about its initial position. Large displace-

ments and complex motions are therefore much easier to handle. The equation
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of Navier–Stokes can be written as

∂ �u
∂t
− ν� �u+ (�u · �∇) �u+ �∇ p = 0

where ν is the fluid viscosity, �u its speed and �p its pressure. This equation is

highly non-linear (cross-terms) and its resolution is complex, leading to large

computation times. Christensen imposes the constraint that the Jacobian be

positive [27], leading to an homeomorphic transformation.

Christensen and Johnson [28] have extended the registration approach to

introduce the reversibility constraint. Given two subjects A and B, the method

jointly estimates transformation from A to B and from B to A. The inverse

consistency error is zero when the forward and reverse transformations are

inverses of one another. Furthermore, the transformations obey the rules of

continuum mechanics and are parameterized by Fourier series.

Bro-Nielsen [17] has proposed an improvement to solve the following partial

differential equation:

Lv = µ∇v(x)+ (λ+ µ) div(v) = f (x,u (x))

where u is the displacement and v the instantaneous speed. For a small time

change, internal forces are constant and the equation is linear. While Christensen

uses a finite element scheme, Bro-Nielsen considers the impulse response asso-

ciated with operator L. The solution is then expressed as linear combinations of

eigenvectors of operator L. This significantly decreases the computation time.

Wang and Staib [146] have also proposed two methods that obey the rule of

continuum mechanics. The methods respect the properties of elastic solids or

viscous fluids. A statistical shape information (sparse set of forces) is mixed with

a luminance information (dense set of forces within a Bayesian framework).

8.2.3.4 Correlation

Cross-correlation is a widespread similarity measure. It has been used by popular

methods such as ANIMAL [35] and Gee et al. [59]. ANIMAL uses a multireso-

lution strategy to estimate local linear transformations that maximizes cross-

correlation. At a resolution level σ , the regularization is based on the statement

that the norm of displacement vectors should not exceed σ . Colllins et al. [36]

has extended ANIMAL so that sulcal constraints can be taken into account in

the registration process.
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Gee, first interested in mechanical models [59], adopted a statistical Bayesian

framework [58]. Let us note IR the reference volume, IT the target volume,

z= {IR, IT } the data and u the deformation field. The problem is then to minimize

the cost functional:

P(z|u) ∝ exp−{
∫

x∈�T

S (IT (x), IR(x+ u (x))) dx},

where S is the similarity measure that has been chosen to be cross-correlation.

The regularization follows either a membrane model P(u) ∝ λ ∫ (u2
x + u2

y) dx or

a thin-plate model P(u) ∝ λ ∫ (u2
xx + 2u2

xy+ u2
yy) dx. Gee also made it possible

to incorporate landmark points in the registration process. If the transforma-

tion X matches pi with p′i, the associated potential is: P(Z = (pi, p′i)|θ = X) ∝
exp− 1

2σ 2
i

||X (pi)− p′i||2. This probabilistic approach is useful to mix mechani-

cal regularization, photometric similarity and landmark matching. It also make

it possible to experiment and compare different kinds of regularization [58].

Cachier et al. [21] have proposed the Pasha algorithm where the lo-

cal correlation coefficient is used. This coefficient can be efficiently com-

puted using convolutions with a Gaussian window function. The regulariza-

tion is a mixture of competitive and incremental regularization using quadratic

energies.

8.2.3.5 Demons

Thirion has proposed a method well known as the Demon’s algorithm [136]. At

each demon’s location, force is computed so as to repulse the model toward

the data. The force depends on the polarity of the point (inside or outside the

model), the image difference and gradients. For small displacements, it has been

shown that the demon’s method and optical flow are equivalent. The method is

alternated: computation of forces and regularization of the deformation field

by a Gaussian smoothing. The choice of the smoothing parameter is therefore

important. The Demon’s algorithm has been successfully used by Dawant et al.

[40].

Cachier and Pennec [106] have shown that the Demon’s method can be

viewed as a second-order gradient descent of the SSD (Sum of Square Differ-

ences). This amounts to a minmax problem: maximization of similarity and

regularization of solution.
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8.2.3.6 Displaced Frame Difference and Optical Flow

The displaced frame difference (DFD) measures the difference between

voxel intensities. It can be used either directly [1, 101, 144] or linearized

(known as optical flow) [46, 76, 125]. The DFD is known to be highly non-

linear whereas optical flow is linear. However, optical flow is only valid for

small displacements and can estimate motion only in the direction of the

image gradient (aperture problem). In both cases, this similarity will not

be valid if luminance is not conserved (this may happen because of im-

age acquisition, acquisition systems or parameters, MR inhomogeneities and

so on).

Close to mechanical approaches, Song and Leahy [125] and Devlaminck

[46] have proposed to estimate the optical flow with a mechanical reg-

ularization. More specifically, when images are density images (the lumi-

nance is directly related to a physical quantity), the mass conservation hy-

pothesis may be introduced to constraint the estimation in a plausible way

[37, 125].

In the field of cardiac imaging, Reissmann et al. [112] have proposed to use

the neuractive pyramid to register images using the optical flow. The elastic grid

that is the kernel of the deformation deforms so as to reject the discontinuities

at boundaries of the grid. The minimization is therefore alternated between the

deformation and the optimal shape of the grid.

The SPM spatial normalization approach [2] estimates warps by matching

each skull-stripped image to the skull-stripped reference. Registration involves

minimizing the mean squared difference between the images, which had been

previously smoothed by convolving with an isotropic 8 mm FWHM Gaussian

kernel. The non-rigid deformation is modeled by a linear combination of low-

frequency cosine transform basis functions [2]. Displacements in each direction

are parameterized by 392 basis function coefficients, making a total of 1176

parameters in total. Regularization is obtained by minimizing the membrane

energy of the warps.

Vemuri [144] also uses the optical flow but models the deformation as a

combination of splines similarly to [127]. Finally, Musse et al. [101] describe a

hierarchical method to estimate the deformation using the SSD criterion. The

solution is sought as a combination of the spine’s functions that ensure the

regularity of the solution.
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8.2.3.7 Joint estimation of Intensity and

Geometric Transformations

Many artifacts can modify the luminance of an MR image. One of them is the

inhomogeneity of the magnetic field for instance [80]. As a consequence, the

hypothesis of luminance conservation might not be valid anywhere. One solu-

tion consists in using robust estimators to get rid of inconsistent data. Another

solution consists in estimating jointly an intensity correction and a spatial trans-

formation [53, 55, 65].

Gupta and Prince [65] propose an affine correction model for tagged MR:

f (r+ dr, t + dt) = m(r,dr, t, dt) f (r, t)+ c(r,dr, t, dt). The optical flow equa-

tion then becomes:

f (r, t)+ ∇ f (r, t) ·U(r, t)− f (r, t)
∂m (r, t)
∂t

− ∂c(r, t)
∂t

= 0.

The equation is solved in a variational framework using a first-order regular-

ization.

Friston [55] and Feldmar [53] propose to embed the intensity correction and

the spatial transformation in the same cost functional:

C(f, g) =
∑
Mi∈i1

(I2( f (Mi))− g(I1(Mi),Mi))2,

where f is the 3D transformation and g is the intensity correction. Feldmar

generalizes this approach and considers 3D images as 4D surfaces. The criterion

becomes:

C(f, g) =
∑

(xj ,ij)

d ((f (xj), g(xj, ij)),C P4D(f(xj), g(xj, ij)))2,

where xj is the point of intensity ij and C P4D is the function that renders the

closest point. In this sense, this method is a generalization of the ICP (iterative

closest point) algorithm. Functions f and g can be modeled according to the

application. For instance, for a intra-subject monomodal registration, f is rigid

and g is the identity. For inter-subject registration, f can be a combination of

radial basis functions and f should correct acquisition artifacts.
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8.2.3.8 Non-Rigid Multimodal Registration

Although many efforts have been made to perform rigid multimodal registration,

as far as we know, there has been few research concerning non-rigid multimodal

registration. As a matter of fact, this is quite a challenging problem, since the

number of variables to be estimated can be very large (intensity mapping, and ge-

ometrical transformation, the two being dependent). Two different approaches

have been developed.

One option is to estimate the geometrical transformation with the original

intensities of the two images to be registered. In this category, Maintz et al. [89]

and Gaens et al. [57] proposed an algorithm that seek a non-rigid transformation

by maximization of mutual information. They use a “block-matching” minimiza-

tion scheme with a Gaussian filtering of the estimated deformation field to avoid

blocky effects. On local windows, the estimation does not take into account the

spatial context of the deformation field and only a translation is estimated. Fur-

thermore, these methods are only performed in 2D. Rueckert et al. [117] and

Kybic et al. [84] proposed an approach based on cubic B-splines and mutual

information. The spline deformation model intrinsically contains the regulariza-

tion and provides a smooth interpolation of the field. Displacement of the nodes

are computed such as to maximize the similarity measure (mutual information,

or normalized mutual information).

Another appealing option has been proposed by Guimond et al. [63]. This

method considers the multimodal registration problem as a monomodal registra-

tion problem, and therefore estimates alternatively an intensity correction and

a monomodal registration. The originality of the method resides in the decom-

position of the problem into two “easier” ones: a polynomial intensity mapping

and a monomodal registration problem based on the demon’s algorithm [136].

8.2.4 Discussion

This section has presented a brief overview of non-rigid registration techniques.

Methods have been arbitrarily classified into two groups: geometric methods that

rely on the extraction and matching of geometrical features; and photometric

methods (or intensity-based) that rely on the luminance information directly.

Geometric methods are attractive because they rely on anatomical features.

The deformation is expected to be consistent in the vicinity of features that

are used. In addition, the complexity is significantly reduced compared to the
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method that uses the entire data. Despite these advantages, these methods ap-

pear limited in the context of inter-subject registration. As a matter of fact, the

number of features that can be reproductively identified among a population

of subjects is limited compared to the inter-subject variability. Furthermore, a

lot of information present in the data are not used by geometric methods while

photometric take advantage of all information available. This rapid comparison

may explain the popularity of photometric methods, which has been proved in

the particular context of rigid multimodal fusion [147].

Photometric methods differ by numerous aspects. Among them, two impor-

tant ones are the similarity measure and the regularization.

The choice of the similarity is crucial since this models the interaction be-

tween the data and the estimated variables. Roche et al. have shown [113] that

the choice of a similarity can be guided by the a priori knowledge that we have

about the data. Regularization is also crucial since it expresses the a priori

knowledge that we have about the deformation. The choice of a correct regular-

ization in the context of inter-subject normalization is difficult and still debated

since we do not know what should be the “ideal” deformation field between

two brains of two different subjects. Regularization often conserves the topol-

ogy of brain structures. While valid for internal structures such as ventricles,

the conservation of topology is a strong hypothesis when dealing with corti-

cal structures. Anatomists have indeed shown that cortical sulci have different

shapes and topology among individuals [103].

Recently there has been an increasing number of promising methods

[22, 29, 36, 68, 73, 79, 141] that combine the benefits of photometric and ge-

ometric approaches to register brains of different subjects. In these methods,

landmarks are used to drive the registration process so that the deformation

field is consistent with the matching of sparse anatomical structures.

8.3 Romeo: Robust Multigrid Elastic

Registration Based on Optical Flow

8.3.1 Introduction

We consider the registration problem as a motion estimation problem, which

has been studied by different authors [7, 9, 10, 11, 13, 31, 76, 82, 102, 120]. Our
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3D method performs a non-linear multimodality registration of MRI acquisition

of different subjects. The similarity measure that we use incorporates robust

estimators whose utility is twofold: on the one hand we want to limit the influence

of the acquisition noise, on the other hand, we want to cope with possible

modifications of structures’ topology [75].

Since the luminance of MR images might not be directly comparable, we

propose an intensity correction scheme that is anatomically consistent [71].

This correction method will be described in Section 8.3.2. Then volumes to be

registered are rigidly aligned by maximizing mutual information (described in

Section 8.3.2).

Many tasks in computer vision may be expressed as the minimization of a cost

function. The optimization is often difficult to achieve, because the cost function

is non-convex and because the optimization involves a very large number of

variables. Therefore efficient iterative multigrid (or multilevel) approaches have

been developed [67, 93] and applied in motion estimation [48] and in early vision

[133].

To take into account large deformations, we use a multiresolution optimiza-

tion scheme. Besides, at each resolution level, we use a multigrid minimization

to accelerate the algorithm and improve the quality of the estimation. Within

this hierarchical approach, we designed an adaptive partition of the volume to

refine the estimation on the regions of interest and avoid useless efforts else-

where. An anatomical segmentation of the cortex is introduced and used in two

ways: at each resolution level, we initialize the partition as an octree subdivision

based on the segmentation, and the segmentation mask is used in the subdivision

criterion which controls the refinement of the estimation.

The method will first be extensively presented in Section 8.3.2. We will also

present an extension of this method to multimodal data [72] in Section 8.3.2.

Results on synthetic and real data will then be presented in Section 8.3.3.

8.3.2 Method

8.3.2.1 General Formulation

The optical flow hypothesis, or brightness constancy constraint, introduced by

Horn and Schunck [76], assumes that the luminance of a physical point does

not vary much between the two volumes to register. It amounts to zeroing the
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so-called DFD (displaced frame difference):

f (s+ws, t1)− f (s, t2) = 0,

where s is a voxel of the volume, t1 and t2 are the indexes of the volumes (tem-

poral indexes for a dynamic acquisition, indexes in a database for multisubject

registration), f is the luminance function and w the expected 3D displacement

field. The DFD may not be valid everywhere, because of noise and intensity

inhomogeneities of MR acquisition. The robustness of the registration process

with respect to acquisition artifacts will be discussed later on, the sections 8.3.2

and 8.3.3.

Generally, a linear expansion of this equation is preferred : ∇ f (s, t) ·ws +
ft(s, t) = 0 where ∇ f (s, t) stands for the spatial gradient of luminance and

ft(s, t) is the voxelwise difference between the two volumes. The resulting set

of undetermined equations has to be complemented with some prior on the de-

formation field. Using an energy-based framework (which can be viewed either

from the Bayesian point of view, or from the one of the regularization theory),

the registration problem may be formulated as the minimization of the following

cost function:

U(w; f ) =
∑
s∈S

[∇ f (s, t) ·ws + ft(s, t)]2 + α
∑

<s,r>∈C
||ws −wr||2, (8.1)

where S is the voxel lattice, C is the set of neighboring pairs w.r.t. a given neigh-

borhood system V on S (<s,r> ∈ C ⇔ s ∈ V(r)), and α controls the balance

between the two energy terms. The first term captures the brightness con-

stancy constraint, thus modeling the interaction between the field (unknown

variables) and the data (given variables), whereas the second term captures a

simple smoothness prior. The weaknesses of this formulation are known:

(a) Due to the linearization, the optical flow constraint (OFC) is not valid in

case of large displacements.

(b) The OFC might not be valid in all the regions of the volume, be-

cause of the acquisition noise, intensity non-uniformity in MRI data, and

occlusions.

(c) The “real” field is not globally smooth and it probably contains dis-

continuities that might not be preserved because of the quadratic

smoothing.
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To cope with the (b) and (c) limitations, we replace the quadratic cost by

robust functions. To face the problem (a), we use a multiresolution plan and a

multigrid strategy to improve the minimization at each resolution level.

We have here introduced a simple regularization term that makes almost

no assumption on the estimated deformation field. One could imagine choosing

different regularizations for the different brain tissues, but that involves specific

assumptions on the “real” deformation that we do not address in that paper. How-

ever, the introduction of a robust estimator on the regularization term makes it

possible to take into account possible discontinuities on the border of structures

having different physical properties.

8.3.2.2 Rigid Registration Step

Given two images with potentially large displacement, it first seems reasonable

to estimate a rigid transformation. This step is performed by estimating a rigid

transformation that maximizes mutual information [33, 145]. Given two images A

and B, considered as discrete random variables, let us note pA(a) and pB(b) their

respective marginal probability distribution, and pA,B(a, b) the joint distribution.

Mutual information I(A, B) is then defined as [33, 145]:

I(A, B) =
∑
a,b

pA,B (a, b) log2
pA,B(a, b)

pA(a)pB(b)
= H (A)+ H (B)− H (A, B),

with

H (A) = −
∑

a

pA(a) log2(pA(a)) and

H (A, B) = −
∑
a,b

pA,B(a, b) log2(pA,B(a, b)).

In some particular cases, such as brain images for instance, it is possible to

define a reference coordinate system that takes into account some information

about the scene (such as resolution of pixels/voxels, orientation of axes, etc.).

In such cases, the two volumes to be registered are mapped in this reference

coordinate system and the rigid transformation is expressed in this coordinate

system. If this a priori information is not available, the rigid transformation is

estimated in the coordinate system attached to the data.

The registration is performed through a multiresolution optimization scheme

(construction of a pyramid of volumes by successive isotropic Gaussian filtering
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and subsampling in each direction) [69, 109]. At each resolution level, the simi-

larity I(A, T(B)) is maximized w.r.t. the parameters of the transformation using

a Powell’s algorithm [110]. We calculate the joint histogram on the overlapping

part of A with T(B) by partial volume interpolation, the latter being known to

provide a smoother cost function.

8.3.2.3 Intensity Correction

The hypothesis of luminance conservation is strong and cannot stand when

considering a large database. Actually, studies nowadays involve distributed

databases. Since the MR acquisition can come from different systems, the inten-

sity difference of MR images of different subjects needs to be corrected prior to

registration. Let us formulate the problem as:

Given two 3D images I1 and I2, and their histograms h1 and h2, the problem is

to estimate a correction function g such that corresponding anatomical tissues

of g(I1) and I2 have the same intensity, without registering volumes I1 and I2 .

Estimation of Mixture Model. The intensity correction f should be

anatomically consistent, i.e., the intensity of gray matter (resp. white mat-

ter) of g(I1) should match the intensity of gray matter (resp. white matter)

of I2. To ensure this coherence, we estimate a mixture of n Gaussian distri-

butions [3, 83, 86, 122, 149] that models the two histograms h1 and h2 using

the expectation-maximization (EM) algorithm [44] or a stochastic version, the

stochastic expectation maximization (SEM) algorithm [23].

Basically, the EM algorithm consists of two steps: Step E where conditional

probabilities are computed, and step M where mixtures parameters are esti-

mated so as to maximize the likelihood. Contrary to the EM algorithm, the SEM

algorithm consists in adding a stochastic “perturbation” between the E and M

step. The labels are then randomly chosen from their current conditional distri-

bution. The SEM algorithm is supposed to be less sensitive to initialization but

also to converge more slowly than the EM algorithm.

It is well known that the MR histogram can be roughly modeled as the mix-

ture of five Gaussian laws modeling the main tissues: background, cerebrospinal

fluid (CSF), gray matter (GM), white matter (WM) and a mixture of fat and

muscle. The Gaussian mixture has proved to be relevant for fitting MR-T1 his-

tograms [83]. It has also been shown that mixture tissues (interface gray-CSF and
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Gray-White) can also be modeled by additional Gaussian laws to model partial-

volume effects. To do so, a mixture of seven models can be used instead.

In every case (EM or SEM algorithm, five or seven Gaussian models), we

model each class κ by a Gaussian distribution of mean µκ (respectively, νκ) for

image I1 (respectively, image I2).

Parametric Correction. To align the intensities of the anatomical tissues

and to interpolate smoothly the correction, we choose a polynomial correction

function of order p (see [63] for a similar modeling of intensity correction) such

that gp(x) =∑i=p

i=0 θ
ixi. The coefficients θ i are estimated such as to minimize

the following cost:

l=n∑
l=1

(
g p(µ j)− ν j

)2
.

The intensity correction aims at aligning the mean values of each classes

while interpolating smoothly between the samples. This least-square problem

amounts to inverting a linear system of order p. The resulting correction can

then be applied to the voxel intensities of volume I1.

8.3.2.4 Robust Estimators

Cost function Eq. (8.1) does not make any difference between relevant data

and inconsistent data, nor between neighboring pairs where the field is smooth

and neighboring pairs where the field is discontinuous. Therefore, we introduce

robust functions [77] and more precisely two robust M-estimators [14], the first

one on the data term and the second one on the regularization term. We do not

describe in details the properties of robust M-estimators, referring the reader to

[14, 98] for further explanations. The cost function (8.1) can then be modified as:

U(w; f ) =
∑
s∈S

ρ1 (∇ f (s, t) ·ws + ft(s, t))+ α
∑

<s,r>∈C
ρ2 (||ws −wr||) . (8.2)

According to some properties of robust M-estimators [14, 24], it can be shown

that the minimization of U (Eq. 8.1) is equivalent to the minimization of an

augmented function, noted
∗

U :

∗
U (w, δ, β; f ) =

∑
s∈S

δs (∇ f (s, t) ·ws + ft(s, t))2 + ψ1(δs)+ α

×
∑

<s,r>∈C
βsr||ws −wr||2 + ψ2(βsr), (8.3)
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where δs and βsr are auxiliary variables (acting as “weights”) to be estimated.

This cost function has the advantage to be quadratic with respect to w. It also

shows clearly that, when a discontinuity gets larger, the contribution of the

pair of neighbors is limited by the reduction of the associated weight βsr . The

minimizers of
∗

U with respect to the auxiliary variables are obtained in closed

form [14, 24]. The overall minimization of such function consists in an alternated

weights computation and quadratic minimizations (with respect to w).

8.3.2.5 Multiresolution Incremental Computation

of the Optical Flow

In cases of large displacements, we use a classical incremental multiresolution

procedure [11, 48] (see Fig. 8.1). We construct a pyramid of volumes { f k} with

successive Gaussian smoothing and subsampling in each direction [20]. For each

direction i = x, y, z, di is the spatial resolution of a voxel (the spatial resolution

of MR acquisition is around 1 mm, depending on the system). We perform a

Gaussian filtering using the recursive implementation proposed in [45] with a

standard deviation of 2di in direction i, in order to satisfy Nyquist’s criterion.

This implementation allows to perform infinite impulse response filtering at a

constant computation cost.

At the coarsest level, displacements are reduced, and cost function (8.3) can

be used because the linearization hypothesis becomes valid. For the next resolu-

tion levels, only an increment dwk is estimated to refine the estimate ŵ
k obtained

ŵ

Resolution
level k

Resolution
level k − 1

minimization
dwk =   0

dwk − 1 = 0
minimization

Projection

Resolution level k + 1

Resolution     level k −  2

ˆ ˆ

ŵk − 1

ˆdwk +  wkˆ

k

dwk − 1  +  wk − 1

Figure 8.1: Incremental estimation of the optical flow.
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from the previous level. We perform the registration from resolution kc until res-

olution k f (in general k f = 0). This is done using cost function (8.2) but with

∇ f̃ k(s, t)
�=∇ f k(s+ ŵ

k
s, t2) and f̃ k

t (s, t)
�= f k(s+ ŵ

k
s, t2)− f k(s, t1) instead of

∇ f k(s, t) and f k
t (s, t).

To compute the spatial and temporal gradients, we construct the warped

volume f k(s+ ŵ
k
s, t2) from volume f k(s, t2) and the deformation field ŵ

k
s , using

trilinear interpolation. The spatial gradient is hence calculated using the recur-

sive implementation of the derivatives of the Gaussian [45]. At each voxel, we

calculate the difference between the source volume and the reconstructed vol-

ume, and the result is filtered with a Gaussian to construct the temporal gradient.

As previously, these quantities come from the linearization of the constancy as-

sumption expressed for the whole displacement ŵ
k
s + dwk

s . The regularization

term becomes
∑
<s,r>∈C ρ2(||ŵk

s + dwk
s − ŵ

k
r − dwk

r ||).

8.3.2.6 Multigrid Minimization Scheme

Motivations. The direct minimization of Eq. (8.3) is intractable. Some iter-

ative procedure has to be designed. Unfortunately, the propagation of infor-

mation through local interaction is often very slow, leading to an extremely

time-consuming algorithm. To overcome this difficulty (which is classical in

computer vision when minimizing a cost function involving a large number of

variables), multigrid approaches have been designed and used in the field of

computer vision [48, 98, 133]. Multigrid minimization consists in performing the

estimation through a set of nested subspaces. As the algorithm goes further,

the dimension of these subspaces increases, thus leading to a more accurate

estimation. In practice, the multigrid minimization usually consists in choosing

a set of basis functions and estimating the projection of the “real” solution on

the space spanned by these basis functions.

Description. At each level of resolution, we use a multigrid minimization

(see Fig. 8.2) based on successive partitions of the initial volume [98]. At each

resolution level k, and at each grid level �, corresponding to a partition of cubes,

we estimate an incremental deformation field dwk,� that refines the estimate

ŵ
k, obtained from the previous resolution levels. This minimization strategy,

where the starting point is provided by the previous result—which we hope

to be a rough estimate of the desired solution—improves the quality and the
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Figure 8.2: Example of multiresolution/multigrid minimization. For each res-

olution level (on the left), a multigrid strategy (on the right) is performed. For

legibility reasons, the figure is a 2D illustration of a 3D algorithm with volumetric

data.

convergence rate as compared to the standard iterative solvers (such as Gauss–

Seidel).

At grid level �,�� = {�n,n= 1, . . . , N�} is the partition of the volume B into

N� cubes �n. At each grid level � corresponds a deformation increment Tk,�

that is defined as follows: A 12-dimensional parametric increment deformation

field is estimated on each cube �n, hence the total increment deformation field

dwk,� is piecewise affine. At the beginning of each grid level, we construct a

reconstructed volume with the target volume f k(s, t2) and the field estimated

previously (see section 8.3.2). We compute the spatial and temporal gradients at

the beginning of each grid level and the increment deformation field dwk,� is ini-

tialized to zero. The final deformation field is hence the sum of all the increments

estimated at each grid level, thus expressing the hierarchical decomposition of

the field.

Contrary to block-matching algorithms, we model the interaction between

the cubes (see Section 8.3.2) of the partition, so that there is no “block-effects”

in the estimation. At each resolution level k, we perform the registration from

grid level �c until grid level � f . Depending on the application, it may be useless

to compute the estimation until the finest grid level, i.e., � f = 0. We will evaluate

this fact later on (see section 8.3.3).

Adaptive Partition. To initialize the partition at the coarsest grid level �c,

we consider a segmentation of the brain obtained by morphological operators.

After a threshold and an erosion of the initial volume, a region growing pro-

cess is performed from a starting point that is manually chosen. A dilatation
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operation allows us to end up with a binary segmentation. At grid level �c, the

partition is initialized by a single cube of the volume size. We iteratively divide

each cube as long as it intersects the segmentation mask and as long as its

size is superior to 23�c . We finally get an octree partition which is anatomically

relevant.

When we change from grid level, each cube is adaptively divided. The sub-

division criterion depends first on the segmentation mask (we want a maxi-

mum precision on the cortex), but it also depends on the local distribution

of the variables δs (see Eq. (8.3)). More precisely, a cube is divided if it inter-

sects the segmentation mask or if the mean of δs on the cube is below a given

threshold. As a matter of fact, δs indicates the adequation between the data

and the estimated deformation field at voxel s. Therefore, this criterion mixes

an indicator of the confidence about the estimation with a relevant anatomical

information.

8.3.2.7 Parametric Model

We now introduce the deformation model that is used. We chose to consider an

affine 12-parameter model on each cube of the partition. That kind of model is

quite usual in the field of computer vision but rarely used in medical imaging.

If a cube contains less than 12 voxels, we only estimate a rigid 6-parameter

model, and for cubes that contain less than 6 voxels, we estimate a translational

displacement field. As we have an adaptive partition, all the cubes of a given grid

level might not have the same size. Therefore, we may have different parametric

models, adapted to the partition.

At a given resolution level k and grid level �, �k,� = {�n,n= 1 · · · Nk,�} is

the partition of the volume into Nk,� cubes �n. On each cube �n, we estimate

an affine displacement defined by the parametric vector �k,�
n : ∀s = (x, y, z) ∈

�n, dws = Ps�
k,�
n , with

Ps =

⎛⎜⎝ 1 x y z 0 0 0 0 0 0 0 0

0 0 0 0 1 x y z 0 0 0 0

0 0 0 0 0 0 0 0 1 x y z

⎞⎟⎠ .
A neighborhood system V k,� on the partition �k,� derives naturally from V (see

section 8.3.2):
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∀n,m∈ {1 · · · Nk,�},m∈ V k,�(n) ⇔ ∃s ∈ �n, ∃r ∈ �m\r ∈ V(s). C being the

set of neighboring pairs on Sk, we must now distinguish between two types

of such pairs: the pairs inside one cube and the pairs between two cubes:

∀n ∈ {1 . . . Nk,�}, < s, r >∈ C�n ⇔ s ∈ �n, r ∈ �n and r ∈ V(s).

∀n ∈ {1 . . . Nk,�}, ∀m∈ V �(n), < s, r >∈ C�nm ⇔ m∈ V l(n), s ∈ �n, r ∈ �m

and r ∈ V(s).

For the sake of concision, we will now drop the resolution index k. With

these notations, the cost function (8.3) becomes

∗
U
�

(��, δ�, β�; w, f �) =
N�∑

n=1

∑
s∈�n

δ�s
[∇ f̃ T

s Ps�
�
n+ f̃t(s, t)

]2 + ψ1
(
δ�s
)

+α
N�∑

n=1

⎡⎣ ∑
m∈V �(n)

∑
<s,r>∈C�nm

β�sr||
(
ws + Ps�

�
n

)− (wr + Pr�
�
m

)||2 + ψ2
(
β�sr

)⎤⎦
+α

N�∑
n=1

⎡⎣ ∑
<s,r>∈C�n

β�sr||
(
ws + Ps�

�
n

)− (wr + Pr�
�
n

)||2 + ψ2
(
β�sr

)⎤⎦ . (8.4)

Considering the auxiliary variables of the robust estimators as fixed, one

can easily differentiate the cost function (8.4) with respect to any ��n and get

a linear system to be solved. We use a Gauss-Seidel method to solve it for its

implementation simplicity. However, any iterative solver could be used (solvers

such as conjugate gradient with an adapted preconditioning would also be effi-

cient). In turn, when the deformation field is “frozen”, the weights are obtained

in a closed form [14, 24]. The minimization may therefore be naturally han-

dled as an alternated minimization (estimation of ��n and computation of the

auxiliary variables). Contrary to other methods (minmax problem like the de-

mon’s algorithm for instance), that kind of minimization strategy is guaranteed

to converge [24, 42, 99] (i.e., to converge toward a local minimum from any

initialization).

Moreover, the multigrid minimization makes the method invariant to inten-

sity inhomogeneities that are piecewise constant. As a matter of fact, if the

intensity inhomogeneity is constant on a cube, the restriction of the DFD on

that cube is modified by adding a constant. As a consequence, minimizing the

cost function 8.3.2 gives the same estimate, whenever the cost at the optimum

is zero or a constant (see section 8.3.3 for an illustration on that issue).
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8.3.2.8 Multimodal Non-Rigid Registration

We have proposed a multimodal version of Romeo [72] where the optical flow

is replaced by a more adapted and general similarity measure: mutual informa-

tion. Mutual information has been presented in the section dedicated to rigid

registration (8.3.2).

Let us note Tw as the transformation associated with the deformation field w.

The total transformation Tw ◦ T0 maps the floating volume B onto the reference

volume A. The field w is defined on SB, where SB denotes the lattice of volume B

(pixel lattice or voxel lattice). The cost function to be minimized then becomes:

U(w; A, B,T0) = −I(A, (Tw ◦ T0)(B))+ α
∑

<s,r>∈CB

||ws −wr||2,

whereCB is the set of neighboring pairs of volume B (if we noteV a neighborhood

system on SB, we have: < s, r >∈ CB ⇔ s ∈ V(r)).

A multiresolution and multigrid minimization are also used in this con-

text. At grid level � and on each cube �n, we estimate an affine displace-

ment increment defined by the parametric vector��n: ∀s ∈ �n, dws = Ps�
�
n,with

Ps = I2 ⊗ [1xsys] for 2D images, and Ps = I3 ⊗ [1xsyszs] for 3D images (operator

⊗ denotes the Kronecker product).

To be more explicit, in 3D we have:

Ps =

⎛⎜⎝ 1 xs ys zs 0 0 0 0 0 0 0 0

0 0 0 0 1 xs ys zs 0 0 0 0

0 0 0 0 0 0 0 0 1 xs ys zs

⎞⎟⎠ .
Let us note T��n, as the transformation associated with the parametric field

��n. We have T� = Tdw� and T��n = Tdw� |�n
, where Tdw� |�n

denotes the restriction

of T��n to the cube �n.

A neighborhood system V � on the partition �� derives naturally from V :

∀n,m∈ {1 · · · N�},m∈ V �(n) ⇔ ∃s ∈ �n, ∃r ∈ �m/r ∈ V(s). C being the set

of neighboring pairs on Sk, we must now distinguish between two types of such

pairs: the pairs inside one cube and the pairs between two cubes:

∀n ∈ {1 . . . N�}, < s, r >∈ C�n ⇔ s ∈ �n, r ∈ �n and r ∈ V(s).

∀n ∈ {1 . . . N�}, ∀m∈ V �(n), < s, r >∈ C�nm ⇔ m∈ V l(n), s ∈ �n, r ∈ �m

and r ∈ V(s).
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With these notations, at grid level �, the cost function can be modified as:

∗
U (��; A, B,T0,w

�) = −
N�∑

n=1

I
(
A,
(
T��n ◦ Tw� ◦ T0

)(
B|�n

))
+α

N�∑
n=1

⎡⎣ ∑
m∈V �(n)

∑
<s,r>∈C�nm

||(w�s + Ps�
�
n

)− (w�r + Pr�
�
m

)||2
⎤⎦

+α
N�∑

n=1

⎡⎣ ∑
<s,r>∈C�n

||(w�s + Ps�
�
n

)− (w�r + Pr�
�
n

)||2
⎤⎦ , (8.5)

where B|�n
denotes the restriction of volume B to the cube�n. The minimization

is performed with Gauss-Seidel iterative solver (each cube is iteratively updated

while its neighbors are “frozen”). On each cube, Powell’s algorithm [110, 111] is

used to estimate the parametric affine increment.

8.3.2.9 Implementation

The algorithm has been implemented in C ++ using a template class for volu-

metric images.2 A synopsis of the algorithm is presented in Fig. 8.3.

8.3.3 Results

8.3.3.1 Intensity Correction

We have evaluated the approach on various MR acquisitions. We present results

on real data of the intensity correction, comparing the EM and SEM approaches

and comparing the number of Gaussian laws used to model the histogram.

We have tested the approach on various T1-MR images and the algorithm has

proved to be robust and reliable. Furthermore, it does not require any spatial

alignment between the images to be corrected and can therefore be applied in

various contexts: MR time series or MR of different subjects. Figure 8.4 presents

cut-planes images of volumetric MR.

Figure 8.5 presents the effect of the correction using a EM algorithm and

Fig. 8.6 the correction using a SEM algorithm. For each estimation scheme, we

test a mixture of five (left) and seven Gaussian distributions to model the his-

togram. In each case, a fourth order parametric correction has been estimated.

2 http://www.irisa.fr/vista/Themes/Logiciel/VIsTAL/VIsTAL.html
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Source MR image Target MR image

Figure 8.4: MR images of different subjects. The intensity of tissue classes is

different for source (top) and target (bottom) volume.
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Figure 8.5: Intensity correction using the expectation maximization (EM) al-

gorithm. The corrected source volume is presented, as well as the parametric

intensity correction (to be compared with the identity function). The histogram

has been modeled by five Gaussian distributions (top) and seven Gaussian dis-

tributions (bottom). Points represent the mean of Gaussian laws that model the

histogram.
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Figure 8.6: Intensity correction using the stochastic expectation maximization

(SEM) algorithm. The corrected source volume is presented, as well as the

parametric intensity correction (to be compared with the identity function).

The histogram has been modeled by five Gaussian distributions (top) and seven

Gaussian distributions (bottom). Points represent the mean of Gaussian laws

that model the histogram.

Corrected source volumes and parametric correction functions are pre-

sented. The corrected volume seems visually more similar to the target volume

(when comparing intensities of corresponding tissues). Modeling the histogram

with seven classes seems more adequate in this context. This is actually more

relevant from an anatomical point of view and provides more sample to esti-

mate the correction function. The experiments we have conducted so far do not
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Before correction After correction

Figure 8.7: Joint histogram before and after intensity correction. To compute

the joint histogram, MR volumes have been previously rigidly registered by max-

imizing mutual information [88].

favor the SEM or the EM algorithm. There may be an indication that the SEM

is more adapted in presence of field inhomogeneity and should be investigated

further.

The relevance of this intensity correction can be assessed using the joint

histogram (Fig. 8.7). To compute the joint histogram, a spatial alignment of the

volumes needs to be performed. To do so, we estimate a rigid displacement

that maximizes mutual information [88]. Figure 8.7 shows the joint histogram

before and after intensity correction (using EM and seven Gaussian laws to

model the histogram). It must be noted that the same displacement has been

applied to the corrected and uncorrected volume (in other words, the effect of a

possible misalignment is equal for both histograms). The joint histogram shows

the relevance of the intensity correction.

8.3.3.2 Experiments on Simulated Data

Evaluation on the MNI Phantom. To evaluate the global registration

method, we use the simulated data provided by the MNI3 [34]. Data have been

collected with three levels of noise and inhomogeneity. We design a synthetic

deformation field made up of a global affine field with large deformations com-

bined with local stochastic perturbations. We do not try to build a “realistic”

3 Brainweb: http://www.bic.mni.mcgill.ca/brainweb
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field, but rather a field with the following properties: large deformations and

local perturbations that modify the topology of the structures, in order to vali-

date the basic hypothesis of our work. The “local” field is generated from 2,000

voxels which are randomly picked in the volume. For each voxel, each of the

three components of the deformation is the realization of a Gaussian random

variable of standard deviation 120 mm. We then perform a Gaussian smoothing

with a small average deviation in order to propagate this perturbation to a local

neighborhood while preserving discontinuities. The volumes and the results are

shown on Fig. 8.8. We compare the multigrid method with a global affine regis-

tration method, in which a 12-parameter deformation is estimated for the entire

volume.

To asses the quality of the registration, we compute the mean square er-

ror (MSE)4 which is an indicator of the quality of the registration. However,

it would be unfair to evaluate the registration only with a measure that is the

underlying driving force of the estimation. Therefore, as we have the binary

classification of the phantom, we can also assess the quality of the registration

based on the overlap of two volumes: the first volume is the initial classification,

i.e., a gold standard (gray matter/white matter), the second volume is the de-

formed classification, registered with the estimated deformation field. We then

measure out overlapping ratios like the sensitivity, the specificity, and the to-

tal performance [142]. Results are presented in Table 8.1. Despite the use of

binary classes, the resulting measures that we obtain are very satisfactory. Par-

ticularly, the robustness of the method is demonstrated in critical conditions

(9% noise and 40% inhomogeneity), which are far tougher than in any realistic

acquisition.

The numerical evaluation also allows to study the sensitivity of the algorithm

with respect to the parameters of the algorithm, i.e., parameters of the robust

estimators. We have two parameters to fix, σ1 and σ2. σ1 corresponds to the

hyperparameter of robust function ρ1, associated with the similarity term, while

σ2 corresponds to the hyperparameter of robust function ρ2 associated with the

regularization term. We made the parameters σ1 and σ2 vary in a cube of size

[1.0e4, 1.0e5]× [1, 20] with step, respectively, of 1.0e4 and 1 (which means that

we performed the registration with 200 different sets of parameters), and we

observe that the final result (the mean square error between the source volume

4 MSE = 1
N

∑i=N

i=1 (I1(i)− I2(i))2, where I1 and I2 are the volumes to compare, and N is
the number of voxels.



Inter-Subject Non-Rigid Registration 303

Original data

original phantom deformed with the synthetic field
Reconstructed volumes

Global affine registration Non-linear robust registration
Difference volumes

Global affine registration Multigrid robust registration

Figure 8.8: Results of the registration process on simulated data. The 3D MRI

phantom has been deformed on the top of the figure. In the middle, the recon-

structed volumes are shown and must be compared with the initial volume to

evaluate the quality of the registration. On the bottom, the difference volumes

show the benefits of non-linear registration.

and the reconstructed volume) varies less than 5% of the nominal MSE. This

indicates that the sensitivity of algorithm with respect to these two parameters

is very low.

For simulated data, mean square error (MSE) is a direct measure of the

quality of the registration. Therefore we can also evaluate the influence of � f (see

section 8.3.2) on the computation time and on the accuracy of the registration.
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Figure 8.9: Evolution of the MSE with respect to the grid level (at finest resolu-

tion 1 mm) and computation time needed to perform the registration until a given

grid level. We observe that the MSE decreases significantly at the coarsest grid

level, whereas at the finest grid level it continues to decrease, but less rapidly.

At the same time, the computation time increases continuously. If we look at

the difference between grid level 2 (the smallest cubes are of size 22 × 22 × 22

and the incremental deformation field is affine on each cube) and grid level 0

(the smallest cubes are reduced to a voxel and the incremental deformation

field is translational for the smallest cubes), the computation time increases by

100%, whereas the MSE variation is only 5.3%. That suggests that, depending on

the application, the user can make a compromise between the accuracy of the

registration and the computation time if the resources are limited.

Figure 8.9 shows the evolution of the MSE with respect to the grid level (at

finest resolution 1 mm) and also shows the computation time needed to perform

the registration until a given grid level. We observe that the MSE decreases

significantly at coarsest grid level, whereas at the finest grid level it continues

to decrease, but less rapidly. At the same time, the computation time increases

continuously. If we look at the difference between grid level5 2 and grid level6 0,

the computation time increases by 100%, whereas the MSE variation is only

5.3%. That suggests that, depending on the application, the user can make a

compromise between the accuracy of the registration and the computation time

5 The smallest cubes are of size 22 × 22 × 22 and the increment deformation field is affine
on each cube.

6 The smallest cubes are reduced to a voxel and the increment deformation field is trans-
lational for the smallest cubes.
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Source volume Target volume

Figure 8.10: Synthetic data to validate the link between robust estimator on

the regularization term and local changes of topology.

if its resources are limited. In our case, we find that � f = 1 (the smallest cubes

are of size 2× 2× 2 and the allowed deformation is rigid on the smallest cube)

is generally a good compromise.

Importance of Robust Estimator. We have introduced robust estimators

in the registration process, in order to let local discontinuities of the deformation

field occur. We now want to verify on simulated data the direct link between

the introduction of a robust function and the possibility to locally change the

topology of the structures. Therefore, we construct two volumes (see Fig. 8.10)

to be registered, with a local modification of the topology. The volumes are

composed of two homogenous classes, each one being defined by a unique gray

level. With these two volumes, we obviously face the aperture problem, which

is classical in the optical flow literature.

We first register the two volumes without any robust estimator. Results are

presented in Fig. 8.11. The reconstructed volumes are computed with the target

volume and the estimated deformation field with trilinear interpolation. One

must therefore compare the reconstructed volume and the source volume to

assess the quality of the registration. The different volumes shown in Fig. 8.11

correspond to different values of the parameter α. This parameter balances

the importance of the similarity term and the regularization term. When this

parameter is high, the solution is smooth but the topology is not modified. Whenα

decreases, the solution is not smooth, the aperture problem is obvious, whereas

the topology is not correctly modified.
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a = 500

a = 50a = 100a = 250

a = 1000a = 5000

Figure 8.11: Results of the registration without robust estimator. The differ-

ent volumes correspond to different values of the parameter α, and must be

compared to the source volume.

We then perform the robust multigrid registration process, with a robust

function only on the regularization term. Results are presented in Fig. 8.12, with

two “extreme” values of the parameter α. In that case, the modification of the

topology is possible, while preserving the global smoothness of the solution.

However, the aperture problem is still present in the tubular structure on the

right. This experiment makes it possible to verify the link between the introduc-

tion of a robust estimator on the regularization term and the possibility to handle

local change of topology. In addition, the robust registration process appears to

be also more robust with respect to the parameter α, because the results of the

registration are very similar, when α varies in a range of [100, 3,000].

8.3.3.3 Experiment on Two Subjects

Importance of Intensity Correction. We first want to present cases

where the registration method cannot work properly without a prior intensity
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a = 100 a = 3000

Figure 8.12: Results of the registration with a robust estimator on the regu-

larization term. The reconstructed volumes must be compared to the source

volume. We can handle with local topology changes, while preserving the global

smoothness of the solution.

correction. Figure 8.13 shows the impact of the intensity correction step on the

registration of two volumes. The source image is first corrected using the EM

algorithm, seven classes to model the histogram and a fourth order parametric

correction. Figure 8.13 presents the source image deformed toward the target

image, as well as the difference image. While the registration has failed without

intensity correction due to a very large intensity difference, it has performed

successfully with an intensity correction step. It must be noted that the set of

parameters is the same for both registration processes. That demonstrated the

usefulness of such correction for a non-rigid registration task.

Extensive Results for Two Subjects. Results of the 3D method are pre-

sented in Figs. 8.14, 8.15, and 8.16. Two 3D MRI-T1 volumes of two different

subjects are registered. The source volume, the target volume and the recon-

structed volume are presented in Fig. 8.14. The reconstructed volume f2(s+ ŵs)

is computed with the target volume f2 and the final displacement field ŵ by the

way of a trilinear interpolation. To assess the quality of the registration, one

must compare the source volume with the reconstructed volume.

We also present the volumes of difference, before and after registration in

Fig. 8.15. In the same figure, the adaptive partition at grid level 3 is also presented

(we do not present further grid levels for readability reasons). The difference

volumes must be interpreted carefully, since we get the superposition of two
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Source image Target image

Registered
with correction

Registered
without correction

Difference
with correction

Difference
without correction

Figure 8.13: Impact of the intensity correction for the non-rigid registration.

Top row: the images to be registered. Middle row: The source image is registered

toward the target image, without intensity correction (left) and with correction

(right). Bottom row: the differences images show the relevance of the intensity

correction on the non-rigid registration.

errors: the first one is the registration error which comes from the anatomical

variability that we could not apprehend. The second error is due to the difference

of acquisition of the two volumes, which makes the histograms of the source

and target volumes different.
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Source volume f1

Reconstructed volume f2 (s + ws)ˆ

Target volume f2

Figure 8.14: Final 3D results of the registration on real data. The volumes

are T1-MRI acquisitions of two different subjects. The reconstructed volume

is computed by trilinear interpolation with the target volume and the final

dense displacement field. In order to evaluate the quality of the registra-

tion, we must therefore compare the source volume and the reconstructed

volume.

In Fig. 8.16, the outliers are drawn, i.e., the data outliers map (variable δs)

and the spatial outlier map (for each point s, we compute the mean of vari-

able βsr with respect to r ∈ V(s)). Looking at the data outliers map, the dark

points represent areas where the optical flow hypothesis is inadequate, be-

cause of occlusions for instance (see the jaw in Fig. 8.16). For these points,

the regularization term overwhelms the similarity term. Looking at the spa-

tial outlier term, we observe that dark regions are located in the cortex. At

that locations, the importance of the regularization term is reduced, and dis-

continuities can appear. The fact that discontinuities appear in the cortex is

significant because we know that inter-subject variability is very high on the

cortex.
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Figure 8.15: Final 3D results of the registration on real data. Top: difference

before registration. Middle: difference after registration. Bottom: adaptive par-

tition at grid level 3. The difference volumes must be interpreted carefully, since

we get the superposition of two errors: the first one is the registration error

which comes from the anatomical variability that we could not apprehend. The

second error is due to the difference of acquisition of the two volumes, which

makes the two original histograms of the two volumes different.

The 3D deformation field is presented in Fig. 8.17. The vector field is sub-

sampled in order to be easier to look at, and we also show the three components

of the field on the sagittal view. Although discontinuities are visible, the general

spatial coherence of the final deformation field is visible, due to the regulariza-

tion. The field also confirms that there is no “block-effect” in the registration

process.

The computation takes about 1 : 30 hour on an Ultra Sparc 30 (300 MHz).

The volumes are 256× 256× 200. We use three levels of resolution (k = 0, 1, 2)

because the displacement amplitude may reach 30 voxels, and at each resolution

level we perform the registration from grid level 4 until grid level 0.
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Data outliers

Spatial outliers

Figure 8.16: Final 3D results of the registration on real data. Top: data outlier

map. Middle: spatial outlier map. Looking at the spatial outlier term, we observe

that dark regions are located in the cortex. Dark areas shows that the importance

of the regularization term is reduced, and discontinuities can appear. The fact

that discontinuities appear in the cortex is significant because we know that

inter-subject variability is very high on the cortex.

Deformation field

3 components of the field on the sagittal view

Figure 8.17: Top: deformation field. Bottom: Images of the three components

of the field on the sagittal view. The 3D deformation field is subsampled in

order to be easier to look at. Although discontinuities are visible, the general

spatial coherence of the final deformation field is visible, due to the regulariza-

tion. The field also confirms that there is no “block-effect” in the registration

process.
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8.3.3.4 Experiments on a Dataset of 18 Subjects

In order to validate the registration method on a larger database, we acquire MRI-

T1 volumetric data of 18 patients. One subject is chosen as the reference subject.

We then perform the registration between the reference volume (source) and

each of the other subjects (target) using always the same set of parameters for

the algorithm. Finally, we get 17 reconstructed volumes that can be compared

to the reference volume. We average all the reconstructed volume in order to

have a global overview of the quality of the method.

Average Deformed Volume. Figures 8.18 and 8.19 present the averaging

between 17 patients after a global affine registration (top), after a quadratic

multigrid registration, i.e., the method without robust estimators (middle), and

the average volume after a robust multigrid registration (bottom). After global

affine registration and averaging, we notice that the internal anatomical struc-

tures are blurred, because the registration is not precise enough. However, after

a robust multigrid registration, we may distinguish precisely the contours of

anatomical structures, such as ventricles, deep nuclei, white matter tracks, and

even cortical regions (sylvian fissure and parietal region for instance).

The comparison between the quadratic registration and the robust registra-

tion shows the benefit of robust functions, because cortical regions are better

registered. The MSE between the reference volume and the averaged volume is

892 for quadratic registration, and drops to 584 for robust registration. We must

note that, considering two subjects, the MSE is not a good absolute measure of

the quality of the registration because of the acquisition (a simple translation

between the two histogram can lead to large MSE). However, the MSE is a good

relative measure to compare two registration processes over a large database.

These experiments clearly show the significant impact of robust estimators.

All the more, it validates the assumption that it is necessary to let discontinuities

appear in the deformation field to register brains correctly. These experiments

also demonstrate the robustness of the method (robustness with respect to the

acquisitions and also with respect to the algorithm parameters) over a realistic

database of subjects.

Overlapping of Brain Tissues. The evaluation must not be based only on

a measure that is more or less related to the image similarity. Therefore, as in



314 Hellier

Global affine registration

Quadratic multigrid registration

Robust multigrid registration

Figure 8.18: Results of experiments on a database of 18 subjects. One sub-

ject was chosen as the reference subject (see Fig. 8.19), and we averaged all

the reconstructed volumes after global affine registration (top), after quadratic

multigrid registration (middle) and after robust multigrid registration (bottom).

We kept the same set of parameters for all the subjects. This demonstrates the ro-

bustness of the method, and the importance of robust estimators (the quadratic

registration is less accurate on the cortex).

section 8.3.3, we evaluate in this section the registration process by computing

the overlap between the tissues (gray matter and white matter) of the reference

volumes and the tissues of each studied volume after registration. We measure

the overlap with the total performance, which has already been presented in

section 8.3.3.

The extraction of gray matter and white matter is performed using a tech-

nique presented in [85]. It consists in a 3D texture analysis to compute statis-

tical attributes of each voxel. A clustering procedure is used to find the ini-

tial discrimination of the data, and a bayesian relaxation refines the primary

decision.
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Robust multigrid registration

Reference subject

Figure 8.19: Results of experiments on a database of 18 subjects. One subject

was chosen as the reference subject (bottom), and we averaged all the recon-

structed volumes after robust multigrid registration (top). We kept the same set

of parameters for all the subjects, which demonstrates the robustness of the

method. Results of the averaging after registration show the accuracy of the

registration (after averaging we can distinguish precisely anatomical structures

such as ventricles, deep nuclei, white matter tracks and even cortical regions).

For gray matter tissue, the average overlap after registration is 93.9% (mean of

total performance). For white matter, the average overlap is 94.9%. If we perform

a rigid registration by maximization of mutual information, we obtain 88.3% and

87.1% of average overlap, for gray matter and white matter, respectively. These

measures must be interpreted carefully for two reasons. We use binary classes

(and not fuzzy classes) and a simple trilinear interpolation scheme, which may

introduce some error. Furthermore, the classification algorithm introduces er-

rors that disturb the overlapping measure. In the last 5% to recover, it is difficult

to distinguish what is due to the registration process and what is due to inter-

polation and segmentation errors. However, these overlapping measures show

the benefit of non-rigid registration.

8.3.3.5 Experiments on Multimodal Datasets

The extension of Romeo to multimodal dataset was motivated by a particu-

lar problem: the correction of distortions in echo-planar images. Among the
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functional images of the brain, fMRI is an appealing technique because it offers

a good trade-off between spatial and temporal resolution. To increase its tem-

poral resolution, echo-planar imaging (EPI) is used because it makes possible

to collect at least five slices per second at a reduced spatial resolution. The

drawback of this impressive acquisition rate is that it may introduce artifacts

and distortions in the data. More details about these distortions can be found in

[78].

If the distortions do not vary during the time series, they will not affect much

the detection of subtle signal changes, but they will perturb the localization of the

functional activity once being overlapped to the anatomical volume. It becomes

necessary to correct these geometrical distortions in order to accurately identify

activated areas.

Simulated Data. To evaluate the multimodal registration method, we use

the simulated database of the MNI (Brainweb)7 [34]. The T1-weighted MR vol-

ume is the reference volume (3% noise and 9% inhomogeneity), whereas the

T2-weighted MR volume is the floating volume.

From the T2-weighted MR volume, we extract a subvolume and we apply

a rigid transformation (three rotations and three translations). To simulate lo-

cal geometrical distortions, we apply a thin-plate spline [16] deformation to the

volume. The thin-plate deformation is computed by choosing one point in the vol-

ume and a displacement for this point. We choose a displacement of magnitude

5 voxels, with no privileged direction. Furthermore, the thin-plate deformation

field is constrained to be naught at the border of the volume.

After rigid registration (see Fig. 8.20), distortions are clearly visible. On the

axial view, ventricles are not well registered ; on the sagittal and coronal view, the

sagittal mid-plane is not well aligned. We then perform the multigrid non-rigid

registration from grid level 7 until grid level 5 to avoid useless computational

efforts. In this case we do not need to estimate a dense transformation, since the

distortions are rather smooth and regular. Furthermore, the statistical similarity

measure is only meaningful for a large number of voxels, i.e., for large cubes.

After non-rigid registration, the internal structures are accurately registered

(see ventricles on the axial view, and sagittal mid-plane on the coronal view for

instance).

7 http://www.bic.mni.mcgill.ca/brainweb
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Figure 8.20: Results of the registration on simulated data. Top: results after rigid

registration. Distortions are visible on axial view (ventricles) and on coronal

view (sagittal mid-plane). Bottom: results after performing a 3D multimodal

non-rigid registration. Misregistration is significantly reduced (see ventricles on

axial view for instance).

In Fig. 8.21, we present the evolution of the similarity measure, computed

for all the volume. As the hierarchical estimation is performed, the similarity

increases, which means that the dependence between the volumes to be regis-

tered also increases, leading to a more and more accurate registration. This is a

numerical confirmation of visual assessment.

At this stage, the evaluation is not completely fair, since the criterion is re-

lated to the similarity used to drive the registration process. As we have the

segmentation of the phantom (gray matter and white matter classes), we can

evaluate objectively the registration process. We deform the segmentation vol-

umes as described at the beginning of section (8.3.3). We can assess the quality

of the registration by computing overlapping measures (specificity, sensitivity

and total performance, see [142] for tutorial) between the initial classes and the

deformed classes, once registered with the estimated deformation field. Let us

recall that:

⎧⎪⎨⎪⎩
sensitivity = T P/(T P + F N)

specificity = T N/(F P + T N)

total performance = (T P + T N)/(T P + F P + T N + F N),

(8.6)



318 Hellier

0 0.5 1 1.5 2 2.5 3
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

rigid registration 

result at 
grid level 7 

result at 
grid level 6 

result at 
grid level 5 

Value
of the 
similarity
measure

Registration process 

Figure 8.21: Evolution of the similarity measure. As the hierarchical estimation

is performed, the similarity increases, which means that the volumes are more

accurately registered.

where T P, T N, F P and F N, respectively, denote the number of true positive,

true negative, false positive, and false negative points.

These numerical results are shown in Table (8.2). At the end of grid level 5,

we manage to recover more than 95% of the segmentation. This result is satisfac-

tory, due to the use of binary classes, and due to a simple trilinear interpolation

scheme that causes artefacts [108].

Real Data. We have performed the algorithm on real data (see Fig. 8.22).

The patient has a cyst and a bone tumor, therefore the multiple interfaces

(air/cyst/bone) introduce large distortions that are visible after rigid registra-

tion. For instance, on the left hemisphere, distortions are clearly visible on the

posterior part of the cyst.

There are many artefacts in this fMRI acquisition: there has been signal

saturation and signal drops (visible in the cyst and in the border of the skull).

This illustrates the difficulty of registering real clinical data. Although quality of

the results is quite difficult to quantify, we can see that the cyst (on the axial

view) and the ventricles (on the sagittal view) are better aligned after non-rigid

registration.
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Table 8.2: Numerical evaluation of the multimodal registration method on

simulated data. The overlapping measures (specificity, sensitivity, and total

performance) are computed after rigid registration and at each grid level of the

non-rigid registration process

Registration Overlap measure Grey matter White matter

Rigid sensibility 74.7% 76.6%
specificity 93.0% 92.8%
Total performance 87.0% 87.6%

Non-rigid sensibility 84.7% 86.0%
grid level 7 specificity 97.2% 96.2%

Total performance 93.2% 92.9%

Non-rigid sensibility 86.6% 86.8%
grid level 6 specificity 98.5% 97.3%

Total performance 94.6% 93.9%

Non-rigid sensibility 87.5% 87.0%
grid level 5 specificity 98.9% 98.0%

Total performance 95.8% 95.3%

Figure 8.22: Results of clinical data. Top: results of the rigid registration. The

multiple artefacts are visible: distortions, signal saturation, signal drops. Bottom:

Results of the non-rigid registration. The registration is more accurate, in par-

ticular, for the ventricles and for the cyst. The data are courtesy of “laboratoire

IDM, Hopital de Pontchaillou, Rennes”.
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8.4 Conclusion

This chapter has presented an overview of the classification of non-rigid reg-

istration methods with particular focus on non-rigid registration of brains of

different subjects. Methods can be broadly classified into two groups: geomet-

ric methods that rely on the extraction and matching of sparse features (points,

curves, surfaces), and photometric (or intensity-based) methods that rely on

image luminance directly.

Geometric methods reduce the dimensionality of the problem and are con-

sistent in the vicinity of features used for registration. However, the registration

might be incorrect far from used features. Photometric methods use all the avail-

able information present in the volume but lead to a complex problem involving

a very large number of variables.

We have presented here the Romeo algorithm (Robust Multigrid Elastic reg-

istration based on optical flow) that refers to photometric methods. Romeo

uses the optical flow as a similarity measure and relies on an efficient multires-

olution and multigrid optimization scheme. Robust estimators are introduced

to limit the effect of erroneous data and to preserve discontinuities of the de-

formation field when needed. Prior to the non-rigid registration step, two pre-

processing steps are performed: a rigid registration by maximization of mutual

information and an intensity correction so that the luminance of the volumes

to be registered are comparable. An extension to multimodal data has been

presented. The multiresolution and multigrid framework is flexible enough to

be adapted to multimodal similarity measures such as mutual information for

instance.

It has been shown that photometric methods fail in matching cortical struc-

tures such as cortical sulci, for instance [74]. This can be explained by the high

variability of cortical structures among subjects. Anatomists have pointed out

[103] that cortical sulci of different subjects are very different in shapes. This

has motivated mixed approaches where a photometric registration method in-

corporates sparse anatomical structures so as to drive the registration process

[22, 29, 36, 68, 73, 79, 141].

In this context, it must be noted that validation is difficult and should be

investigated further. Validation of non-rigid registration methods on anatomi-

cal structures have been conducted [74, 119]. However, the impact of non-rigid
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registration methods on functional data is still unknown. As a matter of fact,

since these methods are dedicated to anatomical and functional normalization,

it would be interesting to know how much of the intersubject functional vari-

ability can be understood and compensated by anatomical non-rigid registra-

tion. This is a challenging research subject that requires a better knowledge

about the relationship between the anatomy of the brain and its functional

organization.

Questions

1. What are photometric and geometric registration methods? How can these

methods be compared?

2. What is optical-flow?

3. What is the aperture problem? How can it be solved?

4. What are the advantages and drawbacks of optical-flow based registration?

5. What are robust estimators?

6. What are the advantages and drawbacks of robust M-estimators?

7. How useful is a multiresolution scheme?

8. How should the Gaussian standard deviation be chosen for building the

multiresolution pyramid?

9. What is a multigrid optimization scheme?

10. What are the different options to regularize the deformation field?
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Chapter 9

Elastic Registration for Biomedical

Applications3

Jan Kybic1 and Michael Unser2

9.1 Introduction

The task of image registration is to find homologous (corresponding) points

in two images that we shall call reference and test. These images depict the

same or similar objects but are not identical. See an example in Fig. 9.1. We see

immediately that the task is not trivial, since some zones in one image do not have

any corresponding region in the other image. This illustrates some vagueness

of the registration problem which we will have to address. A multimodality

biomedical registration task, Fig. 9.2, presents another difficulty: Although the

images represent exactly the same object, the same slice of the same brain, the

visual appearance of the tissues is radically different in both.

For us, the output of the image registration is correspondence function g such

that xt = g(xr), mapping a coordinate xr of an arbitrary point in the reference

image to a coordinate xt of a corresponding point in the test image.

If we are considering image registration as an inverse problem, then image

warping (image deformation) is the corresponding forward part (see Fig. 9.3).

1 Center for Applied Cybernetics, Faculty of Electrical Engineering, Czech Technical
University, Technická 2, 166 27 Prague 6, Czech Republic

2 Biomedical Imaging Group, Swiss Federal Institute of Technology, Lausanne CH-1015
Lausanne, Switzerland

3 This paper is partially based on “Fast Parametric Elastic Image Registration” by J. Kybic
and M. Unser which appeared in IEEE Transactions on Image Processing, November 2003.
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Figure 9.1: Two versions of a penguin Tux, the Linux mascot (above). Even

though they are different, corresponding points can be identified (below). (Color

slide.)

While image registration takes the test and reference images and yields a cor-

respondence (deformation) function, the image warping takes the test image

and a correspondence function and outputs a warped image fw(x) = f
(
g(x)

)
which is a deformed version of the test image. The warped test image is aligned

Figure 9.2: Corresponding magnetic resonance brain slices from EPI (left) and

anatomical (right) modalities. Landmarks (white crosses) have been manually

placed at corresponding locations.
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reference image test image

deformation

warping

registration

warped image

Figure 9.3: Given an image and a deformation function, a deformed image is

created by warping. Inversely, given two images, the corresponding deformation

function is found by image registration. The registration attempts to make the

warped image as similar as possible to the reference image. (Color slide.)

with the reference image and conversely, registering an original image with its

warped version recovers the deformation used.

We will call a registration elastic, if the family of correspondence functions

g is sufficiently general, capable of expressing (almost arbitrary) nonlinear re-

lations4 as opposed to considering for example only linear functions g.

9.1.1 Applications of Image Registration

Historically, some of the first applications of image registration occurred in the

domain of motion analysis [2]. The task there is to find changes between two

subsequent frames in a video sequence, assuming that these changes can be

completely explained by movements of the objects in the scene or of the ob-

server. In most cases, the inter-frame changes are relatively small and the move-

ment smooth. The extracted motion field can be used to measure the trajectories,

4 Note that elasticity is used here in a wider sense than just the mechanical linear elastic-
ity [1].
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distances, speeds, and accelerations, etc. In video compression, this informa-

tion enables us to take advantage of the temporal redundancy in the video se-

quence; it can be used for object tracking [3], image stabilization, or cam-

era (observer) movement identification leading to 3D reconstruction of the

scene. segmentation algorithms divide the image into regions according to their

speed.

Registering a pair of stereo images also permits the 3D reconstruction of

the scene. The spatial configuration of the cameras is known here; on the other

hand, we have to deal with occlusions. The general case of n cameras presents

additional challenges in maintaining the consistency.

9.1.1.1 Biomedical Applications

In the biomedical domain, there is a frequent need to compare images for analysis

and diagnostic purposes. For an efficient comparison, the images need to be

aligned. This can be accomplished by registration and subsequent warping.

Intrasubject analysis compares images of the same subject taken at different

times in order to detect or quantify changes caused by the evolution of the

disease or the effect of the therapy.

Intersubject analysis considers corresponding images from different sub-

jects. Aligning and combining images from many subjects leads to atlases, which

are annotated reference images. The individual subject images are then regis-

tered with the atlas for identification, segmentation, to detect abnormalities, and

to quantitatively characterize the shape and size of their features.

Images of the same subject with different imaging modalities can be com-

bined using intermodality registration to get a more complete picture of the

subject’s anatomy and physiology.

Furthermore, registration helps to compensate for geometrical distortions

[4] inherent to some imaging methods, as well as for unwanted motion during

the acquisition.

9.2 Review of Registration Techniques

Most existing registration algorithms can be cast into the following general

framework:
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� In the first step, some intermediate data is extracted from the two images

being registered. This data lives in a feature space.

� The algorithm’s representation of the correspondence between the two

images is taken from a search space. This is the space in which the algo-

rithm looks for a solution. An element from this space is returned at the

end.

� To find the solution in the search space, the algorithm needs a way to

measure the quality of the correspondence for different points in this space.

This measure is provided by a cost function.

� Finally, the search strategy governs the movements of the algorithm in the

search space in its quest for the optimum.

We classify existing registration algorithms according to their choice of the

above four attributes, similarly as in [5]. We shall concentrate mostly on their

biomedical applications. Figures 9.4 and 9.5 show the simplified classification

according to the first two attributes in a tree form.

9.2.1 Feature Space

According to the feature space employed, we can identify three classes of reg-

istration algorithms: pixel-based, transform-based, and feature-based.

pixels

Fourier wavelet

transforms

intrinsic extrinsic

landmarks curves surfaces templates

features

Feature space

Figure 9.4: Simplified classification of registration algorithms according to the

feature spaces used.
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PDE variational

local

quadtree B-splines wavelets

semi-local

linear polynomial harmonic

global

RBF

image dependent

Warp space

Figure 9.5: Simplified classification of registration algorithms according to the

warp space used.

9.2.1.1 Pixel-Based Registration

Pixel-based algorithms work directly with the (totality of) pixel values of the

images being registered. Preprocessing is often used to suppress the adverse

effects of noise and differences in acquisition [6], or to increase or uniformize

pixel resolution [7]. In the continuous framework, images are often considered

as functions of the continuous image coordinates, providing a consistent ap-

proach to the discretization issues. The correspondence between the discrete

and continuous versions of the image is established using interpolation. The

crudest method is the nearest-neighbor interpolation, the most often used is

the linear (resp. bi- or trilinear) interpolation. Among the high-end methods,

B-spline interpolation [8–10] provides the best trade-off between accuracy and

the computational cost [11, 12].

The image model may also live in a higher-dimensional space than the original

data, such as when representing 2D image as a surface in a 3D space [13], or

using level sets [14].

9.2.1.2 Transform-Based Registration

Transform-based algorithms exploit properties of the Fourier, wavelet,

Hadamard, and other transforms, making use of the fact that certain deforma-

tions manifest themselves more clearly in the transform domain. These methods

are used mainly in connection with linear deformation fields. Nevertheless, there

are examples of methods that estimate locally linear optical flow using Gabor

filters [15,16], B-splines [17] and wavelets [18]. The transforms are usually linear

and independent of the actual image contents.
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9.2.1.3 Feature-Based Registration

Feature-based algorithms first reduce the dimensionality of the problem by ex-

tracting a small set of characteristic features from the images. The extraction

mostly involves thresholding.

Landmark-based methods [1, 19–21] use a relatively small and sparse set

of landmarks—important points manually or automatically identified in the

images. Extrinsic markers are artificial features attached to the object,

easily and precisely localizable. Unfortunately, they are often long to install and

uncomfortable for the patient. If they are not available, we have to content our-

selves with features intrinsic to the images. In that case, however, the automatic

landmark identification is far less robust. The manual landmark identification is

often tedious, time-consuming, imprecise, and unreproducible.

If the images cannot be characterized using points, it might be more appro-

priate to use curves such as edges [22], or volume boundaries [23]. Likewise, in

the case of 3D data, surfaces can be used instead of working with the complete

volumes. Popular features are also templates, small subimages of important

regions [24, 25].

9.2.2 Search Space

An important attribute of a registration algorithm is the search space. It is also

called a warp space because it contains warping or correspondence functions,

the candidate solutions of the registration problem. A warping function from

the search space is described by a (finite) set of real parameters (from a set of

permissible values) by means of a warping model. We classify them according

to the number of parameters and the spatial extent of the area influenced by

a single parameter.

9.2.2.1 Local Models

At one end of the scale, we have non-parametric, local methods. The deforma-

tion function sought is basically unconstrained, or belongs to a very large and

unrestrictive functional space, such as the Sobolev space W 2
2 of twice differ-

entiable functions. We seek the values of this deformation at a very fine grid,

usually coinciding with pixel locations. These methods are formulated either
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as variational, defining a scalar criterion to minimize, or using partial differen-

tial equations (PDE). The continuously defined deformation function minimizes

a given criterion, or solves a given PDE. The essence of these methods is thus

entirely in the criterion (resp., PDE). The PDE come from the optical flow

approach (gradient methods) [26], viscous fluid model [27–29], elastic deforma-

tions with physical analogs [7, 30] or without them [31], or from the variational

criterion [32]

The deformation function can be also modeled indirectly, e.g., as a potential

field [33]. This reduces the dimensionality of the problem, at the expense of

reducing the generality of the deformation. Displacement might be quantized

(limited) to integer number of pixels [34].

9.2.2.2 Global Models

At the other end, we have parametric, global methods that describe the cor-

respondence function using a global model with a relatively small number of

parameters [35]. The model mostly consists of expressing the warping function

in a global linear [36], polynomial [37] or harmonic basis [38, 39]. For these

methods, the deformation model corresponding to a specific warp space is as

important as the criterion being minimized.

9.2.2.3 Semi-Local Model

In between the two extremes are semi-local models, using a moderate number

of parameters with local influence. A grid of control points is usually placed

over the image and a basis function associated with each of them. Their spacing

corresponds loosely to knot or landmark density. By changing the spacing, we

can approach either local or global models or choose the best trade-off.

Semi-local models are instrumental for the B-spline based approach de-

scribed in section 9.4 and were also used, for example, for motion estima-

tion [40].

9.2.2.4 Image Dependent Models

It is sometimes useful to adapt the warping model to the images considered.

Hierarchically structured semi-local models, based on splines, wavelets, or
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quadtrees [41] can be refined only where needed. In feature based methods, the

basis functions of the warping model can be placed where the features are and

the deformation field interpolated in regions where no information is available.

Typical examples are radial basis functions such as thin plate splines [1,19,42],

to be discussed more in section 9.3.

9.2.3 Cost Function

The quality of a registration result is assessed by a cost function. It is

mainly composed of a data term, measuring the similarity of the images af-

ter warping. Sometimes a regularity term is added to privilege likely (smooth)

deformations.

9.2.3.1 Data Term

For methods based on geometric features, we can use a (mean) distance between

corresponding features in the source and target images. Note that landmark

interpolation (section 9.3) is a limit case with infinite weights given to this

distance, constraining it effectively to zero. If the pairing between the source

and target features is unknown, the iterative closest point algorithm [43], can

be used to determine it.

For pixel-based methods, the data term is a similarity measure on the two

images. The simplest and fastest criterion is the appropriate (e.g., l1 or l2) norm

of the pixel-wise difference, such as in the SSD (sum of squared differences)

criterion. However, it assumes an equivalency of intensities in both images.

If the intensities only correspond up to a possibly varying linear relationship

perhaps, then it is appropriate to use correlation, respectively, local normalized

correlation [7, 44]. More general and perhaps non-functional relation between

the intensities warrants the use of the mutual information criterion [45–48].

This is encountered, for example, in intermodality registration [49].

All three criteria lead to statistically optimal estimates of the registration

under corresponding image and noise models. Their complexity, computational

cost, and fragility increases in the order in which they were presented. For local

criteria, such as local normalized correlation, or local mutual information, the

neighborhood size must be properly chosen. Image interpolation is used to

calculate the warped image, see also section 9.2.1.1.
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In template-based methods, the template can be compared with a specific

region in the target image using any of the similarity measures suitable for

pixel-based methods. For transform-based methods, a (semi-)norm in the trans-

formed domain such as L2 (least-squares measure) is usually used.

9.2.3.2 Regularization

In most applications, it appears to be necessary to add an additional regulariza-

tion term to the criterion, mainly to make the problem well-posed and to stabilize

the algorithm. Regularization is also used to express our a priori knowledge. For

continuous, local deformation models, regularization defines the warping space

in the variational sense. For instance, in the case of landmark interpolation,

minimization of the norm of the Laplacian ‖�g‖ is often used in practice [1,19],

leading to a thin-plate spline solution [50]. Minimizing other similar measures

leads to generalized splines [51] determined either directly or using PDEs. See

also section 9.3.

Other regularizers are constructed by applying a non-linear (often quadratic

and sometimes image dependent) function on the derivative operator. This is

done mainly to preserve discontinuities [52]. Regularizers based on thresholding

in wavelet domain are also used. Implicit regularization for iterative methods

works by alternatively driving the intermediate solution towards the data, and

applying a smoothing operator.

9.2.4 Search Strategy

Given a cost function, there are several basic ways of minimizing it.

9.2.4.1 Direct Solution

In some cases, notably if the cost function is quadratic or if higher order terms

in the Taylor expansion of the criterion can be neglected, then the solution can

be found in one step [38, 53]. Transform methods using directional filters are

often engineered in this way [54, 55].

9.2.4.2 Exhaustive Search

If the search space is finite, exhaustive search can be used. For example, when

small templates are extracted from the reference image, their positions in the
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target image can be found by trying all possible shifts in some small neighbor-

hoods [34, 56].

9.2.4.3 Dynamic Programming

For integer 1D problems, dynamic programming is applicable [57] with com-

plexity proportional to the number of decisions to be taken (size of the image)

and the number of possible outcomes (shifts). The stereo matching problem with

cameras with known relative geometry also falls into this category [58]. These

are nice examples of how the a priori knowledge about the image formation

process simplifies the registration problem by imposing very strong geometrical

constraints on the correspondence field.

9.2.4.4 Partial Differential Equations

A partial differential equation can describe an evolution in time of the deforma-

tion field converging to the desired solution [32, 52]. (Time-independent PDE’s

derived directly by Euler-Lagrange formulas from the variational formulation are

seldom used.) The PDE parameters can vary with time, to enforce robustness

at first and relax the constraints toward the end, to allow for precise registra-

tion. Various numerical methods can be used to solve the PDEs, the princi-

pal ones being finite difference relaxation method [59], finite elements method

(FEM) [60, 61], hierarchical finite element bases [62], multigrid methods [63],

and wavelets [64, 65].

9.2.4.5 Multidimensional Optimization Methods

Many non-linear registration methods lead to a non-linear multidimensional op-

timization problem. Various optimization methods are used, depending on the

size and structure of the problem. The most popular choices include the Powell

method, gradient descent, conjugated gradients, and variations of the Newton

method, such as the Marquardt-Levenberg algorithm [59, 66].

Some minimization algorithms are described using different paradigms, such

as ‘demons’ [67], but usually can be explained in terms of a coordinate descent.

9.2.4.6 Multiresolution

Multiresolution [7,36,68] on the feature space (usually image size) helps to speed

up the process and to increase its robustness. It is based on approaching the
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solution by gradual refinements. We first solve a reduced problem using a small

amount of data, then use the solution as an initial guess for the problem at a finer

level. This is repeated until the finest (original) level is reached.

Multiresolution on the search space works similarly, adding degrees of free-

dom to the warping model at each step. We start with a simple model leading to

a simple and easy to solve problem. Then gradually add a manageable amount

of complexity at each step, until the desired model is reached. The model can

be augmented qualitatively, such as going from translation-only to general affine

transform, or quantitatively, for example, by decreasing the control node spacing

in semi-local models.

Related to multiresolution are multigrid optimization methods, where oc-

casional backward transitions from finer to coarser levels are used besides the

coarse-to-fine refinement used in the multiresolution [63].

9.2.5 Other Attributes and Features

The dimensionality refers to the number of dimensions of the images being

registered. The warping function normally works in the space of the same di-

mensionality, transforming one coordinate vector into another.

Interactive algorithms need human supervision and interaction, as opposed

to fully autonomous ones. Interactive methods often perform well, taking ad-

vantage of the human expert, but are unsuitable for treating high volumes of

data. Good compromise might be to use hybrid methods, requiring manual in-

tervention or approval only in difficult cases.

In some cases there is no inherent reference and test image, both can play

the same role. Then we would like the registration process to be consistent

with respect to this choice [69, 70]. Consistency is one of the ways to enforce

invertibility and preservation of the topology of the transformation, other possi-

bilities involve constraining the Jacobian [71] and composition of diffeomorphic

mappings [32].

9.2.6 Complementary Surveys

There is a wide choice of sources of information on registration algorithms. The

surveys by Brown [5] and a newer one by Zitová [72] are rather general. Warfield

et al. [73] concentrate on nonlinear registration for brain warping applications.
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Bayesian interpretation of elastic matching are reviewed by Gee [74], also in

the context of human neuroanatomy. The last two survey articles we mention

deal specifically with medical imaging applications of image registration. An

article by Van den Elsen et al. [75] contains very comprehensive and detailed

classification of available methods. Finally, Lester and Arridge [76] emphasise

the hierarchical concepts of the algorithms.

9.3 Landmark Registration

Landmark registration [1, 19, 20] is a two-step feature-based registration tech-

nique. In the first step, a set of landmark pairs is identified (see Fig. 9.2 for an

example), either manually, or automatically [20, 77]. We get two sequences of

points, x1, . . . ,xN , and z1, . . . , zN , such that an object at coordinates xi in the

reference image corresponds to the object at coordinates zi in the test image.

In the second step, the correspondence function is interpolated between the

landmark points [78, 79].

Manual landmark registration has the usual inconveniences of a man-

ual method—poor accuracy and repeatability. On the other hand, it is robust

and reliable thanks to the underlying human expert knowledge. For this rea-

son, it is very valuable as a bootstrap method for further automatic refine-

ment. It can also serve as a reference standard when evaluating the perfor-

mance of other registration methods on real images and under realistic working

conditions.

Landmark interpolation merits a study in its own right. Choosing an interpo-

lation method or an interpolation function is difficult because the implications of

this choice are not immediately apparent. On the other hand, in the variational

formulation we shall present, the user is asked instead to choose a criterion

of optimality, which is usually more tangible and often related to the physics

(or other specificities) of the problem. The variational formulation of land-

mark interpolation also allows us to make an interesting link with (fractional)

splines [80].

9.3.1 Desirable Properties

The landmark interpolation method should fulfill some basic properties:
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� We agree that landmarks are points in space, as opposed to just coordinate

values. Similarly, the correspondence function g is more than a mathemat-

ical function: it describes correspondence of real points. It is an object

in space, anchored to the landmarks. Consequently, it seems reasonable

to require that the interpolated function g be invariant with respect to

the choice of the coordinate system. In other words, the correspondence

between points in the two images should remain the same, regardless of

how we measure the position of these points.

� The interpolation problem should always have a solution, if possible

a unique one.

� Another property worth having is the reproduction of identity [81]. In ad-

dition, we might want the reproduction property for other simple transfor-

mations, such as shifts or scalings; more generally, affine transformations.

� We want the reconstructed correspondence function to be close to the

(unknown) true underlying correspondence function. We want the recon-

struction error to decrease rapidly with the number of landmarks—the

method should have good approximation properties [82]. This way we

can adapt the landmark density to ensure that the error is below any a

priori given tolerance threshold.

� Finally, we want the interpolation procedure to accommodate easily non-

exact fits, useful when the landmark positions are only known approxi-

mately. In this approximation setting, the reconstructed correspondence

function will pass close to the landmarks, making a compromise between

the closeness of the fit and the overall smoothness.

9.3.2 Thin-Plate Splines

The use of thin-plate spline technique for landmark interpolation is attributed to

Bookstein [1]. Here, we present the method from the variational point of view, as

a preparation for the extensions presented in section 9.3.3. Instead of imposing

an empirical interpolation formula, the essence of the variational formula-

tion consists of choosing a variational criterion J(g) and then finding among

all possible functions passing through the landmarks the one that minimizes

J [83, 84].
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The thin-plate spline method uses the physical model of a thin steel plate [21]

with small vertical displacement given by the scalar field g and calculates J as

the strain energy of the plate:

J(g) =
∫ (

∂2g

∂x2

)2

+ 2
(
∂2g

∂x∂y

)2

+
(
∂2g

∂y2

)2

dxdy=
∫ (∇2g

)2
dxdy (9.1)

where ∇2 denotes the Laplacian and the right equality is obtained by inte-

gration by parts under some conditions on the solution space. The Lapla-

cian energy (9.1) is a member of a more general family of scale and rota-

tion invariant cost functions which satisfy the requirements of section 9.3.1,

see also [85, 86]. It is also the simplest criterion that does not penalize affine

transforms.

The criterion for the vector form g is taken simply as the sum of the strain

energies of the x and y components, J(g) = J(gx)+ J(gy). As the constraints

g(xi) = zi can be broken into two independent sets for gx and gy, it follows

that minimizing J for g is equivalent to minimizing separately for gx and gy.

Consequently, we can concentrate on the scalar case here.

9.3.2.1 Interpolation Formula

The correspondence function g(x, y) minimizing (9.1) under interpolation con-

straints g(xi, yi) = zi is given by

g(x, y) =
N∑

i=1

λi�(‖x− xi‖)+ a0x+ a1 y+ a2

with ‖x− xi‖ =
√

(x− xi)2 + (y− yi)2 = r (9.2)

where �(r) is a �(r) = r2 log r. It is called radial because it only depends on the

Euclidean distance r to its associated data point [87].

The generating function �(x) = �(x, y) solves the associated Euler-Lagrange

(or fundamental) equation

∇4
x,y �(

√
x2 + y2) = δ(x, y) (9.3)

where ∇4 is a two times iterated Laplacian and δ(x, y) is the Dirac distribution.

The linear polynomial a0x+ a1 y+ a2 in (9.2) is called a kernel term and it ap-

pears because it does not contribute to the criterion. The unknown parameters

λi and a0,a1,a2 are determined from the interpolation constraints g(xi, yi) = zi
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and from orthogonality conditions

N∑
i=1

λi = 0
N∑

i=1

λixi = 0
N∑

i=1

λiyi = 0 (9.4)

The method we have just briefly described is called thin-plate spline interpola-

tion [1, 85, 86, 88].

9.3.3 Fractional Landmark Interpolation

Although the thin-plate splines have been known to work well, in many appli-

cations we might benefit from a wider choice of interpolation functions, while

keeping the general spirit and the invariance properties (affine geometrical trans-

formations including scaling) we are interested in. The straightforward way to

do it is to consider minimizing different criteria, namely fractional derivatives

(in 1D) and fractional Laplacian (in multiple dimensions). In some sense, these

are the only reasonable criteria guaranteeing the useful properties described

above (see [85, 86] for a more precise statement).

9.3.3.1 The Criterion and The Interpolation Formula

The Laplacian is defined in the space domain by∇2 f = ∂2 f

∂x2 + ∂2 f

∂y2 . In the Fourier

domain we have ∇̂2 f = ω2
x f̂ + ω2

y f̂ = ‖ω‖2 f̂ , provided that all quantities exist.

This can be extended to fractional orders as ∇̂α f = ‖ω‖α f̂ , yielding a general-

ized version of the Laplacian based criterion (9.1):

J(g) =
∫
‖∇αg(x)‖2dx ∝

∫
‖ω‖2α|ĝ(ω)|2dω (9.5)

To get some intuition, note that in the univariate case we would be measuring

the norm of the α-th fractional derivative [89, 90] of g.

There is an interesting relationship between fractional Brownian mo-

tion [91] and fractional derivatives, since fractional derivatives whiten the frac-

tional Brownian motion and thus effectively yield an uncorrelated Gaussian

white noise. The criterion (9.5) can be therefore interpreted as Bayesian fractal

prior (see [88] for details and also Poggio [92] for the non-fractal case), assum-

ing that the underlying true function is close to the fractional Brownian motion

model. We then find the solution to our interpolation problem combining this

knowledge with the information given by the constraints.
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The Euler-Lagrange equation corresponding to (9.5) is∇2α� = δ. The solution

for non-special α (read: non-integer) is of the form

g =
N∑

i=1

λi�(‖x− xi‖︸ ︷︷ ︸
r

) with �(r) = r2α−2 (9.6)

The polynomial kernel term does not appear here due to technical restrictions

of the Fourier domain definition of the criterion (9.5).

9.3.3.2 The Influence of α

The coefficient α translates into the assumed smoothness of the deformation—

the higher the α, the smoother the deformation. For practical purposes, we

will use 0.5 < α <≈ 5; the interpolation becomes point-wise unstable for smaller

α and does not change much for the larger ones. For α > 1.5 the prior can no

longer be interpreted as fractal Brownian motion, although the criterion remains

usable.

The choice of the order α obviously has an influence on the interpolation

results. In Fig. 9.6 we present an example of this effect for the landmark (bi-

variate) case, (see [86] for additional examples.) We have chosen two images

from a four-chamber ultrasound sequence of a heart5 and declared one of them

reference and the other a test. We have manually identified six pairs of conform-

ing points in both the images and we have also put additional stable landmarks

in the corners of the image. Then we warped the test image onto the reference

image varying the parameter α. Note that only non-integer values of α were

used, for which the formula (9.6) remains valid; integer values need a special

treatment.

How do we choose the best α? As we have seen in the previous section,

the statistically optimal α can be determined directly, when the characteristics

of the stochastic process generating the deformation are known. However, in

practice, this is never the case . Therefore, α must be found experimentally. We

observe that small α yields more localized and abrupt changes in the deforma-

tion field, while higher α gives rise to smoother and more global changes, as

predicted.

5 Acknowledgements: Images and landmark placement are the courtesy of
Marı́a J. Ledesma, Universidad Politécnica de Madrid, and Laboratory of Echocardiog-
raphy, Hospital General Universitario Gregorio Marañón, Madrid, Spain.



356 Kybic and Unser

Reference Test

alpha=0.5 alpha=0.9

alpha=1.3 alpha=2.5

Figure 9.6: The reference (top left) and test (top right) images. The test image

warped by landmark warping for α = 0.5 (middle left), α = 0.9 (middle right),

α = 1.3 (bottom left), and α = 2.5 (bottom right). The landmark positions are

marked with white squares and were identical in all cases.

When a sufficient number of test images and landmarks are available, a suit-

able α for a given application can be determined by the leave-one-out technique:

One or several landmarks are not taken into consideration when calculating the

correspondence function. Their real position is then compared to their position

predicted by the interpolation. Finally, the α yielding the smallest average error
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is selected. In the present case, we found the values of α = 1.5 ∼ 2.5 to be the

most suitable.

9.3.4 Summary of Landmark Interpolation

We have presented the landmark registration technique with focus on the second

step, the problem of landmark interpolation. This problem can be formulated

very concisely in the variational setting. We choose the variational criterion to

impose useful properties on the interpolation process, such as rotational, trans-

lational, and scale invariance. Most notably, when the criterion is quadratic, the

solution is expressed as a linear combination of translated generating (Green)

functions. The coefficients of this linear combination are determined from a lin-

ear system of equations.

The a priori non-local generating functions can be localized [88] for more

efficient and more stable calculation. In some cases this localization leads to

B-splines which gives an additional justification for using splines to solve this

kind of problems.

9.4 Fast Parametric Elastic Image

Registration

This section presents a practical example of a fully automatic algorithm for

fast elastic multidimensional intensity-based image registration with a para-

metric B-spline model of the deformation. Its main features are high-order B-

spline models of the deformation and of the image, pixel-based similarity crite-

rion, double multiresolution strategy (for both image and the model) and so-

phisticated iterative multidimensional optimizer. While the algorithm presented

here is based on our own work [88, 93–96], it is closely related to a number

of similar, independently developed approaches, of which we can only present

a very incomplete list. The use of B-spline deformation models was pioneered by

Szeliski [40,41] and the different pixel criteria were studied by Studholme [48,97]

and Nikou [49]. The hierarchical structure was exploited by Musse [71], Heitz [68]

and Thévenaz [36], who also employed the Marquardt-Levenberg optimizer.
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The algorithm can be used for 2D and 3D problems, is reasonably fast, and

is capable of accepting expert hints in the form of soft landmark constraints

[1, 19–21].

9.4.1 Problem Formulation

The input images are given as two N-dimensional discrete signals fr(i) and ft(i),

where i ∈ I ⊂ Z
N , and I is an N-dimensional discrete interval representing the

set of all pixel coordinates in the image. We call fr and ft reference and test

images, respectively. We suppose that the test image is a geometrically deformed

version of the reference image, and vice versa. This is to say that the points with

the same coordinate x in the reference image fr(x) and in the warped test

image fw(x) = f c
t

(
g(x)

)
should correspond. Here, f c

t is a continuous version

of the test image and g(x) is a deformation (correspondence) function to be

identified.

9.4.2 Cost Function

The two images fr , fw will not be identical because of noise and also because

the assumption that there is a geometrical mapping between the two images

is not necessarily correct. Therefore, we define the solution to our registration

problem as the result of the minimization g = arg ming∈G E(g), where G is the

space of all admissible deformation functions g. We have chosen the SSD (sum

of squared differences) criterion

E = 1
‖I‖

∑
i∈I

e2
i =

1
‖I‖

∑
i∈I

( fw(i)− fr(i))2

= 1
‖I‖

∑
i∈I

( f c
t (g(i))− fr(i))2 (9.7)

because it is fast to evaluate and yields a smooth criterion surface which lends

itself well to optimization. Minimization of (9.7) yields the optimal solution g in

the ML (maximum likelihood) sense under the assumption that fr is a deformed

(warped) version of ft with i.i.d. (independent and identically distributed) Gaus-

sian noise added to each pixel. The SSD criterion proved to be robust enough,

especially if preprocessing was used to equalize the image values—we mostly

applied high-pass filtering and histogram normalization [98]. In principle, there
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is no difficulty in extending this method for more sophisticated pixel-based

similarity measures, such as information-based measures [99], especially mu-

tual information [45], or weighted �p norms. Only the evaluation of the criterion

and its derivatives (gradient) needs to be changed.

9.4.3 B-Splines and Image Interpolation

We have chosen to interpolate the image using uniform B-splines:

f c
t (x) =

∑
i∈Ib⊂ZN

biβn(x− i) (9.8)

where βn(x) is a tensor product of B-splines βn(x) of degree n, i.e., βn (x) =∏N

k=1 βn(xk), with x = (x1, . . . , xN). Mirror boundary conditions were used, to

ensure continuity.

Let us recall some basic facts about B-splines. Uniform symmetric B-

splines [100] of degree n are piecewise polynomials of degree n. The polyno-

mial pieces are delimited by uniformly placed knots. B-splines of degree n have

continuous derivatives up to order n− 1 everywhere. Their integer shifts form

a basis. The first (degree zero) symmetric B-spline is defined as β0(x) = 1 for

x ∈ (− 1
2 ,

1
2 ) and 0 otherwise. Higher order B-splines are defined recursively as

βn+1 = βn ∗ β0 and their support is (−n+1
2 ,+n+1

2 ).

Using B-splines as interpolation functions has many advantages: B-splines

have good approximation properties—for example, the error of a cubic B-spline

(β3) approximation decreases asymptotically as h4 (measured by any L p or

l p norm, p ∈ {1, 2, . . . ,∞}). B-splines perform well in comparison with other

bases [11, 101]. B-splines are fast—they have a short support (length 4 for β3),

are symmetric, piecewise cubic, and separable in multiple dimensions. They

are simple to compute and scalable—the transition from a coarse spline space

with step size (knot distance) h q to a finer space with step size h is exact for

integer q .

9.4.4 Deformation Model Structure

So far, we have considered the deformation function g to be an arbitrary admissi-

ble function R
N → R

N . We will restrict it now to a family of functions described
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by a finite number of parameters cj:

g(x) = x+
∑
j∈J

cjϕj(x) (9.9)

where J is a set of parameter indexes and ϕj are the corresponding basis

functions. This transforms a variational problem into a much easier finite-

dimensional minimization problem, for which numerous algorithms exist [59].

Moreover, the restriction of the family G of all possible functions g can already

guarantee some useful properties, such as the regularity (smoothness) of the

solution.

9.4.4.1 B-Spline Deformation Model

There are various possibilities for the choice of the basis functions ϕj for

the deformation model (9.9). These include polynomials [37], harmonic func-

tions [38,39], radial basis functions [1,102], and wavelets [64,65,103], all of which

have been used in registration algorithms before. However, we have again chosen

B-splines, basically for the same reasons that lead us to choose them to interpo-

late our images (see Section 9.4.3): their good approximation properties, com-

putational efficiency [96], scalability, and additionally physical plausibility [95]

(such as minimizing the “strain energy” ‖g′′‖2 by cubic B-splines [104,105]) and

low interdependency thanks to short support. Their property of being able to

represent affine transformations, including rigid body motion, is welcome, too.

We have also evaluated the alternative wavelet representation of the same B-

spline space [106], only to find that direct B-spline representation was again

more efficient [96].

The B-spline deformation model is obtained by substituting a scaled version

of the B-spline (or tensor product thereof) in (9.9)

g(x) = x+
∑

j∈Ic⊂ZN

cjβnm
(x/h− j) (9.10)

where nm is the degree of splines used, h is the knot spacing, and the division is

taken elementwise. This corresponds to placing the knots on a regular grid over

the image. For efficiency reasons, we require the node spacing h to be integer,

which together with the separability of βnm
(x) implies that the values of the

B-spline βnm
(x) are only needed at a very small number of points (nm+ 1)h and

that they can be precalculated.
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9.4.5 Existence and Unicity

Since the useful range of the parameters c is naturally compactly constrained

(for example, by excluding displacements larger than the image size) and since

the criterion E is non-negative and continuous with respect to c (if at least

linear interpolation for f c
t is used), it is clear that E as a function of c has

a minimum; i.e., the proposed problem has a solution. However, depending on

the images at hand, the solution does not have to be unique and there can

be local minima. Fortunately, this does not pose problems in practice, thanks

to a multiresolution approach (section 9.4.6.2) which smoothes out images at

coarse levels and brings us sufficiently close to the solution at fine resolution

levels. The algorithm will find a solution if started within the attraction basin

of that solution. The virtual springs (section 9.4.7) play a role of an a prioiri

information and a regularization term; extra regularization can be applied, if

desired [88, 107] (section 9.4.9).

9.4.6 Optimization Strategy

9.4.6.1 Optimization Algorithm

Recall from (9.7) and (9.10) that we need to minimize a criterion E with respect

to a finite number of parameters c. To determine which of the many available

algorithms performs best in our context, we tested four local iterative algorithms

which can be cast into a following common framework: At each step i we take

the actual estimate c(i) and calculate a proposed update �c(i). If the step is

successful, i.e., the criterion decreases, then the proposed point is accepted,

c(i+1) = c(i) +�c(i). Otherwise, a more conservative update �c(i) is calculated,

and the test is repeated.

1. Gradient descent with feedback step size adjustment. The update rule is:

�c(i) = −µ∇cE(c(i)). After a successful step, µ is multiplied by µ f , other-

wise it is divided by µ′f .6

2. Gradient descent with quadratic step size estimation. We choose a step

sizeµ∗ minimizing the following approximation of the criterion around c(i):

E(c(i) + x) = E(c(i))+ xT∇cE(c(i))+ α‖x‖2, where α is identified from the

6 We used µ f = 10 and µ′f = 15.
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two last calculated criterion values E. As a fallback strategy, the previous

step size is divided by µ′f , as above.

3. Conjugated gradient. This algorithm [59] chooses its descent directions

to be mutually conjugate so that moving along one does not spoil the result

of previous optimizations. To work well, the step size µ has to be chosen

optimally. Therefore, at each step, we need to run another internal one-

dimensional minimization routine which finds the optimal µ; this makes it

the slowest algorithm in our setting.

4. Marquardt-Levenberg. The most effective algorithm in the sense of the

number of iterations was a regularized Newton method inspired by the

Marquardt-Levenberg algorithm (ML), as in [98]. We shall examine various

approximations of the Hessian matrix ∇2
c E , see Section 9.4.8.1.

The choice of the best optimizer is always application-dependent. We ob-

serve that the behavior of all optimizers is almost identical at the beginning of

the optimization process (see Fig. 9.7). The main factor determining the speed
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Figure 9.7: The evolution of the SSD criterion during first 18 iterations when

registering the Lena image, artificially deformed with 2× 4× 4 cubic B-spline

coefficients and a maximum displacement of about 30 pixels, without multireso-

lution. The optimizers used were: Marquardt-Levenberg with full Hessian (MLH),

Marquardt-Levenberg with only the diagonal of the Hessian taken into account

(MLdH), and gradient descent (GD). The deformation was recovered in all cases

with an accuracy between 0.1 and 0.01 pixels (see also section 9.4.10).
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is therefore the cost of a single iteration, which was smallest for the gradient de-

scent (GD) algorithm. Among the GD variants we recommend the quadratic step

size estimation that outperforms the classical feedback adjustment. One addi-

tional pleasant property of the GD algorithm is its tendency to leave uninfluential

coefficients intact, unlike the ML algorithm. Consequently, less regularization is

needed for the GD algorithm. We choose the GD optimizer for most of our image

registration tasks.

When, on the other hand, we work with a small number of parameters, the

criterion is smooth, and high precision is needed, the ML algorithm [36] performs

the best, as its higher cost per iteration is compensated for by a smaller number

of iterations due to the quadratic convergence (Fig. 9.8).

9.4.6.2 Multiresolution

The robustness and efficiency of the algorithm can be significantly improved by

a multiresolution approach: The task at hand is first solved at a coarse scale.
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Figure 9.8: Comparison of gradient descent (GD), conjugated gradient (CG),

and Marquardt-Levenberg (ML) optimization algorithm performances when reg-

istering SPECT images with control grid of 6× 6× 6 knots. The graphs give the

value of the finest-level SSD criterion of all successful (i.e., criterion-decreasing)

iterations as a function of the execution time. The abrupt changes are caused

by transitions between resolution levels.
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Then, the results are propagated to the next finer level and used as a starting

guess for solving the task at that level. This procedure is iterated until the finest

level is reached.

In our algorithm, multiresolution is used twice. First, we build an image

pyramid: a set of gradually reduced versions of the original image [108, 109].

This pyramid is compatible with our image representation (9.8) and is optimal

in the L2-sense (i.e., compatible with the SSD criterion (9.7)), which ensures

that the approximation made by substituting the lower resolution image is the

best possible. We reduce images up to the size of 16 ∼ 32 pixels, which works

well in most cases. The coarse versions of images (half size) are generated using

a reduction operator (see Section 9.4.8.4) and coarse level solutions are extrap-

olated to finer levels using an expansion operator (cubic spline interpolation).

Second, we use multiresolution for the warping function as well. We start

with a deformation g described with very few parameters ck, and with a large

distance h between knots. After the optimization of ck is complete, we halve

the distance between knots. This approximately corresponds to doubling the

number of knots in each direction, i.e., quadrupling (in 2D) the number of co-

efficients ck. Because of the two-scale spline relation, we can exactly represent

the warping function from the old, coarse space, in the new, finer space. The

sequence obeys h j+1 = h j/2. The process starts with g being identity.

The global strategy combines the two multiresolutions by alternatively de-

creasing the scales for the image and for the model.

The consequence of using multiresolution is that the algorithm works best

for images and deformations that follow the multiresolution model; i.e., when

a low resolution version is a good approximation of the finer resolution version.

9.4.7 Semi-Automatic Registration

We realize that although the multiresolution approach leads to a very robust

registration algorithm, there are cases when it is misled by an apparent similarity

of features which do not correspond physically. Therefore, we developed an

extension of the algorithm which can use expert hints. The hints come in the

form of a set of landmarks and are used to gear the algorithm towards the correct

solution. Similar idea appeared also for non-parametric approaches [110, 111].

The landmark information is incorporated in the automatic process using the

concept of virtual springs, tying each pair of corresponding points together. We
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augment the data part of the criterion E with a term Es, corresponding to the

potential energy of the springs, and minimize the sum of the two: Ec = E + Es.

The spring term is:

Es =
S∑

i=1

αi ‖g(xi)− zi‖2 (9.11)

where S is the number of springs, αi are weighting factors corresponding to

their stiffnesses, and xi, resp. zi, are the landmark positions in the reference,

resp., test images. The spring factors αi control the influence of the particular

landmark pairs.

As an example, we present the registration of an MRI slice from an atlas7

with a sample MRI test image8. To identify the same structures in the test image,

we register it with the unlabeled version of the atlas. Once the geometric corre-

spondence is established, the structures and their labels from the atlas can be

projected onto the test image. The unsupervised registration correctly registers

some of the structures but misses others; in particular, the skull boundary (see

Fig. 9.9). If we now help the algorithm by identifying several landmarks in both

images (Fig. 9.10), the semi-automatic version can recover a plausible deforma-

tion, even though the landmark information alone (using e.g., thin-plate splines)

would not have been enough [112].

Adding the spring term privileges likely solutions based on our a priori knowl-

edge and makes the problem better-posed. The points need not to be image-

dependent landmarks. For example, anchoring the four corners of the image

prevents the solution from degenerating. In this way, the springs play in part the

role of a regularization factor.

9.4.8 Implementation Issues

The purpose of this section is to describe some specific aspects of our implemen-

tation. These are mostly independent of the main philosophy of the algorithm

but can have a major impact on its performance.

7 The atlas is a labeled and annotated collection of images. Courtesy of Harvard Medical
School, http://www.med.harvard.edu/AANLIB/home.html

8 We use a proton density MR image from the Visible Human project
http://www.meddean.luc.edu/lumen/meded/grossanatomy/cross section/index.html. Prior to
registration, the histogram of the test image was matched to that of the reference.
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Figure 9.9: The reference MRI proton density brain slice from the atlas with (a)

and without labels (b). The sample test slice of a corresponding region (c). The

superposition (in red and green) of the two images before (d) and after the

registration (e). The deformation field (f). Cubic splines were used with knot

spacing of h = 32. The image size was 512× 512 pixels. The difference between

images is only partially corrected by the unsupervised registration. Misalignment

of several structures is clearly visible. (Color slide.)
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(a) (b)

(c) (d)

Figure 9.10: The reference (a) and test (b) images with superimposed land-

marks (in red). The superimposed images after registration using the semi-

automatic algorithm (c) and the deformation field found (d). Corresponding

anatomical structures are well identified; the alignment is clearly superior to

that in Figure 9.9. (Color slide.)

9.4.8.1 Explicit Derivatives

For the optimization algorithm, we need to calculate the partial derivatives of

E, as they form the gradient vector ∇cE(c(i)) and the Hessian matrix ∇2
c E(c(i)).

Starting from Eq. (9.7), we obtain the first partial derivatives

∂E

∂cj,m

= 1
‖I‖

∑
i∈Ib

∂ei

∂ fw(i)
∂ f c

t (x)
∂xm

∣∣∣∣
x=g(i)

∂gm(i)
∂cj,m

(9.12)

as well as the second partial derivatives

∂2 E

∂cj,m∂ck,n

= 1
‖I‖

∑
i∈Ib

(
∂2ei

∂ fw(i)2

∂ f c
t

∂xm

∂ f c
t

∂xn

+ ∂ei

∂ fw(i)
∂2 f c

t

∂xm∂xn

)
∂gm

∂cj,m

∂gn

∂ck,n

(9.13)

From (9.7) defining the SSD criterion, we get ∂ei

∂ fw(i) = 2
(

fw(i)− fr(i)
)

and
∂2ei

∂ fw(i)2 = 2. The derivative of the deformation function (9.10) is simply ∂gm

∂cj,m
=

βnm
(x/h− j). The deformation model is linear and all its second derivatives

are therefore zero; that is the reason for the simplicity of (9.13). The partial
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derivatives of f c
t in (9.12) and (9.13) can be calculated from (9.8) as a ten-

sor product ∂ f c
t

∂xm
(x) =∑k∈I bkβ

′
n(xm− km)

∏N
l=1
l =m

βn(xl − kl). Second-order partial

derivatives of f c
t are obtained in a similar fashion.

9.4.8.2 Hessian Approximation

Because the evaluation of the Hessian matrix from (9.13) is costly, several modi-

fications have been devised. The Marquardt-Levenberg approximation assumes

that the term ∂ei

∂ fw(i) is negligibly small or that it sums to zero on the average. This

reduces (9.13) to

∂2 E

∂cj,m∂ck,n

= 2
‖I‖

∑
i∈Ib

∂ f c
t

∂xm

∂ f c
t

∂xn

∂gm

∂cj,m

∂gn

∂cj,n

(9.14)

Another simplification is to consider only diagonal terms ∂2 E/∂c2
j,m. Obviously,

this diagonal Hessian approximation only makes sense if the basis functions ϕj

do not overlap too much. This is another argument for the B-spline model. Each

such approximation makes the evaluation faster at the expense of precision

which may result in slower convergence. Whether it is advantageous to use some

approximation depends on many factors, including the size and the character

of the data.

9.4.8.3 Gradient Calculation

Similarly to the case of evaluating the deformation g, the use of an inte-

ger step size h leads to computational savings here too. The expanded ex-

pression for ∂E

∂cj,m
can be transformed into a discrete separable convolution{

∂E

∂cj,m

}
j
=∑iw(i)b(j · h− i) = (w ∗ b)↓h, where we have substituted w for the

first two factors in (9.12), b(q) = βnm
(−q/h), and↓ h indicates downsampling as

defined by the formula, with elementwise multiplication j · h. The convolution

kernel b is separable and the convolution can be calculated as a sequence of N

unidimensional convolutions
(
(w ∗ b1)↓h1 ∗ · · · bn

)
↓hN

. Because of the downsam-

pling, calculating one output value at step k consists of a scalar product with

a filter bk of length (nm+ 1)hk and shifting this filter by hk.
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9.4.8.4 Multiresolution Spline Representation

To deploy the multiresolution strategy (see section 9.4.6.2), we need to specify

expansion and reduction operators. We will use the same approach for both the

deformation model and the image model.

Let us consider here a 1D signal represented in a B-spline space

f (x) =
∑

i

ciβn(x− i) (9.15)

The expansion operator E yields a twice expanded version of f which is also

a spline

fe = E f, fe(x) = f (x/2) =
∑

i

diβn(x− i) (9.16)

with coefficients di given by

d = c↑2 ∗ un (9.17)

where c↑2 denotes upsampled version of c and un is a symmetrical binomial filter

defined in the z-domain as

Un(z) = (1+ z)n+1

2n
z−(n+1)/2 (9.18)

The twice reduced signal f (2x) cannot be represented as a spline with knots

at integers. We need to resort to approximation and we have chosen the L2

optimality as described in [109]. The reduction operatorRwill yield a projection

(denoted P1) in the original spline space with step size 1.

fr = R f, fr(x) = P1 f (2x), fr(x) =
∑

i

eiβn(x− i) (9.19)

The spline coefficients ei are calculated as

e = (h̊ ∗ c)↓2 ∗ b−(2n+1) (9.20)

with prefilter h̊ = b2n+1 ∗ un, where b2n+1 is the sequence of sampled values of

a B-spline of degree 2n+ 1, bn(i) = βn(i). Finally, b−(2n+1) is the inverse filter to

b2n+1 and the convolution can be handled by recursive filtering, as described

in [8, 9].

Because R is a projection complementary to E , we have the projection iden-

tity RE f = f . Extension of both operators to multiple dimensions is trivial

thanks to separability.
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9.4.8.5 Consequences of Finite Support

All what we said so far about expansion and reduction holds for infinite signals.

To adapt the method for finite signals, we considered the following requirements:

the expansion must be exact in the continuous sense, the projection identity

must hold, reduction followed by expansion must conserve the length of the

signal, and as much information as feasible should be conserved. These require-

ments are useful to guarantee the best possible use of the coarse-grid results at

the fine-grid level and are absolutely indispensable for multigrid minimization.

Traditionally, one represents the signal with exactly one coefficient per sam-

ple and assumes that the signal outside the region of interest follows some

known pattern, such as periodicity, or mirror-on-boundary conditions. We take

the mirror-on-boundary condition as an example, but the same kind of prob-

lems appear for other boundary conditions, too. First, the signal is forced to

be symmetric and thus flat at boundaries. Second, the boundary conditions for

both expansion and reduction are only conserved for odd number of samples,

otherwise the mirror position needs to change. Third, varying the length of the

signal by one does not change the length of the reduced version which makes it

impossible to recover the original length by expansion.

The centered pyramids [108] conserve the mirror position for even-length sig-

nals. Unfortunately, the expansion is no longer exact. Moreover, the constraint

of the size of the image being a power of two, together with the integer step size

h, seems to be too restrictive.

Because of these considerations, we decided to dissociate the number of

B-spline coefficients from the length of the interest region. Initially, we extend

the signal by �(n− 1)/2� samples at each extremity which allows us to represent

any spline of degree n without constraints. We never move the boundaries of

our signal when expanding, although the number of B-splines might vary. In this

way, expansion is always exact while it adds extra knots at each end. Reducing

expanded signal recovers exactly the original. When reducing other signals, we

need to extend them to be able to use our efficient filtering technique. For this,

we choose to use the mirror-on-boundary conditions.

9.4.8.6 Image Size Change

The only trick when expanding and reducing the images is to adapt the de-

formation function accordingly. This is easily accomplished by multiplying the
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coefficients by 2 when expanding and 0.5 when reducing. Thanks to our choice

of the expansion and reduction operators, the origin of the image does not

change.

9.4.8.7 Fast Spline Calculations

It is essential to take full advantage of the properties of splines. First, specialized

routines are used to calculate the values of a B-spline of a specific order using

a minimum number of operations. Second, as we are using tensor products of

B-splines as our basis functions, many operations can be performed in a sepa-

rable fashion, reducing the complexity of operations from O(kN), where N is

the number of dimensions and k the size of the data, to O(kN). This is the case

for the prefiltering step required to find the B-spline coefficients, and also for

the interpolation of values of a function given by its B-spline coefficients. Third,

the compact support of B-splines simplifies many of the infinite sums in the

expressions given earlier, reducing them to sums over just a small number of

elements.

9.4.8.8 Stopping Criterion

To get a fast optimization algorithm, particular attention has to be paid to the

stopping criterion. This holds for both GD and ML algorithms. Classically, the

relative and absolute improvement of the criterion value is compared with a fixed

threshold [59]. For our class of problems, it is often advantageous to base the

stopping criterion on the changes �c of parameter values. We stop when the

step size falls below an a priori given threshold ε. The size of a step that fails

gives an indication of the accuracy of the result and is therefore easy to set.

Typically, we would use the threshold of ε = 10−1 ∼ 10−3 pixels for the finest

level and slightly more for coarser levels, as there is usually not enough details

and coherence between levels.

9.4.8.9 Masking

A substantial gain in speed comes from considering only important pixels when

calculating the data criterion (9.7) and its derivatives. It is possible to deter-

mine an a priori mask of significant pixels, for example, 10 ∼ 50 % of the total
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Figure 9.11: Example of a mask selecting 10 % of the pixels with the highest

gradient values for the Lena image.

number of pixels, and to consider only those pixels in subsequent calculations.

The contributions of individual pixels to the change of the criterion is directly

proportional to the amplitude of the directional derivatives at the respective

points, see (9.12). Therefore, a reasonable strategy is to construct the mask

by thresholding the gradient of the image at each multiresolution level (see

Fig. 9.11).

9.4.9 Invertibility and Regularization

In some applications, it is useful to add an extra regularization term Er to the

difference measure E, and to look for a minimum of the combined criterion

Ec = E + γ Er (9.21)

The factor Er is used to make the solution well-posed, or to privilege likely

solutions based on our a priori knowledge.

First, we consider a penalty term designed to enforce the invertibility of the

deformation, generalizing the concept from [95] and similar to [113]. Its moti-

vation comes from the fact that if the Jacobian det(∇xg) is positive everywhere,
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then the deformation g is locally invertible. Evaluating this constraint at pixel

coordinates and converting the strict constraints into soft ones using a barrier

function yields the following penalty term

Ep =
∑
i∈I

e−α det(∇xg(i)) (9.22)

Experience shows that, for typical data, this term is never important at the

solution point (to which the optimization converges). It mostly becomes useful

at the beginning of the optimization process when the trial points vary a lot,

especially with some optimizers. In such cases, the penalty term forces the

algorithm to stay in the region of invertible deformations.

Depending on the particular task and the expected properties of the solu-

tion, various regularization terms can be used. We investigated, for example,

a stabilizer penalizing non-linear deformations

Et =
∫ N∑

k,l,m=1

(
∂2gk

∂xl∂xm

)2

dx (9.23)

and a very simple norm measuring the distance of g from identity through the

coefficients c

Ed =
∑

j

‖cj‖2 (9.24)

When the corresponding weight γ is small, the regularization mainly

smoothes the deformation function in places where little information is present

in the images. As it gets bigger, the regularization gradually overrides the data

term and the deformation tends towards a smooth function in the sense of the

particular regularization. An alternative to regularization is the virtual spring

mechanism described in section 9.4.7.

9.4.10 Experiments

We now illustrate the application of the presented algorithm to various problems

involving medical images of several modalities. We refer the interested reader

to [88,95,96], where we study in detail the accuracy, speed and robustness of the

algorithm by means of a comprehensive series of experiments in a controlled

environment.
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Figure 9.12: The original slice of anatomical MRI brain image ((top left), origi-

nal superimposed over the true deformation (top right), the recovered deforma-

tion versus the true deformation (bottom left), and the mask used to calculate

the warping index (bottom right). (Color Slide)

9.4.10.1 Registration of Artificially Deformed MRI Brain Slices

To illustrate the behavior of the algorithm, we show its performance when recov-

ering a known deformation of a 2D slice of an anatomical spin-echo MRI volume

of the brain.9 We use here artificially-deformed images because the knowledge

of the ground truth permits us to better judge the performance of the algorithm.

The original image of size 256× 256 pixels is shown in Fig. 9.12, top-left.

We use a cubic spline control grid with one knot for every 32 pixels. We warp

the image with a deformation belonging to the warp space and consisting of

displacements up to 15 pixels.10 The warped image is superimposed on the

original in Fig. 9.12, top-right. Then the automatic registration algorithm is run

with the stopping threshold set to 0.5 pixels for all levels except the last, where

we set it to 0.1 pixels. The recovered deformation was used to warp again the

original image. Its warped version is shown superimposed on the image warped

9 First author’s brain. Images courtesy of Arto Nirkko from Inselspital Hospital, Bern,
Switzerland.

10 Approximately 14 mm.
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Figure 9.13: The evolution of the optimization process. The left column dis-

plays the evolution with respect to the number of iterations, while the right

column represents the same quantity respect to time. The first row shows the

SSD criterion E, the second row the warping index . The steep (step) changes

correspond to the changes in the model and image resolutions. We observe good

correlation between all four graphs.

with the true deformation in Fig. 9.12, bottom-right. We note that the deformation

was well recovered with no perceptible difference.

The spatial distribution of the resulting geometrical error is shown in

Fig. 9.14. The maximum error is about 1.5 pixels, while the mean geometric

error (warping index  [36]) over the total of the brain is about 0.4 pixels. We

generally observe that the error is concentrated in areas with little detail in the

image. Other high-contrast regions, such as edges, are resolved much more pre-

cisely than indicated by the value of  , often with subpixel accuracy. On the

other hand, the agreement in the zones with low-contrast is worse and often

only coincidental, since there is little or no information to guide the algorithm.

The evolution of the optimization can be studied from the graphs in Fig. 9.13.

We observe the steady and correlated descent of the observable criterion being
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Figure 9.14: The geometrical error after registration (green) with superposed

contours of the original MRI image (red). The maximum (green) intensity cor-

responds to an error of 1.5 pixels. (Color slide.)

optimized (E) and of the warping index ( ), the quantity measuring the quality

of the registration. The abrupt changes in the curves are caused by the transitions

between levels of the multiresolution progression; they are small thanks to the

accuracy of the spline model.

Note that the final values of both E and  depend strongly on the pre-

set stopping threshold, which in turn influences the optimization time. The

threshold value is a subjective compromise between the accuracy and com-

putation time. It is perfectly possible to stop optimizing only after 7 s and

skip the finest resolution level altogether, if the precision of  = 0.7 pix-

els is acceptable. On the other hand, after about 4 more minutes of itera-

tion, the error  descends to less than 10−4 pixels. However, in the authors’

opinion, such super subpixel accuracy is almost never achievable on real im-

ages, because of the noise and the unknown characteristics of the acquisition

process.

9.4.10.2 Registration of True Medical Data

Finally, we give a representative list of medical imaging registration tasks where

the described algorithm was successfully used:

� Registration of ECD11 and Xenon inhalation SPECT images [114] in the

view of atlas creation [115].

11 ECD (Technetium Ethylene Cysteine Diethylester) is a radioactively marked intra-
venously injected agent.
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(a) (b) (c)

Figure 9.15: The superposition of the slices of anatomical MRI images before

the registration (a), after the registration (b), and the resulting deformation field

(c). Quadratic splines were used with knot spacing of h = 64. (Color slide.)

� Intersubject registration of anatomical (spin-echo) MRI images,12 Fig. 9.15.

� Registration of MRI images from a heart beat sequence,13 see Fig. 9.16.

The extracted deformation field can be used to extract trajectories of var-

ious points in the heart and to further determine the velocity and derived

parameters, such as the accumulated displacement and strain, which is

important for diagnostic purposes.

� Registration of standard 2D ultrasound sequences of the heart [116].

� Motion compensation for a sequence of myocardial perfusion MRI im-

ages14 [117,118], enabling the time profiles of the intensities at each tissue

point to be reliable calculated (Fig. 9.17). Virtual springs were used in this

case.

� Registration of two 3D computer tomography (CT) head volumes,15 see

Figs. 9.18 and 9.19. We worked on a reduced volume data (128× 128× 45

instead of the original 512× 512× 45) with control knots placed every

8× 8× 8 voxels and the process took about 10 minutes to complete.16

12 Images courtesy of Arto Nirkko, Inselspital Hospital, Bern, Switzerland.
13 LECB, NIH, http://www-lecb.ncifcrf.gov/flicker/
14 Courtesy of J.-P. Vallée, Unité d’imagerie numérique, University Hospital, Geneva,

Switzerland.
15 Images courtesy of Philippe Thvenaz, EPFL, Lausanne, Switzerland. The images were

acquired using the same machine and the same protocol, but not preregistered.
16 On a 700 MHz Pentium based computer. Registering directly the undecimated volumes

on the same computer takes about three hours with very minor increase in quality as relatively
smooth deformations are sought. We are currently working on a optimized reimplementation
of the algorithm that should reduce these times considerably.
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(a) (b)

(c) (d)

Figure 9.16: The reference MRI image from a heart sequence with superim-

posed contours (a). The same contours over another image (the test image)

from the same sequence before the registration (b) and after (c). The deforma-

tion field (d). Quadratic splines were used with knot spacing of h = 64, image

size was 256× 256 pixels. (Color slide.)

9.4.11 Summary of Elastic Registration

The algorithm that has been described is a state-of-the-art example of what

is available in the field of fully automatic elastic pixel-based registration. It

contains many features that have been proposed in the literature and it has been

streamlined for an efficient execution.

Elastic registration has numerous applications in the biomedical imaging

field, all based on the basic notion of aligning two images with one other, be

it intersubject, intrasubject, or intermodality. It can be used for motion and

deformation detection. The deformation field itself can be used for deformation

and motion compensation as well as for quantitative measurements.

The criterion, the deformation model, the regularization (penalty), and the

optimization algorithm should be all adapted to the task at hand for optimum

results.

By producing a specialized program taking advantage of a specific config-

uration, the runtime can be probably decreased by an additional factor of 10.
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Figure 9.17: The first line presents original images number 6,9,11, and 14 from

a sequence of originally 60 images of myocardical perfusion MRI. The second line

presents the difference images between the original images and their immediate

predecessors; movement artifacts can be clearly seen. On the third line you

can see the difference images from the motion corrected sequence using our

algorithm; the movement artifacts are significantly reduced. The same effect

is also visible comparing the differences of the sequence images with the first

image of the sequence on the original (fourth line) and corrected (fifth line)

sequences.

This, together with the constant advances in computer technology will enable

truly interactive operation of automatic and semi-automatic elastic image reg-

istration with numerous applications in medicine, biology, and any other field

where deformed images need to be compared.
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Figure 9.18: The axial, sagital, and coronal views of the two CT brain volumes

(one in red, second one in green) prior to registration. Meaningful comparison

is difficult. (Color slide.)

Figure 9.19: The axial, sagital, and coronal views of the two CT brain volumes

(one in red, second one in green) after the registration. The volumes are aligned,

and the large and medium-scale differences were compensated by the registra-

tion. This permits to identify more subtle differences. (Color slide.)
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Questions

1. What is image registration?

2. What is a correspondence function?

3. What is image warping?

4. What are the usual assumptions in motion analysis?

5. How would you use an atlas for segmentation?

6. Which four attributes do the authors use to classify registration algo-

rithms?

7. What is the purpose of interpolation?

8. What is the relation between variational methods minimizing a scalar

criterion and methods described using PDEs? [For further study.]

9. Why should a warping model be adapted to the image?

10. What is the purpose of regularization in image registration?

11. What is the essence of multiresolution?

12. Explain the notion of consistency in the image registration context.

13. Try classify a typical landmark registration algorithm according to the

framework described in the first part of this chapter.

14. Why does the Laplacian variational criterion not penalize affine deforma-

tion?

15. Why are radial basis functions called radial?

16. What is landmark interpolation?

17. Explain the notion of separability for B-spline basis functions and its

impact on speed?

18. What is the consequence of setting the virtual spring weights α too high

or too low?
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19. How does the registration result depend on the chosen optimization algo-

rithm?

20. What is the relation between the reduction and expansion operators R
and E?

21. Does the positivity of the Jacobian guarantee the global invertibility of the

deformation?
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Chapter 10

Cross-Entropy, Reversed Cross-Entropy, and

Symmetric Divergence Similarity Measures for

3D Image Registration: A Comparative Study

Yang-Ming Zhu1 and Steven M. Cochoff 1

10.1 Introduction

Image registration is a process that quantitatively relates the information in

one image to that in another image by determining a one-to-one transformation

between coordinates in the two image spaces. Medical image registration is be-

coming increasingly useful in research and patient care (see [1, 2, 3]). Different

imaging modalities often times provide unique and complementary informa-

tion. Multimodality image registration makes it possible to combine structural

(computed tomography or magnetic resonance images) and functional (positron

emission tomography or single photon emission tomography) information to

improve diagnostic accuracy and aid surgical and/or radiotherapeutic planning.

Registration of the same modality images acquired at different times allows

clinicians to assess lesion progression/regression or treatment effectiveness. In

an interactive, image-guided surgery environment, registration of preoperative

images with the physical space is an overriding requirement.

Many algorithms have been employed to register medical images and have

recently been reviewed and classified (see [4, 5]). Earlier work prior to 1993 has

also been reviewed (see [6, 7]). Fitzpatrick and his colleagues evaluated 16 of

1 PET Engineering, Nuclear Medicine Division, Philips Medical Systems, 595 Miner Road,
Cleveland, Ohio 44143, USA

393



394 Zhu and Cochoff

those algorithms visually as well as objectively [8, 9, 10]. Among those different

registration algorithms, the voxel similarity approaches to image registration

have attracted significant attention since these full-volume-based registration

algorithms don’t rely upon data reduction or segmentation, and involve little

or no user interaction. They can also be fully automated and offer quantitative

assessment. Maintz et al. [4] lists the reported paradigms and Studholme et al.

[11], Penney et al. [12], and Holden et al. [13] compare many of them. Among

various different similarity measures, mutual information is the most prominent

(see [14, 15, 16], and [17]). Many papers and reports have been published on this

similarity measure since its first publication and advances in this area have been

recently reviewed in Pluim et al. [17].

A cross-entropy optimization approach to image registration was reported

recently in Zhu [18]. Cross-entropy minimization as a principle was formally

established by Shore and Johnson [19, 20]. They also studied the properties of

cross-entropy minimization [21]. In addition to image registration, this measure

has been applied to the areas of spectral analysis in Shore [22], image reconstruc-

tion in Zhuang et al. [23], biochemistry in Yee [24], process control in Alwan et al.

[25], non-linear programming in Das et al. [26], and electron density estimation

in Antolin et al. [27], among many others.

Cross-entropy, also known as Kullback-Leibler divergence, is an information-

theoretic measure that quantifies the difference between two probability den-

sity functions (pdf). It can be either maximized or minimized, depending on

how a priori pdf is given. Cross-entropy maximization degenerates to mutual

information maximization, conditional entropy minimization or joint entropy

minimization under certain conditions. Cross-entropy has two close relatives

known as reversed cross-entropy and symmetric divergence, which have been

applied to spectral analysis (see [28, 29]) and neural networks [30]. It is reported

that cross-entropy, reversed cross-entropy, and symmetric divergence spectral

analyses have comparable performance. However, it is not clear how reversed

cross-entropy and symmetric divergence perform as registration measures. This

chapter explores their use as similarity measures for medical image registration

and compares their performance.

Since 1999, the imaging vendors have been developing new imaging devices

which combine two different imaging modalities into a single apparatus [31].

General Electric Medical Systems, Philips Medical Systems, and Siemens Medi-

cal Solutions/CTI all have released PET/CT devices (Discovery LS, Biograph, and
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Gemini, respectively, [32]. Given this hardware approach to image registration,

the question arises as to the continued need for software registration techniques.

It is our opinion however, that software image registration will continue to play

a vital role in many instances and that the development of registration algo-

rithms shall remain an important research area for years to come. In many

cases, hardware registration is impractical or impossible and one must rely on

software-based registration techniques. For example, when monitoring treat-

ment effectiveness over time, software image registration is necessary since the

single or multimodality images are acquired at different times. In addition, appli-

cations involving intersubject or atlas comparisons require software registration

since the images originate from different subjects. Other applications for soft-

ware registration include the correction of motion that occurs between sequen-

tial transmission and emission scans in PET and SPECT as well as the position-

ing of patients with respect to previously determined treatment plans. The need

to offer multiple different combinations of imaging modalities (i.e., PET/MR,

SPECT/MR, PET/CT, etc.) would be impractical. As most researchers agree, the

hybrid devices will likely play a major role primarily in radiation oncology.

The remainder of this chapter is organized as following: section 10.2 defines

all three measures and discusses how they can be used in an image registra-

tion context. Section 10.3 addresses the implementation issues. Section 10.4

details the experimental setup to test cross-entropy, reversed cross-entropy,

and symmetric divergence image registration by both maximization and mini-

mization. Section 10.5 presents the registration results, along with a discussion.

Section 10.6 concludes with a brief summary.

10.2 Cross-Entropy, Reversed Cross-Entropy,

and Symmetric Divergence

Cross-entropy, reversed cross-entropy, and symmetric divergence can be defined

for pdfs of any-dimensional random variables. To make it relevant to the image

registration context, in the following equations only a vector variable (u, v) is

considered. In these equations, u and v are voxel gray values at corresponding

points in two images, f (x, y, z) and g(x, y, z) that are known as the reference

image and the floating image, respectively. This gray value pair is considered in
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almost all similarity measure-based image registration. Note that, if there are

more than two images to be registered (see [17, 33]), these definitions can be

easily extended to the n-dimensional case [18].

Assume the joint pdf of random variable (u, v) is p(u, v). Also assume a prior

estimation of p(u, v) is available and denoted as q(u, v). The cross-entropy is

thus defined on a compact support D = Du× Dv , as in Shore and Johnson [19]

ηCE(p, q) =
∫

D

p(u, v) log
p(u, v)
q(u, v)

dudv, (10.1)

where Du and Dv are supports of u and v, respectively.

If the roles of q(u, v) and p(u, v) are switched, one has the reversed cross-

entropy,

ηRCE(p, q) =
∫

D

q(u, v) log
q(u, v)
p(u, v)

dudv. (10.2)

To make the definition symmetric with regard to p(u, v) and q(u, v), one can

combine cross-entropy and reversed cross-entropy,

ηSD(p, q) =
∫

D

[p(u, v)− q(u, v)] log
p(u, v)
q(u, v)

dudv, (10.3)

which is the definition of symmetric divergence.

In the case where cross-entropy optimization is utilized to perform image

registration, if a favorable (also known as desirable or likely) priori pdf is given,

an estimate of the true pdf can be found by minimizing the cross-entropy. On

the other hand, if an unfavorable priori pdf is given, an estimate of the true

pdf can be obtained by maximizing the cross-entropy. The same would be true

when reversed cross-entropy and symmetric divergence are used as similarity

measures for image registration.

A favorable pdf can be computed based on previous registration results [34].

Theoretical analysis can also provide information regarding a favorable priori.

For example, the voxel values in images of the same modality and of the same

patient are linearly related and it has been shown that MR image can be used

to simulate a PET image [35]. Since the true pdf is expected to be close to a

likely priori, the cross-entropy, reversed cross-entropy, and symmetric diver-

gence will be minimized. It is worthy to note that the cross-entropy, reversed

cross-entropy, and symmetric divergence are not the only frameworks to exploit

the priori knowledge in registration. The recently proposed likelihood maximiza-

tion approach can also systematically use this knowledge (see [34, 36]).
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When an undesirable prior q(u, v) is given, the cross-entropy, reversed cross-

entropy, or symmetric divergence are maximized. When images are in registra-

tion, we would expect that the voxel values at the same coordinates in the two

images are related. Therefore, unfavorable pdfs can be uniform, proportional

to one of the marginal pdfs, or the product of two marginal pdfs. The case

where the unfavorable pdf is the product of two marginal pdfs is worth noting.

In this case, the voxel values are statistically independent since their joint pdf is

the product of their marginal pdfs. Cross-entropy maximization based on these

three priori estimates degenerate to entropy minimization, conditional entropy

minimization, and mutual information maximization, respectively, [18].

Let’s assume the marginal pdfs of u and v are h f (u) and hg(v), respectively,

and the unfavorable priori pdf q(u, v) is equal to the product of two marginal

pdfs. Putting q = h f (u)hg(v) into Eqs. (10.1) (10.2) and (10.3), one arrives at

ηCE =
∫

D

p(u, v) log
p(u, v)

h f (u)hg(v)
dudv, (10.4)

ηRCE =
∫

D

h f (u)hg(v) log
h f (u)hg(v)

p(u, v)
dudv, (10.5)

and

ηSD =
∫

D

[p(u, v)− h f (u)hg(v)] log
p(u, v)

h f (u)hg(v)
dudv. (10.6)

One may notice that Eq. (10.4) is the definition of mutual information. The

measures defined in Eqs. (10.4–10.6) are maximzied when used in image

registration.

10.3 Implementation

Figure 10.1 shows the overall flow chart of the registration process. It applies

to all three similarity measures as well as the minimization and maximization

cases. When the similarity measures are minimized, a favorable priori is used

in the similarity calculation. When they are maximized, the priori estimate is

calculated from the marginal pdfs on-the-fly. As can be seen, no matter which

measure is used, the registration algorithm has the same structure and they can

be implemented in the same manner. Since Eqs. (10.1)–(10.6) are in a continuous

form, they must be discretized to be solved numerically.
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Compute
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Update Transform

Final Transform
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No

Figure 10.1: Flow chart of image registration by the cross-entropy, reversed

cross-entropy, and symmetric divergence optimization. CE: cross-entropy; RCE:

reversed cross-entropy; SD: symmetric divergence.

The two images involved in the registration are identified as the reference

image and the floating image. The floating image will undergo rotation and trans-

lation to match the reference image. Before the automatic registration starts,

an initial set of registration parameters must be set and the floating image is ap-

propriately transformed (i.e., rotated and translated). The similarity measures

between the reference image and the transformed floating image are then com-

puted. If the similarity number is not optimal, the registration parameters are

updated, otherwise, the registration process stops and the optimal registration

parameters are output. The scheme to update the registration parameters is de-

termined by the optimization algorithm employed. In the following subsections,

the key steps in the registration process are expanded and discussed in detail.
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10.3.1 Transformation

Although all three registration measures can be applied to more general trans-

formations, we restricted the transformation to rigid-body transformations. For

the rigid-body registration, the registration parameter is a six-dimensional vec-

tor, (θx, θy, θz, tx, ty, tz), where θx, θy, and θz are rotation angles in degrees around

the x-, y-, and z-axis, respectively, and tx, ty, and tz are translation offsets along

the x-, y-, and z-axis, respectively.

There is a 4× 4 matrix corresponding to any of the three rotations in a homo-

geneous coordinate system [37]. Since a successive application of the rotations

amounts to matrix multiplication which is not commutative, the order of these

rotations is important. It is assumed in this chapter that the rotation angles

are applied around the x-, y-, and z-axis, in that order, and that the rotation is

performed before the translation.

10.3.2 Marginal, Joint, and Priori Probability

Density Functions

The marginal and joint pdfs of gray value pairs were estimated from normalized

histograms. The maximum voxel value of image f was found first. The voxel

values in image f were then divided into 64 discrete levels. Similarly, the voxel

values in image g were divided into 64 discrete values. The size of the joint

histogram is thus 64× 64. Alternatively, one can change the bin size adaptively

[18]. In the overlapping volume, the histograms of voxel values in images f and

g, and of the voxel pairs were calculated by binning the voxel values and value

pairs. The normalized histograms then give estimations of the marginal as well

as the joint distributions. To compute the cross-entropy, reversed cross-entropy,

and symmetric divergence, these estimated pdfs can be directly substituted into

the formulas defined in Eqs. (10.1)–(10.6).

When a favorable priori estimate is employed in the registration, it can be

computed in the same fashion as that for the joint pdf. The priori estimate shall

be calculated with the same size of histograms as that for the joint histogram.

10.3.3 Interpolation

A grid point in one volume will generally not exactly coincide with another

grid point in the transformed space. Since the voxel values of the reference
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image are defined at specific grid points, to compute the joint pdf by binning

voxel value pairs, one needs to interpolate the voxel values in the transformed

space. There are different interpolation methods in three-dimensional space.

Tsao [16] compared eight such methods. Interpolation artifacts are reported

which introduce spurious fluctuations in the similarity measures and impact the

optimization behavior. For simplicity, the trilinear interpolation was used in our

study.

10.3.4 Optimization

Powell’s multidimensional direction set optimization is used to minimize the

three similarity measures when favorable priori estimates are used using Brent’s

method in one-dimensional search [39]. The same technique is also used to min-

imize the negated similarity measures when unfavorable priori estimates are

applied. The direction matrix is initialized to a unitary matrix. The vector is

(θx, θy, θz, tx, ty, tz), as explained before. A reordering of these registration pa-

rameters is possible which may improve the optimization speed as in Maes et al.

[15]. We did not try to optimize the parameter order since the order may be image

content dependent and an exhaustive trial seems impractical (there are 6! = 720

different combinations although one may try a subset of them). Furthermore,

Powell’s optimization may use six independent directions which do not nec-

essarily correspond to the six desired directions as the search proceeds (see

[15, 39]).

The stop criterion in the Powell’s algorithm was set to ftol = 0.001.

10.3.5 Multiresolution

The Powell’s optimization method cannot guarantee that a global optimal value

will be found since it can be easily trapped to a local optimum. To find a true

global optimal value, Ritter et al. [40] successfully applied the simulated an-

nealing [39] algorithm to two-dimensional image registration. It is a stochastic

method and is slow, which limits its application to three-dimensional image reg-

istration. Pluim et al. used genetic algorithms [17] or others used multistarter

methods to pinpoint a global optimum. However, the desired registration is

frequently a local rather than global extremum of the similarity measure, as dis-

cussed in Fitzpatrick et al. [41]. This can occur when the image resolution is
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low, the image size is small, or the overlap of images is limited. In practice, the

multiresolution approach proves to be helpful. It can improve the optimization

speed, increase the capture range and the algorithm is relatively robust [42]. In

our implementation, the images were folded down to a 16× 16× 16 image as the

most coarse image. The resolution of the successive images was doubled until

the full image resolution or 64× 64× 64 was reached in all three dimensions.

We used fine resolutions beyond 64× 64× 64 when the image size permitted it.

But most cases did not exhibit any sizable improvements on the registration ac-

curacy, and there was almost no effect on the success rate. To obtain the coarse

images, the voxel values within a sampling volume are averaged. Although it

is a little slower than a simple subsampling approach, the averaging technique

results in a better registration [18].

10.3.6 Numerical Stability

Referring to the definitions of cross-entropy, reversed cross-entropy, and sym-

metric divergence, one may find that there may be a numerical problem under

some conditions. The instability is caused when the priori or joint probability

is zero. Ideally, one could sample a large dataset to get a better estimate of the

priori or use sophisticated sampling schemes to better estimate the joint proba-

bility. Since those are computationally demanding, we chose a simple, non-exact

approach that is described below.

For cross-entropy maximization, if the joint probability is zero, the contri-

bution to the cross-entropy is zero (0 log 0 = 0). If the marginal probability is

zero, the joint probability will be zero and will have no contribution to the cross-

entropy measure. In the cross-entropy calculation, therefore, the terms can be

ignored when the joint or marginal probabilities are zero.

For the cross-entropy minimization, the contribution to the cross-entropy

would be infinite when the priori probability is zero. We elected to ignore these

terms since the cross-entropy is being minimized. Alternatively, one could as-

sign a large value to the cross-entropy under this situation. When picking such

a large value, one should take into account the stop condition of the optimiza-

tion process. If the assigned value is too large, the optimization can prematurely

terminate. We chose a positive value, that resulted in the cross-entropy mini-

mization having a small capture range. Note that if the joint probability is zero,

the terms can also be ignored.
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For the reversed cross-entropy maximization, if the marginal probability

is zero, the contribution to the reversed cross-entropy is zero due to the fact

that 0 log 0 = 0. If the joint probability is zero and the marginal probability is

not zero, then the contribution to the reversed cross-entropy is infinite. Since

the reversed cross-entropy is being maximized and we assume the optimized

reversed cross-entropy has a finite value, this instability due to the zero joint

pdf terms must be addressed. As shown later in this chapter, if the zero joint

probability terms are ignored, the profile of the reversed cross-entropy will

have a zig-zag shape, which adversely affects the optimization process and ren-

ders the reversed cross-entropy an inappropriate measure for registration. We

elected to assign a small probability value to the zero joint probabilities, which

is 1
binsize×binsize×alpha

, where α was selected empirically to be 100. We will discuss

the impact of the α selection in a later section.

For the reversed cross-entropy minimization, if the priori probability is zero,

then the contribution to the reversed cross-entropy is zero due to the fact that

0 log 0 = 0. If the joint probability is zero and the priori probability is not zero,

the contribution to the reversed cross-entropy is infinite. In the later case, since

we assume the minimized reversed cross-entropy has a lower bound, their con-

tributions are ignored.

The symmetric divergence method utilizes the cross-entropy and reversed

cross-entropy components and its numerical stability is determined by those

two terms.

10.4 Registration Experimental Setup

10.4.1 Dataset Description

MR, nuclear transmission (Tx) and nuclear emission (Em) scans were used as

test volumes. They were primary brain images, with some inclusion of the neck

and chest. The image data consists of slices. The x-axis is directed horizontally

from right to left, the y-axis horizontally from front to back, and the z-axis

vertically from bottom to top.

This study involved seven patients. All the pertinent image file information is

tabulated in Table 10.1. The MR images were acquired with an OutLook MR scan-

ner (Philips Medical Systems, formerly Marconi Medical Systems, Cleveland,
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Table 10.1: Image file descriptions, where Tx stands for transmission scan,

Em emission scan, Sag sagittal slices, and Axi axial slices

Patient Modality Image Dimension Voxel (mm3) Comments

A MR Sag 2562 × 128 1.02 × 1.5 m, 29 yr
Tx Axi 642 × 29 7.123

Em Axi 642 × 29 7.123

B MR Sag 2562 × 128 1.02 × 1.5 m, 21 yr
Tx Axi 642 × 24 7.123

Em Axi 642 × 24 7.123

C MR Sag 2562 × 128 1.02 × 1.5 f, 70 yr
Tx Axi 642 × 22 7.123

Em Axi 642 × 22 7.123

D MR Axi 192× 256× 24 1.172 × 6.0 m, 45 yr
Tx Axi 642 × 31 6.232 × 7.12
Em Axi 642 × 31 6.232 × 7.12

E MR Sag 1802 × 120 1.412 × 1.5 m, 40 yr
Tx Axi 642 × 26 6.232 × 7.12
Em Axi 642 × 26 6.232 × 7.12

F MR Sag 192× 256× 120 1.412 × 1.5 m, 60 yr
Tx Axi 642 × 53 3.503

Em Axi 642 × 53 3.503

G MR Sag 192× 256× 120 1.412 × 1.5 m, 13 yr
Tx Axi 642 × 28 6.232 × 7.12
Em Axi 642 × 28 6.232 × 7.12

Ohio), and the nuclear images were acquired with a Prism 3000XP (Philips Med-

ical Systems) scanner. In all Tx and Em scans, Technetium-99m hexamethyl-

propolamine-oxime (Tc-99m HMPAO) was used as the isotope. The Tx and Em

images were acquired simultaneously using the STEP (simultaneous transmis-

sion emission protocol) protocol. Thus, the Tx and Em images are registered

intrinsically (see [43, 44, 45, 46]).

10.4.2 Experimental Setup—Maximization

of Similarity Measures

Cross-entropy, reversed cross-entropy, and symmetric divergence are maxi-

mized when the joint pdf is derived from an optimal registration and it differs

greatly from a unlikely priori estimate. This subsection discusses the details of

the experimental setup as well as the determination of the registration accuracy.
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In the case of retrospective multimodality registration, the correct registra-

tion parameters are typically unknown. Various evaluation methods have been

used to assess registration accuracy, including phantom validation, observer as-

sessment [11], fiducial marks [8, 9, 10], and cross validation [47]. Since the Tx

and Em scans used in our study are intrinsically registered (see [43, 44, 45, 46]),

we have us an ideal method to evaluate the registration accuracy. In this special

case, the accuracy of a registration technique can be assessed by evaluating the

registration parameters that are generated when these Tx and Em images are

used as input.

The Tx and Em images were also individually registered to the MR images.

Based on those registration results, the registration parameters between the

Tx and Em images were indirectly calculated. If we denote the transformation

matrix relating the MR and Tx images, MMR/Tx, and the matrix relating the MR

and Em images, MMR/Em, the matrix relating the Tx and Em images can be

calculated as MTx/Em = M−1
MR/TxMMR/Em.

For this indirect registration, two sets of experiments were performed. In

the first set, no attempt was made to manually preregister the images before

the automatic registration started. In the second set, all images were initially

brought into approximate registration using a manual method. The same manual

adjustments were used in cross-entropy, reversed cross-entropy, and symmetric

divergence registrations.

If the MR/Tx and MR/Em registrations deviate from the true registration

in the same manner, the indirect registration evaluation may yield a mislead-

ing registration accuracy. To guard against this, all registration results were

visually checked. Only if both registrations were visually acceptable, were

their registration results used to indirectly calculate the Tx/Em registration.

Since it is reported in Studholme et al. [11] that clinicians can detect registra-

tion parameter differences of 4◦ in x and y rotation angles, 2◦ in the z rota-

tion angle, 2 mm in x and y translations, and 3 mm in z translation, the reg-

istrations were believed to be close to the truth if the results were visually

acceptable.

The accuracy and robustness of direct and indirect Tx/Em registrations were

analyzed in terms of the mean and standard deviation of the differences between

the resultant registration parameters and the intrinsic ones. Alternatively, one

can compute the difference of a group of selected points. As reported in West

et al. [8], the mean of point differences is related to the rotation and translation
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registration parameters. In this chapter, we chose not to report the point differ-

ences.

To further understand the behavior of similarity measures in the vicinity of

an optimal registration, the similarity measures were computed for images in

the neighborhood of a manual registration. It is believed that the manual results

are close to the ground truth. Thus, this calculation would shed light on the

behavior of these measures. To this end, we focused on the MR/Em image pair

of patient B, arbitrarily.

We also evaluated different strategies to cope with the numerical instability

that occurs when maximizing the selected similarity measures. The strategies

were evaluated by inspecting the similarity profiles that resulted from systemati-

cally adjusting the registration parameters from those obtained when the images

underwent manual registration.

10.4.3 Experiment Setup—Minimization

of Similarity Measures

If one has a good estimation of the joint voxel value distribution, then the cross-

entropy, reversed cross-entropy, and symmetric divergence measures can be

minimized to find the optimal registration. Although a reasonably good prior

estimation is difficult to obtain, we report on the outcome of some experi-

ments to validate the idea. We did the experiment on the MR/Em image pair of

Patient B.

The image pair was registered by four clinical experts using an interactive

(manual) registration method. A joint voxel value distribution was calculated

based on the averaged manual registration parameters. This distribution was

then used as the priori. It is worthy to note that the priori probabilities need

to be recomputed for each resolution when the multiresolution optimization is

used. In this test, only two resolution levels were employed, 32 and 64.

To assess the robustness of registration by the cross-entropy, reversed cross-

entropy, and symmetric divergence minimization, two sets of misregistrations

were randomly generated around the above-mentioned average registration re-

sults, and used as initial registrations. In the first set of 100 misregistrations (Set

1), the differences between the rotation angles and the average rotation angles

were uniformly distributed over [−10, 10] degrees and the differences between

the translation offsets were uniformly distributed over [−10, 10] mm. For the
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second set of 100 registrations (Set 2), the distributions were expanded to [−20,

20] degrees and mm.

Since the true registration parameters are unknown, we estimated them

by averaging the manual registration parameters obtained from four clinical

experts. A registration was judged to be successful if the registration parame-

ters were close to the averaged manual values. The thresholds were equal to

the detection thresholds [11], i.e., (4◦, 4◦, 2◦, 2 mm, 2 mm, 3 mm). Note that the

thresholds are tighter than what were used in Zhu [18].

The accuracy and robustness of registrations obtained by minimizing the

similarity measures were analyzed in terms of the mean and standard devia-

tion of the differences between the resultant registration parameters and the

averaged manual registration parameters.

To understand the behavior of these similarity measures in the vicinity

of an optimal registration, the similarity measures were computed in the

neighborhood of manual registration results. It is believed that the manual re-

sults are close to the ground truth. Thus, this calculation would shed light on

the behavior of these measures.

Different strategies to handle the potential numerical instability problem in

this minimization approach are compared by inspecting their similarity function

profiles in the vicinity of the manual registration.

10.5 Results and Discussions

10.5.1 Registration by Cross-Entropy,

Reversed Cross-Entropy, and Symmetric

Divergence Maximization

10.5.1.1 Tx/Em Direct Registration

When the Em images were registered to the Tx images directly, the cross-entropy,

reversed cross-entropy, and symmetric maximization successfully registered 4,

5, and 7 (out of 7) cases, respectively. The results of failed cases by the cross-

entropy and reversed cross-entropy techniques were significantly different from

the intrinsic registrations by visual inspection (the misalignment angles or trans-

lation offsets are too big). The mean and standard deviation of registration
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Table 10.2: Average and standard deviation of Tx/Em direct registration

parameters obtained from the cross-entropy (CE), reversed cross-entropy

(RCE), and symmetric divergence (SD) registration measures. The angles are

in degrees, translation offsets in mm

Alg θx θy θz tx ty tz Success

CE 0.64± 1.27 0.00± 0.00 0.85± 1.71 0.21± 0.43 0.19± 0.89 −0.98± 1.13 4

RCE 0.36± 1.34 0.35± 0.63 −0.55± 1.34 −0.14± 1.17 1.18± 1.40 1.26± 0.69 5

SD 0.86± 1.06 0.30± 1.53 0.14± 0.79 −0.07± 0.92 0.79± 0.69 −0.97± 1.39 7

parameters for all successful registrations obtained from the cross-entropy, re-

versed cross-entropy, and symmetric divergence maximization are tabulated in

Table 10.2.

From the data in Table 10.2, one can conclude that registration by the symmet-

ric divergence maximization has the higher success rate. For all cross-entropy,

reversed cross-entropy, and symmetric divergence image registration, the av-

erage differences of the registration parameters from the true parameters are

below the detection thresholds of a trained clinician.

The failed cases of cross-entropy and reversed cross-entropy registration

are intriguing. The diameter of the field of view of the Tx and Em slice images

is 46 cm. A brain with a 20 cm diameter only occupies 1/6 or 1/7 of the slice

area. Thus, in the histogram estimation, many voxel pairs populate in the lowest

bins, which has an adverse effect on the registration. We tried to exclude them

by discarding the low end of the histogram from the similarity measure calcu-

lation and the cross-entropy successfully registered all seven cases, but with

larger mean and standard deviation (data not shown here). Moreover, the same

exclusion scheme reduced the success rate of MR/Tx and MR/Em registration

by cross-entropy maximization. Therefore, no data exclusion techniques were

used in any of the experiments reported in this chapter.

10.5.1.2 Tx/Em Indirect Registration

The Tx and Em images were indirectly registered through the MR images.

Figure 10.2 shows typical MR/Em registration results (of patient B). The ax-

ial, sagittal, and coronal views are overlaid with a changeable transparency.

All three views are correlated by a movable cross-hair token. In the top-left
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Figure 10.2: A typical registration result of MR/Em (patient B).

quadrant, the surface is generated from the MR image using a marching cube

algorithm. In the cut-away view, the MR and Em are overlaid. The cut plane

position can also be changed by the cross-hair token. The three-dimensional

view can be manipulated to select the desired view direction. This visualization

tool provides an excellent means to check, visualize, and fuse the registration

results.

The cross-entropy maximization registration failed to register one MR/Tx

case. Thus, one Tx/Em set of indirect registration parameters were not com-

puted. The mean and standard deviation of indirect registration parameters

associating the Tx and Em images are reported in Table 10.3. Overall, the mean

and standard deviation are larger than those in the direct registration (see

Table 10.2), suggesting that errors in MR/Tx and MR/Em registrations may be
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Table 10.3: Average and standard deviation of Tx/Em indirect registration

parameters obtained from the cross-entropy, reversed cross-entropy, and

symmetric divergence registration measures without manual preregistration.

The angles are in degrees and translation offsets in mm

Alg θx θy θz tx ty tz Success

CE 2.33± 1.49 0.27± 0.99 −0.67± 0.90 0.16± 0.47 0.05± 1.05 3.17± 1.61 6

RCE 3.38± 1.37 −0.29± 1.52 −0.77± 1.97 −0.37± 1.13 1.21± 2.34 0.89± 3.25 5

SD 2.35± 3.00 −0.03± 0.37 −0.75± 1.41 −0.13± 0.45 1.79± 2.33 −0.41± 2.17 5

compounded and propagated into the indirect computation of the Tx/Em regis-

tration parameters.

Both the reversed cross-entropy and symmetric divergence maximization

failed to register one MR/Tx and one MR/Em case. This resulted in two Tx/Em

cases that could not be registered indirectly for both the techniques. The cor-

responding means and standard deviations for indirectly registered Tx/Em are

listed in Table 10.3. It seems that the reversed cross-entropy and symmetric di-

vergence maximization estimated the z translation parameters more accurately.

For the cross-entropy maximization, the large error in the z translation param-

eter indicates that, among MR/Tx and MR/Em registrations, one overestimates

that parameter and the other underestimates that parameter.

The study of cross-entropy, reversed cross-entropy, and symmetric diver-

gence image registration includes two aspects: (1) the determination if the sim-

ilarity measure is suitable for image registration and (2) how to accurately and

robustly find the optimal registration associated with that measure. The lower

success rates for the reversed cross-entropy and symmetric divergence tech-

niques when registering MR/Tx and MR/Em are not sufficient to reject them as

similarity measures for registration. It may simply indicate that reversed cross-

entropy and symmetric divergence have a very narrow capture range when used

as registration similarity measures. That is, if the initial registration is far away

from the optimal registration, it is hard for the iterative optimization routine to

converge to an optimal solution. As a matter of fact, the angular registration

parameters of MR/Tx and MR/Em can be as large as 30◦ and the translation pa-

rameters can be as large as 55 mm. To determine if the failed registrations were

caused by the limited capture range, all image pairs were manually registered

and the manual results were used as starting points for iterative optimization.
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Table 10.4: Average and standard deviation of Tx/Em indirect registration

parameters obtained from the cross-entropy, reversed cross-entropy, and

symmetric divergence registration measures with manual pre-registration.

The angles are in degrees and translation offsets in mm

Alg θx θy θz tx ty tz Success

CE 2.26± 1.06 0.64± 0.81 0.31± 1.23 0.45± 0.25 0.34± 0.77 −3.69± 2.46 7

RCE 2.55± 1.06 1.29± 1.16 1.40± 2.26 0.76± 2.02 1.91± 2.34 0.78± 2.01 7

SD 1.79± 1.21 0.91± 1.80 1.32± 2.27 0.70± 1.91 1.70± 2.00 −0.27± 2.69 7

The results of mean and standard deviation for indirect Tx/Em registrations are

tabulated in Table 10.4. Again, the large error in the z translation parameter for

the cross-entropy maximization indicates that, among MR/Tx and MR/Em reg-

istrations, one overestimates that parameter and the other underestimates that

parameter.

As can be seen, all three similarity measures successfully registered seven

MR/Tx and seven MR/Em cases with a manual prealignment, and the means and

standard deviations are comparable to those in Table 10.3. As a comparison, the

Tx/Em indirect registration parameters were also computed from manual MR/Tx

and MR/Em registration. The mean and standard deviation of the Tx/Em indi-

rect registration parameters were (2.42± 2.69, 0.22± 2.20, 0.15± 2.50, 2.66±
1.94, 0.69± 2.01, 2.31± 3.14). Since most of the manual registration results had

zeros in the y- and z-axis rotation, the mean values of these parameters are small.

Thus, a small mean does not necessarily mean that the manual registration is

more accurate. Since the reversed cross-entropy and symmetric divergence reg-

istration has a small capture range, one might be concerned that their registration

results would not deviate significantly from the manual starting registration. If

this were true, the mean and standard deviation values in Table 10.4 would re-

flect the mean and standard deviation associated with the manual registration

results. To check this possible situation, the difference of the cross-entropy,

reversed cross-entropy, and symmetric divergence registration results and the

manual starting solutions was checked. The angle difference was as large as

5◦ and the translation was as large as 6 mm. Thus, it is unlikely that the mean

and standard deviation for the reversed cross-entropy and symmetric diver-

gence registration merely reflect the mean and standard deviation in the manual

registration.
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Figure 10.3: The cross-entropy (CE), reversed cross-entropy (RCE), and sym-

metric divergence (SD) profiles of an MR/Em image pair in the vicinity of a

manual registration when the x-rotation angle changes independently.

10.5.1.3 Behavior Around True Registration

Three similarity measures were computed in the vicinity of an optimal registra-

tion. Since the ground truth is unknown, we used the manual registration result

as an approximation to the ground truth. It is difficult to visualize the hyper-

surface in seven-dimensional space. Therefore, only one registration parameter

was changed at a time when a profile was computed.

Figures 10.3–10.5 show the representative profiles of these similarity mea-

sures as a function of rotation angles about the x-, y-, and z-axis, respectively. The

horizontal axis (registration parameters) in all profiles reported in this chapter

was normalized to the manual registration parameters. All similarity values have

been normalized with a maximum value of 1. As can be seen, the cross-entropy,

reversed cross-entropy, and symmetric divergence measures peak around the

manual registration. However, there are differences as large as 3◦ in the peak
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Figure 10.4: The cross-entropy (CE), reversed cross-entropy (RCE), and sym-

metric divergence (SD) profiles of an MR/Em image pair in the vicinity of a

manual registration when the y-rotation angle changes independently.
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Figure 10.5: The cross-entropy (CE), reversed cross-entropy (RCE), and sym-

metric divergence (SD) profiles of an MR/Em image pair in the vicinity of a

manual registration when the z-rotation angle changes independently.
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Figure 10.6: The cross-entropy (CE), reversed cross-entropy (RCE), and sym-

metric divergence (SD) profiles of an MR/Em image pair in the vicinity of a

manual registration when the x-translation changes independently.

positions for the different measures which is understandable since they are de-

fined differently. The figures also revealed that the curve for the cross-entropy

measure is slightly smoother than those associated with the reversed cross-

entropy and symmetric divergence measures. This rough nature in the reversed

cross-entropy and symmetric divergence profiles may result in the inferior per-

formance of iterative optimization and a small capture range for these similarity

measures. This behavior may be caused by the presence of many local optima

that can confuse the optimization procedure.

Similarly, Figs. 10.6–10.8 show the representative profiles of the cross-

entropy, reversed cross-entropy, and symmetric divergence measures as a func-

tion of x-, y-, and z-translation, in the neighborhood of a manual registration. All

three profiles peak around the manual registration results. This behavior is one

of the necessary conditions for a good registration measure. The difference of

peak positions of three similarity measures is small (ca. 1 mm) in the x and y
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Figure 10.7: The cross-entropy (CE), reversed cross-entropy (RCE), and sym-

metric divergence (SD) profiles of an MR/Em image pair in the vicinity of a

manual registration when the y-translation changes independently.

directions, but sizable in the z direction (ca. 4 mm). The cross-entropy curve is

the smoothest.

Although we don’t know if the peak appearing in the neighborhood of the

manual registration represents the global optimal, the presence of a local max-

ima does indicate that the three measures are suitable as registration criteria.

The difference in the peak positions is expected since the similarity measures

are different. Furthermore, the Em image used in our study has a low resolution

(7.12 mm in all three directions) and the difference in the peak positions is not

significant compared to the voxel size.

10.5.1.4 Numerical Stability for Maximization

As mentioned earlier, it could cause numerical problems when there are zero

joint probabilities in the reversed cross-entropy and symmetric divergence
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Figure 10.8: The cross-entropy (CE), reversed cross-entropy (RCE), and sym-

metric divergence (SD) profiles of an MR/Em image pair in the vicinity of a

manual registration when the z-translation changes independently.

calculation. We must cope with this numerical instability. A simple, heuristic ap-

proach is described in Section 10.3.6. In this section, the behaviors of different α

selections are compared. Since the symmetric divergence measure contains the

reversed cross-entropy component, the experiment was only performed using

the reversed cross-entropy measure. One could also ignore the contributions

associated with the zero joint pdfs. As a comparison, this strategy is also

evaluated.

Figures 10.9 and 10.10 show the reversed cross-entropy profiles when the

x-rotation angle and the x-translation change independently. The profiles are

labelled with the α values used to compute a small probability value which

replaces the zero pdf. The results when the zero pdfs are ignored in the profile

calculation are also shown.

As these two figures reveal, the reversed cross-entropy profiles are very

rough if the zero pdfs are ignored in the calculation. For the x-rotation angle,
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Figure 10.9: The reversed cross-entropy profiles of an MR/Em image pair in

the vicinity of a manual registration when the x-rotation angle changes inde-

pendently. The numbers adjacent to the profiles indicate the α value used to

compute a small probability value which is used to replace zero pdfs. The bot-

tom profile represents the case where the contribution from zero joint pdfs was

ignored in the profile computation.

there is not even a peak around the manual registration. These two undesirable

features render the reversed cross-entropy measure unsuitable as a registration

measure if the zero pdfs are ignored. If the zero pdfs are taken into account and

as α increases, the profiles become smooth and then rough again. It seems that

α = 100 is a reasonable choice, which gives a relatively smooth profile. When

α is small, the extraneous pdfs replacing the zero pdfs causes the summation

of the pdfs to significantly deviate from unity. Therefore, a small α is not ideal.

When α is large, the contribution of each extraneous pdf becomes dominant,

the total reversed cross-entropy increases, and the contribution from nonzero

pdfs is diminished gradually. The latter behavior makes a large α not ideal either.

When α = 100, the summation of all pdfs, including the extraneous ones, is at



Cross-Entropy, Reversed Cross-Entropy, and Symmetric Divergence 417

−15 −10 −5 0 5 10 15
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

X Translation (mm)

R
ev

er
se

d–
C

ro
ss

 E
nt

ro
py

1000

100

1

ignored

0

Figure 10.10: The reversed cross-entropy profiles of an MR/Em image pair in

the vicinity of a manual registration when the x-translation changes indepen-

dently. The numbers adjacent to the profiles indicate the α value used to com-

pute a small probability value which is used to replace zero pdfs. Ignored means

that those pdfs are ignored when computing the profile.

most 1.01. The upper bound can be achieved only when there is 1 nonzero pdf

which is 1, and all other pdfs are zero. Based on these observations, we chose

α = 100 in our calculation.

10.5.2 Registration by Cross-Entropy,

Reversed Cross-Entropy, and Symmetric

Divergence Minimization

10.5.2.1 Registration Performance

The standard deviations of four independent manual registration results were,

in vector form, (3.48, 0.53, 3.11, 1.68, 2.98, 1.83). The likely priori was calculated
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Table 10.5: Average and standard deviation of MR/Em registration parameters

obtained from cross-entropy, reversed cross-entropy, and symmetric

divergence minimization. The angles are in degrees and translation offsets in

mm

Alg θx θy θz tx ty tz Success

Set 1

CE 0.03± 0.80 0.18± 0.74 −0.13± 0.44 0.03± 0.13 −0.02± 0.42 −0.04± 0.17 46%

RCE −0.05± 0.45 0.09± 0.39 0.07± 0.31 0.07± 0.33 0.06± 0.31 −0.01± 0.10 53%

SD 0.00± 0.10 0.06± 0.34 0.05± 0.29 0.05± 0.30 0.02± 0.13 −0.02± 0.11 68%

Set 2

CE 0.23± 1.04 0.24± 0.87 0.02± 0.51 0.10± 0.50 −0.07± 0.59 −0.11± 0.29 41%

RCE 0.02± 0.29 0.10± 0.43 0.04± 0.35 0.06± 0.38 0.00± 0.33 −0.03± 0.14 51%

SD −0.06± 0.51 −0.02± 0.33 0.06± 0.30 0.00± 0.31 0.06± 0.48 −0.01± 0.10 52%

using the average manual registration parameters, as mentioned earlier. Refer

to section 10.4.3 for details on the experimental setup.

Table 10.5 lists the statistics of the registration results for two sets of ex-

periments. As the table reveals, the registration parameters are very close to

those of the manual results and the differences of these registration parameters

are well below the detection threshold of a trained technician. This is expected

since the priori was calculated based on the manual registration results. Also

revealed by Table 10.5 is that both reversed cross-entropy and symmetric diver-

gence outperformed cross-entropy minimization in terms of success rate, and

that symmetric divergence has the highest overall success rate.

Note that the implementation of this minimization process is not yet opti-

mized, e.g., one may use Paren density estimation with a Gaussian kernel to add

some smoothness and stability to the similarity functions. Nevertheless, these

results indicate that cross-entropy, reversed cross-entropy, and symmetric diver-

gence minimization can yield a very good registration if a good prior estimation

is available.

10.5.2.2 Behavior Around True Registration

The behavior of these three similarity measures was also checked in the vicinity

of the manual registration, with the desirable prior calculated from that same

manual registration.
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Figure 10.11: The cross-entropy (CE), reversed cross-entropy (RCE), and sym-

metric divergence (SD) profiles (with a likely priori) of an MR/Em image pair in

the vicinity of a manual registration when the x-rotation changes independently.

Figures 10.11–10.13 show the representative profiles of these similarity mea-

sures as a function of rotation angles about the x-, y-, and z-axis, respectively.

Figures 10.14–10.16 show the representative profiles of these similarity mea-

sures as a function of translation along the x-, y-, and z-axis, respectively. As

revealed by all these figures, there are valleys in the profiles around the manual

registration parameters, which is one of the necessary conditions for a good

registration measure. As expected, the minimum values in all cases are zero

since the priori pdf and the estimated pdf at this registration are identical.

10.5.2.3 Numerical Stability for Minimization

In the cross-entropy minimization calculation, if the priori pdf is zero, the cross-

entropy is not stable. To address this case, one can either ignore the zero priori

pdf terms or substitute the zero pdfs with small positive numbers and use the
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Figure 10.12: The cross-entropy (CE), reversed cross-entropy (RCE), and sym-

metric divergence (SD) profiles (with a likely priori) of an MR/Em image pair in

the vicinity of a manual registration when the y-rotation changes independently.
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Figure 10.13: The cross-entropy (CE), reversed cross-entropy (RCE), and sym-

metric divergence (SD) profiles (with a likely priori) of an MR/Em image pair in

the vicinity of a manual registration when the z-rotation changes independently.
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Figure 10.14: The cross-entropy (CE), reversed cross-entropy (RCE), and sym-

metric divergence (SD) profiles (with a likely priori) of an MR/Em image

pair in the vicinity of a manual registration when the x-translation changes

independently.

substituted pdfs in the calculation. The small positive pdfs can be calculated in

the same fashion as discussed in sections 10.3.6 and 10.5.1.4. Figures 10.17 and

10.18 show the cross-entropy profiles as the x-rotation angle and x-translation

offset change independently. The profiles are labeled in the same manner as for

the reversed cross-entropy maximization case. As those two figures reveal, all of

the profiles have a similar shape. The only apparent difference is the value of the

cross-entropy. Since the size of the basin around the optimal value indicates the

size of the capture range, it seems that either using a small α or ignoring the zero

pdf terms is preferred. We elected to ignore the zero pdf terms since the effect

of the small α on the summation of all priori pdfs is hard to quantify (the sum

has an upper bound of 1+ 1
α

). This strategy worked fine in our experiment.

In the reversed cross-entropy minimization, the calculation is not stable when

the joint pdfs are zero. Figures 10.19 and 10.20 show the reversed cross-entropy

profiles when the x-rotation angle and the x-translation change independently
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Figure 10.15: The cross-entropy (CE), reversed cross-entropy (RCE), and sym-

metric divergence (SD) profiles (with a likely priori) of an MR/Em image

pair in the vicinity of a manual registration when the y-translation changes

independently.

and different strategies to handle the zero joint pdfs are compared. The profiles

are labeled in the same manner as was used for the cross-entropy minimization

case. All of the resultant profiles are similar. Again, we elected to ignore the zero

pdf terms since the corresponding profiles are relatively smooth and worked

well in practice.

Since the symmetric divergence measure has cross-entropy and reversed

cross-entropy components, the issues with numerical stability were addressed

in a similar manner.

10.6 Concluding Remarks

We have applied the information-theoretic measures cross-entropy, reversed

cross-entropy, and symmetric divergence to retrospective three-dimensional
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Figure 10.16: The cross-entropy (CE), reversed cross-entropy (RCE), and sym-

metric divergence (SD) profiles (with a likely priori) of an MR/Em image

pair in the vicinity of a manual registration when the z-translation changes

independently.

image registration, which quantify the difference between the true joint dis-

tribution and its prior estimation of the voxel value pair in two images at corre-

sponding points. The experimental results indicate that all three measures are

suitable as registration criteria.

The cross-entropy, reversed cross-entropy, and symmetric divergence can be

maximized and minimized, which is an unusual property for similarity measures.

Almost all other similarity measures can be either maximized or minimized, but

not both. If a likely priori pdf is given, we want our estimated pdf at registra-

tion to be as close to the priori as possible. Therefore, the similarity measures

are minimized. If an unlikely priori pdf is given, we want our estimated pdf at

registration to be different from the priori as much as possible. Thus, those simi-

larity measures are maximized. There are many unlikely priori pdf. This chapter

only considered the most popular one, i.e., the voxel values in two images at
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Figure 10.17: The cross-entropy profiles of an MR/Em image pair in the vicin-

ity of a manual registration when the x-rotation angle changes independently.

The numbers around the profiles indicate the α value used to compute a small

probability value which is used to replace zero pdf. The profile that is labelled

“ignored” represents the case where the contribution from zero joint pdfs was

ignored in the profile computation.

registration are independent of each other. This priori joint pdf is not favorable

since the voxel values in two different images reflect the physical properties

of the same object and thus they are most likely related in some way, at least

from a statistical point of view. If more than one likely and unlikely priori pdf

is available, one can define cross-entropy, reversed cross-entropy, and symmet-

ric divergence for them and maximize or minimize them collectively, where a

multiobjective optimization approach would be useful, as already illustrated in

Zhu [18].

The overall flow chart for the three similarity measures as applied to im-

age registration is presented for both maximization and minimization cases.

It shall be noted that this flow chart is also consistent with those of most
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Figure 10.18: The cross-entropy profiles of an MR/Em image pair in the vicin-

ity of a manual registration when the x-translation changes independently. The

numbers around the profiles indicate the α value used to compute a small prob-

ability value which is used to replace zero pdf. Ignored means that those pdfs

are ignored when computing the profile.

similarity-based registration techniques. Therefore, incorporating those mea-

sures to existed packages would be straightforward.

The major problem with applying cross-entropy, reversed cross-entropy, and

symmetric divergence optimziation to image registration is the numerical sta-

bility when the estimated joint pdf or priori joint pdf is zero. If a large sample

of successsful registrations are used to generate the desirable, statistically av-

eraged pdf, it is unlikely that one would have many zero points in the priori

joint pdf. Alternatively, one can assume a parametric form of the priori joint

pdf. The unknown parameters can be estimated from available priori pdf data

points and the pdf can be interpolated at the zero points. Unfortunately, there

is no justification for one parametric form over others, particularly in the multi-

modality cases. To improve its accuracy and robustness, one can also use Paren
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Figure 10.19: The reversed cross-entropy profiles of an MR/Em image pair in

the vicinity of a manual registration when the x-rotation angle changes indepen-

dently. The numbers around the profiles indicate the α value used to compute

a small probability value which is used to replace zero pdf. Ignored means that

those pdfs are ignored when computing the profile.

density estimation with a Gaussian kernel to add smoothness and stability to

the similarity functions, as in Wells et al. [14]. Nevertheless, the simple, heuris-

tic approach we used here proves to be effective. The main motivation for this

heuristic approach is to make the similarity measure profiles smooth and to

have a maximum (peak) or minimum (valley) around the unknown truth with a

reasonble capture range. Both of these conditions are necessary for good regis-

tration measures. Moreover, it is important that the modified priori or estimated

joint pdf do not deviate from a real pdf. That is, the sum of the modified pdfs shall

still be close to 1 and the difference from the original values shall not be signifi-

cant. To further improve the performance of these similarity measures, one can

employ different interpolation methods. It was reported recently that different
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Figure 10.20: The reversed cross-entropy profiles of an MR/Em image pair in

the vicinity of a manual registration when the x-translation changes indepen-

dently. The numbers around the profiles indicate the α value used to compute

a small probability value which is used to replace zero pdf. Ignored means that

those pdfs are ignored when computing the profile.

interpolation methods can attribute to the different levels of smoothness of the

similarity measures (see [16]). A smooth similarity function is desirable since

the spurious peaks and valleys can trap the optimization to undesirable local

optima.
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Questions

1. What is image registration?

2. Why is the algorithm-based registration still required given the success of

hybrid imaging devices?

3. What is cross-entropy? What is reversed cross-entropy? What is symmetric

divergence?

4. Why the cross-entropy is a generalized similarity measure for image reg-

istration?

5. When is cross-entropy (reversed cross-entropy, symmetric divergence)

maximized? When is it minimized?

6. How can one get a favorable priori pdf?

7. What are common unfavorable priori pdf’s?

8. What are the general steps for a similarity-based registration?

9. Why does cross-entropy, reversed cross-entropy, and symmetric diver-

gence based registration suffer from numerical instability? How to deal

with it?

10. What are the requirements for a good similarity measure?
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Chapter 11

Quo Vadis, Atlas-Based Segmentation?

Torsten Rohlfing,1 Robert Brandt,2 Randolf Menzel,3

Daniel B. Russakoff,4 and Calvin R. Maurer, Jr.5

11.1 Segmentation Concepts

There are many ways to segment an image, that is, to assign a semantic label

to each of its pixels or voxels. Different segmentation techniques use different

types of image information, prior knowledge about the problem at hand, and

internal constraints of the segmented geometry. Which method is the most suit-

able in any given case depends on the image data, the objects imaged, and the

type of desired output information.

Purely intensity-based classification methods [29, 76, 81] work locally, typi-

cally one voxel at a time, by clustering the space of voxel values (i.e., image inten-

sities). The clusters are often determined by an unsupervised learning method,

for example, k-means clustering, or derived from example segmentations [43].

Each cluster is identified with a label, and each voxel is assigned the label of the

cluster corresponding to its value. This assignment is independent of the voxel’s

spatial location. Clustering methods obviously require that the label for each

voxel is determined by its value. Extensions of clustering methods that avoid

overlapping clusters work on vector-valued data, where each voxel carries a

vector of intensity values. Such data is routinely generated by multispectral

1 Neuroscience Program, SRI International, Menlo Park, CA, USA
2 Mercury Computer Systems GmbH, Berlin, Germany
3 Institut für Neurobiologie, Freie Universität Berlin, Berlin, Germany
4 Department of Neurosurgery and Computer Science Department, Stanford University,

Stanford, CA, USA
5 Department of Neurosurgery, Stanford University, Stanford, CA, USA
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magnetic resonance (MR) imaging, or by a combination of images of the same

object acquired from different imaging modalities in general.

There are, however, many applications where there is no well-defined re-

lationship between a voxel’s value(s) and the label that should be assigned to

it. This observation is fairly obvious when we are seeking to label anatomical

structures rather than tissue types. It is clear, for example, different structures

that are composed of the same tissue (e.g., different bones) cannot be distin-

guished from one another by looking at their intensity values in an image. What

distinguishes these structures instead is their location and their spatial relation-

ship to other structures. In such cases, spatial information (e.g., neighborhood

relationships) therefore needs to be taken into consideration and included in

the segmentation process.

Level set methods [37, 66, 75, 86] simultaneously segment all voxels that

belong to a given anatomical structure. Starting from a seed location, a discrete

set of labeled voxels is evolved according to image information (e.g., image

gradient) and internal constraints (e.g., smoothness of the resulting segmented

surface). Snakes or active contours [85] use an analytical description of the

segmented geometry rather than a discrete set of voxels. Again, the geometry

evolves according to the image information and inherent constraints.

In addition to geometrical constraints, one can take into account neighbor-

hood relationships between several different structures [74, 84]. A complete

description of such relationships is an atlas. In general, an atlas incorporates

the locations and shapes of anatomical structures, and the spatial relationships

between them. An atlas can, for example, be generated by manually segmenting

a selected image. It can also be obtained by integrating information from multi-

ple segmented images, for example, from different individuals. We shall discuss

this situation in more detail in section 11.4.3.

Given an atlas, an image can be segmented by mapping its coordinate space

to that of the atlas in an anatomically correct way, a process commonly referred

to as registration. Labeling an image by mapping it to an atlas is consequently

known as atlas-based segmentation, or registration-based segmentation. The

idea is that, given an accurate coordinate mapping from the image to the atlas, the

label for each image voxel can be determined by looking up the structure at the

corresponding location in the atlas under that mapping. Obviously, computing

the coordinate mapping between the image and the atlas is the critical step in

any such method. This step will be discussed in some detail in section 11.3.
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A variety of atlas-based segmentation methods have been described in the

literature [3, 11, 12, 15, 16, 21, 23, 24, 38, 41]. The characterizing difference

between most of these methods is the registration algorithm that is used to

map the image coordinates onto those of the atlas. One important property,

however, is shared among all registration methods applied for segmentation: as

there are typically substantial shape differences between different individuals,

and therefore between an individual and an atlas, the registration must yield a

non-rigid transformation capable of describing those inter-subject deformations.

In this chapter we take a closer look at an often neglected aspect of atlas-

based segmentation, the selection of the atlas. We give an overview of the differ-

ent strategies for atlas selection, and demonstrate the influence of the selection

method on the accuracy of the final segmentation.

11.2 From Subject to Atlas: Image

Acquisition and Processing

We illustrate the methods and principles discussed in this chapter by segmenting

confocal microscopy images from 20 brains of adult, honeybee workers. Con-

focal laser scanning microscopy is a type of fluorescence microscopy, where a

focused laser beam deflected by a set of xy-scanning mirrors excites the fluores-

cently stained specimen (i.e., the dissected brain). The emitted fluorescence is

then recorded by inserting a so-called “confocal pinhole” into the microscope’s

optical path. This pinhole ensures that only light from the focal plane reaches

the detector, thus enabling the formation of an image that can be considered

an optical section through the specimen. By moving the position of the speci-

men along the optical axis of the microscope a three-dimensional (3D) image is

generated [8, 69, 88]

The staining of the bee brains depicted in this chapter followed an adapted

immunohistological protocol. Dissected and fixated brains were incubated with

two primary antibodies (nc46, SYNORF1) that detect synapse proteins [28, 46].

Because cell bodies in insects reside separately from fibers and tracts, this stain-

ing ensures response from those regions in the tissue that exhibit high synap-

tic densities, i.e., neuropil, while somata regions remain mostly unstained. A

Cy3-conjugated secondary antibody sensitive to the constant part of the primary



438 Rohlfing et al.

antibody was subsequently used to render labeled regions fluorescent. After de-

hydration and clearing, the specimens were mounted in double-sided custom

slides.

The brains were imaged with a confocal laser scanning microscope (Leica

TCS 4D). The chromophor was excited with an ArKr laser, and the fluorescence

was detected using a longpass filter. The intensity of the fluorescence was quan-

tized with a resolution of 8 bits. Due to the size of the dissected and embedded

brain (about 2.5× 1.6 mm laterally and about 0.8 mm axially), it cannot be im-

aged in a single scan. Therefore we used multiple image-stack acquisition (3D-

MISA) [88]. The entire brain was scanned in 2× 3 partially overlapping single

scans, each using 512× 512 pixels laterally and between 80 and 120 sections axi-

ally. The stacks were combined into a single 3D image using custom software or

a script running in Amira (see next paragraph). Because of the refractive index

mismatch between the media in the optical path, images exhibit a shortening of

distances in axial direction that was accounted for by a linear scaling factor of

1.6 [7].

Post-acquisition image processing was done with the Amira 3D scientific

visualization and data analysis package (ZIB, Berlin, Germany; Indeed – Visual

Concepts GmbH, Berlin, Germany; TGS Inc., San Diego, CA). Image stacks were

resampled laterally to half of the original dimensions in order to increase dis-

play speeds and allow interactive handling of the data. The final image volume

contained 84–114 slices (sections) with thickness 8 �m. Each slice had 610–749

pixels in x direction and 379–496 pixels in y direction with pixel size 3.8 �m. In

most cases no further image processing was necessary. In a few cases unsharp

masking filters were applied in order to enhance contours.

Subsequently, for each brain an atlas of the neuropil areas of interest was gen-

erated by tracing them manually on each slice. We distinguished 22 major com-

partments, 20 of which are bilaterally symmetric on either brain hemisphere [39].

The paired structures we labeled were medulla, lobula, antennal lobe, ventral

mushroom body consisting of peduncle, α- and β-lobe, and medial and lateral

lip, collar and basal ring neuropil. The unpaired structures we identified were

the central body with its upper and lower division and the protocerebral lobes

including the subesophageal ganglion. Examples of confocal microscopy and

label images are shown in Fig. 11.1. Three-dimensional surface renderings of

the segmented bee brain are shown in Fig. 11.2. The labeled structures and the

abbreviations used for them in this chapter are listed in Table 11.1.
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l–latColl

PL–SOG

l–Lob

l–Med

r–Lob

r–Med

r–latLip

r–medColl

l–medLip

l–medColl

l–latLip
l–latBR

r–medLip r–medBR
l–medBR

r–latColl

r–vMB CB l–vMB

r–latBR

Figure 11.1: Example of bee brain confocal microscopy (top) and correspond-

ing label image as defined by manual segmentation (bottom). Following radio-

logical convention for axial slices, the image is seen from the cranial direction.

Every gray level in the label image represents a different anatomical structure.

Due to limitations of reproduction different gray levels may look alike. The

correspondence between anatomical structures and abbreviations is listed in

Table 11.1. Note that two structures, the left and right antennal lobes (l-AL and

r-AL), are not visible in this slice, but can be seen in Fig. 11.2.

11.3 Fundamentals of Atlas-Based

Segmentation

Mathematically speaking, an atlas A is a mapping A : R
n → ! from n-

dimensional spatial coordinates to labels from a set of classes !. It is



440 Rohlfing et al.

Figure 11.2: Three-dimensional rendering of a segmented bee brain. From top

to bottom: View from frontal, top, and back, respectively. Note that the two

symmetrical blue structures in the lower part of the brain in the frontal view

(top) are the left and right antennal lobes (l-AL and r-AL) that were not depicted

in Fig. 11.1.
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Table 11.1: Anatomical structures of the bee brain with abbreviations used in

this chapter

Abbreviation Structure Abbreviation Structure

PL-SOG protocerebral lobes r-medBR right medial basal ring
CB central body l-latBR left lateral basal ring
l-Med left medulla r-latBR right lateral basal ring
r-Med right medulla l-medColl left medial collar
l-Lob left lobula r-medColl right medial collar
r-Lob right lobula l-latColl left lateral collar
l-AL left antennal lobe r-latColl right lateral collar
r-AL right antennal lobe l-medLip left medial lip
l-vMB left mushroom body r-medLip right medial lip
r-vMB right mushroom body l-latLip left lateral lip
l-medBR left medial basal ring r-latLip right lateral lip

conceptually very similar to an image in the same coordinate space, which is a

mapping from R
n to the space of gray values, a subset of R. An atlas can therefore

itself be considered as a special type of image, that is, a label image. In order to

segment a new image R using an atlas A, we need to compute a coordinate map-

ping between them, that is, we need to register one image to the other. The coordi-

nate mapping must be anatomically correct for the segmentation to be accurate.

An atlas is often generated by (manually) segmenting an actual image, say

F . Therefore, we typically have access not only to a spatial map of labels, the

actual atlas, but also to a corresponding realization using at least one particular

imaging modality. In case multiple co-registered images from different modal-

ities form the basis of the atlas, there may even be multiple instances of ac-

tual images. An example of an atlas and a corresponding microscopy image

is shown in Fig. 11.1. This dual character is relevant insofar as, while funda-

mentally possible, registration of an image to the label representation of an

atlas is a much harder problem than registration to the corresponding original

image.

Let us consider two 3D scalar images, R : R
3 �→ R and F : R

3 �→ R. We as-

sume that each point in one image has a corresponding equivalent in the other.

For any two images, this correspondence is mathematically represented as a co-

ordinate transformation T that maps the image coordinates of R onto those of

F . For a given location x in the domain of R, we find the corresponding location

in the domain of F as T(x). If F is associated with an atlas A, then we can find
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the correct label for any location x in R through the mapping

x �→ A(T(x)). (11.1)

The transformation T is parameterized by a p-dimensional parameter vector

p ∈ R
p. The process of finding the vector p that describes the “correct” trans-

formation is known as image registration. One of the images, R, remains fixed

during registration, while the other, F , is transformed in space. The fixed image

R is commonly referred to as the “reference image”, the transformed image F

is called the “floating image”.

The terminology used in the remainder of this chapter is as follows. We

refer to the already segmented image as the atlas image and the image to be

segmented as the raw image. The coordinates of the raw image are mapped by

registration onto those of the atlas image and thereby provide a segmentation

of the former. In the context of non-rigid registration, the atlas image is to be

deformed while the raw image remains fixed. The correspondence between the

common terms for both images in image registration and in the present context

is such that the atlas image acts as the floating image during registration while

the raw image acts as the reference (or target) image.

11.3.1 Entropy-Based Image Similarity

It is not usually known a priori, what the correct mapping between the two

images R and F is. Instead, the correctness of any given transformation is usually

quantified by a so-called similarity measure. This measure is a scalar function

S : R
p �→ R designed so that higher values of S correspond to better matches.

That is, if for two parameter vectors, p1 and p2, we have S(p1) > S(p2), then

the mapping T1 parameterized by p1 is assumed to be “more correct” than the

mapping T2 described by p2. Again, since the correct mapping is not known, S

can only be a more or less suitable approximation to the true correctness. The

registration is performed by finding the parameter vector p that maximizes S.

A similarity measure that has been empirically found to be particularly well-

suited for many registration applications is mutual information (MI) [36, 77, 80].

It is based on the information-theoretic entropy concept and is defined as

SMI = HR + HF − HRF , (11.2)

where HR is the entropy of image R, HF is the entropy of image F , and HRF

is the joint entropy of corresponding voxel pairs between the two images. A
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modification proposed by Studholme et al. [72], normalized mutual information

(NMI), has been found to be slightly more robust

SNMI = HR + HF

HRF

. (11.3)

There are many different implementations of both MI and NMI, using different

numerical methods to estimate the image entropies. While some use continuous

methods such as Parzen windowing [77, 80], others estimate the entropies from

discrete two-dimensional histograms [36, 71]. The latter techniques are more

easily implemented and more common.

11.3.2 Rigid Registration

The first iteration of intersubject registration, such as registration of an image

to an atlas, usually aims at correcting for positioning, orientation, and global

size differences between the individual images. Consequently, we initially apply

a 9 degree-of-freedom (DOF) affine registration algorithm that performs appro-

priate translation, rotation, and scaling. A technique described by Studholme et

al. [71] has been found to produce highly accurate (rigid) transformation in an

independent, blinded evaluation study [82]. The algorithm optimizes the NMI

similarity measure described above using a simple but robust multiresolution

optimization strategy with hierarchically resampled images. For details about

our particular implementation of this algorithm the interested reader is referred

to [48, 49, 50, 62].

11.3.3 Non-Rigid Registration

There is typically considerable inter-individual variability in the shapes of

anatomical structures in the brains of humans and animals. Figure 11.3 illustrates

this for the microscopy images of bee brains that we are using to demonstrate the

methods in this chapter. For MR images of human brains, Fig. 11.4 provides an

analogous illustration. Therefore, in order to be effective, any registration-based

segmentation method requires a registration algorithm that can compensate not

only for different pose and size, but also for inter-individual shape differences

between raw image and atlas (i.e., a non-rigid registration algorithm).

Many different non-rigid registration methods have been published. Some

of these, such as methods based on optical flow [73] and most methods using

elastic [38, 9] or fluid models [10, 32], typically require both images to be from the
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Figure 11.3: Illustration of inter-subject differences between several individ-

ual bee brains. Top: Central axial slice from a 3D microscopy image used as

the reference image for this example. Second row: Corresponding slice from

three other bee brains after affine registration. Third row: Corresponding slices

after non-rigid registration. Fourth row: Deformed coordinate grids. Fifth row:

deformation vector fields. Note that only the 2D projection of the 3D deformed

coordinate grid and vector field are shown.

same imaging modality to be able to identify corresponding features. Note that

the motion model, i.e., fluid or elastic, does not require single modality images.

However, most algorithms based in which fluid or elastic differential equations

govern the transformation combine these with image similarity terms that are

equivalent to the mean squared difference of image intensities.
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Figure 11.4: Illustration of intersubject differences between several individual

human brains.

Unfortunately, the particular nature of the microscopy images in our example

application prohibits the use of any such method. While strictly these images

are all generated by the same imaging process, they are subject to imaging

artifacts that vary from acquisition to acquisition. Sources of these artifacts

include individual concentration differences of the chromophor, fluctuation of
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laser intensity, and increasing location-dependent absorption with increasing

tissue depth.

A non-rigid registration algorithm that inherently supports images originating

from multiple imaging modalities was described by Rueckert et al. [64]. It uses

the same NMI similarity measure as the affine algorithm mentioned above. The

transformation model is a free-form deformation [68] T that is defined on a

data-independent, uniformly spaced control point grid (CPG) " covering the

reference image. The CPG consists of discrete control points φi, j,k, where−1 ≤
i < nx − 1,−1 ≤ j < ny− 1, and−1 ≤ k < nz− 1. Points with i, j, or k equal to

either 0 or nx − 3 (ny− 3 and nz− 3 for j and k) are located on the edge of the

image data. The spacings between the control points in x, y, and z are denoted

by δx, δy, and δz, respectively. For any location (x, y, z) in the domain of ", the

transformation T is computed from the positions of the surrounding 4× 4× 4

control points:

T(x, y, z) =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+l, j+m,k+n.

Here, i, j, and k denote the index of the control point cell containing (x, y, z),

and u, v, and w are the relative positions of (x, y, z) inside that cell in the three

spatial dimensions:

i =
⌊

x

δx

⌋
− 1, j =

⌊
y

δy

⌋
− 1, k =

⌊
z

δz

⌋
− 1,

and

u= x

δx
−
⌊

x

δx

⌋
, v = y

δy

−
⌊

y

δy

⌋
, w = z

δz
−
⌊

z

δz

⌋
.

The functions B0 through B3 are the approximating third-order spline polyno-

mials [31]:

B0(t) = (−t3 + 3t2 − 3t + 1
)
/6,

B1(t) = (3t3 − 6t2 + 4
)
/6,

B2(t) = (−3t3 + 3t2 + 3t + 1
)
/6,

B3(t) = t3/6.

The degrees of freedom of a B-spline based transformation T, and thus the

elements of the parameter vector p, are the coordinates of the control points

φi, j,k.
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The optimum parameters of the non-rigid registration transformation T

are determined by a line search algorithm similar to the steepest descent

method [44]. The target function of the optimization is the NMI similarity of

the reference and the transformed floating image. We start by computing a dis-

crete approximation of the gradient of the target function with respect to the

parameters of the transformation T. This is achieved by a simple finite difference

scheme. Despite the high-dimensional parameter space, gradient approximation

can be performed very efficiently; due to the compact support of the B-spline

functions, each parameter of T influences only a small volume in image space

(i.e., the local 4× 4× 4 control point neighborhood). When moving any single

control point, all voxels of the floating image outside this area remain in the

same location. Their contribution to the similarity measure can therefore be

precomputed and reused [70].

In order to capture large deformations as well as small ones, the algo-

rithm incorporates a multiresolution deformation strategy based on multilevel

B-splines [31]. After finishing optimization at one control point resolution, the

spacing between the control points is reduced by a factor of 2 before registration

continues. The positions of the control points in the refined grid are determined

in a way that exactly preserves the current deformation [18, 58].

Using adaptive grid refinement [55, 67] and a parallel multiprocessor im-

plementation [56], we are able to keep computation times within reasonable

bounds. For example, we can complete a non-rigid registration of an image to

an atlas, each about the size as described earlier in this chapter, within about

10 minutes on a modern PC (Intel Pentium 4, 3.0 GHz, hyperthreading enabled).

11.3.4 Regularization of the Non-Rigid Transformation

Confocal microscopy imaging is a substantially less controlled image formation

process than typical medical imaging modalities. Varying concentrations of the

chromophor within one structure, laser power fluctuations, tiling artifacts, and

absorption of emitted light from deep structures lead to substantial imaging arti-

facts. As illustrated in Fig. 11.5, these artifacts can cause severe problems for the

non-rigid registration, leading to grossly incorrect coordinate transformations.

These can, to some extent, be prevented by regularizing the image similarity cost

function with an additional constraint term that controls the geometric proper-

ties of the coordinate mapping. The total optimization function thus becomes
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(a) Reference

image

(b) Floating

image after rigid

registration

(c) Floating image

after

unconstrained

non-rigid

registration

(d) Floating

image after

constrained

non-rigid

registration

Figure 11.5: Illustration of the importance of constraining non-rigid registra-

tion. These microscopy images are magnified to focus on the area of the right

lobula (compare Fig. 11.1 for an anatomical overview). In the reference image

(a), the lobula appears substantially darker on the lateral side (ellipse). In the

rigidly registered floating image (b) from another individual the lobula has a

more homogeneous intensity. Without smoothness constraint, intensity-based

non-rigid registration (c) computes a grossly incorrect deformation (arrows). A

constrained non-rigid registration (d) does not have this problem.

a weighted sum of the data-dependent image similarity and the regularization

constraint term:

Etotal = (1− w)ENMI + wEconstraint. (11.4)

In detail, we constrain the deformation to be smooth by adding a bihar-

monic penalty term, which is based on the energy of a thin plate of metal that

is subjected to bending deformations [4, 78]. The penalty term is composed of

second-order derivatives of the deformation, integrated over the domain D of

the transformation T as follows:

Econstraint =
∫

D

(
∂2T

∂x2

)2

+
(
∂2T

∂y2

)2

+
(
∂2T

∂z2

)2

+ 2

[(
∂2T

∂x∂y

)2

+
(
∂2T

∂y∂z

)2

+
(
∂2T

∂z∂x

)2
]

dx. (11.5)
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Since the 3D spline is the tensor product of independent 1D polynomial

functions, its second-order derivative with respect to one variable, x, is easily

computed as follows:

∂2

∂x2
T(x, y, z) = 1

δ2
x

3∑
l=0

3∑
m=0

3∑
n=0

(
d2

du2
Bl(u)

)
Bm(v)Bn(w) φi+l, j+m,k+n. (11.6)

Computation of the derivatives of T is in fact very similar to computing T itself.

Depending on the derivation variable, the spline polynomials B0 through B3 in the

respective dimension are simply replaced by their respective derivatives. These

derivatives are easily computed analytically. Mixed second-order derivatives

with respect to two different variables are computed by substituting two spline

polynomials with their respective first-order derivatives, e.g.,

∂2

∂x∂y
T(x, y, z)

= 1
δxδy

3∑
l=0

3∑
m=0

3∑
n=0

(
d

du
Bl(u)

)(
d

dv
Bm(v)

)
Bn(w) φi+l, j+m,k+n. (11.7)

Using the above derivative terms, the continuous integral in Eq. (11.5) is ap-

proximated as a discretely sampled sum over a set of points, for example, the

ND = nx × ny × nz voxels in the reference image.

11.4 Atlas Selection Strategies

This section will take a closer look at possible choices for atlases in atlas-based

segmentation. Usually, this aspect of atlas-based segmentation receives little

attention. Yet, the decision about what atlas to use has a substantial impact on

the segmentation accuracy, and simple methods are not always the best as we

will see below.

We describe and compare here four different atlas-based segmentation

strategies with different atlas selections: segmentation with one single individ-

ual atlas, segmentation with varying single individual atlases, segmentation with

an average shape atlas, and simultaneous segmentation with multiple atlases.

These four strategies can be categorized according to the number of atlases used

per raw image (one or multiple), the type of atlas used (individual or average),

and the assignment of atlases to raw images (fixed, i.e., same atlas(es) for all

raw images, or variable, i.e., different atlas image selected for each raw image).
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Figure 11.6: Depiction of the atlas selection strategies discussed in this chapter.

The strategies are also categorized in Table 11.2. Note that the basic atlas-based

segmentation with a single atlas (IND, gray box) occurs in different stages in

the other three strategies, in the MUL case replicated for each atlas.

A schematic graphical comparison of the four methods is given in Fig. 11.6, and

a textual summary of the categorization can be found in Table 11.2.

For each strategy, the resulting segmentation accuracy was evaluated. Auto-

matic segmentations were compared to a manual gold standard segmentation. A

detailed description of the methods used for validation and accuracy evaluation,
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Table 11.2: Categorization of atlas selection strategies by number,

type, and assignment of atlases. See Sections 11.4.1 through 11.4.4 for

details and Fig. 11.6 for a schematic overview of the different methods

Selection No. of Atlases Assignment of Atlas
Strategy per Raw Image Type of Atlas to Raw Image

IND single individual fixed
SIM single individual variable
AVG single average fixed
MUL multiple individual fixed

together with the results for the four atlas selection strategies, are presented in

Section 11.5.

11.4.1 Segmentation with a Fixed,

Single Individual Atlas

The most straight forward strategy for selection of an atlas is to use one individ-

ual segmented image. The selection can be random, or based on heuristic criteria

such as image quality, lack of artifacts, or normality of the imaged subject. This

strategy is by far the most commonly used method for creating and using an at-

las [25]. It requires only one atlas, which greatly reduces the preparation effort

as compared to the more complex methods described below.

Out of the 20 bee brains in our population, we picked the one that was

judged to have the best image quality and least artifacts. We then used this atlas

brain to segment the remaining 19 brain images. Each of the 19 raw images was

registered non-rigidly to the microscopy image of the atlas, and labeled using

the accordingly transformed atlas label image.

11.4.2 Segmentation with the Best Atlas for an Image

Suppose that instead of a single atlas, we have several atlases that originate

from several different subjects. For each image that we are segmenting, there is

one atlas that will produce the best segmentation accuracy among all available

atlases. It is obviously desirable to use this optimum atlas, which is most likely

a different atlas for each image.
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The problem is that we do not know what the correct segmentation for

an unsegmented image is. Therefore, we can only hope to find a more or less

successful heuristic for selecting the best atlas for a given image. There are at

least two easily accessible characteristic numbers that describe the similarity

between an image and an atlas. One is the final value of the registration criterion,

or image similarity measure, after either affine or non-rigid registration. The

other is the magnitude of the deformation (i.e., non-rigid transformation) that is

required to map the coordinates of the image onto that of the atlas.

Based on these two concepts, we have compared four different criteria for

selecting the single atlas that is most likely to produce the best segmentation of

a given raw image. These criteria are:

� NMI affine: Image similarity after affine registration. The atlas image

with the highest NMI similarity to the raw image after affine registration

is selected and used for its segmentation. This criterion requires only an

affine registration to be computed between the raw image and each of the

atlases. It is therefore considerably less computationally expensive than

the remaining three criteria described below.

� NMI non-rigid: Image similarity after non-rigid registration. The

atlas with the highest NMI value after non-rigid registration is selected

and used for segmentation.

� DEF avg: Average deformation of the atlas over all voxels. After

non-rigid registration, the magnitude of the deformation between the raw

image and each individual atlas is computed and averaged over all voxels.

The atlas with the smallest average deformation is selected and used for

segmentation. Whereas the above criteria are based on intensity similarity,

this criterion is based on geometric (i.e., shape) similarity.

� DEF max: Maximum deformation of the atlas over all voxels. This

criterion is identical to the previous one, except that it uses the maximum

deformation over all voxels rather than the average. This criterion pays

more attention to outliers. The idea is that atlases that match well overall

may be substantially inaccurate in some regions.

Segmentations were generated for each of the 20 bee brains, with the remaining

19 brains as possible atlas candidates in each case. For each raw image, one of
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Figure 11.7: Percentages of structures segmented with accuracy better than

given SI thresholds using different “most similar” atlas selection criteria. Each

column represents one criterion (see text for details). The stacked bars from

bottom to top show the percentages of structures that were segmented with SI

better than 0.95 through 0.70. For comparison, the left-most column shows the

results when the atlas with the best a posteriori SI segmentation result is used

for each raw image. This is the upper bound for the accuracy achievable with

any criterion for selection of the best single individual atlas.

the atlas candidates was chosen using each of the criteria above. The accuracy

of a segmentation was computed as the SI between the segmentation and the

manual gold standard.

Figure 11.7 shows a graph of the percentages of structures segmented with

varying levels of accuracy. For comparison, this graph includes results achieved

when using the best atlas according to the a posteriori SI values for each raw

image (left-most column, Best SI). In other words, this column shows the best

possible result that can be achieved using only a single individual atlas, where the

selection of this atlas is governed by the knowledge of the resulting segmentation

accuracy (SI value). Obviously, this is not a strategy that is available in practice.

However, it provides the upper bound for the segmentation accuracy that can

be achieved using any criterion for selection of the best atlas for a given raw

image.
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Among the four criteria that do not depend on the a posteriori accuracy

evaluation and thus a gold standard, the NMI image similarity after non-rigid

registration performed slightly better than the other three. It was therefore se-

lected as the criterion used for the SIM atlas selection strategy in the comparison

to the other three strategies later in this chapter (section 11.5.4).

11.4.3 Segmentation with an Average Shape Atlas

As we stated in the previous chapter, atlas-based segmentation is an easier task if

the atlas is similar to the image that is to be segmented. Smaller magnitudes of the

deformation between image and atlas that the non-rigid registration algorithm

has to determine typically result in a higher accuracy of the matching. If the atlas

is itself derived from an individual subject, then the risk is high that this individual

is an outlier in the population. In such a case segmenting other subjects using

the atlas becomes a more difficult problem. A better atlas would be one that is

as similar to as many individuals as possible. Such an atlas can be generated by

creating an average over many individuals.

For the human brain, such an average atlas is available from the Montreal

Neurological Institute (MNI) as the BrainWeb phantom [5, 13]. Note, however,

that the BrainWeb phantom is an atlas of brain tissue types, so as we discussed

in section 11.1, it is not as useful for atlas-based segmentation as an atlas of

brain structures. For the human heart, an average atlas derived from cardiac

MR images [45] has been used for atlas-based segmentation [35]. Similarly, an

average atlas of the lung has been derived from CT images [33].

For demonstration in this chapter, we have therefore generated an average

shape atlas of the structures of the bee brain using a technique outlined be-

low [51].

11.4.3.1 Iterative Shape Averaging

One way of obtaining an average shape atlas from a population of subjects is to

generate an active shape model (ASM). In short, an ASM provides a statistical

description of a population of subjects by means of an average shape and the

principal modes of variation [14, 34]. Generating an ASM typically requires the

identification of corresponding landmarks on all individuals, a tedious and error-

prone process despite recent success in automating this step using non-rigid
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registration [20]. Other methods are based entirely on non-rigid registration,

such as active deformation models (ADM) [19, 63] and a method described by

Guimond et al. [22]. Most of these, however, require not only non-rigidly regis-

tering several individuals, but also inverting the transformations between them.

In general, non-rigid transformations are not easily inverted. Even for bijec-

tive mappings there is typically no closed-form inverse. An iterative method for

generating average shape images that does not require inverse computations

was first suggested by Ashburner [2]. It also does not require the explicit com-

putation of an average transformation, the definition of which is not trivial for

non-linear mappings. Instead, the average deformation is generated by the itera-

tive process itself. This technique was later extended to segmented atlas images

and applied to generate an average shape atlas of the bee brain [51].

The central idea is to first map all original individual images onto a common

reference and then generate an average image. After that, the original images are

mapped onto the average, and a new average image is generated. This process

produces a sequence of average images that converges to an average shape

image. Note that convergence and average shape in this context are not defined

in a strict mathematical sense. However, the result of this iteration is sufficient

for the purpose of obtaining an average atlas for atlas-based segmentation, as

we will demonstrate below.

In the first step of the iteration, there is not yet an average image to register

the original images to. One of the latter is therefore chosen as the reference for

the initial registration. In order to avoid bias of the averaging iteration by the

choice of the initial reference, the first registration is affine only, thus correcting

for pose and size differences but leaving object shape unchanged. For the sub-

sequent steps, the average image resulting from the previous registration step

is chosen as the reference image of non-rigid registrations, while the individual

images are used as floating images, one at a time. As a result, all floating im-

ages are independently mapped into the same reference space, thus enabling

the generation of the next average image.

11.4.3.2 Propagation of Transformations

It is well known that intensity-based image registration algorithms, both rigid

and non-rigid, fail when started with an initial transformation estimate outside

the “capture range” of the desired local optimum of the similarity measure. A
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wise choice of the initial transformation is therefore beneficial for the robustness

of the registration method.

During the iterative averaging process, there are only minor changes in the

overall shape of the average brain from one iteration to the next. Consequently,

for all images n and all iterations i, the transformation T
(i+1)
n differs from the

preceding T
(i)
n only by a small additional deformation. A similar situation, al-

though for different reasons, is encountered when registering images from a

time series to a common reference; temporally consecutive images typically

differ from each other by a smaller amount than they differ from the common

reference. In the context of temporal image sequence registration, a framework

to incorporate deformations from previous steps into the current registration

was recently proposed [58, 59].

For the iterative average image generation described here, we follow a sim-

ilar approach. Our registration algorithm at each iteration takes as the ini-

tial transformation estimate the mapping found during the previous iteration

(Fig. 11.8). This is the mapping used to generate the current average image. For

the transition from affine to non-rigid registration, incorporation of the previ-

ous transformation is achieved by initializing the control point grid with control

Initialize

Register

Register

Register

Initialize

1st Iteration
Non-Rigid

2nd Iteration
Non-Rigid

Average
Image #1

Initialize

Before Registration After Registration

Affine

Average

Average
Image #2

Image #3

Further Iterations

Figure 11.8: Propagation of transformations through the iterative shape averag-

ing algorithm. For each individual image, the transformation (affine or non-rigid)

used to generate the current average image is propagated to the next iteration

as the initial estimate for the next transformation [reproduced from [51]].
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point positions transformed according to the individual affine transformations.

For the transition from one non-rigid iteration to the next, the deformation is

taken as is and used as the starting point for the optimization.

11.4.3.3 Distance to the Average Shape

Let us recall the rationale behind the creation of our average shape atlas: by

minimizing the deformation required to map the atlas onto a given individual,

the segmentation accuracy would be improved. So does the atlas produced by

the method outlined above in fact minimize this deformation? Indeed, Fig. 11.9

illustrates that the differences between a raw image and an individual atlas are

on average substantially larger than the differences between a raw image and

the average atlas. Most raw images are more similar in shape to the average

shape atlas than to any (or at least the majority) of the remaining 19 individual

atlas images. Since the individuals registered to the average shape atlas were

the same that built the atlas in the first place, this finding is not too surprising.

However, it was important to show that at least for the “training set”, our shape

averaging does in fact produce a reasonable approximation to the population

average shape.
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Figure 11.9: Comparison of deformation magnitudes between subjects vs. be-

tween a subject and the average shape atlas. The diamonds show the average

deformation (over all foreground voxels) in �m when registering the respective

raw image to the average shape atlas. The vertical lines show the range of av-

erage deformations when registering the respective raw image to the remaining

19 individual atlas images. The boxes show the 25th and 75th percentiles of the

respective distributions.
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Figure 11.10: Comparison of individual microscopy images and average shape

atlas. Note that the average microscopy image of the average shape atlas also

has a better signal-to-noise ratio and generally fewer artifacts than the origi-

nal individual microscopy images (three randomly selected examples shown as

rows 1 through 3 in this figure).

11.4.3.4 Noise and Artifacts in the Average Atlas

In Fig. 11.10, we compare some individual images that were used to build the

average shape atlas with the average shape atlas itself. It is easy to see that, in

addition to representing an average shape, the average atlas also comes with an

average microscopy image. The latter is easily generated by averaging the gray

values of the appropriately deformed original microscopy images. The average
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image shows substantially reduced noise and imaging artifacts. It also shows a

more homogeneous distribution of the chromophor compared to the individual

brains. All these properties can potentially make registration of the atlas to a

given raw image easier, and thus may aid in further improving segmentation

accuracy.

11.4.4 Multiatlas Segmentation: A Classifier Approach

We can look at an atlas combined with a coordinate mapping from a raw image

as a special type of classifier. The input of the classifier is a coordinate within

the domain of the raw image. The classifier output, determined internally by

transforming that coordinate and looking up the label in the atlas at the trans-

formed location, is the label that the classifier assigns to the given raw image

coordinate.

As we have briefly mentioned before, using a different atlas leads to a dif-

ferent segmentation of a given raw image. From a classifier perspective, we can

therefore say that different atlases generate different classifiers for the same

raw image. In the pattern recognition community, it has been well-known for

some time that multiple independent classifiers can be combined, and together

consistently achieve classification accuracies, which are superior to that of any

of the original classifiers [27].

Successful applications of multiple classifier systems have been reported in

recognizing handwritten numerals [30, 83] and in speech recognition [1, 65]. In

the medical image analysis field, this principle has been applied, for example,

to multi-spectral segmentation [42] and to computer-aided diagnosis of breast

lesions [17, 47].

The particular beauty of applying a multiclassifier framework to atlas-based

segmentation is that multiple independent classifiers arise naturally from the

use of multiple atlases. In fact, multiple classifiers also arise from using the

same atlas with a different non-rigid registration method. However, adding an

additional atlas is typically easier to do than designing an additional image reg-

istration algorithm. One could, however, also apply the same basic registration

algorithm with a different regularization constraint weight (see section 11.3.4),

which would also lead to slightly different segmentations.

For the demonstration in this chapter, we performed a leave-one-out study

with only one registration method, but a population of independent atlases. Each
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of the 20 bee brains was taken as the raw image and automatically segmented

using every one of the remaining 19 brains as an atlas. This resulted in 19 seg-

mentations per brain. These 19 segmentations were then combined into a final

segmentation.

The most straightforward method for combining multiple classifications into

one is the so-called “Vote Rule” decision fusion [26]. For each voxel in the raw

image, the outputs of the individual atlas-based classifiers are determined. Their

“votes” are then counted, and the label that received that highest number of votes

is assigned to the voxel. It is worth, however, to take a closer look at the way an

atlas-based classifier works: by looking up a label according to a transformed

image coordinate. The label map is discrete, arranged on a 3D grid of labeled

voxels. Yet the coordinates of the raw image voxels that we are trying to label

hardly ever directly fall on grid points in the atlas. Therefore, looking up the

correct label requires some sort of interpolation. The simplest label interpolation

method is nearest neighbor (NN) interpolation, resulting in a single unique label

per atlas-based classifier. These can easily be combined using vote fusion as

described above.

A slightly more complex interpolation technique that can be applied to labels

is partial volume interpolation (PVI) as introduced by Maes et al. [36]. Here, the

labels of all eight neighbors of the interpolated coordinate are determined and

weighted with the trilinear interpolation coefficients of their respective grid

nodes. Therefore, the output of an atlas-based classifier using PVI is a vector

of weights between zero and one, which are assigned to each of the possible

labels. One can interpret the weights as the confidence of the classifier in the

respective label being the correct answer. These weighted decisions from all

classifiers can be combined by so-called “Sum Rule” fusion [26]. The weights for

each label are added over all classifiers, and the label with the highest sum is

taken as the combined decision.

11.5 Quantifying Segmentation Accuracy

In addition to presenting selected algorithms for atlas-based segmentation,

this chapter provides a quantitative comparison among different methods. For

each segmentation that we perform, its accuracy is computed. The accuracies
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achieved for each image are then compared among different methods in order

to illustrate quality differences and to identify superior algorithms.

Computing the accuracy of a segmentation requires a gold standard, or

ground truth. That is, the correct segmentation needs to be known for an image

in order to be able to compute the accuracy of an automatically generated seg-

mentation of that image. While not at all guaranteed to be correct, it is commonly

accepted today to use a manual segmentation by a human expert, supported by

advanced semi-automatic labeling techniques such as intelligent scissors [40],

as the gold standard that automatic segmentation methods are measured

against.

11.5.1 Similarity Index

Figure 11.11 provides a visual impression of the segmentation result for two

representative slices from one segmented bee brain image. However, in order

Figure 11.11: Example of segmentation using non-rigid image registration

(MUL atlas selection paradigm). The two columns show axial images at two

different slice locations. Top row: Overlays of segmentation contours (shown

in white) after non-rigid image registration. Bottom row: Difference images be-

tween manual and automatic segmentation. Voxels with different labels assigned

by manual and automatic segmentation are shown in black.
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to effectively compare different segmentation methods, we need to quantify the

segmentation accuracy. One possible measure of segmentation quality is the

similarity index (SI) [87]. For a structure s, the SI is computed from the set

V
(s)

auto of voxels in s according to the automatic segmentation and the set V
(s)

manual

of voxels in s according to the (gold standard) manual segmentation:

SI(s) =
2
∣∣∣V (s)

manual ∩ V
(s)

auto

∣∣∣∣∣∣V (s)
manual

∣∣∣+ ∣∣∣V (s)
auto

∣∣∣ . (11.8)

For perfect mutual overlap of both segmentations, manual and automatic, the

SI has a value of 1. Lesser overlap results in smaller values of SI. No overlap

between the segmentations results in an SI value of 0. A major advantage of the SI

measure is that it is sensitive to both over-segmentation and under-segmentation,

that is, it recognizes both false positives and false negatives among the voxels

of a given structure.

11.5.2 Bias from Structure Volume

In order to understand the SI values computed later in this chapter and to com-

pare them with other published values, we investigated the dependence of SI val-

ues on object size. We performed a numerical simulation in which discretely sam-

pled spheres of various radii were dilated by one or two voxels and the SI values

between the original and dilated spheres were computed. The resulting SI values

are plotted versus object radius in Fig. 11.12. It is also easy to derive a closed-form

expression for the continuous case. The SI between two concentric spheres, one

with radius R and the other dilated by d, i.e., with a radius of R+ d, is

SI = 2(R/d)3

2(R/d)3 + 3(R/d)2 + 3(R/d)+ 1
. (11.9)

The SI values for the discrete and continuous cases are almost identical

(Fig. 11.12). The SI value between a sphere and a concentric dilated sphere

approximates the SI value for a segmentation error consisting of a uniform

thickness misclassification on the perimeter of a spherical object. Inspection

of Fig. 11.12 and Eq. (11.9) shows that SI depends strongly on object size and is

smaller for smaller objects. A one voxel thick misclassification on the perimeter

of a spherical object with a radius of 50 voxels has an SI value of 0.97, but for a

radius of 10 voxels the SI value is only 0.86. Thus it is not surprising that Dawant
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Figure 11.12: Dependence of SI values on size for spherical objects. The squares

show SI values computed from discrete numerical simulation of dilation by one

voxel. The solid line shows SI values for the continuous case (Eq. 11.9). Note

that while the units on the horizontal axis are voxels for the discrete case, they

are arbitrary units for the continuous case.

et al. [16] reported mean SI values of 0.96 for segmentation of the human brain

from MR images and mean SI values of only 0.85 for segmentation of smaller

brain structures such as the caudate.

In Fig. 11.13, the average volumes of the anatomical structures in the bee

brain images under consideration are shown with the actual segmentation

accuracies achieved for them using one of the segmentation methods discussed

later (MUL). It is easy to see that the larger a structure, the more accurately it

was typically segmented by the atlas-based segmentation. This confirms the the-

oretical treatment above and illustrates the varying bias of the SI metric when

segmenting structures of different sizes.

11.5.3 Bias from Structure Shape

A simple numerical measure that characterizes the shape of a geometrical object

is its surface-to-volume ratio (SVR). For a discrete set of labeled voxels in a

segmented structure, we can approximate the SVR ρ as the ratio of the number

of surface voxels Ns to the total number of voxels Nt, that is,

ρ ≈ Ns

Nt

(11.10)
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Figure 11.13: Volumes of anatomical structures and corresponding segmenta-

tion accuracies. The gray bars show the volumes (in numbers of voxels) of the

22 anatomical structures, averaged over the 20 bee brains. The black vertical

lines show the range of SI values achieved by the automatic segmentation (MUL

paradigm) over all segmented raw images. The diamond shows the median over

all segmented raw images.

A surface voxel is easily defined as one that has a neighbor with a label different

from its own. When the entire surface of a structure is misclassified, this can be

seen as an erosion of the structure by one voxel. The SI value computed between

the original structure and the eroded structure represents the SI resulting from a

segmentation that misclassifies exactly all surface voxels. From the structure’s

SVR ρ and its total volume V , this SI can be computed as

SI = 2V (1− ρ)
V + (1− ρ)V

= 1− ρ
1− ρ/2 . (11.11)

Similarly, we can estimate the SI resulting from a misclassification of half of all

surface voxels. Figure 11.14 shows the SVR values computed for all structures

in all brains in our 20 bee brains, plotted versus the SI values of the automatic

segmentations. The figure also shows two curves that represent the theoretical

misclassification of all and half of all surface voxels, respectively.

For a typical segmentation result of a single structure, a detailed compari-

son of manual and automatic segmentation is shown in Fig. 11.15. The structure

shown here, a right ventral mushroom body, is typical in that its volume and
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Figure 11.14: Similarity index vs. surface-to-volume ratio. Each dot represents

one structure in one brain (418 structures in total). The average over all individ-

uals for one structure is marked by a ×. The solid and dashed lines show the

theoretical relationship between SVR and SI for misclassification of all and half

of all surface voxel, respectively.

its surface-to-volume ratio are close to the respective means over all structures

(volume 141k pixels vs. mean 142k pixels; SVR 0.24 vs. mean 0.36). The segmen-

tation accuracy for the segmentation shown was SI= 0.86, which is the median

SI value over all structures and all brains.

11.5.4 Comparison of Atlas Selection Strategies

The results achieved using the different atlas selection strategies outlined above

are visualized in Figs. 11.16–11.19. Each graph shows a plot of the distribu-

tion of the SI segmentation accuracies over 19 segmentations, separated by

anatomical structure. There were 19 segmentations per strategy as one out of

the 20 available bee brain images served as the fixed individual atlas for the

IND strategy. Therefore, this brain was not available as the raw image for the

remaining strategies, in order to avoid bias of the evaluation.

A comparison of all four strategies is shown in Fig. 11.20. It is easy to see from

the latter figure that the widely used IND strategy produced the least accurate
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Figure 11.15: A typical segmented structure: right ventral mushroom body

(SI= 0.86). Columns from left to right: microscopy image, contour from manual

segmentation, contour from automatic segmentation (MUL paradigm), and dif-

ference image between manual and automatic segmentation. The white pixels in

the difference image show where manual and automatic segmentation disagree.

Rows from top to bottom: axial, sagittal, and coronal slices through the right

ventral mushroom body.

results of all strategies. Only slightly better results were achieved by selecting a

different individual atlas for each raw image, based on the NMI after non-rigid

registration criterion discussed in section 11.4.2. The AVG strategy, segmenta-

tion using an average shape atlas, outperformed both the IND and SIM strategies,

but was itself clearly outperformed by the MUL strategy. Our results therefore

show that the multiclassifier approach to atlas-based segmentation produced

substantially more accurate segmentations than the other three strategies. This

finding is, in fact, statistically significant when performing a t-test on the SI val-

ues for all structures over all segmentations, which confirms the experience of
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Figure 11.16: SI by label for segmentation using a single individual atlas (IND

atlas selection strategy) [reproduced from [53]].

the pattern recognition community that multiple classifier systems are generally

superior to single classifiers [27, 83].

Another interesting finding is that both the AVG and the MUL strategies

performed better than the theoretical upper bound of any strategy working with

only a single individual atlas (series labeled “Best SI” in Fig. 11.20). We note that

“Best SI” is the upper bound not only for any method with the best atlas for each

raw image, but also for any possible selection of one atlas for all raw images.

Therefore, it is also the upper bound of the IND strategies, which in our study

can consequently never outperform the AVG or MUL strategies.

0.00

0.20

0.40

0.60

0.80

1.00

vP
K

l

vP
K

r

C
b

LP
L-

U
S

G

rm
bR

rm
Li

p

rm
C

ol
l

rlL
ip

rlC
ol

l

rlb
R

llL
ip

llC
ol

l

llb
R

lm
bR

lm
C

ol
l

lm
Li

p

rL
ob

ul
a

rM
ed

ul
la

lM
ed

ul
la

lL
ob

ul
a la
l

ra
l

Anatomical Structure

S
im

ila
ri

ty
 In

d
ex

Figure 11.17: SI by label for segmentation using the most similar single indi-

vidual atlas (SIM atlas selection strategy) [reproduced from [53]].
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Figure 11.18: SI by label for segmentation using a single average shape atlas

(AVG atlas selection strategy) [reproduced from [53]].

11.6 More on Segmentation with

Multiple Atlases

We saw in the previous section that a multiclassifier approach to atlas-based

segmentation outperforms atlas-based segmentation with a single atlas, be it an

individual atlas, an average atlas, or even the best out of a database of atlases.

Compared to that, the insight underlying the SIM (“most similar”) atlas selection
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Figure 11.19: SI by label for segmentation by combining multiple independent

atlas-based segmentations (MUL atlas selection strategy) [reproduced from

[53]].
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Figure 11.20: Percentage of registration-based segmentations with similarity

index SI better than the given threshold plotted by atlas selection strategy. The

series labeled “Best SI” is the upper bound of all strategies working with a single

individual atlas (see text for details).

strategy was that different atlases lead to segmentations of different accuracies.

Combined, both observations lead to an even more interesting concept: com-

bination of multiple atlas-based segmentations, weighted by estimates of their

individual segmentation accuracy.

In other words, if we had estimates of how well each atlas-based classifier

is performing, then we could be more confident in decisions of those classifiers

that perform well, compared to the decisions of those that do not. One would

hope that by concentrating on more accurate classifiers in the ensemble, the

classification accuracy would be further improved.

The performance of each atlas-based classifier is obviously not known in

general, due to the lack of a ground truth. However, several methods have been

proposed that can estimate the performance parameters, for example, using

expectation maximization (EM) methods. Two of these are outlined below, one

based on a per-label binary performance model [79], and another based on a

simultaneous multilabel performance model [60, 61].

For the description of both methods, we assume that an image with N voxels

is segmented by K different (atlas-based) classifiers. For each voxel x, we denote

with ek(x) the decision by classifier k, which is one of the labels assigned in
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the segmentation. For the sake of simplicity of the presentation, we assume

classifiers that internally use NN interpolation for atlas lookup and therefore

only produce one unique label as their output. If the (unknown) ground truth

for voxel x is i, we say that x is in class i and write this as x ∈ Ci.

11.6.1 A Binary Classifier Performance Model

An EM algorithm described by Warfield et al. [79] estimates the classifier per-

formance for each label separately. The method is based on the common perfor-

mance parameters p (sensitivity) and q (specificity), i.e., the fractions of true

positives and true negatives among the classified voxels. The parameters p and

q are modeled independently for each classifier k and each class Ci (label in the

segmentation) as the following conditional probabilities:

p
(k)
i = P(ek(x) = i|x ∈ Ci) and q

(k)
i = P(ek(x) = i|x ∈ Ci). (11.12)

From these definitions, an EM algorithm that estimates pand q from the classifier

decisions can be derived as described by Warfield et al. [79]. From the computed

classifier performance parameters for each label, a contradiction-free final seg-

mentation E at voxel x can be computed as

E(x) = arg max
i

P(x ∈ Ci|e1(x), . . . , eK (x)). (11.13)

Here, the probability P(x ∈ Ci|e) follows from the classifiers’ decisions and their

performance parameters using Bayes’ rule. For details on the application of this

algorithm to classifier fusion, see [60].

11.6.2 A Multilabel Classifier Performance Model

In a generalization of the Warfield algorithm to multilabel segmentations [60],

the classifier parameters p and q are replaced by a matrix of label cross-

segmentation coefficients λ(k)
i, j . These describe the conditional probabilities that

for a voxel x in class Ci the classifier k assigns label j = ek(x), that is,

λ
(k)
i, j = P(ek(x) = j|x ∈ Ci). (11.14)

This formulation includes the case that i = j, i.e., the classifier decision for

that voxel was correct. Consequently, λ(k)
i,i is the usual sensitivity of classifier

k for label i. We also note that for each classifier k the matrix (λ(k)
i, j )i, j is a

row-normalized version of the “confusion matrix” [83] in Bayesian multiclassifier
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algorithms. This matrix, when filled with proper coefficients, expresses prior

knowledge about the decisions of each classifier. Again, the coefficients can be

estimated iteratively from the classifier decisions by an EM algorithm.

In the “E” step of the EM algorithm, the unknown ground truth segmentation

is estimated. Given the current estimate for the classifier parameters (λ) and the

classifier decisions ek(x), the likelihood of voxel x being in class Ci is

W (x ∈ Ci) =
P(x ∈ Ci)

∏
k λ

(k)
i,ek(x)∑

i′

[
P(x ∈ Ci′)

∏
k λ

(k)
i′,ek(x)

] . (11.15)

Note that W is a function of two parameters, x and i. The “M” step of our

algorithm estimates the classifier parameters (λ) that maximize the likelihood

of the current ground truth estimate determined in the preceding “E” step. Given

the previous estimates W of the class probabilities, the new estimates for the

classifier parameters are computed as follows:

λ̂
(k)
i, j =

∑
x:ek(x)= j W (x ∈ Ci)∑

x W (x ∈ Ci)
. (11.16)

11.6.3 Results of Performance-Based

Multiatlas Segmentation

The accuracy of the performance parameter estimation using both EM algo-

rithms is shown in Fig. 11.21. We computed the actual performance parameters

for each atlas-based classifier by comparing its output with the manual segmen-
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Figure 11.21: Accuracy of classifier performance parameter estimation using

EM algorithms.
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Figure 11.22: Recognition rates (foreground only) of multiple classifier systems

based on binary performance model, multilabel performance model, and simple

sun fusion.

tation. These a posteriori performances (conceptually equivalent to the recog-

nition rate of the classifier) were then plotted versus the estimates computed

by either of the EM methods. It is easy to see that there is a very good agree-

ment between the actual and the the estimated parameters, with a slightly higher

predictive accuracy following the binary performance model. The Pearson cor-

relation coefficient between true and estimated performances was 0.94 for the

binary expert model, and 0.87 for the multilabel expert model. The increased

quality of the parameter estimation using the binary performance model can

be explained by the substantially larger number of degrees of freedom in the

multilabel model, due to the interlabel crosstalk coefficients.

As Fig. 11.22 illustrates, the accuracy of a multiclassifier segmentation can

be improved considerably when the performance parameters of the individual

classifiers are estimated and taken into account. Overall, the estimation method

using a multilabel performance parameter model was slightly less accurate in

estimating the actual parameters, but produced a slightly better segmentation

accuracy than the method based on a binary performance model.

11.7 Conclusion

This chapter has shed light on some often overlooked aspects of atlas-based

segmentation methods. We have compared four different strategies for atlas
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selection and demonstrated that the accuracy of atlas-based segmentation can

be improved substantially by moving beyond the use of a single, individual atlas.

Recently published works on atlas creation and atlas-based segmentation

make increasing use of standard atlases that incorporate properties of a pop-

ulation of subjects [33, 35, 45]. Our results confirm that this is likely beneficial

for improved segmentation accuracy and robustness. However, our results also

suggest that the benefits of applying a multiclassifier strategy are well worth the

extra effort.

On a more application-specific note regarding the accuracy of atlas-based

segmentation of bee brains, we observe that the mean SI value of segmentations

produced using the MUL method in this chapter is 0.86, which, given the small

size of most of the structures in the bee brains considered, is comparable to the

values reported by Dawant et al. and supports the visual assessment observation

(Fig. 11.11) that the automatic segmentations described here differ from manual

segmentations on average by slightly more than half of the voxels on the struc-

ture surfaces (Fig. 11.14). In fact, Zijdenbos et al. [87] state that “SI > 0.7 indi-

cates excellent agreement” between two segmentations. This criterion (SI > 0.7)

is satisfied by virtually all (97%) contours generated by our segmentations using

the MUL method (Fig. 11.19). Furthermore, since the image quality of confocal

microscopy images is inferior to clinical MR and CT images in many ways, we

believe that our registration-based segmentation method represents a satisfac-

tory intermediate solution to a segmentation problem that is appreciably harder

than that of segmenting commonly used images of the human brain.
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Questions

1. What are the advantages of atlas-based segmentation over other segmen-

tation techniques?

2. Why is the described non-rigid registration method superior to other tech-

niques?

3. What is the best value for the smoothness constraint weight of the non-rigid

registration (section 11.3.4)?

4. What if in section 11.4.2 the atlas most similar to the raw image were

selected using the following criterion I invented: . . . ?

5. When combining multiple atlas-based segmentations, what is the practical

difference between NN interpolation with vote fusion and PVI with sum

fusion?

6. If the MUL atlas selection strategy is so much better than the others, then

why is it not always used?

7. How does atlas-based segmentation compare to manual segmentation?

8. Are there parallels to the multiatlas segmentation method in pattern recog-

nition?

9. Could an active shape model be used as an atlas for segmentation?

10. Why does the binary classifier performance model predict actual perfor-

mance more accurately, yet the multilabel performance model gives better

combined classification results?
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[34] Lorenz, C. and Krahnstöver, N., Generation of point-based 3D statisti-

cal shape models for anatomical objects, Computer Vision and Image

Understanding, Vol. 77, pp. 175–191, 2000.

[35] Lorenzo-Valdés, M., Sanchez-Ortiz, G. I., Mohiaddin, R. and Rueckert,

D., Atlas-based segmentation and tracking of 3D cardiac MR images us-

ing non-rigid registration, In: Medical Image Computing and Computer-

Assisted Intervention—MICCAI 2002: 5th International Conference,



Quo Vadis, Atlas-Based Segmentation? 479

Tokyo, Japan, September 25–28, 2002, Proceedings, Part I, Dohi, T. and

Kikinis, R., eds., Vol. 2488 of Lecture Notes in Computer Science, pp.

642–650, Springer-Verlag, Heidelberg, 2002.

[36] Maes, F., Collignon, A., Vandermeulen, D., Marchal, G. and Suetens, P.,

Multimodality image registration by maximisation of mutual informa-

tion, IEEE Transactions on Medical Imaging, Vol. 16, No. 2, pp. 187–198,

1997.

[37] Malladi, R., Sethian, J. A. and Vemuri, B. C., Shape modelling with front

propagation: A level set approach, IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, Vol. 17, No. 2, pp. 158–175, 1995.

[38] Miller, M. I., Christensen, G. E., Amit, Y. and Grenander, U., Mathe-

matical textbook of deformable neuroanatomies, Proceedings of the

National Academy of Sciences of the U.S.A., Vol. 90, No. 24, pp. 11944–

11948, 1993.

[39] Mobbs, P. G., Brain structure, in Kerkut, G. A. and Gilbert, L. I., eds.,

Comprehensive insect physiology biochemistry and pharmacology,

Vol. 5: Nervous system: structure and motor function, pp. 299–370,

Pergamon Press, Oxford, New York, Toronto, Sydney, Paris, Frankfurt,

1985.

[40] Mortensen, E. N. and Barrett, W. A., Interactive segmentation with intel-

ligent scissors, Graphical Models and Image Processing, Vol. 60, No. 5,

pp. 349–384, 1998.

[41] Musse, O., Heitz, F. and Armspach, J.-P., Fast deformable matching of

3D images over multiscale nested subspaces. application to atlas-based

MRI segmentation, Pattern Recognition, Vol. 36, No. 8, pp. 1881–1899,

2003.

[42] Paclik, P., Duin, R. P. W., van Kempen, G. M. P. and Kohlus, R., Segmen-

tation of multispectral images using the combined classifier approach,

Image and Vision Computing, Vol. 21, No. 6, pp. 473–482, 2003.

[43] Park, H., Bland, P. H. and Meyer, C. R., Construction of an abdominal

probabilistic atlas and its application in segmentation, IEEE Transac-

tions on Medical Imaging, Vol. 22, No. 4, pp. 483–492, 2003.



480 Rohlfing et al.

[44] Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P.,

Numerical Recipes in C: The Art of Scientific Computing, Cambridge

University Press, Cambridge, UK, 2nd ed., 1992.

[45] Rao, A., Sanchez-Ortiz, G. I., Chandrashekara, R., Lorenzo-Valdés, M.,

Mohiaddin, R. and Rueckert, D., Construction of a cardiac motion at-

las from MR using non-rigid registration, In: Functional Imaging and

Modeling of the Heart—Second International Workshop, FIMH 2003,

Lyon, France, June 5–6, 2003, Proceedings, Magnin, I. E., Montagnat, J.,

Clarysse, P., Nenonen, J. and Katila, T., eds., Vol. 2674 of Lecture Notes

in Computer Science, pp. 141–150, Springer-Verlag, Heidelberg, 2003.

[46] Reichmuth, C., Becker, S., Benz, M., Reisch, D., Heimbeck, G., Hofbauer,

A., Klagges, B. R. E., Pflugfelder, G. O. and Buchner, E., The sap47 gene of

Drosophila melanogaster codes for a novel conserved neuronal protein

associated with synaptic terminals, Molecular Brain Research, Vol. 32,

pp. 45–54, 1995.

[47] Rogova, G. L. and Stomper, P. C., Information fusion approach to mi-

crocalcification characterization, Information Fusion, Vol. 3, No. 2, pp.

91–102, 2002.

[48] Rohlfing, T., Multimodale Datenfusion für die bildgesteuerte Neu-

rochirurgie und Strahlentherapie, Ph.D. Dissertation, Technische Uni-

versität Berlin, 2000.

[49] Rohlfing, T., Efficient voxel lookup in non-uniformly spaced images us-

ing virtual uniform axes, In: Medical Imaging: Image Processing, Sonka,

M. and Hanson, K. M., eds., Vol. 4322 of Proceedings of the SPIE, pp.

986–994, 2001.

[50] Rohlfing, T., Incremental method for computing the intersection of dis-

cretely sampled m-dimensional images with n-dimensional boundaries,

In: Medical Imaging: Image Processing, Sonka, M. and Fitzpatrick, J. M.,

eds., Vol. 5032 of Proceedings of the SPIE, pp. 1346–1354, 2003.

[51] Rohlfing, T., Brandt, R., Maurer, Jr., C. R. and Menzel, R., Bee brains, B-

splines and computational democracy: Generating an average shape

atlas, In: IEEE Workshop on Mathematical Methods in Biomedical



Quo Vadis, Atlas-Based Segmentation? 481

Image Analysis, Staib, L., ed., pp. 187–194, IEEE Computer Society,

Los Alamitos, CA, Kauai, HI, 2001.

[52] Rohlfing, T., Brandt, R., Menzel, R. and Maurer, Jr., C. R., Evaluation

of atlas selection strategies for atlas-based image segmentation with

application to confocal microscopy images of bee brains, NeuroImage,

Vol. 21, No. 4, pp. 1428–1442, 2004.

[53] Rohlfing, T., Brandt, R., Menzel, R. and Maurer, Jr., C. R., Segmentation of

three-dimensional images using non-rigid registration: Methods and val-

idation with application to confocal microscopy images of bee brains,

In: Medical Imaging: Image Processing, Sonka, M. and Fitzpatrick, J.

M., eds., Vol. 5032 of Proceedings of the SPIE, pp. 363–374, 2003.

[54] Rohlfing, T., Maurer, C. R., Bluemke, D. A. and Jacobs, M. A., An

alternating-constraints algorithm for volume-preserving non-rigid reg-

istration of contrast-enhanced MR breast images, In: Biomedical Image

Registration—Second International Workshop, WBIR 2003, Philadel-

phia, PA, USA, June 23–24, 2003, Gee, J. C., Maintz, J. B. A. and Vannier,

M. W., eds., Vol. 2717 of Lecture Notes in Computer Science, pp. 291–300,

Springer-Verlag, Berlin Heidelberg, 2003.

[55] Rohlfing, T. and Maurer, Jr., C. R., Intensity-based non-rigid registration

using adaptive multilevel free-form deformation with an incompress-

ibility constraint, In: Proceedings of Fourth International Conference on

Medical Image Computing and Computer-Assisted Intervention (MIC-

CAI 2001), Niessen, W. and Viergever, M. A., eds., Vol. 2208 of Lecture

Notes in Computer Science, pp. 111–119, Springer-Verlag, Berlin, 2001.

[56] Rohlfing, T. and Maurer, Jr., C. R., Non-rigid image registration in shared-

memory multiprocessor environments with application to brains,

breasts, and bees, IEEE Transactions on Information Technology in

Biomedicine, Vol. 7, No. 1, pp. 16–25, 2003.

[57] Rohlfing, T., Maurer, Jr., C. R., Bluemke, D. A. and Jacobs, M. A., Volume-

preserving nonrigid registration of MR breast images using free-form

deformation with an incompressibility constraint, IEEE Transactions

on Medical Imaging, Vol. 22, No. 6, pp. 730–741, 2003.



482 Rohlfing et al.

[58] Rohlfing, T., Maurer, Jr., C. R., O’Dell, W. G. and Zhong, J., Model-

ing liver motion and deformation during the respiratory cycle using

intensity-based free-form registration of gated MR images, In: Med-

ical Imaging: Visualization, Display, and Image-Guided Procedures,

Mun, S. K., ed., Vol. 4319 of Proceedings of the SPIE, pp. 337–348,

2001.

[59] Rohlfing, T., Maurer, Jr., C. R., O’Dell, W. G. and Zhong, J., Modeling liver

motion and deformation during the respiratory cycle using intensity-

based free-form registration of gated MR images, Medical Physics, 2003

in print.

[60] Rohlfing, T., Russakoff, D. B. and Maurer, Jr., C. R., Performance-

based classifier combination in atlas-based image segmentation using

expectation-maximization parameter estimation. IEEE Transactions on

Medical Imaging, Vol. 23, No. 8, pp. 983–994, 2004.

[61] Rohlfing, T., Russakoff, D. B. and Maurer, Jr., C. R., Extraction and

application of expert priors to combine multiple segmentations of

human brain tissue, In: Proceedings of Sixth International Confer-

ence on Medical Image Computing and Computer-Assisted Interven-

tion (MICCAI), Ellis, R. E. and Peters, T. M., eds., Lecture Notes in

Computer Science, pp. 587–585, Springer-Verlag, Berlin Heidelberg,

2003.

[62] Rohlfing, T., West, J. B., Beier, J., Liebig, T., Taschner, C. A. and Thomale,

U.-W., Registration of functional and anatomical MRI: Accuracy as-

sessment and application in navigated neurosurgery, Computer Aided

Surgery, Vol. 5, No. 6, pp. 414–425, 2000.

[63] Rueckert, D., Frangi, A. F. and Schnabel, J. A., Automatic construction

of 3D statistical deformation models of the brain using nonrigid reg-

istration, IEEE Transactions on Medical Imaging, Vol. 22, No. 8, pp.

1014–1025, 2003.

[64] Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L. G., Leach, M. O. and

Hawkes, D. J., Nonrigid registration using free-form deformations: Ap-

plication to breast MR images, IEEE Transactions on Medical Imaging,

Vol. 18, No. 8, pp. 712–721, 1999.



Quo Vadis, Atlas-Based Segmentation? 483

[65] Saranli, A. and Demirekler, M., A statistical unified framework for rank-

based multiple classifier decision combination, Pattern Recognition,

Vol. 34, No. 4, pp. 865–884, 2001.
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Chapter 12

Deformable Image Registration with

Hyperelastic Warping

Alexander I. Veress, Nikhil Phatak, and Jeffrey A. Weiss

12.1 Introduction

The extraction of quantitative information regarding growth and deformation

from series of image data is of significant importance in many fields of science

and medicine. Imaging techniques such as MRI, CT and ultrasound provide a

means to examine the morphology and in some cases metabolism of tissues.

The registration of this image data between different time points after external

loading, treatment, disease or other pathologies is performed using methods

known as deformable image registration.

The goal of deformable image registration is to find a transformation that

best aligns the features of a “template” and “target” image (Fig. 12.1). In the

ideal case, the quantity and quality of the image texture present in the template

and target images, as well as the similarity in underlying anatomical structure,

would yield a unique “best” transformation. In real problems, however, this is

not the case. Deformable image registration is most often ill-posed in the sense

of Hadamard [2–3]. No perfect transformation exists, and the solution depends

on the choice of the cost function and associated solution methods.

Deformable image registration grew primarily out of the pattern recognition

field where significant effort has been devoted to the representation of image

ensembles (e.g., [4–13]). The approaches that are used are usually classified as

either model-based or pixel-based. Model-based approaches typically require
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Figure 12.1: The canonical deformable image registration problem involves the

determination of the deformation map that will align a template image with a

target image. In this case, the data are MR images of a heart at different times

during the cardiac cycle.

some segmentation of a surface in the 3-D image dataset. This surface is then

warped into alignment with features in the target image. The pixel-based ap-

proaches do not in general require a segmentation, but rather deform pixels or

some sampling of the pixels.

Most methods for deformable registration incorporate a cost function so that

the overall energy function to be minimized consists of one term based on the

image data itself and a second term that serves to regularize the problem. The

choice of this cost function can have a significant effect on the results of image

registration. The dependence is most significant in regions of the template model

where image texture is sparse or conflicting. In these regions, the registration

solution is computed based on minimizing the deformation potential (Bayesian

prior probability) portion of the particular registration cost functional [14]. A

common approach is to use an analogy to a physical material by treating the

original template image as an elastic sheet [12, 13, 15, 16] or a viscous fluid

[17]. In general, these approaches benefit from the fact that the mapping from

template to target is guaranteed to be one-to-one on the basis of the fundamentals

of deformations as defined in continuum mechanics. However, the particular

kinematic and constitutive assumptions can over-constrain the solution. As an

example, use of the theory of linearized elasticity results in the over-penalization

of large rotations, thus limiting the ability to achieve a good registration.

The objective of this chapter is to describe the theory and application of

a method termed Hyperelastic Warping [16, 18–22] to problems in deformable

image registration. The method is based on the principles of nonlinear solid

mechanics to allow objective tracking of large deformations and rotations and
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the concomitant determination of stresses within the deforming body. The ap-

proach may be applied to physical deformations that arise in solid and fluid

mechanics as well as to non-physical deformations such as the inter- and intra-

subject registration of image data. For the physical deformation case, the goal

is to quantify the kinematics and the kinetics of the deformations. In the non-

physical case, only the kinematics of the deformations are sought.

12.2 Hyperelastic Warping

The standard notation and symbols of modern continuum mechanics are em-

ployed in the following presentation [23–25]. In particular, direct notation is

used, with boldface italics for vector and tensor fields. The outer product is de-

noted with “⊗”, a matrix inner product is denoted with “:”, and a matrix-vector

product is denoted with “·”. Index notation is incorporated for quantities that

cannot be readily written in with direct notation. The condensed Voigt notation

typically employed in finite element (FE) analysis is utilized as needed [1].

12.2.1 Finite Deformation Theory

A Lagrangian reference frame is assumed in the following presentation, and

thus the kinematics of material points corresponding to the template image are

tracked with respect to their original positions. However, it should be noted that

the approach could be adapted readily to an Eulerian framework. The template

and target images are assumed to have spatially varying scalar intensity fields

defined with respect to the reference configuration and denoted by T and S,

respectively. The deformation map is denoted ϕϕϕ(X) = x = X + u(X) where

x are the current (deformed) coordinates corresponding to X and u(X) is the

displacement field. F is the deformation gradient [26]:

F(X) = ∂ϕϕϕ(X)
∂X

. (12.1)

The local change in density is directly related to the deformation gradient

through the Jacobian, J := det(F) = ρ0/ρ, where det (F) is the determinant

of the deformation gradient, ρ0 is the density in the reference configuration and

ρ is the density in the deformed configuration. At this point, it is assumed that

T and S have a general dependence on position in the reference configuration

X and the deformation map ϕϕϕ(X).
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The positive definite, symmetric right and left Cauchy-Green deformation

tensors are, respectively,

C = FT F = U2 and B= FFT = U2. (12.2)

The Jacobian J is defined as:

J := det F = ρ0

ρ
. (12.3)

12.2.2 Variational Framework

Most deformable image registration methods can be posed as the minimization

of an energy functional E that consists of two terms. This can be defined with

respect to the reference or current (deformed) configuration as:

E(X, ϕϕϕ) =
∫
βββ0

W (X, ϕϕϕ)dV −
∫
βββ0

U(T(X, ϕϕϕ), S(X, ϕϕϕ))dV

=
∫
βββ

W (X, ϕϕϕ)
dν

J
−
∫
βββ

U(T(X, ϕϕϕ), S(X, ϕϕϕ))
dν

J

. (12.4)

Here, W is an energy term that provides regularization and/or some type of

constraint on the deformation map (e.g., one-to-one mapping or no negative

volumes admitted), while U represents an energy that depends on the image data

in the template and target images. β0 and β represent the volumes of integration

in the reference and current configurations, respectively.

The Euler-Lagrange equations are obtained by taking the first variation of

E (X, ϕϕϕ) with respect to the deformation ϕϕϕ. This can be thought of as a “virtual

displacement” – a small variation in the current coordinates x, denoted εη.

Here ε is an infinitesimal scalar. The first variation of the first energy term in

Eq. (2.4) defines the forces per unit volume that arise from the regularization.

The second energy term in Eq. (2.4) gives rise to an image-based force term. The

first variation of Eq. (2.4) with respect to the deformation ϕϕϕ (X) in direction η is

denoted:

G(ϕϕϕ,η) := DE(ϕϕϕ) · η =
∫
βββ

DW (X, ϕϕϕ) · ηdν

J

(12.5)
+
∫
β

DU(T(X, ϕϕϕ), S(X, ϕϕϕ)) · ηdν

J
= 0.
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The variations are calculated by taking the Gateaux derivative [25] of the func-

tional U evaluated at ϕϕϕ+ εη with respect to ε and then letting ε→ 0. For general

forms of W and U,

G(ϕϕϕ,η) =
∫
β

∂W

∂ϕϕϕ
· ηdν

J
+
∫
β

∂U

∂ϕϕϕ
· ηdν

J
= 0. (12.6)

12.2.3 Linearization

Equation (12.6) is highly nonlinear and thus an incremental-interative solution

method is necessary to obtain the configuration ϕϕϕ that satisfies the equation

[27]. The most common approach is based on linearization of the equations

and an iterative solution using Newton’s method or some variant. Assuming

that the solution at a configuration ϕϕϕ∗ is known, a solution is sought at some

small increment ϕϕϕ∗ +�u. Here again, �u is a variation in the configuration

or a virtual displacement. The linearization of Eq. (12.6) at ϕϕϕ∗ in the direction

�u is:

Lϕϕϕ ∗G = G(ϕϕϕ∗,η)+ DG(ϕϕϕ∗,η) ·�u=
∫
β

η ·
(
∂W

∂ϕϕϕ
+ ∂U
∂ϕϕϕ

)
dν

J

+
∫
β

η · (D+ k) ·�u
dν

J
, (12.7)

where k:= ∂2U

∂��∂��
is the image stiffness and D:= ∂

2W

∂��∂��
is the regularization stiff-

ness. These 2nd derivative terms (Hessians) describe how small perturbations

of the current configuration affect the contributions of W and U to the overall

energy of the system.

12.2.4 Particular Forms for W and U—Hyperelastic

Warping

In Hyperelastic Warping, a physical representation of the template image is

deformed into alignment with the target image, which remains fixed in the refer-

ence configuration. The scalar intensity field of the template, T, is not changed

directly by the deformation, and thus it is represented as T(X). Since the values

of S at material points associated with the deforming template change as the

template deforms with respect to the target, it is written as S(ϕϕϕ). The formulation



492 Veress, Phatak, and Weiss

uses a Gaussian sensor model to describe the image energy density functional:

U(X, ϕϕϕ) = λ
2

(T(X)− S(ϕϕϕ))2. (12.8)

λ is a penalty parameter [28] that enforces the alignment of the template model

with the target image data. As λ→∞, (T(X)− S(ϕϕϕ))2 → 0, and the image en-

ergy converges to a finite value.

Hyperelastic Warping assumes that W is the standard strain energy density

function from continuum mechanics that defines the material constitutive be-

havior. It depends on the right deformation tensor C. The right deformation

tensor is independent of rotation and thus hyperelasticity provides an objec-

tive (invariant under rotation) constitutive framework, in contrast to linearized

elasticity (see below, [29]). With these specific assumptions, Eq. (12.4) takes the

form:

E=
∫
βββ

W (X,C)
dν

J
−
∫
βββ

U(T(X), S(ϕϕϕ))
dν

J
(12.9)

The first variation of the first term in Eq. (12.9) yields the standard weak from

of the momentum equations for nonlinear solid mechanics (see, e.g., [25]). The

first variation of the functional U in Eq. (12.8) with respect to the deformation

ϕϕϕ (X) in direction η gives rise to the image-based force term:

DU(ϕϕϕ) · η = D

[
λ

2
(T(X)− S(ϕϕϕ))2

]
· η

= λ
[

(T(X)− S(ϕϕϕ+ εη))
∂

∂ε
(T(X)− S(ϕϕϕ+ εη))

]
ε→0

. (12.10)

Noting that[
∂

∂ε
(T(X)− S(ϕϕϕ+ εη))

]
ε→0

=
[
−∂S(ϕϕϕ+ εη)
∂(ϕϕϕ+ εη)

· ∂(ϕϕϕ+ εη)
∂ε

]
ε→0

(12.11)
= −∂S(ϕϕϕ)

∂ϕϕϕ
· η,

Eqs. (12.10) and (12.11) can be combined to yield:

DU(ϕϕϕ) · η = −λ
[

(T(X)− S(ϕϕϕ))
∂S(ϕϕϕ)
∂ϕϕϕ

· η
]
. (12.12)

This term drives the deformation of the template based on the pointwise differ-

ence in the image intensities and the gradient of the target intensity evaluated

at material points associated with the template.
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A similar computation for the mechanical strain energy term W leads to the

weak form of the momentum equations (see, e.g., [24]):

G(ϕϕϕ,η) := DE(ϕϕϕ) · η =
∫
β

σ : ∇η dν −
∫
β

λ

[
(T − S)

∂S

∂ϕϕϕ
· η
]

dν

J
= 0. (12.13)

Here, σ is the 2nd order symmetric Cauchy stress tensor,

σ = 1
J

F
∂W

∂C
FT . (12.14)

Thus, the forces applied to the physical model of the deforming template due to

the differences in the image data are opposed by internal forces that arise from

the deformation of the material through the constitutive model. The particular

form of W depends on the material and its symmetry (i.e., isotropic, transversely

isotropic, etc.) [26, 30–33].

The linearization of Eq. (12.13) yields:

Lϕϕϕ ∗G(ϕϕϕ,η) =
∫
β

σ : ∇ηdν −
∫
β

λ

[
(T − S)

∂S

∂ϕϕϕ
· η
]

dν

J

+
∫
β

∇η : σ : ∇(�u) dν +
∫
β

∇sη : c : ∇s (�u) dν (12.15)

+
∫
β

η · k ·�u
dν

J

Here, c is the 4th order spatial elasticity tensor [1]:

cijkl = 4
J

FiI FjJ FkK FlL

∂2W

∂CI J∂CKL

, (12.16)

and ∇s[·] is the symmetric gradient operator:

∇s[·] = 1
2

[
∂[·]
∂ϕϕϕ

+
(
∂[·]
∂ϕϕϕ

)T
]
. (12.17)

In the field of computational mechanics, the first two terms in the second line

of Eq. (12.15) are referred to as the geometric and material stiffnesses, respec-

tively [1]. The 2nd order tensor representing the image stiffness for Hyperelastic

Warping is:

k = ∂2U

∂ϕϕϕ∂ϕϕϕ
= λ

[(
∂S

∂ϕϕϕ

)
⊗
(
∂S

∂ϕϕϕ

)
− (T − S)

(
∂2S

∂ϕϕϕ∂ϕϕϕ

)]
. (12.18)

These three terms form the basis for evaluating the relative influence of the

image-derived forces and the forces due to internal stresses on the converged

solution to the deformable image registration problem, as illustrated in the fol-

lowing two sections.
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12.2.5 Finite Element Discretization

Hyperelastic Warping is based on an FE discretization of the template image.

The FE method uses “shape functions” to describe the element shape and the ar-

bitrary variations in configuration over the element domain [34]. In Hyperelastic

Warping, an FE mesh is constructed to correspond to all or part of the template

image (either a rectilinear mesh, or a mesh that conforms to a particular structure

of interest in the template image). The template intensity field T is interpolated

to the nodes of the FE mesh. The template intensity field is convected with the

FE mesh and thus the nodal values do not change. As the FE mesh deforms,

the values of the target intensity field S are queried at the current location of the

nodes of the template FE mesh. To apply an FE discretization to Eq. (12.15), an

isoparametric conforming FE approximation is introduced for the variations η

and ∆u:

ηe ≡ η|�e
=

Nnodes∑
j=1

Nj(ξ)η j, �ue ≡ �u|�e
=

Nnodes∑
j=1

Nj(ξ)�uj, (12.19)

where the subscript e specifies that the variations are restricted to a particular

element with domain �e, and Nnodes is the number of nodes composing each

element. Here, ξ ∈ �, where � := {(−1, 1)× (−1, 1)× (−1, 1)} is the bi-unit

cube and Nj are the isoparametric shape functions (having a value of “1” at

their specific node and varying to “0” at every other node). The gradients of the

variation η are discretized as

∇sη =
Nnodes∑
j=1

BL
j η j, ∇η =

Nnodes∑
j=1

BNL
j η j. (12.20)

Where BL and BNL are the linear and nonlinear strain-displacement matrices,

respectively, in Voigt notation [1]. With the use of appropriate Voigt notation,

the linearized Eq. (12.15) can be written, for an assembled FE mesh, as:

Nnodes∑
i=1

Nnodes∑
j=1

(KR(ϕϕϕ∗)+ KI(ϕϕϕ∗))ij ·�uj =
Nnodes∑
i=1

(F ext(ϕϕϕ∗)+ F int(ϕϕϕ∗))i (12.21)

Equation (12.21) is a system of linear algebraic equations. The term in paren-

theses on the left-hand side is the (symmetric) tangent stiffness matrix. �u is

the vector of unknown incremental nodal displacements – for an FE mesh of

8-noded hexahedral elements in three dimensions, �u has length [8× 3× Nel],

Where Nel is the number of elements in the mesh. Fext is the vector of external
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forces arising from the differences in the image intensities and gradients in

Eq. (12.12), and F int is the vector of internal forces resulting from the stress di-

vergence. The material and geometric stiffnesses combine to give the mechanics

regularization stiffness:

KR =
∫
βββ

(BNL)TσBNLdν +
∫
βββ

(BL)TcBL dν. (12.22)

The contribution of the image-based energy to the tangent stiffness is:

KI = −
∫
β

NTkN
dν

J
. (12.23)

Together, the terms in Eq. (12.22) and Eq. (12.23) form the entire tangent stiffness

matrix. In our FE implementation, an initial estimate of the unknown incremen-

tal nodal displacements is obtained by solving Eq. (12.21) for�uand this solution

is improved iteratively using a quasi-Newton method [27].

12.2.6 Solution Procedure and Augmented Lagrangian

In the combined energy function in Eq. (12.9), the image data may be treated

as either a soft constraint, with the mechanics providing the “truth”, as a hard

constraint, with the mechanics providing a regularization, or as a combination.

For typical problems in deformable image registration, it is desired to treat the

image data as a hard constraint. Indeed, the form for U specified in Eq. (12.8) is

essentially a penalty function stating that the template and target image intensity

fields must be equal over the domain of interest as λ→∞. The main problem

with the penalty method is that as the penalty parameter λ is increased, some

of the diagonal terms in the stiffness matrix KI become very large with respect

to others, leading to numerical ill-conditioning of the matrix. This results in

inaccurate estimates for K
−1
I , which leads to slowed convergence or divergence

of the nonlinear iterations.

To circumvent this problem, the augmented Lagrangian method is used [33,

35]. With augmented Lagrangian methods, a solution to the governing equations

at a particular computational timestep is first obtained with a relatively small

penalty parameter λ. Then the total image-based body forces ∂U/∂ϕϕϕ are incre-

mentally increased in a second iterative loop, resulting in progressively better

satisfaction of the constraint imposed by the image data. This leads to a stable
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algorithm that allows the constraint to be satisfied to a user-defined tolerance.

Ill conditioning of the stiffness matrix is entirely avoided.

The Euler-Lagrange equations defined in Eq. (12.13) are modified by the

addition of a term that represents the additional image-based force γγγ due to the

augmentation:

G∗ = G(ϕϕϕ,η)+
∫
β

γγγ ·ηdν

J
= 0 (12.24)

The solution procedure involves incrementally increasing γγγ at each computa-

tional timestep and then iterating using a quasi-Newton method [27] until the

energy is minimized. In the context of the FE method described above, the

augmented Lagrangian update procedure for timestep n+ 1 takes the form:

γγγ0
n+1 = γγγn

k = 0

DO for each augmentation k WHILE ‖(γγγk+1
n+1 − γγγk

n+1)/γγγk
n+1‖> TOL

Minimize G∗ with γγγk
n+1 fixed using the BFGS method

Update multipliers using γγγk+1
n+1 = γγγk

n+1 + (∂U/∂ϕϕϕ)k
n+1

END DO

(12.25)

This nested iteration procedure, referred to as the Uzawa algorithm [36, 37),

converges quickly in general because the multipliers γγγ are fixed during the

minimization of G∗. In practice, the augmentations are not performed until the

penalty parameter λ has been incremented to the maximum value that can be

obtained without solution difficulties due to ill conditioning. At this last timestep,

the augmented Lagrangian method is then used to satisfy the constraint to a user

defined tolerance (usually TOL = 0.05).

12.2.7 Sequential Spatial Filtering to Overcome

Local Minima

The solution approach described above follows the local gradient to search for a

minimum in the total energy (Eq. 12.4) and therefore it is susceptible to converg-

ing to local minima. This means that the registration process may get “stuck”

by alignment of local image features that produce forces locking the deforma-

tion into a particular configuration. It is often possible to avoid local minima

and converge to a global minimum by first registering larger image features,
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such as object boundaries and coarse textural detail, followed by registration of

fine detail. Sequential low-pass spatial filtering is used to achieve this goal. By

evolving the cut-off frequency of the spatial filter over computational time, the

influence of fine textural features in the image can be initially suppressed until

global registration is achieved. Fine structure can be registered subsequently by

gradually removing the spatial filter.

The spatial filter is applied by convolution of the image with a kernel κ(X).

For the template image field T,

T∗(X) = T(X)∗κ(X) =
∫
B

T(X) κ (X− Z) d Z, (12.26)

where T(X) and T∗(X) are the original image data and the filtered data respec-

tively in the spatial domain; X is a vector containing the material coordinates

and Z is the frequency representation of X. An efficient way to accomplish this

calculation is through the use of the discrete Fourier transform.

The convolution of the image data T(X) with the filter kernel κ(X) in

Eq. (12.26) becomes multiplication of T(Z) with K(Z) in the Fourier domain.

T(Z) is the Fourier transform of T(X) and K(Z) is the Fourier transform of κ(X).

This multiplication is applied and then the transform is inverted to obtain the

convolved image in the spatial domain as shown below:

T∗(X) = $−1{T(Z) K (Z)}. (12.27)

Because of the very fast computational algorithms available for applying Fourier

transforms, this method is much faster than computing the convolution in image

space. In our implementation, a 3-D Gaussian kernel is used [38]:

κ(X) = Aexp
(
−X ·X

2σ 2

)
(12.28)

Here, σ 2, the spatial variance is used to control the extent of blurring while A

is a normalizing constant. Note that Eq. (12.28) is only valid for a 3-D vector

X. The user specifies the evolution of the spatial filter over computational time

by controlling the mask and variance. In the specific results reported below,

the variance was set to a high value and evolved to remove the filtering as the

computation was completed (Fig. 12.2).

The practical application of spatial filtering is complicated by the fact that

the registration is nonlinear and is computed stepwise during the registration

process. At each step in the computational process, the spatial distribution of
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Figure 12.2: Sequential spatial filtering. (A) results of a 10× 10 pixel mask flat

blur to suppress the local detail in the original image (D). (B) 5× 5 mask. (C)

2× 2 pixel mask, and (D) original image.

the template intensities changes according to the computed deformation field.

Therefore, all image operations on the template during the registration process

(including spatial filtering techniques) must be performed on the deformed tem-

plate image, rather than the static template image before deformation. Since,

in most cases, the template finite element mesh nodes are not co-located with

the template image voxels, the computed deformation field must be interpo-

lated onto the original template image in order to apply the image operations

accurately.

12.2.8 Regular Versus Irregular Meshes

Hyperelastic Warping accommodates an FE mesh that corresponds to all or part

of the template image. A “regular mesh” is a rectilinear structured mesh that

corresponds to the entire image domain. This mesh may be a subsampling of

the actual image voxel boundaries. An “irregular” mesh conforms to a particular

structure of interest in the template image. The template intensity field T is

interpolated to the nodes of the FE mesh. As the FE mesh deforms, the values

of the target intensity field S are sampled at the current location of the nodes of

the template FE mesh.

Regular meshes are used primarily for nonphysical deformable image prob-

lems (Fig. 12.3). Regular meshes are simple to construct and can easily span

the entire image space or a specific region of interest. However, since the mesh

does not conform to any structure in the template imaged, these analyses are

susceptible to element inversion prior to the completion of image registration.

Typically, only a single material type is used for the entire mesh.
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Figure 12.3: (A) Template and (B) deformed images of a normal mouse brain

cross-section with a representation of a regular finite element mesh superim-

posed upon the image.

In contrast to regular meshes, irregular meshes are used primarily for phys-

ical deformation applications and conform to physical structures of interest in

the domain of the image data (Fig. 12.4). Irregular meshes also support the defi-

nition of different material models and material properties for specific regions of

the mesh. For example, in Fig. 12.4, the irregular mesh represents a cross-section

C

A B

D

Figure 12.4: A – intravascular ultrasound cross-sectional image of coronary

artery. B – Finite element model of Template image. C – Deformed image of

artery after application of 100 mmHg internal pressure load. D – Deformed finite

element model after Hyperelastic Warping analysis. The grey area of the arterial

wall is represents the intima while the dark gray region represents the adventitia.
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of a human coronary artery. It has two materials, each representing separate lay-

ers of the arterial wall. Each layer was assigned material properties from the

literature that are appropriate for that specific layer [39]. The primary drawback

of irregular meshes is that, depending upon the geometry to be modeled, they

can be time consuming to construct.

12.2.9 Rezoning Regular Finite Element Meshes

The large deformations that occur in the context of many deformable image

registration problems can result in “element inversion” prior to complete regis-

tration. Element inversion is the generation, via deformation during the solution

process, of a finite element that has a negative Jacobian. Physically, for hexahe-

dral elements this implies an angle of greater than 180◦ between two adjacent

edges of an element. This condition halts the solution process and thus must be

remedied in order to proceed.

To overcome this problem when regular meshes are used, an FE rezoning al-

gorithm has been implemented. The algorithm allows the tracking of large-scale

deformations using a relatively coarse computational mesh. When element in-

version is imminent, the FE mesh geometry is reset to its initial undeformed

configuration and the deformed template image intensity T and nodal displace-

ments u(X) are interpolated from the deformed mesh to the reset mesh. The

analysis then continues until the convergence criteria are met or another rezon-

ing is required. The rezoning process is illustrated graphically in Fig. 12.5.

The rezoning procedures require interpolation of T and u(X) from the nodes

of the deformed FE mesh to the nodes of the reset mesh. For each node N

Figure 12.5: Example of rezoning a regular mesh for 2-D Warping problem.

(A) Template image with a representation of the FE mesh superimposed on the

image. (B) The registration process causes large deformations in the Compu-

tational mesh. (C) The mesh is reset and the analysis continues. (D) Rezoning

allows for greater overall deformation during the registration process. (E) De-

formed template image at the end of the analysis.
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in the undeformed mesh, the element in the deformed mesh that contained

the node is located using a direct search. The local coordinates of the eight

nodes of the element containing node N are assembled into an 8× 3 matrix

φ(ξi, ηi, ζi), where ξi, ηi, and ζi are the local element coordinates of the nodes

composing the element; for instance, node 1 has local coordinates (−1,1,1).

The local coordinates are related to the global coordinates via the interpolating

polynomial coefficients arising from the shape functions as follows [40]:

[φ] = [G][α] ⇔⎡⎢⎢⎢⎢⎣
−1 1 1

· · ·
· · ·
1 1 1

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

1 x1 y1 z1 xy1 yz1 xz1 xyz1

· · · · · · · ·
· · · · · · · ·
1 x8 y8 z8 xy8 yz8 xz8 xyx8

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
α1 β1 γ

· · ·
· · ·
α8 β8 γ8

⎤⎥⎥⎥⎥⎦
(12.29)

Here, α is an 8× 3 matrix containing the polynomial coefficients and (xi, yi, zi)

are the coordinates of node i in the global coordinate system. The matrix α is

then determined for each node N in the reset mesh:

[α] = [G]−1[φ]. (12.30)

The local element coordinates (ξN, ηN, ζN) of node N follow from α and the

global coordinates (xN, yN, zN):

[ζN ηN ξN] = [1 xN yN zN xyN yzN xzN xyzN]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 β1 γ

α2 β2 γ2

· · ·
· · ·
· · ·
α8 β8 γ8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12.31)

The interpolated value then follows from the local coordinates, the nodal val-

ues and the trilinear shape functions. For example, the interpolated template

intensity is computed using

TN(ξN, ηN, ζN) =
8∑

i=1

Tihi(ξN, ηN, ζN), (12.32)

where the Ti are nodal intensity values and hi are the shape functions corre-

sponding to each node evaluated at (ξN, ηN, ζN). The displacements u(X) are

interpolated using the same procedure. Note that this interpolation strategy is

consistent with the shape functions used in the FE solution process.
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In practice, this rezoning procedure has proved to be highly efficient and

effective for large three-dimensional Warping problems. It has allowed for the

registration of image data sets that otherwise could not be successfully regis-

tered using Hyperelastic Warping. In the first example found below, rezoning

allowed for the successful intersubject registration of mouse brain micro-MRI

images. Analysis of these image data sets without rezoning led to incomplete

registration of the internal structure of the brain as well as incomplete external

registration of the cerebellum.

12.3 Applications

The following examples illustrate the broad range of problems that have been

analyzed using Hyperelastic Warping. The first example is an image registration

problem in which MRI images of two normal mouse brains were registered. The

second example illustrates how the results of a registration analysis of micro-CT

images of the gerbil middle ear may be used to provide the boundary conditions

for a second, traditional, FE analysis of the malleus bone. The remaining exam-

ples illustrate applications in cardiovascular mechanics.

12.3.1 Quantification of Changes in Mouse Brain

Morphology

Quantification of time-dependent changes in three-dimensional morphology of

brain structures and neural pathways is a fundamental challenge in anatomi-

cal studies of neurodevelopment and in tracking brain remodeling and/or pro-

gression of certain neurological diseases. The morphometric problem can be

approached using in vivo gross-scale (submillimeter) magnetic resonance med-

ical imaging (MRI) of the brain. Tracking anatomical changes in vivo has been

a major motivation for the development of higher resolution CT, MRI and ra-

diographic imaging systems. While it is currently routine in clinical MRI of hu-

mans to obtain 1× 1× 2 mm resolution, micro-MRI images of small animals

have been obtained with isotropic resolution on the order of 40 µm resolution

sometimes termed magnetic resonance microscopy (MRM). This type of MRI

data is sufficient to resolve the neuroanatomical structures of interest but it re-

mains difficult to extract quantitative structure-specific morphological measures
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directly from this type of image data. These measures are necessary to accurately

assess developmental and/or pathological changes in gross brain structures and

pathways.

In order to test the efficacy of Hyperelastic Warping in the registration of

normal mouse brain anatomy, normal T1-weighted micro-MRI images were ob-

tained from two different, intact, excised mouse brains. The image datasets

were 2563 voxels, FOV = 1.54× 1.54× 1.5 cm, and had 60 µm isotropic reso-

lution. A 40× 40× 49 rectilinear FE mesh was created for the 3D problems

(73,008 elements). The deforming template was modeled using a neo-Hookean

hyperelastic material with a shear modulus of 450 Pa and a bulk modulus of

400 Pa [22].

These 3-D results demonstrate the efficacy of Hyperelastic Warping when

used on relatively large datasets. Volume-rendered images (Figs. 12.6) show

that excellent external registration was achieved between the deformed tem-

plate and target image a datasets. The 3-D model was rezoned three times to

achieve this registration. It is interesting to note that rezoning allowed a dis-

section artifact in the target image dataset (Fig. 12.6C), that was not present in

the template image data (Fig. 12.6A), to be extruded from the relatively smooth

template to generate the same structure in the deformed template (Fig. 12.6B).

Without the use of rezoning, this excellent alignment would have been impossi-

ble due to extreme mesh distortion resulting in element inversion. Examination

of representative transverse and longitudinal image planes illustrated that very

good internal registration was also achieved, as demonstrated by the correspon-

dence of anatomical regions and sulci between the deformed template and target

(Fig. 12.7. panels A–D).

Computational requirements for this problem were determined primarily by

the size of the finite element mesh used to discretize the template and, to a

lesser extent, by the size of the image datasets. The analysis required 3.38 GB

of memory. Because the main computational expense in the algorithm is the

inversion of a large system of linear equation resulting from the nodal degrees

of freedom in the FE mesh, CPU requirements grew as the square of the size

of the FE mesh. For this analysis, the mesh resulted in a linear system with

165,148 degrees of freedom. Total wall clock time for the 3-D neuroanatomical

registration analysis was 14 hours, with the three mesh rezones accounting

for 18% of the analysis time and the sequential spatial filtering accounting for

5% of the analysis time. The vast majority of the remaining analysis time is
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Figure 12.6: Three dimensional results for inter-animal registration of two

mouse neuroanatomies. (A) Surface-rendered template, (B) deformed template,

and (C) target image. The arrow indicates the dissection artifact.

spent in the repeated inversion of the sparse symmetric linear system. Our code

accommodates the use of several vendor-supplied parallel solvers, which can

reduce the time for this phase of the solution process drastically. The analysis

time can be further reduced by the reduction of the size of the computational

mesh, at the potential expense of reducing the accuracy of the registration of

internal structures.
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Figure 12.7: A mid-brain cross-section from a normal mouse (A) and a logitudi-

nal section (B) from the 3-D target image data and the corresponding deformed

template (C and D).

12.3.2 Measurement of Gerbil Malleus Kinematics and

Mechanics

The human auditory system is capable of transforming and distinguishing in-

coming acoustical signals over several orders of magnitude. The middle ear, in

particular, acts as an impedance-matching transformer, allowing the mechanical

vibrations of the tympanic membrane to be transformed into liquid-borne trav-

eling waves within the cochlea. These traveling waves are in turn transformed

into neural signals that the brain interprets as sound.

Finite element models have been used to study the kinematics of the middle

ear bones in order to gain a better understanding of the impedance-matching

function of the middle ear [41–44]. These models consist of 2-D and 3-D finite

element representations of the individual bones and muscles of the middle ear

as well as the tympanic membrane. The natural frequencies of the eardrum have

been measured and used to excite finite element representations of the tym-

panic membrane to study the frequency response and kinematics of the middle

ear bones [41, 42]. Ladak and Funnell [45] modeled the normal and surgically

repaired cat middle ear in order to study the effects of ossicular prosthetics on

the frequency response of the ossicular chain. While direct measurements of

the geometry and kinematics of the tympanic membrane have been performed,

measurements of the kinematics of the middle ear bones themselves have proven
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to be more difficult. Toward this end, the following study was designed to exam-

ine the feasibility of using Hyperelastic Warping to determine the displacements

of the ossicular chain from high-resolution CT images. These displacements

would in turn provide the boundary conditions for FE models of the individual

bones of the ossicular chain. This secondary analysis would be used to deter-

mine the stress distributions within bones of the middle ear. High-resolution

computed tomography (CT) images (1024× 1024× 1024 isotropic image ma-

trix, 14.1 mm FOV, 10 µm isotropic resolution) were taken of the external and

middle ear of an anesthetized gerbil. The images were acquired on a Skyscan

1072 80 kV micro-CT tomograph. An image data set was acquired with the tym-

panic membrane under no external pressure load other than atmospheric pres-

sure. The second image set was acquired while a 3.0 kPa pressure load was

placed on the external surface of the tympanic membrane. The images were

cropped (270× 270× 172 voxels) to include only the tympanic membrane and

the malleus bone of the middle ear. The image obtained under atmospheric load-

ing was defined as the template image while the image under a pressure load of

3 kPa was defined as the target image. A 41× 41× 27 rectilinear finite element

mesh was constructed that included the entire cropped image domain (11,767

elements). This deforming template mesh was modeled as a neo-Hookean hyper-

elastic material with a shear modulus of 450 Pa and a bulk modulus of 400 Pa.

A fixed flat spatial filter (3× 3× 3 pixel mask) [38] was used in the warping

analysis. The FE mesh was rezoned twice during the analysis to determine the

displacements of the malleus.

Subsequent to the deformable registration analysis, a finite element model

was created to represent the malleus bone. The external boundary of the malleus

was manually segmented from the template image data set. B-spline curves were

fitted to the points generated by the segmentation and these curves were used to

define the exterior surface of the malleus. A tetrahedral mesh (42,391 elements)

was generated from this surface definition. The malleus was modeled as a linear

elastic material using properties (elastic modulus E = 20.0 GPa, Poisson’s Ratio,

ν = 0.3) from the literature [41, 45].

The surface of the malleus model was loaded using the displacements de-

termined from the deformable image registration analysis. The displacements

for each surface node of the malleus model were defined by interpolating

nodal displacements determined from the warping analysis using the rectilinear

(Warping) mesh trilinear shape functions. The NIKE3-D nonlinear finite ele-

ment program [46] was used to analyze the malleus model and determine the



Deformable Image Registration with Hyperelastic Warping 507
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Figure 12.8: (A) Rendered surface definition of the gerbil malleus. (B) Displace-

ment magnitude warping results for a plane bisecting the center of the malleus.

The tetrahedral mesh has been superimposed on the results to indicate the lo-

cation of the malleus within the displacement field. (C) Effective stress and (D)

displacement magnitude results for the surface of the malleus.

stress/strain distribution within the bone using only the surface displacements

as the boundary conditions.

The results indicate that the manubrium, which is at the center of tympanic

membrane, undergoes the greatest displacement and is a high stress region of

the malleus (Figs. 12.8C and 12.8D). In contrast, the head of the malleus, which

has attachments to the head of the incus and the superior ligament, shows the

least displacement and is a low stress region. These results suggest that the

malleus acts to decrease the energy being transferred to the incus. Further, this

analysis demonstrates how the deformation map from a deformable image reg-

istration analysis using Hyperelastic Warping can be integrated into a traditional

computational biomechanics analysis using the FE method.

12.3.3 Strain Measurement of the Coronary Artery

using Intravascular Ultrasound

Coronary heart disease is currently the leading cause of death in the United

States [47]. Plaque rupture, the structural failure of the plaque cap, is the primary
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event triggering myocardial infarctions and acute coronary syndromes. The fail-

ure of the cap exposes collagen and lipid to the blood stream, which subse-

quently causes thrombus formation [48], often resulting in partial or complete

blockage of the vessel. The exact mechanisms responsible for plaque rupture

are unknown.

Finite element analyses of idealized plaque geometries have suggested that,

for eccentric plaques, maximum stress levels occur at the shoulder area of the

cap where the fibrous cap meets the healthy intima [49, 50]. Finite element anal-

yses using model geometries based on atherosclerotic lesions indicate that the

areas of high stress in and near the plaque correlate with the locations of plaque

rupture. Fifty-eight per cent of in vivo plaque ruptures have been found to occur

in the areas of maximum stress, while 83% of failures occurred in high stress

areas [51]. FE studies have suggested that decreased cap thickness causes an in-

crease in the peak shoulder stress when fully developed lipid layers are present.

Similarly, increasing the lipid layer size increases the shoulder stress. [52–54].

Reliable predictions of stress and strain in physiologically loaded plaques

in vivo would provide insight into plaque mechanics. Direct measurement of

stress during loading of a coronary artery is currently not possible in vivo or ex

vivo. However, the measurement of strain within the plaque and the wall of the

coronary artery can provide an insight into the stress distribution.

Intravascular ultrasound (IVUS) yields detailed images of atherosclerotic

plaques and the vessel wall. IVUS uses a catheter-mounted ultrasound transducer

to acquire cross-sectional images of an artery with a spatial resolution of 80–100

µm radially and 150–200 µm circumferentially [55, 56]. Current IVUS catheters

are as small as 0.9 mm and can interrogate most areas of the coronary tree,

including coronary arteries in the range of 1.5–5.0 mm in diameter. IVUS provides

a high resolution means to quantify lesion geometry [55, 56]. Our long-term

goal is to use Hyperelastic Warping to determine the strain distributions within

coronary plaque both ex vivo and in vitro during physiological loading as well

as the loading associated with interventional techniques such as angioplasty

and stent placement. The strain distributions can be correlated with the plaque

histology to determine which plaque cap components are associated with the

largest strain during loading. Hyperelastic Warping has been validated for use

with IVUS and the details may be found in our previous publication [39].

Hyperelastic Warping was used to estimate the strain distributions in two

unfixed left anterior descending (LAD) human coronary arteries. These arteries
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were mounted in a position approximating the artery orientation in situ. The

left main coronary artery was cannulated, and the side branches were ligated

to reduce flow until a constant physiological perfusion pressure could be main-

tained. IVUS images were acquired using a clinical IVUS system, comprising an

HP Sonos 100 ultrasound console and a 30 MHz, 3.5 F Boston, scientific monorail

intracoronary ultrasound imaging catheter using parameters typical for clinical

study. The IVUS catheter was inserted into the vessel as halfway down the

LAD. The arterial internal pressure monitored using a Millar 4 F pressure trans-

ducer introduced through a distal cannula placed approximately adjacent to

the IVUS catheter. The vessel was then perfused with 37◦C physiological saline

until a 16.00 kPa (120 mmHg) internal pressure load was achieved. The IVUS

images acquired under 0 kPa were designated the template images (Figs. 12.9A

and 12.10A), while the images acquired with the artery under 16.00 kPa (120

mmHg) internal pressure load were designated the target images (Figs. 12.9B

and 12.10B).

A B

C D

1.10

0

Figure 12.9: (A) template image of a coronary artery with a fully formed

lipid layer (arrow). (B) Corresponding target image of the artery under

16.00 kPa internal pressure load. (C) FE mesh representation of the image

space. (D) circumferential stretch distribution within the arterial wall and

lesion.
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Figure 12.10: (A) Template image of a coronary artery that does not have a fully

developed lipid core. (B) Corresponding target image of the artery under 16 kPa

internal pressure load. (C) FE mesh of the image space. (D) Circumferential

stretch distribution within the arterial wall and lesion.

The boundaries of the media/lesion were manually segmented in the lVUS

template image of the diseased vessels. B-spline curves were fitted to the points

generated by segmentation. These curves defined the boundaries of the arterial

wall. A 2D plane strain FE model was constructed for each vessel that included

the entire image domain Figs. 12.9 C and 12.10C). The lumen and the tissue sur-

rounding the vessels were represented by an isotropic hypoelastic constitutive

model with relatively soft elastic material properties (E= 1.0 kPa and ν = 0.3) to

provide tethering. The outer edges of the image domain were fully constrained

to eliminate rigid body motion. Transversely isotropic hyperelastic strain en-

ergy was utilized to describe nonlinear behavior of the arterial wall [57–64] and

atherosclerotic lesions [50, 54, 65, 66]. This strain energy definition describes a

material that consists of fibers imbedded in an isotropic ground substance. The

strain energy function was defined as:

W = F1( Ĩ1, Ĩ2)+ F2(λ̃)+ K

2
[ln (J)]2 (12.33)

F1 represents the behavior of the ground substance while F2 represents the

behavior of the collagen fibers. The final term in the expression represents the
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bulk behavior of the material. K is the bulk modulus of the material, F is the

deformation gradient tensor and J = det(F). Ĩ1 and Ĩ2 are the first and second

deviatoric invariants of the right Cauchy deformation tensor [30]. The scalar λ̃ is

the deviatoric stretch ratio along the local fiber direction, a, which was oriented

circumferentially for these analyses to correspond with the collagen and smooth

muscle fiber orientations in the arterial wall and plaque cap.

A neo-Hookean form was used to represent the ground substance matrix:

F1( Ĩ1) = µ( Ĩ1 − 3) (12.34)

where µ is the shear modulus of the ground substance. The stress-stretch be-

havior for the fiber direction was represented as exponential, with no resistance

to compressive load:

λ̃Wλ = λ̃ ∂F2

∂λ
= 0, λ̃ < 1; (12.35)

λ̃Wλ = λ∂F2

∂λ
= C3

[
exp(C4(λ̃− 1))− 1

]
, λ̃ ≥ 1

where material coefficients C3 and C4 scale the fiber stress and control its rate

of rise with increasing stretch, respectively. The full Cauchy stress tensor is

defined as.

T = 2(W1)B+ λWλa⊗ a+ p1 (12.36)

W1,W2 and Wλ are strain energy derivatives with respect to I1, I2, and λ [26],

and B is the left deformation tensor. A detailed description of the finite element

implementation of this constitutive model can be found in Weiss et al. [19].

The material parameters for the arterial wall were determined by a nonlinear

least squares fit to circumferential stress/strain values presented in the work

of Cox et al. [58] for the canine coronary artery wall using the constitutive

relation described above. The media region of the arterial wall was assigned

material properties based on the curve fit obtained from the Cox et al. data

[57]. The material constants for the media were µ = 3.57 kPa, C3 = 4.99 kPa,

and C4 = 5.49. The bulk modulus was defined as 200.00 kPa. The lesion areas

were assigned identical material properties as were used for the media since

the stress-strain behavior of the arterial wall falls well within the wide range of

values published for the material properties of atherosclerotic lesions [67].

The warping analyses results indicate (Figs. 12.9D and 12.10D) that the pres-

ence of a fully developed lipid core increases the circumferential stretch of the
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plaque cap adjacent to the lipid core. These results are consistent with previ-

ous studies that suggested that the larger lipid layers increase plaque cap stress

[53, 54].

12.3.4 Cardiac Mechanics

Assessment of regional heart wall motion (wall motion, thickening, strain, etc.)

can identify impairment of cardiac function due to hypertrophic or dilated car-

diomyopathies. It can provide quantitative estimates of the impairment of ven-

tricular wall function due to ischemic myocardial disease. The assessment of re-

gional heart motion is used in combination measures of perfusion and metabolic

uptake to diagnose and evaluate stunned/hibernating myocardium following

transient ischemic events. Stunned myocardium is characterized by decreased

or no contractile function but having normal perfusion and glucose utilization

[68–70]. Since stunned myocardium has normal perfusion and normal viability,

it can only be identified by localizing abnormal wall motion/contraction. Hiber-

nating myocardium is characterized by persistent ventricular myocardial dys-

function with preserved viability, decreased perfusion, and normal metabolic

uptake. Hibernating myocardium has been associated with a slower and in-

complete restoration of contractile function as compared with stunned my-

ocardium [71, 72]. Up to 50% of patients with ischemic heart disease and LV

dysfunction have significant areas of hibernating myocardium [73, 74] and

therefore would be predicted to benefit from identification and subsequent

revascularization.

The assessment of the size and location of infarction, in particular, the ex-

tent of viable tissue, and the mechanical function of the tissue can be extremely

valuable for predicting the utility and assessing the success of surgical inter-

ventions such as revascularization. Thus the measurement of local myocardial

deformation has potential to be an important diagnostic and prognostic tool for

the evaluation of a large number of patients.

The deformation of the human heart wall has been quantified via the at-

tachment of physical markers in a select number of human subjects [75]. This

approach provided valuable information but is far too invasive to be used in the

clinical setting. With the development of magnetic resonance imaging (MRI) tag-

ging techniques, noninvasive measurements of myocardial wall dynamics have

been possible [76].
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The most commonly clinically utilized techniques for the assessment of my-

ocardial regional wall motion and deformation of the myocardium are echocar-

diography and tagged MRI. LV wall function is typically assessed using 2-D

Doppler echocardiography [77–82] through the interrogation of the LV from

various views to obtain an estimate of the 3-D segmental wall motion. How-

ever, these measurements are not three-dimensional in nature. Furthermore,

echocardiography is limited to certain acquisition windows.

The most widely used approach for determining ventricular deformation is

MR tagging [83–88]. MR tagging techniques rely on local perturbation of the

magnetization of the myocardium with selective radio-frequency (RF) satura-

tion to produce multiple, thin, tag planes during diastole. The resulting mag-

netization reference grid persists for up to 400 ms and is convected with the

myocardium as it deforms. The tags provide fiducial points from which the

strain can be calculated [85, 89]. The primary strength of MRI tagging is that

noninvasive in vivo strain measurements are possible [85, 89]. It is effective

for tracking fast, repeated motions in 3-D. There are, however, limitations in

the use of tagged MRI for cardiac imaging. The measured displacement at a

given tag point contains only unidirectional information; in order to track the

full 3-D motion, these data have to be combined with information from other or-

thogonal tag-sets over all time frames [76]. The technique’s spatial resolution is

coarser than the MRI acquisition matrix. Furthermore, the use of tags increases

the acquisition time for the patient compared to standard cine-MRI, although

improvements in acquisition speed have reduced the time necessary for image

acquisition.

Sinusas et al. have developed a method to determine the strain distributions

of the left ventricle using untagged MRI [90]. The system is a shape-based ap-

proach for quantifying regional myocardial deformations. The shape properties

of the endo-and epicardial surfaces are used to derive 3-D trajectories, which are

in turn used to deform a finite element mesh of the myocardium. The approach

requires a segmentation of the myocardial surfaces in each 3-D image data set

to derive the surface displacements.

Our long-term goal is to use Hyperelastic Warping to determine the strain

distribution in the normal left ventricle. These data will be compared with the left

ventricular function due to the pathologies described above. Toward this end,

the initial validation of the use of Hyperelastic Warping with cardiac cine-MRI

images is described.
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12.3.4.1 Validation of Warping for Tracking Left Ventricular

Deformation using Volumetric MRI

To validate the use of Warping for predicting LV strains from sets of volumetric

cine-MRI images, a pair of 3-D cine MRI image datasets representing two states of

the left ventricle during the cardiac cycle was required. Further, the deformation

map between the states represented in the images had to be known to provide a

gold standard for comparisons. This was achieved by first acquiring a gated 3-D

cine-MRI dataset of a normal volunteer’s heart during early diastole on a 1.5T

Siemens scanner (256× 256 image matrix, 378 mm FOV, 10 mm slice thickness,

10 slices). This volumetric MRI dataset was designated as the template image

(Fig. 12.11, left). The endocardial and epicardial surfaces of the LV were hand

segmented. An FE model of the left ventricular (LV) image space was created

based on these segmentations (Fig. 12.12, left panel). The myocardium was

represented as a transversely isotropic material with the fiber angle varying

linearly from −90◦ at the epicardial surface, through 0◦ at the Mid-wall, to 90◦

at the endocardial surface [91]. The material coefficients were determined by

least squares fit of the transversely isotropic hyperelastic constitutive model

described in Weiss et al. [30] described above in the intravascular ultrasound

section, to the biaxial stress/strain values presented in the work of Humphrey

et al. [31, 32].

An internal pressure load representing end-diastole was applied to the lu-

men and a standard “forward” nonlinear FE analysis was performed using the

Figure 12.11: Mid-ventricular slices of the template (left) and the target (right)

image datasets used in the validation analyses. Left image was obtained from

direct MR volumetric image acquisition, while right image was created by de-

forming left image using results of forward FE analysis (see text).
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Figure 12.12: Left – FE mesh for forward model used to create target image.

Right – A detailed view of the mesh corresponding to myocardial wall. Black

arrows indicate the pressure load applied to the endocardial surface.

NIKE3-D finite element program [92] (Fig. 12.12). Using the deformation map

obtained from the forward FE analysis, a deformed volumetric image dataset

(target) was created by applying the deformation map to the original template

MRI image (Fig. 12.12, right panel).

A Warping model was created using the same geometry and material parame-

ters that were used in the forward model described above. The Warping analysis

was performed using the template image data set and a target image dataset

was created by applying the forward model’s deformation map to deform the

template image. This yielded a template and target with a known solution for the

deformations between them. The forward FE and Warping predictions of fiber

stretch (final length/initial length along the local fiber direction) were compared

to determine the accuracy of the technique. The validation results indicated

good agreement between the forward and the warping fiber stretch distribu-

tions (Fig. 12.13). A detailed analysis of the forward and predicted (Warping)

stretch distributions for each image plane indicated good agreement (Fig. 12.14).

To determine the sensitivity of the Warping analysis to changes in material

parameters, µ and C3 were increased and decreased by 24% of the baseline

values. The 24% increase and decrease corresponds to the 95% confidence inter-

val of material parameters determined from the least-squares fit of the material

model to the Humphrey et al. data [31, 32]. Since, the proper material model

is often not known for biological tissue, the material model was changed from

the transversely isotropic model described above to an isotropic neo-Hookean
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Figure 12.13: Fiber stretch distribution for the forward (left) and warping

(right) analyses. The locations for the sensitivity analysis are shown on the

forward model as numbers 1–4. Locations 5–8 are at the same locations as 1–4

but at the mid-ventricle level.

Figure 12.14: Comparison of warping and forward nodal fiber stretch for each

image slice. Y7 corresponds to the slice at the base of LV and Y1 is near the apex

of the LV.

material model. The analysis was repeated and the results compared with the

forward model results.

The forward and Warping sensitivity study results were compared at eight

locations (Fig. 12.3). These results show excellent agreement (Table 3.1) for

all cases indicating hyperelastic Warping is relatively insensitive to changes to

material model and material parameters. These results indicate that accurate

predictions can be determined even when material model and parameters are

not known. This is consistent with our previous results of Warping analyses of

intravascular ultrasound images [22].
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Table 12.1: Effect of changes in material properties and material model on

predicted fiber stretch. “Forward” indicates the forward FE solution, the “gold

standard”. Columns indicate locations 1–8 of the left ventricle, defined in the

caption for Fig. 3.13 above

1 2 3 4 5 6 7 8

Location Upper ventricle Mid-ventricle

Forward 1.09 1.06 1.12 1.07 1.08 1.04 1.02 1.05
µ+ 24% 1.09 1.09 1.13 1.07 1.07 1.03 1.03 1.05
µ− 24% 1.09 1.09 1.13 1.07 1.08 1.03 1.03 1.05
C3+ 24% 1.09 1.08 1.13 1.08 1.08 1.03 1.03 1.05
C3− 24% 1.10 1.09 1.13 1.07 1.08 1.03 1.03 1.05
Neo-Hookean 1.10 1.07 1.13 1.07 1.07 1.02 1.02 1.05

12.3.4.2 Myocardial Infarction

To study changes in systolic wall function due to myocardial infarction, a warp-

ing analysis was performed on a 3-D cine-MRI image data set for an individ-

ual with a lateral wall myocardial infarction (Male, 155 lbs, 51 y/o at time

of scan, diabetic w/small infarction.) The subendocardial infarction can be

seen as the hyperenhancement of the lateral wall shown in the ce-MRI image

(Fig. 3.15A).

Delayed contrast enhanced MRI (ce-MRI) has been shown to be able to iden-

tify regions of infraction in the myocardium as hyperenhanced [93–96]. Further-

more, studies have indicated that the transmural extent of the hyperenhance-

ment of ce-MRI predicts recovery of function after revascularization [97, 98] and

can predict improved contractility post-revascularization [94].

To acquire the ce-MRI image data sets, the patients were placed supine in

a 1.5T clinical scanner (General Electric) and a phased-array receiver coil was

placed on the chest for imaging. A commercially available gadolinium-based

contrast agent was administered intravenously at a dose of 0.2 mmol/kg and

gated images were acquired 10–15 min after injection with 10 s breath holds.

The contrast-enhanced images were acquired with the use of a commercially

available segmented inversion-recovery sequence from General Electric. The

3-D cine-MRI image data sets for this patient were acquired on a 1.5T GE scan-

ner (256× 256 image matrix, 378 mm FOV, 10 mm slice thickness, 10 slices).

The volumetric MRI dataset corresponding to end-systole was designated as

the template image (Fig. 12.15C) while the image dataset corresponding to
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Figure 12.15: (A) Mid-ventricle contrast-enhanced MRI image of the left ven-

tricle. The hyperenhancement indicates the location of the infarction (arrow

in left panel). (B) Circumferential stretch distribution for systolic contraction.

The arrow indicates the infarcted area of the lateral wall does not contract dur-

ing systole. Mid–ventricle slices of the 3-D cine MRI image data used for the

systolic function analysis. (C) Mid-systolic image (template). (D) End-systolic

image (target).

end-diastole was designated the target image (Fig. 12.15D). A warping model

and analysis was made using the methods detailed above.

The warping analysis reveals that the infarcted area undergoes little defor-

mation during systole (circumferential stretch near 1.0). The analysis further re-

veals that the wall dysfunction extends over the lateral wall of the myocardium

outside the area of hyperenhancement indicated in the ce-MRI images (Fig.

3.15A). These results indicate that the contractile function of the heart is signifi-

cantly impaired within and adjacent to the infarcted region.

12.4 Discussion and Conclusions

Hyperelastic Warping is a highly flexible registration method that can be used

for the registration of physical and nonphysical deformations. It makes use of
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either easily constructed regular meshes or irregular meshes that conform to

the geometry of the structure being registered and can be used to register a par-

ticular region of interest or the entire image space. Additionally, hyperelasticity

provides a physically realistic constraint for the registration of soft tissue defor-

mation. Hyperelasticity based constitutive relations have been used to describe

the behavior of a wide variety of soft tissues including the left ventricle [99–102],

arterial tissue [103, 104]. skin [105] and ligaments[106–109]. Hyperelastic Warp-

ing can be tailored to the type of soft tissue being registered through the appro-

priate choice of hyperelastic material model and material parameters.

Deformable image registration models based other material models have

been used extensively in the field of anatomical brain registration. As was de-

scribed above, an energy functional is minimized in order to achieve the regis-

tration solution. This functional consists of a measure of image similarity and

an internal energy term (Eq. 12.4). Measures of image similarity take the form

of differences in the square of the image intensities (Eq. 12.8) [15–17, 19, 110,

111] or are based on cross-correlation methods of the intensity or intensity

gradient values [112]. Since the internal energy term of the energy functional

is derived from the material model through the strain energy W, the registra-

tion process takes on the characteristics of the underlying material model. For

example, registration methods that use a viscous or inviscid fluid constitutive

model [15,17] have been shown to provide excellent registration results. How-

ever, these models have a tendency to underpenalize shear deformations, thus

producing physically unrealistic registration of solids. In other words, the defor-

mation of the deformable template resembles that of a fluid rather than that of a

solid.

Other continuum-based methods for deformable image registration use lin-

ear elasticity [12, 13, 15, 16] to regularize registration. The use of linear elasticity

is attractive due to the fact that it is relatively simple to implement. However,

for the large deformations involved in inter- or intra-subject registration, it has a

tendency to over-penalize large deformations. This is due to the fact that linear

elasticity is not rotationally invariant. For an isotropic linear elastic material,

the constitutive law is:

T = λtr(e)+ µe. (12.37)

Here, λ and µ are the Lamé material coefficients, and e is the infinitesimal strain

“tensor” defined in terms of the displacement gradients. The infinitesimal strain



520 Veress, Phatak, and Weiss

is not a true tensor since it does not obey the transformation laws for 2nd order

tensors. In detail:

e= 1
2

((
∂u

∂X

)T

+ ∂u
∂X

)
· (12.38)

But,
∂u

∂X
= ∂(x− X)

∂X
= F − 1. (12.39)

For any deformation gradient F, we can use the polar decomposition to write

F as F = RU, where R is a proper orthogonal rotation and U is the positive

definite symmetric right stretch tensor. With this substitution,

e= 1
2

(
(RU− 1)T + (RU− 1)

)
. (12.40)

As indicated in Eq. (12.40), the strain e depends directly on R, which describes

the local rigid body rotation. As a result, even the smallest rotation of mate-

rial axes induces stress in a linear elastic solid, making the constitutive model

nonobjective.

This work has demonstrated that Hyperelastic Warping may be used to ana-

lyze a wide variety of image registration problems, using standard medical image

modalities such as ultrasound, MRI, and CT. The types of analyses demonstrated

range from anatomical matching typical of nonphysical image registration, to the

large physical deformations present in the deformation of the left ventricle over

the cardiac cycle. As demonstrated in the presented work, the method allows for

the estimation of the stress distribution within the structure(s) being registered,

an attribute that has not been demonstrated by other registration methods.

Acknowledgments

Financial support from NSF Grant # BES-0134503 ( JAW, AIV, NP ), NIH grant

# R01-EB000121 ( JAW, AIV ) and NIH Grant # PO1-DC01837 (AIV) is gratefully

acknowledged. An allocation of computer time was provided by the Center for

High Performance Computing (CHPC) at the University of Utah. The authors

thank the following individuals for their contributions to this work and their

continued collaboration: Grant T. Gullberg, Richard D. Rabbitt, Willem F. De-

craemer, Anton E. Bowden, Bradley N. Maker, Steve A. Maas, Geoffrey D. Vince,

Robert J. Gillies, Edward V. R. DiBella and Jean-Philippe Galons.



Deformable Image Registration with Hyperelastic Warping 521

Questions

Question 1: How are the principles of continuum mechanics used to regularize

the deformable image registration problem involving the deformation of a

template image into alignment with a target image? What are the primary

advantages of this approach to regularization of the deformable image problem

in comparison to ad hoc methods?

Question 2: What is the purpose of the regularization term W in the de-

formable image registration problem?

Question 3: What is meant by treating the image data as a “hard con-

straint” in the deformable image registration problem?

Question 4: In Hyperelastic Warping, in the limit as the penalty parame-

ter λ→∞, the image-based energy converges to a finite value. Explain.

Question 5: Treating the image data as a hard constraint may cause

the stiffness matrix to become ill-conditioned. How does the augmented

Lagrangian method solve this problem?

Question 6: What is the role of the stiffness quantities in the solution

procedure?

Question 7: How is sequential low-pass-filtering used in Hyperelastic Warping

to keep from converging to local minima in the solution?

Question 8: When using a regular mesh for Hyperelastic Warping, why is

rezoning needed?

Question 9: How is mechanical stress calculated with Hyperelastic Warp-

ing?
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Chapter 13

Future of Image Registration

Jasjit Suri,1 Baowei Fei,2 David Wilson,2

Swamy Laxminarayan,3 Chi-Hsiang Lo,4 Yujun Guo,5

Cheng-Chang Lu,5 and Chi-Hua Tung6

13.1 Future Application of Image Registration

Image registration will have more and more applications in the future. Below

are a few predictions on where image registration will lead to in the next few

years, and where to expect significant progress.

13.1.1 Small Animal Imaging

Small animal imaging is a fast-growing field that has numerous applications in the

studies of functional genomics, the biology of disease, and therapeutics. Since

commonly, functional imaging modalities such as single photon emission tomo-

graphy (SPECT), positron emission tomography (PET) and functional magnetic

resonance imaging (fMRI) have little anatomic information, images acquired

from computed tomography (CT) or MRI are used to provide structural iden-

tification and localization of organs/regions of interest and may also provide

additional diagnostic information. Automatic image registration and fusion vis-

ualization methods will be very useful for this new and important application.

1 Senior IEEE Member, CWRU, Cleveland, USA.
2 Biomedical Engineering Department and Department of Radiology, CWRU, Cleveland,

USA.
3 Idaho State University, Pocatello, ID.
4 National Ilan University, Taiwan.
5 Kent State University, USA.
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13.1.2 Perfusion Studies

Perfusion imaging is likely to have many clinical applications. For example, car-

diac MR imaging is progressing fast and the applications in tumor metabolism

and angiogenesis is driving advances in MR imaging for oncology. Image reg-

istration will be essential, enabling technologies for perfusion imaging where

patients may not be able to maintain the same position during long dynamic

studies.

13.1.3 Registration for Image-Guided Interventions

Interventional MR, CT, X-ray fluoroscopy, and ultrasound, as well as optical im-

ages from endoscopes, microscopes, and arrays of free-standing cameras are

used for image guided procedures. However, many image-guided surgery sys-

tems are currently restricted to applications in which patient anatomy can be

treated as a rigid body. These technologies have great potential in soft tissues

away from the bone. Registration methods could be used to update the spatial

information in accurate and detailed representations of the patient, generated

from preoperative images. This information could be incorporated into interven-

tional procedures that often use incomplete and much lower quality information

from intraoperative images.

13.1.4 Registration of Electronic Data Set with

Anatomical Images

Multimedia electronic data sets can be incorporated with radiological images as

well as other context-based information: for example, registration of EEG with

MR images. Integrating this information and relating it to atlas data could be

achieved transparently with the potential for improved diagnosis and decision

support.

13.1.5 Deformation Fields Generated by Nonrigid

Registration

Nonrigid image registration methods have great potential beyond simply lining

up images. The deformation field produced by nonrigid registration algorithms

can quantify normal development and contribute to an understanding of disease
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processes and aging. Nonrigid registration algorithms will be reliable enough for

clinical applications and provide valuable tools for diagnosis and for monitoring

disease progression.

13.1.6 Combination of Registration and Segmentation

Good segmentation can be achieved by lining up images to an atlas using the

image registration algorithm. Labeled structures in the atlas can then be used

to split up the images into anatomical and pathological components for visual-

ization or quantification. For example, registration and segmentation of plaque

images may allow the detecting of much of more subtle changes.

13.1.7 Registration to Data Acquisition

Registration is beginning to be used to improve data acquisition. For example,

online registration can be used to dynamically adjust slice position in MR scans

to compensate prospectively for motion correction. Spectroscopic or perfusion

acquisitions can be defined to interrogate specific tissues of interest, delineated

in a previously acquired high resolution image, rather than a fixed region relative

to the scanner. Specific tissue regions could be followed as the patient moves

or is repositioned. These applications are likely to grow as algorithms become

faster and scanner computing power increases.

13.2 A Multiresolution Approach to Medical

Image Registration Using Binning

Technique

Medical image registration has been applied to the diagnosis of cardiac studies

and a variety neurological disorders including brain tumors. Image registration,

or alignment, is the process of aligning two images so that corresponding fea-

tures of the images can be easily related. Registration using different modalities

is widely used in many medical applications. In practice, the complementary

information acquired from the registration of multiple imaging modalities can

be used for medical diagnosis and treatment planning. In recent years many

registration algorithms for medical imaging have been designed. Typically an
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algorithm falls into one of three categories: algorithms that use a landmark-

based method, algorithms that use a surface-based method, or algorithms that

work directly on the image intensities (voxel-based). Maintz et al. [1] gave a

survey of registration methods.

For automated registration a quality measure of the registration is necessary

in order to find an optimal registration. Maximization of mutual information (MI)

of voxel intensities, the registration method independently proposed by Wells

et al. [2] and Maes et al. [3], is one of the most popular registration methods for

three-dimensional multimodality medical image registration. This method mea-

sures the statistical dependence between the image intensities of corresponding

voxels in two images; this statistical dependence is maximal when the images

are totally aligned.

Intensity-based methods regard all voxels in the images as independent, thus,

anatomical information is not taken into consideration. Maurer et al. [4] and Gall

et al. [5] exploited landmark-based methods. Audette et al. [6] gave an overview

on surface registration techniques. Landmark-based methods and surface-based

methods utilize features extracted from the images. The required preprocessing

is usually time-consuming and the accuracy of the registration is dependent on

the correctness of the landmark or surface extraction.

We have developed a two-stage method, which is both feature-based and

intensity-based. Three binning methods were utilized and the performance of

each is compared in this chapter. In the first stage, we segment the images

using region-growing. Then we perform one of the three binning methods on the

full foreground before the down-sampled images are registered. In the second

stage, the results from the first stage are taken as the starting point for the reg-

istration of the full original images. Experiments show that this new two-stage

method gives improved accuracy without loss of speed, compared to multires-

olution registration without bin preprocessing. Of the three binning techniques

used, the nonlinear binning method gave the best performance. Normalized mu-

tual information (NMI) is used as the similarity measure, and downhill simplex

method is taken as the optimization method due to its quickness in practice.

13.2.1 Image Registration Using Binning Technique

Registration based on maximization of mutual information uses an iterative ap-

proach in which an initial estimate of the transformation is gradually refined.
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One of the difficulties with this approach is that it can converge to a local op-

timum instead of a global optimum. Using multiresolution in conjunction with

maximization of mutual information is very helpful when tackling this problem.

The work of Maes et al. [8], Studholme et al. [7] and Pluim et al. [9, 10], has

proved this. The idea of a multiresolution hierarchical approach is to register

the coarse (low resolution) image first and then to use the result as the starting

point for finer (high resolution) image registration, and so on.

In order to use NMI, an estimation of the intensity distribution is required.

There are a couple of methods used to estimate the intensity distribution of an

image. Colligon et al. [11] used joint entropy as the registration criterion. Viola

[12] obtained the estimation by Parzen, windowing an intensity distribution.

Camp et al. [13] proposed a binning method for registration using normalized

mutual information. The image intensities are assigned to a histogram bin by

a binning technique. The most commonly used binning method is equidistant

binning. With equidistant binning, once the bin number is given, the intensities

range assigned to each bin is also determined, after the overall image intensity

range is distributed evenly among all the bins. The weakness of the equidistant

binning method is that it totally ignores the anatomical information of the image.

From typical histograms of CT and MR images, as shown in Fig. 13.1 and Fig.

13.2, we can spot the same property: a giant peak around the intensities of the

background region. In our approach, we use region-growing to separate the
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Figure 13.1: A typical histogram for a CT image.
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Figure 13.2: A typical histogram for an MR image.

background region first. Then all the background region voxels are put into one

bin, while the foreground region voxels are binned using a binning technique.

Two-level multiresolution registration method is applied next. For binning we

have experimented three techniques.

13.2.1.1 Region-growing

Region-growing is an approach to image segmentation that has received con-

siderable attention in the computer vision segment of the artificial intelligence

community [14]. The basic approach is to start with a set of “seed” points and

from these grow regions by appending to each seed those neighboring voxels

that have properties similar to the seed [15].

In our approach, a seed point is selected automatically near the left-upper

corner of the given CT and MR images. This is based on the observation that

there is always a large background area and that the object is always centered.

This seed point is used to begin region-growing for the background. There

are two criteria for a voxel to be annexed to the background: (1) the absolute

intensity difference between the voxel and the seed must be less than a threshold;

and (2) the voxel must be adjacent to at least one voxel in the background. The

threshold for the region is determined by the histogram, see Figs. 13.1 and 13.2.

In the figures the spike at the left delimits the background and so the valley to
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its right is picked as the threshold. Adjacency includes the eight directions: N,

S, E, W, NE, NW, SE, and SW.

The region-growing procedure for the background/foreground segmentation

is fully automatic and takes about 2% of the total registration time.

13.2.1.2 Three Binning Techniques

The first binning technique is a binarization approach. All the background voxels

are put into one bin and the remaining voxels (foreground) are put into the other

bin. Lo et al. [16] developed this approach. The binarized, 2-bin images, see Fig.

13.3, are down-sampled by a factor of 2 along the x, y, and z axis directions. The

down-sampled images are then used as the input to the first level of the mul-

tiresolution registration. The result of the first level provides the initial estimate

for the second level, where the registration of the original images is performed.

The second binning technique, linear binning, is based on equidistant binning.

All background voxels are put into one bin, then equidistant binning is applied

to the remaining voxels, which assigns them to the rest of the bins. The binned

images are then down-sampled and two-level registration is performed.

The third technique is a nonlinear binning approach [25]. The background of

the image is first segmented into one bin and the remaining voxels are assigned

to the remaining (k− 1) bins by k-means clustering [23].

Figure 13.3: A CT image (upper) and an MR image (lower) are shown with the

original image on the left and the binarized image on the right.
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13.2.1.3 K-means Clustering

In a digital image, regions with the same structure may have corresponding

spikes in their intensity distributions. Intervals of the intensity distribution are

more likely to have a higher variance if the same structure region is not in the

same interval. For example, in standard CT or MR images, which in general

contain different structure regions, such as background, cortical bone, white

matter, gray matter, and cerebrospinal fluid (CSF). In the joint-histogram we

would like to see the same structure is assigned to the same bin, i.e., for each

bin to have a high probability of the same structure so that less dispersion in

the joint-histogram is achieved. The method proposed here is to make all the

voxels of background map to one bin by background segmentation using region

growing, and have the remaining voxels map to the rest of bins (with a variable

bin size for each bin) by k-means clustering, i.e., minimizing the variance of

intensities within each bin [22].

Following is the k-means clustering algorithm used:

1. Initially partition the image voxels into k bins.

(1a) Put all the background voxels into bin 0.

(1b) Calculate the step size for the other k− l bins using
MaxIntensity−Minlntensity

k− 1 . Each bin will be assigned all voxels whose

intensity falls within the range of its boundary.

(1c) Calculate the centroid of each bin.

2. For each voxel in the image, compute the distances to the centroids of its

current, previous, and next bin, if it exists; if it is not currently in the bin

with the closest centroid, switch it to that bin, and update the centroids

of both bins.

3. Repeat step 2 until convergence is achieved; that is, continue until a pass-

through all the voxels in the image causes no new assignments, or until

a maximum number of iterations is reached. The maximum number of

iterations was set to 500.

13.2.1.4 Normalized Mutual Information

Mutual information (MI) can be thought of as a measure of how well one image

explains the other, and when maximized indicates optimal alignment.
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Mutual information I(A, B) was proposed for intermodality medical image

registration by several researchers [2, 3, 11] . The formula to compute mutual

information is:

I(A, B) =
∑

a

∑
b

PAB(a, b) log
PAB(a, b)

PA(a) · PB(b)

where PA(a), PB(b) denote the marginal probability distributions of the two

random variables, A and B, and PAB (a, b) is their joint probability.

The formulation of normalized mutual information (NMI) as described by

Studholme et al. [17] is used:

NM I(A, B) = H(A)+ H(B)
H(A, B)

where

H(A) = −
∑

a

PA(a) log PA(a)

and

H(A, B) = −
∑

a

∑
b

PAB(a, b) log PAB(a, b)

H(A) and H(B) are the entropies of A and B, and H(A, B) is their joint entropy.

NMI, devised to overcome the sensitivity of MI to change in image overlap, has

been shown to be more robust than standard mutual information [17]. Image

registration using NMI is performed in the following manner:

1. Take one of the two input images as floating image, the other as reference

image.

2. Choose starting parameters for the transformation.

3. Apply the transformation to the floating image. Evaluate the NMI between

reference image and transformed floating image.

4. Stop if convergence is achieved. If not, choose a new set of parameters,

repeat steps 3 and 4.

When the registration parameters (three translations and three rotations)

are applied to the floating image, the algorithm iteratively transforms the float-

ing image with respect to the reference image while making the NMI measure

calculated from the voxel intensities optimal. While all samples are taken at

grid points of the floating image, their transformed position will, in general, not



544 Suri et al.

coincide with a grid point of the reference image and interpolation of the refer-

ence image is needed to obtain the image intensity value at this point.

The NMI registration criterion states that the images are geometrically

aligned by the transformation Tλ for which NMI(A, B) is maximal. (The regi-

stration parameters are denoted by λ and Tλ is the transformation based on

the six registration parameters given above.) To decide if the NMI is optimal,

algorithms to measure optimality are applied. If the NMI is not optimal, a new

set of parameters will be chosen and evaluated. The Downhill simplex is used to

determine optimality. This method, as shown by NeIder and Mead [19, 20], only

requires evaluation of the cost function, the derivative computation need not be

redone.

13.2.1.5 Two-Stage Multiresolution Registration

Multiresolution approach [7–10] is widely used in medical image registration

due to the following two features:

1. Methods for detecting optimality cannot guarantee that a global optimal

value will be found. Parameter spaces for image registration are usually not

simple. There are often multiple optima within the parameter space, and

registration can fail if the optimization algorithm converges to the wrong

optimum.

2. Time to evaluate the registration criterion is proportional to the number

of voxels: Medical images consist of a large number of voxels. During

registration the main portion of computational time is consumed by the

resampling voxels of the floating image with respect to the reference image

according to actual geometrical transformation.

The idea of a multiresolution hierarchical approach is to register a coarse

(low resolution) image first and then to use the result as the starting point

for finer (high resolution) image registration, and so on [24]. In practice, the

multiresolution approach proves to be helpful. It can improve the optimization

speed, improve the capture range, and the algorithm is relatively robust.

In the first level of our two-stage multiresolution registration method, one

of the three binning techniques, described above, is applied to the segmented

images before they are down-sampled and the registration is performed on the
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coarser level. Nearest neighbor interpolation method is used in this level. In the

second level, the original images are registered and a trilinear partial volume

interpolation method [18] is employed. This process is done for each of the

three binning techniques.

13.2.2 Experiments and Discussion

13.2.2.1 Data Set

This study involved the data sets of seven patients, each consisting of CT and

a subset of six Magnetic-Resonance (MR) volumes (spin-echo T1, PD, T2 and

the rectified version of each of these three). The MR-T1-rectified image was

not available for patient six. Thus, 41 image pairs were available to be regis-

tered. These images were provided by The Retrospective Registration Eval-

uation Project database maintained by J. Michael Fitzpatrick from Vander-

bilt University, Nashville, TN, USA [26]. For each patient data set, all CT im-

ages were registered to the MR image using the MR image as the reference

image.

All image pairs were registered using the maximization of NMI. Registra-

tion transformation was limited to six-parameter rigid-body type (three trans-

lations and three rotations) transformations. Registrations were conducted on

a PC, having a 2.4 Ghz Intel Pentium 4 processor, and a 512MB DDR SDRAM

memory.

The experiments were performed using a two-stage multiresolution ap-

proach described above. When the binarization approach was used, the fore-

ground/foreground bin was given an additional weight when the joint histogram

was computed in the first level. The additional weight was heuristically de-

termined using the ratio of foreground to background voxels. The number of

histogram bins used to compute the normalized mutual information criterion

was set to 256 bins for both CT and MR.

The Downhill-simplex optimization method was used throughout the ex-

periments. Optimization for each pair of images started from the same initial

position with all three translation offsets set to zero millimeters and all three

rotation angles set to zero degrees. Convergence was declared when the fraction

difference between the lowest and the highest function value evaluated at the

vertices of the simplex was smaller than 10−5.
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13.2.2.2 Results

All 41 CT-MR image pairs were used in the experiments. All CT images were

registered to the MR images using the MR as the reference image. A typical su-

perposition, before and after registration, of CT-MR images is shown in Fig. 13.4.

Observed from the registration results using the binarization approach, the

translation parameter ranged from −26.42 to 8.37 mm and the angle parameter

ranged from −4.3◦ to 1.59◦. The running time for each CT-MR pair took 10.4 to

27.8 minutes. The average time for all 41 CT-MR pairs registration is 18.4 minutes.

From our results, using the nonlinear binning method, the running time for

each CT-MR pair took 7.6 to 18.3 minutes. The average time for all 41 CT-MR pairs

registration was 12.2 minutes. When we compare the registration time using the

nonlinear binning with the registration time using the binarization approach, we

observe the average speedup when using nonlinear method is 51%. Figure 13.5

shows the timing results.

The running time for the approach using the linear binning technique is

between the above two methods.

For each experiment the registration solution was obtained using fiducial

markers as provided by The Retrospective Registration Evaluation Project.

This was used as the gold standard to evaluate registration accuracy.

Figure 13.4: A typical superposition of CT-MR images. The left images are be-

fore registration and the right ones are after.
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Figure 13.5: Time required to perform registration for each of the 41 CT-MR

pairs: (a) the binarization approach and (b) the nonlinear binning method.
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13.2.2.3 Accuracy

The accuracy of all 41 experiments with respect to the fiducial-mark-base

gold standard can be found on the web (see http://www.vuse.vanderbilt.edu/

image/registration/).

In addition, we compare the results of our approaches to those of sev-

eral other approaches published in the literature. The comparison is based

on a methodology proposed by West and Fitzpatrick [21], who let selected

researchers access a standard set of image volumes to be registered. They

also act as a repository for the ideal registration transformations (gold stan-

dard) acquired by a prospective method using fiducial markers. These mark-

ers are removed before the volumes are disclosed to the investigators, who

then face a retrospective blind registration task. After registration, they email

back a set of transformation parameters that are compared to the gold stan-

dard.

Tables 13.1 and 13.2 show the median and maximum accuracy reached by

the investigators taking part in that project [21]. All errors are in units of mm.

The method using binarization approach is labelled LO1, while the method using

nonlinear binning technique is labelled LO2. We observed that both techniques

give impressive results for CT-MR registration.

13.2.2.4 Optimization Steps

In the downhill simplex optimization method, the number of optimization steps

is measured by the number of times the cost function is called. The mean number

and the standard deviation of optimization steps for the three binning techniques,

for each patient data set, is compared for CT-MR registration in Table 13.3 and

Table 13.4.

The binarization approach needs the least number of optimization steps in the

first level (Table 13.3). The methods using linear binning and nonlinear binning

need 30% to 102% more steps than the binarization approach. Of the three binning

techniques, the binarization approach has the most stable performance for all

the patients. The reason is that binarization can give an extreme blurring of the

images and so eliminates local optima. The performances of linear and nonlinear

binning are pretty much the same, while nonlinear binning is better in four out

of seven patients.
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Table 13.1: Median error for CT-to-MR registration in ‘mm’ between the

prospective gold-standard and several retrospective registration techniques.

The label “rect.” indicates that the MR image was corrected for geometrical

distortion before registration. The result of the technique using the

binarization approach is labelled LO1, while the one using the nonlinear

binning method is labelled LO2.

BA CO EL HA HE HI MAI MAL NO PE RO1 LO1 LO2

CT-T1 1.6 1.5 1.6 3.4 1.4 1.2 5.1 4.3 3.3 2.7 4.2 1.26 1.24
CT-PD 1.9 1.5 2.0 3.1 2.4 1.9 4.1 4.0 7.8 1.9 4.5 1.67 1.90
CT-T2 2.5 1.5 1.6 4.2 4.7 1.5 3.9 5.0 3.9 2.5 4.5 1.64 1.47
CT-T1-rect. 1.4 0.7 0.9 3.3 1.0 0.7 4.9 5.4 3.4 2.2 5.9 0.65 0.96
CT-PD-rect. 1.7 0.8 1.1 3.0 1.7 0.7 3.0 4.0 4.6 2.1 5.9 0.85 0.90
CT-T2-rect. 2.1 0.8 1.6 3.5 1.6 0.8 4.3 5.3 4.2 2.9 5.5 0.81 0.89

Table 13.2: Maximum error for CT-to-MR registration. See notes in Table 13.1.

BA CO EL HA HE HI MAl MAL NO PE RO1 LO1 LO2

CT-T1 6.4 6.7 6.0 51.8 11.0 2.8 12.8 61.4 10.4 7.3 26.0 3.15 2.76
CT-PD 6.9 3.6 6.6 49.6 10.4 4.1 19.0 59.0 13.9 4.3 25.9 3.64 3.91
CT- T2 9.1 3.4 4.1 50.6 13.6 4.2 6.3 59.5 9.7 7.2 26.7 3.64 4.64
CT-T1-rect. 5.8 3.8 2.6 48.2 2.1 2.3 14.2 60.9 9.6 5.9 27.8 1.98 1.95
CT-PD-rect. 5.9 2.5 5.3 45.9 3.7 2.3 9.9 62.7 11.5 4.6 27.5 2.13 1.81
CT-T2-rect. 7.4 4.3 5.2 49.1 14.3 3.0 6.5 63.2 10.2 9.0 27.1 2.65 2.05

Table 13.3: Number of optimization steps used by each of the three

binning techniques for first level.

Binarization Linear binning Nonlinear binning

Data Set Mean δ Mean δ Mean δ

Patient 1 98 21.85 165 51.66 139 17.72
Patient 2 140 22.98 244 65.85 208 56.72
Patient 3 128 17.51 244 66.02 251 23.25
Patient 4 163 38.94 246 68.41 211 50.42
Patient 5 151 42.66 195 24.28 236 52.2
Patient 6 153 32.69 199 53.76 268 56.55
Patient 7 112 27.12 228 67.98 226 71.77
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Table 13.4: Number of optimization steps used by each of the three

binning techniques for second level.

Binarization Linear binning Nonlinear binning

Data Set Mean δ Mean δ Mean δ

Patient 1 127 24.31 123 18.81 113 17.16
Patient 2 171 37.50 129 25.3 120 27.76
Patient 3 218 43.81 212 36.75 188 42.06
Patient 4 185 86.14 160 50.48 149 56.73
Patient 5 197 46.25 187 70.06 157 50.12
Patient 6 274 110.03 198 55.19 149 41.49
Patient 7 260 74.11 163 34.40 151 39.41

When it comes to the second level (Table 13.4), the binarization approach

turns out to be the worst method for all seven patients. Not only the number

of optimization steps, but also the standard deviation for each patient data sets

is inferior. The nonlinear binning based method performs the best, on average,

while linear binning is in the middle.

The binarization approach can accelerate the registration in the coarser level,

where the image volumes are greatly decreased and so the time to do the entire

registration is reduced, as seen in the results section. When applied to the original

images, binarization requires more steps to be taken to make up for the over-

simplified bin structure in the previous level. This results in a longer registration

time than the other two techniques.

The nonlinear binning method is slightly better than the linear method in

the first level, but it dominates in the second level. Because the nonlinear bin-

ning method takes anatomical information into consideration, and gives more

details than the linear binning, its superiority over the other two is no surprise.

Running times given in Section 13.2.2.2 also proves this. The nonlinear binning

technique can accelerate the convergence of the registration thereby reducing

total registration time, compared to the binarization approach or linear binning,

without loss of accuracy.

13.2.3 Summary

In practice, the multiresolution approach has proven to be helpful for mul-

timodality image registration. In our approach, we implemented a two-stage
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multiresolution approach for CT-MR registration using normalized mutual in-

formation. Before the registration starts, the background is segmented in both

images using region-growing. Then we performed one of three binning tech-

niques on the foreground details, while the background is put into one bin.

Three binning techniques were investigated in this manner.

Our results have shown that all three approaches can reach a subvoxel accu-

racy with no loss of speed. The approach using the nonlinear binning technique

shows improvement in accuracy and speed, compared to the other two binning

techniques, since it can achieve less dispersion in the joint-histogram computa-

tion.
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holds several United States Patents. Dr. Suri has been listed in Who’s Who seven

times, is a recipient of President’s Gold medal in 1980, and has received more

than 50 scholarly and extracurricular awards during his career. He is also a

Fellow of American Institute of Medical and Biological Engineering (AIMBE)

and ABI. Dr. Suri’s major interest are Computer Vision, Graphics and Image

Processing (CVGIP), Object Oriented Programming, Image Guided Surgery, and

Teleimaging. Dr. Suri had worked for Philips Medical Systems and Siemens

Medical Research Divisions. He is also a Visiting Professor with Department of

Computer Science, University of Exeter, Exeter, England. Currently, Dr. Suri is

with JWT, Inc., as Director of Biomedical Engineering Division (in Opthalmology

Imaging) in conjunction with Biomedical Imaging Laboratories, Case Western

Reserve University, Cleveland.

Dr. David Wilson is a Professor of Biomedical Engineering and Radiology, Case

Western Reserve University. He has research interests in image analysis, quan-

titative image quality, and molecular imaging, and he has a significant track

record of federal research funding in these areas. He has over 60 refereed

journal publications and has served as a reviewer for several leading journals.

Professor Wilson has six patents and two pending patents in medical imaging.

He has been active in the development of international conferences; he was

Track Chair at the 2002 EMBS/BMES conference, and he was Technical Program

Co-Chair for the 2004 IEEE International Symposium on Biomedical Imaging.
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Professor Wilson teaches courses in biomedical imaging and biomedical image

processing and analysis. He has advised many graduate and undergraduate stu-

dents, all of whom are quite exceptional, and has been primary research advisor

for over 16 graduate students since starting his academic career. Prior to join-

ing CWRU, he worked in X-ray imaging at Siemens Medical Systems at sites in

New Jersey and Germany. He obtained his Ph.D. from Rice University. Professor

Wilson has actively developed biomedical imaging at CWRU. He has led a fac-

ulty recruitment effort, and he has served as PI or has been an active leader

on multiple research and equipment developmental awards to CWRU, includ-

ing an NIH planning grant award for an In Vivo Cellular and Molecular Imaging

Center and an Ohio Wright Center of Innovation award. He can be reached at

dlw@po.cwru.edu.

Dr. Swamy Laxminarayan currently serves as the Chief of Biomedical Informa-

tion Engineering at the Idaho State University. Previous to this, he held several

senior positions both in industry and academia. These have included serving

as the Chief Information Officer at the National Louis University, Director of

the Pharmaceutical and Health Care Information Services at NextGen Inter-

net (the premier Internet organization that spun off from the NSF sponsored

John von Neuman National Supercomputer Center in Princeton), Program

Director of Biomedical Engineering and Research Computing and Program

Director of Computational Biology at the University of Medicine and Dentistry

in New Jersey, Vice-Chair of Advanced Medical Imaging Center, Director of Clin-

ical Computing at the Montefiore Hospital and Medical Center and the Albert

Einstein College of Medicine in New York, Director of the VocalTec High Tech
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Corporate University in New Jersey, and the Director of the Bay Networks Au-

thorized Center in Princeton. He has also served as an Adjunct Professor of

Biomedical Engineering at the New Jersey Institute of Technology, a Clinical

Associate Professor of Health Informatics, Visiting Professor at the University

of Brno in Czech Republic, and an Honorary Professor of Health Sciences at

Tsinghua University in China.

As an educator, researcher, and technologist, Prof. Laxminarayan has been

involved in biomedical engineering and information technology applications in

medicine and health care for over 25 years and has published over 250 scientific

and technical articles in international journals, books, and conferences. His ex-

pertise are in the areas of biomedical information technology, high performance

computing, digital signals and image processing, bioinformatics and physiolog-

ical systems analysis. He is the coauthor of the book on State-of-the-Art PDE

and Level Sets Algorithmic Approaches to Static and Motion Imagery Segmen-

tation published by Kluwer Publications and the book on Angiography Imaging:

State-of-the-Art Acquisition, Image Processing and Applications Using Magnetic

Resonance, Computer Tomography, Ultrasound and X-ray, Emerging Mobile

E-Health Systems, published by the CRC Pres and two volumes of the Hand-

book of Biomedical Imaging to be published by the Kluwer publications. He

has also authored as the editor/coeditor of 20 international conferences and has

served as a keynote speaker in international confrerences in 43 countries.

He is the Founding Editor-in-Chief and Editor Emeritus of the IEEE Transac-

tions on Information Technology in Biomedicine. He served as an elected mem-

ber of the administrative and executive committees in the IEEE Engineering in

Medicine and Biology Society and as the Society’s Vice President for 2 years. His

other IEEE roles include his appointments as Program Chair and General Confer-

ence Chair of about 20 EMBS and other IEEE Conferences, an elected member

of the IEEE Publications and Products Board, member of the IEEE Strategic

Planning and Transnational Committees, Member of the IEEE Distinguished

Lecture Series, Delegate to the IEEE USA Committee on Communications and

Information Policy (CCIP), U.S. Delegate to the European Society for Engineer-

ing in Medicine, U.S. Delegate to the General Assembly of the IFMBE, IEEE Dele-

gate to the Public Policy Commission and the Council of Societies of the AIMBE,

Fellow of the AIMBE, Senior Member of IEEE, Life Member of Romanian Society

of Clinical Engineering and Computing, Life Member Biomedical Engineering

Society of India, and US Delegate to IFAC and IMEKO Councils in TC13. He was
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recently elected to the Administrative Board of the International Federation for

Medical and Biological Engineering, a worldwide organization comprising 48

national members, overseeing global biomedical engineering activities. He was

also elected to serve as the Publications Co-Chairman of the Federation.

His contributions to the discipline have earned him numerous national and

international awards. He is a Fellow of the American Institute of Medical and Bi-

ological Engineering, a recipient of the IEEE 3rd Millennium Medal, a recipient

of the Purkynje award from the Czech Academy of Medical Societies, a recipi-

ent of the Career Achievement Award, numerous outstanding accomplishment

awards, and twice recipient of the IEEE EMBS distinguished service award. He

can be reached at s.n.laxminarayan@ieee.org.
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AC-PC referential, 274, 276
Active contours, 48–55, 426. See also

Deformable models; Geodesic active
contours/deformable models; Geometric
active contours/deformable models

gradient-based level set, 51–52
registering for multimodal segmentation,

69–70
Active deformation models (ADM), 455
Active shape model (ASM), 454
Advection term, 200
Affine registration

atlas-based segmentation and, 452, 455,
456–457

global, 313
nine degree-of-freedom algorithm, 443

Affine transformations, 6
CL-TPS image registration and, 235
global, 302
retinal image registration and, 158–160

AffineTransformOp, 159
Alzheimer’s disease, 72
Amodal contours, 56
Analysis of variance (ANOVA), 204, 207t,

211
Anatomical landmarks, 5
Anatomical structures, labeling of, 436
Aneurysms. See Brain aneurysms
ANIMAL, 280
Aortic abdominal aneurysms, 190
Approximate nearest neighbors (ANN)

algorithm, 200
Artifacts, 458–459
Atherosclerotic aneurysms, 186
Atlas-based registration, 7–8, 342

elastic image registration and, 365,
376

electronic, 273–274
level set segmentation and, 63–65

Atlas-based segmentation, 435–474
with an average shape atlas, 449, 450f,

454–459, 466–467, 468
bias from structure shape, 463–465
bias from structure volume, 462–463
binary performance model for, 469, 470, 472
comparison of selection strategies,

465–467
concepts in, 435–437
fundamentals of, 439–449
image acquisition and processing,

437–438
with the most similar atlas, 449, 450f,

451–454, 466, 468–469
multilabel performance model, 469, 470–471,

472
with multiple atlases, 449, 450f, 459–460,

466–467, 468–472, 473
quantifying accuracy of, 460–467
with a single, individual atlas, 449, 450f, 451,

465–467, 468
Atlas image, 442, 443, 449
Atlas of Talairach, 274
Automatic registration, 6

Balloons method, 277
Bayesian-based regularizers, 57–58
Bayesian fractal prior, 354
Biharmonic equation, 278
Bilinear interpolation, 160–161, 162, 174, 176,

179
Binarization approach to binning, 541, 545, 546,

548–550
Binary classifier performance model, 469, 470,

472

561
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Binning technique, 551
accuracy of, 548
binarization approach, 541, 545, 546,

548–550
equidistant, 539
k-means clustering and, 542
linear, 541, 548, 550
nonlinear, 541, 546, 547f, 548, 550

Biomedical applications, 342. See also Elastic
image registration

Bland-Altman analysis, 87, 204, 208, 209f, 211
Block-matching minimization scheme, 284
Bone imaging, 55
Brain aneurysms, 185–213

atherosclerotic, 186
clinical protocol for, 202–203
computerized protocol for, 203
fusiform, 186, 187f
image features, 193–194
implicit deformable models for, 190–191
mycotic, 186
non-saccular, 186, 187f
planning interventions for, 188–190
prevalence of, 187
saccular (berry), 186, 187f
segmentation of, 193–202
traumatic, 186

Brain imaging, 230
artificially deformed, 374–376
atlas-based segmentation of, 437–438, 439f,

440f, 441f, 443, 444f, 445f, 451, 452–453,
454, 459, 460, 461, 463, 464–465, 473

cross entropy, symmetric divergence, and,
402

elastic image registration and, 374–376
elastic models and, 279
electronic atlases and, 273–274
geometric deformable models and, 79–81
in honeybees (see Honeybee brain images)
hyperelastic warping and, 502–504, 505f
I-SICLE algorithm and, 234
level set segmentation of, 62, 63, 66, 70–73,

78–79
in mice, 502–504, 505f
non-rigid registration and, 273
Romeo and, 293–294, 313–315
3D non- rigid body registration and, 122

Brain tumors, 262–264, 265, 266f, 537
BrainWeb phantom, 72, 301–306, 316, 454
Breast imaging, 54, 122, 459
Brent line minimizations, 34, 400
Brightness constancy constraint, 286–287
Brownian motion, fractal, 354, 355
B-spline(s), 344

atlas-based segmentation and, 446, 447

elastic image registration and, 359, 368, 369,
370, 371

fast calculations for, 371
hyperelastic warping and, 506, 510
inverse consistent registration and, 227
multiresolution representation of, 369
non-rigid registration and, 276–277, 284
semi-local models and, 346

B-spline deformation model, 357, 360
B-spline interpolation, 344

Canny edge detectors, 78, 265, 267
Cardiac imaging, 537

atlas-based segmentation of, 454
hyperelastic warping and, 512–518
level set segmentation of, 54, 55, 62, 68, 73–77
neuractive pyramid and, 282

Cauchy-Green deformation, 490
Cauchy stress tensor, 493, 511
CCMC algorithm. See Connectivity consistent

marching cubes algorithm
Cerebral cortex imaging, 81–84
Cerebrospinal fluid (CSF), 542

intensity correction and, 289–290
level set segmentation and, 71, 78, 79, 81–84

Chromophor, 445, 447, 459
Circle of Willis, 186, 187f, 192, 202
CL-TPS image registration. See Inverse

consistent landmark-based thin-plate
spline image registration

Clustering-based regularizers, 57
Coarse-to-fine method, 256, 350
Coiling, 212. See also Guglielmi detachable coils
Color images, 157, 161, 174
Composite registration, 34
Computed tomography (CT), 2–3, 21

binning technique and, 539, 540, 542, 545,
546, 548, 549t, 551

elastic image registration and, 377
hyperelastic warping and, 502, 505–507
interventional, 536
level set segmentation and, 55, 63, 69–70, 74,

76, 88
of lung cancer, 40f, 41
of pelvis and prostate, 109
small animal imaging and, 535
symmetric similarity cost functions and,

224–225
Computed tomography angiography (CTA), 3

of brain aneurysms, 190, 191, 192–212
Computer-aided volumetric segmentation,

251–269
shape editing and, 262, 263–264
shape voxel parametrizing and, 256–260
surface approximation and, 255–256
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Conditional entropy, 156, 157, 397
Confocal laser scanning microscopy, 437–438,

447
Confusion matrix, 470–471
Conjugated gradients, 349, 362, 363f
Connectivity consistent marching cubes

(CCMC) algorithm, 80, 81
Continuum mechanical models, 226–227, 278,

280
Contours

active (see Active contours)
amodal, 56
inverse consistent registration and, 220
modal, 56
to volume from, 277–278

Control point(s) (CPs)
atlas-based segmentation and, 446–447
computer-aided volumetric segmentation

and, 256, 260–264
least squares computation of, 260–263
semi-local models and, 346
shape editing and, 263–264

Control point grid (CPG), 446–447, 456–457
Control point (CP) optimization, 122, 123–124,

136–137, 141
Control point (CP) selection, 122, 127–128,

129f, 137–138, 139, 140
Coronary artery imaging, 507–512
Correlation, 347. See also Cross-correlation
Correlation coefficient (CC)

in 3D non-rigid body registration, 132, 133f
in 3D rigid body registration, 105–106,

107–108, 111, 120–121, 136, 139
Correspondence function, 339
COSMOS surface registration, 22, 24–26
Cost functions

binning technique and, 544
CL-TPS image registration and, 235–236
computer-aided volumetric segmentation

and, 253
data term in, 347–348
deformable image registration and, 488
elastic image registration and, 358–359
intensity variance, 225
inverse consistent registration and, 223–225
non-rigid registration and, 296, 297
purpose of, 347
regularization term in, 347, 348
Romeo and, 286, 289, 290–291, 292, 295
search strategy and, 343, 348–350
symmetric similarity, 223–225
UL-TPS image registration and, 234

Coupled-surfaces propagation, 81
Coupling-surfaces regularizers, 57, 58–59
Courant-Friedrichs-Levy (CFL) condition, 200

Crest lines, 276
Cross-correlation, 6, 154, 278, 280–281
Cross-entropy, 394, 395–427. See also

Reversed-cross entropy
implementation of, 397–402
maximization of, 394, 396, 397, 403–405,

406–417
minimization of, 394, 396, 401, 405–406,

417–422
numerical stability and, 401–402, 414–417,

419–422
optimization of, 394, 400, 401
registration experimental set-up for, 402–406

CT. See Computed tomography
CTA. See Computed tomography angiography
Curvature constraints, 201
Curve(s)

Euclidean, 54
in non-rigid registration, 276–277

Curved (elastic) transformations, 6
Curve matching methods, 277

Data acquisition
improvements in, 537
in 3D rigid body registration, 111–112

Data sets
in binning technique, 545
for cross entropy and symmetric divergence,

402–403
electronic, 536
partial, 9, 10
for Romeo experimentation, 315–318

Data term, in cost functions, 347–348
Deformable image registration, 5, 487–521. See

also Hyperelastic warping
Deformable models. See also Active contours;

Geodesic active contours/deformable
models; Geometric active
contours/deformable models; Implicit
deformable models; Parametric
deformable models

active, 455
B-spline, 357, 360
elastic image registration and, 359–360

Deformation(s)
atlas-based segmentation and, 452, 456–457
Cauchy-Green, 490
free-form, 277, 446
left ventricular, 512, 513, 514–516
thin-plate spline, 277–278, 316

Deformation fields, 536–537
Deformation gradient, 489
Deformation maps, 489, 490, 515
Demon’s algorithm, 225, 278, 281, 349
DFD. See Displaced frame difference
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Diabetic retinopathy, 152
Diffeomorphic transformations, 221, 226
Digital shapes, 254–255, 256–260
Digital subtraction angiography (DSA), 3, 190
Dirac measures, 66, 353
Direct registration, 406–407
Dirichlet problem, 234
Displaced frame difference (DFD), 282, 287,

295
Distance-based registration techniques, 10–21
Doppler echocardiography, 3, 513
Drusen deposits, 152
DSA. See Digital subtraction angiography
Dynamic programming, 349

Echo-planar imaging (EPI), 315–316
Eikonal equation, 200–201
Elastic image registration, 357–379. See also

Romeo algorithm
consequences of finite support, 370
cost functions in, 358–359
defined, 341
deformable model structure, 359–360
existence and unicity of, 361
experiments in, 373–377
implementation issues, 365–372
masking and, 371–372
optimization strategy for, 361–364
problem formulation, 358
semi-automatic, 364–365
size change and, 370–371
stopping criterion in, 371

Elastic models
atlas-based segmentation and, 443–444
non-rigid registration and, 278–279

Electronic atlases, 273–274
Element inversion, 500
EM algorithm. See Expectation-maximization

algorithm
Entropy, 31, 52. See also Cross-entropy; Joint

entropy; Reversed cross-entropy
atlas-based segmentation and, 442–443
conditional, 156, 157, 397
information-theoretic, 442
minimization of, 397
retinal image registration and, 156, 171

Epilepsy, 3, 73
Equidistant binning technique, 539
Euclidean curve length, 54
Euclidean distance functions, 13, 16, 195, 353
Euclidean norms, 238, 243
Eulerian framework, 489
Euler-Lagrange equations, 67, 349

brain aneurysm treatment and, 197–198
deformable image registration and, 490, 496

geodesic active contours and, 54
landmark interpolation and, 353, 355

Exhaustive search method, 163, 176,
348–349

Expansion operator, 369
Expectation-maximization (EM) algorithm,

299f, 301
atlas-based segmentation and, 469, 470,

471–472
intensity correction and, 289–290, 297,

308
level set segmentation and, 78

Explicit derivatives, 367–368
Extrinsic markers, 345
Extrinsic registration, 4–5

Fast marching method, 77, 191, 200–201
Fast spline calculations, 371
Feature-based inverse consistent registration,

236
Feature-based registration, 10, 21–34, 343, 347.

See also Mutual information maximization;
Surface-based registration techniques

binning technique in, 538
description of, 345

Feature correspondence, 21
Feature extraction, 21
Feature space, 343–345
Filter-based edge detection, 47
Filters and filtering

Gabor, 344
Gaussian, 284, 288, 291, 292
Gaussian convolution, 51
Gaussian isotropic, 288
Kalman, 14, 276
recursive, 369
sequential spatial, 496–498

Finite deformation theory, 489–490
Finite difference relaxation method, 349
Finite element (FE) analysis, 349, 502, 506, 507,

508, 510, 511, 514–515
Finite element (FE) discretization, 494–495
Finite element (FE) meshes, 494–495, 503, 506

regular vs. irregular, 498–500
rezoning regular, 500–502

FLAIR magnetic resonance imaging (MRI), 36,
37f

Floating image
atlas-based segmentation and, 442, 447, 448,

455
binning technique and, 543–544
cross entropy, symmetric divergence, and,

395, 398
retinal image registration and, 157, 160, 161,

162, 165, 174
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Floating volume, 31–32
multiple sclerosis studies and, 38–39
Romeo and, 316
3D non-rigid body registration and, 122,

124–125, 136–137
3D rigid body registration and, 105

Fluid models, 279–280, 443–444
Fluorescein images, 152
Forward transformations

CL-TPS image registration and, 235–236
fluid models and, 280
inverse consistent registration and, 219–220,

222, 227–228, 240, 242, 243–244
Fourier series parameterization, 227–228, 280
Fourier transforms, 153, 154, 171, 344, 497
Fractional landmark interpolation, 354–357
Fractional orders, 354
Free-form deformations, 277, 446
Free-form surfaces, 21, 22
Freehand scanning, 75
Functional magnetic resonance imaging

(fMRI), 3, 316, 318, 535
Fusiform aneurysms, 186, 187f

Gabor filters, 344
Gateaux derivative, 491
Gaussian filters, 284, 288, 291, 292

convolution, 51
isotropic, 288

Gaussian kernels, 193, 195, 202, 282, 418, 426,
497

Gaussian noise, 358
white, 354

Gaussian PDF models, 193, 199
Gaussian sensor models, 492
Gauss-Seidel iterative solver, 295, 297
GCP. See Grid closest point
Genetic algorithms (GAs), 15–21, 34

computer-aided volumetric segmentation
and, 253–254

in lung cancer studies, 41
major drawbacks of, 19–21
retinal image registration and, 162

Geodesic active contours/deformable models,
55, 66, 68, 77

brain aneurysms and, 190–191, 197–200,
208

properties of, 53–55
region-based information in, 198–200
RT3D ultrasound and, 84–86
speed terms of, 57

Geodesic active regions (GAR)
brain aneurysms and, 191, 192, 193, 197–202
curvature constraints and, 201
numerical schemes for, 200

Geometric active contours/deformable models,
48, 51, 55, 65

speed terms of, 57
topology preserving, for brain

reconstruction, 79–81
Geometric indexing, 22
Geometric landmarks, 5
Geometric methods, in non-rigid registration,

275–278, 284–285, 320
Geometric stiffness, 493, 495
Geometric transformations, 278, 283
Gerbil malleus, 502, 505–507
Glaucoma, 152, 166
Global affine registration, 313
Global affine transformations, 302
Global models, 346
Global optimum, 539
Global transformations, 6, 275
Good approximation properties, 352, 359
Gradient-based level set active contours,

51–52
Gradient calculation, 368
Gradient descent algorithms, 349, 361–362,

363
Gray matter, 61, 71, 78, 79, 81–84, 225, 317,

542
coupling-surfaces regularizers and, 58,

59
geometric deformable models and, 81
intensity correction and, 289–290
multiple sclerosis and, 36
overlap with white matter, 313–315

Green images, 152, 157
Grid closest point (GCP), 15–21
Guglielmi detachable coils (GDC), 188, 189f,

193

Hadamard transforms, 344
Hamilton-Jacobi equations, 51, 60, 200
Hard constraints, 495
Hausdorff measure, 61
Heart imaging. See Cardiac imaging
Heaviside function, 66, 69
Hessian matrix, 193–194, 195, 367, 368
Hibernating myocardium, 512
Hierarchical finite element bases, 349
Histogram(s)

joint (see Joint histograms)
marginal, 33, 162

Histogram clustering, 153
Histogram dispersion, 153
Honeybee brain images, 437–438, 439f, 440f,

441f, 444f, 451, 452–453, 460, 461, 464–465,
473

Hough transform, 155
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Hyperelastic warping, 487–521
applications of, 502–518
finite deformation theory and, 489–490
finite element discretization and,

494–495
linearization in, 491
overcoming local minima in, 496–498
sequential spatial filtering in, 496–498
solution procedure, 495–496
variational framework for, 490–491

Hypertrophic (dilated) cardiomyopathy,
512

IBSR. See Internet Brain Segmentation
Repository

ICP algorithm. See Iterative Closest Point
algorithm

Image cropping, 108, 116–117
Image dependent models, 346–347
Image interpolation, 347
Image pyramids, 364
Image registration, 1–42, 339–357, 535–551.

See also specific types
applications of, 341–342
classification of, 3–8
clinical validations of, 70–88
2D/2D, 4
2D/3D, 4, 6
3D/3D, 4
defined, 8
dimensionality of, 4
distance-based techniques in, 10–21
extrinsic, 4–5
future application of, 535–537
general theory of, 8–10
interaction levels in, 6–7
intrinsic, 4, 5
level set segmentation and, 63–70
modalities involved in, 7
practical examples of, 34–42
review of techniques, 342–351
segmentation combined with, 537
subject types, 7–8

Image segmentation. See Segmentation
Image stabilization, 342
Image stiffness, 491
Image warping. See Warping
Implicit deformable models

for brain aneurysms, 190–191
without gradients, 86–88

Important points, 28–29
Indirect registration, 407–410
Information-theoretic entropy, 442
Initialization, 200–201

Inner ear imaging, 234
Insight Segmentation and Registration Toolkit

(ITK), 77–78
Intensity-based inverse consistent registration

feature-based registration and, 236
landmark-based registration and,

240–245
Intensity-based methods, 538. See also

Photometric methods
Intensity-based small deformation inverse

consistent linear elastic (I-SICLE) image
registration, 233–236

Intensity correction
geometric transformations and, 278, 283
Romeo and, 289–290, 297–301, 307–308

Intensity variance cost functions, 225
Interactive algorithms, 350
Interactive registration, 6–7
Intermodality registration, 342
Internet Brain Segmentation Repository

(IBSR), 71–72, 83
Interpolation, 344

bilinear, 160–161, 162, 174, 176, 179
B-spline, 344
cross entropy, symmetric divergence, and,

399–400
of elastic images, 359
image, 347
landmark (see Landmark interpolation)
linear, 344
nearest neighbor (see Nearest neighbor

interpolation)
partial volume, 460
retinal image registration and, 160–161, 162,

174, 176, 179
thin-plate spline, 352–354

Intersubject registration, 7
defined, 342
non-rigid, 273–321

Intrasubject registration, 7, 342
Intravascular ultrasound, 507–512
Intrinsic markers, 345
Intrinsic registration, 4, 5
Invasive markers, 5
Inverse consistency constraint (ICC), 222, 225,

236, 244
Inverse consistency error, 219, 220, 230–231,

239, 243–244
Inverse consistent image registration,

219–245
algorithms, 233–236
intensity and feature-based, 236
problem statement, 222–224
regularization constraint, 226–227
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Inverse consistent landmark-based thin-plate
spline (CL-TPS) image registration,
234–236, 237–245

Inverse consistent transformations, 222
computation of, 225–226
invertibility property of, 230–231
parameterization of, 227–228
transitivity property of, 231–233

Invertibility, 350
elastic image registration and, 372–373
of inverse consistent transformations,

230–231
Invertibility constraint, 221
Ischemic myocardial disease, 512
I-SICLE. See Intensity-based small deformation

inverse consistent linear elastic image
registration

Iterative Closest Point (ICP) algorithm, 10–15,
26, 276–277, 283. See also Genetic
algorithms

Iterative shape averaging, 454–455
ITK. See Insight Segmentation and Registration

Toolkit

Jacobians, 350
elastic image registration and, 372
hyperelastic warping and, 489–490, 500
inverse consistent registration and, 225–226,

227, 229, 240, 242–243, 245
Joint entropy, 31–32, 153, 156, 157, 442
Joint histograms, 32–33, 545, 551

cross entropy, symmetric divergence, and,
399

k-means clustering and, 542
retinal image registration and, 153, 162, 167,

169–171
Joint probability density function (pdf), 156,

171, 399, 401, 402, 415, 424–426
estimation of, 161–162

Kalman filters, 14, 276
Kernel term, 353, 355
K-means clustering, 542
k-Nearest Neighbor (kNN) classifiers, 192, 194,

195, 199, 200, 211

Lagrangian framework
augmented, 495–496
for deformable image registration, 489
for level sets, 49

Lamé coefficients, 279, 519
Landmark(s)

anatomical, 5
geometrical, 5

in pelvis and prostate imaging, 104, 109–110,
112, 116–117, 118, 120, 121

Landmark-based registration, 345, 351–357, 538
intensity registration and, 240–245
inverse consistent registration and, 220, 221,

236, 237–240
manual, 351

Landmark constraints, 358
Landmark error, 81
Landmark interpolation, 347, 348, 351–357

desirable properties of, 351–352
formula for, 353–354
fractional, 354–357

Laparascopy, 3
Laplacian energy, 353
Laplacian level set methods, 78
Laryngoscopy, 3
Least squares techniques, 11, 14
Leave-one-out technique, 356
Leclerc contour detector function, 202
Left ventricular (LV) deformation, 512, 513,

514–516
Level set equation, 200, 201
Level set segmentation, 47–89, 344, 436

of brain aneurysms, 198
clinical validations of, 70–88
framework for, 48–51
image registration and, 63–70
important clinical problems, 70–77
limitations of, 88–89
open source software tools for, 77–78
shape priors in, 66–69

Level set speed functions
gradient-based active contours and, 51–52
with regularizers, 56, 57–59
tuning for, 55–57

Linear binning technique, 541, 548, 550
Linear elasticity, 226–227, 492
Linear interpolation, 344
Live-wire method, 253
Local models, 345–346
Local optimum, 539
Local transformation, 6
Luminance conservation hypothesis, 289
Lung cancer, 39–42
Lung imaging, 137, 234, 454

Macular degeneration, 152
Magnetic resonance angiography (MRA), 3, 190
Magnetic resonance imaging (MRI), 2, 3, 21,

32–33, 61, 436
atlas-based segmentation and, 443, 454, 463
binning technique and, 539, 540, 542, 545,

546, 548, 549t, 551
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Magnetic resonance imaging (MRI) (cont.)
coupling-surfaces regularizers and, 59
cross entropy, symmetric divergence, and,

396, 402–403, 404–405, 407–410, 411f, 412f,
413f, 415f, 416f, 417f, 418f, 419f, 420f, 421f,
423f, 424f, 425f, 427f

displaced frame difference and, 287
elastic image registration and, 365, 366f,

374–376, 377, 378f
FLAIR, 36, 37f
functional, 3, 316, 318, 535
geodesic active contours and, 54, 55
hyperelastic warping and, 502–504, 512–513,

514–516
interventional, 103, 140
inverse consistent registration and, 230, 240,

241, 245
level set segmentation and, 62, 63–64, 66, 67,

68, 69–72, 73–74, 76, 78–84
for multiple sclerosis, 36–38
non-rigid registration and, 275, 278, 283
online registration and, 537
of pelvis and prostate, 103–142
perfusion studies and, 536
Romeo and, 289, 291, 297, 299f, 308, 313–315,

316, 318
of small animals, 535
symmetric similarity cost functions and,

224–225
3D, 81–84
volumetric, 514–516, 517–518

Magnetic resonance microscopy (MRM),
502–503

Magnetic resonance spectroscopy, 103
Malleus imaging, 502, 505–507
Manual registration, 418

cross entropy, symmetric divergence, and,
405, 406, 409–410, 411–414, 418–419, 420f,
421f, 422f, 423f, 424f

landmark, 351
Manual segmentation, 462, 464, 471–472
MAP classifiers. See Maximum a posteriori

classifiers
Marching cubes algorithm, 203
Marginal histograms, 33, 162
Marginal probability density function (pdf),

156, 397, 399, 402
estimation of, 161–162

Marquardt-Levenberg algorithm, 349, 357,
362–363, 368

Masking, 371–372
Material stiffness, 493, 495
Maximization

cross-entropy, 394, 396, 397, 403–405,
406–417

mutual information (see Mutual information
maximization)

numerical stability for, 414–417
reversed cross-entropy, 397, 402, 403–405,

406–417
symmetric divergence, 397, 403–405, 406–417

Maximum a posteriori (MAP) classification,
192, 195–197, 201

Maximum Intensity Projection (MIP), 189f, 190,
191, 203, 212

Mean square error (MSE), 302–305, 313
Mechanical scanning, 75–76
Minimization

block-matching scheme, 284
Brent line, 34, 400
cross-entropy, 394, 396, 401, 405–406,

417–422
entropy, 397
multigrid scheme, 292–294, 298f
numerical stability for, 419–422
reversed cross-entropy, 396, 405–406,

417–422
symmetric divergence, 396, 405–406, 417–422

MIP. See Maximum Intensity Projection
Mixture model, 289–290
MNI phantom. See BrainWeb phantom
Modal contours, 56
Modality to model registration, 7
Model-based registration, 487–488
Model to modality registration, 7
Monomodal registration, 3, 7, 39
Motion analysis, 341–342
Motion transformations, 11, 14
Mouse brain, 502–504, 505f
MRA. See Magnetic resonance angiography
MRI. See Magnetic resonance imaging
MUGA. See Multigated angiography
Multidimensional optimization methods, 349
Multigated angiography (MUGA), 73, 76
Multigrid methods, 349
Multigrid minimization scheme, 292–294, 298f
Multilabel classifier performance model, 469,

470–471, 472
Multimodal registration, 7

composite approach for, 34
non-rigid, 284, 296–297

Multimodal segmentation, 69–70
Multiple sclerosis (MS), 3, 35–39, 72
Multiresolution strategies, 349–350

binning technique in, 537–550
B-spline representation and, 369
for elastic image registration, 357, 363–364
for inverse consistent image registration,

228–229
for optical flow computation, 291–292
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for retinal image registration, 162, 164–165,
178–179

for 3D image registration, 400–401
two-stage, 544–545

Mumford-Shah segmentation, 56, 61–62, 66, 67,
86

Mutual information (MI), 347, 394
atlas-based segmentation and, 442–443
inverse consistent registration and, 225
in lung cancer studies, 41
normalized (see Normalized mutual

information)
Romeo and, 288
3D non-rigid body registration and, 132, 133f,

136
3D rigid body registration and, 105–106,

107–108, 110, 114, 118, 120–121, 136, 139
Mutual information (MI) maximization, 6, 21,

397
algorithm, 31–34
binning technique and, 538–539
computation of metric, 32–33
non-rigid registration by, 284
optimization methods for, 34
retinal image registration by, 151–179
Romeo and, 286, 315

Mycotic aneurysms, 186
Myelin, 36
Myocardial infarction, 508, 517–518

Navier-Stokes equation, 279–280
Nearest neighbor interpolation, 179, 344

atlas-based segmentation and, 460, 470
binning technique and, 545
retinal image registration and, 160–161, 174

Neo-Hookean hyperelastic material, 503, 506,
511, 515–516

Neuractive pyramid, 282
Newton’s method, 349, 362, 491
Noise

atlas-based segmentation and, 458–459
computer-aided volumetric segmentation

and, 262
elastic image registration and, 358
Gaussian, 358
Gaussian white, 354
level set segmentation and, 63, 71, 73, 80, 84,

86, 87, 88
retinal image registration and, 152, 154, 167
Romeo and, 286, 301, 302, 304t, 316
3D rigid body registration and, 105
white, 154, 354

Non-invasive markers, 5
Nonlinear binning technique, 541, 546, 547f,

548, 550

Non-parametric, local methods, 345–346
Non-parametric probability density function

(pdf), 194–195
Non-parametric tissue probability estimation,

194–195
Non-rigid registration, 273–321

atlas-based segmentation and, 443–447, 452,
454–455, 456–457, 466

deformation fields generated by, 536–537
geometric methods in, 275–278, 284–285, 320
multimodal, 284, 296–297
overview of methods, 274–285
photometric methods in, 275, 278–284, 285,

320
Romeo algorithm and (see Romeo algorithm)
3D (see Three-dimensional non-rigid body

registration)
Non-rigid transformations

atlas-based segmentation and, 446, 447–449,
452, 455

regularization of, 447–449
surface signature surface registration and, 29

Non-saccular aneurysms, 186, 187f
Normalized mutual information (NMI) affine,

452
atlas-based segmentation and, 443, 446, 447,

452, 454, 466
binning technique and, 538, 539, 542–544,

545
non-rigid, 452, 454, 466

Nuclear emission (Em), 402–403, 404–405,
406–410, 411f, 412f, 413f, 415f, 416f, 417f,
418f, 419f, 420f, 421f, 423f, 424f, 425f

direct registration by, 406–407
indirect registration by, 407–410

Nuclear transmission (Tx), 402, 404–405,
406–410

direct registration by, 406–407
indirect registration by, 407–410

Numerical stability, 401–402
for maximization, 414–417
for minimization, 419–422

Nyquist’s criterion, 291

Object tracking, 342
Online image registration, 537
Optical flow, 346

atlas-based segmentation and, 443
displaced frame difference and, 282, 287
multiresolution incremental computation of,

291–292
robust multigrid elastic registration based on

(See Romeo algorithm)
Optical flow constraint (OFC), 287
Optical flow hypothesis, 286–287



570 Index

Optimization
atlas-based segmentation and, 447–448
binning technique and, 548–550
control point (see Control point

optimization)
cross-entropy, 394, 400, 401
elastic image registration and, 361–364
multidimensional, 349
mutual information maximization, 34
non-rigid registration and, 275
Powell’s method, 34, 162, 289, 297, 349,

400
procedure for, 7
retinal image registration and, 162–165, 174,

176, 178
reversed cross-entropy, 400, 401, 402
Simplex downhill (see Simplex downhill

optimization)
symmetric divergence, 400, 401

Optimization algorithm, 361–363

Pairwise consistent transformations, 222
Parametric correction, 290
Parametric deformable models, 80, 81, 87

main limitations of, 47–48
for Romeo, 294–295

Parametric global methods, 346
Parametric surfaces, 13
Partial data sets, 9, 10
Partial differential equations (PDEs), 63, 65,

197, 346, 348, 349
Partial volume interpolation (PVI), 460
Parzen density estimation method, 194, 418,

425–426
Pasha algorithm, 281
Pattern recognition field, 487
PDEs. See Partial differential equations
pdf. See Probability density function
Peaking phenomenon, 211
Pelvis and prostate imaging, 103–142

3D non-rigid body registration in, 104,
121–141

3D rigid body registration in, 104, 105–121
Penalty method, 495
Penalty term

atlas-based segmentation and, 448
elastic image registration and, 372–373

Perfusion studies, 536
PET. See Positron-emission tomography
Phased arrays, 76
Photometric methods, 275, 278–284, 285, 320
Pixel-based clustering, 47
Pixel-based registration, 343, 344, 347, 487,

488
Planar scintigraphy, 3

Plaque rupture, 507–512
Point(s)

control (see Control point(s))
grid closest, 15–21
important, 28–29
in non-rigid registration, 276
seed, 540

Point matching, 176–177
Point signature surface registration, 22, 24
Positron emission tomography (PET), 2, 3,

103
cross entropy, symmetric divergence, and,

395, 396
level set segmentation and, 63, 70, 72–73, 74,

76, 88
small animal imaging and, 535

Powell’s optimization method, 34, 162, 289, 297,
349, 400

Preprocessing, 344
Principal axes methods, 5
Priori probability density function (pdf), 394,

396, 397, 399, 401, 402, 405, 417–418,
419–422, 423–426

Probability density function (pdf)
brain aneurysms and, 193, 194–195, 196f, 199,

211
cross-entropy, symmetric divergence, and,

394, 395–397, 399
estimation of, 195, 196f
joint (see Joint probability density function)
marginal (see Marginal probability density

function)
non-parametric, 194–195
priori (see Priori probability density

function)
retinal image registration and, 156, 157
zero, 402, 415–417, 419–422

Projective transformations, 6
Prostate centroid displacement, 111, 120, 121,

132, 138–139, 141
Prostate imaging. See Pelvis and prostate

imaging

Quasi-Newton methods, 495, 496

Radial basis functions, 347
Rational Gaussian (RaG) surface, 255–256,

260–263, 267–269
Raw image, 442, 443, 449, 452–453, 457, 459,

460, 465, 466, 467
Real-time three-dimensional (RT3D) ultrasound

geodesic deformable models and, 84–86
implicit deformable models and, 86–88

Real-time three-dimensional (RT3D)
volumetric imaging, 76
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Recursive filtering, 369
Reduction operator, 369
Reference image, 339, 340, 546

atlas-based segmentation and, 442, 447, 448,
455

binning technique and, 543–544
cross entropy, symmetric divergence, and,

395, 398
elastic image registration and, 358
retinal image registration and, 157, 161, 162,

165
Reference volume, 31, 32

multiple sclerosis studies and, 39
Romeo and, 316
3D non-rigid body registration and, 122, 124,

136–137
3D rigid body registration and, 105

Region-based level set active contours, 61–63
Region growing, 47, 539–541, 551
Registration. See Image registration
Regularization

cost functions and, 347, 348
elastic image registration and, 372–373
non-rigid registration and, 275
non-rigid transformations and, 447–449

Regularization constraint, 226–227
Regularization stiffness, 491, 495
Regularizers, 56, 57–59

Bayesian-based, 57–58
clustering-based, 57
coupling-surfaces, 57, 58–59
shape-based, 57, 58

RegViz (software), 109–110, 120, 122, 125, 126
Reinitialization, 200–201
Reproduction of identity, 352
Residual transformations, 222
Retinal image registration, 151–179

description of files, 165–166
review of, 154–156
software implementation and architecture,

165
success rate, speed, and accuracy of,

174–177
Retrospective Registration Evaluation

Project, 545, 546
Reversed cross-entropy, 394, 395–427

implementation of, 397–402
maximization of, 397, 402, 403–405, 406–417
minimization of, 396, 405–406, 417–422
numerical stability and, 401–402, 414–417,

419–422
registration experimental set-up for,

402–406
Reverse transformations

CL-TPS image registration and, 236

fluid models and, 280
inverse consistent registration and, 219–220,

222, 227–228, 240, 242, 243–244
Riemannian space, 53–54, 197
Rigid registration, 6, 8

atlas-based segmentation and, 443
level set segmentation and, 67, 69
limitations of, 273
Romeo and, 288–289
3D (see Three-dimensional rigid body

registration)
Rigid segmentation, 5
Rigid transformations, 6, 151

cross entropy, symmetric divergence, and,
399

level set segmentation and, 66
shape-based regularizers and, 58
spin image surface registration and, 26
surface signature surface registration and,

31
Robust adaptive segmentation, 78–79
Robust multigrid elastic registration based on

optical flow. See Romeo algorithm
Robustness

of level set segmentation, 88–89
of 3D non-rigid body registration, 139
of 3D rigid body registration, 135, 139

Romeo algorithm, 274, 285–319
experiments on multimodal datasets,

315–318
experiments on real data, 313–315, 318
experiments on simulated data, 301–307,

316–318
general formulation for, 286–288
intensity correction and, 289–290, 297–301,

307–308
multigrid minimization scheme for, 292–294,

298f
parametric models for, 294–295
rigid registration step, 288–289
robust estimators for, 290–291, 306–307,

320
Rotational angiography (3DRA), 191, 192f
Rotational misalignment, 9
Rotation angles, 21

cross entropy, symmetric divergence, and,
399, 405, 411, 412f, 415–416, 418f, 419, 420f,
421, 424f

level set segmentation and, 69–70
retinal image registration and, 154, 157,

158, 159, 160, 163, 171, 173f, 174, 176, 177,
178

Rotation matrix, 8, 18–19
Rotation transformations, 11
Roulette wheel selection, 19
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RT3D ultrasound. See Real-time
three-dimensional ultrasound

Saccular (berry) aneurysms, 186, 187f
Scaling

feature-based registration and, 21
retinal image registration and, 154, 157, 158,

159, 160, 163, 165, 171, 173f, 176, 177, 178
Search space, 343, 345–347
Search strategy, 343, 348–350
Seed points, 540
Segmentation

aneurysm, 193–202
atlas-based (see Atlas-based segmentation)
level set (see Level set segmentation)
manual, 462, 464, 471–472
multimodal, 69–70
Mumford-Shah, 56, 61–62, 66, 67, 86
registration combined with, 537
rigid, 5
shape detection, 77
volumetric (see Computer-aided volumetric

segmentation)
Segmentation algorithms, 342
SEM algorighm. See Stochastic

expectation-maximization algorithm
Semi-automatic registration, 7, 364–365
Semi-local models, 346
Sequential spatial filtering, 496–498
Shape-based regularizers, 57, 58
Shape detection segmentation, 77
Shape editing, 262, 263–264
Shape index, 25
Shape models, 64, 65, 454
Shape priors, 66–69
Shape spectrum, 26
Shape voxel parametrizing, 256–260
Signal-to-noise ratio, 63
Similarity index (SI), 453, 461–463, 464, 465,

466–467, 468f, 469f
Similarity measures. See also Cross-entropy;

Entropy; Mutual information; Reversed
cross-entropy; Symmetric divergence

in non-rigid registration, 275
in pixel-based registration, 347
in Romeo, 286
in 3D image registration, 393–427
in 3D rigid body registration, 105–106,

120–121
Similarity transformation matrix, 8–9
Simplex downhill optimization, 108, 136

binning technique and, 545, 548
retinal image registration and, 156, 162,

163–164, 165, 178
Simulated annealing, 162, 174, 176

Simulated Brain Database (SBD), 72. See also

BrainWeb phantom
Single photon emission computed tomography

(SPECT), 2, 3, 103, 395
elastic image registration and, 376
level set segmentation and, 63, 70, 74, 76
small animal imaging and, 535

Small animal imaging, 535–536
Smoking, 40
Snake(s), 253, 254, 436. See also Active

contours; Deformable models
Snake Automatic Partitioning (SNAP), 77
Sobolev space, 345
Soft constraints, 495
Spatial elasticity tensor, 493
Spatial registration, 4
SPECT. See Single photon emission computed

tomography
Spin image surface registration, 22, 26–27, 28f
Spin maps, 27
Splash surface registration, 22–24
SPM spatial normalization approach, 282
Squared-error similarity functions, 225
SSD. See Sum of Squared Differences
Stereo images, 342
Stereo retinal images, 156, 166, 167–168f, 169,

176, 177, 178
Stochastic expectation-maximization (SEM)

algorithm, 78, 79, 289–290, 297, 300f, 301
Stopping criterion, 371
Strain energy, 353, 360, 492, 493
Strain measurement, of coronary artery,

507–512
Structural indexing, 22–24
Stunned myocardium, 512
Subarachnoid hemorrhage (SAH), 187–188
Sum of Squared Differences (SSD), 281, 282,

347, 358–359, 362f, 364, 367
Sum Rule fusion, 460
Surface(s), 12–13

free-form, 21, 22
inverse consistent registration and, 220
non-rigid registration and, 277
parametric, 13
Rational Gaussian (see Rational Gaussian

surface)
Surface-based registration techniques, 21–31,

34, 538
COSMOS, 22, 24–26
point signature, 22, 24
spin image, 22, 26–27, 28f
splash, 22–24
surface signature, 22, 28–31, 34

Surface signature surface registration, 22,
28–31, 34
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Symmetric divergence, 394, 395–427
implementation of, 397–402
maximization of, 397, 403–405, 406–417
minimization of, 396, 405–406, 417–422
numerical stability and, 401–402, 414–417,

419–422
registration experimental set-up for, 402–406

Symmetric gradient operator, 493
Symmetric similarity cost functions, 223–225

Talairach proportional squaring system, 276
Talairach stereotaxic space, 276
Tangent stiffness, 495
Target image, 348, 487, 489, 490, 492, 503, 509
Template image, 345

data term for, 348
deformable image registration and, 487, 488,

489, 490, 491, 497, 498, 499f, 503, 506, 509,
514, 515, 517–518

Template matching, 29
Temporal retinal images, 156, 166, 167–168f,

170, 171, 176, 177, 178
Test image, 339, 340, 358
Thin-plate spline (TPS) deformations, 277–278,

316
Thin-plate spline (TPS) interpolation, 352–354
Thin-plate spline (TPS)-RPM algorithm, 278
Thin-plate spline (TPS) solutions, 348
Thin-plate spline (TPS) transformations, 124,

137
Thin-plate spline (TPS) warping, 122, 125, 128,

129, 130f, 131, 132, 133f, 134f, 135, 138, 139,
140

Three-dimensional digital subtraction
angiography (DSA), 190

Three-dimensional echocardiography (3DUS),
75–76

Three-dimensional image registration, 103–142,
393–427. See also Cross-entropy; Reversed
cross-entropy; Symmetric divergence;
Three-dimensional non-rigid body
registration; Three-dimensional rigid body
registration

Three-dimensional level set segmentation,
78–88

in brain reconstruction, 79–81
of the cortex, 81–84
robust adaptive, 78–79

Three-dimensional non-rigid body registration,
104, 121–141

algorithm, 122–125
algorithmic implementation, 135–137
algorithmic robustness and efficiency, 139
applications of, 137–138, 140
evaluation of, 125–126, 138–139

examples and results, 126–128
quantitative evaluation of, 132–135
rationale for, 121–122
3D rigid body registration comparison,

129–132
Three-dimensional rigid body registration, 104,

105–123, 125, 135–136, 139, 140, 141
accuracy of, 118–119, 121–122
algorithm, 120–121
algorithm with special features, 106–108
assessment of pelvic, 112–115
assessment of procedure, 119–120
assessment of prostate, 115–116
computer implementation of, 121
consistency of, 110
evaluation of, 109–111
examples and results, 111–116
implementation issues, 117–118
3D non-rigid body registration comparison,

129–132
Thresholding outliers, 13
Threshold level set methods, 78
Time series in registration, 4
Tissue types, labeling of, 436
TPS. See Thin-plate spline
Transformation(s)

affine (see Affine transformations)
atlas-based segmentation and, 455–457
cross entropy, symmetric divergence, and,

399
curved (elastic), 6
deformable image registration and, 487
diffeomorphic, 221, 226
finding parameters of, 7
forward (see Forward transformations)
geometric, 278, 283
global, 6, 275
ICP algorithm and, 10–11
inverse consistent (see Inverse consistent

transformations)
local, 6
motion, 11, 14
nature of, 6
non-rigid, 452
pairwise consistent, 222
projective, 6
propagation of, 455–457
residual, 222
retinal image registration and, 157,

158–160
reverse (see Reverse transformations)
rigid (see Rigid transformations)
rotation, 11
thin-plate spline, 124, 137
translation, 11
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Transformation matrix, 31
ICP algorithm and, 11
similarity, 8–9

Transformation parameterization, 227–228
Transform-based registration, 343, 344, 348
Transitivity, 231–233
Translation, 8, 9, 21

cross entropy, symmetric divergence, and,
399, 405, 415, 418f, 419, 421, 422f, 423f,
425f, 427f

genetic algorithms and, 18
level set segmentation and, 69–70
retinal image registration and, 154, 157, 158,

159, 160, 163, 165, 171, 172f, 176, 177, 178
Translation transformations, 11
Traumatic aneurysms, 186
Triangular meshes, 13
True registration, 411–414, 418–419
Tumors, 2, 3, 72, 73. See also Brain tumors
Two-dimensional echocardiography (2DE),

74–75

U (energy term), 490, 491–493, 495
UL-TPS image registration. See Unidirectional

thin-plate spline image registration
Ultrasound, 3

interventional, 536
intravascular, 507–512
level set segmentation and, 54, 62, 63, 67, 68,

76
RT3D (see Real-time three-dimensional

ultrasound)
Unidirectional thin-plate spline (UL-TPS)

image registration, 234–235, 237–245
Uzawa algorithm, 496

Variational formulation, 346, 352
Video compression, 342
Virtual springs, 364–365
Viscous fluid models, 226, 346, 488

Visible Human Project, 77
Voigt notation, 489, 494
Volume

bias from, in segmentation, 462–463
from contour to, 277–278
floating (see Floating volume)
inverse consistent registration and, 220
reference (see Reference volume)
3D non-rigid body registration and, 127
voxel-based, 21

Volume of interest (VOI), 123–125, 136–137,
138, 139

Volumetric image segmentation. See

Computer-aided volumetric segmentation
Volumetric magnetic resonance imaging (MRI),

514–516
Vote Rule decision fusion, 460
Voxel-based registration, 5–6, 103–104, 122, 538
Voxel-based volumes, 21
Voxel displacement, 110–111, 117
Voxel similarity approaches, 394

W (energy term), 490, 491–493, 519
Warfield algorithm, 470
Warping, 339–340, 345, 346–347, 364, 374–375,

376. See also Hyperelastic warping;
Thin-plate spline warping

Warp space. See Search space
Wavelets, 227, 344, 346, 349
White matter, 71, 78, 79, 81–84, 225, 317, 542

coupling-surfaces regularizers and, 59
geometric deformable models and, 80–81
intensity correction and, 289–290
multiple sclerosis and, 36
overlap with gray matter, 313–315

White noise, 154, 354
Window levelling, 190

X-ray(s), 2, 41
X-ray fluoroscopy, 536
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