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&PREFACE

The biological sciences have become more quantitative and information-driven

since emerging computational and mathematical tools facilitate collection and

analysis of vast amounts of biological data. Complexity analysis of biological

systems provides biological knowledge for the organization, management, and

mining of biological data by using advanced computational tools. The biological

data are inherently complex, nonuniform, and collected at multiple temporal and

spatial scales. The investigations of complex biological systems and processes

require an extensive collaboration among biologists, mathematicians, computer

scientists, and engineers to improve our understanding of complex biological

process from gene to system. Lectures in the summer school expose attendees to

the latest developments in these emerging computational technologies and facilitate

rapid diffusion of these mathematical and computational tools in the biological

sciences. These computational tools have become powerful tools for the study of

complex biological systems and signals and can be used for characterizing variabil-

ity and uncertainty of biological signals across scales of space and time since the

biological signals are direct indicators of the biological state of the corresponding

cells or organs in the body.

The integration and application of mathematics, engineering, physics and compu-

ter science have been recently used to better understand the complex biological

systems by examining the structure and dynamics of cell and organ functions.

This emerging field called “Genomics and Proteomics Engineering” has gained

tremendous interest among molecular and cellular researchers since it provides a

continuous spectrum of knowledge. However, this emerging technology has not

been adequately presented to biological and bioengineering researchers. For this

reason, an increasing demand can be found for interdisciplinary interactions

among biologists, engineers, mathematicians, computer scientists and medical

researchers in these emerging technologies to provide the impetus to understand

and develop reliable quantitative answers to the major integrative biological and

biomedical challenges.

The main objective of this edited book is to provide information for biological

science and biomedical engineering students and researchers in genomics and pro-

teomics sciences and systems biology. Although an understanding of genes and

proteins are important, the focus is on understanding a system’s structure and

dynamics of several gene regulatory networks and their biochemical interactions.
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System-level understanding of biology is derived using mathematical and engineer-

ing methods to understand complex biological processes. It exposes readers with

biology background to the latest developments in proteomics and genomics engin-

eering. It also addresses the needs of both students and postdoctoral fellows in com-

puter science and mathematics who are interested in doing research in biology and

bioengineering since the book provides exceptional insights into the fundamental

challenges in biology.

I am grateful to Jeanne Audino of the IEEE Press and Lisa Van Horn of Wiley for

their help during the editing of this book. Working in concert with them and the con-

tributors really helped me with content development and to manage the peer-review

process.

Finally, many thanks to my wife, Dr. Yasemin M. Akay, and our son, Altug R.

Akay, for their support, encouragement, and patience. They have been my driving

source. I also thank Jeremy Romain for his help in rearranging the chapters and

getting the permission forms from the contributors.

METIN AKAY

Tempe, Arizona

September 2006
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&CHAPTER 1

Qualitative Knowledge Models in
Functional Genomics and
Proteomics

MOR PELEG, IRENE S. GABASHVILI, and RUSS B. ALTMAN

1.1. INTRODUCTION

Predicting pathological phenotypes based on genetic mutations remains a

fundamental and unsolved issue. When a gene is mutated, the molecular function-

ality of the gene product may be affected and many cellular processes may go

awry. Basic molecular functions occur in networks of interactions and events that

produce subsequent cellular and physiological functions. Most knowledge of

these interactions is represented diffusely in the published literature, Excel lists,

and specialized relational databases and so it is difficult to assess our state of under-

standing at any moment. Thus it would be very useful to systematically store knowl-

edge in data structures that allow the knowledge to be evaluated and examined in

detail by scientists as well as computer algorithms. Our goal is to develop technol-

ogy for representing qualitative, noisy, and sparse biological results in support of the

eventual goal of fully accurate quantitative models.

In a recent paper, we described an ontology that we developed for modeling bio-

logical processes [1]. Ontologies provide consistent definitions and interpretations

of concepts in a domain of interest (e.g., biology) and enable software applications

to share and reuse the knowledge consistently [2]. Ontologies can be used to perform

logical inference over the set of concepts to provide for generalization and expla-

nation facilities [3]. Our biological process ontology combines and extends two

existing components: a workflow model and a biomedical ontology, both described

in the methods and tools section. Our resulting framework possesses the following

properties: (1) it allows qualitative modeling of structural and functional aspects of a

biological system, (2) it includes biological and medical concept models to allow for

querying biomedical information using biomedical abstractions, (3) it allows

1
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hierarchical models to manage the complexity of the representation, (4) it has a

sound logical basis for automatic verification, and (5) it has an intuitive, graphical

representation.

Our application domain is disease related to transfer ribonucleic acid (tRNA).

Transfer RNA constitutes a good test bed because there exists rich literature on

tRNA molecular structure as well as the diseases that result from abnormal struc-

tures in mitochondria (many of which affect neural processes). The main role of

tRNA molecules is to be part of the machinery for the translation of the genetic

message, encoded in messenger RNA (mRNA), into a protein. This process

employs over 20 different tRNA molecules, each specific for one amino acid and

for a particular triplet of nucleotides in mRNA (codon) [4]. Several steps take

place before a tRNA molecule can participate in translation. After a gene coding

for tRNA is transcribed, the RNA product is folded and processed to become a

tRNA molecule. The tRNA molecules are covalently linked (acylated) with an

amino acid to form amino-acylated tRNA (aa-tRNA). The aa-tRNA molecules

can then bind with translation factors to form complexes that may participate in

the translation process. There are three kinds of complexes that participate in trans-

lation: (i) an initiation complex is formed by exhibiting tRNA mimicry release

factors that bind to the stop codon in the mRNA template or by a misfunctioning

tRNA complexed with guanidine triphosphate (GTP) and elongation factor

causing abnormal termination, and (iii) a ternary complex is formed by binding

elongating aa-tRNAs (tRNAs that are acylated to amino acids other than formyl-

methionine) with GTP and the elongation factor EF-tu. During the translation

process, tRNA molecules recognize the mRNA codons one by one, as the mRNA

molecule moves through the cellular machine for protein synthesis: the ribosome.

In 1964, Watson introduced the classical two-site model, which was the accepted

model until 1984 [5]. In this model, the ribosome has two regions for tRNA

binding, so-called aminoacyl (A) site and peptidyl (P) site. According to this

model, initiation starts from the P site, but during the normal cycle of elongation,

each tRNA enters the ribosome from the A site and proceeds to the P site before

exiting into the cell’s cytoplasm. Currently, it is hypothesized that the ribosome

has at least three regions for tRNA binding: the A and P sites and an exit site

(E site) through which the tRNA exits the ribosome into the cell’s cytoplasm [6].

Protein synthesis is terminated when a stop codon is reached at the ribosomal A

site and recognized by a specific termination complex, probably involving factors

mimicking tRNA. Premature termination (e.g., due to a mutation in tRNA) can

also be observed [7].

When aa-tRNA molecules bind to the A site, they normally recognize and bind to

matching mRNA codons—a process known as reading. The tRNA mutations can

cause abnormal reading that leads to mutated protein products of translation.

Types of abnormal reading include (1) misreading, where tRNA with nonmatching

amino acid binds to the ribosome’s A site; (2) frame shifting, where tRNA that

causes frame shifting (e.g., binds to four nucleotides of the mRNA at the A site) par-

ticipates in elongation; and (3) halting, where tRNA that cause premature termin-

ation (e.g., tRNA that is not acetylated with an amino acid) binds to the A site.
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These three types of errors, along with the inability to bind to the A site or destruc-

tion by cellular enzymes due to misfolding, can create complex changes in protein

profiles of cells. This can affect all molecular partners of produced proteins in the

chain of events connecting genotype to phenotype and produce a variety of pheno-

types. Mutations in human tRNA molecules have been implicated in a wide range of

disorders, including myopathies, encephalopathies, cardiopathies, diabetes, growth

retardation, and aging [8]. Development of models that consolidate and integrate

our understanding of the molecular foundations for these diseases, based on avail-

able structural, biochemical, and physiological knowledge, is therefore urgently

needed.

In a recent paper [9], we discussed an application of our biological process ontol-

ogy to genomics and proteomics. This chapter extends the section on general com-

puter science theories, including Petri Nets, ontologies, and information systems

modeling methodologies, as well as extends the section on biological sources of

information and discusses the compatibility of our outputs with popular databases

and modeling environments.

The chapter is organized as follows. Section 1.2 describes the components we

used to develop the framework and the knowledge sources for our model. Section

1.3 discusses our modeling approach and demonstrates our knowledge model and

the way in which information can be viewed and queried using the process of trans-

lation as examples. We conclude with a discussion and conclusion.

1.2. METHODS AND TOOLS

1.2.1. Component Ontologies

Our framework combines and extends two existing components: The workflow

model and biomedical ontology. The workflow model [10] consists of a process

model and an organizational (participants/role) model. The process model can rep-

resent ordering of processes (e.g., protein translation) and the structural components

that participate in them (e.g., protein). Processes may be of low granularity (high-

level processes) or of high granularity (low-level processes). High-level processes

are nested to control the complexity of the presentation for human inspection.

The participants/role model represents the relationships among participants (e.g.,

an EF-tu is a member of the elongation factors collection in prokaryotes) and the

roles that participants play in the modeled processes (e.g., EF-tu has enzymic func-

tion: GTPase). We used the workflow model as a biological process model by

mapping workflow activities to biological processes, organizational units to bio-

molecular complexes, humans (individuals) to their biopolymers and networks of

events, and roles to biological processes and functions.

A significant advantage of the workflow model is that it can map to Petri Nets

[11], a mathematical model that represents concurrent systems, which allows veri-

fication of formal properties as well as qualitative simulation [12]. A Petri Net is

represented by a directed, bipartite graph in which nodes are either places or
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transitions, where places represent conditions (e.g., parasite in the bloodstream) and

transitions represent activities (e.g., invasion of host erythrocytes). Tokens that are

placed on places define the state of the Petri Net (marking). A token that resides in a

place signifies that the condition that the place represents is true. A Petri Net can be

executed in the following way. When all the places with arcs to a transition have a

token, the transition is enabled, and may fire, by removing a token from each input

place and adding a token to each place pointed to by the transition. High-level Petri

Nets, used in this work, include extensions that allow modeling of time, data, and

hierarchies.

For the biomedical ontology, we combine the Transparent Access to Multiple

Biological Information Sources (TAMBIS) [13] with the Unified Medical Language

System (UMLS) [14]. TAMBIS is an ontology for describing data to be obtained

from bioinformatics sources. It describes biological entities at the molecular level.

UMLS describes clinical and medical entities. It is a publicly available federation

of biomedical controlled terminologies and includes a semantic network with 134

semantic types that provides a consistent categorization of thousands of biomedical

concepts. The 2002AA edition of the UMLS Metathesaurus includes 776,940 con-

cepts and 2.1 million concept names in over 60 different biomedical source vocabul-

aries. We augmented these two core terminological models [1] to represent

mutations and their effects on biomolecular structures, biochemical functions, cellu-

lar processes, and clinical phenotypes. The extensions include classes for represent-

ing (1) mutations and alleles and their relationship to sequence components, (2) a

nucleic acid three-dimensional structure linked to secondary and primary structural

blocks, and (3) a set of composition operators, based on the nomenclature of com-

position relationships, due to Odell [15].

Odell introduced a nomenclature of six kinds of composition. We are using three

of these composition relationships in our model. The relationship between a biomo-

lecular complex (e.g., ternary complex) and its parts (e.g., GTP, EF-tu, aa-tRNA) is

a component–integral object composition. This relationship defines a configuration

of parts within a whole. A configuration requires the parts to bear a particular func-

tional or structural relationship to one another as well as to the object they constitute.

The relationship between an individual molecule (e.g., tRNA) and its domains (e.g.,

D domain, T domain) is a place–area composition. This relationship defines a con-

figuration of parts, where parts are the same kind of thing as the whole and the parts

cannot be separated from the whole. Member–bunch composition groups together

molecules into collections when the collection members share similar functionality

(e.g., elongation factors) or cellular location (e.g., membrane proteins). We have

not found the other three composition relationships due to Odell to be relevant for

our model.

We implemented our framework using the Protégé-2000 knowledge-modeling

tool [16]. We used Protégé’s axiom language (PAL) to define queries in a subset

of first-order predicate logic written in the Knowledge Interchange Format syntax.

The queries present, in tabular format, relationships among processes and structural

components as well as the relationship between a defective process or clinical phe-

notype and the mutation that is causing it.
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1.2.2. Translation into Petri Nets

We manually translated the tRNA workflow model into corresponding Petri Nets,

according to mapping defined by others [12]. The Petri Net models that we used

were high-level Petri Nets that allow the representation of hierarchy and data. Hier-

archies enable expanding a transition in a given Petri Net to an entire Petri Net, as is

done in expanding workflow high-level processes into a net of lower level processes.

We upgraded the derived Petri Nets to Colored Petri Nets (CPNs) by:

1. Defining color sets for tRNA molecules (mutated and normal), mRNA mol-

ecules, and nucleotides that comprise the mRNA sequence and initiating the

Petri Nets with an initial marking of colored tokens

2. Adding guards on transitions that relate to different types of tRNA molecules

(e.g., fMet-tRNA vs. elongating tRNA molecules)

3. Defining mRNA sequences that serve as the template for translation

We used the Woflan Petri Net verification tool [17] to verify that the Petri Nets

are bounded (i.e., no accumulation of an infinite amount of tokens) and live (i.e.,

deadlocks do not exist). To accommodate limitations in the Woflan tool, which

does not support colored Petri Nets, we manually made several minor changes to

the Petri Nets before verifying them. We simulated the Petri Nets to study the

dynamic aspects of the translation process using the Design CPN tool [18], which

has since been replaced by CPN Tools.

1.2.3. Sources of Biological Data

We gathered information from databases and published literature in order to develop

the tRNA example considered in this work. We identified data sources with infor-

mation pertaining to tRNA sequence, structure, modifications, mutations, and

disease associations. The databases that we used were:

. Compilation of mammalian mitochondrial tRNA genes [19], aimed at defining

typical as well as consensus primary and secondary structural features of mam-

malian mitochondrial tRNAs (http://mamit-trna.u-strasbg.fr/)

. Compilation of tRNA sequences and sequences of tRNA genes [20] (http://
www.uni-bayreuth.de/departments/biochemie/sprinzl/trna/)

. The Comparative RNA website (http://www.rna.icmb.utexas.edu/), which

provides a modeling environment for sequence and secondary-structure com-

parisons [21]

. Structural Classifications of RNA (SCOR, http://scor.lbl.gov/scor.html) [22]

. The RNA Modification Database (http://medlib.med.utah.edu/RNAmods),

which provides literature and data on nucleotide modifications in RNA [23]

. A database on tRNA genes and molecules in mitochondria and photosynthetic

eukaryotes (http://www.ba.itb.cnr.it/PLMItRNA/) [8]
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. Online Mendelian Inheritance in Man (OMIM) (http://www.ncbi.nlm.nih.

gov/omim/), which catalogs human genes and genetic disorders [24]

. BioCyc (http://metacyc.org/), a collection of genome and metabolic pathway

databases which describes pathways, reactions, and enzymes of a variety of

organisms [25]

. Entrez, the life sciences search engine, which provides views for a variety of

genomes, complete chromosomes, contiged sequence maps, and integrated

genetic and physical maps (http://www.ncbi.nlm.nih.gov/gquery/
gquery.fcgi?itool ¼ toolbar) [26]

. MITOMAP, A human mitochondrial genome database [27] (http://www.
mitomap.org/)

. The UniProt/Swiss-Prot Protein Knowledgebase, which gives access to

wealthy annotations and publicly available resources of protein information

(http://us.expasy.org/sprot/sprot-top.html)

In addition, we used microarrays [28] and mass spectral data [29], providing

information on proteins involved in tRNA processing or affected by tRNA

mutations.

1.3. MODELING APPROACH AND RESULTS

Our model represents data using process diagrams and participant/role diagrams.

Appendix A on our website (http://mis.hevra.haifa.ac.il/�morpeleg/NewProcess
Model/Malaria_PN_Example_Files.html) presents the number of processes,

participants, roles, and links that we used in our model. The most granular

thing that we represented was at the level of a single nucleotide (e.g., GTP).

The biggest molecule that we represented was the ribosome. We chose our

levels of granularity in a way that considers the translation process under the

assumption of a perfect ribosome; we only considered errors in translation that

are due to tRNA. This assumption also influenced our design of the translation

process model. This design follows individual tRNA molecules throughout the

translation process and therefore represents the translocation of tRNA molecules

from the P to the E site and from the A to the P site as distinct processes that

occur in parallel. The level of detail in which we represented the model led us

to consider questions such as (1) “Can tRNA bind the A site before previously

bound tRNA molecule is released from the E site?” and (2) “Can fMet tRNA

form a ternary complex?”

1.3.1. Representing Mutations

Variation in gene products (protein or RNA) can result from mutations in the nucleo-

tide sequence of a gene, leading to altered (1) translation, (2) splicing, (3) posttran-

scriptional end processing, or (4) interactions with other cellular components

coparticipating in biological processes. In addition, variation can result from a
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normal sequence that is translated improperly by abnormal tRNA molecules.

Thus, we must be able to represent variation not only in DNA sequences

(genome) but also in RNA and protein. Therefore, in our ontology, every sequence

component (of a nucleic acid or protein) may be associated with multiple alleles.

Each allele may have mutations that are either pathogenic (associated with abnormal

functions) or neutral. A mutation is classified as a substitution, insertion, or

deletion [30].

1.3.2. Representing Nucleic Acid Structure

The TAMBIS terminology did not focus on three-dimensional structure. We

extended the TAMBIS ontology by specifying tertiary-structure components of

nucleic acids. A nucleic acid tertiary-structure component is composed of interact-

ing segments of nucleic acid secondary-structure components. We added three

types of nucleic acid secondary-structure components: nucleic acid helix, nucleic

acid loop, and nucleic acid unpaired strand. Figure 1.1 shows the tertiary-structure

components of tRNA (acceptor domain, D domain, T domain, variable loop, and

anticodon domain). Also shown is the nucleic acid tertiary-structure component

frame that corresponds to the tRNA acceptor domain. The division of tRNA into

structural domains, the numbering of nucleotides of the generic tRNA molecule,

and the sequence-to-structure correspondence was done according to conventional

rules [20].

FIGURE 1.1. Tertiary-structure components. Normal tRNA is composed of five nucleic acid

tertiary-structure components. One of these components (tRNA acceptor domain) is shown in

the middle frame. Each nucleic acid tertiary-structure component is composed of segments of

nucleic acid secondary-structure components. The nucleic acid unpaired strand of the tRNA

acceptor domain, which is a kind of nucleic acid secondary-structure component, is shown on

the right.
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1.3.3. Representing Molecular Complexes

Biological function can be associated with different levels of molecular structure. In

some cases a function can be associated with a domain (of a protein or nucleic acid).

In other cases, a function is associated with individual molecules or with molecular

complexes. Sometimes, a function is not specifically mapped to a molecular struc-

ture but is attributed to collections of molecules that are located in a particular cel-

lular compartment. In addition, biologists define collections of molecules that share

a common function (e.g., termination factors). The participant/role representation of
our framework represents molecular structures that participate in processes as well

as composition and generalization relationships among participants (molecules).

In our tRNA example, we are using three kinds of these composition relation-

ships: (1) component–integral object composition, (2) member–bunch compo-

sition, and (3) place–area composition. Figure 1.2 shows examples of these

relationships. Generalization (is-a) relationships are used to relate subclasses of par-

ticipants to their superclasses. For example, terminator tRNA, nonterminating

tRNA, and fMet tRNA are subclasses of the tRNA class.

1.3.4. Representing Abnormal Functions and Processes

In addition to representing relationships among process participants, our framework

can represent the roles that participants have in a modeled system. We distinguish

two types of roles: molecular-level functional roles (e.g., a role in translation) and

roles in clinical disorders (e.g., the cause of cardiomyopathy). Each role is specified

using a function/process code taken from the TAMBIS ontology. To represent

dysfunctional molecular-level roles, we use an attribute, called role_present, which

signifies whether the role is present or absent or this information is unknown. For

example, Figure 1.2 shows that three mutations of tRNA that exhibit the role of

misreading. The figure also shows tRNA mutations that have roles in the cardio-

myopathy disorder. Cardiomyopathy is one of the concepts from the clinical

ontology, discussed later in this section.

FIGURE 1.2. Part of participant/role diagram showing molecules involved in translation

and roles they fulfill. Individual molecules are shown as rectangles (e.g., tRNA). They are

linked to domains (e.g., D domain) using dashed connectors. Biomolecular complexes are

shown as hexagons (e.g., ternary complex) and linked to their component molecules using

arrowhead connectors. Collections of molecules that share similar function or cellular

location are shown as triangles (e.g., elongation factors) and are linked to the participants

that belong to them using connectors with round heads. Generalization relationships are

shown as dotted lines (e.g., fMet-tRNA is-a tRNA). Functional roles are shown as ellipses

that are linked to the participants that exhibit those roles. Clinical disorders that are associated

with mutated participants are shown as diamonds (e.g., cardiomyopathy) and are linked to the

participants that exhibit roles in these disorders. The insert shows the details of the misreading

role. It is specified as a translation role (TAMBIS class) that is not present (role_present ¼

false). Also shown are some of the participants that perform the misreading role.
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Processes are represented using the process model component of our framework.

We augmented the workflow model with elements taken from the object process

methodology (OPM) [31] to create a graphical representation of the relationships

between a process and the static components that participate in it, as shown in

Figure 1.3. We used different connectors to connect a process to its input sources,

output sources, and participants that do not serve as substrates or products (e.g., cat-

alysts such as amino acid synthetase). We added a fourth type of connector that links

a process to a chemical that inhibits the process (e.g., borrelidin). Figures 1.3

through 1.6 present details of the translation process and the processes leading to

it. The figures show the normal process as well as processes that result in abnormal

translation. We have considered only tRNA-related failures of translation. Detailed

explanation of each process diagram is given in the legends. Figures 1.4 and 1.5

present the details of the translation process, depicted in Figure 1.3. Figure 1.4 pre-

sents the translation process according to the classical two-site model [5]. Figure 1.5

presents a recent model of the translation process [32]. The details of the process of

tRNA binding to the A site, of Figure 1.5, are shown in Figure 1.6.

The processes normal reading, misreading, frame shifting, and halting, shown in

Figure 1.6, all have a process code of binding, since in all of them tRNA binds to

ribosome that has occupied E and P sites.

The types of arrows that connect molecules to a process define their role as sub-

strates, products, inhibitors, activators, or molecules that participate without chan-

ging their overall state in the framework (e.g., enzyme). The logical relationships

among participants are specified in a formal expression language. For example,

double-clicking on the misreading process, shown in Figure 1.6, shows its partici-

pants, which are specified as

(Shine–Delgarno in E XOR tRNA0 in E) AND tRNA1 in P AND
(tRNA2 that can bind to incorrect codon in ternary
complex XOR tRNA that has altered flexibility in
ternary complex) AND tRNA2 in A AND EF-tu AND GDP

FIGURE 1.3. Process diagram showing processes leading to translation. Ellipses represent

activities. Ellipses with bold contours represent high-level processes, whereas ellipses

without bold contours represent low-level processes (that are not further expanded). The

dark rounded rectangles represent routing activities for representing logical relationships

among component activities of a process diagram. The router (checkpoint) labeled XOR rep-

resents a XOR split that signifies that the two processes that it connects to are mutually exclu-

sive. A XOR join connects the three processes shown in the middle of the diagram to the

translation process. Dotted arrows that link two activities to each other represent order

relationships. Participants are shown as light rectangles. Arrows that point from a participant

toward a process specify that the participant is a substrate. Arrows that point in the opposite

direction specify products. Connectors that connect participants (e.g., amino acid synthetase)

to processes and have a circle head represent participation that does not change the state of the

participant. Inhibitors (e.g., tobramycin) are linked to processes via a dashed connector. The

details of the translation process are shown in Figures 1.4 and 1.5.
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FIGURE 1.4. Process diagram showing details of translation process of Figure 1.4 according

to classical two-site model [5]. The symbols are as explained in the legend of Figure 1.3. After

initiation, there is an aa-tRNA in the P site (tRNA1 in P). During the process labeled “binding

to A site and peptide bond formation” a second aa-tRNA in the ternary complex binds to the A

site. Two processes occur simultaneously at the next stage: movement of the second tRNA

that bound to the A site to the P site and, at the same time, exit from the ribosome of the

first tRNA that bound to the P site. If the second tRNA, bound to the P site, is of terminator

type, termination occurs. Otherwise, the ribosome is ready to bind; the second tRNA to bind

tRNA is now labeled as “tRNA1 in P” and another cycle of elongation can begin.
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FIGURE 1.5. Process diagram showing details of the translation process of Figure 1.4

according to model of Connell and Nierahus [32]. The details of the process labeled

“binding of tRNA to A site” are shown in Figure 1.6. After initiation, shine dalgarno is

placed at the E site, and the first tRNA (tRNA1) is placed at the P site. Next, tRNA2 transi-

ently binds to the A site. This step is followed by three activities which are done concurrently:

(1) exit from the E site of either Shine–Delgarno or tRNA0 bound to the E site (at later stages

of the elongation process), (2) binding to the A site followed by peptide bond formation, and

(3) a routing activity (marked by an unlabeled round-corner square). The routing activity is

needed for correspondence with the CPN that simulates the translation process, which

needs to distinguish among the tRNA molecules that are bound to each of the three sites.

At the next stage, tRNA2 at the A site shifts to the P site and at the same time, tRNA1 at

the P site shifts to the E site. If tRNA2 bound to the P site is of terminator type, termination

occurs. Otherwise, the ribosome is ready to bind; the second tRNA to bind is now labeled as

“bound tRNA1,” and the first tRNA to bind is labeled as “bound tRNA0,” and another cycle of

elongation can begin.
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1.3.5. Representing High-Level Clinical Phenotypes

Our clinical ontology relies on the UMLS but does not include all of the concepts of

the Metathesaurus. Instead, we are building our clinical ontology by importing con-

cepts as we need them. We add clinical concepts to the clinical ontology by creating

them as subclasses of the semantic types defined by the semantic network. Each

concept has a concept name and a concept code that come from the Metathesaurus

as well as synonyms. Figure 1.7 shows part of the clinical ontology. Figure 1.3

shows that mutated leucine tRNA (in the tRNA acceptor domain) and mutated

tRNA (in the T domain) have roles in some forms of cardiomyopathy. Many

tRNA-related diseases are also linked to mutations in protein components of mito-

chondrial respiratory chains. Proteomic studies in [28] provide a larger list of protein

candidates. Twenty identified proteins are shown to either overproduce (9) or be

underrepresented (11) when the mitochondrial genome has the A8344G mutation

(in tRNALys) associated with myoclonic epilepsy and ragged red fibers (MERFF)

condition.

FIGURE 1.7. Query that shows individual molecules involved in both disorders and dys-

functional processes. The results of this query may indicate which processes are involved in

a given disorder. The query is shown on the left. The results are shown on the right. The

frames ?im1 ?process, ?role1, ?role2, and ?disorder represent individual molecules, pro-

cesses, roles, and disorders, respectively. The query is written as a constraint. Instances

that violate the constraint are returned. The predicate (own-slot-not-null A B) returns true

if slot A of frame B is not null. The constraint looks for all individual molecules, which

(1) have roles that are disorders and (2) have roles that are dysfunctional processes or

functions.

1.3. MODELING APPROACH AND RESULTS 15



1.3.6. Representing Levels of Evidence for Modeled Facts

Different facts that are represented in our framework are supported by varying

degrees of evidence. It is important to allow users to know what support different

facts have, especially in cases of conflicting information. We therefore added a cat-

egorization of evidence according to the type of experimentation by which facts

were established. The categorization includes broad categories, such as “in vivo,”

“in vitro,” “in situ,” “in culture,” “inferred from other species,” and “speculative.”

Facts, such as the existence of a biomolecule or its involvement in a process are

tagged with the evidence categories.

1.3.7. Querying the Model

Using PAL we composed first-order logic queries that represent in tabular form

relationships among processes and structural components. Table 1.1 shows a

TABLE 1.1 Types of Biological Queries and Motivating Biological Examples

Query Type Example Derived Answer from Model

1. Alleles

1.1 Alleles that have

roles in dysfunctional

processes and/or
disorders

Alleles that have roles in

both dysfunctional pro-

cesses and disorders

Mutated tRNA (T) causes cardi-

omyopathy and has roles in

amino acylationþ halted

translation

Mutated Leu tRNA (D) causes

mitochondrial myopathy

encephalopathy lactocidosis

stroke (MELAS) and has a role

in misreading

2. Roles

2.1 Individual molecules

or biocomplexes that have

the same role

Scoped to cellular

location, same substrates

and products, same bio-

logical process (partici-

pation), or to same (or

different) inhibitor

Individual molecules that

have the same set of

roles

Individual molecules that

have a role in a dys-

functional process

Individual molecules that

have a role in a disorder

Mutated tRNA (anticodon) and

mutated tRNA (acceptor) both

have only the role of misreading

Incorrect translation: mutated

tRNA (anticodon), mutated

tRNA (T), mutated Pro tRNA

(anticodon U34mU), mutated

Leu tRNA(DA3243G),mutated

tRNA (acceptor)

Incorrect ligation: mutated

tRNA (T)

Incorrect processing: tRNA

precursor with mutated 30 end

Cardiomyopathy: mutated tRNA

(T), mutated Leu tRNA

(acceptor)

MELAS: mutated Leu tRNA (D)

(continued )
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TABLE 1.1 Continued

Query Type Example Derived Answer from Model

3. Reaction (functional model)

3.1 All atomic

activities that share

the same substrates

(products, inhibitors)

What atomic activities

have the same sub-

strates and products?

None in the modeled system

4. Biological process

4.1 All activities of a

certain kind of biological

process, according to the

TAMBIS classification

hierarchy (scoped to

cellular location

substrates)

All activities that are a

kind of binding and

involve binding of

tRNA

Formation of ternary complex,

formation of initiation com-

plex, formation of termination

complex, binding to A site,

normal reading, misreading,

halting, frame shifting

4.2 All activities that are

inhibited by inhibitor x

Activities inhibited by

tobramycin and

mupirocin

Amino acid acylation

4.3 What processes

might be affected in a

given disorder?

What processes might be

affected in a given

disorder?

Amino acid acylation and trans-

lation (reading) are affected in

cardiomyopathy

Translation (reading) is affected

in cardiomyopathy

5. Reachability

5.1 If an activity is

inhibited what other

activities can take place?

Is it a deadlock?

Inhibiting “normal read-

ing” (no supply of

normal tRNA): what

activities may take

place?

Directly in XOR: misreading,

frame shifting, halting

5.2 If an activity is

inhibited, can we still

get to a specified state?

If we inhibit “formation of

ternary complex,” can

we reach a state where

the activity “termin-

ation” is enabled?

Yes. For example, the firing

sequence t1t2t4t1t2t5t6t7t8t10t11
t12t13 of Figure 1.8

5.3 Does an inhibitor

inhibit an entire

high-level process?

Does tobramycin inhibit

the translation process?

Yes. It inhibits the process

“formation of initiation

complex” which is essential to

take place before translation

5.4 Establish a marking,

find reachability

Elongating tRNA is a

substrate. What path-

ways will be taken?

Amino acid acylation, followed

by formation of ternary

complex, followed by

translation

6. Temporal/dynamic aspects

6.1 What other

processes occur in

parallel to process X?

What processes occur in

parallel to “binding to A

site” (Fig. 1.6)

“Shine–Delgarno exits”

XOR “tRNA1 exits”
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FIGURE 1.8. Colored Petri Net that corresponds to Figure 1.5 showing current three-site

model of translation. Squares represent transitions, corresponding to workflow processes.

Ellipses represent places, corresponding to conditions that are true after a workflow process

has terminated. Text to the top left of places indicates their allowed token type, which can be

tRNA or mRNA. The values of tokens of tRNA type used in this figure are Shine_

Delgarno, Initiator_tRNA, Terminator_tRNA, Terminator, and Lys_Causing_Halting. Other

token types that we use in our model (not shown) represent other mutations of tRNAmolecules.

The values of tokens of mRNA type are always “normal.” Text below places specifies initial

placement of tokens in those places. Text above transitions indicates guarding conditions,

which refer to token types. Text on connectors indicates token variables that flow on those con-

nectors. The variables used are a, b, and c for tRNA tokens andm for mRNA tokens. Transitions

are also labeled t6, . . . , t15, in correspondence with query 5.2 of Table 1.1.
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summary of all the query types that we composed. They are grouped into six

categories that concern (1) alleles, (2) functional roles and roles in disorder pheno-

types, (3) reactions and their participants, (4) biological processes, (5) ability to

reach a certain state of a modeled system, and (6) temporal/dynamic aspects of a

modeled system. Queries that were especially interesting to us were (1) finding

mutations that cause molecular-level processes and functions to be dysfunctional,

(2) finding mutations that cause clinical disorders, and (3) finding processes that

might be affected in a given disorder. Figure 1.7 shows the query and query

results for the third query.

1.3.8. Simulating the Model

As shown in Figures 1.4 and 1.5, we created two different models of the translation

process: a historical model and a current model. When we translated the workflow

models into the corresponding Petri Nets, we were able to test predictions of these

two models by showing that under certain concentrations of reactants the different

models resulted in different dynamic behavior which produced different translation

products. For example, when the mRNA contained a sequence of Asn–Leu–Asn (or

in general, aa1–aa2–aa1) and the system was initialized with a low concentration of

Asn-tRNA, then protein translation proceeded in the classical two-site model but

was halted in the current three-site model, which required Asn-tRNA and Leu-

tRNA to be bound to the ribosome while a second Asn-tRNA bound the A site.

The Petri Net that corresponds to the workflow model of Figure 1.5 is shown in

Figure 1.8. The tRNA mutations were represented as colored tokens, belonging to

the tRNA color set (see Fig. 1.8), and mRNA molecules were represented as

tokens belonging to the mRNA color set.

The Petri nets derived from our workflow model can also be used for educational

purposes. They can demonstrate (1) concurrent execution of low-level processes

within the translation process (e.g., tRNAmolecules that were incorporated into syn-

thesized proteins can be amino acylated and used again in the translation process),

(2) introduction of mutations into synthesized proteins, and (3) the affect of certain

dysfunctional components on pools of reactants (e.g., nonmutated tRNAs).

1.4. DISCUSSION

Deducing molecular mechanisms of disease based on molecular models is a very dif-

ficult problem. Even more complicated is the task of correlating genotypic variation

to clinical phenotypes. A review by Florentz and Sissler [33] shows that, despite the

accumulation of information about the positions of a large number of mutations

within mitochondrial tRNAs, it is not possible to identify simple basic patterns

for use in predicting the pathogenicity of new mutations. The multifaceted nature

of effects produced by tRNA mutations is apparent from recent proteomics

studies [29] and is emphasized in current reviews [34, 35]. The authors conclude

that it is critical to examine not only the affected tRNA but also its interactions,

or relationships, with other compartmental components. These arguments
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emphasize the importance of a knowledge model able to integrate practical infor-

mation at multiple levels of detail and from multiple experimental sources.

The knowledge framework presented here links genetic sequence, structure, and

local behavior to high-level biological processes (such as disease). The model pro-

vides a mechanism for integrating data from multiple sources. In our tRNA example,

we integrated information from structural biology, genetics and genomics, molecu-

lar biology, proteomics, and clinical science. The information can be presented

graphically as process diagrams or participant/role diagrams. The frames that rep-

resent participants, roles, processes, and relationships among them contain citations

to the original data sources.

Our model has several advantages, in addition to its ability to integrate data from

different sources. First, we can define queries that create views of the model in a

tabular format. The queries extract useful relationships among structures, sequences,

roles, processes, and clinical phenotypes. Second, our model can be mapped in a

straightforward manner to Petri Nets. We developed software that automatically

translates our biological process model into Petri Net formalisms and formats

used by various Petri Net tools [36]. We have used available tools to qualitatively

simulate a modeled system and to verify its boundedness and liveness and to

answer a set of biological questions that we defined [36]. Boundedness assumes

that there is no infinite accumulation of tokens in any system state. In our

example, this corresponds to concentration of tRNA and mRNA molecules in a

cell. Liveness ensures that all Petri Net transitions (which correspond to workflow

activities) can be traversed (enabled).

A disadvantage of our model is its need for manual data entry. Natural language

processing techniques are not able to automatically parse scientific papers into the

semantic structure of our ontology. The effort required to enter data into our

model is considerable. The entry of a substantial set of data about all relevant cel-

lular reactions and processes would require a major distributed effort by investi-

gators trained in knowledge representation and biology.

1.5. CONCLUSION

One of the ultimate goals of proteomics and genomics engineering is to develop a

model of the real cell, of its program responsible for different behaviors in

various intra- and extracellular environments. Our long-term goal is to develop a

robust knowledge framework that is detailed enough to represent the phenotypic

effects of genomic mutations. The results presented here are a first step in which

we demonstrate that the knowledge model developed in another context (malaria

invasion biology) is capable of capturing a qualitative model of tRNA function.

We have presented a graphical knowledge model for linking genetic sequence poly-

morphisms to their structural, functional, and dynamic/behavioral consequences,
including disease phenotypes. We have shown that the resulting qualitative model

can be queried (1) to represent the compositional properties of the molecular ensem-

bles, (2) to represent the ways in which abnormal processes can result from
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structural variants, and (3) to represent the molecular details associated with high-

level physiological and clinical phenomena. By translating the workflow represen-

tation into Petri Nets we were able to verify boundedness and liveness. Using simu-

lation tools, we showed that the Petri Nets derived from the historic and current

views of the translation process yield different dynamic behavior.

ACKNOWLEDGMENTS

The work was funded by the Burroughs-Wellcome Fund and by National Institutes of Health

grants LM-05652 and LM-06422.

REFERENCES

1. M. Peleg, I. Yeh, and R. B. Altman, “Modeling biological processes using Workflow and

Petri Net models,” Bioinformatics, 18: 825–837, 2002.

2. T. R. Gruber, “Toward principles for the design of ontologies used for knowledge

sharing,” Int. J. Human-Computer Stud., 43: 907–928, 1995.

3. S. Schulze-Kremer, “Ontologies for molecular biology,” paper presented at the Proceed-

ings of the Third Pacific Symposium on Biocomputing, Hawaii, 1998.

4. M. Ibba, C. Stathopoulos, and D. Soll, “Protein synthesis: Twenty three amino acids and

counting,” Curr Biol., 11: R563–565, 2001.

5. K. H. Nierahus, “New aspects of the ribosomal elongation cycle,” Mol. Cell Biochem.,

61: 63–81, 1984.

6. D.N.Wilson, G.Blaha, S. R. Conell, P. V. Ivanov,H. Jenke, U. Stelzl, Y. Teraoka, andK.H.

Nierahus, “Protein synthesis at atomic resolution: Mechanistics of translation in the light of

highly resolved structures for the ribosome,” Curr. Protein Peptide Sci., 3: 1–53, 2002.

7. P. J. Farabaugh and G. R. Bjork, “How translational accuracy influences reading frame

maintenance,” EMBO J., 18: 1427–1434, 1999.

8. V. Volpetti, R. Gallerani, C. D. Benedetto, S. Liuni, F. Licciulli, and L. R. Ceci,

“PLMltRNA, a database on the heterogenous genetic origin of mitochondrial tRNa

genes and tRNAs in photosynthetic eukaryotes,” Nucleic Acids Res., 31: 436–438, 2003.

9. M. Peleg, I. S. Gabashvili, and R. B. Altman, “Qualitative models of molecular function:

Linking genetic polymorphisms of tRNA to their functional sequelae,” Proc. IEEE, 90:

1875–1886, 2002.

10. L. Fisher,Workflow Handbook, published in association with the WorkflowManagement

Coalition, Future Strategies, Lighthouse Point, FL, 2001.

11. J. L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall, Englewood

Cliffs, NJ, 1981.

12. W. M. P. v. d. Aalst, “The application of Petri Nets to workflow management,”

J. Circuits, Syst. Computers, 8: 21–66, 1998.

13. P. G. Baker, C. A. Goble, S. Bechhofer, N. W. Paton, R. Stevens, and A. Brass,

“An ontology for bioinformatics applications,” Bioinformatics, 15: 510–520, 1999.

14. C. Lindberg, “The Unified Medical Language System (UMLS) of the National Library of

Medicine,” J. Am. Med. Rec. Assoc., 61: 40–42, 1990.

REFERENCES 21



15. J. Odell, “Six different kinds of composition,” J. Object-Oriented Prog., 7: 10–15, 1994.

16. S. W. Tu and M. A. Musen, “Modeling data and knowledge in the EON guideline archi-

tecture,” paper presented at Medinfo, London, 2001.

17. H. M. W. Verbeek, T. Basten, and W. M. P. v. d. Aalst, “Diagnosing workflow processes

using Woflan,” Computer J., 44: 246–279, 2001.

18. D. CPN group at the University of Aarhus, “Design/CPN—Computer Tool for Coloured

Petri Nets,” http://www.daimi.au.dk/designCPN/, 2002.

19. M. Helm, H. Brule, D. Friede, R. Giege, D. Putz, and C. Florentz, “Search for character-

istic structural features of mammalian mitochondrial tRNAs,” RNA, 6: 1356–1379, 2000.

20. M. Sprinzl and K. S.Vassilenko, “Compilation of tRNA sequences and sequences of

tRNA genes,” Nucleic Acids Res., 33: D135–D138, 2005.

21. J. Cannone, S. Subramanian, M. N. Schnare, J. R. Collett, L. M. D’Souza, Y. Du, B. Feng,

N. Lin, L. V. Madabusi, K. M. Muller, N. Pande, Z. Shang, N. Yu, and R. R. Gutell, “The

Comparative RNA Web (CRW) site: An online database of comparative sequence and

structure information for ribosomal, intron, and other RNAs,” BMC Bioinformatics, 3:

2, 2002.

22. P. S. Klosterman, M. Tamura, S. R. Holbrook, and S. E. Brenner, “SCOR: A structural

classification of RNA database,” Nucleic Acids Res., 30: 392–394, 2002.

23. P. A. Limbach, P. F. Crain, and J. A. McCloskey, “Summary: The modified nucleosides

of RNA,” Nucleic Acids Res., 22: 2183–2196, 1994.

24. “Online Mendelian Inheritance in Man, OMIM (TM),” McKusick-Nathans Institute for

Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National Center for

Biotechnology Information, National Library of Medicine (Bethesda, MD), http://
www.ncbi.nlm.nih.gov/omim/, 2000.

25. P. D. Karp, C. A. Ouzounis, C. Moore-Kochlacs, L. Goldovsky, P. Kaipa, D. Ahrén,

S. Tsoka, N. Darzentas, V. Kunin, and N. López-Bigas, “Expansion of the BioCyc collec-
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&CHAPTER 2

Interpreting Microarray Data
and Related Applications
Using Nonlinear System Identification

MICHAEL KORENBERG

2.1. INTRODUCTION

We begin by considering some methods of building a model for approximating the

behavior of a nonlinear system, given only the system inputs and outputs gathered

experimentally. Such methods are sometimes referred to as “blackbox” approaches

to nonlinear system identification, because they build a mimetic model of the input–

output relation without assuming detailed knowledge of the underlying mechanisms

by which the system actually converts inputs into outputs. Then we show that such

approaches are well suited to building effective classifiers of certain biological data,

such as for determining the structure/function family of a protein from its amino

acid sequence, to detecting coding regions on deoxyribonucleic acid (DNA), and

to interpreting microarray data. We concentrate on the latter application and in par-

ticular on predicting treatment response and clinical outcome and metastatic status

of primary tumors from gene expression profiles. It is shown that one advantage of

applying such nonlinear system identification approaches is to reduce the amount of

training data required to build effective classifiers. Next, we briefly consider a means

of comparing the performance of rival predictors over the same test set, so as to

highlight differences between the predictors. We conclude with some remarks

about the use of fast orthogonal search (FOS) in system identification and training

of neural networks.

2.2. BACKGROUND

The field of nonlinear system identification is vast; here we confine ourselves to

methods that yield mimetic models of a particular nonlinear system’s behavior,
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given only access to the system inputs and outputs gathered experimentally. The

methods are sometimes called “nonparametric” because they do not assume a

detailed model structure such as that the inputs and outputs are related through a

set of differential equations, where only certain parameter values need to be ascer-

tained. Indeed, virtually no a priori knowledge of the system’s structure is

assumed, rather the system is regarded as an impenetrable blackbox. We consider

only suchmethods becausewewill view the interpretation of gene expression profiles

as essentially a case where the expression levels give rise to input signals, while the

classes of importance, such as metastatic and nonmetastatic or failed outcome and

survivor, create the desired output signals. The desired class predictor results from

identifying a nonlinear system that is defined only by these input and output signals.

Throughout this chapter, it will be assumed that the given nonlinear system is

time invariant, namely that a translation of the system inputs in time results in a cor-

responding translation of the system outputs. Such an assumption causes no diffi-

culty in applying the approach to class prediction. One celebrated blackbox

approach assumes that the input–output relation can be well approximated by a

functional expansion such as the Volterra [1, 2] or the Wiener series [3]. For

example, for the case of a single input x(t) and single output y(t), the approximation

has form

y(t) ¼ z(t)þ e(t) (2:1)

where

z(t) ¼
XJ
j¼0

ðT
0

. . .

ðT
0

h j(t1, . . . , t j)x(t � t1) � � � x(t � t j) dt1 � � � dt j (2:2)

and e(t) is the model error. The right side of Eq. (2.2) is a Jth-order Volterra series

with memory length T and the weighting function hj is called the jth-order Volterra

kernel. The zero-order kernel h0 is a constant. System identification here reduces to

estimation of all of the significant Volterra kernels, which involves solution of a set

of simultaneous integral equations and is usually a nontrivial task. A fairly narrow

class of systems, known as analytic [1, 2], can be exactly represented by the Volterra

series of Eq. (2.2), where both J and T could be infinite. However, a much wider

class can be uniformly approximated by such a series, with both J and T finite,

according to Fréchet’s theorem [4], which has been extended by Boyd and Chua

[5]. The essential requirements are that the nonlinear system must have either

finite [4] or fading [5] memory, and its output must be a continuous mapping of

its input, in that “small” changes in the system input result in small changes in

the system output. Then, over a uniformly bounded, equicontinuous set of input

signals, the system can be uniformly approximated, to any specified degree of accu-

racy, by a Volterra series of sufficient but finite order J.

Wiener [3] essentially used the Gram–Schmidt process to rearrange the Volterra

series into a sum of terms that were mutually orthogonal for a white Gaussian input x
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with a specified power density level. The mutually orthogonal terms in Wiener’s

functional expansion were called G-functionals (G for Gaussian). The advantage

of creating orthogonal functionals was to simplify kernel estimation and remove

the requirement of solving simultaneous integral equations. Indeed, Wiener

kernels in this expansion were determinable using the cross-correlation formula of

Lee and Schetzen [6]. The Wiener kernels are not, in general, the same as the

Volterra kernels, but when the complete set of either is known, the other set can

be readily computed. If a system can be represented exactly by a second-order

Volterra series [i.e., e(t) ; 0 in Eq. (2.1) and J ¼ 2 in Eq. (2.2)], then the first-

and second-order Volterra kernels equal the Wiener kernels of corresponding

order. Once the kernels have been estimated, Eq. (2.2) can be used to calculate

the Volterra series output for an arbitrary input x and thus “predict” the actual

output y of the given nonlinear system.

In discrete time, for single input x(i) and single output y(i), the approximation

has form

y(i) ¼ z(i)þ e(i) (2:3)

where

z(i) ¼
XD
d¼0

XR
j1¼0

� � �
XR
jd¼0

hd( j1, . . . , jd)x(i� j1) � � � x(i� jd) (2:4)

and e(i) is the model error. The Dth-order Volterra series on the right side of

Eq. (2.4) has memory length Rþ 1 because z(i) depends not only on x(i) but also

on earlier values x(i), . . . , x(i� R), that is, at input lags 0, . . . ,R.
Indeed, this discrete-time Volterra series is simply a Dth-degree multi-

dimensional polynomial in x(i), . . . , x(i� R), and the kernels hd( j1, . . . , jdÞ,
d ¼ 0, . . . ,D, are directly related to the coefficients of this polynomial. The zero-

order kernel h0 is the constant term of the polynomial. Any discrete-time system

of finite [7] or fading memory whose output is a continuous mapping of its input

(in the sense described above) can be uniformly approximated, over a uniformly

bounded set of input signals, by the Volterra series on the right side of Eq. (2.4).

Of course, D and R must be sufficiently large (but finite) to achieve the desired

degree of accuracy. Applying the Gram–Schmidt process to the terms on the

right side of Eq. (2.4) for a white Gaussian input x of specified variance can

create a discrete form of the Wiener series. The kernels in this Wiener series are

directly related to the Volterra kernels, and once the complete set of either is

known, the other set can be readily calculated.

Several methods are available for estimating theWiener or the Volterra kernels. If

the input x is white Gaussian, then the Wiener kernels can be estimated using cross

correlation either directly in the time domain by the Lee–Schetzen method [6] or

efficiently in the frequency domain via the method of French and Butz [8]. The

Lee–Schetzen approach was actually presented in continuous time [6] but is now

most commonly applied in discrete time. Amorocho and Brandstetter [9], and later
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Watanabe and Stark [10] and Marmarelis [11], expanded the kernels using Laguerre

functions, then least-squares estimated the coefficients in the resulting expansion,

and finally reconstructed the kernels using the estimated coefficients. Ogura [12]

noted that use of Laguerre functions to approximate kernels having initial delay

was less accurate than employing “associated” Laguerre functions and developed

a fast algorithm for calculating the outputs of biorthogonal Laguerre filters.

Alternatively, the fast orthogonal algorithm (FOA) [13, 14] can be employed to

estimate either the Wiener or the Volterra kernels, as can parallel cascade identifi-

cation [14, 15]. Very widespread use has been made of the Lee–Schetzen [6] tech-

nique, with Sandberg and Stark [16] and Stark [17] being some of the first to exploit

its power in modeling the pupillary control system. Marmarelis and Naka [18] and

Sakai and Naka [19, 20] made imaginative applications of the Lee–Schetzen [6]

technique to study information processing in the vertebrate retina. Barahona and

Poon [21] used the FOA to detect deterministic nonlinear dynamics in short exper-

imental time series. Orcioni et al. [22] studied the Lee–Schetzen [6] and fast orthog-

onal [13, 14] algorithms and gave practical suggestions concerning optimal use of

these methods for estimating kernels up to third order. Zhang et al. [23] proposed

a method of combining Akaike’s final prediction error criterion [24, 25] with the

FOA [13, 14] to determine the memory length simultaneously with the kernels.

Westwick et al. [26] developed bounds for the variance of kernel estimates, comput-

able from single data records, for the FOA [13, 14] and for kernel estimation via use

of Laguerre functions [9–12].

When different kernel estimation procedures are compared, an issue that is some-

times overlooked is whether the test system’s kernels are smooth or, instead, jagged

and irregular. Smooth kernels can usually be well approximated using a small

number of suitably chosen basis functions, such as the Laguerre set; jagged

kernels typically cannot. If the simulated test system has smooth kernels, this

favors basis expansion methods for estimating kernels, because they will require

estimation of far fewer parameters (the coefficients in a brief basis function expan-

sion) than the set of all distinct kernel values estimated by the FOA. In those circum-

stances, basis expansion methods will be shown in their best light, but a balanced

presentation should point out that the situation is quite different when the test

kernels have jagged or irregular shapes. Indeed, one may overlook valuable infor-

mation inherent in the shape of a system’s kernels by assuming a priori that the

kernels are smooth. Moreover, in some applications, for example, Barahona and

Poon’s [21] use of functional expansions to detect deterministic dynamics in short

time series, restrictive assumptions about the kernels’ shapes must be avoided. If

it cannot be assumed that the kernels are smooth, then the basis function approach

will generally require an elaborate expansion with many coefficients of basis func-

tions to be estimated. Hence the FOA is advantageous because it exploits the lagged

structure of the input products on the right side of Eq. (2.4) to dramatically reduce

computation and memory storage requirements compared with a straightforward

implementation of basis expansion techniques.

The FOA uses the observation that estimating least-squares kernels up to Dth

order in Eq. (2.4) requires calculating the input autocorrelation only up to order
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2D� 1. For example, suppose that the system input x(i) and output y(i) are available

for i ¼ 0, . . . , I and that we seek the best approximation of the output, in the least-

squares sense, by a second-order Volterra series [D ¼ 2 in Eq. (2.4)]. Then this

requires calculating the input mean and autocorrelations up to third order, namely

fxxxx(i1, i2, i3) ¼
1

I � Rþ 1

XI

i¼R

x(i)x(i� i1)x(i� i2)x(i� i3)

for

i1 ¼ 0, . . . ,R i2 ¼ 0, . . . , i1 i3 ¼ 0, . . . , i2

The lower order autocorrelations are defined analogously. For I . R3, the most

time-consuming part of the FOA is the calculation of the third-order autocorrelation.

The computational requirement to do this has been overestimated in various publi-

cations (e.g. [27]), sometimes three times too large, so it is worthwhile to consider an

efficient scheme. For example, the input mean and third- and lower order autocorre-

lations can be obtained as follows:

For i=R to I
Q=x(i)
Avg=Avg+Q

For i1=0 to R
QQ=Q.x(i-i1)
fxx(i1)=fxx(i1)+QQ

For i2=0 to i1

QQQ=QQ.x(i-i2)
fxxx(i1,i2)=fxxx(i1,i2)+QQQ

For i3=0 to i2

QQQQ=QQQ.x(i-i3)
fxxxx(i1,i2,i3)=fxxxx(i1,i2,i3)+QQQQ
Next i3

Next i2

Next i1

Next i

After this, each of Avg, fxx, fxxx, fxxxx is divided by I � Rþ 1. The above pseudo-

code requires about IR3=3! multiplications to compute the mean and all autocorrela-

tions up to third order [14], and for I . R3, that is the majority of multiplications the

FOA requires to calculate kernels up to second order.

For the most part, Volterra [1, 2] and Wiener [3] series are of practical use for

approximating “weakly nonlinear” systems, with an order of nonlinearity less

than or equal to, say, 3. In instances where it is possible to precisely apply special

inputs, for example complete binary m-sequences, then high-order kernels can be

rapidly and accurately estimated by Sutter’s innovative approach [28, 29]. Alterna-

tively, some nonlinear systems can be well approximated by a cascade of a dynamic
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linear, a static nonlinear, and a dynamic linear element [30–33], sometimes referred

to as an LNL cascade. A method that leads to an identification of each of these

elements, within arbitrary scaling constants and a phase shift, from a single appli-

cation of a white Gaussian noise input was presented in 1973 [32, 33] and has

had several applications in neurophysiology [34–36]. One interesting property of

the LNL cascade is that its Wiener kernels are proportional to its Volterra kernels

of corresponding order [32, 33]. Moreover, for a white Gaussian input, the shape

of the first linear element’s impulse response is given by the first nonnegligible

slice of a second-order cross correlation parallel to one axis [15, 37]. Thus the

first nonnegligible term in the sequence fxxy( j, 0), fxxy( j, 1), . . . (here fxxy is the

second-order cross correlation between a white Gaussian input xðiÞ and the

cascade output yðiÞ after removing its mean) reveals the first dynamic linear

element up to a scaling constant. Subsequently, methods related to the approach

of [32, 33] have been published by a number of authors [15, 37–39]. However,

the use of such inputs does not apply to the case of interpreting gene expression pro-

files. For the latter application, it is useful to resort to parallel cascade identification

[14, 15], which is effective in approximating systems with high-order nonlinearities

and does not require special properties of the input.

2.3. PARALLEL CASCADE IDENTIFICATION

Parallel cascade identification (PCI) seeks to approximate a given discrete-time

dynamic nonlinear system by building a parallel array of alternating dynamic

linear (L) and static nonlinear (N ) elements using only the system’s input–output

data gathered experimentally [14, 15]. By “dynamic” is meant that the element

has memory of length Rþ 1, as explained above, where R . 0. An example of a par-

allel LN cascade model is shown in Figure 2.1 and will be used below for class pre-

diction. This parallel LN model is related to a parallel LNL model introduced by

Palm [7] to approximate a discrete-time nonlinear system, of finite memory and

anticipation, whose output was a continuous mapping of its input, in the sense

explained above. While Palm allowed his linear elements to have anticipation as

well as memory [7], only nonanticipatory elements will be discussed here. In

certain applications (e.g., to locate the boundaries of coding regions of DNA), antici-

pation will be beneficial. In Palm’s model, the static nonlinear elements were logar-

ithmic and exponential functions rather than the polynomials used here. Palm did not

suggest any method for identifying his parallel LNL model, but his article motivated

much additional research in this area. When each N in Figure 2.1 is a polynomial, the

model has also been called a polynomial artificial neural network [27], but we will

continue the tradition of referring to it as a parallel cascade model.

Subsequent to Palm’s [7] work, a method was proposed for approximating, to an

arbitrary degree of accuracy, any discrete-time dynamic nonlinear system having a

Wiener series representation by building a parallel cascade model (Fig. 2.1) given

only the system input and output [14, 15]. The method begins by approximating

the nonlinear system by first a cascade of a dynamic linear element followed by a
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polynomial static nonlinearity. The residual, namely the difference between system

and cascade outputs, is treated as the output of a new nonlinear system driven by the

same input, and a second cascade is found to approximate the new system. The new

residual is computed, a third cascade path can be found to improve the approxi-

mation, and so on. Each time a cascade is added, the polynomial static nonlinearity

can be least-squares fit to the current residual. Under broad conditions, the given

nonlinear system can be approximated arbitrarily accurately, in the mean-square

sense, by a sum of a sufficient number of the cascades. However, each of the

cascade paths may be found individually, which keeps the computational require-

ment low and the algorithm fast.

We will describe in detail the identification of a single-input, single-output non-

linear system, although a multivariate form of PCI is also available [14]. Assume

that the nonlinear system output y(i) depends on input values x(i), . . . , x(i� R),

that is, has memory length Rþ 1, and that its maximum degree of nonlinearity is

D. Moreover, this input and output are only available over a finite record:

x(i), y(i), i ¼ 0, . . . , I. Suppose that zk(i) is the output of the kth cascade and yk(i)

is the residual left after k cascades have been added to the model. Then

y0(i) ¼ y(i), and more generally, for k � 1,

yk(i) ¼ yk�1(i)� zk(i) (2:5)

Consider finding the kth cascade, which will begin with a dynamic linear element

that can be specified by its impulse response hk( j), and there are many ways that

this can be chosen. One alternative is to set it equal to the first-order cross correlation

of the input with the latest residual, yk�1(i), or to a slice of a higher order cross cor-

relation with impulses added at diagonal values. Thus, for j ¼ 0, . . . ,R, set

hk( j) ¼ fxyk�1
( j) (2:6)

FIGURE 2.1. Parallel cascade model used for class prediction. In each path, L is a dynamic

linear element and N is a polynomial static nonlinearity. (From [63].)
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if the first-order cross correlation fxyk�1
is used, or

hk( j) ¼ fxxyk�1
( j,A)+ Cd( j� A) (2:7)

if the second-order cross correlation fxxyk�1
is instead chosen, or

hk( j) ¼ fxxxyk�1
( j,A1,A2)+ C1d( j� A1)+ C2d( j� A2) (2:8)

if the third-order cross correlation fxxxyk�1
is employed [14, 15]. Analogous choices

involving slices of higher order cross correlations can be made (up to the assumed

order of nonlinearity D). Which alternative is selected to define hk( j) can be decided

at random, provided that there is a nonzero probability that each may be chosen. If

Eq. (2.7) is used to define hk( j), then the value of A (determining the slice) can be

chosen at random from 0, . . . ,R and the sign of the d-term can also be chosen ran-

domly. The coefficient C in Eq. (2.7) is chosen to tend to zero as the mean square of

yk�1(i) tends to zero. When PCI is used for kernel estimation, it is useful to further

constrain the magnitude of C to not exceed the maximum absolute value of the slice

fxxyk�1
( j, A), j ¼ 0, . . . , R. Analogous comments apply when Eq. (2.8) is used to

define hk( j). Instead of randomly choosing hk( j) in the manner just set out, a deter-

ministic progression through each of the various alternatives can be employed.

Alternatively, the same “random” sequence can be used every time the algorithm

is run. Many other strategies [14] can be used to define hk( j), and the method is

not limited to use of slices of cross-correlation functions.

Once the dynamic linear element beginning the k th cascade has been determined,

calculate its output,

uk(i) ¼
XR
j¼0

hk( j)x(i� j) (2:9)

which forms the input to the polynomial static nonlinearity. The latter’s coefficients

can be found by least-squares fitting its output,

zk(i) ¼
XD
d¼0

akdu
d
k (i) (2:10)

to the latest residual yk�1(i). To increase the accuracy of estimating the coefficients,

the impulse response function hk( j) can first be scaled so that the linear element’s

output uk(i) has unity mean square [40]. The new residual is then calculated from

Eq. (2.5), and the process of adding cascades can continue analogously. Since the

coefficients akd are least-squares estimated, it follows that

y2k(i) ¼ y2k�1(i)� z2k(i) (2:11)

where the overbar denotes the average over i ¼ R, . . . , I. Thus, by Eq. (2.11), adding
the kth cascade reduces the mean square of the residual by an amount equal to the
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mean square of that cascade’s output. This alone does not imply that the mean square

of the residual can be driven to zero by adding further cascades. However, due to the

way the impulse responses for the dynamic linear elements are defined as cascades

are added, the parallel cascade output does converge to the nonlinear system output

in the mean-square sense [14]. Moreover, as noted above, other effective methods of

finding the impulse responses exist. If there are K cascades in total, then the PCI

model output is

z(i) ¼
XK
k¼1

zk(i) (2:12)

To reduce the possibility of adding ineffectual cascades that are merely fitting noise,

before accepting a candidate for the k th path, one may require [14] that

z2k(i) . T
y2k�1(i)

I1
(2:13)

where I1 is the number of output points used in the identification and T is a threshold.

Here, the output y(i) was used over the interval i ¼ R, . . . , I, so I1 ¼ I � Rþ 1. In the

applications below to class prediction, I1 has a slightly different value to accommo-

date transition regions in the training input. If the residual yk�1(i) were independent

zero-meanGaussian noise, then, whenT ¼ 4 and I1 is sufficiently large, the inequality

(2.13) would not be satisfied with probability of about 0.95. Clearly, increasing T

in the above inequality increases the reduction in mean-square error (MSE) required

of a candidate cascade for admission into the model. If the candidate fails to satisfy

this inequality, then a new candidate cascade can be constructed and tested for

inclusion as the k th path. This involves making a new choice for hk( j) using the strat-

egy described above and then best fitting the polynomial static nonlinearity that

follows. The process of adding cascades may be stopped when a specified number

have been added or tested, or when the MSE has been made sufficiently small, or

when no remaining candidate can cause a significant reduction in MSE [14].

While the above background material has focused on nonparametric identifi-

cation methods, there exist general-purpose search techniques, such as FOS

[13, 41, 42], for building difference equation or other models of dynamic nonlinear

systems with virtually no a priori knowledge of system structure. Fast orthogonal

search is related to an approach by Desrochers [43] for obtaining nonlinear

models of static systems. However, the latter method has computational complexity

and storage requirement dependent upon the square of the number of candidate

terms that are searched, while in FOS the dependence is reduced to a linear relation-

ship. In addition FOS and/or iterative forms [44–47] of FOS have been used for

high-resolution spectral analysis [42, 45, 47, 48], direction finding [44, 45], con-

structing generalized single-layer networks [46], and design of two-dimensional

filters [49], among many applications. Wu et al. [50] have compared FOS with cano-

nical variate analysis for biological applications.
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2.4. CONSTRUCTING CLASS PREDICTORS

The blackbox identification considered above seeks to build a model that can

approximate the behavior of a given dynamic nonlinear system from knowledge

only of the system input and output. Such a capability lends itself well to construct-

ing effective class predictors in many practical cases. For example, consider the

problem of predicting the structure/function family of a novel protein given only

its primary amino acid sequence. The amino acid sequences can be regarded as

the inputs and their corresponding families as the outputs [40, 51]. First, some

means is used to map the amino acid sequence into a corresponding numerical

sequence and similarly to numerically designate the families to be distinguished.

For example, the Rose [52] scale assigns each amino acid a hydrophobicity value,

converting each protein sequence into a hydrophobicity profile. To distinguish

between, say, the globin and calcium-binding families, the profiles of one or more

exemplars from each family were spliced together to form a training input [40].

The corresponding training output was defined to have ideal value –1 over globin

segments of the training input and 1 over calcium-binding segments. A parallel

cascade model was found to approximate this input–output relation. Suppose that

Rþ 1 is the memory length of the model, so that its output depends on input

delays 0, . . . ,R. Then, to allow the model to “settle,” those values of the training

output corresponding to the first R points of each segment joined to produce the

training input were excluded from the identification. A novel sequence was classi-

fied by feeding its corresponding profile through the identified model and then com-

puting the average of the resulting output starting with the (Rþ 1)th point. If the

average was less than zero, the sequence was classified as globin and otherwise

as calcium binding [40]. While effective classifiers were built encoding amino

acids by the Rose scale, the resulting training inputs had some drawbacks for non-

linear system identification. First, the Rose scale is not one to one, since some amino

acids, such as leucine, methionine, and tryptophan, are assigned the same hydropho-

bicity value, so there is a loss of information in going from the amino acid sequence

to the resulting hydrophobicity profile. Second, the assigned values cover a narrow

range while weighting some amino acids more heavily than others.

Indeed, as reported subsequently [51], use of certain “simultaneously axially and

radially aligned hydrophobicities (SARAH) scales” to uniquely encode the amino

acids via 5-tuples increased PCI classification accuracy. In the SARAH1 scale, the

code for each amino acid has three entries that are 0 and two that are both 1 or

both 21. In the SARAH2 scale, each code has two 0 entries and three that are all 1

or all 21. For both scales, the amino acids were ranked according to the Rose scale

(breaking ties), and then the codes were assigned in descending order of their

binary number values. Either SARAH scale leads to either a numerical sequence

five times longer than the amino acid sequence or to a set of five signals each of

the same length as the amino acid sequence [51] for use with a five-input parallel

cascade classifier [14]. To classify a novel protein that was encoded by a SARAH

scale, an MSE ratio test [51] yielded higher accuracy than using the sign of the

mean output as discussed above. In the ratio test, the MSE of the output signal
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from the ideal value for a class is normalized by theMSE of the training exemplars for

that class, and the sequence is assigned to the class with the smallest of the ratios.

When tested on over 16,000 protein sequences in two-way classifications, parallel

cascade classifiers using SARAH1-encoded sequences outperformed state-of-the-art

hidden Markov models [53] trained with the same three protein exemplars (one

sequence each from globin, calcium-binding, and kinase classes) [51].

David et al. [54] reviewed advances in threading approaches to protein fold rec-

ognition, including unconventional threaders such as proximity correlation matrices

[55] and PCI. In addition to the work described above, similar applications of PCI

have been made to distinguish between coding (exon) and noncoding (intron)

human DNA sequences [56] and to recognize sites on proteins that bind to adenosine

triphosphate (ATP) and guanosine triphosphate (GTP) [57].

In the next section, the use of PCI to interpret gene expression profiles is

considered in detail.

2.5. PREDICTION BASED ON GENE EXPRESSION PROFILING

The parallel cascade model can be regarded as a special kind of artificial neural

network (ANN) where the interaction between pathways is reduced to summing

of their outputs and where the pathways contain nonlinearities in the form of poly-

nomial activation functions. The ANNs have been successfully used to classify

cancers based on gene expression, with Khan et al. [58] demonstrating flawless dis-

crimination among four categories of small, round blue-cell tumors. The present

section describes how PCI predictors of treatment response, clinical outcome, and

metastatic status have been built based on gene expression profiles.

A gene expression profile pj can be thought of as a column vector containing the

expression levels ei, j, i ¼ 1, . . . , I, of I genes. We suppose that we have J of these

profiles for training, so that j ¼ 1, . . . , J. Each of the profiles pj was created from

a sample (e.g., from a tumor) belonging to some class. The samples may be taken

from patients diagnosed with various classes of leukemia, for example, acute lym-

phoblastic leukemia (ALL) or acute myeloid leukemia (AML), as in a classic paper

by Golub et al. [59]. Given a training set of profiles belonging to known classes,

(e.g., ALL and AML), the problem is to create a predictor that will assign a new

profile to its correct class. Brazma and Vilo [60] refer to the table of I gene rows

and J sample columns as a gene expression matrix.

This section focuses on three classification problems based on gene expression

profiling, predicting:

1. Treatment response of a group of AML patients using data from Golub et al.

[59]

2. Clinical outcome of a group of medulloblastoma patients using data from

Pomeroy et al. [61]

3. Metastatic status of primary medulloblastoma tumors using data from

MacDonald et al. [62]
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One difference from protein family prediction, or recognition of coding regions, is

that, unlike sequences of amino acids or DNA sequences, the gene expression values

in a profile are not ordered sequentially. However, it is still possible to build effec-

tive gene-expression-based predictors via nonlinear system identification, and

indeed there are even some advantages, such as the freedom to vary the ordering

of the gene expression levels in constructing the training input [63]. Once the order-

ing scheme is chosen, it is maintained both to construct each segment of the training

input and to prepare the individual input signals corresponding to test profiles. Thus,

while the expression values in the original profiles are not ordered sequentially, the

training input segments and the test input signals do have an imposed order. Parallel

cascade identification simply looks for a pattern in the data. The approach depends

on training exemplars from different classes producing different patterns and the PCI

model having appropriate memory length to capture the pattern for each class [63].

2.5.1. Predicting AML Treatment Response

For 15 adult AML patients treated with anthracycline-cytarabine, there were eight

failed treatments, where complete remission had not resulted, and seven successful

treatments, where complete remission of at least 36 months had been achieved. At

the time of leukemia diagnosis, samples were obtained that were used for gene

expression profiling via an Affymetrix oligonucleotide microarray. Each profile con-

tained expression levels of 6817 human genes, but because of duplicates and

additional probes in the microarray, a total of 7129 expression levels were present

in the profile. Golub et al. [59] were able to construct predictors that could dis-

tinguish very accurately between various acute leukemia classes. However, they

found no strong gene expression signature correlated with clinical outcome and

stated that their outcome predictors were “not highly accurate in cross-validation”

[59]. Similarly, for the same data, Schuster et al. [64] found that none of five differ-

ent clustering methods (Kohonen clustering, fuzzy Kohonen network, growing cell

structures, K-means clustering, and fuzzy K-means clustering) clustered patients

having similar treatment response.

Recently, PCI was used successfully to predict treatment response [63] from the

same microarray data as above. See also the review by Kirkpatrick [65]. To build an

appropriate parallel cascade model, the first step was to create a training input. A set

of genes were selected using the same number and selection method found to be

effective in building PCI models to distinguish ALL from AML profiles. Therefore,

the first profile corresponding to a failed (F) treatment and the first profile corre-

sponding to a successful (S) treatment were compared and the 200 “most important”

genes were located. For each of these genes, the absolute value of the difference

between the corresponding raw scores on the first F and S profiles ranked in the

top 200 of the 7129 genes. The raw expression values from this F profile for

these 200 genes were juxtaposed to form the F segment to be used for training,

and the S segment was similarly prepared from the first S profile. The two

information-rich segments were then spliced together to form a 400-point training

input x(i) (Fig. 2.2a). The 200 expression values for each segment were appended
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in the same relative order that they had in the original profile, and this is true for all

the examples described here. However, it has been found that other ordering

schemes may be beneficial, for example those that cause the autocovariance of

the training input to be almost a delta (i.e., discrete impulse) function [63].

FIGURE 2.2. (a) Training input x(i) formed by splicing together raw expression levels of

genes from first “failed treatment” profile 28 and first “successful treatment” profile 34.

The genes used were the 200 having greatest difference in expression levels between the

two profiles. (b) The order used to append the expression levels of the 200 genes caused

the autocovariance of the training input to be nearly a delta function, indicating that the

training input was approximately white.
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Indeed, as shown in Figure 2.2b, the order used resulted in an almost white input,

which is typically advantageous for nonlinear system identification techniques,

including PCI. The corresponding training output y(i) (Fig. 2.2c, solid line) was

defined to be 21 over the F segment and 1 over the S segment.

For this training input and output, a PCI model was identified using the method

described above [14, 15]. This model could certainly distinguish between F and

S profiles, at least for the training exemplars. Indeed, as shown in Figure 2.2c,

when the training input x(i) was applied to the identified model, the resulting

output z(i) (dashed line) was predominately negative over the F segment and

positive over the S segment of the input.

To identify this model, certain parameters chiefly related to architecture had to be

determined. As noted earlier, these are (1) the memory length (Rþ 1) of the

dynamic linear element, (2) the degree D of the polynomial static nonlinearity,

(3) the maximum number of cascades allowed into the model, and (4) the threshold

T concerning required reduction in MSE for accepting a candidate cascade.

How these parameters were selected is explained next.

The first F and S profiles used to construct the training input were reserved for this

purpose, which left 13 profiles for testing. Each time, 1 of the 13 profiles was held

out for testing, while the other 12 profiles were employed to determine the above

parameter values to be used in that test. This was done by testing the accuracy

FIGURE 2.2. (c) Training output y(i) (solid line) defined as21 over failed treatment portion

of training input and 1 over successful treatment portion. The training input and output were

used to identify a parallel cascade model of the form in Figure 2.1. The dashed line represents

calculated output z(i) when the identified model is stimulated by training input x(i). Note

that z(i) is predominately negative over the failed treatment portion and positive over the

successful treatment portion of the training input. (From [63].)
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over the 12 profiles of various PCI models identified from the same training input

and output with different values for the above four parameters. The most accurate

model was chosen to classify the test profile. Thus the test profile was not used to

determine the parameter values for the model that would classify it. The procedure

was repeated until all 13 profiles had been classified. It emerged that the same

parameter settings (memory length 12, polynomial degree 7, seven cascades in

total, threshold T ¼ 11) were chosen each time, so that the same PCI model was

in fact selected for each classification of the held-out profile [63].

To classify a test profile, a corresponding input signal was prepared by concate-

nating the raw expression values of the 200 selected genes in the same order used

above. This input was fed to the identified PCI model to obtain a corresponding

output signal. The sign of the mean output was used as the decision criterion for

classification, as explained above [63]. The PCI model correctly classified five of

the seven test F profiles and five of the six test S profiles. Moreover, the model’s

individual output values for the test profiles clearly correlated with the F-versus-S

class distinction (P , 0.0155, one tail). Finally, the way that the model’s mean

output values ordered the test profiles also showed that it distinguished between F

and S profiles. Indeed, the ranking of the test profiles by their corresponding

mean outputs in Table 2.1 demonstrates that F profiles tend to precede S profiles,

and this difference is significant on the Mann-Whitney test (P , 0.0367, one tail).

One-tailed tests were used because, due to the way the training output had been

defined, output values corresponding to F profiles would be expected to be

smaller than those corresponding to S profiles.

Why does the nonlinear system identification approach work with so few training

data? It is because the system output value depends only upon the present and a finite

TABLE 2.1 Parallel Cascade Ranking of Test Expression Profiles

Rank Mean Output Actual Outcome Profile No.

1 21.17 F 31

2 20.863 F 32

3 20.757 F 33

4 20.408 S 37

5 20.298 F 50

6 20.0046 F 30

7 0.0273 S 53

8 0.078 S 38

9 0.110 F 51

10 0.148 F 29

11 0.194 S 52

12 0.267 S 36

13 16.82 S 35

Source: Ref. [63].

Note: F ¼ failed treatment, S ¼ successful treatment. The complete set of profiles

is found in [59], and “Profile No.” follows the same numbering scheme.
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number of delayed input (and possibly output) values, covering a shorter length than

the length of the individual segments joined to form the training input. This require-

ment is always met by a model having finite memory less than the segment lengths

but applies more generally to finite-dimensional systems. These systems include

difference equation models, which have fading rather than finite memory.

However, the output at a particular “instant” depends only upon delayed values of

the output and present and delayed values of the input covering a finite interval.

For example, the difference equation might have the form

y(i) ¼ F ½ y(i� 1), . . . , y(i� IA), x(i), . . . , x(i� IB)�

So long as the maximum of the output delay IA and the input delay IB is considerably

less than the number of points in each input segment, we derive numerous training

examples from each segment joined to form the input.

To illustrate, the parallel cascade model was assumed above to have a memory

length of 12 points, whereas the F and S segments of the training input each com-

prised 200 points [63]. Having a memory length of 12 means that we assume it is

possible for the parallel cascade model to decide whether a segment portion is F

or S based on the expression values of 12 genes. Thus the first F training example

for the parallel cascade model is provided by the first 12 points of the F segment,

the second F training example is formed by the 2nd to the 13th points, and so on.

Hence each 200-point segment actually provides 189 training examples, so that a

total of 378 training examples, and not just 2, are provided by the single F and S

input segments.

2.5.2. Predicting Medulloblastoma Clinical Outcome

Predicting clinical outcome from gene expression profiles obtained at diagnosis

could dramatically alter and individualize cancer therapy. Bredel et al. [66] have

comprehensively reviewed the use of gene expression profiling in human brain

tumors and pointed out that drug resistance here is likely to involve a complex

network of regulatory dynamics. Recently, Pomeroy et al. [61] showed that a

variety of classification techniques, including weighted voting (WV), k-nearest

neighbors (k-NN), support vector machines (SVMs), and IBM SPLASH could be

used to predict clinical outcome of a group of 60 medulloblastoma patients from

their gene expression profiles. While these methods made relatively few errors in

leave-one-out testing, they were biased in favor of recognizing survivors compared

to those with failed outcomes. For example k-NN made the fewest total errors (13)

but correctly identified only 10 of 21 (47.6%) with failed outcome, in contrast to 37

of 39 (94.9%) survivors, averaging 71% if the two outcome subgroups are weighted

equally. A single-gene TRKC (neurotrophin-3 receptor) predictor showed reverse

bias, recognizing 81% with failed outcomes and 59% of survivors. By combining

predictors via majority voting, Pomeroy et al. [61] reduced total errors to 12, but

the resulting accuracy still favored the survivor subgroup (89.7%) over the failed

subgroup (61.9%). Such inaccuracy in recognizing one of the outcomes poses a

problem for clinical use.

40 INTERPRETING MICROARRAY DATA AND RELATED APPLICATIONS



In [67], PCI was applied to this data set using the raw values given after rescaling

by Pomeroy et al. [61], where all expression profiles were of tumor samples obtained

at diagnosis. First, the same method of selecting genes, the same number of genes,

and the same architectural parameter values employed in the AML study [63] were

used to identify a PCI model. Thus, the first profile for a failed (F) outcome and the

first for a survivor (S) outcome were compared, and the 200 top-ranked genes, that is,

with greatest difference in raw expression levels between the two profiles, were

selected. The selected genes’ raw expression levels from the first F profile were

appended in the relative order they had in the profile to form an F segment, and

an S segment was similarly prepared from the first S profile. The F and S segments

were spliced together to form a 400-point training input, and the corresponding

output was again defined as 21 over F and 1 over S segments of the training

input. Then the identical parameter values (memory length 12, polynomial degree 7,

seven cascades in total, threshold T ¼ 11) were used as in the AML study [63] to

identify a PCI model from the training input and output. Hence the remaining 58

profiles in the data set were not used to obtain the model but were instead reserved

for testing it [67].

In particular, the PCI model was used as a filter that converted input signals cor-

responding to the test profiles into output signals that were much easier to classify

than the original profiles [67]. Thus a 200-point input signal was prepared from

each test profile by appending the raw expression values of the previously selected

genes in the same order used above. Each input signal was fed through the PCI

model to obtain an output signal corresponding to the test profile. Since memory

length was 12, the first 11 points of each output signal were ignored to allow the

model to settle, and only the last 189 points of the output were used to classify it.

The first issue to resolve was whether replacing the input signals by the model

outputs benefited classification accuracy. Pomeroy et al. [61] had used a leave-

one-out protocol to measure the accuracy of the methods tested, and the same

procedure was adopted in [67]. Thus, each of the 58 test profiles was classified by

calculating the Euclidean distance of its output signal from each of the other 57

output signals and choosing the class of the closest. Of the 58 profiles, 12 of 20 F

(60%) and 31 of 38 S (81.6%) were correctly classified, a 71% average. However,

using the same test procedure with the input signals, rather than their corresponding

model outputs, resulted in only 7 of 20 F (35%) and 25 of 38 S (65.8%) correctly

classified, averaging 50% and showing that the PCI model was essential.

At this point, the accuracy obtained classifying the PCI model output signals [67]

appears similar to that obtained by Pomeroy et al. [61] using k-NN to classify the

profiles, but there is a crucial difference in how the accuracy was measured. The

k-NN accuracy reported was for leave-one-out creation and testing of 60 eight-

gene predictive models with k ¼ 5, which were found to be optimal after trying

models with 1 to 200 genes and different values of k. Because of the leave-

one-out creation of the models, no single set of genes was shown to form an effective

predictor for all the profiles. However, the PCI model and the genes to use were

found from only the first F and S profiles, which were excluded from the test set.

The four parameter values needed (for memory length, polynomial degree, etc.)

came from the AML study, as did the number of genes to use and the method of
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selecting genes. Thus, unlike the earlier study [61], there was no searching for a

better set of parameter values or number of genes to use. The same set of 200

genes and the same PCI model were employed to create the output signals for the

remaining 58 test profiles, although a leave-one-out protocol was used in classifying

these output signals.

For fairer comparison, various numbers of genes and different parameter values

were tried in creating PCI models, still using only the first F and S profiles to select

the top-ranked genes and construct the training input. Once the model output signals

were produced for the remaining 58 profiles, a leave-one-out protocol was again

used to classify these output signals. It was found that better accuracy was obtained

by selecting 22 genes, a memory length of 4, polynomial degree of 5, a threshold T

of 6, two cascades in the final model, and using the largest correlation coefficient,

rather than the smallest Euclidean distance, as the decision criterion [67]. Then

14 of 20 (70%) F and 32 of 38 (84.2%) S test profiles were classified correctly,

a 77% average. Using the input signals rather than the model outputs dropped accu-

racy to 50% on F and 76.3% on S profiles, averaging 63%, again showing the benefit

of the PCI model.

An encouraging development was that PCI formed a strong component in com-

bination predictors. Indeed, combining PCI with various predictors used by

Pomeroy et al. could reduce total errors to 9 (70% on test F, 92.1% on test S).

Another more symmetric predictor (80% on test F, 78.9% on test S) resulted from

a PCI, metastatic staging, TRKC combination [67]. These results still require veri-

fication on independent sets since certain parameter values for the PCI model and

number of genes to be used had not been prespecified, unlike the 200-gene medullo-

blastoma outcome prediction case discussed first.

Indeed, the importance of separating training and test sets is illustrated by a

recent study by van’t Veer et al. [68] concerned with using gene expression profiles

to predict clinical outcome of breast cancer. The study appears to show a large

advantage to a gene-expression-based predictor compared with a number of clinical

predictors, such as based on tumor grade, estrogen receptor status, progesterone

receptor status, tumor size, patient age, and angioinvasion. Moreover, there was

some validation of the microarray predictor on an additional independent set,

with only 2 incorrect out of 19 classifications. However, Tibshirani and

Efron [69] stress that comparing predictors over the same data set used to derive

the microarray predictor (called “reuse”) strongly biases the results in favor of the

latter predictor. They used a “prevalidation analysis” in which the predictor of

the class of a particular profile was not derived using knowledge of that profile’s

class. Their resulting odds ratio (odds of developing distant metastases within

5 years with a “poor prognosis” signature to the odds of distant metastases

without the signature) for the microarray predictor was much smaller than earlier

computed by van’t Veer et al. also using prevalidation. In addition, using cross

validation to prevent reuse, Tibshirani and Efron [69] could not find that including

the microarray predictor with six clinical predictors in a logistic regression

model conferred any prediction advantage compared to a logistic model without

the microarray predictor.
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2.5.3. Predicting Medulloblastoma Metastasis

An intriguing study by MacDonald et al. [62] has helped to elucidate the genetic

pathways underlying metastasis of medulloblastoma. Their work identified some

genes critical to this process and also led them to suggest novel therapeutic interven-

tions, including the use of specific inhibitors of platelet-derived growth factor

receptor a as possible new treatments of medulloblastoma. In addition, they

adapted the weighted voting scheme of Golub et al. [59] to obtain promising

results predicting medulloblastoma metastatic status of primary tumors. Their data

set comprised profiles for 14 nonmetastatic (M0) and 9 metastatic (Mþ) tumor

samples.

The set was so small that completely separating training and test sets left very few

exemplars to build a PCI predictor. The PCI training set consisted only of the first

three each of the Mþ and M0 profiles, while the remaining profiles were entirely

reserved for testing [70]. The first Mþ and M0 profiles were used both to select

genes and to construct a training input, as described above for medulloblastoma

outcome prediction [67]. With the same parameter values (memory length 4, poly-

nomial degree 5, threshold 6, two cascades in model) and number of genes (22) from

that study, a PCI model was identified [70]. Then the model was used to obtain refer-

ence output signals corresponding to the remaining two training profiles from each

class. Using correlation with the reference model outputs to predict class [67] (see

above) yielded these test results: 5 of the 6 novel Mþ and 8 of the 11 novel M0 pro-

files were correctly classified (Matthews’ [71] correlation coefficient f ¼ 0:54,
Fisher’s exact test P , 0.043, one tail, P , 0.05 two tail) [70].

However, some luck is needed when there is such a paucity of training data: The

few known profiles must be representative of their classes or nothing will work, and

typically so few exemplars will not be enough to cover the variety of profile types in

each class. Indeed, all the above PCI models were identified with a training input

constructed from one exemplar expression profile from each class. These are

extreme cases, and ideally more exemplars will be available both to train the PCI

model and to construct reference output signals for classifying novel profiles. To

illustrate this, the first four exemplars from each of the M0 and Mþ classes were

used to select the top-ranked 22 genes (Table 2.2). One of these genes, SPARC/
osteonectin, is also in the set of 22 previously selected to predict clinical outcome

of medulloblastoma [67].

The above four exemplars from each of the M0 and Mþ classes were also

employed to construct a training input (Fig. 2.3a). Hence these exemplars gave

rise to eight 22-point segments, resulting in a 176-point training input. The corre-

sponding training output (solid line, Fig. 2.3b) was defined as –1 over each Mþ

segment and as 1 over each M0 segment of the training input. The same parameter

values as before (memory length 4, polynomial degree 5, threshold 6, two cascades

in the model) were used for the PCI model. The dashed line in Figure 2.3b shows the

output when the identified model is stimulated by the training input. Next, the

remaining profiles were used to prepare reference output signals from the model.

The resulting predictor could classify correctly all three metastatic cell lines and
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TABLE 2.2 Twenty-Two Genes Used to Predict Medulloblastoma

Metastasis

Position in Profile

(1-2059) Description

90 M33764cds Human ornithine decarboxylase gene,

complete cds

115 M11717mRNA Human heat shock protein (hsp 70) gene,

complete cds

219 D13748 HUM4AI Human mRNA for eukaryotic initiation

factor 4AI

467 D78577expanded D78576S2 Human DNA for 14-3-3

protein eta chain; exon2 and complete cds

744 M55409 Human pancreatic tumor-related protein mRNA,

30 end

763 D11139exons# 1-4 HUMTIMP Human gene for tissue

inhibitor of metalloproteinases; partial sequence

1078 X58965 H.sapiens RNA for nm23-H2 gene

1083 X73066cds Homo sapiens NM23-H1 mRNA

1138 M55914 HUMCMYCQ Human c-myc binding protein

(MBP-1) mRNA; complete cds

1168 L19182 HUMMAC25X Human MAC25 mRNA;

complete cds

1194 D17517 HUMSKY Human sky mRNA for Sky;

complete cds

1291 HG4322-HT4592 Tubulin, Beta

1423 V00567cds HSMGLO Human messenger RNA fragment

for the beta-2 microglobulin

1570 M94250expanded Human retinoic acid inducible factor

(MK) gene exons 1-5, complete cds

1664 J03040 Human SPARC/osteonectin mRNA,

complete cds

1669 J04164 HUM927A Human interferon-inducible protein

9-27 mRNA; complete cds

1684 J02783mRNA HUMTHBP Human thyroid hormone

binding protein (p55) mRNA; complete cds

1762 D00017 HUMLIC Homo sapiens mRNA for lipocortin II;

complete cds

1822 U21689cds Human glutathione S-transferase-P1c gene;

complete cds

1863 M93311cds Human metallothionein-III gene, complete cds

1871 M29386mRNA HUMPRLA Human prolactin mRNA;

30 end

1949 HG1980-HT2023 Tubulin, Beta 2

Source: Ref. [70].
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FIGURE 2.3. (a) Training input x(i) formed by splicing together raw expression levels of

genes from first four metastatic (Mþ) profiles and first four nonmetastatic (M0) profiles.

The genes used (Table 2.2) were the 22 having greatest difference in expression levels

between the Mþ and M0 training profiles. (b) Training output y(i) (solid line) defined as

–1 over Mþ portions of training input and 1 over M0 portions. The training input and

output were used to identify a parallel cascade model of the form in Figure 2.1. The

dashed line represents calculated output z(i) when the identified model is stimulated by train-

ing input x(i). Note that z(i) is predominately negative over the Mþ portions and positive over

the M0 portions of the training input. The identified model’s ability to separate metastatic and

nonmetastatic profiles is exploited by replacing the profiles with corresponding model output

signals that are easier to classify and predict metastasis. (From [70].)
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four of five nonmetastatic tumors in an independent set that had also been used in

[62]. Although the latter predictor may well be more reliable than the first predictor

built using only the first 3 M0 and 3 Mþ profiles from the original set, the indepen-

dent set is not sufficiently large to show this. In fact, the first predictor achieved

almost the same level of performance over the independent set, correctly classifying

two of the three metastatic cell lines and four of the five nonmetastatic tumors.

2.6. COMPARING DIFFERENT PREDICTORS OVER
THE SAME DATA SET

The immediately above remarks allude to a familiar problem with small data sets:

One predictor might appear to show superior performance compared to another,

but it is not clear that the improvement is significant. As Slonim [72] points out,

because most data sets lack sufficient samples, generally only a few errors separate

the winning and losing predictors.

Here we suggest a method of analyzing classifier performance that helps to make

differences between competing predictors more apparent. The method was motiv-

ated by Pomeroy et al.’s presentation of the k-NN classification accuracy over

subsets of patients with localized disease, low TRKC expression, and similar treat-

ment regimens [61]. It was noted that, for example, not all patients with localized

disease survived, yet k-NN prediction of outcome remained significant over this

subset, indicating improvement over prediction based on metastatic staging [61].

As noted above, several methods have been used to predict clinical outcome in

medulloblastoma, so we will focus now on this problem. Given two predictors, A

and B, assume that neither correctly classifies all survivors or all failed outcomes.

Then we suggest the following method of comparing the two predictors. Begin by

splitting the data set into the subset predicted by A to be survivors and the subset

predicted by A to fail treatment. Clearly A has no ability to distinguish survivors

from failed outcomes within each subset. We then test whether B predictions over

each subset positively correlate with actual outcome, obtaining the corresponding

Fisher’s exact test P-values. Assuming a positive correlation over each subset

and treating the B performance over the two subsets as independent events, we

can calculate the level of significance for the overall B prediction over two

subsets where A has no predictive ability. Then the analysis is repeated, but rever-

sing the roles of A and B. Often, this can reveal a major difference in performance by

the two predictors.

In particular, we illustrate this approach by comparing k-NN and PCI perform-

ance over the 58 profiles used to test PCI. Of these profiles, PCI correctly classified

14 of 20 F and 32 of 38 S; for k-NN, 9 of 20 F and 36 of 38 S were correctly classi-

fied. (In addition, k-NN was correct on the first F and S profiles used to construct the

PCI training input; these two profiles were not part of the PCI test set.) Table 2.3A

shows PCI performance over the subset of profiles all classified as F and the

subset all classified as S by k-NN. Over the first subset, PCI was flawless in dis-

tinguishing the nine F from the two S profiles (Matthews’ correlation coefficient

f ¼ 1, P , 0:0182, one or two tails). Over the second subset, there was again a
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positive correlation (coefficient f ¼ 0:29, P , 0:063 one tail, P , 0.098 two tails)

of PCI predictions with actual outcomes. Treating the PCI performance over the two

subsets as independent events, we calculate the probability of achieving by chance

the observed accuracy or better over both of these subsets is less than

0.02 � 0.1 ¼ 0.002.

In contrast, Table 2.3B shows k-NN performance over the subset of profiles all

classified as F and the subset all classified as S by PCI. Note that this portion of

the table can be set down by inspection of the upper portion: The two outer

number columns stay the same while the two inner columns switch. Over the first

of the latter subsets, there was a positive correlation (f ¼ 0:59, P , 0:012 one

tail, P , 0.0141 two tails) of k-NN predictions with actual outcomes. However,

over the second subset, the correlation of k-NN predictions with actual outcomes

was negative (f ¼ �0:1, not significant).
We conclude that when the test data set is split into the two subsets within which

k-NN has no ability to distinguish F from S profiles, PCI outcome prediction still

correlates positively with actual outcome within both subsets, and its overall per-

formance is significant at better than P , 0.002. However, when the data set is

split into the two subsets within which PCI has no predictive ability, k-NN

outcome prediction does not correlate positively with actual outcome within both

subsets but only correlates positively within the smaller subset. This represents a

clear difference between k-NN and positively performance.

2.7. CONCLUDING REMARKS

While this chapter has focused on uses of PCI, we conclude with a few remarks

about FOS. As noted above, the latter is a general-purpose method of searching

through a candidate set of basis functions to build a concise model of a system,

where computation time scales linearly with number of candidate functions.

Introduced in 1987 [41], FOS has been applied in system identification [42, 73],

in time-series analysis [42, 74], and within an iterative version, to build generalized

single-layer ANNs, where it determined model size as well as its significant

terms [46]. Applications of FOS have included Raman spectral estimation [75]

and detection of abnormalities in prosthetic heart valves [76]. It is interesting

that FOS is actually more efficient than a similar algorithm published later [77]

that has been extensively used in the neural network field. This point is discussed

in [46].

This chapter began with a consideration of blackbox methods of building models

that approximate the input output behavior of a given nonlinear system. It was then

shown that these approaches are well suited to constructing effective classifiers in

the proteomic and genomic areas. One encouraging aspect of this work was illus-

trated in predicting medulloblastoma clinical outcome; namely, PCI classifiers

combine well with other predictors to achieve accuracy beyond that of any of the

individual methods. Indeed, developing ways for predictors to cooperate is likely

to be a fruitful line of enquiry in genomics and proteomics research.
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&CHAPTER 3

Gene Regulation Bioinformatics of
Microarray Data

GERT THIJS, FRANK DE SMET, YVES MOREAU,
KATHLEEN MARCHAL, and BART DE MOOR

3.1. INTRODUCTION

Unraveling the mechanisms that regulate gene activity in an organism is a major

goal of molecular biology. In the past few years, microarray technology has

emerged as an effective technique to measure the level of expression of thousands

of genes in a single experiment. Because of their capacity to monitor many genes,

microarrays are becoming the workhorse of molecular biologists studying gene

regulation. However, these experiments generate data in such amount and of such

a complexity that their analysis requires powerful computational and statistical

techniques. As a result, unraveling gene regulation from microarray experiments

is currently one of the major challenges of bioinformatics.

Starting from microarray data, a first major computational task is to cluster genes

into biologically meaningful groups according to their pattern of expression [1].

Such groups of related genes are much more tractable for study by biologists than

the full data itself. As in many other applications in biology, the guilt-by-association

principle is adopted to extract usable knowledge from the full data. Classical cluster-

ing techniques such as hierarchical clustering [2] or K-means [3] have been applied

to microarray data. Yet the specificity of microarray data (such as the high level of

noise or the link to extensive biological information) have created the need for

clustering methods specifically tailored to this type of data [4]. Here both the first

generation of clustering methods applied to microarray data as well as second-

generation algorithms, which are more specific to microarray data, are reviewed.

In particular, we address a number of shortcomings of classical clustering algorithms

with a new method called adaptive quality-based clustering (AQBC) [5] in which we

look for tight reliable clusters.
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In a second step, the question asked is what makes genes belong to the same

cluster. A main cause of coexpression of genes is that these genes share the same

regulation mechanism at the sequence level. Specifically, some control regions,

promoter regions, in the neighborhood of the genes will contain specific short

sequence patterns, called binding sites, which are recognized by activating or

repressing proteins, called transcription factors. In such a situation, we say that

the genes are transcriptionally regulated. Switching our attention from expres-

sion data to sequence data, we consider algorithms that discover such binding

sites in sets of DNA sequences from coexpressed genes. We analyze the upstream

region of those genes to detect patterns, also called motifs, that are statistically

overrepresented when compared to some random model of the sequence. The

detection of overrepresented patterns in DNA or aminoacid sequences is called

motif finding.

Two classes of methods are available for motif finding: word-counting methods

and probabilistic sequence models. Word-counting methods are string-matching

methods based on counting the number of occurrences of each DNA word (called

oligonucleotide) and comparing this number with the expected number of

occurrences based on some statistical model. Probabilistic sequence models build

a likelihood function for the sequences based on the motif occurrences and a

model of the background sequence. Probabilistic optimization methods, such as

expectation–maximization (EM) and Gibbs sampling, are then used to search for

good configurations (motif model and positions). After briefly presenting the

word-counting methods and the method based on EM, we discuss the basic

principles of Gibbs sampling for motif finding more thoroughly. We also present

our Gibbs sampling method, called MotifSampler, where we have introduced a

number of extensions to improve Gibbs sampling for motif finding, such as the

use of a more precise model of the sequence background based on higher order

Markov chains. This improved model increases the robustness of the method

significantly.

These two steps, clustering and motif finding, are interlocked and specifically

dedicated to the discovery of regulatory motifs from microarray experiments.

In particular, clustering needs to take into account that motif finding is sensitive

to noise. Therefore, we need clustering methods that build conservative clusters

for which coexpression can be guaranteed in an attempt to increase the proportion

of coregulated genes in a cluster. This is one of the requirements that warranted

the development of AQBC. Also the motif-finding algorithms are specifically

tailored to the discovery of transcription factor binding motifs (while related algor-

ithms can be developed for slightly different problems in protein sequence analysis).

These tight links mandate our integrated presentation of these two topics in this

chapter. Furthermore, the same links call for integrated software tools to handle

this task in an efficient manner. Our INCLUSive Web tool (http://homes.esat.

kuleuven.be/�dna/BioI/Software.html) supports motif finding from microarray

data. Starting with the clustering of microarray data by AQBC, it then retrieves

the DNA sequences relating to the genes in a cluster in a semiautomated fashion

and finally performs motif finding using our MotifSampler (see Fig. 3.1). Integration
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is paramount in bioinformatics as, by optimally matching the different steps of the

data analysis to each other, the total analysis becomes more effective than the sum of

its parts.

3.2. INTRODUCTION TO TRANSCRIPTIONAL REGULATION

To situate the problem at hand, we present in this section concisely the main con-

cepts from biology relevant to our discussion of measuring gene expression data

and motif finding in DNA sequences.

FIGURE 3.1. High-level description of data analysis for motif finding from microarray data.

The analysis starts from scanned microarray images. After proper quantification and

preprocessing, the data are available for clustering in the form of a data matrix. Clustering

then determines clusters of potentially coregulated genes. Focusing on a cluster of genes of

interest, motif finding analyzes the sequences of the control regions of the genes in the

cluster. A number of true motifs are present in those sequences, but they are unknown.

Motif finding analyzes those sequences for statistically overrepresented DNA patterns.

Finally, candidate motifs are returned by the motif-finding algorithm and are available for

further biological evaluation.
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3.2.1. Structure of Genes

Genes are segments of DNA that encode for proteins through the intermediate

action of messenger RNA (mRNA). In Figure 3.2, the structure of a eukaryotic

gene is displayed. A gene and the genomic region surrounding it consist of a

transcribed sequence, which is converted into an mRNA transcript, and of

various untranscribed sequences. The mRNA consists of a coding sequence

that is translated into a protein and of several untranslated regions (UTRs).

The untranscribed sequences and the UTRs play a major role in the regulation

of expression. Notably, the promoter region in front of the transcribed sequence

contains the binding sites for the transcription factor proteins that start up tran-

scription. Moreover, the region upstream of the transcription start contains many

binding sites for transcription factors that act as enhancers and repressors of

gene expression (although some transcription factors can bind outside this

region).

3.2.2. Transcription

Transcription means the assembly of ribonucleotides into a single strand of mRNA.

The sequence of this strand of mRNA is dictated by the order of the nucleotides

in the transcribed part of the gene. The transcription process is initiated by the

binding of several transcription factors to regulatory sites in the DNA, usually

located in the promoter region of the gene. The transcription factor proteins

bind each other to form a complex that associates with an enzyme called RNA

polymerase. This association enables the binding of RNA polymerase to a specific

site in the promoter. In Figure 3.3, the initiation of the transcription process is

shown. Together, the complex of transcription factors and the RNA polymerase

unravel the DNA and separate both strands. Subsequently, the polymerase proceeds

down on one strand while it builds up a strand of mRNA complementary to the

DNA, until it reaches the terminator sequence. In this way, an mRNA is produced

that is complementary to the transcribed part of the gene. Then, the mRNA transcript

detaches from the RNA polymerase and the polymerase breaks its contact with

the DNA. In a later stage, the mRNA is processed, transported out of the nucleus,

and translated into a protein.

FIGURE 3.2. Structure of eukaryotic gene and single-stranded mRNA transcribed from

gene.
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3.2.3. Transcription Factors

Transcription factors are proteins that bind to regulatory sequences on eukaryotic

chromosomes, thereby modifying the rate of transcription of a gene. Some tran-

scription factors bind directly to specific transcription factor binding sites

(TFBSs) in the DNA (promoters, enhancers, and repressors), others bind to

each other. Most of them bind both to the DNA as well as to other transcription

factors. It should be noted that the transcription rate can be positively or nega-

tively affected by the action of transcription factors. When the transcription

factor significantly decreases the transcription of a gene, it is called a repressor.

If, on the other hand, the expression of a gene is upregulated, biologists speak of

an enhancer.

3.3. MEASURING GENE EXPRESSION PROFILES

Cells produce the proteins they need to function properly by (1) transcribing the

corresponding genes from DNA into mRNA transcripts and (2) translating the

mRNA molecules into proteins. Microarrays obtain a snapshot of the activity of a

cell by deriving a measurement from the number of copies of each type of

mRNA molecule (which also gives an indirect and imperfect picture of the

protein activity). The key to this measurement is the double-helix hybridization

properties of DNA (and RNA). When a single strand of DNA is brought in

FIGURE 3.3. Schematic representation of initiation of transcription process by association

of complex of transcription factors (gene regulatory proteins), RNA polymerase, and promo-

ter region of gene.
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contact with a complementary DNA (cDNA) sequence, it will anneal to this comp-

lementary sequence to form double-stranded DNA. For the four DNA bases, adenine

is complementary to thymine and guanine is complementary to cytosine. Because

both strands have opposite orientations, the complementary sequence is produced

by complementing the bases of the reference sequence starting from the end of

this sequence and proceeding further upstream. Hybridization will therefore allow

a DNA probe to recognize a copy of its complementary sequence obtained from a

biological sample.

An array consists of a reproducible pattern of different DNA probes attached to a

solid support. After RNA extraction from a biological sample, fluorescently labeled

cDNA or cRNA is prepared. This fluorescent sample is then hybridized to the DNA

present on the array. Thanks to the fluorescence, hybridization intensities (which are

related to the number of copies of each RNA species present in the sample) can be

measured by a laser scanner and converted into a quantitative readout. In this way,

microarrays allow simultaneous measurement of expression levels of thousands of

genes in a single hybridization assay.

Two basic array technologies are currently available: cDNA microarrays

and gene chips. Complementary DNA microarrays [6] are small glass slides on

which double-stranded DNA is spotted. These DNA fragments are normally

several hundred base pairs in length and are often derived from reference

collections of expressed sequence tags (ESTs) extracted from many sources of

biological materials so as to represent the largest possible number of genes.

Usually each spot represents a single gene. The cDNA microarrays use two

samples: a reference and a test sample (e.g., normal vs. malignant tissue). A

pair of cDNA samples is independently copied from the corresponding mRNA

populations with the reverse transcriptase enzyme and labeled using distinct flu-

orescent molecules (green and red). These labeled cDNA samples are then pooled

and hybridized to the array. Relative amounts of a particular gene transcript in

the two samples are determined by measuring the signal intensities detected

at both fluorescence wavelengths and calculating the ratios (here, only relative

expression levels are obtained). A cDNA microarray is therefore a differential

technique, which intrinsically normalizes for part of the experimental noise. An

overview of the procedure that can be followed with cDNA microarrays is

given in Figure 3.4.

GeneChip oligonucleotide arrays (Affymetrix, Inc., Santa Clara, CA) [7] are

high-density arrays of oligonucleotides synthesized using a photolithograpic tech-

nology similar to microchip technology. The synthesis uses in situ light-directed

chemistry to build up hundreds of thousands of different oligonucleotide probes

(25-mer). Each gene is represented by 15 to 20 different oligonucleotides, serving

as unique sequence-specific detectors. In addition, mismatch control oligonucleo-

tides (identical to the perfect-match probes except for a single base-pair mismatch)

are added. These control probes allow estimation of cross hybridization and signifi-

cantly decrease the number of false positives. With this technology, absolute

expression levels are obtained (no ratios).
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3.4. PREPROCESSING OF DATA

Before any substantial analysis can be performed on a set of microarray data, it is

necessary to preprocess the data. A correct preprocessing strategy is almost as

important as the cluster analysis itself.

3.4.1. Why Preprocessing Is Essential

First, it is necessary to normalize the hybridization intensities within a single array

experiment. In a two-channel cDNA microarray experiment, for example, normal-

ization adjusts for differences in labeling, detection efficiency, and the quantity of

initial RNA within the two channels [1, 8, 9]. Normalization is necessary before

FIGURE 3.4. Schematic overview of experiment with cDNA microarray. (1) Spotting of

presynthesized DNA probes (derived from genes to be studied) on glass slide. These

probes are the purified products of the polymerase chain reaĉtion (PCR) amplification of

the associated DNA clones. (2) Labeling (via reverse transcriptase) of total mRNA of test

sample (red channel, 0) and reference sample (green channel, A). (3) Pooling of two

samples and hybridization. (4) Readout of red and green intensities separately (measure for

hybridization by test and reference sample) in each probe. (5) Calculation of relative

expression levels (intensity in red channel divided by intensity in green channel). (6)

Storage of results in database. (7) Data mining.
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one can compare the results from different microarray experiments [9]. Second,

transformation of the data using a nonlinear function (often the logarithm is used,

especially for two-channel cDNA microarray experiments where the values are

expression ratios) can be useful [1]. Third, expression data often contain numerous

missing values and many clustering algorithms are unable to deal with them [10].

It is therefore imperative either to use appropriate procedures that can estimate

and replace these missing values or to adapt existing clustering algorithms, enabling

them to handle missing values directly (without actually replacing them [5, 11]).

Fourth, it is common to (crudely) filter the gene expression profiles (removing the

profiles that do not satisfy some simple criteria) before proceeding with the actual

clustering [2]. A fifth preprocessing step is standardization or rescaling of the

gene expression profiles (e.g., multiplying every expression vector with a scale

factor so that its length is 1 [1]). This makes sense because the aim is to cluster

gene expression profiles with the same relative behavior (expression levels go up

and down at the same time) and not only the ones with the same absolute behavior.

3.4.2. Preprocessig Steps

Let us now look at some of those preprocessing steps in more detail.

Normalization The first step is the normalization of the hybridization intensities

within a single array experiment. In a two-channel cDNA microarray exper-

iment, several sources of noise (such as differences in labeling, detection effi-

ciency, and the quantity of initial RNA within the two channels) create

systematic sources of biases. The biases can be computed and removed to

correct the data. As many sources can be considered and as they can be

estimated and corrected in a variety of ways, many different normalization

procedures exist. We therefore do not cover this topic further here and refer

to [1] for more details.

Nonlinear Transformations It is common practice to pass expression values

through a nonlinear function. Often the logarithm is used for this nonlinear

function. This is especially suited when dealing with expression ratios

(coming from two-channel cDNA microarray experiments, using a test and

reference sample) since expression ratios are not symmetrical [1]. Upregu-

lated genes have expression ratios between 1 and infinity, while downregu-

lated genes have expression ratios squashed between 1 and 0. Taking the

logarithms of these expression ratios results in symmetry between expression

values of up- and downregulated genes.

Missing-Value Replacement Microarray experiments often contain missing

values (measurements absent because of technical reasons). The inability of

many cluster algorithms to handle such missing values necessitates the repla-

cement of these values. Simple replacements such as a replacement by 0 or

by the average of the expression profile often disrupt these profiles. Indeed

replacement by average values relies on the unrealistic assumption that all
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expression values are similar across different experimental conditions.

Because of an erroneous missing-value replacement, genes containing a

high number of missing values can be assigned to the wrong cluster. More

advanced techniques of missing-value replacement have been described

[10, 12] that take advantage of the rich information provided by the expression

patterns of other genes in the data set. Finally, note that some implementations

of algorithms only make use of the measured values to derive the clusters and

as such obviate the need for missing-value replacement [5].

Filtering As stated in the overview section, a set of microarray experiments,

generating gene expression profiles, frequently contains a considerable

number of genes that do not really contribute to the biological process that

is being studied. The expression values of these profiles often show little

variation over the different experiments (they are called constitutive with

respect to the biological process studied). Moreover, these constitutive

genes will have seemingly random and meaningless profiles after standardiz-

ation (division by a small standard deviation results in noise inflation), which

is also a common preprocessing step (see below). Another problem comes

from highly unreliable expression profiles containing many missing values.

The quality of the clusters would significantly degrade if these data were

passed to the clustering algorithms as such. Filtering [2] removes gene

expression profiles from the data set that do not satisfy some simple criteria.

Commonly used criteria include a minimum threshold for the standard

deviation of the expression values in a profile (removal of constitutive

genes) and a threshold on the maximum percentage of missing values.

Standardization or Rescaling Biologists are mainly interested in grouping gene

expression profiles that have the same relative behavior; that is, genes that are

up- and downregulated together. Genes showing the same relative behavior

but with diverging absolute behavior (e.g., gene expression profiles with a

different baseline or a different amplitude but going up and down at the

same time) will have a relatively high Euclidean distance. Cluster algorithms

based on this distance measure will therefore wrongfully assign these genes to

different clusters. This effect can largely be prevented by applying standard-

ization or rescaling to the gene expression profiles to have zero mean and

unit standard deviation. Gene expression profiles with the same relative

behavior will have a smaller Euclidean distance after rescaling [1].

3.5. CLUSTERING OF GENE EXPRESSION PROFILES

Using microarrays, we can measure the expression levels of thousands of genes sim-

ultaneously. These expression levels can be determined for samples taken at differ-

ent time points during a certain biological process (e.g., different phases of the cycle

of cell division) or for samples taken under different conditions (e.g., cells originat-

ing from tumor samples with a different histopathological diagnosis). For each gene,
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the arrangement of these measurements into a (row) vector leads to what is generally

called an expression profile. These expression profiles or vectors can be regarded

as data points in a high-dimensional space.

3.5.1. Rationale of Clustering Expression Profiles

Because relatedness in biological function often implies similarity in expression

behavior (and vice versa) and because several genes might be involved in the

process under study, it will be possible to identify subgroups or clusters of genes

that will have similar expression profiles (i.e., according to a certain distance

function, the associated expression vectors are sufficiently close to one another).

Genes with similar expression profiles are said to be coexpressed. Conversely, coex-

pression of genes can thus be an important observation to infer the biological role of

these genes. For example, coexpression of a gene of unknown biological function

with a cluster containing genes with known (or partially known) function can

give an indication of the role of the unknown gene. Also, coexpressed genes are

more likely to be coregulated (see Section 3.7).

Cluster analysis in a collection of gene expression profiles aims at identifying

subgroups (i.e., clusters) of such coexpressed genes which thus have a higher prob-

ability of participating in the same pathway. Note that cluster analysis of expression

data is only a first rudimentary step preceding further analysis, which includes

motif finding [13–15], functional annotation, genetic network inference, and class

discovery in the microarray experiments or samples themselves [4, 16]. Moreover,

clustering often is an interactive process where the biologist or medical doctor has

to validate or further refine the results and combine the clusters with prior biological

or medical knowledge. Full automation of the clustering process is here still

far away. The first generation of cluster algorithms (e.g., direct visual inspection

[17], K-means [3], self-organizing maps (SOMs) [18], hierarchical clustering [2])

applied to gene expression profiles were mostly developed outside biological

research. Although it is possible to obtain biologically meaningful results with

these algorithms, some of their characteristics often complicate their use for

clustering expression data [19]. They require, for example, the predefinition of

one or more user-defined parameters that are hard to estimate by a biologist (e.g.,

the predefinition of the number of clusters in K-means and SOM—this number is

almost impossible to predict in advance). Moreover, changing these parameter

settings will often have a strong impact on the final result. These methods therefore

need extensive parameter fine tuning, which means that a comparison of the results

with different parameter settings is almost always necessary—with the additional

difficulty that comparing the quality of the different clustering results is hard.

Another problem is that first-generation clustering algorithms often force every

data point into a cluster. In general, a considerable number of genes included in

the microarray experiment do not contribute to the biological process studied,

and these genes will therefore lack coexpression with other genes (they will have

seemingly constant or even random expression profiles). Including these genes in

one of the clusters will contaminate their content (these genes represent noise)
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and make these clusters less suitable for further analysis. Finally, the computational

and memory complexity of some of these algorithms often limit the number of

expression profiles that can be analyzed at once. Considering the nature of our

data sets (number of expression profiles often running up into the tens thousands),

this constraint is often unacceptable. Recently, many new clustering algorithms

have started to tackle some of the limitations of earlier methods (e.g., self-organizing

tree algorithm, or SOTA [20], quality-based clustering [21], adaptive quality-based

clustering [5], model-based clustering [22–26], simulated annealing [27], gene

shaving [4], CAST [28], Fuzzy C-means [29]). Also, some procedures were devel-

oped that could help biologists to estimate some of the parameters needed for the

first generation of algorithms (such as the number of clusters present in the data

[23, 26, 27, 30, 31]). We will discuss a selection of these clustering algorithms in

the following sections.

3.5.2. First-Generation Algorithms

Notwithstanding some of the disadvantages of these early methods, it must be noted

that many good implementations (see Table 3.1) of these algorithms exist ready for

use by biologists (which is not always the case with the newer methods).

3.5.2.1. Hierarchical Clustering Hierarchical clustering [1, 2, 19] is the most

widely used method for clustering gene expression data and can be seen as the de

facto standard. Hierarchical clustering has the advantage that the results can be

nicely visualized (see Fig. 3.5). Two approaches are possible: a top-down approach

(divisive clustering, see [32] for an example) and a bottom-up approach (agglomera-

tive clustering, see [2]). The latter is the most commonly used and will be discussed

here. In the agglomerative approach, each gene expression profile is initially

assigned to a single cluster. The distance between every couple of clusters is calcu-

lated according to a certain distance measure (this results in a pairwise distance

matrix). Iteratively (and starting from all singletons as clusters), the two closest clus-

ters are merged and the distance matrix is updated to take this cluster merging into

account. This process gives rise to a tree structure where the height of the branches is

proportional to the pairwise distance between the clusters. Merging stops if only one

TABLE 3.1 Availability of Clustering Algorithms

Package URL

Cluster http://rana.lbl.gov/EisenSoftware.htm
Expression profiler http://ep.ebi.ac.uk/
SOTA http://bioinfo.cnio.es/sotarray
MCLUST http://www.stat.washington.edu/fraley/mclust

AQBC http://homes.esat.kuleuven.be/�dna/BioI/Software.html

GIMM http://homepages.uc.edu/�medvedm/GIMM.htm
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cluster is left. Finally, clusters are formed by cutting the tree at a certain level or

height. Note that this level corresponds to a certain pairwise distance that in its

turn is rather arbitrary (it is difficult to predict which level will give the best biologi-

cal results). Finally, note that the memory complexity of hierarchical clustering is

quadratic in the number of gene expression profiles which can be a problem when

considering the current size of the data sets.

3.5.2.2. K-Means Clustering K-means clustering [3, 34] results in a partition-

ing of the data (every gene expression profile belongs to exactly one cluster) using a

predefined number K of partitions or clusters. K-means starts by dividing up all the

gene expression profiles among N initial clusters. Iteratively, the center (which is

nothing more than the average expression vector) of each cluster is calculated,

followed by a reassignment of the gene expression vectors to the cluster with the

closest cluster center. Convergence is reached when the cluster centers remain

stationary.

Note that the predefinition of the number of clusters by the user also is rather

arbitrary (it is difficult to predict the number of clusters in advance). In practice,

this makes it necessary to use a trial-and-error approach where a comparison and

biological validation of several runs of the algorithm with different parameter

settings are necessary.

FIGURE 3.5. Result from hierarchical clustering 137 expression profiles of dimension 8

(plant wounding data of Reymond et al. [33]). The terminal branches of the tree are linked

with the individual genes and the height of all the branches is proportional to the pairwise dis-

tance between the clusters. The so-called heat map corresponds to the expression matrix

where, in this example, each column represents an expression profile, each row a microarray

experiment, and the individual values are represented on a color (green to red) or grey scale.
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3.5.2.3. Self-Organizing Maps In SOMs [18, 35], the user has to predefine a

topology or geometry of nodes (e.g., a two-dimensional grid, one node for each

cluster), which again is not straightforward. These nodes are then mapped

into the gene expression space, initially at random and iteratively adjusted. In

each iteration, a gene expression profile is randomly picked and the node that

maps closest to it is selected. This selected node (in gene expression space) is

then moved into the direction of the selected expression profile. The other nodes

are also moved into the direction of the selected expression profile but to

an extent proportional to the distance from the selected node in the initial two-

dimensional node topology.

3.5.3. Second-Generation Algorithms

In this section we describe several of the newer clustering methods that have

specifically been designed to cluster gene expression profiles.

3.5.3.1. Self-Organizing Tree Algorithm The SOTA [20] combines both

SOMs and divisive hierarchical clustering. The topology or node geometry here

takes the form of a dynamic binary tree. Similar to SOMs, the gene expression

profiles are sequentially and iteratively presented to the terminal nodes (located at

the base of the tree—these nodes are also called cells). Subsequently, the gene

expression profiles are associated with the cell that maps closest to it and the

mapping of this cell plus its neighboring nodes are updated (moved into the direction

of the expression profile). The presentation of the gene expression profiles to

the cells continues until convergence. After convergence the cell containing the

most variable population of expression profiles (variation is defined here by

the maximal distance between two profiles that are associated with the same cell)

is split into two sister cells (causing the binary tree to grow) and then the entire

process is restarted. The algorithm stops (the tree stops growing) when a threshold

of variability is reached for each cell, which involves the actual construction of a

randomized data set and the calculation of the distances between all possible

pairs of randomized expression profiles.

The approach described in [20] has some properties that make it potentially

useful for clustering gene expression profiles. The clustering procedure itself is

linear in the number of gene expression profiles (compare this with the quadratic

complexity of standard hierarchical clustering). The number of clusters does not

have to be known in advance. Moreover, the procedure provides for a statistical

procedure to stop growing the tree. Therefore, the user is freed from choosing an

(arbitrary) level where the tree has to be cut (as in standard hierarchical clustering).

In our opinion, this method, however, also has some disadvantages. The procedure

for finding the threshold of variability is time consuming. The entire process

described in [20] is in fact quadratic in the number of gene expression profiles

and there is no biological validation provided showing that this algorithm indeed

produces biologically relevant results.

3.5. CLUSTERING OF GENE EXPRESSION PROFILES 67



3.5.3.2. Model-Based Clustering Model-based clustering [23, 26, 36] is an

approach that is not really new and has already been used in the past for other

applications outside bioinformatics. In this sense it is not really a true second-

generation algorithm. However, its potential use for cluster analysis of gene

expression profiles has only been proposed recently and we thus we treat it in this

text as a second-generation method. A Bayesian approach to model-based clustering

Gaussian infinite mixture model (GIMM) was presented by Medvedovic [24, 25]

(not discussed here).

Model-based clustering assumes that the data are generated by a finite mixture of

underlying probability distributions, where each distribution represents one cluster.

The covariance matrix for each cluster can be represented by its eigenvalue

decomposition, which controls the orientation, shape, and volume of each cluster.

Note that simpler forms for the covariance structure can be used (e.g., by having

some of the parameters take the same values across clusters), thereby decreasing

the number of parameters that have to be estimated but also decreasing the model

flexibility (capacity to model more complex data structures).

In a first step, the parameters of the model are estimated with an EM algorithm

using a fixed value for the number of clusters and a fixed covariance structure.

This parameter estimation is then repeated for different numbers of clusters and

different covariance structures. The result of the first step is thus a collection of

different models fitted to the data and all having a specific number of clusters and

a specific covariance structure. In a second step the best model in this group of

models is selected (i.e., the most appropriate number of clusters and a covariance

structure is chosen here). This model selection step involves the calculation of

the Bayesian information criterion (BIC) [37] for each model, which is not

further discussed here.

Yeung et al. [26] reported good results using their MCLUST software [36] on

several synthetic data sets and real expression data sets. They claimed that the

performance of MCLUST on real expression data was at least as good as could

be achieved with a heuristic cluster algorithm (CAST [16], not discussed here).

3.5.3.3. Quality-Based Clustering In [21], a clustering algorithm (called

QT_Clust) is described that produces clusters that have a quality guarantee that

ensures that all members of a cluster should be coexpressed with all other

members of this cluster. The quality guarantee itself is defined as a fixed and

user-defined threshold for the maximal distance between two points within a

cluster. Briefly said, QT_Clust is a greedy procedure that finds one cluster at a

time satisfying the quality guarantee and containing a maximum number of

expression profiles. The algorithm stops when the number of points in the largest

remaining cluster falls below a prespecified threshold. Note that this stop criterion

implies that the algorithm will terminate before all expression profiles are assigned

to a cluster.

This approach was designed with cluster analysis of expression data in mind and

has some properties that could make it useful for this task. First, by using a stringent

quality control, it is possible to find clusters with tightly related expression profiles
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(containing highly coexpressed genes). These clusters might therefore be good

“seeds” for further analysis. Second, genes not really coexpressed with other

members of the data set are not included in any of the clusters. There are,

however, also some disadvantages. The quality guarantee of the clusters is a

user-defined parameter that is hard to estimate and too arbitrary. This method is

therefore, in practice, hard to use by biologists and extensive parameter fine

tuning is necessary. This algorithm also produces clusters all having the same

fixed diameter not optimally adapted to the local data structure. Furthermore, the

computational complexity is quadratic in the number of expression profiles and

no ready-to-use implementation is available.

3.5.3.4. Adaptive Quality-Based Clustering Adaptive quality-based clus-

tering [5] was developed starting from the principles of quality-based clustering

(finding clusters with a quality guarantee containing a maximal number of

members) but was designed to circumvent some of its disadvantages.

Adaptive quality-based clustering is a heuristic iterative two-step approach.

In the first step a quality-based approach is followed. Using an initial estimate of

the quality of the cluster, a cluster center is located in an area where the density

of gene expression profiles is locally maximal. Contrary to the original method

[21], the computational complexity of this first step is only linear in the number

of expression profiles. In the second step, called the adaptive step, the quality of

the cluster—given the cluster center, found in the first step, that remains fixed—is

reestimated so that the genes belonging to the cluster are, in a statistical sense,

significantly coexpressed (higher coexpression that could be expected by chance,

according to a significance level S ). To this end, a bimodal and one-dimensional

probability distribution (the distribution consists of two terms, one for the cluster

and one for the rest of the data) is fitted to the data using an EM algorithm. Note

that the computational complexity of this step is negligible with respect to the

computational complexity of the first step. Finally, steps 1 and 2 are repeated

using the reestimation of the quality as the initial estimate needed in the first step,

until the relative difference between the initial and reestimated quality is sufficiently

small. The cluster is subsequently removed from the data and the whole procedure

is restarted. Note that only clusters whose size exceeds a predefined number are

presented to the user.

The AQBC approach has some additional advantages over standard quality-based

clustering that make it suited for the analysis of gene expression profiles. First, the

user has to specify a significance level S. This parameter has a strict statistical

meaning and is therefore much less arbitrary (contrary to the quality guarantee

used in standard quality-based clustering). It can be chosen independently of a

specific data set or cluster, and it allows for a meaningful default value (95%) that

in general gives good results. This makes this approach user friendly without the

need for extensive parameter fine tuning. Second, the algorithm produces clusters

adapted to the local data structure (the clusters do not have the same radius).

Third, the computational complexity of the algorithm is linear in the number of

expression profiles. Finally, AQBC was extensively biologically validated.
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However, the method also has some limitations. So is it a heuristic approach not

proven to converge in every situation. Because of the model structure used in

the second step, some additional constraints have to be imposed. They include the

fact that only standardized expression profiles are allowed and that the method

has to be used in combination with the Euclidean distance and cannot directly be

extended to other distance measures.

3.5.4. Availability of Clustering Algorithms

As a conclusion to this overview of clustering algorithms, Table 3.1 gives an over-

view of some clustering methods for which the software is available for download

or can be accessed online.

3.6. CLUSTER VALIDATION

Validation is another key issue when clustering gene expression profiles. The biol-

ogist using the algorithm is of course mainly interested in the biological relevance

of these clusters and wants to use the results to discover new biological knowledge.

This means that we need methods to (biologically and statistically) validate and

objectively compare the results produced by new and existing clustering algorithms.

Some methods for cluster validation have recently emerged (figure of merit [26],

(adjusted) Rand index [38], silhouette coefficient [11], and looking for enrichment

of functional categories [34]) and will be discussed below.

Ultimately, the relevance of a cluster result should be assessed by a biological

validation. Of course it is hard, not to say impossible, to select the best cluster

output since “the biologically best” solution will only be known if the biological

system studied is completely characterized. Although some biological systems

have been described extensively, none such completely characterized benchmark

system is now available. A common method to biologically validate cluster

outputs is to search for enrichment of functional categories within a cluster.

Detection of regulatory motifs (see [34]) is also an appropriate biological validation

of the cluster results. Some of the recent methodologies described in the literature to

validate cluster results will be highlighted in the following.

Note that no real benchmark data set exists to unambiguously validate novel

algorithms (however, the measurements produced by Cho et al. [17] on the cell

cycle of yeast are often used for this purpose).

3.6.1. Testing Cluster Coherence

Based on biological intuition, a cluster result can be considered reliable if the within-

cluster distance is small (i.e., all genes retained are tightly coexpressed) and the

cluster has an average profile well delineated from the remainder of the data set

(maximal intercluster distance). Such criteria can be formalized in several ways,
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such as the sum-of-squares criterion of K-means [3], silhouette coefficients [11], or

Dunn’s validity index [39]. These can be used as stand-alone statistics to mutually

compare cluster results. They can also be used as an inherent part of cluster

algorithms if their value is optimized during the clustering process.

Here we briefly discuss the statistical method of silhouette coefficients [11].

Suppose gi is an expression profile that belongs to cluster Ck. Call v(gi) (also

called the within dissimilarity) the average distance of gi to all other expression pro-

files from Ck. Suppose Cl is a cluster different from Ck and call d(gi, Cl) the average

distance from gi to all expression profiles of Cl. Now define w(gi) (also called the

between dissimilarity) as

w(gi) ¼ min
Cl=Ck

d(gi,Cl)

The silhouette s(gi) of gi is now defined as

s(gi) ¼
w(gi)� v(gi)

max (w(gi), v(gi))

Note that �1 � s(gi) � 1. Consider two extreme situations now. First, suppose that

the within dissimilarity v(gi) is significantly smaller than the between dissimilarity

w(gi). This is the ideal case and s(gi) will be approximately 1. This occurs when gi is

well clustered and there is little doubt that gi is assigned to an appropriate cluster.

Second, suppose that v(gi) is significantly larger than w(gi). Now s(gi) will be

approximately and gi has in fact been assigned to the wrong cluster (worst-case

scenario). We can now define two other measures: the average silhouette width of

a cluster and the average silhouette width of the entire data set. The first is

defined as the average of s(gi) for all expression profiles of a cluster and the

second is defined as the average of s(gi) for all expression profiles in the data set.

This last value can be used to mutually compare different cluster results and can

be used as an inherent part of clustering algorithms if its value is optimized

during the clustering process.

3.6.2. Rand Index: Validation Against an External Criterion

The Rand index [38, 40] is a measure that reflects the level of agreement of a cluster

result with an external criterion, that is, an existing partition or a known cluster

structure of the data. This external criterion could, for example, be an existing

functional categorization, a predefined cluster structure if one is clustering synthetic

data where the clusters are known in advance, or another cluster result obtained

using other parameter settings for a specific clustering algorithm or obtained

using other clustering algorithms. The latter could be used to investigate how

sensitive a cluster result is to the choice of the algorithm or parameter setting. If

this result proves to be relatively stable, one can assume that pronounced signals
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are present in the data possibly reflecting biological processes. Suppose we want to

compare two partitions (the cluster result at hand and the external criterion) of a set

of N genes. Suppose that A is the number of gene pairs that are placed in the same

subset (or cluster) in both partitions. Suppose that D is the number of gene pairs that

are placed in different subsets in both partitions. The Rand index, which lies between

0 and 1, is then defined as the fraction of agreement between both partitions:

Aþ D

N

2

� �

3.6.3. Figure of Merit

The figure of merit (FOM) [40] is a simple quantitative data-driven methodology

that allows comparisons between outputs of different clustering algorithms.

The methodology is related to the jackknife and leave-one-out cross validation.

The method goes as follows. The clustering algorithm (for the genes) is applied

to all experimental conditions (the data variables) except for one left-out con-

dition. If the algorithm performs well, we expect that if we look at the genes

from a given cluster, their values for the left-out condition will be highly coherent.

Therefore, we compute the FOM for a clustering result by summing, for the left-

out condition, the squares of the deviations of each gene relative to the mean of

the genes in its cluster for this condition. The FOM measures the within-cluster

similarity of the expression values of the removed experiment and therefore

reflects the predictive power of the clustering. It is expected that removing one

experiment from the data should not interfere with the cluster output if the

output is robust. For cluster validation, each condition is subsequently used as a

validation condition and the aggregate FOM over all conditions is used to

compare cluster algorithms.

3.6.4. Sensitivity Analysis

Gene expression levels are the superposition of real biological signals and exper-

imental errors. A way to assign confidence to a cluster membership of a gene

consists in creating new in silico replicas of the microarray data by adding to the

original data a small amount of artificial noise (similar to the experimental noise

in the data) and clustering the data of those replicas. If the biological signal is stron-

ger than the experimental noise in the measurements of a particular gene, adding

small artificial variations (in the range of the experimental noise) to the expression

profile of this gene will not drastically influence its overall profile and therefore will

not affect its cluster membership. In this case, the cluster membership of that par-

ticular gene is robust with respect to sensitivity analysis, and a reliable confidence

can be assigned to the clustering result of that gene. However, for genes with low

signal-to-noise ratios, the outcome of the clustering result will be more sensitive

to adding artificial noise. Through some robustness statistic [41], sensitivity analysis
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let us detect which clusters are robust within the range of experimental noise and

therefore trustworthy for further analysis.

The main issue in this method is to choose the noise level for sensitivity analysis.

Bittner et al. [41] perturb the data by adding random Gaussian noise with zero

mean and a standard deviation that is estimated as the median standard deviation

for the log ratios for all genes across the experiments. This implicitly assumes

that ratios are unbiased estimators of relative expression, yet reality often shows

otherwise.

The bootstrap analysis methods described by Kerr and Churchill [42] to identify

statistically significant expressed genes or to assess the reliability of a clustering

result offers a more statistically founded basis for sensitivity analysis and overcomes

some of the problems of the method described by Bittner et al. [41]. Bootstrap analy-

sis uses the residual values of a linear analysis-of-variance (ANOVA) model as an

estimate of the measurement error. By using an ANOVA model, nonconsistent

measurement errors can be separated from variations caused by alterations in rela-

tive expression or by consistent variations in the data set. These errors are assumed

to be independent with mean 0 and constant variance s2, but no explicit assumption

on their distribution is made. The residuals are subsequently used to generate new

replicates of the data set by bootstrapping (adding residual noise to estimated

values).

3.6.5. Use of Different Algorithms

Just as clustering results are sensitive to adding noise, they are sensitive to the choice

of clustering algorithm and to the specific parameter settings of a particular

algorithm. Many clustering algorithms are available, each of them with different

underlying statistics and inherent assumptions about the data. The best way to

infer biological knowledge from a clustering experiment is to use different algor-

ithms with different parameter settings. Clusters detected by most algorithms will

reflect the pronounced signals in the data set. Again statistics similar to that of

Bittner et al. [41] are used to perform these comparisons.

Biologists tend to prefer algorithms with a deterministic output since this gives

the illusion that what they find is “right”. However, nondeterministic algorithms

offer an advantage for cluster validation since their use implicitly includes a form

of sensitivity analysis.

3.6.6. Enrichment of Functional Categories

One way to biologically validate results from clustering algorithms is to compare the

gene clusters with existing functional classification schemes. In such schemes, genes

are allocated to one or more functional categories [23, 34] representing their

biochemical properties, biological roles, and so on. Finding clusters that have

been significantly enriched for genes with similar function is proof that a specific

clustering technique produces biologically relevant results.
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As stated in the overview section, the results of the expression profiling

experiment of Cho et al. [17] studying the cell development cycle of yeast in

a synchronized culture are often used as a benchmark data set. It contains 6220

expression profiles taken over 17 time points (measurements over 10-min intervals,

covering nearly two cell cycles, also see http://cellcycle-www.stanford.edu). One
of the reasons that these data are so frequently used as benchmark data for the

validation of new clustering algorithms is because of the striking cyclic expression

patterns and because the majority of the genes included in the data have been

functionally classified [43] (MIPS database, see http://mips.gsf.de/proj/yeast/
catalogues/funcat/index.html), making it possible to biologically validate the

results.

Assume that a certain clustering method finds a set of clusters in the Cho et al.

data. We could objectively look for functionally enriched clusters as follows:

Suppose that one of the clusters has n genes where k genes belong to a certain

functional category in the MIPS database and suppose that this functional category

in its turn contains f genes in total. Also suppose that the total data set contains g

genes (in the case of Cho et al. [17], g would be 6220). Using the cumulative hyper-

geometric probability distribution, we could measure the degree of enrichment by

calculating the probability, or P-value, of finding by chance at least k genes in

this specific cluster of n genes from this specific functional category that contains

f genes out of the whole g annotated genes:

P ¼ 1�
Xk�1

i¼ 0

f

i

� �
g� f

n� i

� �

g

n

� � ¼
Xmin (n, f )

i¼ k

f

i

� �
g� f

n� i

� �

g

n

� �

These P-values can be calculated for each functional category in each cluster. Since

there are about 200 functional categories in the MIPS database, only clusters where

the P-value is smaller than 0.0003 for a certain functional category are said to be

significantly enriched (level of significance 0.05). Note that these P-values can

also be used to compare the results from functionally matching clusters identified

by two different clustering algorithms on the same data.

As an example of cluster validation and as an illustration of our AQBC, we

compare K-means and AQBC on the Cho et al. data. We performed AQBC [5]

using the default setting for the significance level (95%) and compared these

results with those for K-means reported by Tavazoie et al. [34]. As discussed

above, the genes in each cluster have been mapped to the functional categories

in the MIPS database and the negative base-10 logarithm of the hypergeometric

P-values (representing the degree of enrichment) have been calculated for each

functional category in each cluster. In Table 3.2, we compare enrichment in func-

tional categories for the three most significant clusters found by each algorithm.

To compare K-means and AQBC, we identified functionally matching clusters
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manually. The first column (AC) gives the index of the cluster identified by AQBC.

The second column (KM) gives the index of the matching cluster for K-means as

described in Tavazoie et al. [34]. The third column (AC) gives the number of

genes of in the cluster for AQBC. The fourth column (KM) gives the number of

genes of in the cluster for K-means. The fifth column (MIPS functional category)

lists the significant functional categories for the two functionally matching clusters.

The sixth column (AC) gives the number of genes of the corresponding functional

category in the cluster for AQBC. The seventh column (KM) gives the number of

genes of the corresponding functional category in the cluster for K-means. The

eighth column (AC) gives the negative logarithm in base 10 of the hypergeometric

P-value for AQBC. The ninth column (KM) gives the negative logarithm in base 10

of the hypergeometric P-value for K-means. Although we do not claim to draw

any conclusion from this single table, we observe that the enrichment in functional

categories is stronger for AQBC than for K-means. This result and several others are

discussed extensively in [5].

TABLE 3.2 Comparison of Functional Enrichment for Yeast Cell Cycle Data

of Cho et al. Using AQBC and K-Means

Cluster

Number

Number of

Genes
MIPS Functional Category

Number of

Genes in

Category P-Value

AC KM AC KM AC KM AC KM

1 1 302 164 Ribosomal proteins 101 64 80 54

Organization of cytoplasm 146 79 77 39

Protein synthesis 119 NR 74 NR

Cellular organization 211 NR 34 NR

Translation 17 NR 9 NR

Organization of

chromosome structure

4 7 1 4

2 4 315 170 Mitochondrial organization 62 32 18 10

Energy 35 NR 8 NR

Proteolysis 25 NR 7 NR

Respiration 16 10 6 5

Ribosomal proteins 24 NR 4 NR

Protein synthesis 33 NR 4 NR

Protein destination 49 NR 4 NR

5 2 98 186 DNA synthesis and replication 20 23 18 16

Cell growth and division,

DNA Synthesis

48 NR 17 NR

Recombination and DNA repair 12 11 8 5

Nuclear organization 32 40 8 4

Cell cycle control and mitosis 20 30 7 8

Note: NR ¼ not reported.
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3.7. SEARCHING FOR COMMON BINDING SITES OF
COREGULATED GENES

In the previous sections, we described the basic ideas underlying several clustering

techniques together with their advantages and shortcomings. We also discus-

sed the preprocessing steps necessary to make microarray data suitable for

clustering. Finally, we described methodologies for validating the result of a cluster-

ing algorithm. We can now make the transition toward looking at the groups of

genes generated by clustering and study the sequences of these genes to detect

motifs that control their expression (and cause them to cluster together in the

first place).

Given a cluster of genes with highly similar expression profiles, the next step in

the analysis is the search for the mechanism that is responsible for their coordinated

behavior. We basically assume that coexpression frequently arises from transcrip-

tional coregulation. As coregulated genes are known to share some similarities in

their regulatory mechanism, possibly at transcriptional level, their promoter

regions might contain some common motifs that are binding sites for transcription

regulators. A sensible approach to detect these regulatory elements is to search for

statistically overrepresented motifs in the promoter region of such a set of coex-

pressed genes [14, 34, 44–46]. In this section we describe the two major classes

of methods to search for overrepresented motifs. The first class of methods is com-

prised of string-based methods that mostly rely on counting and comparing oligo-

nucleotide frequencies. Methods in the second class are based on probabilistic

sequence models. For these methods, the model parameters are estimated using

maximum likelihood or Bayesian inference. We start with a discussion of the

important facts that we can learn by looking at a realistic biological example.

Prior knowledge about the biology of the problem at hand will facilitate the defi-

nition of a good model. Next, we discuss the different string-based methods, starting

from a simple statistical model and gradually refining the models and the statistics to

handle more complex configurations. Then we switch to the probabilistic methods

and introduce EM for motif finding. Next, we discuss Gibbs sampling for motif

finding. This method has been proven to be very effective for motif finding in

DNA sequences. We therefore explain the basic ideas underlying this method and

overview the extensions, including our own work, that are necessary for the practical

use of this method.

A recent assessment of motif-finding tools organized by Tompa [47] showed

that there is still a lot of work to do in the field of motif finding. The setup of the

assessment was that different blind sequence sets in different organisms were pro-

vided by the organizers and those sets were analyzed by the participating teams.

Each algorithm was run by its own developer to make sure that the tools were

used as intended. Most tools had a similar (rather low) performance and only

Weeder [48] was doing a better job than the rest. MotifSampler, our own implemen-

tation, turned out to be the only algorithm that performed better on real sequence

data compared to the performance on artficial data.
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3.7.1. Realistic Sequence Models

To search for common motifs in sets of upstream sequences, a realistic model should

be proposed. Simple motif models are designed to search for conserved motifs of

fixed length, while more complex models will incorporate variability like insertions

and deletions into the motif model. Not only is the model of the binding site itself

important but also the model of the background sequence in which the motif is

hidden and the number of times a motif occurs in the sequence play important roles.

To illustrate this complexity, we look at an example in Saccharomyces

cerevisiae. Figure 3.6 gives a schematic representation of the upstream sequences

from 11 genes in S. cerevisiae that are regulated by the Cbfl–Met4p–Met28p

complex and Met31p or Met32p in response to methionine (selected from [49]).

The consensus, which is the dominant DNA pattern describing the motif, for

these binding sites is given by TCACGTG for the Cbfl–Met4p–Met28p complex

and AAAACTGTGG for Met31p or Met32p [49]. A logo representation [50] of

the aligned instances of the two binding sites is shown in Figure 3.7. Such a logo

represents the frequency of each nucleotide at each position, the relative size of

the symbol represents the relative frequency of each base at this position, and the

total height of the symbols represents the magnitude of the deviation from a

uniform (noninformative) distribution. Figure 3.6 shows the locations of the two

binding sites in the region 800 bp upstream of translation start. It is clear from

this picture that there are several possible configurations of the two binding sites

present in this data set. First it is important to note that motifs can occur on both

strands. Transcription factors indeed bind directly on the double-stranded DNA

and therefore motif detection software should take this fact into account. Second,

sequences could have either zero, one, or multiple copies of a motif. This

example gives an indication of the kind of data that come with a realistic biological

data set. Palindromic motifs are, from a computational point of view, a special type

of transcription factor binding site as it is a subsequence that is exactly the same as

FIGURE 3.6. Schematic representation of upstream region of set of coregulated genes.

Several possible combinations of the two motifs are present: (1) motifs occur on both

strands, (2) some sequences contain one or more copies of the two binding sites, or (3)

some sequences do not contain a copy of a motif.
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its own reverse complement. An example of a palindromic motif is found in the

DNA binding protein that regulates genes involved in cellular respiration (FNR)

motif of Figure 3.7c. The left part of consensus TTGA is the reverse complement

of the right part, TCAA.

A second class of special motifs is comprised of gapped motifs or spaced dyads.

Such a motif consists of two smaller conserved sites separated by a gap or spacer.

The spacer occurs in the middle of the motif because the transcription factor

binds as a dimer. This means that the transcription factor is made out of two subunits

that have two separate contact points with the DNA sequence. The parts where the

transcription factor binds to the DNA are conserved but are typically rather small

(3 to 5 bp). These two contact points are separated by a nonconserved gap or

spacer. This gap is mostly of fixed length but might be slightly variable.

Figure 3.7c shows a logo representation of the FNR binding site in bacteria.

Currently another important research topic is the search for cooperatively binding

factors [51]. When only one of the transcription factors binds, there is no or a low

level of activation, but the presence of two or more transcription factors activates

the transcription of a certain gene. If we translate this into the motif-finding

problem, we could search for individual motifs and try to find, among the list of

possible candidates, motifs that tend to occur together. Another possibility is to

search for multiple motifs at the same time.

3.7.2. Oligonucleotide Frequency Analysis

The most intuitive approach to extract a consensus pattern for a binding site is a

string-based approach, where typically overrepresentation is measured by exhaus-

tive enumeration of all oligonucleotides. The observed number of occurrences of

a given motif is compared to the expected number of occurrences. The expected

number of occurrences and the statistical significance of a motif can be estimated

in many ways. In this section we give an overview of the different methods.

3.7.2.1. Basic Enumerations Approach A basic version of the enumeration

methods was implemented by van Helden et al. [49]. They presented a simple and

fast method for the identification of DNA binding sites in the upstream regions from

FIGURE 3.7. Logo representation of three sets of known TFBSs in S.cerevisae and

Salmonela typhimurium: (a) binding site of Cbfl–Met4p–Met28p; (b) binding site of

Met31p or Met32p; (c) FNR binding site.
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families of coregulated genes in S. cerevisiae. This method searches for short motifs

of 5 to 6 bp long. First, for each oligonucleotide of a given length, we compute the

expected frequency of the motif from all the noncoding, upstream regions in the

genome of interest. Based on this frequency table, we compute the expected

number of occurrences of a given oligonucleotide in a specific set of sequences.

Next, the expected number of occurrences is compared to the actual, counted,

number of occurrences in the data set. Finally, we compute a significance coefficient

that takes into account the distinct number of oligonucleotides. A binomial statistic

is appropriate in the case where there are nonoverlapping segments.

Van Helden et al. [15] have extended their method to find spaced dyads; these are

motifs consisting of two small conserved boxes separated by a fixed spacer. The

spacer can be different for distinct motifs and therefore the spacer is systematically

varied between 0 and 16. The significance of this type of motif can be computed

based on the combined score of the two conserved parts in the input data or based

on the estimated complete dyad frequency from a background data set.

The greatest shortcoming of this method is that there are no variations allowed

within an oligonucleotide. Tompa [52] addressed this problem when he proposed

an exact method to find short motifs in DNA sequences. Tompa used a measure

that differs from the one used by van Helden et al. to calculate the statistical

significance of motif occurrences. First, for each k-mer s with an allowed number

substitutions, the number of sequences in which s is found is calculated. Next, the

probability ps of finding at least one occurrence of s in a sequence drawn from a

random distribution is estimated. Finally, the associated z-score is computed as

zs ¼
Ns � Npsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nps(1� ps)

p

The score zs gives a measure of how unlikely it is to have Ns occurrences of s given

the background distribution. Tompa proposed an efficient algorithm to estimate ps
from a set of background sequences based on a Markov chain.

3.7.2.2. Combinatorial Approaches Another important contribution in this

field was made by Pevzner and Sze [53], who defined the motif finding in terms

of a computationally challenging problem. The assumption from which they start

is that motifs that can be considered as implanted are similar up to a given

number of mutations c to a certain consensus sequence of length l. Keich and

Pevzner [54] elaborated on the concept of (l, c)-motifs and defined a twilight zone

where all motif finders would have a hard time finding the correct answers. In

[53] a combinatorial approach is presented as WINNOWER and SP-STAR to

solve this problem. WINNOWER is an iterative graph-based approach and uses sub-

stantial computational power. SP-STAR is an extension of this procedure by adding

a heuristic to separate random signals from true signals. In [55] this method was

further refined by introducing MULTIPROFILER, which incorporates two exten-

sions: the utilization of the neighborhood of a word and the use of multipositional
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profiles. With MULTIPROFILER they managed to further push the performance of

their motif-finding algorithms. Another combinatorial method was presented by

Buhler and Tompa [56], who used random projections to define a set of instances

that can be used to initialize EM for motif finding.

3.7.2.3. Suffix Trees Another interesting string-based approach is based on the

representation of a set of sequences with a suffix tree [57, 58]. Vanet et al. [58] have

used suffix trees to search for single motifs in whole bacterial genomes. Marsan and

Sagot [57] later extended the method to search for combinations of motifs. The pro-

posed configuration of a structured motif is a set of p motifs separated by a spacer

that might be variable. The variability is limited to +2 bp around an average gap

length. They also allow for variability within the binding site. The representation

of upstream sequences as suffix trees resulted in an efficient implementation

despite the large number of possible combinations.

3.7.3. Probabilistic Methods

While in the previous section a binding site was modeled as a set of strings, the

following methods are all based on a representation of the motif model by a position

weight matrix.

3.7.3.1. Probabilistic Model of Sequence Motifs In the simplest model, we

have a set of DNA sequences where each sequence contains a single copy of the

motif of fixed length. (For the sake of simplicity, we will consider here only

models of DNA sequences, but the whole presentation applies directly to sequences

of amino acids.) Except for the motif, a sequence is described as a sequence of inde-

pendent nucleotides generated according to a single discrete distribution u0 ¼

(qA0 , q
C
0 , q

G
0 , q

T
0 )

T called the background model. The motif uW itself is described

by what we call a position frequency matrix, which are W independent positions

generated according to different discrete distributions qbi :

uW ¼

qA1 qA2 . . . qAW

qC1 qC2 . . . qCW

qG1 qG2 . . . qGW

qT1 qT2 . . . qTW

0
BBBB@

1
CCCCA

If we know the location ai of the motif in a sequence Si, the probability of this

sequence given the motif position, the motif matrix, and the background model is

P(Sijai, uW , u0) ¼
Yai�1

j¼ 1

q
Sij
0

YaiþW�1

j¼ ai

q
Sij
j�aiþ1

YL
j¼ aiþW

q
Sij
0

Wherever appropriate, we will pool the motif matrix and the background model into

a single set of parameters u ¼ (u0, uW ). For a set of sequences, the probability of
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the whole set S ¼ {S1, . . . , SN} given the alignment (i.e., the set of motif positions),

the motif matrix, and the background model is

P(S jA, u) ¼
YN
i¼1

P(Si j ai, u) (3:1)

The sequence model is illustrated in Figure 3.8. The idea of the EM algorithm for

motif finding is to find simultaneously the motif matrix, the alignment position,

and the background model that maximize the likelihood of the weights and align-

ments. Gibbs sampling for motif finding extends EM in a stochastic fashion by

not looking for the maximum-likelihood configuration but generating candidate

motif matrices and alignments according to their posterior probability given the

sequences.

3.7.3.2. Expectation–Maximization One of the first implementation to find a

matrix representation of a binding site was a greedy algorithm by Hertz et al. [59] to

find the site with the highest information content (which is the entropy of the discrete

probability distribution represented by the motif matrix). This algorithm was

capable of identifying a common motif that is present once in every sequence.

This algorithm has been substantially improved over the years [60]. In their latest

implementation, CONSENSUS, Hertz and Stormo [60] have provided a framework

to estimate the statistical significance of a given information content score based on

large-deviation statistics.

Within the maximum-likelihood estimation framework, EM is the first choice of

optimization algorithm. Expectation–maximization is a two-step iterative pro-

cedure for obtaining the maximum-likelihood parameter estimates for a model of

observed data and missing values. In the expectation step, the expectation of the

data and missing values is computed given the current set of model parameters.

In the maximization step, the parameters that maximize the likelihood are computed.

The algorithm is started with a set of initial parameters and iterates over the

two described steps until the parameters have converged. Since EM is a

FIGURE 3.8. In this basic sequence model, each sequence contains one and only one copy of

the motif. The first part of the sequence is generated according to the background model u0,

then the motif is generated by the motif matrix uW , after which the rest of the sequence is again

generated according to the background model.
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gradient-ascent method, EM strongly depends on the initial conditions. Poor initial

parameters may lead EM to converge to a local minimum.

For motif finding EM was introduced by Lawrence and Reilly [61] and was an

extension of the greedy algorithm of Hertz et al. [59]. It was primarily intended

for searching motifs in related proteins, but the method described could also be

applied to DNA sequences. The basic model assumption is that each sequence con-

tains exactly one copy of the motif, which might be reasonable in proteins but is too

strict in DNA. The starting position of each motif instance is unknown and is

considered as being a missing value from the data. If the motif positions are

known, then the observed frequencies of the nucleotides at each position in the

motif are the maximum-likelihood estimates of model parameters. To find the start-

ing positions, each subsequence is scored with the current estimate of the motif

model. These updated probabilities are used to reestimate the motif model. This

procedure is repeated until convergence. Since assuming there is exactly one copy

of the motif per sequence is not really biological sound, Bailey and Elkan proposed

an advanced EM implementation for motif finding called MEME [62, 63]. Although

MEME was also primarily intended to search for protein motifs, MEME can also be

applied to DNA sequences.

To overcome the problem of initialization and getting stuck in local minima,

MEME proposes to initialize the algorithm with a motif model based on a contigu-

ous subsequence that gives the highest likelihood score. Therefore, each substring in

the sequence set is used as a starting point for a one-step iteration of EM. Then the

motif model with the highest likelihood is retained and used for further optimization

steps until convergence. The corresponding motif positions are then masked and the

procedure is repeated. Finally, Cardon and Stormo proposed an EM algorithm to

search for gapped motifs [64]. However, while performing well for extended

protein motifs, EM often suffers badly from local minima for short DNA motifs.

An even more intelligent initialization procedure is the random-projections

method of Buhler and Tompa [56].

3.7.3.3. Basic Algorithm for Gibbs Sampling for Motif Finding The

probabilistic framework led to another important approach to solve the motif-

finding problem. Gibbs sampling for motif finding was presented by Lawrence

et al. [65] and was later described in more technical details by Liu et al. [66].

Gibbs sampling is a Markov chain Monte Carlo procedure that fits perfectly

within the missing-data problem. While EM gives the maximum-likelihood

estimates, the goal here is to model the posterior distribution and to generate data

accordingly. Shortly said, the proposed algorithm is basically a collapsed Gibbs

sampler which involves a Markov chain of the form:

Sample a
(tþ1)
1 from p (a1 j a

(t)
2 , . . . , a(t)N , S).

Sample a(tþ1)
2 from p (a2 j a

(tþ1)
1 , a(t)3 , . . . , a(t)N , S):

..

.

Sample a(tþ1)
N from p (aN j a(tþ1)

1 , . . . , a(tþ1)
N�1 , S).
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In words, the alignment position in sequence i is sampled according to a probability

distribution dependent on the current set of alignment position in all other

sequences. It can be shown that this Markov chain has the distribution p(A j S) as

its equilibrium state [66]. The computation of these probability distributions

involves the use of multinomial probability distributions (for the probability of

the data based on the likelihood function presented in Section 3.7.3.1 and on the

motif matrix and the background model) and Dirichlet probability distributions

(for the probability of the parameters of the motif matrix). The derivation of the

collapsed Gibbs sampler involves several properties of integrals of Dirichlet distri-

butions and a number of approximations are used to speed up the algorithm further.

To be concrete, we present here the resulting algorithm:

1. Input: A set of sequences S and the length W of the motif to search.

2. Compute the background model u0 from the nucleotide frequencies observed

in S.

3. Initialize the alignment vector A ¼ ai j i ¼ 1, . . . ,Nf g uniformly at random.

4. For each sequence Sz, z ¼ 1, . . . ,N:

(a) Create subsetseS ¼ Si j i = zf g and eA ¼ ai j i = zf g.

(b) Compute uW from the segments indicated by eA.
(c) Assign to each possible alignment start (xz j, j ¼ 1, . . . ,Li �W þ 1) in Sz

a weight W(xz j) given by the probability that the corresponding segment

is generated by the motif versus the background:

W(xz j) ¼
P(Sz j, . . . , Sz( jþW�1)juW )

P(Sz j, . . . , Sz( jþW�1)ju0)

¼
YW
k¼1

qSz( jþk�1)
z

q
Sz( jþk�1)
0

(d) Draw new alignment positions az according to the normalized probability

distribution W(xz j)=
PLi�Wþ1

k¼1 W(xz j).

5. Repeat step 4 until the Markov chain reaches stochastic convergence (fixed

number of iterations).

6. Output: A motif matrix uW and an alignment A.

3.7.3.4. Extended Gibbs Sampling Methods Several groups proposed

advanced methods to fine tune the Gibbs sampling algorithm for motif finding in

DNA sequences. A first version of the Gibbs sampling algorithm that was especially

tuned toward finding motif in DNA sequences is AlignACE [14], and this version

was later refined [67]. This algorithm was the first reported to be used for the analy-

sis of gene clusters. Several modifications were made in AlignACE with respect to

the original Gibbs sampling algorithm. First, one motif at the time was retrieved and

the positions were masked instead of simultaneous multiple motif searching.
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Second, AlignACE was implemented with a fixed single-nucleotide background

model based on base frequency (SNF) in the sequence set. Also, both strands

were included in the search. Finally, in the latest version, the maximum a posteriori

likelihood score was used to judge different motifs.

To have a more robust motif-finding tool, we designed MotifSampler [68, 69] as

part of INCLUSive [13]. This implementation was specifically developed to search

in sets of upstream sequences from groups of coexpressed genes. Since the results of

clustering are known to be subject to noise, only a subset of the set of coexpressed

genes will actually be coregulated. This implies that only part of the sequences have

one or more copies of the binding site while others have no binding site at all. There-

fore it is important to have an algorithm that can cope with this form of noise. Motif-

Sampler uses the framework of the probabilistic sequence model to estimate the

number of copies of a motif in a sequence. For each sequence in the data set the

number of copies of the motif is estimated, which is more accurate than earlier

methods. Furthermore, while the original Gibbs sampler, and also AlignACE and

MEME, uses only the single-nucleotide frequency to model the background, we

used a higher order Markov model to represent the background sequence in

which the binding sites are hidden. In [68] and [69] we demonstrated that the use

of a higher order background model built from an independent data set significantly

improves the performance of the Gibbs sampling algorithm in Arabidopsis thaliana.

Later, we also proved that the species-specific background models have a profound

impact on the motif detection in prokaryotes [70]. To exemplify the improvements

obtained by further refinements of the Gibbs sampling strategy, we report here briefly

the use of higher order background models on a data set of coregulated genes from

plants. The data set consists of 33 genes known to be regulated in part by the G-

box transcription factor, which is linked to the light response of plants. Additionally,

noisy sequences not suspected to contain an active motif are added gradually to this

set. The results of this analysis are shown in Table 3.3). We can observe that the per-

formance of the higher order algorithms is more robust to the addition of noisy

sequence than that of the zero-order algorithm. The improved robustness of the

method due to the higher order background model is discussed extensively in [68].

Currently, we provide our precompiled background models for all fully

sequenced prokaryotes and most eukaryotes (see http://homes.esat.kuleuven.be/
�dna/BioI/Software.html). To make MotifSampler as user friendly as possible,

TABLE 3.3 Number of Times Motif CACGTG Is Found in Increasing Noisy

G-Box Data Sets

Noisea 0 10 20 30 40 50 60

SNF genes 85 (1) 76 (1) 67 (1) 69 (2) 37 (4) 33 (4) 6 (4)

Third order 92 (1) 84 (1) 87 (1) 81 (1) 64 (2) 67 (2) 41 (2)

aNumber of added noisy sequence to the G-box data set.

Note: Numbers in parentheses are the number of times the G-box motif is found in 100 runs (rank of

G-box motif).
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we provided a Web interface where only a limited number of easy-to-understand

parameters have to be specified.

BioProspector [71] also uses a Gibbs sampling strategy to search for common

motifs in the regulatory region of coexpressed genes. In this implementation

various extensions are proposed. First, BioProspector also uses zero- to third-

order Markov background models. Second, the core sampling step was replaced

by a threshold sampler. This threshold-sampling step was incorporated to

estimate the number of copies of a motif in a sequence. The program defines two

threshold TL and TH . Instances with a score higher than TH will be automatically

selected while there will be one motif sampled from those motifs that have a

score between TL and TH . Threshold TH is set proportional to the product of the

average length of the input sequences and the motif width; TL is initialized at 0

and linearly increases until it reaches the value of TH=8. This threshold-sampling

step ensures faster convergence. As another modification, BioProspector proposes

two possible alternative motif models. The first possibility is to search for palin-

dromic motifs. The second possibility is to search for a gapped version of the

motif model, where the motif consists of two blocks separated by a gap of variable

length. The gapped version searches for two motifs at the same time that occur

within a given range.

Ann_spec [72] has a slightly different approach to model the motif. The motif

model is represented with a sparsely encoded perceptron with one processing

unit. The weights of the perceptron resemble the position weight matrix. This

model is based on the approximation of the total protein-binding energy by the

sum of partial binding energies at the individual nucleotides in the binding sites.

The use of a perceptron is also justified by the fact that it can be used to approximate

posterior probability distributions. A gradient-descent training method is used to

find the parameters of the perceptron. For the training set for the perceptron, positive

examples are selected using a Gibbs sampling procedure. Negative examples can be

constructed either from random sequences or from genomic data. To improve the

specificity of the motif model, a background model based on an independent data

set is preferred.

3.7.4. Recent Advances in Motif Finding

This section about motif finding would not be complete without a short note about

the recent advances in module search and phylogenetic footprinting.

3.7.4.1. Searching for Modules of cis-Regulatory Elements Another

very important aspect of gene regulation is that the great diversity of cells in

higher organisms does not come from the increasing number of genes but rather

from the growing complexity of the system controlling the gene expression.

When dealing with data from such a higher organism, it is no longer sufficient to

only search for individual binding sites but combinations or modules of cis-

regulatory elements come in to play. Most of these approaches start from a

module of known TFBSs and screen sequences for the presence of this module.
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As one of the only unsupervised methods, Ann_spec was extended to search for

cooperatively acting transcription binding factors by GuhaThakurta and Stormo

[73]. Co-Bind searches for two motifs simultaneously by combining the weights

that optimize the objective functions of the two individual perceptrons. The identi-

fication of two motifs simultaneously improved significantly the detection of the true

motifs compared to the classical methods of searching for one motif at a time. Most

programs have been developed to find modules of known TFBSs. The basic methods

developed methods to assess the statistical significance of the number of occurrences

of a given module in a sliding window [74–78]. Some of the programs use a hidden

Markov model (HMM) to model a module of TFBSs in a given region. The first

implementation was done by Crowley et al. [79], and other flavors are Ahab [80],

Cister [81], COMET [82] with statistical signifance, MCAST [83], and Stubb

[84]. We have developed ModuleSearcher [85], which uses an A� algorithm to

find a module that is specific to a set of coregulated genes.

3.7.4.2. Phylogenetic Footprinting Given the increasing availability of

newly sequenced genomes, cross-species comparison becomes a more important

aspect of bioinformatics research. Phylogenetic footprinting is the methodology

for the discovery of TFBSs in a set of orthologous regulatory regions from multiple

species. The basic idea is that selective pressure causes functional elements to

evolve at a slower rate than nonfunctional sequences. This means that unusually

well conserved sites among a set of orthologous regulatory regions might be

functional regulatory elements. Applying motif search algorithms to such a set of

orthologous promoter sequences should reveal these conserved patterns. This

approach has been implemented by several groups already.

McCue et al. [86] have used a Gibbs motif-finding algorithm for phylogenetic

footprinting. They also proposed a motif model that accounts for palindromic

motifs. Their most important contribution lies in the use of a position-specific back-

ground model estimated with a Bayesian segmentation model [87]. This model

accounts for the varying composition of the DNA upstream of a gene. Blanchette

et al. [88–90] developed FootPrinter in which they combine the oligomer count

with the phylogenetic tree to assess the statistical significance. In [91], first con-

served blocks are found in sets of orthologuous genes. In the next step blocks are

aligned to each other to find motifs common to a specific set of genes. ConREAL

[92] first screens sequences for known TFBSs and then combines these hits with

respect to the phylogeny of the data set. Cliften et al. [93] found functional features

in six Saccharomyces genomes. ConSite [94] is a suite of methods for the identifi-

cation and visualization of conserved TFBSs and reports putative TFBSs that are

located in conserved regions and located as pairs of sites in alignments between

two orthologous sequences.

We have recently published a study on the phylogenetic footprinting of PmrAB

targets in Salmonella thypimurium [95]. In this study we applied our MotifSampler

to a set of orthologous genes known to be regulated by PmrAB. We then screened

the whole genome of S. thypimurium for new targets, some of which were validated

in vivo.
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3.7.5. Availability of Motif-Finding Software

As a conclusion to this overview of motif-finding algorithms, Table 3.4 gives an

overview of some popular motif-finding methods for which the software is available

for download or can be accessed online.

3.8. INCLUSIVE: ONLINE INTEGRATED ANALYSIS OF
MICROARRAY DATA

Analysis of microarray experiment is not restricted to a single cluster experiment.

Inferring ‘‘biological knowledge’’ from a microarray analysis usually involves a

complete analysis going from the sequential use of distinct data preparation

steps to the use of different complex procedures that make predictions on the

data. Clustering predicts whether genes behave similarly while motif finding aims

at retrieving the underlying mechanism of this similar behavior. These data-

mining procedures thus make predictions about the same biological system. These

predictions are in the best case consistent with each other, but they can also contra-

dict each other. Combining these methods into a global approach therefore increases

their relevance for biological analysis. Moreover, this integration also allows the

optimal matching of the different procedures (such as the quality requirements

in AQBC that reduce the noise level for Gibbs sampling for motif finding). Further-

more, such global approaches require extensive integration at the information tech-

nology level. Indeed, as is often underestimated, the collection of data from multiple

data sources and transformation of the output of one algorithm to the input of the

next algorithm are often tedious tasks.

To make such an integrated analysis of microarray data possible, we have devel-

oped and made publicly available our INCLUSive Web tool (originally INCLUSive

TABLE 3.4 Selection of Available Motif-Finding Algorithms

Package URL Ref.

RSA tools http://rsat.ulb.be/rsat/ 96

YMF http://abstract.cs.washington.edu/�blanchem/cgi-bin/YMF.pl 97

REDUCE http://bussemaker.bio.columbia.edu/reduce/ 98

Consensus http://ural.wustl.edu/softwares.html 59

MEME http://meme.sdsc.edu/meme/website/ 62

Gibbs Sampler http://bayesweb.wadsworth.org/gibbs/gibbs.html 65

AlignACE http://atlas.med.harvard.edu/ 14

BioProspector http://bioprospector.stanford.edu/ 71

MotifSampler http://homes.esat.kuleuven.be/�dna/BioI/Software.html 68

MultiProfiler http://www-cse.ucsd.edu/groups/bioinformatics/software.html 54

Ann_spec http://www.cbs.dtu.dk/services/DNAarray/ann-spec.php 72

Weeder http://www.pesolelab.it/Tool/ind.php 48
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stands for INtegrated CLustering, Upstream sequence retrieval, and motif Sampling;

http://homes.esat.kuleuven.be/�dna/BioI) (see also the flowchart of Fig. 3.1). As

an illustration of the results obtained by combined AQBC and MotifSampler, we

show the results of motif finding on a microarray experiment in plants. The data

are a microarray experiment on the response to mechanical wounding of the plant

A. thaliana. The microarray consists of 150 genes related to stress response in plants.

The experiment consists of expression measurements for those 150 genes at seven

time points following wounding (after 30 min, 60 min, 90 min, 3 h, 6 h, 9 h, and

24 h). The expressiondatawere clustered usingAQBCwith a significance level of 95%.

Four clusters were identified that contained at least five genes and those were

selected for motif finding. MotifSampler was used to search for six motifs of

length 8 bp and for six motifs of length 12 bp. A background model of order 3

was selected as it gave the most promising results. The analysis was repeated 10

times and only the motifs identified in at least five runs were retained. Table 3.5

TABLE 3.5 Results of Motif Search in Four Clusters From a Microarray

Experiment on Mechanical Wounding in A. Thaliana for the Third-order

Background Model

Clustera Consensus Runs PlantCARE Descriptor

1

(11)

TAArTAAGTCAC 7/10 TGAGTCA

CGTCA

Tissue-specific GCN4 Motif

MeJA-responsive element

ATTCAAATTT 8/10 ATACAAAT Element associated to

GCN4 motif

CTTCTTCGATCT 5/10 TTCGACC Elicitor-responsive element

2

(6)

TTGACyCGy 5/10 TGACG MeJa-responsive element

(T)TGAC(C) Box-W1, elicitor-responsive

element

mACGTCACCT 7/10 CGTCA

ACGT

MeJA-responsive element

Abcissic acid response element

3

(5)

wATATATATmTT

TCTwCnTC

ATAAATAkGCnT

5/10
9/10
7/10

TATATA

TCTCCCT

TATA-box-like element

TCCC motif, light response

element

5

(4)

yTGACCGTCCsA

CACGTGG

GCCTymTT

AGAATCAAT

9/10

5/10

8/10
6/10

CCGTCC

CCGTCC

TGACG

CGTCA

CACGTG

ACGT

Meristem-specific activation of

H4 gene

A-box, light/elicitor-responsive
element

MeJA-responsive element

MeJA-responsive element

G-box light-responsive element

Abcissic acid response element

Source: From [69].
aNumbers in parentheses are number of sequences.
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presents the motifs found. In the first column, the cluster is identified together with

the number of genes it contains. The second column gives the consensus of the motif

found. The consensus of a motif is the dominant DNA pattern in the motif described

using a degenerate alphabet (e.g., r ¼ A/G); capitals are for strong positions while

lowercase letters are for degenerate positions. The third column gives the number of

times this motif was found in the 10 runs. The fourth column gives matching known

motifs found in the PlantCARE database [99], if any. Finally, the last column gives a

short explanation of the matching known motifs.

Since we have made our applications available through both a Web interface and

later also a stand-alone program, other researchers, mainly biologists, have been

using these programs extensively. During the three-year period that MotifSampler

has been online, almost 13,000 hits by more than 600 different users were registered.

Some of those users could publish biological meaningful results obtained with

MotifSampler [95, 100–105]. The Web interface of AQBC was created a few

months later and has been used less extensively than the MotifSampler site, but

we still counted almost 3000 hits by more than 250 users.

3.9. FURTHER INTEGRATIVE STEPS

The flow represented in this chapter going from coexpression information to motif

detection is only a first approach. As the information content of the available data

becomes richer (genomes sequenced and novel molecular biological techniques),

a more elaborate integration of the data at the algorithmic level becomes a pre-

requisite. One of those techniques is chromatin immunoprecipitation (ChIP) DNA

microarray (ChIP-chip) technology which allows direct mapping of in vivo physical

interactions between transcriptional regulators and their binding sites at a high-

throughput level [106–108].

For instance, ChIP-chip and motif data both contain information about the direct

interactions between a regulator and its target genes. Microarray data provide comp-

lementary information by indicating the expression behavior of the coregulated

genes. Independent analysis of each of the individual data sets describes the struc-

ture of the studied transcriptional network from a different angle [4]. Most

described methods, as also the approach described in this chapter to combine the

data, proceed sequentially: A prediction is based on a first data set (e.g., identifi-

cation of coexpression based on cluster analysis) and is validated by a second comp-

lementary data set (e.g., motif data). However, because they contain complementary

information, the simultaneous analysis of the data sets or the combination of

the individual predictions enhances the reliability of the individual predictions

and increases the confidence in the final result [31] (i.e., principle of meta-analysis).

The development of methods that perform such combined analysis will be one of the

future bioinformatics challenges. We can follow an iterative approach where the

predictions based on a first data set are used as a priori information for the analysis

of one or more complementary data sets and vice versa. Bussemaker et al. [109, 110]

introduced REDUCE, which uses a linear regression model to find motifs that
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correlate with the level of gene expression. Conlon et al. [111] propose a similar

approach, but they use matrices instead of oligomers. Lapidot and Pilpel [112]

detect simultaneously motifs and clustering of expression data. Bar-Joseph et al.

[113] implement an iterative analysis of ChIP-chip data and clustering of expression

data. Liu et al. [114] developed MDSCan for the simultaneous motif detection and

analysis of ChIP-chip data.

Alternatively, methods can be used that simultaneously analyze both data sets (e.g.,

by combining more data sets into a single matrix, which is subsequently analyzed).

Examples of such methods are supervised clustering, kernel methods, generalized

singular-value decomposition, and canonical correlation analysis [115, 116].

3.10. CONCLUSION

We have presented algorithmic methods for the analysis of microarray data for

motif finding. Microarrays are a powerful technique to monitor the expression of

thousands of genes, and they have become key techniques for biologists attempting

to unravel the regulation mechanisms of genes in an organism. After introducing

some concepts from molecular biology to describe how transcription factors recog-

nize binding sites to control gene activation, we reviewed the basics of microarray

technology. We then introduced the strategy of integrating clustering (to detect

groups of potentially coregulated genes) with motif finding (to detect the DNA

motifs that control this coregulation). We then discussed the preprocessing steps

necessary to prepare microarray data for clustering: normalization, nonlinear

transformation, missing-value replacement, filtering, and rescaling. We presented

several clustering techniques (such as hierarchical clustering, K-means, SOMs,

quality-based clustering, and our AQBC) and discussed their respective advantages

and shortcomings. We also presented several strategies to validate the results of

clustering biologically as well as statistically. Turning to motif finding, we

described the two main classes of methods for motif finding: word counting and

probabilistic sequence models. We focused on the particular technique of Gibbs

sampling for motif finding, where we discussed several extensions that improve

the effectiveness of this method in practice. We introduced our MotifSampler,

which in particular includes the use of higher order background models that

increase the robustness of Gibbs sampling for motif finding. To be complete, we

also mentioned the most important aspects of phylogenetic footprinting and

module searching. Finally, we briefly presented our integrated Web tool INCLUS-

ive, which allows the easy analysis of microarray data for motif finding. Further-

more, we illustrated the different steps of this integrated data analysis with

several practical examples.

As a conclusion, we emphasize that a major endeavor of bioinformatics is to

develop methodologies that integrate multiple types of data (here expression data

together with sequence data) to obtain robust and biologically relevant results

in an efficient and user-friendly manner. Only such powerful tools can deliver the

necessary support twenty-first-century molecular biology.
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&CHAPTER 4

Robust Methods for
Microarray Analysis

GEORGE S. DAVIDSON, SHAWN MARTIN, KEVIN W. BOYACK,
BRIAN N. WYLIE, JUANITA MARTINEZ, ANTHONY ARAGON,
MARGARET WERNER-WASHBURNE, MÓNICA MOSQUERA-CARO,
and CHERYL WILLMAN

4.1. INTRODUCTION

The analysis of a complex system within an environment that is only subject to

incomplete control is nearly impossible without some way to measure a large frac-

tion of the system’s internal state information. As a result, it is only with the recent

advent of high-throughput measurement technologies (able to simultaneously

measure tens of thousands of molecular concentrations) that systems biology is

really a possibility. As an example of the scope of this problem, consider that

eukaryotic cells typically have on the order of tens of thousands of genes, each of

which is likely to have several alternative splicing variants coding for the protein

building blocks of the cell. These proteins undergo posttranslational modifications

and have multiple phosphorylations such that there are likely to be hundreds of

thousands, possibly millions, of variants. Hence the future of systems biology

relies critically on high-throughput instruments, such as microarrays and dual

mass spectrometers. The research reported here addresses the need for improved

informatics to deal with the large volume of information from these techniques.

At present, microarray data are notoriously noisy. Hopefully this technology will

improve in the future, but for the immediate present, it is important that the analysis

tools and informatics systems developed for microarray analysis admit and adjust

to significant levels of noise. In particular, such methods should be stable in the pre-

sence of noise and should assign measures of confidence to their own results. In this

chapter we describe our efforts to implement and assess reliable methods for micro-

array analysis. We begin with the structure of the typical microarray experiment,

normalization of the resulting data, and ways to find relationships. We then
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proceed to discuss the tools themselves as well as methods to assess the output of

such tools.

Much of the work in this chapter is based on the VxInsight visualization software

[1]. However, we have tried to minimize overlap with existing published results

and have emphasized new work.

Throughout each section we will present results and examples from our research

to motivate the specific approaches, algorithms, and analysis methods we have

developed. The data sets we have analyzed will not be emphasized, although they

were of course critical to the work. Most of the data sets we have used have been

published, and these will be cited in the course of the chapter. The data sets so

far unpublished have been provided by the University of New Mexico Cancer

Research and Treatment Center. These data sets include an infant leukemia data

set, a precursor-B childhood leukemia data set, and an adult leukemia data set, all

of which have been presented at the American Society of Hematology conferences

in 2002 and/or 2003. Publications concerning the biological implications of these

data sets are forthcoming. Here we discuss methods only.

Finally, we emphasize that this chapter is by no means a survey of techniques for

microarray analysis. Indeed, the literature on microarray analysis is vast, and new

papers appear frequently. We will mention, however, some of the seminal papers,

including [2, 3], which describe the original technology, as well as [4], which

gives an overview of the earlier work on microarray technology. Of course, micro-

arrays would not be terribly useful without computational analysis, and some of the

original work on microarray analysis includes hierarchical clustering of the yeast

cell cycle [5, 6], an analysis of leukemia microarray data using an original

method of gene selection [7], and an application of the singular-value decomposition

to microarray data [8]. In addition to innumerable additional papers, there are a

variety of books available which emphasize different aspects of the microarrays

and microarray analysis. A few of the more recent books include [9–12].

4.2. MICROARRAY EXPERIMENTS AND ANALYSIS METHODS

4.2.1. Microarray Experiments

Microarray experiments and their analyses seek to detect effects in gene expression

under different treatments or natural conditions with the goal of clarifying the

cellular mechanisms involved in the cells’ differential responses. Uncertainty is

the rule rather than the exception in these analyses. First, the underlying systems

(cells and/or tissues) are incredibly complex whether viewed from the dynamic

process perspective or their physical realizations in space and time. Second, there

is abundant variability between cells experiencing exactly the same conditions as

a result of genetic polymorphisms as well as the stochastic nature of these chemical

systems. Third, the collection and initial preservation of these cells are not a

precisely controlled process. For example, when a surgeon removes a cancer, the

tissue may not be frozen or otherwise processed for minutes to hours, all the
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while the cells continue to respond to these unnatural conditions. Further, the tissues,

or partially processed extracts, are often sent to another laboratory several hours

or even days away from the original collection site, all of which offers opportunities

for chemical changes. Fourth, these measurements are not easy to make; they

involve many processing steps with a wide variety of chemicals, and at every step

variability arises. The processing is often (necessarily) divided across several

days and among several technicians, with inherently different skills and training.

Further, the chemicals are never exactly the same; they are created in different

batches and age at different rates. All of these affect the laboratory yields and the

quality of the processing. Finally, the arrays themselves are technological objects

subject to all sorts of variability in their creation, storage, and final use. In effect,

the simple measurement of mRNA concentrations that we would like to make

is confounded by huge uncertainties. To be able to make good measurements, it

is essential that all of the mentioned steps be subject to careful statistical process

control, monitoring, and systematic improvement. Further, the actual experiments

should be designed to avoid, randomize, or otherwise balance the confounding

effects for the most important experimental measurements [13, 14]. These are

best practices. Unfortunately, they are not often followed in the laboratory.

By the time the data are ready for analysis, they are typically presented in a

numeric table recording a measurement for each gene across several microarrays.

For example, one might be analyzing 400 arrays each with 20,000 gene measure-

ments, which would be presented in a table with 20,000 rows and 400 columns.

Often the table will have missing values resulting from scratched arrays, poor

hybridizations, or scanner misalignments, to name just a few (from among a host)

of the possible problems. The analysis methods should be able to gracefully deal

with these incomplete data sets, while the analyst should approach these data with

great skepticism and humility considering the complexity of the cellular processes

and the error-prone nature of our microarray technology. Despite all of these

issues, statisticians and informaticians, unlike mathematicians, are expected to say

something about the structure and meaning of these data. Because, as Thompson

has said, “[statisticians] should be concerned with a reality beyond data-free form-

alism. That is why statistics is not simply a subset of mathematics” [15, p. xv]. Here,

we attempt to follow Thompson in discussing implications of, as well as our

approaches to, analyzing these experiments, including considerable detail about

the algorithms and the way the data are handled.

4.2.2. Preprocessing and Normalization

As discussed in the previous section, microarray data typically have a large number

of missing data, or values otherwise deemed to be nonpresent. We typically drop

genes with too many missing values, assigning a threshold for this purpose that is

under the control of the analyst. The raw values are then scaled to help with the

processing.

The distributions of microarray measurement values typically have extremely

long tails. There are a few genes with very large expressions, while most of the
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others are quite small. Tukey and Mosteller suggested a number of transforms to

make data from such distributions less extreme and more like the normal Gaussian

distribution [16]. In particular, taking logarithms of the raw data is a common

practice to make microarray data more symmetric and to shorten the extreme tail

(see Fig. 4.1a).

However, we frequently use another transform to compress the extreme values,

which is due to [17]. This rank-order-based score is an increasing function of

expression level, for which the smaller values are compressed to be very nearly

the same. This is particularly useful with array data, as many of these smaller

values are due purely to noise. The Savage score is computed as follows: If

the absolute expression levels are rank ordered from smallest to largest,

X(1) � X(2) � � � � � X(n), then the score for X(k) is given by

SS(X(k)) ¼
Xk
j¼1

1

nþ 1� j

Figure 4.1b shows how this score affects the resulting distribution. In particular,

Savage scoring compresses the extreme tail and emphasizes the intermediate and

large counts. In this case, about 60% of the savage scores are below 1.

The use of this scoring has two advantages over correlations using raw counts.

First, because it is based on rank ordering, data from arrays processed with very

different scales can still be compared. Second, because the noisiest fraction of the

measurements is aggressively forced toward zero, the effect of the noise is sup-

pressed without completely ignoring the information (it has been taken into

account during the sorting phase). Finally, large differences in rank order will still

be strong enough to be detected.

The normalization of array data is controversial, although some form of centering

and variance normalization is often applied [18, 19]. However, it has been argued

FIGURE 4.1. (a) Distribution of log-transformed data from typical Affymetrix U94A micro-

array. (b) Distribution of the same data after Savage scores.
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that for many experiments there is no intrinsic reason to expect the underlying

mRNA concentrations to have the same mean (or median) values, and hence

variance adjustment is suspect. Nevertheless, the analyst has the option to do such

normalizations, if desired. In general, we avoid this issue by working with order stat-

istics and Savage scores.

4.2.3. Overview of Basic Analysis Method

After preprocessing the measurements with thresholding, rescaling, and various

other transforms, we often perform our analysis as follows. First, we compare the

genes or arrays under investigation by computing pairwise similarities with

several techniques. These similarities are used to cluster (or assign spatial coordi-

nates to) the genes in ways that bring similar genes closer together. These clusters

are then visualized with VxInsight [1, 20].

Although we typically use genes in our analyses, we often use arrays as well. In

fact, the analysis is the same, as all our techniques use either the gene matrix initially

described, or the transpose of the gene matrix. Hence, throughout the remainder of

this chapter, we will use the terms genes and arrays interchangeably.

Next, the clusters are tested with statistical methods to identify genes and groups

of genes that are differentially expressed in the identified clusters or genes otherwise

identified with respect to experimental questions and hypotheses. The expression

values for the identified genes are plotted and tested for stability. Those genes

which seem particularly diagnostic or differentiating are studied in detail by

reading the available information in online databases and in the original literature.

Each of these analysis steps will be presented in an order approximately following

the analysis order we use in practice.

This type of analysis is quite typical for microarrays and is usually divided into

two categories. The method first described for clustering genes is known as cluster

analysis, or unsupervised learning. The term unsupervised is used because we are

attempting to divine groups within the data set while avoiding the use of a priori

knowledge. In contrast, the second method described for the identification of gene

lists is usually called supervised learning. The term supervised refers to the fact

that we are using prior information in our analysis, in this case attempting to dis-

cover which genes are differentially expressed between known groups. An unsuper-

vised method asks, in essence: Are there groups in the data set and, if so, what are

they? A supervised method asks: Given groups, can we predict group membership

and can we learn what is most important in distinguishing the groups?

4.3. UNSUPERVISED METHODS

4.3.1. Overview of Clustering for Microarray Data

Organizing large groups of data into clusters is a standard and powerful practice in

exploratory data analysis. It has also become a standard practice in microarray
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analysis. Typically, the first step after the initial data transformations involves the

pairwise comparison of the data elements to determine their relative similarity or

dissimilarity. A single comparison usually results in a single number. Thus when

comparing the expressions of n genes across multiple experimental conditions,

one might compute n(n2 1)/2 correlations using the similarity measure between

each possible pair of genes. After the data pairs have been assigned similarities,

various grouping algorithms can be used.

In the case of microarray analysis, there are a variety of methods that have been

applied and/or developed. These include hierarchical clustering [5], the singular

value decomposition/principal-component analysis [8], and self-organizing maps

[21]. Our method (discussed next) belongs to the class of graph-theoretic clustering

methods. Other such methods include those presented in [22–24]. Finally, a general

overview of clustering methods can be found in [25].

In this chapter we focus on a tool known as VxOrd [20], which uses a force-

directed graph layout algorithm. Our method requires, as do most clustering algor-

ithms, a single similarity value for each of the data pairs. In the next section we show

one way to compute the similarities and then consider the actual clustering

algorithm.

4.3.2. Clustering Using VxOrd

4.3.2.1. Choosing a Similarity Measure One obvious candidate for

measuring similarities is the simple correlation coefficient R due to Pearson [26],

Rxy ¼

Pd
i¼1 (xi � �x)(yi � �y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd

i¼1 (xi � �x)2
Pd

i¼1 (yi � �y)2
q

where, of course, �1 � Rxy � 1. Pearson’s R is just a dot product of two mean-

centered and normalized d-dimensional vectors. Thus, one can think of R as a

measure of the extent to which the two vectors point in the same direction in the

d-dimensional space. Of course, the vectors might lie along the same line, but

point in opposite directions, which is the meaning of Rxy ¼ �1. If the vectors are

completely orthogonal, the correlation will be zero.

In fact, Pearson’s correlation is the measure of similarity that we, and the rest of

the microarray community, use most often. It is, however, not the only possibility

and in fact has some features that do not recommend it under certain situations.

For instance, Pearson’s correlation is known to be sensitive to outliers, especially

when n is small. Technically, R has a breakdown point of 1/n, meaning that as

few as one extreme outlier in the n points can make the statistic completely different

from the true measure of correlation for two random but correlated variables [26]. In

practice, we have not found this to be a real problem, since we typically use hun-

dreds of arrays. However, early in the development of microarray technology,

many data sets were published with order tens of arrays. In these cases, it was

deemed valuable to apply more computationally expensive but more robust
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measures of correlation. Details about robust measures of correlation, including the

percentage-bend correlation coefficient, can be found in [27].

We have also found occasion to use very different similarity measures. For

example, we clustered genes based on the textual similarity of their annotations in

the Online Mendelian Inheritance in Man (OMIM) [28] (http://www.ncbi.nlm.

nih.gov/omim). In this case, the text was processed with the RetrievalWare

search and retrieval package from Convera. RetrievalWare computes the similarity

between two text documents with a proprietary algorithm. For each gene annotation

the strongest 19 other annotations were accumulated to create a similarity file and

then processed to produce a clustering. The more typical processing for microarrays

is discussed in the following section.

4.3.2.2. Postprocessing for Similarity Measures While Pearson’s corre-

lation has a breakdown point of 1/n (a single outlier can distort the statistic from

one extreme to the other [26]), it is easy to compute and has been widely accepted

in the microarray community. Because Savage-scored expression values are

bounded, the influence of outliers is less important. As a result, the correlation coef-

ficient is usually the basis of our similarity computations. When too few arrays are

available to have confidence in R, the percentage-bend coefficient [27] is to be used

instead.

It is common to cluster directly with these coefficients. However, doing so

ignores much of the available information because R is such a nonlinear function.

For example, there is a slight change in significance when comparing two pairs of

genes that have R ¼ 0.5 and R ¼ 0.55, respectively, but the relative significance

between R ¼ 0.90 and R ¼ 0.95 can be quite large. Consequently, it is better to

transform these correlations with a measure of their relative significance. This trans-

form can be done by converting to the t-statistic for the observed correlation R

between the pairs of values [26]:

t ¼
R

ffiffiffiffiffiffiffiffiffiffiffi
d � 2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

p

Both R and t have computational issues that should be addressed. In particular, R

is undefined when the variance of either x or y vanishes, and hence a minimum,

acceptable variance must be determined. We typically require that

Xd
i¼1

(xi � �x)2
Xd
i¼1

( yi � �y)2 . 0:0001

Otherwise, no correlation is computed for the pair of expression vectors. A related

issue occurs with t when R approaches +1.0. In this case, the t-statistic becomes

arbitrarily large. Because clustering will be comparing similarities, the strength of

an extreme outlier will distort the clustering. Hence t should be clipped to avoid

such extremes (we typically truncate values greater than 300, though even this

value may be extreme).
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Missing data also present concerns in computing R. Certainly, if too many values

are missing, any computed similarity would be suspect. Recourse to the analyst’s

experience and judgment is the best way to choose how many values can be

missing before the comparison is not attempted. For large collections of arrays,

requiring that at least 70 measurements be simultaneously present for both

expression vectors has been acceptable in our experience.

Computing all of these correlations produces a huge file of similarity compari-

sons. For example, the computation for an experiment [29] around Clostridium

elegans, which has about 20,000 genes, required the computation of about

2 � 108 correlations. Using all of the correlations for clustering is neither necessary

nor desirable. Most of the correlations will be modest and including them slows the

clustering computation and introduces a great deal of resistance to the process that

separates the mass of genes into clusters. If a particular gene has strong correlations

with a few tens of other genes, they should eventually be clustered together.

However, if there are hundreds or thousands of correlations weakly linking that par-

ticular gene to others, then the net sum of these weak correlations may overwhelm

the few strong correlations.

If only a few of the correlations will be used for clustering, some method of

choice is required. The analyst can use all correlations above some threshold or

just the strongest few correlations for each gene. We have found the latter approach

to be sufficient. We have found that using the 20 strongest correlations is often a

good starting point. However, even fewer correlations may suffice, especially

with the methods discussed next for finding the most central ordination from a

distribution of stochastic clustering results.

4.3.2.3. Clustering by Graph Layout Once the similarities have been com-

puted, the VxOrd algorithm is used to cluster the data. VxOrd considers the data

set as an abstract graph. In the case of microarrays, we usually think of the genes

as nodes in a graph, and the edges as similarities between genes. The relationship

between the data elements and their similarity values can be visualized as an abstract,

weighted graph G(Vi, Ei, j,Wi, j) consisting of a set of vertices V (the genes) and a set

of edges E with weights W (the similarities between the genes). This graph is only

topologically defined, as the vertices have not been assigned spatial locations.

Spatial coordinates, called ordinations, are computed from the weighted graph

using VxOrd, which places vertices into clusters on a two-dimensional plane, as

shown in Figure 4.2. The ordinations are computed such that the sum of two opposing

forces is minimized. One of these forces is repulsive and pushes pairs of vertices away

from each other as a function of the density of vertices in the local area. The other

force pulls pairs of similar vertices together based on their degree of similarity. The

clustering algorithm stops when these forces are in equilibrium.

Although the algorithm has been discussed in detail in a previous paper [20], we

provide here a brief overview for convenience. VxOrd is based on the approach in

[30]. Fruchtermann and Rheingold compute a force term for both attraction and

repulsion. These terms are then used to generate new positions for the graph ver-

tices. The algorithm combines the attraction and repulsion terms into one potential

energy equation, shown below. The first term, in brackets, is due to the attraction

106 ROBUST METHODS FOR MICROARRAY ANALYSIS



between connected vertices; the second term is a repulsion term. The equation is

given by

Ki(x, y) ¼
Xni
j¼1

(wi, j � l2i, j)

" #
þ Dx, y

where Ki(x, y) is the energy of a vertex at a specific (x, y) location, ni is the number of

edges connected to vertex i, wi, j is the edge weight between vertex i and the vertex

connected by edge j, l2i, j is the squared distance between vertex i and the vertex at

the other end of edge j, and Dx,y is a force term proportional to the density of ver-

tices near (x, y).

In our ordinations, the energy equation is minimized iteratively in three phases.

The first phase reduces the free energy in the system by expanding vertices toward

the general area where they will ultimately belong. The next phase is similar to the

quenching step that occurs in simulated annealing algorithms [31], where the nodes

take smaller and smaller random jumps to minimize their energy equations. The last

phase slowly allows detailed local corrections while avoiding any large, global

adjustments.

VxOrd also includes additional improvements. These improvements include

barrier jumping, which keeps the algorithm from getting trapped in local minima;

a grid-based method for computing Dx, y, which reduces the computation of the

repulsion term fromQ(jVj2) toQ(jVj); and edge cutting, which encourages exposure

of clusters in the final stages of the optimization.

4.3.2.4. Clustering Parameters The analyst has two important controls over

the VxOrd algorithm:

1. The number of similarities used for the clustering

2. The degree of edge cutting permitted, where edge cutting refers to removing

key edges in order to expose cliques in the graph

The first control concerns how many similarities are passed to the clustering algor-

ithm. Every gene has some correlation with every other gene; however, most of

FIGURE 4.2. Data elements are nodes and similarities are edge values, which are clustered

and assigned (x, y) coordinates by VxOrd. These coordinates are then used to visualize

clusters, as shown on the far right. (From [20].)
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these are not strong correlations and may only reflect random fluctuations. By using

only the top few genes most similar to a particular gene, we obtain two benefits: The

algorithm runs much faster and, as the number of similar genes is reduced, the

average influence of the other, mostly uncorrelated genes diminishes. This change

allows the formation of clusters even when the signals are quite weak. However,

when too few genes are used in the process, the clusters break up into tiny

random islands containing only two or three very similar genes, so selecting this par-

ameter is an iterative process. One trades off confidence in the reliability of the

cluster against refinement into subclusters that may suggest biologically important

hypotheses. These clusters are only interpreted as suggestions and require further

laboratory and literature work before we assign them any biological importance.

However, without accepting this trade-off, it may be impossible to uncover any sug-

gestive structure in the collected data.

The second control tells the algorithm how many edges may be removed so that

cliques in the graph, or clusters in the ordination,may be exposed. This parameter must

also be balanced for reliability of the clique against actual exposure of the clique.

As an example of the impact of these parameters, consider Figure 4.3. Here we

are clustering a set of 126 arrays, each with about 12,000 genes. First consider

FIGURE 4.3. Effects of using different numbers of similarity links and different parameters

for edge cutting. (a) Using too many similarity links, in this case 30, and only a single undif-

ferentiated group is formed. (b) Using 15 similarity links and the data are no longer comple-

tely undifferentiated; some stronger similarities are beginning to force the emergence of

structure. (c) Using 30 links but with the maximum edge cutting enabled, and clusters are

still not apparent. (d ) Data can be separated the with 15 similarity links and aggressive cutting.
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the effect of using too many similarities. Figure 4.3a shows the result when 30

similarities per array are used. However, when only the top 15 strongest similarities

are used, as in Figure 4.3b, three groups begin to be apparent.

When a set of elements has a relatively uniform set of similarities, it can be very

difficult to separate them in to subclusters. However, there may be subsets of

stronger similarities that would divide the data into clusters if allowed to express

their influence in the absence of the other, mostly homogeneous similarities.

In other words, we can reveal small cliques of vertices by cutting similarity relation-

ships that have been constraining the vertices to remain an undifferentiated agglom-

eration. Figure 4.3c shows that no cliques are apparent when using 30 similarities

per vertex, even with extremely aggressive edge cutting. On the other hand, the

suggestive clusters seen in Figure 4.3b readily break into more detailed cliques

when only 15 similarities per vertex are used and when aggressive edge cutting is

enabled, as shown in Figure 4.3d.

4.3.2.5. Evaluating Utility and Significance of Clustering Clustering

algorithms are designed to find clusters. However, one’s initial stance should be

that there is no reason to suppose that the clusters found are more than artifacts.

We have expended significant effort devising methods for evaluating the clusters

produced by VxOrd. These efforts are described in detail in our previous

publications, but for completeness we provide a short overview here.

The first, most intuitive approach is to check that gene expressions are correlated

within clusters and to investigate the biological meaning of the clusters. One of our

first efforts in this direction was an analysis of the Spellman yeast data [32]. In this

paper we compared the typical expression histories of the genes in each cluster to

assure ourselves that genes in the cluster had, generally, uniform expression patterns

and that these patterns were different in the various clusters. Figure 4.4 shows

Spellman’s yeast cellcycle data clustered with VxOrd, overlaid with expression

traces for typical genes in the various clusters. Not only do these traces seem

homogeneous within the clusters and different between clusters, but they also

have biological significance as the cells move through their replication cycle.

Surprisingly, the various states in the cell cycle correspond to a clockwise

progression around the roughly circular layout of gene clusters in this figure.

This visual inspection was also recast in the same paper in a statistically more

rigorous manner. Although we do not provide the details, we concluded that the

VxOrd clusters were not artifacts. A statistical test used in [32] showed that a

subset of genes associated with cell cycle phase G1 were collocated with

p , 0.001 and further that CLB6, RNR1, CLN2, TOS4, and SVS1 collocated with

p , 0.0001 for cells exiting from long-term stationary phase.

Another test falling into the category of intuitive verification was performed in

[33]. This work tested VxOrd clusters of C. elegans genes for clusters enriched in

genes known to be involved in various biological processes. Stuart et al. [33]

found significant statistical enrichments. These enrichments suggested that other

genes in the same clusters could be expected to be involved in the indicated

processes. This hypothesis was confirmed with laboratory experiments.
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Another evaluation method to investigate the clustering algorithm uses exactly

the same processing parameters but with randomly permuted versions of the

measurements. If the clustering algorithm finds clusters or structures in this random-

ized data, then the results with the original data should be suspect. The processing

methods discussed above have been tested in this way, and randomized data do not

exhibit any organized structure; see, for example, the analysis in [29], where the

randomized data resulted in a single, symmetric, and otherwise unorganized

group of genes, which revealed structure in the data as well as lack of structure in

the randomized data. If randomized data show no structure, then the structures in

the actual data become more interesting and may possibly be useful.

These methods have been useful in showing that the clusterings are not chance

occurrences and have led to scientific insights. However, these approaches have not

addressed two other important issues related to clustering: (1) how stable these clus-

ters are with respect to variations in the measurements and (2) how stable they are

with respect to different random initializations of the VxOrd clustering algorithm,

which has an inherently stochastic nature. We investigated these two issues in [20].

To test the stability of the algorithm with respect to random starting points, we

ran 100 reordinations of the Spellman cell cycle data [6], which had about 6000

genes. Each reordination was started with a different seed for the random-number

generator. We then visually marked the elements of a cluster in one ordination

and looked to see if they were still visually clustered together in the other ordina-

tions. The results of this analysis were generally positive and are shown in

FIGURE 4.4. Cell cycle data with typical expression traces from each cluster. Interestingly,

the clusters lay out in a circle corresponding to the temporal cell cycle phases.
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Figure 4.5a. We also performed a more rigorous neighborhood analysis (see discus-

sion below) with good results.

To determine if small changes or noise in the similarities would give small

changes in the ordination results, we ran 80 reordinations where we added noise

drawn from a Gaussian distribution with mean zero and standard deviations

0.001, 0.010, 0.050, and 0.100 and recomputed the ordinations. These different ordi-

nations were also compared visually and statistically. These results generally

showed that our the clusterings held together remarkably well, even when a large

fraction of noise was added. The visual results are shown in Figure 4.5b.

4.3.2.6. Finding Most Representative Clustering Each randomly restarted

ordination by VxOrd represents a sample from a distribution of possible ordinations

arising from a particular similarity file. From this perspective, one might want to

identify the best ordination, which is particularly hard because it is an extreme

and further because the concept of best cluster or best ordination is not particularly

well defined. However, the idea of a most representative ordination or most central

ordination (MCO) can be defined with respect to the sample of observed randomly

restarted ordinations. In this case, two ordinations are compared by neighbor-

hood analysis to create a single measure of overall similarity between the two ordi-

nations. With this method for comparing two ordinations, one can make all possible

comparisons of the available randomly restarted ordinations and then select the

ordination that is, on average, most like all the remaining reordinations. This idea

of centrality of the distribution of ordinations might be further extended to

the second moment to compute some measure of dispersion, which perhaps could

eventually be extended to allow some sort of hypothesis testing about these

ordinations. However, we have only investigated the centrality issue.

As an example, we used massively parallel computers to calculate hundreds or

in some cases thousands of reclustered ordinations with different seeds for the

random-number generator. We compared pairs of ordinations by counting, for

FIGURE 4.5. (a) Ordinations with different random starting conditions. (b) Effect of increas-

ing edge noise on cluster stability. (From [20].)
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every gene, the number of common neighbors found in each ordination. Typically,

we looked in a region containing the 20 nearest neighbors around each gene,

in which case one could find a minimum of 0 common neighbors in the two

ordinations or a maximum of 20 common neighbors. By summing across every

one of the genes, an overall comparison of similarity of the two ordinations was

computed. We computed all pairwise comparisons between the randomly restarted

ordinations and used those comparisons to find the ordination that had the largest

count of similar neighbors. Note that this corresponds to finding the ordination

whose comparison with all the others has minimal entropy and in a general sense

represents the MCO of the entire set. Although not shown here, plots of the entro-

pies, intersection counts, and cross plots of entropy showed that there were central

ordinations, even for a data set that we found very difficult to break into stable

clusters [34].

It is possible to use these comparison counts (or entropies) as a derived similarity

measure in order to compute another round of ordinations. For example, given that

200 random reordinations have been computed, one can compute the total number of

times gene gj turns up in the neighborhood of gene gk in the available 200 ordina-

tions. This count, or the average number of times the two genes are near each

other, will be high when the two genes are generally collocated (which should be

a reflection of similar expression profiles for gj and gk). The clusters from this recur-

sive use of the ordination algorithm are generally smaller, much tighter, and gener-

ally more stable with respect to random starting conditions than any single

ordination. In fact, we found that most single ordinations were more similar to

the MCO when using the derived similarity than when using Pearson’s R.

We typically use all of these methods (computing the MCO from among about

100 to 200 random reordinations and computing neighborhood set sizes ranging

from 10 to 30 by steps of 5) during exploratory data analysis in order to develop

intuition about the data.

As an interesting aside, the process of comparing pairs of ordinations results in

similarity values between every ordination. These similarities can be used to

create clusters of the clusterings! Figure 4.6 shows an example where we found

that the random reclusterings seemed to fall into two different attractor basins,

which may be interpreted as a sign that there were two different but perhaps

equally valuable ways to look at the data and that no single cluster was able to

represent both of these views.

4.3.3. Enhancing VxOrd

In addition to developing the MCO algorithm, which is layered on top of the VxOrd

algorithm, we put some effort into enhancing VxOrd itself. For clarity, we will

hereby denote the enhanced version by VxOrd 2.0 and the original verision by

VxOrd 1.5. The original motivation for developing VxOrd 2.0 was to cluster

larger data sets, although we also found the algorithm to be more stable and more

accurate on certain data sets.
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4.3.3.1. Adding Graph Coarsening to VxOrd VxOrd 2.0 is based on graph

coarsening, which has previously been applied to other graph layout algorithms in

order to draw larger graphs more efficiently [35, 36]. Graph coarsening, also

known as multilevel mesh refinement, works by replacing the original graph with

a smaller but still representative graph. In the context of graph layout, we draw

the smaller graph and use this initial layout as a starting point for drawing the orig-

inal graph. In fact, we use an iterative approach which typically provides a succes-

sion of smaller graphs and hence a succession of graph layouts.

Suppose the initial graph is denoted by G0. A coarsened version G1 of G0 is

obtained by randomly visiting and subsequently merging nodes as follows:

1. Pick a node vi at random.

2. Choose a neighbor vj of vi such that the edge eij has maximal weight. If no such

vj exists or vj has been previously visited/merged, go to step 4.

3. Merge vj into vi by adding edge weights of common neighbors or creating new

edges if there are no common neighbors.

4. Repeat until all nodes have been visited/merged.

FIGURE 4.6. Process of comparing individual clusters results in similarity values between

each ordination. These similarities can be used to create a cluster of clusters. In this case, there

seem to be two attractors, suggesting the data may have two useful visualizations.
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This algorithm is fast and has been observed [37] to produce much smaller but still

representative versions of the original graph.

Once the initial graph G0 has been coarsened, we can draw the smaller version G1

using VxOrd 1.5 and then reverse our coarsening to obtain a layout of G0. In fact,

we repeatedly apply the coarsening algorithm to get an even smaller graph. The

algorithm that we use is as follows:

1. Apply the coarsening algorithm until we obtain a suitably small graph (say

50 nodes) or until the algorithm fails to make any more progress. We

obtain a sequence of graphs G0, G1, . . . ,Gm from this process.

2. Draw Gm using VxOrd.

3. Refine Gm to obtain Gm21. Place the additional nodes obtained by this refine-

ment in the same positions as their counterparts (merged nodes in Gm) and

adjust with VxOrd.

4. Repeat step 3 using Gm22, . . . ,G0.

This algorithm requires additional adjustments in terms of the grid-based density

calculations and the various parameters involved in the simulated annealing. With

proper adjustments, however, we obtain better accuracy and stability with this

algorithm (VxOrd 2.0) than with the previous version (VxOrd 1.5), as will be

demonstrated in the following section.

4.3.3.2. Benchmarking VxOrd 2.0 We first benchmarked VxOrd 2.0 on the

so-called swiss roll data set. Although this is not microarray data, it provides a

useful example of the essential difference between VxOrd 2.0 and VxOrd 1.5.

This data set was used in [38, 39] to test two different nonlinear dimensionality

reduction algorithms. The data set is provided as points in three dimensions,

which give a spiral embedding of a two-dimensional ribbon (see Fig. 4.7a).

To test VxOrd, we considered each point to be a node in an abstract graph, and

FIGURE 4.7. The swiss roll is a two-dimensional manifold embedded nonlinearly in

three dimensions: (a) actual data set; layouts of associated graph using (b) VxOrd 1.5 and

(c) 2.0 VxOrd.
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we connected each node to its 20 nearest neighbors. In principle, VxOrd should draw

the graph as a two-dimensional ribbon.

The swiss roll is a useful benchmark because it is very easy to visualize but hard

enough so that it will confound (at a minimum) any linear algorithm (such as

principal–component analysis). It also confounded the original VxOrd 1.5, as can

be seen in Figure 4.7b. Looking closely at Figure 4.7b, we can see that VxOrd

1.5 did well on a local scale (i.e., the colors are together and in the correct order)

but failed on a global scale (the ribbon is twisted). Once graph coarsening was

added to VxOrd, however, the global structure was also ascertained correctly, as

shown in Figure 4.7c. In our subsequent analysis we found a similar story: VxOrd

2.0 does well on large data sets on a global scale but otherwise does not improve

VxOrd 1.5.

For our next benchmark, we again used the swiss roll data set, an adult leukemia

data set provided by the University of New Mexico Cancer Research and Treatment

Center, and the yeast microarray data set [6] used previously. In order to test the

stability of our modification to VxOrd, we performed multiple runs of both

VxOrd 1.5 and VxOrd 2.0 with different random starting conditions. We then com-

pared the ordinations using a similarity metric obtained as a modification of a metric

discussed in [40].

Our similarity metric is a function se (U, V ), whereU, V are two VxOrd layouts of

the same m-node data set x1, . . . , xn. The metric is computed by first constructing

neighborhood incidence matrices NU,e and NV,e, where N
*,e

is an n � n matrix

N
*,*

¼ (nij), with

nij ¼
1 if kxi � xjk , e

0 otherwise

�

Now

se(U,V) ¼
NU,e � NV ,e

kNU,ekkNV ,ek

where NU,e � NV ,e is the dot product of NU,e and NV ,e when both matrices are con-

sidered to be vectors of length n2. Finally, we note that in order to make sure we

can form reasonable e neighborhoods of a given node xi, we first scale both U

and V to lie in the area [21,1] � [21,1].

To see how we can use this metric to assess the stability of VxOrd 2.0, we first

revisit the swiss roll data set. In the top row of Figure 4.8, we show an all-versus-

all similarity matrix for 10 different random runs of both VxOrd 1.5 and VxOrd

2.0. This figure confirms the results from Figure 4.7 and shows that the metric is

valid. In particular, we see that VxOrd 2.0 arrives at a consistent solution (indicated

by higher similarities) while VxOrd 1.5 is less consistent.

Next we computed the same similarity matrices for the adult leukemia data set

and for the yeast time-series data, as shown in the second and third rows of
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FIGURE 4.8. Comparison of the similarity matrices for random runs of VxOrd 1.5 and 2.0

using swiss roll, adult leukemia, and yeast data sets. On the left we show the runs produces by

VxOrd 1.5, and on the right we see the runs produced by VxOrd 2.0. From top to bottom we

have the swiss roll with 10 runs, the adult leukemia data set with 100 runs (10 runs for 10

different edge cutting parameters—more aggressive up and left), and the yeast data set

with 10 runs. The color scale is shown on the right and is the same for all images. If we

look at this figure as a whole, we see that the right-hand column has more red than the

left-hand column and hence that VxOrd 2.0 (right column) is generally more stable than

VxOrd 1.5 (left column).
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Figure 4.8. We arrived at similar results in each case. We also computed the average

similarity across the matrices (excluding the diagonal) for the different cases, shown

in Table 4.1.

In the case of the adult leukemia data set, we also experimented with the edge

cutting feature of VxOrd. In particular, we computed 10 random runs for each of

the 10 most aggressive edge cuts. We found that even though VxOrd 2.0 was

more consistent overall, it still was not consistent with the most aggressive cut.

The yeast data set was larger (6147 nodes compared to 170 nodes in the adult

leukemia data set) and the results of both VxOrd 1.5 and 2.0 were fairly consistent.

In particular this suggests VxOrd 1.5 still does well on larger data sets without an

inherently gridlike structure (as in the swiss roll).

4.4. SUPERVISED METHODS

Clustering a microarray data set is typically only the first step in an analysis. While

we have presented tools and techniques to help assure a reasonable and stable ordi-

nation, we have not yet discussed the most important part of the analysis: the steps

necessary to determine the actual biological meaning of the proposed clusters. While

we do not typically address the actual biology in a given analysis, we often provide

the appropriate tools for such analysis. These tools must be both informative and

accessible to the average biologist.

4.4.1. Using VxInsight to Analyze Microarray Data

As stated earlier, most of our work is built upon a database with a visual interface

known as VxInsight [1]. VxInsight was originally developed for text mining but

has been extended for the purpose of microarray analysis. Once an ordination has

been obtained (using the methods described previously), the ordination is imported

into VxInsight, along with any annotation or clinical information.

VxInsight uses a terrain metaphor for the data, which helps the analyst find and

memorize many large-scale features in the data. The user can navigate through the

terrain by zooming in and out, labeling peaks, displaying the underlying graph

structure, and making queries into the annotation or clinical data. In short, VxInsight

provides an intuitive visual interface that allows the user to quickly investigate and

propose any number of hypotheses. Details about and applications of VxInsight can

be found in [1, 20, 29, 32, 33].

TABLE 4.1 Average Values (Excluding the Diagonal)

of the Similarity Matrices Shown in Figure 17

Swiss Roll AML Yeast

VxOrd 1.5 0.43 0.33 0.62

VxOrd 2.0 0.87 0.80 0.69
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4.4.1.1. Typical Steps in Analysis Using VxInsight VxInsight is very

useful for an initial sanity check of a data set. We will typically cluster the arrays

to look for mistakes in the scanning or data processing which might have duplicated

an array. A duplication will often be apparent in the experiment because the pair of

duplicated arrays will cluster directly on top of each other and will typically be

far from the other clusters. We have discovered that many data sets cluster more

by the day the samples were processed, or even by the technician processing

the samples, than because of biologically relevant factors. Further investigation is

needed, for example, if almost 100% of a particular processing set clusters by

itself. In one case we found a very stable ordination consisting of two groups.

After much confusion we discovered that the groups were divided by experimental

batch and that one of the groups consisted of patients whose samples contained only

dead or dying cells (perhaps due to bad reagents or problems with the freezing

process). When the experiments were redone, the original clusters dissolved into

more biologically meaningful clusters.

One can often see the effect of confounding experimental conditions using this

same method. For example, if a set of arrays is processed by the date they were

collected and the date corresponds to separate individual studies, then the processing

set (date) will be confounded with the study number. Well-designed studies control

such confounding by randomizing the processing order or by carefully balancing the

processing order. However, it is always wise to use these exploratory analysis

methods to ensure that your main effect has not, somehow, been confounded.

A more interesting phase of analysis begins after obviously bad data have been

culled and the remaining data have been reclustered. The data may be clustered

in either of two ways. In one approach, the genes are clustered in an effort to identify

possible functions for unstudied genes. See, for example, [29, 32].

In the other approach, which is often seen in clinical studies, we cluster the arrays

(the patients) by their overall expression patterns. These clusters will hopefully

correspond to some important differentiating characteristic, say, something in the

clinical information. As the analysis proceeds, various hypotheses are created and

tested. VxInsight has plotting features that are helpful here, including a browser

page with various plots as well as links to external, Web-based information.

Although useful information can be gleaned by simply labeling different peaks in

VxInsight, a more systematic method is even more informative. At the highest

level, one may wish to select two clusters of arrays and ask:Which genes have signifi-

cantly differential expressions between these two clusters? Given anymethod for iden-

tifying such genes, it is useful to display them within the context of the cluster-by-

genes map. Sometimes the most strongly differentiating genes for the clusters of

arrays may not have been previously studied. In this case, it can be very useful to

find known genes that cluster around these unstudied genes using the cluster-by-

genes map.

This process is illustrated in Figure 4.9, which shows the original table of array

data, clustered both by arrays and by genes. The lower map represents the result after

clustering by arrays and shows two highlighted clusters (colored white and green,

respectively). The genes with strongly differential expressions between the groups
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of arrays are shown to the right of this map. Note that the list is sorted by a statistical

score and also contains links to the available Web-based annotations. A curved

arrow in the figure suggests the path between the gene list and the cluster-by-

genes image. That connection is implemented with sockets and forms the basis of

a more general analysis tool, which allows an arbitrary gene list to be sent from

the analysis of the arrays to the analysis of the genes.

4.4.1.2. Generating Gene Lists There are many methods for generating gene

lists or finding genes which are expressed differently in different groups. As stated in

the introduction, this process is known as supervised learning, since we are using

known groups to learn about (and make predictions about) our data set. Finding

gene lists in particular is known as feature or variable selection, where the features

in this case are genes.

There are a wide variety of methods for feature selection, and we do not provide

here an extensive survey of this area. We do, however, mention some of the methods

developed specifically to select genes for microarray analysis. The method in [7]

was one of the first gene selection methods proposed, the method in [41] applied

feature selection for support vector machines to microarray data, and [42] discusses

a variety of feature selection methods applied to microarray data.

FIGURE 4.9. Array of expression data for large number of experiments shown clustered by

genes and by arrays. A list of genes with different expressions between two groups of arrays is

shown. This list includes a short annotation and links to more extensive, Web-based

annotations.
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For our purposes, we use a simple statistical method for gene selection. A gene-

by-gene comparison between two groups (1 and 2) can be accomplished with a

simple t-test. However, we wanted to eventually support comparisons between

more than two groups at a time, so we actually used analysis of variance

(ANOVA). This processing results in an F-statistic for each gene. The list of

genes is sorted to have decreasing F-scores, and then the top 0.01% of the entire

list are reported in a Web page format, with links to the associated OMIM pages.

The OMIM pages are then examined manually to hypothesize biological differences

between the clusters.

4.4.1.3. Gene List Stability An analysis using the gene list feature of VxInsight

typically progresses as follows. First, a question is posed within the VxInsight frame-

work and a statistical contrast is computed for that question. The gene list is initially

examined to see if any genes are recognized by their short descriptions, which, if

available, are included with the genes. The plots are examined, and the OMIM anno-

tations are read. If the gene appears to be important, the literature links and other rel-

evant National Center for Biotechnology Information (NCBI) resources are studied.

This analysis step is very labor and knowledge intensive; it requires the bulk of the

time needed to make an analysis. As such, it is very important to not waste time

following leads that are only weakly indicated. That is to say, before one invests a

great deal of time studying the top genes on a list, it is important to know that

those highly ranked genes would likely remain highly ranked if the experiment

could be repeated or if slight variations or perturbations of the data had occurred.

The critical issue about any ordered list of genes is whether we can have any con-

fidence that this list reflects a nonrandom trend. To be very concrete, suppose that

My Favorite Gene (MFG) is at the top of the list in our ANOVA calculations, that is,

MFG had the largest observed F-statistic from the ANOVA. What can we conclude

about the observed ranking for MFG? Certainly, a naive use of the F-statistic has no

support because we tested, say, 10,000 genes and found the very largest statistic

from all of those tests. So, an F-value for p ¼ 0.001 would likely be exceeded

about 10 times in our process, even if all the numbers were random. Hence, the

reported F-statistic should only be considered to be an index for ordering the values.

However, if we could repeat the experiment and if MFG was truly important, it

should, on average, sort into order somewhere near the top of the gene list. We

cannot actually repeat the experiment, but we can treat the values collected for a

gene as a representative empirical distribution. If we accept that this distribution

is representative, then we can draw a new set of values for each of the two

groups by resampling the corresponding empirical distributions repeatedly (with

replacement), as shown in Figure 4.10. This process is due to Efron and is known

as bootstrapping [43].

Now consider Figure 4.11, where we resample for every gene across all of the

arrays in the two groups to create, say, 100 new experiments. These experiments

are then processed exactly the same way as the original measurements were

processed. We compute ANOVA for each gene and then sort the genes by their

F-value. As we construct these bootstrapped experiments, we accumulate the
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FIGURE 4.10. A bootstrap method uses the actual measured data as estimates for the under-

lying distribution from which the data were drawn. One can then sample from that estimated

underlying distribution by resampling (with replacement) from the actual measurements.

FIGURE 4.11. Actual data are processed to create the gene list, shown at the bottom left. The

actual data are then resampled to create several bootstrapped data sets. These data sets

are processed exactly the same way as the real data to produce a set of gene lists. The

average order and the confidence bands for that order can be estimated from this ensemble

of bootstrapped gene lists.
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distribution of the location in the list where each gene is likely to appear. Using these

bootstrap results one can determine, for each gene, its average order in the gene lists.

Although the distributions for such order statistics are known, they are complex. On

the other hand, the bootstrapped distributions are easily accumulated, and they are

acceptable for our needs.

In addition to the average ranking, we count the 95% confidence bands for each

gene’s ranking as estimated by the bootstraps. We report both the upper 95% con-

fidence band and the centered 95% confidence interval for each of the genes. The

lower limit of this upper 95% confidence band (LLUCB) is recorded for later use

(note that 5% of the time we would observe a ranking below LLUCB by random

chance, even when our hypothesis is false, given the two empirical distributions).

Next, we investigate the p-values for the observed rankings of these genes under

the null hypothesis, H0, that there is no difference in gene expression between

the two groups (1 and 2). In this case (when H0 is in fact true), the best empirical

distribution would be the unordered combination of all the values without respect

to their group labels. To test this hypothesis, we create, for example, 10,000 syn-

thetic distributions by bootstrapping from this combined empirical distribution

and process them exactly as we did the original data.

We are interested in what fraction of the time we observed a particular gene

ranking higher in the bootstrapped results than the appropriate critical value.

There are several reasonable choices for this critical value. We could use the actual

observed ranking or the average ranking from the bootstraps under the assumption

that H0 was false. Instead, we take an even more conservative stance and choose a

critical value using a power analysis to control our chance of a type II error. We set

b ¼ 0.05, or 5%.

If H0 were false (i.e., if the groups do have different means), then the earlier

bootstrapping experiments suggest that one might randomly observe a ranking as

low as LLUCB about 5% of the time. Hence, we examine the later bootstrap exper-

iments (under H0 assumed true and thus no group differences) and find the fraction

of the times that we observe a ranking at or above LLUCB. This value is reported,

gene by gene, as the p-value for the actual rankings. In essence, we are saying that if

H0 is true, then by random chance we would have seen the gene ranking above

LLUCB with probability p. As LLUCB is much lower than the actual ranking,

this p-value is very conservative for the actual ranking.

To investigate the meaning of the actual F-statistics used to index these gene lists,

we computed another bootstrap experiment. We were interested in the effect of

scaling the original expression values by their Savage-scored order statistics. As pre-

viously discussed, this scoring is felt to be more robust than taking logarithms.

However, we were concerned that this might influence our p-values, so we devel-

oped a code to estimate the expected F-statistic for the mth ranked gene in a gene

list from two groups (1 and 2) respectively having j and k arrays. This code

computes a large bootstrap after randomizing the Savage scores within each of

the jþ k arrays. The code then computes the ANOVA for each gene and eventually

sorts the resulting genes into decreasing order by F-statistics. The final result is a

p-value (by bootstrap) for the two groups with the specific number of arrays. This
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computation is rather intensive and should either be fully tabulated or run only as

needed for genes uncovered by the earlier methods. We have not run extensive simu-

lations of this code against the p-values or the list order distributions, but the limited

checks did suggest that genes which always ranked near the top of the differentiating

gene lists do have rare F-statistics based on the Savage-scored orders relative to the

expected random distributions (data not shown).

4.4.1.4. Comparing Gene Lists As mentioned previously, the ANOVA plus

bootstrap approach described above is only one way to find genes which may

have important roles with respect to particular biological questions. Our collabor-

ators, for example, have used support vector machine recursive feature elimination

(SVM RFE) [41], a Bayesian network approach using a feature selection method

known as TNoM [44], and a technique based on fuzzy-set theory as well as more

classical techniques, such as discriminant analysis. By using several of these

methods, one might hope to find a consensus list of genes. Our experience has

shown that this is possible. While the lists from different methods are usually not

exactly the same, they often have large intersections. However, the simultaneous

comparison of multiple lists has been a difficult problem.

We have developed a number of methods which have helped us understand that the

lists may be different in the details but still very similar biologically. This makes sense

considering that different methodsmight identify different but closely related elements

of regulation or interaction networks. In that case, the methods suggest the importance

of the network and the particular region in that network, even though they do not ident-

ify exactly the same elements. This relatedness suggests something similar to the kind

of “guilty-by-association” method that has been used to impute gene functions for

unstudied genes that cluster near genes with known function, as in [29]. Indeed, some-

thing similar can be used to evaluate the similarity of multiple gene lists.

Figure 4.12a shows a VxInsight screen for clusters of genes. Highlighted across

the clusters are genes identified by different methods (shown in different colors). In

this particular case, one can see that the various methods do identify genes that are

generally collocated, which suggests that gene regulations and interacting networks

probably do play a strong role with respect to the question under consideration.

Here, for example, the question was, “which genes are differentially expressed in

two types of cancers [acute lymphoblastic/myeloid leukemia (ALL/AML)]?”.

However, multiple methods do not always produce such strong agreement, as

shown in Figure 4.12b. In this case the question was, “which genes are predictive

for patients who will ultimately have successful treatment outcomes (remission/
failure)?” Unfortunately, this question had no clear answer. Interestingly, the

ANOVA-plus-bootstrap method suggests a very stable set of genes for the first ques-

tion, while the list for the second question is not stable and has confidence bands

spanning hundreds of rank-order positions (data not shown).

Finally, we have discovered that when two methods produce similar gene lists, the

coherence may be due to the underlying similarity of the methods more than to any

true biological significance. We discovered this fact using a visualization of the

gene lists using principal-component analysis (PCA), a common technique used for
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dimensionality reduction that involves projections of the original data onto the prin-

cipal components. These components are ordered according to the amount of data

captured by each component. The first component is the most informative, the

second is the next most informative, and so on. Further information on PCA can be

found in [45, 46]. An example of PCA applied to microarray data can be found in [8].

In our PCA-based visualization of multiple gene lists, each gene is considered

to be a point in patient space, where each dimension corresponds to a different

patient. Since, in this case, there were �12,000 genes and 126 patients, the

spatial representation had 12,000 points (samples) in a 126-dimensional space. Of

the 12,000 genes we only considered about 600 that occurred in the different gene

lists, reducing our problem to 600 genes in 126 dimensions. Furthermore, because

we were mainly interested in how the genes compared as discriminators, and not

how their actual expression levels compared, we projected the genes onto the

126-dimensional unit sphere in patient space, as suggested in Figure 4.13a. Geome-

trically, this corresponds to comparing the directions of the genes in the various gene

lists as opposed to their magnitudes.

In order to understand this visualization, is it useful to imagine a sphere with a plane

passing through the origin. The sphere corresponds to the unit sphere (the sphere with

radius 1 centered at the origin) in the patient space and the plane corresponds to the

plane determined by the first two principal components. The first principal component

points in the radial direction of the sphere and the second principal component is tan-

gential to the sphere at the sphere’s intersection with the first principal component. The

vector representing a particular gene and it will intersect the unit sphere, and it will be

near the equator of the sphere (unit circle) if it lies in the plane of the first two principal

components. To the extent that the gene lies above or below the plane of the first

two principal components, the projection of the intersection back down onto the

plane will lie further inside the equator. The distribution of these projections

onto the principal-component plane suggests how a given method of gene selection

identifies important genes.

FIGURE 4.12. (a) General collocation of genes identified by different algorithms (shown

with different colors). This collocations suggests that the different methods are in reasonable

agreement. (b) Genes selected by each method are widely separated and show no coherence,

suggesting that there is a lack of consensus among the methods.
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FIGURE 4.13. (a) A few genes from three different methods are shown intersecting the unit

sphere, along with the projections of those intersections down onto the plane of the first two

principal components. Note that genes near that plane will have projections that fall close to

the arc of the sphere, while those above or below the plane will have intersections that fall well

within the equator of the sphere. (b) The ALL-vs-AML gene list comparison. The gene lists

that characterize ALL vs. AML are shown, with a different color for each of the methods used

to obtain them. In distinguishing ALL from AML we found that most of the genes in the list

were colocalized in our representative visualization. (c) Gene lists that characterize remission

vs. failure are shown, with a different color for each of the methods used to obtain them. It can

be seen in this figure that distinguishing remission from failure is a difficult task.
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For instance, discriminant analysis and the ANOVA methods are much more

similar to each other than to the Bayesian network approach. If we use PCA

(see [46] for an introduction to PCA), we see further that many methods will be

heavily influenced by differences in the first few principal components of the gene

expression data. On the other hand, methods such as SVM RFE [41] are able to

examine the simultaneous efficacy of groups of genes, some of which, individually,

may not be discriminatory in the first or second principal component. One way to

understand these differences is by considering where selected genes project onto the

plane of the first two principal components: see Figure 4.13a, which schematically rep-

resents a few genes from three methods, identified by different colors.

It is evident from Figure 4.13b that the gene lists selected for the ALL/AML

problem are related. Unfortunately, it is equally obvious that the gene lists selected

for the remission/failure problem are unrelated, as shown using the same analysis in

Figure 4.13c.

When distinguishing ALL from AML, we found that most of the lists were

colocalized in our representative visualization (see Figs. 4.12a and 4.13b). When

distinguishing remission from failure, on the other hand, we could not arrive at a

satisfactory conclusion (see, Figs. 4.12b and 4.13c), which is also consistent with

the results from ANOVA plus bootstrapping (data not shown).

4.4.2. Unifying Gene Lists

Although it is useful to compare gene lists, the task of sifting through five or six such

lists can be very time consuming for the biologist. For this reason, we also developed

a quick-and-easy way to combine multiple lists into a single master list.

In order to collate and compare the different gene lists we used a weighted voting

scheme. In this scheme, we consider genes to be candidates and gene lists to be

votes. In other words, each method suggests, in order of preference, which genes

should be elected. Our method for combining the gene lists ranks the candidate

genes according to the geometric mean of the voting order in each list, where

TABLE 4.2 A Simple Combination of Many Gene Lists

Rank Geo Mean SVM Stepwise ROC ANOVA TNoM

1 1 1 1 1 1 1

2 6.17 4 2 6 6

3 6.49 3 2 2

4 8.57 2 8 3

5 10.14 5 3 10 23

6 10.24 6 5 11 11

7 10.9 10 4 4

8 13.34 8 11 5

9 13.66 11 3 15

10 13.91 12 4 14 25

Note: The overall rank was obtained by using the geometric mean of the ranks provided in columns 3–7.

An empty cell in the array indicates a value of 31.
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each method is allowed only 30 votes (the length of our shortest list) and all other

genes are given a vote of 31. An example is shown in Table 4.2.

4.5. CONCLUSION

At this point in the analysis it may seem that the biology has dissolved into a sea of

numbers and statistical methods. However, these methods are our only guideposts

when we begin reading the known information about the indicated genes. Without

them we could easily waste very valuable time and people in the study of genes

which are only weakly, if at all, related to the central questions of the research.

Guided by these methods, we can approach the literature with greater confidence

and are much more likely to see the important biology reemerge in the gene annota-

tions and the cited literature.

However, even after these statistical filters, this literature is vast and is not

organized to make our searching particularly easy. We have come to recognize

that this step (where very knowledgeable scientists must read extensively) is the

critical, rate-limiting step for our research. As a result, we (and many others)

have begun work with the natural language processing (NLP) community to build

tools that find, summarize, and reorder important parts of the available online litera-

ture to make that reading process simpler and more focused toward our research

needs. Although we do not discuss such work here, a demonstration of a preliminary

automatic Gene List Exploration Environment (GLEE) can be found at

http://aiaia.nmsu.edu/. See also [34]

Regardless, gene expression studies are providing new insights into molecular

mechanism and hold the promise of deeper biological understanding. However,

the speed at which groups of genes generated by microarray analysis can be put

together in pathways is one of the limiting steps in the translation of these discov-

eries to applications. Mistakes and dead ends due to faulty microarray analysis

tools are a particularly frustrating way to slow this analysis.

The methods presented here are potentially useful in uncovering groups of genes

that serve to fingerprint biologically important subtypes; further aiding biological

discoveries; and refining diagnosis and improving assessment of prognosis. To

provide greater confidence in our tools, we have also benchmarked our methods

extensively for reliability. In fact, we believe that both of these factors (usefulness

and reliability) are equally important, particularly for the analysis of microarray data.
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&CHAPTER 5

In Silico Radiation Oncology: A
Platform for Understanding Cancer
Behavior and Optimizing Radiation
Therapy Treatment

G. STAMATAKOS, D. DIONYSIOU, and N. UZUNOGLU

5.1. PHILOSOPHIAE TUMORALIS PRINCIPIA ALGORITHMICA:
ALGORITHMIC PRINCIPLES OF SIMULATING CANCER
ON COMPUTER

Completion of the sequencing of the human genome and cataloging and analysis of

every protein in the human body (proteomics) that are currently underway have

shaped a completely new and promising environment in the vast area of biomedical

sciences and technology. Detailed analytical understanding of a plethora of molecu-

lar mechanisms has already been successfully exploited for diagnostic and thera-

peutic purposes (e.g., computer drug design, gene therapy). Nevertheless, in many

critical cases such as in the case of cancer, understanding disease at the molecular

level, although imperative, is not generally a sufficient condition for a successful

treatment. Cancer [1, pp. 1247–1294; 2, pp. 1006–1096; 3–5] is the second most

frequent cause of death in the developed countries. The astonishing complexity

and degree of interdependence among the elementary biological mechanisms

involved in tumor growth and response to therapeutic modalities as well as the

partly stochastic character of cancer behavior dictate an extension of the analytical

understanding of the disease to higher levels of biological complexity. Subcellular,

cellular, tissue, organ, system, organism, and population levels should also be

addressed with rigor analogous to the one characterizing the molecular approach.

This is by no means an easy task. The challenge to mathematically describe

cancer either analytically or algorithmically might well be paralleled to the chal-

lenge of mathematically describing planetary motion as was posed millenia ago.
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Nevertheless, cancer is a natural phenomenon too and as such it must be amenable

to some sort of mathematical description. Even though analytical mathematics

can be used to construct models of simple, mainly experimental tumor geometries

such as tumor spheroids or nonsolid tumors, it does not seem particularly adequate

for the description of realistic tumors in vivo with complex geometries, complex

metabolic activity, and complex spatial proliferation distribution. On the contrary,

discrete-state algorithmic descriptions of the system under consideration has been

shown to be a quite efficient approach. Therefore, some sort of philosophiae

tumoralis principia algorithmica (algorithmic principles of oncological philosophy)

is to be expected to emerge in the near future. Evidently, experimental and clinical

validation of such hypothetical principles in conjunction with the determination of

their predictability limits would play a central role is such an approach.

Especially concerning radiation therapy, current treatment-planning algorithms

are based on the concept of physical optimization of the dose distribution and

rely on rather crude biological models of tumor and normal tissue response. Such

algorithms practically ignore the highly complicated dynamic behavior of malignant

cells and tissues. The introduction of advanced biosimulation methods based on

cell proliferation mechanisms and also on information drawn from the cellular

and molecular properties of each individual malignancy and each individual

patient is expected to substantially improve the radiation therapy efficiency. This

would be accomplished by using alternative fractionations, spatial dose distri-

butions, and even combination with other therapeutic modalities such as chemo-

therapy, hyperthermia, and so on. Therefore, efficient modeling, simulation, and

visualization of the biological phenomena taking place before, during, and after

irradiation are of paramount importance. Discrete-time algorithmic descriptions

(simulations) of the various phenomena offer the possibility of taking into

account a large number of involved mechanisms and interactions. The same philos-

ophy has already been extensively applied to purely technological problems, and the

emerged numerical methods [e.g., the finite-difference time-domain (FDTD) tech-

nique] have proved to be very efficient and reliable. A further prominent character-

istic of the biological phenomena under consideration is stochasticity. The fate of a

single irradiated cell cannot be accurately predicted, for example. Only survival

probabilities can be assigned to the cell based on the accumulated experimental

and clinical observations made on large cell populations. Furthermore, the exact

spatiotemporal distribution of the various cell cycle phases within the tumor

volume is generally unknown, although some plausible macroscopic hypotheses

can be made. Therefore, stochastic techniques such as the generic Monte Carlo

method seem to be particularly appropriate for the prediction of tumor growth

and response to radiation therapy.

The practical usefulness of such methods is both to improve understanding of the

cancer behavior and to optimize the spatiotemporal treatment plan by performing

in silico (on the computer) experiments before the actual delivery of radiation to

the patient. In other words the clinician would be able to perform computer simu-

lations of the likely tumor and adjacent normal tissue response to different

irradiation scenarios based on the patient’s individual imaging, histologic, and
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genetic data. The simulation predictions would support him or her in selecting the

most appropriate fighting strategy. To this end a substantial number of experimental

and mathematical models have been developed. On the contrary, a rather small

number of actual three-dimensional computer simulation models have appeared in

the literature. Exploitation of the potential of current visualization techniques is

even more limited.

This chapter begins with a brief literature review concerning experimental,

mathematical, and computer simulation models of tumor growth, angiogenesis,

and tumor and normal tissue response to radiation therapy. Reference to papers

describing visualization algorithms used in oncologic simulations is also made. In

a novel Monte Carlo simulation model developed by the In Silico Oncology

Group of the National Technical University of Athens and including algorithms

of in vivo tumor growth and response to irradiation, a specific application of the

model to glioblastoma multiforme case and three-dimensional visualization of the

predicted outcome is outlined. The chapter concludes with a critical evaluation of

the presented paradigm, suggestions for further research, and a brief exposition of

the future trends in in silico oncology.

5.2. BRIEF LITERATURE REVIEW

In the past four decades intensive efforts have been made in order to model tumor

growth and tumor and normal tissue response to various therapeutic schemes such

as radiation therapy. As the corresponding literature is particularly extended, only

indicative examples of the modeling efforts are given in the following paragraphs.

Experimental models of tumor growth include two- and three-dimensional cell

cultures (in vitro experimentation) and induction of tumors in laboratory animals

(in vivo experimentation) [6–11]. Mathematical models of tumor growth attempt

to analytically describe various aspects of the highly complex process, such as diffu-

sion of oxygen and glucose [12, 13], control stability [14], competition between

tumor and host [15], interdependence between structure and growth [16] and

growth and stability [17, 18], temporal profile of tumor cell proliferation [19–21],

tumor cell replication rules [22, 23], invasion [24], metastasis [25], cell cycle check-

points [26], and angiogenesis [27–29]. The following approaches constitute repre-

sentative examples of the modeling efforts. Adam and Maggelakis [12] analytically

modeled the overall growth of a tumor spheroid using information about inhibitor

production rates, oxygen consumption rates, volume loss and cell proliferation

rates, and measures of the degree of nonuniformity of the various diffusion processes

that take place. Casciari et al. [13] developed empirical correlations from exper-

imental data to express mammary sarcoma of mouse (EMT6/Ro) tumor cell

growth rates, oxygen consumption rates, and glucose consumption rates as functions

of oxygen concentration, glucose concentration, and extracellular pH. Duechting [14]

proposed a block diagram describing growth of normal cells as well as growth of

benign and malignant tumors. He studied frequency and transition responses, locus

diagrams, and stability conditions. Gatenby [15] developed a population ecology
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mathematical model examining tumors as part of a dynamic society of interacting

malignant and normal cells. Rizwan-Uddin and Saeed [16] presented predictions of

a mathematical model of mass transfer in the development of a tumor, resulting in

its eventual encapsulation and lobulation. Michelson and Leith [29] modeled the

effect of the angiogenic signals of basic fibroblast growth factor (bFGF) and vascular

endothelial growth factor (VEGF) on the adaptive tumor behavior.

Computer simulation models aim at three-dimensionally reconstructing a

growing tumor based on the behavior of its constituent parts (either single cells or

clusters of cells). Such models have been used in order to study, for example, the

emergence of a spheroidal tumor in nutrient medium [30–38], the growth and beha-

vior of a tumor in vivo [39–42], and the neovascularization (angiogenesis) process

[31]. Duechting [31] developed a three-dimensional simulation model of tumor

growth in vitro by combining systems analysis, control theory, and cellular auto-

mata. Wasserman and Acharya [39] developed a macroscopic tumor growth

model mainly based on the mechanical properties of the tumor and the surrounding

tissues. Kansal et al. [40, 41] proposed a three-dimensional cellular automaton

model of brain tumor growth by using four parameters and introducing an adaptive

grid lattice.

Experimental models of tumor response to radiation therapy primarily aim at

determining the survival probability of the irradiated cells as a function of the

absorbed dose (survival curves). The values of many other parameters of interest

can also be estimated [43–45]. Mathematical models attempt to analytically

describe the effect of ionizing radiation to tumor and normal tissue cells [5,

46–63]. Thames et al. [46] mathematically described the dissociation between

acute and late radiation responses with changes in dose per fraction. Dale [51]

extended the classical linear quadratic dose–effect relationship in order to

examine the consequences of performing fractionated treatments for which there

is insufficient time between fractions to allow complete damage repair. Fowler

[53] reviewed the considerable progress achieved in fractionated radiotherapy

due to the use of the linear quadratic model. Zaider and Minerbo [60] proposed a

mathematical model of the progression of cells through the mitotic cycle under

continuous low-dose-rate irradiation and applied it to studies of the effects of

dose rate on HeLa cells. Jones and Dale [62] presented various modifications of

the linear quadratic model that were used in order to optimize dose per fraction.

Of special importance are the recent attempts to mathematically model the effect

of specific genes (e.g., the p53 status) to the radiation response of tumors [64].

Haas-Kogan et al. [64] modeled two distinct cellular responses to irradiation,

p53-independent apoptosis, and p53-dependent G1 arrest that characterize the radi-

ation response of glioblastoma cells using the linear quadratic model. Mathematical

modeling of chemotherapy and other treatment modalities that may be applied in

parallel with radiation therapy has also been developed [65, 66].

Computer simulation models aim at three-dimensionally predicting and visualiz-

ing the response of a tumor [36, 67–86] or normal tissue [70] to various schemes of

radiation therapy as a function of time. Nahum and Sanchez-Nieto [68] presented

a computer model based on the concept of the tumor control probability (TCP)
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and studied TCP as a function of the spatial dose distribution. Stamatakos et al. [71]

developed a three-dimensional discrete radiation response model of an in vitro

tumor spheroid and introduced high-performance computing and virtual reality tech-

niques in order to visualize both the external surface and the internal structure of a

dynamic tumor. Kocher et al. [76, 77] developed a simulation model of tumor

response to radiosurgery (single-dose application) and studied the vascular effects.

Finally extensive work is being done on the combination of advanced visualiza-

tion techniques, high-performance computing, and theWorldWideWeb capabilities

in order to integrate and clinically apply the oncological simulation models [32–37,

79–81].

5.3. PARADIGM OF FOUR-DIMENSIONAL SIMULATION
OF TUMOR GROWTH AND RESPONSE TO
RADIATION THERAPY IN VIVO

5.3.1. Data Collection and Preprocessing

The imaging data [e.g., computed tomography (CT), magnetic resonance imaging

(MRI), and positron emission tomography (PET)], the histopathologic (e.g., type

of tumor) and genetic data (e.g., p53 status, if available) of the patient are appropri-

ately collected. The distribution of the absorbed dose in the region of interest at the

end of the physical treatment planning procedure is also acquired.

The imaging data are introduced into a dedicated preprocessing software tool. If

imaging data from diverse modalities are available, appropriate image registration

techniques are used [85]. The clinician delineates the tumor and other structures

of interest by using the dedicated software tool (Fig. 5.1). Each structure consists

of a number of contours defined in successive tomographic slices. Subsequently,

the imaging data, including the definition of the structures of interest, are adequately

preprocessed, so as to be converted into the appropriate form, which will constitute

the input for the simulation software. Preprocessing includes interpolation pro-

cedures in case of anisotropic data: gray-level interpolation for the imaging data

and, most importantly, shape-based interpolation for the structures of interest

[85]. The interpolation procedure is applied to every structure of interest and the

results are combined in an image that constitutes the input of the simulation soft-

ware. In this final image each structure is represented by its characteristic gray

level (Fig. 5.2).

5.3.2. Data Visualization

The output of the above procedure is introduced into the visualization package AVS

(Advanced Visualization Systems)/Express 4.2, which performs the visualization

of the region of interest. AVS/Express is also used for the visualization of the

simulation results. AVS/Express offers highly interactive three-dimensional data

visualization capabilities, which facilitate the analysis and interpretation of the
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modeling results. It provides predefined components (“modules”) for data acqui-

sition and visualization with volume- or surface-rendering techniques. Predefined

or user-defined modules can be combined to form complex “networks” of data

manipulation. It offers modules for intersection of data in different cutting planes

FIGURE 5.1. The interface of the dedicated software tool for the delineation of anatomical

structures of interest and the preprocessing procedure of the imaging data.

FIGURE 5.2. Indicative three-dimensional visualizations of the region of interest for a

hypothetical tumor using AVS/Express 4.2.
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and orientations. In addition, the use of coloring and transparency features facilitates

the visual inspection of complex topologies. For surface-rendering techniques the

final representation can be exported from the package in VRML 1.0 or 2.0 format

and become available for study in a machine-independent and interoperable way

for local or remote examination through a local network or the Internet. Indicative

three-dimensional visualizations performed with AVS/Express are presented in

Figure 5.3.

5.3.3. Biology of Solid Tumor In Vivo: Algorithmic Expression

I. The cytokinetic model shown in Figure 5.4, based on the one introduced in

[69, 70], is adopted. According to this model a tumor cell when cycling passes

through the phases G1 (gap 1), S (DNA synthesis), G2 (gap 2), and M (mitosis).

The corresponding maximum durations of these phases are designated TG1, TS,

FIGURE 5.3. Two-dimensional equatorial slices from two indicative three-dimensional

input data for the simulation software. Each structure is represented by its characteristic

gray-level.

FIGURE 5.4. Cytokinetic model of a tumor cell. Symbol explanation: G1: G1 phase, S: DNA

synthesis phase, G2: G2 phase, G0: G0 phase, N: necrosis, A: apoptosis.
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TG2, and TM. These durations, according to the literature, seem to follow the normal

distribution. As a first approximation, we use the mean values of the duration of each

cell cycle phase and neglect standard deviations.

After mitosis is completed, each one of the resulting cells reenters G1 if oxygen

and nutrient supply in its current position are adequate. Otherwise, it enters the G0

resting phase in which, if oxygen and nutrient supply are inadequate, it can stay for a

limited time (TG0). Subsequently it enters the necrotic phase, unless the local

environment of the cell becomes adequate before the expiration of TG0. In the

latter case the cell reenters G1. In addition, there is also a probability that each

cell residing in any phase other than necrosis or apoptosis dies and disappears

from the tumor due to spontaneous apoptosis (dashed line in Fig. 5.4).

II. The description of the biological activity of the tumor is based on the intro-

duction of the notion of the “geometric cell” (GC), the elementary cubic volume

of a three-dimensional discretizing mesh covering the region of interest (Fig. 5.5).

We assume that each GC of the mesh initially accommodates a number of biological

cells (NBC). However, the maximum number of biological cells that can be

accommodated in a GC is assumed to be NBCþNBC/2. Apparently NBC

depends on the chosen size of the GC and determines the quantization error of

the model. Biological cells are assumed to have a mass of 1029 gr [3]; a typical cell

density is therefore 1026 cells/mm3. For example, in the case of a 1 � 1 � 1-mm

GC, NBC would be equal to 106.

III. Each GC of the mesh belonging to the tumor is assumed to contain biological

cells distributed in a number of equivalence classes (compartments), each one

characterized by the phase in which its cells are found (within or out of the cell

cycle, i.e., G1, S, G2, M, G0, necrosis, apoptosis).

FIGURE 5.5. A three-dimensional discretizing mesh covers the region of interest.
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IV. All biological cells of a given class within a GC are assumed to be synchro-

nized, which means that, at a particular instant, the time they have already spent in

the cell cycle phase characterizing the class under consideration is the same. Biological

cells belonging to the same class but in different GCs are not considered synchronized.

V. The distribution of the initial NBC of a GC in each phase class is estimated

according to the position of the corresponding GC within the tumor, namely based

on the estimated metabolic activity in the local area [e.g., through PET/SPECT
(single photon emission computed tomography) or functional MRI]. The infor-

mation derived from the imaging data directs the division of the tumor region

into subregions [86]. The GCs belonging to the same subregion are considered

to be of roughly the same metabolic activity. Hence, subregions considered

“proliferating cell regions,” “resting-G0 cell regions,” or “dead cell regions” are

defined. The determination of the relative fractions of proliferating, resting,

and dead cells in each metabolic subregion depends on the histology of the tumor

and on accumulated clinical experience. Such experience dictates, for example,

that even a single alive clonogenic cell can repopulate a tumor mass).

VI. A “coloring criterion” must be formulated for the three-dimensional visual-

ization of the simulation results. The coloring criterion “decides” on to which sub-

region a GC should be assigned at a specific instant. This rule is closely related to the

definition of the subregions and to the current relative proportions of proliferating,

resting, and dead cells within the GC. It also depends on the histopathological

features of the tumor. As an example, in the case of glioblastoma multiforme

tumors the following “98% coloring criterion” can be used:

For a GC of the discretizing mesh,
if the percentage of dead cells is lower than 98% then

{if percentage of proliferating cells
>percentage of G0 cells then
{ paint the GC with the proliferating

cell region color}
else { paint the GC with the G0 cell region

color}}
else

{paint the GC with the dead cell region color}

The main reason for intensifying the effect of the presence of proliferating and G0

cells in the above criterion is that even a single alive clonogenic tumor cell

(either cycling or in G0) can lead to tumor recurrence.

VII. The initial distribution of the proliferating biological cells of a GC within

each of the proliferating phases (G1, S, G2, M) is estimated using the duration of

each cell cycle phase for the specific tumor.

5.3.4. Radiobiology of Solid Tumor in Vivo: Algorithmic Expression

The response of each cell to irradiation leading to absorbed dose D is described

by the linear-quadratic (LQ) model, which is widely used in the pertinent literature
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[3, 4, 69, 70]. According to this model, the survival probability S of a cell is given by

the expression

S ¼ exp½�(aDþ bD2)� (5:1)

where D is the absorbed dose and a, b parameters characterize the initial slope and

the curvature, respectively, of the survival curve. Equation (5.1) can be used for

fractionated radiotherapy provided that there exists a sufficient time interval

between fractions for sublethal damage repair to be completed [3].

The radiosensitivity of cells varies considerably as they pass through the sub-

sequent phases of the cell cycle, with the S phase regarded as the most resistant

[3, 44]. Cells in any proliferating phase (G1, S, G2, and M) are more radiosensi-

tive than hypoxic cells residing in G0. Furthermore, of particular notice is the fact

that the parameters a and b of the LQ model constitute one possible way to incor-

porate the influence of genetic determinants, such as the p53 gene status (mutations

or expression of p53 protein), into the simulation model [86].

5.3.5. Simulation Outline

Time is discretized and incremented. One hour has been adopted as the unit of time.

In each time step the geometric mesh is scanned and the updated state of a given GC

is determined as follows:

I. At the time instants that correspond to the delivery of a specific radiation

dose D to the tumor, the number of cells killed in a particular GC is

calculated based on the LQ model [Eq. (5.1)]. In a tumor growth simulation

case, the dose D in Eq. (5.1) would be set to zero.

II. Lethally damaged cells following exposure to radiation undergo two mitotic

divisions prior to death and disappearance from the tumor [4, p. 87].

III. At each time step the time registers of all GCs increase by 1 hour. All the

necessary cell cycle phase transitions are computed.

IV. The possibilities of cell loss due to apoptosis and necrosis are computed

by using the equations

CBR ¼
GF

TC
(5:2)

CLF ¼
CLR

CBR
(5:3)

where CLF is the cell loss factor, CLR the cell loss rate, CBR the cell birth

rate, GF the growth fraction, and TC the duration of the cell cycle. The total

cell loss factor is assumed to be the sum of the cell loss factor due to necrosis

and the cell loss factor due to apoptosis and to remain constant throughout

the simulation. Future versions of the model will investigate the assumption

of a time-varying CLF. Possible variations of the cell cycle duration

throughout the simulation are also under investigation.

140 IN SILICO RADIATION ONCOLOGY



The simulation of tumor expansion or shrinkage is based on the following rules:

If the actual number of alive and dead (but still morphologically existing) tumor

cells contained within a given GC is reduced to less than NBC/2, then a procedure

which attempts to “unload” the remaining biological cells in the neighboring GCs

takes place aimed at emptying the current GC. The basic criterion of the unloading

procedure states that the unloading process proceeds in such a way that the biologi-

cal cell density of the entire lattice is as uniform and as close to “NBC per GC” as

possible. Therefore, the unloaded cells are preferentially placed within the neighbor-

ing GCs having the maximum available free space. If two or more of the neighboring

GCs possess the same amount of free space, then a random-number generator is used

for the selection. If at the end of the unloading procedure the given GC becomes

empty, it disappears from the tumor. An appropriate shift of a chain of GCs, intended

to fill the “vacuum,” leads to differential tumor shrinkage. This can happen, for

example, after a number of cells are killed due to irradiation.

On the other hand, if the number of alive and dead cells within a given GC

exceeds NBCþNBC/2, then a similar procedure attempting to unload the excess

cells in the surrounding GCs takes place. If the unloading procedure fails to

reduce the number of cells to less than NBCþNBC/2, then a new GC emerges.

Its position relative to the “mother” GC is determined using a random-number gen-

erator. An appropriate shifting of a chain of adjacent GCs leads to a differential

expansion of the tumor. The “newborn” GC initially contains the excess number

of biological cells, which are distributed in the various phase classes proportionally

to the distribution in the mother GC. The impact of the definition of the upper and

lower thresholds, which in the present case have been set to NBCþNBC/2 and

NBC2NBC/2, respectively, on the uniformity of the distribution of the biological

cells throughout the lattice is under investigation.

The differential tumor expansion and shrinkage algorithms are based on the use

of random-number generators in conjunction with adequately formed morphological

rules. These rules aim at tumor shrinkage or expansion conformal to the initial

shape of the tumor. This is a logical assumption if the pressure in the normal

tissues surrounding the tumor region is assumed to be uniform and the tumor is

not in contact with practically undeformable tissues such as the bone.

More specifically, in the case of selection of shrinkage direction, the outermost

tumor GC is detected along each one of six possible directions of shrinkage

(Cartesian coordinate system XYZ centered at the current GC, each axis defining

two possible directions of movement). Its “six-neighbor” GCs belonging to the

tumor (NGCT) are counted. The direction corresponding to the maximum

NGCT is finally selected out of the six possible directions as the direction along

which the shifting of the GCs will take place (shifting direction). If more than

one shifting direction has the same maximum NGCT, then the selection is

based on the use of a random-number generator. A similar, though inverse,

morphological-mechanical rule can be applied in the case of tumor expansion.

An alternative algorithm, which will be used in future versions of the simulation

model, performs shrinkage and expansion along a line of random angle. In this

way, artifacts attributed to the movement of GCs along the axes of the Cartesian

coordinate system will be avoided.
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The need for the formulation of the above morphological rules for tumor shrink-

age and expansion has arisen from the inspection of the macroscopic results of the

simulation algorithms. A completely random selection of one out of the six possible

shifting directions results in a premature extensive fragmentation of the tumor region

in case of radiotherapy, which is usually incompatible with clinical experience. The

general trend is a conformal shrinkage of most solid tumors (Fig. 1.4 in [4]).

The mechanical properties of the surrounding normal tissue are considered

uniform around the tumor, with the exception of an absolute lack of deformability

of the bone. As a first approximation, immunological reactions, invasion, and

formation of metastases have been ignored.

5.3.6. Parametric Testing of Simulation Model: Case of Glioblastoma
Multiforme Irradiated by Various Fractionation Schemes

A case of a glioblastoma multiforme (GBM) tumor recently irradiated has been

selected. A specialized doctor has delineated the clinical boundary of the tumor

and its necrotic area based on the corresponding MRI and PET data after irradiation

(Fig. 5.6) (hysteron proteron for validation reasons). A three-dimensional mesh

quantizing the anatomical region of interest has been considered. The dimensions

of each GC are 1 � 1 � 1 mm. Such a volume contains roughly 106 biological

cells (NBC ¼ 106). Figure 5.7 depicts a three-dimensional visualization of the

tumor before the beginning of radiotherapy treatment.

FIGURE 5.6. An MRI slice depicting a glioblastoma multiforme brain tumor recently

irradiated. Both the clinical volume of the tumor and its central necrotic area have been

delineated.
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As no information about the metabolic activity (and therefore the density of the

tumor neovasculature) prior to irradiation was available (e.g., through PET or func-

tional MRI) for the particular case considered, the growth support criterion applied

so far was the minimization of the distance from the outer surface of the tumor. This

implies that biological cells residing in the outer layer of the tumor (“proliferating

cell layer”) can be adequately oxygenated and fed whereas the inner part of the

tumor (“dead-cell layer”) lacks efficient neovasculature and therefore oxygenation

and nourishment. An intermediate layer containing a significant amount of G0

cells has also been assumed (“G0 cell layer”) . Obviously, the above layered struc-

ture may not be the case in a large number of tumors. If, for example, the metabolic

imaging data (e.g., PET, SPECT, functional MRI) prior to irradiation suggest that

the metabolic activity of the tumor is rather uniform throughout its volume, the

growth support criterion would become rather uniform too. For the specific type

of tumor all nonclonogenic cells are considered to be necrotic (sterile cells are

not taken into account). This is a logical first approximation, since GBM is generally

considered a poorly differentiated type of tumor. A typical clonogenic cell density is

107 to 108 cells/cm3 (104 to 105 cells/mm3) [62, 68]. We assume a clonogenic cell

density of 2 � 104 cells/mm3 in the proliferating cell layer (a 6-mm-thick layer from

the outer boundary of the tumor), 104 cells/mm3 in the G0 cell layer (a 1-mm-thick

FIGURE 5.7. Three-dimensional visualization of the tumor before the beginning of the

irradiation. Volume rendering produced with AVS/Express 4.2.
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layer surrounding the central necrotic region), and0.2 � 104 cells/mm3 in the dead-cell

layer of the tumor. Within each geometric cell the initial distribution of the clonogenic

cells through the cell cycle phases depends on the layer of the tumor in which the geo-

metric cell belongs.More precisely, in the proliferating cell layer 70%of the clonogenic

cells are assumed to be in the cycling phases and 30% in the G0 phase. In the G0 cell

layer 30% of the clonogenic cells are in the cycling phases and 70% in the G0 phase.

Finally, in the dead-cell layer 10% of the clonogenic cells are in the cycling phases

and 90% in the G0 phase.

5.3.6.1. Constant Radiosensitivity Throughout Cell Cycle: High Cell
Loss Factor In a first experiment the response of a hypothetical, radiosensitive

GBM tumor to a standard fractionation scheme (2 Gy once a day, 5 days per week,

60 Gy total) has been simulated. The LQ model parameters of this hypothetical

tumor have been assumed as follows: a ¼ 0.6Gy21, b ¼ 0.06Gy22 [83]. They

have also been assumed to remain constant throughout cell cycle. Other parameters

of importance for this experiment were cell cycle duration TC ¼ 30 h; cell cycle

phase durations TG1 ¼ 11 h, TS ¼ 13 h, TG2 ¼ 4 h, TM ¼ 2 h, and TG0 ¼ 25 h

[87]; and cell loss factor taken equal to 0.9 [3]. Such a high cell loss factor has

been selected in order to facilitate the demonstration of the ability of the model to

simulate the shrinkage effect. We assume that the total cell loss factor is the

sum of the cell loss factor due to necrosis (0.8) and the cell loss factor due to

apoptosis (0.1).

The computer code has been developed in Microsoft Visual Cþþ 6 and Micro-

soft Visual Basic 6. As far as the computational demands are concerned, an

execution of the radiation therapy simulation of 6 weeks (96 � 96 � 96 geometric

cells, each one of dimension 1 � 1 � 1 mm) on an AMD Athlon XP 1800 machine

(786 MB RAM) takes about 10 min.

The testing predictions depicted in Figures 5.8 and 5.9 demonstrate the ability

of the model to adequately simulate cell death and tumor shrinkage. In order

to emphasize this potential of the model, in this explorative case the values of

certain parameters (e.g., cell loss) have been deliberately exaggerated.

5.3.6.2. Influence of p53 Status The molecular basis of cell radiosensitivity

has been extensively studied during the last decades. Representative efforts drawn

from the extensive corresponding literature have been given in [86]. The roles of

wild-type (wt) p53 in modulating DNA repair, apoptosis, and the G1 cell cycle

arrest have each been implicated in the regulation of cellular response to ionizing

radiation. A remarkable number of studies associate p53 mutations with increased

radioresistance and poor clinical outcome for patients with GBM.

In this parametric study the results of Haas-Kogan et al. [64, 88] have been used.

The authors in [64] investigated the influence of p53 status on radiation-induced

apoptosis and G1 cell cycle arrest of GBM cells. They found that radiation-

induced apoptosis of GBM cells occurred in a manner independent of wt p53, in

contrast to G1 cell cycle arrest, which was p53 dependent. An increased radioresis-

tance was observed in irradiated G1 cells lacking functional wt p53, manifested
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by a relatively lower a and a/b. Furthermore, in [88] they studied the influence of

p53 function on the effect of fractionated radiotherapy of GBM tumors and

concluded that fractionated radiotherapy provides a selective advantage to GBM

cells expressing mutant p53 (mt p53).

Based on these results, we performed a parametric study of radiation response to

an accelerated fractionation scheme (2 Gy twice a day, 5 days per week, 60 Gy in

FIGURE 5.8. Irradiation according to the standard fractionation scheme (2 Gy once a day, 5

days per week, 60 Gy in total). Three-dimensional sections of the tumor using the cutting

plane shown in figure 7. Surface rendering produced with AVS/Express 4.2. The cutting

plane shown in figure 7 has been considered. (a) Before the beginning of irradiation, (b) 2

fictitious day after the beginning of irradiation, and (c) 3 fictitious days after the beginning

of irradiation. Color code ! red: proliferating cell layer, green: dormant cell layer (G0),

blue: dead cell layer. The values of certain parameters (e.g., cell loss) have been deliberately

exaggerated in order to facilitate the demonstration of the ability of the model to simulate the

shrinkage effect.

FIGURE 5.9. (a) A centrally located slice of the tumor before the beginning of irradiation,

(b) simulated response of the tumor to radiation therapy 2 fictitious days after the beginning of

the radiotherapy course, and (c) simulated response of the tumor to radiation therapy 3 ficti-

tious days after the beginning of the radiotherapy course. The cutting plane shown in figure 7

has been considered. Grey scale code ! dark gray: proliferating cell layer, light gray:

dormant cell layer (G0), white: dead cell layer. The values of certain parameters (e.g., cell

loss) have been deliberately exaggerated in order to emphasize the ability of the model to

simulate tumor shrinking as a response to radiation therapy.
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total), assuming that the GBM tumor of Figures 5.6 and 5.7 was with (I) wt p53 and

(II) mt p53. Specifically, we assumed:

I. GBM tumor with intact wt p53 function [64]:

aP ¼ 0:61 Gy�1 aS ¼ 0:407 Gy�1 aG0 ¼ 0:203 Gy�1

bP ¼ 0:02 Gy�2 bS ¼ 0:02 Gy�2 bG0 ¼ 0:02 Gy�2

II. GBM tumor with mt p53 [64]:

aP ¼ 0:17 Gy�1 aS ¼ 0:113 Gy�1 aG0 ¼ 0:057 Gy�1

bP ¼ 0:02 Gy�2 bS ¼ 0:02 Gy�2 bG0 ¼ 0:02 Gy�2

The meanings of the symbols used are the following:

aP, bP LQ model parameters for all proliferative cell cycle phases

except for DNA synthesis phase (S phase)

aS, bS LQ model parameters for S phase

aG0, bG0 LQ model parameters for resting G0 phase

The mean values of aS and aG0 have been assumed as perturbations of the aP

mean values, consistent with the findings of experimental radiobiology. Specifically,

we assume aS ¼ 2aP=3 and aG0 ¼ aP=3. These values for aP and aG0 give an OER

(oxygen enhancement ratio) equal to 3, consistent with the literature [4]. As far as

the b behavior is concerned, we use bP ¼ bS ¼ bG0, based on [64].

The cell cycle duration TC is taken to be 24 h. This is the average of the cell cycle

durations we have found in the literature for GBM cell lines [54, 88, 89]. In [90]

the approximate percentage of the cell cycle time spent in each phase by a typical

malignant cell is given as

TG1 ¼
40

100
TC TS ¼

39

100
TC TG2 ¼

19

100
TC TM ¼

2

100
TC

Based on the above distribution, for the considered cell cycle time of 24 h we get

the following phase durations: TG1 ¼ 9 h, TS ¼ 8 h, TG2 ¼ 4 h, and TM ¼ 1 h.

The duration of the G0 phase is taken to be TG0 ¼ 25 h [87].

We assume a clonogenic cell density of 2 � 105 cells/mm3 in the proliferating

cell layer, 105 cells/mm3 in the G0 cell layer, and 0.2 � 105 cells/mm3 in the

dead-cell layer of the tumor [4, p. 84; 91]. The cell loss factor (CLF) has been

taken equal to 0.3 [92]. In [93] the authors note that cell loss is mainly due to necro-

sis (CLFN) and apoptosis (CLFA) and that gliomas have a low CLF in general. We

assume that the total CLF (0.3) is the sum of the CLFN (0.27) and CLFA (0.03). We
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hypothesize low levels of apoptotic cells for GBM, as we have found that this is in

general the case for gliomas [64, 93–95].

The simulation is assumed to begin (t ¼ 0) on Monday 00:00 a.m. and, unless the

tumor reaches earlier the boundaries of our cubic region of interest, to end on

Sunday 24:00, 3 weeks later (t ¼ 504 h). The delivery of irradiation takes place at

08:00 and 16:00 every day and the total duration of the accelerated fractionation

scheme is 3 weeks. The interfraction interval (8 h) is considered sufficient for

sublethal damage repair to be completed.

A typical simulation run of 6 weeks for a 96 � 96 � 96 geometric mesh lasts

about 15 min on an AMD Athlon XP 1800 machine (786 MB RAM). In order to

ensure the numeric stability of the code, various executions have been performed

in which different scanning directions and different initial seeds for the random-

number generators have been used. The macroscopic features of the result of the

simulation are not influenced by these variations.

Figure 5.10 depicts the number of alive cells (proliferating and G0) as a function

of time for the cases of a GBM with wt p53 and mt p53. The delivery of the last

dose fraction takes place at t ¼ 448 h. At subsequent times, if the clonogenic

cells in the tumor region have not been killed, they will begin to repopulate the

tumor. The trend for reduction of the number of alive tumor cells during the

radiotherapy scheme is clearly pronounced in the case of the tumor with a wt

p53, which is considered to be more radiosensitive compared with the tumor with

mt p53. In fact the tumor with mt p53 is so radioresistant that radiation therapy

fails to hinder clonogenic cells from rapidly proliferating during therapy. It

should be noted that regions of potential microscopic disease have not been con-

sidered, and the accuracy of the simulation model cannot reach to the point of

FIGURE 5.10. The number of alive cells (proliferating and resting) as a function of time for

the tumors with wt and with mt p53.
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determining the fate of every single clonogenic cell. As a consequence, the “predic-

tions” of the simulation model should always be interpreted with caution. In

Figure 5.11 the tumors are three-dimensionally visualized two weeks after the

start of the radiotherapy treatment. As expected, three-dimensional visualization

offers improved insight into the macroscopic geometry and structure of the tumor.

It should also be stressed that apart from the a and b parameters of the LQ model,

adjusted according to the results of [64, 88], so as to incorporate the influence of p53

gene status, all other factors influencing the radiosensitivity of a tumor as a whole

(e.g., hypoxic fraction, proportion of clonogenic cells, cell loss rate) have been

kept unchanged during these comparative studies.

5.4. DISCUSSION

The in vivo simulation model presented in this chapter deals with a novel approach

to the modeling of tumor growth and response to radiation therapy and is character-

ized by the unique combination of the following features:

(i) Possibility for the simulation of both untreated in vivo tumor growth and

in vivo tumor response to radiotherapy

(ii) Consideration and use of the actual imaging, histopathologic, and genetic

data for each particular clinical case

(iii) Incorporation of numerous biological mechanisms by means of an

advanced algorithmic description

FIGURE 5.11. Three-dimensional visualization of the tumors with wt p53 and mt p53 two

weeks after the beginning of the standard radiotherapy scheme (2 Gy once a day, 5 days a

week, 60 Gy in total). Volume rendering produced with AVS/Express 4.2. Color code !

red: proliferating cell layer, green: dormant cell layer (G0), blue: dead cell layer.
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(iv) Introduction of the notion of the “geometric cell” and its constituent com-

partments, called “equivalence classes,” corresponding to discrete phases

within or outside the cell cycle

(v) Extensive use of random-number generators to simulate the stochastic nature

of the various biological phenomena involved (Monte Carlo approach)

(vi) Discrete and modular character, which confers a high level of adaptability

possibility for three-dimensional reconstruction and visualization of the

results

A number of exploratory simulation tests have been performed for a clinical case

of a GBM tumor. The influence of genetic determinants (such as the p53 gene status)

on tumor response to radiotherapy has been incorporated into the model by means of

appropriately adjusting the LQ model parameters according to the GBM tumor

literature.

The results of the simulation model have been semiquantitatively assessed.

Comparison of the simulation results with the accumulated clinical experience

demonstrates that the model has the potential of representing the clinical reality

within acceptable reliability limits. Obviously, experimental and clinical feedback

is always to be exploited in order to improve the model. To this end the software

system is currently undergoing an extensive testing and adaptation procedure, basi-

cally by comparing the model “predictions” with clinical data before, during, and

after radiotherapy courses. Eventual discrepancies will lead to a better estimation

of specific model parameters such as the LQ a and b. Generic parameter esti-

mation techniques such as the neural networks technique, taboo searching, and

so on, will be used to this end. In parallel, advances in a vast range of the involved

phenomena are constantly being translated into the algorithmic language in order

to keep pace with the ever-accumulating knowledge in the corresponding scientific

fields. The simulation model, being gradually refined, can also be used as a tool to

study the relative importance of the mechanisms underlying tumor behaviour.

Possible interrelationships between the parameters involved in tumor growth or

tumor response to radiotherapy are currently being explored. Optimization of

dose fractionation during radiation therapy by performing in silico experiments

and individualization of treatment protocols constitute the long-term goals of

this effort.

The simulation model presented so far may serve as a paradigm of an in silico

approach to oncology. Although it is open to refinement and better adaptation

through extensive clinical testing, it provides a comprehensive outline of the

basic mechanisms taken into account and algorithmically expressed. Furthermore,

as chemotherapy is frequently administered before, in parallel, or after radiation

therapy, an analogous model simulating the special case of the GBM to the

prodrug Temodal has already been simulated by our group. Simulation of the

response of normal tissues to both radiation therapy and chemotherapy is also

under development. It should nevertheless be pointed out that as there is a wide

range of mechanisms of action of chemotherapy depending on the agent adminis-

tered, substantial differences among the corresponding models are to be expected.
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5.5. FUTURE TRENDS

Extensive combination of tumor behavior simulation models at the cellular and

higher levels of biological complexity with advances in genomics and proteomics

is expected to substantially strengthen the potential of the emerging discipline of

in silico oncology and in particular of in silico radiation oncology. Integrated and

highly automated decision support and treatment-planning systems combining

microarray technology, image processing, and biosimulation software (including,

e.g., radiotherapeutic and chemotherapeutic models) are becoming a necessary

infrastructure for an analytical and rational approach to cancer diagnosis, prognosis,

and eventual effective treatment. Therefore, special emphasis should be put on this

heavily interdisciplinary combination process. Another point of outmost importance

is the continuous update of the emerging integrated systems that should be based on

the latest experimentally and clinically extracted knowledge as well as on the newest

advances of computer science and technology.
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&CHAPTER 6

Genomewide Motif Identification
Using a Dictionary Model

CHIARA SABATTI and KENNETH LANGE

6.1. INTRODUCTION

Computational genomics has many different goals and profits from many different

scientific perspectives. One obvious goal is to find all of the genes within a

genome and how they operate. This task is complicated by the segmentation of

genes into exons and introns. After a gene is transcribed into mRNA, its introns

are spliced out of the message. Many genes display alternative splicing patterns

that eliminate some of the underlying exons as well. Regulatory regions upstream

of a gene determine when and in what tissues a gene is transcribed. A second goal

of genomics is to use the amino acid content of each message to deduce the structure

and function of the encoded protein. A third goal is to understand how genes and gene

products interact in space and time. Each of these goals benefits from the pattern rec-

ognition principles widely used in computer science and statistics. At the same time,

the peculiarities of genetics demand special techniques in addition to general

methods. Because the information housed in a genome is written in a distinct

language, it is tempting to transfer ideas from mathematical linguistics to genomics.

In our view, such a transfer is apt to be more successful for semantics than for

grammar. This chapter surveys and develops a dictionary model for locating

binding sites in regulatory regions. In the dictionary model, a DNA sequence is

viewed as a random concatenation of words with alternative spellings.

6.1.1. Biological Problem

Deoxyribonucleic acid, the molecule that encodes genetic information, is a long

polymer whose structure can be effectively be described by a sequence of letters

of four types—A, C, G, and T—corresponding to the four nucleotides (or bases)

adenine, cytosine, guanine, and thymine. The vast majority of human DNA is
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organized into 46 linear chromosomes stored in the cell nucleus. Except for the X

and Y sex chromosomes, the remaining 44 chromosomes come in 22 pairs of

nearly identical homologous chromosomes. The total length of the 22 consensus

autosomes and the two sex chromosomes is approximately three billion bases. By

comparison, the genome of the bacterium Escherichia coli consists of a single

circular strand five and a half million bases long. In the past decade, the complete

genomes of hundreds of organisms have been sequenced, and last year a rough

draft of the human genome was announced [1, 2]. These remarkable achievements

make it possible to undertake whole-genome analysis and compare genomes of

different species.

In eukaryotes, the higher organisms with a cell nucleus, genes occupy only a

small fraction of the total genome. For example, in humans, recent estimates

suggest that coding DNA amounts to only 1.5% of the genome. The function of

the remaining portion of DNA is not entirely understood, but it is clear that it

plays an important role in evolution and in the regulation of gene expression. In

this chapter, we focus on noncoding DNA, in particular on regions immediately

upstream of genes. These regions are often involved in regulation of transcription,

the process of copying genes in preparation for their translation into proteins. In

order for the transcription machinery to operate on a given gene at a given time,

regulatory proteins typically must bind or unbind to specific locations upstream of

the gene. Most organisms possess multiple interacting regulatory proteins, and

each regulatory protein typically influences the expression of many genes. Thus,

one can expect to find far fewer regulatory proteins than genes. For example,

E. coli has about 4200 genes and only about 100 major regulatory proteins.

In this conceptual framework, each regulatory protein recognizes and binds to a

series of DNA locations. These locations share a common sequence pattern that is

specific to the protein. Because of the variation in different realizations of the

same pattern, geneticists have adopted the term motif rather than pattern. This is

consistent with usage in the visual arts, where motif refers to a virtual archetype

that can be rendered in a variety of different ways. Figure 6.1 presents some exper-

imentally identified binding sites for CRP, a regulatory protein of major importance

FIGURE 6.1. Experimentally identified binding sites for CRP mentioned at the website

http://arep.med.harvard.edu/ecoli_matrices/. Each row represents one binding site of

length 22.
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in E. coli. This example clearly illustrates both the constancy and variation among

realizations of the same DNA motif. All realizations span 22 bases. Although

experimentation is the definitive way of identifying and characterizing binding

site motifs, geneticists are keenly interested in less labor intensive methods.

For that reason, bioinformatics approaches have blossomed. These are the themes

of this chapter.

6.1.2. Previous Methods of Motif Recognition

As promised, we now briefly review three different approaches for identifying

binding sites in DNA. Although this overview is hardly exhaustive, it does demon-

strate the steady evolution of the models toward greater complexity and biological

realism.

In 1990 Lawrence and Reilly [3] proposed a successful motif model in which

the binding sites for a regulatory protein are assumed to have a constant length k.

While this assumption is not always true, it is the rule because the usual lock-

and-key argument of molecular biology requires all binding domains to fit into

the same physical portion of the regulatory protein. At each motif position i, any

of the four letters A, C, G, and T may occur. The relative frequencies of occurrence

are described by a distribution ‘i ¼ (‘iA, ‘iC, ‘iG, ‘iT ) specific to position i. The

letters appearing at different positions are independent. In statistical language,

a motif is distributed as a product of multinomials. Motifs are contrasted to

“background” sequence, where letters are chosen independently from a common

distribution ‘0 ¼ (‘0A, ‘0C, ‘0G, ‘0T ). In a typical data set, each observed upstream

sequence is assumed to harbor a single instance of the motif, but its exact location

is unknown. Lawrence and Reilly [3] turned this missing-data feature to their advan-

tage and devised an expectation–minimization (EM) algorithm for estimating

both the parameter vectors ‘i, i ¼ 1, . . . , k, and the locations of the motif within

each upstream sequence. Later Lawrence et al. [4] elaborated a Bayesian

version of the model and applied Gibbs sampling to estimate parameters and

motif locations. Their Gibbs algorithm can be run on the Internet at the site

http://www.bayesbio.html.

A different type of input data motivated the research of Robison et al. [5]. Instead

of starting with a small set of sequences known to harbor the same unknown motif,

they considered the entire genome of E. coli relative to a collection of experimen-

tally identified binding sites involving 55 regulatory proteins. Their goal was to

identify all of the other binding sites for these proteins. The computational strategy

in [5] is nonparametric and heuristic. A scoring function is defined for each motif.

The mean m and variance v of the score values from a set of experimentally

certain binding sites are recorded. The scoring function is then evaluated at each

genome position, and the locations that lead to a score higher than m� 2
ffiffiffi
v

p
are

considered putative binding sites for the protein under study. Results of this study

can be viewed at http://arep.med.harvard.edu/ecoli_matrices/. The most appealing

feature of the Robison et al. approach is its genomewide nature. One of its least

appealing features is its relatively uninformative description of the binding site.
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Bussemaker et al. [6] propose a third and very different approach to motif

recognition. In their model, DNA sequence data are viewed as a concatenation

of different words, each word randomly selected from a dictionary with specified

probabilities. Words of length 1 play substantially the same role as background

sequence in [3]. Longer words may represent binding sites. Bussemaker et al.

[6, 7] describe algorithms that estimate the probabilities of all of the words in a

fixed dictionary and sequentially build a dictionary from data. Their algorithms

have been tested on the first 10 chapters of the novelMoby Dick with all punctuation

signs and blanks between words removed. The results are encouraging, though

occasionally identified words are concatenations of two English words. A similar

approach can be applied to DNA to identify regulatory sites. One defect of the

model is its dubious assumption that each word has a unique spelling. If we take mis-

spellings into account, then constructing a dictionary from scratch appears overly

ambitious, particularly with a four-letter alphabet.

In the rest of this chapter, we develop a model that borrows some elements from

all the above approaches: (a) our description of a motif substantially coincides

with that in [3]; (b) in common with [5], we seek to identify the binding sites of a

predetermined set of regulatory proteins for which some experimental evidence

exists; and (c) we use a likelihood description for DNA similar to that in [6].

Note that databases such as the TRANSFAC database at http://transfac.gbf.
de/TRANSFAC/ warehouse sequence information on experimentally identified

binding sites for a variety of proteins across many organisms.

6.2. UNIFIED MODEL

The model we propose describes a DNA sequence as a concatenation of words, each

independently selected from a dictionary according to a specific probability distri-

bution. For us, a word is simply an irreducible semantic unit or, in the genetic

context, a motif. Each word may have more than one spelling. Thus, in English,

theater and theatre represent the same word. Two different words may share a

spelling. For instance, pot may refer either to a cooking utensil or something to

smoke.

In our model, a word w always has the same number of letters jwj. Hence,

alternative spellings such as night and nite with different number of letters are

disallowed. For reasons that will soon be apparent, it is convenient to group

words according to their lengths and to impose a maximum word length kmax

on our dictionary. It may be that no words of a given length k � kmax exist.

For example, in the Lawrence et al. model [3] for the CPR binding site, only

words of length 1 and length 22 appear. A random sequence S is constructed

from left to right by concatenating random words, with each word and each spel-

ling selected independently. The letters of a word are independently sampled

from different multinomial distributions. This is known as product multinomial

sampling.
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In summary, our DNA model requires a static dictionary with a list of alternative

spellings and probability distributions determining which words and spellings are

selected. The parameters describing the model are as follows:

1. The probability of choosing a word of length k is qk. Here k ranges from 1 to

kmax, and
Pkmax

k¼1 qk ¼ 1. If there are no words of length k, then qk ¼ 0.

2. Conditional on choosing a word of length k, a particular word w with jwj ¼ k

is selected with probability rw. Hence,
P

jwj¼k rw ¼ 1.

3. The letters of a word w follow a product multinomial distribution with success

probabilities

‘wi ¼ (‘wiA, ‘wiC , ‘wiG, ‘wiT )

for the letters A, C, T, and G at position i of w.

A randomly chosen word of length k exhibits the spelling s ¼ (s1, . . . , sk) with
probability

p(s) ¼
X
jwj¼k

rw
Yk
i¼1

‘wisi (6:1)

If some letters are missing, for instance when sequencing quality is poor, then

formula (6.1) fails. To force its validity in the presence of missing data, we represent

missing letters by question marks and introduce the additional letter probability

‘wi? ¼ 1 for each word w and position i within w. This missing-letter convention

will be used later to describe the probability of partially observed words that

overlap the edges of a sequence.

An observed sequence generally contains more than one word, with unknown

boundaries separating the words. Missing-word boundaries are more vexing than

missing letters. We will call the portion of a sequence between two consecutive

word boundaries a segment and the set of word boundaries dividing a sequence

an ordered partition of the sequence. For theoretical purposes, the probability of

a sequence is best evaluated by conditioning on its ordered partition and then aver-

aging the resulting conditional probability over all partitions. In numerical practice,

we implement this strategy recursively via forward and backward algorithms similar

to those used with hidden Markov chains.

We consider two stochastic models for generating a random sequence S by

concatenating words. These models differ in how they treat edge effects. The

model proposed by Bussemaker et al. [6], which we will call as full-text model,

assumes that a sequence starts and ends with full words. This is reasonable if the

sequence represents a DNA strand in its entirety or the sequence coincides with a

well-delimited and biologically meaningful region such as an exon. We propose

an alternative model, which we call the equilibrium model, in which the first (or

last) letter of an observed sequence need not be the first (or last) letter of a word.
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In this model we observe a random fragment of text from an infinitely long

sequence. The equilibrium model is more realistic for randomly selected DNA

sequences of predetermined length.

To describe the probability of an observed sequence s under these two models, we

now introduce some necessary index notation. A vector of consecutive indices

s ¼ (i, iþ 1, . . . , j� 1, j) ¼ (i : j)

is called a compatible block if its length jsj ¼ j� iþ 1 does not exceed the

maximum word length kmax. An ordered partition p of a sequence s divides the

indices of s into a vector of compatible blocks p ¼ (p1, . . . ,pjpj) subject to two con-

ditions. Condition 1 applies to both models and says that if block pi ends with index

j, then block piþ1 begins with index jþ 1. Condition 2a applies only to the full-text

model and requires the first block p1 to begin with index 1 and the last block pjpj to

end with the last index jsj of s. Condition 2b applies only to the equilibrium model

and requires the first block p1 merely to contain index 1 and the last block pjpj

merely to contain the last index jsj of s. Each block pi of p determines a segment

s½pi� of s.

For instance, the ordered partition p composed of the blocks p1 ¼ (1, 2),

p2 ¼ (3, 4, 5), and p3 ¼ (6) divides the sequence (s1, . . . , s6) into the three segments

s½p1� ¼ (s1, s2)

s½p2� ¼ (s3, s4, s5)

s½p3� ¼ (s6)

This particular partition is consistent with both models. The collection F of

partitions compatible with the full-text model is smaller than the collection E of

partitions compatible with the equilibrium model. For example, the ordered parti-

tion p [ E nF with blocks p1 ¼ (�1, 0, 1, 2), p2 ¼ (3, 4, 5), and p3 ¼ (6, 7)

divides the sequence (s1, . . . , s6) into the three segments

s½p1� ¼ (s�1, s0, s1, s2) ¼ (?, ?, s1, s2)

s½p2� ¼ (s3, s4, s5)

s½p3� ¼ (s6, s7) ¼ (s6, ?)

Here we have padded s with missing letters on its left and right ends. In general, the

constraints
Pjpj

i¼1 jpij ¼ jsj for p [ F and
Pjpj

i¼1 jpij � jsj for p [ E must be

imposed on the sum of the segment lengths.

We now derive the likelihood of a sequence s under the full-text model. Let F

be the event that randomly concatenating words give a sequence with a word

boundary at position jsj. Because the probability of a partition p [ F is

proportional to the product of the probabilities of the lengths of the segments
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constituting it, we have

Pr(p jF ) ¼

Qjpj
i¼1 qjpijP

p[F

Qjpj
i¼1 qjpij

The normalizing constant here is difficult to evaluate analytically, but it can be

rewritten as

Pr(F) ¼
X
p[F

Yjpj
i¼1

qjpij ¼
X
m[M

m1 þ � � � þ mkmax

m1, . . . ,mkmax

� �Ykmax

k¼1

qmk

k

where M denotes the set of vectors m ¼ (m1, . . . ,mkmax
) of nonnegative integers

such that
Pkmax

k¼1 kmk ¼ jsj. Here mk is the number of blocks of length k. The likeli-

hood of the sequence under the full-text model boils down to

LF(s) ¼ Pr(S ¼ s jF)

¼

P
p[F

Qjpj
i¼1 qjpij Pr(s½pi�jp)P

p[F

Qjpj
i¼1 qjpij

¼

P
p[F

Qjpj
i¼1 qjpijp(s½pi�)P

p[F

Qjpj
i¼1 qjpij

Bussemaker et al. [7] give an algorithm for computing the numerator of this

likelihood but none for computing the denominator Pr(F ). They assert that it is

sufficiently close to 1 for practical purposes. While this may be true in their specific

context, we have observed substantial variation in Pr(F ) as a function of

q ¼ (q1, . . . , qkmax
). For example, for a dictionary containing only words of length

1 and 10 and a sequence of 800 bases, Pr(F) varies between 1 and 0.02. This

makes us uncomfortable in equating it to 1. Later we will derive an efficient

algorithm for computing the value of Pr(F).

Over the enormous stretches of DNA seen in all genomes, it is reasonable to

suppose that the process of concatenating words has reached equilibrium at the

start of any small sequence s. The equilibrium model makes it possible to assign

a probability to the first segment generated by a partition p [ E covering s.

Indeed, the probability that a randomly chosen position along the genome is

covered by a word of length j is the ratio jq j=�q, where �q ¼
Pkmax

k¼1 kqk denotes the

length of an average word. In particular, the probability jqj=�q applies to position 1

of s. The conditional probability that position 1 of s coincides with a particular pos-

ition of a covering word of length j is 1=j. It follows that the jth index p1j of p1

covers position 1 of s with probability qjp1j=�q. Similar considerations apply to the

last block of p if we consider concatenating words from right to left rather than

from left to right. In either case, we can express the probability of p [ E under
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the event E of equilibrium as

Pr(pjE) ¼

Qjpj
i¼1 qjpij

q

It is a relatively simple exercise to check that
P

p[E Pr(p jE) ¼ 1.

For readers dissatisfied with this intuitive explanation of equilibrium, it may

help to consider a Markov chain on an infinite sequence of letters constructed by

randomly concatenating words. The state of the chain Xn at position n of the

sequence is a pair of integers (i, j) with 1 � i � j � kmax. The integer j gives the

length of the word covering position n, and the integer i gives the position of n

within that word. The actual letter at n is irrelevant. It is easy to prove that this

finite-state chain is irreducible and, provided there is at least one single-letter

word, aperiodic. Let lnij be the probability that the chain occupies state (i, j) at

position n. Elementary reasoning yields the one-step recurrence

lnij ¼ 1{i.1}ln�1, i�1, j þ 1{i¼1}

Xkmax

k¼1

ln�1, kkqj

and standard theory for a Markov chain says that the limits limn!1 lnij ¼ lij exist

and do not depend on the initial distribution of the chain. Because the probability

distribution lij ¼ qj=q obviously satisfies the one-step recurrence, this validates

our claimed equilibrium model.

By allowing missing letters and partitions that straddle the ends of s, we can write

the likelihood of s under the equilibrium model as

LE(s) ¼ Pr(S ¼ s jE)

¼
1

q

X
p[E

Yjpj
i¼1

qjpijp(s½pi�)

Again, this formula is ill adapted to computing. It is noteworthy, however, that the

normalizing constant is vastly simpler. Furthermore, the likelihood under the full-

text model can be viewed as a conditional probability in the equilibrium model

in the sense that LF(s) ¼ Pr(S ¼ s jE, F).

6.3. ALGORITHMS FOR LIKELIHOOD EVALUATION

Our likelihood algorithms resemble Baum’s forward and backward algorithms from

the theory of hidden Markov chains [8, 9]. For the sake of simplicity, we first con-

sider the full-text likelihood of s. Let Bi be the event that a word ends at position i.

The forward algorithm updates the joint probabilities

fi ¼ Pr(S½1: i� ¼ s½1: i�, Bi)
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and the backward algorithm updates the conditional probabilities

bi ¼ Pr(S½i : n� ¼ s½i : n�jBi�1)

for n ¼ jsj.

The forward algorithm initializes f0 ¼ 1 and iterates according to

fi ¼
Xmin{kmax, i}

k¼1

fi�k qkp(s½i� k þ 1 : i �)

in the order i ¼ 1, . . . , n. At the last step, fn equals the numerator of LF(s), that is,P
p[F

Qjpj
i¼1 qjpij Pr(s½pi� jp). The forward algorithm for computing the denominator

is similar except that it iterates via

fi ¼
Xmin{kmax, i}

k¼1

fi�kqk

ignoring the letter content of the sequence. The backward algorithm begins with

bnþ1 ¼ 1 and updates

bi ¼
Xmin{kmax, nþ1�i}

k¼1

biþkqkp(s½i : iþ k � 1�)

in the reverse order i ¼ n, . . . , 1. At the last step, we recover the numerator of LF(s)

as b1. Finally, the backward algorithm for the denominator iterates via

bi ¼
Xmin{kmax, nþ1�i}

k¼1

biþkqk

To derive these updates, we simply concatenate an additional segment to one of

the current partial sequences, assuming that the entire sequence starts and ends

with full words. Bussemaker et al. [6, 7] give the backward and forward algorithms

for the numerator but omit the algorithms for the denominator of LF(s).

The forward and backward algorithms for the equilibrium likelihood are similar

but more complicated. The forward algorithm commences with fi ¼ 1=�q for

i ¼ 1� kmax, . . . , 0. This expanded set of initial values reflects the variety of starting
points for segments containing position 1. The remaining joint probabilities are

determined by

fi ¼
Xkmax

k¼max{1, iþ1�n}

fi�kqkp(s½i� k þ 1:i �)
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for i ¼ 1, . . . , nþ kmax � 1. This is precisely the update used for the numerator of

the full-text likelihood when i � n. When i . n, the requirement that the last

word must contain position n limits the range of summation of k to i� k , n.

The sum LE(s) ¼ fn þ � � � þ fnþkmax�1 defines the equilibrium likelihood. The

backward algorithm begins with bi ¼ 1 for i ¼ nþ 1, . . . , nþ kmax and iterates

according to

bi ¼
Xkmax

k¼max{1, 2�i}

biþkqkp(s½i : iþ k � 1�)

for i ¼ n, . . . , 2� kmax. In this case, the equilibrium likelihood LE(s) ¼

(b2�kmax
þ � � � þ b1)=�q.

As a trivial example, consider s ¼ (s1) and kmax ¼ 2. Then the updates

f1 ¼ f�1q2
X
jwj¼2

rw‘w2s1 þ f0q1
X
jwj¼1

rw‘w1s1

f2 ¼ f0q2
X
jwj¼2

rw‘w1s1

b1 ¼ b2q1
X
jwj¼1

rw‘w1s1 þ b3q2
X
jwj¼2

rw‘w1s1

b0 ¼ b2q2
X
jwj¼2

r2‘w2s1

both lead to the equilibrium likelihood

LE(s) ¼
1

q1 þ 2q2
q1
X
jwj¼1

rw‘w1s1 þ q2
X
jwj¼2

rw(‘w1s1 þ ‘w2s1 )

" #

For long sequences, one has to rescale to prevent underflows. Rescaling is a

general device that applies to linear iteration. Suppose xi is a vector sequence

generated by the recurrence x iþ1 ¼ Mixi for matrices Mi. In rescaling we replace

this sequence by another sequence y i starting with y0 ¼ x0 and satisfying

yiþ1 ¼ c�1
i Miyi. The positive constant ci is typically taken to be ky ik for some

norm. One can easily show by induction that x i ¼ (
Qi�1

j¼0 cj)y
i. If we want the

logarithm of some positive inner product v�xi, then we compute the logarithm of

the positive inner product v�yi and add the compensating sum
Pi�1

j¼0 ln cj.

Readers can supply the details of how this applies to computing loglikelihoods

under the forward and backward algorithms.

Intermediate values from the forward and backward algorithms are stored for a

variety of reasons. For instance, under the equilibrium model, we may want the

conditional probability that the sequence s contains a segment extending from
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index i to index j. This probability can be expressed as

kij ¼
fi�1q j�iþ1p(s½i : j�) b jþ1

LE(s)
(6:2)

The restriction that a particular word w fills this segment has conditional probability

rij(w) ¼
fi�1q j�iþ1rw

Q j�iþ1
k¼1 ‘wksiþk�1

b jþ1

LE(s)
(6:3)

These particular conditional probabilities are pertinent to estimation of the

parameter vectors q, r, and ‘ describing the model.

6.4. PARAMETER ESTIMATION VIA
MINORIZATION–MAXIMIZATION ALGORITHM

A Bayesian approach to parameter estimation is attractive because it allows the

incorporation of prior information on experimentally identified binding sites.

The application of a 0–1 loss function in similar classification problems suggests

that we maximize the posterior density. This is proportional to the product of the

prior density and the likelihood. There is no harm in selecting the prior density

from a convenient functional family provided we match its parameters to available

prior data. Since the presence of the prior adds little complexity to optimization of

the likelihood itself, we will first discuss maximum-likelihood estimation and then

indicate how it can be modified to accommodate a prior.

To maximize the complicated likelihood function LE(s j q, r, ‘), we resort to a

minorization–maximization (MM) algorithm [10]. This iterative optimization prin-

ciple maximizes a target function f (x) by taking a current iterate xm and constructing

a minorizing function g(x j xm) in the sense that g(x j xm) � f (x) for all x and

g(xm j xm) ¼ f (xm). The next iterate xmþ1 is chosen to maximize g(x j xm). This

choice of xmþ1 guarantees that f (xmþ1) � f (xm). For the MM strategy to be success-

ful, maximization of g(x j xm) should be easy.

The best known class of MM algorithms consists of the EM algorithms. All EM

algorithms revolve around the notion of missing data. In the current setting, the

missing data are the partition p segmenting the sequence and the words assigned

to the different segments of s generated by p. In the expectation step of the EM

algorithm, one constructs a minorizing function to the loglikelihood by taking the

conditional expectation of the complete data loglikelihood with respect to the

observed data. For the equilibrium model, the complete data likelihood is

1

q

Yjpj
i¼1

qjpijrwi

Yjwij

j¼1

‘wi jspij
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where segment s½pi� is assigned word w�i, and pij denotes the jth index of pi. Let Mk

be the number of segments of length k, Nw be the number of appearances of word w,

and Lwjt be the number of letters of type t occurring at position j of the segments

assigned word w. In this notation, the complete data loglikelihood is expressed as

Xkmax

k¼1

Mk ln qk þ
X
w

Nw ln rw þ
X
w, i, j

Lwij ln ‘wij � ln q

The conditional expectations of the counts Mk, Nw, and Lwij given S ¼ s are readily

evaluated as

E(Mk j S ¼ s, q, r, ‘) ¼
Xjsj

i¼�kþ2

ki, iþk�1

E(Nw j S ¼ s, q, r, ‘) ¼
Xjsj

i¼�jwjþ2

ri, iþjwj�1(w)

E(Lwjt j S ¼ s, q, r, ‘) ¼
Xjsj

i¼�jwjþ2

1{siþj�1¼tj}ri, iþjwj�1(w)

using Eqs. (6.2) and (6.3).

The EM algorithm for hidden multinomial trials updates a success probability by

equating it to the ratio of the expected number of successes to the expected number

of trials given the observed data and the current parameter values [11]. This recipe

translates into the iterates

rmþ1
w ¼

E(Nw j S ¼ s, qm, rm, ‘m)

E(Mjwj j S ¼ s, qm, rm, ‘m)

‘mþ1
wjt ¼

E(Lwjt j S ¼ s, qm, rm, ‘m)

E(Nw j S ¼ s, qm, rm, ‘m)

Updating the segment probabilities qk is more problematic. Because the surrogate

function created by the expectation step separates the qk parameters from the

remaining parameters, it suffices to maximize the function

g(qjqm) ¼
Xkmax

k¼1

E(Mk j S ¼ s, qm, rm, ‘m) ln qk � ln
Xkmax

k¼1

kqk

 !

subject to the constraints qk � 0 and
Pkmax

k¼1 qk ¼ 1. To our knowledge, this problem

cannot be solved in closed form. It is therefore convenient to undertake a second

minorization exploiting the inequality ln x � ln yþ x=y� 1. Application of this
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inequality produces the minorizing function

h(q j qm) ¼
Xkmax

k¼1

E(Mk j S ¼ s, qm, rm, ‘m) ln qk � ln
Xkmax

k¼1

kqmk

 !
� cm

Xkmax

k¼1

kqk þ 1

with cm ¼ 1=(
Pkmax

k¼1 kq
m
k ).

The function h(q j qm) still resists exact maximization, but at least it separates the

different qk. To maximize h(q j qm), we employ the method of Lagrange multipliers.

This entails finding a stationary point of the Lagrangian

h(q j qm)þ l
Xkmax

k¼1

qk � 1

 !

Differentiating the Lagrangian with respect to qk yields the equation

0 ¼
emk
qk

� cmk þ l

where

emk ¼ E(Mk j S ¼ s, qm, rm, ‘m)

The components

qk ¼
emk

cmk � l

of the stationary point involve the unknown Lagrange multiplier l. Fortunately, l is

determined by the constraint

1 ¼
Xkmax

k¼1

qk ¼
Xkmax

k¼1

emk
cmk � l

The sum on the right-hand side of the second of these two equations is strictly

monotone in l, on the interval (�1, cm) leading to positive solutions for all qk’s.

Hence, it equals 1 at exactly one point. Any of a variety of numerical methods

will yield this point. In practice, we use bisection, which is easy to program and

highly reliable. Its relatively slow rate of convergence is hardly noticeable amid

the other more computationally intensive tasks.

We now briefly describe how slight modifications of these algorithms permit

maximization of the posterior density. The general idea is to put independent

priors on q, r, and ‘. Because Dirichlet densities are conjugate priors for multinomial

densities, it is convenient to choose Dirichlet priors. Therefore, consider a
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Dirichlet prior

G(
Pkmax

k¼1 ak)Qkmax

k¼1 G(ak)

Yk
k¼1

qak�1
k

for q, say. In selecting the prior parameters a1, . . . , akmax
, it is helpful to imagine a

prior experiment and interpret ak � 1 as the number of successes of type k in that

experiment. In this imaginary setting, there is nothing wrong with specifying a frac-

tional number of successes. The sum
Pkmax

k¼1 ak � kmax gives the number of trials in

the prior experiment and hence determines the strength of the prior. If little or no

prior information is available, then one can set all ak ¼ 1. This yields a posterior

density that coincides with the likelihood. Setting all ak ¼ 2 regularizes estimation

and deters estimates of qk from approaching the boundary value 0.

In summary, adding a Dirichlet prior to a multinomial likelihood corresponds

to adding ak � 1 pseudocounts to category k of the observed data. Hence, if

we focus on estimating q, then in the MM algorithm just described we replace

Mk by Mk þ ak � 1. Everything else about the algorithm remains the same. Similar

considerations apply to estimation of the parameter vectors r and ‘ except we deal

with product multinomials rather than multinomials. This distinction entails substitut-

ing products of independent Dirichlet priors for a single Dirichlet prior.

6.5. EXAMPLES

We now consider two illustrative examples. In the first we used the data of Lawrence

et al. [4] on 18 short microbial sequences to reconstruct the binding site for camp

receptor protein (Crp), an important regulatory protein. This particular data set

has served as a benchmark for testing many motif-finding algorithms. Each sequence

is 105 bp long and is expected to harbor at least one binding site. Our goal was to

estimate the word and letter probabilities for a dictionary consisting of just two

words—a one-letter word representing background and a 22-letter word represent-

ing the Crp binding site. Given that the sequences are short compared to the length of

the motif and that the motif occurs frequently across the sequences, we used nonin-

formative word and letter priors and a high 0.8 cutoff posterior probability for

declaring a motif. To avoid getting trapped at a local mode, we started our

Fortran 95 implementation of the MM algorithm from multiple random points.

Among 10 runs of the algorithm, the one with the highest logposterior shows 19

of the 24 previously noted sites [4] and an additional 23 putative sites. Our recon-

structed spelling matrix corresponds well with the known matrix for Crp, even if

the motif appears to be slightly less conserved than in the experimentally identified

sites. Although too many false positives explain this phenomenon, we may also have

detected binding sites that have lower affinity and hence are selected less frequently

in reality. A depiction of the identified motif can be found in Figure 6.2 where each

stack of letters corresponds to one position in the sequence. The height of a stack is

proportional to the conservation of that position, and the height of the letters within a
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stack is proportional to their relative frequency. The motif is clearly palindromic and

positions 4–5–6–7–8 are more conserved than others, corresponding to the exper-

imental data presented in Figure 6.1.

This is an easy example because it deals with a single motif. In our follow-up

paper [13], we describe genomewide localization of the binding sites for 41 regulat-

ory proteins in E. coli. Given the sparse experimental information, it impossible to

check our motif predictions directly. However, comparison of the motif predictions

with the results of gene expression experiments suggests that the dictionary model

is working well.

6.6. DISCUSSION AND CONCLUSION

In this chapter, we have explored some of the conceptual issues involved in applying

the dictionary model to motif finding. A clearer understanding of these issues is

crucial in formulating algorithms that make statistical sense.

The model of Lawrence and Reilly [3] and its extensions [4] successfully identify

sites in short sequences locally enriched for a given binding site. As the whole

genomes of more species become available, there is a growing interest in global

methods of motif identification. The work of Robison et al. [5] and Bussemaker

et al. [6] is motivated by this aim. Our current synthesis points in the same direction.

In the long run, comparison of homologous sequences from related species is apt

to provide the best leverage in identifying binding sites [14]. Adaptation of the

dictionary model to this purpose is a natural research goal.

Other more modest theoretical extensions come to mind. For example, one could

search for protein motifs by substituting amino acids for bases. In noncoding regions

of DNA, it might be useful to model binding site motifs that are palindromes. This

puts constraints on the parameters in the product multinomial distributions for letters

within a give word. The independent choice of letters in a word is also suspect. A

Markov chain model might be more appropriate in some circumstances. Finally,

our model assumes that consecutive words are selected independently. However,

it is reasonable to posit that multiple proteins interact in regulating expression.

FIGURE 6.2. Profile of binding site for Crp as reconstructed starting from 18 microbial

sequences. The graphics software used is available at http://weblogo.berkeley.edu/ and is

based on the sequence logo described in [12].
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This assumption translates into the co-occurrence of binding sites. Co-occurrence

can be investigated within the framework of the unified model by monitoring the

posterior probabilities of binding sites and checking whether these tend to be

cross correlated as a function of position along a sequence.

We have assumed a static dictionary. Bussemaker et al. [7, 6] tackle the problem

of dictionary construction. Although their methods are elegant, it is unclear how

well they will perform in the presence of alternative spellings. One of the virtues

of the unified model is that it encourages exploration of alternative spellings and

estimation of letter frequencies within words.
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&CHAPTER 7

Error Control Codes and the Genome

ELEBEOBA E. MAY

In the latter part of the 1980s the increase in genomic data spurred a renewed interest

in the use of information theory in the study of genomics [1–3]. Information

measures, based on the Shannon entropy [4], have been used in recognition of

DNA patterns, classification of genetic sequences, and other computational

studies of genetic processes [1–18]. Informational analysis of genetic sequences

has provided significant insight into parallels between the genetic process and

information-processing systems used in the field of communication engineering

[18, 19–21]. This chapter explores the application of error control coding (ECC)

theory to the analysis of genomic sequences and provides an overview of coding

theoretic frameworks for modeling information processing in living systems.

7.1. ERROR CONTROL AND COMMUNICATION: A REVIEW

The need for coding theory and its techniques stems from the need for error control

mechanisms in a communication system. Error control mechanisms can be categor-

ized as forward error correction and retransmission error control. Forward error cor-

rection assumes that errors will occur and provides a mechanism that, when applied

to the received message, is able to correct the errors. Retransmission error control

techniques detect the errors in the received message and request retransmission of

the message [22]. The system in Figure 7.1 illustrates how ECC is incorporated

into a typical engineering communication system. Digitized information is com-

pressed by the source encoder and then redundant symbols are added by the

channel encoder in preparation for transmission. The error-control-encoded

message is transmitted via a potentially noisy channel where the transmitted

information may be corrupted in a random fashion. At the receiver, the received

message is decoded by the channel decoder. The decoding process involves recog-

nition and removal of errors introduced during transmission and removal of the
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redundant symbols used for error protection. The decoding mechanism can only

cope with errors that do not exceed its error correction capability. The source

decoder uncompresses the transmitted information producing the original digitized

information.

7.1.1. Error-Correcting Codes

The elements we will focus on in this system are the encoder, the channel, and the

decoder, elements responsible for the error control and correction aspects of

communication.

7.1.1.1. Encoder The encoder encodes the digitized information frame by

frame. An input frame consists of a fixed number k of symbols that are presented

to the encoder. The output frame, the frame to be transmitted, consists of n (also

fixed) output symbols, where n is larger than k. Since the number of output

symbols is greater than the number of input symbols, redundancy has been intro-

duced [22]. The coding rate

R ¼
k

n
(7:1)

is the the ratio of the number of input symbols in a frame to the number of output

symbols in a frame. The lower the coding rate, the greater the degree of

redundancy [22].

The encoder combines the k input symbols with n2 k symbols usually based on

a deterministic algorithm, although random encoding methods, as illustrated by

Shannon, can be used [4, 23]. Encoding results in a mapping of input frames into

FIGURE 7.1. Communication system that incorporates coding.
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a set of output frames known as codewords. There must be a codeword for every

possible information sequence. For a q-ary alphabet, the encoder will produce qk

codewords. As an example, for a binary code (q ¼ 2) with k ¼ 2, there are 22, or

four, possible information sequences and therefore four codewords. The set of qk

codewords comprises the codebook. Because encoding adds redundant bits, there

are a number of n-bit sequences (exactly qn2 qk such sequences) which are not

codewords. This allows error detection and correction. If a transmitted n-bit

sequence does not map to a codeword, we assume one or more bits have been cor-

rupted. The decoding task is to find the most likely changes in a transmitted n-bit

sequence that will result in a valid codeword. The type of output produced is deter-

mined by the number of input frames used in the encoding process. Block coding

uses only the current input frame. Convolutional coding uses the current frame

plus m previous input frames [22, 24]. Error control codes can be referred to as

(n, k) codes or (n, k,m) codes in the case of convolutional codes, where m is the

memory length (a more detailed discussion of encoder memory is presented in

Section 7.1.3).

7.1.1.2. Communication Channel The communication channel is the

medium through which information is transmitted to the receiver. The channel

can corrupt the transmitted message through attenuation, distortion, interference,

and addition of noise. The way in which transmitted binary symbols (0 or 1) are

corrupted depends on various characteristics of the communication channel [22]:

. If the channel is amemoryless channel, the probability of binary symbol error is

statistically independent of the error history of the preceding symbols.

. If the channel is a symmetric channel, for binary symbols 0 and 1, the prob-

ability of 0 being received instead of 1, due to transmission errors, is the

same as the probability of 1 being received instead of 0.

. If the channel is an additive white Gaussian noise (AWGN ) channel—a

memoryless channel—this adds wideband, normally distributed noise to the

amplitude-modulated transmitted signal.

. If the channel is a bursty channel, there are periods of high symbol error rates

separated by periods of low, or zero, symbol error rates.

. If the channel is a compound channel, the errors are a mix of bursty errors and

random errors.

7.1.1.3. Decoder The method of decoding used by the channel decoder is

dependent on the method of encoding. The aim of a coding system is to attempt

to detect and correct the most likely errors. The decoder receives a series of

frames that, given no errors in the transmitted sequence, should be composed

only of codewords. If the received sequence has been corrupted during transmission,

there will be sequences which do not map uniquely to any codewords. This is used to

detect the presence of errors. Different mechanisms are then used to decide what the

original codeword was and thus correct the error. When the error rate exceeds the
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correction capacity of the code, two things can occur: (1) The decoder can detect the

error but cannot find a unique solution and thus correct the error or (2) the decoder

cannot detect the error because the corruption has mapped one legal codeword

into another legal codeword. Errors that exceed the error-correcting capabilities of

the code may not be handled correctly.

7.1.2. Basics of Linear Block Codes

For block and convolution codes, the mathematics is carried out in a finite field also

referred to as a Galois field [22, 23]. A q-ary finite field GF(q) is a Galois field with q

elements that consists of a finite set of symbols, a set of two operations, and the

inverses of those operations. The operations and their inverses, when applied to

the set of symbols, can only yield values within that set. As an example, the

binary field GF(2) consists of

. as finite set of symbols 0,1;

. the operations modulo 2 addition (þ) and modulo 2 multiplication (�); and

. corresponding inverse operations.

7.1.2.1. Encoding Methodology A linear block code is a code defined such

that the sum of any two codewords results in another valid codeword in the code-

book set. There are several ways for a block encoder to produce codewords from

a k-bit information sequence [25]. One method, systematic encoding, produces

codewords which contain the k information bits at the beginning of the codeword.

The information bits are then followed by n2 k parity bits. All nonsystematic

linear block codes can be reduced to an equivalent systematic code [23]. The

value of these n� k bits is determined by the encoding algorithm contained in the

generator matrix G. The generator matrix is used to encode the k-bit information

vector u and form the n-bit transmitted codeword vector v. The relationship

between u, v, and G is

v ¼ uG (7:2)

(Note: Throughout this chapter ab denotes a times b.)

The generator matrix G is k � n, u is 1 � k, and v is 1 � n; this yields the following

matrix representation of the above equation:

½v1 v2 � � � vn� ¼ ½ u1 u2 . . . uk �

g11 g12 . . . g1n

..

. ..
. . .

. ..
.

gk1 gk2 . . . gkn

2
64

3
75 (7:3)

The codeword v is produced by the modulo q addition of basis codewords [22]. The

basis codewords are the k linearly independent codewords that form the generator

matrix. Linearly independent codewords are the set of k vectors that cannot be

produced by linear combinations of two or more codewords in the codebook set.
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When the generator matrix is in systematic form, G is of the form

G ¼ ½Ik; P� (7:4)

where Ik is the k � k identity matrix and P is a k � (n2 k) matrix [23]. Equation

[7.5] and Table 7.1 show the generator and corresponding data to parity mapping

for a simple (3,2) linear block code:

G ¼
1 0 1

0 1 1

� �
(7:5)

From Table 7.1 we note that the codebook set is SC ¼ (000, 011, 101, 110).

7.1.2.2. Decoding Methodology Decoding involves two steps. First the

decoder must check whether the sequence corresponds to a codeword. Second, if

the decoder is an error-correcting decoder, then it must identify the error pattern.

There are various decoding methods. One method, minimum-distance decoding,

is a maximum-likelihood approach based on comparing Hamming distance values

between a received sequence and codewords in the codebook. The Hamming

distance between two sequences, d(a, b), is the number of differences between

sequence a and sequence b [22]. For a received sequence r, the minimum distance

dmin of r is the minimum of d(r, Sc), where Sc is the set of all codewords v in the

codebook. In minimum-distance decoding, we decode r to the codeword for

which d(r, Sc) is the least. If the minimum-distance computation results in the

same distance value for more than one codeword, although an error is detected, it

is not correctable because of the degeneracy of the mapping. Minimizing the dis-

tance is the optimum decoding approach for a channel in which symbol errors are

independent (memoryless channel) [22].

Another decoding technique, syndrome decoding, is based on the relationship

between r, the received sequence (a potentially noisy version of v), and the

(n� k) � n parity-check matrix H. The H matrix is the generator for the dual

code space with respect to the code space generated by G [23]. The parity-check

matrix has the form

H ¼ ½PT; In�k� (7:6)

TABLE 7.1 Data to Parity Mapping for Simple (3,2)

Linear Block Code

u v ¼ uG

00 000

01 011

10 101

11 110
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where PT is the transpose of the P matrix of G [see Eq. (7.4)] and In�k is the

(n� k) � (n� k) identity matrix [23]. The relationship between H and G is

GHT ¼ 0 (7:7)

For every valid codeword v in the coding space of G

vHT ¼ 0 (7:8)

If we represent the n-symbol received vector r as r ¼ vþ e, where e represents

the error vector introduced by the channel, we can define the syndrome of r as

s ¼ rHT ¼ (vþ e)HT ¼ 0þ eHT (7:9)

The syndrome is the error pattern present in the received information sequence. In

the absence of detectable errors, s ¼ 0. The syndrome pattern can be used to correct

and decode the received information sequence. Using the simple (3,2) code in

Eq. (7.5), the corresponding H matrix is

H ¼ 1 1 1
� �

(7:10)

Given two received messages r1 ¼ ½011� and r2 ¼ ½010�, we can calculate the

syndrome values for each, potentially noisy sequence:

s1 ¼ r1H
T ¼ 0 1 1

� � 1

1

1

2
4

3
5 ¼ ½0� (7:11)

s2 ¼ r2H
T ¼ 0 1 0

� � 1

1

1

2
4

3
5 ¼ ½1� (7:12)

From this simple illustration, we note that the nonzero s2 syndrome value accurately

indicates the presence of an error in r2 while the zero s1 value indicates the absence

of errors in the received r1 sequence. May et al. theorize that this syndrome-

checking framework can be paralleled to the behavior of various macromolecules,

such as the ribosome, that operate on genetic messages [26].

7.1.3. Basics of Convolutional Codes

Block codes produce encoded blocks from the present information block at time i.

In contrast, convolutional coding produces encoded blocks based on present and past

information bits or blocks. Convolutional coding, like block coding, is carried out

over a finite field using a set of discrete source symbols. For now, we consider

the binary field, consisting of [0, 1] and the operations modulo 2 addition and
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modulo 2 multiplication. In convolutional encoding, an n-bit encoded block at time i

depends on the k-bit information block at time i and on m previous information

blocks [24]. Hence, a convolutional encoder requires memory. Convolutional

codes are referred to as (n, k, m) codes.

7.1.3.1. Encoding Methodology A convolutional encoder is a mechanism

with a k-bit input vector ui, n-bit output vector vi, and m memory elements.

Figure 7.2 illustrates a (2, 1, 2) convolutional encoder, where the blocks indicate

memory [24]. This is a k ¼ 1, n ¼ 2, or 1
2
rate encoding scheme where a block is

equal to one bit. That is, for every input bit encoding produces two parity bits.

The general encoding procedure is as follows [22, 24]:

. A k-bit input block at time i, ui, is modulo 2 added to the previousm input bits to

form the n-bit output vector vi.

. The most recent k input bit is shifted into the memory register and the rest of

the bits in the register are shifted to the right.

. The new input block is then modulo 2 added to the contents of the memory

register to produce a new output vector.

. The process is repeated until all input data have been encoded.

A set of n generator vectors completely specify the encoder. The generators

are mþ 1 bits long and indicate which elements are modulo 2 added to produce

each bit in the output vector. For the encoder illustrated in Figure 7.2, the generator

vectors are

g1 ¼ ½ 1 0 1 � (7:13)

g2 ¼ ½ 1 1 1 � (7:14)

The generator vectors can also be represented as generator polynomials:

g1(x) ¼ 1þ x2 (7:15)

g2(x) ¼ 1þ xþ x2 (7:16)

FIGURE 7.2. A (2,1,2) convolutional encoder.
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For xD,D represents the number of delay units. Each generator vector or polynomial

is associated with one of the n output bits in the output vector v. The encoding

process depends not only on the present input but also on the previous m inputs.

This forms an interdependence among the transmitted data bits. Given the

information stream

u(i) ¼ ½ 0 0 0 1 0 0 � i ¼ 0, . . . , 5 (7:17)

we can use the convolution code specified by Eqs. (7.13) and (7.14) to produce the

corresponding codeword sequence:

v(i) ¼ ½00 11 01 11 � i ¼ 2, . . . , 5 (7:18)

In the above example, note that the first two valid outputs for v occur at i ¼ 2.

7.1.3.2. Decoding Methodology There are various approaches for decoding

convolutionally encoded data. Similar to block decoding, the maximum-likelihood

decoding approach compares the received sequence with every possible code

sequence the encoding system could have produced. Given a received sequence

and the state diagram of the encoding system, maximum-likelihood decoding pro-

duces the most likely estimate of the transmitted vector v. The Viterbi decoding

algorithm [22, 24] is a maximum-likelihood decoding algorithm which uses a

code trellis to estimate the transmitted vector given a received vector.

Table-based decoding, another decoding approach, uses syndrome decoding

methods and a decoding window which consists of mþ 1 frames [22, 27, 28].

The received sequence is treated like a block code and a syndrome value is generated

for each received block. As in block codes, the value of the syndrome indicates the

presence or absence of an error in the received sequence. Although not a maximum-

likelihood method, syndrome-based decoding of convolutional codes is more

computationally efficient and this decoding model has been used in constructing

an ECC framework for modeling translation initiation system [26, 29].

7.2. CENTRAL DOGMA AS COMMUNICATION SYSTEM

To determine the algorithm used by living systems to transmit vital genetic

information, several researchers have explored the parallel between the flow

of genetic information in biological systems and the flow of information in

engineering communication systems, reexamining the central dogma of genetics

from an information transmission viewpoint [1, 19, 20, 30, 31]. The central

premise of genetics is that genes are perpetuated in the form of nucleic acid

sequences but once expressed function as proteins [32]. Investigators have

developed models that attempt to capture different information-theoretic aspects

of the genetic system [1, 19, 20, 33, 34]. Three of these models are reviewed in

the sections that follow.
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7.2.1. Gatlin’s Communication Model

One of the earliest work on the information-theoretic properties of biological

systems is presented by Gatlin [19]. In the opening chapter of her work, Gatlin

[19] asserts that “life may be defined operationally as an information processing

system . . . that has acquired through evolution the ability to store and process the

information necessary for its own accurate reproduction.” In Gatlin’s interpretation

of the biological information-processing system DNA base sequences are the

encoded message generated by a source, an error control encoder. The encoded

DNA goes through a channel (defined in Gatlin’s model by transcription and

translation) that Gatlin defines as all the mechanics for protein production. The

amino acid sequence of the protein is the received message. It is unclear where

DNA replication fits or whether Gatlin considers the replication process as part of

the encoder. However, she does suggest that extra bases in DNA may be used for

error control and correction purposes.

In addition to an information-theoretic view of genetic processes, Gatlin also

parallels the genetic sequence to a computer program. She proposes that the

genetic code can be viewed as “part of an informational hierarchy” where the

redundant DNA regions and the noncoding DNA have important programmatic

control functions. It is well known that non-protein-coding regions of DNA, such

as promoters and the 50 untranslated leader of messenger RNA (mRNA), have

regulatory functions in the protein synthesis process, lending plausibility to her

early ideas [32, 35].

7.2.2. Yockey’s Communication Model

Yockey performs a fundamental investigation of biological information theory and

lays the foundations for developing theoretical biology from the mathematical

principles of information and coding theory [20]. Yockey’s biological information

framework is based on a data storage model, where the behavior of the genetic infor-

mation system is compared to the logic of a Turing machine. The DNA is paralleled

to the input tape where the genetic message is the bit string recorded on the tape. The

computer program or internal states of the Turing machine are the RNA molecules

and molecular machines that implement the protein synthesis process. The output

tape, similar to Gatlin’s model, is the protein families produced from the recorded

message in DNA.

Error-correcting codes are used in data storage media to ensure data fidelity

and hence Yockey’s model incorporates ECC. A simplified version of Yockey’s

DNA–mRNA–protein communication system is re-created in Figure 7.3 [20]. In

Yockey’s DNA–mRNA–protein communication system, the source code is the

genetic message in DNA and is stored on the DNA tape. Transcription is the

encoder, transferring DNA code into mRNA code. Messenger RNA is the channel

by which the genetic message is communicated to the ribosome, which is the

decoder. Translation represents the decoding step where the information in the

mRNA code is decoded into the protein message or the protein tape. Genetic
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noise is introduced by events such as point mutations. Yockey states that while

genetic noise can occur throughout the system, all of the noise is represented in

the mRNA channel.

In Yockey’s model, the genetic code (the codon-to-amino-acid mapping) is the

decoding process and is referred to as a block code. He suggests that the redundancy

in the codon-to-amino-acid mapping is used as part of the error protection mechan-

ism. Therefore we can assume that the transcription step would be the error control

encoding step in Yockey’s model even though there is not an apparent increase in

redundancy during the transcription process.

7.2.3. May et al.’s Communication Model

Drawing on Battail [30] and Eigen’s [21] work, May et al.’s [26] communication

view of the genetic system assumes (1) a nested genetic encoding process and

(2) that the replication process represents the error-introducing channel. As a

direct consequence of their first assumption, the genetic decoding process is separ-

ated into three phases: transcription, translation initiation, and translation elongation

plus termination. Figure 7.4 depicts this view of information transmission in genetic

systems. In the genetic communication system, the unreplicated DNA sequence is

the output of an error control genetic encoder that adds redundancy to inherently

FIGURE 7.3. Yockey’s DNA–mRNA–protein communication system.
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noisy genetic information. The noise in the source can be thought of as mutations

transferred from parent to offspring. Defining the genetic encoder in May et al.’s

model may require addressing questions similar in scope to those surrounding the

genetic code’s origins. As Yockey [20] states in reference to this issue, “the

reason for the difficulty in speculating on the origin of the genetic code is that

there seems to be no place to begin. There is no trace in physics or chemistry of

the control of chemical reactions by a sequence of any sort or of a code between

sequences.” Additional insight into potential biological functions corresponding

to the encoder may emerge as researchers continue to investigate the origin and

evolution of the genetic code [36, 37].

Unlike the May et al. model, neither Gatlin’s nor Yockey’s model explicitly

addresses replication. Both frameworks represent the noise-introducing channel

as the genetic mechanism responsible for protein synthesis, namely transcription

and translation in Gatlin’s framework and the mRNA itself in Yockey’s framework.

In contrast, May et al. define the genetic channel as the DNA replication process

during which errors are introduced into the nucleotide sequence. Similar to the

Yockey model, May et al. parallel the ribosome to an error control decoder.

Given the similarities between the translation and transcription mechanisms, tran-

scription is represented as a decoding step and the RNA polymerase is viewed as

an error control decoder. While Gatlin’s work addressed the potential function of

non-protein-coding regions, it does not specifically highlight these regions in the

communication model of genetics. May et al.’s model distinguishes between

the error control decoding of protein-coding regions and the decoding of

FIGURE 7.4. May et al.’s coding-theoretic view of the central dogma of genetics.
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non-protein-coding, regulatory regions that control translation initiation, which is

typically the rate-limiting aspect of the protein production process [32, 38, 39].

Given the importance of regulating protein synthesis and the redundancy present

in regulatory regions such as the ribosome binding site (RBS), it seems plausible

that regulatory information is error control encoded [40].

7.3. REVERSE ENGINEERING THE GENETIC ERROR
CONTROL SYSTEM

The information produced by genome projects is key to understanding how an

organism functions from genetic- to cellular-level behavior. Identifying gene

locations and regulatory regions is a fundamental step in this process. It is not feas-

ible to experimentally annotate all of an organism’s regulatory regions—hence the

need for computational tools for accurately deciphering the information contained in

genetic sequences. The majority of gene annotation techniques rely on patterns and

statistical characteristics of the genome for model construction. While these

methods yield viable results, they do not offer insight into the underlying mechanics

of the genetic process.

Coding theory algorithms can serve as powerful pattern recognizers for annotat-

ing biologically active sites of a genome and also as pattern generators that can

mathematically represent the genetic process and macromolecules that operate on

a genomic sequence of interest. The mathematical representation of a convolutional

code is also the mathematical model for the digital system that produces that signal

(or pattern) and all other signals associated with that system.

Development of coding-theoretic frameworks for molecular biology is an

ongoing endeavor. Although the existence of redundancy in genetic sequences is

accepted and the possibility of that redundancy for error correction and control

is being explored and exploited, mathematically determining the encoding

algorithm, particularly for regulatory regions, remains a major research challenge.

Devising a method for reconstructing the error control code of a received, noisy

signal is a challenge that if met will provide a way to construct mathematical

models of molecular machines (macromolecules such as ribosome, RNA polymer-

ase, and initiation factors) involved in the regulation of genetic processes. Reverse

engineering the genetic ECC system requires thorough investigation of several

issues, including:

1. Is there plausible and potentially quantitative evidence that ECC exists in

genomic sequences.

2. What are the ECC characteristics of the genetic system (characteristics that

parallel traditional communication systems such as channel capacity and

coding rate)?

3. Assuming the existence of some type of genetic ECC, how can we

computationally invert the system using potentially noisy sequence

information?
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7.3.1. Making a Case for Existence of Error Control in
Genomic Sequence

Several researchers have moved beyond the qualitative models of biological com-

munication and attempted to determine the existence of error control codes for

genomic sequences [20, 31, 34, 41, 42]. Liebovitch et al. [41] and Rosen and

Moore [34] both developed techniques to determine the existence of an error

control code for genomic sequences. Neither found evidence of error control

codes for the sequences tested. Given the computational limitations of the study,

Liebovitch et al. suggest that a more comprehensive examination would be required.

Both methods investigate a subset of linear block codes and do not consider convo-

lutional coding properties or account for the inherent noise in genomic sequences.

Extending beyond specific genomic regions and sequences, MacDonaill develops

an ECC model for nucleic acid sequences in general [42]. He has proposed a

four-bit, binary, parity-check error control code for genetic sequences based on

chemical properties of the nucleotide bases.

Battail presents a more qualitative argument supporting the potential existence of

a genetic error control system [30]. He argues, similar to Eigen [21], that for

Dawkins’s model of evolution to be tractable, error correction or ECC must be

present in the genetic replication process. According to Battail, proofreading, a

result of the error avoidance mechanism suggested by genome replication literature,

does not correct errors present in the original genetic message. Only a genetic error

correction mechanism can guarantee reliable message regeneration in the presence

of errors or mutations due to thermal noise, radioactivity, and cosmic rays [30].

Battail further asserts that the need for error protection becomes obvious

when one considers that the number of errors in a k-symbol message that has

been replicated r times is comparable to the number of errors in an unreplicated

(r � k)-symbol message. For a given error rate, the number of times an organism

undergoes replication approaches an infinite number. Hence for a message to

remain reliable within an organism’s life cycle (not to mention evolutionary infor-

mation transmission which occurs over thousands of years), the message must have

strong error protection. Battail points out that if there exists a minimum Hamming

distance d between codewords, then almost errorless communication is possible if

and only if the following holds:

p� n , 1
2
d (7:19)

where p is the error probability for the channel and n is the length of the codewords.

If we take n to be the length of the gene or a portion of the gene, minimum-distance

decoding may be used to produce a near errorless rule [30]. Eukaryotes’ tendency to

evolve toward increasing complexity may parallel the connection between increas-

ing word length and increasing reliability, which is stated in the fundamental

theorem of channel coding [30]. The fundamental theorem of channel coding

states that coding rates that are below the channel capacity result in arbitrarily

small probabilities of error (ln! 0) for sufficiently large blocks lengths n [43].
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Taking a unique approach to the question of error control codes in genomic

sequences, Schmidt and May [44] exploit graph-theoretic methods in their investi-

gation of ECC properties of Escherichia coli K-12 translation initiation sequences.

They discover that unlike binary random sequences, binary block codes form dis-

tinctive cluster graphs (see Figs. 7.5 and 7.6). Applying this graph-based method

to a subset of E. coli K-12 initiation sites, they observe that while noninitiation

sites fail to cluster into distinct groups (Fig. 7.7), there is evidence of cluster

formation in valid initiation sequences (Fig. 7.8), suggesting the possibility of

ECC-type characteristics for E. coli translation initiation sites.

7.3.2. System Characteristics

The capacity of the communication channel is a key system characteristic that

governs the type of ECC used in transmission. The genetic communication

system depicted in Figure 7.4 represents the error-introducing transmission

FIGURE 7.5. Binary (7, 4) block code.
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channel as the replication process. Shannon’s channel coding theorem asserts that

there exists a channel code with rate R ¼ k=n such that the probability of decoding

error becomes arbitrarily small as n increases [4, 23, 43]. The capacity of a trans-

mission channel (the maximum data transmission rate) is dependent on the error

rate of the channel pi, j, the probability of the channel transforming symbol i into

symbol j for i = j. In order to determine appropriate ECC parameters for genetic

regulatory sequences, we must characterize the replication channel and the error

or mutation rates associated with replication. Mutation-derived capacity values

can suggest R and from that plausible n and k values for genetic systems.

Mutations are replication errors that remain or are missed by genetic proof-

reading mechanisms. Drake et al. [45–47] have performed extensive research

and analysis of mutation rates in prokaryotic and eukaryotic organisms. Based

on mutagenesis studies, they note that mutation rate in RNA viruses range from

1 per genome per replication for lytic viruses to 0.1 per genome per replication

for retroviruses and retrotransposons. The DNA microbes, more complex and

FIGURE 7.6. Binary random sequence.
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typically larger than RNA viruses, have mutation rates of 1
300

per genome per replica-

tion. Moving higher still to the larger, more complex eukaryotic organism, higher

eukaryotes have mutation rates ranging from 0.1 to 100 per genome per sexual

generation and a mutation rate of 1
300

per cell division per effective genome. The

effective genome is the portion of the genome where mutations are most lethal

(i.e., genes or exons) [45]. In general, while RNA viruses have significantly higher

mutation or channel error rates, DNA microbes have error rates relatively similar

to the mutation rate in the effective genome of higher eukaryotes. The question

arises whether and how organism complexity (which we can loosely approximate

using genome size) is related to replication channel fidelity. Drake investigates this

for DNA microbes by analyzing the log-log plot of base mutation rates as a function

of genome size [46]. These plots are reproduced using the base mutation and genome

size data fromDrake et al. [45] for both the DNAmicrobes and the higher eukaryotes.

FIGURE 7.7. Graphical representation of ECC properties of E. coli K-12 noninitiating

intergenic regions.
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Figures 7.9 and 7.10 show the log-log plots of genome size as a function of base

mutation for DNA microbes and eukaryotic organisms, respectively. The log-log

plots for the DNA microbes are equivalent to Drake et al.’s results, as would be

expected. The relationship between the DNA microbes’ mutation rates and genome

size exhibits power law behavior. Higher eukaryotes do not appear to exhibit

similar behavior, although the eukaryotic data set contained a relativly

small number of organisms. As concluded by Drake et al. and illustrated

in Figure 7.9, there is an inverse relationship between genome size G and an

organism’s base mutation rate mb. This inverse relationship is evident for the

higher eukaryotes as well.

FIGURE 7.8. Graphical representation of ECC properties of E. coli K-12 translation

initiation sites, position 210 to 23.
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FIGURE 7.9. Comparison of microbial genome mutation rate to genome size.

FIGURE 7.10. Comparison of eukaryotic genome mutation rate to genome size.
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The genetic channel capacity is calculated using mutation rates reported in

Drake et al. [45]. Assuming a discrete memoryless channel (DMC), the capacity

of the channel, C, is the maximum reduction in uncertainty of the input X given

knowledge of Y [43]:

C ¼ sup
X

I(X, Y) (7:20)

where

I(X,Y) ¼ H(X)� H(X j Y) ¼ H(Y)� H(Y jX) (7:21)

The Shannon entropy H(X) and H(Y jX) are defined as

H(X) ¼ �
X
i

p(xi) log2 p(xi) (7:22)

H(Y jX) ¼ �
X
k

X
j

p(xk, y j) log2 p( y j j xk) (7:23)

The probability p( yj j xk) is the channel error probability. If p( y j x) is specified by the

mutation error rate mb, then p( yj j xk) ¼ mb 8y = x and p( yj j xk) ¼ 1� mb 8y ¼ x

(where mb is the mutation rate per base per replication). The channel transition

matrix (Table 7.2) assumes all base mutations are equal; hence a transition

mutation [purine to purine, adenine(A) ! guanine(G), and pyrimidine to pyrim-

idine, cytosine(C) ! thymine(T)] and a transversion mutation [purine to pyrimi-

dine, (A, G)! (C, T), and pyrimidine to purine, (C, T)! (A, G)] are equally

probable. Additional capacity calculations are being performed using transition

probability matrices where the probability of a transition mutation is greater than

the probability of a transversion mutation, which is consistent with the biological

evidence. Figures 7.11 and 7.12 show the replication channel capacity of the organ-

ism as a function of the log of the organism’s genome size for DNA microbes and

higher eukaryotes, respectively, using mb values from Drake et al. [45] and channel

transition probabilities from Table 7.2. The prokaryotic organisms have larger

channel capacity than the higher eukaryotes. This suggests that for DNA microbes

the coding rate R is closer to (n� 1)=n, leaving few bases for ECC. In contrast, the

channel capacity values for higher eukaryotes implies a distinctly smaller value for

R. This implies that the eukaryotic genome has more bases available for ECC.

TABLE 7.2 Channel Transition Probability Assuming

p(transition mutation) 5 p(transversion mutation)

A G C T

A 1� mb
1
3
mb

1
3
mb

1
3
mb

G 1
3
mb 1� mb

1
3
mb

1
3
mb

C 1
3
mb

1
3
mb 1� mb

1
3
mb

T 1
3
mb

1
3
mb

1
3
mb 1� mb

7.3. REVERSE ENGINEERING THE GENETIC ERROR CONTROL SYSTEM 191



FIGURE 7.12. Capacity of eukaryotic replication channels.

FIGURE 7.11. Capacity of prokaryotic replication channels.
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7.3.3. Inverse Error Control Coding Models

If the encoding algorithm for a received error-control-encoded sequence is unknown

or part of the data are missing, designing a viable decoder for the received trans-

mission is a significant but rarely addressed computational challenge. Communi-

cation engineers forward engineer ECC systems and do not encounter this situation

often. In order to determine the ECC properties of genetic systems and the algorithm

used by living systems to transmit vital genetic information, researchers are develop-

ing quantitative approaches to reverse engineering error-control-encoded data

streams and genetic sequences.

7.3.3.1. Inverse ECC Model I: Ribosome as Block Decoder May et al.

[48, 49] modeled mRNA as a noisy, systematic zero-parity encoded signal and

the ribosome as an (n, k) minimum-distance block decoder (where the 16S riboso-

mal RNA is used as a template for generating all valid n-length codewords). The

model was able to distinguish between translated sequence groups and nontranslated

sequence groups from E. coli K-12 genome. When applied to mRNA leader regions

of other prokaryotic organisms (Salmonella typhimurium LT2, Bacillus subtilis, and

Staphylococcus aureus Mu50), similar results were observed.

The original block code model was developed based on the last 13 bases of the

30 end of 16S ribosomal RNA [32] and consisted of a set of 33 and 26 codewords

for the (5,2) and (8,2) codes, respectively. The codewords were constructed

using heuristics based on RNA/DNA base-pairing principles and common

features of bacterial ribosomal binding sites (such as the existence and location of

the Shine–Dalgarno sequence). Although the original model can be used to dis-

tinguish between valid and invalid leader sequences, a deterministic representation

would provide a quantitative model of the translation initiation system that can be

used to algorithmically correct errors in the system and generate plausible leader

sequences.

Toward this end, we revisit the algorithmic structure of linear block codes,

previously described in Section 7.1.2. Each codeword v in an (n, k) linear block

code’s codebook can be produced using a generator matrix G, which encodes the

information vector u in a deterministic manner [25]. Recall the relationship

between u, v, and G can be expressed as

v ¼ uG (7:24)

whereG is k � n, u is 1 � k, and v is 1 � n. The parity-check matrixH is a (n� k)�

n matrix and relates to the generators as follows [23, 25]:

GHT ¼ 0 (7:25)

where HT is the transpose of the parity-check matrix. The parity-check matrix

is used to check for transmission errors in the received sequence, r ¼ vþ e as pre-

viously discussed. In the absence of errors, e ¼ 0, the syndrome vector s will be an
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all-zero vector:

s ¼ rHT ¼ (vþ e)HT ¼ vHT ¼ 0 (7:26)

If Cn,k represents the codebook (i.e., contains all codewords v) for a linear (n,k) block

code, then based on Eq. (7.26) we can state the following:

Cn,kH
T ¼ Z (7:27)

where Z is the all-zero matrix. Therefore, given a set of codewords produced using

a linear block code, it is feasible to determine the dual code H and ultimately the

corresponding generator G for the codebook. This is the rationale used in construct-

ing a generator for the systematic block code model for translation initiation in

prokaryotes.

For systematic (n, k) codes, the model assumed by May et al. [49],G andH are of

the form

G ¼ ½Ik; P� (7:28)

H ¼ ½PT; In�k� (7:29)

where P is a k � (n� k) matrix and I represents the k � k [or (n� k)� (n� k)]

identity matrix [23, 25]. Assuming a systematic code reduces the number of

unknowns in the H matrix by (n� k)2, the systematic form also simplifies

conversion from H back to G.

For a given codebook set Cn,k corresponds to a linear, systematic block code. We

can find the optimal solution forH by interrogating all possible solutions for P (except

P ¼ Z). The optimal solution produces anH that optimizes a cost function of the form

Fitness(H jP) ¼ RS

jzeros in Sj

jSj
þ RP

jnonzeros in Pj

jPj
(7:30)

where S represents the syndrome matrix (each row in S corresponds to the syndrome

of a codeword in Cn,k) and RS þ RP ¼ 1:0.
The methodology was tested using the (7,4) Hamming code’s codebook,

CHamming(7,4) [25]. The algorithm successfully recovered the generator matrix for

the (7,4) Hamming code. The verification test produces a code with a fitness

value of 1; this is expected since CHamming(7,4) is a complete, error-free representation

of the code.

Given the positive results of the original block code model [49], the codebook,

COriginal(5,2) , for the systematic parity check code is used as an initial estimate

of the set of valid codewords for the translation initiation system. Generators

were also constructed using two additional codebook sets: COrigDmin(5,2) and

C16S(5,2) . Here, COrigDmin(5,2) is a reduced subset of COriginal(5,2) , constructed by selecting

a minimum number of codewords from COriginal(5,2) such that each two-base
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information sequence is represented and the minimum-distance value for the code-

book set is maximized. The codewords in the C16S(5,2) codebook are the five-base

subsets formed from contiguous bases of the 16S rRNA, known to interact with

the mRNA leader region during initiation.

Equation (7.26) is used to evaluate the performance of the optimal generator pro-

duced. For each optimal generator matrix G, the corresponding parity-check matrix

H is used to calculate the syndrome values for mRNA subsequences that are valid

leaders or invalid leaders (intergenic regions). Figure 7.13 shows the results for

C16S(5,2) , where the horizontal axis is position relative to the first base of the initiation

codon and the vertical axis is the average syndrome value (the syndrome is either 0

for actual zero values or 1 for all nonzero syndrome values).

The sets GOriginal(5,2) and GOrigDmin(5,2) did not produce syndrome patterns with

regions of distinction resembling the minimum-distance plots produced in

May et al.’s original block code model [49]. But, the generator derived from strict

subsets of the 16S rRNA (Fig. 7.13) more closely resembles the minimum-distance

results of the May et al. model. The (212 :26) region exhibits the greatest

difference between the valid and invalid sequence groups. As expected, in this

region the valid leader sequences have the relatively lower average syndrome

value. The G16S(5,2) model also produces strong synchronization patterns for the

valid sequence group. The synchronization patterns appear to exhibit a frequency

of 3, suggesting that the pattern can be useful for reading frame identification.

FIGURE 7.13. Average syndrome value for generator G16S(5,2)
.
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The linear block code approach provides a framework for constructing inverse

quantitative models for genetic regulatory processes. Optimization and algebraic

approaches to solving Eq. (7.27) are being actively explored.

7.3.3.2. Inverse ECC Model II: Functional Inversion In addition to

sequence-based models and analysis methods, translation initiation models can be

constructed by analyzing possible binding patterns between mRNA leader

sequences and the exposed portion of the 16S rRNA. Although binding is related

to higher level interactions influenced by mRNA structure, rRNA structure, and

ribosomal and protein interactions, it is hypothesized that translation initiation

can be viewed from a binary perspective. Studies of prokaryotic translation initiation

sites reveal that ribosomal binding sites appear to evolve to functional requirements

rather than to genetic sequences that produce the strongest binding site [17]. Several

factors influence translation of mRNA sequences, including initiation codon,

presence and location of the Shine–Dalgarno sequence, spacing between the

initiation codon, and the Shine–Dalgarno domain, the second codon following

the initiator codon, and possibly other nucleotides in the 220 to þ13 region

of the mRNA leader region [38]. These factors influence how the small subunit of

the ribosome interacts with and binds to the mRNA leader region such that

conditions are favorable for successful translation initiation. The binding pattern

formed between the 16S rRNA and the mRNA leader region directly affects

translation initiation.

Functional Definition of mRNA Leader and Ribosomal Interaction A leader

sequence with perfect complementary base pairing to the 16S rRNA may not be

the most viable sequence from an evolutionary viewpoint. However, it is plausible

to assume that increased affinity to the 16S rRNA increases initiation potential. Not

only must a leader sequence contain nucleotides that bind to the 16S, the binding

must occur within a reasonable proximity to the initiation codon [38]. Since

translation initiation is influenced by positional binding, the biological process of

translation initiation can be mapped to a functional, binary domain. Sequence infor-

mation and the last 13 bases of the 16S rRNA,

30 A U U C C U C C A C U A G . . . 50 (7:31)

are used to map mRNA leader regions to their positional binding representations.

After mapping the mRNA sequence into binary binding vectors, each vector is

categorized based on their (M1, M2, M3) binding pattern values. Given a 13-base

binary binding pattern, the valueM1 is the greatest number of consecutive base pair-

ings (1’s), M2 is the second greatest, and M3 is the third greatest. The expectation

is that binding patterns with large M1 values, within an acceptable distance from

the initiation codon, will favor translation initiation. Sequences with smaller M1

values would be expected to have significant M2 and M3 values to increase the

probability of ribosome binding.
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Each positional binary binding pattern is classified based on their (M1, M2, M3)

value. Different binary binding patterns can belong to the same (M1, M2, M3)

class. Each (M1, M2, M3) class was assigned a number between 1 (M1 ¼ 13,

M2 ¼ 0, M3 ¼ 0) and 91 (M1 ¼ 0, M2 ¼ 0, M3 ¼ 0). For example, given the

following two binary binding vectors:

BinaryBindingVecA ¼ 1 1 1 0 0 0 1 0 0 0 0 0 0 (7:32)

BinaryBindingVecB ¼ 0 1 0 0 0 0 0 0 0 1 1 1 0 (7:33)

Both vectors would be classified as (M1 ¼ 3, M2 ¼ 1, M3 ¼ 0), or with the classi-

fication number 80. The probability of each classification number occurring (based

on all possible 13-base binding vectors) is calculated and classification thresholds

were tabulated.

To test the assumption that valid initiation regions fall within a given

(M1, M2, M3) pattern threshold that differs from the average for the nonleader

and random sequence groups, binding analysis is performed on 531 E. coli leader

sequences, 1000 E. coli intergenic, nonleader sequences, and 1000 randomly gener-

ated sequences. The nonleader and random sequences all had AUG initiation sites in

the center of the candidate sequence. Each sequence contained 60 nucleotide bases.

The mRNA leader sequences were mapped to their corresponding binary binding

vectors and classified based on their (M1, M2, M3) values as previously described.

The positional (M1, M2, M3) vectors were evaluated for each sequence group.

Figure 7.14 shows the percent of sequences with (M1 ¼ 4, M2 ¼ 0, M3 ¼ 0) or

FIGURE 7.14. Percent of sequences with binding pattern of 4,0,0 and above.
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stronger binding pattern. The horizontal axis represents position and the vertical axis

represents the percent of sequences in each sequence group with a binding pattern of

(M1 ¼ 4, M2 ¼ 0, M3 ¼ 0) or greater. From Figure 7.14 we note the following:

. The region between 218 and 29 has the greatest distinction between the

translated sequence group and the nontranslated and random sequence

groups. This is consistent with regions of distinction found in previous

work [50].

. Inside the coding region for translated sequences (position 0 and greater), there

is a clear synchronization pattern which repeats every three bases. This pattern

is not as consistent in the nontranslated or random sequence groups.

Using the same sequence information, the best binding pattern was selected for

each sequence in each group. The strongest binding pattern (per sequence) was

recorded for positions 218 to 212. Table 7.3 shows the distribution of strongest

binding patterns in each of the (M1, M2, M3) binding classification groups. As the

results in Table 7.3 indicate, a binding pattern threshold of 71 [i.e., (M1 ¼ 4,

M2 ¼ 0, M3 ¼ 0) or stronger] captures a large amount of translated sequences

while excluding a significant number of nontranslated and random sequences.

Thus far, the functional binding statistics have characterized the binding behavior

over specific position ranges. The key to defining the binary binding model (and ulti-

mately the convolutional coding model) for translation initiation lies in the ability to

capture positional binding information. Ribosomal recognition of a translation

initiation site depends on more than one position in the leader sequence. Positional

binding information of translated and nontranslated sequences was compared using

the joint probability ratio:

p ¼
P(bind, position j translated)

P(bind, position j nontranslated)
(7:34)

The probability pwas calculated for positions218 to23 and the results (by binding

pattern classification groups) are shown in Figure 7.15, where the horizontal axis is

position relative to the first base of the initiation codon and the vertical axis is

TABLE 7.3 Distribution of Strongest Binding Patterns for Translated,

Nontranslated, and Random Sequence Groups

(M1,M2,M3) Translated (%) Nontranslated (%) Random (%)

13,0,0 to 6,0,0 14.12 1.50 1.50

5,x,x 22.41 3.80 3.67

4,x,x 30.51 14.00 14.50

3,x,x 27.68 39.20 40.67

2,x,x to 0,0,0 5.27 41.50 39.67
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the ratio defined in Eq. (7.34). Discontinuities are a result of dividing by zero. Ratios

greater than 1 indicate positions where translated sequence binding dominates non-

translated. Ratios less than 1 indicate the opposite occurrence. Table 7.4 summarizes

the key positions for each binding classification group in Figure 7.15 that achieved

ratios greater than 1. Positional ratio values are used to determine weighting coeffi-

cients for horizontal motif-based convolutional codes for binary binding vectors

(also used to develop horizontal motif-based base 5 convolution codes in related

work [26]).

From Binding Vectors to Codewords and Inverse ECC Systems Each

binding vector pattern can be considered a codeword for that position. The question

becomes what coding system produced the binding vector codewords and whether

FIGURE 7.15. Positional binding ratio of translated sequence group to nontranslated

sequence group.

TABLE 7.4 Location of Largest Translated to

Nontranslated Positional Binding Ratio Value

(M1, M2, M3) Position

13,0,0 to 6,0,0 214

5,x,x 214

4,x,x 217

3,x,x Ratio ,1

2,x,x to 0,0,0 Ratio ,1
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the coding system follows a horizontal encoder/decoder or a vertical coding

scheme. The 13-bit binding patterns present in translated sequences are viewed as

codewords generated by a candidate convolutional encoder. We developed a

genetic algorithm (GA) and used it to construct convolutional code models that

best describe the binary codewords (i.e., the functional aspects of the translation

initiation process).

Similar to previous convolution code construction methods, we use GAs to

search for the optimal code (thereby inverting the ECC system) based on a fitness

criterion [51]. An optimal code is defined as a code that recognizes the binary

binding patterns which describe the interaction between the ribosome and the

mRNA. The effectiveness of each candidate code model is evaluated using the n�

k decoding gmasks constructed from the candidate code (see [27, 29, 52] for a

description of binary table-based coding and gmask construction). The GAs

search space included all possible (n, k,m) binary convolutional codes. The popu-

lation, fitness evaluation method, and genetic operators are defined based on the fol-

lowing objective: Locate an (n ¼ 3, k ¼ 1, m ¼ 4) binary convolutional code that

has the greatest probability of producing the binary binding vector for each E. coli

leader sequence in the training set. The fitness of each individual in the population (a

set of potential solutions) is based on the syndrome values produced when the code’s

gmasks are applied to the mRNA binary binding vector sequence. A syndrome value

of zero indicates that no errors within the code’s error detection capability occurred.

Random selection and target sampling rates are used to select highly fit individuals

for reproduction. New populations are created using parameterized uniform cross-

over. Mutation is used to preserve population diversity and elitism ensures that

the most fit solution is not discarded. The GA searches for the optimal horizontal

equal weight (equal error protection) and motif-based, unequal error protection

(UEP) codes for each sequence. To construct vertical-code models, the GA searches

for the optimal convolutional code in each position of the leader regions’ binding

vectors for the entire data set.

Messenger RNA leader sequences from E. coli K-12 strain MG1655 (down-

loaded from the National Institutes of Health site ncbi.nlm.nih.gov and parsed by

Rosnick [53]) are used as training sequences for constructing the best candidate

code model. The syndrome distance vector for each code model is calculated and

indicates how well the associated decoder recognizes the subsequence at hand. If

the GA found the perfect code, the convolutional coding system that produced the

exact sequence, then the syndrome distance vector would be the all-zero vector

and the fitness value would be 1.

Figure 7.16 shows the average syndrome distance value for the optimal codes

discovered using the E. coli model set. The horizontal axis is position relative to

the first base in the initiation codon and the vertical axis is the average syndrome

distance value. The resulting ECC binary models performed comparable to one

another. The motif-based method captured the functional behavior of the ribosome

binding site better than the other two models. Unlike the base 5 models [26]

where all-zero parity sequences (i.e., binary binding vectors) do not occur, the

binary code models are affected by all-zero binding patterns. The effects of the
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all-zero parity can be minimized by using motif-based fitness measures over regions

in the mRNA with greater binding affinity to the exposed portions of the 16S rRNA.

Use of fitness penalties for all-zero parity sequences may improve the models. The

resulting gmasks were affected, as in the base 5 case, by the table-based gmask con-

struction method. Investigating other decoding methods and increasing the memory

length of the code should improve the resulting models.

The gmask coefficients were analyzed to determine which binding regions and to

what degree binding relationships between the mRNA leader sequence training set

and the exposed portion of the 16S rRNA are captured by the code models.

Figure 7.17 shows the average gmask values for the code models. The horizontal

axis indicates bit position in the gmask vector. The vertical axis is the average

value of the gmask coefficients over all codes in the model set.

For each 12-bit binary binding subpattern, the 9-bit gmask shifts twice. Each shift

corresponds to binding with a different region of the last 13 bases of the 16S rRNA:

Shift1 ¼ ( . . . A U U C C U C C A . . . )

Shift2 ¼ ( . . . C C U C C A C U A . . . )

For the 9-bit gmask, coefficient values of 1 indicate a position on shift sequence 1 or

2 with which the mRNA leader must form a hydrogen bond. In Figure 7.17, position

7 on both gmasks and, to a slightly lesser degree, position 4 are the results of the

gmask construction method used in table-based codes. Figure 7.17 indicates that

the gmasks for vertical codes contain a relatively large number of zeros in many

FIGURE 7.16. Average syndrome distance from all-zero syndrome for binary table-based

convolutional code models for translation initiation.
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positions. Large number of zeros in the gmask of the vertical-code model probably

inflated the syndrome distance performance results of the vertical-code model.

Although the equal-weight horizontal code’s gmasks contained fewer zeros

than the vertical code, its gmasks still contained more zeros than the motif-based

horizontal code’s gmasks. For gmask 1, positions 1 to 3 had relatively high

average coefficient values for the motif-based codes. This corresponds to the first

three codons in shift 1 or 2: (A U U) or (C C U), codons complementary to

regions of the Shine–Dalgarno sequence. The last two positions of gmask 2

(motif-based model) also indicated high binding, corresponding to binding with

the last two bases in shift 1 or 2: (C A) or (U A). The high binding areas for

gmask 2 of the motif-based horizontal-code model are positions 2 and 3 and pos-

itions 6 and 7. These positions correspond to (U U) and (U C) or (C U) and (A C).

Functional code models for protein translation initiation aid in understanding the

system and can help define the binding behavior that is necessary for translation

initiation. The accuracy of the model can be increased by incorporation of

more specific binding information such as the number of hydrogen bonds formed

per binding event. Inverse functional models can lead to improvements in the

sequence-based coding models and aid in the development of algorithms for

designing and improving the efficiency of transgenic leader sequences.

FIGURE 7.17. Average gmask values for binary table-based convolutional code models for

translation initiation.
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7.4. APPLICATIONS OF BIOLOGICAL CODING THEORY

As more researchers explore the ECC properties of genetic sequences and apply

these methods to computational biology and molecular computing problems, the

information- and coding-theoretic properties of genetic systems can be further

understood and potentially exploited for bioengineering applications.

7.4.1. Coding Theory and Molecular Biology

Coding-theoretic methods have been used to analyze genetic sequences for various

classification purposes. Arques and Michel statistically analyzed the results of

12,288 autocorrelation functions of protein-coding sequences [54]. Based on the

results of the autocorrelation analysis, they identified three sets of circular codes

X0, X1, X2 that can be used to distinguish the three possible reading frames in a

protein-coding sequence [54]. A set of codons X is a circular code, or a code

without commas, if the code is able to be read in only one frame without a desig-

nated initiation signal. Crick et al. originally introduced the concept of codes

without commas in the alphabet A, C, G, T. It was later successfully addressed

and extracted over the alphabet R, Y, N [54]. Arques and Michel define a circular

code over the A, C, G, T alphabet. They were able to use the three sets of circular

codes to retrieve the correct reading frame for a given protein sequence in a 13-base

window. They have used their coding-based model to analyze Kozak’s scanning

mechanism for eukaryotic translation initiation and other models of translation [54].

Stambuk also explored circular coding properties of nucleic acid sequences [55, 56].

His approachwas based on the combinatorial necklacemodel, which asks: “Howmany

different necklaces of length m can be made from a bead of q given colors” [55, 57].

Using q ¼ ½A, C, G, T� and q ¼ ½R ¼ purine, Y ¼ pyrimidine, N ¼ R or Y �,

Stambuk applied the necklace model to genetic sequence analysis [55]. Although

Stambuk did not use ECC in his analysis, his work demonstrated the use of coding

theory arithmetic in the analysis of the genetic code.

Researchers have applied source coding to genetic sequences [16, 58]. In the

engineering communication system, source encoding, or data compression, occurs

prior to channel coding (ECC). Source encoding removes the redundancy in the

information stream to reduce the amount of symbols transmitted over the channel.

The compression algorithm assigns the most frequent patterns shorter descriptions

and the most infrequent patterns are assigned longer descriptions [43]. Loewenstern

et al. apply source-coding methods to genomic sequences for the purpose of motif

identification [16, 59, 60]. Powell et al. implemented compression schemes for

finding biologically interesting sites in genomic sequences [58]. Delgrange et al.

used data compression methods to locate approximate tandem repeat regions

within DNA sequences [61].

7.4.2. Coding Theory and DNA Computing

The field of DNA computing was launched when Adleman solved an instance of the

Hamiltonian path problem using DNA strands to encode the problem and biological
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processes (annealing, ligation, etc.) to compute a solution [62]. Researchers have pro-

posed several applications using the DNA computing framework including algor-

ithms for breaking the data encryption standard, DNA encryption methods, and

techniques to investigate nature’s cellular computing processes [62–65].

In DNA computing, the information storage capability of DNA is combined with

laboratory techniques that manipulate the DNA to perform computations [65]. A

major challenge in DNA computing is the problem of encoding algorithms into the

DNA medium. Kari and colleagues apply circular coding methods to the forward-

encoding problem for DNA computing applications [65], the forward problem

being how can one encode an algorithm using DNA such that one avoids undesirable

folding. Kari et al. use coding theory to define heuristics for constructing codewords

for DNA computing applications. The codewords cannot form undesirable bonds with

itself or other codewords used or produced during the computational process. Error

control and correction in DNA computing are also being investigated [66, 67].

7.4.3. Error Control Coding Methods for Genomic Sequence and
System Analysis

Application of coding theory to genetic data dates back to the late 1950s [68, 69]

with the deciphering of the genetic code. Since then, ECC methods have been

applied to genetic sequence analysis and classification, biological chip design, as

well as analysis of genetic regulatory processes. Sengupta and Tompa approach

the problem of oligo array design from a combinatorial design framework and use

ECC methods to increase the fidelity of oligo array construction [70]. Reif and

LaBean propose ECC-based methods for the development of error correction

strands for repairing errors in DNA chips [71].

Based on the discriminating behavior of their ECC model, May et al. constructed

four Bayesian classifiers to distinguish between valid and invalid ribosome binding

sites [49, 72]. Their classification system uses an 11-base classification window,

which is a relatively small decision window compared to other classification

systems [73–75]. Similar to the biological model, the error-control-based classifiers

use the redundancy, or extra information, present in the mRNA leader sequence to

locate valid translation initiation sites. May et al.’s optimal classification system has

a correct classification rate of 73.81% with true positive and true negative rates of

67.90% and 79.72%, respectively. Their results suggest that it is highly possible

to implement an ECC-based classification system for detecting and possibly design-

ing prokaryotic translation initiation sites. Elucidating how genetic systems incor-

porate and use redundancy and understanding the functional significance of

genetic errors from a coding theory perspective will help provide insight into the

fundamental rules which govern genetic regulatory systems.
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&CHAPTER 8

Complex Life Science
Multidatabase Queries

ZINA BEN MILED, NIANHUA LI, YUE HE, MALIKA MAHOUI,
and OMRAN BUKHRES

8.1. INTRODUCTION

The confederation of widely distributed life science databases is a critical scientific

problem which lies at the foundation of the nascent field of proteomics and of

biological and biomedical phenotype analysis. Databases are the intermediaries

between experimental observation and our ability to synthesize larger scale

understanding of biological systems and the manifold interactions in which they

participate and to which they respond. Unfortunately, the relevant databases have

been organized around disciplinary interests, subject areas, or institutional

convenience.

Collins et al. state, “The central information technology problems of the next

decade will be the creation of a means through which to query a heterogeneous

set of life science databases, generally via the Internet” [1, p. 688]. In order to

query multiple life science databases, support for the interoperability among these

databases should be provided. Facilitating the interoperability of heterogeneous,

autonomous, geographically distributed, and/or semistructured Web databases

(e.g., life science databases) is currently an emerging and active area of research

[2–5]. The challenges arise from the large volume of the life science data, the

rate at which these data are increasing in size, and the heterogeneity and complexity

of the data format. There are also hundreds of life science databases which use

different nomenclatures, file formats, and data access interfaces.

There are three different approaches to addressing the issue of interoperability

among biological databases: data warehousing, link driven, and federated databases.

In data warehousing, remote databases are copied on a local server and a unique

interface is built to allow multidatabase queries to be issued using this single inter-

face. Data warehousing is based on a thorough understanding of the data schema of
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each individual database included in the data warehouse. Specification of the data

schema is not often published for life science databases. Furthermore, as data con-

tinue to grow, data warehousing becomes impractical for biological studies that

extend beyond a few databases. Several existing projects perform data integration

by use of data warehousing such as Genomics Unified Schema (GUS) [6].

The link-driven approach is based on providing static links between data or

records in different databases. This approach often suffers from the fact that many

cross references between various records in the databases are unidirectional.

Additionally, the queries that can be issued by the users are limited to the scope pre-

defined by the static links. The link-driven approach is used by several life science

systems such as Sequence Retrival System (SRS) [7] and the National Center for

Biotechnology Information (NCBI)/Entrez [8], which, for example, links sequence

data from NCBI [9] to structure data from the Protein Data Bank (PDB) [10]. One of

the major advantages of this approach is its ease of implementation.

Database federation has been studied in the context of relational and homo-

geneous databases [11] (e.g., business databases). More recently, TAMBIS [12],

BioKleisli [13], and DiscoveryLink [14] have extended this approach to the life

sciences. Federated databases provide a unified portal for the data in all the data-

bases participating in the integration while preserving the local autonomy of these

databases. This approach is based on the semantic understanding of the relationships

between different objects in different databases. This feature is particularly import-

ant in the life sciences because of the complexity of the domain. Furthermore, there

is no limit to the scope of the queries that can be issued against federated databases.

For each of the above-mentioned three approaches, a selected system that

represents one of the leading efforts in the field is described next. The selected

systems are GUS for data warehousing, SRS for link driven, and TAMBIS for

federated databases. There are several other systems that aim at providing the

users with a single-access interface to multiple biological databases. Some of

these systems are discussed in Section 8.4.

GUS uses a data-warehousing approach to support the interoperability of life

science databases. Sequences and their associated annotation are stored in GUS.

These data are obtained from several sequence databases such as SwissProt and

stored locally using a relational database model. The design of GUS addresses

one of the major issues associated with data warehousing, which is the automatic

update of the data warehouse. This process includes detecting when changes

occur in the databases and subsequently how to initiate the necessary updates

automatically in the data warehouse.

SRS links several biological data sources and answers queries through a single

front-end Web interface. The data sources are not transparent to the user in SRS.

The user must specify which data sources should be used in order to answer a

given query. This lack of transparency requires that the user be familiar with the

various data sources integrated by SRS and their content. Data sources in SRS are

semistructured flat files. Each of the data files is associated with a wrapper that

extracts information in the form of objects from the corresponding data source.

SRS also includes metadata that describe the various data sources.
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TAMBIS integrates a specific set of life science databases that consists of protein

and nucleic acid data sources. It is based on a global domain ontology, which

consists of more than 1800 biological concepts. These concepts are used to

express the multidatabase queries and to decompose these queries into subqueries

that can be mapped to specific data sources. Unlike SRS, the integrated databases

are transparent to the user.

TAMBIS uses the federated database approach to support the interoperability

among biological databases. As mentioned earlier, database federation benefits

from several enabling capabilities. However, these capabilities come at the expense

of a complex design. One of these complexities arises from answering multi-

database queries given the limited query capabilities of the individual databases

participating in the integration.

Consider, for example, the following query: What is the 3D structure of all

alcohol dehydrogenases that belong to the enzyme family EC 1.1.1.1 and is

located within the human chromosome region 4q21–4q23? This example query,

among others, motivated the design of BACIIS [15], the Biological and Chemical

Information Integration System being discussed in this chapter. BACIIS uses a fed-

erated database approach similar to TAMBIS. The above example query is difficult

because some of the integrated databases may not support enzyme family as an

acceptable keyword while others may not allow queries that use the logical AND

operation to combine the two keywords enzyme family and human chromosome

region. Additionally, some life science federated database systems such as Disco-

veryLink require that the user enter all the databases that may be needed to

answer a given multidatabase query. As will be discussed later in this chapter, the

execution plans of complex life science queries may include intermediary databases

that cannot directly accept the input or the output constraints of the user query.

These intermediary databases are used to translate the attributes of one database

to the attributes of another database. For example, SwissProt [16] can accept

Online Mendelian Inheritance in Man (OMIM) [17] numbers and generate PDB

IDs. Requiring that the user enters all the databases that may be involved in execut-

ing a query is not practical for life science databases since the user may not be fam-

iliar with the numerous biological databases (more than 400) that are available.

BACIIS uses an approach that allows the execution of this query and other

complex queries in a completely transparent manner while hiding the complexities

from the user and preserving the autonomy of each database participating in

the integration.

The aim of this chapter is to (1) introduce BACIIS and its functionality,

(2) present an efficient query execution method that can be used to execute

complex multidatabase queries while preserving the local autonomy of the geo-

graphically distributed life science Web databases and while hiding the complexity

of the query execution plan from the user, and (3) expose the reader to other

approaches for the integration of life science databases.

The general architecture of BACIIS is introduced in Section 8.2. The mapping

engine and the query planner are the main two components of BACIIS that are

involved in the execution of the multidatabase queries. These components are
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discussed in Section 8.3. Related work is summarized in Section 8.4. Future trends

are reviewed in Section 8.5.

8.2. ARCHITECTURE

Figure 8.1 shows the general three-tier architecture of BACIIS. This architecture

hides the heterogeneity of the various databases from the user through the use of

a unified user interface. In order for a user to accomplish the same results provided

by BACIIS, he or she would have to perform two tasks manually: (1) query the

individual Web databases manually and (2) combine the returned information. In

BACIIS, the wrappers (Fig. 8.1) act as intelligent proxy users in order to extract

information from the individual Web databases. They perform the first task

automatically on behalf of the user while the information integration layer

(Fig. 8.1) performs the second task also automatically.

The various components of the information integration layer are shown in

Figure 8.2. At the core of the information integration layer is a mediator. The

mediator transforms the data from its format in the source database to a common

format used for all the databases within the integration layer. The use of a mediator

in the information integration system is not unique to BACIIS. Mediators have been

used in various previous federated database systems [18–20]. The unique feature of

BACIIS is that it uses a knowledge base to guide multidatabase query formulation

and execution. In BACIIS, each remote database schema is mapped onto a domain

knowledge base. This domain knowledge base is independent from the data schema

of the remote databases. It will only change when the biological domain evolves

to include new discoveries and concepts.

FIGURE 8.1. BACIIS three-tier architecture.
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The BACIIS knowledge base consists of an ontology [21] and the data source

schema. The ontology is necessary for terminology consensus across the various

databases within a domain. Furthermore, it provides the domain knowledge used

for understanding concepts in the biological domain. Under the BACIIS knowledge

base, specific data source models are defined for each database participating in the

integration. These data source models describe the content of each database using

the objects and the relations defined by the ontology.

The ontology is also used in the query generator (Fig. 8.2) module of the mediator

to translate the user queries into domain-recognized terms from the ontology.

Queries generated by the query generator module are forwarded to the query plan-

ning and execution module (Fig. 8.2) of the mediator. This module consists of the

query planner, the mapping engine, and the execution engine. The query planner

receives the queries generated by the query generator module and decomposes

them into subqueries according to the ontology properties and relations. The

query planner also defines the dependency among the subqueries. The mapping

engine is used to formulate these subqueries and to determine which specific

source databases contain the desired information. Based on the mapping found by

FIGURE 8.2. Architecture of information integration layer.
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the mapping engine, the query planner will then select the query execution paths

consisting of a sequence of subqueries and databases that are combined to

execute the overall query submitted by the user.

The result and presentation module receives individual subquery results from the

wrappers, translates them by using a data model based on the ontology relations,

integrates them, and generates an HTML output file for presentation to the user.

A major research issue in using the federated database approach to integrate life

science Web databases is the generation of an efficient execution plan that is not

guided by the user. For example, SRS requires the user to specify the databases

that have to be used to answer a given query. This may not be practical because it

requires a knowledge of all the available databases, their query capabilities, and

their relationship to other databases. In BACIIS this information is stored in the

knowledge base (ontology and data source models) and thus the user does not

need to provide it when he or she enters a complex query.

8.3. QUERY EXECUTION PLANS

Query execution plans are generated by the query planning and execution module in

the mediator of BACIIS. This process and the challenges associated with this

process are illustrated in this section by using the example query presented in

Section 1, which is repeated here for convenience: What is the 3D structure of all

alcohol dehydrogenases that belong to the enzyme family EC 1.1.1.1 and is

located within the human chromosome region 4q21–4q23? This query is entered

in the BACIIS interface as follows, where the Boolean operators that combine the

clauses are underlined:

[(alcohol dehydrogenase AND (NOT NADP))
OR (E.C. number=1.1.1.1)] AND [cytogenetic

region=4q21–4q23].

The BACIIS interface uses the query-by-example approach, which simplifies the

entry of complex queries such as the above query. The interface uses the ontology

to guide the user in formulating the query. In the above example query, the clauses

(alcohol dehydrogenase AND (NOT NADP) and (E.C. number ¼ 1.1.1.1) are equiv-

alent in biological terms. They are both included in the query and combined with the

logical operator OR in order to provide more coverage in the returned result. Some

of the records may be excluded if one of the clauses is omitted. Also, the clause

(NOT NADP) is combined with alcohol dehydrogenase by using the AND operator

in order to exclude the records that belong to the enzyme family with E.C.

number ¼ 1.1.1.2 . Internally in BACIIS the query is interpreted by using the left

anchored operator precedence.

The goal of BACIIS is to answer multidatabase queries without any intervention

from the user. Achieving this goal is hindered by the limited query capabilities of

some of the life science Web databases. First, several Web databases may not
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allow the use of the Boolean operators AND, OR, and NOT. Second, life science

Web databases may not allow queries based on the BACIIS ontology terms. For

example, the above query contains two terms, enzyme family and cytogenetic

region, that may not be accepted by life science Web databases. For instance,

GenBank [22] does not accept enzyme family and PDB does not accept cytogenetic

region. Although some of these life science databases have limited capabilities, they

contain relevant information and therefore cannot be ignored.

8.3.1. Query Decomposition

Query decomposition transforms a complex query into subqueries. This is accom-

plished by breaking the query string into substrings along the partitions of logical

operators. The result of the query decomposition tree for the example query intro-

duced in Section 8.1 is shown in Figure 8.3.

In this figure, node 1 is processed and all the paths originating with the databases

that can accept the query in node 1 (i.e., [(alcohol dehydrogenase AND (NOT

NADP)) OR (E.C. number ¼ 1.1.1.1)] AND [cytogenetic region ¼ 4q21–4q23])

and terminating with the databases that can provide protein-3D-structure are deter-

mined. It is very unlikely that a single life science database can accept the query

of node 1. Therefore, this query needs to be decomposed further. Without an

information integration system for life science databases, the user would need to

FIGURE 8.3. Query decomposition tree.
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decompose the query manually, process the various subqueries, and combine the

results of these subqueries. This fact is one of the motivations underlying the

need for the integration of life science databases. The query of node 1 is decomposed

along the OR operator into two nodes: node 2 (i.e., [alcohol dehydrogenase AND

(NOT NADP)] AND [cytogenetic region ¼ 4q21–4q23]) and node 5 (i.e., [E.C.

number ¼ 1.1.1.1] AND [cytogenetic region ¼ 4q21–4q23]). For these nodes

also, the paths that start with databases that can accept the two subqueries and ter-

minate in a database that can generate protein-3D-structure are identified. The goal

of query decomposition is to explore all the possible execution paths for the original

query submitted by the user. Each of the nodes 2 and 5 will result in a set of paths. If

the final execution plan includes these nodes, a given path from the first set will be

combined with a path from the second set. Since the union (OR) of nodes 2 and 5

forms the original query, the union of the data sets resulting from the first and

second paths is computed in order to collect the resulting data set for the original

query. The union is performed by the information integration layer in BACIIS

because of the limited query capabilities of the individual life science databases.

Similarly, if two subqueries are joined using the AND operator, then the information

integration layer in BACIIS will compute the intersection of the resulting data sets.

The decomposition process continues until nodes with simple subqueries

(i.e., one input constraint with no operators) are obtained. For example, the query

decomposition terminates in Figure 8.3 with nodes 4 and 6. Each of these nodes

contains a set of simple subqueries.

The first step in the query processing is the decomposition (Fig. 8.3). Once the

query decomposition tree is obtained, the second step consists of identifying all

the databases that can accept the original query (node 1) or any of its subqueries

(nodes 2 through 6) and provide the desired query output (i.e., protein-3D-structure

for the example query). For example, in order to process node 3, the databases that

can accept either one of the following subqueries must be determined:

. alcohol dehydrogenase AND (NOT NADP)

. alcohol dehydrogenase AND cytogenetic region ¼ 4q21–4q23

. (NOT NADP) AND cytogenetic region ¼ 4q21–4q23

The third step consists of combining the result of the previous step into paths that

originate from the databases that can service any of the above queries and terminate

in a final database that contains the query result (i.e., protein-3D-structure infor-

mation for the example query). In the life sciences, this step requires a new approach

that differs from traditional databases. The second and third steps in the query pro-

cessing of life science multidatabase queries are described in the following sections.

8.3.2. Database List Generation

The query planner in BACIIS uses two lists: an input database list and an output

database list. For each query these two lists are created based on the knowledge

base of BACIIS. The input list contains all the databases that can accept the original
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query or any of the subqueries in the nodes of the query decomposition tree. The

output list consists of the databases that can generate the result requested by the

user. For the example query, this result would be protein-3D-structure information.

The only database that can provide this information in BACIIS is PDB. Therefore,

the output database list for this query contains only PDB. However, for the same

query, the input database list is more complex and includes several databases.

Each of the nodes in the query decomposition tree will result in a set of databases

that will be included in the input database list. For example, node 6 in Figure 8.3

has the following two subqueries:

. Cytogenetic region ¼ 4q21–4q23

. E.C. number ¼ 1.1.1.1

For this node, two database sets will be created. One set contains all the databases

that can accept cytogenetic region as an input such as Genome Database (GDB),

NCBI-Genome, and OMIM. The other set contains all the databases that can

accept E.C. number as input such as Enzyme Nomenclature [23], PIR, and PDB.

All the combinations of two databases (e.g., GDB/Enzyme Nomenclature, GDB/
PIR, GDB/PDB, NCBI-Genome/Enzyme Nomenclature, NCBI-Genome/PIR)
for these sets are enumerated and used as a potential origin for a partial execution

path. The combination is used because the two subqueries are related with the

AND operator.

8.3.3. Path Generation

Because the example query introduced in Section 8.1 is a complex query, the follow-

ing discussion is limited to the subqueries expressed by node 6 in Figure 8.3.

However, the process can be similarly applied to the remaining nodes of the

query decomposition tree of Figure 8.3. All the possible paths from the input

constraints (i.e., cytogenetic region ¼ 4q21–4q23 and E.C. number ¼ 1.1.1.1) to

the output protein-3D-structure for node 6 are shown in Figure 8.4. These paths

are labeled A1 through A4 for the first input constraint (i.e., cytogenetic

region ¼ 4q21–4q23) and B1 through B4 for the second input constraint

(i.e., E.C. number ¼ 1.1.1.1). For example, in path A1, the input cytogenetic

region ¼ 4q21–4q23 is fed to the GDB database, which returns PDB IDs.

As mentioned in Section 8.3.1 the input database list contains the following list

of nine database combinations where each combination contains two databases:

GDB/Enzyme Nomenclature, GDB/PIR, GDB/PDB, NCBI-Genome/Enzyme

Nomenclature, NCBI-Genome/PIR, and so on. The first database in each combi-

nation can accept the query cytogenetic region ¼ 4q21–4q23 as an input and the

second database can accept the query E.C. number ¼ 1.1.1.1. The output protein-

3D-structure can only be generated by the PDB database in BACIIS. However,

PDB cannot be searched by either cytogenetic region or E.C. number.

The query planner in BACIIS allows the querying of PDB by cytogenetic region

and E.C. number. This process is accomplished by constructing paths originating
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with the combination of the databases in the input database list, traveling through

intermediate databases, and discovering common PDB acceptable input constraints

between the paths. These paths are constructed by combining a path from the set A1

through A4 and a path from the set B1 through B4 since any one of the paths A1

through A4 accepts cytogenetic region ¼ 4q21–4q23 as input and generates

protein-3D-structure and any one of the paths B1 through B4 accepts E.C.

number ¼ 1.1.1.1 and also generates protein-3D-structure. For example, paths A1

and B4 correspond to the input database combination GDB/PDB. The result

of A1 consists of a set of PDB IDs and the result of B4 also corresponds to a

set of PDB IDs. The intersection of these two sets is computed to generate

the result of the following subquery: 3D-protein-structure information for (E.C.

number ¼ 1.1.1.1) AND (cytogenetic region ¼ 4q21–4q23).

Figure 8.4 illustrates why it may be impractical to require that the user guides the

query processing by supplying the databases that may be involved in the query.

Figure 8.4 contains 10 different databases. Thus, the user must be familiar with

each of these databases and their query capabilities. Furthermore, since multiple

combinations of paths from A1 through A4 and B1 through B4 can generate the

FIGURE 8.4. All possible query paths for subqueries of node 6.
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required result, the user must also be able to choose the appropriate set of databases

in order for the integration system to generate a fast and efficient plan. For example

in Figure 8.4, the execution plan consisting of A1 and B4 is more efficient and has a

much lower response time than the execution plan consisting of A2 and B1.

The problem of deriving the path from each combination of input databases to

output databases can be solved through a general STRIPS-like planner [24, 25] such

as GraphPlan [26]. Traditionally, in a query planner, paths are discovered starting

from the input database list and ending in the output database list. The modified

planner in BACIIS, however, starts from the output database list and works

backward to reach the input list. As mentioned in Section 8.3.1, all the subqueries

within a node of the query decomposition tree are linked by logical AND (conjunctive).

Therefore, all the databases in each input database combinations must be considered in

the query plan because each combination corresponds to one subquery. For example,

there are nine combinations of two databases (e.g., GDB/Enzyme Nomenclature,

GDB/PIR, GDB/PDB, NCBI-Genome/Enzyme Nomenclature, NCBI-Genome/
PIR) for node 6, as shown in Figure 8.3. The first database of each combination corre-

sponds to cytogenetic region ¼ 4q21–4q23, and the second corresponds to E.C.

number ¼ 1.1.1.1. When generating the query plan for each combination, both

databases must be considered because both subqueries cytogenetic region ¼ 4

q21–4q23 and E.C. number ¼ 1.1.1.1. must be satisfied by the query result.

When using STRIPS-like planning, initial states are essential but not necessary.

In another words, some initial states may not be used in the plan. Therefore, this

planning method cannot be used directly since all the initial states which represent

the query clauses must be included. To circumvent this limitation, the BACIIS path

generation problem is mapped to the STRIPS-like planning domain in a reverse

manner. That is, the planning is expressed as a path search problem from the

goals to the initial states rather than from the initial states to the goals.

This modified STRIPS-like planner-based approach can generate an adequate

query execution plan. For instance, the plan between the input database combination

OMIM/Enzyme Nomenclature and the output database PDB may consist of paths

A4 and B1 of Figure 8.4. However, by using the traditional STRIPS-like planning

algorithm, the planner will merge the data retrieval step from the OMIM database

in the two paths to reduce the total number of steps and operators in the final plan

(Fig. 8.5), which is not desired in this case.

8.4. RELATED WORK

As previously mentioned, there are three main methods that are used to integrate

life science databases: data warehousing, link driven, and database federation.

SeqStore [27], Gene Expression Datamart [28], Incyte [29], and GUS utilize the

data-warehousing or data mart approach (a data mart is a “small” warehouse

designed to support a specific activity). This approach allows the systems to

have a better performance, higher quality of data, and fewer dependencies on

network connectivity. Therefore, these systems are suitable for projects involving
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“production strength,” especially those involving annotation, where more control over

the data is required to guarantee correctness. However, data warehouses are often

expensive to initialize and maintain. It is also difficult to keep the data up to date.

For example,GUSkeeps a large schemaconsistingof over 180 tables for the integration

of sequence and annotation information from three databases: GenBank/EMBL/
DDBJ, dbEST, and SwissProt. The data provided by GUS lags by a couple of

months. In contrast, BACIIS and other federated database systems, such as

TAMBIS, provide access to up-to-date information.

Link-driven systems, such as SRS, NCBI/Entrez, LinkDB [30], and GeneCards

[31], combine the indexes of several source databases into a link table. Links are

established between specific entries in the different databases. Whenever one data

source entry is returned for a given user query, hyperlinks are retrieved from the

link table and are made available on the result page. The link-driven approach

often does not make any attempts to reconcile any semantic heterogeneity between

the different databases during query execution. The static links inherent to the link-

driven approach make it difficult to maintain and to scale up.

As in BACIIS, TAMBIS, BioKleisli, OPM [32], and DiscoveryLink utilize the

federated database approach. This approach can be further divided into two sub-

classes: tightly coupled and loosely coupled. A tightly coupled database federation

includes a global data schema onto which queries are expressed [33]. A loosely

coupled database federation does not rely on a global data schema, and the source

databases must be specified in the query by using a multidatabase query language

[34]. As previously mentioned, this requirement is not trivial given the large

number of available biological databases.

DiscoveryLink is the implementation of Garlic [35] for biological databases. It is

a loosely coupled database federation for the integration of traditional databases

rather than Web databases. BioKleisli is another example of a loosely coupled data-

base federation. It is an application of the CPL-Kleisli system over data sources criti-

cal to the Human Genome Project. User queries are constructed by using the

Collection Programming Language (CPL). Databases are accessed through Kleisli

drivers. Kleisli provides drivers for different types of databases, including Sybase,

Oracle, ASN.1-Entrez [36], OPM, AceDB [37], and BLAST [38]. As in the case

of DiscoveryLink, when using BioKleisli, the databases involved in the query

execution must be specified by the user.

TAMBIS is built on top of BioKleisli and uses a tightly coupled database federa-

tion approach which is similar to BACIIS. User queries in TAMBIS are constructed

using ontology terms. The domain ontology approach allows TAMBIS and BACIIS

to be queried based on biological knowledge rather than the knowledge of the query

capabilities of the specific databases. In both systems, the limited query capabilities

of the databases participating in the integration are transparent to the user.

One of the main differences between BACIIS and TAMBIS is the approach used

to generate the query execution plans. The approach used by TAMBIS can lead to

query plans that may not be executable. Consider the following query: Provide

the names of all the human proteins which belong to the enzyme family with

E.C. number ¼ 1.1.1.1. This query contains two clauses: (1) organism_name ¼

human and (2) E.C. number ¼ 1.1.1.1. For the first clause, TAMBIS generates a
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plan that enters the first clause in SwissProt and retrieves SwissProt entry names. For

the second clause, TAMBIS uses E.C. number ¼ 1.1.1.1 as input to the Enzyme

Nomenclature database and retrieves Enzyme Nomenclature entry names. The

final query plan cannot be constructed in this case because there is no correspon-

dence between the SwissProt entry names and the Enzyme Nomenclature entry

names. Thus, the intersection of the result data sets from the two paths cannot be

performed. This happens because in TAMBIS the attributes (e.g., Enzyme Nomen-

clature entry name and SwissProt entry name) of an object (e.g., protein) are mapped

to the object itself and the object is often associated with a single database. This

example illustrates further the difficulty resulting from the heterogeneity of the data-

base when integrating life science databases. In BACIIS, this situation does not

occur because BACIIS does not perform this mapping and uses the attributes of

the objects directly when generating a query execution plan. This, however,

makes the query planner in BACIIS more complex than the query planner used in

TAMBIS, which of course may have an impact on the query execution time. This

issue is discussed in the next section as it represents one of the important future

trends in the field.

8.5. FUTURE TRENDS

In this chapter, a federated database system (BACIIS) for life science Web databases

was introduced. This system allows users to submit multidatabase queries against a

set of heterogeneous, autonomous, geographically distributed Web databases.

BACIIS uses an efficient query planner to generate an execution plan for complex

life science multidatabase queries. This planner addresses the limited capabilities

of the Web databases by using query decomposition, relying on support of the

knowledge base in BACIIS, and by augmenting the execution engine of BACIIS

with computational capabilities that replace some of the missing functionalities of

the Web databases.

One of the weaknesses of the federated database approach such as the one used in

BACIIS is its lengthy response time, which is due to the multiple and repeated

remote access to the Web databases. Long response times are often the reason

why data warehouses trade the currency of the returned data for faster response

times. It may be possible to address long response times by taking into consideration

access costs when generating query execution plans. This will penalize Web data-

bases with long response times and exclude them from the query execution plan

if there are alternate databases that can generate the result of the query faster.

Because of the above weakness, there is a recent trend for federated database

systems to attach a cost model to query planning [34, 39]. Most cost models estimate

data source searching costs according to data source delays and resulting cardinality.

In TAMBIS, for example, the execution cost of a data retrieval method is estimated

using the formula t � n2, where t and n are the predicted query execution time and

the number of instances returned, respectively. DiscoveryLink and its precursor

Garlic provide a more elaborate cost model [39]. Costs are estimated within the
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global optimizer as well as within the individual wrappers for the integrated data

sources. Within the wrapper, statistics, such as the base cardinality and distribution

of data values, are collected to estimate the total cost (i.e., the cost in seconds for

executing the operator once) and the reexecution cost (i.e., the cost for executing

the operator a second time). Within the global optimizer, the previously mentioned

statistics are used to estimate the central processing unit and input–output costs for

invoking the wrappers as well as the selectivity of the data sources.

In BACIIS, the cost model is based on remote database query processing time,

network communication time, and mediator data integration time. Furthermore,

the cost model used in BACIIS allows the user to indicate if data quality should

be traded for the query response time.

It should be noted that for database federation the optimization of the query

execution cost has different objectives depending on whether the federation is

loosely or tightly coupled. In loosely coupled federation, data sources are prespeci-

fied in the queries. Therefore, the optimization focuses on reducing the execution

cost of operators such as join and sort [40]. The planning problem for tightly

coupled database federation is more complex because of the choice of the source

databases. Another dimension to the optimization of the query execution cost is

highlighted in the planning algorithm proposed by Eckman et al. [34]. This algor-

ithm considers the semantic equivalence of possible plans in addition to their

execution costs. Biological databases have various query capabilities, data

domains, and data quality levels. Therefore, the same query may retrieve different

result sets if different data sources are selected, which suggests that semantic equiv-

alence has to also be taken into account. However, a complete set of standards for

biological databases need to be defined before semantic estimation can be possible

when optimizing the query execution cost of the queries submitted to an integration

system for life science databases.
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&CHAPTER 9

Computational Analysis of Proteins

DIMITRIOS I. FOTIADIS, YORGOS GOLETSIS, CHRISTOS LAMPROS,
and COSTAS PAPALOUKAS

9.1. INTRODUCTION: DEFINITIONS

Proteins are biological macromolecules, which are characterized by an enormous

variety of biological functionality. For example, some proteins have important enzy-

matic action accompanied by a certain specialization, while others are responsible

for creating various types of receptors for neurotransmitters, hormones, and other

substances. In many cases, they form a variety of ionic channels, transport and

store vital substances, and constitute the basic cell structural elements.

A protein is made up of a long series of amino acids linked together into chains

of varying length. In the human body there exist approximately 30,000 to 40,000 diff-

erent proteins. These amino acid sequences are folded up to take on the three-

dimensional structure of the protein. Determining the three-dimensional shape of the

protein is crucial since it determines its function. It is well known that the biological

action or the functionality of proteins dependsmainly on their configuration (structure)

in space. This structure is defined by the linear sequence of amino acids that constitute

the protein and the formation they fold in space. The three-dimensional structure of

proteins can be revealed using X-ray crystallography [1] and nuclear magnetic

resonance (NMR) spectroscopy [2]. However, these methods are laborious, time con-

suming, and expensive. Consequently, there is a need to retrieve information concern-

ing protein folding using other, more convenient methods.

In the last two decades, efforts have been devoted to discover the primary struc-

ture (amino acid sequence) for a large number of proteins [3]. The experimental

results have shown that all the necessary information concerning protein three-

dimensional configuration is coded in its linear amino acid sequence [4]. Bearing

this in mind, a protein’s structure could be predicted using only the information

given by the primary sequence [5], but with a limited success so far. Recently,

the projects worldwide dealing with the determination of the complete sequence
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of DNA for a number of organisms (humans as well) have resulted in an increasingly

accumulated information for thousands of protein sequences [6]. Most of these pro-

teins are determined by recognizing gene open reading frames (ORFs) and are

accompanied without any knowledge about their function. Tools for the develop-

ment of new and the improvement of older protein structure prediction algorithms

and methods can be designed using computer-based approaches.

Structure prediction from primary sequence remains still an unsolved problem.

The correlation between amino acid sequence and protein structure has not yet

been understood completely. However, new knowledge in the form of relation rules

is being continuously discovered. It should be mentioned that the number of distinc-

tive protein-folding patterns is finite [7, 8] and smaller than expected when consider-

ing the large number of possible combinations with which the amino acid residues

can compose polypeptide chains. Based on the number of experimentally defined dis-

tinctive structures [9–11] and recent analyses of entire chromosomes and genomes,

the total number of different foldings is estimated at around 30,000 to 40,000.

Since the experimental data confirm that the primary structure encompasses all

the essential information about protein folding [4], several efforts have been made

for predicting the three-dimensional structure and consequently the protein’s

functionality using only the amino acid sequence. Moreover, proteins with low

homology (similarity) in the primary structure, even less than 1
3
, have shown remark-

able resemblance in the overall structure and function. In other words, the protein

three-dimensional structure is retained unlike the primary one [7, 12, 13]. On the

other hand, very similar amino acid sequences can compose proteins with different

biological functions. Finally, it should be mentioned that in many cases proteins

appear to have local (i.e., in parts) structural or even functional similarities,

which are called domains. Consequently, function prediction of proteins from the

primary structure is possible but highly complicated.

The employment of the protein’s secondary structure can assist significantly in

the protein-folding problem. Secondary structure incorporates information concern-

ing the protein’s geometric regulation while specific combinations in the secondary

sequence define certain functions. Therefore, reliable prediction of secondary struc-

ture can successfully determine such patterns liable for specific biological roles of

the protein.

Another important aspect in the computational analysis of proteins is the gap

between the large number of identified primary structures and that of the defined

proteins’ three-dimensional structures. To address this problem, homology modeling

(or comparative modeling) has been proposed, which is a process applied in a

protein of unknown structure when a homologous protein of identified structure

exists. According to this process, the structure of the unknown protein is modeled

using the known structure of the homologous one. A drawback of this method is

the side chains. Homology refers primarily to the main chain of the protein; thus

the adjustment of the side chains in the overall modeling demands the calculation

of energy equations as well. Another approach for the same task is threading,

which is used when high homology cannot be detected. Threading or remote hom-

ology modeling can reveal distant similarities, but its success depends highly on the

reliable sequence alignment [14].
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Thus, more simplified and robust methods are preferred for protein structure

prediction. Those methods employ evolutionary information and are applied

mostly for secondary-structure estimation, while some efforts have been made to

determine interactions among the residues in the primary structure. The central

idea behind secondary-structure prediction is that segments of successive residues

tend to be in certain secondary-structure formations [15–19]. Hence, secondary-

structure estimation is reduced to a problem of pattern recognition, where various

algorithms can be used. To simplify even more this task, most commonly only

three formations are determined: (a) a-helix (denoted with H), (b) b-sheet (E),

and (c) coil or loop (L). A number of algorithms have been developed for this

purpose [20], with the most effective being those that combine different approaches

[21]. Alternatively, the DSSP (definition of secondary structure of proteins) method

[22] can be adopted, which defines eight different secondary-structure formations

related with the three former ones, as shown in Table 9.1. Here, the B sequence is

equivalent to the EE one and the B-B to the LLL.

So far we have presented some of the concepts and definitions for the compu-

tational analysis of proteins. Based on them we will proceed presenting other

core subjects, such as protein databases, which are discussed in the next section.

Subsequently, protein sequence motifs and domains will be presented followed by

a detailed description of the problem of protein sequence alignment, pairwise and

multiple. All these are considered as prerequisites to study protein modeling,

protein classification, and structure prediction. A very promising new field for the

computational analysis of proteins is natural language processing and is described

next. We conclude by presenting future trends in this specific research area.

9.2. DATABASES

Any kind of protein information or data that come from experimental research or

computational analysis are stored in publicly available databases. Most of these

databases are accompanied by software tools for data processing and analysis.

Each protein database retains a certain type of data and is associated with other

TABLE 9.1 Secondary-Structure Formations According to

DSSP Method

DSSP Type of Formation

Equivalent

Symbol

H a-helix H

G 310-helix H

I P-helix H

E Extended (b-strand) E

B Residue in isolated b-bridge E

T Turn L

S Bend L

No designation Other L
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similar databases. In the following the major protein databases are presented. These

can be divided in two main categories: (a) protein sequence databases and (b) protein

structure databases.

Sequence databases contain a set of protein sequences and usually include

additional comments. This is the case with Swiss-Prot [3, 23] (http://www.expasy.
org/sprot/). It is maintained by the Swiss Institute of Bioinformatics in collabor-

ation with the European Bioinformatics Institute (EBI). It contains more than

1.5 � 105 protein records with bibliographic references, secondary-structure infor-

mation, comments concerning the biological function, if it is known, links to other

databases relevant to each registry, and other useful information.

The Protein Information Resource (PIR, http://www.nbrf.georgetown.edu/)
databank [24, 25] consists of a number of databases all related to proteins, with

the PIR–International Protein Sequence Database (PSD) being the core of them.

Like Swiss-Prot, PSD is a database of protein sequences accompanied by additional

comments. The data in PSD resulted from the collaboration of PIR with the Munich

Information Center for Protein Sequences (MIPS) and the Japanese International

Protein Information Database (JIPID). It contains approximately 3� 105 entries

and is divided in four sections: PIR1, PIR2, PIR3, and PIR4. PIR1 and PIR2

contain almost 99% of the records and are very similar in terms of classification

and annotation. PIR3 contains those records that have not yet been verified and

annotated. PIR4 consists of sequences not found in nature or not expressed under

physical conditions. Also it contains sequences that have been composed de novo

in the laboratory. The entries in PIR4 have been verified and annotated by PIR

experts.

Studies concerning the homology of proteins having the same functionality have

discovered discrete patterns in the primary structure. These biologically significant

patterns characterize the proteins’ families and are included in the PROSITE data-

base [26, 27] in the form of regular expressions (available at http://www.expasy.
org/prosite). Today, PROSITE consists of patterns and profiles (or signatures)

designed to rapidly and reliably support the determination of which known family

of proteins (if any) a new sequence belongs to or which domain(s) it contains

using the appropriate computational tools. Currently, patterns for more than 1300

families are stored in PROSITE. For each family detailed analysis is also provided

concerning the structure and function of the corresponding proteins. The design of

PROSITE follows five leading concepts:

(a) It contains as many biologically meaningful patterns and profiles as possible,

so that it can be helpful in the determination of protein function.

(b) The patterns or profiles chosen are specific enough so that they will not

detect too many unrelated sequences; still they should detect most, if not

all, sequences that clearly belong to the set under consideration.

(c) Each of the entries in PROSITE is fully documented and the documentation

includes a concise description of the protein family or domain that it is

designed to detect as well as a summary of the reasons leading to the

development of the pattern or profile.
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(d) Each entry is periodically reviewed to ensure that it is still valid.

(e) There is a very close relationship with the Swiss-Prot protein sequence data

bank.

Update of PROSITE and the annotations of the relevant Swiss-Prot entries is

regular, while software tools based on PROSITE are used to automatically update

the feature table lines of Swiss-Prot entries relevant to the presence and extent of

specific domains.

Concerning the structure databases, the Protein Data Bank (PDB,

http://www.rcsb.org/pdb/) [1, 28] is the major representative and consists of

records of experimentally determined three-dimensional structures of biological

macromolecules. These records contain structure information expressed by atomic

coordinates, primary- and secondary-structure residues, detailed data from X-ray

crystallography or/and NMR spectroscopy, and various references. So far, approx-

imately 29,000 protein structures have been registered in the PDB. Before being

made available to the public, each submitted structure is evaluated for its accuracy

using specialized software. If the data prove to be correct, then the record acquires a

characteristic identifier and is appended to the PDB.

More specialized information suitable for the systematic study of proteins is

contained in the Class Architecture Topology Homology (CATH, http://www.
biochem.ucl.ac.uk/bsm/cath_new/index.html) database [11, 29]. This database

consists of a hierarchical classification of independent structural elements

(domains) of those protein records deposited in the PDB that have resolution

equal or less than 3 Å. Four major levels are used in this classification: class, archi-

tecture, topology (fold family), and homologous superfamily. CATH uses mainly

automated methods for classification, but in special cases human reasoning is also

employed since it provides better results. The proteins consisting of more than

one domain are analyzed in their distinct components using automated algorithms

for domain recognition. According to this automated process, 53% of the structures

have been classified. The remaining structures were analyzed by either assessing the

information provided by the above algorithms or arguments in the literature. The

classification is based on the elements of the secondary structure and is realized

for four categories: (a) mainly alpha (the majority in the protein’s secondary

structure are a-helices), (b) mainly beta (the majority are extended b-strands),

(c) alpha–beta (a/b and aþ b structures), and (d) various formations of secondary

structures. The architecture classification is realized using the general structure of

the domains and the orientation of the secondary-structure elements. Their intercon-

nection (e.g., barrels) is not taken into account. In the topology classification

the structures are categorized using both the orientation of the elements and their

interconnection. Finally, in the level of homologous superfamilies the structural

elements are grouped together according to their sequence similarity.

Another structure database is the Structural Classification of Proteins (SCOP,

http://scop.mrc-lmb.cam.ac.uk/scop/) databank [30], which provides a detailed

and comprehensive description of structural and evolutionary relationships for all

proteins of known structure stored in the PDB. To identify these relations and
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accomplish the classification, the proteins are processed empirically after thorough

study and comparison of the protein structures. Automated methods are used only

for the homogenization of the data which are included in the database. The classifi-

cation levels are the family, the superfamily, the fold, and the class. It should be

mentioned that the first two levels describe near and far evolutionary relationships

while the third describes geometric ones. The distinction between evolutionary

relationships and those that arise from proteins’ physics and chemistry is a feature

that is unique to this database.

More precisely, at the family level the sequence similarity is �30%, except in

cases where the structures and functions are very similar, implying common ances-

tor but the sequence similarity is ,30% (e.g., globulins with 15%). At the super-

family level, proteins with low sequence similarity are classified together but

their structure and function indicate a probable common ancestor. At the third

level, the proteins that fold in the same way in terms of orientation and topological

connections are grouped together. Finally, at the last level, four basic structural

classes are defined according to secondary-structure elements: (a) all a (the structure

is formed from a-helices), (b) all b (the structure consists of b-strands), (c) a/b
(a-helices and b-strands alternate in the protein structure), and (d) aþ b

(a-helices and b-strands are found in distinct regions in the structure). SCOP also

provides for each structure links to atomic coordinates, images of the structures,

interactive viewers, sequence data, data on any conformational changes related to

function, and references in the literature.

To optimize the use of the protein databases available worldwide, integrated

systems have been designed for effective information retrieval. The Sequence

Retrieval System (SRS, http://srs.ebi.ac.uk) is a powerful and practical system

for data management. Via a user-friendly graphical interface SRS is able to

perform searches in more than 400 databases. A major advantage of SRS is that it

can retrieve data from various sources not necessarily having the same format.

Entrez (http://www.ncbi.nlm.nih.gov/Entrez/) is a similar system designed for

the databases contained in the National Center for Biotechnology Information

(NCBI). Entrez is able to search in different types of databases simultaneously,

such as databases with nucleotide or protein sequences, biomolecular structures,

and genomes and in MEDLINE via the same interface. Also, more complicated

searches can be realized for each database separately. However, Entrez is limited

compared to SRS since it operates only with the NCBI databases.

9.3. SEQUENCE MOTIFS AND DOMAINS

The majority of the identified amino acid sequences are not accompanied by any

information concerning their protein function. One way to understand these

sequences and define their function is to relate them with known proteins using

annotated databases. The general rule is to exploit the similarity between the

sequences of two proteins on the hypothesis that similar sequences yield similar

functions. Pairwise alignment is a technique developed for aligning a pair of
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sequences in order to detect the similarities between them, so it can help in under-

standing the function of a newly identified sequence when the latter is compared

with a sequence with already known function. However, in some cases the sequence

of an unknown (not characterized) protein is too distantly related to all proteins of

known structure to detect its resemblance by pairwise sequence alignment.

On the other hand, relationships can be revealed by the occurrence in the

protein’s sequence of a particular cluster of residue types, which is known as

pattern, motif, signature, or fingerprint. These motifs arise because specific

regions of a protein which may be important, for example for their binding proper-

ties or their enzymatic activity, are conserved in both structure and sequence. More-

over, conserved blocks within groups of related sequences (families) can often

highlight features which are responsible for structural similarity between proteins

and can therefore be used to predict the three-dimensional structure of a protein.

This means that biologically significant patterns in the form of regular expressions

can be used against sequences of unknown function [26].

While sequence patterns are very useful, there are a number of protein families as

well as functional or structural regions or domains which cannot be detected using

motifs due to their extreme sequence divergence. Most proteins are large enough to

contain more than one of those domains. More specifically, a structural domain

refers to a segment of a polypeptide chain that can fold into a three-dimensional

structure irrespective of the presence of other chain segments. The separate

domains of a given protein may interact extensively or may be joined only by a

length of polypeptide chain. A protein with several domains may use these

domains for functional interactions with different molecules [31]. There are many

more proteins than actual functional domains, due to the existence of the same

domain in several proteins. Typical examples of important functional domains

which are weakly conserved are the globins and the SH2 and SH3 domains.

In such domains only a few sequence positions are well conserved.

Apart from the structural domains, there are also the homologous domains. Such

a domain refers to an extended sequence pattern, generally found by sequence align-

ment methods indicating a common evolutionary origin among the aligned

sequences. A homology domain is generally longer than motifs. The domain may

include all the given protein sequence or only a part of the sequence. Some

domains are complex and made up of several smaller homology domains which

are joined to form a larger one during evolution. A domain that covers an entire

sequence is called the homeomorphic domain [24].

The use of techniques based on profiles allows the detection of such proteins or

domains. A profile is a table of position-specific amino acid weights and gap costs

which is usually obtained from a well-conserved region in a multiple sequence

alignment. These numbers, which are also referred to as scores, are used to calculate

a similarity score for any alignment between a profile and a sequence or parts of a

profile and a sequence. The profile is moved along the target sequence to locate the

best scoring regions using a dynamic programming algorithm. An alignment with a

similarity score higher than or equal to a given cut-off value constitutes a motif

occurrence. A distinguishing feature between a pattern and a profile is that the
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former is usually confined to a small region albeit with high sequence similarity

whereas the latter attempts to characterize a protein family or domain over its

entire length.

Motifs in general can be distinguished in two classes: deterministic and probabil-

istic. A deterministic motif encloses grammatical inference properties in order to

describe syntactically a conserved region of related sequences using an appropriate

scoring function based on matching criteria. The expressive power of deterministic

patterns can be extended with the incorporation of special symbols, which allow a

certain number of mismatches. On the other hand, a probabilistic motif is described

by a probabilistic model that assigns a probability to the match between the motif

and a sequence. The position weight matrix (PWM) provides a simplified model

of probabilistic ungapped motifs representing the relative frequency of each charac-

ter at each motif position. There are also more complicated probabilistic motifs that

allow gaps, insertions, and deletions. The profiles (such as those included in the

PROSITE database) are types of probabilistic motifs, while hidden Markov

models (HMMs) are another example.

The notion of motif can also have structural context. A structural motif refers to a

combination of several secondary structural elements produced by the folding of

adjacent sections of the polypeptide chain into a specific three-dimensional con-

figuration. An example is the helix–loop–helix motif. Structural motifs are also

referred to as super secondary structures and folds.

The same happens with the notion of the profile. A structural profile is a

scoring matrix representing which amino acids should fit well and which

should fit poorly at sequential positions in a known protein structure. Profile

columns represent sequential positions in the structure and profile rows represent

the 20 amino acids. As with a sequence profile, the structural profile is moved

along a target sequence to find the highest possible alignment score by a dynamic

programming algorithm. Gaps may be included and receive a penalty. The resulting

score provides an indication to whether or not the target protein might adopt such

a structure.

In protein sequence analysis motif identification is one of the most important

problems covering many application areas. Motifs are biologically informative in

the sense of efficiently modeling sequences and holding useful information about

biological families. Therefore, the proteins belonging to a family can be considered

as sequences of motifs separated by an arbitrary number of randomly selected

characters which indicate the background information. The last observation is

also associated with the problem of multiple alignment of sequences, where motif

occurrences represent the alignment regions that can be visualized more easily

compared to the background information.

Instead of using motifs for extracting conservative information and identifying

structurally and functionally important residues, the notion of motifs can also be

used for characterizing biological families and searching for new family

members. Motifs may enclose powerful diagnostic features, generate rules to deter-

mine whether or not an unknown sequence belongs to a family, and thus define a

characteristic function for that family. This leads to the development of diagnostic
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features ( fingerprints) that contain groups of conserved motifs used to characterize

the family [32].

There are many computational approaches which address motif identification in a

set of biological sequences which differ according to the type of motifs discovered.

The Sequence Alignment and Modeling (SAM) approach [33], Gibbs sampling [34],

Multiple Em for Motif Elicitation (MEME) [35], and probabilistic suffix trees [36]

represent probabilistic methods for finding multiple shared motifs within a set of

unaligned biological sequences. Among those, MEME is a very well known

approach. The MEME algorithm fits a two-component finite-mixture model to a

set of sequences using the expectation–maximization (EM) algorithm, where one

component describes the motif (ungapped substrings) and the other describes the

background (other positions in the sequences). Multiple motifs are discovered by

sequentially applying a new mixture model with two components to the sequences

remaining after erasing the occurrences of the already identified motifs. At the

website of the MEME system (http://meme.sdsc.edu/meme/website) the user

can submit a set of sequences to the MEME server and receive a reply with the

motif occurrences discovered by the system. Besides that, the motif identification

implemented in MEME can be the initial step for protein classification.

There are also recent improvements in motif discovery, such as the greedy

mixture learning method [37]. This method learns a mixture of motif models by

incrementally adding motif components to a mixture until reaching some stopping

criteria. Starting with one initial component that models the background, at each

step a new component is added which corresponds to a candidate motif. The

greedy mixture learning method describes the problem through likelihood

maximization using the EM algorithm, but it is advantageous in identifying

motifs with significant conservation (more distinguishable motifs). It leads also to

the development of larger protein fingerprints, as the number of discovered motifs

is larger. The greedy EM approach can provide Meta-MEME-like models

(MEME motif-based HMMs [38]) with more representative motifs and thus

enhance the capability of motif-based HMMs to classify protein sequences in the

correct category.

9.4. SEQUENCE ALIGNMENT

The alignment of two sequences, known as pairwise alignment, the multiple align-

ment (MA) and the search of homologous proteins in a database are considered

fundamental tasks with significant importance in the computational analysis of

proteins. Their necessity becomes even more demanding due to the continuous

increment of the biological databases and their high accessibility. Alignment

methods can be used to correlate unknown proteins and extract evolutionary and

functional information as well.

The main algorithms used for pairwise sequence alignment are the Needleman–

Wunsch [39], the Smith–Waterman [40], the BLAST (Basic Local Alignment

Search Tool) [41], and the FastA (Fast-All) [42]. On the other hand, for multiple
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sequence alignment a well-known algorithm is CLUSTALW [43]. BLAST and

FastA are the most common heuristic alignment algorithms. BLAST can be found

at the NCBI website (http://www.ncbi.nlm.nih.gov/BLAST/) and FastA at the

EBI website (http://www.ebi.ac.uk/fasta33/). Since they are heuristics, they

operate in a straightforward manner and are characterized by a fast application.

Also, they find the most likely solution, which is not necessarily the optimal one

but one that is very close to optimal (near optimal). They can be used to either

compare two protein sequences or search a protein database using a given protein.

Several improvements to the original versions of both methods have been pre-

sented. Still, BLAST is a fast algorithm which attempts to match a word (i.e., a

sequence of residues) of length W above a predefined threshold T [41], which

permits a trade-off between speed and sensitivity. A higher value of T results in

faster processing but also in increased probability to lose weak similarities. All

the matched words are then extended in both directions in order to produce

(local) alignments with a similarity above a second threshold S.

FastA, on the other hand, searches for small optimal local alignments using the

notion of words [42]. The sensitivity and speed of the searching procedure are pro-

portionally opposite and depend on the size of the word (k-tup variable). The overall

process starts by detecting all the segments consisting of multiple words, which are

combined in the next step in order to provide the final alignment in the last step

utilizing also a proper number of gaps. It should be noted that while BLAST and

FastA have slight differences in their underlying algorithms, their results are consist-

ent in most cases.

CLUSTALW implements a sophisticated progressive alignment algorithm

in order to gradually multiply align the protein sequences. It is available at

the EBI website (http://www.ebi.ac.uk/clustalw/). A variant of CLUSTALW

is CLUSTALX [43], which operates in two different modes: (a) the multiple

alignment mode and (b) the profile alignment mode. In the first mode, all the

sequences are compared against each other and a cladogram, (or dendrogram)

is constructed. According to this cladogram, the proteins are grouped together

based on their similarity. In the second mode, various types of profiles can

be used to guide the alignment procedure. An additional feature of

CLUSTAL family algorithms is that they can be adjusted easily to generate

phylogenetic trees.

All the above algorithms employ a set of parameters which need to be determined

prior to their application. Considering two protein sequences of length n each, all the

possible alignments for them are given as

2n

n

� �
¼

(2n)!

(n!)2
�

22nffiffiffiffiffiffiffiffiffi
2pn

p (9:1)

This number is very large even for small proteins and therefore dynamic program-

ming algorithms have been proposed to enhance alignment approaches of low
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computational effort [39, 40]. These algorithms employ a scoring formula which

counts the amino acid sequence similarity (in the simplest case one is counted for

identity and zero for dissimilarity), while the addition of gaps during the alignment

process can contribute negatively in the overall score. It should be mentioned that a

different penalty must be used when a new gap is added (gap open penalty) and

another one when an existing gap is extended (gap extension penalty). More

complex formulas include evolutionary and functional relations between the

amino acids through the use of substitution matrices.

The choice of the substitution matrix is one of the most important aspects in

sequence alignment, local or global. In general, all algorithms utilize a scoring

function in which a positive or a negative quantity is added for each amino acid

correlation based on a 20� 20 matrix. Two basic types of matrices exist: the

point accepted mutation (PAM) and the blocks substitution matrix (BLOSUM),

which describe roughly the evolutionary relation among the 20 amino acids.

However, these types have many variants with different values as elements and

each variant is specialized in a certain evolutionary relation between the proteins.

In other words, a different matrix should be used when the two proteins are homolo-

gous and another when they are distantly related.

Tables 9.2 and 9.3 show the two most frequently used substitution matrices [44],

which are the BLOSUM62 [45] and the PAM250 [46], respectively. We can see that

similar, evolutionary and physicochemically, amino acids correspond to a positive

score while the opposite happens for the unrelated ones. Concerning the gap penal-

ties, the first gap usually takes a penalty with a larger value (the gap open penalty)

than the rest (the gap extension penalty). Consequently, small or zero values for the

above values will yield local alignments while large negative values will produce

strict and local alignments.

Another important issue in sequence alignment is the assessment of statistical

significance [47, 48]. This measures the likeliness of an alignment and distinguishes

the accidental from the significant ones. Usually it is expressed through the use of

the expected value (E-value) and depends on the substitution matrix and the gap

penalties. The E-value can also be normalized, especially in cases of local align-

ment, so that the different lengths of the proteins under study can be taken into

account. Furthermore, the E-value is more straightforward and comprehensible to

biologists. It should be mentioned that FastA estimates the statistical significance

based on the employed database. This is generally more accurate than the BLAST

approach, which uses a predetermined data set with known family members but is

not faster and in cases of small amounts of data is less effective.

In the following frame a typical BLAST output is shown for two sequences where

all the previously mentioned alignment parameters are presented:

Sequence 1 gi 12585199 Chromobox protein homolog 4 (Polycomb 2 homolog) (Pc2)

(hPc2). Length 558 (1 .. 558)

Sequence 2 gi 17433290 Chromobox protein homolog 7.

Length 251 (1 .. 251)
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NOTE:The statistics (bitscore and expect value) is calculated based on the size

of nr database

Score=133 bits (334), Expect=2e-29

Identities=84/211 (39%), Positives=119/211 (55%), Gaps=11/211 (5%)

Query: 1 MELPAVGEHVFAVESIEKKRIRKGRVEYLVKWRGWSPKYNTWEPEENILDPRLLIAFQNR 60

MEL A+GE VFAVESI KKR+RKG+VEYLVKW+GW PKY+TWEPEE+ILDPRL++A++ +

Sbjct: 1 MELSAIGEQVFAVESIRKKRVRKGKVEYLVKWKGWPPKYSTWEPEEHILDPRLVMAYEEK 60

mutagenized 32 *

mutagenized 31 *

Chromo. 11 **************************************************

CBX7 1 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Query: 61 ERQEQLMGYRKRGPKPKPLVVQ--VPTFARRSNVLTGLQDSSTDNRAKLDLGA-QGKGQG 117

E +++ GYRKRGPKPK L++Q R S+ G + L G+ +G +

Sbjct: 61 EERDRASGYRKRGPKPKRLLLQRLYSMDLRSSHKAKGKEKLCFSLTCPLGSGSPEGVVKA 120

Conflict 77 *

Chromo. 61 *********

CBX7 61 +++++++++++++++++++++++++++++++++++++++++++++++
Query: 118 HQYELNSKKHHQYQPHSKEGKPRPPGKSGKYYYQLNSKKHHPYQPDPKMYDLQYQGGHKE 177

EL K KPR K Y +L+ KK P P+ + + + + +E

Sbjct: 121 GAPELVDKGPLVPTLPFPLRKPRKAHK----YLRLSRKKFPPRGPNLESHSHRRELFLQE 176

CBX7 121 +++++++++++++++++++++++++++ +++++++++++++++++++++++++++++

Query: 178 APSPTCPDLGAK----SHPPDKWAQGAGAKG 204

P+P + + PP++ A A+G

Sbjct: 177 PPAPDVLQAAGEWEPAAQPPEEEADADLAEG 207

CBX7 177 +++++++++++++++++++++++++++++++

CPU time: 0.03 user secs. 0.01 sys. secs 0.04 total secs.

Lambda K H

0.312 0.132 0.393

Gapped

Lambda K H

0.267 0.0410 0.140

Matrix: BLOSUM62

Gap Penalties: Existence: 11, Extension: 1

Number of Sequences: 1

Number of Hits to DB: 1082

Number of extensions: 658

Number of successful extensions: 2

Number of sequences better than 10.0: 1

Number of HSP’s better than 10.0 without gapping: 1

Number of HSP’s gapped: 2

Number of HSP’s successfully gapped: 1

Number of extra gapped extensions for HSPs above 10.0: 0

Length of query: 558

Length of database: 760,792,870

Length adjustment: 135

Effective length of query: 423

Effective length of database: 760,792,735

Effective search space: 321815326905

Effective search space used: 321815326905

Neighboring words threshold: 9

Window for multiple hits: 0

X1: 16 (7.2 bits)

X2: 129 (49.7 bits)

X3: 129 (49.7 bits)

S1: 42 (21.8 bits)

S2: 79 (35.0 bits)
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9.5. MODELING

Knowing the three-dimensional structure of proteins is essential for comprehending

their physicochemical attributes. However, the larger the complexity of the

molecule, the more difficult it is to visualize the three-dimensional formation of

its atoms; therefore modeling techniques are utilized. Protein models can assist in

the understanding of the molecule’s function when its structure has been determined

and also in determining the structure itself. They are designed using experimental

data (i.e., X-ray or/and NMR) and biological and physicochemical theoretical

concepts. Usually their development is iterative, which means that a number of

models are constructed and tested successively until they satisfy certain criteria.

There are two basic types of models: (a) space filling and (b) wire frame or skeletal

[49, 50]. In the space-filling models (Courtauld type) the atoms are represented

in shape and size by solid colored units and are interconnected using links

(Fig. 9.1a). They are useful in studying the overall structure of the protein molecule

and its interactions. Their main disadvantage is that they cannot be used in examin-

ing internal regions of the protein. In the wire-frame models the atomic bonds are

represented by lines in terms of length and direction which can rotate around the

core of the atoms (Fig. 9.1b). These models depict the basic geometry of the mol-

ecules and allow the study of all possible configurations. The distances and angles

used in the models are determined from the mean value of experimental results

taken from a number of micromolecules. This approach often leads to diverged

models that need redesigning.

Themain drawback of the abovemodels is that their construction is highly time con-

suming and proportional to the size of the protein molecule. Computer graphics

provide tools facilitating the whole process, but still the two-dimensional represen-

tation on the computer monitor may conceal important structural information.

FIGURE 9.1. (a) Space-filling model and (b) wire-frame model. The models were created

using RASMOL.
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For this reason several representation modes have been developed with each depicting

certain parts or views of the molecule. Hence, besides the space-filling and wire-frame

models, other commonmodels are the ball-and-stick, the ribbons, the surfaces, the ani-

mation (which is a dynamic model), and the surface attributes [49, 50]. Several soft-

ware packages have been developed for molecular graphic representation. A file

with the atomic coordinates is the input to these programs while the user can choose

in what type of model the molecule can be presented. RASMOL (http://www.
umass.edu/microbio/rasmol/), Swiss-PdbViewer (http://www.expasy.ch/spdbv/),
and CHIME (http://www.mdlchime.com/chime/) are well-known packages for

protein modeling.

9.6. CLASSIFICATION AND PREDICTION

The automated classification of proteins into categories based on their amino acid

sequence has been a subject of scientific research for many years. Protein sequences

are very difficult to be understood and modeled due to their complex and random-

length nature. However, proteins with similar structure/function share a common

ancestor and similar amino acid sequence. During evolution the protein sequences

will get gradually change mainly in three ways: substitution of one amino acid

for another, insertion of an extra amino acid, or deletion of an amino acid. Never-

theless, the protein will still carry out a similar function. Thus, the attempt to

group in families all the proteins which share a common function is a difficult

task. If we compare all the sequences in a family, we can generate probabilities

for each amino acid appearing in each position in the sequence. The comparison

can be based on an alignment where large chunks of the amino acid sequences

align with each other, but still this is a complex task for real protein sequences.

On the other hand, all proteins sharing a similar function should share similar

three-dimensional structures and amino acid sequences. These homolog proteins

have evolutionary relationships and the task is to find such proteins (homology

detection). In general, proteins may be classified according to both structural and

sequence similarity. For structural classification, the sizes and spatial arrangements

of secondary structures are compared with known three-dimensional structures

existing in available databases. All these databases facilitate structural comparison

and provide a better understanding of structure and function.

The current classifiers for homology detection involve a number of tools for

sequence alignment (see Section 9.4). Hidden Markov models have also been

adapted to solve the problem of matching distantly related homologies of proteins.

An HMM is a statistical model considering all possible combinations of matches,

mismatches, and gaps to generate an alignment of a set of sequences. Hidden

Markov models use statistical properties of the database to match other protein

members. Each HMM (Fig. 9.2) consists of a set of states ST and a set of possible

transitions TR between them. Each state stochastically emits a signal, an amino acid

in our case; the procedure is then transmitted to some other state with a probability

depending on the previous state. The procedure continues until the total of each
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sequence is emitted. There is also a starting state, where the process starts, and a set

of transition probabilities from the starting state to each of the possible states. This

set of probabilities sums to unity and so does the set of emissions of possible signals

in each state and the set of transitions from each state. Normally, a different model is

built for each protein family and sequences are then run through the different

models. The sequence is then assigned to the model which produces the highest

probability. This method has proved very popular and successful and has been

shown to perform well in the classification of proteins [51].

Hidden Markov models have been successfully applied in the SAM software

system [33]. SAM is used by many organizations for the classification of protein

sequences. The SAM HMMs generate sequences with various combinations of

matches, mismatches, insertions, and deletions and assign them a probability,

depending on the values of the various parameters of the model. It adjusts the par-

ameters so that the model represents as closely as possible the observed variation in

a group of related protein sequences. The sequences do not have to be aligned

prior to the application of the method. Models are trained with the Baum–Welch

algorithm, a type of EM algorithm. SAM can be found online at http://www.
cse.ucsc.edu/research/compbio/sam.

Furthermore, the notion of motifs has been used in protein classification to reduce

the complexity of the HMMs modeling a candidate category in this method. That

happens with the adoption of motif-based HMMs in the Meta-MEME system

[38], which takes as input the motifs discovered by MEME [35]. The PWMs can

be incorporated in the framework of the motif-based HMM and sequences of

unknown categorization can be scored against that model. Those HMMs can be

either linear or fully connected. Meta-MEME HMMs do not require large training

sets and they work properly when the amount of data for training the model is

limited. Nevertheless, the reduction in complexity in Meta-MEME is usually

accompanied by less accurate results in classification compared to SAM in larger

training sets.

In general, pairwise comparison techniques do not perform well as statistical

models, but still both models miss certain remote homologies. Moreover, it is

FIGURE 9.2. Schematic diagram of a HMM used for protein analysis. Three types of states

are employed: matching, insertion (for gap representation), and deletion (for mismatch

representation).
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difficult to correctly classify proteins which have major secondary structural simi-

larities when they do not show probable evolutionary origins. This means that the

methods cannot distinguish the proteins which belong at the same fold of the

SCOP hierarchy, especially when they do not belong to the same superfamily.

Identification of the fold to which a protein with unknown structure belongs is

enough to determine the type structure and understand its function. So we can

avoid the direct folding approach, which leads to the adoption of thermodynamic

optimization for determining the way a polypeptide really folds. Such methods,

called structure-based methods, identify the structural relationship without directly

using any sequence information [52–54]. They create an energy function describing

how well a probe sequence matches a target fold. The energy function is often

obtained from a database of known protein structures and may, for instance, describe

the environment of each residue or the probability to find two residues at a certain

distance from each other. Instead, one can relate the unknown protein with proteins

of known structure whose fold is already known and classify it to the fold which

better satisfies the similarity criteria. This is the indirect approach and here comes

the problem of fold recognition. The techniques already mentioned for sequence

analysis are widely used for fold recognition and are known as sequence-based

methods.

Among the sequence-based approaches, those that employ HMMs are the most

commonly used and demonstrate the higher performance. However, their main

drawback is the employment of large model architectures that demand large data

sets and high computational effort for training. As a consequence, where these

data sets are not available (e.g., small classes or folds), their performance deterio-

rates. In the following we present a recently introduced HMM that uses a reduced

state-space topology to deal with this problem and serves as a classification tool

for computational analysis of proteins [55]. It employs a small number of states

and adopts a training algorithm with very low complexity and fast application.

This HMM simultaneously learns amino acid sequence and secondary structure

for proteins of known three-dimensional structure and then is used for two tasks,

protein structural class prediction and fold recognition. Secondary-structure infor-

mation is introduced to the model to increase its performance. The problem here

is the multiclass classification of sequences, so the method employed should classify

a query sequence of unknown structural category in one of the candidate categories.

For class prediction a Bayesian multiclass classification approach was used while

for fold recognition a two-stage classifier was adopted. The obtained results are

equivalent or even better from other similar approaches (SAM) whereas the

computational load is significantly smaller.

More specifically, the number of states of the model is equal to the number of

different possible secondary-structure formations according to the DSSP alphabet

(H, B, E, G, I, T, and S). It is trained with a low-complexity likelihood maximization

algorithm for every candidate class and fold. The test sequences of the classes are

assigned to a class according to the Bayesian classification scheme, where different

models are trained for each class and the test sequences are assigned to that class

whose model gives the maximum probability. The corresponding test sequences
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of the folds are assigned to each fold according to a two-stage classifier. In the

first stage, the models of the classes are used to assign the sequences of each fold

test set to the appropriate class. Those correctly assigned classes are then assigned

to folds using the scores produced by the models of each class fold in the second

stage. So the Bayesian classification scheme is used in both stages shown in

Figure 9.3.

An alternative approach for fold recognition is the prediction-based method,

which predicts the secondary sequence of the protein and subsequently uses it to

determine the structure. Proteins having a similar fold by definition have very

similar secondary structure, meaning that even when amino acid compositions are

unrelated, the secondary structure should largely be the same within a fold. Since

secondary structure can be predicted with an accuracy of more than 70% [56, 57],

several attempts have been made to use this information to improve fold recognition

methods. These methods add a positive score to the sequence alignment score if the

predicted secondary sequence for a certain residue agrees with the secondary-

structure state of the residue.

Besides HMMs another machine learning approach used for protein classification

is the evolutionary algorithm. Genetic algorithms (GAs) are the best example for

this category. The basic idea of a GA is to maintain a population of knowledge struc-

tures (called chromosomes) each one representing a candidate solution to the

problem. This population evolves over time through competition and controlled

variation with the application of genetic operators. In an iterative process (see

Fig. 9.4), each chromosome is evaluated according to the quality of the solution

FIGURE 9.3. Two-stage HMM classifier. In the first stage the appropriate class is identified

while in the second stage the correct fold is defined.
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that it represents (fitness). Chromosomes are selected according to their fitness (by

the selection operator) and are combined (mated) in order to produce new chromo-

somes (by the crossover operator), hopefully combining the “good characteristics”

of the parent chromosomes. Some alterations in chromosomes are allowed (by the

mutation operator) in order to ensure that all parts of the search space will be

reached. The whole process ends if either a certain fitness value is achieved or a

maximum number of iterations is reached.

In structure-based fold recognition GAs are very common, as they are used to

optimize the energy function which describes how well the query sequence fits

with the target fold. Furthermore, GAs are one of the main means of energy

minimization in direct protein-folding methods where the best formation of amino

acid residues in space must be found. So they are employed in identifying three-

dimensional structures of arbitrary polypeptides in arbitrary environments. In that

case the most probable formation, that is, that with the minimum energy, gives

the tertiary structure of the protein and consequently the fold of the protein. Such

an optimization is very complicated as the possible solutions are too many, so

only GAs can get through it in a satisfactory way.

The fast messy GA [58] is used for that purpose, which is a particular type of

evolutionary algorithm. It is used for the exploitation of domain constraints (such

as dihedral angle constraints inspired by the Ramachandran plot, which are

FIGURE 9.4. Typical architecture of a GA.
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important structural characteristics) and the exploitation of prior secondary-

structure analysis. The fast messy GAs have proved to be an interesting and effective

computational technique for identifying three-dimensional structures. There are also

other GA applications used to minimize an energy function in order to find the

lowest energy conformation of a polypeptide based on the description of the

environment of each residue, for example using the hydrophobicity of each

residue [59].

Genetic algorithms, have also been applied as optimization tools in multiple

alignment and subsequent protein classification and prediction [60, 61]. Here

chromosomes are sequences or even whole alignments. The whole alignment task

begins with a set of initial alignments and iterates through realignment and model

assessment. During the iterative process new alignments are constructed by the

application of a number of operators, such as crossover or mutation (which for

the specific case can be gap insertion, gap deletion, or gap shift operations)

(Fig. 9.5).

Feed-forward artificial neural networks (ANNs) can also be used in protein

classification and prediction. In general, ANNs are pattern recognition tools

widely used in several research fields. They consist of three types of layers,

namely the input, hidden, and output layers (Fig. 9.6). In some architectures the

hidden layer contains two or more sublayers. All the layers are constituted from a

number of processing units, the nodes or neurons. These neurons are interconnected

and through a training process the interconnections or weights take specific values

adjusted to the classification problem under consideration. According to this

scheme, a feedforward ANN has been developed to recognize proteins belonging

to the ab-class [62]. To train and test the neural network, data from the CATH

database was employed. Before introducing the sequence data to the ANN for

classification, these were encoded and transformed using a simple conversion

process and the Fourier transform, respectively. Although this application of

FIGURE 9.5. GA operator (crossover) improving alignment.
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ANNs is limited to a certain class only, the results showed that such an approach can

be further exploited in protein classification.

A support vector machine (SVM) is another tool that is capable of yielding

significant performance in protein classification. In general, SVMs are used for a

variety of tasks such as function regression, which alters the parameters of a function

to match a curve. They are also very efficient for pattern recognition by producing a

decision surface between two sets of data points. The SVM is a special type of ANN

that approximately implements structural risk minimization (SRM) as opposed to

traditional empirical risk minimization (ERM), used in typical ANNs.

The SVM approaches have been implemented for multiclass protein fold recog-

nition with adequate results [63]. In addition, SVMs have been used in combination

with HMMs to detect remote protein homologies, and this approach has been proved

to be very successful in finding proteins belonging to the same superfamily [51].

In this method a generative HMM is used as a way of extracting features from

the variable-length protein sequences. This HMM represents the superfamily of

interest and is trained using sequences from that family. Positive and negative train-

ing sequences are then run through the model, and the feature vectors produced,

which represent the original protein sequences, can then be modeled in Euclidean

space. A SVM is then used to classify the data points into the superfamily of interest.

9.7. NATURAL LANGUAGE PROCESSING

The recent growth in gene sequencing and microarray technologies has led to an

explosive development of information and knowledge on genes and their protein

products. Although this new knowledge is stored in experiment-specific databases,

high-level knowledge about genes, such as function, is still disseminated as written

FIGURE 9.6. Typical architecture of feedforward ANN.
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natural language in journal articles and comment fields of database records [64]. The

volume of results makes human-based knowledge extraction almost impossible.

On the other hand, natural language processing (NLP) methods can efficiently

extract knowledge and make it accessible for computational analysis. As we will

see in the following paragraphs, this is an alternative/complementary approach to

the techniques described in the previous paragraphs since it can be applied in

cases such as homology and molecular interaction identification. First, we describe

the major features of a NLP system.

Natural language processing can be defined as the application of computational

tools to text for the extraction of knowledge/information. This broad definition

leads to the accommodation of several approaches. Therefore, NLP applications

can be from highly statistical to highly symbolic. Grammars, rules, and semantics

are used for text processing, while often some relationship is examined according

to a similarity measure.

Specific NLP components are used in each application, the specific combination

of which depends on both the goal and the approach of the specific application. In

general, a first step includes identification of the parts of interest (sentences/
words), often called tokenization. Specific heuristics identify sentence/word bound-
aries while sometimes the process is supported by a lexicon look-up. A preproces-

sing can also be applied, including decapitalizing, removal of special characters, and

so on. According to the level of syntactic analysis applied, a part-of-speech tagging

can be used where the part of speech (e.g., noun, verb) of each word is estimated.

Grammar is used in this step. This parsing often leads to a structured representation

of the sentence. Semantics can also be applied in this step. Finally, a mapping mech-

anism often identifies the similarities of sentences or phrases. Although we tried to

describe the NLP process in a “simplistic” way, specific linguistic phenomena

and language richness pose a high level of complexity. Specific approaches and

heuristics are developed for each step while the use of lexicons and ontologies

supports language processing.

Natural language processing has been used in biomedical applications for many

years. However, it is only since 1999 that we can identify applications in protein

analysis. Although other specific applications may exist, in the following we

group the relevant applications in four main categories: synonym, homology, and

relation/pathway identification and gene function extraction. A prerequisite step

in almost all the approaches is gene or protein identification. In the following

paragraphs we briefly present the application of NLP in these approaches:

1. Protein Identification The identification of protein/gene names is not a

trivial task since there are frequent deviations from recommended nomenclatures

or even different naming practices are exercised [64]. The NLP approaches to ident-

ify protein names range from simpler dictionary-based approaches to more compli-

cated syntax- and context-based ones. Dictionary-based approaches search from a

list of known names. Some can even allow for small variations of gene names;

for example, in [65] BLAST was adapted to search a database allowing for approxi-

mate textual matches (here sequences are composed of text characters). Since the
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volume of new information makes dictionary maintenance a hard task, more

advanced methods examine the morphology of words (e.g., [66]) for specific

“signals” such as suffixes, prefixes, and so on. For example, words with the

suffix-ase may be proteins. The use of syntax analysis, such as part-of-speech

tagging (i.e., identification of nouns, verbs, etc.) may enhance identification

results. Context-based approaches identify words in the context which may signal

the existence of proteins in the vicinity of these words [64, 67].

2. Synonym Identification The process in biology research aims at producing

additional names for the same substance or, vice versa, discovering that different

existing names describe the same substance. For example, lymphocyte associate

receptor of death is synonymous to LARD, to Apo3, to DR3, to TRAMP, to wsl,

and to TnfRSF12. This protein may appear with any of these names in the literature,

making it hard for biologists/researchers to find relevant knowledge. Synonym

identification approaches can be found which, according to the content of strings,

identify multiword synonyms [68] or map abbreviations to full texts [69, 70].

Vector space models and the calculation of the cosine as a similarity measure

between vectors and rule-based and machine learning techniques have been

applied in the above-mentioned approaches. At least one application [71] extends

the idea of similarity to contextual similarity; that is, two terms can be judged to

be similar/synonymous if they appear in similar (surrounding) contexts. In this

way new synonyms can be identified. For example, in [71] they claim to have

found a great number of synonyms in their data set not appearing in Swiss-Prot,

which when extended to the whole database could lead to the identification of a

significant number of novel synonym pairs.

3. Homology Identification Homology inferring through sequence similarity

can be enhanced with information coming from literature searches. In [72] the

PSI-BLAST algorithm, which is a modification of BLAST, was enhanced using

literature similarity at each iteration of its database search. A vector space model

is applied for the calculation of the similarity between two documents. In this way

a literature-based similarity between sequences can be obtained. Sequences that

lack sufficient literature-based similarity are removed; BLAST is applied among

the more “literature-based similar” ones. Supplementing sequence similarity with

information from the biomedical literature can increase the accuracy of homology

search results.

4. Relation/Pathway Identification The automated identification of molecular

interactions from the literature could allow biologists to extract knowledge from

recently discovered facts and experimental details. Matching of specific prespecified

templates (patterns) or rules has been used to extract protein–protein interactions

[73, 74]. Since matching a pattern implies a text following a specific pattern,

which does not occur often, shallow parsing of phrases [75] allows for identification

of certain phrasal components and the extraction of local dependencies between

them. Certain approaches (e.g., [73]) recognize noun phrases surrounding verbs

of interest (e.g., activate, bind, interact, regulate, encode, signal, and function).

Figure 9.7 presents the application of such an approach that yields the identification

of the interaction between STD1 and TBP proteins.
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In [75] partial parsing is performed for noun phrases and then through a dis-

course analysis identifies coreferring noun phrases. Finally, specific patterns

are filled. GENIES [76] can recognize about 125 verbs and subsequently par-

titions them into 14 broader semantic classes. GENIES employs full parsing

and uses syntactic and semantic knowledge. The output of GENIES is a

frame-based representation. For example the output for the phrase mediation

of sonic-hedgehog-induced expression of Coup-Tfii by a protein phosphatase is

(From [76])

[action,promote,[geneorprotein,phosphatase],
[action,activate, [geneorprotein,sonic hedgehog],
[action,express,X,[geneorprotein],Coup_Tfiii]]]]

This extraction of information becomes even harder in such phrases as “an active

phorbol ester must therefore, presumably by activation of protein kinase C, cause

dissociation of a cytoplasmic complex of NF-kappa B and I kappa B by modifying

I kappa B,” where three biological reactions are implied: (i) “an active

phorbol ester activates protein kinase C,” (ii) “the active phorbol ester modifies I

kappa B,” and (iii) “the active phorbol ester a cytoplasmic complex of NF-kappa

B and I kappa B.”

FIGURE 9.7. Protein–protein interaction identification (adapted from [74]).
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5. Gene Function Extraction Natural language processing can also be applied

for the extraction of function of gene products from the literature. In [77] an

approach similar to sequence alignment is applied, named sentence alignment,

where a sentence is divided into five segments (Prefix, tag 1, infix, tag 2, and suffix)

where tags are gene products or functions. Alignment for prefix, infix, and suffix

within texts is used for the validation of truth of the evidence of the specific func-

tions. They also use GeneOntology [78] as a source for synonyms. GeneOntology

is also used in [79] for assigning IDs of biological processes to each gene and

protein with the use of NLP. Applying dictionary-based name recognition, shallow

parsing, and pattern matching, they define actor–object relations, where actors are

genes and objects are functions. Then with a keyword-based process they assign the

GeneOntology ID to the gene/protein/family.

9.8. FUTURE TRENDS

More and more proteins are identified on a monthly basis leading to an increasing

need for understanding their biological role. Forthcoming research should focus

on the development of more sophisticated and, of course, more accurate structure

prediction and function determination methods. The vast information on proteins

deposited in many databases worldwide can be exploited by automated systems

which can process it faster and more efficiently than current methods. Besides

determining the overall function of each protein, another crucial task is to detect par-

ticular patterns in their structure responsible for specialized biological processes.

Such patterns can be of great importance in drug discovery and design since

additional and more coherent information can be obtained by them. Data-mining

techniques can offer much to this direction due to their ability to extract knowledge

from a set of data.
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&CHAPTER 10

Computational Analysis of
Interactions Between Tumor
and Tumor Suppressor Proteins

E. PIROGOVA, M. AKAY, and I. COSIC

10.1. INTRODUCTION

Cancer cell development is attributed to different mutations and alterations in

deoxyribonucleic acid (DNA). DNA is a large molecule structured from chains of

repeating units of the sugar deoxyribose and phosphate linked to four different

bases, abbreviated A, T, G, and C. DNA carries the genetic information of a cell

and consists of thousands of genes. DNA controls all cell biological activities.

Each gene serves as a recipe on how to build a protein molecule. Proteins

perform important tasks for the cell functions or serve as building blocks. The

flow of information from the genes determines the protein composition and

thereby the functions of the cell. The DNA is situated in the nucleus, organized

into chromosomes (Fig. 10.1). Every cell must contain the genetic information

and the DNA is therefore duplicated before a cell divides (replication). When pro-

teins are needed, the corresponding genes are transcribed into RNA (transcription).

The RNA is first processed so that noncoding parts are removed (processing) and is

then transported out of the nucleus (transport). Outside the nucleus, the proteins are

built based upon the code in the RNA (translation).

A significant role in current cancer research is attributed to bioengineering, which

is focused on understanding and interpretation of this disease, in terms of gene

identification, protein, and DNA modelling, aiming to better understand and evalu-

ate the biochemical processes in cells/tissues, the grounds of disease, and develop-

ment of progressive diagnostics and drugs using engineering instrumentation and

computer science methodologies.

Normally, cells grow and divide to form new cells, as the body needs them. When

cells grow old, they die, and new cells take their place. The cell cycle is an ordered
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set of events, culminating in cell growth and division into two daughter cells. Non-

dividing cells are not considered to be in the cell cycle. The stages, pictured in

Figure 10.2, are G1–S–G2–M. The G1 stage stands for gap 1. The S stage

stands for synthesis. This is the stage when DNA replication occurs. The G2

stage stands for gap 2. The M stage stands for mitosis and refers to when nuclear

(chromosomes separate) and cytoplasmic (cytokinesis) division occur.

How cell division and thus tissue growth are controlled is a very complex issue in

molecular biology. Sometimes this orderly process goes wrong. New cells form

FIGURE 10.1. Cell nucleus.
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when the body does not need them, and old cells do not die when they should. These

extra cells can form a mass of tissue called a growth or tumor. In cancer abnormal

cells divide without control, the regulation of the cell cycle goes awry, and normal

cell growth and behavior are lost. As a consequence cancer cells can invade nearby

tissues and then spread through the bloodstream and lymphatic system to other parts

of the body. Apparently, the cell will become cancerous when the right combination

of genes is altered.

However, there are some genes that help to prevent cell malignant behavior and

therefore are referred to as tumor suppressor genes. Tumor suppressor genes have

been detected in the human genome and are very difficult to isolate and analyse.

The Rb tumor suppressor gene is located on chromosome 13 of humans. This

gene suppresses the development of cancer as its dominant phenotype. Therefore

both alleles must be mutant for the disease to develop. The Rb gene product interacts

with a protein called E2F, the nuclear transcription factor involved in cellular repli-

cation functions during the S phase of the cell cycle. When the Rb gene product is

mutated, a cell division at the S phase does not occur and normal cells become can-

cerous. Located on human chromosome 17, p53 is another gene with tumor suppres-

sor activity. This protein contains 393 amino acids and a single amino acid

substitution can lead to loss of function of the gene. Mutations at amino acids

175, 248, and 273 can lead to loss of function, and changes at 273 (13%) are the

most common [1, 2]. These all act as recessive mutations. Dominant gain-of-

function mutations have also been found that lead to uncontrolled cell division.

Because these mutations can be expressed in heterozygous conditions, they are

often associated with cancers. The genetic function of the p53 gene is to prevent

a division of cells with damaged DNA. Damaged DNA could contain genetic

changes that promote uncontrolled cell growth. If the damage is severe, this

protein can cause apoptosis, forcing “bad” cells to commit suicide. The p53 levels

are increased in damaged cells. In some way, p53 seems to evaluate the extent of

FIGURE 10.2. Stages of the cell cycle.
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damage to DNA, at least for damage by radiation. At low levels of radiation, produ-

cing damage that can be repaired, p53 triggers arrest of the cell cycle until the

damage is repaired. At high levels of radiation, producing hopelessly damaged

DNA, p53 triggers apoptosis. If the damage is minor, p53 halts the cell cycle—

and hence cell division—until the damage is repaired. About 50% of human

cancers can be associated with a p53 mutation, including cancers of the bladder,

breast, cervix, colon, lung, liver, prostate, and skin. These types of cancers are

also more aggressive and have a higher degree of fatalities [1–4].

Other genes, known as proto-oncogenes, can promote cancer if they acquire new

properties as a result of mutations, at which point they are called oncogenes. Most

common cancers involve both inactivation of specific tumor suppressor genes and

activation of certain proto-oncogenes. Proto-oncogene proteins are the products of

proto-oncogenes. Normally they do not have oncogenic or transforming properties

but are involved in the regulation or differentiation of cell growth. They often

have protein kinase (protein phosphotransferase) activity.

There is another interesting group of proteins that play a significant “defending

role” in the cell life cycle—heat shock proteins (HSPs). They are a group of proteins

that are present in all living cells. The HSPs are induced when a cell is influenced by

environmental stresses like heat, cold, and oxygen deprivation. Under perfectly

normal conditions HSPs act like “chaperones,” helping new or distorted proteins

fold into shapes essential for their function, shuttling proteins, and transporting

old proteins to “garbage disposals” inside the cell. Also HSPs help the immune

system recognize diseased cells [5–7]. Twenty years ago HSPs were identified as

the key elements responsible for protecting animals from cancer, and studies

toward antitumor vaccine development still continue today. Today HSP-based

immunotherapy is believed to be one of the most promising areas of developing

cancer treatment technology that is characterized by a unique approach to every

tumor [5–7].

Recent findings in cancer research have established a connection between a

T-antigen—common virus—and a brain tumor in children. The studies suggested

the T-antigen, the viral component of a specific virus, called the JC virus, plays a

significant role in the development of the most frequent type of malignant brain

tumours by blocking the functionality of tumor suppressor proteins such as p53

and pRb. The JC virus (JCV) is a neurotropic polyoma virus infecting greater

than 70% of the human population worldwide during early childhood [1–4]. The

JC virus possesses an oncogenic potential and induces development of various

neuroectodermal origin tumors, including medulloblastomas and glioblastomas.

Medulloblastomas are the second most common type of brain tumor in children,

making up about 20% of cases. They grow fast and can spread widely throughout

the body, and nearly half of all children affected with them die. Radiation exposure

and certain genetic diseases are known to put children at risk, but in most cases the

cause of medulloblastomas is still a mystery [2].

The most important role in this process is attributed to T-antigen, which has the

ability to associate with and functionally inactivate well-studied tumor suppressor

proteins p53 and pRb. The immunohistochemical analyses revealed expression of
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JCV T-antigen in the nuclei of tumor cells [1–4]. The findings of “in vitro” cancer

research indicated that the sirnian virus gene SV40 induces neoplastic transform-

ation by disabling several key cellular growth regulatory circuits. Among these

are the Rb and p53 families of tumor suppressors. The multifunctional large

T-antigen blocks the function of both Rb and p53. Large T-antigen uses multiple

mechanisms to block p53 activity, and this action contributes to tumor genesis, in

part, by blocking p53-mediated growth suppression and apoptosis. Since the p53

pathway is inactivated in most human tumors, T-antigen/p53 interactions offer a

possible mechanism by which SV40 gene contributes to human cancer. Thus, analy-

sis of the gene encoding p53 and pRb proteins could serve to evaluate the effective-

ness of a cancer treatment. Mutations in this gene occur in half of all human cancers,

and regulation of the protein is defective in a variety of others. Novel strategies that

exploit knowledge of the function and regulation of p53 are being actively investi-

gated [1–4]. Strategies directed at treating tumors that have p53 mutations include

gene therapy, viruses that only replicate in p53-deficient cells, and the search for

small molecules that reactivate mutant p53. Potentiating the function of p53 in a

nongenotoxic way in tumors that express wild-type protein can be achieved by inhi-

biting the expression and function of viral oncoproteins [1–4].

Therefore an analysis of mutual relationships between viral proteins and two

groups of “natural defenders”—tumor suppressors, p53 and pRb, and HSPs—is of

great importance in the development of new methodology or drug design for

cancer treatment.

10.2. METHODOLOGY: RESONANT RECOGNITION MODEL

Currently a huge amount of scientific effort is directed at solving the problem of

finding a cure for cancer. New and advanced drugs and methodologies have been

developed and applied with some grade of success; however, the battle with

cancer is still continuing. There is an urgent need for theoretical approaches that

are capable of analyzing protein and DNA structure–function relationships

leading to the design of new drugs efficient to fight many diseases, including cancer.

The resonant recognition model (RRM) [8, 9] essentially presents a nontradi-

tional computational approach designed for protein and DNA structure–function

analysis and based on a nontraditional “engineering view” of biomolecules. This

methodology significantly differs from other protein analysis approaches, com-

monly used classical letter-to-letter or block-to-block methods (homology search

and sequence alignment), in terms of the view of the physical nature of molecule

interactions within the living cells. The RRM concepts present a new perspective

on life processes at the molecular level, bringing a number of practical advantages

to the fields of molecular biology, biotechnology, medicine, and agriculture.

The physical nature of the biological function of a protein or DNA is based on the

ability of the macromolecule to interact selectively with the particular targets (other

proteins, DNA regulatory segments, or small molecules). The RRM is a physico-

mathematical model that interprets protein sequence linear information using
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digital signal-processing methods (Fourier and wavelet transform) [8–13]. Initially

the original protein primary structure, that is, the amino acid sequence, is trans-

formed into the numerical sequence by assigning to each amino acid in the

protein molecule a physical parameter value relevant to the protein’s biological

activity. Accordingly to RRM main postulates, there is a significant correlation

between spectra of the numerical presentation of the protein sequences and their bio-

logical activity [8, 9]. A number of amino acid indices (437 have been published up

to now) have been found to correlate in some way with the biological activity of the

whole protein. Previous investigations [14–19] have shown that the best correlation

can be achieved with parameters related to the energy of delocalized free electrons

of each amino acid. These findings can be explained by the fact that these electrons

have the strongest impact on the electronic distribution of the whole protein. By

assigning the electron–ion interaction potential (EIIP) [20] value to each amino

acid, the protein sequence can be converted into a numerical sequence. These

numerical series can then be analyzed by appropriate digital signal-processing

methods (fast Fourier transform is generally used). The EIIP values for 20 amino

acids as well as for 5 nucleotides (the whole procedure can be applied to DNA

and RNA too) are shown in Table 10.1.

To determine the common frequency components in the spectra for a group of

proteins, multiple cross-spectral functions are used. Peaks in such functions denote

common frequency components for the sequences analyzed. Through an extensive

study, the RRM has reached a fundamental conclusion:One characteristic frequency

characterizes one particular biological function or interaction [8, 9]. This frequency

is related to the biological function provided the following criteria are met:

. One peak only exists for a group of protein sequences sharing the same bio-

logical function.

. No significant peak exists for biologically unrelated protein sequences.

. Peak frequencies are different for different biological functions.

It has been found through extensive research that proteins with the same biologi-

cal function have a common frequency in their numerical spectra. This frequency

was found to be a characteristic feature for protein biological function or interaction.

The results of our previous work are summarized in Table 10.2, where each

functional group of proteins or DNA regulatory sequences is shown with its

characteristic frequency and corresponding signal-to-noise ratio (S/N) within the

multiple cross-spectral function [9].

It is assumed that the RRM characteristic frequency represents a crucial par-

ameter of the recognition between the interacting biomolecules. In our previous

work [8, 9, 14–19] we have shown in a number of examples of different protein

families that proteins and their interacting targets (receptors, binding proteins,

inhibitors) display the same characteristic frequency in their interactions. However,

it is obvious that one protein can participate in more than one biological process, that

is, revealing more than one biological function. Although a protein and its target
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have different biological functions, they can participate in the same biological

process, which is characterized by the same frequency. Therefore, we postulate

that the RRM frequency characterizes a particular biological process of interaction

between selected biomolecules. Moreover, further research in this direction has led

to the conclusion that interacting molecules have the same characteristic frequency

but opposite phases at that frequency. Once the characteristic frequency for the par-

ticular biological function/interaction is determined, it becomes possible to identify

the individual “hot-spot” amino acids that contributed most to this specific character-

istic frequency and thus to the observed protein’s biological behavior. Furthermore, it

is possible then to design bioactive peptides having only the determined character-

istic frequency and consequently the desired biological function [18, 19, 21, 22, 23].

Here we present an application of the RRM approach to analysis of the mutual

relationships between brain-tumor-associated viral proteins T-antigen and agno-

protein, tumor suppressor proteins p53 and pRb, and HSPs. Also we present

the results of the study of possible interactions between melatonin, interleukin-2

TABLE 10.1 Electron–Ion Interaction Potential

(EIIP) Values for Nucleotides and Amino Acids

Nucleotide EIIP (Ry)

A 0.1260

G 0.0806

T 0.1335

C 0.1340

U 0.0289

Amino Acid EIIP (Ry)

Leu 0.0000

Ile 0.0000

Asn 0.0036

Gly 0.0050

Val 0.0057

Glu 0.0058

Pro 0.0198

His 0.0242

Lys 0.0371

Ala 0.0373

Tyr 0.0516

Trp 0.0548

Gln 0.0761

Met 0.0823

Ser 0.0829

Cys 0.0829

Thr 0.0941

Phe 0.0946

Arg 0.0959

Asp 0.1263
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TABLE 10.2 Characteristic RRM Frequencies for Protein Groups and DNA

Requlatory Sequences

Molecule Type Frequency No. Sequence S/N Error

DNA Regulatory Sequences

promoters 0.3437 53 128 0.016

operators 0.0781 8 44 0.008

SOS operators 0.4687 5 13 0.050

enhancers 0.4883 10 467 0.024

Protein Sequences

oncogenes 0.0313 46 468 0.004

kinases 0.4297 8 71 0.003

fibrinogens 0.4423 5 99 0.001

ACH receptors 0.4922 21 137 0.002

phages’ repressors 0.1054 4 51 0.005

bacterial repress. 0.0839 4 56 0.004

repressors 0.0990 25 198 0.008

heat shock proteins 0.0947 10 326 0.005

interferons 0.0820 18 117 0.008

hemoglobins 0.0234 187 119 0.008

signal proteins 0.1406 5 31 0.016

proteases’ inh. 0.3555 27 203 0.008

proteases 0.3770 80 511 0.004

trypsins, chym.tr 0.3447 18 257 0.004

chymotrypsin 0.2363 5 35 0.004

serine prot. 0.4609 41 504 0.004

restriction enzymes 0.2910 3 36 0.004

amylases 0.4121 12 170 0.002

neurotoxins 0.0703 16 60 0.004

growth factors 0.2929 105 200 0.016

ins.-like(IGF I,II) 0.4922 12 72 0.008

IGFBP (hum) 0.1602 6 172 0.001

FGFs 0.4512 7 121 0.005

NGFs 0.4040 8 192 0.008

glucagons 0.3203 13 71 0.034

homeo box proteins 0.0459 9 100 0.001

cytochromes B 0.0590 16 201 0.004

cytochromes C 0.4765 45 127 0.004

myoglobins 0.0820 49 128 0.004

lysozymes 0.3281 15 124 0.004

phospholipases 0.0430 29 115 0.004

actins 0.4800 12 163 0.002

myosins 0.3400 11 201 0.004

RNA polymerases 0.3350 10 256 0.001

protein A 0.0342 2 41 0.002
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(IL-2), and viral and tumor suppressor proteins that can elucidate why melatonin and

IL-2 might play a critical role as supplements in treatment of cancer diseases.

10.3. RESULTS AND DISCUSSIONS

10.3.1. Interactions Between Viral and Tumor Suppressor Proteins

The human neurotropic polyoma virus (JCV), produces a regulatory protein

T-antigen, which is a key component in the completion of the viral life cycle.

T-antigen has the ability to transform neural cells in vitro and its expression has

been detected in several human neural-origin tumors. The JC virus most likely

infects humans through the upper respiratory tract and remains in most people

throughout their lives and, in some cases, causes minor subclinical problems.

However, in people whose immune systems are depressed, either through che-

motherapy given to organ transplant recipients or an illness such as AIDS, JCV

can become active and may contribute to cancer in the brain [2]. Experimental find-

ings revealed that interactions of viral oncoprotein T-antigen with tumor suppressor

proteins could lead to induction of cancer [1–4].

In this study 8 JC viral T-antigen protein sequences, 13 p53 protein sequences,

and 9 pRb protein sequences were investigated concerning the understanding of

the structure–function relationship within these proteins. A multiple cross-spectral

analysis was performed for each selected protein group as well as for their mutual

combination using the EIIP values (Figs. 10.3a to 10.3f ). As a result, characteristic

frequencies of analyzed protein groups were obtained and are shown in Table 10.3.

The RRM analysis was applied to a group of 8 T-antigen proteins, and the common

feature in terms of characteristic frequency was identified at f ¼ 0.2061+ 0.125,

S/N ¼ 129.58. This frequency component is common to all analyzed sequences

and therefore can be considered as the consensus characteristic of their common bio-

logical activity for all protein sequences in this functional group.

The p53 tumor suppressor gene has proven to be one of the genes most often

mutated in human cancers. It involves mainly point mutations leading to amino

acid substitutions in the central region of the protein and thus causes its abnormal

functions. Because p53 and pRb proteins are the key players in defending our

body against cancer, it is of great importance to determine the characteristic frequen-

cies of these proteins that correspond to their biological functionality. Thus, the

RRM procedure was repeated with p53 and pRb tumor suppressor proteins and

their cross-spectral functions obtained are shown in Figures 10.3b and 10.3c. The

prominent characteristic frequencies of p53 and pRb tumor suppressor proteins

were identified at f ¼ 0.4326+ 0.077, S/N ¼ 159.97 and at f ¼ 0.4316+ 0.111,

S/N ¼ 164.28, respectively. As was mentioned above each specific biological

function of the protein is characterized by a single frequency. The similarity of

characteristic frequencies of p53 and pRb proteins (Table 10.3) is expected as

both p53 and pRb proteins are tumor suppressors sharing the same biological func-

tion. Thus, the frequency f ¼ 0.4326 identified within the RRM analysis is
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FIGURE 10.3. Multiple cross-spectral functions of protein groups: (a) JC viral T-antigen

proteins, (b) p53 proteins, (c) pRb proteins, (d ) JC viral T-antigen and p53 proteins, (e) JC

viral T-antigen and pRb proteins, and ( f ) T-antigen, p53 and pRb proteins. The prominent

peak(s) denote common frequency components. The abscissa represents RRM frequencies,

and the ordinate is the normalised intensity. The prominent peaks were found for T-antigen

at f1 ¼ 0.2061 and for p53 (pRb) proteins at f2 ¼ 0.4326.



FIGURE 10.3. Continued.

10.3. RESULTS AND DISCUSSIONS 267



considered as a characteristic feature of the specific biological activity of p53 and

pRb proteins—ability to stop the formation of tumors. After careful examining of

the corresponding consensus spectrums of p53 and pRb proteins (Figs. 10.3b and

10.3c), we observe more than one less significant peak corresponding to other

biological functions determined within the RRM analysis.

It is known that the human polyomavirus (JCV) also contains an open reading

frame within the late region of the viral genome that encodes a 71-aminoacid

protein, the agnoprotein. Following accumulating evidence in support of an associ-

ation between JCV infection and human brain tumors, the expression of agnoprotein

in a series of 20 well-characterized medulloblastomas was assessed [24]. Impor-

tantly, some medulloblastoma samples that expressed agnoprotein had no sign of

T-antigen expression. The p53 protein was detected in only 6 of the 11 tumors in

which agnoprotein was expressed. None of the 20 samples showed expression of

the viral late capsid proteins, ruling out productive infection of the tumor cells

with JCV. These data provide evidence that the JCV late gene encoding the auxiliary

agnoprotein is expressed in tumor cells. The finding of agnoprotein expression in the

absence of T-antigen expression suggests a potential role for agnoprotein in path-

ways involved in the development of JCV-associated medulloblastomas [24].

Despite all of this, the role of agnoprotein in the development of brain tumors is

still unknown. Recent studies suggest, however, that the interaction of T-antigen

with agnoprotein may affect T-antigen ability to control cell growth. The communi-

cation between these two viral proteins may impact the ability of the virus to induce

brain tumors [24]. The researchers also found agnoprotein and T-antigen in about

50% of the samples, with some samples containing only agnoprotein. They postu-

lated “the finding of agnoprotein expression in the absence of T-antigen expression

suggests a potential role for agnoprotein in pathways that control the development of

JCV-associated medulloblastomas [24].” Obviously further study is needed to prove

that the virus plays a significant role in formation of medulloblastomas [24].

TABLE 10.3 Peak Frequency and Signal-to-Noise Ratio of Protein Groups

Protein Group Frequency No. Sequence S/N
Standard Error,

1/No. Seq.

T-antigen 0:2061 8 129.58 0.125

Agnoprotein 0.3047 9 62.12 0.111

p53 0:4326 13 159.97 0.077

pRb 0:4316 9 164.28 0.111

T-antigen, p53 0:2021 21 312.36 0.048

T-antigen, pRb 0:2041 17 167.12 0.059

T-antigen, p53, pRb 0:2021 30 506.28 0.033

T-antigen, Agnoprotein 0:2480 17 130.86 0.059

T-antigen, Agnoprotein, p53 0.3564 30 288.49 0.033

T-antigen, Agnoprotein, pRb 0:2402 26 157.63 0.038

T-antigen, Agnoprotein, p53, pRb 0:2021 39 290.27 0.026

Agnoprotein, p53 0.3564 22 292.34 0.045

Agnoprotein, pRb 0.3096 18 176.23 0.056
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New findings in these studies can be used to develop therapeutic vaccines against T-

antigen and agnoprotein. Such vaccines could conceivably prevent the JCV from

inducing the formation of medulloblastomas.

Following the aim to explore the interactions between T-antigen and agnoprotein

and the possibility of the influence of agnoprotein on the interactions between

T-antigen and tumor suppressor proteins p53 and pRb, the RRM analysis was

performed. Peak frequency and signal-to-noise values are calculated and shown in

Table 10.3. Multiple cross-spectral functions of viral protein T-antigen, agnoprotein,

and their mutual interactions with tumor suppressor proteins p53 and pRb are shown

in Figures 10.4a to 10.4g.

10.3.2. Mutual Interactions between IL-2, Melatonin, Oncogene,
and Viral and Tumor Suppressor Proteins

The human body normally produces IL-2. This protein is a type of biological

response modifier, a substance that can improve the body’s natural response to

disease, enhances the ability of the immune system to kill tumor cells, and may inter-

fere with blood flow to the tumor. Aldesleukin is IL-2 that is made in the laboratory

for use in treating cancer and other diseases. Melatonin has now moved rapidly

center stage from an area of pure research interest to one of possible therapeutic

importance. Melatonin acts in multiple ways within the organism. Of particular

interest is the role of melatonin in cancer biology, its potential either by itself or

in combination with other drugs in cancer chemotherapy [25]. Numerous studies

FIGURE 10.4. Multiple cross-spectral functions of protein groups: (a) Agnoprotein,

(b) T-antigen and Agnoprotein, (c) T-antigen, Agnoprotein and p53 proteins, (d ) T-antigen,

Agnoprotein and pRb proteins, (e) T-antigen, Agnoprotein, p53 and pRb proteins,

( f ) Agnoprotein and p53 proteins, and (g) Agnoprotein and pRb proteins. The prominent

peaks were identified for Agnoprotein at f3 ¼ 0.3047, for T-antigen and Agnoprotein at

f4 ¼ 0.2480 and for Agnoprotein and p53 at f5 ¼ 0.3564 (Table 10.3).
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FIGURE 10.4. Continued.
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FIGURE 10.4. Continued.
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of melatonin and its effects on cancer have been conducted. Some suggest that mel-

atonin extends survival and improves the quality of life for patients with certain

types of untreatable cancers. Melatonin combined with IL-2 has been studied as

an anticancer treatment [25–28]. In one study of 80 cancer patients, use of melato-

nin in conjunction with IL-2 led to more tumor regression and better survival rates

than treatment with IL-2 alone. However, it was also reported that the results of 32

clinical studies designed to measure the effects of melatonin on cancer were mixed

and inconclusive [28]. A study of melatonin’s ability to ease the side effects of che-

motherapy drugs found that high doses of the hormone had little effect. It was sum-

marized that the antitumor activity of IL-2 is augmented by melatonin, resulting in a

decrease in the number of IL-2 doses needed to exert an anticancer response. More-

over, melatonin may increase the antitumor activity of IL-2 by inhibiting tumor

growth factor production. A pilot study was done using low-dose IL-2 plus melato-

nin in 14 patients with untreatable endocrine tumors. The results suggest that low-

dose IL-2 and melatonin may be a well-tolerated therapy for advanced endocrine

tumors. Also the results of the study show the objective tumor regression was

noted in 3 of the 14 patients (lung, kidney, and liver tumors) [28].

Taking into account the existing documented evidence of the possible influence

of melatonin on the biological performance of IL-2, a computational analysis of

mutual interactions between melatonin, IL-2, and oncogene proteins using the

RRM approach was performed. The values of characteristic frequencies and

signal-to noise ratios of each protein group analyzed are shown in Table 10.4. Multi-

ple cross-spectral functions of analyzed protein groups are shown in Figures 10.5a to

10.5g. In addition, the RRM was used to determine the characteristic frequencies of

melatonin protein and its interactions with viral and tumor suppressor proteins. The

peak frequencies of these selected proteins are shown in Table 10.5. The

resulting cross-spectral functions of the analyzed proteins can be observed from

Figures 10.6a to 10.6l.

It is proposed that the RRM characteristic frequencies present the common

feature of the interacting sequences and thus a common interaction. In our previous

work it was also proposed that this characteristic frequency could represent the

oscillations of a physical field, which are responsible for information transfer

between the interacting biomolecules [9]. As a consequence, it is postulated that

TABLE 10.4 Peak Frequency and Signal-to-Noise Ratio of Protein Groups

Protein Group Frequency Signal-to-Noise No. Sequence

Standard Error,

1/No. Seq.

Oncogene 0:0317 408.77 45 0.022

IL-2 0:0303 222.68 23 0.043

Melatonin 0.0205 403.58 28 0.036

IL-2, Melatonin 0.0283 486.17 51 0.020

IL-2, Oncogene 0:0322 435.09 68 0.015

IL-2, Melatonin,

Oncogene

0:0303 500.60 96 0.010

Melatonin, Oncogene 0.3379 493.50 73 0.014
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FIGURE 10.5. Multiple cross-spectral functions of protein groups analysed: (a) Oncogene,

(b) Inerleukin-2, (c) Melatonin, (d ) Interleukin-2 and Melatonin, (e) Interleukin-2 and Onco-

gene, ( f ) Interleukin-2, Melatonin and Oncogene, and (g) Melatonin and Oncogene proteins.

Prominent peaks were identified for Oncogenes at fx ¼ 0.0317, Melatonin at fy ¼ 0.0205,

Melatonin and Oncogene at fz ¼ 0.3379.



FIGURE 10.5. Continued.
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RRM characteristic frequency is a relevant parameter for mutual recognition

between biomolecules and is significant in describing the interaction between pro-

teins and their substrates or targets. Therefore, it is concluded that the RRM charac-

teristic frequency may dictate the specificity of the protein interactions [9].

From Figure 10.3d we can observe only one dominant peak corresponding to

the common frequency component for the combined group of T-antigen and p53

proteins at f ¼ 0.2021+ 0.048, S/N ¼ 312.36. Analogous results were obtained

in the analysis of interactions between T-antigen and pRb proteins. A single

FIGURE 10.5. Continued.

TABLE 10.5 Peak Frequency and Signal-to-Noise Ratio Values of Protein Groups

Protein Group Frequency S/N No. Sequence

Standard Error,

1/No. Seq.

Melatonin, T-antigen 0:0205 447.57 36 0.028

Melatonin, Agnoprotein 0.3359 274.32 37 0.027

Melatonin, Agnoprotein,

T-antigen

0.3359 211.13 45 0.022

Melatonin, p53 0:0215 512.76 41 0.024

Melatonin, pRb 0:0205 487.00 37 0.027

Melatonin, p53, pRb 0:0215 512.50 50 0.020

Melatonin, p53, T-antigen 0:0215 507.15 49 0.020

Melatonin, pRb, T-antigen 0:0205 500.93 45 0.022

Melatonin, p53, pRb,

T-antigen

0:0215 511.70 58 0.017

Melatonin, p53, pRb,

Agnoprotein

0:0215 511.67 59 0.017

Melatonin, p53, pRb,

Agnoprotein, T-antigen

0:0215 498.93 76 0.013
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peak corresponding to the protein’s biological activity was identified at

f ¼ 0.2041+ 0.059, S/N ¼ 167.12 (Fig. 10.3e). These characteristic frequencies

are very close to each other (Table 10.3), and they overlap with each other

within the calculation error, indicating their mutual recognition. Therefore, we

can conclude that this identified frequency can be considered a characteristic

feature of the mutual interactions between the analyzed proteins, T-antigen and

p53 and T-antigen and pRb, respectively, that might cause cell damage and

tumor induction in the brain.

Finally, we also explored the possibility of a mutual three-component interaction

between T-antigen, p53, and pRb proteins by applying the RRM cross-spectral

analysis to all three functional groups of proteins. Interestingly, we have found

that there is a very prominent frequency component (Fig. 10.3f) at

f ¼ 0.2021+ 0.033, S/N ¼ 506.28 (Table 10.3) shared by all analyzed sequences.

It should be noted that this frequency is the same (within the calculation error

of +0.033) as the characteristic frequency of T-antigen and pRb proteins

(Fig. 10.3e) and of T-antigen and p53 proteins, respectively (Fig. 10.3d ). Thus,

the results obtained indicate the common characteristic frequency for all three inter-

acting proteins—T-antigen, p53, and pRb proteins—at f ¼ 0.2021, which is a

characteristic feature of tumor formation. This would confirm the RRM main

concept that proteins and their targets recognize/interact with each other based on

the same (similar) characteristic frequency. Consequently, we conclude that the

FIGURE 10.6. Multiple cross-spectral function of protein groups: (a) Melatonin and

T-antigen, (b) Melatonin and Agnoprotein, (c) Melatonin, T-antigen and Agnoprotein, (d )

Melatonin and p53, (e) Melatonin and pRb, ( f ) Melatonin, p53 and pRb, (g) Melatonin,

pRb and T-antigen, ( j) Melatonin, p53, pRb, T-antigen, (k) Melatonin, p53, pRb, Agnopro-

tein, and (l ) Melatonin, p53, pRb, Agnoprotein, T-antigen. Prominent peaks were found for

Melatonin and T-antigen at fy ¼ 0.0205 and Melatonin, T-antigen, Agnoprotein at

fz ¼ 0.3359.
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FIGURE 10.6. Continued.
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FIGURE 10.6. Continued.
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FIGURE 10.6. Continued.
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three-component interaction between T-antigen, p53, and pRb proteins can be con-

sidered as a crucial condition in the process of brain tumor formation.

Also it can be observed from the two cross-spectral functions of agnoprotein and

T-antigen proteins (Figs. 10.4a and 10.4b) that characteristic frequencies of these

protein groups are different, leading to the conclusion that agnoprotein and

T-antigen protein will not interact with each other (Table 10.5). Interestingly to,

the same conclusion was withdrawn after finalizing the experimental study using

the T-antigen and agnoprotein [24]. Results of our computational analysis suggest

that only a four-component interaction between agnoprotein, T-antigen, p53, and

pRb proteins (Fig. 10.4e) gives the same characteristic frequency at f ¼ 0.2021

(characteristic feature of tumor development). Therefore it can be postulated that

a possible interaction between agnoprotein and pRb tumor suppressor proteins

may lead to the inactivation of pRb functionality that can initiate a process of a

tumor formation.

10.3.3. HSP and Tumour Suppressor Protein Interactions

Here 30 HSP sequences, 13 p53 protein sequences, and 9 pRb protein sequences

were investigated concerning the understanding of the structure–function relation-

ship within these proteins. A multiple cross-spectral analysis was performed for

each selected protein group as well as for their mutual combination using the

EIIP values (Figs. 10.7a to 10.7f ). As a result, characteristic frequencies of ana-

lyzed protein groups were obtained and are shown in Table 10.6. Also Continuous

Wavelet Transform (CWT) was used for the determination of functional active sites

of mouse HSP70/HSP90 protein (Fig. 10.8).

Initially the structure–function analysis was applied to a group of 30 HSP

sequences, and two peak frequencies were identified in their multiple cross-

spectrum: f1 ¼ 0.0195+ 0.033 characterizing HSP’s immunoregulatory activity

and f2 ¼ 0.4248+ 0.033 (the same frequency was identified for Fibroblast

Growth Factor (FGF) proteins in our previous studies [9, 19]) that characterize

the ability to regulate cell growth and differentiation (Fig. 10.7a).

The same procedure was repeated with p53 and pRb tumor suppressor proteins

(Figs. 10.7b and 10.7d ). The p53 tumor suppressor gene is one of the genes most

often mutated in human cancers. Its mainly point mutations lead to amino acid sub-

stitutions in the central region of the protein and thus cause its abnormal function.

The prominent characteristic frequencies of p53 and pRb tumor suppressor proteins

were identified at f ¼ 0.4326+ 0.077 and f ¼ 0.4316+ 0.111, respectively.

The similarity of characteristic frequencies of p53 and pRb proteins (Figs. 10.7b

and 10.7d) is expected as both p53 and pRb proteins have the same biological

function—tumor suppression. Thus, it has been suggested that the frequency

f ¼ 0.4316 identified within the RRM analysis be considered as a characteristic

feature of the specific biological activity of p53 and pRb proteins—regulation

of cells growth and proliferation—and consequently ability to prevent tumor

formation.

As was mentioned above in the consensus spectrum of HSPs (Fig. 10.7a), we can

observe two peaks with different amplitude ratios. One prominent peak at
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FIGURE 10.7. Multiple cross-spectral function of protein groups: (a) HSP proteins, (b) p53

proteins, (c) HSP and p53 proteins, (d ) pRb proteins, (e) HSP and pRb proteins, and ( f ) HSP,

p53 and pRb proteins. The prominent peaks were found for HSPs at fHSP ¼ 0.0195 and HSP,

p53, pRb at f2 ¼ 0.4316.



FIGURE 10.7. Continued.
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f ¼ 0.0195+ 0.033 corresponds to the HSP’s common biological activity—

immunological ability to defend cells against environmental stresses. However,

the existence of another less significant peak at f ¼ 0.4248+ 0.033 reveals that

HSPs can participate in more than one biological process (interact with other pro-

teins). This frequency identified for HSPs is of great importance as it is the same

(within the calculation error) as was determined for p53 and pRb tumor suppressors

(Figs. 10.7b and 10.7d ). This would confirm the RRM main postulate that proteins

and their targets recognize/interact with each other on the basis of the same (similar)

characteristic frequency underlying the possibility for HSPs and p53 and pRb

proteins to be involved in the same biological process (interact with each other).

Analyzing the mutual interactions between HSPs and p53 and pRb, respectively

TABLE 10.6 Peak frequency and Signal-to-Noise Values of Proteins Analysed

Protein Group Frequency S/N No. Sequence

Standard Error,

1/No.

HSP 0.0195 277.24 30 0.033

p53 0:4326 159.97 13 0.077

HSP, p53 0:4277 295.95 43 0.023

pRb 0:4316 164.28 9 0.111

HSP, pRb 0:4287 505.94 39 0.026

HSP, p53, pRb 0:4287 438.19 51 0.020

FIGURE 10.8. CWT scalogram of Hsp70/Hsp90 protein (mouse) using Morlet function.

The abscissa represents the position of amino acids in the protein molecule; ordinate is the

continuous scale (from 1 to 10).
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(Table 10.6), we obtain the same characteristic frequency f ¼ 0.4287 (within the cal-

culation error) for these analyzed proteins. From Figures 10.7c, 10.7e, and 10.7f we

can observe one dominant peak in each cross-spectral function, and all analyzed

sequences within the group have this frequency component in common (share the

common biological activity).

Therefore, we can conclude that this identified frequency f ¼ 0.4287 can be con-

sidered a characteristic feature of the three-component mutual interactions between

HSPs and p53 and pRb proteins, revealing the ability of these proteins to defend the

cell against cancer by suppressing tumor formation. Consequently, HSPs may play a

key role in the development of antitumor vaccines for very specific types of cancer.

10.3.4. Application of Wavelet Transform to Predict Protein
Functional Epitopes

It is known that a protein active site is usually built up of domain(s) within the

protein sequence. In our previous work [7–10] we demonstrated that by applying

the wavelet transform to the particular protein molecule we are able to observe a

whole frequency/spatial distribution and thus identify domains of high energy for

the particular RRM frequency along the protein sequence. These energy concen-

trated regions in the CWT scalogram were proposed as the most critical locations

of the protein’s biological functions. Results of our previous work suggested that

the Morlet wavelet is the most suitable wavelet function in the analysis of protein

active sites or domains [10–13, 21].

Here we applied the CWT approach to identify the functional epitopes (active

sites) of mouse HSP70/HSP90 protein (NP_058017, Entrez-Protein Database).

From Figure 10.8 we can observe high-energy locations for two characteristic fre-

quencies identified for HSPs using the RRM: for f1 ¼ 0.0195 the regions of

amino acids are at 225–235, 275–295, and 525–535; for f2 ¼ 0.4248 they are at

260–280, 410–415, and 500–505. These computationally predicted locations cor-

respond to the tetratricopeptide repeat (TPR) domain and binding motif identified

experimentally by other authors [7].

This study extends the application of the RRM approach to analysis of the poss-

ible effect of HSPs on the biological functionality of p53 and pRb tumor suppressor

proteins. The common frequency identified for HSPs and p53 and pRb proteins

implies that according to the RRM concepts HSPs can be involved in the interactive

biological process with tumor suppressor proteins. Thus, it indicates that HSPs may

play a key role in the process of tumor growth arrest and consequently may be a

crucial component for antitumor vaccine development. Also the wavelet transform

incorporated into the RRM presents an invaluable tool for computational allocation

of protein active/or binding sites.

10.4. CONCLUSION

We have shown previously that digital signal-processing methods can be used to

analyze linear sequences of amino acids to reveal the informational content of

proteins [8, 9]. This study extends the utility of the RRM procedures to the
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structure–function analysis of viral proteins, HSPs, and tumour suppressor p53 and

pRb proteins.

The results of our computational analysis clearly indicate that the RRM can

determine the protein characteristic frequencies crucial for biological activity/inter-
action of analyzed proteins. Hence, we can suggest that the RRM presents an engin-

eering tool based on digital signal processing that is able to identify the protein

characteristic patterns in protein sequences related to the common biological

function/interaction of studied proteins. Consequently, knowing the protein charac-
teristic frequency allows us to allocate the protein’s biological active site(s)

and design new peptides with the desired biological function. This novel prediction

scheme can be used to facilitate the structure–function studies under different

protein families and thus save the experimental cost greatly.

According to the RRM postulates, macromolecular interactions present the

transfer of resonant energy between interacting molecules. These energies are elec-

tromagnetic in nature. It is known that sunlight is the main cause and support of life.

Heat from the sun and sunlight are the main catalysts for the transformation of inor-

ganic substances into organic ones [9]. However, macromolecules, mainly proteins,

through their highly selective interactions with different targets, drive most of the

processes of life. If the first organic molecules performed their biological function

within the energy range of sunlight at the dawn of life, we can expect that more com-

plicated organic molecules, though with the same bioactivity, will maintain their

functioning within the same energy (frequency) range.

All the results obtained so far with the RRM applications lead to the conclusion that

eachmacromolecular biological process inside a living cell or tissue is characterized by

one frequency within a very wide frequency range from the extremely low infrared to

the ultraviolet. Heat from the sun and sunlight are electromagnetic radiation emitted in

a range of frequencies from the extremely low infrared to the ultraviolet, the same

range of frequencies predicted by the RRM to be responsible for protein–protein

and protein–DNA interactions, that is, the main intermolecular processes of life. We

can speculate that perhaps life’s intermolecular processes are carried out at their

own frequencies and these frequencies lie within the sunlight frequency range [9].

The concepts presented here might lead to a completely new perspective on life

processes at the molecular level. Consequently, they represent a step toward a better

understanding of biological processes and biomolecular interactions. This new

approach has enormous implications in the fields of molecular biology, biotechnol-

ogy, medicine, agriculture, and the pharmacology industry. The ability to improve

the predicted activity rates, alter substrate specificity, and design activity-modulat-

ing peptides purely from mathematical modeling via rational mechanism forms the

innovative basis of the RRM methodology.
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