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CYTOSKELETAL MECHANICS

This book presents a full spectrum of views on current approaches to modeling
cell mechanics. The authors of this book come from the biophysics, bioengi-
neering, and physical chemistry communities and each joins the discussion
with a unique perspective on biological systems. Consequently, the approaches
range from finite element methods commonly used in continuum mechanics
to models of the cytoskeleton as a cross-linked polymer network to models of
glassy materials and gels. Studies reflect both the static, instantaneous nature
of'the structure, as well as its dynamic nature due to polymerization and the full
array of biological processes. While it is unlikely that a single unifying approach
will evolve from this diversity, it is our hope that a better appreciation of the
various perspectives will lead to a highly coordinated approach to exploring the
essential problems and better discussions among investigators with differing
views.
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Preface

Although the importance of the cytoskeleton in fundamental cellular processes such
as migration, mechanotransduction, and shape stability have long been appreciated,
no single theoretical or conceptual model has emerged to become universally ac-
cepted. Instead, a collection of structural models has been proposed, each backed
by compelling experimental data and each with its own proponents. As a result, a
consensus has not yet been reached on a single description, and the debate continues.

One reason for the diversity of opinion is that the cytoskeleton plays numerous
roles and it has been examined from a variety of perspectives. Some biophysicists
see the cytoskeleton as a cross-linked, branched polymer and have extended previous
models for polymeric chains to describe the actin cytoskeleton. Structural engineers
have drawn upon approaches that either treat the filamentous matrix as a continuum,
above some critical length scale, or as a collection of struts or beams that resist
deformation by the bending stiffness of each element. Others observe the similarity
between the cell and large-scale structures whose mechanical integrity is derived
from the balance between elements in tension and others in compression. And still
others see the cytoskeleton as a gel, which utilizes the potential for phase transition
to accomplish some of its dynamic processes. Underlying all of this complexity is the
knowledge that the cell is alive and is constantly changing its properties, actively, as
a consequence of many environmental factors. The ultimate truth, if indeed there is a
single explanation for all the observed phenomena, likely lies somewhere among the
existing theories.

As with the diversity of models, a variety of experimental approaches have been
devised to probe the structural characteristics of a cell. And as with the models,
different experimental approaches often lead to different findings, often due to the
fact that interpretation of the data relies on use of one or another of the theories.
But more than that, different experiments often probe the cell at very different length
scales, and this is bound to lead to variations depending on whether the measurement
is influenced by local structures such as the adhesion complexes that bind a bead to
the cell.

We began this project with the intent of presenting in a single text the many and
varied ways in which the cytoskeleton is viewed, in the hope that such a collection
would spur on new experiments to test the theories, or the development of new theories
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themselves. We viewed this as an ongoing debate, where one of the leading proponents
of each viewpoint could present their most compelling arguments in support of their
model, so that members of the larger scientific community could form their own
opinions.

As such, this was intended to be a monograph that captured the current state of a
rapidly moving field. Since we began this project, however, it has been suggested that
this book could fill a void in the area of cytoskeletal mechanics and might be useful
as a text for courses taught specifically on the mechanics of a cell, or more broadly in
courses that cover a range of topics in biomechanics. In either case, our hope is that
this presentation might prove stimulating and educational to engineers, physicists,
and biologists wishing to expand their understanding of the critical importance of
mechanics in cell function, and the various ways in which it might be understood.

Finally, we wish to express our deepest gratitude to Peter Gordon and his colleagues
at Cambridge University Press, who provided us with the encouragement, technical
assistance, and overall guidance that were essential to the ultimate success of this
endeavor. In addition, we would like to acknowledge Peter Katsirubas at Techbooks,
who steered us through the final stages of editing.



1 Introduction, with the biological basis
for cell mechanics

Roger D. Kamm and Mohammad R. K. Mofrad

Introduction

All living things, despite their profound diversity, share a common architectural build-
ing block: the cell. Cells are the basic functional units of life, yet are themselves
comprised of numerous components with distinct mechanical characteristics. To per-
form their various functions, cells undergo or control a host of intra- and extracellular
events, many of which involve mechanical phenomena or that may be guided by the
forces experienced by the cell. The subject of cell mechanics encompasses a wide
range of essential cellular processes, ranging from macroscopic events like the main-
tenance of cell shape, cell motility, adhesion, and deformation to microscopic events
such as how cells sense mechanical signals and transduce them into a cascade of
biochemical signals ultimately leading to a host of biological responses. One goal
of the study of cell mechanics is to describe and evaluate mechanical properties of
cells and cellular structures and the mechanical interactions between cells and their
environment.

The field of cell mechanics recently has undergone rapid development with partic-
ular attention to the rheology of the cytoskeleton and the reconstituted gels of some of
the major cytoskeletal components — actin filaments, intermediate filaments, micro-
tubules, and their cross-linking proteins — that collectively are responsible for the main
structural properties and motilities of the cell. Another area of intense investigation is
the mechanical interaction of the cell with its surroundings and how this interaction
causes changes in cell morphology and biological signaling that ultimately lead to
functional adaptation or pathological conditions.

A wide range of computational models exists for cytoskeletal mechanics, ranging
from finite element-based continuum models for cell deformation to actin filament-
based models for cell motility. Numerous experimental techniques have also been
developed to quantify cytoskeletal mechanics, typically involving a mechanical per-
turbation of the cell in the form of either an imposed deformation or force and obser-
vation of the static and dynamic responses of the cell. These experimental measure-
ments, along with new computational approaches, have given rise to several theories
for describing the mechanics of living cells, modeling the cytoskeleton as a sim-
ple mechanical elastic, viscoelastic, or poro-viscoelastic continuum, a porous gel or
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soft glassy material, or a tensegrity (tension integrity) network incorporating discrete
structural elements that bear compression. With such remarkable disparity among
these models, largely due to the relevant scales and biomechanical issues of interest,
it may appear to the uninitiated that various authors are describing entirely different
structures. Yet depending on the test conditions or length scale of the measurement,
identical cells may be viewed quite differently: as either a continuum or a matrix
with fine microstructure; as fluid-like or elastic; as a static structure; or as one with
dynamically changing properties. This resembles the old Rumi tale about various
people gathered in a dark room touching different parts of an elephant, each coming
up with a different theory on what indeed that object was. Light reveals the whole
object to prove the unity in diversity.

The objective of this book is to bring together diverse points of view regarding cell
mechanics, to contrast and compare these models, and to attempt to offer a unified
approach to the cell while addressing apparently irreconcilable differences. As with
many rapidly evolving fields, there are conflicting points of view. We have sought in
this book to capture the broad spectrum of opinions found in the literature and present
them to you, the reader, so that you can draw your own conclusions.

In this Introduction we will lay the groundwork for subsequent chapters by provid-
ing some essential background information on the environment surrounding a cell,
the molecular building blocks used to impart structural strength to the cell, and the
importance of cell mechanics in biological function. As one would expect, diverse
cell types exhibit diverse structure and nature has come up with a variety of ways in
which to convey structural integrity.

The role of cell mechanics in biological function

This topic could constitute an entire book in itself, so it is necessary to place some
constraints on our discussion. In this text, we focus primarily on eukaryotic cells of
animals. One exception to this is the red blood cell, or erythrocyte, which contains
no nucleus but which has been the prototypical cell for many mechanical studies
over the years. Also, while many of the chapters are restricted to issues relating
to the mechanics or dynamics of a cell as a material with properties that are time
invariant, it is important to recognize that cells are living, changing entities with the
capability to alter their mechanical properties in response to external stimuli. Many
of the biological functions of cells for which mechanics is central are active processes
for which the mechanics and biology are intrinsically linked. This is reflected in many
of the examples that follow and it is the specific focus of Chapter 10.

Maintenance of cell shape

In many cases, the ability of a cell to perform its function depends on its shape,
and shape is maintained through structural stiffness. In the circulation, erythrocytes
exist in the form of biconcave disks that are easily deformed to help facilitate their
flow through the microcirculation and have a relatively large surface-to-area ratio to
enhance gas exchange. White cells, or leucocytes, are spherical, enabling them to roll
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Fig. 1-1. Some selected examples of cell morphology. (A) Neuron, with long projections (dendrites
and axons) that can extend a distance of 10 s of centimeters and form connections for communication
with other cells. (B) Cardiac myocyte, showing the striations associated with the individual sarcom-
eres of the contractile apparatus. (C) Various cells found in the arterial wall. Endothelial cells line the
vascular system, with a flattened, “pancake-like”” morphology; neutrophils circulate in the blood until
recruited by chemoattractants to transmigrate into the tissue and convert to macrophages; fibroblasts
function as the “factories” for the extracellular matrix; and smooth muscle cells contribute to vessel
contractility and flow control.

along the vascular endothelium before adhering and migrating into the tissue. Because
their diameter is larger than some of the capillaries they pass through, leucocytes
maintain excess membrane in the form of microvilli so they can elongate at constant
volume and not obstruct the microcirculation. Neuronal cells extend long processes
along which signals are conducted. Airway epithelial cells are covered with a bed
of cilia, finger-like cell extensions that propel mucus along the airways of the lung.
Some of the varieties of cell type are shown in Fig. 1-1. In each example, the internal
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Fig. 1-2. The processes contributing to cell migration: protrusion, adhesion, contraction, and rear
release. These steps can proceed in random order or simultaneously, but they all need to be operative
for cell migration to take place.

structure of the cell, along with the cell membrane, provides the structural integrity
that maintains the particular shape needed by the cell to accomplish its function,
although the specific components of the structure are highly variable and diverse.

Cell migration

Many cells migrate, certainly during development (as the organism grows its vari-
ous parts), but also at maturity for purposes of wound repair (when cells from the
surrounding undamaged tissue migrate into the wound and renew the tissues) and in
combating infection (when cells of the immune system transmigrate from the vascu-
lar system across the vessel wall and into the infected tissues). Migration is also an
essential feature in cancer metastasis and during angiogenesis, the generation of new
vessels.

Descriptions of cell migration depict a process that occurs in several stages: protru-
sion, the extension of the cell at the leading edge in the direction of movement; adhe-
sion of the protrusion to the surrounding substrate or matrix; contraction of the cell that
transmits a force from these protrusions at the leading edge to the cell body, pulling
it forward; and release of the attachments at the rear, allowing net forward move-
ment of the cell to occur (see, for example, DiMilla, Barbee et al., 1991; Horwitz and
Webb, 2003; Friedl, Hegerfeldt et al., 2004; Christopher and Guan, 2000; and Fig. 1-2).
These events might occur sequentially, with the cellular protrusions — called either
filopodia (“finger-like”) or lamellapodia (“sheet-like”) projections — occurring as dis-
crete events: suddenly reaching forward, extending from the main body of the cell, or
more gradually and simultaneously, much like the progressive advance of a spreading
pool of viscous syrup down an inclined surface. While it is well known that cells sense
biochemical cues such as gradients in chemotactic agents, they can also apparently
sense their physical environment, because their direction of migration can be influ-
enced by variations in the stiffness of the substrate to which they adhere. Whatever
the mode of migration, however, the central role of cell mechanics, both its passive
stiffness and its active contractility, is obvious.
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Fig. 1-3. Hair cells found in the inner ear transduce sound via the stereocilia that project from their
apical surface. As the stereocilia bundle moves in response to fluid oscillations in the cochlea, tension
in the tip link (a fine filament connecting the tip of one stereocilium to the side of another) increases,
opening an ion channel to initiate the electrochemical response.

Mechanosensing

Nowhere is the importance of biology in cell mechanics more evident than in the ability
of the cell to sense and respond to externally applied forces. Many — perhaps all —
cells are able to sense when a physical force is applied to them. They respond through
a variety of biological pathways that lead to such diverse consequences as changes in
membrane channel activity, up- or down-regulation of gene expression, alterations in
protein synthesis, or altered cell morphology. An elegant example of this process can
be found in the sensory cells of the inner-ear, called hair cells, which transduce the
mechanical vibration of the inner ear fluid into an electrical signal that propagates to
the brain (Hamill and Martinac, 2001; Hudspeth, 2001; Hudspeth, Choe et al., 2000).
By a remarkably clever design (Fig. 1-3), the stereocilia that extend from the apical
surface of the cells form bundles. The individual stereocilia that comprise a bundle
are able to slide relative to one another when the bundle is pushed one way or the other,
but some are connected through what is termed a “tip link” — nothing more than a fine
filament that connects the tip of one stereocilium to the side of another, the tension in
which is modulated by an adaption motor that moves along the internal actin filaments
and is tethered to the ion channel. As the neighboring filaments slide with respect to
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one another, tension is developed in the tip link, generating a force at the point where
the filament connects to the side of the stereocilium. This force acts to change the
conformation of a transmembrane protein that acts as an ion channel, causing it to open
and allowing the transient entry of calcium ions. This flux of positive ions initiates
the electrical signal that eventually reaches the brain and is perceived as sound.

Although the details of force transmission to the ion channel in the case of hair-
cell excitation are not known, another mechanosensitive ion channel, the Mechano-
sensitive channel of Large conductance (MscL) has been studied extensively (Chang,
Spencer et al., 1998; Hamill and Martinac, 2001), and molecular dynamic simulation
has been used to show how stresses in the cell membrane act directly on the channel
and cause it to change its conductance (Gullingsrud, Kosztin et al., 2001).

This is but one example of the many ways a cell can physically “feel” its surround-
ings. Other mechanisms are only now being explored, but include: (1) conformational
changes in intracellular proteins due to the transmission of external forces to the cell
interior, leading to changes in reaction rates through a change in binding affinity;
(2) changes in the viscosity of the cell membrane, altering the rate of diffusion of
transmembrane proteins and consequently their reaction rates; and (3) direct transmis-
sion of force to the nucleus and to the chromatin contained inside, affecting expression
of specific genes. These other mechanisms are less well understood than mechanosen-
sitive channels, and it is likely that other mechanisms exist as well that have not yet
been identified (for reviews of this topic, see Bao and Suresh, 2003; Chen, Tan et al.,
2004; Huang, Kamm et al., 2004; Davies, 2002; Ingber, 1998; Shyy and Chien, 2002;
Janmey and Weitz, 2004).

Although the detailed mechanisms remain ill-defined, the consequences of force
applied to cells are well documented (see, for example, Dewey, Bussolari et al., 1981;
Lehoux and Tedgui, 2003; Davies, 1995; McCormick, Frye et al., 2003; Gimbrone,
Topper et al., 2000). Various forms of force application — whether transmitted via
cell membrane adhesion proteins (such as the heterodimeric integrin family) or by
the effects of fluid shear stress, transmitted either directly to the cell membrane or via
the surface glycocalyx that coats the endothelial surface — elicit a biological response
(see Fig. 1-4). Known responses to force can be observed in a matter of seconds, as in
the case of channel activation, but can continue for hours after the initiating event, as
for example changes in gene expression, protein synthesis, or morphological changes.
Various signaling pathways that mediate these cellular responses have been identified
and have been extensively reviewed (Davies, 2002; Hamill and Martinac, 2001; Malek
and Izumo, 1994; Gimbrone, Topper et al., 2000).

Stress responses and the role of mechanical forces in disease

One reason for the strong interest in mechanosensation and the signaling pathways
that become activated is that physical forces have been found to be instrumental in the
process by which tissues remodel themselves in response to stress. Bone, for example,
is known to respond to such changes in internal stress levels as occur following fracture
or during prolonged exposure to microgravity. Many cells have shown that they can
both sense and respond to a mechanical stimulus. While many of these responses
appear designed to help the cell resist large deformations and possible structural
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Fig. 1-4. Forces experienced by the endothelial lining of a blood vessel and the various pathways of
force transmission, via receptor complexes, the glycocalyx, and the cytoskeleton even reaching the
nucleus, cell-cell adhesions, and cell-matrix adhesions. Any of these locations is a potential site at
which mechanical force can be transduced into a biochemical signal.

damage, others have an undesirable outcome, including atherosclerosis, arthritis, and
pulmonary hypertension; there exists an extensive literature on each of these topics.

Active cell contraction

One important subset of cells primarily exists for the purpose of generating force. Cell
types for which this is true include vascular smooth muscle cells, cardiac myocytes,
and skeletal muscle cells. While the force-generating structures may differ in detail,
the mechanisms of force generation have much in common. All muscle cells use
the molecular motor comprised of actin and myosin to produce active contraction.
These motor proteins are arranged in a well-defined structure, the sarcomere, and the
regularity of the sarcomeres gives rise to the characteristic striated pattern seen clearly
in skeletal muscle cells and cardiac myocytes (Fig. 1-5). Even nonmuscle cells contain
contractile machinery, however, used for a variety of functions such as maintaining
a resting level of cell tension, changing cell shape, or in cell migration. Most cells
are capable of migration; in many, this capability only expresses itself when the cell
is stimulated. For example, neutrophils are quiescent while in the circulation but
become one of the most highly mobile migratory cells in the body when activated by
signals emanating from a local infection.

Structural anatomy of a cell

Cells are biologically active, and their structure often reflects or responds to their
physical environment. This is perhaps the primary distinction between traditional
mechanics and the mechanics of biological materials. This is a fundamental difference
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Fig. 1-5. Cardiac myocytes in culture showing the internal striations corresponding to the individual
sarcomeres used for contraction. Courtesy of Jan Lammerding.

from inert materials and it must be kept in mind as we progress through the various
descriptions found in this book. A second important distinction from most engineering
materials is that thermal fluctuations often need to be considered, as these influence
both the biochemical processes that lead to intracellular remodeling but also directly
influence the elastic characteristics of the membrane and the biological filaments that
comprise the cytoskeleton.

Cells often do not constitute the primary structural elements of the tissue in which
they reside. For example, in either bone or cartilage, the mechanical stiffness of the
resident cells are inconsequential in terms of their contribution to the modulus of the
tissue, and their deformation is dictated almost entirely by that of the surrounding
matrix — collagen, and hydroxyapatite in the case of bone, and a mix of collagen and
proteoglycans with a high negative charge density in the case of cartilage. The role
of cells in these tissues is not structural, yet through the mechanisms discussed above,
cells are essential in regulating the composition and organization of the structures
contained in the extracellular regions that determine the tissue’s elasticity and strength
through the cellular response to stress.

In other tissues, the structural role of the resident cells is much more direct and
significant. Obviously, in muscle, the contractile force generated and the modulus
of the tissue, either in the contracted or the relaxed state, are dominated by cellular
activity. In other tissues, such as arterial wall or pulmonary airways, for example,
collagen and elastin filaments in the extracellular matrix normally balance the bulk of
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Table 1-1. Major families of adhesion molecules. (E)-extracellular; (I) intracellular

Family Location and/or function Ligands recognized

Integrins Focal adhesions, (E) fibronectin, collagen,
hemi-desmosomes, leukocyte laminin, immunoglobulins,
(“spreading”) adhesion, (I) actin filaments

primarily focal adhesions to
matrix but also in some cell-cell

adhesions
Selectins Circulating cells and endothelial Carbohydrates

cells, “rolling” adhesion
Ig superfamily Important in immune Integrins, homophillic
(immunoglobulin) response
Cadherens Adherens junctions, desmosomes  (E) homophillic, (I) actin

filaments, intermediate filaments

Transmembrane Fibroblasts, epithelial cells (E) collagen, fibronectin
proteoglycans (D) actin filaments, heterophillic

the stress. During activation of the smooth muscle, however, stress shifts from these
extracellular constituents to the contractile cells, and the vessel constricts to a diameter
much smaller than that associated with the passive wall stiffness. In the case of cardiac
tissue, the contractile cells, or myocytes (Fig. 1-5), constitute a large fraction of the
tissue volume and are primarily responsible for the stresses and deformations of the
myocardium that are time varying through the cardiac cycle.

The extracellular matrix and its attachment to cells

Contrary to the situation in most cell mechanics experiments in vitro, where forces
might be applied directly to the cells via tethered beads, a micropipette, an AFM probe,
or fluid shear stress, forces in vivo are often transmitted to the cell via the extracellular
matrix (ECM), which shares in the load-supporting function. Many cell membrane
receptors contain extracellular domains that bind to the various proteins of the ECM.
For example, members of the integrin family can bind to fibronectin, vitronectin,
collagen, and laminin. Intracellular domains of these same proteins bind directly
(or indirectly, through other membrane-associated proteins) to the cytoskeleton. The
number and variety of linking proteins is quite remarkable, as described in detail in a
recent review (Geiger and Bershadsky, 2002). Other adhesion molecules bind to the
ECM, basement membrane, neighboring cells, or cells suspended in flowing blood.
Adhesion molecules can be either homophillic (binding to other identical molecules)
or heterophillic (Table 1-1). Of these transmembrane molecules (both proteins and
proteoglycans) many attach directly to the cytoskeleton, which often exhibits a denser,
more rigid structure in the vicinity of an adhesion site.

Transmission of force to the cytoskeleton and the role
of the lipid bilayer

Cells are separated from the external environment by a thin lipid bilayer consisting of a
rich mix of phospholipids, glycolipids, cholesterol, and a vast array of transmembrane
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proteins that constitute about 50 percent of the membrane by weight but only 1 to
2 percent of the total number of molecules residing in the membrane. Phospholipids,
which are the most abundant, are amphipathic, having a hydrophilic part residing on
the outside surface of the bilayer and a hydrophobic part on the inside. Some of the
proteins serve as ion channels, others as a pathway for transmembrane signaling. Still
others provide a structural bridge across the membrane, allowing for direct adhesion
between the internal cytoskeleton and the extracellular matrix. Together, these are
commonly referred to as integral membrane proteins. Roughly half of these integral
proteins are able to freely diffuse within the membrane, while the rest are anchored
to the cytoskeleton.

In addition to its role in communicating stress and biochemical signals into the
cell, the membrane also serves a barrier function, isolating the cell interior from its
extracellular environment and maintaining the appropriate biochemical conditions
within for critical cell functions. By itself, the bilayer generally contributes little to
the overall stiffness of the cell, except in situations in which the membrane becomes
taut, as might occur due to osmotic swelling. In general, the bilayer can be thought
of as a two-dimensional fluid within which the numerous integral membrane proteins
diffuse, a concept first introduced in 1972 by Singer and Nicolson as the fluid mosaic
model (Singer and Nicolson, 1972). The bilayer maintains a nearly constant thick-
ness of about 6 nm under stress, and exhibits an area-expansion modulus, defined
as the in-plane tension divided by the fractional area change, of about 0.1-1.0 N/m
(for pure lipid bilayers) or 0.45 N/m (for a red blood cell) (Waugh and Evans, 1979).
Rupture strength, in terms of the maximum tension that the membrane can withstand,
lies in the range 0f 0.01-0.02 N/m, for a red blood cell and a lipid vesicle, respectively
(Mohandas and Evans, 1994). Values for membrane and cortex bending stiffness re-
ported in the literature (for example, ~2 — 4 x 10~ N.m for the red blood cell mem-
brane (Strey, Peterson etal., 1995; Scheffer, Bitleretal., 2001),and 1 — 2 x 10~"¥ N-m
for neutrophils (Zhelev, Needham et al., 1994), are not much larger than that for pure
lipid bilayers (Evans and Rawicz, 1990), despite the fact that they include the effects
of the membrane-associated cortex of cytoskeletal filaments, primarily spectrin in
the case of erythrocytes and actin for leukocytes. When subjected to in-plane shear
stresses, pure lipid bilayers exhibit a negligible shear modulus, whereas red blood cells
have a shear modulus of about 10~® N-s/m (Evans and Rawicz, 1990). Forces can
be transmitted to the membrane via transmembrane proteins or proteins that extend
only partially through the bilayer. When tethered to an external bead, for example,
the latter can transmit normal forces; when forces are applied tangent to the bilayer,
the protein can be dragged along, experiencing primarily a viscous resistance unless
it is tethered to the cytoskeleton. Many proteins project some distance into the cell,
so their motion is impeded even if they are not bound to the cytoskeleton due to steric
interactions with the membrane-associated cytoskeleton.

Intracellular structures

In this text we primarily address the properties of a generic cell, without explic-
itly recognizing the distinctions, often quite marked, between different cell types.
It is important, however, to recognize several different intracellular structures that
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influence the material properties of the cell that may, at times, need to be taken into
account in modeling. Many cells (leucocytes, erythrocytes, and epithelial cells, for
example) contain a relatively dense structure adjacent to the cell membrane called the
cortex, with little by way of an internal network. In erythrocytes, this cortex contains
another filamentous protein, spectrin, and largely accounts for the shape rigidity of
the cell. Many epithelial cells, such as those found in the intestine or lining the pul-
monary airways, also contain projections (called microvili in the intestine and cilia in
the lung) that extend from their apical surface. Cilia, in particular, are instrumental in
the transport of mucus along the airway tree and have a well-defined internal structure,
primarily due to microtubules, that imparts considerable rigidity.

Of the various internal structures, the nucleus is perhaps the most significant, from
both a biological and a structural perspective. We know relatively little about the
mechanical properties of the nucleus, but some recent studies have begun to probe
nuclear mechanics, considering the separate contributions of the nuclear envelope,
consisting of two lipid bilayers and a nuclear lamina, and the nucleoplasm, consisting
largely of chromatin (Dahl, Kahn et al., 2004; Dahl, Engler et al., 2005).

Migrating cells have a rather unique structure, but again are quite variable from
cell type to cell type. In general, the leading edge of the cell sends out protrusions,
either lamellipodia or filopodia, that are rich in actin and highly cross-linked. The
dynamics of actin polymerization and depolymerization is critical to migration and is
the focus of much recent investigation (see, for example Chapter 9 and Bindschadler,
Dewey, and McGrath, 2004). Active contraction of the network due to actin-myosin
interactions also plays a central role and provides the necessary propulsive force.

Actin filaments form by polymerization of globular, monomeric actin (G-actin)
into a twisted strand of filamentous actin (F-actin) 7-9 nm in diameter with structural
polarity having a barbed end and a pointed end. Monomers consist of 375 amino acids
with a molecular weight of 43 kDa. ATP can bind to the barbed end, which allows
for monomer addition and filament growth, while depolymerization occurs preferen-
tially at the pointed end (Fig. 1-6A). Filament growth and organization is regulated
by many factors, including ionic concentrations and a variety of capping, binding,
branching, and severing proteins. From actin filaments, tertiary structures such as
fiber bundles, termed “stress fibers,” or a three-dimensional lattice-like network can
be formed through the action of various actin-binding proteins (ABPs). Some ex-
amples of ABPs are fimbrin and «-actinin, both instrumental in the formation of
stress fibers or bundles of actin filaments, and filamin, which connects filaments into
a three-dimensional space-filling matrix or gel with filaments joined at nearly a right
angle. Recent rheological studies of reconstituted actin gels containing various con-
centrations of ABPs (see Chapter 2, or Tseng, An et al., 2004) have illustrated the
rich complexities of even such simple systems and have also provided new insights
into the nature of such matrices.

The importance of actin filaments is reflected in the fact that actin constitutes from 1
to 10 percent of all the protein in most cells, and is present at even higher concentrations
in muscle cells. Actin is thought to be the primary structural component of most
cells; it responds rapidly and dramatically to external forces and is also instrumental
in the formation of leading-edge protrusions during cell migration. As the data in
Table 1-2 illustrate, actin filaments measured by a variety of techniques (Yasuda,

11



12 R. D. Kamm and M. R. K. Mofrad

Fig. 1-6. Filaments that constitute the cytoskeleton. (A) Actin filaments. (B) Microtubules.
(C) Intermediate filaments.

Miyataetal., 1996; Tsuda, Yasutake etal., 1996; Higuchi and Goldman, 1995) are stiff,
having a persistence length of several microns, and an effective Young’s modulus,
determined from its bending stiffness and radius of 1 — 3 x 10° Pa, comparable to
that of polystyrene (3 x 10° Pa) and nearly equal to that of bone (9 x 10° Pa).
Microtubules constitute a second major constituent of the cytoskeleton. These are
polymerized filaments constructed from monomers of a- and B-tubulin in a helical
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Table 1-2. Elastic properties of cytoskeletal filaments

Diameter, Persistence Bending stiffness, Young’s

2a (nm) length, 7, (um) Kp (Nm?) modulus, £ (Pa)
Actin filament 6-8 15 7 x 1072¢ 1.3-2.5 x 10°
Microtubule 25 6000 2.6 x 1072 1.9 x 10°
Intermediate filament 10 ~1 4 x 1077 1 x 10°

The elastic properties of actin filaments and microtubules are approximately consistent with a prediction
based on the force of van der Waals attraction between two surfaces (J. Howard, 2001). Persistence length
(/p) and bending stiffness (Kp) are related through the expression /, = K/kpT. Bending stiffness and
Young’s modulus (E) are related through the expression Kz = El = %a“E for a solid rod of circular
cross-section with radius @, and 7 = %(ag - a?) for a hollow cylinder with inside and outside radii a;
and a,, respectively.

arrangement, both 55 kDa polypeptides, that organize into a small, hollow cylinder
(Fig. 1-6B). The filaments have an outer diameter of about 25 nm and exhibit a
high bending stiffness, even greater than that of an actin filament (Table 1-2) with
a persistence length of about 6 mm (Gittes, Mickey et al., 1993). Tubular structures
tend to be more resistant to bending than solid cylinders with the same amount of
material per unit length, and this combined with the larger radius accounts for the
high bending stiffness of microtubules despite having an effective Young’s modulus
similar to that of actin. Because of their high bending stiffness, they are especially
useful in the formation of long slender structures such as cilia and flagella. They also
provide the network along which chromosomes are transported during cell division.

Microtubules are highly dynamic, even more so than actin, undergoing constant
polymerization and depolymerization, so that the half-life of a microtubule is typically
only a few minutes. (Mitchison and Kirschner, 1984). Growth is asymmetric, as with
actin, with polymerization typically occurring rapidly at one end and more slowly
at the other, and turnover is generally quite rapid; the half-life of a microtubule is
typically on the order of minutes.

Intermediate filaments (IFs) constitute a superfamily of proteins containing more
than fifty different members. They have in common a structure consisting of a cen-
tral o-helical domain of over 300 residues that forms a coiled coil. The dimers then
assemble into a staggered array to form tetramers that connect end-to-end, forming
protofilaments (Fig. 1-6C). These in turn bundle into ropelike structures, each con-
taining about eight protofilaments with a persistence length of about 1 um (Mucke,
Kreplak et al., 2004). Aside from these differences in structure, intermediate fila-
ments differ from microfilaments and microtubules in terms of their long-term sta-
bility and high resistance to solubility in salts. Also, unlike polymerization of other
cytoskeletal filaments, intermediate filaments form without the need for GTP or ATP
hydrolysis.

In recent experiments, intermediate filaments have been labeled with a fluorescent
marker and used to map the strain field within the cell (Helmke, Thakker et al., 2001).
This is facilitated by the tendency for IFs to be present throughout the entire cell at a
sufficiently high concentration that they can serve as fiducial markers.

Of course these are but a few of the numerous proteins that contribute to the mechan-
ical properties of a cell. The ones mentioned above — actin filaments, microtubules,
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Fig. 1-7. A small sampling of the proteins found in a focal adhesion complex (FAC). Forces are
typically transmitted from the extracellular matrix (for example, fibronectin), via the integral mem-
brane adhesion receptors (¢ — and B—integrins), various membrane-associated proteins (focal adhe-
sion kinase (FAK), paxillin (Pax), talin, Crk-associated substrate (CAS)), to actin-binding proteins
(a-actinin) that link the FAC to the cytoskeleton. Adapted from Geiger and Bershadsky 2002.

and intermediate filaments — are primarily associated with the cytoskeleton, but even
within the cytoskeletal network are found numerous linking proteins (ABPs consti-
tuting one family) that influence the strength and integrity of the resulting matrix. In
addition to these are the molecular constituents of the cell membrane, nuclear mem-
brane, and all the organelles and other intracellular bodies that influence the overall
mechanical response of a cell. In fact, intracellular structure should be noted for its
complexity, as can be seen in Fig. 1-7, which shows just a small subset of the numerous
proteins that link the extracellular matrix and the cytoskeleton. Any of these consti-
tutes a pathway for transmitting force across the cell membrane, between the proteins
found in the adhesion complexes, and through the cytoskeletal network. To the extent
that a particular protein is located along the force transmission pathway, not only does
it play a role in transmitting stress, but it also represents a candidate for mechanosens-
ing due to the conformational changes that arise from the transmission of force.
Active contraction is another fundamental feature of the cytoskeleton that influ-
ences its structural properties. While this is an obvious characteristic of the various
types of muscle cell, most cells contain contractile machinery, and even in their resting
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state can exert a force on their surroundings. Forces have been measured in resting
fibroblasts, for example, where intracellular tension gives rise to stresses in the fo-
cal adhesions of the cell adherent to a flexible two-dimensional substrate of about
5 nN/um?, or 5 kPa (Balaban, Schwarz et al., 2001). In experiments with various cell
types grown in a three-dimensional gel such as collagen, the cells actively contract
the matrix by more than 50 percent (Sieminski, Hebbel et al., 2004). These contractile
forces are associated with intracellular molecular motors such as those in the myosin
family.

Overview

This book presents a full spectrum of views on current approaches to modeling cell
mechanics. In part, this diversity of opinion stems from the different backgrounds of
contributors to the field. Indeed, the authors of this book come from the biophysics,
bioengineering, and physical chemistry communities, and each joins the discussion
with a unique perspective on biological systems. Consequently, the approaches range
from finite element methods commonly used in continuum mechanics to models of
the cytoskeleton as a cross-linked polymer network to models of soft glassy materials
and gels. Studies reflect both the static, instantaneous nature of the structure as well
as its dynamic nature due to polymerization and the full array of biological processes.
It is unlikely that a single unifying approach will evolve from this diversity, in part
because of the complexity of the phenomena underlying the mechanical properties of
the cell. It is our hope, however, that a better appreciation of the various perspectives
will lead to a more highly coordinated approach to the essential problems and might
facilitate discussions among investigators with differing views.

Perhaps the most important purpose of this monograph is to stimulate new ideas
and approaches. Because no single method has emerged as clearly superior, this might
reflect the need for approaches not yet envisaged. That much of the work presented
here derives from publications over the past several years reinforces the notion that
cell mechanics is a rapidly evolving field. The next decade will likely yield further
advances not yet foreseen.
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2 Experimental measurements
of intracellular mechanics

Paul Janmey and Christoph Schmidt

ABSTRACT: Novel methods to measure the viscoelasticity of soft materials and new theories
relating these measurements to the underlying molecular structures have the potential to rev-
olutionize our understanding of complex viscoelastic materials like cytoplasm. Much of the
progress in this field has been in methods to apply piconewton forces and to detect motions
over distances of nanometers, thus performing mechanical manipulations on the scale of single
macromolecules and measuring the viscoelastic properties of volumes as small as fractions
of a cell. Exogenous forces ranging from pN to nN are applied by optical traps, magnetic
beads, glass needles, and atomic force microscope cantilevers, while deformations on a scale
of nanometers to microns are measured by deflection of lasers onto optical detectors or by high
resolution light microscopy.

Complementary to the use of external forces to probe material properties of the cell are
analyses of the thermal motion of refractile particles such as internal vesicles or submicron-sized
beads imbedded within the cell. Measurements of local viscoelastic parameters are essential for
mapping the properties of small but heterogeneous materials like cytoplasm; some methods,
most notably atomic force microscopy and optical tracking methods, enable high-resolution
mapping of the cell’s viscoelasticity.

A significant challenge in this field is to relate experimental and theoretical results derived
from systems on a molecular scale to similar measurements on a macroscopic scale, for example
from tissues, cell extracts, or purified polymer systems, and thus provide a self-consistent set
of experimental methods that span many decades in time and length scales. At present, the
new methods of nanoscale rheology often yield results that differ from bulk measurements by
an order of magnitude. Such discrepancies are not a trivial result of experimental inaccuracy,
but result from physical effects that only currently are being recognized and solved. This
chapter will summarize some recent advances in methodology and provide examples where
experimental results may motivate new theoretical insights into both cell biology and material
science.

Introduction

The mechanical properties of cells have been matters of study and debate for cen-
turies. Because cells perform a variety of mechanical processes, such as locomotion,
secretion, and cell division, mechanical properties are relevant for biological function.
Certain cells, such as plant cells and bacteria, have a hard cell wall that dominates
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the mechanics, whereas most other cells have a soft membrane and their mechan-
ical properties are determined largely by an internal protein polymer network, the
cytoskeleton. Early observations of single cells by microscopy showed regions of
cytoplasm that were devoid of particles undergoing Brownian motion, and therefore
were presumed to be “glassy” (see Chapter 3) or in some sense solid (Stossel, 1990).
The interior of the cell, variously called the protoplasm, the ectoplasm, or more gen-
erally the cytoplasm, was shown to have both viscous and elastic features. A variety
of methods were designed to measure these properties quantitatively.

Forces to which cells are exposed in a biological context

The range of stresses (force per area) to which different tissues are naturally exposed is
large. Cytoskeletal structures have evolved accordingly and are not only responsible
for passively providing material strength. They are also intimately involved in the
sensing of external forces and the cellular responses to those forces. How cells respond
to mechanical stress depends not only on specific molecular sensors and signaling
pathways but also on their internal mechanical properties or rheologic parameters,
because these material properties determine how the cell deforms when subjected to
force (Janmey and Weitz, 2004).

It is likely that different structures and mechanisms are responsible for different
forms of mechanical sensing. For example, cartilage typically experiences stresses on
the order of 20 MPa, and the individual chondrocytes within it alter their expression of
glycosaminoglycans and other constituents as they deform in response to such large
forces (Grodzinsky et al., 2000). Bone and the osteocytes within it respond to similarly
large stresses (Ehrlich and Lanyon, 2002), although the stress to which a cell imbedded
within the bone matrix is directly exposed is not always clear. At the other extreme,
endothelial cells undergo a wide range of morphological and transcriptional changes in
response to shear stresses less than 1 Pa (Dewey et al., 1981), and neutrophils activate
in response to similar or even smaller shear stresses (Fukuda and Schmid-Schonbein,
2003). Not only the magnitude but the geometry and time course of mechanical
perturbations are critical to elicit specific cellular effects. Some tissues like tendons
or skeletal muscle experience or generate mainly uniaxial forces and deformations,
while others, such as the cells lining blood vessels, normally experience shear stresses
due to fluid flow. These cells often respond to changes in stress or to oscillatory stress
patterns rather than to a specific magnitude of stress (Bacabac et al., 2004; Davies
et al., 1986; Florian et al., 2003; Ohura et al., 2003; Turner et al., 1995). Many cells,
including the cells lining blood vessels and epithelial cells in the lung, experience
large-area-dilation forces, and in these settings both the magnitude and the temporal
characteristics of the force are critical to cell response (Waters et al., 2002).

Methods to measure intracellular rheology by macrorheology,
diffusion, and sedimentation

The experimental designs to measure cytoplasmic (micro)rheology have to overcome
three major challenges: the small size of the cell; the heterogeneous structure of the
cell interior; and the active remodeling of the cytoplasm that occurs both constitutively,
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as part of the resting metabolic state, and directly, in response to the application of
forces necessary to perform the rheologic measurement. The more strongly the cell is
perturbed in an effort to measure its mechanical state, the more it reacts biochemically
to change that state (Glogauer et al., 1997). Furthermore it is important to distinguish
linear response to small strains from nonlinear response to larger strains. Structural
cellular materials typically have a very small range of linear response (on the order of
10 percent) and beyond that react nonlinearly, for example by strain hardening or shear
thinning or both in sequence. To overcome these problems a number of experimental
methods have been devised.

Whole cell aggregates

The simplest and in some sense crudest method to measure intracellular mechanics
is to use standard rheologic instruments to obtain stress/strain relations on a macro-
scopic sample containing many cells, but in which a single cell type is arranged in a
regular pattern. Perhaps the most successful application of this method has been the
study of muscle fibers, in which actin-myosin-based fibers are arranged in parallel and
attached longitudinally, allowing an inference of single cell quantities directly from
the properties of the macroscopic sample. One example of the validity of the assump-
tions that go into such measurements is the excellent agreement of single molecule
measurements of the force-elongation relation for titin molecules with macroscopic
compliance measurements of muscle fibers where the restoring force derives mainly
from a large number of such molecules working in series and in parallel (Kellermayer
et al., 1997). Another simple application of this method is the measurement of close-
packed sedimented samples of a single cell type, with the assumption that during
measurement, the deformation is related to the deformation of the cell interior rather
than to the sliding of cells past each other. Such measurement have, for example, shown
the effects of single actin-binding protein mutations in Dictyostelium (Eichinger
et al., 1996) and melanoma cells (Cunningham et al., 1992). These simple mea-
surements have the serious disadvantage that properties of a single cell require as-
sumptions or verification of how the cells attach to each other, and in most cases the
contributions of membrane deformation cannot be separated from those of the cell
interior or the extracellular matrix.

Sedimentation of particles

To overcome the problems inherent in the measurement of macroscopic samples, a
variety of elegant solutions have been devised. Generally, in order to resolve varying
viscoelastic properties within a system, one has to use probes of a size comparable
to or smaller than the inhomogeneities. Such microscopic probes can be fashioned
in different ways. One of the simplest and oldest methods to measure cytoplasmic
viscosity relies on observations of diffusion or sedimentation of intracellular gran-
ules with higher specific gravity through the cytoplasmic continuum. Generally these
measurements were performed on relatively large cells containing colored or re-
tractile particles easily visible in the microscope. Such measurements (reviewed in
Heilbrunn, 1952; Heilbrunn, 1956) are among the earliest to obtain values similar to
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those measured currently, but they are limited to specialized cells and cannot measure
elasticity in addition to viscosity.

Sedimentation measurements are done by a variety of elegant methods. One of the
earliest such studies (Heilbronn, 1914) observed the rate of falling of starch grains
within a bean cell and compared the rate of sedimentation of the same starch particles
purified from the cells in fluids of known densities and viscosities measured by con-
ventional viscometers, to obtain a value of 8 mPa.s for cytoplasmic viscosity. These
measurements were an early application of a falling-sphere method commonly used
in macroscopic rheometry (Rockwell et al., 1984). The viscosity of the cytoplasm in
this application was determined by relation to calibrated liquids; because the starch
particles are relatively uniform and could be purified from the cell, inaccuracies as-
sociated with measurement of their small size were avoided. More generally, any
gravity-dependent velocity V' of a particle of radius  and density o in the cytoplasm
of density p could be used to measure cytoplasmic viscosity 1 by use of the relation

_2g(0 —p)r?

V ’
9

(2.1)
in which g is the gravitational acceleration. Without centrifugation internal organelles
rarely sediment, but a sufficiently large density difference between an internal particle
and the surrounding cytoplasm could be created by injecting a small droplet of inert oil
into a large cell, like a muscle fiber (Reiser, 1949) to obtain values of 29 mPa.s from the
rate at which the drop rose in the cytoplasm. Alternatively, internal organelles could be
made to sediment by known gravitational forces in a centrifuge, and in various cells —
including oocytes, amoebas, and slime molds — cytoplasmic viscosities between 2
and 20 mPa.s have been commonly reported, although some much higher values
greater than 1 Pa.s were also observed (reviewed in Heilbrunn, 1956). The large
differences in viscosity were presumed to arise from experimental differences in the
sedimentation rates, because these early studies also showed that cytoplasm was a
highly non-Newtonian fluid and that the apparent viscosity strongly decreased with
increasing shear rate.

Diffusion

Measurements of viscosity by diffusion (Heilbrunn, 1956) have been done by first
centrifuging a large cell, such as a sea urchin egg or an amoeba, with sedimentation
forces typically between 100 and 5000 times that of gravity, sufficient for internal
organelles to get concentrated at the bottom while the cell remains intact. Then the
displacement of a single particle of radius » in one direction x(¢) is monitored, and
the cytoplasmic viscosity is measured from the Stokes-Einstein relation:

(1) = 3kB—T 2.2)

Tnr

where the brackets denote ensemble averaging, kp is the Boltzmann constant, and T is
temperature. Such measurements, dating from at least the 1920s (decades before video
microscopy and image processing) showed that the viscosity within sea urchin egg
cytoplasm was 4 mPa.s (4 cP), only four times higher than that of water, but that other
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cells exhibited much higher internal viscosities. Three other important features of
intracellular material properties were evident from these studies. First, it was shown
that the apparent viscosity of the protoplasm depended strongly on flow rates, as
varied, for example, by changing the sedimentation force in the centrifuge. Second,
viscous flow of internal organelles could generally be measured only deeper inside the
cell, away from the periphery, where an elastic cortical layer could be distinguished
from the more liquid cell interior. Third, the cellular viscosity was often strongly
temperature dependent.

Mechanical indentation of the cell surface

Glass microneedles

Glass needles can be made thin enough to apply to a cell measured forces large
enough to deform it but small enough that the cell is not damaged. An early use of
such needles was to pull on individual cultured neurons (Bray, 1984); these studies
showed how such point forces could be used to initiate neurite extension. Improved
instrumentation and methods allowed an accurate estimate of the forces needed to ini-
tiate these changes. The method (Heidemann and Buxbaum, 1994; Heidemann et al.,
1999) begins with calibration of the bending constant of a wire needle essentially by
hanging a weight from the end of a thin metal wire and determining its spring constant
from deflection of the loaded end by the relation:

FL?

(L) =357 (23)

where y(L) is the displacement of the end of a wire of length L, F' is the force due
to the weight, E is the material’s Young’s modulus of elasticity, and / = 7r*/4 is the
second moment of inertia of the rod of radius r.

The product £/ is a constant for each rod; in practice the first calibrated rod is used
to provide a known (smaller) force to a thinner, usually glass, rod, to calibrate that
rod, and repeat the process until a rod is calibrated that can provide nN or smaller
forces depending on its length and radius.

Cell poker

A pioneering effort to apply forces locally to the surface of live cells was the devel-
opment of the cell poker (Daily et al., 1984; Petersen et al., 1982). In this device,
shown schematically in Fig. 2-1, a cell is suspended in fluid from a glass coverslip on
an upright microscope, below which is a vertical glass needle attached at its opposite
end to a wire needle that is in turn coupled to a piezoelectric actuator that moves the
wire/needle assembly up and down. The vertical displacements of both ends of the
wire are measured optically, and a difference in the displacements of these points, x,
occurs because of resistance to moving the glass needle tip as it makes contact with
the cell. The force exerted by the tip F on the cell surface is determined by Hooke’s
law F' = kx from the stiffness of the wire &, which can be calibrated by macroscopic
means such as the hanging of known weights from a specified length of wire. Using this
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Fig. 2-1. Schematic representation of the cell-poking apparatus. Positioning of the cell (C)
relative to the poker tip (T) is achieved by translating the top of the temperature control unit (TC)
or by rotating the holder on which the coverslip is mounted. The motor assembly can be translated
to ensure the tip is positioned in the field of view. W, steel wire; LPM, linear piezoelectric mo-
tor; MS and TS, optical sensors; MF, motor flag; TF, tip flag; MO, modulation contrast objective;
MC, matching condenser.

instrument, displacements less than 100 nm can be resolved corresponding to forces
less than 10 nN. A typical force vs. displacement curve from this instrument as shown
in Fig. 2-2 reveals a significant degree of both elasticity and unrecoverable deforma-
tion from plasticity or flow of the cytoplasm. Such measurements have demonstrated
both a significant elastic response as well as a plastic deformation of the cell, and the
time course and magnitudes of these processes can be probed by varying the rate at
which the forces are applied. Because the tip is considerably smaller than the cross-
sectional area of the cell, local viscoelasticity could be probed at different regions
of the cell or as active motion or other responses are triggered. The earliest such
measurements revealed a large difference in relative stiffness over different areas of
the cell and a high degree of softening when actin-filament-disorganizing drugs like

Fig. 2-2. Force displacement curve as the cell poker tip first indents the cell (upper curve) and then
is lowered away from the cell contact (lower curve).

23



24

P. Janmey and C. Schmidt

Fig. 2-3. Cell poking with the tip of an atomic force microscope. Upper image: If a regular sharp
tip is used, inhomogeneities encountered on the nm scale of the tip radius are likely to make the
result difficult to interpret. Lower image: Using a micrometer-sized bead attached to the tip, force
sensitivity is maintained while the cell response is averaged over a micrometer scale.

cytochalasin were applied. The measurements also showed that the apparent stiffness
of the cell increased as the amplitude of indentation increased. How this nonlinear
elastic response is related to the material properties of the cell is, however, not straight-
forward to deduce, because of a number of complicating effects, as the earliest such
studies pointed out.

For a homogeneous, semi-infinite elastic solid, given the geometry of the glass
needle tip and the force of indentation, the force-displacement curves are determined
by two material properties, the Young’s modulus and Poisson’s ratio, in a way that is
described by the Hertz relation. For a sphere the result for the force as a function of
indentation depth § is (Hertz, 1882; Landau and Lifshitz, 1970):
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with the Young’s modulus £, Poisson ratio v, and sphere radius R. For indentation
with a conical object, the result is:
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with the cone opening angle «.

The application of the Hertz model in relation to cell-poking measurements is,
however, often not meaningful for at least three reasons. First, the Hertz relation
is not valid if the cell thickness is not much greater than the degree of indentation.
Second, the cell cytoskeleton is in most cases far from being an isotropic homogeneous
material. And third, forces exerted on a cell typically initiate biochemical as well as
other active reactions. These issues have been extensively discussed both in terms of
the cell poker (Daily et al., 1984), and more recently in applications of the scanning
force microscope that operates on the same principle.
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Atomic force microscopy

A very sensitive local mechanical probe is provided by atomic force microscopy
(AFM). An AFM in an imaging mode works by scanning a sharp microfabricated
tip over a surface while simultaneously recording tip deflection. The deflection time
course is then converted into an image of the surface profile (Binnig et al., 1986).
Imaging can be done in different modes — contact mode (Dufrene, 2003), tapping
mode (Hansma et al., 1994), jumping mode (de Pablo et al., 1998) or others — which
are usually designed to minimize damage to the sample or distortions of the surface
by the imaging method. When one wants to probe the mechanical properties of a
material surface, however, one can also use an AFM tip to exert precisely controlled
forces in selected locations and record the corresponding sample displacements. In
many ways this method is related to cell poking with larger probes, but it holds the
potential of better spatial and force resolution. The obvious limitation of the technique
is that manipulation can only occur through the accessible surface of a cell, that is
one cannot measure elastic moduli well inside the cell without an influence of bound-
ary conditions. One can both indent cells or pull on cells when the tips are attached
strongly enough to the cell surface. The indentation approach has been used to test the
elastic properties of various types of cell. Initial studies have used conventional sharp
(radius of 10s of nm) tips and applied the Hertz model as described above (reviewed in
MacKintosh and Schmidt, 1999). The same caveats hold in this case as in the discus-
sion of other cell-poking experiments: the cell is not a homogeneous, isotropic, passive
elastic solid. The thin parts of cells, at the cell periphery in surface-attached cells, are
particularly interesting to study because they are crucial for cell motility but are usu-
ally too thin to apply the standard Hertz model. When using an AFM with a sharp tip,
the spatial inhomogeneity of cells — for example the presence of bundles of actin (stress
fibres), microtubules, and more — is likely more of a problem, because spatial averag-
ing in the case of a larger probe tends to make the material look more homogeneous.
Results of initial experiments were thus rather qualitative, but differences between the
cell center and its periphery could be detected (Dvorak and Nagao, 1998). A problem
with quasi-static or low-frequency measurements is that the cell will react to forces
exerted on it and the response measured will not only reflect passive material prop-
erties, but also active cellular responses. AFM has also been used on cells in a high-
frequency mode, namely the tapping mode. It was observed that cells dynamically
stiffened when they were probed with a rapidly oscillating tip, as one would expect
(Putman et al., 1994).

A more quantitative technique has been developed more recently, using polystyrene
beads of carefully controlled radius attached to the AFM tips to contact cells (Mahaffy
et al., 2004; Mahaffy et al., 2000). This creates a well-defined probe geometry and
provides another parameter, namely bead radius, to control for inhomogeneities. Val-
ues for zero-frequency shear moduli were between 1 and 2 kPa for the fibroblast
cells studied. The probing was in this case also done with an oscillating tip, to
measure frequency-dependent viscoelastic response with a bandwidth of 50-300 Hz
and data were evaluated with an extended Hertz model valid for oscillating probes
(Mabhafty et al., 2000). A problem for determining the viscous part of the response is
the hydrodynamic drag on the rest of the cantilever that dominates and changes
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with decreasing distance from the surface and with tip-sample contact and is not easy
to correct for.

The Hertz model has been further modified to account for finite sample thickness
and boundary conditions on the substrate (Mahaffy et al., 2004), which makes it
possible to estimate elastic constants also for the thin lamellipodia of cells, which
were found again to be between 1 and 2 kPa in fibroblasts.

Mechanical tension applied to the cell membrane

Pulling on a cell membrane by controlled suction within a micropipette has been
an important tool to measure the viscosity and elastic response of cells to controlled
forces. The initial report of a cell elastimeter based on micropipette aspiration (Mitchi-
son and Swann, 1954) has guided many studies that have employed this method to
deform the membranes of a variety of cells, especially red blood cells, which lack
a three-dimensional cytoskeleton but have a continuous viscoelastic protein network
lining their outer membrane (Discher et al., 1994; Evans and Hochmuth, 1976). One
important advantage of this method is that the cell can either be suspended in solution
while bound to the micropipette or attached to a surface as the micropipette applies
negative pressure from the top. The ability to probe nonadherent cells has made mi-
cropipette aspiration a powerful method to probe the viscoelasticity of blood cells
including erythrocytes, leukocytes, and monocytes (Chien et al., 1984; Dong et al.,
1988; Richelme et al., 2000).

A typical micropipette aspiration system is shown in Fig. 2-4. Images of two red
blood cells partly pulled into a micropipette are shown in Fig. 2-5. Micropipette aspi-
ration provides measures of three quantities: the cortical tension in the cell membrane;
the cytoplasmic viscosity; and the cell elasticity. If the cell can be modeled as a liquid
drop with a cortical tension, as appears suitable to leukocytes under some conditions,
the cortical tension t is calculated from the pressure at which the aspirated part of the
cell forms a hemispherical cap within the pipette.

For a cell modeled as an elastic body, its Young’s modulus E is determined by the
relation
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where AP is the pressure difference inside and outside the pipette, L, is the length
of the cell pulled into the pipette with radius R, and ¢ is a geometric constant with
a value around 2.1 (Evans and Yeung, 1989).

For liquid-like flow of cells at pressures exceeding the cortical tension, the cyto-
plasmic viscosity is calculated from the relation

R,Ap
n= )
dL
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where 7 is the viscosity, R is the diameter of the cell outside the pipette, and m is a
constant with a value around 9 (Evans and Yeung, 1989).
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Fig. 2-4. Experimental study of cell response to mechanical forces. Cells are deposited on the stage
of an inverted microscope equipped with a video camera. The video output is connected to a digitizer
mounted on a desk computer. Cells are aspirated into micropipettes connected to a syringe mounted
on a syringe holder. Pressure is monitored with a sensor connected to the computer. Pressure and time
values are superimposed on live cell images before recording on videotapes for delayed analysis.
From Richelme et al., 2000.

Fig. 2-5. Aspiration of a flaccid (a) and swollen (b) red blood cell into a pipette. The diameter of the
flaccid cell is approximately 8 pwm and that of the swollen cell is about 6 um. The scale bars indicate
5 um. From Hochmuth, 2000.
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Fig. 2-6. Diagram for a device for compression of a cell between microplates. Variations of this
design also allow for imposition of shear deformation. From Caille et al., 2002.

Shearing and compression between microplates

For cells that normally adhere to surfaces, an elegant but technically challenging
method to measure viscoelasticity is by attaching them at both top and bottom to glass
surfaces that can be moved with respect to each other in compression, extension, or
shear (Thoumine et al., 1999). A schematic diagram of such a system is shown in
Fig. 2-6.

In this method a cell such as a fibroblast that adheres tightly to glass surfaces coated
with adhesion proteins such as fibronectin is grown on a relatively rigid plate; a second,
flexible plate is then placed on the top surface. Piezo-driven motors displace the rigid
plate a known distance to determine the strain, and the deflection of the flexible
microplate provides a measure of the stress imposed on the cell surface. Use of this
device to provide well-defined strains with simultaneous imaging of internal structures
such as the nucleus provides a measure of the elastic modulus of fibroblasts around
1000 Pa, consistent with measurements by AFM, and has shown that the stiffness of
the nucleus is approximately ten times greater than that of the cytoplasmic protein
networks (Caille et al., 2002; Thoumine and Ott, 1997). A recent refinement of the
microcantilever apparatus allows a cell in suspension to be captured by both upper
and lower plates nearly simultaneously and to measure the forces exerted by the cell
as it begins to spread on the glass surfaces (Desprat et al., 2005).

Fluid flow

Cells have to withstand direct mechanical deformations through contact with other
cells or the environment, but some cells are also regularly exposed to fluid stresses,
such as vascular endothelial cells in the circulating system or certain bone cells
(osteocytes) within the bone matrix. Cells sense these stresses and their responses
are crucial for many regulatory processes. For example, in vascular endothelial cells,
mechanosensing is believed to control the production of protective extracellular matrix
(Barbee et al., 1995; Weinbaum et al., 2003); whereas in bone, mechanosensing is
at the basis of bone repair and adaptive restructuring processes (Burger and Klein-
Nulend, 1999; Wolff, 1986). Osteocytes have been studied in vitro after extraction from
the bone matrix in parallel plate flow chambers (Fig. 2-7). Monolayers of osteocytes
coated onto one of the chamber surfaces were exposed to shear stress while the
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Fig. 2-7. Fluid flow system to stimulate mechanosensitive bone cells, consisting of a culture chamber
containing the cells, a pulse generator controlling the fluid flow, and flow meters. The response of
the cells is either biochemically measured from the cells after the application of flow (for example
prostaglandin release) or measured in the medium after flowing over the cells (for example nitric
oxide). From Klein-Nulend et al., 2003.

response was measured by detecting the amount of nitric oxide produced as a function
of fluid flow rate (Bacabac et al., 2002; Rubin and Lanyon, 1984).

The strain field within individual surface-attached cells in response to shear flow
has been mapped in bovine vascular endothelial cells with the help of endogenous
fluorescent vimentin (Helmke et al., 2003; Helmke et al., 2001). It was found that
the spatial distribution of strain is rather inhomogeneous, and that strain is focused to
localized areas within the cells. The method can only measure strain and not stress.
The sites for mechanosensing might be those where strain is large if some large
distortion of the sensing element is required to create a signal, in other words, if
the sensor is “soft.”” On the other hand, the sites for sensing might also be those
where stress is focused and where little strain occurs if the sensing element re-
quires a small distortion, or is “hard,” and functions by having a relatively high force
threshold.

Numerical simulations can be applied to both the cell and the fluid passing over it.
A combination of finite element analysis and computational fluid dynamics has been
used to model the flow across the surface of an adhering cell and to calculate the shear
stresses in different spots on the cell (Barbee et al., 1995; Charras and Horton, 2002).
This analysis provides a distribution of stress given a real (to some resolution) cell
shape, but without knowing the material inhomogeneities inside, the material had to
be assumed to be linear elastic and isotropic. The method was also applied to model
stress and strain distributions inside cells that were manipulated by AFM, magnetic
bead pulling or twisting, and substrate stretching, and proved useful to compare the
effects of the various ways of mechanical distortion.
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Fig. 2-8. Schematic diagram of an optical trap.

Optical traps

Optical traps (see Fig. 2-8) use a laser beam focused through a high-numerical aper-
ture microscope objective lens to three-dimensionally trap micron-sized refractile
particles, usually silica or latex beads (Ashkin, 1997; Svoboda and Block, 1994). The
force acting on the bead at a certain distance from the laser focus is in general very
difficult to calculate because (1) a high-NA laser focus is not well approximated by a
Gaussian, and (2) a micron-sized refractive particle will substantially affect the light
field. Approximations are possible for both small particles (Rayleigh limit) and large
particles (ray optics limit) with respect to the laser wave length. For a small particle,
the force can be subdivided into a “gradient force” pulling the particle towards the
laser focus and a scattering force pushing it along the propagation direction of the
laser (Ashkin, 1992). Assuming a Gaussian focus and a particle much smaller than
the laser wavelength, the gradient forces in radial and axial direction are (Agayan

et al., 2002):
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with complex polarizability « = &’ 4 ia”, laser intensity /o, wy the beam radius in the
focus, and w(z) = woy/1 + (z/2¢) ? the beam radius near the focus; zg = 7 w(z) /Am the
Rayleigh range, k,, = 27 /1, the wave vector, with A,, the wavelength in the medium
with refractive index n,,. (For details and prefactors see Agayan et al., 2002).

Stable trapping will only occur if the gradient force wins over the trapping force all
around the focus. Trap stability thus depends on the geometry of the applied field and
on properties of the trapped particle and the surrounding medium. The forces generally
depend on particle size and the relative index of refractionn =n,/n,,, where n,, and
n,, are the indices of the particle and the medium, respectively, which is hidden in
the polarizability « in Eqs. 2.8-2.11. In the geometrical optics regime, maximal trap
strength is particle-size-independent, but increases with n over some intermediate
range until, at larger values of n, the scattering force exceeds the gradient force. The
scattering force on a nonabsorbing Rayleigh particle of diameter d is proportional
to its scattering cross-section, thus the scattering force scales with the square of the
polarizability (volume) (Jackson, 1975), or as d°. The gradient force scales linearly
with polarizability (volume), that is, it has a d>-dependence (Ashkin et al., 1986;
Harada and Asakura, 1996).

A trappable bead can then be attached to the surface of a cell and can be used to
deform the cell membrane locally. The method has the advantage that no mechanical
access to the cells is necessary. Using beads of micron size furthermore makes it
possible to choose the site to be probed on the cell with relatively high resolution.
A disadvantage is that the forces that can be exerted are difficult to increase beyond
about 100 pN, orders of magnitude smaller than can be achieved with micropipettes
or AFM tips. At high laser powers, local heating may not be negligible (Peterman
et al., 2003a). Force and displacement can be detected, however, with great accuracy,
sub-nm for the displacement and sub-pN for the force, using interferometric methods
(Gittes and Schmidt, 1998; Pralle et al., 1999). This makes the method well suited
to study linear response parameters of cells. Interferometric detection can also be
as fast as 10 ps, opening up another dimension in the study of cell viscoelasticity.
Focusing on different frequency regimes should make it, for example, possible to
differentiate between active, motor-driven responses and passive viscoelasticity. Such
an application of optical tweezers is closely related to laser-based microrheology,
which can also be applied inside the cells (see Passive Microrheology). We will here
focus on experiments that have used the optical manipulation of externally attached
beads.

Optical tweezers have been used by several groups to manipulate human red blood
cells (see Fig. 2-9), which have no space-filling cytoskeleton but only a membrane-
associated 2D protein polymer network (spectrin network). The 2D shear modulus
measured for the cell membrane plus spectrin network varies between 2.5 uN/m
(Henon et al., 1999; Lenormand et al., 2001) and 200 uN/m (Sleep et al., 1999), pos-
sibly due to different modeling approaches in estimating the modulus. The nonlinear
part of the response of red blood cells has been explored by using large beads and high
laser power achieving a force of up to 600 pN. The shear modulus of the cells levels
off at intermediate forces before rising again at the highest forces, which was simu-
lated in finite element models of the cells under tension (Dao et al., 2003; Lim et al.,
2004).
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Fig. 2-9. Stretching of red blood cells by optical tweezers, using a pair of beads attached to diamet-
rically opposed ends of the cell. Forces are given next to the panels. From Henon et al., 1999.

Magnetic methods

Using magnetic particles has the advantage that large forces (comparable to AFM) can
be exerted, while no open surface is required. One can use magnetic fields to apply
forces and/or torques to the particles. Ferromagnetic particles are needed to apply
torques; paramagnetic particles are sufficient to apply force only. A disadvantage
of the magnetic force method is that it is difficult to establish homogeneous field
gradients (only gradients exert a force on a magnetic dipole), and the dipole moments
of microscopic particles typically scatter strongly. Furthermore, one is often limited
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Fig. 2-10. A magnetic manipulation system to measure viscoelasticity in a single cell. From
Freundlich and Seifriz, 1922.

to video rates for displacement detection when using the force method. Rotations can
be detected by induction for ensembles of particles.

One of the first reports of an apparatus to measure intracellular viscoelasticity
was from Freundlich and Seifriz (1922). A diagram of the instrument is shown in
Fig. 2-10.

In this instrument, a micromanipulator mounted next to the microscope objective
was used to insert a magnetic particle, made of nickel or magnetite, into a relatively
large cell like a sand dollar egg. Then a magnetic field gradient, produced by an
electromagnet placed as close as possible to the cell, was used to impose a force on
the bead, whose displacement was measured by the microscope. The strength of the
force on the bead could be calibrated by measuring the rate of its movement through
a calibration fluid of viscosity that could be measured by conventional rheometers.
This magnetic manipulation instrument was the precursor of current magnet-based
microrheology systems, and was further enhanced by work of Crick and Hughes
(1950), who made two important modifications of the experimental design. One was
to first magnetize the particle with a large magnetic field, and then use a smaller
probing magnetic field directed at a different angle to twist particles on or within the
cell. The second change was to use phagocytic cells that would engulf the magnetic
particle, thereby avoiding possible damage to the cell when magnetic particles were
forced through its membrane. These early studies were done before the cytoskeleton
was visualized by electron or fluorescence microscopy and before the phospholipid
bilayer forming the cell membrane was characterized, so a critical evaluation could not
be done of how disruptive either way of introducing the beads was. Further pioneering
work was done on amoebae (Yagi, 1961) and on squid axoplasm (Sato et al., 1984).
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In principle, the motion of embedded probes will depend on the probe size. Small
particles can diffuse through the meshes, and this has been used to determine effective
mesh sizes in model systems (Jones and Luby-Phelps, 1996; Schmidt et al., 1989;
Schnurr et al., 1997) and in cells (Jones et al., 1997; Luby-Phelps, 1994; Valentine
et al., 2001). On the other hand, the beads might interact with and stick to the cyto-
skeleton, possibly mediated by an enveloping lipid membrane and by motor proteins,
which would cause active motion. How micron-sized beads are coupled to the net-
work in which they are imbedded is still a major issue in evaluating microrheology
measurements, and no optimal method to control or prevent interactions yet exists.
Entry of a particle through phagocytosis certainly places it in a compartment distinct
from the proteins forming the cytoskeleton, and how such phagosomes are bound to
other cytoplasmic structures is unclear. Likewise, both the mechanical and chemical
effects of placing micron-sized metal beads in the cell raises issues about alignment
and reorganization of the cytoskeleton. These issues will be further considered in the
following sections.

Pulling by magnetic field gradients

Magnetic particles can either be inserted into cells or bound — possibly via specific
attachments — to cell surfaces. Both superparamagnetic particles (Bausch et al., 1998;
Keller et al., 2001) and ferro- as well as ferrimagnetic particles (Bausch et al., 1999;
Trepat et al., 2003; Valberg and Butler, 1987) have been used. Paramagnetic particles
will experience a translational force in a field gradient, but no torque. With sharpened
iron cores reaching close to the cells, forces of up to 10 nN have been generated
(Vonna et al., 2003). Ferromagnetic (as well as ferrimagnetic) particles have larger
magnetic moments and therefore need less-strong gradients, which can be produced
by electromagnetic coils without iron cores and can therefore be much more rapidly
modulated. The particles have to be magnetized initially with a strong homogeneous
field. Depending on the directions of the fields, particles will experience both torque
and translational forces in a field gradient (see Fig. 2-11). Forces reported are on the
order of pN (Trepat et al., 2003).

Forces exerted by the cell in response to an imposed particle movement, both
on the membrane and inside the cell, are mostly dominated by the cytoskeleton.
Exceptions are cases where the particle size is smaller than the cytoskeletal mesh
size; specialized cells, such as mammalian red blood cells without a three-dimensional
cytoskeleton; or cells with a disrupted cytoskeleton after treatment with drugs such
as nocodazole or cytochalasin. The interpretation of measured responses needs to
start from a knowledge of the exact geometry of the surroundings of the probe and
it is difficult, even when the particle is inserted deeply into the cell. This is due to
the highly inhomogeneous character of the cytoplasm, consisting of different types of
protein fibers, bundles, organelles, and membranes. Because a living cell is an active
material that is slowly and continuously changing shape, responses are in general
time dependent and contain passive and active components. Passive responses to low
forces are often hidden under the active motions of the cell, while responses to large
forces do not probe linear response parameters, but rather nonlinear behavior and
rupture of the networks. Given all the restrictions mentioned, a window to measure
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Fig. 2-11. Schematic diagram of a magnetic tweezers device using a magnetic field gradient. From
Trepat et al., 2003.

the passive mechanical properties of cells appears to be to apply large strains, or to
apply relatively high-frequency oscillatory strain at small amplitudes, while active
responses can best be measured at low frequencies.

A number of experiments performed inside cells have observed the creep response
to the instantaneous application of large or small forces (Bausch et al., 1999; Bausch
etal., 1998; Feneberg et al., 2001). Bulk shear moduli were found to vary from ~20 Pa
in the cytoplasm of Dictyostelium to ~300 Pa inside macrophages. At higher forces
and strains, differences in rupture forces were found between mutant Dictyostelium
cells and wild-type controls, highlighting the roles of regulatory proteins for the
properties of the cytoskeleton (Feneberg et al., 2001).

With particles attached to the surface of cells, a shear modulus between 20 and
40 kPa was measured in the cortex of fibroblasts (Bausch et al., 1998), qualitative
differences were measured between unstimulated and stimulated (stiffening) vascu-
lar endothelial cells (Bausch et al., 2001), and an absolute value of about 400 Pa
was estimated from subsequent work (Feneberg et al., 2004). Active responses of
macrophages and the formation of cell protrusion under varying forces were also
tested with externally attached magnetic beads (Vonna et al., 2003).

Twisting of magnetized particles on the cell surface and interior

Applying a pure torque to magnetic particles avoids the difficulties of constructing
a well-controlled field gradient. Homogeneous fields can be created rather easily.
The method most widely used was pioneered by Valberg and colleagues (Valberg
and Butler, 1987; Valberg and Feldman, 1987; Wang et al., 1993) and consists of
using a strong magnetic field pulse to magnetize a large number of ferromagnetic
particles that were previously attached to an ensemble (20,000—40,000) of cells. A
weaker probe field oriented at 90° to the induced dipoles then causes rotation, which
is measured in a lock-in mode with a magnetometer. In an homogeneous infinite
medium, an effective shear modulus can be determined simply from the angle «
rotated in response to an applied torque 7: G = T'/a. On the surface of cells, however,
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the boundary conditions are highly complex, and a substantial polydispersity within
the bead ensemble is expected (Fabry et al., 1999). Therefore the method has been
mainly used for determining qualitative behavior, for comparative studies of different
cell types, and for studies of relative changes in a given cell population. Frequency
dependence of the viscoelastic response was measured with smooth muscle cells
between 0.05 and 0.4 Hz (Maksym et al., 2000) and with bronchial epithelial cells
up to 16 Hz (Puig-de-Morales et al., 2001) (see also Chapter 3). The shear elastic
modulus was found to be around 50 Pa with a weak frequency dependence in both
cases.

Rotation in response to torque can also be detected on individual particles by video
tracking when beads are attached to the outsides of cells. In that case the torque causes
center-of-mass displacement, which can be tracked with nm accuracy (Fabry et al.,
2001). Tracking individual particles makes it possible to study the heterogeneity of
response between different cells and in different locations on cells. In conjunction
with fluorescent labeling it is possible to explore the strains caused by locally imposed
stresses; initial studies reveal that the strain field is surprisingly long-range (Hu et al.,
2003). Using oscillatory torque and phase-locking techniques, the bandwidth of this
technique was extended to 1 kHz (Fabry et al., 2001). While absolute shear moduli
were still not easy to determine because of unknown geometrical factors such as depth
of embedding, the bandwidth was wide enough to study the scaling behavior of the
complex shear modulus more extensively. The observed weak power-laws (exponent
between 0.1 and 0.3) appear to be rather typical for cells in that frequency window and
were interpreted in terms of a soft glass model. Finite element numerical modeling
has been applied to analyze the deformations of cells when attached magnetic beads
are rotated (Mijailovich et al., 2002) to test the limits of linearity in the response as
well as the effect of finite cell thickness and surface attachment.

Passive microrheology

To measure the viscoelastic properties of a system, it is not necessary to apply external
forces when one employs microscopic probes. In a soft-enough medium, thermal fluc-
tuations will be measurable and these fluctuations precisely report the linear-response
viscoelastic parameters of the medium surrounding the probe. This connection is for-
malized in the fluctuation-dissipation (FD) theorem of linear-response theory (Landau
et al., 1980). When possible, that is when the medium is soft enough, this method
even elegantly circumvents the need to extrapolate to zero-force amplitude, which is
usually necessary in active methods to obtain linear response parameters. Particularly
in networks of semiflexible polymers such as the cytoskeleton, nonlinear response
occurs typically for rather small strains on the order of a few percent (Storm et al.,
2005).

A microscopic probe offers both the possibility to study inhomogeneities directly
in the elastic properties of the cytoskeleton, and to measure viscoelasticity at higher
frequencies, above 1 kHz or even up to MHz, because inertia of both probe and em-
bedding medium can be neglected at such small length scales (Levine and Lubensky,
2001; Peterman et al., 2003b). The possibility to observe thermal fluctuations instead
of actively applying force or torque in principle exists for all the techniques using
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microscopic probes described above. It has, however, mainly been used in several
related and recently developed techniques, collectively referred to as passive mi-
crorheology, employing beads of micron size embedded in the sample (Addas et al.,
2004; Lau et al., 2003; MacKintosh and Schmidt, 1999; Mason et al., 1997; Schmidt
et al., 2000; Schnurr et al., 1997). Passive microrheology has been used to probe, on
microscopic scales, the material properties of systems ranging from simple polymer
solutions to the interior of living cells.

Optically detected individual probes

The simplest method in terms of instrumentation uses video microscopy to record the
Brownian motion of the embedded particles. Advantages are the use of standard equip-
ment coupled with well-established image processing and particle tracking (Crocker
and Grier, 1996), and the fact that massively parallel processing can be done (100 s of
particles at the same time). Disadvantages are the relatively low spatial and temporal
resolution, although limits can be pushed to nm in spatial displacement resolution and
kHz temporal resolution with specialized cameras. Much higher spatial and temporal
resolution still can be achieved using laser interferometry with laser beams focused
on individual probe particles (Denk and Webb, 1990; Gittes and Schmidt, 1998; Pralle
et al., 1999). Due to high light intensities focused on the particles, high spatial res-
olution (sub-nm) can be reached. Because the detection involves no video imaging,
100 kHz bandwidth can be reached routinely.

One-particle method

Once particle positions as a function of time are recorded by either method, the com-
plex shear modulus G(w) of the viscoelastic particle environment has to be calculated.
This can be done by calculating the mean square displacement (x2) of the Brownian
motion by Fourier transformation. The complex compliance «(w) of the probe particle
with respect to a force exerted on it is defined by:

Xo = (&' +id")f, (2.12)

The FD theorem relates the imaginary part of the complex compliance to the mean
square displacement:

4kpgTo"
(x2) = 2222 (2.13)
)
Using a Kramers-Kronig relation (Landau et al., 1980):
2 x® "
@) =2p [ 22D 4 (2.14)
T ;2 — w?
0

where ¢ is the frequency variable to integrate over and P denotes a principal value
integral, one can then calculate the real part of the compliance. Knowing both real
and imaginary parts of the compliance, one then finds the complex shear modulus via
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a generalized Stokes law:

1
6w G(w)R’
where R is the probe bead radius. This procedure is explained in detail in Schnurr
et al. (1997).
The shear modulus can also be derived from position fluctuation data in a different
way. After first calculating the mean square displacement as a function of time, one
can obtain (using equipartition) a viscoelastic memory function by Laplace transfor-

mation, The shear modulus follows by again using the generalized Stokes law (Mason
etal., 1997).

() = (2.15)

Two-particle methods

Large discrepancies between macroscopic viscoelastic parameters and those deter-
mined by one-particle microrheology can arise if the presence of the probe particle
itself influences the viscoelastic medium in its vicinity or if active particle movement
occurs and is interpreted as thermal motion. The shear strain field coupled to the mo-
tion of a probe particle extends into the medium a distance that is similar to the particle
radius. Any perturbation of the medium caused by the presence of the particle will
decay over a distance that is the shorter of the particle radius or characteristic length
scales in the medium itself, such as mesh size of a network or persistence length of a
polymer. Thus it follows that if any characteristic length scales in the system exceed
the probe size, the simple interpretation of data with the generalized Stokes law is not
valid. This is probably always the case when micron-sized beads are used to study
the cytoskeleton, because the persistence length of actin is already 17 um (Howard,
2001), while that of actin bundles or microtubules is much larger still. A perturbation
of the medium could be caused by a chemical interaction with the probe surface,
which can be prevented by appropriate surface coating. It is unavoidable, though,
that the probe bead locally dilutes the medium by entropic depletion. To circumvent
these pitfalls, two-particle microrheology has been developed (Crocker et al., 2000;
Levine and Lubensky, 2000). In this variant, the cross-correlation of the displacement
fluctuations of two particles, located at a given distance from each other, is measured
(Fig. 2-12). The distance between the probes takes over as relevant length scale and
probe size or shape become of secondary importance.
Instead of the one-particle compliance, a mutual compliance is defined by:

X = Q" (w) £ (2.16)

with particle indices n, m and coordinate indices 7, j = x, y. If the particles are
separated by a distance r along the x-axis, two cases are relevant, namely o!2, which
will be denoted as ot‘llz, and oz)lj, which will be denoted as « lf (the other combinations
are second order). The Fourier transform of the cross-correlation function is related

to the imaginary part of the corresponding compliance:
4kpT

@) = X} (@)X e) = =——a? (@), @.17)

where T denotes the complex conjugate.
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Fig. 2-12. Sketch of 1-particle and 2-particle microrheology using lasers for trapping and detection.
Either one laser beam is focused on one particle at a time, or the two beams, displaced by some
distance, are each focused on seperate particles. In both cases the motion of the particle in the two
directions normal to the laser propagation direction is measured by projecting the laser light onto
quadrant photodiodes downstream from the sample.

A Kramers-Kronig integral can again be used to calculate the real parts, and elastic
moduli can be derived according to Levine and Lubensky (2002) from:
1

12,y _
o) (w) = pr——— (2.18)

1 [)»o(w) + 3#0(0))] 2.19)

 8rrpo(@) [ Ao(@) 4 2po(@)

written here (following Levine and Lubensky (2002)) with the Lamé coefficients A (w)
and po(w), where po(w) = G(w). One can thus measure directly the compressional
modulus and the shear modulus in the sample.

The technique can again be implemented using video recording and particle track-
ing (Crocker et al., 2000) or laser interferometry. In cells, so far only a video-based
variant has been used (Lau et al., 2003), exploring the low-frequency regime of the
cellular dynamics in mouse macrophages and mouse carcinoma cells. It was found
that the low-frequency passive microrheology results were strongly influenced by
active transport in the cells, so that the fluctuation-dissipation theorem could not be
used for calculating viscoelastic parameters.

Dynamic light scattering and diffusing wave spectroscopy

A well-established method to study the dynamics of large ensembles of particles
in solutions is dynamic light scattering (DLS) (Berne and Pecora, 1990). To obtain
smooth data and good statistics, it is obviously advantageous to average over a large
number of particles. In DLS, a collimated laser beam is typically sent through a
sample of milliliter volume, and scattered light is collected under a well-defined
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angle with a photomultiplier or other sensitive detector. The intensity autocorrelation
function:

(U@ + 7))
(1))

can be used to calculate the average mean square displacement (Ar2(t)) of particles,
with the scattering vector ¢ = 4mn sin(6/2)/A, wavelength A, scattering angle 6 and
index of the solvent #, and a coherence factor 8. This relationship assumes that
all particles are identical and that the solution is homogeneous across the scattering
volume. Italso assumes that the particles dominate the scattering intensity compared to
the scattering from the embedding medium itself. DLS has also been used extensively
to study polymer solutions without added probe particles (Berne and Pecora, 1990).
In that case the medium has to be modeled to extract material properties from the
observed intensity autocorrelation function. This has been done for example for pure
actin networks as models for the cytoskeleton of cells (Isambert et al., 1995; Liverpool
and Maggs, 2001; Schmidt et al., 1989). Unfortunately this technique is not well
applicable to study the interior of cells, because the cellular environment is highly
inhomogeneous and it is not well defined which structures scatter the light in any
given location. Larger objects dominate the scattered intensity (Berne and Pecora,
1990). DLS has been applied to red blood cells (Peetermans et al., 1987a; Peetermans
etal., 1987b), but results have been qualitative. It is also difficult to introduce external
probe particles that scatter light strongly enough in sufficient concentrations without
harming the cells.

A related light-scattering technique is diffusing wave spectroscopy (DWS) (Pine
et al., 1988; Weitz et al., 1993), which measures again intensity correlation functions
of scattered light, but now in very dense opaque media where light is scattered many
times before it is detected so that the path of a photon becomes a random walk
and resembles diffusion. There is no more scattering-vector dependence in the field
correlation function, which is directly related to the average mean square displacement
(Ar?(1)) of the scattering particles (Weitz and Pine, 1993):

(1) = =1+ pe 7 {Ar7®)3 (2.20)

M]d& (2.21)

g o [ Peyep| N

0

P(s) is the probability that the light travels a path length s, ky = 277/X is the wave
vector, and /* is the transport mean free path. The final steps to extract a complex
shear modulus are the same as described above, either using the power spectral den-
sity method (Schnurr et al., 1997) or the Laplace transform method (Mason et al.,
1997).

The advantage of the technique is that it is sensitive to very small motions (of less
than nm) because the path of an individual photon reflects the sum of the motions of
the all particles by which it is scattered. The bandwidth of the technique is also high
(typically 10 Hz to 1 MHz), so that ensemble-averaged mean-square displacements,
and from that viscoelastic response functions, can be measured over many decades in
frequency. The technique has been used to study polymer solutions, colloidal systems,
and cytoskeletal protein solutions (actin) (Mason et al., 1997; Mason et al., 2000) and
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Fig.2-13. (a) Experimental set-up for fluorescence correlation
spectroscopy. A laser beam is expanded (L1, L2) and focussed
through a microscope objective into a fluorescent sample. The
fluorescence light is collected through the same objective and
split out with a dichroic mirror toward the confocal pinhole
(P) and then the detector. (b) Magnified focal volume with the
fluorescent particles (spheres) and the diffusive path of one
particle highlighted. From Hess et al., 2002.

results agree with those from conventional methods in the time/frequency regimes
where they overlap. The application to cells is hindered, just as in the case of DLS, by
the inhomogeneity of the cellular environment. Furthermore, typical cells are more
or less transparent, in other words one would need to introduce high concentrations
of scattering particles, which likely would disturb the cell’s integrity.

Fluorescence correlation spectroscopy

Many complications can be avoided if specific particles or molecules of interest in
a cell can be selected from other structures. A way to avoid collecting signals from
unknown cellular structures is to use fluorescent labeling of particular molecules or
structures within the cell. This method is extensively used in cell biology to study the
localization of certain proteins in the cell. Fluorescence can also be used to measure
dynamic processes in video microscopy, but due to low emission intensities of fluo-
rescent molecules and due to their fast Brownian motion when they are not fixed to
larger structures, it is difficult to use such data to extract diffusion coefficients or vis-
coelastic parameters inside cells. A method that is related to dynamic light scattering
and is a nonimaging method that can reach much faster time scales is fluorescence
correlation spectroscopy (Hess et al., 2002; Webb, 2001), where a laser is focused to
a small volume and the fluctuating fluorescence originating from molecules entering
and leaving this volume is recorded with fast detectors (Fig. 2-13).
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From the fluorescence intensity fluctuations §F'(¢) = F'(t) — (F(¢)) one calculates
the normalized autocorrelation function:
(BF(t)SF(t + 1))
(F(0)?
from which one can calculate in the simplest case, in the absence of chemical reactions

involving the fluorescent species, the characteristic time 7 a diffusing molecule
spends in the focal volume:

G(r) = , (2.22)

1
N(1+1t/tp)(1 + 1/0?1p)"?

Gp(r) = (2.23)
with an axial-to-lateral-dimension ratio w and the mean number of fluorescent
molecules in the focus N. Eq. 2.23 is valid for a molecule diffusing in 3D. The
method can also be used in other cases, for example 2D diffusion in a membrane.

With some knowledge of the geometry of the situation — for example 2D membrane-
bound diffusion — one can again extract diffusion coefficients. This has been done on
cell surfaces and even inside cells (see references in Hess et al., (2002)). Data typically
have been interpreted as diffusion in a purely viscous environment or as diffusion in an
inhomogeneous environment with obstacles. Compared with the rheology methods
described above, fluorescence correlation spectroscopy is particularly good when
studying small particles such as single-enzyme molecules. For the motion of such
particles it is not appropriate to model the environment inside a cell as a viscoelastic
continuum, because characteristic length scales of the cytoskeleton are as large or
larger than the particles.

Optical stretcher

A novel optical method related to optical traps employs two opposing nonfocused
laser beams to both immobilize and stretch a suspended cell (Guck et al., 2001; Guck
et al., 2000). Viscoelastic properties are determined from the time-dependent change
in cell dimensions as a function of optical pressures. This method has the significant
advantage over other optical trapping methods that it can be scaled up and automated
to allow measurement, and potentially sorting, of many cells within a complex mixture
for use in diagnosing abnormal cells and sorting cells on the basis of their rigidity
(Lincoln et al., 2004).

Acoustic microscopy

Ultrasound transmission and attenuation through cells and biological tissues can also
provide measurements of viscoelasticity, and acoustic microscopy has the potential to
provide high-resolution imaging of live cells in a minimally invasive manner (Viola
and Walker, 2003). Studies of purified systems such as F-actin (Wagner et al., 2001;
Wagner et al., 1999), and alginate capsules (Klemenz et al., 2003), suggest that acous-
tic signals can be related to changes in material properties of these biopolymer gels,
but there are numerous challenges related to interpreting the data and relating them
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to viscoelastic parameters before the potential of this method for quantitative high-
resolution elastic imaging on cells is realized.

Outstanding issues and future directions

The survey of methods used to study the rheology of cells presented here shows the
wide range of methods that various groups have designed and employed. At present
there appears to be no one ideal method suitable for most cell types. In many cases,
measurements of similar cell types by different methods have yielded highly different
values for elastic and viscous parameters. For example, micropipette aspiration of
leukocytes can variably be interpreted as showing that these cells are liquid droplets
with a cortical tension or soft viscoelastic fluids, while atomic force microscopy mea-
sures elastic moduli on the order of 1000 Pa. In part, differences in measurements stem
from differences in the time scale or frequency and in the strains at which the measure-
ments are done. Also, it is almost certain that cells respond actively to the forces needed
to measure their theology, and the material properties of the cell often cannot be inter-
preted as those of passive material. Combining rheological measurements with simul-
taneous monitoring or manipulation of intracellular signals and cytoskeletal structures
can go a long way toward resolving such challenges.

Currently a different and equally serious challenge is presented by the finding that
even when studying purified systems like F-actin networks, micro- and macrorheology
methods sometimes give very different results, for reasons that are not completely
clear. In part there are likely to be methodological problems that need to be resolved,
but it also appears that there are interesting physical differences in probing very
small displacements of parts of a network not much larger than the network mesh
size and the macroscopic deformations that occur as the whole network deforms in
macrorheologic measurements. Here a combination of more experimentation and new
theories is likely to be important.

The physical properties of cells have been of great interest to biologists and phys-
iologists from the earliest studies that suggested that cells may be able to convert
from solid to liquid states as they move or perform other functions. More recently,
unraveling the immense complexity of the molecular biology regulating cell biol-
ogy and high-resolution imaging of intracellular structures have provided molecular
models to suggest how the dynamic viscoelasticity of the cell may be achieved. Now
the renewed interest in cell mechanics together with technological advances allowing
unprecedented precision and sensitivity in force application and imaging can com-
bine with molecular information to increase our understanding of the mechanisms by
which cells maintain and change their mechanical properties.
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3 The cytoskeleton as a soft glassy material

Jeffrey Fredberg and Ben Fabry

ABSTRACT: Using a novel method that was both quantitative and reproducible, Francis Crick
and Arthur Hughes (Crick and Hughes, 1950) were the first to measure the mechanical proper-
ties inside single, living cells. They concluded their groundbreaking work with the words: “If
we were compelled to suggest a model (of cell mechanics) we would propose Mother’s Work
Basket — a jumble of beads and buttons of all shapes and sizes, with pins and threads for good
measure, all jostling about and held together by colloidal forces.”

Thanks to advances in biochemistry and biophysics, we can now name and to a large de-
gree characterize many of the beads and buttons, pins, and threads. These are the scores of
cytoskeletal proteins, motor proteins, and their regulatory molecules. But the traditional re-
ductionist approach — to study one molecule at a time in isolation — has so far not led to a
comprehensive understanding of how cells are able to perform such exceptionally complex
mechanical feats as division, locomotion, contraction, spreading, or remodeling. The question
then arises, even if all of the cytoskeletal and signaling molecules were known and fully char-
acterized, would this information be sufficient to understand how the cell orchestrates complex
and highly specific mechanical functions? Or put another way, do molecular events playing out
at the nanometer scale necessarily add up in a straightforward manner to account for mechanical
events at the micrometer scale?

We argue here that the answer to these questions may be ‘No.” We present a point of view
that does not rely on a detailed knowledge of specific molecular functions and interactions, but
instead focuses attention on dynamics of the microstructural arrangements between cytoskeletal
proteins. Our thinking has been guided by recent advances in the physics of soft glassy materials.
One of the more surprising findings that has come out of this approach is the discovery that,
independent of molecular details, a single, measurable quantity (called the ‘noise temperature”)
seems to account for transitions between fluid-like and solid-like states of the cytoskeleton.
Although the interpretation and precise meaning of this noise temperature is still emerging,
it appears to give a measure of the ‘jostling’ and the ‘colloidal forces’ that act within the
cytoskeleton.

Introduction

Measurements of mechanical properties afford a unique window into the dynamics of
protein-protein interactions within the cell, with elastic energy storage reflecting num-
bers of molecular interactions, energy dissipation reflecting their rate of turnover, and
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remodeling events reflecting their spatio-temporal reorganization (Fredberg, Jones
et al., 1996). As discussed in Chapter 2, probes are now available that can measure
each of these features with temporal resolution in the range of milliseconds and spatial
resolution in the range of nanometers. Using such probes, this chapter demonstrates
that a variety of phenomena that have been taken as the signature of condensed systems
in the glassy state are prominently expressed by the cytoskeletal lattice of the living
adherent cell. While highly specific interactions play out on the molecular scale, and
homogeneous behavior results on the integrative scale, evidence points to metasta-
bility of interactions and nonequilibrium cooperative transitions on the mesoscale
as being central factors linking integrative cellular function to underlying molecular
events. Insofar as such fundamental functions of the cell — including embryonic
development, contraction, wound healing, crawling, metastasis, and invasion — all
stem from underlying cytoskeletal dynamics, identification of those dynamics as
being glassy would appear to set these functions into an interesting context.

The chapter begins with a brief summary of experimental findings in living cells.
These findings are described in terms of a remarkably simple empirical relationship
that appears to capture the essence of the data with very few parameters. Finally, we
show that this empirical relationship is predicted from the theory of soft glassy rheol-
ogy (SGR). As such, SGR offers an intriguing perspective on mechanical behavior of
the cytoskeleton and its relationship to the dynamics of protein-protein interactions.

Experimental findings in living cells

To study the rheology of cytoskeletal polymers requires a probe whose operative
frequency range spans, insofar as possible, the internal molecular time scales of
the rate processes in question. The expectation from such measurements is that the
rheological behavior changes at characteristic relaxation frequencies, which in turn
can be interpreted as the signature of underlying molecular interactions that dominate
the response (Hill, 1965; Kawai and Brandt, 1980). Much of what follows in this
chapter is an attempt to explain the failure to find such characteristic relaxation times
inmost cell types. The experimental findings of our laboratory, summarized below, are
derived from single cell measurements using magnetic twisting cytometry (MTC) with
optical detection of bead motion. Using this method, we were able to apply probing
frequencies ranging from 0.01 Hz to 1 kHz. As shown by supporting evidence, these
findings are not peculiar to the method; rather they are consistent with those obtained
using different methods such as atomic force microscopy (Alcaraz, Buscemi et al.,
2003).

Magnetic Twisting Cytometry (MTC)

The MTC device is a microrheometer in which the cell is sheared between a plate at
the cell base (the cell culture dish upon which the cell is adherent) and a magnetic
microsphere partially embedded into the cell surface, as shown in Fig. 3-1. We use
ferrimagnetic microbeads (4.5 um diameter) that are coated with a panel of antibody
and nonantibody ligands that allow them to bind to specific receptors on the cell surface
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Fig. 3-1. (a) Scanning EM of a bead bound to the surface of a human airway smooth muscle cell.
(b) Ferrimagnetic beads coated with an RGD-containing peptide bind avidly to the actin cytoskeleton
(stained with fluorescently labeled phalloidin) of HASM cells via cell adhesion molecules (integrins).
(c) A magnetic twisting field introduces a torque that causes the bead to rotate and to displace. Large
arrows indicate the direction of the bead’s magnetic moment before (black) and after (gray) twisting.
If the twisting field is varied sinusoidally in time, then the microbead wobbles to and fro, resulting
in a lateral displacement, (d), that can be measured. From Fabry, Maksym et al., 2003.

(including various integrin subtypes, scavenger receptors, urokinase receptors, and
immune receptors). The beads are magnetized horizontally by a brief and strong
magnetic pulse, and then twisted vertically by an external homogeneous magnetic
field that varies sinusoidally in time. This applied field creates a torque that causes the
beads to rotate toward alignment with the field, like a compass needle aligning with
the earth’s magnetic field. This rotation is impeded, however, by mechanical forces
that develop within the cell as the bead rotates. Lateral bead displacements during
bead rotation in response to the resulting oscillatory torque are detected by a CCD
camera mounted on an inverted microscope.

Cell elasticity (g") and friction (g”) can then be deduced from the magnitude and
phase of the lateral bead displacements relative to the torque (Fig. 3-2). Image ac-
quisition with short exposure times of 0.1 ms is phase-locked to the twisting field so
that 16 images are acquired during each twisting cycle. Heterodyning (a stroboscopic
technique) is used at twisting frequencies >1 Hz up to frequencies of 1000 Hz. The
images are analyzed using an intensity-weighted center-of-mass algorithm in which
sub-pixel arithmetic allows the determination of bead position with an accuracy of
5 nm (rms).

Measurements of cell mechanics

The mechanical torque of the bead is proportional to the external magnetic field
(which was generated using an electromagnet), the bead’s magnetic moment (which
was calibrated by measuring the speed of bead rotation in a viscous medium), and the
cosine between the bead’s magnetization direction with the direction of the twisting
field. Consider the specific torque of a bead, 7', which is the mechanical torque per
bead volume, and has dimensions of stress (Pa). The ratio of the complex-specific
torque 7 to the resulting complex bead displacement d (evaluated at the twisting fre-
quency) then defines a complex modulus of the cell § = 7'/d, and has dimensions of
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Fig. 3-2. (a) Specific torque 7" (solid line) and lateral displacement d (filled circles connected by
a solid line) vs. time in a representative bead measured at a twisting frequency of 0.75 Hz. Bead
displacement followed the sinusoidal torque with a small phase lag. The filled circles indicate when
the image and data acquisition was triggered, which was 16 times per twisting cycle. (b) Loops
of maximum lateral bead displacement vs. specific torque of a representative bead at different
frequencies. With increasing frequency, displacement amplitude decreased. From Fabry, Maksym
et al., 2003.

Pa/nm. These measurements can be transformed into traditional elastic shear (G’) and
loss (G”) moduli by multiplication of g’ and g” with a geometric factor that depends
on the shape and thickness of the cell and the degree of bead embedding. Finite ele-
ment analysis of cell deformation for a representative bead-cell geometry (assuming
homogeneous and isotropic elastic properties with 10 percent of the bead diameter
embedded in a cell 5 um high) sets this geometric factor to 6.8 um (Mijailovich, Kojic
et al., 2002). This geometric factor need serve only as a rough approximation, how-
ever, because it cancels out in the scaling procedure described below, which is model
independent. For each bead we compute the elastic modulus g’ (the real part of g),
the loss modulus g” (the imaginary part of &), and the loss tangent 7 (the ratio g”/g’)
at a given twisting frequency. These measurements are then repeated over a range of
frequencies.

Because only synchronous bead movements that occur at the twisting frequency
are considered, nonsynchronous noise is suppressed by this analysis. Also suppressed
are higher harmonics of the bead motion that may result from nonlinear material
properties and that — if not properly accounted for — could distort the frequency
dependence of the measured responses. However, we found no evidence of nonlinear
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Fig. 3-3. g’ and g” vs. specific torque amplitude 7. g’ and g” were measured in 537 HASM cells at
f = 0.75 Hz. Specific torque amplitudes 7" varied from 1.8 to 130 Pa. g’ and g” were nearly constant,
implying linear mechanical behavior of the cells in this range. Error bars indicate one standard error.
From Fabry, Maksym et al., 2003.

cell behavior (such as strain hardening or shear thinning) at the level of stresses we
apply with this technique, which ranges from about 1 Pa to about 130 Pa (Fig. 3-3).
Throughout that range, which represents the physiological range, responses were
linear.

Frequency dependence of g’ and g”

The relationship of G’ and G” vs. frequency for human airway smooth muscle
(HASM) cells under control conditions is shown in Fig. 3-4, where each data point
represents the median value of 256 cells. Throughout the frequency range studied, G’
increased with increasing frequency, f, according to a power law, f*~! (as explained
below, the formula is written in this way because the parameter x takes on a special
meaning, namely, that of an effective temperature). Because the axes in Fig. 3-4 are
logarithmic, a power-law dependency appears as a straight line with slope x — 1. The
power-law exponent of G” was 0.20 (x = 1.20), indicating only a weak dependency
of G’ on frequency. G” was smaller than G’ at all frequencies except at 1 kHz. Like
G', G” also followed a weak power law with nearly the same exponent at low fre-
quencies. At frequencies larger than 10 Hz, however, G” exhibited a progressively
stronger frequency dependence, approaching but never quite attaining a power-law
exponent of 1, which would be characteristic of a Newtonian viscosity.

This behavior was at first disappointing because no characteristic time scale was
evident; we were unable to identify a dominating relaxation process. The only charac-
teristic time scale that falls out of the data is that associated with curvilinearity of the
G” data that becomes apparent in the neighborhood of 100 Hz (Fig. 3-4). As shown
below, this curvilinearity is attributable to a small additive Newtonian viscosity that is
entirely uncoupled from cytoskeletal dynamics. This additive viscosity is on the order
of 1 Pa s, or about 1000-fold higher than that of water, and contributes to the energy
dissipation (or friction) only above 100 Hz. Below 100 Hz, friction (G”) remained a
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Fig. 3-4. G' and G” (median of 256 human airway smooth muscle cells) under control conditions
measured at frequencies between 0.01 Hz and 1000 Hz. The solid lines were obtained by fitting Eq.
3.2 to the data. G’ and G” (in units of Pa) were computed from the measured values of g’ and g”
(in units of Pa/nm) times a geometric factor o of 6.8 pm. G’ increased with increasing frequency,
£, according to a power law, f*~!, with x = 1.20. G” was smaller than G’ at all frequencies except
at 1 kHz. At frequencies below 10 Hz, G” also followed a weak power law with nearly the same

exponent as did G’; above 10 Hz the power law exponent increased and approached unity. From
Fabry, Maksym et al., 2003.

constant fraction (about 25 percent) of elasticity (G"). Such frictional behavior cannot
be explained by a viscous dissipation process.

It is intriguing to note the combination of an elastic process (or processes) that
increases with frequency according to a weak power-law over such a wide range
of time scales, and a frictional modulus that, except at very high frequencies, is a
constant, frequency-independent fraction of the elastic modulus. Similar behavior
has been reported for a wide range of materials, biological tissue, and complex man-
made structures such as airplane wings and bridges. Engineers use an empirical
description — the structural damping equation (sometimes referred to as hysteretic
damping law, or constant phase model) — to describe the mechanical behavior of such
materials (Weber, 1841; Kohlrausch, 1866; Kimball and Lovell, 1927; Hildebrandt,
1969; Crandall, 1970; Fredberg and Stamenovic, 1989), but as regards mechanism,
structural damping remains unexplained.

The structural damping equation

The mechanical properties of such a material can be mathematically expressed either
in the time domain or in the frequency domain. In the time domain, the mechanical
stress response to a unit step change in strain imposed at ¢ = 0 is an instantaneous
component attributable to a pure viscous response together with a component that
rises instantaneously and then decays over time as a power law,

(1) = ud(1) + got/10)' . (3.1

2o 1s the ratio of stress to the unit strain measured at an arbitrarily chosen time ¢y, (. is a
Newtonian viscous term, and §(t) is the Dirac delta function. The stress response to unit
amplitude sinusoidal deformations can be obtained by taking the Fourier transform of
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the step response (Eq. 3.1) and multiplying by jw, which gives the complex modulus
g (w) as:

-1
g(w) = go (g) (1 —implr'@2 —x)cos %(l —D+iopn (3.2)
0

where 77 = tan(x — 1) /2 and w is the radian frequency 27/ (Hildebrandt, 1969).
go and ® are scale factors for stiffness and frequency, respectively, I' denotes the
Gamma function, and i? is —1. go and ;1 depend on bead-cell geometry. 7j has been
called the structural damping coefficient (Fredberg and Stamenovic, 1989). The elastic
modulus g’ corresponds to the real part of Eq. 3.2, which increases for all w according
to the power-law exponent, x — 1. The loss modulus g” corresponds to the imaginary
part of Eq. 3.2 and includes a component that also increases as a power law with
the same exponent. Therefore, the loss modulus is a frequency-independent fraction
(77) of the elastic modulus; such a direct coupling of the loss modulus to the elastic
modulus is the characteristic feature of structural damping behavior (Fredberg and
Stamenovic, 1989).

As mentioned already, the loss modulus includes a Newtonian viscous term, jopu,
which turns out to be small except at very high frequencies. At low frequencies, the
loss tangent 1 approximates 7. In the limit that x approaches unity, the power-law slope
approaches zero, g’ approaches gy and 77 approaches zero. In the limit that x approaches
2, the power-law slope approaches unity, G” approaches u and 7 approaches infinity.
Thus, Eq. 3.2 describes a relationship between changes of the exponent of the power
law and the transition from solid-like (x = 1, 7 = 0) to fluid-like (x = 2, 7 = o0)
behavior.

The structural damping equation describes the data in Fig. 3-4 exceedingly well and
with only four free parameters: the scale factors gy and @, the Newtonian viscosity
u, and the power-law exponent x — 1. The structural damping coefficient 7 is not an
independent parameter but depends on x only.

We now go on to show that three of the four parameters of the structural damping
equation (gg, P and ) can be considered constant, and that changes in the cell’s
mechanical behavior during contraction, relaxation, or other drug-induced challenges
can be accounted for by changes of the parameter x alone.

Reduction of variables

When smooth muscle cells are activated with a contractile agonist such as histamine,
they generate tension and their stiffness (G”) increases, as has been shown in many
studies (Warshaw, Rees et al., 1988; Fredberg, Jones et al., 1996; Hubmayr, Shore
et al., 1996; Fabry, Maksym et al., 2001; Butler, Tolic-Norrelykke et al., 2002; Wang,
Tolic-Norrelykke et al., 2002). Interestingly, in HASM cells this increase in G’ after
histamine activation (10~ M) was more pronounced at lower frequencies. While G’
still exhibited a weak power-law dependence on frequency, x fell slightly (Fig. 3-5).
When cells were relaxed with DBcAMP (1 mM), the opposite happened: G’ de-
creased, and x increased. When the actin cytoskeleton of the cells was disrupted
with cytochalasin D (2 uM), G’ decreased even more, while x increased further.
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Fig. 3-5. G’ vs. frequency in HASM cells under control conditions (m, n = 256), and after 10
min. treatment with the contractile agonist histamine [10™* M] (¢, n = 195), the relaxing agonist
DBCAMP [1073 M] (¢, n = 239) and the actin-disrupting drug cytochalasin D [2 x 107¢ M] (o,
n = 171). At all frequencies, treatment with histamine caused G’ to increase, while treatment with
DBCcAMP and cytoD caused G’ to decrease. Under all treatment conditions, G’ increased with
increasing frequency, f, according to a power law, f*~!. x varied between 1.17 (histamine) and
1.33 (cytoD). A decreasing G’ was accompanied by an increasing x, and vice versa. Solid lines
are the fit of Eq. 3.2 to the data. Surprisingly, these lines appeared to cross at a coordinate close to
[Go, ®y/2m], well above the experimental frequency range. According to Eq. 3.2, an approximate
crossover implies that in the HASM cell the values of Gy and ®, were invariant with differing
treatment conditions. From Fabry, Maksym et al., 2003.

Remarkably, the G” data defined a family of curves that, when extrapolated, appeared
to intersect at a single value (Gy) at a very high frequency (®g) (Fig. 3-5). Such a
common intersection, or fixed point, of the G’ vs. frequency curves at a very high
frequency means that Gy and @ were invariant with different drug treatments.

With all drug treatments, G’ and G” tended to change in concert. The relationship
between G” and frequency remained a weak power law at lower frequencies, and
the power-law exponent of G” changed in concert with that of G'. At the highest
frequencies, the curves of G” vs. frequency for all treatments appeared to merge onto
a single line with a power-law exponent approaching unity (Fig. 3-6).

The finding of a common intersection of the G’ vs. f relationship stands up to rig-
orous statistical analysis, meaning that a three-parameter fit of the structural damping
equation (G, O and x) to the full set G’ data (measured over five frequency decades
and with different pharmacological interventions) is not statistically different from
a fit with Gy and & being fixed, and with x being the only free parameter (Fabry,
Maksym et al., 2003). The very same set of parameters — a fixed value for Gy and
®d,, respectively, and a drug-treatment-dependent x — also predicts the G” vs. f rela-
tionship at frequencies below 100 Hz. Because the G” data appears to merge onto a
single line at higher frequencies, a single Newtonian viscosity x that is common for
all drug treatments can account for the data, although a rigorous statistical analysis
indicates that a negligible but significant improvement of the fit can be achieved with
different p-values for different drug treatments (Fabry, Maksym et al., 2003). For all
practical purposes, therefore, the mechanical behavior of HASM cells is restricted
to vary only in a very particular way such that a single parameter, x, is sufficient to
characterize the changes of both cell elasticity and friction.
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Fig. 3-6. G” vs. frequency in HASM cells under control conditions (m, n = 256), and after 10 min.
treatment with histamine [10™* M] (O, n = 195), DBcAMP [1073 M] (4, n = 239) and cytochalasin
D [2 x 107 M] (g, n = 171). At all frequencies, treatment with histamine caused G” to increase,
while treatment with DBCAMP and cytoD caused G” to decrease. Under all treatment conditions,
G" increased at frequencies below 10 Hz according to a power law, f*~!, with exponents that
were similar to that of the corresponding G’-data (Fig. 3-5). Above 10 Hz the power-law exponents

increased and approached unity for all treatments; the G” curves merged onto a single relationship.
From Fabry, Maksym et al., 2003.

Universality

This surprising and particular behavior is not restricted to HASM cells. We found the
very same behavior — a power-law relationship of G’ and G” vs. frequency, common
intersection of the G’ vs. f data for different drug treatments at a very high frequency,
and merging of the G” vs. f data onto a single line — in all other animal and human
cell types we have investigated so far, including macrophages, neutrophils, various
endothelial and epithelial cell types, fibroblasts, and various cancer cell lines (Fabry,
Maksym et al., 2001; Fabry, Maksym et al., 2003; Puig-de-Morales, Millet et al.,
2004).

Power-law behavior and common intersection were also found with an almost ex-
haustive panel of drugs that target the actin cytoskeleton and the activity of myosin
light chain kinase (including BDM, ML-7, ML-9, W-7, various rho-kinase inhibitors,
latrunculin, jasplakinolide) (Laudadio, Millet et al., 2005). Moreover, power-law be-
havior and common intersection are not peculiar to the details of the coupling between
the bead and the cell, and can be observed in beads coated with different ligands (in-
cluding RGD-peptide, collagen, vitronectin, fibronectin, urokinase, and acetylated
low-density lipoprotein), and antibodies that specifically bind to various receptors
(activating and nonactivating domains of various integrins and other cell adhesion
molecules) (Puig-de-Morales, Millet et al., 2004). Neither is this behavior peculiar
to the magnetic twisting technique. The power-law dependence of G’ and G” on fre-
quency is consistent with data reported for atrial myocytes, fibroblasts, and bronchial
endothelial cells measured with atomic force microscopy (AFM), for pellets of mouse
embryonic carcinoma cells measured with a disk rheometer, for airway smooth mus-
cle cells measured with oscillatory magneto-cytometry, and for kidney epithelial cells
measured by laser tracking of Brownian motion of intracellular granules (Shroff,
Saner et al., 1995; Goldmann and Ezzell, 1996; Mahaffy, Shih et al., 2000; Maksym,



The cytoskeleton as a soft glassy material

104 1

100 4 :
107 100 10! 102 108 104 105 108
f[Hz]
Fig. 3-7. G’ vs. frequency in kidney epithelial cells measured with laser tracking microrheology
under control conditions (m), and after 15 min. treatment with Latrunculin A [1 x 107° M] ().
Solid lines are the fit of Eq. 3.2 to the data, with x = 1.36 under control conditions, and x = 1.5 after

Latrunculin A treatment. These lines crossed at G, = 5.48 kPa and ®; = 6.64*10° Hz. Adapted
from Yamada, Wirtz et al., 2000.

Fabry et al., 2000; Yamada, Wirtz et al., 2000; Alcaraz, Buscemi et al., 2003). Using
laser tracking microrheology, Yamada, Wirtz et al. also measured cell mechanics be-
fore and after microfilaments were disrupted with Latrunculin A, and obtained two
curves of G’ vs. f that intersected at a frequency comparable to the value we mea-
sured with our magnetic twisting technique, as shown in Fig. 3-7 (Yamada, Wirtz
et al., 2000).

Finally, power-law behavior in the frequency domain (Eq. 3.2) corresponds to
power-law behavior in the time domain (Eq. 3.1): when we measured the creep mod-
ulus of the cells by applying a step change of the twisting field, we did indeed find
power-law behavior of the creep modulus vs. time, and a common intersection of the
data at a very short time (Lenormand, Millet et al., 2004).

Scaling the data

Not surprisingly, although structural damping behavior always prevailed, substantial
differences were observed in the absolute values of our G’ and G” measurements
between different cell lines, and even larger (up to two orders of magnitude) differences
when different bead coatings were used (Fabry, Maksym et al., 2001; Puig-de-Morales,
Millet et al., 2004). Still larger (up to three orders of magnitude) differences were
observed between individual cells of the same type even when they were grown within
the same cell well (Fabry, Maksym et al., 2001). It is difficult to specify to what extent
such differences reflect true differences in the “material” properties between different
cells or between different cellular structures to which the beads are attached, vs.
differences in the geometry (cell height, contact area between cell and bead, and so
forth). Theoretically, these geometric details could be measured and then modeled, but
in practice such measurements and models are inevitably quite rough (Mijailovich,
Kojic et al., 2002).

Rather than analyzing “absolute” cell mechanics, it is far more practical (and in-
sightful, as shown below) to focus attention instead upon relative changes in cell
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mechanics. To first order, such relative changes are independent of bead-cell geome-
try. Thus, the measurements need to be normalized or scaled appropriately such that
each cell serves as its own control.

Two such scaled parameters have already been introduced. The first one is the slope
of the power-law relationship (x — 1), which is the log change in G’ or G” per fre-
quency decade (for example, the ratio of G/ 1,/ G| 11,)- The second scaled parameter
is the hysteresivity 1, which is the ratio between G” and G’ at a single frequency.

Both scaling procedures cause factors (such as bead-cell geometry) that equally
affect the numerator and denominator of those ratios to cancel out. Moreover, both
scaling procedures can be performed on a bead-by-bead basis. The bead-by-bead
variability of both x and 7 are negligible when compared with the huge variability in
G’ (Fabry, Maksym et al., 2001; Fabry, Maksym et al., 2001).

A third scaling parameter is the normalized stiffness G,, which we define as the
ratio between G’ (measured at a given frequency, say 0.75 Hz) and G (the intersection
of the G’ vs. f curves from different drug treatments, Fig. 3-5). Here, G serves as
an internal stiffness scale that is characteristic for each cell type and for each bead
coating (receptor-ligand interaction), but that is unaffected by drug treatments. Thus,
the normalized stiffness G, allows us to compare the drug-induced responses of cells
under vastly different settings, such as different bead coating, and so on.

Collapse onto master curves

The data were normalized as follows. We estimated x from the fit of Eq. 3.2 to the
pooled (median over many cells) G’ and G” data. The hysteresivity n was estimated
from ratio of G”/ G’ measured at 0.75 Hz (an arbitrary choice). The normalized cell
stiffness G, was estimated as G’ measured at 0.75 Hz divided by go. log G, vs. x and
n vs. x graphs were then plotted (Fig. 3-8).

In human airway smooth muscle (HASM) cells, we found that drugs that increased
x caused the normalized stiffness G, to decrease (Fig. 3-8a, black symbols). The
relationship between log G, and x appears as nearly linear: In G, ~ —x. The solid
line in Fig. 3-8a is the prediction from the structural damping equation under the
condition of a common intersection of all G’ data at radian frequency ®y:

In Gy = (x — 1) In(w/®y). (3.3)

How close the normalized data fell to this prediction thus indicates how well a
common intersection can account for those data.

Conversely, drugs that increased x caused the normalized frictional parameter 1 to
increase (Fig. 3-8b, black symbols). The solid line in Fig. 3-8b is the prediction from
(and not a fit of) the structural damping equation:

n = tan (x — 1)7/2. (3.4)

How close the normalized data fell to this prediction thus indicates how well the
structural damping equation can account for those data.

Surprisingly, the normalized data for the other cell types collapsed onto the very
same relationships that were found for HASM cells (Fig. 3-8). In all cases, drugs that
increased x caused the normalized stiffness G, to decrease and hysteresivity n to
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Fig. 3-8. Normalized stiffness G, vs. x (left) and hysteresivity n (right) vs. x, of HASM cells
(black, n = 256), human bronchial epithelial cells (light gray, » = 142), mouse embryonic carcinoma
cells (F9) cells (dark gray, n = 50), mouse macrophages (J774A.1) (hatched, n = 46) and human
neutrophils (gray, n = 42) under control conditions (m), treatment with histamine (0), FMLP (¢),
DBcAMP (A) and cytochalasin D (A). x was obtained from the fit of Eq. 3.2 to the pooled (median)
data. Drugs that increased x caused the normalized stiffness G, to decrease and hysteresivity 7 to
increase, and vice versa. The normalized data for all types collapsed onto the same relationships.
The structural damping equation by Eq. 3.2 is depicted by the black solid curves: In G, = (x — 1)
In(w/ ®g) with &g = 2.14 x 107 rad/s, and j = tan((x — 1)7r/2). Error bars indicate = one standard
error. If x is taken to be the noise temperature, then these data suggest that the living cell exists close
to a glass transition and modulates its mechanical properties by moving between glassy states that
are “hot,” melted and liquid-like, and states that are “cold,” frozen and solid-like. In the limit that x
approaches 1 the system behaves as an ideal Hookean elastic solid, and in the limit that x approaches
2 the system behaves as an ideal Newtonian fluid (Eq. 3.2). From Fabry, Maksym et al., 2003.

increase. These relationships thus represent universal master curves in that a single
parameter, x, defined the constitutive elastic and frictional behaviors for a variety of
cytoskeletal manipulations, for five frequency decades, and for diverse cell types.

The normalized data from all cell types and drug treatments fell close to the pre-
dictions of the structural damping equation (Fig. 3-8). In the case of the 7 vs. x data
(Fig. 3-8b), this collapse of the data indicates that the coupling between elasticity and
friction, and their power-law frequency dependence, is well described by the structural
damping equation. In the case of the log G, vs. x data (Fig. 3-8a), the collapse of
the data indicates that a common intersection of the G vs. f curves exists for all cell
types, and that this intersection occurs approximately at the same frequency @,.

Rigorous statistical analysis of the data from many different cell types has thus
far supported the existence of a common intersection of the G’ vs. f relationships
measured after treatment with a large panel of cytoskeletally active drugs (Laudadio,
Millet et al., 2005). This holds true regardless of the receptor-ligand pathway that
was used to probe cell rheology (Puig-de-Morales, Millet et al., 2004). The same
statistical analysis, however, hints that the crossover frequency ®, may not be the
same for all cell types and receptor-ligand pathways. Unfortunately, so far &, cannot
be measured with high-enough accuracy to resolve such differences. Thus for all
practical purposes we can regard @, as being the same for all cell types and for all
receptor-ligand combinations (Fabry, Maksym et al., 2003; Puig-de-Morales, Millet
et al., 2004).

The structural damping relationship has long been applied to describe the rheolog-
ical data for a variety of biological tissues (Weber, 1835; Kohlrausch, 1847; Fung,



62

J. Fredberg and B. Fabry

1967; Hildebrandt, 1969; Fredberg and Stamenovic, 1989; Suki, Peslin et al., 1989;
Hantos, Daroczy et al., 1990; Navajas, Mijailovich et al., 1992; Fredberg, Bunk et al.,
1993). Thus, it may seem natural (but still intriguing) that living cells, too, exhibit
structural damping behavior, and in this regard the collapse of the  vs. x data from
different cell types and drug treatments onto the same relationship (Fig. 3-8b) is a
necessary consequence of such behavior. But it is utterly mystifying why the G, vs.
x data from different drug treatments should form any relationship at all and why,
moreover, the data from different cell types and different receptor-ligand pathways
should collapse onto the very same relationship.

Theory of soft glassy rheology

What are soft glassy materials

The master relationships shown in Figs. 3-8 and 3-9 demonstrate that when the me-
chanical properties of the cell change, they do so along a special trajectory. This
trajectory is found to be identical in a large variety of cell types that are probed via dif-
ferent receptor-ligand pathways and over many frequency decades. In all those cases,
changes of stiffness and friction induced by pharmacological interventions could be
accounted for solely by changes in x. This parameter x appears to play a central
organizing role leading to the collapse of all data onto master curves. But what is x?

A possible answer may come — surprisingly — from a theory of soft glassy materials
that was developed by Sollich and colleagues (Sollich, Lequeux et al., 1997). In the
remainder of this chapter a brief introduction is given to some fundamental principles
and ideas about soft glassy rheology. Parallels between living cells and soft glassy
materials are shown, and a discussion ensues on what insights may be gained from
this into the mechanisms involved.

The class of soft glassy materials (SGM) comprises what would at first glance
seem to be a remarkably diverse group of substances that includes foams, pastes,
colloids, emulsions, and slurries. Yet the mechanical behavior of each of these sub-
stances is surprisingly alike. The common empirical criteria that define this class of
materials are that they are very soft (in the range of Pa to kPa), that both G’ and G”
increase with the same weak power-law dependencies on frequency, and that the loss
tangent 1 is frequency insensitive and of the order 0.1 (Sollich, Lequeux et al., 1997;
Sollich, 1998). The data presented so far establish that the cytoskeleton of living cells
satisfies all of these criteria. Accordingly, we propose the working hypothesis that the
cytoskeleton of the living cell can be added to the list of soft glassy materials.

Sollich reasoned that because the materials comprising this class are so diverse, the
common rheological features must be not so much a reflection of specific molecules
or molecular mechanisms as they are a reflection of generic system properties that
play out at some higher level of structural organization (Sollich, 1998). The generic
features that all soft glassy materials share are that each is composed of elements
that are discrete, numerous, and aggregated with one another via weak interactions.
In addition, these materials exist far away from thermodynamic equilibrium and are
arrayed in a microstructural geometry that is inherently disordered and metastable.
Note that the cytoskeleton of living cells shares all of these features.
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Sollich’s theory of SGMs

To describe the interaction between the elements within the matrix, Sollich developed
a theory of soft glassy rheology (SGR) using earlier work by Bouchaud as a point of
departure (Bouchaud, 1992). SGR theory considers that each individual element of the
matrix exists within an energy landscape containing many wells, or traps, of differing-
depth E. These traps are formed by interactions of the element with neighboring
elements. In the case of living cells those traps might be plausibly thought to be
formed by binding energies between neighboring cytoskeletal elements including but
not limited to cross-links between actin filaments, cross-bridges between actin and
myosin, hydrophilic interactions between various proteins, charge effects, or simple
steric constraints.

In Bouchaud’s theory of glasses, an element can escape its energy well and fall into
another nearby well; such hopping events are activated by thermally driven random
fluctuations. As distinct from Bouchaud’s theory, in Sollich’s theory of soft glassy
materials each energy well is regarded as being so deep that the elements are unlikely
to escape the well by thermal fluctuations alone. Instead, elements are imagined to be
agitated, or jostled, by their mutual interactions with neighboring elements (Sollich,
1998). A clear notion of the source of the nonthermal agitation remains to be identified,
but this agitation can be represented nonetheless by an effective temperature, or noise
level, x.

Sollich’s SGR theory follows from a conservation law for probability of an element
being trapped in an energy well of depth £ and local displacement (strain) /, at time
t, denoted P(E, [, t). Dynamics is then governed by a conservation equation for this
probability, given by

AP(E,1,1))3t +ydP/dl = —g(E,1)P(E,1, 1) + f(E)D(t)5(]) 3.5)

where ®(t) = [dEdl g(E,l)P(E, 1, 1) (required for conservation of probability),
and §(/) is the Dirac delta function. Here y = dl/dt and f(E) is the distribution of
energy-well depths. Eq. 3.5 states that the material rate of change of P is given by
the sum of two terms. The first term is depletion, equal to the probability of resident
elements hopping out, given by the product of the probability of occupancy P and a
transition rate g( £, /). The second term is the accumulation rate, equal to the product
of the total number of available transitions ®(¢) and the delta function constraint
forcing elements to hop into wells at zero local strain.

Sollich takes g(E, 1) = ®gexp(—(E + kI%/2)/x) and f(E) = ®, exp (—E), re-
spectively. Note that the transition rate g( £, /) for hopping out of wells is distributed
over E, which, in the nonlinear regime, is also a function of strain. Note further that
the transition rate into wells of depth £ only depends on strain through the constraint
that / = 0 following a hop.

When x > 1, there is sufficient agitation in the matrix that the element can hop
randomly between wells and, as a result, the system as a whole can flow and become
disordered. When x approaches 1, however, the elements become trapped in deeper
and deeper wells from which they are unable to escape: the system exhibits a glass
transition and becomes a simple elastic solid with stiffness Gy.
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Soft glassy rheology and structural damping

Remarkably, in the limit that the frequency is small (compared to ®() and the imposed
deformations are small (such that the rate for hopping out of wells is dominated by
x), Sollich’s theory leads directly to the structural damping equation (Eq. 3.2).

The data reported above establish firmly that the mechanical behavior of cells
conforms well to Eq. 3.2. If Sollich’s theory and underlying ideas are assumed to
apply to the data reported here, then the parameters in Eq. 3.2 (x, Gy, ®¢) can be
identified as follows.

The parameter x is identified as being the noise temperature of the cytoskeletal
matrix. The measured values of x in cells lie between 1.15 and 1.35, indicating that
cells exist close to a glass transition.

G, is identified as being the stiffness of the cytoskeleton at the glass transition
(x = 1). In this connection, Satcher and Dewey (1996) developed a static model of
cell stiffness based on consideration of cell actin content and matrix geometry. All
dynamic interactions were neglected in their model, as would be the case in SGR
theory in the limit that x approaches 1, when all hopping ceases. As such, it might
be expected that their model would predict this limiting value of the stiffness, Gy,
as defined in Eq. 3.2. Indeed, we have found a remarkably good correspondence
between their prediction (order of 10 kPa) and our estimate for G (41 kPa in HASM
cells).

Finally, @, is identified in Sollich’s theory as being the maximum rate at which
cytoskeletal elements can escape their traps. However, for soft glassy materials in
general, and the case of living cells in particular, the factors that determine ®, re-
main unclear. Statistical analysis of our data suggests that @, did not vary with drug
treatments and possibly not even across cell type (Fig. 3-7). But why ® is invariant
is not at all clear, and is not explained by SGR theory.

Open questions

Crucial aspects of soft glassy rheology (SGR) theory remain incomplete, however.
First, the effective noise temperature x is a temperature to the extent that the rate at
which elements can hop out of a trap assumes the form exp(— £ /x), where x takes
the usual position of a thermal energy kz 7T in the familiar Boltzmann exponential.
By analogy, x has been interpreted by Sollich as reflecting jostling of elements by
an unidentified but nonthermal origin. It appears an interesting question whether the
ambiguity surrounding x might be resolved in the case of living cells (as opposed to
the inert materials for which SGR theory was originally devised) by an obvious and
ready source of nonthermal energy injection, namely those proteins that go through
cyclic conformational changes and thus agitate the matrix by mechanisms that are
ATP dependent.

Second, Sollich interprets £ as an energy-well depth, but there are difficulties with
this interpretation. In SGR theory the total energy is not a conserved quantity even in
the zero-strain case, and the energy landscape has no spatial dimension, precluding
explicit computation of microstructural rearrangements. Such microstructural rear-
rangements in the form of cytoskeletal reorganization during cell division, crawling,



The cytoskeleton as a soft glassy material

or intracellular transport processes are of fundamental interest in cell biology. The
fluctuation-dissipation theorem implies a profound connection between dissipative
phenomena as reflected in the measured values of G” during oscillatory forcing, and
the temporal evolution of the mean square displacement (MSD), or fluctuations, of
free unforced particles in the medium. Experiments from our lab and others revealed
a behavior of MSD that lies somewhere between that of simple diffusion in a homoge-
neous medium and ballistic behavior characteristic of short time displacements (An,
Fabry et al., 2004). To what extent this is consistent with SGR theory also remains an
open question (Lau, Hoffman et al., 2003).

Despite these questions, however, it is clear from Sollich’s theory that for a soft
glass to elastically deform, its elements must remain in energy wells; in order to flow,
the elements must hop out of these wells. In the case of cells, these processes depend
mainly on a putative energy level in the cytoskeletal lattice, where that energy is
representative of the amount of molecular agitation, or jostling, present in the lattice
relative to the depth of energy wells that constrain molecular motions. This energy
level can be expressed as an effective lattice temperature (x) — as distinct from the
familiar thermodynamic temperature. Even while the thermodynamic temperature is
held fixed, this effective temperature can change, can be manipulated, and can be
measured. The higher the effective temperature, the more frequently do elemental
structures trapped in one energy well manage to hop out of that well only to fall
into another. The hop, therefore, can be thought of as the fundamental molecular
remodeling event.

It is interesting that, from a mechanistic point of view, the parameter x plays a
central role in the theory of soft glassy materials. At the same time, from a purely
empirical point of view, the parameter x is found to play a central organizing role
leading to the collapse of all data onto master curves (Fig. 3-8). Whether or not the
measured value of x might ultimately be shown to correspond to an effective lattice
temperature, this empirical analysis would appear to provide a unifying framework
for studying protein interactions within the complex integrative microenvironment of
the cell body.

In the next section, the concepts developed so far are employed to tie together within
such a unified framework diverse behaviors of cell physiology that were previously
unexplained or regarded as unrelated.

Biological insights from SGR theory

Malleability of airway smooth muscle

The function of smooth muscle is to maintain shape and/or tone of hollow organs
(Murphy, 1988). Typically, smooth muscle must do so over an extremely wide range
of working lengths. Two unique features enable smooth muscle to do this. First,
smooth muscle can develop its contractile forces almost independently of muscle
length (Wang, Pare et al., 2001). To achieve this, the cytoskeletal lattice and associated
contractile machinery of smooth muscle is disordered and highly malleable, quite
unlike the ordered and fixed structure of striated muscle and the rather narrow range
of lengths over which striated muscle can generate appreciable tension. Second, at the
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height of force development, smooth muscle can “latch” its contractile machinery,
that is to say, down-regulate the rate of acto-myosin cycling, thereby leading to tone
maintenance very economically in terms of energy metabolism (Hai and Murphy,
1989). To produce the same steady-state isometric force, for example, striated muscle
hydrolyzes more ATP at a rate 300 times higher than does smooth muscle (Murphy,
1988).

Soft glassy rheology theory helps to piece together such information into an in-
tegrative context. Below, we present some earlier data from our laboratory on the
mechanical and contractile properties of smooth muscle tissue; these data contained
some previously unexplained loose ends. The glass hypothesis now offers a new and
consistent explanation of these data.

Our earlier work focused on the contractile states of smooth muscle that were
inferred from the responses to sinusoidal length or force perturbations. Fig. 3-9 sum-
marizes a typical result obtained from sinusoidal length perturbations.

The stiffness £ in those experiments is a measure of the number of force-generating
acto-myosin bridges, while the hysteresivity n is a measure of internal mechanical
friction and is closely coupled to the rate of cross-bridge cycling as reflected both in
the unloaded shortening velocity and the rate of ATP utilization measured by NADH
fluorimetry (Fredberg, Jones et al., 1996). The dramatic increase in force and stiffness
after contractile stimulation (Fig. 3-10) therefore reflects an increase in the number
of acto-myosin bridges. The progressive fall of n after contractile stimulus onset
(Fig. 3-9) has been interpreted as reflecting rapidly cycling cross-bridges early in the
contractile event converting to slowly cycling latch-bridges later in the contractile
event (Fredberg, Jones et al., 1996). This molecular picture fits exceptionally well
with computational analysis based on first principles of myosin-binding dynamics.
According to this picture, imposed sinusoidal length oscillations (between 400 s and
900 s in Fig. 3-9) around a constant mean length lead to a disruption of acto-myosin
cross-bridges and latch-bridges. This shifts the binding equilibrium of myosin toward
a faster cycling rate such that with increasing oscillation amplitude hysteresivity
increases, and muscle force and stiffness fall (Fredberg, 2000; Mijailovich, Butler
et al., 2000). However, this picture is unable to explain why force and stiffness re-
mained suppressed even after the length oscillations had stopped (Fig. 3-9).

Much the same behavior was found in a similar experiment in which force oscilla-
tions were imposed around a constant mean force (Fredberg, 2000): With increasing
amplitude of the force oscillations, stiffness decreased and muscle length and hystere-
sivity increased (Fig. 3-10). Again, this behavior was exceptionally well explained by
acto-myosin binding dynamics (Fredberg, 2000), but when the amplitude of the force
oscillations was reduced, length and stiffness inexplicably did not return (Fig. 3-10).

A rather different perspective on these observations (Figs. 3-9 and 3-10) arises when
they are viewed instead through the lens of glassy behavior. Accordingly, the relaxed
smooth muscle cell is in a relatively “cold” state, with a noise temperature close to
unity, but with the onset of contractile stimulation the cell very rapidly becomes “hot.”
After this hot initial transient, the cell then begins to gradually “cool” in the process
of sustained contractile stimulation until, eventually, it approaches a steady-state that
approximates a “frozen” state not only mechanically (high stiffness and low noise
temperature) but also biochemically and metabolically (Gunst and Fredberg, 2003).
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Fig. 3-9. Time courses of force (A), stiffness (B), and hysteresivity (C) in a bovine tracheal smooth
muscle strip. To continuously track changes in stiffness and hysteresivity, sinusoidal length oscilla-
tions at a frequency of 0.2 Hz and with amplitude ¢ were superimposed throughout the measurement
period. The tangent of the phase angle between the sinusoidal length oscillations and the resulting
force oscillations (that is, the hysteresivity 1) defines the noise temperature x (panel (C), right side)
by a simple relationship (Eq. 3.5). The strip was stimulated at 100 s with acetylcholine (10~* M). The
solid trace in each panel corresponds to cyclic strain (¢) maintained throughout at 0.25%. Broken
lines correspond to runs in the same muscle subjected to graded increments of & from 0.25 to either
0.5, 1, 2, 4, or 8% over the time interval from 400 to 900 s. Adapted from Fredberg, Inouye et al.,
1997.

The progressive decrease of stiffness and increase of hysteresivity with increas-
ing amplitude of the imposed cyclic strain (Figs. 3-9 and 3-10) is consistent with a
fluidization of the CSK matrix due to the application of a shear stress. SGR theory
predicts that shear stress imposed at the macroscale adds to the agitation already
present at the microscale, and thereby increases the noise temperature in the matrix
(Sollich, 1998). This in turn allows elements to escape their cages more easily, such
that friction and hysteresivity increases while stiffness decreases (Sollich, 1998; Fabry
and Fredberg, 2003).

SGR theory now goes beyond the theory of perturbed myosin binding by predicting
that the stretch-induced increase in noise temperature speeds up all internal molecular
events, including accelerated plastic restructuring events within the CSK. When the
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Fig. 3-10. Evolution of mechanical properties of bovine tracheal smooth muscle during contraction
against a constant mean force on which force fluctuations (0.2 Hz) of graded amplitude § F were
superimposed. (a) Mean muscle length L (relative to optimal length L). (b) Loop stiffness (percent-
age of maximum isometric value). (c) hysteresivity n and noise temperature x. Lgg is the statically
equilibrated length of the muscle after 120 min. of unperturbed contraction against a constant load
of 32% of maximum force (Fy). Adapted from Fredberg, 2000.

tidal stretches are terminated (Figs. 3-9 and 3-10), however, the noise temperature
is suddenly lowered, and all plastic changes might become trapped, or quenched, so
that the muscle is unable to return to maximum force and stiffness (Fig. 3.10), or
maximum shortening (Fig. 3-10) (Fabry and Fredberg, 2003).

The glass hypothesis predicts, therefore, that the cell ought to be able to adapt
faster to step-length changes imposed while the cell is transiently ‘hot’ (that is, early
in activation), and far less so after it has cooled in the process of sustained activation
(Fabry and Fredberg, 2003; Gunst and Fredberg, 2003). Indeed, Gunst and colleagues
showed that a step change of muscle length alters the level of the subsequent force
plateau to a degree that depends mostly on the timing of the length change with respect
to stimulus onset (Gunst, Meiss et al., 1995; Gunst and Fredberg, 2003).

Conclusion

The behavior of soft glasses, and the underlying notion of the noise temperature, might
provide a unifying explanation of the ability of the cytoskeletal lattice to deform, to
flow, and to remodel. Such a view does not point to specific molecular processes that
occur, but instead derives the mechanical properties from generic features: structural
elements that are discrete, numerous, aggregated with one another via weak interac-
tions, and arrayed in a geometry that is structurally disordered and metastable. We
have proposed here that these features may comprise the basis of CSK rheology and
remodeling.
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4 Continuum elastic or viscoelastic models for the cell

Mohammad R. K. Mofrad, Helene Karcher, and Roger D. Kamm

ABSTRACT: Cells can be modeled as continuum media if the smallest operative length scale
of interest is much larger than the distance over which cellular structure or properties may
vary. Continuum description uses a coarse-graining approach that replaces the contributions of
the cytoskeleton’s discrete stress fibers to the local microscopic stress-strain relationship with
averaged constitutive laws that apply at macroscopic scale. This in turn leads to continuous
stress-strain relationships and deformation descriptions that are applicable to the whole cell
or cellular compartments. Depending on the dynamic time scale of interest, such continuum
description can be elastic or viscoelastic with appropriate complexity. This chapter presents
the elastic and viscoelastic continuum multicompartment descriptions of the cell and shows a
successful representation of such an approach by implementing finite element-based two- and
three-dimensional models of the cell comprising separate compartments for cellular membrane
and actin cortex, cytoskeleton, and nucleus. To the extent that such continuum models can
capture stress and strain patterns within the cell, it can help relate biological influences of
various types of force application and dynamics under different geometrical configurations of
the cell.

Introduction

Cells can be modeled as continuum media if the smallest length scale of interest
is significantly larger than the dimensions of the microstructure. For example when
whole-cell deformations are considered, the length scale of interest is at least one or
two orders of magnitude larger than the distance between the cell’s microstructural el-
ements (namely, the cytoskeletal filaments), and as such a continuum description may
be appropriate. In the case of erythrocytes or neutrophils in micropipette aspiration,
the macroscopic mechanical behavior has been successfully captured by continuum
viscoelastic models. Another example is the cell deformation in magnetocytometry,
the application of a controlled force or torque via magnetic microbeads tethered to
a single cell. Because the bead size and the resulting deformation in such experi-
ments are much larger than the mesh size of the cytoskeletal network, a continuum
viscoelastic model has been successfully applied without the need to worry about the
heterogeneous distribution of filamentous proteins in the cytoskeleton. It should be
noted that in using a continuum model, there are no constraints in terms of isotropy or
homogeneity of properties, as these can easily be incorporated to the extent they are
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known. Predictions of the continuum model, however, are only as good as the consti-
tutive law — stress-strain relation — on which they are based. This could range from a
simple linear elasticity model to a description that captures the viscoelastic behavior
of a soft glassy material (see, for example Chapter 3). Accordingly, the continuum
model tells us nothing about the microstructure, other than what might be indirectly
inferred based on the ability of one constitutive law or another to capture the observed
cellular strains. It is important that modelers recognize this limitation.

In essence, continuum mechanics is a coarse-graining approach that replaces the
contributions of the cytoskeleton’s discrete stress fibers to the local microscopic stress-
strain relationship with averaged constitutive laws that apply at macroscopic scale.
This in turn leads to continuous stress-strain relationships and deformation descrip-
tions that are applicable to the whole cell or cellular compartments. Depending on
the dynamic time scale of interest, such continuum descriptions can be elastic or
viscoelastic with appropriate complexity.

This chapter presents elastic and viscoelastic continuum multicompartment de-
scriptions of the cell and shows a successful representation of such approaches by
implementing finite element-based two- and three-dimensional models of the cell
comprising separate compartments for cellular membrane and actin cortex, cytoskele-
ton, and the nucleus. To the extent that such continuum models can capture stress and
strain patterns within the cell, they can help us relate biological influences of various
types of force application and dynamics under different geometrical configurations
of the cell.

By contrasting the computational results against experimental data obtained using
various techniques probing single cells — such as micropipette aspiration (Discher
et al., 1998; Drury and Dembo, 2001), microindentation (Bathe et al., 2002), atomic
force microscopy (AFM) (Charras et al., 2001), or magnetocytometry (Figs. 4-7, 4-8,
Karcher et al., 2003; Mack et al., 2004) — the validity and limits of such continuum
mechanics models will be assessed. In addition, different aspects of the model will be
characterized by examining, for instance, the mechanical role of the membrane and
actin cortex in the overall cell behavior. Lastly, the applicability of different elastic
and viscoelastic models in the form of various constitutive laws to describe the cell
under different loading conditions will be addressed.

Purpose of continuum models

Continuum models of the cell are developed toward two main purposes: analyzing ex-
periments probing single cell mechanics, and evaluating the level of forces sensed by
various parts of the cell in vivo or in vitro. In the latter case, a continuum model eval-
uates the stress and strain patterns induced in the cell by the experimental technique.
Comparison of theoretical and computational predictions proposed by the continuum
model against the experimental observations then allows for deduction of the cell’s
mechanical properties. In magnetocytometry, for example, the same torque or tan-
gential force applied experimentally to a microbead attached atop a cell is imposed
in continuum models of the cell. Material properties introduced in the model that
reproduce the observed bead displacement yield possible mechanical properties of
the probed cell (see Mijailovich et al., 2002, and Fig. 4-7 for torque application,
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Fig. 4-1. Simulation of a small erythrocyte under aspiration. The micropipette, indicated by the solid
gray shading, has an inside diameter of 0.9 pm. The surface of the cell is triangulated with 6110
vertex nodes that represent the spectrin-actin junction complexes of the erythrocyte cytoskeleton.
The volume of the cell is 0.6 times the fully inflated volume, and the simulation is drawn from the
stress-free model in the free shape ensemble. From Discher et al., 1998.

and Karcher et al., 2003, and Fig. 4-8 for tangential force application). Continuum
models have also shed light on mechanical effects of other techniques probing single
cells, such as micropipette aspiration (Figs. 4-1, 4-6, and for example, Theret et al.,
1988; Yeung and Evans, 1989; Dong and Skalak, 1992; Sato et al., 1996; Guilak
et al., 2000; Drury and Dembo, 2001), microindentation (for example, Bathe et al.,
2002, probing neutrophils, Fig. 4-2 left), atomic force microscopy (AFM) (for ex-
ample, Charras et al., 2001 and Charras and Horton, 2002, deducing mechanical

Fig.4-2. Microindentation of a neutrophil (left) and passage through a capillary (right) (finite element
model). From Bathe et al., 2002.
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(@) (b)

Fig. 4-3. Strain distributions elicited by AFM indentation. All of the scales are in strains. The
numerical values chosen for this simulation were: £ = 10 kPa, v = 0.3, R = 15 um, F = 1 nN.
(a) Radial strain distribution. The largest radial strains are found on the cell surface. A large strain
gradient is present at the boundary between the region where the sphere is in contact with the
cell surface and the region where it is not. (b) Tangential strain distribution. The largest tangential
strains occurred at the cell surface in the area of indentation. (c¢) Vertical strain distribution. The
largest vertical strains were located directly under the area of indentation within the cell thickness.
(d) Deformations elicited by AFM indentation. The deformations have been amplified 15-fold in the
z-direction. From Charras et al., 2001.

properties of osteoblasts, Figs. 4-3, 4-4), magnetocytometry (Figs. 4-7, 4-8, Karcher
et al., 2003; Mack et al., 2004; Mijailovich et al., 2002), or optical tweezers (for
example, Mills et al., 2004 stretching erythrocytes, Fig. 4-5). Finally, comparison of
continuum models with corresponding experiments could help to distinguish active
biological responses of the cell (such as remodeling and formation of pseudopods)
from passive mechanical deformations, the only deformations captured by the model.
This capability has not been exploited yet to the best of our knowledge.

In addition to helping interpret experiments, continuum models are also used to
evaluate strains and stresses under biological conditions (for example, Fung and Liu,
1993, for endothelium of blood vessels). One example is found in the microcircu-
lation where studies have examined the passage of blood cells through a narrow
capillary (for example, Bathe et al., 2002, for neutrophils (Fig. 4-2 left), Barthes-
Biesel, 1996, for erythrocytes) where finite element models have been used to predict
the changes in cell shape and the cell’s transit time through capillaries. In the case



Continuum elastic or viscoelastic models for the cell

Fig. 4-4. The effect of fluid shear. (a) The shear stress resultant in the z-direction () for a nominal
S Pa shear stress on a flat substrate. The shear stresses are tensile and lower upstream and higher
downstream. The imposed parabolic flow profile is shown at the entry and the boundary conditions
are indicated on the graph. (b) The vertical strain distribution (e..) for a cell submitted to fluid shear
stresses. Black triangles indicate where the substrate was fully constrained. The cellular strains are
maximal downstream from the cell apex and in the cellular region. In (a) and (b), the arrow indicates
the direction of flow. From Charras and Horton, 2002.

of neutrophils, these inputs are crucial in understanding their high concentration in
capillaries, neutrophil margination, and in understanding individual neutrophil activa-
tion preceding their leaving the blood circulation to reach infection sites. Neutrophil
concentration depends indeed on transit time, and activation has recently been shown
experimentally to depend on the time scale of shape changes (Yap and Kamm, 2005).
Similarly, continuum models can shed light on blood cells’ dysfunctional microrhe-
ology arising from changes in cell shape or mechanical properties (for example, time-
dependent stiffening of erythrocytes infected by malaria parasites in Mills et al., 2004
(Fig. 4-5)).

Other examples include the prediction of forces exerted on a migrating cell in
a three-dimensional scaffold gel (Zaman et al., 2005), prediction of single cell at-
tachment and motility on a substrate, for example the model for fibroblasts or the
unicellular organism Ameboid (Gracheva and Othmer, 2004), or individual protopod
dynamics based on actin polymerization (Schmid-Schonbein, 1984).

Principles of continuum models

A continuum cell model provides the displacement, strain, and stress fields induced in
the cell, given its initial geometry and material properties, and the boundary conditions
it is subjected to (such as displacements or forces applied on the cell surface). Laws
of continuum mechanics are used to solve for the distribution of mechanical stress
and deformation in the cell. Continuum cell models of interest lead to equations
that are generally not tractable analytically. In practice, the solution is often obtained
numerically via discretization of the cell volume into smaller computational cells
using (for example) finite element techniques.

A typical continuum model relies on linear momentum conservation (applicable to
the whole cell volume). Because body forces within the cell are typically small, and,
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Fig. 4-5. Images of erythrocytes being stretched using optical tweezer at various pulling forces. The
images in the left column are obtained from experimental video photography whereas the images
in the center column (top view) and in the right column (half model 3D view) correspond to large
deformation computational simulation of the biconcave red cell. The middle column shows a plan
view of the stretched biconcave cell undergoing large deformation at the forces indicated on the left.
The predicted shape changes are in reasonable agreement with observations. The contours in the
middle column represent spatial variation of constant maximum principal strain. The right column
shows one half of the full 3D shape of the cell at different imposed forces. Here, the membrane is
assumed to contain a fluid with preserved the internal volume. From Mills et al., 2004.

at the scale of a cell, inertial effects are negligible in comparison to stress magnitudes
the conservation equation simply reads:
V-o=0

with o = Cauchy’s stress tensor.

Boundary conditions

For the solution to uniquely exist, either a surface force or a displacement (possibly
equal to zero) should be imposed on each point of the cell boundary. Continuity of
normal surface forces and of displacement imposes necessary conditions to ensure
uniqueness of the solution.

Mechanical and material characteristics

Mechanical properties of the cell must be introduced in the model to link strain
and stress fields. Because a cell is composed of various parts with vastly different
mechanical properties, the model ideally should distinguish between the main parts
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Fig. 4-6. Geometry of a typical computational domain at two stages. (¢) The domain in its initial,
round state. (b) The domain has been partially aspirated into the pipet. Here, the interior, exterior,
and nozzle of the pipet are indicated. 'gy,, free-interior; 'y, free-exterior; Iy, constrained-interior;
and ['.ex, constrained-exterior boundaries. There is a fifth, purely logical boundary, I",., which is
the axis of symmetry. From Drury and Dembo, 2001.

of the cell, namely the plasma membrane, the nucleus, the cytoplasm, and organelles,
which are all assigned different mechanical properties. This often leads to the in-
troduction of many poorly known parameters. A compromise must then be found
between the number of cellular compartments modeled and the number of parame-
ters introduced.

The cytoskeleton is difficult to model, both because of its intricate structure and
because it typically exhibits both solid- and fluid-like characteristics, both active
and passive. Indeed, a purely solid passive model would not capture functions like
crawling, spreading, extravasion, invasion, or division. Similarly, a purely fluid model
would fail in describing the ability to maintain the structural integrity of cells, unless
the membrane is sufficiently stiff.

The nucleus has generally been found to be stiffer and more viscous than the
cytoskeleton. Probing isolated chondrocyte nuclei with micropipette aspiration Guilak
et al. (2000) found nuclei to be three to four times stiffer and nearly twice as viscous
as the cytoplasm. Its higher viscosity results in a slower time scale of response, so that
the nucleus can often be considered as elastic, even when the rest of the cell requires
viscoelastic modeling. Nonetheless, the available data on nuclear stiffness seem to be
rather divergent, with values ranging from 18 Pa to nearly 10 kPa (Tseng et al., 2004;
Dahl et al., 2005), due perhaps to factors such as differences in cell type, measurement
technique, length scale of measurement, and also method of interpretation.

The cellular membrane has very different mechanical properties from the rest of
the cell, and hence, despite its thinness, often requires separate modeling. It is more
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(a) (b)

Fig. 4-7. Deformed shapes and strain fields in a cell 5 um in height for bead embedded 10% of
its diameter. Shown are strain fields of the components of strain: ¢.. (a), €,, (b), &,- (c), and the

effective strain g,y (d). The effective strain is defined as: €,/ = %8,- j — €ij, where g;; are strain
components in Cartesian system x; (x, y, z). From Mijailovitch et al., 2002.

fluid-like (Evans, 1989; Evans and Yeung, 1989) and should be modeled as a vis-
coelastic material with time constants of the order of tens of ps.

The cortex, that is, the shell of cytoskeleton that is just beneath the membrane,
is in most cell types stiffer than the rest of the cytoskeleton. Bending stiffness
of the membrane and cortex has been measured in red blood cells (Hwang and
Waugh, 1997; Zhelev et al., 1994). A cortical tension when the cell is at its (un-
stimulated) resting state has also been observed in endothelial cells and leukocytes
(Schmid-Schonbein et al., 1995).

Example of studied cell types

Blood cells: leukocytes and erythrocytes

Blood cells are subjected to intense mechanical stimulation from both blood flow and
vessel walls, and their theological properties are important to their effectiveness in per-
forming their biological functions in the microcirculation. Modeling of neutrophils’
viscoelastic large deformations in narrow capillaries or in micropipette experiments
has shed light on their deformation and their passage time through a capillary or
entrance time in a pipette. Examples of such studies are Dong et al. (1988), Dong
and Skalak (1992), Bathe et al. (2002), and Drury and Dembo (2001) (see Fig. 4.6),
who used finite element techniques and/or analytical methods to model the large de-
formations in neutrophils. Shape recovery after micropipette aspiration — a measure
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Fig. 4-8. Computational finite element models of a cell monolayer being pulled at 500 pN using
magnetic cytometry experiment. Top panels show the pressure and effective stress fields induced in
the cell after 2 s. (effective stress is a scalar invariant of the stress tensor excluding the compressive
part). Lower left panel shows the membrane xx-stretch (in the direction of the applied force), while
the lower right panel shows the induced deformation in the cytoskeleton in the direction of the applied
force. From Karcher et al., 2003.

of the neutrophil’s viscoelastic properties and its active remodeling — was for ex-
ample investigated with a theoretical continuum model consisting of two compart-
ments: a cytoplasm modeled as a Newtonian liquid, and a membrane modeled with
a Maxwell viscoelastic fluid in the first time of recovery and a constant surface ten-
sion for the later times (Tran-Son-Tay et al., 1991). Erythrocytes have typically been
modeled as viscoelastic membranes filled with viscous fluids, mostly to understand
microcirculation phenomena, but also to explain the formation of “spikes” or crena-
tions on their surface (Landman, 1984).

Adherent cells: fibrobasts, epithelial cells, and endothelial cells

Many types of cell, anchored to a basal substrate and sensitive to mechanical stimuli —
like fibrobasts and epithelial and endothelial cells — have been probed by magnetocy-
tometry, the forcing of a um-sized bead attached atop a single cell through a certain
type of membrane receptor (such as integrins).

Continuum modeling of this experiment was successfully developed to analyze
the detailed strain/stress fields induced in the cell by various types of bead forcing
(oscillatory or ramp forces of various magnitudes) (Mijailovitch et al., 2002; Fig. 4-7).
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Fig. 4-9. A continuum, viscoelastic finite element simulation representing experimental cell contact
sites on the basal cell surface estimated the focal adhesion shear stress distribution during magneto-
cytometry. Left panel shows merged experimental fluorescent images depicting the focal adhesion
sites. Middle and right panels show displacement and shear stress in the basal membrane of the cell.
Zero displacement and elevated shear stresses are evident in the focal adhesion regions. From Mack
et al., 2004.

(Karcher et al., 2003; Fig. 4-8). Modeling the cell with two Maxwell viscoelastic
compartments representing, respectively, the cytoskeleton and the membrane/cortex,
the authors found that the membrane/cortex contributed a negligible mechanical effect
on the bead displacement at the time scales corresponding to magnetocytometry.

Comparison with experiments on NIH 3T3 fibroblasts led to a predicted viscoelastic
time scale of ~1 s and a shear modulus of ~1000 Pa for these cells. In addition, the
model showed that the degree to which the bead is embedded in the cell, a parameter
difficult to control and measure in experiments (Laurent et al., 2002; Ohayon et al.,
2004), dramatically changes the magnitude of stress and strain, although it influences
their pattern very little. Continuum modeling also allowed for modulation of cell
height and material properties to investigate the behavior of different adherent cell
types. Italso demonstrated that the response of the cell when forced with the microbead
was consistent with that of a linear elastic model, quite surprising in view of the locally
large strains.

The cell attachment to its substrate by the basal membrane was later modified to
investigate force transmission from the bead to the basal membrane (Mack et al.,
2004) (Fig. 4-9). Only experimentally observed points of attachments, that is, focal
adhesion sites, were fixed in the model, allowing for the rest of the cell substrate
to move freely. Forcing of the bead on the apical surface of NIH 3T3 fibroblasts
preferentially displaced focal adhesion sites closer to the bead and induced a larger
shear on the corresponding fixed locations in the model, implying that focal adhesion
translation correlates with the local level of force they sense.

An alternative experiment to probe cell deformation and adhesion consists of plat-
ing them on a compliant substrate. Finite element modeling of cells probed by this
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technique was recently used to evaluate the stress and strain experienced at the nuclear
envelope, thereby investigating the mechanical interplay between the cytoskeleton
and the nucleus. The ultimate goal of this study was to identify potential sources of
mechanical dysfunction in fibroblasts deficient in specific structural nuclear mem-
brane proteins (Hsiao, 2004). The model showed that the effect of nuclear shape,
relative material properties of the nucleus and cytoskeleton, and focal adhesion size
were important parameters in determining the magnitude of stress and strain at the
nucleus/cytoskeleton interface.

Limitations of continuum model

Continuum models of the cell aim at capturing its passive dynamics. In addition
to the limitations mentioned above, current models do not yet typically account for
active biology: deformations and stresses experienced as a direct consequence of
biochemical responses of the cell to mechanical load cannot be predicted by current
continuum models. However, by contrasting the predicted purely mechanical cell
response to experimental observations, one could isolate phenomena involving active
biology, such as cell contraction or migration, from the passive mechanical response
of the cell. Alternatively, continuum models might be envisioned that account for
active processes through time-dependent properties or residual strains that are linked
to biological processes. (See also Chapter 10.)

Another limitation of continuum models stems from lack of description of cy-
toskeletal fibers. As such, they are not applicable for micromanipulations of the cell
with a probe of the same size or smaller than the cytoskeletal mesh (~0.1-1.0 um).
This includes most AFM experiments. In addition, the continuum models exclude
small Brownian motions due to thermal fluctuations of the cytoskeleton, which would
correspond to fluctuations of the network nodes in a continuum model and have been
shown to play a key role in cell motility (Mogilner and Oster, 1996).

Finally, continuum models have so far employed a limited number of time constants
to characterize the cell’s behavior. However, cells have recently been shown to exhibit
behaviors with power-law rheology implying a continuous spectrum of time scales
(Fabry et al., 2001; Desprat et al., 2004, and Chapter 3). Modeling the cell with no
intrinsic time constant has successfully captured this behavior (for example, Djord-
jevic et al., 2003), though this type of model cannot and does not aim at predicting or
describing force or strain distribution within the cell. One of the challenges, therefore,
to the use of continuum models for the prediction of intracellular stress and strain
patterns is to develop cell material models that capture this complex behavior. In the
meantime, models involving a finite number of time constants consistent with the
time scale of the experimental technique can be used, recognizing their limitations.

Conclusion

Continuum mechanical models have proven useful in exploiting and interpreting re-
sults of a number of experimental techniques probing single cells or cell monolayers.
They can help identify the stress and strain patterns induced within the cell by ex-
perimental perturpations, or the material properties of various cell compartments. In
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addition, continuum models enable us to predict the forces experienced within cells
in vivo, and to then form hypotheses on how cells might sense and transduce forces
into behavior such as changes in shape or gene expression.

The time scale of cell stimulation in experiments in vivo often requires that we take
into account the time-dependent response of the cell, that is, to model it or some of its
components as viscous or viscoelastic. Likewise, it is often necessary to model cell
compartments with different materials, as their composition gives them very distinct
mechanical properties.

Such continuum models have proven useful in the past, and will continue to play a
rolein cell modeling. As we gain more accurate experimental data on cellular rheology,
these results can be incorporated into continuum models of improved accuracy of
representation. As such, they are useful “receptacles” of experimental data with the
capability to then predict the cellular response to mechanical stimulus, provided one
accepts the limitations, and recognizes that they provide little by way of insight into
the microstructural basis for macroscopic rheology.
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5 Multiphasic models of cell mechanics

Farshid Guilak, Mansoor A. Haider, Lori A. Setton,
Tod A. Laursen, and Frank P.T. Baaijens

ABSTRACT: Cells are highly complex structures whose physiology and biomechanical proper-
ties depend on the interactions among the varying concentrations of water, charged or uncharged
macromolecules, ions, and other molecular components contained within the cytoplasm. To
further investigate the mechanistic basis of the mechanical behaviors of cells, recent studies
have developed models of single cells and cell-matrix interactions that use multiphasic consti-
tutive laws to represent the interactions among solid, fluid, and in some cases, ionic phases of
cells. The goals of such studies have been to characterize the relative contributions of different
physical mechanisms responsible for empirically observed phenomena such as cell viscoelas-
ticity or volume change under mechanical or osmotic loading, and to account for the coupling
of mechanical, chemical, and electrical events within living cells. This chapter describes sev-
eral two-phase (fluid-solid) or three-phase (fluid-solid-ion) models, originally developed for
studying soft hydrated tissues, that have been extended to describe the biomechanical behavior
of individual cells or cell-matrix interactions in various tissue systems. The application of such
“biphasic” or “triphasic” continuum-based approaches can be combined with other structurally
based models to study the interactions of the different constitutive phases in governing cell
mechanical behavior.

Introduction

Cells of the human body are regularly subjected to a complex mechanical environment,
consisting of temporally and spatially varying stresses, strains, fluid flow, osmotic
pressure, and other biophysical factors. In many cases, the mechanical properties and
the rheology of cells play a critical role in their ability to withstand mechanical loading
while performing their physiologic functions. In other cases, mechanical factors serve
as important signals that influence, and potentially regulate, cell phenotype in both
health and disease. An important goal in the field of cell mechanics thus has been the
study of the mechanical properties of the cell and its biomechanical interactions with
the extracellular matrix. Accordingly, such approaches have required the development
of constitutive models based on realistic cellular structure and composition to better
describe cell behavior.

Based on empirical studies of cell mechanical behavior, continuum models of
cell mechanics generally have assumed either fluid or solid composition and cell
properties, potentially including cortical tension at the membrane (Evans and Yeung,
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1989; Dongetal., 1991; Needham and Hochmuth, 1992; Karcher et al., 2003). In other
approaches, the elastic behavior of the cell has been described using structural models
such as the “tensegrity” approach (Ingber, 2003). Most such models have employed
constitutive models that assume cells consist of a single-phase material (that is, fluid
or solid), as detailed in Chapters 4, and 6. However, a number of recent studies have
developed models of single cells and cell-matrix interactions that use multiphasic
constitutive laws to account for interactions among solid, fluid, and in some cases,
ionic phases of cells. The goals of such studies have been to characterize the relative
importance of the mechanisms accounting for empirically observed phenomena such
as cell volume change under mechanical or osmotic loading, the mechanistic basis
responsible for cell viscoelasticity, and the coupling of various mechanical, chemical,
and electrical events within living cells. The presence of these behaviors, which arise
from interactions among different phases, often cannot be described by single-phase
models.

The cell cytoplasm may consist of varying concentrations of water, charged or un-
charged macromolecules, ions, and other molecular components. Furthermore, due
to the highly charged and hydrated nature of its various components (Maughan and
Godt, 1989; Cantiello et al., 1991), the cytoplasm’s gel-like properties have been
described under several different contexts see for example Chapter 7 and Pollack
(2001). Much of the supporting data for the application of multiphasic models of
cells has come from the study of volumetric and morphologic changes of cells in re-
sponse to mechanical or osmotic loading. The majority of work in this area has been
performed on cells of articular cartilage (chondrocytes), likely due to the fact that
these cells are embedded within a highly charged and hydrated extracellular matrix
that has been modeled extensively using multiphasic descriptions. For example (see
Fig. 5-1), chondrocytes in articular cartilage exhibit significant changes in shape and
volume that occur in coordination with the deformation and dilatation of the extra-
cellular matrix (Guilak, 1995; Guilak et al., 1995; Buschmann et al., 1996). By using
generalized continuum models of cells and tissue, the essential characteristics of cell
and tissue mechanics and their mechanical interactions can be better understood. In
this chapter, we describe several experimental and theoretical approaches for studying
the multiphasic behavior of living cells.

Biphasic (solid-fluid) models of cell mechanics

Viscoelastic behavior in cells can arise from both flow-dependent (fluid—solid inter-
actions and fluid viscosity) and flow-independent mechanisms (for example, intrinsic
viscoelasticity of the cytoskeleton). Previous studies have described the cytoplasm of
“solid-like” cells as a gel or as a porous-permeable, fluid-saturated meshwork (Oster,
1984; Oster, 1989; Pollack, 2001) such that the forces within the cell exhibit a balance
of stresses arising from hydrostatic and osmotic pressures and the elastic properties
of the cytoskeleton. This representation of cell mechanical behavior is consistent with
the fundamental concepts of the biphasic theory, which has been used to represent the
mechanical behavior of soft hydrated tissues as being that of a two-phase material.
This continuum mixture theory approach has been adopted in several studies to model
volumetric and viscoelastic cell behaviors and to investigate potential mechanisms
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Fig. 5-1. Three-dimensional reconstructions of viable chondrocytes within the extracellular matrix
before (left) and after (right) compression of the tissue to 15% surface-to-surface tissue strain. Sig-
nificant changes in chondrocyte height and volume were observed, showing that cellular deformation
was coordinated with deformation of the tissue extracellular matrix.

responsible for cell mechanical behavior (Bachrach et al., 1995; Shin and Athanasiou,
1999; Guilak and Mow, 2000; Baaijens et al., 2005; Trickey et al., 2006).

Modern mixture theories (Truesdell and Toupin, 1960; Bowen, 1980) provide a
foundation for multiphasic modeling of cell mechanics as well as of soft hydrated
tissues. The biphasic model (Mow et al., 1980; Mow et al., 1984), based on Bowen’s
theory of incompressible mixtures (Bowen, 1980), has been widely employed in mod-
eling the mechanics of articular cartilage and other musculoskeletal tissues, such as
intervertebral disc (Iatridis et al., 1998), bone (Mak et al., 1997), or meniscus. (Spilker
etal., 1992). In such models, the cell or tissue is idealized as a porous and permeable
solid material that is saturated by a second phase consisting of interstitial fluid (water
with dissolved ions). Viscoelastic behavior can arise from intrinsic viscoelasticity of
the solid phase, or from diffusive drag between the solid and fluid phases.

In the biphasic theory, originaly developed to describe the mechanical behavior of
soft, hydrated tissues (Mow et al., 1980), the momentum balance laws for the solid
and fluid phases, respectively, are written as:

V.o +I1=0, V.-o/ —II=0 (5.1)

where o and o/ are partial Cauchy stress tensors that measure the force per unit
mixture area on each phase. The symbol IT denotes a momentum exchange vector
that accounts for the interphase drag force as fluid flows past solid in the mixture.
Note that, in biphasic models of cells or cartilage, the contribution of inertial terms to
the momentum balance equations is negligible, as the motion is dominated by elastic
deformation and diffusive drag and occurs at relatively low frequencies. The mixture
is assumed to be intrinsically incompressible and saturated, so that:

V. (@0 +¢/v/)=0, where¢® +¢/ =1, (5.2)



Multiphasic models of cell mechanics

u’is the solid displacement, v/ is the fluid velocity, and ¢* is the solid volume fraction.
For example, under the assumption of infinitesimal strain, with isotropic solid phase
and inviscid fluid phase, while the momentum exchange is described by Darcy’s Law,
the resulting constitutive laws are:

o' = —¢° pl + Atr(e)l + 2u’e, ol = —¢>-pr, II = K(Vf —u) (5.3)

where I is the identity tensor, p is a pore pressure used to enforce the incompressibility
constraint, e = 1/2[Vu® + (Vu*)”] is the infinitesimal strain tensor, A*, u* are Lamé
coefficients for the solid phase, and K is a diffusive drag coefficient. The Lamé
coefficients A, u*® are associated with “drained” elastic equilibrium states that occur
under static loading when all fluid flow has ceased in the mixture. An alternate set of
elastic moduli are the Young’s modulus £¢ and Poisson ratio v* (0 < v* < 0.5) where
w = ﬁ is the solid phase shear modulus and 1* = W

For this linear biphasic model, by substituting Eq. 5.3 into Eq. 5.1, the governing
equations Eq. 5.1 and Eq. 5.2 constitute a system of seven equations in the seven
unknowns u*, v/, p. The fluid velocity v/ is commonly eliminated to yield a “u-p
formulation” consisting of the four equations:

(V -u¥) = kVip, uf [ V(V-u’) + Vzus} =Vp (5.4)

1—2vs
where k = (¢/)?/K is the permeability. The fluid velocity is then given by:

s o9
v/ = o;u —?Vp (5.5

The governing equations Egs. 5.4-5.5 illustrate a common formulation of the linear
isotropic biphasic model. Within the framework of Egs. 5.1-5.2, this fundamen-
tal model can be extended to account for additional mechanisms via modification
of the constitutive relations in Eq. 5.3. Such mechanisms have included transverse
isotropy of the solid phase, large deformation, solid matrix viscoelasticity, nonlin-
ear strain-dependent permeability, intrinsic fluid viscosity, and tension-compression
nonlinearity (Lai et al., 1981; Holmes et al., 1985; Cohen et al., 1998).

Biphasic poroviscoelastic models of cell mechanics

In other approaches, both the flow-dependent and flow-independent viscoelastic be-
haviors have been taken into account to describe transient cell response to loading.
This type of approach has been used previously to separate the influence of “intrin-
sic” viscoelastic behavior of the solid extracellular matrix of tissues such as articular
cartilage from the time- and rate-dependent effects due to fluid—solid interactions in
the tissue (Mak, 1986a; Mak, 1986b; Setton et al., 1993; DiSilvestro and Suh, 2002).

For example, in modeling the creep response of chondrocytes during both full and
partial micropipette aspiration (Baaijens et al., 2005; Trickey et al., in press), it was
found that an elastic biphasic model cannot capture the time-dependent response of
chondrocytes accurately (Baaijens et al., 2005). To examine the relative contributions
of intrinsic solid viscoelasticity (solid—solid interactions) as compared to biphasic
viscoelastic behavior (fluid—solid interactions), a large strain, finite element simulation
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of the micropipette aspiration experiment was developed to model the cell using finite
strain incompressible and compressible elastic models, a two-mode compressible
viscoelastic model, a biphasic elastic, or a biphasic viscoelastic model.

Assuming isotropic and constant permeability, the governing equations Eq. 5.1 and
5.2 may be rewritten (Mow et al., 1980; Sengers et al., 2004) as:

V.o—-Vp=0 (5.6)
V-v—V-kVp=0

where v denotes the solid velocity. If a viscoelastic model is used to investigate the
time-dependent behavior, a two-mode model may be used. The stress tensor is split
into an elastic part and a viscoelastic part:

o=0,+T. .7

If a finite strain formulation is used, a suitable constitutive model for the compressible
elastic contribution can be given by

G
oo =k(J — DI+ 7(B — J?1), (5.8)

where, using the deformation tensor F = (Vox)” with Vo the gradient operator with
respect to the reference configuration, the volume ratio is given by J = det(F), and the
right Cauchy-Green tensor by B = F -F”. The material parameters « and G denote
the compressibility modulus and the shear modulus, respectively. The viscoelastic
response is modeled using a compressible Upper Convected Maxwell model:

1
7 +oT=2G,D' (5.9)

where the operator V denotes the upper-convected time derivative (Baaijens, 1998),
and D7 is the deviatoric part of the rate of deformation tensor, defined by:

1 1. .
D‘=D-— 3 (D)I, whereD = E(F F 4 F TR (5.10)

G, is the modulus and A is the relaxation time of the viscoelastic mode.

Multiphasic and triphasic models (solid—fluid-ion)

In response to alterations in their osmotic environment, cells passively swell or shrink.
The capability of the biphasic model to describe this osmotic response is limited to
the determination of effective biphasic material parameters that vary with extracel-
lular osmolality. The triphasic continuum mixture model (Lai et al., 1991) provides
a framework that has the capability to more completely describe mechanochemical
coupling via both mechanical and chemical material parameters in the governing
equations. This model has been successfully employed in quantitative descriptions of
mechanochemical coupling in articular cartilage, where the aggrecan of the extracel-
lular matrix gives rise to a net negative fixed-charge density within the tissue. Similar
approaches have been used to describe other charged hydrated soft tissues (Huyghe
et al., 2003).
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To date, there has been only limited application of the triphasic model to cell
mechanics (Guetal., 1997). At mechanochemical equilibrium in vitro, many cells are
known to exhibit a passive volumetric response corresponding to an ideal osmometer.
For an ideal osmometer, cell volume and inverse osmolality (normalized to their values
in the iso-osmotic state) are linearly related via the Boyle van’t Hoff relation. The
resulting states of mechanochemical equilibrium of the cell exhibit an internal balance
between mechanical and chemical stresses. The triphasic model, in the absence of
electrical fields, gives rise to the mixture momentum equation:

V.o=0, where:o=—-pl+og (5.11)

where o is the mixture stress and o is the extra stress in the solid phase. The balance
of electrochemical potentials for intracellular and extracellular water gives rise to the
Donnan osmotic pressure relation:

p = RT(pc — ¢*c") (5.12)

where T is the temperature, ¢ and ¢* are the intracellular and extracellular osmotic
activity coefficients, and ¢ and ¢* are the intracellular and extracellular ion concentra-
tions, respectively (R is the universal gas constant). To close the system of governing
equations (Egs. 5.11-5.12), the intracellular extra stress and the intracellular ion con-
centration need to be characterized. While the former may be postulated via a con-
stitutive description for the subcellular components (such as nucleus, cytoskeleton,
membrane), the latter necessitates a detailed analysis of electrochemical ion poten-
tials inside a cell that accounts for intracellular ionic composition and biophysical
mechanisms such as the selective permeability of the bilayer lipid membrane, and the
nontransient activity of ion pumps and ion channels.

The strength of this type of mixture theory approach was recently illustrated in a
study modeling the transient swelling and recovery behavior of a single cell subjected
to an osmotic stress with neutrally charged solutes (Ateshian et al., 2006). A general-
ized “triphasic” formulation and notation (Gu et al., 1998) were used to account for
multiple solute species and incorporated partition coefficients for the solutes in the
cytoplasm relative to the external solution. Numerical simulations demonstrate that
the volume response of the cell to osmotic loading is very sensitive to the partition
coefficient of the solute in the cytoplasm, which controls the magnitude of cell volume
recovery. Furthermore, incorporation of tension in the cell membrane significantly
affected the mechanical response of the cell to an osmotic stress. Of particular interest
was the fact that the resulting equations could be reduced to the classical equations
of Kedem and Katchalsky (1958) in the limit when the membrane tension is equal to
zero and the solute partition coefficient in the cytoplasm is equal to unity. These find-
ings emphasize the strength of using more generalized mixture approaches that can
be selectively simplified in their representation of various aspects of cell mechanical
behavior.

Analysis of cell mechanical tests

Similar to other experiments of cell mechanics, the analysis of cell multiphasic
properties has involved the comparison and matching of different experimental
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configurations to the theoretical response as predicted by analytical or numerical
models of each individual experimental configuration. Given the complexity of the
governing equations for multiphasic or poroelastic models, analytical solutions have
only been possible for simplified geometries that approximate various testing con-
figurations. In most cases, numerical methods such as finite element techniques are
used in combination with optimization methods to best fit the predicted behavior to
the actual cellular response in order to determine the intrinsic material properties of
the cell.

Micropipette aspiration

Cells

The micropipette aspiration technique has been used extensively to study the me-
chanical properties of both fluid-like and solid-like cells (Hochmuth, 2000), including
circulating cells such as red blood cells (Evans, 1989) and neutrophils (Sung et al.,
1982; Dong et al., 1991; Ting-Beall et al., 1993), or adhesion-dependent cells such as
fibroblasts (Thoumine and Ott, 1997), endothelial cells (Theret et al., 1988; Sato et al.,
1990), or chondrocytes (Jones et al., 1999; Trickey et al., 2000; Guilak et al., 2002).
This technique involves the use of a small glass pipette to apply controlled suction
pressures to the cell surface while measuring the ensuing transient deformation via
video microscopy. The analysis of such experiments has required the development
of a variety of theoretical models that assume cells behave as viscous liquid drops
(Yeung and Evans, 1989), potentially possessing cortical tension (Evans and Yeung,
1989), or as elastic or viscoelastic solids (Theret et al., 1988; Sato et al., 1990; Haider
and Guilak, 2000; Haider and Guilak, 2002) and specifically, to model the solid-like
response of cells to micropipette aspiration, Theret et al. (1988) developed an elegant
analytical solution of an associated contact problem to calculate the Young’s modulus
(E) of an incompressible cell. This elastic model was subsequently extended to a
standard linear solid (Kelvin) model, thus incorporating viscoelastic cell properties
(Sato etal., 1990). These models idealized the cell as an elastic or viscoelastic incom-
pressible and homogeneous half-space. Experimentally, the length of cell aspiration
was measured at several pressure increments, and the Young’s modulus ( £) was deter-
mined as a function of the applied pressure (Ap), the length of aspiration of the cell into
the micropipette (L), and the radius of the micropipette (a) as £ = 3aPAp/(2x L),
where @ is a function of the ratio of the micropipette thickness to its inner radius
(Fig. 5-2).

In recent studies, the micropipette aspiration test has been modeled assuming that
cells exhibit biphasic behavior. The cell was modeled using finite strain incompress-
ible and compressible elastic models, a two-mode compressible viscoelastic model,
or a biphasic elastic or viscoelastic model. Comparison of the model to the experi-
mentally measured response of chondrocytes to a step increase in aspiration pressure
showed that a two-mode compressible viscoelastic formulation could predict the creep
response of chondrocytes during micropipette aspiration (Fig. 5-3). Similarly, a bipha-
sic two-mode viscoelastic analysis could predict all aspects of the cell’s creep response
to a step aspiration. In contrast, a purely biphasic elastic formulation was not capable
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Fig. 5-2. Viscoelastic creep response of a chondrocyte to a step increase in pressure in the
micropipette aspiration test. Images show the chondrocyte in the resting state under a tare pres-
sure at time zero, followed by increasing cell displacement over time after step application of the
test pressure. From Haider and Guilak, 2000.

(a) (b)

Normalized Cell Displacement

Normalized Time

Fig. 5-3. (a) Biphasic, viscoelastic finite element mesh used to model the micropipette aspiration
test. The mesh contains 906 elements and has 3243 nodes, with biquadratic interpolation for the
displacement and a bilinear, continuous interpolation for the pressure. Along the left boundary,
symmetry conditions are applied, while along the portion of the cell boundary within the micropipette,
suction pressure is applied. Sliding contact conditions along the interface with the micropipette are
enforced through the use of a Lagrange multiplier formulation. (b) Normalized aspiration length
of a chondrocyte as a function of the normalized time. The solid dots indicate the experimental
behavior of an average chondrocyte. The solid line corresponds to the two-mode viscoelastic model.
The dashed line corresponds to the biphasic, two-mode viscoelastic model. For the latter model, the
triangle marks the end of the pressure application and the start of the creep response. The creep
response of the cell was well described by both the two-mode viscoelastic model and the biphasic
viscoelastic model. From Baaijens et al., 2005.
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Fig. 5-4. Micropipette aspiration test to examine the volumetric response of cells to mechanical
deformation. Video images of a chondrocyte and micropipette before (a) and after (b) complete
aspiration of the cell. Cells show a significant decrease in volume, which when matched to a theoretical
model can be used to determine Poisson’s ratio as one measure of compressibility. From Trickey
et al., 2006.

of predicting the complete creep response, suggesting that the viscoelastic response
of the chondrocytes under micropipette aspiration is predominantly due to intrinsic
viscoelastic phenomena and is not due to the biphasic behavior.

Other studies have also used the micropipette technique to determine the volume
change of chondrocytes after complete aspiration into a micropipette (Jones et al.,
1999). While many cells are assumed to be incompressible with a Poisson ratio
of 0.5, these studies demonstrated that certain cells, such as chondrocytes, in fact
exhibit a certain level of compressibility (Fig. 5-4), presumably due to the expulsion of
intracellular fluid. Isolated cells were fully aspirated into a micropipette and allowed to
reach mechanical equilibrium. Cells were then extruded from the micropipette and cell
volume and morphology were measured over time. By simulating this experimental
procedure with a finite element analysis modeling the cell as either a biphasic or
viscoelastic material, the Poisson ratio and viscoelastic recovery properties of the cell
were determined. The Poisson ratio of chondrocytes was found to be ~0.38, suggesting
that cells may in fact show volumetric changes in response to mechanical compression.
The finding of cell compressibility in response to mechanical loading is consistent with
previous studies showing significant loss of cell volume in chondrocytes embedded
within the extracellular matrix (Guilak et al., 1995). Taken together with micropipette
studies, these studies suggest that cell volume changes are due to biphasic mechanical
effects resulting in fluid exudation from the cell, while cellular viscoelasticity is
more likely due to intrinsic behavior of the cytoplasm and not to flow-dependent
effects.

Biphasic properties of the pericellular matrix

In vitro experimental analysis of the mechanics of isolated cells provides a simplified
and controlled environment in which theoretical models, and associated numerical
solutions, can be employed to measure and compare cell properties via material param-
eters. Ultimately, however, most biophysical analyses of cell mechanics are motivated
by a need to extrapolate the in vitro findings to a characterization of the physiological
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(in vivo) environment of the cell. For cells such as articular chondrocytes, it is pos-
sible to isolate a functional cell-matrix unit and analyze its mechanical properties in
vitro, thus providing a link to the physiological setting (Poole, 1992). This modeling
approach is briefly described here in the context of the articular chondrocyte.

Chondrocytes in articular cartilage are completely surrounded by a narrow region
of tissue, termed the pericellular matrix (PCM). The PCM is characterized by the
presence of type VI collagen (Poole, 1992), which is not found elsewhere in cartilage
under normal circumstances, and a higher concentration of aggrecan relative to the
extracellular matrix (ECM), as well as smaller amounts of other collagen types and
proteins. The chondrocyte together with the pericellular matrix and the surround-
ing capsule has been termed the chondron (Poole, 1992; Poole, 1997). While the
function of the PCM is not known, there has been considerable speculation that the
chondron plays a biomechanical role in articular cartilage (Szirmai, 1974). For ex-
ample, it has been hypothesized that the chondron provides a protective effect for the
chondrocyte during loading (Poole et al., 1987), and others have suggested that the
chondron serves as a mechanical transducer (Greco et al., 1992; Guilak and Mow,
2000).

To determine mechanical properties of the PCM, the solution of a layered elastic
contact problem that models micropipette aspiration of an isolated chondron was de-
veloped. This theoretical solution was applied to measure an elastic Young’s modulus
for the PCM in human chondrons isolated from normal and osteoarthritic sample
groups (Alexopoulos et al., 2003). The mean PCM Young’s modulus of chondrons
isolated from the normal group (66.5 £ 23.3 kPa) was found to be a few orders of
magnitude larger than the chondrocyte modulus (~1 kPa) and was found to drop sig-
nificantly in the osteoarthritic group (41.3 +21.1kPa, p < 0.001). These findings
support the hypothesis that the PCM serves a protective mechanical role that may be
significantly altered in the presence of disease. In a multiscale finite element analy-
sis (Guilak and Mow, 2000), the macroscopic solution for transient deformation of
a cartilage layer under a step load was computed and used to solve a separate mi-
croscale problem to detemine the mechanical environment of a single chondrocyte. In
this study, the inclusion of a PCM layer in the microscale model significantly altered
the mechanical environment of a single cell. A mathematical model for purely radial
deformation in a chondron was developed and analyzed under dynamic loading in
the range 0—3 Hz (Haider, 2004). This study found that the presence of a thin, highly
stifft PCM that is less permeable than the chondrocyte enhances the transmission of
compressive strain mechanical signals to the cell while, simultaneously, protecting it
from excessive solid stress.

Using the micropipette aspiration test coupled with a linear biphasic finite element
model, recent studies have reported the biphasic material properties of the PCM of
articular chondrocytes (Alexopoulos et al., 2005) (Fig. 5-5). Chondrons were me-
chanically extracted from nondegenerate and osteoarthritic (OA) human cartilage.
Micropipette aspiration was used to examine the creep behavior of the pericellular
matrix, which was matched using optimization to a biphasic finite element model
(Fig. 5-6). The transient mechanical behavior of the PCM was well-described by a
biphasic model, suggesting that the viscoelastic response of the PCM is attributable to
flow-dependent effects, similar to that of the ECM. With osteoarthritis, the mean
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Fig. 5-5. Micropipette aspiration of the pericellular matrix (PCM) of chondrocytes. This region
surrounds cells in articular cartilage, similar to a glycocalyx, but contains significant amounts of
extracellular matrix collagens, proteoglycans, and other macromolecules. The mechanical properties
of this region appear to have a significant influence on the stress-strain and fluid-flow environment
of the cell. From Alexopoulos et al., 2005.

Young’s modulus of the PCM was significantly decreased (38.7 £ 16.2kPa vs.
23.5 4+ 12.9kPa, p < 0.001), and the permeability was significantly elevated (4.19 +
3.78 x 10717 m*/N-s vs. 10.2 £9.38 x 1077 m*/Ns, p < 0.001). The Poisson ra-
tio was similar for both nondegenerate and osteoarthritic PCM (0.044 4= 0.063 vs.
0.030 £ 0.068, p > 0.6). These findings suggest that the PCM may undergo enzy-
matic and mechanical degradation with osteoarthritis, similar to that occurring in the
ECM. In combination with previous theoretical models of cell-matrix interactions in
cartilage, these findings suggest that changes in the properties of the PCM may have
an important influence on the biomechanical environment of the cell.

Together, these studies support the utility of in vitro mechanical analyses of iso-
lated functional cell-matrix units. Because cartilage, in particular, is avascular and
aneural, characterization of PCM mechanical and chemical properties is a key step
toward characterizing the in vivo state of the cell and its metabolic response to alter-
ations in the local cellular environment. The triphasic model provides a framework
for developing extended models of the PCM that can delineate effects of the dis-
tinct mechanochemical composition of the PCM, relative to the ECM, on the local
environment of the cell.

Indentation studies of cell multiphasic properties

In addition to micropipette aspiration, various techniques for cellular indentation have
been used to measure the modulus of adherent cells, including cell indentation (Daily
et al., 1984; Duszyk et al., 1989; Zahalak et al., 1990), scanning probe microscopy
(Radmacher et al., 1992; Shroff et al., 1995), or cytoindentation (Shin and Athana-
siou, 1999; Koay et al., 2003). (See also the discussion of experimental approaches in
Chapter 2.) The conceptual basis of these techniques is generally similar, in that a rigid
probe is used to indent the cell and the ensuing creep or stress-relaxation behavior
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Fig. 5-6. (a) Biphasic finite element mesh of the micropipette aspiration experiment. The cell and
pericellular matrix were modeled using an axisymmetric mesh with bilinear quadrilateral elements
(342 nodes, 314 elements). (b) Transient response of normal and osteoarthritic chondrons (cell
with the pericellular matrix), and the associated biphasic prediction of their mechanical behavior.
The transient mechanical behavior of the PCM was well-described by a biphasic model, suggesting
that the viscoelastic response of the pericellular matrix is attributable to flow-dependent effects,
similar to that of the extracellular matrix. From Alexopoulos et al., 2005 with permission.

is recorded. These techniques have generally used elastic or viscoelastic models to
calculate the equilibrium or dynamic moduli of cells over a range of frequencies. In
one set of cell indentation experiments, MG63 osteoblast-like cells were modeled with
either a linear elasticity solution of half-space indentation or the linear biphasic theory
under the assumption that the viscoelastic behavior of each cell was due to the interac-
tion between the solid cytoskeletal matrix and the cytoplasmic fluid (Shin and Athana-
siou, 1999). The intrinsic biphasic material properties (aggregate modulus, Poisson’s
ratio, and permeability) were determined by curve-fitting the experimental surface re-
action force and deformation with a linear biphasic finite element code in conjunction
with optimization routines. These cells exhibited a compressive aggregate modulus
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of 2.05 £ 0.89 kPa with a Poisson ratio of 0.37 &£ 0.03. These properties are on the
same order of magnitude as the elastic properties determined using other techniques
(Trickey et al., in press), although the permeability of 1.18 & 0.65 x 107! m*/N-s
is several orders of magnitude higher than that estimated for chondrocytes using
micropipette aspiration (Trickey et al., 2000).

Analysis of cell-matrix interactions using multiphasic models

Previous studies suggest that cells have the ability to respond to the local stress-strain
state within the extracellular matrix, thus suggesting that cellular response reflects
the history of the time-dependent and spatially varying changes in the mechanical
environment of the cells. The use of multiphasic models for cells has been of particular
value in theoretical models of cell-matrix interactions that seek to model the stress-
strain and fluid-flow environment of single cells within a tissue matrix. However, the
relationship between the stress-strain and fluid-flow fields at the macroscopic “tissue”
level and at the microscopic “cellular” level are not fully understood. To directly test
such hypotheses, it would be important to have accurate knowledge of the local stress
and deformation environment of the cell. In this respect, theoretical models of cells
and tissues are particularly valuable in that they may be used to provide information
on biophysical parameters that cannot be measured experimentally in situ at the
cellular level, for example, the stress-strain, physicochemical, and electrical states in
the immediate vicinity of the cell.

Based on existing experimental data on the deformation behavior and biomechan-
ical properties of articular cartilage and chondrocytes, a multiscale biphasic finite
element model was developed of the chondrocyte as a spheroidal inclusion embed-
ded within the extracellular matrix of a cartilage explant (Fig. 5-7). In these studies,
the cell membrane was neglected, and it was assumed that the cell was freely perme-
able to water to allow for changes in volume via transport of interstitial water in an out
of the cell. Finite element analysis of the stress, strain, fluid flow, and hydraulic fluid
pressure were made of a configuration simulating a cylindrical cartilage specimen
(5mm x 1 mm) subjected to a step load in an unconfined compression experiment.
A parametric analysis was performed by varying the mechanical properties of the
cell over 5-7 orders of magnitude relative to the properties of the ECM. Using a
range of chondrocyte biphasic properties reported in the literature (£ ~ 0.5 — 1 kPa,
k~ 10719 - 10" m*N-s, v ~ 0.1 —0.4) (Shin and Athanasiou, 1999; Trickey
et al., 2000; Trickey et al., 20006), the distribution of stress at the cellular level was
found to be time varying and inhomogeneous, and it differed significantly from that in
the bulk extracellular matrix. At early time points (< 100 s) following application of the
load, the chondrocytes were exposed primarily to shear stress and strain and hydraulic
fluid pressure, with little volume change. At longer time periods, changes in cell shape
and volume were predicted coincident with exudation of the interstitial fluid (Fig. 5-7).
The large difference (~3 orders of magnitude) in the elastic properties of the chondro-
cyte and of the extracellular matrix results in the presence of stress concentrations at
the cell-matrix border and a nearly two-fold increase in strain and dilatation (volume
change) at the cellular level, as compared to that at the macro-level. The presence of
a narrow “pericellular matrix” with different properties than that of the chondrocyte
or extracellular matrix significantly altered the principal stress and strain magnitudes
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Fig. 5-7. (a) A biphasic multiscale finite element method was used to model the mechanical envi-
ronment of a single cell within the cartilage extracellular matrix. The “macro-scale” response of
a cartilage explant in a state of unconfined compression was the first model. From this solution, a
linear interpolation of the time-history of the kinematic boundary conditions within a 50 x 100 pm
region were then applied to a “micro-scale” finite element mesh that incorporated a chondrocyte
(10 pm diameter) and its pericellular matrix (2.5 pum thick) embedded within and attached to the ex-
tracellular matrix. Using this technique, it is assumed that due to their low volume fraction (<10%),
the cells do not contribute mechanically to the macroscopic properties and behavior of the extra-
cellular matrix. (b) Predictions of the compressive stress in the cell and extracellular matrix versus
time. A gray-scale image of one-quarter of the cell is shown within the matrix. Stress is normalized
to the far-field extracellular matrix stress at equilibrium, and time is normalized to the biphasic gel
time (#* = t/7,1). At early times following loading, low magnitudes of solid stress were observed, as
the total stress in the tissue was borne primarily by pressurization of the interstitial fluid. With time,
stresses were transferred to the solid phase and increased stress concentrations are observed at the
cell-matrix boundary. From Guilak and Mow, 2000.

within the chondrocyte, suggesting a functional biomechanical role for this tissue re-
gion. These findings suggest that even under simple compressive loading conditions,
chondrocytes are subjected to a complex local mechanical environment consisting of
tension, compression, shear, and hydraulic pressure. Knowledge of the magnitudes
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and distribution of local stress/strain and fluid-flow fields in the extracellular ma-
trix around the chondrocytes is an important step in the interpretation of studies of
mechanical signal transduction in cartilage explant culture models.

In other tissues, anisotropic behavior may play an important role in defining the
micromechanical environment of the cell. For example, cellular response to me-
chanical loading varies between the anatomic zones of the intervertebral disc, and
this difference may be related to differences in the structure and mechanics of both
cells and extracellular matrix, which are expected to cause differences in the phys-
ical stimuli (such as pressure, stress, and strain) in the cellular micromechanical
environment (Guilak et al., 1999; Baer et al., 2003). In other studies, finite element
analyses have been used to model flow-dependent viscoelasticity using the biphasic
theory for soft tissues; finite deformation effects using a hyperelastic constitutive
law for the solid phase; and material anisotropy by including a fiber-reinforced con-
tinuum law in the hyperelastic strain energy function. The model predicted that the
cellular micromechanical environment varies dramatically depending on the local
tissue stiffness and anisotropy. Furthermore, the model predicted that stress-strain
and fluid-flow environment is strongly influenced by cell shape, suggesting that the
geometry of cells in situ may be an adaptation to reduce cellular strains during tissue
loading.

With similar multiscaling techniques, other studies have used triphasic consti-
tutive models to predict the physicochemical environment of cells within charged,
hydrated tissues (Likhitpanichkul et al., 2003). These studies also show that in ad-
dition to nonhomogeneous stress-strain and fluid-flow fields within the extracellular
matrix, cells may also be exposed to time- and spatially varying osmotic pressure
and electric fields due to the coupling between electrical, chemical, and mechan-
ical events in the cell and in the surrounding tissues. Such methods may provide
new insight into the physical regulatory mechanisms that influence cell behavior
in situ.

Summary

Multiphasic approaches have important advantages and disadvantages relative to more
classic single-phase models. The disadvantages are based primarily on the added
complexity required for computational models. In most cases, analytical solutions
are intractable and numerical methods such as finite element modeling are required.
Furthermore, additional experimental tests are necessary to determine the intrinsic
mechanical contributions of the different phases to the overall behavior of the cell.
However, multiphasic models may provide a more realistic representation of the phys-
ical events that govern cell mechanical behavior. Furthermore, as most current multi-
phasic models are based on a continuum approach, the constitutive models describing
each phase can be selected independently to best describe the empirically observed
behavior of the cell. A multiphasic approach may also be combined with other struc-
turally based models (such as, tensegrity models), and thus may provide a versatile
modeling approach for examining the interactions of the different constitutive phases
governing cell mechanical behavior.
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6 Models of cytoskeletal mechanics based
on tensegrity

Dimitrije Stamenovi¢

ABSTRACT: Cell shape is an important determinant of cell function and it provides a regu-
latory mechanism to the cell. The idea that cell contractile stress may determine cell shape
stability came with the model that depicts the cell as tensed membrane that surrounds viscous
cytoplasm. Ingber has further advanced this idea of the stabilizing role of the contractile stress.
However, he has argued that tensed intracellular cytoskeletal lattice, rather than the cortical
membrane, confirms shape stability to adherent cells. Ingber introduced a special class of
tensed reticulated structures, known as tensegrity architecture, as a model of the cytoskeleton.
Tensegrity architecture belongs to a class of stress-supported structures, all of which require
preexisting tensile stress (“prestress”) in their cable-like structural members, even before ap-
plication of external loading, in order to maintain their structural integrity. Ordinary elastic
materials such as rubber, polymers, or metals, by contrast, require no such prestress. A hallmark
property that stems from this feature is that structural rigidity (stiffness) of the matrix is nearly
proportional to the level of the prestress that it supports. As distinct from other stress-supported
structures falling within the class, in tensegrity architecture the prestress in the cable network
is balanced by compression of internal elements that are called struts. According to Ingber’s
cellular tensegrity model, cytoskeletal prestress in generated by the cell contractile machinery
and by mechanical distension of the cell. This prestress is carried mainly by the cytoskeletal
actin network, and is balanced partly by compression of microtubules and partly by traction at
the extracellular adhesions.

The idea that the cytoskeleton maintains its structural stability through the agency of con-
tractile stress rests on the premise that the cytoskeleton is a static network. In reality, the
cytoskeleton is a dynamic network, which is exposed to dynamic loads and in which the
dynamics of various biopolymers contribute to its rheological properties. Thus, the static model
of the cytoskeleton provides only a limited insight into its mechanical properties (for example,
near-steady-state conditions). However, our recent measurements have shown that cell rheolog-
ical (dynamic) behavior may also be affected by the contractile prestress, suggesting thereby
that the tensegrity idea may also account for some features of cell rheology.

This chapter describes the basic idea of the cellular tensegrity hypothesis, how it applies to
problems in cellular mechanics, and what its limitations are.

Introduction

A new model of cell structure to explain how the internal cytoskeleton of adher-
ent cells mediates alterations in cell functions caused by changes in cell shape was
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proposed in the early 1980s by Donald Ingber and colleagues (Ingber et al., 1981;
Ingber and Jamieson, 1985). This model is based on a building system known as
tensegrity architecture (Fuller, 1961). The essential premise of what is known as the
cellular tensegrity model is that the cytoskeletal lattice carries preexisting tensile
stress, termed prestress, whose role is to confer shape stability to the cell. A second
premise is that this cytoskeletal prestress is partly balanced by forces that arise at cell
adhesions to the extracellular matrix and partly by internal, compression-supporting
cytoskeletal structures (for example, microtubules). The cytoskeletal prestress is gen-
erated actively, by the cytoskeletal contractile apparatus. Additional prestress is gen-
erated passively by cell mechanical distension through adhesions to the substrate, by
cytoplasmic swelling pressure (turgor), and by forces generated by filament polymer-
ization. The prestress is primarily carried by the cytoskeletal actin network and to a
lesser extent by the intermediate filament network (Ingber, 1993; 2003a).

There is a growing body of experimental data that is consistent with the cellular
tensegrity model. The strongest piece of evidence in support of the tensegrity model
is the observed proportional relationship between cell stiffness and the cytoskeletal
contractile stress (Wang et al., 2001; 2002). Experimental data also show that micro-
tubules carry compression that, in turn, balances a substantial portion of the prestress,
which is another key feature of tensegrity architecture (Wang et al., 2001; Stamenovic
et al., 2002a). Together, these two findings have provided so far the most convincing
evidence in support of the cellular tensegrity model.

In successive sections, this chapter describes basic concepts, definitions, and un-
derlying mechanisms of the cellular tensegrity model; describes experimental data
that are consistent and those that are not consistent with the tensegrity model; and
describes results from mathematical modeling of typical tensegrity-based models of
cell mechanics and compares predictions from those models to experimental data
from living cells. Then the chapter briefly discusses the usefulness of the tensegrity
idea in studying the dynamic behavior of cells and ends with a summary.

The cellular tensegrity model

It is well established that cell shape is critical for the control of many cell behaviors,
including growth, motility, differentiation, and apoptosis and that the effects of cell
shape are mediated through changes in the intracellular cytoskeleton (see Ingber,
2003a and 2003b). To explain how cells generate mechanical stresses in response
to alterations in their shape and how those stresses affect cellular function, various
models of cellular mechanics have been advanced, as other chapters here extensively
discuss. All these models can be divided into two distinct classes: continuum models,
and discrete models.

Continuum models (Theret et al., 1988; Evans and Yeung, 1989; Fung and Liu,
1993; Schmid-Schonbein et al., 1995; Bausch et al., 1998; Fabry et al., 2001a) assume
that the stress-bearing elements within the cell are small compared to the length scales
of interest and that they uniformly fill the space within the cell body. The microscale
behavior of these elements is given by equations that describe local deformation and
mass, and momentum and energy balance (see Chapter 3 of this book). This leads to
descriptions of stress and strain patterns that are continuous in space within the cell.
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Continuum models can run from simple to very complex and multicompartmental,
from elastic to viscoelastic (Chapter 4) or even poroelastic (Chapter 5).

Discrete models (Porter, 1984; Ingber and Jamieson, 1985; Forgacs, 1995; Satcher
and Dewey, 1996; Stamenovic et al., 1996; Boey et al., 1998) consider discrete stress-
bearing elements of the cell that are finite in size, sometimes spanning distances that
are comparable to the cell size (for example, microtubules). The cell is depicted as
being composed of a large number of these discrete elements that do not fill the space.
The behavior of each discrete element is subject to conditions of mechanical equi-
librium and geometrical compatibility at every node. At this point, a coarse-graining
average can be applied and local stresses and strains can be obtained as continuous
field variables. Within the class of discrete models there is a special subclass, known as
stress-supported (or prestressed) structures. While ordinary elastic materials such as
rubber, polymers, or metals, by contrast, require no such prestress, all stress-supported
structures require tensile prestress in their structural members, even before the appli-
cation of external loading, in order to maintain their structural integrity. A hallmark
property that stems from this feature is that structural rigidity (stiffness) of the matrix
is proportional to the level of the prestress that it supports (Volokh and Vilnay, 1997;
Stamenovi¢ and Ingber, 2002). Tensegrity architecture falls within this class. As in the
case of continuum models, discrete models, of which the tensegrity architecture is one,
can range from very simple to very complex, multimodular, and multicompartmental.

It has long been known that many cell types exist under tension (prestress) (Harris
etal., 1980; Albrecht-Buehler, 1987; Heidemann and Buxbaum, 1990; Kolodney and
Wysolmerski, 1992; Evans et al., 1993). Theoretical models that depict the cell as a
tensed (that is, prestressed) membrane that surrounds viscous cytoplasm have been
proposed in the past (Evans and Yeung, 1989; Fung and Liu, 1993; Schmid-Schonbein
et al., 1995). However, none of those studies show that this cell prestress may play a
key role in regulating cell deformability. In the early 1980s, Donald Ingber (Ingber
et al., 1981; Ingber and Jamieson, 1985) introduced a novel model of cytoskeletal
mechanics based on architecture that secures structural stability through the agency
of prestress. This model has become known as the cellular tensegrity model. Basic
features and mechanisms of this model and how they apply to mechanics of cells are
described in the coming sections.

Definitions, basic mechanisms, and properties of tensegrity structures

Tensegrity architecture is a building principle introduced by R. Buckminster Fuller
(Fuller, 1961). He defined tensegrity as a system through which structures are stabi-
lized by continuous tension carried by the structural members (like a camp tent or a
spider web) rather than continuous compression (like a stone arch). Fuller referred to
this architecture as “tensional integrity,” or “tensegrity” (Fig. 6-1).

The central mechanism by which tensegrity and other prestressed structures develop
restoring stress in the presence of external loading is by geometrical rearrangement
(thatis, by change in spacing and orientation and to a lesser degree by change in length)
of their pre-tensed members. The greater the pre-tension carried by these members,
the less geometrical rearrangement they undergo under an applied load, and thus the
less deformable (more rigid) the structure will be. In the absence of prestress, these
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Fig. 6-1. A cable-and-strut tensegrity dome (“Dome Image (©)1999 Bob Burkhardt”). In this struc-
ture, tension in the cables (white lines) is partly balanced by the compression of the struts (thick
black lines) and partly by the attachments to the substrate. At each free node one strut meets several
cables. Adapted with permission from Burkhardt, 2004.

structures become unstable and collapse. This explains why the structural stiffness
increases in proportion with the level of the prestress.

An interesting (although not an intrinsic) property of tensegrity structures is a long-
distance transfer of mechanical disturbances. Ingber referred to this phenomenon as
the “action at a distance” effect (Ingber, 1993; 2003a). Because tensegrity structures
resist externally applied loads by geometrical rearrangements of their structural mem-
bers, any local disturbance should result in a global rearrangement of the structural
lattice and should be manifested at points distal from the point of an applied load.
This is quite different from continuum models where local disturbances produce only
local responses, which dissipate inversely with the distance from the point of load ap-
plication. In complex and multimodular tensegrity structures, this action at a distance
may not be easily observable because the effect of an applied mechanical disturbance
may be dissipated through the multi-connectedness of structural members and fade
away at points distal from the point of load application.

The cellular tensegrity model

In the cellular tensegrity model, actin filaments and intermediate filaments of the
cytoskeleton are envisioned as tensile elements (cables) that carry the prestress. Mi-
crotubules and thick cross-linked actin bundles, on the other hand, are viewed as
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compression elements (struts) that partly balance the prestress. The rest of the pre-
stress is balanced by the extracellular matrix, which is physically connected to the
cytoskeleton through the focal adhesion complex. In highly spread cells, however,
intracellular compression-supporting elements may become redundant and the ex-
tracellular matrix may balance the entire prestress. In other words, the cytoskeleton
and the extracellular matrix are viewed as a single, synergetic, mechanically sta-
bilized system, or the “extended cytoskeleton” (Ingber, 1993). Thus, although the
cellular tensegrity model allows for the presence of internal compression-supporting
elements, they are neither necessary nor sufficient for the overall stress balance in the
cell—extracellular matrix system.

Do living cells behave as predicted by the tensegrity model?

This section presents a survey of experimental data that are consistent with the cellular
tensegrity model, as well as those that are not.

Circumstantial evidence

Data obtained from in vitro biophysical measurements on isolated actin filaments
(Yanagida et al., 1984; Gittes et al., 1993; MacKintosh et al., 1995) and microtubules
(Gittes et al., 1993; Kurachi et al., 1995) indicate that actin filaments are semiflexible,
curved, of high tensile modulus (order of 1 GPa), and of the persistence length (a
measure of stiffness of a polymer molecule that can be described as a mean radius
of curvature of the molecule at some temperature due to thermal fluctuations) on the
order of 10 pm. On the other hand, microtubules appeared straight, as rigid tubes, of
nearly the same modulus as actin filaments but of much greater persistent length,
order of 10°um. Based on these persistence lengths, actin filaments should appear
curved and microtubules should appear straight on the whole cell level if they were
not mechanically loaded. However, immunofluorescent images of the cytoskeleton
lattice of living cells (Fig. 6-2) show that actin filaments appear straight, whereas
microtubules appeared curved (Kaech et al., 1996; Eckes et al., 1998, 2003a). It
follows, therefore, that some type of mechanical force must act on these molecular
filaments in living cells: conceivably, the tension in actin filaments straighten them
while compression in microtubules result in their bending (caused by buckling).
On the other hand, Satcher et al. (1997) found that in endothelial cells the average
pore size of the actin cytoskeleton ranges from 50—100 nm, which is much smaller
than the persistence length of actin filaments. This, in turn, suggests that the straight
appearance of actin cytoskeletal filaments is the result of their very short length
relative to their persistence length.

It is well established that the prestress borne by the cytoskeleton is transmitted to
the substrate through transmembrane integrin receptors. Harris et al. (1980) showed
that in response to the contraction of fibroblasts cultured on a flexible silicon rub-
ber substrate, the substrate wrinkles. Similarly, contracting fibroblasts that adhere
to a polyacrylamide gel substrate cause the substrate to deform (Pelham and Wang,
1997). Severing focal adhesion attachments of endothelial cells to the substrate by
trypsin results in a quick retraction of these cells (Sims et al., 1992), suggesting that
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Fig. 6-2. Local buckling of a green fluorescent protein-
labeled microtubule (arrowhead) in living endothelial cells
following cell contraction induced by thrombin. The micro-
tubule appears fairly straight prior to cell contraction (a) and
assumes a typical sinusoidal buckled shape following con-
traction (b). The white lines are drawn to enhance the shape of
microtubule; the scale bar is 2 um. Adapted with permission
from Wang et al., 2001.

the cytoskeleton carries prestress and that this prestress is transmitted to and balanced
by traction forces that act at the cell-anchoring points to the substrate.

Experimental observations support the existence of a mechanical coupling between
tension carried by the actin network and compression of microtubules, analogous to
the tension-compression synergy in the cable-and-strut tensegrity model. For example,
as migrating cultured epithelial cells contract, their microtubules in the lamellipodia
region buckle as they resist the contractile force exerted on them by the actin network
(Waterman-Storer and Salmon, 1997). Extension of a neurite, which is filled with
microtubules, is opposed by pulling forces of the actin microfilaments that surround
those microtubules (Heidemann and Buxbaum, 1990). Microtubules of endothelial
cells, which appear straight in relaxed cells, appear buckled immediately following
contraction of the actin network (Fig. 6-2) (Wang et al., 2001). In their mechanical
measurements on fibroblasts, Heidemann and co-workers also observed the curved
shape of microtubules. However, they associated these configurations with fluid-
like behavior of microtubules because they observed slow recovery of microtubules
following mechanical disturbances applied to the cell surface (Heidemann et al., 1999;
Ingber et al., 2000). Contrary to these observations, Wang et al. (2001) observed
relatively quick recovery of microtubules in endothelial cells following mechanical
disturbances.

Cells of various types probed with different techniques exhibit a stiffening effect,
such that cell stiffness increases progressively with increasingly applied mechanical
load (Petersen et al., 1982; Sato et al., 1990; Alcaraz et al., 2003). This, in turn,
implies that stress-strain behavior of cells is nonlinear, such that stress increases
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faster than strain. This stiffening is also referred to as a strain or stress hardening. In
discrete structures, this nonlinearity is primarily a result of geometrical rearrangement
and recruitment of structural members in the direction of applied load, and less due
to nonlinearity of individual structural members (Stamenovic et al., 1996). In their
early works, Ingber and colleagues considered this stiffening to be a key piece of
evidence in support of the cellular tensegrity idea, as various physical (Wang et al.,
1993) and mathematical (Stamenovi¢ et al., 1996; Coughlin and Stamenovic, 1998)
tensegrity models exhibit this behavior under certain types of loading. It turns out
that this is an inconclusive piece of evidence that neither supports nor refutes the
tensegrity model for the following reasons. First, the stress/strain hardening behavior
characterizes various types of solid materials, many of which are not at all related to
tensegrity. Second, the stress/strain hardening behavior is not an intrinsic property of
tensegrity structures because they can also exhibit softening — that is, under a given
loading their stiffness may decrease with increasingly applied load (Coughlin and
Stamenovi¢, 1998; Volokh et al., 2000) — or they may, under certain conditions, have
constant stiffness, independent of the applied load (Stamenovic et al., 1996). Third,
recent mechanical measurements in living airway smooth muscle cells showed that
their stress-strain behavior is linear over a wide range of applied stress, and thus they
exhibit neither stiffening nor softening (Fabry et al., 1999; 2001).

Based on the above circumstantial evidence and differing interpretations of the
evidence, it is clear that rigorous experimental validation of the cellular tenseg-
rity model was needed to demonstrate a close association between cell stiffness and
cytoskeletal prestress, and to show that cells exhibit the action-at-a-distance behav-
ior. Also essential is quantitative assessment of the contribution of the substrate vs.
compression of microtubules in balancing the prestress, and also understanding the
role of intermediate filaments in the context of the tensegrity model. New advances
in cytometry techniques made it possible to provide direct, quantitative data for these
behaviors. These data are described below.

Prestress-induced stiffening

An a priori prediction of all prestressed structures is that their stiffness increases
in nearly direct proportion with prestress (Volokh and Vilnay, 1997). A number of
experiments in various cell types have shown evidence of prestress-induced stiffening.
For example, it has been shown that mechanical (Wang and Ingber, 1994; Pourati etal.,
1998; Cai et al., 1998), pharmacological (Hubmayr et al., 1996; Fabry et al., 2001),
and genetic (Cai et al., 1998) modulations of cytoskeletal prestress are paralleled
by changes in cell stiffness. Advances in the traction cytometry technique (Fig. 6-3)
made it possible to quantitatively measure various indices of cytoskeletal prestress
(Pelham and Wang, 1997; Butler et al., 2002; Wang et al., 2002). These data are
then correlated with data obtained from measurements of cell stiffness. It was found
(see Fig. 6-4) that in cultured human airway smooth muscle cells whose contractility
was altered by graded doses of contractile and relaxant agonists, cell stiffness (G)
increases in direct proportion with the contractile stress (P); G =~ 1.04 P (Wangetal.,
2001; 2002). Although this association between cell stiffness and contractile stress
does not preclude other interpretations, it is the hallmark of structures that secure
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Fig. 6-3. (a) A human airway smooth muscle cell cultured
on a flexible polyacrylamide gel substrate. As the cell con-
tracts (histamine 10 uM), the substrate deforms, causing flu-
orescent microbead markers embedded in the gel to move
(arrows). From measured displacement field of the markers
and known elastic properties of the gel, one can calculate trac-
tion (7) that arises at the cell-gel interface (Butler etal., 2002).
Because the cytoskeletal prestress (P) is balanced partly by 7,
one can asses P(Wang et al., 2002). (b) A free body diagram
of a cell section depicting a three-way force balance between
the cytoskeleton (P), substrate (Ps), and microtubules (Pp):
Pg = P — Py where Ps indicates the part of P that is bal-
anced by the substrate and Py indicates the part of P that is
balanced by compression-supporting microtubules. At equi-
librium, the force balance requires that t 4" = PsA” where
A" and A" are interfacial and cross-sectional areas of the cell
section, respectively. Because 7, 4’ and 4” can be directly
measured, one can obtain Pg. A’ and A” were measured for
many optical cross-sections of the cell. For each section, Py
was calculated and the average value was obtained (Wang et
al., 2002). Note that in the absence of internal compression
structures (for example, upon disruption of microtubules),
Py =0 and the entire prestress P is balanced by 7 (i.e.,
Ps = P).

shape stability through the agency of the prestress. Other possible interpretations of
this finding are discussed below.

In addition to generating contractile force, it has been shown that pharmacological
agonists also induce polymerization of the actin network (Mehta and Gunst, 1999;
Tang et al., 1999). Thus, the observed stiffening in response to contractile agonists
could be nothing more than the result of actin polymerization. However, An et al.
(2002) have shown that agonist-induced actin polymerization in smooth muscle cells
accounts only for a portion of the observed stiffening, whereas the remaining portion
of the stiffening is associated with contractile force generation. Another potential
mechanism that could explain the data in Fig. 6-4 is the effect of cross-bridge recruit-
ment. It is known from studies of isolated smooth muscle strips in uniaxial extension
that both muscle stiffness and muscle force are directly proportional to the number of
attached cross-bridges (Fredberg et al., 1996). Thus, the proportionality between the
cell stiffness and the prestress could reflect nothing more than the effect of changes
in the number of attached cross-bridges in response to pharmacological stimulation.
A result that goes against this possibility is obtained from a theoretical model of the
myosin cross-bridge kinetics (Mijailovich et al., 2000). This model predicts a qualita-
tively different oscillatory response from the one measured in airway smooth muscle
cells (Fabry etal., 2001). Thus, the kinetics of cross-bridges cannot explain all aspects
of cytoskeletal mechanics.

Action at a distance

To investigate whether the cytoskeleton exhibits the action-at-a-distance effect,
Maniotis et al. (1997) performed experiments in which the tip of a glass micropipette
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Fig. 6-4. Cell stiffness (G) increases linearly with increasing cytoskeletal contractile stress.
Measurements were done in cultured human airway smooth muscle cells. Cell contractility was
modulated by graded doses of histamine (constrictor) and graded doses of isoproterenol (relaxant).
Stiffness was measured using the magnetic cytometry technique and the prestress was measured by
the traction cytometry technique (Wang et al., 2002). The slope of the regression line is 1.18 (solid
line). The measured prestress represents the portion of the cytoskeletal prestress that is balanced by
the substrate (that is, Ps from Fig. 6-3). Because in those cells microtubules balance on average ~14%
of Pg (Stamenovic et al., 2002a), the slope of the stiffness vs. the total prestress (P) relationship
should be reduced by 14% and thus equals 1.04 (dashed line). The stiffness vs. prestress relationship
displays a nonzero intercept. This is due to a bias in the method used to calculate the prestress (in other
words, the cell cross-sectional area 4” from Fig. 6-3 is an overestimate) (Wang et al., 2002). In the
absence of this artifact, the stiffness vs. prestress relationship would display close-to-zero intercept,
that is, G &~ 1.04P (Wang et al., 2002). (Redrawn from Wang et al. (2002) and Stamenovi¢ et al.
(2002b); G is rescaled to take into account the effect of bead internalization. From Mijailovich et al.,
2002.

coated with fibronectin and bound to integrin receptors of living endothelial cells was
pulled laterally. Because integrins are physically linked to the cytoskeleton, then if
the cytoskeleton is organized as a discrete tensegrity structure, pulling on integrins
should produce an observable deformation distal from the point of load application.
The authors observed that the nuclear border moved along the line of applied pulling
force, which is a manifestation of the action at a distance. A more convincing piece of
evidence for this phenomenon was provided by Hu et al. (2003). These investigators
designed the intracellular tomography technique that enabled them to observe dis-
placement distribution within the cytoskeleton region in response to locally applied
shear disturbance. Lumps of displacement concentrations were found at distances
greater than 20 um from the point of application of the shear loading, which is indica-
tive of the action-at-a-distance effect (Fig. 6-5). Interestingly, when the actin lattice
was disrupted (cytochalasin D), the action-at-a-distance effect disappeared (data not
shown), suggesting that connectivity of the actin network is essential for transmission
of mechanical signals throughout the cytoskeleton. The action-at-a-distance effect has
also been observed in neurons (Ingber et al., 2000) and in endothelial cells (Helmke
et al., 2003). On the other hand, Heidemann et al. (1999) failed to observe this phe-
nomenon in living fibroblasts when they applied various mechanical disturbances by
a glass micropipette to the cell surface through integrin receptors. They found that
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Fig. 6-5. Evidence of the action-at-a-distance effect. Displacement map in living human airway
smooth muscle cells obtained using the intracellular tomography technique (Hu et al., 2003). Load
is applied to the cell by twisting a ferromagnetic bead bound to integrin receptors on the cell apical
surface. The bead position is shown on the phase-contrast image of the cell (inset), the black dot
on the image is the bead. The white arrows indicate the direction of the displacement field and
the gray-scale map represents its magnitude. Displacements do not decay quickly away from
the bead center. Appreciable “lumps” of displacement concentration could be seen at distances
more than 20 wm from the bead, consistent with the action-at-a-distance effect. The inner el-
liptical contour indicates the position of the nucleus. Adapted with permission from Hu et al.,
2003.

such disturbances produced only local deformations. However, the authors did not
confirm formation of focal adhesions at points of application of external loading,
which is essential for load transfer between cell surface and the interior cytoskeleton
(Ingber et al., 2000). Thus, their results remain controversial.

Do microtubules carry compression?

Microscopic visualization of green fluorescent protein-labeled microtubules of living
cells (see Fig. 6-2) shows that microtubules buckle as they oppose contraction of the
actin network (Waterman-Storer and Salmon, 1997; Wang et al., 2001). It was not
known, however, whether the compression that causes this buckling could balance
a substantial fraction of the contractile prestress. To investigate this possibility, an
energetic analysis of buckling of microtubules was carried out (Stamenovi¢ et al.,
2002a). The assumption was that energy stored in microtubules during compres-
sion was transferred to a flexible substrate upon disruption of microtubules. Thus,
measurement of an increase in elastic energy of the substrate following disruption
of microtubules should indicate compression energy stored in microtubules prior to
their disruption. Elastic energy stored in the substrate was obtained from traction
microscopy measurements as a work done by traction forces during cell contraction.
It was found in highly stimulated and spread human airway smooth muscle cells that
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following disruption of microtubules by colchicine, the work of traction increases
on average by ~30 percent relative to the state before disruption, and equals 0.13
pJ (Stamenovic et al., 2002a). This result was then utilized in the energetic analysis.
Based on the model of Brodland and Gordon (1990), the microtubules were assumed
as slender elastic rods laterally supported by intermediate filaments. Using the post-
buckling equilibrium theory of Euler struts (Timoshenko and Gere, 1988), the energy
stored during buckling of microtubules was estimated as ~0.18 pJ, which is close
to the measured value of ~0.13 pJ (Stamenovic et al., 2002a). This is further evi-
dence in support of the idea that microtubules are intracellular compression-bearing
elements. Potential concerns are that disruption of microtubules may activate myosin
light-chain phosphorylation (Kolodney and Elson, 1995) or could cause a release
of intracellular calcium (Paul et al., 2000). Thus, the observed increase in traction
and work of traction following disruption of microtubules could be due entirely to
chemical mechanisms rather than through mechanical load transfer. These concerns
are alleviated by observations indicating that microtubule disruption results in an in-
crease of traction even when the level of myosin light-chain phosphorylation and the
level of calcium do not change (Wang et al., 2001; Stamenovic¢ et al., 2002a).

From the same experimental data used in the energetic analysis, the contribution of
microtubules to balancing the prestress was obtained as follows (Wang et al., 2001;
Stamenovi¢ et al., 2002a). An increase in traction following microtubule disruption
indicates the part of the prestress balanced by microtubules that is transferred to the
substrate (see Fig. 6-3b). It was found that this increase ranges from ~5-30 percent,
depending on the cell, and is on average ~14 percent, suggesting that microtubules
balance only a small fraction of the cytoskeletal prestress and that the substrate bal-
ances the bulk of it (Stamenovic¢ et al., 2002a). An increase in traction in the response
to disruption of microtubules had been observed previously, in different cell types, by
other investigators, but has not been quantified (Kolodney and Wysolmersky, 1992;
Kolodney and Elson, 1995). More recently, Hu et al. (2004) showed that the contri-
bution of microtubules to balancing the prestress and to the energy budget of the cell
depends on the extent of cell spreading. Using the traction cytometry technique, these
investigators found that in airway smooth muscle cells, changes in traction and the
substrate energy following disruption of microtubules decrease with increasing cell
spreading. For example, as the cell projected area increases from 500 to 1800 pum?,
the percent increase in traction following disruption of microtubules decreases from
80 percent to a very small percent. Because in their natural habitat cells seldom exhibit
highly spread forms, the above results suggest that the contribution of microtubules
in balancing the prestress cannot be overlooked.

The role of intermediate filaments

Cytoskeletal-based intermediate filaments also carry prestress and link the nucleus
to the cell surface and the cytoskeleton (Ingber, 1993; 2003a). In support of this
view, vimentin-deficient fibroblasts were found to exhibit reduced contractility and
reduced traction on the substrate in comparison to the wild-type cells (Eckes et al.,
1998). Also, it was observed that the intermediate filament network alone is sufficient
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to transfer mechanical load from cell surface to the nucleus in cells in which the
actin and microtubule networks are chemically disrupted (Maniotis et al., 1997).
Taken together, these observations suggest that intermediate filaments play a role in
transferring the contractile prestress to the substrate and in long-distance load transfer
within the cytoskeleton. Both are key features of the cellular tensegrity model. In
addition, inhibition of intermediate filaments causes a decrease in cell stiffness (Wang
et al., 1993; Eckes et al., 1998; Wang and Stamenovic, 2000), as well as cytoplasmic
tearing in response to high applied strains (Maniotis et al., 1997; Eckes et al., 1998).
In fact, it appears that the intermediate filaments’ contribution to a cell’s resistance to
shape distortion is substantial only at relatively large strains (Wang and Stamenovic,
2000). Another role of intermediate filaments is suggested by Brodland and Gordon
(1990). According to these authors, intermediate filaments provide a lateral stabilizing
support to microtubules as they buckle while opposing contractile forces transmitted
by the cytoskeletal actin lattice. This description is consistent with experimental data
(Stamenovic¢ et al., 2002a).

Summary

Results from experimental measurements on living adherent cells indicate that their
behavior is consistent with the cellular tensegrity model. It was found that cell stiffness
increases directly proportionally with increasing contractile stress. It was also found
that microtubules carry compression that, in turn, balances a substantial portion of
the cytoskeletal prestress. This contribution of microtubules is much smaller in highly
spread cells, roughly a few percent, whereas in poorly spread cells it can be as high
as ~50 percent. The majority of data from measurements of the action-at-a-distance
phenomenon indicate that cells exhibit this type of behavior when the force is applied
through integrin receptors at the cell surface and focal adhesions were formed at the
site of force application. Intermediate filaments appear to be important contributors
to cell contractility and thus to supporting the prestress. They serve as molecular
“guy wires” that facilitate transfer of mechanical loads between the cell surface and
the nucleus. Finally, intermediate filaments appear to stabilize microtubules as the
latter balance the cytoskeletal prestress. Taken together, these observations provide
strong evidence in support of the cellular tensegrity model. Although they can have
alternative interpretations, there is no single model other than tensegrity that can
explain all these data together.

Examples of mathematical models of the cytoskeleton based
on tensegrity

Despite its geometric complexity, its dynamic nature, and its inelastic properties, the
cytoskeleton is often modeled as a static, elastic, isotropic, and homogeneous network
of idealized geometry. The idea is that if the mechanisms by which such an ideal-
ized model develops mechanical stress are indeed embodied within the cytoskeleton,
then, despite all simplifications, the model should be able to capture key features that
characterize mechanical behavior of cells under the steady-state. With the tensegrity
model, however, each element is individually taken into account for a discrete formu-
lation of the model. This section describes three types of prestressed structures that
have been commonly used as models of cellular mechanics: the cortical membrane



Models of cytoskeletal mechanics based on tensegrity

Fig. 6-6. (a) Ferromagnetic beads bound to the apical surface of cultured human airway smooth
muscle cells (unpublished data kindly supplied by Dr. B. Fabry). (b) A free-body diagram of a
magnetic bead of diameter D half embedded into an elastic membrane of thickness /. The bead
is rotated in a vertical plane by specific torque M through angle 6. The rotation is resisted by the
membrane tension (prestress) (Py,).

model; the tensed cable net model; and the cable-and-strut model. All three models
are stabilized by the prestress. They differ from each other in their topological and
structural organization, and in the manner by which they balance the prestress. Results
obtained from the models are compared with data from living cells.

The cortical membrane model

This model assumes that the main force-bearing elements of the cytoskeleton are
confined either within a thin (~100 nm) cortical layer (Zhelev et al., 1994) or several
distinct layers (Heidemann et al., 1999). The cortical layer is under sustained tension
(that is, prestress) that is either entirely balanced by the pressurized cytoplasm in
suspended cells, or balanced partly by the cytoplasmic pressure and partly by traction
at the extracellular adhesions in adherent cells. This model has been successful in
describing mechanical features of various suspended cells (Evans and Yeung, 1989;
Zhelev et al., 1994; Discher et al., 1998). However, in the case of adherent cells,
this model has enjoyed limited success (Fung and Liu, 1993; Schmid-Schonbein
et al., 1995; Coughlin and Stamenovi¢, 2003). To illustrate the usefulness of this
model, a simulation of a magnetic twisting cytometry measurement is described
below (Stamenovi¢ and Ingber, 2002).

In the magnetic twisting cytometry technique, small ferromagnetic beads (4.5-pm
diameter) bound to integrin receptors on the apical surface of an adherent cell are
twisted by a magnetic field, as shown in Fig. 6-6a. Because integrins are physically
linked to the cytoskeleton, twisting of the bead is resisted by restoring forces of the
cytoskeleton. Using the cortical membrane model, magnetic twisting measurements
are simulated as follows.

A rigid spherical bead of diameter D is half-embedded in an initially tensed (pre-
stressed) membrane of thickness /. A twisting torque (M) is applied to the bead in
the vertical plane (Fig. 6-6b). Rotation of the bead is impeded by the prestress (P,,) in
the membrane. By considering mechanical balance between M and P,, it was found
(Stamenovi¢ and Ingber, 2002) that

M = D*P,hsin0, (6.1)

where 0 is the angle of bead rotation. In magnetic twisting measurements, a scale for
the applied shear stress (7') is defined as the ratio of M and 6 times bead volume,
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where 6 is the shape factor, and shear stiffness (G) as the ratio of 7 and 8 (Wang
et al., 1993; Wang and Ingber, 1994). Thus it follows from Eq. 6.1 that

1 h sinf

G=—Py———.

m D 6
In the limit of 6 — 0, G — (1/7)P,,(h/D) and represents the shear modulus of
Hookean elasticity. It follows from Eq. 6.2 that G increases in direct proportion with
P, a feature consistent with the behavior observed in living cells during magnetic
twisting measurements (see Fig. 6-4). Taking into account experimentally based val-
ues for 4 = 0.1 um, D = 4.5 um, and P,, = O(10*—10°) Pa it follows from Eq. 6.2
that G = O(10>—10%) Pa, which is consistent with experimentally obtained values
for G (see Fig. 6-4). [ P,, was estimated as follows. It scales with the cytoskeletal
prestress P as the ratio of cell radius R to membrane thickness /. Experimental data
show that P = O(10°—10°) Pa (Fig. 6-4), R = O(10")um and » = O(10~") um,
thus P,, = O(10*~10%) Pa.]

Despite this agreement, several aspects of this model are not consistent with ex-
perimental results. First, Eq. 6.2 predicts that G decreases with increasing angular
strain 6, in other words, softening behavior, whereas magnetic twisting measurements
show stress hardening (Wang et al., 1993) or constant stiffness (Fabry et al., 2001).
Second, Eq. 6.3 predicts that G decreases with increasing bead diameter D, whereas
experiments on cultured endothelial cells show the opposite trend (Wang and Ingber,
1994). One reason for these discrepancies could be the assumption that the cortical
layer is a membrane that carries only tensile force. In reality, the cortical layer can
support bending, for example in red-blood cells (Evans, 1983; Fung, 1993), and hence
a more appropriate model may be a shell-like rather than a membrane-like structure.
Regardless, the assumption that the cytoskeleton is confined within a thin cortical
layer that surrounds liquid cytoplasm contradicts observations in adherent cells that
mechanical perturbations applied to the cell surfaces are transmitted deep into the
cytoplasmic domain (Maniotis et al., 1997; Wang et al., 2001; Hu et al., 2003). These
observations suggest that mechanical force transmission through the cell is facilitated
through the molecular connectivity of the intracellular solid-state cytoskeletal lattice.
Taken together, these inconsistencies lower our enthusiasm for the cortical-membrane
model as an adequate depiction of the mechanics of adherent cells. However, it re-
mains a good mechanical model for suspended cells where the cytoskeleton appears
to be organized within a thin cortical membrane (Bray et al., 1986).

(6.2)

Tensed cable nets

These are reticulated networks comprised entirely of tensile cable elements (Volokh
and Vilnay, 1997). Because cables do not support compression, they need to carry
initial tension to prevent their buckling and subsequent collapse in the presence of
externally applied load. This initial tension defines prestress that is balanced externally
(for example, by attachment to the extracellular matrix), and/or internally (such as,
by cytoplasmic swelling). A simple illustration of key features of tensed cable nets
can be obtained by using the affine network model. A key premise of such a model is
that local strains follow the macroscopic (continuum) strain field. (This assumption is
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known as the affine approximation.) Using this approach and assuming that initially
all cable orientations in the network are equally probable, one can obtain that the shear
modulus (G) (Stamenovi¢, 2005) is

G=(08+02B)P (6.3)

where P is the prestress, B = (dF'/dL)/(F /L) is nondimensional cable stiffness, and
the F'vs. L dependence represents the cable tension-length characteristsic (Budiansky
and Kimmel, 1987). In general, B may depend on the level of cable tension (that is,
on P). In that case, according to Eq. 6.3, the G vs. P relationship is nonlinear. If,
however, B is constant, then G is directly proportional to P. The first term on the
right-hand side of Eq. 6.3 represents the sum of the contributions of changes in spacing
and orientation of the cables (0.5P + 0.3P) to G, whereas the second term (0.2BP)
is the contribution of the lengthening of the cables to G.

To test whether the prediction of Eq. 6.3 is quantitatively consistent with exper-
imental data from living cells (see Fig. 6-4), we estimate B from measurements of
force-extension properties of isolated acto-myosin interactions (Ishijima et al., 1996).
Based on these measurements, (dF/dL)/F = 0.024nm™~' for a wide range of F. Thus,
for a 100-nm long actin filament B = 2.4. The choice of filament length of L = 100
nm is based on the observation of the average pore-size of the actin cytoskeletal net-
work of endothelial cells (Satcher et al., 1997). By substituting this value into Eq.
6.3, it follows that G = 1.28 P. This is a modest overestimate of the experimentally
obtained result G = 1.04P (Fig. 6-4).

The most favorable aspect of this model is that it provides a mathematically trans-
parent insight into mechanisms that may determine cytoskeletal deformability; G
is primarily determined by P through change in spacing and orientation of the ca-
ble elements, and to a lesser extent by their stiffness. The model can also provide
a reasonably good quantitative correspondence to experimental G vs. P data. The
latter is obtained under the crude assumptions of the affine strain approximation and
of equally probable distribution of cable orientations. These assumptions are known
to lead toward an overestimate of G (Stamenovi¢, 1990). The model also assumes
a homogeneous distribution of the prestress throughout the cytoskeleton, although
measurements show that the prestress is greatest near the cell edges and decreases
toward the nuclear region (Toli¢-Nerrelykke et al., 2002). However, in the experi-
mental data for the G vs. P relationship (Fig. 6-4), P represents the mean value of
the prestress distribution throughout the cell, and thus the model assumption of uni-
form prestress is reasonable. The model focuses only on the contribution of the actin
network and ignores potential contributions of other components of the cytoskeleton.
These contributions will be considered shortly. Nevertheless, the model provides a
reasonably good prediction of the G vs. P relationship suggesting that the tensed actin
network plays a major role in determining cell mechanical properties. The model also
describes the cytoskeleton as a static, elastic network, whereas the cytoskeleton is a
dynamic and inelastic structure. This issue is discussed in the section on tensegrity
and cellular dynamics.

It is noteworthy that two-dimensional cable nets also have been used to model the
cortical membrane. In those models the cortical membrane has been depicted as a
two-dimensional network of triangles (Boey et al., 1998) and hexagons (Coughlin
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and Stamenovi¢, 2003). In the case of suspended cells, this model provides very good
correspondence to experimental data. For example, the model of the spectrin lattice
successfully describes the behavior of red blood cells during micropipette aspiration
measurements (Discher et al., 1998). However, in the case of adherent cells, the model
of the actin cortical lattice has enjoyed only moderate success. While it provides a
reasonably good correspondence to data from cell poking measurements, it exhibits
only some qualitative features of the cell response to twisting and pulling of magnetic
beads bound to integrin receptors (Coughlin and Stamenovic, 2003). Taken together,
the above results show that the two-dimensional cable net model is incomplete to
describe mechanical behavior of adherent cells; however the results also show that
prestress is a key determinant of the model response.

Cable-and-strut model

This is a cable net model in which the prestress in the cables is balanced by internal
compression-supporting struts rather than by inflating pressure. At each free node, one
strut meets several cables (see Fig. 6-1). Cables carry initial tension that is balanced
by compression of the strut. Together, cables and struts form a self-equilibrated and
stable form in the space. This structure may also be attached to the substrate (Fig. 6-1).
In this case, the anchoring forces of the substrate also contribute to the balance of
tension in the cables. The main difference between these structures and the cable nets
is that in the former, the struts directly contribute to the structure’s resistance to shape
distortion, whereas in the latter this contribution does not exist.

The shear modulus (G) of the cable and strut model can be also obtained using the
affine network approach, as in the case of the tensed cable net model. It was found
(Stamenovi¢, 2005) that

G = 0.8(P — Py) + 0.2(BP + By Py) (6.4)

where P is the prestress carried by the cables and Py is the portion of P balanced
by the struts, B = (dF'/dL)/(F/L) is the nondimensional cable stiffness and By =
(dQ/dl)/(Q/1) is the nondimensional strut stiffness. The difference P — Py repre-
sents the portion of P transmitted to and balanced by the substrate and is denoted
by Ps (see Fig. 6-2b). It is this Py that can be directly measured using the traction
microscopy technique (Wang et al., 2002).

It was shown in the section on tensed cable nets that B = 2.4. The quantity B is
determined based on the buckling behavior of microtubules (Stamenovic etal., 2002a).
It is found that By ~ 0.54. By substituting this value and B = 2.4 into Eq. 6.4 and
taking into account that in well-spread smooth muscle cells, microtubules balance
on average ~14 percent of Pg, that is, Pp = 0.14Ps (Stamenovi¢ et al., 2002a), it
is obtained that G = 1.19 P, which is close to the experimental data of G = 1.04P
(Fig. 6-4).

It is noteworthy that if Pp = 0, for example, in a case where microtubules are
disrupted, Eq. 6.4 reduces to Eq. 6.3. If disruption of microtubules would not affect
P, then according to Egs. 6.3 and 6.4, for a given P, the shear modulus G would be
~8 percent lower in the case of intact microtubules than in the case of disrupted
microtubules. In reality, such conditions in cells are hard to achieve. An experimental
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(a) (b)

Fig. 6-7. Six-strut tensegrity model in the round (a) and spread (b) configurations anchored to the
substrate. Anchoring nodes A, 4, and A3 (round) and 4, 4,, A3, By, B,, and Bj (spread) are
indicated by solid triangles. Pulling force F (thick arrow) is applied at node D;. Reprinted with
permission from Coughlin and Stamenovi¢, 1998.

condition that comes close to this occurs in airway smooth muscle cells stimulated
by a saturated dose of histamine (10 uM). In those cells the level of prestress
was maintained constant prior to and after disruption of microtubules by colchicine
(Wang et al., 2001; 2002). It was found that disruption of microtubules causes a small
(~10 percent), but not significant, increase in cell stiffness (Stamenovic et al., 2002b),
which is close to the predicted value of ~8 percent. On the other hand, in nonstimu-
lated endothelial cells, disruption of microtubules causes a significant (~20 percent)
decrease in cell stiffness (Wang et al., 1993; Wang, 1998), which is opposite from
the model prediction. A possible reason for this decrease in stiffness in endothelial
cells is that in the absence of compression-supporting microtubules, cytoskeletal pre-
stress in those cells decreased, and consequently the cytoskeletal lattice became more
compliant.

Most of the criticism for the cable net model also applies to the cable-and-strut
model. However, the ability of the model to predict the G vs. P relationship as well as
the mechanical role of cytoskeleton-based microtubules such that they are consistent
with corresponding experimental data, suggests that the model has captured the basic
mechanisms by which the cytoskeleton resists shape distortion.

Consider next an application of a so-called six-strut tensegrity model to study
the effect of cell spreading on cell deformability (Coughlin and Stamenovic¢, 1998).
This particular model has been frequently used in studies of cytoskeletal mechanics
(Ingber, 1993; Stamenovic et al., 1996; Coughlin and Stamenovi¢, 1998; Volokh
et al., 2000; Wang and Stamenovi¢, 2000; Wendling et al., 1999). It is comprised
of six struts interconnected with twenty-four cables (see Fig. 6-7). Although this
model represents a gross oversimplification of cytoskeletal architecture, surprisingly
it has provided good predictions and simulations of various mechanical behaviors
observed in living cells, suggesting that it embodies key mechanisms that determine
cytoskeleton mechanics.

In the six-strut tensegrity model, the struts are viewed as slender bars that support
no lateral load. Initially, the cables are under tension balanced entirely by compression

119



120

STIFFNESS (dyne/em?)

D. Stamenovi¢

100 - 4 -
Spread
Spread
30 -
3 A
60 - %
[23]
E 2
40 - 5
Round Round
20 1 ///
0 T T T " ' 0 T T T T \
0 10 20 30 40 50 0.0 0.2 04 0.6 038 1.0
STRESS (dynefcm?) FORCE F
(a) (b)

Fig. 6-8. (a) Data for stiffness vs. applied stress in round and spread cultured endothelial cells
measured by magnetic twisting cytometry; points means = SE (n = 3 wells, 20,000 cells/well).
Both configurations exhibit stress-hardening behavior with greater hardening in the spread than in
the round configuration. (Adapted with permission from Wang and Ingber (1994).) (b) Simulations
of stiffness vs. applied force (F') in spread and round configurations of the six-strut model (Fig. 6-7)
are qualitatively consistent with the data in panel (a). The force is given in the unit of force and
the stiffness in the unit of force/length. Adapted with permission from Coughlin and Stamenovic,
1998.

of the struts. The structure is then attached to a rigid substrate at three nodes through
frictionless ball-joint connections (Fig. 6-7a). The initial force distribution within the
structure is not affected by this attachment. This is referred to as a ‘round config-
uration.” To mimic cell spreading, three additional nodes are also anchored to the
substrate (Fig. 6-7b). This is referred to as a ‘spread configuration.” As a consequence
of spreading, force distribution is altered from the one in the round configuration.
Tension in the cables is now partly balanced by the struts and partly by reaction forces
at the anchoring nodes. In both spread and round configurations, a vertical pulling
force (F') is applied at a node distal from the substrate (Fig. 6-7). The corresponding
vertical displacement (Ax) is calculated and the structural stiffness as G = F/Ax.
Two cases were considered, one where struts are rigid and cables linearly elastic, and
the other where both struts and cables are elastic and struts buckle under compression.
Here we present results from the case with rigid struts; corresponding results obtained
with buckling struts are qualitatively similar (Coughlin and Stamenovi¢, 1998). The
model predicts that stiffness increases with spreading (Fig. 6-8b). The reason is that
tension (prestress) in the cables increases with spreading. The model also predicts
approximately linear stress-hardening behavior and predicts that this dependence is
greater in the spread than in the round configuration (Fig. 6-8b). All these predictions
are consistent (Fig. 6-8a) with the corresponding behavior in round and in spread
endothelial cells (Wang and Ingber, 1994). Further attachments of the nodes to the
substrate, that is, further spreading, would gradually eliminate the struts from the
force balance scheme and their role will be taken over by the substrate.
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Taken together, the above results indicate that the cable-and-strut model provides
a good and plausible description of cytoskeletal mechanics. It reiterates the central
role of cytoskeletal prestress in cell deformability. The cable-and-strut model also
reveals the potential contribution of microtubules; they balance a fraction of the
prestress, and their deformability (buckling) contributes to the overall deformability
of the cytoskeleton. This contribution decreases as cell spreading increases.

In all of the above considerations, intermediate filaments are viewed only as a
stabilizing support during buckling of microtubules. To investigate their contribution
to cytoskeletal mechanics as stress-bearing members, elastic cables that connect the
nodes of the six-strut tensegrity model with its geometric center are added to the model
(Wang and Stamenovic, 2000). This was based on the observed role of intermediate
filaments as “guy wires” between the cell surface and the nucleus (Maniotis et al.,
1997). It was shown that by including those cable members in the six-strut model, the
model can account for the observed difference in the stress-strain behavior measured
by magnetic twisting cytometry between normal cells and cells in which intermediate
filaments were inhibited (Wang and Stamenovi¢, 2000).

Summary

Mathematical descriptions of standard tensegrity models of cellular mechanics pro-
vide insight into how the cytoskeletal prestress determines cell deformability. Three
key mechanisms through which the prestress secures shape stability of the cytoskele-
ton are changes in spacing, orientation, and length of structural members of the
cytoskeleton. Importantly, these mechanisms are not tied to the manner by which the
cytoskeletal prestress is balanced. This, in turn, implies that the close association
between cell stiffness and the cytoskeletal prestress is a common characteristic of all
prestressed structures. Quantitatively, however, this relationship does depend on the
architectural organization of the cytoskeletal lattice, including the manner in which
the prestress is balanced. The cable-and-strut model shows that in highly spread cells,
where virtually the entire prestress is balanced by the substrate, the contribution of
microtubules to deformability of the cytoskeleton is negligible. In less-spread cells,
however, where the contribution of internal compression members to balancing the
prestress increases at the expense of the substrate, deformability of microtubules im-
portantly contributes to the overall lattice deformability. Thus, which of the three
models would be appropriate to describe mechanical behavior of a cell would depend
upon the cell type and the extent of cell spreading.

Tensegrity and cellular dynamics

In previous sections it was shown how tensegrity-based models could account for
static elastic behavior of cells. However, cells are known to exhibit time- and rate-of-
deformation-dependent viscoelastic behavior (Petersen et al., 1982; Evans and Yeung,
1989; Sato et al., 1990; Wang and Ingber, 1994; Bausch et al., 1998; Fabry et al.,
2001). Because in their natural habitat cells are often exposed to dynamic loads (for
example, pulsatile blood flow in vascular endothelial cells, periodic stretching of the
extracellular matrix in various pulmonary adherent cells), their viscoelastic properties
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(a)

(b)

Fig. 6-9. (a) For a given frequency of loading (w), the storage (elastic) modulus (G”) increases with
increasing cytoskeletal contractile prestress (P) at all frequencies. (b) The loss (viscous) modulus
(G") also increased with P at all frequencies. Cell contractility was modulated by histamine and iso-
proterenol. P was measured by traction cytometry and G’ and G” by magnetic oscillatory cytometry.
Data are means £ SE. Adapted with permission from Stamenovic et al., 2004.

are important determinants of their mechanical behavior. As the tensegrity-based
models have provided a reasonably good description of elastic behavior of adherent
cells, it is of considerable interest to investigate whether these models can be extended
to describe viscoelastic cell behavior.

Recent oscillatory measurements on cultured airway smooth muscle cells indicate
that the cytoskeletal prestress may play an important role in determining cell dynamics.
It was found (see Fig. 6-9) that the cell dynamic modulus (G*) is systematically
altered in response to modulations of cell contractility; at a given frequency, the
real and imaginary components of G* — the storage (elastic) modulus (G”) and loss
(viscous) modulus (G”), respectively — increase with increasing contractile prestress
P(Stamenovic etal., 2002b; 2004). These prestress-dependences of G’ and G” suggest
the possibility that cells may utilize similar mechanisms to resist dynamical loads as
they do in the case of static loads. Whereas it is clear how geometrical rearrangements
of cytoskeletal filaments may come into play in determining the dependence of G’
on P, it is not that obvious how they could explain the dependence of G” on P. A
possible explanation for the latter is as follows. In a purely elastic prestressed structure
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that is subjected to a harmonic strain excitation, all three mechanisms are in phase
with the applied strain as long as the structural response is approximately linear and
inertial effects are negligible. Consequently, G” = 0. However, in a structure affected
by linear damping, the three mechanisms may not all be in phase with the applied
strain. As these mechanisms depend on P, phase lags associated with each of them
will also depend on P. Consequently, G” # 0 and depends on P. The mathematical
description of this argument is as follows.

There have been several attempts to model cell viscoelastic behavior using the
cable-and-strut model. Cafadas et al. (2002) and Sultan et al. (2004) used the six-
strut tensegrity model (Fig. 6-7a) with viscoelastic Voigt elements instead of elastic
cables and with rigid struts to study the creep and the oscillatory responses of the
cell, respectively. Their models predicted prestress-dependent viscoelastic properties
that are qualitatively consistent with experiments. Sultan et al. (2004) also attempted
to quantitatively match model predictions with experimental data. They showed that
with a suitable choice of model parameters one can provide a very good quantitative
correspondence to the observed dependences of G’ and G” on P (Fig. 6-9). How-
ever, this could be accomplished only with a very high degree of inhomogeneity in
model parameters (variation of several orders of magnitudes), which is not physically
realistic.

The specific issue of time- and rate-of-deformation-dependence in explaining the
viscoelastic behavior of cells is covered in Chapters 3, 4 and 5 of this book. However,
it will be addressed briefly here in the context of the tensegrity idea. A growing body
of evidence indicates that the oscillatory response of various cell types follows a
weak power-law dependence on frequency, w* where 0 < k < 1, over several orders
of magnitude of @ (Goldmann and Ezzel, 1996; Fabry et al., 2001; Alcaraz et al.,
2003). In the limits when k& = 0, rheological behavior is Hookean elastic solid-like,
and when k£ = 1 it is Newtonian viscous fluid-like. A power-law behavior implies the
absence of an internal time scale in the structure. Thus, it rules out the Voigt model,
the Maxwell model, the standard linear solid model, and other models with a discrete
number of time constants (see for example, Sato et al., 1990; Baush et al., 1998). The
power-law behavior observed in cells persists even after cell contractility is altered.
The only parameter that changes is the power-law exponent &; in contracted airway
smooth muscle cells £ decreases, whereas in relaxed cells it increases relative to the
baseline (Fabry et al., 2001; Stamenovic et al., 2004). Based on these observations,
an empirical relationship between & and P has been established (Stamenovi¢ et al.,
2004). It was found that k decreases approximately logarithmically with increasing P.
This result suggests that the cytoskeletal contractile stress regulates the transition
between solid-like and fluid-like cell behavior.

The observed relationship between & and P appears not to be an a priori predic-
tion of the tensegrity-based models. Rather, it depends on rheological properties of
individual structural members and is rooted in the dynamics (thermal fluctuations)
of molecules of the cytoskeleton. These dynamics can lead to a power-law behavior
of the entire network (Suki et al., 1994). It is feasible, however, that tensile force car-
ried by prestressed cytoskeletal filaments may influence their molecular dynamics,
which in turn may explain why P affects the exponent £ in the power-law behavior of
cells (Stamenovi¢ et al., 2004). This has yet to be shown. Another possibility is that
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molecules of the cytoskeleton exhibit highly nonhomogeneous properties that would
lead to a wide distribution of time constants, and thereby to a power-law behavior, as
shown by Sultan et al. (2004).

In summary, the basic mechanisms of the tensegrity model can explain the depen-
dence of cell viscoelastic properties on the cytoskeletal prestress. These mechanisms
cannot completely explain the frequency response of cells, however, which conforms
to a power-law. This power-law behavior seems to be primarily determined by rheol-
ogy of individual cytoskeletal filaments and their own dynamics (thermal fluctuations,
and so forth), rather than by structural dynamics of the cytoskeleton.

Conclusion

This chapter has shown that the tensegrity model is a useful approach for studying
mechanics of living cells starting from first principles. This approach elucidates how
simple structural models naturally come to express many seemingly complex behav-
iors observed in cells. This does not preclude the numerous chemically and genetically
mediated mechanisms (such as, cytoskeletal remodeling, acto-myosin motor kinet-
ics, cross-linking) that are known to regulate cytoskeletal filament assembly and force
generation. Rather, it elucidates a higher level of organization in which these events
function and may be regulated.

Taken together, results presented in this chapter can be summarized as follows.
First, the cytoskeletal prestress is a key determinant of cell deformability. This fea-
ture is consistent with all forms of cellular tensegrity models: the cortical membrane
model; the cable net model; and the cable-and-strut model. As a consequence, cell
stiffness increases with increasing prestress in nearly direct proportion. Second, de-
pending on the cell type and the extent of cell spreading, one may invoke accordingly
different types of tensegrity models in order to describe the effect of the prestress on
cellular mechanics. Clearly, various types of ad hoc models unrelated to tensegrity
may also provide very useful descriptions of cell mechanical behavior under certain
experimental conditions (compare Theret et al., 1988; Sato et al., 1990; Forgacs, 1995;
Satcher and Dewey, 1996; Bausch et al., 1998; Fabry et al., 2001). However, the stud-
ies described here show that the current formulation of the cellular tensegrity model,
although highly simplified, embodies many of the key behaviors of cells. Third, the
tensegrity model can explain some aspects of cell viscoelastic behavior, but not all.
The behavior appears to be primarily related to rheology and molecular dynamics
of individual cytoskeletal filaments. Nevertheless, the observed relationship between
viscoelastic properties of the cell and cytoskeletal prestress suggests that rheology of
individual filaments may be modulated by the prestress through the mechanisms of
tensegrity. This is a subject of future studies that will show whether the tensegrity
model is useful only in describing and understanding static elastic behavior of cells,
or whether it is also useful for describing and understanding cell dynamic viscoelastic
behavior.

A long-term goal is to use the tensegrity idea as a mathematical framework to help
understand and predict how mechanical and chemical signals interplay to regulate
cell function as well as gene expression. In addition, this model may reveal how
cytoskeletal structure, prestress, and the extracellular matrix come into play in the
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control of cellular information processes (Ingber, 2003b). The biological ground for
these applications has already been laid (Ingber 2003a; 2003b). It is the task of
bioengineers to carry on this work further.
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/ Cells, gels, and mechanics

Gerald H. Pollack

ABSTRACT: The cell is known to be a gel. If so, then a logical approach to the understanding
of cell function may be through an understanding of gel function. Great strides have been
made recently in understanding the principles of gel dynamics. It has become clear that a
central mechanism in biology is the polymer-gel phase-transition — a major structural change
prompted by a subtle change of environment. Phase-transitions are capable of doing work, and
such mechanisms could be responsible for much of the work of the cell. Here, we consider this
approach. We set up a polymer-gel-based foundation for cell function, and explore the extent
to which this foundation explains how the cell generates various types of mechanical motion.

Introduction

The cell is a network of biopolymers, including proteins, nucleic acids, and sugars,
whose interaction with solvent (water) confers a gel-like consistency. This revelation
is anything but new. Even before the classic book by Frey-Wyssling a half-century
ago (Frey-Wyssling, 1953), the cytoplasm’s gel-like consistency had been perfectly
evident to any who ventured to crack open a raw egg. The “gel-sol” transition as
a central biological mechanism is increasingly debated (Jones, 1999; Berry, et al.,
2000), as are other consequences of the cytoplasm’s gel-like consistency (Janmey,
et al.,, 2001; Hochachka, 1999). Such phenomena are well studied by engineers,
surface scientists, and polymer scientists, but the fruits of their understanding have
made little headway into the biological arena.

Perhaps it is for this reason that virtually all cell biological mechanisms build on
the notion of an aqueous solution — or, more specifically, on free diffusion of solutes
in aqueous solution. One merely needs to peruse representative textbooks to note the
many diffusional steps required in proceeding from stimulus to action. These steps
invariably include: ions diffusing into and out of membrane channels; ions diffusing
into and out of membrane pumps; ions diffusing through the cytoplasm; proteins
diffusing toward other proteins; and substrates diffusing toward enzymes, among
others. A cascade of diffusional steps underlies virtually every intracellular process,
notwithstanding the cytoplasm’s character as a gel, where diffusion can be slow enough
to be biologically irrelevant. This odd dichotomy between theory and evidence has
grown unchecked, in large part because modern cell biology has been pioneered
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by those with limited familiarity with gel function. The gel-like consistency of the
cytoplasm has been largely ignored. What havoc has such misunderstanding wrought?

Problems with the aqueous-solution-based paradigm

Consider the consequences of assuming that the cytoplasm is an aqueous solution. To
keep this “solution” and its solutes constrained, this liquid-like milieu is surrounded
by a membrane, which is presumed impervious to most solutes. But solutes need to
pass into and out of the cell — to nourish the cell, to effect communication between
cells, to exude waste products, etc. In order for solutes to pass into and out of the cell,
the membrane requires openable pores. Well over 100 solute-specific channels have
been identified, with new ones emerging regularly.

The same goes for membrane pumps: Because ion concentrations inside and outside
the cell are rarely in electrochemical equilibrium, the observed concentration gradients
are thought to be maintained by active pumping mediated by specific entities lodged
within the membrane. The text by Alberts et al. (1994) provides a detailed review of
this foundational paradigm, along with the manner in which this paradigm accounts
for many basics of cell function. In essence, solute partitioning between the inside
and the outside of the cell is assumed to be a product of an impermeable membrane,
membrane pumps, and membrane channels.

How can this foundational paradigm be evaluated?

If partitioning requires a continuous, impermeant barrier, then violating the barrier
should collapse the gradients. Metabolic processes should grind to a halt, enzymes
and fuel should dissipate as they diffuse out of the cytoplasm, and the cell should be
quickly brought to the edge of death.

Does this really happen?

To disrupt the membrane experimentally, scientists have concocted an array of
implements not unlike lances, swords, and guns:

* Microelectrodes. These are plunged into cells in order to measure electrical po-
tentials between inside and outside or to pass substances into the cell cytoplasm.
The microelectrode tip may seem diminutive by conventional standards, but to
the 10-um cell, invasion by a 1-pum probe is roughly akin to the reader being
invaded by a fence post.

e FElectroporation is a widely used method of effecting material transfer into a cell.
By shotgunning the cell with a barrage of high-voltage pulses, the membrane
becomes riddled with orifices large enough to pass genes, proteins, and other
macromolecules — and certainly large enough to pass ions and small molecules
easily.

e The patch-clamp method involves the plucking of a 1-um patch of membrane
from the cell for electrophysiological investigation; the cell membrane is grossly
violated.

Although such insults may sometimes inflict fatal injuries they are not, in fact,
necessarily consequential. Consider the microelectrode plunge and subsequent with-
drawal. The anticipated surge of ions, proteins, and metabolites might be thwarted if
the hole could be kept plugged by the microelectrode shank — but this is not always
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the case. Micropipettes used to microinject calcium-sensitive dyes at multiple sites
along muscle cells require repeated withdrawals and penetrations, each withdrawal
leaving multiple micron-sized injuries. Yet, normal function is observed for up to sev-
eral days (Taylor etal., 1975). The results of patch removal are similar. Here again, the
hole in question is more than a million times the cross-section of the potassium ion.
Yet, following removal of the 1-pum patch, the 10 um isolated heart cell is commonly
found to live on and continue beating (L. Tung and G. Vassort, personal communi-
cation).

Similarly innocuous is the insult of electroporation. Entry of large molecules into
the cell is demonstrable even when molecules are introduced into the bath up to
many hours after the end of the electrical barrage that creates the holes (Xie et al.,
1990; Klenchin et al., 1991; Prausnitz et al., 1994; Schwister and Deuticke, 1985;
Serpersu et al., 1985). Hence, the pores must remain open for such long periods
without resealing. Nor do structural studies in muscle and nerve cells reveal any
evidence of resealing following membrane disruption (Cameron, 1988; Krause et al.,
1984). Thus, notwithstanding long-term membrane orifices of macromolecular size —
with attendant leakage of critical-for-life molecules anticipated — the cell does not
perish.

Now consider the common alga Caulerpa, a single cell whose length can grow to
several meters. This giant cell contains stem, roots, and leaves in one cellular unit
undivided by any internal walls or membranes (Jacobs, 1994). Although battered by
pounding waves and gnawed on by hungry fish, such breaches of integrity do not
impair survival. In fact, deliberately cut sections of stem or leaf will grow back into
entire cells. Severing of the membrane is devoid of serious consequence.

Yet another example of major insult lies within the domain of experimental genetics,
where cells are routinely sectioned in order to monitor the fates of the respective
fragments. When cultured epithelial cells are sectioned by a sharp micropipette, the
nonnucleated fraction survives for one to two days, while the nucleated, centrosome-
containing fraction survives indefinitely and can go on to produce progeny (Maniotis
and Schliwa, 1991). Sectioned muscle and nerve cells similarly survive (Yawo and
Kuno, 1985; Casademont et al., 1988; Krause et al., 1984), despite the absence of
membrane resealing (Cameron, 1988; Krause et al., 1984).

Finally, and perhaps not surprisingly in light of all that has been said, ordinary
cells in the body are continually in a “membrane-wounded” state. Cells that suffer
mechanical abrasion in particular —such as skin cells, gut endothelial cells, and muscle
cells — are especially prone to membrane wounds, as confirmed by passive entry into
the cell of large tracers that ordinarily fail to enter. Yet such cells appear structurally
and functionally normal (McNeil and Ito, 1990; McNeil and Steinhardt, 1997). The
fraction of wounded cells in different tissues is variable. In cardiac muscle cells it is
~20 percent, but the fraction rises to 60 percent in the presence of certain kinds of
performance-enhancing drugs (Clarke et al., 1995). Thus, tears in the cell membrane
occur commonly and frequently even in normal, functioning tissue, possibly due to
surface abrasion.

Evidently, punching holes in the membrane does not wreak havoc with the cell,
even though the holes may be monumental in size relative to an ion. It appears we
are stuck on the horns of a dilemma. If a continuous barrier envelops the cell and
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is consequential for function, one needs to explain why breaching the barrier is not
more consequential than the evidence seems to indicate. On the other hand, if we
entertain the possibility that the barrier may be noncontinuous, so that creating yet
another opening makes little difference, we then challenge the dogma on which all
mechanisms of cell biological function rest, for the continuous barrier concept has
become axiomatic.

Is there an escape?

If the cytoplasm is not an aqueous solution after all, then the need for a continuous
barrier (with pumps and channels) becomes less acute. If the cytoplasm is a gel,
for example, the membrane could be far less consequential. This argument does not
imply that the membrane is absent — only that its continuity may not be essential for
function. Such an approach could go a long way toward explaining the membrane-
breach anomalies described above, for gels can be sliced with relative impunity.
Major insults might or might not be tolerable by the gel-like cell, depending on the
nature of the insult and the degree of cytoplasmic damage inflicted. Death is not
obligatory. A continuous barrier is not required for gel integrity, just as we have seen
that a continuous barrier is not required for cell integrity. A critical feature of the
cytoplasm, then, may be its gel-like consistency.

Cells as gels

Gels are built around a scaffold of long-chain polymers, often cross-linked to one
another and invested with solvent. The cytoplasm is much the same. Cellular polymers
such as proteins, polysaccharides, and nucleic acids are long-chained molecules,
frequently cross-linked to one another to form a matrix. The matrix holds the solvent
(water) — which is retained even when the cell is demembranated. “Skinned” muscle
cells, for example, retain water in the same way as gels. Very much, then, the cytoplasm
resembles an ordinary gel — as textbooks assert.

How the gel/cell matrix holds water is a matter of some importance (Rand et al.,
2000), and there are at least two mechanistic possibilities. The first is osmotic: charged
surfaces attract counter-ions, which draw in water. In the second mechanism, water-
molecule dipoles adsorb onto charged surfaces, and subsequently onto one another
to form multilayers. The first mechanism is unlikely to be the prevailing one because:
(1) gels placed in a water bath of sufficient size should eventually be depleted of the
counter-ions on which water retention depends, yet, the hydrated gel state is retained;
and (2) cytoplasm placed under high-speed centrifugation loses ions well before it
loses water (Ling and Walton, 1976).

The second hypothesis, that charged surfaces attract water dipoles in multilayers, is
an old one (Ling, 1965). The thesis is that water can build layer upon layer (Fig. 7-1).
This view had been controversial at one time, but it has been given support by several
groundbreaking observations. The first is the now-classical observation by Pashley
and Kitchener that polished quartz surfaces placed in a humid atmosphere will adsorb
films of water up to 600 molecular layers thick (Pashley and Kitchener, 1979); this
implies adsorption of a substantial number of layers, one upon another. The second set
of observations are those of Israelachvili and colleagues, who measured the force re-
quired to displace solvents sandwiched between closely spaced parallel mica surfaces
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Fig. 7-1. Organization of water molecules adjacent to charged surface.

(Horn and Israelachvili, 1981; Israelachvili and McGuiggan, 1988; Israclachvili and
Wennerstrom, 1996). The overall behavior was largely classical, following DLVO the-
ory. However, superimposed on the anticipated monotonic response was a series of
regularly spaced peaks and valleys (Fig. 7-2). The spacing between peaks was always
equal to the molecular diameter of the sandwiched fluid. Thus, the force oscillations
appeared to arise from a layering of molecules between the surfaces.

Although the Israelachvili experiments confirm molecular layering near charged
surfaces, they do not prove that the molecules are linked to one another in the manner
implied in Fig. 7-1. However, more recent experiments using carbon-nanotube-tipped
AFM probes approaching flexible monolayer surfaces in water show similar layering
(Jarvis et al., 2000), implying that the ordering does not arise merely from pack-
ing constraints; and, the Pashley/Kitchener experiment implies that many layers are

Fig. 7-2. Effect of separation on force between closely spaced mica plates. Only the oscillatory part
of the response is shown. After Horn and Israelachvili, 1981.
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Fig. 7-3. Structured water dipoles effectively “glue” charged surfaces to one another.

possible. Hence, the kind of layering diagrammed in Fig. 7-1 is collectively implied
by these experiments.

When two charged polymeric surfaces lie in proximity of one another, the inter-
facial water layers can bond the surfaces much like glue (Fig. 7-3). This is revealed
in common experience. Separating two glass slides stacked face-to-face is no prob-
lem; when the slides are wet, however, separation is formidable: sandwiched water
molecules cling tenaciously to the glass surfaces and to one another, preventing sep-
aration. A similar principle holds in sand. A foot will ordinarily sink deeply into dry
sand at the beach, leaving a large imprint, but in wet sand, the imprint is shallow.
Water clings to the sand particles, bonding them together with enough strength to
support one’s full weight.

The picture that emerges, then, is that of a cytoplasmic matrix very much resembling
a gel matrix. Water molecules are retained in both cases because of their affinity for the
charged (hydrophilic) surfaces and their affinity for one another. The polymer matrix
and adsorbed water largely make up the gel. This explains why demembranated cells
retain their integrity.

Embodied in this gel-like construct are many features that have relevance for cell
function. One important one is ion partitioning. The prevailing explanation for the ion
gradients found between extracellular and intracellular compartments lies in a balance
between passive flow through channels and active transport by pumps. Thus, the low
sodium concentration inside the cell relative to outside is presumed to arise from the
activity of sodium pumps, which transport sodium ions against their concentration
gradient from the cytoplasm across the cell membrane. The gel construct invites an
alternative explanation. It looks toward differences of solubility between extracellular
bulk water and intracellular layered, or “structured” water, as well as differences of
affinity of various ions for the cell’s charged polymeric surfaces (Ling, 1992). Na™
has a larger hydrated diameter than K, and is therefore more profoundly excluded
from the cytoplasm than K™; and, because the hydration layers require more energy to
remove from Na™ than from K™, the latter has higher affinity for the cell’s negatively
charged polymeric surfaces. Hence, the cytoplasm has considerably more potassium
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than sodium. A fuller treatment of this fundamental biological feature is given in the
recent book by the author (Pollack, 2001).

Similarly, the gel construct provides an explanation for the cell potential. The cell is
filled with negatively charged polymers. These polymers attract cations. The number
of cations that can enter the cell (gel) is restricted by the cations’ low solubility in
structured water. Those cations that do enter compete with water dipoles for the cell’s
fixed anionic charges. Hence, the negative charge in the cell is not fully balanced by
cations. The residual charge amounts to approximately 0.3 mol/kg (Wiggins, 1990).
With net negative charge, the cytoplasm will have a net negative potential. Indeed,
depending on conditions, membrane-free cells can show potentials as large as 50 mV
(Collins and Edwards, 1971). And gels made of negatively charged polymers show
comparable or larger negative potentials, while gels built of positively charged poly-
mers show equivalent positive potentials (Fig. 7-4). Membranes, pumps, and channels
evidently play no role.

Hence, the gel paradigm can go quite far in explaining the cell’s most fundamen-
tal attributes — distribution of ions and the presence of a cell potential. These are
equilibrium processes; they require no energy for maintenance.

Cell dynamics

The cell is evidently not a static structure, but a machine designed to carry out a mul-
titude of tasks. Such tasks are currently described by a broad variety of mechanisms,
apparently lacking any single identifiable underlying theme — at least to this author.
For virtually every process there appears to be another mechanism.

Whether a common underlying theme might govern the cell’s many operational
tasks is a question worth asking. After all, the cell began as a simple gel and evolved
from there. As it specialized, gel structure and processes gained in intricacy. Given
such lineage, the potential for a simple, common, underlying, gel-based theme should
not necessarily be remote. Finding a common underlying theme has been a long-
term quest in other fields. In physics, for example, protégés of Einstein continue the
search for a unifying force. That nature works in a parsimonious manner, employing
variations of a few simple principles to carry out multitudinous actions, is an attractive
notion, one I do not believe has yet been seriously pursued in the realm of cell function,
although simplicity is a guiding principle in engineering.

If the cell is a gel, then a logical approach to the question of a common under-
lying principle of cell function is to ask whether a common underlying principle
governs gel function. Gels do “function.” They undergo transition from one state to
another. The process is known as a polymer-gel phase-transition — much like the tran-
sition from ice to water — a small change of environment causing a huge change in
structure.

Such change can generate work. Just as ice formation has sufficient power to
fracture hardened concrete, gel expansion or contraction is capable of many types of
work, ranging from solute/solvent separation to force generation (Fig. 7-5). Common
examples of useful phase-transitions are the time-release capsule (in which a gel-sol
transition releases bioactive drugs), the disposable diaper (where a condensed gel
undergoes enormous hydration and expansion to capture the “load”), and various
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Fig. 7-4. KCl-filled microelectrodes stuck into gel strips at slow constant velocity, and then with-
drawn. (a) Typical anionic gel, polyacrylamide/polypotassiumacrylate, shows negative potential.
(b) Typical cationic gel, polyacrylamide/polydialyldimethylammonium chloride, shows positive
potential. Courtesy of R. Giilch.

artificial muscles. Such behaviors are attractive in that a large change of structure can
be induced by a subtle change of environment (Fig. 7-6).

Like synthetic gels, the natural gel of the cell may have the capacity to undergo
similarly useful transitions. The question is whether they do. This question is perhaps
more aptly stated a bit differently, for the cell is not a homogeneous gel but a collection
of gel-like organelles, each of which is assigned a specific task. The more relevant
question, then, is whether any or all such organelles carry out their functions by
undergoing phase-transition.

The short answer is yes: it appears that this is the case. Pursuing so extensive a
theme in a meaningful way in the short space of a review article is challenging; for
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Fig. 7-5. Typical stimuli and responses of artificial polymer hydrogels. After Hoffman, 1991.

Temperature, solvent composition, pH, ions
electric field, UV, light, specific molecules, or
chemicals

Fig. 7-6. Phase-transitions are triggered by subtle shifts of environment. After Tanaka et al.,
1992.
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Fig. 7-7. Calcium and other divalent cations can bridge the gap between negatively charged sites,
resulting in zipper-like condensation.

a fuller development I refer the reader to Pollack (2001). In this venue I focus on a
single aspect: the relevance of phase-transitions in the production of motion.

Gels and motion

The classes of motion produced by phase-transitions fall largely into two categories,
isotropic and linear. In isotropic gels, polymers are randomly arranged and sometimes
cross-linked. Water is held largely by its affinity to polymers (or proteins, in the case
of'the cell). The gel is thus well hydrated — and may in the extreme contain as much as
99.97 percent water (Osada and Gong, 1993). In the transitioned state, the dominant
polymer-water affinity gives way to a higher polymer-polymer affinity, condensing
the gel into a compact mass and expelling solvent. Thus, water moves, and polymer
moves.

Linear polymers also undergo transition — from extended to shortened states. The
extended state is stable because it maximizes the number of polymer-water contacts
and therefore minimizes the system’s energy. Water builds layer upon layer. In the
shortened state the affinity of polymer for itself exceeds the affinity of polymer for
water, and the polymer folds. It may fold entirely, or it may fold regionally, along
a fraction of its length. As it folds, polymer and water both move. And, if a load is
placed at the end of the shortening filament, the load can move as well.

Phase-transitions are inevitably cooperative: once triggered, they go to completion.
The reason lies in the transition’s razor-edge behavior. Once the polymer-polymer
affinity (or the polymer-water affinity) begins to prevail, its prevalence increases;
hence the transition goes to completion. An example is illustrated in Fig. 7-7. In
this example, the divalent ion, calcium, cross-links the polymer strands. Its presence
thereby shifts the predominant affinity from polymer-water to polymer-polymer. Once
a portion of the strand is bridged, flanking segments of the polymer are brought closer
together, increasing the proclivity for additional calcium bridging. Thus, local action
enhances the proclivity for action in a neighboring segment, ensuring that the reaction
proceeds to completion. In this way, transitions propagate toward completion.

Evidently, the polymer-gel phase-transition can produce different classes of motion.
Ifthe cell were to exploit this principle, it could have a simple way of producing a broad
array of motions, depending on the nature and arrangement of constituent polymers.
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Fig. 7-8. Textbook view of secretion. Chemicals are packed in vesi-
cles, which work their way to the cell surface, poised for discharge.

In all cases, a small shift of some environmental variable such as pH or chemical
content, for example, could give rise to a cooperative, all-or-none response, which
could produce massive mechanical action.

As representative examples of such action, two fundamental cellular processes are
considered — secretion and contraction. The first involves the propulsive motion of
small molecules, the second the motion of protein filaments. (Additional details on
these and other mechanisms can be found in Pollack (2001)).

Secretion

Secretion is the mechanism by which the cell exports molecules. The molecules are
packed into small spherical vesicles, which lie just within the cell boundary, awaiting
export (Fig. 7-8). According to prevailing views, the vesicle is a kind of “soup”
surrounded by a membrane — a miniature of the prevailing view of the cell itself. For
discharge, the vesicle docks with the cell membrane; cell and vesicle membranes fuse,
opening the interior of the vesicle to the extracellular space and allowing the vesicle’s
contents to escape by diffusion. Although attractive in its apparent simplicity, this
mechanism does not easily reconcile with several lines of evidence.

The first is that the vesicle is by no means a clear broth. It is a dense matrix of tangled
polymers, invested with the molecules to be secreted. Getting those molecules to dif-
fuse through this entwining thicket and leave the cell is as implausible as envisioning
a school of fish escaping from an impossibly tangled net.

A second concern is the response to solvents. Demembranated vesicle matrices
can be expanded and recondensed again and again by exposure to various solutions,
but these solutions are not the ones expected from classical theory. When condensed
matrices from mast cells or goblet cells (whose matrices hydrate to produce mucus) are
exposed to low osmolarity solutions — even distilled water — they remain condensed
even though the osmotic draw for water ought to be enormous (Fernandez et al.,
1991; Verdugo et al., 1992). Something keeps the network condensed, and it appears
to be multivalent cations, in some cases calcium and in other cases the molecule
to be secreted, which is commonly a multivalent cation. These multivalent cations
cross-link the negatively charged matrix and keep it condensed, even in the face of
solutions of extremely low osmolarity (Fig. 7-9).

A third issue is that discharge does not appear to be a passive event. It is of-
ten accompanied by dramatic vesicle expansion. Isolated mucin-producing secretory
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Fig. 7-9. Phase-transition model of secretion. The phase-transition is triggered as extracellular Na™
replaces the multivalent cation holding the anionic network condensed.

vesicles, for example, undergo a 600-fold volume expansion within 40 ms (Verdugo
et al., 1992). Vesicles of nematocysts (aquatic stinging cells) are capable of linear
expansion rates of 2,000 wum/ms (Holstein and Tardent, 1984). Such phenomenal
expansion rates imply something beyond mere passive diffusion of solutes and water.

Given these features, it is no surprise that investigators have begun looking for
mechanistic clues within the realm of the phase-transition, where expansion can be
large and rapid. A feature of secretory discharge consistent with this mechanism is that
discharge happens or doesn’t happen depending on a critical shift of environment —
the very hallmark of the polymer-gel phase-transition. Goblet-cell and mast-cell
matrices condense or expand abruptly as the solvent ratio (either glycerol/water or
acetone/water) is edged just past a threshold or the temperature edges past a threshold,
the transition thresholds in both cases lying within a window as narrow as 1 percent
of the critical value (Verdugo et al., 1992). Hence, the phase-transition’s signature
criterion is satisfied. The abrupt expansion and hydration would allow the relevant
molecules to escape into the extracellular fluid.

Such a system might work as follows. When the condensed matrix is exposed to
the extracellular space, sodium displaces the divalent cross-linker. No longer cross-
linked, the polymer can satisfy its intense thirst for hydration, imbibing water and
expanding explosively, in a manner described as a jack-in-the-box (Verdugo et al.,
1992). Meanwhile, the messenger molecules are discharged. Diffusion may play some
role in release, but the principal role is played by convective forces, for multivalent
ions are relatively insoluble in the layered water surrounding the charged polymers
(Vogler, 1998), and will therefore be forcefully ejected. Hence, discharge into the
extracellular space occurs by explosive convection.

Muscle contraction

As is now well known, muscle sarcomeres, or contractile units, contain three filament
types (Fig. 7-10): thick, thin, and connecting — the latter interconnecting the ends of



Cells, gels, and mechanics

Fig. 7-10. Muscle sarcomere contains three filament types, bounded by Z-lines.

the thick filament with respective Z-lines and behaving as a molecular spring. All three
filaments are polymers: thin filaments consist largely of repeats of monomeric actin;
thick filaments are built around multiple repeats of myosin; and connecting filaments
are built of titin (also known as connectin), a huge protein containing repeating
immunoglobulin-like (Ig) and other domains. Together with water, which is held with
extreme tenacity by these proteins (Ling and Walton, 1976), this array of polymers
forms a gel-like lattice.

Until the mid-1950s, muscle contraction was held to occur by a mechanism not
much different from the phase-transition mechanism to be considered. All major
research groups subscribed to this view. With the discovery of interdigitating fila-
ments in the mid-1950s, it was tempting to dump this notion and suppose instead
that contraction arose out of pure filament sliding. This supposition led Sir Andrew
Huxley and Hugh Huxley to examine independently whether filaments remained at
constant length during contraction. Back-to-back papers in Nature, using the optical
microscope (Huxley and Niedergerke, 1954; Huxley and Hanson, 1954) appeared
to confirm this supposition. The constant-filament-length paradigm took hold, and
has held remarkably firm ever since — notwithstanding more than thirty subsequent
reports of thick filament or A-band shortening (Pollack, 1983; 1990) — a remarkable
disparity of theory and evidence. The motivated reader is invited to check the cited
papers and make an independent judgment.

With the emerging notion of sliding filaments, the central issue became the nature
of the driving force; the model that came to the forefront was the so-called swinging
cross-bridge mechanism (Huxley, 1957). In this model, filament translation is driven
by oar-like elements protruding like bristles of a brush from the thick filaments,
attaching transiently to thin filaments, swinging, and propelling the thin filaments to
slide along the thick. This mechanism explains many known features of contraction,
and has therefore become broadly accepted (Spudich, 1994; Huxley, 1996; Block,
1996; Howard, 1997; Cooke, 1997).

On the other hand, contradictory evidence abounds. In addition to the conflicting ev-
idence on the constancy of filament length, which contradicts the pure sliding model,
a serious problem is the absence of compelling evidence for cross-bridge swing-
ing (Thomas, 1987). Electron-spin resonance, X-ray diffraction, and fluorescence-
polarization methods have produced largely negative results, as has high-resolution
electron microscopy (Katayama, 1998). The most positive of these results has been
an angle change of 3° measured on a myosin light chain (Irving et al., 1995) — far
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short of the anticipated 45°. Other concerns run the gamut from instability (Irving
et al., 1995), to mechanics (Fernandez et al., 1991), structure (Schutt and Lindberg,
1993; 1998), and chemistry (Oplatka, 1996; 1997). A glance at these reviews conveys
a picture different from the one in textbooks.

An alternative approach considers the possibility that the driving mechanism does
not lie in cross-bridge rotation, but in a paradigm in which all three filaments shorten.
If contiguous filaments shorten synchronously, the event is global, and may qualify
as a phase-transition. We consider the three filaments one at a time.

First consider the connecting filament. Shortening of the connecting filament re-
turns the extended, unactivated sarcomere to its unstrained length. Conversely, applied
stress lengthens the connecting filament. Shortening may involve a sequential fold-
ing of domains along the molecule, whereas stretch includes domain unfoldings —
the measured length change being stepwise (Rief et al., 1997; Tskhovrebova et al.,
1997). Similarly in the intact sarcomere, passive length changes also occur in steps
(Blyakhman et al., 1999), implying that each discrete event is synchronized in parallel
over many filaments.

Next, consider the thick filament. Thick filament shortening could transmit force
to the ends of the sarcomere through the thin filaments, thereby contributing to active
sarcomere shortening. Evidence for thick filament shortening was mentioned above.
Although rarely discussed in contemporary muscle literature, the observations of thick
filament length changes are extensive: they have been carried out in more than fifteen
laboratories worldwide and have employed electron and light microscopic techniques
on specimens ranging from crustaceans and insects to mammalian heart and skeletal
muscle — even human muscle. Evidence to the contrary is relatively rare (Sosa et al.,
1994). These extensive observations cannot be summarily dismissed merely because
they are not often discussed.

Thick filament shortening cannot be the sole mechanism underlying contraction.
If it were, the in vitro motility assay in which thin filaments translate over individual
myosin molecules planted on a substrate could not work, for it contains no filaments
that could shorten. On the other hand, filament shortening cannot be dismissed as ir-
relevant. Thick filament shortening could contribute directly to sarcomere shortening.
It could be mediated by an alpha-helix to random-coil transition along the myosin
rod, which lies within the thick filament backbone (Pollack, 1990). The helix-coil
transition is a classical phase-transition well known to biochemists — and also to those
who have put a wool sweater into a hot clothes dryer and watched it shrink.

The thin filament may also shorten. There is extensive evidence that some structural
change takes place along the thin filament (Dos Remedios and Moens, 1995; Pollack,
1996; Kis et al., 1994). Crystallographic evidence shows that monomers of actin can
pack interchangeably in either of two configurations along the filament — a “long”
configuration and a shorter one (Schutt and Lindberg, 1993). The difference leads
to a filament length change of 10—15 percent. The change in actin is worth dwelling
on, for although it may be more subtle than the ones cited above, it may be more
universal, as actin filaments are contained in all eukaryotic cells.

Isolated actin filaments show prominent undulations. Known as “reptation” be-
cause of its snake-like character, the constituent undulations are broadly observed:
in filaments suspended in solution (Yanagida et al., 1984); embedded in a gel (Kés
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Fig. 7-11. Reptation model. An actin filament snakes its way toward the center of the sarcomere, past
myosin cross-bridges, which may well interconnect adjacent thick filaments. From Vogler, 1998.

etal., 1994); and gliding on a myosin-coated surface (Kellermayer and Pollack, 1996).
Such undulations had been presumed to be of thermal origin, but that notion is chal-
lenged by the observation that they can be substantially intensified by exposure to
myosin (Yanagida et al., 1984) or ATP (Hatori et al., 1996). These effects imply a
specific structural change rather than a thermally induced change.

In fact, structural change in actin is implied by a long history of evidence. Molec-
ular transitions had first been noted in the 1960s and 1970s (Asakura et al., 1963;
Hatano et al., 1967; Oosawa et al., 1972). On exposure to myosin, actin monomers un-
derwent a 10° rotation (Yanagida and Oosawa, 1978). Conformational changes have
since been confirmed not only in probe studies, but also in X-ray diffraction stud-
ies, phosphorescence-anisotropy studies, and fluorescence-energy transfer studies,
the latter showing a myosin-triggered actin-subdomain-spacing change of 17 percent
(Miki and Koyama, 1994).

That such structural change propagates along the filament is shown in several ex-
perimental studies. Gelsolin is a protein that binds to one end (the so-called “barbed”
end) of the actin filament, yet the impact of binding is felt along the entire filament:
molecular orientations shift by 10°, and there is a three-fold decrease of the filament’s
overall torsional rigidity (Prochniewicz et al., 1996). Thus, structural change induced
by point binding propagates over the entire filament. Such propagated action may
account for the propagated waves seen traveling along single actin filaments — ob-
servable either by cross-correlation of point displacements (deBeer et al., 1998) or
by tracking fluorescence markers distributed along the filament (Hatori et al., 1996;
1998). In the latter, waves of shortening can be seen propagating along the filament,
much like a caterpillar.

Could such a propagating structural transition drive the thin filament to slide along
the thick? A possible vehicle for such action is the inchworm mechanism (Fig. 7-11).
By propagating along the thin filament, a shortening transition could propel the thin
filament to reptate past the thick filament, each propagation cycle advancing the
filament incrementally toward the center of the sarcomere.

Perhaps the most critical prediction of such a mechanism is the anticipated quantal
advance of the thin filament. With each propagation cycle, the filament advances by
a step (Fig. 7-12). The advance begins as an actin monomer unbinds from a myosin
cross-bridge; it ends as the myosin bridge rebinds an actin momomer farther along the
thin filament. Hence, the filament-translation step size must be an integer multiple of
the actin-repeat spacing (see Fig. 7-12). The translation step could be one, two, . .. or
n times the actin-repeat spacing along the thin filament.
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Fig. 7-12. Reptation model predicts that each advance of the thin filament will be an integer multiple
of the actin-monomer repeat along the filament.

This signature-like prediction is confirmed in several types of experiment. The thin
filament advances in steps; and, step size is an integer multiple of the actin-monomer
spacing (Figs. 7-13—7-16). This is true in the isolated molecular system, where the
single myosin molecule translates along actin (Kitamura et al., 1999); in the intact
sarcomere, where thin filaments translate past thick filaments (Blyakhman et al., 1999;
Yakovenko et al., 2002); and in isolated actin and myosin filaments sliding past one
another (Liu and Pollack, 2004).

In the sarcomere experiments, the striated image of a single myofibril is projected
onto a photodiode array. The array is scanned repeatedly, producing successive traces

Fig. 7-13. Time course of single sarcomere shortening in single activated myofibrils. From
Yakovenko et al. (2002).
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Fig. 7-14. Analysis of steps in records such as those of Fig. 7-13. Steps are integer multiples
of 2.7 nm.

of intensity along the myofibril axis. Hence, single sarcomeres can be tracked. The
sarcomere-length change is consistently stepwise (Fig. 7-13). Analysis of many steps
showed that their size is an integer multiple of 2.7 nm, the actin-monomer spacing
projected on the filament axis (Fig. 7-14).

Similar results are obtained when a single actin filament slides past a single thick
filament (Liu and Pollack, 2004). Here the trailing end of the actin filament is attached
to the tip of a deflectable nanolever (Fauver et al., 1998), normal to its long axis. On
addition of ATP, the actin filament slides, bending the nanolever. Displacement of
the actin filament is monitored by tracking the position of the nanolever tip, which is
projected onto a photodiode array. Representative traces are shown in Fig. 7-15. They
reveal the stepwise nature of filament translation. Step size was measured by applying
an algorithm that determined the least-squares linear fit to each pause. The vertical
displacement between pauses gave the step. Fig. 7-16 shows a histogram obtained
from a large number of steps. The histogram is similar to that of Fig. 7-14. It shows,
once again, steps that are integer multiples of 2.7 nm, both when the actin filament
slides forward during contraction and when the actin filament is forcibly pulled in
the sarcomere-lengthening direction. Hence, the results obtained with single isolated
filaments and single sarcomeres are virtually indistinguishable.

Agreement between these results and the model’s prediction lends support to the
proposed thesis. Conventional mechanisms might generate a step advance during each
cross-bridge stroke; and, with a fortuitously sized cross-bridge swinging arc, the step
could have the appropriate size. But it is not at all clear how integer multiples of the
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Fig. 7-15. Step-wise interaction between single actin and single thick filament. Horizontal bar rep-
resents 1 s except in traces 1 and 2, where it equals 0.5 s. The two traces in the box show backward
steps. Arrows indicate positions of some pauses. Top trace shows noise level, and has same scale as
trace 2.

fundamental size might be generated in a simple way, although they are observed
frequently (Figs. 7-14, 7-16). By contrast, the detailed quantitative observations de-
scribed above are direct predictions of the reptation mechanism.

In sum, contraction of the sarcomere could well arise out of contraction of each
of the three filaments — connecting, thick, and thin. Connecting and thick fila-
ments appear to shorten by local phase-transitions, each condensation shortening the

Fig. 7-16. Continuous histogram of step-size distribution from data similar to those shown on
Fig. 7-15, with bin width of 1.0 nm and increments of 0.1 nm.
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respective filament by an incremental step. Because these two filaments lie in series,
filament shortening leads directly to sarcomere shortening. The thin filament appears
to undergo a local, propagating transition, each snake-like cycle advancing the thin
filament past the thick by an increment. Repeated cycles produce large-scale transla-
tion. (A similar process may occur in the in vitro motility assay, where the myosins
are firmly planted on a substrate rather than in the lattice of filaments; the filament
may “snake” its way along.)

The incremental steps anticipated from these transitions are observable at various
levels of organization. These levels range from the single filament pair (Liu and
Pollack, 2004) and single myofibrillar sarcomere (Blyakhman et al., 1999; Yakovenko
et al., 2002), to bundles of myofibrils (Jacobson et al., 1983), to segments of whole
muscle fibers (Granzier et al., 1987). Hence, the transitions are global, as the phase-
transition anticipates. It is perhaps not surprising that phase-transitions arise in all
three filamentary elements. This endows the system with a versatile array of features
that makes muscle the effective machine that it is. Indeed, muscle is frequently referred
to as the jewel in mother nature’s crown of achievements.

Conclusion

Two examples of biological motion have been presented, each plausibly driven by
phase-transitions and each producing a different type of motion. Isotropic structures
such as secretory vesicles undergo condensations and expansions, whereas filamen-
tary bundles such as actin and myosin produce linear contraction. Linear contraction
can also occur in microtubules, another of nature’s linear polymers: when cross-linked
into a bundle, microtubules along one edge of the bundle are often observed to shorten
(Mclntosh, 1973); this may mediate bending, as occurs for example in a bimetal strip.
Hence, diverse motions are possible.

Given such mechanistic versatility, it would not be surprising if the phase-transition
were a generic mechanism for motion production, extending well beyond the examples
considered here. Phase-transitions are simple and powerful. They can bring about
large-scale motions induced by subtle changes of environment. This results in a kind
of switch-like action with huge amplification. Such features seem attractive enough
to imply that if nature has chosen the phase-transition as a common denominator of
cell motion (and perhaps sundry other processes) it has made a wise choice.
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8 Polymer-based models of cytoskeletal networks

F.C. MacKintosh

ABSTRACT: Most plant and animal cells possess a complex structure of filamentous proteins
and associated proteins and enzymes for bundling, cross-linking, and active force generation.
This cytoskeleton is largely responsible for cell elasticity and mechanical stability. It can also
play a key role in cell locomotion. Over the last few years, the single-molecule micromechanics
of many of the important constituents of the cytoskeleton have been studied in great detail by
biophysical techniques such as high-resolution microscopy, scanning force microscopy, and
optical tweezers. At the same time, numerous in vifro experiments aimed at understanding
some of the unique mechanical and dynamic properties of solutions and networks of cytoskele-
tal filaments have been performed. In parallel with these experiments, theoretical models have
emerged that have both served to explain many of the essential material properties of these net-
works, as well as to motivate quantitative experiments to determine, for example concentration
dependence of shear moduli and the effects of cross-links. This chapter is devoted to theoretical
models of the cytoskeleton based on polymer physics at both the level of single protein fila-
ments and the level of solutions and networks of cross-linked or entangled filaments. We begin
with a derivation of the static and dynamic properties of single cytoskeletal filaments. We then
proceed to build up models of solutions and cross-linked gels of cytoskeletal filaments and we
discuss the comparison of these models with a variety of experiments on in vitro model systems.

Introduction

Understanding the mechanical properties of cells and even whole tissues continues
to pose significant challenges. Cells experience a variety of external stresses and
forces, and they exert forces on their surroundings — for instance, in cell locomotion.
The mechanical interaction of cells with their surroundings depends on structures
such as cell membranes and complex networks of filamentous proteins. Although
these cellular components have been known for many years, important outstanding
problems remain concerning the origins and regulation of cell mechanical properties
(Pollard and Cooper, 1986; Alberts et al., 1994; Boal, 2002). These mechanical factors
determine how a cell maintains and modifies its shape, how it moves, and even how
cells adhere to one another. Mechanical stimulus of cells can also result in changes
in gene expression.

Cells exhibit rich composite structures ranging from the nanometer to the microm-
eter scale. These structures combine soft membranes and rather rigid filamentous
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proteins or biopolymers, among other components. Most plant and animal cells, in
fact, possess a complex network structure of biopolymers and associated proteins and
enzymes for bundling, cross-linking, and active force generation. This cytoskeleton
is often the principal determinant of cell elasticity and mechanical stability.

Over the last few years, the single-molecule properties of many of the important
building blocks of the cytoskeleton have been studied in great detail by biophysi-
cal techniques such as high-resolution microscopy, scanning force microscopy, and
optical tweezers. At the same time, numerous in vitro experiments have aimed to
understand some of the unique mechanical and dynamic properties of solutions and
networks of cytoskeletal filaments. In parallel with these experiments, theoretical
models have emerged that have served both to explain many of the essential mate-
rial properties of these networks, as well as to motivate quantitative experiments to
determine the way material properties are regulated by, for example, cross-linking
and bundling proteins. Here, we focus on recent theoretical modeling of cytoskeletal
solutions and networks.

One of the principal components of the cytoskeleton, and even one of the most
prevalent proteins in the cell, is actin. This exists in both monomeric or globular
(G-actin) and polymeric or filamentary (F-actin) forms. Actin filaments can form
a network of entangled, branched, and/or cross-linked filaments known as the actin
cortex, which is frequently found near the periphery of cells. /n vivo, this network is
far from passive, with both active motion and (contractile) force generation during
cell locomotion, and with a strong coupling to membrane proteins that appears to play
a key role in the ability of cells to sense and respond to external stresses.

In order to understand these complex structures, quantitative models are needed
for the structure, interactions, and mechanical response of networks such as the actin
cortex. Unlike networks and gels of most synthetic polymers, however, these networks
have been clearly shown to possess properties that cannot be modeled by existing
polymer theories. These properties include rather large shear moduli (compared with
synthetic polymers under similar conditions), strong signatures of nonlinear response
(in which, for example, the shear modulus can increase by a full factor of ten or
more under modest strains of only 10 percent or so) (Janmey et al., 1994), and unique
dynamics. In a very close and active collaboration between theory and experiment over
the past few years, a standard model of sorts for the material properties of semiflexible
polymer networks has emerged, which can explain many of the observed properties
of F-actin networks, at least in vitro. Central to these models has been the semiflexible
nature of the constituent filaments, which is both a fundamental property of almost any
filamentous protein, as well as a clear departure from conventional polymer physics,
which has focused on flexible or rod-like limits. In contrast, biopolymers such as
F-actin are nearly rigid on the scale of a micrometer, while at the same time showing
significant thermal fluctuations on the cellular scale of a few microns.

This chapter begins with an introduction to models of single-filament response
and dynamics, and in fact, spends most of its time on a detailed understanding of
these single-filament properties. Because cytoskeletal filaments are the most impor-
tant structural components in cells, a quantitative understanding of their mechan-
ical response to bending, stretching, and compression is crucial for any model of
the mechanics of networks of these filaments. We shall see how these fundamental

153



154

F.C. MacKintosh

Fig. 8-1. Entangled solution of semiflexible actin filaments. (A) In physiological conditions, individ-
ual monomeric actin proteins (G-actin) polymerize to form double-stranded helical filaments known
as F-actin. These filaments exhibit a polydisperse length distribution of up to 70 um in length. (B)
A solution of 1.0 mg/ml actin filaments, approximately 0.03% of which have been labeled with
rhodamine-phalloidin in order to visualize them by florescence microscopy. The average distance
& between chains in this figure is approximately 0.3 pum. (Reprinted with permission from Mac-
Kintosh F C, Kés J, and Janmey P A, Physical Review Letters, 75 4425 (1995). Copyright 1995 by
the American Physical Society.

properties of the individual filaments can explain many of the properties of solutions
and networks.

Single-filament properties

The biopolymers that make up the cytoskeleton consist of aggregates of large globular
proteins that are bound together rather weakly, as compared with most synthetic,
covalently bonded polymers. Nevertheless, they can be surprisingly strong. The most
rigid of these are microtubules, which are hollow tube-like filaments that have a
diameter of approximately 20 nm. The most basic aspect determining the mechanical
behavior of cytoskeletal polymers on the cellular scale is their bending rigidity.

Even with this mechanical resistance to bending, however, cytoskeletal fila-
ments can still exhibit significant thermally induced bending fluctuations because of
Brownian motion in a liquid. Thus such filaments are said to be semiflexible or worm-
like. This is illustrated in Fig. 8-1, showing fluorescently labeled F-actin filaments
on the micrometer scale. The effect of the Brownian forces on the filament leads to
increasingly contorted shapes over larger-length segments. The length at which sig-
nificant bending fluctuations occur actually provides a simple yet quantitative charac-
terization of the mechanical stiffness of such polymers. This thermal bending length,
or persistence length £ ,, is defined in terms of the the angular correlations (for exam-
ple, of the local orientation along the polymer backbone), which decay exponentially
with a characteristic length £,,. In simple terms, however, this just says that a typical
filament in thermal equilibrium in a liquid will appear rather straight over lengths
that are short compared with this persistence length, while it will begin to exhibit
a random, contorted shape only on longer-length scales. The persistence lengths of
a few important biopolymers are given in Table 8-1, along with their approximate
diameter and length.
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Table 8-1. Persistence lengths and other parameters of various biopolymers
(Howard, 2001; Gittes et al., 1993)

Type Approximate diameter  Persistence length ~ Contour length
DNA 2 nm 50 nm <lm

F-actin 7 nm 17 um <50 um
Microtubule 25 nm ~1-5mm 10s of um

The worm-like chain model

Rigid polymers can be thought of as elastic rods, except on a small scale. The me-
chanical description of these is essentially the same as for a macroscopic rod with
quantitative differences in parameters. The important role of thermal fluctuations,
however, introduces a qualitative difference from the macroscopic case. Because the
diameter of a filamentous protein is so much smaller than other length scales of inter-
est — and especially the cellular scale — it is often sufficient to think of a filament as
an idealized curve that resists bending. This is the essence of the so-called worm-like
chain model. This can be described by an energy of the form,

2
K
Hyeng = —/dS

a7
, (8.1)

2 ds

where « is the bending modulus and 7 is a (unit) tangent vector along the chain. The
variation (derivative) of the tangent is a measure of curvature, which appears here
quadratically because it is assumed that there is no preferred direction of curvature.
Here, the chain position 7(s) is described in terms of a coordinate s corresponding to
the length along the chain backbone. Hence, the tangent vector

. or

t=—.
as

These quantities are illustrated in Fig. 8-2.

The bending modulus « has units of energy times length. A natural energy scale
for a rod subject to Brownian fluctuations is k7, where T is the temperature and &
is Boltzmann’s constant. This is the typical kinetic energy of a molecule or particle.
The persistence length described above is simply given by £, = « /(kT), because the
fluctuations tend to decrease with stiffness « and increase with temperature. As noted,
this is the typical length scale over which the polymer forgets its orientation, due to
the constant Brownian forces it experiences in a medium at finite temperature.

More precisely, for ahomogeneous rod of diameter 2a consisting of a homogeneous
elastic material, the bending modulus should be proportional to the Young’s modulus
E. The Young’s modulus, or the stiffness of the material, has units of energy per
volume. Thus, on dimensional grounds, we expect that « ~ Ea*. In fact (Landau and
Lifshitz 1986),

K = zE a*.
4
The prefactor in front of Ea* depends on the geometry of the rod (in other words, its
cross-section). The factor wa* /4 is for a solid rod of radius a. For a hollow tube, such
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1(s) Fig. 8-2. A filamentous protein can be regarded as an
—_— 2a elastic rod of radius a. Provided the length of the rod
\ is very long compared with the monomeric dimension a,

P and that the rigidity is high (specifically, the persistence

a length £, > a), this can be treated as an abstract line or

curve, characterized by the length s along its backbone.
A unit vector 7 tangent to the filament defines the local
orientation of the filament. Curvature is present when this
orientation varies with s. For bending in a plane, it is suf-
ficient to consider the angle 0(s) that the filament makes
with respect to some fixed axis. The curvature is then
00/0s.

as one might use to model a microtubule, the prefactor would be different, but still
of order a*, where a is the (outer) radius. This is often expressed as k = E I, where
1 is the moment of inertia of the cross-section (Howard, 2001).

In general, for bending in 3D, there are two independent directions for deflections
of the rod or polymer transverse to its local axis. It is often instructive, however, to
consider a simpler case of a single transverse degree of freedom, in other words,
motion confined to a plane, as illustrated by Fig. 8-2. Here, the integrand in Eq. 8.1
becomes (96/9s)?, where 6(s) is simply the local angle that the chain axis makes
at point s, relative to any fixed axis. Using basic principles of statistical mechan-
ics (Grosberg and Khokhlov, 1994), one can calculate the thermal average angular
correlation between distant points along the chain, for which

(cos[0(s) — O(s)]) = (cos (AG))T1/As ~ gmls=1/2t, (8.2)

As noted at the outset, so far this is all for motion confined to a plane. In three
dimensions, there is another direction perpendicular to the plane that the filament can
move in. This increases the rate of decay of the angular correlations by a factor of
two relative to the result above:

({(s) - 1(s")) = e =Vt (8.3)

where £, is the same persistence length defined above. This is a general definition
of the persistence length, which also provides a purely geometric measure of the
mechanical stiffness of the rod, provided that it is in equilibrium at temperature
T. In principle, this means that one can measure the stiffness of a biopolymer by
simply examining its bending fluctuations in a microscope. In practice, however, it is
usually better to measure the amplitudes of a number of different bending modes (that
is, different wavelengths) in order to ensure that thermal equilibrium is established
(Gittes et al., 1993).

Force-extension of single chains

In order to understand how a network of filaments responds to mechanical loading, we
need to understand at least two things: the way a single filament responds to stress; and
the way in which the individual filaments are connected or otherwise interact with each
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other. We address the single-filament properties here, and reserve the characterization
of the way filaments interact for later.

A single filament can respond to forces in at least two ways. It can respond to
both transverse and longitudinal forces by either bending or stretching/compressing.
On length scales shorter than the persistence length, bending can be described in
mechanical terms, as for elastic rods. By contrast, stretching and compression can
involve both a purely elastic or mechanical response (again, as in the stretching,
compression, or even buckling of macroscopic elastic rods), as well as an entropic
response. The latter comes from the thermal fluctuations of the filament. Perhaps
surprisingly, as will be shown, the longitudinal response can be dominated by entropy
even on length scales small compared with the persistence length. Thus, it is incorrect
to think of a filament as truly rod-like, even on length scales short compared with £,,.

The longitudinal single-filament response is often described in terms of a so-called
force-extension relationship. Here, the force required to extend the filament is mea-
sured or calculated in terms of the degree of extension along a line. At any finite
temperature, there is a resistance to such extension due to the presence of thermal
fluctuations that make the polymer deviate from a straight conformation. This has been
the basis of mechanical studies, for example, of long DNA (Bustamante et al., 1994).
In the limit of large persistence length, this can be calculated as follows (MacKintosh
etal., 1995).

We consider a filament segment of length ¢ that is short compared with the persis-
tence length £,,. It is then nearly straight, with small transverse fluctuations. We let the
x-axis define the average orientation of the chain segment, and let # and v represent
the two independent transverse degrees of freedom. These can then be thought of as
functions of x and time ¢ in general. For simplicity, we shall mostly consider just one
of these coordinates, u(x, #). The bending energy is then

K Pu\’ ¢ 42
Hyens = 5 [ dx o) =3 Xq:w ul, (8.4)
where we have represented u(x) by a Fourier series
u(x.t) =Y ugsin(gx). (8.5)
q

As illustrated in Fig. 8-3, the local orientation of the filament is given by the slope
du/dx, while the local curvature is given by the second derivative 3>u/dx2. Such a
description is appropriate for the case of a nearly straight filament with fixed boundary
conditions # = 0 at the ends, x = 0, £. For this case, the wave vectors g = nx /¢,
wheren =1,2,3,....

We assume that the chain has no compliance in its contour length, in other words,
that the total arc length | ds is unchanged by the fluctuations. As illustrated in Fig. 8-3,
for a nearly straight filament, the arc length ds of a short segment is approximately

given by /(dx)? + (du)? = dx+/1 + |9u/dx|*. The contraction of the chain relative

to its full contour length in the presence of thermal fluctuations in u is then

Al = /dx (,/1 + |0u/dx|? — 1) ~ %/dx |9u/ox|? . (8.6)
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Fig. 8-3. From one fixed end, a filament tends to wander in a way that can be characterized by u(x),
the transverse displacement from an initial straight line (dashed). If the arc length of the filament is
unchanged, then the transverse thermal fluctuations result in a contraction of the end-to-end distance,
which is denoted by A¢. In fact, this contraction is actually distributed about a thermal average value
(AL). The mean-square (longitudinal) fluctuations about this average are denoted by (§¢2), while
the mean-square lateral fluctuations (that is, with respect to the dashed line) are denoted by (1?).

The integration here is actually over the projected length of the chain. But, to leading
(quadratic) order in the transverse displacements, we make no distinction between
projected and contour lengths here, and above in Hyepg.

Thus, the contraction

¢ 2.2
At= Xq:q . (8.7)

Conjugate to this variable is the tension 7 in the chain. Thus, we consider the effective
energy

1 32u\ > au\’| ¢
a2 ()Lt

Under a constant tension 7, therefore, the equilibrium amplitudes u, must satisfy

2kT
N ——— 8.9
<|u‘1| > Z(Kq4+‘tq2) ( )
and the contraction
1
Al = kT —_— 8.10
(AL) ; e (8.10)

There are, of course, two transverse degrees of freedom, and so this last answer
incorporates a factor of two appropriate for a chain fluctuating in 3D.

Semiflexible filaments exhibit a strong suppression of bending fluctuations for
modes of wavelength less than the persistence length £,. More precisely, as we see
from Eq. 8.9 the mean-square amplitude of shorter wavelength modes are increasingly
suppressed as the fourth power of the wavelength. This has important consequences
for many of the thermal properties of such filaments. In particular, it means that the
longest unconstrained wavelengths tend to be dominant in most cases. This allows us,
for instance, to anticipate the scaling form of the end-to-end contraction A¢ between
points separated by arc length ¢ in the absence of an applied tension. We note thatitisa
length and it must vary inversely with stiffness « and must increase with temperature.
Thus, as the dominant mode of fluctuations is that of the maximum wavelength, ¢, we
expect the contraction to be of the form (A£)y ~ £%/¢ p- More precisely, for T = 0,

kT S 1 2

Al)y = - =— 8.11
(Ab)o = -—3 27 = 5, (8.11)
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Similar scaling arguments to those above lead us to expect that the typical transverse
amplitude of a segment of length ¢ is approximately given by
£3
w? ~ — (8.12)
£y
in the absence of applied tension. The precise coefficient for the mean-square ampli-
tude of the midpoint between ends separated by ¢ (with vanishing deflection at the
ends) is 1/24.
For a finite tension t, however, there is an extension of the chain (toward full
extension) by an amount

kT > ¢

e=(Abo = (A =""5 2 it )

(8.13)

where ¢ = 7£%/(k?) is a dimensionless force. The characteristic force x72/¢? that
enters here is the critical force in the classical Euler buckling problem (Landau and
Lifshitz, 1986). Thus, the force-extension curve can be found by inverting this rela-
tionship. In the linear regime, this becomes

se= - > : “ (8.14)
= — — = —7, .
L,m? - n*  90¢,k

that is, the effective spring constant for longitudinal extension of the chain segment
is 90k €, /¢*. The scaling form of this could also have been anticipated, based on very
simple physical arguments similar to those above. In particular, given the expected
dominance of the longest wavelength mode (¢), we expect that the end-to-end contrac-
tion scales as 8¢ ~ [ (du/dx)* ~ u?/L. Thus, (8¢2) ~ €= 2(u*) ~ £72(u?)? ~ e,
which is consistent with the effective (linear) spring constant derived above. The full
nonlinear force-extension curve can be calculated numerically by inversion of the
expression above. This is shown in Fig. 8-4. Here, one can see both the linear regime
for small forces, with the effective spring constant given above, as well as a diver-
gent force near full extension. In fact, the force diverges in a characteristic way, as
the inverse square of the distance from full extension: 7 ~ |§¢ — A¢£|~? (Fixman and
Kovac, 1973).

We have calculated only the longitudinal response of semiflexible polymers that
arises from their thermal fluctuations. It is also possible that such filaments will
actually lengthen (in arc length) when pulled on. This we can think of as a zero-
temperature or purely mechanical response. After all, we are treating semiflexible
polymers as little bendable rods. To the extent that they behave as rigid rods, we
might expect them to respond to longitudinal stresses by stretching as a rod. Based
on the arguments above, it seems that the persistence length £, determines the length
below which filaments behave like rods, and above which they behave like flexible
polymers with significant thermal fluctuations. Perhaps surprisingly, however, even
for semiflexible filament segments as short as £ ~ \/a?{,, which is much shorter than
the persistence length, their longitudinal response can be dominated by the entropic
force-extension described above, that is, in which the response is due to transverse
thermal fluctuations (Head et al., 2003b).
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Fig. 8-4. The dimensionless force ¢ as a function of extension §¢, relative to maximum extension
AZL. For small extension, the response is linear.

Dynamics of single chains

The same Brownian forces that give rise to the bent shapes of filaments such as in
Fig. 8.1 also govern the dynamics of these fluctuating filaments. Both the relaxation
dynamics of bent filaments, as well as the dynamic fluctuations of individual chains
exhibit rich behavior that can have important consequences even at the level of bulk
solutions and networks. The principal dynamic modes come from the transverse
motion, that is, the degrees of freedom u and v above. Thus, we must consider time
dependence of these quantities. The transverse equation of motion of the chain can
be found from Hyeng above, together with the hydrodynamic drag of the filaments
through the solvent. This is done via a Langevin equation describing the net force per
unit length on the chain at position x,

Bl a*
0= —Cgu(x,t)—Kﬁu(x,t)—i—él(x,t), (8.15)

which is, of course, zero within linearized, inertia-free (low Reynolds number) hy-
drodynamics that we assume here.

Here, the first term represents the hydrodynamic drag per unit length of the fil-
ament. We have assumed a constant transverse drag coefficient that is independent
of wavelength. In fact, given that the actual drag per unit length on a rod of length
Lis¢ =4mn/In(AL/a), where L/a is the aspect ratio of the rod, and A4 is a con-
stant of order unity that depends on the precise geometry of the rod. For a filament
fluctuating freely in solution, a weak logarithmic dependence on wavelength is thus
expected. In practice, the presence of other chains in solution gives rise to an effective
screening of the long-range hydrodynamics beyond a length of order the separation
between chains, which can then be taken in place of L above. The second term in the
Langevin equation above is the restoring force per unit length due to bending. It has
been calculated from —§ Hypeng/Su(x, t) with the help of integration by parts. Finally,
we include a random force &, that accounts for the motion of the surrounding fluid
particles.
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A simple force balance in the Langevin equation above leads us to conclude that
the characteristic relaxation rate of a mode of wavevector ¢ is (Farge and Maggs,
1993)

w(q) = kq*/¢. (8.16)

The fourth-order dependence of this rate on ¢ is to be expected from the appearance of
a single time derivative along with four spatial derivatives in Eq. 8.15. This relaxation
rate determines, among other things, the correlation time for the fluctuating bending
modes. Specifically, in the absence of an applied tension,

L ip—"
(g (g (O0) = 7 e, (8.17)

That the relaxation rate varies as the fourth power of the wavevector ¢ has important
consequences. For example, while the time it takes for an actin filament bending mode
of wavelength 1 um to relax is of order 10 ms, it takes about 100 s for a mode of
wavelength 10 um. This has implications, for instance, for imaging of the thermal
fluctuations of filaments, as is done in order to measure £, and the filament stiffness
(Gittes et al., 1993). This is the basis, in fact, of most measurements to date of the
stiffness of DNA, F-actin, and other biopolymers. Using Eq. 8.17, for instance, one
can both confirm thermal equilibrium and determine ¢, by measuring the mean-
square amplitude of the thermal modes of various wavelengths. However, in order
both to resolve the various modes as well as to establish that they behave according
to the thermal distribution, one must sample over times long compared with 1/w(q)
for the longest wavelengths 1 ~ 1/g. At the same time, one must be able to resolve
fast motion on times of order 1/w(q) for the shortest wavelengths. Given the strong
dependence of these relaxation times on the corresponding wavelengths, for instance,
arange of order a factor of 10 in the wavelengths of the modes corresponds to a range
of 10* in observation times.

Another way to look at the result of Eq. 8.16 is that a bending mode of wavelength
A relaxes (that is, fully explores its equilibrium conformations) in a time of order
¢A*/k. Because it is also true that the longest (unconstrained) wavelength bending
mode has by far the largest amplitude, and thus dominates the typical conformations
of any filament (see Eqgs. 8.10 and 8.17), we can see that in a time ¢, the #ypical or
dominant mode that relaxes is one of wavelength £, (t) ~ (kt/ o4
above in Eq. 8.12, the mean-square amplitude of transverse fluctuations increases
with filament length £ as (u?) ~ €3/ p- Thus, in a time ¢, the expected mean-square
transverse motion is given by (Farge and Maggs, 1993; Amblard et al., 1996)

W (1) ~ (LL(@)) /L, ~ 4, (8.18)

because the typical and dominant mode contributing to the motion at time # is of
wavelength £, (7). Equation 8.18 represents what can be called subdiffitsive motion
because the mean-square displacement grows less strongly with time than for diffusion
or Brownian motion. Motion consistent with Eq. 8.18 has been observed in living
cells, by tracking small particles attached to microtubules (Caspi et al., 2000). Thus,
in some cases, the dynamics of cytoskeletal filaments in living cells appear to follow
the expected motion for transverse equilibrium thermal fluctuations in viscous fluids.

. As we have seen
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The dynamics of longitudinal motion can be calculated similarly. It is found that
the means-square amplitude of longitudinal fluctuations of filament of length ¢ are
also governed by (Granek, 1997; Gittes and MacKintosh, 1998)

(8e(ry?y ~ 214, (8.19)

where this mean-square amplitude is smaller than for the transverse motion by a
factor of order £/£,. Thus, both for the short-time fluctuations as well as for the static
fluctuations of a filament segment of length ¢, a filament end explores a disk-like
region with longitudinal motion smaller than perpendicular motion by this factor.
Although the amplitude of longitudinal motion is smaller than for transverse, the
longitudinal motion of Eq. 8.19 can explain the observed high-frequency viscoelastic
response of solutions and networks of biopolymers, as discussed below.

Solutions of semiflexible polymer

Because of their inherent rigidity, semiflexible polymers interact with each other
in very different ways than flexible polymers would, for example, in solutions of
the same concentration. In addition to the important characteristic lengths of the
molecular dimension (say, the filament diameter 2a), the material parameter £, and
the contour length of the chains, there is another important new length scale in a
solution — the mesh size, or typical spacing between polymers in solution, &. This
can be estimated as follows in terms of the molecular size a and the polymer volume
fraction ¢ (Schmidt et al., 1989). In the limit that the persistence length £, is large
compared with &, we can approximate the solution on the scale of the mesh as one
of rigid rods. Hence, within a cubical volume of size &, there is of order one polymer
segment of length £ and cross-section a2, which corresponds to a volume fraction ¢
of order (a%£)/&3. Thus,

£~al V. (8.20)

This mesh size, or spacing between filaments, does not completely characterize
the way in which filaments interact, even sterically with each other. For a dilute
solution of rigid rods, it is not hard to imagine that one can embed a long rigid rod
rather far into such a solution before touching another filament. A true estimate of the
distance between typical interactions (points of contact) of semiflexible polymers must
account for their thermal fluctuations (Odijk, 1983). As we have seen, the transverse
range of fluctuations §u a distance ¢ away from a fixed point grows according to
Su* ~ €%/, Along this length, such a fluctuating filament explores a narrow cone-
like volume of order £8u>. An entanglement that leads to a constraint of the fluctuations
of such a filament occurs when another filament crosses through this volume, in which
case it will occupy a volume of order a?8u, as Su < €. Thus, the volume fraction
and the contour length £ between constraints are related by ¢ ~ a?/(¢8u). Taking

the corresponding length as an entanglement length, and using the result above for
Su = +/8u?, we find that

€, ~ (a*e,) " ¢, (8.21)

which is larger than the mesh size £ in the semiflexible limit £, > &.
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These transverse entanglements, separated by a typical length £,, govern the elas-
tic response of solutions, in a way first outlined in Isambert and Maggs (1996). A
more complete discussion of the rheology of such solutions can be found in Morse
(1998b) and Hinner et al. (1998). The basic result for the rubber-like plateau shear
modulus for such solutions can be obtained by noting that the number density of
entropic constraints (entanglements) is thus n€ /€. ~ 1/(£%£,), where n = ¢ /(a*{) is
the number density of chains of contour length ¢. In the absence of other energetic
contributions to the modulus, the entropy associated with these constraints results in
a shear modulus of order G ~ kT /(£2€,) ~ ¢’/°. This has been well established in
experiments such as those of Hinner et al. (1998).

With increasing frequency, or for short times, the macroscopic shear response of
solutions is expected to show the underlying dynamics of individual filaments. One
of the main signatures of the frequency response of polymer solutions in general is
an increase in the shear modulus with increasing frequency. This is simply because
the individual filaments are not able to fully relax or explore their conformations on
short times. In practice, for high molecular weight F-actin solutions of approximately
1 mg/ml, this frequency dependence is seen for frequencies above a few Hertz. Initial
experiments measuring this response by imaging the dynamics of small probe particles
have shown that the shear modulus increases as G(w) ~ w>/* (Gittes et al., 1997;
Schnurr et al., 1997), which has since been confirmed in other experiments and by
other techniques (for example, Gisler and Weitz, 1999).

If, as noted above, this increase in stiffness with frequency is due to the fact that
filaments are not able to fully fluctuate on the correspondingly shorter times, then
we should be able to understand this more quantitatively in terms of the dynamics
described in the previous section. In particular, this behavior can be understood in
terms of the longitudinal dynamics of single filaments (Morse, 1998a; Gittes and Mac-
Kintosh, 1998). Much as the static longitudinal fluctuations (§¢%) ~ £4/¢> correspond
to an effective longitudinal spring constant ~ k7T Ei /£*, the time-dependent longitudi-
nal fluctuations shown above in Eq. 8.19 correspond to a time- or frequency-dependent
compliance or stiffness, in which the effective spring constant increases with increas-
ing frequency. This is because, on shorter time scales, fewer bending modes can relax,
which makes the filament less compliant. Accounting for the random orientations of
filaments in solution results in a frequency-dependent shear modulus

1
G(w) = T3°¢t (=2i¢ /)t ¥t — iwn, (8.22)

where p is the polymer concentration measured in length per unit volume.

Network elasticity

In a living cell, there are many different specialized proteins for binding, bundling,
and otherwise modifying the network of filamentous proteins. Many tens of actin-
associated proteins alone have been identified and studied. Not only is it important
to understand the mechanical roles of, for example, cross-linking proteins, but as we
shall see, these can have a much more dramatic effect on the network properties than
is the case for flexible polymer solutions and networks.
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The introduction of cross-linking agents into a solution of semiflexible filaments
introduces yet another important and distinct length scale, which we shall call the
cross-link distance £.. As we have just seen, in the limit that £, > &, individual
filaments may interact with each other only infrequently. That is to say, in contrast
with flexible polymers, the distance between interactions of one polymer with its
neighbors (¢, in the case of solutions) may be much larger than the typical spacing
between polymers. Thus, if there are biochemical cross-links between filaments, these
may result in significant variation of network properties even when £, is larger than &.

Given a network of filaments connected to each other by cross-links spaced an
average distance £, apart along each filament, the response of the network to macro-
scopic strains and stresses may involve two distinct single-filament responses: (1)
bending of filaments; and (2) stretching/compression of filaments. Models based on
both of these effects have been proposed and analyzed. Bending-dominated behavior
has been suggested both for ordered (Satcher and Dewey, 1996) and disordered (Kroy
and Frey, 1996) networks. That individual filaments bend under network strain is per-
haps not surprising, unless one thinks of the case of uniform shear. In this case, only
rotation and stretching or compression of individual rod-like filaments are possible.
This is the basis of so-called affine network models (MacKintosh et al., 1995), in
which the macroscopic strain falls uniformly across the sample. In contrast, bending
of constituents involves (non-affine deformations, in which the state of strain varies
from one region to another within the sample.

We shall focus mostly on random networks, such as those studied in vitro. It has
recently been shown (Head et al., 2003a; Wilhelm and Frey, 2003; Head et al., 2003b)
that which of the affine or non-affine behaviors is expected depends, for instance, on
filament length and cross-link concentration. Non-affine behavior is expected either
at low concentrations or for short filaments, while the deformation is increasingly
affine at high concentration or for long filaments. For the first of these responses, the
network shear modulus (Non-Affine) is expected to be of the form

Gna ~ k/EF ~ ¢? (8.23)

when the density of cross-links is high (Kroy and Frey 1996). This quadratic de-
pendence on filament concentration ¢ is also predicted for more ordered networks
(Satcher and Dewey 1996).

For affine deformations, the modulus can be estimated using the effective single-
filament longitudinal spring constant for a filament segment of length ¢, between
cross-links, ~«¢,/¢%, as derived above. Given an area density of 1/&2 such chains
passing through any shear plane (see Fig. 8-5), together with the effective tension of
order (k£,/€2)e, where € is the strain, the shear modulus is expected to be

Kl

Gar ~ _5253,.

(8.24)

This shows that the shear modulus is expected to be strongly dependent on the
density of cross-links. Recent experiments on in vitro model gels consisting of F-actin
with permanent cross-links, for instance, have shown that the shear modulus can vary
from less than 1 Pa to over 100 Pa at the same concentration of F-actin, by varying
the cross-link concentration (Gardel et al., 2004).
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Stress 0 =GO

Fig. 8-5. The macroscopic shear stress o depends on the mean tension in each filament, and on the
area density of such filaments passing any plane. There are on average 1/£2 such filaments per unit
area. This gives rise to the factor £ =2 in both Eqgs. 8.24 and 8.25. The macroscopic response can also
depend strongly on the typical distance £, between cross-links, as discussed below.

In the preceding derivation we have assumed a thermal/entropic (4ffine and
Thermal) response of filaments to longitudinal forces. As we have seen, however,
for shorter filament segments (that is, for small enough ¢.), one may expect a me-
chanical response characteristic of rigid rods that can stretch and compress (with a
modulus p). This would lead to a different expression (Affine, Mechanical) for the
shear modulus

n
GAM ~ %_—2 ~qQ, (825)
which is proportional to concentration. The expectations for the various mechanical
regimes is shown in Fig. 8.6 (Head et al., 2003D).

Nonlinear response

In contrast with most polymeric materials (such as gels and rubber), most biologi-
cal materials, from the cells to whole tissues, stiffen as they are strained even by a
few percent. This nonlinear behavior is also quite well established by in vitro studies
of a wide range of biopolymers, including networks composed of F-actin, colla-
gen, fibrin, and a variety of intermediate filaments (Janmey et al., 1994; Storm et al.,
2005). In particular, these networks have been shown to exhibit approximately ten-fold

|
c
. . . R AT
Fig. 8-6. A sketch of the expected diagram showing the 7§
various elastic regimes in terms of cross-link density and *E' ~ l AM
polymer concentration. The solid line represents the rigid- 3 ~
ity percolation transition where rigidity first develops from 5 ~ \I
a solution at a macroscopic level. The other, dashed lines i /|/4 \
indicate crossovers (not thermodynamic transitions). NA  .E N
indicates the non-affine regime, while AT and AM refer to 3 solution
affine thermal (or entropic) and mechanical, respectively. g N R

polymer concentration
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Fig. 8-7. The differential modulus K’ = do/dy describes the increase in the stress o with strain
y in the nonlinear regime. This was measured for cross-linked actin networks by small-amplitude
oscillations at low frequency, corresponding to a nearly purely elastic response, after applying a
constant prestress 0. This was measured for four different concentrations represented by the various
symbols. For small prestress oy, the differential modulus K’ is nearly constant, corresponding to a
linear response for the network. With increasing oy, the network stiffens, in a way consistent with
theoretical predictions (MacKintosh et al., 1995; Gardel et al., 2004), as illustrated by the various
theoretical curves. Specifically, it is expected that in the strongly nonlinear regime, the stiffening
increases according to the straight line, corresponding to do/dy ~ o3/, Data taken from Gardel
et al., 2004.

stiffening under strain. Thus these materials are compliant, while being able to with-
stand a wide range of shear stresses.

This strain-stiffening behavior can be understood in simple terms by looking at
the characteristic force-extension behavior of individual semiflexible filaments, as
described above. As can be seen in Fig. 8-4, for small extensions or strains, there
is a linear increase in the force. As the strain increases, however, the force is seen
to grow more rapidly. In fact, in the absence of any compliance in the arc length of
the filament, the force strictly diverges at a finite extension. This suggests that for a
network, the macroscopic stress should diverge, while in the presence of high stress,
the macroscopic shear strain is bounded and ceases to increase. In other words, after
being compliant at low stress, such a material will be seen to stop responding, even
under high applied stress.

This can be made more quantitative by calculating the macroscopic shear stress
of a strained network, including random orientations of the constituent filaments
(MacKintosh et al., 1995; Kroy and Frey, 1996; Gardel et al., 2004; Storm et al.,
2005). Specifically, for a given shear strain y, the tension in a filament segment of
length £, is calculated, based on the force-extension relation above. This is done within
the (affine) approximation of uniform strain, in which the microscopic strain on any
such filament segment is determined precisely by the macroscopic strain and the
filament’s orientation with respect to the shear. The contribution of such a filament’s
tension to the macroscopic stress, in other words, in a horizontal plane in Fig. 8.5,
also depends on its orientation in space. Finally, the concentration or number density
of such filaments crossing this horizontal plane is a function of the overall polymer
concentration, and the filament orientation.
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The full nonlinear shear stress is calculated as a function of y, the polymer con-
centration, and £., by adding all such contributions from all (assumed random) orien-
tations of filaments. This can then be compared with macroscopic rheological studies
of cross-linked networks, such as done recently by Gardel et al. (2004). These ex-
periments measured the differential modulus, do/dy versus applied stress o, and
found good agreement with the predicted increase in this modulus with increasing
stress (Fig. 8-7). In particular, given the quadratic divergence of the single-filament
tension shown above (Fixman and Kovac, 1973), this modulus is expected to increase
as do/dy ~ o3/?, which is consistent with the experiments by Gardel et al. (2004).
This provides a strong test of the underlying mechanism of network elasticity.

In addition to good agreement between theory and experiment for densely
cross-linked networks, these experiments have also shown evidence of a lack of
strain-stiffening behavior of these networks at lower concentrations (of polymer or
cross-links), which may provide evidence for a non-affine regime of network response
described above.

Discussion

Cytoskeletal filaments play key mechanical roles in the cell, either individually (for
example, as paths for motor proteins) or in collective structures such as networks.
The latter may involve many associated proteins for cross-linking, bundling, or cou-
pling the cytoskeleton to other cellular structures like membranes. Our knowledge
of the cytoskeleton has improved in recent years through the development of new
experimental techniques, such as in visualization and micromechanical probes in
living cells. At the same time, combined experimental and theoretical progress on in
vitro model systems has provided fundamental insights into the possible mechanical
mechanisms of cellular response.

In addition to their role in cells, cytoskeletal filaments have also proven remarkable
model systems for the study of semiflexible polymers. Their size alone makes it
possible to visualize individual filaments directly. They are also unique in the extreme
separation of two important lengths, the persistence length £, and the size of a single
monomer. In the case of F-actin, £, is more than a thousand times the size of a
single monomer. This makes for not only quantitative but also qualitative differences
from most synthetic polymers. We have seen, for instance, that the way in which
semiflexible polymers entangle is very different. This makes for a surprising variation
of the stiffness of these networks with only changes in the density of cross-links, even
at the same concentration.

In spite of the molecular complexity of filamentous proteins as compared with
conventional polymers, a quantitative understanding of the properties of single fila-
ments provides a quantitative basis for modeling solutions and networks of filaments.
In fact, the macroscopic response of cytoskeletal networks quite directly reflects, for
example, the underlying dynamics of an individual semiflexible chain fluctuating in
its Brownian environment. This can be seen, for instance in the measured dynamics
of microtubules in cells (Caspi et al., 2000).

In developing our current understanding of cytoskeletal networks, a crucial role has
been played by in vitro model systems, such as the one in Fig. 8-1. Major challenges,
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however, remain for understanding the cytoskeleton of living cells. In the cell, the
cytoskeleton is hardly a passive network. Among other differences from the model
systems studied to date is the presence of active contractile or force-generating ele-
ments such as motors that work in concert with filamentous proteins. Nevertheless,
in vitro models may soon permit a systematic and quantitative study of various actin-
associated proteins for cross-linking and bundling (Gardel et al., 2004), and even
contractile elements such as motors.
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9 Cell dynamics and the actin cytoskeleton

James L. McGrath and C. Forbes Dewey, Jr.

ABSTRACT: This chapter focuses on the mechanical structure of the cell and how it is affected
by the dynamic events that shape the cytoskeleton. We pay particular attention to actin because
the actin structure turns over rapidly (on the order of tens of seconds to tens of minutes) and is
strongly correlated with dynamic events such as cell crawling. The chapter discusses the way
in which actin and its associated binding proteins provide the dominant structure within the
cell, and how the actin is organized. Models of the internal structure that attempt to provide a
quantitative picture of the stiffness of the cell are given, followed by an in-depth discussion of
the actin polymerization and depolymerization mechanics. The chapter provides a tour of the
experiments and models used to determine the specific effects of associated proteins on the
actin cycle and contains an in-depth exposition of how actin dynamics play a pivotal role in
cell crawling. Some conclusions and thoughts for the future close the chapter.

Introduction: The role of actin in the cell

Eukaryotic cells are wonderful living engines. They sustain themselves by bringing
in nutrients across their membrane shells, manufacturing thousands of individual
protein species that are needed to sustain the cell’s function, and communicating with
the surrounding environment using a complex set of receptor molecules that span the
membrane and turn external chemical and mechanical signals into changes in cell
function and composition.

The cell membrane is flexible and allows the cell to move — and to be moved — by
changes in the internal cytoskeletal structure. The cytoskeleton is a spatially sparse
tangled matrix of rods and rod-like elements held together by smaller proteins. One of
the characteristics of this structure is that it is continuously changing. These dynam-
ics are driven by thermal energy and by phosphorylation of the major proteins that
are constituents of the cell. Even though the bond strengths in most cases are many
folds larger than the mean thermal energy k7, on rare occasions the bonds will be
broken and a new mechanical arrangement will replace the old. There are additional
mechanisms that grow the long filaments from monomers in the cell cytoplasm. Com-
plimentary reactions remove molecules from the ends of the filaments and also cleave
the filaments, creating additional free ends. If these growth and turnover mechanisms
have a bias direction, the cell will crawl.



Cell dynamics and the actin cytoskeleton

The many different cellular states that occur can be examined, with varying degrees
of difficulty. The most difficult state is when the cells of interest are embedded in a
tissue matrix in a living animal, such as chondrocytes within the matrix of joint
cartilage. Some cells, such as the endothelial cells that line the cardiovascular tree
of mammals, are more accessible because they lie closely packed along the surface
of blood vessels. This configuration is called the endothelial monolayer because the
equilibrium condition for these cells is to form a single-cell-thick layer in which all
cells are in contact with their neighbors. Much study has been given to endothelial cells
because of their putative role in controlling the events that can cause atherosclerosis
and subsequent heart disease. An additional attractiveness of studying endothelial
cells is the ease with which they can be grown in culture (Gimbrone, 1976). One can
study the influence of many physical and chemical properties in a setting having strong
similarities to the in vivo conditions, while varying the environment one parameter
at a time. Many of the data in this chapter were derived from experiments using
endothelial cells in culture.

The interior of the cell between the cytoskeletal members is filled with cytoplasm, a
water-based slurry composed primarily of electrolytes and small monomeric proteins.
The small proteins diffuse through the viscous cytoplasm with a diffusion coefficient
that can be measured with modern fluorescence techniques. For actin monomer in
the cytoplasm of a vascular endothelial cell, the diffusion coefficient D is about
3 — 6 x 107% cm?/s (Giuliano and Taylor, 1994; McGrath et al., 1998b). By con-
trast, water molecules in the liquid have a self-diffusion coefficient three orders of
magnitude larger.

Of'the three types of cytoskeletal polymers —actin filaments, intermediate filaments,
and microtubules — that determine endothelial cell shape, actin filaments are the most
abundant and are located in closest proximity to the cell membrane. Confluent en-
dothelial cells assemble ~70 percent of their 100 uM total actin into a rich meshwork
of just over 50,000 actin filaments that are on average ~3 pm long (McGrath et al.,
2000b). Cross-linking proteins organize actin filaments into viscoelastic gels that
connect to transmembrane proteins and signaling complexes located at intercellular
attachment sites and extracellular matrix adhesion sites. Of particular importance are
the direct connections of actin filaments to § integrin tails by talin (Calderwood and
Ginsberg, 2003) and filamins (Stossel et al., 2001), and to cadherins by vinculin and
catenins (Wheelock and Knudsen, 1991). During cell locomotion and shape change
events, the actin cytoskeleton is extensively remodeled (Satcher et al., 1997; Theriot
and Mitchison, 1991), primarily by adding and subtracting subunits at free filament
ends.

Monomeric actin has a molecular weight of 42.8 KDaltons and is found in all
eukaryotic cells. It is the major contributor to the mechanical structure of the cell,
and the degree to which it is polymerized into long filaments changes dramatically
depending on the conditions in which the cell finds itself. The properties of en-
dothelial cells, those that line blood vessels, are illustrated by the typical values for
the actin polymerization and other mechanical properties summarized in Table 9-1.
Similar numbers have been found for many eukaryotic cells (see Stossel et al.
(2001)).
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Table 9-1. Mechanical properties of vascular endothelium

Property Typical value Reference
Cell size — subconfluent ~ 50 um dia. Gimbrone, 1976
— confluent ~40 um dia. "
Cell size — aligned, confluent 20 x 60 um Dewey et al., 1981
Crawling speed — subconfluent 0.5 pm/min. Tardy et al., 1997
— confluent 0.15 pm/min. Osborn et al., 2004
— confluent + flow 0.05 to 0.15 um/min. "
Total polymerized actin (F-actin) 10-20 mg/ml Hartwig et al., 1992
Fraction of actin polymerized
— subconfluent 35-40% McGrath et al., 2000b
— confluent 65-80% "
Total actin content (calculated) 2040 mg/ml
Young’s modulus for actin filaments 2.3 GPa Gittes et al., 1993

Interaction of the cell cytoskeleton with the outside environment

Eukaryotic cells are composed of a semistructured interior and an enclosing mem-
brane that separates the interior from the environment. In Fig. 9-1A, it can be seen
how the external membrane covers the cell. Removing the membrane and the interior
cytoplasm with a suitable solvent reveals the actin cytoskeleton as seen in Fig. 9-1B.
These views are from the apical side of cultured endothelial cells. One can see rem-
nants of the membrane at junctions where the bounding bilayer membrane shell was
attached to the underlying structure with large protein complexes. A diagram of the
current view of these complicated attachments is given in Fig. 9-2. These complexes
figure prominently in transducing mechanical signals from the outside, responding to
external forces on the membrane such as the shear stress produced by flow.

Endothelial cells are found to be strongly attached to a substrate. I vivo, the cells
attach to the artery wall, which is covered with a basement membrane of collagen and
other proteins. The attachment consists of large protein complexes that connect the
substrate to the internal actin cytoskeleton through the intermediary of transmembrane
proteins. The transmembrane proteins attach to ligands in the substrate. In equilibrium,
the cell is pulled into a flat configuration varying in thickness from about 2—3 pum in
the cytoplasmic periphery to around 4—-6 um over the nucleus.

In vitro cell attachment in culture medium is similar, except that there is no basement
membrane; the substrate is normally covered with fibrinogen or collagen and the
transmembrane proteins attach directly to this layer. Within twenty-four hours in
culture, the cells begin to excrete their own substrate proteins, and this forms a surface
to which the cells stick tenaciously. Fluid shear stresses up to 40 dynes/cm? have no
ability to detach the cells. On the other hand, the individual attachment complexes
turn over continuously, as shown by exquisite confocal microscopy experiments, with
a time scale on the order of fifteen minutes (Davies et al., 1993; Davies et al., 1994).

Although the mechanosensitive molecular mechanisms that determine shear-stress-
mediated endothelial shape change are poorly defined, a growing body of evi-
dence supports a decentralized, integrated signaling network in which force-bearing
cytoskeletal polymers attach to transmembrane proteins where conformational
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0.5 um

[A]

0.2 um

Fig. 9-1. Endothelial cells in culture, showing intact membrane (A) and the underlying actin cy-
toskeleton (B) after solubilization to remove most of the membrane. Note that the two pictures are
at different magnifications. From Satcher et al., 1997.

changes in connected proteins initiate signaling events (Helmke et al., 2003; Kamm
and Kaazempur-Mofrad, 2004). Recently, heterogeneous pm-scale displacements of
cytoskeletal structures have been described in endothelial cells that, when converted
to strain maps, reveal forces applied at the lumen being transmitted through the cell
to the basal attachments (Helmke et al., 2003). Changes in the number, type, and
structure of cytoskeletal connections alter the location and magnitude of transmitted
forces and may modify the specific endothelial phenotype, depending on the spatial
and temporal microstimuli that each endothelial cell senses (Davies et al., 2003).

Fig.9-2. A schematic representation of the focal adhesion complex joining the extracellular matrix to
the cytoskeleton across the membrane. This diagram would represent the basal focal adhesion sites.
Apical sites would have integrin receptor pairs without attachment to collagen or other materials.
The cell could be activated by ligands binding to the integrin pair and causing the cytoplasmic tails
to produce new biological reactions in the cytoplasm. From Brakebush and Fissler, 2003.
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Clearly, the nature of the cytoskeleton and its ability to transmit these forces plays a
key role in cell function.

Properties of actin filaments

Eukaryotic cells exhibit three distinct types of internal polymerized actin structures.
The first and arguably most important is the distributed actin lattice that supports most
cells and appears to be very well distributed throughout the cell. That configuration
is shown in Fig. 9-1B. The individual filaments are too small to be resolved with
optical microscopy, and staining for fluorescence of actin can at most show a dull
glow throughout the cell when staining this component.

The second type of polymerized actin is found in filament bundles called stress
fibers. These stress fibers are often seen to have ends coincident with the location
of attachment complexes at the cell-substrate boundary, and also at cell-cell junction
complexes. These stress fibers are collections of five to twenty individual actin fil-
aments tightly bound together by other proteins. Their large size and high density
makes them prominently visible in actin fluorescence experiments. Because the fil-
aments are visible and also change with the stress conditions of the cell, it is often
believed that these stress fibers reflect the main role of actin in a cell. Careful es-
timates of the fraction of total cellular actin associated with stress fibers, however,
suggest that they only play a small role in maintaining cell shape and providing the
cytoskeleton of the cell (Satcher and Dewey, 1996). The distributed actin lattice is
much more important to cell shape and mechanical properties.

A third type of actin structure is a lattice similar in appearance to Fig. 9-1B that
is confined to a small region of the cell just under the surface membrane. This is
termed cortical actin, and is found for example in red blood cells. Red blood cells are
devoid of any distributed lattice within the rest of the cell interior, and their reliance on
cortical structure is not typical of most other cells, including endothelium (Hartwig
and DeSisto, 1991).

Single actin filaments have been studied intensively for over twenty-five years.
Reviews of their properties can be found in the excellent treatises by Boal (2002)
and Preston et al. (1990). An actin filament in a thermally active bath of surround-
ing molecules will randomly deform from a straight rod into a curved shape. The
characteristic length, &,, over which the curvature of an isolated actin filament can
become significant is very long, about 10-20 pm at 37 C (Boal, 2002; Janmey et al.,
1994; MacKintosh et al., 1995). This is comparable to the dimensions of the cell,
whereas the distance between points where the filaments are in contact is much shorter.
Typical actin filament lengths are less than 1 um, so that the cytoskeleton appears to
be a tangle of fairly stiff rods. A most important feature is the fact that the small actin
filaments are bound to one another by special actin-binding proteins. The most promi-
nent of this class is Filamin A, and its characteristics are described in the next two
paragraphs. For the purposes of classifying the mechanical properties of this mixture,
one can visualize a relatively dense packing of filaments bound together at relatively
large angles by attached protein bridges. An examination of Fig. 9-1B suggests that
the filament spacing is typically 100 nm, the intersection angles of the filaments vary
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Fig. 9-3. Functional properties of filamin. The bar is 200 nm. Text and drawing courtesy of J.H.
Hartwig; micrographs courtesy of C.A. Hartemink, unpublished, 2004.

significantly but are most often closer to 90 degrees than to 45 degrees, and that the
spacing will vary with the density of filaments.

The role of filamin A (FLNa)

Cellular actin structure is controlled at different levels. Of particular importance are
proteins that regulate actin filament assembly/disassembly reactions and those that
regulate the architecture of F-actin and/or attach it to the plasma membrane. One
such protein is filamin A (FLNa), a product of the X-chromosome (Gorlin et al.,
1993; Gorlin et al., 1990; Stossel et al., 2001). Filamin A was initially isolated and
characterized in 1975 (Stossel and Hartwig, 1976) and subsequent research has con-
tinued to find important new functions for the protein (Nakamura et al., 2002).
As shown in Fig. 9-3, this large protein binds actin filaments, thus defining the
cytoskeletal architecture, and attaches them to membrane by also binding to a number
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of membrane adhesive receptors including 81 and §7 integrin and GP1ba (Andrews
and Fox, 1991; Andrews and Fox, 1992; Fox, 1985; Sprandio et al., 1988; Takafuta
et al., 1998).

With many binding partners now described, FLNa participates in signaling cascades
by spatially collecting and concentrating signaling proteins at the plasma membrane—
cytoskeletal junction and may possibly function as an organizing center for actin
network rearrangements (see Fig. 9-3). Important partner interactions that may be
dependent on filamin include GTPase targeting and charging and linkage of the actin
cytoskeleton to membrane glycoproteins such as GP1ba and g-integrins. FLNa is
part of a larger family of proteins that include FLNb and FLNc, whose genes are on
chromosomes 3 and 7, respectively (Brocker and al, 1999; Krakow et al., 2004; Sheen
et al., 2002; Thompson et al., 2000).

FLNa is an elongated homodimer (Hartwig and Stossel, 1981). Each subunit has an
N-terminal actin-binding site joined to twenty-four repeat motifs, each ~100 residues
in length. Repeats are BB-barrel structures that are believed to interconnect like beads
on a string. Subunits self-associate into dimers using only the most C-T repeat motif.
The location of known binding partner proteins along each FLNa subunit is indicated
in Fig. 9-3. Molecules are 160 nm in length in the electron microscope (Fig. 9-3,
bottom right) but can organize actin filaments into branching networks (Fig. 9-3,
bottom left).

The FLNa concentrations in endothelial and other cells is normally such that there
are many times more FLNa molecules than junctions in the cell cytoskeleton. This
can be ascertained by measuring the amount of FLNa in the soluble portion of the cell,
computing the molecular concentration per unit cell volume, and then comparing that
to the concentration of filament junctions per unit volume of cytoskeleton observable
in electron microscopy (see Fig. 9-1).

The role of cytoskeletal structure

The internal structure of the cell has several functions. One is to provide a sufficient
amount of rigidity so that the cell can withstand external forces. Figure 9-4 illustrates
the functions that the cytoskeleton performs when the cell is subjected to fluid shear
stress. A balance of forces requires that the cytoskeleton transmit the entire applied
force to the substrate.

The second function to be served is that the cytoskeleton must be malleable enough
to allow the cell to accommodate new environmental parameters such as imposed me-
chanical forces from fluid shear stress and mechanical deformation of the artery. There
are two separate time scales to be considered; the first is short time behavior, where
fluctuations such as systolic and diastolic changes in flow must be accommodated,
and longer times, where the actin matrix can completely disassociate and reform.
This latter scale is typically on the order of tens of minutes. More discussion of these
mechanisms is given later in this chapter.

The following section will draw upon the ultrastructure presented above and de-
scribe how simple mechanical models of the lattice can be used to predict the me-
chanical properties of the cell.
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Fig. 9-4. Schematic representation of an endothelial cell subjected to fluid shear stress. The force
exerted on the surface must be transmitted through the cell by the cytoskeleton to the substrate to
which the cell is attached. Some structural filaments attach to the cell nucleus, so that the force is
transmitted through the nucleus as well as the extranuclear part of the cell. The lower portion of the
figure suggests some of the biochemical cascades triggered by the force. From Davies, 1995.

Actin mechanics

The complicated combination of semiflexible filaments and binding proteins that form
the structural matrix within a cell presents a formidable challenge to the scientific
investigator. Many of the key interactions, such as the details of the FLNa binding to
actin polymers, are still subjects of active research. The fraction of actin molecules
polymerized into structural fibers varies from cell to cell, and the mean can range
from 35 percent to 80 percent depending on the state of stress, the degree of cell-
cell attachment, and time. As will be described in the section on actin dynamics, the
actin filaments polymerize and depolymerize continuously, so that the whole internal
structure is replaced within a time scale that is tens of minutes to hours. To make the
situation even more interesting, thermal fluctuations of the filaments could contribute
substantially to the apparent cell stiffness. Yet just the simplicity of the randomness
tempts one to find models that can at least scale the behavior of the mixture and arrive
at working conclusions regarding the structural rigidity of the cell when exposed to
external forces.
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It is attractive to look at two bodies of literature for examples from other fields. The
first is polymer physics, where a body of literature is presented on various thermally
driven models. These works are well summarized in the book by Boal (2002). Included
in these models are floppy chains, semiflexible chains, and welded chains. A second
field is the study of porous solids, which range from structured anisotropic systems
such as honeycombs to foams with random isotropic bubble inclusions. This field is
reviewed in the classic treatise by Gibson and Ashby in 1988, with a second edition
in 1997 (Gibson and Ashby, 1997; Gibson and Ashby, 1988).

It is possible to derive a simple model for the elastic modulus of the actin cytoskele-
ton by picturing it as a collection of relatively stiff elements attached to one another
with stiff joints. In quantitative terms, following nomenclature from the polymer lit-
erature (Gittes and MacKintosh, 1998),! this means that the so-called persistence
length over which the filaments will bend because of thermal agitation, /,, is long
compared to the distance between attachment points (or mesh size), /, and / is in turn
large compared to the characteristic thickness of the structural elements, ¢. Then the
intracellular structure can be compressed, stretched, and sheared by applying forces
to the filament ensemble through its attachments to the membrane, to the substrate,
and to the adjacent cells.

This approach was taken by Satcher and Dewey (1996) who used the analogy of
a porous solid to obtain numerical values for the stiffness of cellular actin networks.
A simple representative model originally proposed by Gibson and Ashby (1988)
considers a three-dimensional rectangular meshwork of short rods connected to the
lateral sides of adjacent elements as shown in Fig. 9-5. The key feature of the model
is that the structural elements are placed into bending by applied forces. Although the
bonds between the filaments are shown in the model as being rigid and the prototypical
geometry is taken to be cubic cells, similar scaling of the rigidity of the matrix would
be expected if the joints were simply pinned and the prototypical geometry were
triangular. In that case, individual elements would buckle with applied stress. In the
matrix described by Fig. 9-5, the ratio of the apparent density of the matrix p* to the
density of the solid filament material, py, varies as (0*/ps) ~ (¢/1)*.

Comparing the idealization of Fig. 9-5 with the actual cytoskeletal configuration
of Fig. 9-1B, one can see many simplifications. First, the angles with which the fila-
ments come together to make the matrix vary considerably. One should recognize that
Fig. 9-1B is a view looking down into a three-dimensional structure, and the actual
lattice is much more open than is apparent from the micrograph. The vast majority of
junctions have an angle between the intersecting filaments that is greater than 45 de-
grees, and many approach right angles. What is important to the representation is that
it puts individual structural elements into bending, thereby causing a deflection § that
can be simply computed from beam theory. The scaling of the geometry then allows
the overall elastic modulus to be computed as a function of the density of filaments and
their bending stiffness. Because the characteristic length / of the cellular structures is
on the order of 100 nm and the individual structural elements have a typical dimension
t of about 7 nm, one would expect the beams to be reasonably stiff in bending.

! Gittes and MacKintosh use the symbols & for the characteristic dimension of the lattice and @ for the
characteristic thickness of the structural element.
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Fig. 9-5. The porous solid model of Gibson and Ashby ap-
plied to represent the structure of actin filaments within the
cell. (a) is the undistorted lattice and (b) shows the action of
an applied force. The vertices of the filaments are assumed
to be at right angles and tightly bound for purposes of the
calculation. In reality, the angles between filaments vary and
the lattice spacing is not uniform; further, the bonds between
individual filaments are not necessarily rigid, but may simply
pin the joint. From Satcher and Dewey, 1996.

The results of the calculation show that strain ¢ in the lattice, & = §//, is propor-
tional to the stress per unit area, o, of the matrix, and the proportionality constant
is the effective Young’s modulus, £*, for the material. Using bending theory for the
strain ¢, it is found (Satcher and Dewey, 1996) that

(E*/E5) ~ Ci(p*/ps)

where C| is aconstantand £* is the Young’s modulus of solid actin, which is taken to be
2.3 GPa (Gittes etal., 1993). In order to complete the quantitative calculation, C; must
be determined. That was done using empirical tabulations for polymer foams ranging
over many orders of magnitude in density and structural properties as represented
in Gibson and Ashby (1988). The result is that C; & 1. An identical scaling law is
obtained if the lattice element is put into shear rather than compression, with the
front-running constant of 3/8 instead of one.
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This scaling can be compared to the results derived from semiflexible polymers
with crosslinking. The latest results in this field are discussed in detail in Chap-
ter 8. Published theories by MacKintosh and colleagues (Gittes and MacKintosh,
1998; MacKintosh et al., 1995; Chapter 8) show that the shear modulus G’ for densely
cross-linked gels scales as G’ ~ (p*/p,)>/?. Although the power law is similar, the
value of G’ depends on the “entanglement length,” which is measured by thermal
fluctuations of the filaments. It seems plausible that for open structures for which
the typical dimensions are /, 3> [ > t the thermal agitation would not play a strong
role and the so-called enthalpic contribution would be negligible. From the point of
view of existing experimental data taken in dilute solutions (Janmey et al., 1991),
it is very difficult to decide between the effective modulus scaling as (0*/ps)* or
(0*/ps)>.

Two common features between the models are important. First, the elastic modulus
is independent of frequency, at least for times over which the cross-links do not turn
over and for which the frequencies are sufficiently low so as to not change the basic
mechanisms of deformation of the filaments. Second, the existence of cross-linking
is crucial; without cross-linking, the effective modulus would be substantially lower
than the observed values.

A practical consequence of the predictions of the theory is that a drop in the fraction
of actin polymerized can have a very profound effect on the rigidity of the cell. In
separate experiments, we have observed a drop by factors of two to three in the fraction
of actin polymerized following changes from a packed monolayer to freely crawling
cells (McGrath et al., 2000b; McGrath et al., 1998b). We therefore find that the freely
crawling cells have a much lower effective modulus and a higher motility. This has
potential implications for wound healing, endothelialization of graft materials, and
the integrity of monolayers subjected to fluid-flow forces.

We have examined the theory and observations relative to the internal cytoskeleton
of astatic collection of cells. Cells are in a dynamic state, with the internal cytoskeleton
changing continuously. The following section explores the interesting dynamics that
occur within the cell and presents quantitative models for the processes that are at
work.

Actin dynamics

Abundant, essential, and discovered more than a half-century ago, actin is one of the
most studied of all the proteins. Many investigations have focused on the dynamic
character of actin, leading to a rich quantitative understanding of actin assembly and
disassembly. In this section we briefly review this history and summarize the modern
understanding of actin dynamics and its regulation by key binding proteins.

The emergence of actin dynamics

The appreciation that actin has both dynamic and mechanical properties can be
traced to the work of its discoverer, F.B. Straub (Mommaerts, 1992). Trying to under-
stand the difference between a highly viscous mixture of ‘myosin B’ and a less viscous



Cell dynamics and the actin cytoskeleton

mixture of ‘myosin A,” Straub discovered these were not different myosins at all, but
that the myosin B preparations were ‘contaminated’ by another protein that ACTivated
myosIN to make the viscous solution (Feuer et al., 1948). Straub’s laboratory later
revealed that the contaminating actin could itself convert between low- and high-
viscosity solutions with the introduction of physiological salts and/or ATP (Straub and
Feuer, 1950). Further data from Straub demonstrated that the phase change occurred
because a globular protein (‘G-actin’) polymerized into long filaments (‘F-actin’) and
that the filamentous form could hydrolyze ATP. With the discovery of sarcomere struc-
ture (Huxley and Hanson, 1954) and the sliding filament model of muscle contraction
in the 1950’s (Huxley, 1957), actin’s role as the structural thin filament of muscle was
in place. The significance of actin’s dynamic properties, however, remained unclear.

Over the next several decades actin was identified in every eukaryotic cell inves-
tigated. Extracts formed from macrophages (Stossel and Hartwig, 1976b) or anan-
thamoeba (Pollard and Ito, 1970) could be made to ‘gel’ in a manner that involved
actin polymerization. Actin filaments were found to be concentrated near ruffling
membranes and in fibroblast ‘stress fibers’ (Goldman et al., 1975; Lazarides and
Weber, 1974), and cell movements could be halted with the actin-specific cy-
tochalasins (Carter, 1967). Cytochalasins were found to block actin polymerization
(Brenner and Korn, 1979), to inhibit the gelation of extracts (Hartwig and Stossel,
1976; Stossel and Hartwig, 1976; Weihing, 1976), and to reduce the strengths of re-
constituted actin networks (Hartwig and Stossel, 1979). With these findings, actin’s
role as a structural protein appeared universal. However, unlike in muscle cells, actin’s
dynamic properties allow nonmuscle cells to tailor diverse and dynamic mechanical
structures. Elucidating the intrinsic and regulated dynamics of actin was rightly viewed
as a fundamental question in cell physiology, and became a lifelong pursuit for many
talented biologists and physicists.

The intrinsic dynamics of actin

The pioneering work on protein self-assembly by Fumio Oosawa (see Fig. 9-6) led
to some of the earliest insights into the process of actin polymerization. Using light
scattering to follow the progress of polymerization, Oosawa noticed that actin poly-
merization typically began several minutes after the addition of polymer-inducing
salts. He concluded that during the early ‘lag’ phase of polymerization, monomers
form nuclei in an unfavorable reaction, but that once formed, nuclei are rapidly sta-
bilized by monomer addition (Oosawa and Kasai, 1962). Because the addition of
monomers to filaments is a highly favorable reaction, the lag phase could be over-
come by adding preformed filaments as nuclei. Oosawa’s studies indicated that the
nucleus was formed of three monomers, a number that has stood further scrutiny
(Wegner and Engel, 1975).

Oosawa described the mechanism of actin assembly by constructing some of the
first kinetic models of the process (Oosawa and Asakura, 1975). Because experiments
revealed actin filaments to have biochemically distinct ‘barbed’ and ‘pointed’ ends
(Woodrum et al., 1975), and because ATP- and ADP-bound monomers are capable
of assembling at these ends, Oozawa considered four assembly and four disassembly
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Fig. 9-6. Intrinsic actin dynamics. Oosawa and colleagues found that actin polymerizes in two phases:
(a) an unfavorable nucleation phase involving an actin trimer and (b) a rapid assembly phase in which
actin monomers add to both barbed and pointed ends. In the presence of excess ATP, actin does not
polymerize to equilibrium but to a ‘treadmilling’ steady-state in which monomers continuously add
to the barbed end and fall off of the pointed end.

reactions. Oozawa also assumed that spontaneous filament fragmentation and anneal-
ing ultimately determined the number of filaments in solution; this was later validated
with detailed modeling (Murphy et al., 1988; Sept et al., 1999).

Obtaining reliable constants for the assembly and disassembly rates in the Oosawa
model was a challenge that would occupy many years. Indirect assays gave conflicting
results because of their inability to control or accurately measure the number of
filaments in solutions. In 1986, Pollard’s direct electron microscopic measurements
of growth on individual nuclei produced numbers that are now the most widely cited
(Pollard, 1986).

A decade before Pollard’s experiments, Albert Wegner proposed that actin assembly
does not proceed to equilibrium, but to a steady-state in which assembled subunits
continuously traverse filaments from the barbed to the pointed end (Wegner and Engel,
1975). His now-classic experiments revealed that even after bulk polymerization had
halted, filaments continued to hydrolyze ATP. Wegner decided that the results could
only be explained if ATP-carrying monomers had a higher affinity for barbed ends
than for pointed ends, and that the energy of ATP hydrolysis must be used to sustain
the imbalance. Wegner suggested that, on average, ATP-G-actin assembles at barbed
ends, hydrolyzes ATP in the filament interior, and disassembles bound to ADP at
pointed ends. Thus Wegner was the first to introduce the concept of actin filament
‘treadmilling,” although the term itself must be credited to Kirschner some years later
(Kirschner, 1980). While Pollard’s rate constants were not measured at steady-state,
they clearly suggested barbed ends had a higher affinity for monomer in the presence
of ATP and thus supported the existence of treadmilling.

A difficulty with both the Pollard and the Wegner studies was the lack of an accurate
measure of the ATP hydrolysis rate on F-actin. Within the same year of Pollard’s paper,
Carlier and colleagues reported that ATP hydrolysis occurred less than a second after
subunit addition (Carlier et al., 1987). Because this time scale for ATP hydrolysis
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is comparable to the time between monomer assembly events in most experiments,
Pollard’s assumption that ATP-actin was the disassembling species in his experiments
must be reevaluated. Also significant were data revealing that inorganic phosphate
was released from the cleaved nucleotide several minutes after hydrolysis (Carlier and
Pantaloni, 1986). The latter discovery meant that three species needed to be considered
for actin dynamics: ATP, ADP, and a long-lived intermediate ADP-Pi. Furthermore,
an ADP-Pi monomer species should be generated by disassembly to either reassemble
or release inorganic phosphate (Pi) and become a source of ADP-G-actin. Unfortu-
nately, there has been no focused effort to determine all twelve assembly/disassembly
rate constants and the two rates of Pi release (G-actin and F-actin) needed to properly
update Oosawa’s model. One reason for the missing effort is that both biochemical
and structural data indicate that ADP-Pi and ATP-F-actin are similar (Otterbein et al.,
2001; Rickard and Sheterline, 1986; Wanger and Wegner, 1987), so that distinguishing
between the two species may be unnecessary in many contexts. Assuming equiva-
lence between ADP-Pi and ATP-actin species, we have recently published a broad
mathematical model of the steady-state actin cycle that predicts a broad range of
experimentally observed behaviors (Bindschadler et al., 2004). While this agreement
is encouraging, it does not replace the need for newly designed experiments that
definitively establish rates.

In Bindschadler et al. (2004) we carefully tabulated consensus rate constants for
intrinsic actin dynamics. While controversies persist concerning the mechanism of
ATP hydrolysis and the rate of nucleotide exchange on G-actin, a growing consensus
on these topics can be inferred from agreements by independent laboratories. As men-
tioned, the rates for the ADP-Pi-actin species remain unmeasured. Also unaddressed
is the fact that the rate constants must depend on the nucleotide content of filaments
and so the single values reported by Pollard cannot constitute the complete story.

Regulation of dynamics by actin-binding proteins

Many efforts over the past twenty years have focused on elucidating the mechanisms
by which actin-associated proteins modulate actin dynamics. These efforts are essen-
tial because intracellular signaling pathways do not modify actin itself, and so the
regulation of binding proteins provides an indirect route for changing cytoskeletal
structure and cell shape. Unlike solutions of pure actin, cells contain short, dynamic
filaments in highly structured networks and often a large fraction of unpolymerized
actin. Here we review properties of actin-binding proteins thought to account for the
major differences between the dynamics of cellular and purified actin (see Fig. 9-7).

ADF/cofilin: targeting the rate-limiting step in the actin cycle

Named for their activity as “actin depolymerizing factors” and their ability to form
cofilamentous structures with F-actin, the ADFs and cofilins form two subgroups of a
family of proteins (ADF/cofilins or ACs) expressed in most mammalian cells. Efforts
to understand AC function have been challenged by a multiplicity of AC functions
that differ slightly between the ADFs and cofilins and also among species (Bamburg,
1999). In general, ACs bind to both monomeric and filamentous actin with rather
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Fig. 9-7. Regulation of actin dynamics. Actin-binding proteins modulate every phase of the actin
cycle including assembly and disassembly kinetics, nucleotide exchange, and filament number and
length.

exclusive affinity for the ADP-bound conformations (Carlier et al., 1997; Maciver
and Weeds, 1994). On filaments, structural data indicate that ACs bind the sides
of filaments and destablize the most interior interactions between subunits (Bobkov
etal., 2004; Galkin et al., 2003; McGough et al., 1997). AC-decorated filaments break
along their length (Maciver et al., 1991) and rapidly disassemble at their ends (Carlier
et al., 1997). Despite debate over whether ACs should be thought of primarily as
filament-severing proteins or catalysts of ADP subunit disassociation (Blanchoin and
Pollard, 1999; Carlier et al., 1997), both effects may occur as manifestations of the
same structural instability on filaments. ACs have been shown to increase the rate of
Pi release on filaments, and to slow the rate at which ADP monomers recharge with
ATP on monomer (Blanchoin and Pollard, 1999). Thus ACs both hasten the production
of ADP-actin and stabilize the ADP form. Some AC proteins bind ADP-G-actin with
a much higher affinity than ADP-F-actin to create a thermodynamic drive toward the
ADP-G-actin state (Blanchoin and Pollard, 1999). Like their multiple functions, ACs
have multiple avenues for regulation including pH sensitivity, inactivation by PIP,
binding, and serine phosphorylation (Bamburg, 1999).

Given this seemingly perfect arsenal of disassembling functions in vitro, observa-
tions that ACs trigger polymerization and generate new barbed ends in cells (Ghosh
et al., 2004) certainly appear contradictory. There are at least two likely explanations
for the paradox. First, with a large pool of sequestered ATP-actin available to assemble
at free barbed ends (see the discussion of thymosins), the conditions inside a cell are
primed for assembly (Condeelis, 2001). Thus filaments generated by AC severing may
not have sufficient time to disassemble before they become nuclei for new filament
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growth. Supporting this, enhanced assembly occurs at early time points in vitro when
ACs are added to solutions containing an excess of ATP-G-actin. (Blanchoin and
Pollard, 1999; Du and Frieden, 1998; Ghosh et al., 2004).

The cellular data on cofilin-mediated growth should not be interpreted to mean that
ACs are not involved in filament dissolution in vivo. Indeed, theoretical calculations
indicate that severing alone cannot explain how filament turnover in cells occurs
orders of magnitude faster than unregulated actin (Carlier et al., 1997). Thus, the
second explanation for the paradox is that AC-mediated disassembly is directly linked
to filament assembly. If pointed-end disassembly is rate-limiting for the actin cycle
in vivo as it is in vitro, the enhanced production of ADP-G-actin should lead to a
larger supply of ATP-monomer and enhanced polymerization elsewhere. Thus both
of the ‘destructive’ activities of ACs — severing and enhanced disassembly — can lead
to filament renewal and rapid turnover in the cellular environment.

Profilin: a multifunctional protein to close the loop

Profilin was the first monomer-binding protein discovered and originally thought to
sequester G-actin in a nonpolymerizable form (Tobacman and Korn, 1982; Tseng and
Pollard, 1982). However, later data made clear that profilins do not prevent actin as-
sembly, but actually drive the assembly phase of the actin cycle (Pollard and Cooper,
1984). Today profilins are known to catalyze the rate of nucleotide exchange on
G-actin by as much as an order of magnitude (Goldschmidt-Clermont et al., 1991;
Selden et al., 1999). In cells this means that newly released ADP-G-actin is recharged
to the ATP state shortly after binding to profilin. Significantly, the profilin-G-actin
complex is capable of associating with filament barbed ends, but not with pointed
ends (Pollard and Cooper, 1984). Profilin binds to a structural hinge on the barbed
end of an actin filament and slightly opens the hinge to expose the nucleotide-binding
pocket and promote nucleotide exchange (dos Remedios et al., 2003; Schutt et al.,
1993). Profilin binding in this region also sterically blocks association of G-actin
with pointed ends. Because there is no evidence that profilin blocks actin assem-
bly at barbed ends, profilin presumably instantly disassociates from monomer af-
ter assembly. Further, the profilin-actin complex assembles at barbed ends at the
same rates as ATP-G-actin alone (Kang et al., 1999; Pantaloni and Carlier, 1993).
With these properties, profilin-bound actin becomes a subpopulation of barbed-end-
specific monomer (Kang et al., 1999). In our published analysis of the actin cycle
(Bindschadler et al., 2004), we found that profilin’s functions provide the perfect com-
plement to cofilin’s disassembly functions. Together the two proteins appear to over-
come every major barrier to increasing the rate of filament treadmilling (Bindschadler
et al., 2004).

Arp2/3 complex and formins: making filaments anew

A perplexing and important question for cell biologists in the 1980s and 1990s was
“how are new filaments created in cells?” One answer was that new filaments are
generated when existing filaments are first severed and then elongate; however there
was no reasonable mechanism for the de novo generation of filaments in cells. In
the late 1990s it became clear that the Arp2/3 complex was dedicated to this task
(Mullins et al., 1998; Pollard and Beltzner, 2002). The two largest members of this
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seven-protein complex are the actin-related proteins Arp2 and Arp3 (Machesky et al.,
1994). Like the other members of the Arp family, Arp2 and Arp3 share a strong
structural similarity to actin. In the Arp2/3 complex, these similarities are used to
create a pocket that recruits an actin monomer to form a pseudotrimer that nucleates
a new filament (Robinson et al., 2001). The complex holds the growing filament at
its pointed end, leaving the barbed end free for rapid assembly (Mullins et al., 1998).
For robust nucleation of filaments, the Arp2/3 complex requires activation, first by
WASp/Scar family proteins (Machesky et al., 1999), and secondarily by binding to
preexisting F-actin (Machesky et al., 1999). The arrangement gives autocatalytic
growth of branched filament networks in vitro: new filaments grow from the sides of
old ones to create a ~70° included angle (Mullins et al., 1998). This same network
geometry is found at the leading edge of cells and the Arp2/3 complex localizes to
branch points in the cellular networks (Svitkina and Borisy, 1999).

While it is now clear that the Arp2/3 complex is an essential ingredient of the actin
cytoskeleton, its discovery is new enough that many details of its mechanism are
clouded in controversy. The most visible controversy has been over the nature of the
Arp2/3 complex/F-actin interaction. Carlier and colleagues argue that the complex
incorporates at the barbed ends of actin filaments to create a bifurcation in filament
growth (Pantaloni et al., 2000); however, using direct visualization of fluorescently
labeled filaments, several laboratories have demonstrated that new filaments can grow
from the sides of preexisting filaments (Amann and Pollard, 2001a; Amann and
Pollard, 2001b; Fujiwara et al., 2002; Ichetovkin et al., 2002). One paper appears
to resolve the confusion with data indicating that branching occurs primarily from
the sides of ATP-bound regions of the mother filament very near the barbed end
(Ichetovkin et al., 2002). However, others believe that branching can occur on any
subunit but filaments release or debranch rapidly from ADP segments of the mother
filaments. This idea is supported by a correlation between the kinetics of debranching
and Pi release on the mother filament (Dayel and Mullins, 2004), but contradicted
by a report indicating that ATP hydrolysis on Arp2 is the trigger for debranching
(Le Clainche et al., 2003). A disheartened reader looking for clearer understandings
should consult the most recent reviews on the Arp2/3 complex.

Very recently, it has become clear that the Arp2/3 complex is not the only molecule
capable of de novo filament generation in cells. In yeast, members of the formin
family of proteins generate actin filament bundles needed for polarized growth
(Evangelista et al., 2002), and in mammalian cells formin family members help
generate stress fibers (Watanabe et al., 1999) and actin bundles involved in cy-
tokinesis (Wasserman, 1998). Dimerized FH2 domains of formins directly nucle-
ate filaments in a most remarkable manner (Pruyne et al., 2002; Zigmond et al.,
2003). The FH2 dimer remains attached to the barbed ends of actin filaments even
as it allows insertion of new subunits at that same end (Kovar and Pollard, 2004;
Pruyne et al., 2002). By tracking the barbed ends of growing filaments, formins
block associations with capping protein (Kovar et al., 2003; Zigmond et al., 2003).
In cells where capping protein and cross-linking proteins are abundant, formin-
based nucleation should naturally lead to bundles of long filaments, while Arp2/3-
complex-generated filaments should naturally arrange into branched networks of short
filaments.
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Capping protein: ‘decommissioning’ the old

Capping protein is an abundant heterodimeric protein that binds with high affinity to
the barbed ends of actin filaments to block both assembly and disassembly at these
ends (Cooper and Pollard, 1985; Isenberg et al., 1980). Vertebrates express multiple
isoforms of both the o and 8 subunits (Hart et al., 1997; Schafer et al., 1994). With
the conditions of cells favoring polymerization at free barbed ends, capping protein
is essential to control the degree of polymerization. The association rates of capping
protein with barbed ends in combination with high cellular concentrations of capping
protein (~ 2 uM) should only allow a newly crated, unprotected barbed end to grow for
~1 s (Schafer et al., 1996). On the other hand, because the residency time of capping
proteins on barbed ends is ~ 30 minutes (Schafer et al., 1996), short capped filaments
will depolymerize from their pointed ends in cells. Capping proteins are thought to
be integral to the recycling of monomers in dendritically arranged filaments at the
leading edge of cells (Pollard et al., 2000). Consistent with this idea are findings that
perturbations of capping activity dramatically alter the geometry of Arp2/3-complex-
induced networks in reconstitution studies (Pantaloni et al., 2000; Vignjevic et al.,
2003).

In addition to blocking barbed-end dynamics, capping protein diminishes the lag
phase of actin polymerization (Pollard and Cooper, 1984). In this ‘nucleating’ ac-
tivity, capping protein is probably stabilizing small oligomers rather than generating
filaments de novo (Schafer and Cooper, 1995). Because the growing filaments are
capped at their barbed end, this function is probably not active in cells with abundant
sequestering proteins that can prevent assembly at pointed ends. The only known
regulation of capping protein activity is by phospholipids. Phospholipids can both
inactivate free capping protein (Heiss and Cooper, 1991) and remove bound capping
protein from barbed ends (Schafer et al., 1996).

Gelsolin: rapid remodeling in one or two steps

If the job of actin-binding proteins is to remodel the actin cytoskeleton, then gelsolin
has exceptional qualifications. Activated by micromolar Ca>* (Yin and Stossel, 1979),
gelsolin binds to the sides of actin filaments and severs them (Yin et al., 1980).
However, unlike cofilin, gelsolin remains attached to the new barbed end created by
severing to block further polymerization (Yin et al., 1981; Yin et al., 1980). Because
gelsolin has nM affinity for barbed ends, it functions as a permanent cap that can
only be removed through subsequent binding by phospholipids (Janmey and Stossel,
1987). In platelets and neutrophils, activated gelsolin remodels actin in two steps
(Barkalow et al., 1996; Glogauer et al., 2000). Because the majority of filaments in
resting cells are capped, cellular activation first leads to gelsolin severing to create
a large number of dynamically stable filaments. Shortly thereafter, these filaments
become nuclei for new growth as phospholipid levels increase to result in massive
uncapping.

While gelsolin seems built for acute remodeling, expression studies clearly indi-
cate a role for gelsolin at steady-state. Gelsolin null fibroblasts have impaired motil-
ity, reduced membrane ruffling, slow filament turnover, and abundant stress fibers
(Azuma et al., 1998; McGrath et al., 2000a; Witke et al., 1995), and gelsolin over-
expression produces the opposite trends (Cunningham et al., 1991). With its high
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Ca’* requirements, it is unclear if these steady-state effects are mediated by inter-
mittent and localized gelsolin activity, or constant but low levels of activity. Gelsolin
also has a fascinating role in apoptosis where caspases cleave the protein to create
an unregulated severing peptide (Kothakota et al., 1997). Continuous severing by this
peptide helps create a mechanically compromised cell that eventually detaches from
its substrate (Kothakota et al., 1997).

(B34-thymosin: accounting (sometimes) for the other half

The 15 kD protein B4-thymosin is present in mammalian cells at levels that equal
or exceed actin itself (Safer and Nachmias, 1994). Its discovery appeared to resolve
the critical question of how mammalian cells maintained nearly half of their actin
in an unpolymerized form despite intracellular conditions that favored polymeriza-
tion. f4-thymosins are unstructured in solution and partially wrap around the G-actin
monomer to control its associations (Safer et al., 1997). f4-thymosins bind to ATP-
G-actin (but not ADP-G-actin) with an affinity comparable to the pointed end ATP
critical concentration, but less than the barbed end ATP critical concentration (Carlier
et al., 1993). In this way when barbed ends are mostly capped, f4-thymosin func-
tions as a ‘sequestering’ protein that maintains a pool of nonfilamentous actin, but
when free barbed ends are abundant the pool diminishes. Profilin can compete for
the ATP-G-actin pool maintained by S4-thymosin (Carlier et al., 1993), possibly by
emerging with the charged monomer after forming a complex that includes all three
proteins (Yarmola et al., 2001). Thus with or without profilin, f4-thymosin helps
to reserve ATP-G-actin for future assembly at barbed ends. The high concentration
of B4-thymosin can support extensive and sudden conversions from G-actin to fil-
aments. This conversion is likely occurring in the dramatic polymerization-induced
shape change of both platelets (Safer et al., 1990) and neutrophils (Cassimeris et al.,
1992), both of which contain abundant S4-thymosin/G-actin complex at rest. How-
ever B4-thymosin apparently is not required for the continuous shape change during
crawling, because motile amoebae are thought to be void of thymosin-family proteins
(Pollard et al., 2000).

Dynamic actin in crawling cells

In this section we explore a most conspicuous and well-studied function of the actin
cytoskeleton: its ability to serve as the engine for cell crawling. By driving the expan-
sion of the plasma membrane in the direction of cell advancement, actin polymeriza-
tion initiates the crawling cycle (Fig. 9-8). The networks formed by polymerization
evolve to structures that provide mechanical support for cell extensions; that link the
cell to its substrate; and that support the myosin-based contractions needed for cell
translation. The network must also disassemble to recycle its constituents for further
rounds of assembly. Thus the actin network at the leading edge of motile cells pro-
vides both the structure and the forces needed for crawling (see Fig. 9-9). Here we
review the current understanding of the geometry and dynamics of these networks,
and address the important question of how polymerization might lead to pushing
forces.
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Fig. 9-8. The four steps in cell migration. The classic schematic of crawling breaks the process
down into a four-step cycle. The cycle begins with the protrusion of the leading edge driven by actin
polymerization. The extended cell forms new attachments in advance of its body and then contracts
against this attachment to break tail adhesions and translate forward. From Mitchison and Cramer,
1996.

Actin in the leading edge

The extension of the plasma membrane that interrogates new regions of substrate can
come in several forms. Mammalian cells crawling in culture environments extend both
finger-like projections, called fillopodia, and broad, thin, veil-like projections called
lamellipodia. Which structure occurs more frequently is a strong function of cell type
and substrate conditions (Pelham and Wang, 1997). Cells that crawl in amoeboid
fashion — a class that includes the leukocytes of the mammalian immune system — use
bulkier protrusions known as pseudopodia. By all accounts, the initiator of filament
assembly in each of these cellular protrusions is the Arp2/3 complex activated by
membrane-bound WASp/Scar family proteins. Pollard and Borisy have offered the
most detailed proposal for how actin networks evolve in lamellipodia (Pollard and
Borisy, 2003), and filopodia appear to be triggered from rearrangements of a lamel-
lipodial network (Svitkina et al., 2003). Because the three-dimensional character of
pseudopodia makes them less amenable to ultrastructural and fluorescence studies,
far less is known about the geometry and dynamics of pseudopodial networks.
Synthesizing data from electron micrographs of cytoskeletal structure in the lamel-
lipodia of fast-moving keratocytes (Svitkina and Borisy, 1999), immunochemical
analysis of Arp2/3 complex, ADF/cofilin, and capping protein location in these same
samples (Svitkina and Borisy, 1999), and live cell fluorescence data revealing regions
of actin assembly and disassembly in fibroblasts (Watanabe and Mitchison, 2002),
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Fig. 9-9. Actin dynamics in crawling cells. (A) For steady crawling, actin polymerization and
depolymerization must complete a balanced cycle. However, the demand for assembling monomers
at the leading edge causes a spatial segregation of these processes and flows. Actin that assembles
at the leading edge but does not incorporate into a protrusion flows in retrograde fashion as it
is disassembled. The emerging G-actin population is presumably returned to the leading edge by
diffusion. (B) The graphs show possible profiles for polymerization, monomer concentration, and
retrograde flow across the front of a crawling cell. The calculated numbers combine measurements of
actin dynamics in fibroblasts (Vallotton et al., 2004; Watanabe and Mitchison, 2002) and the leading
edge monomer demand for these cells (Abraham et al., 1999), and assumes monomer is returned by
diffusion with a diffusivity of 6 x 10~% cm?/s. From McGrath et al., 1998a.

Pollard and Borisy propose the lamellipodia are filled with a neatly segregated, highly
dynamic network (Pollard and Borisy, 2003). In their model, filaments are first gener-
ated by activated Arp2/3 complex to form brush-like networks within one micron of
the advancing plasma membrane. The newly born filaments remain short because their
growth is rapidly terminated by abundant capping protein. The continuous assembly
of ATP-actin at the leading edge explains why the ADP-actin specific ADF/cofilins are
excluded from this region (Svitkina and Borisy, 1999). ADF/cofilin-family proteins
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take up residence at distances one micron and more from the leading edge where
they bind to aged ADP-actin, disassembling the network into monomers for rapid
recycling and further polymerization (Svitkina and Borisy, 1999). More recent and
sophisticated analysis of actin filament dynamics are consistent with a segregation
of the lamellipod into a ~1 micron membrane-proximal region dominated by poly-
merization and an immediately adjacent region where significant depolymerization
occurs (Vallotton et al., 2004).

A leading theory for filopodia generation proposes that these structures emerge
from a rearrangement of the dendritic networks of the lamellipod (Svitkina et al.,
2003). In the convergence/elongation theory, convergent filaments with barbed ends
that abut the plasma and are protected against capping are zippered together by fascin
as they grow to several microns in length. Consistent with this model, recent knock-
down studies reveal that filopodia-rich phenotypes occur in capping-protein-depleted
cells and point to an essential role for the anticapping activies of the Ena/VASP family
in filopodia formation (Mejillano et al., 2004).

Nearer the cell body, filaments surviving the destructive actions of ADF/cofilins
mature into a contractile network. In fast-moving cells like fish keratocytes, the surviv-
ing network remains fixed with respect to the substrate as the cell crawls past (Theriot
and Mitchison, 1991). In slower-moving cells like fibroblasts, polymerization exceeds
the rate of cell advancement, and much of the network flows toward the cell center
(Theriot and Mitchison, 1992). Filament survival is facilitated by association with the
long, side-binding protein tropomyosin, which blocks the association of ADF/cofilins
(Bernstein and Bamburg, 1982; Cooper, 2002; DesMarais et al., 2002), and growth to
several microns is likely facilitated by the anticapping activities of formins (Higashida
et al., 2004). In fibroblasts, the polarity of filaments is graded such that all filaments
at the leading edge are oriented with their barbed ends facing the periphery, but the
interior bundles have a well-mixed polarity (Cramer et al., 1997). The gradation ap-
pears to facilitate both pushing at the edge of cells and myosin-based contractions by
muscle-like filaments sliding within the cell interior. Just as some of the filaments of
the lamellipod mature into contractile stress fibers, the focal contacts that transmit
these stresses to surfaces also begin life in lamellipodia as nascent focal complexes
and mature into focal contacts as they become part of the more central structures of
the cell (DeMali et al., 2002).

Monomer recycling: the other ‘actin dynamics’

For steady migration a cell must have a constant supply of monomer delivered to
its leading edge. This monomer certainly derives from filament disassembly at more
interior regions, and so the rates of assembly and migration are tied to the rate of
monomer supply. If monomer is provided by diffusion, the supply rate is equal to the
product of the diffusion coefficient and the gradient of the monomer concentration.
The diffusion coefficient of the fastest of two kinetically distinguishable populations
of actin tracers is ~6 x 10~® cm?/s (Giuliano and Taylor, 1994; Luby-Phelps et al.,
1985; McGrath et al., 1998a). Assigning this diffusion coefficient to actin monomer
has caused difficulties for modelers of the lamellipod (Abraham et al., 1999; Mogilner
and Edelstein-Keshet, 2002). If the assembly of monomers at the leading edge of a
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crawling cell is driven by mass action, then the concentration of monomer at the
leading edge must exceed 15 pM for a single filament to keep pace with the plasma
membrane in keratocytes. Fick’s law, in combination with a monomer diffusion co-
efficient of 6 x 1078 cm?/s, requires a gradient of 20 uM/um moving toward the
interior of the cell. If this gradient persists over 10 microns, as modelers have assumed,
then a maximum concentration of ~200 M G-actin near the cell body is prohibitively
high because cells typically carry less than 100 uM of actin total.

Assuming that the more diffusive population of actin is strictly monomer may
be wrong, as short, diffusing filaments from recent severing and growth events are
likely. Indeed, investigators have proposed that the diffusion of small oligomers may
explain why the diffusion coefficient for the mobile actin in cytoplasm is ~6 times
slower than the value for monomer-sized ficoll (Luby-Phelps et al., 1987). Through
comparisons with the diffusion of sugar particles of various sizes, one concludes that
actin diffuses as a molecule five times bigger than its hydrodynamic radius (Luby-
Phelps et al., 1987), and so the discrepancy cannot be explained by the fact that
G-actin is complexed with smaller molecules of thymosin or profilin. The possibility
of filament diffusion appears to justify the use of the high G-actin diffusion coefficient
of 3 x 1077 cm?/s in models (Abraham et al., 1999; Mogilner and Edelstein-Keshet,
2002). The value is that for the diffusion of monomer-sized ficoll and leads to the
derivation of G-actin profiles with more gradual gradients of ~4 uM/um. However it
must be noted that all proteins studied diffuse slower in cytoplasm than size-matched
‘inert’ sugars, even those that do not oligomerize (Luby-Phelps et al., 1985), and so
the most reasonable explanation for the discrepancy between the diffusion of actin
and sugar particles is that the sugars are not good models for protein diffusivity.

In support of the interpretation of the fast-diffusing species as monomer, roughly
half of the tracer actin is in this population consistent with biochemical fractiona-
tion (McGrath et al., 2000c). Further, when cells are treated with jasplankinolide,
a membrane-permeating toxin that blocks filament depolymerization (Bubb et al.,
2000), all actin becomes immobile, indicating that the fast-diffusing species is assem-
bly competent (McGrath et al., 1998a; Zicha et al., 2003). As noted, recent speckle
microscopy experiments indicate that the major zone of depolymerization in lamel-
lipodia is found 2 microns behind the leading edge (Ponti et al., 2004; Watanabe and
Mitchison, 2002), and so the gradient may in fact be steep but confined to a dynamic
region considerably smaller than the 10 microns assumed in the models. Over this
small distance the experimentally determined values for monomer diffusion should
be sufficient for the steady resupply of monomer to the leading edge.

Recent data also suggest that G-actin is returned to the leading edge of cells by
active transport mechanisms. This prospect is raised by the recent results of Grahm
Dunn and colleagues (Zicha et al., 2003). Using a modification of the photobleaching
technique, these experimentalists marked a population of actin several microns behind
the leading edge of a protruding cell and found that some of the marked actin incor-
porates into new protrusions at rates that defy simple diffusion. They provide some
evidence that the phenomenon is halted by myosin inhibitors and does not depend on
microtubules. This suggests that the privileged monomer does not ride as cargo on
a motor complex, but that it happens to be near a convective channel. The difficulty
with the prospect of motors moving G-actin as cargo is that the association between
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actin and motor proteins would likely be specific. The prospect of a return mechanism
that does not discriminate among molecules is more attractive because the problem
of recycling cytoskeletal pieces is not limited to G-actin; whatever mechanism is at
work must be able to carry all the building blocks to the leading edge.

The biophysics of actin-based pushing

While compelling support for actin polymerization forces have existed for decades
(Tilney etal., 1973), the mechanism by which polymerization leads to pushing remains
unclear. Today there are two leading theories: (1) a series of related ‘ratchet’ models
that explain pushing as a natural consequence of the polymerization of semiflexible
filaments against a membrane (Dickinson and Purich, 2002; Mogilner and Oster,
1996; Mogilner and Oster, 2003; Peskin et al., 1993) and (2) a mesoscopic model that
explains how pushing forces derive from the formation of actin networks on curved
surfaces.

Understanding of the biophysics of actin-based pushing in the Listeria system has
progressed through a steadily tightening cycle of theory and experiment that continues
to this day. In large part, these efforts have centered around the actin-based motility
of the bacterium Listeria monocytogenes. This intracellular pathogen invades host
cytoplasm and hi-jacks the same force-producing mechanisms that drive leading-
edge motility. Riding a wave of actin polymerization, the bacterium becomes motile
so that it can eventually exit the dying infected cell for an uninfected neighbor.

The first ratchet model proposed that Listeria was a 1-D Brownian particle blocked
from rearward diffusion by the presence of the growing actin tail (Mogilner and
Oster, 1996). Observations that Shigella move at speeds similar to Listeria despite
being more than twice as large violated a prediction of the Brownian Ratchet and
motivated a new theory. The “Elastic Ratchet” proposed that filaments, rather than
Listeria, fluctuate due to thermal excitation (Mogilner and Oster, 1996). Filaments
fluctuate away from the Listeria surface to allow space for polymerization. Lengthened
filaments apply propulsive pressure as they relax to unstrained configurations.

More recent biophysical measurements established that Listeria are tightly bound
to their tails (Gerbal et al., 2000a; Kuo and McGrath, 2000), rigorously eliminating
the Brownian Ratchet theory and demanding a revision of the Elastic Ratchet theory.
One study also established that Listeria motion is discontinuous, with frequent pauses
and nanometer-sized steps (Kuo and McGrath, 2000). The developments led to the
first proposal for how elastic filaments could push Listeria while attached. In the
‘Actoclampin’ model (Dickinson and Purich, 2002), filaments diffuse axially due to
bending fluctuations within a surface-bound complex. The complex binds ATP-bound
subunits and releases the filament upon hydrolysis. In this scheme, flexed filaments
push the Listeria and lagging filaments act as tethers (Fig. 9-10A).

More than molecular stepping, the force-velocity curve of the polymerization en-
gine constrains theoretical models, but current data appear to be in disagreement.
Recently, we published a curve for Listeria monocytogenes (McGrath et al., 2003),
using methylcellulose to manipulate the viscoelasticity of extracts, particle track-
ing to determine viscoelastic parameters near motile Listeria, and a modified Stokes
equation to infer forces. In 2003, Mogilner and Oster published an evolution of the
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Fig. 9-10. Theories of force production in actin-based motility. (4—B) In Molecular Ratchet
models, filament fluctuations and growth near the surface combine to create motility. (A) In the
Actoclampin model (from Dickinson and Purich, 2002) all filaments are similarly attached to the
motile surface, but some are compressed and others are stretched taut. (B) The Tethered Ratchet
(from Mogilner and Oster, 2003), considers distinct attached and pushing (working) filaments. (C-G)
In the Elastic Propulsion theory, elastic stresses lead to symmetry breaking and motion. (C) The
first layer of actin polymerized at the surface is pushed outward (D) by the next layer, creating hoop
stresses in the gel and normal pressure on the sphere (E). Fluctuations in stress levels and strengths
cause a local fracturing event (F) and unraveling of the gel that leads to a motile state (G) in which
stresses build and relax periodically as the particle moves forward. (H) Large particles create tails
with periodic actin density (‘hopping’), suggesting stress building and relaxation. Bar is 10 microns.
From Bernheim-Groswasser, 2003.

Elastic Ratchet model (Mogilner and Oster, 2003) that quantitatively predicts the
force-velocity curve of McGrath et al. (2003). The “Tethered Ratchet” features “work-
ing” filaments that push as Elastic Ratchets and “tethered” filaments anchored at
complexes that also nucleate dendritic branches (Fig. 9-10B).

While Molecular Ratchets appear to account for the force-velocity data in McGrath
et al. (2003), shallower force-velocity curves obtained by Wiesner et al. (2003) are
interpreted in terms of a very different theory termed Elastic Propulsion (Gerbal
et al., 2000b) (Fig. 9-10C—H). The theory describes stress build-up in continuum,
elastic actin networks that grow on curved surfaces. During nucleation, older layers
are displaced radially by newer polymerization at the nucleating surface. Because the
displaced layers must stretch, they generate ‘hoop’ or ‘squeezing’ stresses around the
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curved particle or bacterium. Propulsive tails emerge from symmetric actin ‘clouds’
because the stresses eventually exceed gel strengths and cause the network to partially
unravel. In the motile configuration, hoop stresses continue to build due to surface
curvature, and frictional tractions hold the tail on the particle (Fig. 9-10G). Once
the propulsive stresses exceed frictional resistances, the object slips forward and tail
stresses relax. The process repeats as polymerization continues and stresses rebuild.

Further evidence supporting the Elastic Propulsion theory is a report by Bernheim-
Groswasser et al. (2002) that large (>4 micron) VCA-coated particles advance in
a micron-scale ‘hopping’ pattern (Bernheim-Groswasser et al., 2002). In this phe-
nomenon, the density of actin in tails varies in a periodic fashion to give tails a
banded pattern (Fig. 9-10H), periods of high actin intensity are also periods of low
velocities and vice versa (Bernheim-Groswasser et al., 2002). The pattern is inter-
preted as the build up and release of squeezing stresses in Elastic Propulsion. The
pattern is prominent on large particles because it takes longer to build the critical
stresses for slipping on surfaces with lower curvature.

Despite evidence supporting Elastic Propulsion, we found that it cannot be the only
mechanism for generating pushing forces in reconstitution experiments. Recognizing
that the nucleating surface must be curved for the Elastic Propulsion mechanism but
not for Molecular Ratchets, we tested whether actin-based motility could occur on
flat surfaces. In Schwartz et al. (2004) we created flat particles by compressing heated
polystyrene spheres. Not only did we find that flat surfaces could be substrates for
pushing forces, we found that disks pushed on flat faces moved faster than did the
coated versions of the spheres from which they were manufactured.

Conclusion

This chapter on cell dynamics and the role of the actin cytoskeleton should be con-
sidered as a snapshot of a rapidly evolving field of research. In the last three years,
PubMed lists 4,000 articles with the two key words actin and cytoskeleton. Indeed,
many of the fascinating topics we work on today —such as actin filament branching and
severing, connection of the actin cytoskeleton to membrane-associated protein com-
plexes, and the behavior of actin bundles commonly termed stress fibers — receive
negligible mention here. The field is very rich, and the inquiries are diverse. It is
a fruitful field of research with much fundamental biology and biophysics to be
discovered.

Can we point to specific therapies that could be influenced by research in the areas
described in this chapter? One possibility is understanding how the endothelium acts
to realign and create small-vessel proliferation in cancerous tissue. Finding means
to defeat the invagination of tumors would create the possibility of starving grow-
ing tumors and killing cancerous tissue selectively. The motility of the endothelium
depends intimately on the organization and turnover of the actin cytoskeleton.

A second grand challenge to which this research points is understanding the mech-
anisms of atherosclerosis proliferation. A key step is the trans-endothelial migration
of leukocytes and an inflammatory response cycle that leads to intimal smooth muscle
cell proliferation. In order for the leukocytes to cross an intact layer of endothelial
cells, the cells must first stick to the endothelium and then induce the underlying
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endothelial cells to retract, paving a path through which the leukocyte can enter the
arterial wall. Understanding the cytoskeleton dynamics associated with this process
could lead to therapies preventing intimal proliferation and subsequent plaque buildup
in the arteries.

The chapter makes clear the tremendous detail with which science now under-
stands both the dynamics and biophysics of the actin machinery that controls cell
shape. Applying this knowledge to disease will require not only continued discovery
of mechanisms and rates, but also the organization of the vast information into a
predictive computational model. Thanks to decades of investigation by scientists em-
phasizing quantitative experiments, modeling of the actin cytoskeleton is advanced
compared to the hundreds of other subcellular systems required to quantitatively de-
scribe cellular life. Models of other systems will inevitably join models of the actin
cytoskeleton over the next few years to begin the broad integration of knowledge.
The possibility exists to use actin models as examples, and to begin today to design
information architectures that can handle such massive amounts of information. Only
with a quantitative means of describing the highly nonlinear interaction between the
many important cellular systems can we hope to represent the complex and highly
nonlinear behavior within cells, and eventually tissues and organs.
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10 Active cellular protrusion: continuum
theories and models

Marc Herant and Micah Dembo

ABSTRACT: This chapter attempts to develop a general perspective on the phenomenon of
active protrusion by ameboid cells. Except in rare special cases, principles of mass and mo-
mentum conservation require that one consider at least two phases to explain the process of
cellular protrusion. These phases are best identified with the cytosolic and cytoskeletal com-
ponents of the cytoplasm. A continuum mechanical formalism of Reactive Interpenetrative
Flows (RIF) is contructed. It is general enough to encompass within its framework a large
range of theories of active cell deformation and movement. Most physically plausible theories
of protrusion fall into one of two classes: protrusion driven by cytoskeletal self-interactions;
or protrusion driven by cytoskeletal-membrane interactions. These are described within the
RIF formalism. The RIF formalism is cast in a form that is amenable to computer simulations
through standard numerical algorithms. An example is next given of the numerical study of the
most elementary protrusive event possible: the formation of a single pseudopod by an isolated
round cell. Some final thoughts are offered on the role of modeling in understanding cellular
mechanical activity.

Cellular protrusion: the standard cartoon

Over the past decades, experiments have consistently demonstrated that active protru-
sion in animal cells is accompanied by a local increase in cytoskeletal density through
active polymerization. A review of the evidence for this is beyond the scope of this
chapter, but key points include the high concentration of filamentous actin observed
by fluorescence or EM at the leading edge of growing protrusions, as well as the
abrogation of protrusion by nearly any disruption of actin polymerization, such as
that caused by cytochalasin. In addition, in most cases of ameboid free protrusion,
it does not appear that molecular motors such as myosins are mandatory; instead,
simple polymerizing activity seems sufficient.

This has led to a “standard cartoon” model of cellular protrusion that figures promi-
nently in many reviews or textbooks of cell biology (see Fig. 10-1). In this picture,
cytoskeletal monomers are added by polymerization at the leading edge and removed
by depolymerization at the base of the protrusion. The free monomers then diffuse
back to the front to be reincorporated in the cytoskeleton in a process that has been
called “treadmilling.”
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Fig. 10-1. The standard cartoon of cellular protrusion

As a general rule such cartoons are powerful but dangerous instruments of knowl-
edge. On the one hand, this cartoon is a means of communicating a complex mech-
anism in a compact, readily intelligible way. It makes clear the following important
points.

1. The cytoplasm is an inhomogeneous medium; its properties at the leading edge
of a protrusion are different than they are elsewhere in the cell.

2. Cytoplasmic dynamics require that there exist a simultaneous forward flow of
material in the form of water and cytoskeletal monomers and backward flow of
cytoskeletal material in the form of filaments (this is the treadmilling).

3. There is a net flow of cytoplasmic volume into the protrusion (otherwise, the
protrusion would not grow!).

On the other hand, the apparent simplicity of the cartoon glosses over important
qualitative and quantitative issues that need to be addressed with rigor for the whole
scheme to stand scrutiny as follows. First, momentum conservation (or force balance)
is not evident; when extending a pseudopod, a cell has to exert an outward-directed
force, if only against the cortical tension that tends to minimize the surface area (but
there may be other opposing forces). By the principle of action and reaction, this
requires some sort of bracing. Without a thrust plate supporting the outward-directed
force, the pseudopod would collapse back into the main body of the cell. Second, the
cartoon is inevitably silent on the mode of force production. The intuitive picture of a
growing scaffolding pushing out a “tent” of membrane can be misleading and in any
case gives little quantitative information on the protrusive force.

Even before going into details, it is clear from these issues that a theory of cellular
protrusion must embody certain attributes: cytoplasmic inhomogeneity; differential
flow of cytoskeleton and cytosol; and volume and momentum conservation. The
Reactive Interpenetrative Flow (RIF) formalism described next is a natural choice to
address these constraints in a rigorous, quantitative manner.

The RIF formalism
Consider the three principal structural components of animal cells:

e The cortical membrane defines the boundary of the cell by controlling (and
often preventing) volume fluxes with the external world. It is furthermore highly
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flexible, fluid, and virtually inextensible. Together, these three properties make
it a good conductor of stress.

o The cytoskeleton resists deformation through viscoelastic properties and is able
to generate active forces through molecular motors (for example myosin) or
other interactions (such as electrostatic).

e The cytosol flows passively through the cytoskeleton; it is a medium for the
propagation of signals. Furthermore, it can be converted to cytoskeleton via the
polymerization of dissolved monomers (for example G-actin — F-actin) and
vice versa.

Note that in general, many chemical entities will simultaneously contribute to the
cytoskeletal and cytosolic phases, the best example being actin in filamentous or
globular form. However, given biomolecules can be classified as being either part
of the cytoskeleton, where they are able to transmit stresses, or part of the cytosol,
where they are able to diffuse, but not both. Note also that this classification ig-
nores membrane-enclosed organelles. In particular, the contribution to the mechan-
ical properties of the cell of the largest of those, the nucleus, can occasionally be
important.

If one makes the key assumption that at the mesoscopic scale, that is, at a scale small
compared to the whole cell but large compared to individual molecules, the properties
of the cell can be represented by continuous fields. Then the general framework of
continuum mechanics can be applied to animal cells just as it is done with any other
material. More specifically, one can write down a closed set of equations to compute
the evolution of 6, (x, ¢) the network phase (cytoskeleton) volume fraction, 6(x, ¢) the
solvent phase (cytosol) volume fraction, v, (X, ¢) the network velocity field, vy (x, 7) the
solvent velocity field, where x is the position vector and ¢ is the time. The scalar fields 6,
and 6; and the vector fields v, and v, are thus defined on a simply connected, compact
domain in Euclidian space that defines the physical extent of the cell. The boundary
of this domain and constraints associated with it through boundary conditions are
then to be a representation of the physical cortical membrane. This is the method of
Reactive Interpenetrative Flows (see Dembo et al. 1986), in other words ‘reactive’
because it allows conversion of one phase into another, and ‘interpenetrative’ because
it allows for different velocity fields for each phase.

The evolution equations for the quantities 6,, 6;, v,, and v, are determined by the
laws of mass and momentum conservation.

Mass conservation

The fact that we have only two phases (cytoskeleton and cytosol) mandates that the
sum of their volume fractions is unity:

0, + 6, = 1. (10.1)

Net cytoplasmic volume flow is given by the sum of the flow of cytosolic volume
and cytoskeletal volume, that is, v = 6,v, + 6;v,. Because the cytoplasm is in a
condensed phase, it is to an excellent approximation incompressible (V - v = 0), so
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that the incompressibility condition yields:
V - (0,v, + 05v5) = 0. (10.2)

Finally, conservation of cytoskeleton implies that the rate of change of network con-
centration at a given point in space (Eulerian derivative) is the sum of an advective
transport term describing the net inflow of network, and a source term .7, which
represents the net rate of in situ cytoskeletal production by polymerization:

36,

ot
Obviously 7 depends on a prescription for local chemical activity that needs to be
provided separately. Eq. 10.3 naturally has a counterpart for the solvent

a6

ot
which, when taken together with Eq. 10.1, unsurprisingly reduces to Eq. 10.2. As a
result, only Egs. 10.1, 10.2, and 10.3 are needed and Eq. 10.4 is redundant.

=—V-(Ov,)+ J. (10.3)

— V- (bsvy)— T, (10.4)

Momentum conservation

The momentum equations for the solvent and network phases are simplified by two
observations. First, due to the small dimensions and velocities involved, the inertial
terms are negligible in comparision with typical cellular forces. Second, the essentially
aqueous nature of the cytosol implies that its characteristic viscosity is not very
different from that of water (0.02 poise). Because this is much less than typical
cytoplasmic viscosities (of order 1000 poise) we shall assume that the entire viscous
stress is carried by the cytoskeletal (network) phase, while the cytosolic (solvent)
phase remains approximately inviscid.

Within such an approximation, the only two forces that act on the solvent are
pressure gradients and solvent-network drag — that is the drag force that occurs when
the solvent moves through the network because of mismatched velocities. In the spirit
of Darcy’s law, the solvent momentum equation can then be written

—0,VP + MO0, (v, — V) = 0. (10.5)

P is the cytoplasmic pressure, and it is assumed that, as for the partial pressures of
a mixture of gases, it is shared by the cytosolic and cytoskeletal phases according
to concentrations (volume fractions). H is the solvent-network drag coefficient more
familiar as the product 6,’H, which represents the hydraulic conductivity that appears
in the usual form of Darcy’s equation. Theoretical considerations (for example see
Scheidegger 1960) as well as experiments on polymer networks (Tokita and Tanaka
1991) give estimates of H that lead to small drag forces compared to other forces
acting within the cytoplasm, chief among them the cytoskeletal vicosity. This is not
surprising, because H should be approximately proportional to the solvent viscosity,
which is small compared to network viscosity.

The smallness of H in turn implies that pressure gradients will be small, or that the
pressure is close to uniform inside the cell. Thus from the point of view of overall cell
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shape and motion that is determined by cytoskeletal dynamics (Eq. 10.6), the precise
value H does not matter as long as it is sufficiently small. However, from the point of
view of internal cytosolic flow, which can play an important transport role, the value
of H does matter and pressure gradients, even though small, are not negligible.

It is in the network (cytoskeleton) momentum equation that the rich complexity of
cell mechanics becomes evident. Aside from pressure gradients and solvent-network
drag, the network is also subject to viscous, elastic, and interaction forces and the
network momentum equation can therefore be written:

—0,VP — H00,(v, — V) + V- [v(Vv, +(Vv,)))] = V- ¥ =0, (10.6)

Here, v is the network viscosity and W is the part of the network stress tensor remaining
under static conditions. The latter can include interfilament interactions (such as
contractility due to actin myosin assembly), filament-membrane interactions (such as
Brownian ratchets), elastic forces due to deformations, and so forth.

Boundary conditions

These partial differential equations must of course be complemented by boundary
conditions and this is where the characteristics of the plasma membrane come into
play. From a mass conservation point of view, the key issue is that of permeability. In
most circumstances, it seems reasonable that the membrane remains impermeable to
the cytoskeleton (which may even be anchored to the membrane) so that therefore:

Vy-n =V, -n (10.7)

where v, is the velocity of the boundary and n is the outward normal unit vector. If
we also assume that the membrane is impermeable to the cytosol (which appears to
be true in some cases and not in others) we also have

Vy M=V, N, (10.8)

but this condition can certainly be relaxed to allow a net volume flux through the
boundary.

From a momentum conservation point of view, there are two main possibilities:
either the boundary is constrained by interaction with a solid surface, as in the case
of a cell/dish or cell/pipette interface; or it is free membrane bathed by an inviscid
external medium. In the former case, the boundary condition boils down to constraints
on the normal (and in the case of no slip, tangential) components of the velocities. In
the latter case, the boundary condition amounts to a stress continuity requirement:

V(VVv, +(Vv,)") n— ¥ -n— Pn=—2ykn — Pen, (10.9)

where y is the surface tension, k is the mean curvature of the membrane, and n
is the outward normal to the membrane. The surface tension (and sometimes the
permeability to the cytosol) is thus the main contribution of the cortical membrane
to the governing evolution equations.
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Constitutive equations

The mass and momentum conservation equations are cast in a very general framework
that needs to be further constrained to provide closure of the system. These additional
prescriptions (the constitutive equations) embody the biological specifications of the
cell. For instance, it is likely that the viscosity v will depend on the cytoskeletal
density: a law such as

v = vob, (10.10)

prescribing a well-defined linear relation between viscosity and network concentra-
tion is such a constitutive relation. In principle, this could be verified empirically by
investigating the rheology of the cytoplasm at various cytoskeletal concentrations.
However, in general such experimental evidence is sparse and often difficult to inter-
pret. One is thus usually reduced to educated guesses for the constitutive laws that
govern J (the network formation or cytoskeletal polymerization rate), H (the resis-
tance to solvent flow through the network), W (the network stress due to elasticity
and static interactions), v (the network viscosity), and y (the tension of the cortical
membrane). Conversely, the main advantage of this formalism is that it is sufficiently
general to accommodate most theories of protrusions: as we shall see below, it all
depends on the proper adjustment of the constitutive equations.

Cytoskeletal theories of cellular protrusion

As has been touched on, it appears that polymerization of large amounts of actin
in the vicinity of a membrane causes outward force and protrusion. It also appears
that this phenomenon is probably not directly dependent on molecular motors such
as myosins, especially as their contractile activity tends to ‘pull’ rather than ‘push’
the cytoskeleton. This has led to theories of protrusion such as the Brownian ratchet
model, in which the free energy released by the addition of monomers to a filament is
transduced to generate a pressure against a membrane that sterically interferes with
the reaction. Without going into the specifics, however, it is clear that such cytoskeletal
theories of protrusion can be categorized into two classes:

¢ Network—membrane interaction theories in which the cytoskeleton and the mem-
brane repel one another through a force field. The classic Brownian ratchet model
belongs to this class, as it relies on the hard-core potential of actin monomers
pushing on the membrane (Peskin et al. 1993).

* Network—network interaction theories in which the cytoskeleton interacts with
itself, resulting in a repulsive force. This could be due to electrostatic interactions
(actin is negatively charged) or thermal agitation.

In what follows we shall formalize these classes of theory in a way that enables linkage
to the RIF approach.

We wish to emphasize that we are only discussing fiee protrusions — that is, pro-
trusions that emerge from the cell body without adhesion to an external substrate.
When adhesion occurs, additional classes of theory become tenable, but these are not
considered here.
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Network-membrane interactions

The basic idea behind a network—membrane disjoining stress is that there exists
a repulsive force between actin monomers (polymerized or unpolymerized) and the
cortical membrane. For free (G-actin) subunits this has no dynamical consequences, as
redistribution occurs freely in the cytosol. However, once subunits are sequestered into
the cytoskeleton by polymerization, the repulsive force has dynamical consequences
because it endows the cytoskeleton with a macroscopic stress. In other words, while
free monomers cannot push back against the membrane, filaments can because they
are braced by the entire inner cytoskeletal scaffolding of the cell (these concepts first
came to the fore with the work of Hill and Kirschner, 1982).

To put these notions on a more formal footing, let us postulate a mean-field repulsive
force between monomers (free or in a filament) and the cortical membrane that derives
from the interaction potential v (r) where 7 is the distance from the membrane
and where we set the constant by requiring lim, o, ¥ (r) = 0. From equilibrium
thermodynamics, we can relate the ratio of free monomer concentration far away
([M¢(00)]) and at distance 7 with the interaction potential as a Boltzmann factor:

free
(M) exp< WU)). (10.11)

[MEe(o0)] ~ T\ ks
Here we can think of ¥¥(r) as the average work required to bring a monomer from
infinity to distance » from the membrane.
At the same time we have the chemical reaction between the polymerized and
unpolymerized state of the monomer.

Mfree = Mbound‘ (1012)

Taking actin as an example where addition of free monomers into polymers occurs
at the barbed ends of filaments, there exists a critical free-monomer density [M gft"]
above which reaction 10.12 is driven to the right and below which it is driven to the
left.

We need to examine 10.12 in the light of 10.11. Let us assume that the membrane—
monomer interaction potential ¥ (r) decreases monotonously with distance from
the membrane, and further that it is infinite (or very large) at zero distance from
the membrane (see Fig. 10-2; in other words, the monomer is excluded from the
membrane by a hard-core potential). Then it should be clear that in a region near
the membrane, [ M(r)] is smaller than [Mgief], and hence that there cannot be any
monomers added into polymers in this region. This region is labeled the ‘gap’ in
Fig. 10-2. Advected polymers may appear in the gap, but unless they are stabilized
by capping, they will tend to disassemble.

Further away from the membrane, ¥ (r) decreases to the point that [Mf¢(r)]
is smaller than [Mgief] and this allows the elongation of polymers by driving free
monomers from the free to the bound state. Assuming that the polymerization of free
monomers is rapid, we then have a region where [MT¢(r)] ~ [Mgff]. This means
that for the region of interest, that is, where polymerization is allowed to take place
(outside the gap) but within the region where membrane—monomer interaction is still
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Fig. 10-2. Cartoon of network-membrane interactions.

significant, we have

[M"(00)]
(M5 ]
This region is labeled ‘polymerization zone’ in Fig. 10-2; within a network—-membrane
interaction model, it is that region that determines the dynamics of protrusion. Of note
is that polymerization could take place further back, but that regions further to the

rear do not have a dynamical impact because there, ¥ (r) ~ 0.

The force exerted by the membrane on a monomer (free or bound) is given by
—V - M, and by action and reaction, this is the opposite of the force f;, exterted by
the monomer on the membrane. If § is the range of the potential (we assume the gap
region to be small), then we approximately have

YM@E)=kzTIn (10.13)

krT Mfree
g, = kol IO
§ [ Mfree]

crit

(10.14)

If we further assume that most of the monomers in the vicinity of the membrane are

sequestered in the cytoskeletal phase, the total force-per-unit area of the membrane

is given by the number of monomers within range times the force per unit monomer:
On kT | [M™(c0)] En [M"e<(00)]

M—— —_— —— = —_—
gy = VM8>< 5 In [Mfree] n VMkBTln [Mgff] n,

(10.15)

crit
where V), is the volume of a monomer. For actin networks, V), = (47/3)(2.7 x
10~7cm)?, so that for normal temperature conditions

[Me<(00)] 2

UM = 5% 10°0, In dyn cm 2. (10.16)
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Natural logarithms of even very large numbers are seldom more than 10, and maximal
volume fractions of cytoskeleton are ~2% (see Hartwig and Shevlin, 1986). The
maximum disjoining stress at the membrane/cytoskeleton interface is thus of order
103 dyn cm~2 (10* Pa, 100 cm H,0).

Network dynamics near the membrane

One should be cautious not to assimilate the force-per-unit area of membrane or
stress given in Eq. 10.16 to a protrusive force; in general the net outward force at the
membrane as could theoretically be measured with a constraining spring would be
considerably less. There are two reasons for this.

1. Imperfect cytoskeletal bracing against backflow: unless there exists some sort
of mechanism to brace the cytoskeleton near the membrane, it will simply
slide back, negating any outward force. In general, such bracing is expected
to be provided by the viscoelastic properties of the cytoskeleton interior to the
boundary layer, which transports stress to whatever is bracing the cell (in other
words, the substratum).

2. Imperfect cytoskeletal decoupling from the membrane: if the cytoskeleton is
somehow anchored to the membrane and cannot flow back, the stress Fj, is
simply carried by the anchors and no outward force results.

We will assume here that the second condition is appropriately fulfilled, although
experimental evidence is sometimes contradictory (for example, Listeria actin tails
are attached to the Listeria, Gerbal et al., 2000). Let us further assume that the
counteracting force to rear flow is provided by interior cytoskeletal viscosity. In that
case, simple dimensional analysis (which can be made more rigorous, see Herant
et al., 2003) gives

wMs
Av >~

(10.17)
v

where v is the viscosity and Awv is the velocity change near the membrane (see
Fig. 10-2). In the case of perfect bracing and no external opposing force, the protrusive
velocity is then Awv, but in the general case it will be less. In the limit of a stalled
protrusion, the protrusive velocity is zero while the retrograde flow of cytoskeleton
is —Av. Note that within this picture, the important parameter is not the magnitude
of WM but rather its product with the range of the membrane—network interaction
Mg,

Finally, an interesting finding is that, if one assumes that the constitutive laws for
the viscosity and for the network—-membrane force have the same dependence on
the cytoskeletal concentration, for example v = vy6,, ¥ \IJé” 6,, then one notices
that Eq. 10.17 implies that Av is independent of the network concentration near the
membrane. Using numerical values for vy (6 x 10° poise, see Herant et al., 2003)
and W) (upper limit 5 x 10° dyn cm™2, see Eq. 10.16), one gets Av < § s~ 1. Typical
velocities Av at the leading edge are at least 10 nm s~! and may range to as high as
0.5 um s~', (see Theriot and Mitchison 1992), which means that §, the characteristic
range of interaction, must be greater than 10 nm and even reach 0.5 pm.
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Position Position

Fig. 10-3. Monomer concentration vs. position (dots — free monomers; dashes — bound monomers;
solid — total monomers).

Special cases of network-membrane interaction: polymerization

force, brownian and motor ratchets

Inrecent years, the concept of “polymerization force” has gained traction as a putative
explanation for cellular protrusion. While the concept is often used in a vague manner,
it has been formalized on more solid physical grounds in two interesting models: the
Brownian ratchet model (see Mogilner and Oster, 1996) and the clamped filament
elongation model (Dickinson and Purich, 2002). In essence, these models are special
cases of network—membrane interactions in that they rely on the hard-core repulsion
between monomers and membrane as an interaction potential. For instance, Eq. 10.14
is identical to that commonly given for the force produced by a Brownian ratchet (see
for example Howard, 2001), where § is taken to be the incremental lengthening of the
polymer by addition of a monomer.

Network-network interactions

The basic idea behind a network swelling stress is similar to that of a membrane—
network disjoining stress and we shall follow the approach of the previous section.
One begins with the assumption that there exists a repulsive force between actin
monomers, free or bound. Again, for free (G-actin) subunits, this has no dynamical
consequences, as redistribution occurs freely in the cytosol. However, once subunits
are sequestered into the cytoskeleton by polymerization, the repulsive force has dy-
namical consequences because it endows the cytoskeleton with a macroscopic stress.
Under these conditions, one can intuitively perceive how the energy of the chemical
process of polymerization can be transformed into expansion work.

Fig. 10-3 illustrates this principle. On the left, polymerizing activity is moderate;
wherever there is a mild excess of monomers bound in filaments, free monomers are
driven out by the repulsive interaction. The end result is that the total concentration
of monomers (bound and unbound) varies little.

The amount of variation is determined by the relative magnitudes of the time scale
of thermal-driven diffusion of monomer into regions of excess polymer gy = 2/ D
and the time scale of force-driven diffusion out of regions of excess polymer Tgyce =
12 /[D(y/ kg T)] (where [ is the length scale of the region, D the monomeric diffusion
coefficient, and ¥ the repulsive potential, and where we have used Einstein’s relation
between viscosity and diffusion coefficients).
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If, however, polymerization becomes intense — for instance due to uncapping of
filaments — it can drive the number of monomers sequestered in filaments above that
of the background, and we have the case depicted on the right of Fig. 10-3. The local
free monomer concentration goes near zero but cannot be negative, so that the total
monomer concentration has a significant bump. A monomer moving around therefore
sees a repulsive potential force in the bump that is higher than the baseline away from
the bump.

Our formal development here will approximately parallel that of the network—
membrane interaction problem in the previous section. We assume a pairwise repulsive
potential force (potential ¢) between actin monomers either free or part of a filament.
The total force exerted on a monomer M is therefore the result of a sum on all other
monomers M;:

ZFMM, =-> um, —Vy". (10.18)

— O,

Here " is the part of the potential that comes from fixed monomers sequestered
in filaments. Generally, this will be the dominant contribution wherever network is
highly concentrated, as free monomers will naturally diffuse away and lower the free
monomer concentration (see Fig. 10-3). Just like the case of membrane—network
interactions, we have a Boltzmann factor,

[Me(bump)] ( W(bump))
=&Xp\————F—

e 10.19
[ Mfree(baseline)] kgT ( )

where we have assumed that the network concentration outside of the “bump” is so

low as to make " (bump) > "(baseline) =~ 0. In this picture, " (bump) is the work

of bringing one free monomer from baseline concentration into bump (Fig. 10-3).
Again, we have the chemical reaction

Mfree \__\ Mbound , ( 1 020)

which goes to the right if [MT¢(x)] > [M™°] and to the left if [MT(x)] < [M 7]

crit crit
where, as before, [Mgff] is the critical free monomeric concentration above which
free ends of polymers are lengthened by monomer addition.

In regions of very high network density, ¢ is large, and by Eq. 10.19 this leads to
[Mee] < [Mgff]. This drives Eq. 10.20 to the left (depolymerization) so that one can
say that such a region cannot be created by polymerization (although external or con-
tractile forces could compress network above such a threshold). It is therefore clear
that the highest network concentration achievable by chemical network polymeriza-
tion is that for which [Mf¢(x)] ~ [Mgff], and that therefore, the highest achievable
network repulsive stress per monomer is:

[M'¢(baseline)]
[Me]

Eq. 10.21 makes it clear that in general, the stress contribution by polymerizing a

single monomer into the bump is at most of order 10 k3 7". Let V), be the volume of

Y" = kT In (10.21)
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a monomer, we have

W (bump) >~ 10kgT

M (10.22)
v, ’ '

M

where W” is the spatially averaged stress density that will contribute in the network
momentum equation (Eq. 10.6). Note here that a proper treatment would integrate W”
from a network concentration of 0 to 6,, including a threshold effect (see Fig. 10-3)
and would also yield a 62 term instead of 6,. Considering the other uncertainties of
the problem, we have preferred to sacrifice accuracy to simplicity.

If we use typical biological numbers, for example actin, V) = (47/3)(2.7 x
10~7cm)?, and maximal volume fractions of cytoskeleton 6, ~2%, we obtain a maxi-
mum swelling stress of the cytoskeleton of order 10° dyn cm~2 (10* Pa, 100 cm H,0),
the same as the maximum stress for the network—membrane interaction.

Network dynamics with swelling
It is obvious that network—network repulsion will tend to smooth out nonuniform
cytoskletal distributions by expansion of overdense regions into underdense regions.
It is thus of interest to look at the dynamics of a clump of network in a low-density
environment. If the principal retarding force is taken to be viscosity of the network
itself, simple dimensional analysis shows that the time scale of expansion is:
v
=3
Of note is that there is no intrinsic scale to the problem; instead it is set by the
length scale of the clump of overdense network d, and so the characteristic veloc-
ity is v = d/7. In addition, if both v and W" have the same functional dependence
(for example, linear) on the network volume fraction 6,, then t becomes indepen-
dent of 6,. We have used and provided experimental support for v = vy6, where
Vo = 6 x 10° poise (Herant et al. 2003) and from the calculation above, the swelling
stress W" = W76, is such that at most W) =~ 5 x 10° dyn cm~? (there is no reason
it cannot be much less), which gives a minimal expansion time scale of order one
second.

. (10.23)

Other theories of protrusion

For the sake of completeness, we would like to briefly touch upon alternative theories
of protrusion that are not currently in vogue because they do not fit in the standard
cartoon (Fig. 10-1). Of note is that all these theories are also amenable to modeling
within the RIF formalism and that it is out of concern for keeping this survey within
a reasonable length that we do not pursue a quantitative analysis for each of these
models (see Fig. 10-4).

Hydprostatic pressure protrusion. Hydrostatic pressure-driven protrusion is a ven-
erable model (Mast, 1926) that probably has applicability in a limited number of
circumstances. The basic idea is that an increase in internal pressure (presumably due
to contractile activity somewhere in the cell) leads to bulging and protrusion of the
membrane. Hidden behind the apparent simplicity of the concept are a number of
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Fig. 10-4. Three alternative theories of cellular protrusion.

factors that merit consideration. In order for there to be a local protrusion of mem-
brane, either the increase of hydrostatic pressure has to be local to the region, or the
compliance of the cortical membrane must increase locally. Except in very large cells
(for example, Amoeba proteus), or in compartmentalized organisms, the former con-
dition is difficult to realize. This is because the hydraulic resistance to cytosolic flow
through the cytoskeleton is typically extremely small. As a result, any local pressure
excess tends to be quickly erased by solvent flow. The only way around this constraint
is to have a large distance leading to a large hydraulic resistance, or an isolated com-
partment in which pressure can be locally increased without driving cytosolic flow to
other parts of the cell.

The alternative is that of a local weakening of the cortical tension driving a local
Marangoni-type of flow. Again there are some difficulties with such a mechanism.
Recall that cell cortical tension is the result of contributions from the tension of
the plasma membrane and from the cytoskeletal cortex underlying the membrane.
It is unlikely that membrane tension can be lowered locally, because the massless,
fluid-mosaic nature of the plasma membrane should make it a good conductor of
stress that equilibrates surface tension rapidly around the cell. (Experimental and
modeling evidence hint at the membrane tension being a global property of the cell,
Raucher and Sheetz, 1999; Herant et al., 2003.) It is, however, possible for the cy-
toskeletal cortex to be locally weakened (see Lee et al., 1997). In a regime in which
it carries substantial (tensile) stresses, such a weakening may result in pseudopod
formation.

Hypertonic protrusion. Although as far as we are aware they have not been the subject
of much recent study, models based on osmotic swelling accompanied by modified
membrane permeability were once actively pursued, especially in the context of the
extension of the acrosomal process of the Thyone sperm, a setting that may not have
general applicability to ameboid protrusion (Oster and Perelson, 1987). Here the basic
idea is that through the action of locally activated severing enzymes, osmotic tension
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near the tip of a protrusion is increased, and that the permeability of the plasma
membrane is sufficient to allow significant inflow from the extracellular environment.
It is then possible for the volume of the protrusion to grow, and the filling with
polymerized cytoskeleton is considered to take place after the fact for structural
reasons. There are many problems with such a model — possibly explaining why it has
lain fallow for a while, now. To mention just one problem, to the extent we are able
to ascertain it, it appears that cellular volume does not change appreciably during the
extension of protrusions, even big ones.

Shearing motor protrusion. At a most elementary level, myosin motors are shear-
ing motors in the sense that they actively slide filaments parallel to one another. If
one imagines a reasonably stiff assembly of cytoskeletal filaments perpendicular to
the plasma membrane, it is conceivable that this structure could be driven out by a
shearing motor mechanism as shown in Fig. 10-4 (Condeelis, 1993). Once of some
popularity, this model seems more or less abandoned in the context of free protru-
sions, probably because there is evidence that molecular motors are not required —
although we would caution that in our view, the case is far from being experimentally
airtight.

Numerical implementation of the RIF formalism

A detailed discussion of the numerical strategies that can be used to solve the evolution
equations is beyond the scope of this chapter. We will therefore limit ourselves to a
brief outline of the methodology. Because it is well suited to free-boundary problems in
the low-Reynolds-number limit, we use a Galerkin finite element scheme implemented
in two spatial dimensions (for problems with cylindrical symmetry) on a mesh of
quadrilateral cells. Grid and mass advection are implemented following cannonical
methods that can be found in standard texts and reviews.

Briefly, the calculation is advanced over a time-step A¢ determined by the Courant
condition or other fast time scale of the dynamics. We evolve over A¢ by means of
sequential operations (this is operator splitting):

1. Weadvect the mesh boundary according to the network flow and then reposition
mesh nodes for optimal resolution while preserving mesh topology, boundaries,
and interfacial surfaces (Knupp and Steiberg, 1994).

2. We advect mass from the old mesh positions to the new mesh using a general
Eulerian-Lagrangian scheme with upwind interpolation (Rash and Williamson,
1990).

3. We use constitutive laws to compute necessary quantities such as viscosities
and surface tensions.

4. Finally, the momentum equations and the incompressibility condition together
with the applicable boundary conditions are discretized using the Galerkin ap-
proach and the resulting system is solved for the pressure, network velocity, and
solvent velocity on the advected mesh using an Uzawa style iteration (Temam,
1979).
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Because of the multiphase nature of the flow (one has to solve the triplet v,,, v, and
P rather than just for v and P), this last step requires some modifications from the
usual treatment.

By adding the solvent and network momentum equation (Eq. 10.5 and 10.6) to-
gether, v, can be eliminated to obtain a “bulk” cytoplasmic momentum equation:

—VP+ V- [v(VV, +(Vv,))] -V ¥ =0. (10.24)

This is to be complemented with the appropriate boundary condition for stress across
the membrane, which, in usual situations, looks like

[V(VVv, +(Vv,)!)] 'n— Pn— W -n=—Pyn —2ykn, (10.25)

where Pey is the external pressure, y and « the surface tension and mean curvature.
The solvent momentum equation (Eq. 10.5) gives an expression for v;:

VP
Vi =V, — (10.26)
HO,
which can then be substituted in the incompressibility condition to yield:
1 6
Vilv,—=—=VP])=0. (10.27)
H 6,

In situations where there is zero membrane permeability (in other words, no trans-
membrane solvent flow) the boundary condition simplifies to:

VP =0. (10.28)

Following the standard Uzawa method, an initial guess for the pressure field allows
the computation of the network velocity field by Eq. 10.24. This velocity field can
then be used to update the pressure field by Eq. 10.27, and so on through iterations
between the two equations. Once the network velocity field v, and pressure field
P have converged to a self-consistent solution, the solvent velocity field v, can be
trivially extracted through the use of Eq. 10.26 with automatic enforcement of the
incompressibility condition.

An example of cellular protrusion

Probably the simplest possible case of cellular protrusion is the emergence of a single
pseudopod from an isolated, initially round nonadherent cell. This configuration has
the advantages of a simple geometry with two-dimensional cylindrical symmetry
and of avoiding potential confounding factors that appear when the mechanics of
adhesion is involved. The formation of such pseudopods has been studied in individual
neutrophils by Zhelev et al. (2004) and modeled in some detail by Herant et al. (2003).
Here we present a simplified version of this process as a pedagogical introduction to
the basic principles that are involved.

We will describe behaviors under both a cytoskeleton-membrane-repulsion and
cytoskeleton-swelling model. In both cases, we make the following assumptions:

¢ Initial condition is that of a round cell of diameter 8.5 um.

e Cortical tension is y = 0.025 dyn cm™".
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e Equilibrium network (cytoskeleton) volume fraction is 6y = 0.1% (Watts and

Howard 1993) everywhere inside the cell except:

e Network fraction over a spherical patch of cell surface (diameter 1 pm) is
fixed to one percent.

* Away from the frontal patch, network fraction evolves to its equilibrium
according to first order kinetics with time-scale 7, = 20 seconds, that is
den/dt = (90 - en)/rn-

» Network viscosity is given by o6, where vy = 6 x 10° poise so that the
baseline interior viscosity of the cell is v = vy8y = 6000 poise.

These values are reasonable approximations of the characteristics of human neu-
trophils (see Herant et al., 2003).

The idea is that in both the repulsion and the swelling models, the excess cytoskele-
ton at the activated patch of cortex will drive the formation of a pseudopod. Bracing
by the viscous interior of the cell allows outward protrusion against the restoring force
of the cortical tension that tends to sphericize the cell.

Protrusion driven by membrane-cytoskeleton repulsion

The mechanics of membrane—cytoskeleton repulsion as a driver of protrusion is
straightforward as follows: (i) a region with increased cytoskeletal density appears
due to enhanced polymerization at the leading edge of the pseudopod. (ii) Due to
repulsion from the cortical membrane, cytoskeleton flows into the cell while cytosol
is sucked forward. (iii) Cytoskeletal flow into the cell is opposed by viscous resistance
of the underlying cytoplasm. By action and reaction, this leads to bulging out of the
membrane, eventually creating and lengthening a pseudopod.

As has been pointed out, the quantity that matters for the dynamics of membrane—
cytoskeleton interaction is the product of the membrane—cytoskeleton interaction
stress density U™ with the range § of the interaction. In numerical simulations that
encompass the whole cell, it is not practical to try to accurately model the details of
the cytoskeletal dynamics near the membrane as depicted in Fig. 10-2. Instead, the
stress contribution to the network momentum equation (Eq. 10.6) is integrated over
the range § of network—membrane interaction. So, if we allow a generous average of
6 kp T interaction energy per actin monomer within range of the membrane, we have

\Ilg’ =3 x 1069,,n,-n_,- dyncm’2, (10.29)

where n is the unit normal vector to the membrane. If we would like the pseudopod
to extend a few um within about a minute, we need the flow velocity of cytoskeleton
to be of order 0.2 um s~'. By Eqs. 10.17 and 10.29, this means that § ~ 0.5 pm.

Fig. 10-5 shows the outline of the cell together with the network velocity field
sixty seconds into a two-dimensional cylindrical symmetry simulation starting from
a round cell. The flow clearly changes direction right at the pseudopod surface with
the disjoining membrane—cytoskeleton force driving out the membrane while causing
a centripetal flow of cytoskeleton into the cell.

The observant reader has probably noted that in this simulation, the frontal surface
of the pseudopod has a curiously uniform velocity. This is because the additional
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Fig. 10-5. Simulation Protrusion driven by membrane — cytoskeleton repulsion. Length of the pseu-

dopod is ~6 pm, pseudopod velocities are ~0.1 um s~

velocity constraint of “no-shear” was introduced at the tip of the pseudopod. In
the absence of such a prescription, membrane—network repulsion can drive severe
rippling instabilities whereby the membrane grows folds that rapidly lengthen in a
way reminiscent of the Rayleigh-Taylor instability (heavy over light fluid). From
a biological point of view, the “no-shear” condition that we had to impose could
point to rigid transverse cross-linking of filaments at the leading edge that prevent
sliding. This instability also provides a potential mechanism for the formation of
microvilli.

Protrusion driven by cytoskeletal swelling

The mechanics of cytoskeletal swelling as a driver of protrusion is similar to that
of cytoskeletal-membrane repulsion. A region with increased cytoskeletal density
appears due to enhanced polymerization in a compartment close to the leading edge
of the pseudopod. Under repulsive self-interaction, the dense clump of cytoskeleton
swells, drawing in cytosol like an expanding sponge draws water. This is the volume
flow that accounts for the growth of the pseudopod. Finally, expansion into the cell
is balanced by viscous resistance of the underlying cytoplasm. This braces outward
expansion, which — while it does not have to work against viscosity of an external
medium (assumed to be inviscid) — does have to work against cortical tension as new
cellular area is created by the growth of the pseudopod.

Following the discussion of network swelling and in parallel with the simulation
of cytoskeletal-membrane repulsion, we assume a contribution of 6 kg T per actin
monomer to the cytoskeletal swelling stress density

W =3 x 10%), dyncm™2. (10.30)

Fig. 10-6 shows the outline of the cell together with the network velocity field
sixty seconds into the simulation, starting from a round cell. As in the simula-
tion of protrusion driven by cytoskeletal-membrane repulsion, there is an obvious
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Fig. 10-6. Protrusion driven by cytoskeletal swelling. Length of the pseudopod is ~ 6 um, pseudopod

velocities are ~0.1 pm s~

retrograde flow of cytoskeleton. However, one will note that the center of expan-
sion is slightly behind the leading edge, so that there also exists a small region of
forward cytoskeletal flow at the front of the pseudopod. This is in contrast with
protrusion from cytoskeletal-membrane repulsion where the flow of cytoskeleton
is retrograde all the way to the tip of the pseudopod and then changes to forward
motion at the membrane. (In reality, this occurs at the “gap” region depicted in
Fig. 10-2.)

Discussion

It is reassuring that choices of physico-biological parameters (such as viscosity or
interaction energies) that seem by and large reasonable can lead to a plausible mech-
anism for the protrusion of a pseudopod. The morphology and extension velocity
of the pseudopod is within range of the experimental data obtained for the neu-
trophil (Zhelev et al., 1996). In addition, retrograde flow similar to that observed in
lamellipodial protrusion (for example, see Theriot and Mitchison, 1992) is evident.
There are, however, some difficulties with each model. In the case of the membrane—
cytoskeleton repulsion model, the range of interaction had to be set to 0.5 um to
obtain sufficient elongation velocity. This is a large distance compared to a monomer,
but small compared to the persistence length of a filament (for instance, see Kovar
and Pollard, 2004) which implies that the stress field would most likely have to be
stored in the large scale strain energy from deformation of the cytoskeleton (Herant
et al., 2006). In the case of the swelling model, it is difficult to build up clumps of cy-
toskeleton of significant density and size (as are observed) without prompt smoothing
and dissipation by expansion. Although none of those caveats are model killers in the
sense that more complicated explanations can be invoked to rescue them, they hint at
more mechanical complexity than is presented in the rather simple approach followed
here.

A separate but nonetheless important issue is that of discrimination between models.
As Figs. 10-5 and 10-6 make clear, each model can produce a similar pseudopod.
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However, the cytoskeleton velocity field is different in a way that is intrinsic to the
mechanism of protrusion invoked in each case. In the swelling model, there exists a
stagnation point (or center of expansion) within the cell across which the cytoskeletal
flow goes from centripetal to centrifugal. The distance of the stagnation point from
the leading edge depends on the force resisting protrusion (for instance in the limit
of a hard wall, the stagnation point is at the membrane), but in certain conditions (see
Herantetal., 2003 for an example), it can lie far back from the leading edge. This is not
the case in the membrane—cytoskeleton repulsion model, where the stagnation point
lies in the “gap” region (Fig. 10-2) very near the membrane. Such distinction may
be a way to experimentally establish the distinction between swelling and repulsion
models of protrusion.

Finally, it would have been possible to compute models of alternative protrusion
theories such as those in Fig. 10.4 using the RIF formalism. We do not do so here
because these other theories are not currently favored.

Conclusions

For reasons of brevity, we have not included computational examples of protrusion
models that fail to produce cell-like behavior. The fact that these tend to make only
rare appearances in the literature can be misleading: in reality good models with
good parameters are needles in haystacks (for example, see Drury and Dembo,
2001). This is mostly due to the fact that the spaces of inputs (model specifica-
tions, such as viscosity) and outputs (model behavior, such as cellular shape) that
need to be explored are both extremely large, as expected in complex biological
systems.

In general, our experience has been that in hindsight, it is not difficult to discover
why it is that a particular model with a particular choice of parameters does not lead
to the behavior one was hoping for. On the other hand, we have also found that a priori
expectations about the kind of results a given model will produce are rarely precisely
matched by a numerical simulation. As aresult, the process of constructing mechanical
models of cell behavior is one of iteration during which one refines one’s experience
and intuition by running many numerical experiments. It is also our experience that
this process often leads to deeper insights about the fundamental mechanisms at play
in certain cellular events such as protrusions.

With this in mind, caution is in order when dealing with cartoon descriptions of
the mechanics of living cells. As compelling as a mechanical diagram in the form of
rods, ropes, pulleys, and motors working together may be, the actual implementation
of such models within a quantitative model may not lead to what one was expecting!
Thus, in a Popperian way, one of the principal benefits of a rigorous framework for
cell mechanics is the ability to falsify invalid theories (Popper, 1968). This is why,
although such frameworks can be difficult to develop and use, they are necessary to
reach a real understanding of the mechanics of living cells.

We thank Juliet Lee as well as the editors for comments on an early version of this
chapter. This work was supported by Whitaker biomedical engineering research grant
RG-02-0714 to MH and NIH grant RO1-GM 61806 to MD.
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The primary objective of this book was to bring together various points of view
regarding cell mechanics, contrasting and comparing these diverse perspectives. This
final short chapter summarizes the various models discussed in an attempt to identify
commonalities as well as any irreconcilable differences.

A wide range of computational and phenomenological models were described for
cytoskeletal mechanics, ranging from continuum models for cell deformation and
mechanical stress to actin-filament-based models for cell motility. A concise review
was also presented (Chapter 2) of numerous experimental techniques, which typically
aim to quantify cytoskeletal mechanics by exerting some sort of perturbation on the
cell and examining its static and dynamic responses. These experimental observations
along with computational approaches have given rise to several often contradictory
theories for describing the mechanics of living cells, modeling the cytoskeleton as a
simple mechanical elastic, viscoelastic, or poroviscoelastic continuum, a porous gel, a
soft glassy material, or a tensegrity (tension integrity) network incorporating discrete
structural elements that bear compression.

With such remarkable disparity among these models, largely due to the diversity of
scales and biomechanical issues of interest, it may appear to the uninitiated that various
authors are describing entirely different cells. Yet depending on the test conditions
or length scales of interest, identical cells may be viewed so differently as either a
continuum or as a discrete collection of structural elements.

Experimental data are accumulating, and promising methods have been proposed
to describe cell rheology. While there has been some convergence toward a range of
values for the cytoskeletal shear modulus, the range remains large, spanning several
orders of magnitude. This suggests either disparities in the measurement methods,
considerable variability between cells or between cell types, or differences in the
methods employed to interpret the data. A unique aspect of cellular mechanics is that
active as well as passive characteristics need to be considered.

A variety of different approaches have been described to simulate cell or cytoskele-
tal stiffness. Likely there is not a single “correct” model; rather, one model may prove
useful under certain circumstances while another model may be better suited in others.
In part, the model of choice will depend on the length scale of interest. Cells contain
a microarchitecture comprised of filaments ranging down to ~10 nm in diameter
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with separation distances of ~100 nm. When considering whole-cell deformations,
a continuum description may be appropriate; when the force probe is on the scale of
an AFM tip, then details of the filament organization are almost certainly critical.

As a practical matter, it is important to determine what constitutive law best fits
the observed structural behavior. While a linear elastic or even linear viscoelastic
material description is sufficient to mimic certain observations, other more complex
descriptions will almost certainly be needed to encompass a range of excitation fre-
quencies and large deformations. These are just now being identified. There seems
to be a growing consensus that the constitutive behavior of a cell corresponds to that
of a soft glassy material (see Chapter 3) even though the underlying basis for this
behavior is not yet clearly understood. Albeit lacking a fundamental understanding,
these measurements and the relative simplicity of the generalized form that they ex-
hibit provide at least two critical new insights. First is that the cell responds as though
the relaxation times are distributed according to a power law, suggesting many relax-
ation processes at low frequencies but progressively fewer as frequency is increased.
Second, cytoskeletal stiffness and friction or viscosity are interrelated, in that the
same underlying principles likely govern both. Both stiffness and friction appear to
be governed by a single parameter, the “effective temperature,” that reflects the extent
to which the material is solid-like or fluid-like. Bursac et al. (2005) speculate that
this might relate to a process in which the cytoskeleton is “trapped” in a collection of
energy wells but can occasionally “escape” utilizing, for example, either thermal or
chemical (such as, ATP-derived) energy. In this connection, the effective temperature
might be a measure of molecular agitation, reflecting the relative ability to escape.
As appealing as these ideas might be, however, they remain to be fully demonstrated,
and so remain intriguing speculation.

As Chapter 2 points out, while there appears to be some degree of convergence
regarding the values and frequency dependence of viscoelastic parameters for the
cytoskeleton, the results obtained remain somewhat dependent upon the method used
to probe the cell. In publications as recent as this past year, values for cytoskeletal
stiffness ranging from ~20 Pa (Tseng et al., 2004) to 1.1 MPa (Marquez et al., 2005)
have appeared, and the bases for these discrepancies still need to be resolved. In
particular, as most (but not all) of the data on which the soft glassy material model
is based are obtained from one measurement method (magnetic twisting cytometry),
one still needs to exercise caution in making broad generalizations.

While some of the models appear quite disparate, there are some significant sim-
ilarities. The cellular solids and biopolymer (Chapter 8) theories differ in terms of
how the individual elements in the structure resist deformation, with the cellular solids
model considering these to be beams subject to bending, and the biopolymer theory
treating them as entropic chains that lose configurational entropy as the material is
stretched. Recent studies (Gardel et al., 2004) are beginning to reconcile these dif-
ferences and, perhaps not surprisingly, are finding that both descriptions might apply
depending upon the concentrations of actin and cross-linkers and the state of stress
in the material. Neither of these models, however, can be readily connected to the
observed behavior as a soft glassy material.

Another microstructural model is based on the concept of tensegrity (Chapter 6),
and is most closely related to the cellular solids model in that cytoskeletal structure
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is defined by an interconnected network of elastic elements. The key distinction here,
though, is that stiffness is conferred not by the stiffness of the individual elements,
but rather primarily by the baseline stresses they support. These stresses are imposed
either by cell adhesions to extracellular structures or by internal members such as
microtubules that are in compression. In either case, the elastic properties of the
elements take on secondary importance, provided they are sufficiently stiff to undergo
relatively small changes in length under normal stress.

In a sense, the continuum descriptions (Chapters 4, 5 and 10) are for the most
part independent of behavior at the microstructural level, and simply make use of
constitutive laws that can either be based on experiments or derived directly from
one of these microstructural models. Consequently, while the continuum models can
be useful in describing how deformations or stresses distribute throughout the cell,
they provide no information on the deformations at the microscale (that is, within
the individual elements of the matrix), and are entirely dependent on information
contained in the constitutive relation.

Although this one text could not possibly capture all the work being done on cell
mechanics in that it represents a broad spectrum of these activities, it should immedi-
ately become clear that one fruitful direction for future research is in the modeling of
dynamic processes — cell migration, phagocytosis and division. In fact, with only a few
exceptions (notably the work described in Chapters 7, 9, and 10) the cell is treated as a
traditional engineering material, meaning one with properties that are time invariant.
Cells, on the other hand, are highly dynamic in that their cytoskeletal structures are
constantly changing in response to a variety of external stimuli including, especially,
external forces. Consequently, each time we probe a cell to measure its mechanical
properties, we may alter those same properties. One exception to this statement is the
use of the Brownian motions of intracellular structures to infer stiffness, but these
measurements are still being refined; as currently implemented, they are subject to
some degree of uncertainty. Still, this represents an important direction for research,
and we are sure to see refinements and wider use of these nonintrusive methods in
the future.

While advances in cell mechanics are considerable, many open questions still
remain. Mechanotransduction, the active response of living cells to mechanical signals
remains an active area of investigation. It is well known that living cells respond to
mechanical stimulation in a variety of ways that affect nearly every aspect of their
function. Such responses can range from changes in cell morphology to activation of
signaling cascades to changes in cell phenotype. Mechanotransduction is an essential
function of the cell, controlling its growth, proliferation, protein synthesis, and gene
expression.

Despite the wide relevance and central importance of mechanically induced cellular
response, the mechanisms for sensation and transduction of mechanical stimuli into
biochemical signals are still largely unknown. What we know 1is that living cells
can sense mechanical stimuli. Forces applied to a cell or physical cues from the
extracellular environment can elicit a wide range of biochemical responses that affect
the cell’s phenotype in health and disease.

Various mechanisms have been proposed to explain this phenomenon. They in-
clude: changes in membrane fluidity that act to increase receptor mobility and
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lead to enhanced receptor clustering and signal initiation (Haidekker et al., 2000);
stretch-activated ion channels (Hamil and Martinac, 2001); mechanical disruption
of microtubules (Odde and co-workers, 1999); and forced deformations within
the nucleus (Maniotis et al., 1997). Constrained autocrine signaling, whereby the
strength of autocrine signaling is regulated by changes in the volume of extracellular
compartments into which the receptor ligands are shed, is yet another mechanism
(Tschumperlin et al., 2004). Changing this volume by mechanical deformation of the
tissues can increase the level of autocrine signaling.

Finally, others have proposed conformational changes in intracellular proteins
along the force-transmission pathway, connecting the extracellular matrix with the
cytoskeleton through focal adhesions, as the main mechanotransduction mechanism
(see Kamm and Kaazempur-Mofrad, 2004 for a review). In particular, the hypothe-
sis that links mechanotransduction phenomena to mechanically induced alterations
in the molecular conformation of proteins has been gaining increased support. For
example, certain proteins that reside in ‘closed’ conformation can be mechanically
triggered to reveal cryptic binding sites. Similarly, small conformational changes may
also change binding affinity or enzyme activity. For example, when protein binding
occurs through hydrophobic site interactions, a conformational change could modify
this function and potentially disrupt it totally. Force transmission from the extracellu-
lar matrix to the cell interior occurs through a chain of proteins, located in the focal
adhesion sites, that are comprised of an integrin—extracellular matrix protein bond
(primarily vitronectin and fibronectin), integrin-associated proteins on the intracellu-
lar side (paxillin, talin, vinculin, and others), and proteins linking the focal adhesion
complex to the cytoskeleton. Stresses transmitted through adhesion receptors and
distributed throughout the cell could cause conformational changes in individual
force-transmitting proteins, any of which would be a candidate for force transduction
into a biochemical signal. The process by which changes in protein conformation
give rise to protein clustering at a focal adhesion or initiate intracellular signaling,
however, remains largely unknown (Geiger et al., 2001).

External stresses imposed on the cell are transmitted through the cytoskeleton to
remote locations within the cell. To understand these stress distributions requires
knowledge of cytoskeletal rheology, as governed by the structural proteins, actin fil-
aments, microtubules, and intermediate filaments. For example, a simplified picture
can be painted of the cytoskeletal rheology that is limited to actin filaments and actin
cross-linking proteins living in a dynamic equilibrium. These cross-links constantly
form and unbind at rates that are largely influenced by the forces borne by the individ-
ual molecules. Cytoskeletal rheology would then be determined at the molecular scale
by the mechanics and binding kinetics of the actin cross-linking proteins, as well as
by the actin matrix itself (Gardel et al., 2004). To understand the phenomena related
to mechanotransduction in living cells and their cytoskeletal rheology, the mechanics
and chemistry of single molecules that form the biological signaling pathways that
act in concert with the mechanics must be examined.

Another largely open question in the field of cytoskeletal mechanics is related to the
cell migration and motility that is essential in a variety of biological processes in health
(such as embryonic development, angiogenesis, and wound healing) or disease (as in
cancer metastasis). As discussed in Chapter 9 and 10, the process of cell motility or
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migration consists of several steps involving multiple mechanobiological signals and
events starting with the leading edge protrusion, formation of new adhesion plaques
at the front edge, followed by contraction of the cell and the release of adhesions at
the rear (see Li et al., 2005 for a recent review). A host of mechanical and biochemical
factors, namely extracellular matrix cues, chemoattractant concentration gradients,
substrate rigidity, and other mechanical signals, influence these processes. Many
unanswered questions remain in understanding the signaling molecules that play a
key role in cell migration, and how they are regulated both in time and 3D space. It
is largely unknown how a cell actively controls the traction force at a focal adhesion
or how this force varies with time during the cell migration.

To understand the mechanobiology of the cell requires a multiscale/multiphysics
view of how externally applied stresses or traction forces are transmitted through
focal adhesion receptors and distributed throughout the cell, leading subsequently
to conformational changes that occur in individual mechanosensing proteins that in
turn lead to increased enzymatic activity or altered binding affinities. This presents
both a challenge and an opportunity for further research into the intrinsically coupled
mechanobiological phenomena that eventually determine the macroscopic behavior
and function of the cell.

Because no one method has emerged as clearly superior in describing the mechanics
and biology of the cell across all cell types and physical conditions, this might reflect
the need for new approaches and ideas. We hope that this monograph has inspired new
researchers with fresh ideas directed toward that goal. Perhaps the biggest question
that still remains is whether it is at all possible to construct a single model that
is universally applicable and can be used to describe all types of cell mechanical
behavior.

References

Bursac P, Lenormand G, Fabry B, Oliver M, Weitz DA, Viasnoff V, Butler JP, Fredberg JJ.
“Cytoskeletal remodelling and slow dynamics in the living cell.” Nat. Mater., 4(7):557-61, 2005.

Gardel ML, Shin JH, MacKintosh FC, Mahadevan L, Matsudaira PA, Weitz DA. “Scaling of
F-actin network rheology to probe single filament elasticity and dynamics.” Phys. Rev. Lett.,
93(18):188102, 2004.

Geiger B, Bershadsky A, Pankov R, Yamada KM. “Transmembrane crosstalk between the extracel-
lular matrix—cytoskeleton crosstalk.” Nat. Rev. Mol. Cell Biol., 2(11): 793-805, 2001.

Haidekker MA, CHeureux N, Frangos JA. “Fluid shear stress increases membrane fluidity in endothe-
lial cells: a study with DCVJ fluorescence.” Am. J. Physiol. Heart Circ. Physiol.,278(4):H1401-6,
2000.

Hamill OP, Martinac C. “Molecular basis of mechanotransduction in living cells.” Physiol. Rev., 81:
685-740, 2001.

Kamm RD and Kaazempur-Mofrad MR. “On the molecular basis for mechanotransduction,” Mech.
Chem. Biosystems, Vol. 1(3):201-210, 2004.

Li S, Guan JL, Chien S. “Biochemistry and biomechanics of cell motility.” Annu. Rev. Biomed. Eng.,
7:105-50, 2005.

Maniotis AJ, Chen CS, Ingber DE. “Demonstration of mechanical connections between integrins,
cytoskeletal filaments and nucleoplasm that stabilize nuclear structure.” Proc. Natl. Acad. Sci.
USA, 94:849-54, 1997.

Marquez JP, Genin GM, Zahalak GI, Elson EL. “The relationship between cell and tissue strain in
three-dimensional bio-artificial tissues.” Biophys. J., 88(2):778-89, 2005.

229



230

M.R.K. Mofrad and R.D. Kamm

Odde DJ, Ma L, Briggs AH, DeMarco A, Kirschner MW. “Microtubule bending and breaking in
living fibroblast cells.” J. Cell Sci., 112:3283-8, 1999.

Tseng Y, Lee J S, Kole, T P, Jiang, I, and Wirtz, D. “Micro-organization and visco-elasticity of the
interphase nucleus revealed by particle nanotracking.” J. Cell Sci., 117, 2159-67, 2004.

Tschumperlin DJ, Dai G, Maly 1V, Kikuchi T, Laiho LH, McVittie AK, Haley KJ, Lilly CM, So
PT, Lauffenburger DA, Kamm RD, Drazen JM. “Mechanotransduction through growth-factor
shedding into the extracellular space.” Nature, 429: 83—6, 2004.



Index

Acetylated low-density lipoprotein, 58
Acoustic microscopy, 42—43
Actin
cortical, 174
depolymerization (See depolymerization
of actin)
diffusion coefficient of, 192
dynamics, 180—188
elastic modulus of, 178
mechanics of, 177-180
role of, 170-176
swelling stress values, 215
F-Actin
about, 153, 154, 172
acoustic signals in, 42-43
architecture, regulation of, 175
and Arp 2/3, 186
ATP hydrolysis rate, 182
in cytosol conversion, 206
discovery of, 181
persistence length of, 155, 167
shear response in, 163
stiffness measurements of, 161, 165
G-Actin
about, 153, 154
assembly of, 182, 183—-185
in cell protrusion, 210
cellular concentration of, 192
discovery of, 181
and profilin, 185, 188
recycling of, 192, 193
Actin binding proteins (ABPs)
about, 11, 14
in actin dynamics regulation, 183—188
Actin cortex, 153
Actin filaments
about, 12, 13, 73, 107, 153, 154, 171, 175
in AFM, 25
assembly of, 185—187 (See also polymerization
of actin)
bending of, 161, 178

in cell migration, 75, 108, 210
and cell stiffness, 10, 225
crosslinking in, 166, 228
and cytochalisin-D, 57, 111
DLS measurement of, 40
in the ECM, 173
in load transfer, 114
in muscle contraction, 108, 142-143,
145-146
myosin, interactions with, 117, 124
persistence length of, 38, 107, 178
polymerization (See polymerization of actin)
power-law relationships, 58
and prestress, 104
structure of, 179
in tensegrity models, 106, 107, 117
Young’s modulus, 172
a-actinin
about, 11
in focal adhesions, 14
Actin monomers
about, 171
in cell protrusion, 210
diffusion coefficient of, 171, 191
recycling of, 187, 191-193
Actin networks
cell membranes, dynamics near, 212
compression in, 179
crosslinking in, 166, 171, 228
cytochalisin-D and, 57, 111, 181, 204
differential modulus in, 166
elastic moduli in, 167, 178, 227
shear stress in, 179
stiffness in, 178
swelling stress and, 179, 215
volume equations, 211
Young’s modulus in, 179
Action at a distance effect, 106, 110-112,
114
Actoclampin model, 193-194
ADF/cofilin, 183-185, 191
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Adherent cells
cortical membrane model for, 115, 118
protrusion models for, 218-222
Adhesion defined, 4
Affine network model
about, 116, 164
shear modulus of, 164
uniform strain in, 166
Affine strain approximation, 117
Affinity in phase transitions, 138
AFM. See atomic force microscopy (AFM)
Aggregate modulus in osteoarthritis, 95
Airways, pulmonary, 8
Alginate capsules, acoustic signals in, 4243
Amoeba, 75, 204
Anisotropy in cell behavior, 98
Apoptosis, 188
Arc length, short filaments, 157
Area expansion modulus defined, 10
Arp 2/3 complex
in actin filament assembly, 185-187
in cell locomotion, 189
in the ECM, 173
Arterial wall cells, 3
Atherosclerosis, 171
Atomic force microscopy (AFM)
and continuum models, 81
in deformation measurement, 25-26, 43, 72,
73
shear/loss moduli and, 58
strain distributions, 74
Autocrine signaling, 228

Bead diameter, 116
Bead displacements, measurement of, 112
Bead pulling, cell response to, 118
Bead rotation and prestress, 115. See also rotation
Bending

3D, 156

of actin filaments, 161, 178

energy in force extension relationships, 157

moduli, 13, 155

stiffness (See stiffness, bending)

temperature and, 154-156

and wavelength, 161
Binding affinity, changes in, 6, 228, 229
Biopolymers. See also polymers

about, 154-162

modeling, 226

persistence lengths of, 155

stiffness measurements of, 161, 165
Biphasic elastic formulations and creep response,

90

Biphasic models

of cell mechanics, 85-88

continuum viscoelastic, 84

linear isotropic, equations for, 87

time dependencies and, 88

of viscoelasticity, 87-88, 98

Biphasic properties, measurement of, 92-94, 95,
96
Boltzmann’s constant, 155, 210, 214
Bone
deformation measurement in, 28-29
mechanosensing in, 19
repair of, 28
stiffness in, 8
stress, response to, 6
Bouchard’s theory of glasses, 63
Boundary conditions
in cell protrusion, 208
in continuum models, 75, 76
in force extension relationships, 157
Bowen’s theory of incompressible mixtures, 86
Boyle van’t Hoff relation and osmolality, 89
Brownian motion
in cytoskeletal filaments, 160-162, 167, 227
and mean square displacements, 161
measurement of, 37, 81, 154, 155
Brownian ratchet model, 193194, 209, 213
Buckling. See microtubules, buckling in

Cable-and-strut tensegrity model
about, 106, 118, 121
tension-compression synergy in, 108
of viscoelasticity, 123
Cadherins, binding affinity in, 9, 228
Calcium, release of, 113, 138
Cancer cells
melanoma, deformation measurement in, 20
power-law relationships, 58, 61
Capping protein, 187
Cardiac tissue
contraction in, 9
Cartilage
behavior of, describing, 87-88
deformation measurement in, 93, 96-98
examination of, 171
mechanical properties, measurement of, 85,
93
mechanosensing in, 19
momentum balance equations in, 86
stiffness in, 8
in vivo state, characterization of, 94
Caspases, 188
Cauchy-Green tensor in viscoelasticity
measurements, 88
Cauchy stress tensors in momentum balance laws,
86
Caulerpa spp., 131
Cell division, 25
Cell indentation. See indentation;
microindentation
Cell locomotion. See also migration of cells
about, 152, 153
actin’s role in, 171, 193-195
Arp 2/3 complex in, 189
leukocytes, 189, 195
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Cell mechanics. See also cells, dynamics network elasticity in, 163—-165
about, 1, 84 power-law relationships, 58
biphasic models of, 85-88 secretion in, 139-140
changes, measurements of, 59 shape
measurements of, 52-54, 56-57 and behavior, 104
role of, 2 deformation of, 74, 183
Cell membranes. See also lipid bilayer membrane maintenance of, 2-3, 171
about, 170, 172 and prestress, 109, 118, 121, 124
actin network dynamics near, 212 and stress/strain, 98
in diffusion dynamics, 130-132 spreading of (See cell spreading)
disruption of, 130, 131 stress/ion concentration, characterization of,
fluidity changes, response to, 228 89
force per unit area equation, 211 stress/strain behavior in, 109
force transmission in, 80 structures in, 10-15, 152
and magnetic field gradients, 34-35 surface indentation in deformation
mechanical tension applied to, 26 measurement, 2226
modeling, 77, 80, 173, 227 suspended, modeling, 118
protrusion of, 189, 205-209 temperature fluctuations in, 8, 36, 123, 165
Cell pokers in deformation measurement, 22-23, water retention in, 132-134
118 Cell spreading
Cells. See also individual cell type by name deformity and, 119
about, 129, 170 and prestress, 113, 114, 121, 124
adherent, 115, 118, 218-222 and stiffness, 120
anatomy, structural, 7-9 Cellular tensegrity model
arterial wall, 3 about, 104, 106
behavior experimental data, 107
anisotropy in, 98 principles of, 104, 114, 129
describing, 84-85, 95 Chains, force extension in, 156-159
diffusion in, 129 Chondrocytes
regulation of, 104 biphasic properties, modeling, 96
stress/strain, 108—109 creep response in, 90
biphasic properties, measurement of, 95 examination of, 171
cancer, power-law relationships, 58, 61 mechanical properties, measurement of, 85, 93
crawling, actin dynamics in, 188-195 modeling, 77, 87, 90
dynamics (See also cell mechanics) volume changes, calculation of, 92
about, 135-138 Chondrons, 93
modeling, 227 Cilia, 11
tensegrity and, 121-124 Colchicines, 113, 119
energy potential, 135 Collagen
environment binding affinity in, 9, 228
interactions with, 152 in the ECM, 173
prediction of, 98 in the PCM, 93
sensing, 5-6 power-law relationships, 58
function, 124, 134-135 stiffness measurements of, 165
as gels, 132-135 Compression
incompressible, Poisson ratio in, 92 in actin networks, 179
loading, response to, 87-89, 98 in cytoskeletal filaments, 164, 227
mammalian, formin in, 186 in microplates, 28
mechanical properties in microtubules, 107, 112-113, 114, 118
measurement of, 50, 51-62, 84, 92, 115 and prestress, 104, 118
regulation of, 98, 105, 117, 124, 152 and tensed cables, 116
representation of, 206 Computation domains, geometry of, 77-78
mechanosensing in, 5-6, 14, 19, 28 Conductance, changes in, 6
membrane-wounded state in, 131 Cones, indentation depth in, 24
migration of (See cell locomotion; migration of  Connectin, 141
cells) Connecting filaments in muscle contraction, 142,
modeling of, 71-72, 76-78, 81 146

multiphasic properties, measurement of, 89, 94, Constant phase model. See structural damping
96 equation
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Constitutive laws Cortical membrane, 205, 210. See also cell
in continuum models, 227 membranes
Darcy’s law in, 87 Cortical membrane model, 115-116, 117
hyperelastic, 98 Courant condition, 217-218
Lamé coefficients in, 87 Creep response
multiphasic about, 84, 85, 98 modeling, 87, 90, 123
in protrusion, 209, 217-218 in the PCM, 93
and stress-strain relationships, 72 and shear moduli, 35
and structural behavior, 226 in vascular endothelium, 172
Continuum mechanics in cell representation, Crk-associated substrate, 14
206 Cross-bridges in muscle contraction, 110, 145-146
Continuum viscoelastic models Crosslinking
about, 71-72, 81, 227 in actin networks, 166, 171, 228
anisotropy in, 98 and effective modulus, 180
biphasic/triphasic, 84 in polymers, 165, 180
limitations of, 81, 98 in proteins, 153, 163—-165
principles of, 76, 78 shear modulus of, 164-165, 180
purpose of, 72-75 in smooth muscle, 110
stress in, 104 in tensegrity models, 106, 124
Contraction of muscles Crossover frequency. See frequency
about, 4, 7, 8, 140147 Curvature, measurement of, 155, 156, 157
actin filaments in, 108, 142-143, 145-146 Cytochalisin-D
airways, pulmonary, 8 and the actin network, 57, 111, 181, 204
cardiac tissue, 9 and cell migration, 34
in cell migration, 108 shear/loss moduli and, 5657
connecting filaments in, 142, 146 Cytoindentation in cell modulus measurement,
connectin in, 141 94-96
cross-bridges in, 110, 145-146 Cytometry techniques, 109. See also individual
in the cytoskeleton, 14 technique by name
epithelial cells, 108 Cytoplasm
fibroblasts, 14, 107, 113 about, 85, 170, 205
and force/stiffness, 66, 68 dynamics, 205
force transmission and, 66, 68 energy potential, 135
in HASM, 65, 109, 110 as gel, 132
immunoglobulins in, 141 tearing and strain, 114
inchworm mechanism of, 143147 viscosity, measurement of, 20-21
in lamellipodia, 108 volume flow, 206
microtubules and, 108, 112 Cytoskeleton
modeling, 81, 227 about, 62, 153, 170, 206
modulation of, 122 deformability, mechanisms of, 117
myofibrils in, 144 density, 204-205, 209
myosin-based, 191 environment, interactions with, 172-174, 176
myosin in, 141 filaments
phase transitions in, 129, 146 about, 154, 167
power-law relationships, 123 assembly of, 124
power-law rheology, 123 behaviors, 159, 164
and prestress, 104, 112, 114 Brownian motion in, 160-162, 167, 227
prestress in, 104, 112, 114 compression in, 164
sarcomeres in, 7, 8, 144 dynamics of, 160-162, 167
and stiffness, 66, 68, 104, 111, 114 elastic properties of, 13
stiffness and, 66, 68, 104, 111, 114 imaging, 161
temperature and, 158—159 loading, response to, 156—159
thermal fluctuations in, 158159 nonlinear responses in, 167
Convergence-elongation theory, 191 orientation, calculation of, 157
Cortex relaxation rates of, 161
about, 11 rotation in, 164
modeling, 78, 80, 227 stretching of, 164
shear moduli in, 35, 153 force transmission in, 9-10, 14, 67, 111, 116

Cortical layer, tensile force in, 116 mechanics, field of, 1-2
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mechanotransduction in, 227, 228
modeling of, 71, 77, 80, 81, 114-121, 124
momentum equations for, 208
particle movement in, 34
prestress in, 107108, 114, 117, 124 (See also
prestress)
stiffness values, 226
structure of, 176, 183
velocity field in, 222
volume equations for, 219
Cytosol, 206, 207, 210. See also cytoplasm

Darcy’s law in constitutive law, 87
DBcAMP, 56-57, 61
Deformation measurement. See rheology
Deformations

cell shape, 74, 183

non-affine, 164
Depolymerization of actin, 177, 181-183, 189, 192
Dictyostelium, deformation measurement in, 20
Differential modulus in actin networks, 166
Diffusing wave spectroscopy (DWS), 4041
Diffusion

in cell behavior, 129, 140

coefficients

actin monomers, 171, 191
extracting, 41-42, 171

in deformation measurement, 21

force-driven, 213

and mean square displacements, 161

membrane pumps in, 130

paradigm, problems with, 130-132

rate, changes in, 6
Discrete models, stress in, 105, 109
Discase

mechanotransduction and, 228

PCM response to, 93

stress response to, 6
DNA

force extension relationships in, 157

persistence length of, 155

stiffness measurements of, 161
Donnan osmotic pressure relation defined, 89
Drug treatment

and actin polymerization, 110

and cell migration, 34

shear/loss moduli and, 57
Dynamic light scattering (DLS), 39—40
Dynamic moduli, calculation of, 95

Effective modulus and crosslinking, 180
Elastic energy and microtubule disruption, 112
Elasticity. See also viscoelasticity

biphasic elastic formulations and creep

response, 90

of cytoskeletal filaments, 13

Hookean, shear modulus of, 116, 123

network, in cells, 163-165

solutions, response to, 162
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stress/strain displacement, linear models of,
80
Young’s modulus of. See Young’s modulus of
elasticity
Elastic moduli
in actin networks, 167, 178, 227
in cell dynamics, 122, 166
and frequency, 180
in MTC, 54-55, 57, 58
power-law relationships, 59—60
Elastic propulsion theory, 194, 195
Elastic ratchet model, 193—-194
Electroporation, 130
Endothelial cells
actin cytoskeleton in, 107, 117
action at a distance effect in, 110-112
deformation measurement in, 28
examination of, 171, 172
focal adhesions in, 107
fluid shear stress in, 177
mechanical properties of, 172, 173
microtubules in, 108, 119
modeling, 78, 80-81, 90
power-law relationships, 58
shear/loss moduli in, 58
stiffness in, 119, 120
stress response in, 19, 116, 120
Endothelial monolayer, 171
Energy
bending, in force extension relationships,
157
elastic and microtubule disruption, 112
hyperelastic strain energy function, 98
potential in cells, 135
temperature and, 226
wells in SGR, 64
Entanglement length in semi-flexible polymers,
162
Entropy in cell response, 157, 163, 165, 226
Environment
and cell locomotion, 152
cytoskeletal interactions with, 172—174, 176
and phase transitions, 137, 139
prediction of in cells, 98
sensing by cells, 5-6, 14, 19, 28
Enzyme activity, changes in, 228, 229
Epithelial cells
about, 3
and cellular insult, 131
contraction in, 108
membrane-wounded state in, 131
modeling, 79-81
power-law relationships, 58, 61
shear/loss moduli in, 25, 58
structure of, 11
Equilibrium moduli
calculation of, 95
in endothelial cells, 171
in protrusion, 219
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Erythrocytes
about, 2
deformation measurement in, 26, 40, 73, 74
microcirculation, 74
modeling of, 71, 75, 78-79, 90, 118
movement of, 34
optical trapping of, 32
rupture strength in, 10
stiffness of, 11
structure of, 11, 174
Euler-Lagrange scheme, 217-218
Extracellular matrix (ECM)
about, 9, 93, 173
behavior of, describing, 87-88, 98
chondrocyte properties in, 92, 96
interactions with, 84, 96-98, 124
mechanotransduction in, 228
prestress in, 104, 107, 116
production of, 28

Falling sphere method, 20-21
Ferri/ferromagnetic particles, deformation
measurements in, 34, 35, 51-52, 112,
115
Fibrin, stiffness measurements of, 165
Fibrinogen in endothelial cells, 172
Fibroblasts
about, 3, 181
actin dynamics in, 189, 190
action at a distance effect in, 111
contraction in, 14, 107, 113
force transmission in, 80
gelsolin-null, 187
microtubules in, 108
migration in, 75, 191
modeling, 79-81, 90, 227
power-law relationships, 58
shear/loss moduli in, 25, 35, 58
viscosity measurement in, 28
Fibronectin
action at a distance effect, modeling, 110-112
binding affinity in, 9, 228
power-law relationships, 58
viscosity measurement in, 28
Fick’s law, 192
Ficoll, 192
Filamin-A, role of, 175-176
Filaments, cytoskeletal. See cytoskeleton,
filaments
Filamin, 11
Filopodia, 4, 189, 191
Fimbrin, 11
Finite element methods (FEM)
in cell behavior modeling, 90, 92, 93, 98
in microcirculation studies, 74
in multiphase models, 96-98
in protrusion modeling, 217-218
in stress/strain evaluation, 80-81
in viscoelasticity measurements, 87, 88

FLMP, power-law relationships, 61
Fluctuation dissipation theorem in SGR, 65
Fluid flow
and cell shape, 98
deformation measurement, methods in,
28-29
multiphasic/triphasic models, 88—-89, 96
and stress, 67 (See also shear stress)
velocity in constitutive law, 87
Fluid mosaic model, 10
Fluorescence correlation spectroscopy (FCS),
41-42
Fluorescence microscopy, 154, 174
Focal adhesion complex (FAC)
about, 14, 173
in force transmission, 80, 114, 229
formation of, 112
mechanotransduction in, 227, 228
prestress in, 107
Focal adhesion kinase (FAK), 14
Force balance in cell protrusion, 205
Force extension relationships
about, 157, 159
bending energy in, 157
boundary conditions in, 157
in chains, 156-159
in DNA, 157
Force transmission
in cell membranes, 80
in cell migration, 75, 205
cellular exposure to, 19, 228
in chains, 156159
and contraction, 66, 68
and crosslinking, 110, 111
to the cytoskeleton, 9-10, 14, 67, 111, 116
focal adhesions in, 80, 114, 229
in fibroblasts, 80, 107
and focal adhesion sites, 80
in the glycocalyx, 3, 7
and hysteresivity, 66, 68
modeling, 72, 80, 82, 227
in the nucleus, 111
in particles, 30-31
small particles, 30-31
in solvent displacement, 132, 134
and strain, 166
in tensegrity models, 106, 113
time dependencies and, 67
vs. stiffness, 120
Formins in actin filament assembly, 185-186
Frequency
and elastic moduli, 180
in indentation studies, 95
in MTC measurements, 53, 56
in polymer solutions, 163, 166
in power-law relationships, 61, 124
and shear/loss moduli, 54-55, 57, 58, 163
and stiffness, 163
and viscoelasticity, 36, 123-124
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Galerkin finite element scheme, 217-218
Gel dynamics
motion and, 138-147
principles of, 129
shear modulus of, 180
Gelsolin, 143, 187-188
Gene expression
and cellular insult, 131
changes in, 6, 152
mechanotransduction and, 227
regulation of, 124
Glass microneedles in deformation measurement,
22
Glycocalyx, 3, 7
Goblet cells, 139
GPl1ba, 176
GTPase, 176

Hair cells, mechanosensing in, 5
Heart disease, 171
Hertz relation, 24
Histamine
power-law relationships, 61
and prestress, 110, 111, 119, 122
shear/loss moduli of, 57, 58
Hookean elasticity, shear modulus of, 116, 123
Hooke’s Law, 22
Human airway smooth muscle (HASM)
action at a distance effect in, 112
cell dynamics in, 115, 122-123
contraction in, 65, 109, 110
malleability of, 65
MTC measurements of, 5457
power-law relationships, 60, 61
stress/strain behavior in, 109
work of traction in, 110, 111
Hydrostatic pressure protrusion, 215-216
Hyperelastic strain energy function and
anisotropy, 98
Hypertonic permeability model of protrusion, 215,
216
Hysteresivity
and force transmission, 66, 68
in power-law relationships, 60, 61
time dependencies and, 67
Hysteretic damping law. See structural damping
equation

Immunoglobulins, 9
Inchworm mechanism of muscle contraction,
143-147
Indentation. See also microindentation
in cell modulus measurement, 94-96
cones, depth of, 24
frequency in, 95
spheres, depth in, 24
and stiffness, 24
surface, in deformation measurement, 22-26, 72
Inner ear cells, mechanosensing in, 5

Integral membrane proteins, binding affinity in, 10
Integrins
in actin binding, 171, 176
action at a distance effect, modeling, 110-112,
114
binding affinity in, 9, 228
in focal adhesions, 14
modeling, 79, 115, 118
and prestress, 128
Intermediate filaments
about, 13
and prestress, 104, 109, 114
role of, 121, 171
and stiffness, 114
stiffness measurements of, 165
in tensegrity models, 106, 113—114
Intervetebral discs, osmotic loading in, 98
Intracellular tomography technique
action at a distance effect in, 112
shear disturbance, modeling, 111
Tons
channels, 228 (See also calcium, release of;
potassium pump activity; sodium pump
activity)
concentration, characterization of, 89
multiphasic/triphasic models, 88—89
partitioning in cell function, 134-135
Isoproterenol and cell stiffness, 111, 122
Isotropy
in modeling, 71, 88, 227
in polymer-gel phase transitions, 138, 147

Kelvin model, 90
Keratocyte lamellipodia, 189, 191, 192

Lamé coefficients in constitutive law,
Lamellipodia
about, 189
actin depolymerization in, 192
contraction in, 108
modeling, 191, 227
protrusion of, 221
Laminin, binding affinity in, 9, 228
Langevin equation, 160
Latrunculin A, 59
Leukocytes
about, 2-3
deformation measurements in, 43
locomotion of, 189, 195
modeling, 78-79, 227
stiffness in, 11
structure of, 11
Linear damping in cell dynamics, 123
Linear elastic models of stress/strain
displacement, 80
Linear isotropic biphasic models, equations for, 87
Linear momentum conservation in continuum
models, 75, 205
Linear solid model, 123
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Lipid bilayer membrane, 9-10, 89. See also cell
membranes
Lipid vesicles, rupture strength in, 10
Listeria monocytogenes, 193, 212
Loads
and cell stiffness, 10, 108-109
in discrete models, 109
filament response to, 156-159, 165
long-distance transfer of, 113, 114
in tensegrity models, 106, 113
work of traction transfer and, 113
Loss moduli
in cell dynamics, 122
in MTC, 54-55, 56
power-law relationships, 58, 59-60

Macrophages, 58, 61
Magnetic methods in deformation measurement,
32-36
Magnetic tweezers, 34
Magnetic twisting cytometry (MTC)
about, 51-52
in the cortical membrane model, 115, 116
in stiffness measurement, 120
Magnetocytometry, 72, 79, 111
Mass conservation in protrusion, 206
Mast cells, 139
Maxwell model, 123
Maxwell viscoelastic fluids, modeling, 78—79
Mean square displacements, 65, 161
Mechanosensing in cells, 5-6, 14, 19, 28. See also
environment
Mechanosensitive channel of large conductance
(MscL) defined, 5
Mechanotransduction, 227
Melanoma cells, deformation measurement in,
20
Membrane pumps in diffusion dynamics, 130
Mesh boundary in protrusion modeling, 217-218
Mesh size in semi-flexible polymers, 162
Mesoscopic model, 193
MG63 osteoblast cells, modeling of, 95
Mica surfaces, solvent displacement on, 132, 134
Microbeads
force transmission in, 72, 80
stress/strain displacements in, 80
Microcirculation and cell shape, 74
Microelectrodes, 130
Microindentation
cell multiphasic properties modeling, 94-96
in deformation measurement, 72, 73
Micropipette aspiration
about, 90
of chondrocytes, 77, 87, 93
and continuum models, 73, 76-78
in deformation measurement, 26, 43, 71, 72, 73
in erythrocyte modeling, 118
in viscoelasticity modeling, 78-79

Micropipettes in cell modeling, 90, 110112,
131
Microplates, shearing/compression method in
deformation measurement, 28
Microscopy. See individual technique by name
Microtubules
about, 12, 13, 107, 154
in AFM, 25
buckling in, 107, 108, 112—114, 118
disruption, cellular response to, 228
in endothelial cells, 108
and G-actin, 192, 193
in load transfer, 113, 114
modeling, 155, 167, 227
persistence length of, 107, 155
and prestress, 109, 113, 119, 121
role of, 171
in tensegrity models, 106
Migration of cells. See also cell locomotion
about, 4, 7
actin filaments in, 75, 108, 210
anatomical structures in, 11
contraction in, 108
and drug treatment, 34
force transmission in, 75, 205
modeling, 75, 81, 228
Mitosis, measurement of, 25
Mixture momentum equation in triphasic models
defined, 89
Molecular ratchet model, 194-195, 213
Momentum balance laws, solid/fluid phases,
86
Momentum conservation in cell protrusion, 205,
207-208,217-218
Momentum exchange vector defined, 86
Motion
3D, 156
and gel dynamics, 138-147
longitudinal dynamics, calculation of, 162
planar, 155-156
subdiffusive, 161
transverse equations of, 160, 161
MTC. See magnetic twisting cytometry (MTC)
Multiphasic constitutive laws. See constitutive
laws, multiphasic
Multiphasic/triphasic models
about, 88-89
applications of, 96
cell environment prediction, constitutive
models in, 98
continuum viscoelastic, 84
solids, 88—-89
triphasic continuum mixture models, 88, 89
Muscle contraction. See contraction of muscles
Muscle fibers, deformation measurement in, 20.
See also human airway smooth muscle
(HASM); myocytes, cardiac; smooth muscle
cells; striated muscle
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Mutual compliance defined, 38
Myocytes, cardiac
about, 3
contraction in, 7, 9
membrane-wounded state in, 131
patch removal from, 131
shear/loss moduli in, 25, 58
Myofibrils in muscle contraction, 144
Myosin
actin filaments, interactions with, 117, 124
in cell protrusion, 204, 209, 215, 217
inhibitors and G-actin, 192, 193
in muscle contraction, 141
and reptation, 143
Myosin light chain kinase
binding dynamics of, 66
cross-bridge kinetics in, 110
phosphorylation of, 113

Nematocyst vesicles, 140
Network elasticity in cells, 163—-165
Network-membrane interaction theories of
protrusion, 209-213
Network-network interaction theories of
protrusion, 209, 213-215
Network phase, momentum equations for,
207-208
Neurites, extension of, 108
Neuronal cells
about, 3
action at a distance effect in, 111
membrane disruption in, 131
Neutrophils
about, 3
gelsolin in, 187
microcirculation in, 74
modeling of, 71, 73, 78-79, 90
power-law relationships, 58, 61
protrusion in, 218
stiffness in, 10
stress response in, 19
Newtonian viscosity
modeling, 78-79, 123
in MTC measurements, 54, 56, 57
Nocodazole and cell migration, 34
Noise, 53, 63
Noise temperature
about, 50
in power-law relationships, 61, 68
in SGR theory, 64, 67
time dependencies and, 67
Non-affine deformations, 164
Nucleic acids, 132
Nucleus
about, 11
in cytosol conversion, 206
disruption, cellular response to, 228
force transmission in, 111
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and intermediate fibers, 113
modeling, 77, 112, 227
prestress in, 117

stiffness in, 28

One-particle method, 37-38
Optical bead pulling, 75
Optical microscopy, 141, 174
Optical stretcher, 42
Optical traps in deformation measurement,
30-31
Optical tweezers, 32, 74
Oscillatory responses, modeling, 123
Osmolality
cell response to, 98
modeling, 88, 89
Osmometers, 89
Osteoarthritis, PCM measurements in, 93
Osteoblast cells, modeling of, 95
Osteocytes, 28

Particles
ferri/ferromagnetic, deformation measurements
in, 34, 35, 51-52, 112, 115
force transmission, 30-31
methods, 37-39
movement in the cytoskeleton, 34
sedimentation of in rheology, 20-21
superparamagnetic, deformation measurements
in, 34
twisting of by magnetic forces, 35-36
Passive microrheology, 36
Patch-clamp method, 130
Paxilin, 14, 228
PCM. See pericellular matrix (PCM)
Pericellular matrix (PCM)
biphasic properties of, 92—-94
role of, 93
in stress/strain patterns, 96
viscoelastic response, modeling, 93
Persistence lengths
of actin, 38, 107, 178
and bending stiffness, 13, 154, 157, 158
of biopolymers, 155
and filament behavior, 159, 167
of filamentous proteins, 156
of microtubules, 107, 155
in semi-flexible polymers, 162
Phagocytosis, 34
Phase transitions
about, 129, 140
affinity in, 138
in cell dynamics, 135-138
environment and, 137, 139
isotropy in, 138, 147
motion and, 138-147
in muscle contraction, 146
in polymers, 137, 138
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Phospholipids, binding affinity in, 10, 228

Phosphorylation of myosin light chain kinase, 113

Plasma membrane. See Cell membranes
Platelets, gelsolin in, 187
Poisson’s ratio
in chondrocytes, 92
in constitutive law, 87
in incompressible cells, 92
in osteoarthritis, 94, 96
Polyacrylamide gel substrate, prestress
transmission in, 107, 110
Polymerization of actin
about, 175, 177, 206
and cell rigidity, 180, 204-205
in cytoskeleton production, 207
discovery of, 181-183
by drug treatment, 110
in fibroblasts, 107, 189
in protrusion, 193-195, 209-217
regulation of, 187
stiffness and, 180, 204-205
Polymerization zone, 211
Polymers. See also Biopolymers
crosslinking in, 165, 180
deformation measurements in, 40, 51-62
hydrogel dynamics, 137
modeling, 155-156, 227
nonlinear responses in, 167
phase transitions in, 129, 137, 138
semi-flexible
entanglement length in, 162
solutions of, 163, 164, 167
solutions, frequency in, 163, 166
stiffness, mechanical in, 154, 156
Polysaccharides, 132
Porous solid model of actin filament structure,
179
Post-buckling equilibrium theory of Euler, 113
Potassium pump activity, 134. See also ions
Power-law rheology
acetylated low-density lipoprotein, 58
actin filaments, 58
cancer cells, 58, 61
collagen, 58
in continuum modeling, 81
contraction, 123
data normalization method, 60—62
DBcAMP, 61
elastic moduli, 59-60
endothelial cells, 58
epithelial cells, 58, 61
fibroblasts, 58, 107
fibronectin, 58
FLMP, 61
frequency, 123-124
HASMs, 61, 60
histamine in, 61
hysteresivity in, 60, 61
macrophages, 58, 61

myosin light chain kinase, 58, 61
neutrophils, 58, 61
noise temperature in, 61, 68
relaxation rates, 226
RGD peptide, 58
shear/loss moduli, 58, 59-60
in smooth muscle cells, 123
stiffness, normalized, in, 60, 61
structural damping equation in, 61
urokinase, 58
vitronectin, 58

Pressure in momentum conservation, 207

Prestress
about, 104
actin filaments and, 104
balancing of, 110, 111, 113, 116, 118,

121

and bead rotation, 115
cell dynamics and, 122-123
and cell shape, 109, 118, 121, 124
cell spreading and, 113, 114, 121, 124
colchicine and, 119
compression and, 104, 118
contractile, 104, 112, 113
differential modulus in, 166
in the ECM, 104, 107, 116
in focal adhesions, 107
histamine and, 110, 111, 119, 122
integrins and, 107
and intermediate filaments, 104, 109, 114
measurement of, 109, 111, 113, 118
microtubules and, 109, 113, 119, 121
and model response, 118
in the nucleus, 117
and stiffness, 9, 105, 109-111, 118, 124
structures, 105

transmission in polyacrylamide gel substrates,

107, 110
and viscoelasticity, 123
Probes, 34, 37
Profilin, 185, 188
Proteins
about, 132
crosslinking in, 153
filamentous, 156
interactions, dynamics of, 50
mechanotransduction in, 227, 228
modeling, 71, 227
Proteoglycans, binding affinity in, 9, 228
Protopod dynamics, measurement of, 75
Protrusion
about, 4, 204-205, 218-222
actin-based, 193-195, 209-217
in amoeba, 204
boundary conditions in, 208
cell, viscosity in, 212, 219
of cell membranes, 189, 205-209
constitutive equations in, 209
constitutive laws in, 209, 217-218
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cytoskeletal theories of, 209-217
hydrostatic pressure, 215-216
hypertonic permeability model of, 215-216
mass conservation in, 206
momentum conservation in, 205, 207-208,
217-218

myosin in, 141, 204, 209, 215, 217
repulsion-driven, 219-220, 222
shearing motor model of, 215, 217
swelling-driven, 220221
swelling model of, 220-221

Pseudopodia, 189, 205, 216, 218-222

Quartz and water absorption, 132

Radial strain distributions via AFM, 74
Ratchet model, 193
Rate of deformation and viscoelasticity, 123-124
Reactive interpenetrative flows (RIF)
about, 204
numerical implementation of, 217-218
principles of, 129, 205-209
Red blood cells. See erythrocytes
Relaxation rates
of cytoskeletal filaments, 161
power-law relationships, 226
Release defined, 4
Reptation, 142, 143, 144
RGD peptide, power-law relationships, 58
Rheology. See also passive microrheology;
power-law rheology; soft glassy rheology
(SGR)
about, 18, 19-22, 74
atomic force microscopy in, 25-26, 43, 72,
73
in bone, 28-29
in cartilage, 93, 96-98
cell pokers in, 22-23, 118
Dictyostelium, 20
diffusion in, 21
in endothelial cells, 28
in erythrocytes, 26, 40, 73, 74
in ferri/ferromagnetic particles, 34, 35, 51-52,
112,115
in fluid flow, 28-29
glass microneedles in, 22
in leukocytes, 43
magnetic methods in, 32-36
magnetocytometry in, 72, 79, 111
in melanoma, 20
in melanoma cells, 20
microindentation in, 73
micropipette aspiration, 26, 43, 71, 73
microplates, shearing/compression method, 28
multiphasic models of, 96
in muscle fibers, 20 (See also human airway
smooth muscle (HASM); smooth muscle
cells; striated muscle)
optical traps in, 30-31

optical tweezers in, 74
in polymers, 40, 51-62
probe motion in, 34
sedimentation of particles in, 20-21
spectrin in, 32, 73
in superparamagnetic particles, 34
whole cell aggregates in, 20
RIF. See reactive interpenetrative flows (RIF)
Rotation
in cytoskeletal filaments, 164, 227
and prestress, 115
and torque, 36, 115
Round configuration defined, 120
Rupture strength in cells, 10

Sarcomeres
about, 141
in contraction, 7, 8, 144
experimental data, 144
Scanning probe microscopy, 94-96
Secretion, 139-140
Sedimentation of particles in deformation
measurement, 2021
Selectins, binding affinity in, 9, 228
Semi-flexible chains. See biopolymers; polymers
SGR. See soft glassy rheology (SGR)
Shear disturbance, modeling, 111
Shearing motor model of protrusion, 215, 217
Shear moduli
actin cortex, 153
cable-and-strut model, 118
creep response and, 35
in crosslinking, 164-165
cytoskeletal, 225
defined, 11
fibroblasts, 80, 107
gels, 180
Hookean elasticity, 116
in MTC, 54-55, 57,58
in the one-particle method, 37-38
power-law relationships, 58—60
in semi-flexible polymers, 163, 164
tensed cable model, 117
Shear stress. See also stress
about, 116, 165
in actin networks, 179
fluid, 172, 176
nonlinear, 167
Shigella spp., 193-194
Signals, collecting, 41-42
Silicon rubber substrate, prestress transmission in,
107
Six-strut tensegrity model, 115, 119
Skeletal muscle cells, contraction in, 7
Smooth muscle cells
about, 3
actin polymerization in, 110
contraction in, 7
cross-bridges in, 110
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Smooth muscle cells (Contd.)
HASM (See human airway smooth muscle
(HASM))
membrane disruption in, 131
membrane-wounded state in, 131
microtubules in, 118
MTC measurement of, 51-52, 56-57
power-law relationships in, 123
shear/loss moduli in, 25, 58
time dependencies in, 67
Sodium pump activity, 134. See also ions
Softening in tensegrity architecture, 109
Soft glassy materials (SGMs), 62
Soft glassy rheology (SGR)
biological insights from, 65, 226
energy wells in, 64
fluctuation dissipation theorem in, 65
principles of, 51, 62-65, 129
structural damping equation in, 64
Soft tissue behavior, modeling, 98
Solids
modeling, 155, 226, 227
multiphasic/triphasic models, 88-89
stress/strain behavior in, 109
viscoelastic interactions of, 87, 90
Sollich’s Theory of SGMs, 63
Solutions, 162, 163. See also biopolymers;
polymers
Solvent-network drag, 207
Solvent phase, momentum equations for,
207-208
Solvents
cell response to, 139
displacement of, 132, 134
in mass conservation, 207
momentum conservation in, 205, 207
Speckle microscopy, 192
Spectrin
and cell stiffness, 11
in deformation measurement, 32, 72, 73
lattice, modeling, 118
Spheres, 24, 74
Spread configuration defined, 120
Stereocilia, 5
Stiffness
and actin polymerization, 180, 204-205
bending
in actin networks, 178
in the cortical layer, 116
in microtubules, 13, 154
and persistence length, 13, 154, 157, 158
relations of, 13, 155-156
Young’s modulus, 13, 155-156
in bone, 8
cable-and-strut model, 118
and cell load, 108-109
and cell spreading, 120
contraction and, 66, 68, 104, 111, 114
and crosslinking, 110, 166

frequency and, 163
indentation and, 24
and intermediate filaments, 114
isoproterenol and, 111
measurement of, 161
mechanical in polymers, 154, 156
and microtubule disruption, 119
modeling, 77, 227
in neutrophils, 10
normalized, in power-law relationships, 60,
61
and prestress, 105, 109-111, 119, 124
shear, 116
simulation of, 225
static model of, 64
structural, 120
and temperature, 177
tensed cable model, 117
tensile, 107, 116
and tension, 158
time dependencies and, 67
and viscosity, 226
vs. applied stress, 120, 167, 227
Storage modulus. See elastic moduli
Strain. See also stress
in actin networks, 179
AFM indentation distributions, 74
and bead displacement, 80
in continuum models, 104
cytoplasmic tearing and, 114
evaluation of, 74, 76-78, 80-81
multiphasic models of, 96
network response to, 164, 166
patterns
identification of, 81
prediction of, 81
Stress. See also strain
in actin networks, 179, 215
applied, vs. stiffness, 120, 167, 227
and bead displacement, 80
cell response to, 19, 67, 104, 116, 156-159
and constitutive law, 72
differential modulus in, 167
fibers about, 11
fluids, shear, 75
hardening, prediction of, 120
multiphasic models of, 96
network response to, 164, 166
patterns
evaluation of, 72, 74, 76-78, 80-81
identification of, 81, 229
prediction of, 81
time dependence of, 96
response in disease, 6
restoring, mechanism of, 105
and stiffness, 114
and strain field, 29, 166
swelling, 164, 166, 213, 215
and tension, 165
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Stress fibers
about, 174, 181
generation of, 186
Stress-supported structures, 105
Stretching of cytoskeletal filaments, 164
Striated muscle, contraction in, 65
Structural damping equation
in MTC, 55-56
in power-law relationships, 61
and soft glassy rheology, 64
Substrates and prestress, 113, 118
Superparamagnetic particles, deformation
measurements in, 34
Surface indentation in deformation measurement,
22-26
Suspended cells, modeling, 118
Swelling
model of protrusion, 220-221
stress and network dynamics, 179, 215 (See also
stress, swelling)
Swinging cross-bridge mechanism model, 141

Talin
in actin binding, 171
in the ECM, 173
in FACs, 14
Tangential strain distributions via AFM, 74
Tangent vectors, 155, 156
Temperature
and contraction, 158-159
and energy, 226
filament bending and, 154-156
fluctuations
in cells, 8, 36, 123, 165
imaging, 161
and motion, measurement of, 18, 81
noise (See noise temperature)
and SGMs, 63
shear/loss moduli and, 54-55
and stiffness, 177
viscosity and, 21
and volume in actin networks, 211
Tensed cable nets model, 116
Tensegrity
and cellular dynamics, 121-124
defined, 105-106, 226
Tensegrity architecture, 104, 105, 109
Tensegrity methods. See also cellular tensegrity
model
about, 85, 98, 104, 124, 125
mathematical models of, 114-121
Tensile stiffness, 107, 116
Tension
cortical, 205, 216, 218
and shear stress, 165, 166
short filaments, 159
Tension-compression synergy in the
cable-and-strut tensegrity model, 108
Tethered ratchet model, 194

Thermal concepts. See temperature
Thick filaments in muscle contraction, 142,
145-146
Thin filaments in muscle contraction, 142, 144,
146
Thrombin in microtubule buckling, 108
B-Thymosin, 188
Time dependencies
and biphasic models, 88
in cell behavior, 82
fibroblasts, 80, 107
modeling, 67, 88, 227
smooth muscle, 67
and stress patterns, 96
viscoelasticity, 123-124
Tip link, 5
Titin in muscle contraction, 141
Torque
measurements of, 52-54
and rotation, 36, 115
Traction, work of. See work of traction
Traction cytometry technique in prestress
measurements, 109, 111, 113, 118
Traction microscopy and elastic energy, 112
Treadmilling, 182, 204
Triphasic models
about, 88-89
applications of, 96
cell environment prediction, constitutive
models in, 98
continuum mixture models, 88, 89
continuum viscoelastic, 84
solids, 88-89
Tropomyosin, 191
Trypsin and FACs, 107
Two-particle methods, 38-39

Upper convected Maxwell model, 88
Urokinase power-law relationships, 58

Vector tangents, 155, 156
Vertical displacement, calculation of, 120
Vertical strain distributions, 74, 75
Vesicles, 10, 139, 147
Vimentin in stress mapping, 29, 113
Vinculin, 228
Viscoelasticity
biphasic models of, 87-88, 98
cable-and-strut models of, 123
Cauchy-Green tensor, 88
and creep response, 90, 93
finite element methods, 87, 88
and frequency, 36, 123-124
measurement of, 18, 28, 33, 36, 78-79, 90, 205
mechanical basis of, 85
modeling, 78-79, 124, 227
prestress and, 123
rate of deformation and, 123-124
time dependencies of, 123-124
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Viscosity
in cell protrusion, 212,219
and cytoskeletal density, 209
of cytosol, 207
measurement of, 20-21, 26, 28
modeling, 77, 227
Newtonian (See Newtonian viscosity)
and stiffness, 226
temperature and, 21
Viscous modulus. See loss moduli
Vitronectin
binding affinity in, 9, 228
power-law relationships, 58
Voigt model, 123

WASp/Scar family proteins, 186, 189
Water
bonding in, 134
diffusion coefficient of, 171
in polymer-gel phase transitions, 138
retention in cells, 132-134

Wavelength
drag coefficient and, 160
and thermal properties, 158,
161
Whole cell aggregates in deformation
measurement, 20
Work of traction
in HASMs, 110, 111
transfer of, 113, 229
Worm-like chain model, 155-156

Yeast and Arp 2/3, 186
Young’s modulus
actin filaments, 172
in actin networks, 179
and bending stiffness, 13, 155-156
calculation of, 90
in constitutive law, 87
in elastic body cell model, 26
in osteoarthritis, 93
in the PCM, 93
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