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Preface

An ultimate goal of modern biology is to understand how the genetic blueprint of
cells (genotype) determines the structure, function, and behavior of a living organism
(phenotype). At the center of this scientific endeavor is characterizing the biochem-
ical and cellular roles of proteins, the working molecules of the machinery of life. A
key to understanding of functional proteins is the knowledge of their folded struc-
tures in a cell, as the structures provide the basis for studying proteins’ functions
and functional mechanisms at the molecular level.

Researchers working on structure determination have traditionally selected in-
dividual proteins due to their functional importance in a biological process or path-
way of particular interest. Major research organizations often have their own protein
X-ray crystallographic or/and nuclear magnetic resonance facilities for structure de-
termination, which have been conducted at a rate of a few to dozens of structures a
year. Realizing the widening gap between the rates of protein identification (through
DNA sequencing and identification of potential genes through bioinformatics anal-
ysis) and the determination of protein structures, a number of large scientific initia-
tives have been launched in the past few years by government funding agencies in
the United States, Europe, and Japan, with the intention to solve protein structures
en masse, an effort called structural genomics. A number of structural genomics
centers (factory-like facilities) have been established that promise to produce solved
protein structures in a similar fashion to DNA sequencing. These efforts as well as
the growth in the size of the community and the substantive increases in the ease
of structure determination, powered with a new generation of technologies such as
synchrotron radiation sources and high-resolution NMR, have accelerated the rate
of protein structure determination over the past decade. As of January 2006, the
protein structure database PDB contained ∼34,500 protein structures.

The role of structure for biological sciences and research has grown consider-
ably since the advent of systems biology and the increased emphasis on understand-
ing molecular mechanisms from basic biology to clinical medicine. Just as every
geneticist or cell biologist needed in the 1990s to obtain the sequence of the gene
whose product or function they were studying, increasingly, those biologists will
need to know the structure of the gene product for their research programs in this
century. One can anticipate that the rate of structure determination will continue to
grow. However, the large expenses and technical details of structure determination
mean that it will remain difficult to obtain experimental structures for more than a
small fraction of the proteins of interest to biologists. In contrast, DNA sequence
determination has doubled routinely in output for a couple of decades. The genome
projects have led to the production of 100 gigabytes of DNA data in Genbank, and
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as the cost of sequencing continues to drop and the rate continues to accelerate, the
scientific community anticipates a day when every individual has the genes of their
interest and the genomes of all related major organisms sequenced.

Structure determination of proteins began before nucleic acids could be se-
quenced, which now appears almost ironic. As microchemistry technologies continue
to mature, ever more powerful DNA sequencing instruments and new methods for
preparation of suitable quantities of DNA and cheaper, higher sequencing through-
put, while enabling a revolution in the biological and biomedical sciences, also left
structure determination way behind. As sequencing capacity matured in the last few
decades of the twentieth century, DNA sequences exceeded protein structures by
10-fold, then 100-fold, and now there is a 1000-fold difference between the number
of genes in Genbank and the number of structures in the PDB. The order of magni-
tude difference is about to jump again, in the era of metagenomics, as the analyses of
communities of largely unculturable organisms in their natural states come to dom-
inate sequence production. The J. Craig Venter Institute’s Sargasso Sea experiment
and other early metagenomics experiments at least doubled the number of known
open reading frames (ORFs) and potential genes, but the more recent ocean voyage
data (or GOS) multipled the number on the order of another 10-fold, probably more.
The rate of discovery of novel genes and correspondingly novel proteins has not
leveled off, since nearly half of new microbial genomes turn out to be novel. Fur-
thermore, in the metagenomics data, new families of proteins are discovered directly
proportional to the rate of gene (ORF) discovery.

The bottom line is quite simple. Despite the several fold reduction in cost in
structure determination due to the structural genomics projects—the NIH Protein
Structure Initiative and comparable initiatives around the world—and the steady
increase in the rate of protein structure determination, the number of proteins with
unknown structures will continue to grow vastly faster. At an early structural ge-
nomics meeting in Avalon, New Jersey, the experimental community voted in favor
of experimentally solving 100,000 structures of proteins with less than 30% sequence
identity to proteins with known structures. This seemed to some theoreticians at the
time as solving “the protein structure problem” and removing the need for theory,
simulation, and prediction. Now, while it appears that this goal is aiming too high
for just the initiative alone, certainly, the structural community will have 100,000
structures in the PDB not long after the end of this decade—and probably sooner
than expected as costs continue to go down and technologies continue to advance.
Yet, those 100,000 structures will be significantly less than 1% of the known ORFs
genes! The problem, therefore, is not about having structures to predict, but having
robust enough methods to make predictions that are useful at deep levels in biology,
from helping us infer function and directing experimental efforts to providing insight
into ligand binding, molecular recognition, drug discovery, and so on. The kind of
success in terms of “reasonable” accuracy for “most” targets has been the grand suc-
cess of the CASP competition (see Chapter 1) but is completely inadequate for the
biology of the twenty-first century and the expectations of both basic and applied life
sciences. Prediction is not at the requisite level of comprehensive robustness yet, and
therein is one of the features of critical importance of the discussions in this book.
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Computational methods for predicting protein structure have been actively
pursued for some time. Their acceptance and importance grew rapidly after the es-
tablishment of a blind competition for predicting protein structure, namely, CASP.
CASP involves theoreticians predicting then-unknown protein structures and their
verification and analysis following subsequent experimental determination. The val-
idation of the general approach both enhanced funding and brought participants to
the field and pointed to the limitations of current methods and the value of extensive
research into advanced computational tools. Overall, the rapidly growing importance
of structural data for biology fueled the emergence of a new branch of computational
biology and of structural biology, an interface between the methods of bioinformat-
ics and molecular biophysics, namely, structural bioinformatics. Similar to genomic
sequence analysis, bioinformatic studies of protein structures could lead to both
deep and general or broad insights about aspects such as the folding, evolution, and
function of proteins, the nature of protein–ligand and protein–protein interactions,
and the mechanisms by which proteins act. The success of such studies could have
immense impacts not just on science but on the whole society through providing in-
sight into the molecular etiology of diseases, developing novel, effective therapeutic
agents and treatment regimens, and engineering biological molecules for novel or
enhanced biochemical functions.

As one of the most active research fields in bioinformatics, structural bioinfor-
matics addresses a wide spectrum of scientific issues, including the computational
prediction of protein secondary and tertiary structures, protein docking with small
molecules and with macromolecules (i.e., DNA, RNA, and proteins), simulation of
dynamic behaviors of proteins, protein structure characterization and classification,
and study of structure–function relationships. While proteins were viewed as es-
sentially static three-dimensional structures up until the 1980s, the establishment of
computational methods, and subsequent advances in experimental probes that could
provide data at suitable time scales, led to a revolution in how biologists think about
proteins. Indeed, over the past few decades, computational studies using molecular
dynamics simulations of protein structure have played essential roles in understand-
ing the detailed functional mechanisms of proteins important in a wide variety of
biological processes. Within the applied life sciences, protein docking has been ex-
tensively applied in the drug discovery pipeline in the pharmaceutical and biotech
industry.

Protein structure prediction and modeling tools are becoming an integral part of
the standard toolkit in biological and biomedical research. Similar to sequence anal-
ysis tools, such as BLAST for sequence comparison, the new methods for structure
prediction are now among the first approaches used when starting a biological inves-
tigation, conducted prior to actual experimental design. That computational analysis
would become the first step for experimentalists represents a major paradigm shift
that is still occurring but is clearly essential to deal with the maturation of the field,
the large quantities of data, and the complexity of biology itself as reflected in the
requirement for today’s powerful experimental probes used to address sophisticated
questions in biology. This paradigm shift was noted first by Wally Gilbert, in a pre-
scient article fifteen years ago (“Toward a new paradigm for molecular biology,”
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Nature 1991, 349:99), who asserted that biologists would have to change their mode
of approach to studying nature and to begin each experimental project with a bioin-
formatics analysis of extant literature and other computational approaches. This
paradigm shift is deeply interconnected with the increased emphasis on computa-
tional tools and the expectation for robust methods for structure prediction.

Similar to other fields of bioinformatics, structural bioinformatics is a rapidly
growing science. New computational techniques and new research foci emerge every
few months, which makes the writing of textbooks a challenging problem. While a
number of books have been published covering various aspects of protein structure
prediction and modeling, it is widely recognized that the field lacks a comprehensive
and coherent overview of the science of “protein structure prediction and modeling,”
which span a range from very basic problems (around physical and chemical prop-
erties and principles), such as the potential function and free energies that determine
the folded shape of a protein, to the algorithmic techniques for solving various struc-
ture prediction problems, to the engineering aspects of implementation of computer
prediction software, and to applications of prediction capabilities for investigations
focused on functional properties. As educators at universities, we feel that there is
an urgent need for a well-written, comprehensive textbook, one that proverbially
goes from soup to nuts, and that this requirement is most critical for beginners en-
tering this field as young students or as experienced researchers coming from other
disciplines.

This book is an attempt to fill this gap by providing systematic expositions of the
computational methods for all major aspects of protein structure analysis, prediction,
and modeling. We have designed the chapters to address comprehensively the main
topics of the field. In addition, chapters have been connected seamlessly through a
systematic design of the overall structure of the book. We have selected individual
topics carefully so that the book would be useful to a broad readership, including
students, postdoctoral fellows, research scientists moving into the field, as well as
professional practitioners/bioinformatics experts who want to brush up on topics
related to their own research areas. We expect that the book can be used as a textbook
for upper undergraduate-level or graduate-level bioinformatics courses. Extensive
prior knowledge is not required to read and comprehend the information presented.
In other words, a dedicated reader with a college degree in computational, biological,
or physical science should be able to follow the book without much difficulty. To
facilitate learning and to articulate clearly to the reader what background is needed
to obtain the maximum benefit from the book, we have included four appendices
describing the prerequisites in (1) biology, (2) computer science, (3) physics and
chemistry, and (4) mathematics and statistics. If a reader lacks knowledge in a
particular area, he or she could benefit by starting from the references provided in
the corresponding appendix.

While the chapters are organized in a logical order, each chapter in the book is
a self-contained review of a specific subject. Hence, a reader does not need to read
through the chapters sequentially. Each chapter is designed to cover the following
material: (1) the problem definition and a historical perspective, (2) a mathematical
or computational formulation of the problem, (3) the computational methods and
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algorithms, (4) the performance results, (5) the existing software packages, (6) the
strengths, pitfalls, and challenges in current research, and (7) the most promising
future directions. Since this is a rapidly developing field that encompasses an ex-
ceptionally wide range of research topics, it is difficult for any individual to write a
comprehensive textbook on the entire field. We have been fortunate in assembling
a team of experts to write this book. The authors are actively doing research at the
forefront of the major areas of the field and bring extensive experience and insight
into the central intellectual methods and ideas in the subdomain and its difficulties,
accomplishments, and potential for the future.

Chapter 1 (A Historical Perspective and Overview of Protein Structure
Prediction) gives a perspective on the methods for the prediction of protein structure
and the progress that has been achieved. It also discusses recent advances and the
role of protein structure modeling and prediction today, as well as touching briefly
on important goals and directions for the future.

Chapter 2 (Empirical Force Fields) addresses the physical force fields used in
the atomic modeling of proteins, including bond, bond-angle, dihedral, electrostatic,
van der Waals, and solvation energy. Several widely used physical force fields are
introduced, including CHARMM, AMBER, and GROMOS.

Chapter 3 (Knowledge-Based Energy Functions for Computational Studies
of Proteins) discusses the theoretical framework and methods for developing
knowledge-based potential functions essential for protein structure prediction,
protein–protein interaction, and protein sequence design. Empirical scoring func-
tions including single-body energy function, statistical method for pairwise interac-
tion between amino acids, and scoring function based on optimization are addressed.

Chapter 4 (Computational Methods for Domain Partitioning of Protein
Structures) covers the basic concept of protein structural domains and practical
applications. A number of computational techniques for domain partition are de-
scribed, along with their applications to protein structure prediction. Also described
are a few, widely used, protein domain databases and associated analysis tools.

Chapter 5 (Protein Structure Comparison and Classification) discusses the ba-
sic problem of protein structure comparison and applications, and computational ap-
proaches for aligning two protein structures. Applications of the structure–structure
alignment algorithms to protein structure search against the PDB and to protein
structural motif search in the PDB are also discussed.

Chapter 6 (Computation of Protein Geometry and Its Applications: Packing
and Function Prediction) treats protein structures as 3D geometrical objects, and
discusses structural issues from a geometric point of view, such as (1) the union
of ball models, molecular surface, and solvent-accessible surface, (2) geometric
constructs such as Voronoi diagram, Delaunay triangulation, alpha shape, surface
geometry (including cavities and pockets) and their computation, (3) local surface
similarity measure in terms of shape and sequence, and (4) function prediction
based on protein surface patterns. Also described are the application issues of these
computational techniques.

Chapter 7 (Local Structure Prediction of Proteins) covers protein secondary
structure prediction, supersecondary structure prediction, prediction of disordered



SVNY330-Xu-Vol-I November 4, 2006 10:1

x Preface

regions, and applications to tertiary structure prediction. A number of popular pre-
diction software packages are described.

Chapter 8 (Protein Contact Maps Prediction) describes the basic principles for
residue contact predictions, and computational approaches for prediction of residue–
residue contacts. Also discussed is the relevance to tertiary structure prediction. A
number of popular prediction programs are introduced.

Chapter 9 (Modeling Protein Aggregate Assembly and Structure) describes the
basic problem of structure misfolding and implications, experimental approach for
data collection in support of computational modeling, computational approaches to
prediction of misfolded structures, and related applications.

Chapter 10 (Homology-Based Modeling of Protein Structure) presents the
foundation for homology modeling, computational methods for sequence–sequence
alignment and constructing atomic models, structural model assessment, and manual
tuning of homology models. A number of popular modeling packages are introduced.

Chapter 11 (Modeling Protein Structures Based on Density Maps at Interme-
diate Resolutions) discusses methods for constructing atomic models from density
maps of proteins at intermediate resolution, such as those obtained from electron cry-
omicrosopy. Details of application of computational tools for identifying �-helices,
ß-sheets, as well as geometric analysis are described.

Chapter 12 (Protein Structure Prediction by Protein Threading) describes the
threading approach for predicting protein structure. It discusses the basic concepts of
protein folds, an empirical energy function, and optimal methods for fitting a protein
sequence to a structural template, including the divide-and-conquer, the integer
programming, and tree-decomposition approaches. This chapter also gives practical
guidance, along with a list of resources, on using threading for structure prediction.

Chapter 13 (De Novo Protein Structure Prediction) describes protein folding
and free energy minimization, lattice model and search algorithms, off-lattice model
and search algorithms, and mini-threading. Benchmark performance of various tools
in CASP is described.

Chapter 14 (Structure Prediction of Membrane Proteins) covers the methods
for prediction of secondary structure and topology of membrane proteins, as well as
prediction of their tertiary structure. A list of useful resources for membrane protein
structure prediction is also provided.

Chapter 15 (Structure Prediction of Protein Complexes) describes computa-
tional issues for docking, including protein–protein docking (both rigid body and
flexible docking), protein–DNA docking, and protein–ligand docking. It covers com-
putational representation for biomolecular surface, various docking algorithms, clus-
tering docking results, scoring function for ranking docking results, and start-of-the-
art benchmarks.

Chapter 16 (Structure-Based Drug Design) describes computational issues for
rational drug design based on protein structures, including protein therapeutics
based on cytokines, antibodies, and engineered enzymes, docking in structure-
based drug design as a virtual screening tool in lead discovery and optimization,
and ligand-based drug design using pharmacophore modeling and quantitative
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structure–activity relationship. A number of software packages for structure-based
design are compared.

Chapter 17 (Protein Structure Prediction as a Systems Problem) provides a novel
systematic view on solving the complex problem of protein structure prediction.
It introduces consensus-based approach, pipeline approach, and expert system for
predicting protein structure and for inferring protein functions. This chapter also
discusses issues such as benchmark data and evaluation metrics. An example of
protein structure prediction at genome-wide scale is also given.

Chapter 18 (Resources and Infrastructure for Structural Bioinformatics) de-
scribes tools, databases, and other resources of protein structure analysis and pre-
diction available on the Internet. These include the PDB and related databases and
servers, structural visualization tools, protein sequence and function databases, as
well as resources for RNA structure modeling and prediction. It also gives informa-
tion on major journals, professional societies, and conferences of the field.

Appendix 1 (Biological and Chemical Basics Related to Protein Structures)
introduces central dogma of molecular biology, macromolecules in the cell (DNA,
RNA, protein), amino acid residues, peptide chain, primary, secondary, tertiary, and
quaternary structure of proteins, and protein evolution.

Appendix 2 (Computer Science for Structural Informatics) discusses computer
science concepts that are essential for effective computation for protein structure
prediction. These include efficient data structure, computational complexity and
NP-hardness, various algorithmic techniques, parallel computing, and programming.

Appendix 3 (Physical and Chemical Basis for Structural Bioinformatics) covers
basic concepts of our physical world, including unit system, coordinate systems,
and energy surfaces. It also describes biochemical and biophysical concepts such
as chemical reaction, peptide bonds, covalent bonds, hydrogen bonds, electrostatic
interactions, van der Waals interactions, as well as hydrophobic interactions. In
addition, this chapter discusses basic concepts from thermodynamics and statistical
mechanics. Computational sampling techniques such as molecular dynamics and
Monte Carlo method are also discussed.

Appendix 4 (Mathematics and Statistics for Studying Protein Structures) covers
various basic concepts in mathematics and statistics, often used in structural bioin-
formatics studies such as probability distributions (uniform, Gaussian, binomial and
multinomial, Dirichlet and gamma, extreme value distribution), basics of informa-
tion theory including entropy, relative entropy, and mutual information, Markovian
process and hidden Markov model, hypothesis testing, statistical inference (maxi-
mum likelihood, expectation maximization, and Bayesian approach), and statistical
sampling (rejection sampling, Gibbs sampling, and Metropolis–Hastings algorithm).

Ying Xu
Dong Xu
Jie Liang

John Wooley

April 2006
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1 A Historical Perspective and Overview of Protein
Structure Prediction

John C. Wooley and Yuzhen Ye

1.1 Introduction

Carrying on many different biological functions, proteins are all composed of one
or more polypeptide chains, each containing from several to hundreds or even thou-
sands of the 20 amino acids. During the 1950s at the dawn of modern biochemistry,
an essential question for biochemists was to understand the structure and function of
these polypeptide chains. The sequences of protein, also referred to as their primary
structures, determine the different chemical properties for different proteins, and
thus continue to captivate much of the attention of biochemists. As an early step in
characterizing protein chemistry, British biochemist Frederick Sanger designed an
experimental method to identify the sequence of insulin (Sanger et al., 1955). He
became the first person to obtain the primary structure of a protein and in 1958 won
his first Nobel Price in Chemistry. This important progress in sequencing did not
answer the question of whether a single (individual) protein has a distinctive shape
in three dimensions (3D), and if so, what factors determine its 3D architecture.
However, during the period when Sanger was studying the primary structure of pro-
teins, American biochemist Christian Anfinsen observed that the active polypeptide
chain of a model protein, bovine pancreatic ribonuclease (RNase), could fold spon-
taneously into a unique 3D structure, which was later called native conformation of
the protein (Anfinsen et al., 1954). Anfinsen also studied the refolding of RNase en-
zyme and observed that an enzyme unfolded under extreme chemical environment
could refold spontaneously back into its native conformation upon changing the
environment back to natural conditions (Anfinsen et al., 1961). By 1962, Anfinsen
had developed his theory of protein folding (which was summarized in his 1972
Nobel acceptance speech): “The native conformation is determined by the total-
ity of interatomic interactions and hence, by the amino acid sequence, in a given
environment.”

Anfinsen’s theory of protein folding established the foundation for solving the
protein structure prediction problem, i.e., for predicting the native conformation of
a protein from its primary sequence, because all information needed to predict the
native conformation is encoded in the sequence. The early approaches to solving
this problem were based solely on the thermodynamics of protein folding. Scheraga
and his colleagues applied several computer searching techniques to investigate the
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free energy of numerous local minimum energy conformations in an attempt to find
the global minimum conformation, i.e., the thermodynamically most stable confor-
mation of the protein (Gibson and Scheraga, 1967a,b; Scott et al., 1967). The major
challenge for an energy minimization approach to protein structure prediction is that
proteins are very flexible; thus, their potential conformation space is too large to be
enumerated. [Despite the huge space of possible conformations, that proteins fold
reliably and quickly to their native conformation is known as “Levinthal’s paradox”
(Levinthal, 1968)]. To address this issue, one needs an accurate energy function to
compute the energy for a given protein conformation and a rapid computer searching
algorithm. The progress of peptide molecular mechanics enabled the development
of molecular force fields that described the physical interactions between atoms
using Newton’s equations of motion. In general, the interactions considered in the
force field include covalent bonds and noncovalent interactions, such as electrostatic
interactions, the van der Waals interactions, and, sometimes, hydrogen bonds and
hydrophobic interactions. The parameters used in these force fields were obtained
through experimental studies of small organic molecules. On the other hand, many
computational methods developed in the field of optimization theory and mechanics
have been applied to the rapid conformation search. These fall into two categories:
the molecular dynamics method and the Brownian dynamics (or stochastic dynam-
ics) method. Both methods sample a portion of potential protein conformations and
evaluate their free energy. Molecular dynamics samples the conformations by sim-
ulating the protein motion based on Newton’s equation, starting from an arbitrarily
chosen protein conformation. Brownian dynamics, instead, uses Monte Carlo random
sampling technique or its derivatives to evaluate protein conformations. Combining
various force fields and conformation searching methods, many software packages
were developed, such as AMBER (Pearlman et al., 1995), CHARMM (Brooks et al.,
1983) and GROMOS (van Gunsteren and Berendsen, 1990), all aimed at using
computing simulations to predict the native conformation of proteins.

Despite the great theoretic interest in energy minimization methods, these have
not been very successful in practice, because of the huge search space for poten-
tial protein conformations. In 1975, Levitt and Warshel used a simplified protein
structure representation and successfully folded a small protein [bovine pancreatic
trypsin inhibitor, (BPTI), 58 amino acid residues] into its native conformation from
an open-chain conformation using energy minimization (Levitt and Warshel, 1975).
Little progress, however, has been made since then; the simulation usually takes an
unrealistic compute or run time, and the final prediction is not very satisfactory. For
instance, in 1998, Duan and Kollman reported a simulation experiment of one small
protein (the villin headpiece subdomain, 36 amino acid residues), running on a Cray
T3D and then a Cray T3E supercomputer, that took months of computation with the
entire machine dedicated to the problem (Duan and Kollman, 1998). Even though the
resulting structure is reasonably folded and shows some resemblance to the native
structure, the simulated and native structure did not completely match. Currently, en-
ergy minimization methods are largely used to refine a low-resolution initial structure
obtained by experimental methods or by comparative modeling (Levitt and Lifson,
1969).
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At nearly the same time as these energy minimization approaches were devel-
oped, computational biochemists were looking for practical approaches to the protein
structure prediction problem, which need not and presumably does not “mimic” the
protein folding process inside the cell. An important observation was that proteins
that share similar sequences often share similar protein structures. Based on this
concept, Browne and co-workers modeled the structure of �-lactalbumin using the
X-ray structure of lysozyme as a template (Browne et al., 1969). This success opened
the whole new area of protein structure prediction that came to be known as com-
parative modeling or homology modeling. Many automatic computer programs and
molecular graphics tools were developed to speed up the modeling. The potential
targets of homologous modeling were also expanded through the rapid development
of homologous modeling software and approaches. New technologies, including
threading or the assembly of minithreaded fragments, were proposed and have now
been successfully applied to many cases for which the target modeled does not have
a sequence similar to the template proteins.

In this chapter, we review the history of protein structure prediction from two
different angles: the methodologies and the modeling targets. In the first section,
we describe the historical perspective for predicting (largely) globular proteins. The
specialized methodologies that have been developed for predicting structures of other
types of proteins, such as membrane proteins and protein complexes and assemblies,
are discussed along with the review of modeling targets in the second section. The
current challenges faced in improving the prediction of protein structure and new
trends for prediction are also discussed.

1.2 The Development of Protein Structure
Prediction Methodologies

1.2.1 Protein Homology Modeling

The methodology for homology modeling (or comparative modeling), a very suc-
cessful category of protein structure prediction, is based on our understanding of
protein evolution: (1) proteins that have similar sequences usually have similar struc-
tures and (2) protein structures are more conserved than their sequences. Obviously,
only those proteins having appropriate templates, i.e., homologous proteins with
experimentally determined structures, can be modeled by homologous modeling.
Nevertheless, with the increasing accumulation of experimentally determined pro-
tein structures and the advances in remote homology identification, protein homology
modeling has made routine, continuing progress: both the space of potential targets
has grown and the performance of the computational approaches has improved.

1.2.1.1 First Structure Predicted by Homology Modeling:
�-Lactalbumin (1969)

The first protein structure that was predicted by the use of homologous modeling is
�-lactalbumin, which was based on the X-ray structure of lysozyme. Browne and
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co-workers conducted this experiment (Browne et al., 1969), following a procedure
that is still largely used for model construction today. It starts with an alignment be-
tween the target and the template protein sequences, followed by the construction of
an initial protein model created by insertions, deletions, and side chain replacements
from the template structure, and finally finished by the refinement of the model using
energy minimization to remove steric clashes.

1.2.1.2 Homology: Semiautomated Homology Modeling of Proteins
in a Family (1981)

Greer developed a computer program to automate the whole procedure of homolo-
gous modeling. Using this program, 11 mammalian serine proteases were modeled
based on three experimentally determined structures for mammalian serine pro-
teases (Greer, 1981). The prediction used in this work was based on the analysis
of multiple protein structures from the same protease family. He observed that the
structure of a protease could be divided into structurally conserved regions (SCRs)
with strong sequence homology, and structurally variable regions (SVRs) containing
all the insertions and deletions in order to minimize errors in the query–template
alignments significantly. Next, SVRs of the eight structurally unknown proteins were
constructed directly from the known structures, based on the observation that a vari-
able region that has the same length and residue character in two different known
structures usually has the same conformation in both proteins.

This successful modeling experiment demonstrated that mammalian ser-
ine proteases could be constructed semiautomatically from the known homolo-
gous structures; both the need for manual inspections using biological intuition
and the use of energy force fields were greatly reduced. The whole modeling
procedure from this exercise was later implemented in the first protein model-
ing program, Homology, and integrated into a molecular graphics package In-
sightII (commercialized by Biosym, now Accelrys). Several important features of
Homology, including the identification of modeling template using pairwise se-
quence alignment in the same protein family, the layout of sequence alignment
between target and template protein sequences, and the identification and distinct
modeling of conserved and variable regions using multiple structural templates from
the same family, have been included in more recently developed homology modeling
programs.

1.2.1.3 Composer: High-Accuracy Homology Modeling Using Multiple
Templates (1987)

Greer’s homology modeling method used multiple protein structures from the same
family to define the conserved and variable regions in the target protein. It, however,
used only one protein structure as the template to model the target protein. Blundell
and co-workers recognized that the structural framework (or the “average” structure)
of multiple protein structures from the same family usually resembled the target
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protein structure more than any single protein structure did. Based on this concept,
they implemented a program called Composer (Sutcliffe et al., 1987), which was
later integrated into the protein modeling package Sybyl, which was commercialized
by Tripos.

The framework-based protein modeling significantly increased the accuracy
of model construction over the previous semiautomatic methods, and hence made
modeled protein structures practically useful. However, Composer applies empirical
rules for modeling SVRs and the structure of amino acid side chains. As a result, the
accuracy of these regions is much lower than the backbone structures in the SCRs.
Therefore, the modeling of SVRs (or loops) and side chain placement have become
two independent research topics for protein modeling. Many different solutions have
been proposed (see Section 1.2.4 for a detailed review).

1.2.1.4 Modeller: Automatic Full-Atom Protein Modeling (1993)

Before 1993, protein modeling was done through a semiautomatic and multistep
fashion, including distinct modeling procedure for SCRs, SVRs, and side chains.
MODELLER, developed by Sali and Blundell, was the first automatic computer pro-
gram full-atom protein modeling (Sali and Blundell, 1993). MODELLER computes
the structure of the target protein by optimally satisfying spatial restraints derived
from the alignment of the target protein sequence and multiple related structures,
which are expressed as probability density functions (pdfs) of the restrained struc-
tural features. MODELLER facilitates high-throughput modeling of protein targets
from genome sequencing project (Sanchez et al., 2000) and remains one of the
popular or widely used modeling packages.

1.2.1.5 Other Protein Modeling Programs

SWISS-MODEL is a fully automated protein structure homology-modeling server,
which was initiated in 1993 by Manuel Peitsch (Peitsch and Jongeneel, 1993).
SWISS-MODEL automates the complete modeling pipeline including homology
template search, alignment generation and model construction. It uses ProMod
(Peitsch, 1996) to construct models for protein query with an alignment of the
query and template sequences. NEST (Petry et al., 2003) realizes model generation
by performing operations of mutation, insertion, and deletion on the template struc-
ture finished with energy minimization to remove steric clashes. The minimization
starts with those operations that least disturb the template structure (which is called
an artificial evolution method). The minimization is done in torsion angle space,
and the final structure is subjected to more thorough energy minimization. Kosinski
et al. (2003) developed the “FRankenstein’s monster” approach to comparative mod-
eling: merging the finest fragments of fold-recognition models and iterative model
refinement aided by 3D structure evaluation; its novelty is that it employs the idea
of combination of fragments that are often used by ab initio methods.
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1.2.2 Remote Homology Recognition/Fold Recognition

All homology-based protein modeling programs rely on a good-quality alignment
of the target and the template (of known structure). The identification of appropriate
templates and the alignment of templates and target proteins are two essential topics
for protein modeling, especially when no close homologue exists for modeling. The
power or accuracy of homology modeling benefits from any improvement in the
homology detection and target–template(s) alignment. Initially, a sequence align-
ment algorithm was used to derive target–template(s) alignment. More complicated
methods (considering structure information) were later developed to improve the
target–template(s) alignment.

1.2.2.1 Threading

The process of aligning a protein sequence with one or more protein structures
is often called threading (Bryant and Lawrence, 1993). The protein sequence is
placed or threaded onto a given structure to obtain the best sequence–structure
compatibility. Obviously, the problem of identifying appropriate templates for a
given target protein sequence can also be formulated as a threading problem, in which
the structure in the database that is most compatible to the target sequence will be
discerned and distinguished from those that are sufficiently compatible. Evolutionary
information has been introduced to improve the sensitivity of homology recognition
and to improve the target–template alignment quality, resulting a series sequence–
profile and profile–profile alignment programs.

The threading method is able to go beyond sequence homology and identify
structural similarity between unrelated proteins; “fold recognition” might be a bet-
ter term for such cases. Homology recognition is used to detect templates that are
homologous to the target with statistically significant sequence similarity; however,
with the introduction of the powerful profile-based and profile–profile-based meth-
ods, the boundary between homology and fold recognition has blurred (Friedberg
et al., 2004).

The threading-based method is typically classified in a separate category that
is parallel to the homology-based modeling and ab initio modeling; it can be further
divided into two subclasses considering whether or not the target and template have
sequence similarity (homology) for quality evaluation purposes (Moult, 2005). How-
ever, from a methodology point of view, most threading-based modeling packages
borrow similar ideas or even the existing modules from homology-based methods,
to model the structure of a template after deriving the target–template alignment.

The concept of the threading approach to protein structure prediction is that
in some cases, proteins can have similar structures but lack detectable sequential
similarities. Indeed, it is widely accepted that there exist in nature only a limited
number of distinct protein structures, called protein folds, which a virtually infinite
number of different protein sequences adopt. As a result, it is hopeful that it is more
sensible comparing the template protein structures with the target protein sequence
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than comparing their sequences. Protein threading methods fall into two categories.
One kind of method represents protein structures first as a sequence of symbolic
environmental features, e.g., the secondary structures, the accessibility of amino
acid residues, and so on; next, it aligns this sequence of features with the target
protein sequence using the classical dynamic programming algorithm for sequence
alignment with a special scoring function. The other kind of method is based on a
statistical potential, i.e., the frequency of observing two amino acid residues at a
certain distance, in order to evaluate the compatibility between a protein structure
and a protein sequence. Threading approaches have three distinct applications in
protein structure prediction: (1) identifying appropriate protein structure templates
for modeling a target protein, (2) identifying protein sequences adopting a known
protein fold, and (3) accessing the quality of a protein model.

1.2.2.2 3D-profile: Representing Structures by Environmental Features

The pioneering work of Bowie and co-workers on “the inverse protein folding prob-
lem” led to a simple method for assessing the fitness of a protein sequence onto a
structure, thus laying the foundation of the first kind of protein threading approach.
In their work, structural environments of an amino acid residue were simply defined
in terms of solvent accessibility and secondary structure (Bowie et al., 1991; Luthy
et al., 1992). Statistics of residue–structure environment compatibility (3D-profile)
were then computed based on the statistics of the frequency of a particular type
of amino acid appearing in a particular structural environment in the collection of
known structures. Threading programs using 3D-profile include 123D (Alexandrov
et al., 1996), 3D-PSSM (Kelley et al., 2000), and FUGUE (Shi et al., 2001).

1.2.2.3 Statistical Potential Models

An alternative approach to threading is to measure the protein structure–sequence
compatibility by a statistical potential model, which represents the preference of
two types of amino acids to be at some spatial distance. Sippl proposed the concept
of “reverse Boltzmann Principle” to derive a statistical potential, which he called
potential of mean force, from a set of unrelated known protein structures (Sippl,
1990; Casari and Sippl, 1992). The basic idea of this energy function is to compare
the observed frequency of a pair of amino acids within a certain distance for known
protein structures with the expected frequency of this pair of amino acid types
in a protein. Bryant and Lawrence first used the term “threading” to describe the
approach of aligning a protein sequence to a known structure when they reported a
new statistical potential model (Bryant and Lawrence, 1993).

1.2.2.4 Algorithmic Development for Threading Using Statistical Potential

Unlike the 3D-profile approach, statistical potential-based threading approach can-
not use the classical dynamic programming approach for structure–sequence com-
parison. In fact, if pairwise interaction between residues is considered in assessing
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the compatibility of sequence and structure, the problem becomes very difficult
(specifically, it is an NP-hard problem).

Various algorithms have been developed to address this computational diffi-
culty. Early threading programs used various heuristic strategies to search for the
optimal sequence–structure alignment. For example, GenTHREADER (Jones, 1999)
and mGenTHREADER (based on the original GenTHREADER method, but adding
the PSI-BLAST profile and predicted secondary structure as inputs) adopted a double
dynamic programming strategy, which did not treat pairwise interactions rigorously.
New threading programs have come to use more rigorous optimization algorithms.
For example, PROSPECT (Xu and Xu, 2000) introduced a divide-and-conquer tech-
nique, and RAPTOR (Xu et al., 2003) used linear programming.

1.2.2.5 Profile-Based Alignment

Threading is not the only way to improve the sensitivity of (remote) template iden-
tification and the quality of template–target alignment. The other kind of method to
achieve this goal makes use of multiple sequences from the same protein families to
improve the sensitivity of homology detection and to improve the quality of sequence
alignment.

Sequence–profile alignment strategy was first used to increase the sensitivity of
distant homology detection. The development of Position Specific Iterative BLAST
(PSI-BLAST) (and of course the accumulation of protein sequences) boosted the
development of profile-based database search for homologies. In PSI-BLAST, a
profile (or Position Specific Scoring Matrix, PSSM) is generated by calculating
position-specific scores for each position in the multiple alignment constructed from
the highest scoring hits in an initial BLAST search. Highly conserved positions
receive high scores and weakly conserved positions receive scores near zero. The
profile is then used to perform a second BLAST search by performing a sequence–
profile alignment and the results are used to refine the profile, and so forth. This
iterative searching strategy results in significantly increased sensitivity. PSI-BLAST
is now often used as the first step in many studies including the profile–profile
alignments. Profile information is also employed in hidden Markov models (HMMs)
(Krogh et al., 1994), as implemented in the SAM (Karplus et al., 1998) and HMMER
(http://hmmer.wustl.edu), which have vastly improved the accuracy of sequence
alignments and sensitivity of homology detection.

Several profile–profile alignment methods have been developed more recently,
including FFAS (Rychlewski et al., 2000), COMPASS (Sadreyev et al., 2003), Yona
and Levitt’s profile–profile alignment algorithm (Yona and Levitt, 2002), a method
developed in Sali’s group (Marti-Renom et al., 2004), and COACH (using hidden
Markov models) (Edgar and Sjolander, 2004). The FFAS program pioneered the
profile–profile alignment; it is now used in many modeling pipelines and metaservers.
Zhou and Zhou (2005) developed a fold recognition method by combining sequence
profiles derived from evolution and from a depth-dependent structural alignment of
fragments. A key process for this group of methods is the alignment of the profile of
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target and homologies and the profile of structural template and homologies. They
share the basic idea of profile–profile alignment but differ in many details, such
as the profile calculation, profile–profile matching score, and alignment evaluation.
The application of profile-profile alignment in homology detection highly increases
the sensitivity of homology detection, even to the level of fold recognition.

1.2.3 Ab Initio Protein Structure Prediction

Despite the great success of homology modeling and threading methods, there are
still many important target proteins that have no appropriate template (the number
of such proteins is expected to be reduced due to the efforts of Structural Genomics,
which aims at experimentally determining protein structures from all families and
thus with providing new folds). Ab initio methods (which predict structures from
sequence without using any structural template) are more general in this sense.
Ab initio approaches are in principal based on Anfinsen’s folding theory (Anfinsen,
1973), according to which the native structure corresponds to the global free energy
minimum. Successful ab initio protein structure prediction methods fall roughly into
several broad categories: (a) approaches that start from random/open conformations
and simulate the folding process or minimize the conformational energy, (b) segment
assembly-based methods as represented by the Rosetta method, and (c) methods that
combine the two types of approaches (Samudrala et al., 1999).

1.2.3.1 Protein Folding Simulation and ab Initio Structure Prediction

Protein folding simulation and protein tertiary structure prediction are two distinct
yet closely coupled problems. The main goal of protein folding simulation is to
help characterize the mechanism of protein folding and also the interactions that
determine the folding process and serve to specify the native structure; the goal of
protein structure prediction is to determine the native structure. The solution of both
problems relies on the effectiveness of energy function and conformation search
methods utilized. Folding simulation approaches can be applied to predict protein
structure ab initio, as seen in examples in which “folded” states resembling the native
structures were derived. But only very few folding simulation approaches have been
widely adopted for protein structure prediction and applied to a large number of
predictions.

Molecular dynamics (MD) simulation is a natural approach for simulating
protein folding. This approach has a long history and is still widely used; this
could be viewed as illustrated most dramatically by IBM’s Blue Gene project
(http://www.research.ibm.com/bluegene/). However, the computational cost of fold-
ing simulations requires that the proteins to be simulated are small and fold ultrafast,
even when supported by powerful computing (Duan and Kollman, 1998). Besides,
the inadequacy in current potential functions for proteins in solution complicates the
problem. The folded state by simulation does not necessarily correspond to the native
state of proteins; actually, for current simulations, folding to the stable native state
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has not (yet) occurred. Considering these two types of difficulties in fold simulation
and ab initio prediction of protein structures, many researches have either adopted
simplified representation of proteins (including lattice and off-lattice models) to al-
leviate computational complexity, and/or to apply some conformational constraints
to reduce the conformational searching space (e.g., the application of local structures
in segment assembly based methods). Doing so improves the efficiency of folding
simulation and ab initio methods for protein structure prediction.

1.2.3.2 Reduced Models of Proteins and Their Applications

Reduced models of proteins are necessary for easy and unambiguous interpretation
of computer simulations of proteins and to obtain dramatic reduction (by orders of
magnitude) of the computational costs. Such reduced models are still very impor-
tant tools for theoretical studies of protein structure, dynamics, and thermodynamics
in spite of the enormous increase in computational power (Kolinski and Skolnick,
2004). Simplified representations of protein structures include lattice models, con-
tinuous space models (e.g., a protein structure is reduced to the C� trace and the
centroid of side chains), and hybrid models (in which some degrees of conforma-
tional freedom are locally discretized). The resolution of lattice models can vary
from a very crude shape of the main chain to a resolution similar to that of good
experimental structures. Usually, the protein backbone is restricted to a lattice. The
side chain, if explicitly treated, could be restricted to a lattice or could be allowed
to occupy off-lattice positions. The HP model, proposed by Lau and Dill (1989),
is a type of simple lattice model, which only considers two types of residues, hy-
drophobic and polar in a simple cubic lattice. Lattice models of moderate to high
resolutions were also designed to retain more details of actual protein structure, in-
cluding SICHO (SIde CHain Only) model (Kolinski and Skolnick, 1998), CABS,
and “hybrid” 310 lattice model (considering 90 possible orientations of the C�-trace
vectors with off-lattice side chains and multiple rotamers). Reduced representations
of proteins were employed in many studies, for example in studies of the coopera-
tivity of protein folding dynamics (Dill et al., 1993) and in the ab initio prediction
of protein structures (Skolnick et al., 1993).

1.2.3.3 Ab Initio Methods Using Reduced Representation of Proteins

Levitt and Warshel made one of the very first attempts to model real proteins using a
reduced representation of proteins in 1975 (Levitt and Warshel, 1975). They applied
a simplified continuous representation of protein structures with each residue repre-
sented as two centers (C� atom, and the centroid of the side chain) in the simulation
of the folding of bovine pancreatic trypsin inhibitor (BPTI), in which BPTI was
folded from an open-chain conformation into a folded conformation resembling the
crystallographic structure, with a backbone RMSD in the range of 6.5 Å.

Skolnick et al. developed a hierarchical approach to protein-structure prediction
using two cycles of the lattice method (the second on a finer lattice), in which reduced
representations of proteins are folded on a lattice by Monte Carlo simulation using
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statistically derived potentials, and a full-atom MD simulation afterwards (Skolnick
et al., 1993; Kolinski and Skolnick, 1994b). This procedure was applied to model
the structures of the B domain of staphylococcal protein (60 residues) and mROP
(120 residues) (Kolinski and Skolnick, 1994a). Skolnick’s group also developed
TOUCHSTONE, an ab initio protein structure prediction method that uses threading-
based tertiary restraints (Kihara et al., 2001). This method employs the SICHO model
of proteins to restrict the protein’s conformational space and uses both predicted
secondary structure and tertiary contacts to restrict further the conformational search
and to improve the correlation of energy with fold quality.

Scheraga’s group developed a hierarchical approach that is similar to Skolnick’s
hierarchical method, but uses off-lattice simplified representation of proteins in the
first steps of the prediction process; namely, one based solely on global optimization
of a potential energy function (Liwo et al., 1999). This global optimization method
is called Conformational Space Annealing (CSA), which is based on a genetic algo-
rithm and on local energy minimization. Using this method, Liwo et al. built models
of RMSD to native below 6 Å for protein fragments of up to 61 residues. This
method was further assessed through two blind tests; the results were reported in
Oldziej et al. (2005).

In specialized cases, parallel computation allows protein fold simulations using
all-atom representation of proteins, and even explicit solvents, at the microsecond
level. As described in brief above, a representative example is the folding of HP35,
which is a subdomain of the headpiece of the actin-binding protein villin (Duan and
Kollman, 1998), which has only 36 residues and folds autonomously without any
cofactor or disulfide bond. This simulation was enabled by a parallel implementation
of classic MD using an explicit representation of water, and the folded state of
HP35 significantly resembles the native structure (but is not identical). But all-atom
simulations are still limited and only practical for small ultrafast folding proteins.

1.2.3.4 Ab Initio Methods by Segment Assembling

A significant progress in the development of ab initio methods was the introduction of
conformational constraints to reduce the computational complexity. Several ab initio
modeling methods have been developed based on this strategy (Zhang and Skolnick,
2004; Lee et al., 2005), which was pioneered in the implementation of the Rosetta
method (Simons et al., 1997, 1999a).

The basic idea of Rosetta is to narrow the conformation searching space with
local structure predictions and model the structures of proteins by assembling the
local structures of segments. The Rosetta method is based on the assumption that
short sequence segments have strong local structural biases, and the strength and
multiplicity of these local biases are highly sequence dependent. Bystroff et al. de-
veloped a method that recognizes sequence motifs (I-SITES) with strong tendencies
to adopt a single local conformation that can be used to make local structure pre-
dictions (Bystroff and Baker, 1998). In the first step of Rosetta, fragment libraries
for each three- and nine-residue segment of the target protein are extracted from
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the protein structure database using a sequence profile–profile comparison method.
Then, tertiary structures are generated using a Monte Carlo search of the possible
combinations of likely local structures, minimizing a scoring function that accounts
for nonlocal interactions such as compactness, hydrophobic burial, specific pair in-
teractions (disulfides and electrostatics), and strand pairing (Simons et al., 1999b).
A test of Rosetta on 172 target proteins showed that 73 successful structure pre-
dictions were made out of 172 target proteins with lengths below 150 residues,
with an RMSD < 7 Å in the top five models (Simons et al., 2001). Rosetta has
achieved the top performance in a series of independent, blind tests (Moult et al.,
1999; Simons et al., 1999a), ever since those for CASP3 (see below for details
about the CASP series of workshop). Rosetta has also been further refined and ex-
tended to related prediction tasks, namely, docking on predicted interactions (see
below).

Zhang and Skolnick developed TASSER, a threading template assem-
bly/refinement approach, for ab initio prediction of protein structures (Zhang and
Skolnick, 2004). The test of TASSER on a comprehensive benchmark set of 1489
single-domain proteins in the Protein Data Bank (PDB) with length below 200
residues showed that 990 targets could be folded by TASSER with an RMSD <

6.5 Å in at least one of the top five models. The fragments used for assembly in
TASSER are derived in a different way than in Rosetta. Specifically, the fragments
or segments are excised from the threading results, and thus are generally much
longer (about 20.7 residues on average) than the segments used by Rosetta (which
are 3–9 residues).

1.2.4 Modeling of Side Chains and Loops

We review the modeling of side chains and loops as a separate section because
these are two main problems that both homology modeling and de novo methods
face, and because they differ more among protein homologues than do the backbone
and protein cores. Yet, the conformation of side chains and loops may carry very
important information for understanding the function of proteins.

There are mainly two classes of computational approaches to building the
loop structures: knowledge-based methods and ab initio methods. Knowledge-based
methods build the loop structures using the known structures of loops from all
proteins in the structure database, whether or not they are from the same family
as the target protein (Sucha et al., 1995; Rufino et al., 1997). This approach is
based on the principle that the plausible conformations of loops within a certain
length cannot be that many, i.e., must be limited. Assuming a sufficient variety of
known protein structures, almost all plausible loop structures should be represented
by at lease one protein structure in the database. In fact a library of plausible loop
structures for a given loop size has been constructed (Donate et al., 1996; Oliva
et al., 1997). Typically, for a given loop in the target protein, the selection of the
optimal template structure usually relies on the similarity of the anchor regions
(i.e., the flanking residues around the loop) between template loop structure and
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the modeled core structure of the target, and the compatibility of the template loop
structure with the core structure as measured by a residue level empirical scoring
function (van Vlijmen and Karplus, 1997). Ab initio methods build loop structures
from scratch (Moult and James, 1986; Pedersen and Moult, 1995; Zheng and Kyle,
1996). Recently, methods that combine knowledge-based and ab initio methods for
better loop modeling have been introduced (Deane and Blundell, 2001; Rohl et al.,
2004). MODELLER (Sali and Blundell, 1993) uses a different methodology from
the above, which builds both core and loop regions by optimally satisfying spatial
restraints derived from the target–template alignment.

Similarly, side-chain conformations can be predicted from similar structures
and from steric or energetic considerations (Vasquez, 1996). The construction of
side-chain rotamers and the development of powerful conformation searching algo-
rithms (such as Dead End Elimination, DEE) (Desmet et al., 1992) and the mean force
field-based method (Lee, 1994; Koehl and Delarue, 1995) contributed to the success
of side-chain conformation prediction. Rotamer libraries are generally defined in
terms of side-chain torsional angles for preferred conformations of a particular side
chain. Ponder and Richards set up the first rotamer library (Ponder and Richards,
1987). A backbone-dependent rotamer library was later constructed and used for
side-chain prediction (SCWRL) (Dunbrack and Karplus, 1993; Canutescu et al.,
2003). Wang et al. developed a rapid and efficient method for sampling off-rotamer
side-chain conformations through torsion space minimization; this starts from dis-
crete rotamer libraries supplemented with side-chain conformations taken from the
unbound structures. This approach has been used to improve side chain packing in
protein–protein docking.

1.2.5 Modeling Structural Differences

Mutation data are an important source of information in the study of the functions of
proteins; similarly, analyzing the differences among protein families is one way to
study their function and functional specificity. It is therefore very important to study
the detailed structural differences associated with mutations and sequence differ-
ences among families. For example, homology modeling (Lee, 1995) and molecular
dynamics (MD) were used for studying the consequences of mutations (see the
section “Molecular Dynamics Simulations of Membrane Proteins”).

Baker’s group tried to model structural differences based on comparative mod-
eling by free-energy optimization along principal components of natural structural
variation, which serves to improve the accuracy of protein modeling (Qian et al.,
2004). In comparative modeling, an issue has been that a given protein model is fre-
quently more similar to the template(s) used for modeling than to the target protein’s
native structure. In principle, energy-based minimization might help to improve the
resolution of models. However, in practice, energy-based refinement of comparative
models generally leads to degradation rather than improvement in model quality. The
work of Baker’s group (Qian et al., 2004) led to an improved use of energy-based
minimization, through restricting the search space along the evolutionarily favored
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direction and thereby avoiding the false attractors that might lead the minimization
to wrong answers.

There are numerous limits within current efforts, and considerable effort is
still required to improve the methods for predicting the structures resulting from
mutations and the modeling of structural difference within families. The reasons
underlying the difficulties include our inability to model protein structures in fine
resolution despite the strict requirements for quality in modeling of the structural
differences. Indeed, “modeling of the structure of a single mutation” and “modeling
structure changes associated with specificity changes within protein families” were
identified as two of the three modeling challenges as viewed by a community meeting
in 2005 [see the summary from CASP6 (Moult et al., 2005), which is a summary
from the sixth in a series of structure prediction meetings described below].

1.2.6 Novel Communitywide Activities to Improve Prediction
and Demonstrate Value

CASP (Critical Assessment of Structure Prediction) is a communitywide experiment
with the primary aim of assessing the effectiveness of modeling methods. CASP de-
serves special recognition in any consideration of the role of modeling/computational
methods for biology, since the meeting/process has transformed the level of recog-
nition (for modeling studies) coming from experimentalists; CASP has become a
model for all computational biology communities and an exemplar for evaluating
techniques or methods beyond software/the approaches of scientific computing. In
light of these competitions and the overall efforts in the field, the general status for
high-resolution refinement of protein structure models and overall progress in mod-
eling has been reviewed in depth recently (Misura and Baker, 2005; Schueler-Furman
et al., 2005b).

CASP was first held in 1994 and six CASP meetings were held through 2004;
the most recent meeting was held in 2006 (as the 7th Community Wide Experiment
on Critical Assessment of Techniques for Protein Structure Prediction). The key
feature of CASP is that participants make blind predictions of structures. CASP has
monitored since 1994 the progress of protein modeling (covering all categories of
modeling methods). Also it provides a good arena for testing the performance of
newly developed modeling methods. The prediction season, during a cycle, begins
in spring and all predictions are due at the end of the summer. The essential aspect
is that experimentalists make lists available of what they are likely to solve during
this time period and agree not to release their structures, when obtained, until after
the deadline for predictions. Establishing this clear process solved the longstanding
assertions about structure prediction being based on previously known information.

How well one does in CASP has become important—some would say too
important—as a metric for research in the field. As a consequence, as well as CASP,
which is a manual method in which any amount of scientific knowledge and any
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collection of algorithms can be employed, an automated prediction approach has
been added, to test the state of computational prediction schemes rather than the
participants’ insight into protein structure. This is the Critical Assessment of Fully
Automated Structure Prediction (CAFASP). Besides using automated approaches for
the competition, numerous protein prediction servers have been introduced for the
community, including, for example, PROSPECT-PSPP (Guo et al., 2004) and Robetta
(Kim et al., 2004). Other aspects of large-scale prediction servers are described
below (Section 1.2.7). Interestingly, services, such as EVA, have also been created to
monitor the quality or performance of the numerous prediction servers, and provide
continuous, fully automatic, and statistically significant analysis of such servers (Koh
et al., 2003).

CASP is now organized by the Protein Structure Prediction Center. The Center’s
goal is to help advance the methods of identifying protein structure from sequence.
The Center has been organized to provide the means of objective testing of these
methods via the process of blind prediction. In addition to support of the CASP
meetings, their goal is to promote an objective evaluation of prediction methods
on a continuing basis. Some of the recent successes in CASP have been described
previously.

A very powerful related community scheme looks at the nature of macro-
molecular interactions or docking, Critical Assessment of PRedicted Interactions
(CAPRI), which grew up directly from the successes of CASP, where this new chain
of meetings was launched after 1996. While few of the proteins identified through
major genome sequencing efforts will ever have their structure solved, since proteins
actually carry out biological processes as larger, multimeric or even heterologous
complexes, characterizing the structure of proteins in native complexes is more im-
portant, and even fewer of those complexes will ever be experimentally determined,
due to the greater inherent difficulties in doing so. To test what are therefore es-
sential computational methods, the starting points for predicting the structures of
protein complexes (“docked” proteins) are the independently solved structures of
the constituents of a protein complex, whose 3D structure is unknown, and against
which the community’s algorithms and approaches can be tested. For example, an in-
depth evaluation of certain docking algorithms in early CAPRI rounds (3, 4, and 5)
has been provided (Wiehe et al., 2005); of particular value has been the introduc-
tion of benchmarks for analysis, such the Protein-Protein Docking Benchmark 2.0
(Mintseris et al., 2005), which provides a platform for evaluating the progress of
docking methods on a wide variety of targets. An extension of the very successful
Rosetta approach to the challenges of predicting the structure of complexes is Roset-
taDock, which uses real-space Monte Carlo minimization on both rigid body and
the side chain degrees of freedom in order to find the lowest free energy arrange-
ment of two docked protein structures; more recently, this has been extended to take
into account backbone flexibility and employed very successfully in more recent
CAPRI competitions (Schueler-Furman et al., 2005a). More details about docking
approaches in general are discussed below.
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1.2.7 Protein Modeling Metaservers

Several protein modeling metaservers have appeared since 2001, including Pcon
(a neural-network–based consensus predictor) (Lundstrom et al., 2001), Structure
Prediction Meta Server (Bujnicki et al., 2001), 3D-Jury (Ginalski et al., 2003),
GeneSilico protein structure prediction metaserver (Kurowski and Bujnicki, 2003),
and 3D-SHOTGUN (Daniel, 2003). These automatic servers collect models from
other servers and use that input to produce consensus structures. According to the
assessment performed via CASP, protein modeling metaservers perform generally
better than other single modeling methods; their performance is even close to that of
human experts. [The noteworthy progress between CASP4 and CASP5 was partly
due to the effective use of metaservers (Moult, 2005).] However, some CASP partic-
ipants have worried that the increasing successes of metaservers might discourage
researchers from developing new prediction methods. This seems a small worry,
in light of the various objectives for improved modeling methods and the potential
impact from delivering more accurate, high-throughput genome annotation to en-
hanced drug discovery. Of course, there is a community goal, to seek improved tools
and validation of the overall approach in the eyes of experimentalists, and the many
personal goals, to seek to make the best contribution possible. As a consequence, the
larger worry, under the current environment for CASP itself, is that it is hard to dis-
sect the individual computational contributions to prediction and ascertain progress
and what tools to choose since considerable manual or intellectual intervention is
inevitably involved in order to achieve the highest validated successes in predic-
tion. This difficulty is among the factors that led to the introduction of automated
approaches, including metaservers, in the first place.

1.3 A Shift in the Focus for Protein Modeling

In recent years, the efforts in genome sequencing have been enormously success-
ful. Hundreds of whole or complete microbial genomes and dozens of eukaryotic
plant and animal genomes have been sequenced, and many more genome projects
are underway. In contrast to the quickly increasing number of predicted protein
sequences (open reading frames or ORFs) that are deposited in the community
database, Genbank, the number of proteins whose architecture has been solved in-
creases much more slowly. This continues despite the advances in structure determi-
nation techniques and the effects of the (National Institutes of Health, NIH) Protein
Structure Initiative in the United States and Structural Genomics Projects worldwide.
Therefore, more modeling per se as well as improved computational modeling of
protein structures is of crucial importance to keep pace with the advances of genome
sequencing and functional genomics, that is, our ability to predict the structure of
newly discovered or predicted proteins has to increase greatly in order for the com-
munity to be able to characterize and utilize fully the extraordinary delivery of
new sequence information. Accordingly, the focus of modeling has shifted in recent
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years, from modeling of monomers to modeling of simple protein–protein complex
and even the modeling of large protein assemblies; that is, the focus has moved
from small-scale modeling to large-scale modeling (and even genome-scale efforts
at comprehensive modeling). In this section, we will focus on a discussion of mod-
eling of different targets. Also, we will discuss specific methods that have already
been developed and those that are emerging to deal with the various requirements,
which are different from the methods discussed above. (These methods are mostly
for modeling soluble, single-domain globular proteins.)

1.3.1 Modeling of Membrane Proteins

Membrane proteins play a central role in many cellular and physiological processes.
Any aspect of cell activity is regulated by extracellular signals that are recognized
and transduced inside the cell via different classes of plasma membrane receptors.
It is estimated that integral membrane or transmembrane (TM) proteins make up
about 20–30% of the proteome (Krogh et al., 2001). They are essential mediators
of material and information transfer across cell membranes. Identifying these TM
proteins and deciphering their molecular mechanisms is of great importance for
understanding many biological processes. In addition, membrane proteins are of
particular importance in biomedicine, because they are the targets of a large num-
ber of pharmacologically and toxicologically active substances, and are directly
involved in their uptake, metabolism, and clearance. Membrane proteins can be
loosely associated on the surface of the lipid bilayer (peripheral membrane proteins)
or embedded (integral membrane protein, e.g., bacteriorhodopsin). The prediction
and analysis of membrane proteins largely involves a focus on integral membrane
proteins.

Membrane proteins account for less than 1% of the known high-resolution
protein structures (White, 2004), despite their importance in essential cellular func-
tions. Solving the structure of a membrane protein remains challenging and no
high-throughput methods, or even general methods, have been developed. In the
first instance, structure determination of membrane proteins remains a challenge
because of difficulties in expressing sufficient quantities of protein and in manipu-
lating the protein in vitro with an artificial environment mimicking some attributes
of the in situ environment. Even when these challenges are met, there are remain-
ing difficulties in obtaining ordered crystals for analysis by X-ray crystallography.
NMR remains the modality of choice for structural analysis of membrane proteins
but cannot readily tackle larger proteins and requires substantive quantities of ma-
terial. Given the challenges for crystallographic analysis, membrane proteins were
inevitably listed as “lower priority” or “avoided” targets for the Structural Genomics
Centers, during the early phase of the Protein Structure Initiative. Research funding
has even included set-aside opportunities to address the challenges of character-
izing the biophysical properties and structure of membrane proteins. However, no
demonstrated method yet exists to deliver a pipeline for high-throughput structure
determination of membrane proteins.
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Given the relatively and absolutely (!) small number of known, high-resolution
membrane protein structures, computational methods are very important in predict-
ing the structures of membrane protein, and in this case especially, if a prediction
could be said to “determine” the structure, computational methods would have a
huge impact on fundamental biology and biomedicine, and on applied life sciences
research around drug targets. Most of the tools used for analyzing and predicting the
structure of soluble, nonmembrane proteins can also be used for this important class.
That is, many secondary structure prediction methods from primary sequences based
on statistical methods, physicochemical methods, sequence pattern matching, and
evolutionary conservation can also be applied for modeling the structures of mem-
brane proteins, as can the conventional 3D structure prediction methods, including
homology modeling techniques. At the same time, due to the limited number of
known structures of membrane proteins, the application of homology modeling in
predicting membrane protein structures remains very limited.

In the absence of a high-resolution 3D structure (experimental or computa-
tional), an important cornerstone for the functional analysis of any membrane pro-
tein is an accurate topology model. A topology model describes the number of TM
spans and the orientation of the protein relative to the lipid bilayer. The secondary
structure of a membrane-spanning segment can be an α-helix or a β-strand, but a TM
β-strand usually has fewer residues than an α-helix. Nearly all TM β-strand proteins
are found in prokaryotes, and belong to only a few protein families. Generally, inte-
gral membrane transporters of the inner membrane consist largely of α-structures,
and they traverse the membrane as α-helices, whereas those of the outer membranes
consist largely of ß-barrels. Because of this, many methods have been developed
to focus on the prediction of transmembrane α-helices. These methods are mainly
based on the special properties of membrane proteins (Chen and Rost, 2002), such
as differences in amino-acid compositions in cytoplasmic and extracellular regions
(positive-inside rule) (Heijne, 1986), the hydrophobic/hydrophilic patterns of TM
regions (Kyte and Doolittle, 1982), and the minimum length of TM regions.

1.3.1.1 Methods for Topology Model Prediction (α-Helix
Membrane Proteins)

One of the earliest and still most widely practiced methods for identification of
membrane regions is hydropathy analysis, which uses a sliding-window approach
to calculate the average hydrophobicity of an amino-acid position. By definition,
hydrophobicity is the property of being water-repellent. Rose first introduced the
concept of hydrophobicity analysis as a means of identifying chain turns in soluble
proteins in 1978 (Rose, 1978), and in 1982, Kyte and Doolittle developed the first
hydropathy scale (KD hydropathy scale, or KD scale), which is widely used by
many prediction programs for evaluating the hydrophobicity of a protein along the
amino acid sequence (Kyte and Doolittle, 1982). In practice, there are multiple
ways to quantify the hydrophobicity of amino acids. Indeed, to date, more than
100 hydrophobicity scales have been published in the literature. These were either
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derived experimentally based on the free energy of transfer or empirically calculated
based on surface accessibility.

The use of more complex processing of the hydrophobicity scale (and in com-
bination with other physicochemical parameters) helped to improve the performance
of membrane protein prediction. An early effort used discriminant analysis to clas-
sify membrane proteins as integral or peripheral and to estimate the odds that the
classification is correct (Klein et al., 1985). TopPred (von Heijne, 1992) combines hy-
drophobicity analysis with the positive-inside rule and achieves better performance
than using hydrophobicity alone. The Dense Alignment Surface (DAS) method op-
timizes the use of hydrophobicity plots by assessing sequence similarities between
segments of the query protein and known transmembrane segments (Cserzo et al.,
1997). For making predictions, the SOSUI method combines four physicochemical
parameters: KD scale, amphiphilicity, relative and net charges, and protein length
(Hirokawa et al., 1998). TMFinder combines segment hydrophobicity and the non-
polar phase helicity to predict TM segments (Deber et al., 2001).

A more general strategy is to infer the statistical preference of amino acids in
membrane proteins from unknown membrane proteins (since consecutive residues
have preferences for certain secondary structure states), and then to use the derived
preference (instead of hydrophobility) for prediction. This strategy can be used for
general secondary structure prediction for globular proteins and, upon considering
different states, for membrane proteins. Methods developed following this strategy
include MEMSAT, SPLIT, TMAP, and TMpred (for a review see Chen and Rost,
2002).

Many advanced methods have been developed employing statistical preferences
and machine learning methods, including neural networks (NN; e.g., PHDhtm),
hidden Markov models [HMM; e.g., HMMTOP (Tusnady and Simon, 1998) and
TMHMM (see below)], and SVM (e.g., SVMtm—see below) for membrane pro-
tein prediction. Rost et al. (1995) developed a neural network system for predicting
the locations of TM helices in integral membrane proteins using evolutionary in-
formation as input. TMHMM (Krogh et al., 2001) embeds a number of statistical
preferences and rules into a hidden Markov model to optimize the prediction of
the localization of TM helices and their orientation. It incorporates hydrophobic-
ity, charge bias, helix lengths, and grammatical constraints (i.e., cytoplasmic and
noncytoplasmic loops have to alternate) into one model for which algorithms for
parameter estimation and prediction already exist. TMHMM achieved highly accu-
rate performance: it correctly predicts 97–98% of the TM helices, and discriminates
between soluble and membrane proteins with both specificity and sensitivity better
than 99% (but the accuracy drops when signal peptides are present). This high de-
gree of accuracy makes it possible to use this method to predict integral membrane
proteins reliably from numerous genomes. Based on this prediction across a wide
collection of complete genomes, an estimate has been made that 20–30% of all genes
in most genomes encode membrane proteins, which is in agreement with previous
estimates. A more recent method SVMtm (Yuan et al., 2004) applies support vector
machines to predict transmembrane segments; various sequence coding schemes
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(including three different hydropathy scales and 21-UNIT) (Rost et al., 1995) were
tested.

1.3.1.2 Methods for Topology Model Prediction (�-Strand Membrane
Proteins)

�-Strand TMs lack a clear pattern in their membrane-spanning strands, making them
different from the �-helical membrane proteins, which have hydrophobic segments
and the positive-inside rule. Predictions made for TM β-strands are currently less
successful than those for TM α-helices. An early method developed in 1995 used
Gibbs motif sampling to detect bacterial outer membrane protein repeats; these were
then used in searching for outer membrane proteins (Neuwald et al., 1995).

One of the key structural determinants of β-barrel membrane proteins is a pat-
tern of β-barrel dyad repeats. β-Barrel proteins of known 3D structure share two
physicochemical properties (i.e., hydrophobicity and amphipathicity): most of the
TM strands correspond to a peak of hydrophobicity, but the hydrophobic values of
these peaks are generally not as high as those of the TM α-helices of cytoplasmic
integral membrane proteins. Most of the TM β-strands exhibit peaks of amphi-
pathicity caused by the alternating hydrophilic residues located inside the barrel
and the hydrophobic residues located outside the barrel. These two physicochemical
properties laid the basis for many software programs aimed at �-barrel TM pro-
teins. The �-Barrel Outer Membrane protein Predictor (BOMP) program (Berven
et al., 2004) combines two independent methods for identifying the possible integral
outer membrane proteins and also a filtering mechanism to remove false positives; it
was designed to predict whether a protein sequence specifically from Gram-negative
bacteria is an integral β-barrel outer membrane protein (80% accuracy and 88%
sensitivity achieved when applied to E. coli K12 and S. typhimurium). Similar to
predictions for α-helix TM proteins, statistical preferences and machine learning
methods (NN in BBF, OM Topo predict and TMBETA-NET; HMM in BETA-TM,
BIOSINO-HMM, HMM-B2TMR, PRED-TMBB, and ProfTMB) have also been
introduced to improve the prediction of β-barrel TM proteins. BBF, Beta-Barrel
Finder (Zhai and Saier, 2002), is a program based on physicochemical properties
(both hydropathy and amphipathicity), which uses NNs to identify TM �-barrel pro-
teins in E. coli. TBBPred (Natt et al., 2004) uses both NNs and SVMs for predicting
TM β-barrel regions.

1.3.1.3 Molecular Dynamics Simulations of Membrane Proteins

MD simulations are widely used in studying the structures of membrane proteins such
as the conformational dynamics of the receptors, the functions (such as open or closed
states) of ion channels (Giorgetti and Carloni, 2003), and the receptor and ligand
interactions. The simulations enable us to extrapolate from the essentially static
(time- and space-averaged) structure revealed by X-ray diffraction to a more dynamic
picture of the behavior of a membrane protein in a more realistic environment that
mimics a small patch of the membrane. The first MD simulation of a biological
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process was the 1976 simulation of the primary event in rhodopsin (Warshel, 1976).
MD simulations were next applied to the earliest simulations of enzymatic reactions
and electron transfer reactions and then simulations of proton translocations and ion
transport in proteins (see the review by Warshel, 2002). MD simulations have been
employed in a number of studies on outer membrane proteins, in order, for example,
to probe protein and solvent dynamics in relationship to permeation mechanisms in
porins (Tieleman and Berendsen, 1998), to explore possible pore-gating mechanisms
in OmpA (Bond et al., 2002), and to examine the role of calcium binding and
dimerization in the catalytic mechanism of OMPLA (Baaden et al., 2003). MD
simulations can also be used to assess whether any mutation in a protein has an effect
on the structure and function of the protein before more time-consuming experiments
have been performed; for example, this has been done with the computational alanine
scanning of human growth hormone-receptor complex (Huo et al., 2002) and the
study of TM domain mutants of Vpu from HIV-1 along with the consequences of
these mutations on its structure (Candler et al., 2005).

1.3.1.4 Modeling and Simulation of GPCR (G-Protein-Coupled Receptor)

GPCRs constitute the largest family of signal transduction membrane proteins, which
mediate the cellular responses to a variety of bioactive molecules, including biogenic
amines, amino acids, peptides, lipids, nucleotides, and proteins. The GPCRs play
a crucial role in many essential physiological processes as diverse as neurotrans-
mission, cellular metabolism, secretion, cell growth, immune defense, and differen-
tiation. GPCRs are also (not surprisingly) the most common targets for the drugs
currently used in clinics and for the wealth of drug candidates that high-throughput
methods are expected to deliver in the immediate future. Extensive computational
analysis (see the review by Fanelli and DeBenedetti, 2005), which includes predict-
ing families and subfamilies of GPCRs from sequences, 3D structure modeling,
and MD simulation of the consequences of mutants, has been done for GPCRs; a
dedicated database was created for GPCRs, the G-protein-coupled receptor database
(GPCRDB) at http://www.gpcr.org/7tm.

1.3.1.5 Global Topology Analysis of the E. coli Membrane Proteome

A study that deserves special mention is the global topology analysis of the E. coli
inner membrane proteome by Daley et al. (2005). This is the first reported large-
scale prediction of membrane proteins in combination with large-scale experiments.
Their work exploits the observation that topology prediction can be greatly improved
by constraining it with an experimentally determined reference point, such as the
location of a protein’s C-terminus; an estimate is that at least ten percentage points
in overall accuracy in whole-genome predictions can be gained in this way (Melen
et al., 2003). Using C-terminal tagging with the alkaline phosphatase and green flu-
orescent protein, they determined the locations of the C-termini (either periplasmic
or cytoplasmic) for 601 inner membrane proteins. Then, by constraining topology
predictor TMHMM with these data, they derived high-quality topology models for
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these proteins; this research provides a firm foundation for future functional studies
of this and other membrane proteomes.

1.3.2 Modeling of Multiple-Domain Proteins

Domain fusion/shuffling is one of the most important events in the evolution of
modern proteins (Patthy, 1999; Kriventseva et al., 2003). The majority of proteins,
especially in higher organisms, are built from multiple domains (modules), which
can be found in various contexts in different proteins. Such domains usually form
stable three-dimensional structures, even if excised from a complete protein, and
perform the same or similar molecular functions as parts of the protein.

The identification of domain boundaries is critical for both experimental and
computational (including ab initio and comparative modeling) protein structure de-
termination. NMR spectrometry has a length limitation in solving protein structures,
and X-ray diffraction requires high-quality crystals and thus may fail or may have
regions lacking in detail due to flexible linker regions between domains. As a con-
sequence, there are inevitably fewer structures deposited in PDB that can be used
as structural templates for modeling multiple-domain proteins. Ab initio prediction
methods also encounter huge difficulties in predicting large, multidomain proteins
due to the exceptional computational barrier in exploring conformational space and
for the determination of domain–domain interactions. Consequently, current ab initio
structure prediction methods can only model structures of relatively small size and
do so at worse resolution than obtained by homology modeling. Both experimen-
tal and computational approaches to protein structure determination would benefit
significantly from predicted domain assignments.

One way of dealing with the multidomain problems is to model the structures
of domains of a protein separately and then, if possible, to assemble the domains
together. Any computational methods for protein structure modeling can be applied to
model structures of individual domains, including comparative modeling, threading,
and ab initio methods. Special issues in modeling multidomain proteins involve the
first step of domain dissection (Contreras-Moreira and Bates, 2002) and the last step
of predicting spatial arrangement of constituent domains (Inbar et al., 2003), which
will be discussed in this section.

1.3.2.1 Domain Assignment of Proteins

Although the concept of domains as structural components of proteins has been
around for years, ever since studies conducted by Wetlaufer (1973) and Rossman
and Liljas (1974), and is now well accepted, its definition is full of ambiguities. Cau-
tion in using current domain assignments was recommended by Veretnik et al., who
systematically assessed the consistency of current domain assignments by investigat-
ing six methods [three “human-expert methods”—authors’ annotation, CATH, and
SCOP—and three “fully-automated methods”—DALI (Holm and Sander 1994),
DomainParser (Guo et al., 2003), and PDP (Alexandrov and Shindyalov, 2003)].
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Their survey of the consistency of domain assignment also indicated where addi-
tional work is needed in domain assignment, including the assignment of the domain
boundaries and the assignment of small domains. Nevertheless, significant advances
have been made in the domain assignment of proteins (with or without structure in-
formation), which hence will be discussed here.

For a protein whose structure is known, domain assignments can usually be done
manually by experts, or by automatic programs, or by a combination of both. Earlier,
when there were only a few known protein structures, simple visual inspection of
protein structures was quite adequate (Wetlaufer, 1973). The SCOP database is one
of the widely cited databases of protein domains; the database represents largely
the results of human experts, who have been assisted by computer visualization,
and in particular, considered evolutionary information (Murzin et al., 1995). Fully
automatic methods, i.e., those that are run without intervention and are not affected
by human subjectivity in terms of consistently following criteria, are becoming ever
more important in order to keep pace with the current accumulation of experimental
structures of proteins. One early automatic method was developed by Wodak and
Janin, who used surface area measurements based on atomic positions to give a quan-
titative definition of the structural domains in proteins (Wodak and Janin, 1981). The
incorporation of secondary structure information (DOMAK) (Siddiqui and Barton,
1995) or information on hydrophobic cores (DETECTIVE) (Swindells, 1995) has
subsequently been shown to enhance the automatic domain assignment. Another
program, PUU, was based on achieving/expecting maximal interactions within each
unit but minimal interaction between units (or domains) (Holm and Sander, 1994).
The CATH database (Orengo et al., 1997) uses three algorithms (DETECTIVE,
PUU, and DOMAK) for domain decomposition as a first step in the assignment
process, followed by an expert’s inspection. The VAST algorithm, which is used for
structure neighboring in the Entrez system, is a fully automatic method that splits
protein chains at points between secondary structure elements (SSEs) when the ratio
of intra- to interdomain contacts exceeds a certain threshold (Madej et al., 1995).

In the absence of a known protein structure (as would be the case for any protein
structure modeling), algorithms developed to predict domain boundaries have been
based on sequence information, multiple sequence alignments, and/or homology
modeling. Early approaches to domain boundary prediction relied on information
theory (Busetta and Barrans, 1984) and used statistical potentials (Vonderviszt and
Simon, 1986). Later prediction methods took into account the information of (pre-
dicted) secondary structure (DomSSEA), sequence conservation (Guan and Du,
1998; George and Heringa, 2002a; Rigden, 2002), or both, in order to improve do-
main assignment from sequences. DomSSEA (Marsden et al., 2002) uses a fold
recognition approach, based on aligning predicted secondary structure of a query
protein sequence to the assigned secondary structure of known structures, and then
transferring the SCOP assigned domains from the best fold match to the query pro-
tein. SnapDRAGON is a suite of programs developed to predict domain boundaries
based on the consistency observed in a set of alternative ab initio 3D models gener-
ated for a given protein multiple sequence alignment (George and Heringa, 2002b).
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Many of the Open Reading Frames (ORFs) or predicted protein sequences discov-
ered along the genome of any fully sequenced bacterial organism have been found
not to be conserved across organisms; indeed, nearly half of all new ORFs appear
to be unique. In these cases, algorithms that do not rely on sequence conservation
have been applied to assign domains. The Domain Guess by Size (DGS) algorithm
makes predictions based on observed domain size distributions (Wheelan et al.,
2000). Galzitskaya and Melnik (2003) developed a method based on the assumption
that the domain boundary is conditioned by amino acid residues with a small value
of side chain entropy, which correlates with the side chain size. The Armadillo pro-
gram (Dumontier et al., 2005) uses an amino acid index, called the domain linker
propensity index (DLI) and derived from the amino acid composition of domain
linkers using a nonredundant structure data set, to convert a protein sequence to
a smoothed numeric profile from which domains and domain boundaries may be
predicted. In general, most approaches predict the number of domains accurately,
but only a few predict the domain boundaries well; prediction of domain boundaries
only has a moderate sensitivity of ∼50–70% for proteins with single domains, and
does considerably worse (∼30%) for multidomain proteins. Multidomain proteins
are also harder to study experimentally. Thus, the proteins from eukaryotes are more
difficult for both experimental and computational analysis.

1.3.2.2 Modeling of Domain–Domain Interactions

Considering the similarity of domain–domain interaction (folding) and protein–
protein interaction (binding), docking techniques that have been developed for mod-
eling protein–protein complexes (see Section 1.3.3) have been applied to build the
model of multidomain proteins by docking separate structures of domains together.
Unfortunately, few advances have been made; this is especially the case for predicting
the spatial arrangement of protein domains.

Xu et al. (2001) modeled the structure of vitronectin by first modeling its
C-terminal and central domains and then modeling the interaction of these two do-
mains using GRAMM, a docking technique. In this work, the threading program
PROSPECT was used to find the structure template for modeling and to gener-
ate the sequence–structure alignment, which was used as input for the program
MODELLER to create the models. Experimental data were also used to guide the
docking of the central and C-terminal domains by GRAMM.

Inbar et al. developed CombDock, a combinational docking algorithm, for pro-
tein structure prediction via combinatorial assembly of substructural units (building
blocks/domains) (Inbar et al., 2003). Three steps are involved in this algorithm to
predict the structure of a protein sequence: a dissection into fragments and the as-
signment of their structures; the assembly of the fragments into an overall structure
of the protein sequence; and the prediction of the spatial arrangement of the as-
signed structures and then the completion and refinement of highly ranked predicted
arrangements. The combinatorial assembly of domains is formulated as the problem
of finding the spanning tree in a graph (where each substructure is a vertex, and an
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edge between two vertices presents the interaction of the two substructures), and a
heuristic polynomial solution to this computational hard problem has been provided.

Jones et al. used a similar strategy, i.e., domain docking and microdomain
folding, to model complete chains of selected CASP6 targets. Their method, called
FRAGFOLD-MODEL, generates models of a complete chain by “docking” domains
together by searching possible linker peptide conformations. To this end, a genetic
algorithm or simulated annealing can be used for the conformational search (Jones
et al., 2005).

1.3.3 Modeling of Protein Complexes

Modeling of protein complexes is far less successful than the modeling of protein
monomers. At the same time, obtaining accurate models for complexes is of in-
creasing importance because of their functional importance—in general, proteins
act as part of large macromolecular assemblies. Indeed, experimental work routinely
extends the known scale (number of proteins) of interactions in any given functional
pathway, and the impact on our thinking about molecular processes is now expanding
rapidly with the advent of improved and larger-scale identification of protein–protein
interactions. A few docking programs have been developed since the late 1970s for
predicting the structures of protein–protein complexes. Recent developments include
the usage of computational models for docking, the combination of experimental
data in computational docking, and the combination of homology modeling and
cryoEM data to model large complex structures; these are discussed below.

1.3.3.1 Modeling Protein Complexes by Docking

Most docking methods consist of a global (or stochastic) search of translational
and rotational space followed by refinement of the best predictions. The relative
performance depends on the conformational searching ability and on the efficiency
of complex evaluation. Very often, docking programs treat proteins as a “rigid body”
during the first step and use a simple and “soft” energy function to evaluate the
potential complex, and subsequently use more fine evaluation in the second step
of refinement, during which some programs also consider the flexibility of the side
chains, but few consider the flexibility of the backbone as well.

The first computational protein docking tools were developed in the late 1970s.
Greer and Bush (1978) introduced a grid-based measure of complementarity be-
tween molecules, and used it to score interfaces between hemoglobin subunits. An
early docking study by Wodak and Janin (1981) used a simplified protein model with
one sphere per amino acid, which they used to dock BPTI to trypsin. The search
involved rotating BPTI and varying its center-of-mass distance with trypsin. Newer
programs use more complex shape-complementarity and an energy function to eval-
uate the complex models, and use a more rigorous definition of conformational space
to improve the docking performance. A significant improvement in the conforma-
tional space search has been the use of the fast Fourier transform (FFT) to perform
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correlations in grid-based translational searching (Katchalski-Katzir et al., 1992).
FFT is employed by several commonly used docking programs, including GRAMM,
FTDock, and ZDOCK. These programs use the same strategy for the conformational
search (FFT), but may use different scoring functions and do use different details for
overall operation: FTDock’s scoring of complexes is based on shape complementar-
ity and on favorable electrostatic interactions (Gabb et al., 1997); GRAMM (Vakser,
1995) implements docking at different resolutions to account for the inaccuracy
of input structures; ZDOCK (Chen et al., 2003) combines pairwise shape comple-
mentarity with desolvation and electrostatics for complex scoring. Other techniques
including geometric hashing (Fischer et al., 1995), stochastic searches such as Monte
Carlo search [e.g., RossetaDock (Gray et al., 2003)], or a genetic algorithm (e.g.,
Gardiner et al., 2001) have also been used for the conformational search step in
docking.

Most of the existing docking programs adopt the “rigid-body” strategy while
neglecting the conformational changes during binding. For complexes of an enzyme
with its inhibitor, the conformational changes might be small and can be compensated
by using some “soft” scoring to evaluate the potential complex, which is a key
consideration of evaluating the potential complex for unbound docking. (Bound
docking uses the structures from the complex structure as input, which obviously
has little predictive use, whereas unbound docking uses the structures from the
individually crystallized subunits as input.) However, for other types of complexes,
the conformational change may be greater. Due to the huge conformational space for
protein structures, “flexible” protein–protein docking remains a challenge, despite
the advances in incorporating the flexibility of receptors in protein–ligand docking
(Jones et al., 1997; Alberts et al., 2005).

1.3.3.2 Data-Driven Docking Approaches

Applying proper constraints to the conformational space during docking can signif-
icantly improve the computation speed and the accuracy of docking (van Dijk et al.,
2005). The constraints can be derived via many methods, both experimentally and
computationally. NMR data have been used in combination with docking methods
and in different ways in order to generate information about protein–protein com-
plexes. For example, diamagnetic chemical shift changes and intermolecular pseudo-
contact shifts were combined with restrained rigid-body molecular dynamics to solve
the structure of the paramagnetic plastocyanin–cytochrome f complex (Ubbink et al.,
1998). Intermolecular NOEs and residual dipolar couplings (RDCs) were combined
to solve the structure of the EIN–HPr complex (Clore, 2000). TreeDock (Fahmy and
Wagner, 2002) enumerates the search space at a user-defined resolution subject to
the condition that a pair of atoms, one from each molecule, are always in contact,
which can be in principle derived from NMR chemical shift perturbation or muta-
genesis data. Dominguez et al. (2003) developed an approach called HADDOCK
(High Ambiguity Driven protein–protein Docking), which makes use of biochemical
and/or biophysical interaction data such as chemical shift perturbation data resulting
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from NMR titration experiments or mutagenesis data. The data are transformed as
Ambiguous Interaction Restraints (AIRs) between all residues shown to be involved
in the interaction to drive the docking process.

1.3.3.3 Integrating Homology Modeling and EM Density Map
for Modeling Protein Assemblies

With the advances in functional genomics, experimental methods allow us to de-
termine on a large scale what the partners are for pairwise protein–protein inter-
actions (by yeast two-hybrid system and protein chips) and what the constituents
are among large protein assemblies [by tandem-affinity purification (TAP) and mass
spectrometry]. Accordingly, the need to model protein–protein interactions and pro-
tein assemblies is increasing. The integration of high-resolution structures/models
and the electron microscopy (EM) density map is an exciting advance for modeling
a large protein–protein complex and assemblies. The basic idea is to fit known high-
resolution structures into low-resolution structures of large complexes that are deter-
mined by EM to obtain the refined structure of large complexes. This technique has
been applied in solving the structures of large biological machines/macromolecular
complexes, such as viruses, ion channels, ribosomes, and proteasomes. In cases
where no experimental high-resolution structures are available, computational mod-
els of the individual proteins may instead be used in fitting. In addition, intermediate-
resolution cryo-EM density maps are helpful for improving the accuracy of compar-
ative protein structure modeling in those cases for which no template for modeling
can be found by a sequence-based search or a threading method. In fact, the appli-
cation of EM density maps in structure modeling started quite early; for example,
a model for the structure of bacteriorhodopsin was originally generated based on
high-resolution electron cryomicroscopy (Henderson et al., 1990). An explosion of
joint EM/crystallographic studies in the mid-1990s followed the development of
strategies for generating pseudo-atomic-resolution models of macromolecular com-
plexes by combining the data from high-resolution structures of components with
lower-resolution EM data for the entire complex (Baker and Johnson, 1996).

Electron cryomicroscopy (cryo-EM) can image complexes in their physiolog-
ical environment and does not require large quantities of the sample. Cryo-EM
also provides a means of visualizing the membrane proteins in situ, as opposed
to the usually artificial hydrophobic environments used for crystallizing membrane
proteins. Structures of large macromolecular complexes can now be visualized in
different functional states at intermediate resolution (6–9 Å) (Chiu et al., 2005).
The corresponding cryo-EM maps are generally still insufficient for atomic struc-
ture determination on their own. However, one can fit atomic-resolution structures
of the components of the assembly (e.g., protein domains, whole proteins, and any
subcomplexes) into the lower-resolution density of the entire assembly. In early
applications, researchers employed mainly “visual docking” to position the pro-
tein components in the envelopes derived from low-resolution data (Schroder et al.,
1993). More recently, computational programs were developed to obtain quantitative
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means to fit the data. Wriggers et al. used topology-representing neural networks
(TNN) to vector-quantize and to correlate features within the structural data sets to
generate pseudo-atomic structures of large-scale protein assemblies by combining
high-resolution data with volumetric data at lower resolution (Wriggers et al., 1998,
1999). Roseman et al. developed a fitting procedure that uses a real-space density-
matching procedure based on local correlation of the density derived from the atomic
coordinates of protein components and the density of the EM map (Roseman, 2000).
Ceulemans and Russell developed 3SOM (Ceulemans and Russell, 2004) for finding
the best fit through surface overlap maximization.

In cases where experimentally determined atomic-resolution structures of as-
sembly components are not available, or the induced fit severely limits their useful-
ness in the reconstruction of the complex, it may be possible to get useful models of
the components by comparative protein structure modeling (or homology modeling)
(see the review by Topf and Sali, 2005). The number of models that can be con-
structed with useful accuracy, at least comparable to the resolution of the cryo-EM
maps, is almost two orders of magnitude greater than the number of available exper-
imentally determined structures, which indicates the huge potential for employing
models in fitting EM maps (Topf and Sali, 2005).

Moreover, EM maps can be used to improve modeling in some cases (Topf and
Sali, 2005). In cases where a structural homologue of the target component cannot be
detected by sequence-based or threading search methods, it is possible to use the EM
map (if the resolution is better than ∼12 Å) for fold assignment of the constituting
proteins: at ∼12 Å resolution, it is usually possible to recognize boundaries between
the individual components in the complex, while secondary structure features, such
as long �-helices and large �-sheets, can begin to be identified at ∼10 Å resolution,
and short helices and individual strands at ∼4 Å (Chiu et al., 2002). For example,
Jiang et al. (2001) developed the Helixhunter program, which is capable of reliably
identifying helix position, orientation, and length using a five-dimensional cross-
correlation search of a three-dimensional density map followed by feature extraction;
its results can in turn be used to probe a library of secondary structure elements
derived from the structures in the PDB. This readily provides for the structure-
based recognition of folds containing α-helices. They also developed the Foldhunter
program, which uses a six-dimensional cross-correlation search that allows a probe
structure to be fitted within a region or component of a target structure. These two
methods have been successfully tested with simulated structures modeled from the
PDB at resolutions of 6–12 Å. In cases where the fold of the protein component
is known, the density maps can be useful in selecting the best template structures
for comparative modeling, since a more accurate model fits the EM density map
more tightly (Topf et al., 2005). Topf et al. (2005) developed a method for finding
an optimal atomic model of a given assembly subunit and its position within an
assembly by fitting alternative comparative models (created by MODELLER from
different sequence alignments between the modeled protein and template structures)
into a cryo EM map, using Foldhunter (Jiang et al., 2001) or Mod-EM (a density
fitting module of MODELLER).
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1.3.4 Large-Scale Modeling

In the era of many fully sequencing genomes and a focus on systemwide, integrated
biological research from proteomics to metabolomics, the introduction of an “omics”
for structural biology, that is, structural genomics, was a natural development, and
one that reflected the maturity of structural biology as well as the need to obtain
structures in order to annotate genomes fully and obtain explicit insight into the
information implicit in genome sequences. The most often stated goal of structural
genomics is to provide “structural coverage” of protein space by solving enough
structures that all known proteins could be accurately modeled (Brenner, 2001;
Vitkup et al., 2001). In the United States, the efforts of structural genomics groups
also resulted in the launch of the NIH-funded Protein Structure Initiative, which
currently supports four large structural genomics centers, as well as a larger number
of smaller, technology-focused or specialized centers.

The success of structural genomics will, by definition, rely on both experi-
mental structure determination and computational approaches. A question therefore
raised is to ascertain to what extent have the high throughput and comprehensive
aspects of genomics and the pipelines for structure determination reached efforts
on computational structure prediction. Threading and comparative modeling meth-
ods have already been applied on a genomic scale. For example, ModPipe was
developed for modeling known protein sequences using the comparative modeling
program MODELLER on a larger scale; the models are deposited in a comprehen-
sive database of comparative models, ModBase (Sanchez et al., 2000) (as of July 05,
2005, the database had 3,094,524 reliable models or fold assignments for domains in
1,094,750 proteins). The Web interface to the database allows flexible querying for
the models, the fold assignments, sequence–structure alignments, and assessments
of models of interest. Automation and large-scale modeling with de novo methods
lag behind those of comparative modeling methods, because of the relatively poor
quality of the models produced, and the relatively large amount of computer time
required. Nevertheless, Rosetta initiated the successful use of large-scale modeling
calculations done with ab initio methods (Baker and Sali, 2001).

1.3.4.1 Structure Modeling for Structural Genomics

It is clear that the eventual success of structural genomics will be brought about by
the growing synergy between experimental structure determination and computa-
tional approaches, including the comparative modeling and ab initio fold prediction
methods (see the review by Friedberg et al., 2004). The efficiency of using compara-
tive modeling will be determined by the advances of distant homology detection and
fold recognition algorithms, while the efficiency of using ab initio methods will be
largely determined by the improvement of the quality of models and the reduction
in computing time.

Predictions done through comparative modeling and ab initio methods can
compensate each other and thus play a particularly important role for structural
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genomics; namely, target selection and modeling of the structure of proteins that
are not selected for experimental determination (see the review by Baker and Sali,
2001). Of course, even with the worldwide initiatives in high-throughput structural
determination, the structures for the vast majority of the proteins in nature will (at
most) only be modeled and will never be determined by experiment.

Structural genomics as conducted to date generally omits several groups of
proteins since they are considered to be very difficult targets; these largely ex-
cluded proteins include the membrane proteins (despite some focused attention on
membrane proteins), and those with disordered structures that may fold only in the
presence of appropriate interaction partners (Bracken et al., 2004). These “special”
proteins, nevertheless, constitute a large portion of the whole proteome, for example
membrane proteins constitute 20–30% of the proteome (Krogh et al., 2001). Achiev-
ing large-scale experimental and/or computational structural determination of these
proteins would be as important as for any other proteins, and certainly as important
as for those proteins already within the structural genomics scope.

1.3.4.2 Large-Scale Modeling of Human (Disease-Related) Proteins

Disease-related proteins are of great research interest for both experimental and
computational scientists. Their high value for research in biomedicine and clinical
medicine, and potentially in health care, stems from the fact that they provide a
molecular picture of disease processes, which is a necessary prerequisite for rational
drug development. Thousands of genes (proteins) have already been identified as
associated with various diseases in humans. Computational modeling will play a
more important role in predicting the structure of eukaryotic proteins than that of
prokaryotic proteins, since eukaryotic proteins are more difficult to carry through a
crystallography pipeline, and fewer, as a consequence, are likely ever to be deter-
mined experimentally. Several efforts have been carried out in order to model the
structures of human proteins. For example, generated models are extensively used
for studying the human disease proteins in association with SNP data. LS-SNP is a
resource providing large-scale annotation of coding nonsynonymous SNPs (nsSNPs)
based on multiple information sources (including structural models) in human pro-
teins (Karchin et al., 2005). Yip et al. created the Swiss-Prot variant page and the
ModSNP database for sequence and structure information on human protein variants
(Yip et al., 2004). Ye et al. specifically created models of all human disease-related
proteins collected in Swiss-Prot and studied the spatial distribution of disease-related
nsSNPs on the models (Ye et al., 2006). These analyses provided some explanation
for nsSNPs with known effects (harmful or neutral), and might in turn provide a
basis for predicting the effects of nsSNPs.

1.3.4.3 Genome-Scale Modeling of Complexes

Proteins function via interactions with other macromolecules, and most cellular
processes are carried out by multiprotein complexes. The identification and analysis
of the components of these complexes provides insight into how the ensemble of
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expressed proteins (the proteome) is organized into functional units. Large-scale
identifications of protein–protein interactions in many genomes are now possible
due to the genome-scale discovery approaches for identifying interacting proteins;
these methods include the yeast two-hybrid system and protein chips, which have
been very widely employed. Using an approach with more potential for quantitative
information, Gavin et al. (2002) used tandem-affinity purification (TAP) and mass
spectrometry in a large-scale approach to characterize multiprotein complexes in
S. cerevisiae.

Employing biophysical and computational methods for studying protein–
protein interactions and complexes from a structural perspective would be similarly
important. A significant step toward understanding how proteins assemble has been
taken by Aloy et al. (2004). Starting from the large set of identified complexes of yeast
by TAP (Gavin et al. 2002), they screened the complexes using low-resolution EM
images. These images were used to assemble and validate models (see the “Integrat-
ing Homology Modeling and EM Density Map for Modeling Protein Assemblies”
section). They also predicted links between complexes and provide a higher-order,
structure-based network of connected molecular machines within the cell. The net-
work they derived currently gives the most complete view available for complexes
and their interrelationships.

1.4 Summary

From understanding single molecules, to a simple complex, to large assemblies to
the biological networks, we are moving toward an understanding of life. Structure
information (derived experimentally or computationally) helps us to understand the
mechanisms by which the biochemical processes of cells occur and provides insight
beyond chemical architecture—mechanism implications, for example, in suggest-
ing features about evolution of function. In turn, structure prediction has made an
increasing number of contributions to our understanding of biology [which has been
described elsewhere both in detail and eloquently (Petrey and Honig, 2005)]. Ad-
vances have been achieved in computational predictions of structure at each level,
and each advance brings new potential to impact our understanding of biology. Yet,
challenges remain. We can expect that the computational challenges will be more
daunting at a network level, characterizing the metabolic pathways, signal trans-
duction cascades, and genetic circuits through which protein interactions determine
cellular and organismic function; existing methods need improvement or new meth-
ods need to be developed that must deal with individual proteins, complexes, and
sophisticated dynamic networks that connect them. The remainder of this book deals
with contemporary efforts toward those advances. The structure-based network de-
rived by Aloy et al. provides a useful initial framework for further studies. “Its beauty
is that the whole is greater than the sum of its parts: Each new structure can help to
understand multiple interactions. The complex predictions and the associated net-
work will thus improve exponentially as the numbers of structures and interactions
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increase, providing an ever more complete molecular anatomy of the cell” (Aloy
et al. 2004)
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Protein structure and dynamics and, therefore, their biological functions are dictated
by a collection of forces that vary from those associated with covalent linkages, such
as bonds, to long-range through space forces, such as electrostatic or coulombic
interactions. Accordingly, to be able to apply theoretical approaches to understand
the behavior of proteins, it is necessary to be able to accurately predict the change
in energy of a protein as a function of the change in conformation. Importantly,
such predictions must include contributions from the environment in which the
protein is immersed. While quantum-mechanical (QM) methods are attractive in their
ability to model complex chemical phenomena at the level of electronic structure,
such methods are typically inappropriate for proteins due to the large size of these
macromolecules as well as the need to treat their environment in an explicit fashion.
Rather, molecular mechanics (MM), which rely on potential energy functions or
empirical force fields, afford the computational speed to allow for calculations on
proteins along with their environment.

2.1 Potential Energy Functions

The computational speed associated with molecular mechanics is based on the sim-
plicity of the mathematical models used in the potential energy function to relate the
structure of the system to its energy. This simplicity is based on the smallest particles
in the model typically being atoms, which are treated as point masses centered on
the nucleus of each atom in the molecules comprising the system under study. The
potential energy function therefore describes the interactions between the atoms in
the system.

An example of the potential energy function used in the additive CHARMM
force fields (Brooks et al., 1983; MacKerell et al., 1998b) is shown in Eq. (2.1);
similar energy functions are used in the common macromolecular force fields for
proteins including OPLS/AA (Jorgensen and Tirado-Rives, 1988), AMBER (Cornell

45
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Fig. 2.1 Schematic diagram of the terms used to describe the energy as a function of the confor-
mation in the potential energy function. The bond length between two covalently attached atoms
1 and 2 is b, � is the valence angle between atoms 1, 2, and 3, � is the dihedral angle involving
atoms 1, 2, 3, and 4, S is the Urey-Bradley distance between atoms 1 and 3, and rij is the through
space distance between atoms 1 and 4. The inset shows an example of an improper dihedral, �,
which is defined as the dihedral C1–C2–C3–H4.

et al., 1995), and GROMOS (van Gunsteren, 1987).
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Equation (2.1), where the potential energy, U , is calculated as a function of the
atomic positions, �R, includes terms for the internal (i.e., bonded) and external (i.e.,
interaction or nonbond) contributions. Internal terms include the bonds, valence
angles, Urey-Bradley, dihedral or torsion angles, and improper dihedral terms while
the external terms include the van der Waals (vdW) interations, treated via the
Lennard-Jones (LJ) 6–12 term and the electrostatic interactions. In Eq. (2.1), terms
describing the geometry of the molecule include the bond length, b, the valence angle,
�, the distance between atoms separated by two covalent bonds (Urey-Bradley term,
1,3 distance), S, the dihedral or torsion angle, � , the improper angle, �, and the
distance between atoms i and j , rij. The schematic diagram in Fig. 2.1 illustrates the
terms included in Eq. (2.1).

In order for the potential energy function to represent different types of, for
example, bonds (e.g., C–C single versus double bonds) or atom types, parameters are
used for each type of bond, angle, atom type, and so on in the molecules in the system.
These parameters include the bond force constant and equilibrium distance, Kb and
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b0, respectively; the valence angle force constant and equilibrium angle, K� , and �0;
the Urey-Bradley force constant and equilibrium distance, KUB and S; the dihedral
angle force constant, multiplicity, and phase angle, K� , n, and �; and the improper
force constant and equilibrium improper angle, K� and �0. External parameters that
describe the interactions between atoms i and j include the partial atomic charges, qi ,
and the LJ well-depth, εij, and minimum interaction radius, Rmin,ij, used to treat the
vdW interactions. Typically, εi and Rmin,i are obtained for individual atom types and
then combined to yield εij and Rmin,ij for the interacting atoms via combining rules.
In CHARMM, εij values are obtained via the geometric mean (εij = sqrt(εi ∗ ε j ) and
Rmin,ij via the arithmetic mean, Rmin,ij = (Rmin,i + Rmin, j )/2. The dielectric constant,
e, is set to one in all calculations where solvent is considered explicitly (see below),
corresponding to the permittivity of vacuum.

Essential for the modeling of proteins, as well as all biomolecules, is the proper
treatment of hydrogen bonding. Earlier force fields included explicit terms for hy-
drogen bonds (Weiner and Kollman, 1981); however, it has been shown that the
combination of the Lennard-Jones and coulombic interactions produces an accu-
rate representation of both the distance and angle dependencies of hydrogen bonds
(Reiher, 1985). This success has allowed for the omission of explicit terms to treat
hydrogen bonding from the majority of empirical force fields. It should be noted that
the LJ and electrostatic parameters are highly correlated, such that LJ parameters
determined for a set of partial atomic charges will not be applicable to another set
of charges. Moreover, the internal parameters are dependent on the external param-
eters. For example, the barrier to rotation about the C–O bond in ethanol includes
contributions from the electrostatic and vdW interactions between the hydroxyl hy-
drogen and the rest of the molecule as well as contributions from the bond, angle,
and dihedral terms. Thus, if the LJ parameters or charges are changed, the internal
parameters will have to be reoptimized to produce the correct energy barrier. Fi-
nally, condensed phase properties obtained from empirical force field calculations
contain contributions for the conformations of the molecules being studied as well
as external interactions between those molecules, emphasizing the importance of ac-
curate treatment of both internal and external portions of the force field for accurate
condensed phase simulations.

Beyond the terms included in Eq. (2.1), additional terms may be included in a
potential energy function; such extended energy functions are typically referred to as
Class II force fields. Class II force fields can include higher order corrections for the
bond and valence angle terms and/or cross terms between, for example, bonds and
valence angles or valence angles and dihedrals (Lii and Allinger, 1991; Derreumaux
and Vergoten, 1995; Halgren, 1996a; Sun, 1998; Ewig et al., 2001; Palmo et al.,
2003). Other alternative terms include the use of a Morse function for bonds (Burkert
and Allinger, 1982). This function allows for bond breaking to be included in an
empirical force field. Another alternative is the use of a cosine-based valence angle
term that is well behaved for near-linear valence angles (Mayo et al., 1990; Rappé
et al., 1992). For the dihedral term a recent improvement that avoids singularities
associated with derivatives of torsion angle cosines and allows for application of
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any value of the phase has been presented (Blondel and Karplus, 1996) and, more
recently, the introduction of a two-dimensional (2D) grid-based dihedral energy
correction map (CMAP) (MacKerell et al., 2004a,b) that allows for any 2D dihedral
surface (e.g., a QM �, � surface of the alanine dipeptide) to be reproduced nearly
exactly by the force field (see below). These two terms are included in the recent
version of the CHARMM force field for proteins. Typically inclusion of these terms
in an energy function increases its accuracy in treating conformational energies,
especially at geometries far from the minimum-energy or equilibrium values as well
as yield improved treatment of vibrational spectra. However, it should be emphasized
that Class I force fields [i.e., those based on Eq. (2.1)] can yield accuracies similar
to the Class II force fields when the parameters are properly optimized. In general,
Class I force fields, when applied to biomolecular simulations in the vicinity of
room temperature, adequately treat the intramolecular distortions, including relative
conformational energies associated with large structural changes.

The external portion of a potential energy function may also be extended be-
yond that in Eq. (2.1), including alternate forms of both the vdW interactions and
the electrostatics. The three primary alternatives to the LJ 6–12 term included in
Eq. (2.1) are designed to “soften” the repulsive wall associated with Pauli exclusion.
For example, the Buckingham potential (Buckingham and Fowler, 1985) uses an
exponential term to treat repulsion while a buffered 14–7 term is used in the MMFF
force field (Halgren, 1996b). A simple alternative is to replace the r12 repulsion with
an r9 term. All of these forms more accurately treat the repulsive wall as judged by
high-level QM calculations (Halgren, 1992). However, as with the harmonic internal
terms in Class I force fields, the LJ term appears to be adequate for biomolecular
simulations at or near room temperature.

2.2 Implementation of Potential Energy Functions

As stated above, once an empirical force field is available, it may be used, in com-
bination with the necessary software, to calculate the change of energy of a sys-
tem as a function of coordinates. However, more useful is the combination of an
empirical force field with numerical approaches allowing for sampling of relevant
conformations via, e.g., a molecular dynamics (MD) simulation to be performed
(Tuckerman and Martyna, 2000). Such approaches can be used to predict a variety
of structural and thermodynamic properties, including free energies, via statistical
mechanics (McQuarrie, 1976). Importantly, such approaches allow for comparisons
with experimental thermodynamic data and the atomic details of interactions be-
tween molecules that dictate the thermodynamic properties can be obtained. Such
atomic details are often difficult to access via experimental approaches, motivating
the application of computational approaches.

Proper application of an empirical force field when performing MD simulations
or other calculations on proteins is an essential consideration. Due to the central role
of the external interactions in the energy function, it is important that all nonbond
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interactions between all atom–atom pairs be considered. The Ewald method can be
used to treat the long-range electrostatic interactions for periodic systems (Ewald,
1921). Recent variations of the Ewald method that are computationally more tractable
include the particle Mesh Ewald approach (Darden, 2001). Alternatively, reaction
field methods can be used to simulate finite (e.g., spherical) systems (Beglov and
Roux, 1994; Bishop et al., 1997; Im et al., 2001). Concerning the vdW or LJ interac-
tions, the long-range contributions to this term beyond the atom–atom truncation dis-
tance (i.e., those beyond a distance where the atom–atom interactions are calculated
explicitly) can be corrected for by assuming those contributions are homogeneous
in nature (Allen and Tildesley, 1989; Lague et al., 2004).

The integrators that generate proper ensembles in MD simulations are another
important consideration, as attaining the proper ensemble in an MD simulation is
essential for direct comparison with experimental data (Tuckerman et al., 1992;
Martyna et al., 1994; Feller et al., 1995; Barth and Schlick, 1998; Tuckerman and
Martyna, 2000). Extensions of MD simulations have been developed that signifi-
cantly increase the sampling of conformational space including locally enhanced
sampling (Elber and Karplus, 1990; Hansmann, 1997; Simmerling et al., 1998)
and replica-exchange or parallel tempering (Hansmann, 1997; Sugita and Okamoto,
1999; Nymeyer et al., 2004). It should be noted that the deterministic nature of
MD simulations is typically lost when using such approaches, although the replica-
exchange method can produce results that correspond to a proper ensemble. As
always, the appropriate use of these different methods greatly facilitates investiga-
tions of molecular interactions via condensed phase simulations.

2.3 Treatment of Aqueous Solvation

Protein structure and function is greatly influenced by the condensed phase (i.e.,
aqueous) environment in which they exist. Accordingly, an empirical force field
for proteins must treat the condensed phase environment in an accurate manner.
Treatment of the protein environment may be performed using either explicit or
implicit models. Explicit models, where the water, ions, and so on, are included
explicitly in the simulation, are more microscopically accurate while implicit or
continuum models can produce savings in computer time over explicit models and
have the advantage of directly yielding free energies of solvation.

A number of explicit water models have been used in protein simulations in-
cluding the TIP3P, TIP4P (Jorgensen et al., 1983), SPC, extended SPC/E (Berendsen
et al., 1987) and F3C (Levitt et al., 1997) models. TIP3P is the most commonly used
water model. Its three-point design (i.e., one oxygen and two hydrogen atoms) makes
it computationally tractable and it yields the correct thermodynamic properties of
water. Structurally the model treats the first and second solvation shells with reason-
able accuracy. However, the second or tetrahedral peak in the O–O radial distribution
is underestimated and the diffusion constant of the model is significantly larger than
the corresponding experimental value (Feller et al., 1996). Another widely used
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three-point model is SPC. This model uses an internal tetrahedral geometry (i.e.,
H–O–H angle = 109.47◦) leading to increased structure over TIP3P, as evidenced
by a more-defined tetrahedral peak in the O–O radial distribution function. A variant
of SPC, the SPC/E model, includes a correction for the polarization self-energy that
yields improved structure and diffusion properties. However, this correction leads to
an overestimation of the water potential energy in the bulk phase, which may perturb
the energetic balance of solvent–solvent, solute–solvent, and solute–solute inter-
actions. This problem must be considered when using this model in biomolecular
simulations. TIP4P is a four-point water model that includes an additional particle
along the H–O–H bisector. The additional particle overcomes many of the limita-
tions listed above, although the computer demands of the model are higher. Recently,
new water models have been presented (Mahoney and Jorgensen, 2000; Glättli et al.,
2003), although they have not seen wide use in biomolecular simulations.

Selection of the proper water model is important for a successful simula-
tion. The most important consideration is the compatibility of the model with
the biomolecular force field being used. Such compatibility is important due to
most force fields being developed in conjunction with a specific water model (e.g.,
AMBER, OPLS and CHARMM with TIP3P, OPLS also with TIP4P, GROMOS with
SPC, ENCAD with F3C), such that it is best to use a force field with its prescribed
water model unless special solvent requirements are important.

Implicit solvation models treat the protein environment as a continuum, for
example, by treating regions not “inside” the protein with the dielectric constant of
water (Davis and McCammon, 1990; Honig, 1993). Such models offer significant
computational savings while yielding reasonably accurate treatment of solvation.
Accordingly, implicit models are useful when extensive sampling of conformational
space is required, as in protein folding. However, these models can fail when highly
specific water–biomolecule interactions have an important structural or energetic
role. The most widely used implicit solvation models are Poisson-Boltzmann (PB)
and generalized Born (GB) models. In the PB model, contributions from solvent po-
larization along with the asymmetric shapes of biological molecules are taken into
account (Gilson and Honig, 1988), from which free energies of solvation may be de-
termined. Advances in this approach have included the optimization of atomic radii
to reproduce experimental free energies of solvation of model compounds represen-
tative of proteins (Nina et al., 1997; Banavali and Roux, 2002). GB approaches (Still
et al., 1990) are an alternative to PB that also yield free energies of solvation while
being less computationally expensive, thereby facilitating their use in MD simula-
tions. Several GB models have been developed that yield free energies of solvation
at a level of accuracy similar to PB methods (Schaefer and Karplus, 1996; Jayaram
et al., 1998; Onufriev et al., 2000; Zhang et al., 2001; Lee et al., 2003). Both the PB
and GB methods can be combined with free energy solvent accessibility (SA) terms
that account for the hydrophobic effect (Qui et al., 1997; Gallicchio et al., 2003),
referred to as PB/SA or GB/SA approaches. Recent developments based on the GB
method involve an improved treatment of vdW dispersion contributions beyond the
typical solvent accessibility related terms (Gallicchio and Levy, 2004). Other implicit
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models that have been used in biomolecular simulations include the Langevin
Dipoles Model (Florián and Warshel, 1997) and the EEF1 model (Lazaridis and
Karplus, 1999). More information on implicit solvating models can be obtained
from a recent review by Feig and Brooks (Feig and Brooks, 2004).

The PB/SA and GB/SA methods can be used for postprocessing of trajecto-
ries from MD simulations to obtain free energies of solvation. In this approach an
MD simulation of the biomolecule(s) is performed using an explicit solvent rep-
resentation followed by estimation of the free energy of solvation using the solute
coordinates from the simulation (i.e., biomolecule only with the solvent omitted)
(Kollman et al., 2000). This allows for determination of the free energy of solvation
of a biomolecule averaged over the length of a simulation, using structures obtained
with an explicit solvent representation. This approach is particularly attractive for
the calculation of free energies of binding of macromolecular complexes (Jayaram
et al., 2002; Gohlke et al., 2003; Habtemariam et al., 2005). This type of approach
also has great utility for the estimation of ligand–protein binding (Ferrara et al.,
2004), at a computationally reasonable cost as required for testing of large numbers
of drug candidates.

2.4 Empirical Force Field Optimization

The ability of a simple potential energy function such as that in Eq. (2.1) to accurately
model the energies as a function of protein conformation is based on proper opti-
mization of the parameters used in the energy function. Indeed, until the parameters
are available, one does not truly have an empirical force field. And the quality of that
empirical force field is judged by its ability to accurately reproduce the experimental
regimen.

Parameter optimization is based on reproducing a set of target data, including
information on small model compounds representative of proteins as well as on
proteins themselves. Target data are ideally obtained from experiments, though a
majority of the data are often obtained from QM calculations. QM calculations
are readily applicable to most small molecules; however, limitations in QM level of
theory, especially with respect to the treatment of dispersion interactions (Chalasinski
and Szczesniak, 1994; Chen et al., 2002), require the use of experimental data when
available (MacKerell, 2004).

Details on the optimization of internal parameters have been presented pre-
viously by a number or workers (Halgren, 1996c; Ewig et al., 2001; MacKerell,
2001; Wang and Kollman, 2001). Briefly, the equilibrium bond, valence angle, and
Urey-Bradley parameters along with the dihedral multiplicity and phase are opti-
mized to reproduce internal geometries of the model compounds. The target data
are often QM data, although it has been shown that condensed phase effects can
influence the internal geometry of a molecule, such that survey data from structures
in the Cambridge Structural Database (CSD, http://www.ccdc.cam.ac.uk/) (Allen
et al., 1979) may be considered the ideal. The value of such data for treatment of
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the peptide bond has previously been discussed (MacKerell et al., 1998; MacKerell,
2004). Force constants for the bond, valence angle, Urey-Bradley, dihedral angle, and
improper angles are optimized to reproduce vibrational spectra, including both the
frequencies as well as the potential energy distribution (PED) (i.e., the contribution
of internal degrees of freedom to the individual frequencies). Again the ideal data are
obtained from condensed phase vibrational studies, although such data are typically
limited making vibrational data from QM calculations the most commonly used. It
should be emphasized that QM vibrational analysis allows for detailed assignment
of the PED and, even when good experimental data are available, QM calculations
are often advantageous to perform the assignments. When performing optimization
of vibrational spectra, it should be noted that the low-frequency modes represent the
largest structural distortions that occur in a molecule, such that their proper treat-
ment is important for accurately treating the structural distortions that occur during
MD simulations. Conformational energies from QM calculations, including barrier
heights for rotations about dihedrals, are typically used for the final optimization of
the dihedral angle parameters. In the CHARMM force fields the dihedral parameters
are initially optimized based on vibrational data with only the parameters associated
with dihedrals that involve all nonhydrogen atoms adjusted to reproduce potential
energy surfaces. This final optimization is again important as the rotations about
dihedrals represent the largest structural changes that occur in MD simulations of
proteins. Recent work on lipids emphasizes the importance of proper treatment of
the conformational energies (Klauda et al., 2005). In addition, empirical optimiza-
tion of dihedral parameters to reproduce experimental distributions of conformers,
such at the phi, psi angle distributions in proteins, have been shown to be impor-
tant (MacKerell et al. 2004a,b). Those efforts have included optimization of the
grid-based energy correction map discussed below.

Significant effort by a number of groups has gone into the determination of the
electrostatic parameters; the partial atomic charges, qi . Of the methods currently in
use, the most common methods for proteins are the supramolecular and QM electro-
static potential (ESP) approaches. Other variations include bond charge increments
(Bush et al., 1999; Jakalian et al., 2000) and electronegativity equilization methods
(Gilson et al., 2003), although these methods are typically applied to small, drug-
like molecules. An important consideration with the determination of partial atomic
charges, related to the Coulombic treatment of electrostatics, is the omission of the
explicit treatment of electronic polarizability. Due to this omission, it is necessary
for static, partial atomic charges to reproduce the average polarization that occurs in
the condensed phase environment. This is achieved by “enhancing” the charges of
a molecule leading to an overestimation of the dipole moment as compared to the
gas phase value. This is referred to as an implicitly polarized model. For example,
many of the water models used in protein empirical force fields (e.g., TIP3P, TIP4P,
SPC) have dipole moments in the vicinity of 2.2 debye (Jorgensen et al., 1983),
versus the gas phase value of 1.85 debye. Inclusion of implicit polarizability allows
for empirical force fields based on Eq. (2.1), which are often referred to as additive,
to reproduce a variety of condensed phase properties (Rizzo and Jorgensen, 1999).
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These additive models have been extensively used for simulations of proteins, as
well as other biological molecules; however, they are limited in that they do not
reproduce the change in electrostatic interactions due to inductive effects associated
with changes in the polarity of the environment.

The supramolecular approach for the determination of partial atomic charges
is used in the OPLS (Jorgensen and Tirado-Rives, 1988; Jorgensen et al., 1996) and
CHARMM (MacKerell et al., 1998b; Foloppe and MacKerell, 2000; Feller et al.,
2002) force fields. This approach involves optimization of the charges to reproduce
QM-determined minimum interaction energies and geometries of a model com-
pound with individual water molecules or for model compound dimers. Typically, the
HF/6-31G* level of theory was used for the QM calculations, due to its overestima-
tion of dipole moments (Cieplak et al., 1995), leading to the implicitly polarizable
model discussed above. An additional advantage of the supramolecular approach
is that in the QM calculation, local polarization effects due to the charge induction
caused by the two interacting molecules are included, facilitating determination of
charge distributions appropriate for the condensed phase.

It should be noted that although it has recently been shown that QM methods
can accurately reproduce gas phase experimental interaction energies for a range of
model compound dimers (Kim and Friesner, 1997; Huang and MacKerell, 2002),
it is important to maintain the QM level of theory that was historically used for
a particular force field when extending that force field to novel molecules. This
assures that the balance of the nonbond interactions between different molecules in
the system being studied is maintained. Finally, when considering the transferability
of charges obtained from the supramolecular approach, it should be noted that the
charges are typically obtained for functional groups such that they may be directly
transferred between molecules.

The other commonly applied approach for charge determination in empirical
force fields is ESP charge fitting. This methodology is based on the adjustment of
charges to reproduce a QM-determined ESP mapped onto a grid surrounding the
model compound. ESP methods are widely used and a number of charge fitting meth-
ods based on this approach have been developed (Singh and Kollman, 1984; Chirlian
and Francl, 1987; Merz, 1992; Bayly et al., 1993; Henchman and Essex, 1999). Ap-
plication of ESP fitting approaches is hampered by difficulties in unambiguously
fitting charges to an ESP (Francl et al., 1996) and charges on “buried” atoms (e.g., a
carbon to which three or four nonhydrogen atoms are covalently bound) tend to be
underdetermined, requiring the use of restraints during fitting (Bayly et al., 1993).
The latter method is referred to as Restrained ESP (RESP). In addition, the QM ESP
is typically determined via gas phase calculations, which may yield charges that are
not consistent with the condensed phase. Recent developments are addressing this
limitation (Laio et al., 2002). Another problem is that multiple conformations of
flexible molecules must also be taken into account (Cieplak et al., 1995), although it
should be noted that the last two problems are also present to varying extents in the
supramolecular approach. For ESP fitting, the QM level of theory has historically
been HF/6-31G*, as used in the AMBER force fields (Cornell et al., 1995), although
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higher level QM calculations have been applied more recently in conjunction with
the RESP approach (Duan et al., 2003). In summary, the supramolecular and ESP
methods are both useful for the determination of partial atomic charges and, as with
the water models, the method to use should be that which is consistent with the
remainder of the force field.

The most difficult aspect of empirical force fields to optimize are the LJ terms,
although proper treatment of these terms is essential for obtaining accurate con-
densed phase properties from empirical force fields. A big part of the difficulty in
optimizing LJ parameters are limitations in the quality of QM calculations in treating
dispersion interactions (Chalasinski and Szczesniak, 1994; Chen et al., 2002), re-
quiring the use of experimental condensed phase data as the target data (Jorgensen,
1984, 1986). LJ parameters are generally optimized to reproduce experimentally
measured values such as heats of vaporization, densities, isocompressibilities, and
heat capacities of small model compound pure solvents. Alternative target data in-
clude heats or free energies of aqueous solvation, partial molar volumes or heats of
sublimation and lattice geometries of crystals (Warshel and Lifson, 1970; MacKerell
et al., 1995). While these approaches have acted as the basis for several protein force
fields, it should be emphasized that LJ parameters optimized in this fashion are un-
derdetermined due to the small number of experimental observables available for the
optimization of a significantly larger number of LJ parameters. This leads to the pa-
rameter correlation problem where LJ parameters for different atoms in a molecule
(e.g., H and C in ethane) can compensate for each other (MacKerell, 2001). The
parameter correlation problem with respect to LJ parameters has been addressed via
an approach that determines the absolute values of the LJ parameters based on ex-
perimental data, as above, while their relative values are optimized using high-level
QM data as the target data (Yin and MacKerell, 1996; Chen et al., 2002). In general,
determination of LJ parameters is quite time consuming; however, in many instances
it is feasible to directly transfer the LJ parameters between functional groups in the
context of different molecules.

2.5 Protein Force Fields

Current protein MD simulations are typically performed using additive all-atom
protein models, including the OPLS/AA (Jorgensen and Tirado-Rives, 1988),
CHARMM22 (MacKerell et al., 1998b), and AMBER (PARM99) (Cornell et al.,
1995) force fields. An alternative is the use of extended or united atom models,
where the nonpolar hydrogens are treated as part of the carbon to which they are
covalently bound, with polar hydrogens important for hydrogen bonding included.
United atom models offer computational savings over all-atom models, and are often
used with implicit solvent models. Details of the approaches used for development
of the commonly used all-atom models—CHARMM22, AMBER, and OPLS—are
summarized in the following paragraphs, with a brief discussion of the extended
atom models given below.
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Internal parameters for AMBER and CHARMM22 were derived via reproduc-
tion of both experimental and QM data for small model compounds, including
reproduction of geometries and vibrational spectra. The internal parameters for
the OPLS force field (Jorgensen and Tirado-Rives, 1988) were initially taken from
AMBER and have been subsequently optimized to reproduce conformational ener-
gies from QM calculations yielding OPLS/AA (Jorgensen et al., 1996). Additional
optimization of selected torsions has been performed using higher level QM target
data (Kaminski et al., 2001). Supporting the quality of these force fields in the treat-
ment of proteins are MD simulations, showing the three force fields to reproduce
selected experimental structures in a similar fashion (Price and Brooks, 2002).

Care was taken in the optimization of the external aspects of the three force
fields. In OPLS/AA and CHARMM22, the partial atomic charges are based on HF/6-
31G* supramolecular data while the standard AMBER release (PARM99) is based
on RESP charges fit to the same level of theory. Condensed phase simulations were
used as target data for the optimization of the LJ parameters in all three force fields.
In CHARMM22 and AMBER, the charges were optimized to be consistent with the
TIP3P water model, whereas OPLS was developed to work with the TIP3P, TIP4P,
and SPC models. Based on water dimer interaction energies, it may be anticipated
that the TIP4P and SPC models will also work well with CHARMM22 and AM-
BER, although rigorous tests have yet to be performed. Despite similarities in the
optimization of the charges for the three force fields, differences in the local charge
distributions have been noted (Ponder and Case, 2003). Such differences in charges
may lead to differences in the balance of the local interactions (e.g., relative hydrogen
bonding strength at the peptide bond NH versus CO), which may impact the atomic
details of interactions obtained from the three force fields. Based on the presence
of such differences, results from MD simulations using these force fields should be
interpreted taking into account the applied optimization approach.

In all of the protein force fields, a significant and ongoing effort has been made
with respect to the treatment of the Ramachandran map or �, � energy surface
(Ramachandran, et al., 1963). This is due to the conformational energy as a func-
tion of the �, � dihedral angles dictating the region of conformational space being
sampled in peptide and protein simulations. The quintessential model compound for
optimizing the dihedral parameters related to �, � is the alanine dipeptide (Fig. 2.2),
along with related compounds such as the glycine dipeptide and the proline dipep-

Fig. 2.2 Diagram of the alanine dipeptide including the �, � dihedral angles used to define the
Ramachandran diagram.
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tide. The size of these compounds is such that they are accessible to high-level QM
calculations (Head-Gordon et al., 1991; Beachy et al., 1997; Ono et al., 2002; Vargas
et al., 2002; Duan et al., 2003; MacKerell et al., 2004b), the data from which can
be used as target data for the parameter optimization. While targeting QM ener-
getic data for the optimization is simple and well defined, studies have shown that
directly reproducing gas phase QM data can lead to systematic problems in the con-
formational properties of the protein backbone (MacKerell et al., 1998b). This was
shown in great detail using the CMAP approach for the treatment of the confor-
mational energies of �, � (MacKerell et al., 2004a,b). To overcome this limitation
with the use of QM data, it has been shown that empirical adjustment of the di-
hedral or CMAP terms to better reproduce �, � distributions from surveys of the
protein databank (PDB) (Berman et al., 2002) leads to significant improvement in
the treatment of the conformational properties of the backbone. Indeed, the recently
published CHARMM22/CMAP all-atom protein force field represents a significant
improvement over current force fields for proteins with respect to the treatment of
both structural (Freedberg et al., 2004; MacKerell et al., 2004; Steinbach, 2004) and
dynamic (Buck et al., 2006) properties.

To better understand the improvements in the treatment of the protein back-
bone conformational properties associated with the use of CMAP, Fig. 2.3 shows
�, � potentials of mean force (PMFs) and distributions for proteins (upper frames)
and for the alanine dipeptide (lower frames). PMFs, or free energy surfaces, were
obtained from MD simulations of proteins in their crystal environments using the
CHARMM22 (MacKerell et al., 1998b) and CMAP modified CHARMM22 (MacK-
erell et al. 2004a,b) energy functions along with distributions from a survey of the
PDB (Dunbrack and Cohen, 1997; Dunbrack, 2002). Comparison of the three sur-
faces shows the CMAP PMF to better reproduce the shape of the surface derived
from the PDB. Notable are the improvements in the overall shape of the beta sheet
(� ∼ −120◦, � ∼ 150◦) and alpha-helical (� ∼ −60◦, � ∼ −40◦) regions versus
CHARMM22. Importantly, the improvements also occur at the model compound
level, where the overall shape of the distribution of �, � in MD simulations of the
alanine dipeptide using CMAP is in better agreement with the distributions from a
QM/MM simulation (SCCDFT) (Hu et al., 2003). The improved agreement at both
the protein and model compound levels indicates that the overall force field is well
balanced, such that the proper treatment of local contributions as evidenced by the
alanine dipeptide MD results leads to the desired behavior at the macromolecular
(i.e., protein) level by the force field.

Finally, it should be emphasized that the protein force fields are undergoing
continual optimization in the context of the Class I energy function as well as via
extension of the force field via, for example, the CMAP approach. Motivating such
additional optimization is the ability to access additional target data by which to judge
the quality of the force fields as well as improved algorithms and computational
resources, allowing for more rigorous tests of the force fields. For example, the
free energies of solvation of model compounds representative of protein side chains
have recently been calculated for the AMBER, CHARMM, and OPLS/AA force
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Fig. 2.3 � � PMFs based on MD simulations using the CHARMM22 and CHARMM22 grid-
corrected empirical force fields and from a survey of the PDB (upper frames) and � � distributions
from MD simulations of the alanine dipeptide (Ace-Ala-Nme, lower frames) in solution using the
CHARMM22 (MacKerell et al., 1998) and CHARMM22 grid-corrected empirical force fields and
previously published data from a QM/MM model (SCCDFT). PMF contours are in 0.5 kcal/mol
increments up to 6 kcal/mol above the global minimum. PMFs were obtained from the respective
probability distributions based on a Boltzmann distribution (McQuarrie, 1976). See reference
(MacKerell et al., 2004a) for more details. Reproduced with permission from J. Am. Chem. Soc.
2004, 126:698–699. Copyright 2004 American Chemical Society.

fields and compared with experiment (Shirts et al., 2003); similar studies have been
reported elsewhere (Villa and Mark, 2002; MacCallum and Tieleman, 2003; Deng
and Roux, 2004). These studies show the force fields to yield reasonable free energies
of solvation, although the need for improvements is evident.

Examples of recent adjustments of the protein force fields are numerous. Mo-
tivated by the free energy of solvation results discussed in the preceding paragraph,
adjustments have been made to the tryptophan side chain parameters in CHARMM
(Macias and MacKerell, 2005). Multiple adjustments have been made to the AM-
BER Cornell et al. force field (i.e., PARM94) (Cornell et al., 1995). In recent years,
optimization of the �, � related dihedral parameters was performed to improve
agreement with QM data for both the alanine dipeptide and tetrapeptide (Beachy
et al., 1997), yielding PARM99. More recently, adjustments have been made to
deal with the tendency of PARM99 to favor 	-helical conformations. Modifications
include alteration of the �, � dihedral parameters and changes in the charge distri-
bution for the entire protein force field. The dihedral parameters were changed in
two studies to alter the conformational space being sampled in peptide simulations
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(Garcia and Sanbonmatsu, 2002; Okur et al., 2003). In another study, the partial
atomic charges were redetermined via RESP fits to B3LYP/cc-pVTZ//HF/6-31G*
QM data (Duan et al., 2003). This was followed by readjustment of the �, �-related
dihedral parameters to reproduce QM maps of the alanine and glycine dipeptide
maps obtained at the MP2/cc-pVTZ//HF/6-31G* level with a dielectric constant
of 4, where the dielectric was selected to mimic the environment on the protein
interior. While the efforts at additional optimization of the force fields are ad-
mirable, care must be taken that the changes are done in an orderly, well-defined
manner. For example, as discussed above, alteration of the charges will impact
the remaining parameters in the force field, possibly requiring their readjustment.
In addition, the development of a collection of variants of a force field may be-
come problematic in that difficulties in comparing results from different studies may
arise.

2.6 Extended or United Atom Protein Force Fields

An alternative to the all-atom protein force fields is the extended or united atom
force fields. Such force fields typically omit nonpolar hydrogen atoms to save com-
puter time; these models dominated the early protein force fields. Examples of ex-
tended atom models include CHARMM PARAM19 (Neria et al., 1996), OPLS/UA
(Jorgensen and Tirado-Rives, 1988), the early AMBER force fields (Weiner and
Kollman, 1981; Weiner et al., 1984, 1986), and GROMOS87 and 96 (van Gunsteren
et al., 1996). The GROMOS force field is still widely used in MD simulations that
include explicit solvent representations. GROMOS96 has been subjected to tests in
the condensed phase (Daura et al., 1996) and improved LJ parameters have recently
been reported (Schuler et al., 2001). The other united atom force fields are primarily
used for simulations on long time scales via the use of implicit solvent models, with
the majority of these studies being based on PARAM19. PARAM19 can be used
with several continuum solvation models including EEF1 (Lazaridis and Karplus,
1999), ACE (Schaefer et al., 2001), several GB models (Lee et al., 2002; Im et al.,
2003; Lee et al., 2003), and a buried surface area model by Caflisch and co-workers
(Ferrara et al., 2002). A summary of recent applications of both united and all-atom
protein force fields combined with implicit solvent models has been presented (Feig
and Brooks, 2004).

Several other force fields have been used for protein simulations, although
they have not been used extensively. These include ENCAD (Levitt, 1990; Levitt
et al., 1995), CEDAR (Ferro et al., 1980; Hermans et al., 1984), MMFF (Halgren,
1999) and CVFF (Ewig et al., 2001), among others. A more comprehensive list has
been presented by Ponder and Case (Ponder and Case 2003). While these and other
force fields may be used for protein simulations, it should be emphasized that they
should be subjected to tests to ensure that they are appropriate for the problem under
study.



SVNY330-Xu-Vol-I November 2, 2006 10:35

2. Empirical Force Fields 59

Recently, the first reports of MD simulations of force fields that include explicit
treatment of electronic polarizability (Halgren and Damm, 2001; Rick and Stuart,
2002) have appeared in the literature. These include studies using a fluctuating
charge model (Patel and Brooks, 2004; Patel et al., 2004) and a point-dipole model
(Kaminski et al., 2002; Harder et al., 2005). In addition, an MD simulation of DNA
using a classical Drude oscillator to treat electronic polarizability has been published
(Anisimov et al., 2005; Lamoureux et al., 2006) and this model is expected to be
extended to proteins in the near future (A.D. MacKerell, Jr. and B. Roux, work
in progress). The main advantage of polarizable force fields is the ability to more
accurately model environments of different polarities, such as the polar environment
on the surfaces of a protein versus the more hydrophobic interior of the protein.
This improvement is at the cost of computer time, as treatment of the polarizability
(Rick et al., 1995; Tuckerman and Martyna, 2000) can significantly increase the
computational costs. In addition, the currently available first-generation polarizable
force fields will probably require improvements as they are more rigorously tested
on a wide variety of proteins.

2.7 Summary

A wide variety of empirical force fields for proteins are available and have been
tested on a large number of peptides and proteins as well as on small molecule
model systems. Currently, the all-atom force fields based on an additive model (e.g.,
no explicit treatment of electronic polarizability) are the most commonly used and
have been shown to reproduce many types of experimental data in a wide vari-
ety of systems. While many protein simulations are performed in the presence of
explicit solvent, improvements in implicit or continuum solvent models allow for
protein simulations to be performed at a considerable savings of computational
resources. While implicit models have been particularly useful in protein folding
studies, it should be emphasized that in situations where individual water molecules
play an essential role in protein structure and function, they will typically fail. With
respect to the future, force fields that include explicit treatment of electronic po-
larization offer the potential of more accurately treating the wide range of environ-
ments in and around proteins. However, the current additive models will often be the
method of choice when extended sampling of conformational space or time ranges is
required.
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Appendix

Web sites associated with commonly used protein force fields and simulation
packages

CHARMM www.charmm.org
www.pharmacy.umaryland.edu/faculty/amackere/
CHARMM also allows for simulations using AMBER, MMFF,

and OPLS/AA force fields.
AMBER amber.scripps.edu/
GROMOS www.igc.ethz.ch/gromos/
OPLS zarbi.chem.yale.edu/software.html

www.cs.sandia.gov/projects/towhee/forcefields/oplsaa.html
Tinker dasher.wustl.edu/tinker/ Includes the CHARMM, AMBER, and

OPLS force fields among others.
CVFF www.accelrys.com
CEDAR femto.med.unc.edu/Hermans/jhermans.html
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3 Knowledge-Based Energy Functions for
Computational Studies of Proteins

Xiang Li and Jie Liang

3.1 Introduction

This chapter discusses theoretical framework and methods for developing
knowledge-based potential functions essential for protein structure prediction,
protein–protein interaction, and protein sequence design. We discuss in some detail
the Miyazawa–Jernigan contact statistical potential, distance-dependent statistical
potentials, as well as geometric statistical potentials. We also describe a geometric
model for developing both linear and nonlinear potential functions by optimization.
Applications of knowledge-based potential functions in protein-decoy discrimina-
tion, in protein–protein interactions, and in protein design are then described. Several
issues of knowledge-based potential functions are finally discussed.

In the experimental work that led to the recognition of the 1972 Nobel prize
in chemistry, Christian Anfinsen showed that a completely unfolded protein ribonu-
clease could refold spontaneously to its biologically active conformation. This ob-
servation indicates that the sequence of amino acids of a protein contains all of the
information needed to specify its three-dimensional structure (Anfinsen et al., 1961;
Anfinsen, 1973). The automatic in vitro refolding of denatured proteins was further
confirmed in many other protein systems (Janicke, 1987). Anfinsen’s experiments
led to the thermodynamic hypothesis of protein folding, which postulates that a
native protein folds into a three-dimensional structure in equilibrium, in which the
state of the whole protein–solvent system corresponds to the global minimum of
free energy under physiological conditions.

Based on this thermodynamic hypothesis, computational studies of proteins,
including structure prediction, folding simulation, and protein design, all depend on
the use of a potential function for calculating the effective energy of the molecule.
In protein structure prediction, the potential function is used either to guide the con-
formational search process, or to select a structure from a set of possible sampled
candidate structures. Potential functions have been developed through an inductive
approach (Sippl, 1993), where the parameters are derived by matching the results
from quantum-mechanical calculations on small molecules to experimentally mea-
sured thermodynamic properties of simple molecular systems. These potential func-
tions are then generalized to the macromolecular level based on the assumption that
the complex phenomena of macromolecular systems result from the combination of
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a large number of interactions as found in the most basic molecular systems. This
type of potential function is often referred to as the “physics-based,” “physical,” or
“semiempirical” effective potential function, or a force field (Levitt and Warshel,
1975; Wolynes et al., 1995; Momany et al., 1975; Karplus and Petsko, 1990). The
physics-based potential functions have been extensively studied over the last three
decades, and have found wide uses in protein folding studies (Duan and Kollman,
1998; Lazaridis and Karplus, 2000). Nevertheless, it is difficult to use physics-based
potential functions for protein structure prediction, because they are based on full
atomic models and therefore require high computational cost. In addition, a physical
model may not fully capture all of the important physical interactions. Readers are
referred to Chapter 2 for more discussion of physics-based potential functions.

Another type of potential function is developed through a deductive approach
by extracting the parameters of the potential functions from a database of known
protein structures (Sippl, 1993). Because this approach implicitly incorporates many
physical interactions (electrostatic, van der Walls, cation-� interactions) and the ex-
tracted potentials do not necessarily reflect true energies, it is often referred to as the
“knowledge-based” or “statistical” effective potential function. In the recent past,
this approach quickly gained momentum due to the rapidly growing database of ex-
perimentally determined three-dimensional protein structures. Impressive successes
in protein folding, protein–protein docking, and protein design have been achieved
recently using knowledge-based potential functions (Russ and Ranganathan, 2002;
Venclovas et al., 2003; Méndez et al., 2005). In this chapter, we focus our discussion
on this type of potential functions.

3.2 General Framework

Several approaches have been proposed to extract knowledge-based potential func-
tions from protein structures. They can be categorized roughly into two groups. One
prominent group of knowledge-based potentials are those derived from statistical
analysis of a database of protein structures (Tanaka and Scheraga, 1976; Miyazawa
and Jernigan, 1985; Sippl, 1990). In this class of potentials, the interacting po-
tential between a pair of residues is estimated from its relative frequency in the
database when compared with that in a reference state or a null model (Miyazawa
and Jernigan, 1996; Wodak and Rooman, 1993; Sippl, 1995; Lemer et al., 1995;
Jernigan and Bahar, 1996). A different class of knowledge-based potentials is based
on optimization. In this case, the set of parameters for the potential functions are
optimized by some criterion, e.g., by maximizing the energy gap between known
native conformation and a set of alternative (or decoy) conformations (Goldstein
et al., 1992; Maiorov and Crippen, 1992; Thomas and Dill, 1996a; Tobi et al., 2000;
Vendruscolo and Domanyi, 1998; Vendruscolo et al., 2000; Bastolla et al., 2001;
Dima et al., 2000; Micheletti et al., 2001; Dobbs et al., 2002; Hu et al., 2004).

There are three main ingredients for developing a knowledge-based potential
function. We first need protein descriptors to describe the sequence and the shape of
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the native protein structure in a format that is suitable for computation. We then need
to decide on a functional form of the potential function. Finally, we need a method
to derive the values of the parameters for the potential function.

3.2.1 Protein Representation and Descriptors

To describe the geometric shape of a protein and its sequence of amino acid residues, a
protein is frequently represented by a d-dimensional descriptor c ∈ R

d . For example,
a method that is widely used is to count nonbonded contacts of 210 types of amino
acid residue pairs in a protein structure. In this case, the count vector c ∈ R

d , d =
210, is used as the protein descriptor. Once the structural conformation of a protein
s and its amino acid sequence a are given, the protein descriptions f : (s, a) �→ R

d

will fully determine the d-dimensional vector c. In the case of contact descriptor, f
corresponds to the mapping provided by specific contact definition, e.g., two residues
are in contact if their distance is below a cutoff threshold distance. At the residue
level, the coordinates of C�, C�, or side-chain center can be used to represent the
location of a residue. At the atom level, the coordinates of atoms are directly used,
and contact may be defined by the spatial proximity of atoms. In addition, other
features of protein structures can be used as protein descriptors as well, including
distances between residue or atom pairs, solvent-accessible surface areas, dihedral
angles of backbones and sidechains, and packing densities.

3.2.2 Functional Form

The form of the potential function H : R
d �→ R determines the mapping of a d-

dimensional descriptor c to a real energy value. A widely used functional form for
protein potential function H is the weighted linear sum of pairwise contacts (Tanaka
and Scheraga, 1976; Miyazawa and Jernigan, 1985; Tobi et al., 2000; Vendruscolo
and Domanyi, 1998; Samudrala and Moult, 1998; Lu and Skolnick, 2001). The linear
sum H is

H ( f (s, a)) = H (c) = w · c =
∑

i

wi ci , (3.1)

where “·” denotes inner product of vectors; ci is the number of occurrence of the
i-th type of descriptor. As soon as the weight vector w is specified, the potential
function is fully defined. In Section 3.4.3, we will discuss a nonlinear form potential
function.

3.2.3 Deriving Parameters of Potential Functions

For statistical knowledge-based potential functions which are generally linear, the
weight vector w is derived by characterization of the frequency distributions of struc-
tural descriptors from a database of experimentally determined protein structures.
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For optimized knowledge-based linear potential functions, w is obtained through
optimization. We describe the details of these two approaches below.

3.3 Statistical Method

3.3.1 Background

In statistical methods, the observed statistical frequencies of various protein struc-
tural features are converted into effective free energies, based on the assumption that
frequently observed structural features correspond to low-energy states (Tanaka and
Scheraga, 1976; Miyazawa and Jernigan, 1985; Sippl, 1990). This is the Boltzmann
assumption, an idea first proposed by Tanaka and Scheraga (1976) to estimate po-
tentials for pairwise interaction between amino acids (Tanaka and Scheraga, 1976).
Miyazawa and Jernigan (1985) significantly extended this idea and derived a widely
used statistical potential function, where solvent terms are explicitly considered and
the interactions between amino acids are modeled by contact potentials. Sippl (1990)
and others (Samudrala and Moult, 1998; Lu and Skolnick, 2001; Zhou and Zhou,
2002) derived distance-dependent energy functions to incorporate both short-range
and long-range pairwise interactions. The pairwise terms were further augmented by
incorporating dihedral angles (Nishikawa and Matsuo, 1993; Kocher et al., 1994),
solvent accessibility and hydrogen-bonding (Nishikawa and Matsuo, 1993). Singh
and Tropsha (1996) derived potentials for higher-order interactions (Singh et al.,
1996). More recently, Ben-Naim (1997) presented three theoretical examples to
demonstrate the nonadditivity of three-body interactions (Ben-Naim, 1997). Li and
Liang (2005a) identified three-body interactions in native proteins based on an accu-
rate geometric model, and quantified systematically the nonadditivities of three-body
interactions (Li and Liang, 2005b).

3.3.2 Theoretical Model

At the equilibrium state, an individual molecule may adopt many different confor-
mations or microscopic states with different probabilities. The distribution of protein
molecules among the microscopic states follows the Boltzmann distribution, which
connects the potential function H (c) for a microstate c to its probability of occupancy
�(c) . This probability �(c) or the Boltzmann factor is

�(c) = exp[−H (c)/kT ]/Z (a), (3.2)

where k and T are the Boltzmann constant and the absolute temperature measured
in Kelvin, respectively. The partition function Z (a) is defined as

Z (a) ≡
∑
c

exp[−H (c)/kT ]. (3.3)
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It is a constant under the true energy function once the sequence a of a protein
is specified, and is independent of the representation f (s, a) and descriptor c of
the protein. If we are able to measure the probability distribution �(c) accurately,
we can obtain the knowledge-based potential function H (c) from the Boltzmann
distribution:

H (c) = −kT ln �(c) − kT ln Z (a). (3.4)

The partition function Z (a) cannot be obtained directly from experimental measure-
ments. However, at a fixed temperature, Z (a) is a constant and has no effect on the
different probability of occupancy for different conformations.

In order to obtain a knowledge-based potential function that encodes the
sequence–structure relationship of proteins, we have to remove background ener-
getic interactions H ′(c) that are independent of the protein sequence and the protein
structure. These generic energetic contributions are referred to collectively as the
reference state (Sippl, 1990). An effective potential energy �H (c) is then obtained
as

�H (c) = H (c) − H ′(c) = −kT ln

[
�(c)

�′(c)

]
− kT ln

[
Z (a)

Z ′(a)

]
, (3.5)

where �′(c) is the probability of a sequence adopting a conformation specified
by the vector c in the reference state. Since Z (a) and Z ′(a) are both constants,
−kT ln(Z (a)/Z ′(a)) is also a constant that does not depend on the descriptor vector
c. If we assume that Z (a) ≈ Z ′(a) as in Sippl (1990), the effective potential energy
can be calculated as

�H (c) = −kT ln

[
�(c)

�′(c)

]
. (3.6)

To calculate �(c)/�′(c), one can further assume that the probability distribu-
tion of each descriptor is independent, and we have �(c)/�′(c) = ∏

i [
�(ci )
�′(ci )

]. Fur-

thermore, by assuming each occurrence of the i-th descriptor is independent, we
have

∏
i [

�(ci )
�′(ci )

] = ∏
i

∏
ci

[ �i

�′
i
], where �i and �′

i are the probability of the i-th type

structural feature in native proteins and the reference state, respectively. In a linear
potential function, the right-hand side of Eq. (3.6) can be calculated as

−kT ln

[
�(c)

�′(c)

]
= −kT

∑
i

ci ln

[
�i

�′
i

]
. (3.7)

Correspondingly, to calculate the effective potential energy �H (c) of the sys-
tem, one often assumes that �H (c) can be decomposed into various basic energetic
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terms. For a linear potential function, �H (c) can be calculated as:

�H (c) =
∑

i

�H (ci ) =
∑

i

ciwi . (3.8)

If the distribution of each ci is assumed to be linearly independent of the others in
the native protein structures, we have

wi = −kT ln

[
�i

�′
i

]
. (3.9)

In other words, the probability of each structural feature in native protein structures
follows the Boltzmann distribution. This is the Boltzmann assumption made in nearly
all statistical potential functions. Finkelstein et al. (1995) summarized protein struc-
tural features which are observed to correlate with the Boltzmann distribution. These
include the distribution of residues between the surface and interior of globules, the
occurrence of various �, � , � angles, cis and trans prolines, ion pairs, and empty
cavities in protein globules (Finkelstein et al., 1995).

The probability �i can be estimated by counting frequency of the i-th struc-
tural feature after combining all structures in the database. Clearly, the probability
�i is determined once a database of crystal structures is given. The probability �′

i is
calculated as the probability of the i-th structural feature in the reference state. There-
fore, the choice of the reference state has large effects and is critical for developing
knowledge-based statistical potential functions.

3.3.3 Miyazawa–Jernigan Contact Potential Function

Because of the historical significance of the Miyazawa–Jernigan model in developing
statistical knowledge-based potential and its wide use, we will discuss the Miyazawa–
Jernigan contact potential in detail. This also provides an exposure to different
technical aspects of developing statistical knowledge-based statistical functions.

Residue representation and contact definition: In the Miyazawa–Jernigan model, the
l-th residue is represented as a single ball located at its side-chain center zl . If the l-th
residue is a Gly residue, which lacks a side chain, the position of the C� atom is taken
as zl . A pair of residues (l, m) are defined to be in contact if the distance between their
side-chain centers is less than a threshold � = 6.5 Å. Neighboring residues l and
m along amino acid sequences (|l − m| = 1) are excluded from statistical counting
because they are likely to be in spatial contact that does not reflect the intrinsic
preference for interresidue interactions. Thus, a contact between the l-th and m-th
residues is defined using �(l,m):

�(l,m) =
{

1, if |zl − zm | ≤ � and |l − m| > 1,

0, otherwise,
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where |zl − zm | is the Euclidean distance between the l-th and m-th residues. Hence,
the total number count of (i, j) contacts of residue type i with residue type j in
protein p is

n(i, j); p =
∑
l,m,
l<m

�(l,m), if (I(l), I(m)) = (i, j) or ( j, i), (3.10)

where I(l) is the residue type of the l-th amino acid residue. The total number count
of (i, j) contacts in all proteins is then

n(i, j) =
∑

p

n(i, j); p, i, j = 1, 2, . . . , 20. (3.11)

Coordination and solvent assumption: The number of different types of pairwise
residue–residue contacts n(i, j) can be counted directly from the structure of proteins
following Eq. (3.11). We also need to count the number of residue–solvent contacts.
Since solvent molecules are not consistently present in X-ray crystal structures, and
therefore cannot be counted exactly, Miyazawa and Jernigan made an assumption
based on the model of an effective solvent molecule, which has the volume of the
average volume of the 20 types of residues. Physically, one effective solvent molecule
may represent several real water molecules or other solvent molecules. The number
of residue–solvent contacts n(i,0) can be estimated as

n(i,0) = qi ni −

⎛
⎜⎜⎝

20∑
j=1;
j 	=i

n(i, j) + 2n(i,i)

⎞
⎟⎟⎠ , (3.12)

where the subscript 0 represents the effective solvent molecule; the other indices i
and j represent the types of amino acids; n(i) is the number of residue type i in the
set of proteins; qi is the mean coordination number of buried residue i , calculated as
the number of contacts formed by a buried residue of type i averaged over a structure
database. Here the assumption is that residues make the same number of contacts
on average, with either effective solvent molecules [first term in Eq. (3.12] or other
residues [second term in Eq. (3.12)].

For convenience, we calculate the total numbers of residues n(r ), of residue–
residue contacts n(r,r ), of residue–solvent contacts n(r,0), and of pairwise contacts of
any type n(·,·) as follows:

n(r ) =
20∑

i=1

ni ; n(i,r ) = n(r,i) =
20∑
j=1

n(i, j); n(r,r ) =
20∑

i=1

n(i,r );

n(r,0) = n(0,r ) =
20∑

i=1

n(i,0); n(·,·) = n(r,r ) + n(r,0) + n(0,0).
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Fig. 3.1 The Miyazawa–Jernigan model of chemical reaction. Amino acid residues first go
through the desolvation process, and then mix together to form pair contact interactions. The
associated free energies of desolvation e(i,i) and mixing e′

(i, j) can be obtained from the equilibrium
constants of these two processes.

Chemical reaction model: Miyazawa and Jernigan (1985) developed a physical
model based on hypothetical chemical reactions. In this model, residues of type i
and j in solution need to be desolvated before they can form a contact. The overall
reaction is the formation of (i, j) contacts, depicted in Fig. 3.1a. The total free energy
change to form one pair of (i, j) contact from fully solvated residues of i and j is
(Fig. 3.1a)

e(i, j) = (E(i, j) + E(0,0)) − (E(i,0) + E( j,0)), (3.13)

where E(i, j) is the absolute contact energy between the i-th and j-th types of residues,
and E(i, j) = E( j, i); E(i,0) are the absolute contact energy between the i-th residue
and effective solvent, and E(i,0) = E(0,i); likewise for E( j, 0); E(0,0) are the absolute
contact energies of solvent–solvent contacts (0, 0).

The overall reaction can be decomposed into two steps (Fig. 3.1b). In the first
step, residues of type i and type j , initially fully solvated, are desolvated or “demixed
from solvent” to form self-pairs (i, i) and ( j, j). The free energy changes e(i,i) and
e( j, j) upon this desolvation step can be easily seen from the desolvation process
(horizontal box) in Fig. 3.1 as

e(i, i) = E(i, i) + E(0, 0) − 2E(i, 0),

e( j, j) = E( j, j) + E(0, 0) − 2E( j, 0),
(3.14)

where E(i,i), E( j, j) are the absolute contact energies of self-pairs (i, i) and ( j, j),
respectively. In the second step, the contacts in (i, i) and ( j, j) pairs are broken and
residues of type i and residues of type j are mixed together to form two (i, j) pairs.
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The free energy change upon this mixing step 2e′
(i, j) is (vertical box in Fig. 3.1)

2e′
(i, j) = 2E(i, j) − (E(i,i) + E( j, j)). (3.15)

Denote the free energy changes upon the mixing of residues of type i and solvent as
e′

(i,0), We have

−2e′
(i,0) = e(i,i) and − 2e′

( j,0) = e( j, j), (3.16)

which can be obtained from Eqs. (3.14) and (3.15) after substituting “ j” with “0.”
Following the reaction model of Fig. 3.1b, the total free energy change to form one
pair of (i, j) can be written as

2e(i, j) = 2e′
(i, j) + e(i,i) + e( j, j) (3.17a)

= 2e′
(i, j) − 2e′

(i,0) − 2e′
( j,0). (3.17b)

Contact energy model: The total energy of the system is due to the contacts between
residue–residue, residue–solvent, solvent–solvent:

Ec =
20∑

i=0

20∑
j=0;
j≥i

E(i, j)n(i, j)

=
20∑

i=1

20∑
j=1;
j≥i

E(i, j)n(i, j) +
20∑

i=1

E(i,0)n(i,0) + E(0,0)n(0,0).

(3.18)

Because the absolute contact energy E(i, j) is difficult to measure and knowledge of
this value is unnecessary for studying the dependence of energy on protein confor-
mation, we can simplify Eq. (3.18) further. Our goal is to separate out terms that do
not depend on contact interactions and hence do not depend on the conformation of
the molecule. Equation (3.18) can be rewritten as

Ec =
20∑

i=0

(2E(i,0) − E(0,0))qi n(i)/2 +
20∑

i=1

20∑
j=1;
j≥i

e(i, j)n(i, j) (3.19a)

=
20∑

i=0

E(i,i)qi n(i)/2 +
20∑

i=0

20∑
j=0;
j≥i

e′
(i, j)n(i, j) (3.19b)

by using Eqs. (3.12) and (3.13). Here only the second terms in Eqs. (3.19a) and
(3.19b) are dependent on protein conformations. Therefore, only either e(i, j) or e′

(i, j)
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needs to be estimated. Since the number of residue–residue contacts can be counted
directly while the number of residue–solvent contacts is more difficult to obtain,
Eq. (3.19a) is more convenient for calculating the total contact energy of protein
conformations. Both e(i, j) and e′

(i, j) are termed effective contact energies and their
values were reported in Miyazawa and Jernigan (1996).

Estimating effective contact energies: quasi-chemical approximation: The effective
contact energies e(i, j) in Eq. (3.19a) can be estimated in kT units by assuming that
the solvent and solute molecules are in quasi-chemical equilibrium for the reaction
depicted in Fig. 3.1a:

e(i, j) = − ln
[m(i, j)/m(·,·)][m(0,0)/m(·,·)]
[m(i,0)/m(·,·)][m( j,0)/m(·,·)]

= − ln
m(i, j)m(0,0)

m(i,0)m( j,0)

, (3.20)

where m(i, j), m(i,0), and m(0,0) are the contact numbers of pairs between residue type
i and j , residue type i and solvent, and solvent and solvent, respectively. m(·,·) is the
total number of contacts in the system and is canceled out. Similarly, e′

(i, j) and e′
(i,0)

can be estimated from the model depicted in Fig. 3.1b:

2e′
(i, j) = − ln

[m(i, j)]
2

m(i,i)m( j, j)

, (3.21a)

2e′
(i,0) = − ln

[m(i,0)]
2

m(i,i)m(0,0)

. (3.21b)

Based on these models, two different techniques have been developed to obtain
effective contact energy parameters. Following the hypothetical reaction in Fig. 3.1a,
e(i, j) can be directly estimated from Eq. (3.20), as was done by Zhang and Kim (2000).
Alternatively, one can follow the hypothetical two-step reaction in Fig. 3.1b and
estimate each term in Eq. (3.17b) for e(i, j) by using Eq. (3.21). Because the second
approach leads to additional insight about the desolvation effects (e′

(i,0)) and the

mixing effects (e′
(i, j)) in contact interactions, we follow this approach in subsequent

discussions. The first approach will become self-evident after our discussion.

Models of reference state: In reality, the true fraction
m(i, j)

m(·,·)
of contacts of (i, j)

type among all pairwise contacts (·, ·) is unknown. One can approximate this by
calculating its mean value from sampled structures in the database. We have

m(i, j)

m(·,·)
≈

∑
p n(i, j);p∑
p n(·,·);p

;
m(i,0)

m(·,·)
≈

∑
p n(i,0);p∑
p n(·,·);p

;
m(0,0)

m(·,·)
≈

∑
p n(0,0);p∑
p n(·,·);p

,

where i and j 	= 0. However, this yields a biased estimation of e′
(i, j) and e(i, j).

When effective solvent molecules, residues of i-th type and residues of j-th type
are randomly mixed, e′

(i, j) will not be equal to 0 as should be because of differences
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in amino acid composition among proteins in the database. Therefore, a reference
state must be used to remove this bias.

In the work of Miyazawa and Jernigan, the effective contact energies for mixing
two types of residues e′

(i, j) and for solvating a residue e′
(i,0) are estimated based

on two different random mixture reference states (Miyazawa and Jernigan, 1985).
In both cases, the contacting pairs in a structure are randomly permuted, but the
global conformation is retained. Hence, the total number of residue–residue, residue–
solvent, solvent–solvent contacts remain unchanged.

The first random mixture reference state for desolvation contains the same set
of residues of the protein p and a set of effective solvent molecules. We denote
the overall number of (i, i), (i, 0), (0, 0) contacts in this random mixture state after
summing over all proteins as c′

(i,i), c′
(i,0), and c′

(0,0), respectively. c′
(i,i) can be computed

as

c′
(i,i) =

∑
p

⎡
⎣ qi ni ;p∑

k
qk nk;p

⎤
⎦

2

· n(·,·);p, (3.22)

where Miyazawa and Jernigan assumed that the average coordination number of
residue i in all proteins is qi . Therefore, a residue of type i makes qi ni ;p number of
contacts in protein p. Similarly, the number of (i, 0) contacts c′

(i,0) can be computed
as

c′
(i,0) =

∑
p

⎡
⎣ qi ni ;p∑

k
qk nk;p

⎤
⎦ n(·,0);p. (3.23)

From the horizontal box in Fig. 3.1, the effective contact energy e′
(i,0) can now be

computed as

2e′
(i,0) = − ln

[
n2

(i,0)

n(i,i)n(0,0)

/
c′ 2

(i,0)

c′
(i,i)c

′
(0,0)

]
(i 	= 0). (3.24)

The second random mixture reference state for mixing contains the exact same
set of residues as the protein p, but all residues are randomly mixed. We denote the
number of (i, j) contacts in this random mixture as c(i, j);p. The overall number of
(i, j) contacts in the full protein set c(i, j) is the sum of c(i, j);p over all proteins:

c(i, j) =
∑

p

[
n(i,·);p

n(·,·);p

] [
n( j,·);p

n(·,·);p

]
· n(·,·);p. (3.25)
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From the vertical box in Fig. 3.1, the effective contact energy e′
(i, j) can now be

computed as

2e′
(i, j) = − ln

[
n2

(i, j)

n(i,i)n( j, j)

/
c2

(i, j)

c(i,i)c( j, j)

]
, i or j 	= 0. (3.26)

The compositional bias is removed by the denominator in Eq. (3.26), and e′
(i, j) now

equals 0.
Although c′

(0,0) can be estimated from Eq. (3.21b) by assuming that e′
(i,0) = 0

in a reference state, Zhang and DeLisi (1997) simplified the Miyazawa–Jernigan
process by further assuming that the number of solvent–solvent contacts in both
reference states is the same as in the native state (Zhang et al., 1997):

c′
(0,0) = n(0,0). (3.27)

Therefore, c′
(0,0) and n(0,0) are canceled out in Eq. (3.24) and not needed for calculating

e′
(i,0). This treatment systematically subtracts a constant scaling energy from all

effective energies e(i, j), and should produce exactly the same relative energy values
for protein conformations as Miyazawa–Jernigan’s original work, with the difference
of a constant offset value. In fact, Miyazawa and Jernigan (1996) showed that this
constant scaling energy is the effective contact energy er̂r̂ between the average residue
r̂ of the 20 residue types, and suggested that e(i, j) − er̂r̂ be used to measure the
stability of a protein structure (Miyazawa and Jernigan, 1996).

Hydrophobic nature of Miyazawa–Jernigan contact potential: In the relation of
Eq. (3.17b), e(i, j) = e′

(i, j) − (e′
(i,0) + e′

( j,0)), the Miyazawa–Jernigan effective contact

energy e(i, j) is composed of two types of terms: the desolvation terms e′
(i,0) and e′

( j,0)

and the mixing term e′
(i, j). The desolvation term of residue type i , that is, −e′

(i,0)

or e(i,i)/2 (Fig. 3.1), is the energy change due to the desolvation of residue i , the
formation of the i–i self-pair, and the solvent–solvent pair. The value of this term
e(i,i)/2 should correlate well with the hydrophobicity of residue type i (Miyazawa
and Jernigan, 1985; Li et al., 1997), although for charged amino acids this term
also incorporates unfavorable electrostatic potentials of self-pairing. The mixing
term e′

(i, j) is the energy change accompanying the mixing of two different types
of amino acids of i and j to form a contact pair i– j after breaking self-pairs i–i
and j– j . Its value measures the tendency of different residues to mix together. For
example, the mixing between two residues with opposite charges is more favorable
than mixing between other types of residues, because of the favorable electrostatic
interactions.

Important insights into the nature of residue–residue contact interactions can
also be obtained by a quantitative analysis of the desolvation terms and the mixing
terms. Among different types of contacts, the average difference of the desolvation
terms is 9 times larger than that of the mixing terms [see Table 3.1 taken from
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Miyazawa and Jernigan (1996)]. Thus, a comparison of the values of (e(i,i) + e j j )/2
and e′

(i, j) clearly shows that the desolvation term plays the dominant role in deter-
mining the energy difference among different conformations.

Similar conclusion can be drawn by an eigenvalue decomposition analysis of
the Miyazawa–Jernigan matrix M, which is made up of e(i, j) values alone, without
the knowledge of the mixing terms e′

(i, j) (Li et al., 1997). The M matrix is a 20 × 20
real symmetric matrix, and thus can be reconstructed based on the following spectral
decomposition:

e(i, j) = [
N∑

k=1

	kvkvk]i j =
N∑

k=1

	kvk(i)vk( j), (3.28)

where 	k and vk are the k-th largest eigenvalue and the corresponding eigenvector,
respectively; vk(i) is the i-th component of the k-th eigenvector. Li et al. (1997)
found that there are two dominant eigenvalues 	1 and 	2, and the corresponding
two eigenvectors are strongly correlated after a shift and a rescaling operation, i.e.,
v2 = �u + �v1. Here, u is the 1 vector with each component equal to 1 and � and
� are scalars. Therefore, M can be well-approximated with only one eigenvector v1

corresponding to the largest eigenvalue 	1. For each entry e(i, j) of the matrix M, we
have the following approximation:

e(i, j) ≈ 	1v1(i)v1( j) + 	2v2(i)v2( j) ≈ c0 + c1(qi + q j ) + c2qi q j , (3.29)

where qi ≡ v1(i), and c0, c1, and c2 are constants. To better understand the underlying
physical implications, Eq. (3.29) can be rewritten in the following form:

e(i, j) ≈ hi + h j − c2(qi − q j )
2/2, (3.30)

where

hi = c0/2 + c1qi + (c2/2)q2
i .

Here hi + h j is a single-body term and is interpreted as the desolvation term in Li
et al. (1997); −c2(qi − q j )

2/2 is a two-body term interpreted as the mixing term
and the magnitude of the mixing term is significantly smaller than that of hi + h j .
This result is not surprising and is consistent with the original model of Miyazawa–
Jernigan contact matrix M, where e(i, j) ≡ e′

(i, j) − (e′
(i,0) + e′

( j,0)).
To summarize, the quantitative analysis of Miyazawa–Jernigan contact energies

reveals that hydrophobic effect is the dominant driving force for protein folding. To
a large extent, this conclusion justifies the HP model proposed by Chan and Dill
(1990) where only hydrophobic interactions are included in studies of simple models
of protein folding (Chan and Dill, 1990).
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3.3.4 Distance-Dependent Potential Functions

In the Miyazawa–Jernigan potential function, interactions between amino acids are
assumed to be short-ranged and a distance cutoff is used to define the occurrence of
a contact. This type of statistical potential is referred to as the “contact potential.”
Another type of statistical potential allows modeling of residue interactions that are
distance-dependent. The distance of interactions is usually divided into a number of
small intervals or bins, and the potential functions are derived by applying Eq. (3.9)
for individual distance intervals.

Formulation of distance-dependent potential functions: In distance-dependent sta-
tistical potential functions, Eq. (3.9) can be written in several forms. To follow the
conventional notations, we use (i, j) to represent the k-th protein descriptor ck for
pairwise interactions between residue type i and residue type j . From Eq. (3.9), we
have

�H (i, j ; d) = − ln
�(i, j ; d)

�′(i, j ; d)
= − ln

n(i, j ; d)/n

�′(i, j ; d)

= − ln
n(i, j ; d)

n′
(i, j ; d)

,
(3.31a)

where (i, j ; d) represents an interaction between a specific residue pair (i, j) at
distance d, �H (i, j ; d) is the contribution from the (i, j) type of residue pairs at
distance d, �(i, j ; d) and �′(i, j ; d) are the observed and expected probabilities of
this distance-dependent interaction, respectively, n(i, j ; d) is the observed number of
(i, j ; d) interactions, n is the observed total number of all pairwise interactions in a
database, and n′

(i, j ; d) is the expected number of (i, j ; d) interactions when the total
number of all pairwise interactions in the reference state is set to n.

Since the expected joint probability �′(i, j ; d) for the reference is not easy to
estimate, Sippl (1990) replaces Eq. (3.9) with

�H (i, j ; d) = − ln
�(i, j | d)

�′(i, j | d)
= − ln

n(i, j ; d)/n(d)

�′(i, j | d)

= − ln
n(i, j ; d)

n′
(i, j ; d)

,

(3.31b)

where �(i, j | d) and �′(i, j | d) are the observed and expected probability of in-
teraction of residue pairs (i, j) given the distance interval d, respectively; n(d) is
the observed total number of all pairwise interactions at the distance d; n′

(i, j ; d) =
�′(i, j | d) · n(d) is the expected number of (i, j) interactions at d when the total
number of all pairwise interactions at this distance d in the reference state is set to
n(d). There are several variations of potential function of this form, including the
“Knowledge-Based Potential function” (KBP) by Lu and Skolnick (2001).
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In the work of developing the “Residue-specific All-atom Probability Discrim-
inatory Function” (RAPDF) (Samudrala and Moult, 1998), Samudrala and Moult
alternatively replaced Eq. 3.9 with

�H (i, j ; d) = − ln
�(d | i, j)

�′(d | i, j)
= − ln

n(i, j ; d)/n(i, j)

�′(d | i, j)

= − ln
n(i, j ; d)

n′
(i, j ; d)

,

(3.31c)

where �(d | i, j) and �′(d | i, j) are the observed and expected probability of in-
teraction at the distance d for a given pair of residues (i, j), respectively; n(i, j) is
the observed total number of interactions for (i, j) pairs regardless of the distance.
n′

(i, j ; d) = �′(d | i, j) · n(i, j) is the expected number of (i, j) interactions at distance
d when the total number of (i, j) interactions in the reference state is set to n(d).

The knowledge-based potential functions of Eqs. (3.31a), (3.31b), and (3.31c)
can all be written using the unifying formula based on the number counts of inter-
actions:

�H (i, j ; d) = − ln

[
n(i, j ; d)

n′
(i, j ; d)

]
. (3.32)

Clearly, the different ways of assigning n′
(i, j ; d) make the potential functions differ

from each other substantially, since the method to calculate n(i, j ; d) is essentially the
same for many potential functions. In other words, the model of reference state used
to compute n′

(i, j ; d) is critical for distance-dependent energy functions.

Different models of reference states: Sippl first proposed the “uniform density”
model of reference state, where the probability density function for a pair of con-
tacting residues (i, j) is uniformly distributed along the distance vector connecting
them: �′(i, j | d) = �′(i, j) (Sippl, 1990). Lu and Skolnick made use of this type
of reference state to calculate the expected number of (i, j) interactions at distance
d as (Lu and Skolnick, 2001)

n′
(i, j ; d) = �′(i, j | d) · n(d) = �′(i, j) · n(d).

The expected probability �′(i, j) is estimated using the random mixture approxima-
tion as

�′(i, j) = �i � j ,

where �i and � j are the mole fractions of residue type i and j , respectively.
Samudrala and Moult (1998) made use of another type of reference state, where

the probability of the distance between a pair of residues (i, j) being d is independent
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of the contact types (i, j) (Samudrala and Moult, 1998):

�′(d | i, j) = �′(d).

The expected number of (i, j) interactions at distance d in Eq. (3.31c) becomes

n′
(i, j ; d) = �′(d | i, j) · n(i, j) = �′(d) · n(i, j),

where �′(r ) is estimated from �(r ):

�′(d) = �(d) = n(d)/n.

Ideal gas reference state: In the uniform density model of Sippl, the same density
of a particular residue pair (i, j) along a line could result from very different volume
distribution of (i, j) pairs in specific regions of the protein. For example, one spherical
shell proximal to the molecular center could be sparsely populated with residues, and
another distant shell could be densely populated, but all may have the same density
of (i, j) pairs along the same radial vector. Zhou and Zhou (2002) developed a
new reference state (called DFIRE for “Distance-scaled, Finite Ideal-gas REference
state”) where residues follow uniform distribution everywhere in the protein (Zhou
and Zhou, 2002). Assuming that residues can be modeled as noninteracting points
(i.e., as ideal gas molecules), the distribution of interacting pairs should follow the
uniform distribution not only along any vector lines, but also in the whole volume
of the protein.

When the distance between a pair of residues (i, j) is at a threshold distance
d� = 14.5 Å, the interaction energy between them can be considered to be 0. There-
fore, residue type i and type j form pairs at the distance d� purely by random, and
the observed number of (i, j) pairs at the distance d� can be considered the same as
the expected number of (i, j) pairs at the distance d� in the reference state. Denote
vd as the volume of a spherical shell of width �d at a distance d from the center.
The expected number of interactions (i, j) at the distance d after volume correction
is

n′
(i, j ; d) = n(i, j ; d�) · vd

d�
= n(i, j,d�) ·

(
d

d�

)�
�d

�d�
.

For a protein molecule, n′
(i, j ; d) will not increase as r2 because of its finite size.

In addition, it is well-known that the volume of a protein molecule cannot be treated
as a solid body, as there are numerous voids and pockets in the interior. This implies
that the number density for a very large molecule will also not scale as d2 (Liang
and Dill, 2001). Zhou and Zhou (2002) assumed that n′

(i, j ; d) increase in d� rather

than d2, where the exponent � needs to be determined. To estimate the � value,
each protein p in the database is reshaped into a ball of radius cp Rg; p, where Rg; p

is the radius of gyration of protein p, and residues are distributed uniformly in this
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reshaped ball. Here cp takes the value so that in the reshaped molecule, the number
of total interacting pairs at d� distance is about the same as that observed in the
native protein p, namely:

∑
(i, j)

n′
(i, j ; d�) =

∑
(i, j)

n(i, j ; d�)

for protein p. Once the value of cp is determined and hence the effective radius cp Rg; p

for each native protein is known, the number of interacting pairs n(d) at distance d
can be counted directly from the reshaped ball. Zhou and Zhou further defined a
reduced distance-dependent function f (d) = n(d)/d� and the relative fluctuation 

of f (d):


 =
[

1

nb

∑
d

( f (d) − f̄ )2/( f̄ )

]1/2

,

where f̄ = ∑
d f (d)/nb, and nb is the total number of distance shells, all of which

have the same thickness. � is then estimated by minimizing the relative fluctuation 
.
The rationale is that since idealized residues are points and are uniformly distributed
in the reshaped ball, 
 should be 0. In their study, � was found to be 1.61 (Zhou and
Zhou, 2002).

3.3.5 Geometric Potential Functions

The effectiveness of potential function also depends on the representation of pro-
tein structures. Another class of knowledge-based statistical potentials is based on
the computation of various geometric constructs that reflect the shape of the protein
molecules more accurately. These geometric constructs include the Voronoi diagram
(McConkey et al., 2003), the Delaunay triangulation (Singh et al., 1996; Zheng et al.,
1997; Carter et al., 2001; Krishnamoorthy and Tropsha, 2003), and the alpha shape
(Li et al., 2003; Li and Liang, 2005a,b) of the protein molecules. Geometric potential
functions have achieved significant successes in many fields. For example, the poten-
tial function developed by McConkey et al. is based on the Voronoi diagram of the
atomic structures of proteins, and is among the best performing atom-level potential
functions in decoy discrimination (McConkey et al., 2003). Because the alpha shape
of the molecule contains rich topological, combinatorial, and metric information,
and has a strong theoretical foundation, we discuss the geometric potential functions
in more detail below as an example of this class of potential function.

Geometric model: In Miyazawa–Jernigan and other contact potential functions,
pairwise contact interactions are declared if two residues or atoms are within a
specific cutoff distance. Contacts by distance cutoff can potentially include many
implausible noncontacting neighbors, which have no significant physical interaction
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Fig. 3.2 Schematic drawing of the Delaunay complex and the alpha shape of a two-dimensional
molecule. The Voronoi region of a ball is the set of points closest to it when measured in power
distance. If two Voronoi regions share a boundary, i.e., if there is a Voronoi edge (dashed line), we
draw a Delaunay edge (solid line in gray or black) between these two Voronoi vertices. A Delaunay
edge is therefore the dual of a Voronoi edge. All Delaunay edges incident to ball residue bi form
the 1-star for bi , denoted as St1(bi ). When the balls are inflated by increasing the � value, more
balls overlap, and more Voronoi edges intersect with the balls. Therefore, more dual Delaunay
edges are included in the alpha shape (shown as black solid line segments). (a) When � = 0.0,
the balls are not inflated and there is only one alpha edge �

2,3
between ball b2 and ball b3. (b)

When � = 4.0, the balls are inflated and their radii are
√

r 2 + 4.0. There are six alpha edges:
�

0,1
, �

0,2
, �

0,3
, �

0,4
, �

0,4
, �

0,5
, and �

6,7
. For a ball bi , the set of residue balls connected to it by alpha

edges are called the near neighbors of the ball. The number of this set of residue balls is defined as
the degree of near neighbors of the residue ball bi , denoted as �i . For example, �

0
= 5, and �

7
= 1.

(c) When � = ∞, all the Delaunay edges become alpha edges (� = 16.0 is used for drawing).
Hence, all long-range interactions not intervened by a third residue are included.

(Bienkowska et al., 1999). Whether or not a pair of residues can make physical
contact depends not only on the distance between their center positions (such as C�

or C�, or geometric centers of side chain), but also on the size and the orientations of
side chains (Bienkowska et al., 1999). Furthermore, two atoms close to each other
may in fact be shielded from contact by other atoms. By occupying the intervening
space, other residues can block a pair of residues from directly interacting with each
other. Inclusion of these fictitious contact interactions would be undesirable.

The geometric potantial function solves this problem by identifying interacting
residue pairs following the edges computed in the alpha shape. Details of alpha shape
can be found in Chapter 6. When the parameter � is set to be 0, residue contact occurs
if residues or atoms from nonbonded residues share a Voronoi edge, and this edge is
at least partially contained in the body of the molecule. Fig. 3.2 illustrates the basic
ideas.

Distance- and packing-dependent geometric potantial function: For two nonbonded
residue balls bi of radius ri with its center located at zi and b j of radius r j at z j ,
they form an alpha contact (i, j | �) if their Voronoi regions intersect and these
residue balls also intersect after their radii are inflated to ri (�) = (r2

i + �)1/2 and
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r j (�) = (r2
j + �)1/2, respectively. That is, the alpha contact (i, j | �) exists when

|zi − z j | <
(
ri

2 + �
)1/2 + (

r j
2 + �

)1/2
, �i, j ∈ K� and |i − j | > 1.

We further define the 1-star for each residue ball bi as: St1(bi ) = {(bi , b j ) ∈
K�}, namely, the set of 1-simplices with bi as a vertex. The near neighbors of bi are
derived from St1(bi ) and are defined as

N�(bi ) ≡ {b j |�i, j ∈ K�}, � = 4.0,

and the degree of near neighbors �i of residue bi is defined as the size of this set of
residues:

�i ≡ |N�(bi )|, � = 4.0.

The degree of near neighbors �i is a parameter related to the local packing density
and hence indirectly the solvent accessibility around the residue ball bi (Fig. 3.2b). A
large �i value indicates high local packing density and less solvent accessibility, and
a small �i value indicates low local packing density and high solvent accessibility.
Similarly, the degree of near neighbors for a pair of residues is defined as

�(i, j) ≡ |N�(bi , b j )| = |N�(bi )| + |N�(b j )|, � = 4.0.

Reference state and collection of noninteracting pairs: We denote the shortest path
length between residue bi and residue b j as L (i, j), which is the fewest number of
alpha edges (� = 4) that connects bi and b j . The reference state of the geometric
potential is based on the collection of all non-interacting residue pairs (i, j):

{(i, j)|L (i, j) = 3}.

Any (i, j) pair in this reference state is intercepted by two residues (Fig. 3.3). We
assume that there is no attractive or repulsive interactions between them, because of
the shielding effect by the two intervening residues. Namely, residue i and residue
j form a pair only by random chance, and any properties associated with bi , such
as packing density, side-chain orientation, are independent of the same properties
associated with b j .

Statistical model: pairwise potential and desolvation potential: According to
Eq. (3.9), the packing- and distance-dependent statistical potential of residue pair
(k, l) at the packing environment �(k,l) and the distance specified by � is

H (k, l, �(k,l) | �) = −K T ln

(
�(k,l, �(k,l) | �)

�′
(k,l, �(k,l))

)
. (3.33)
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Fig. 3.3 Noninteracting pairs. (b1, b4) is considered as a noninteracting pair because the shortest
length L (1,4) is equal to three, i.e., the interaction between b1 and b4 is blocked by two residues b7

and b8. Likewise, (b3, b6) is considered as a noninteracting pair as well.

Here, �(k,l, �(k,l) | �) is the observed probability:

�(k,l, �(k,l) | �) = n(k,l, �(k,l),�)

n(�)

, (3.34)

where n(k,l, �(k,l),�) is the number of residue pair (k, l) at the packing environment
�(k,l) and the distance specified by �, and n(�) is the total number of residue pairs at
the distance specified by �. �′

(k,l, �(k,l))
is the expected probability:

�′
(k,l, �(k,l))

=
n′

(k,l, �(k,l))

n′ , (3.35)

where n′
(k,l,z(k,l))

is the number of residue pair (k, l) at the packing environment z(k,l)

in the reference state, and n′ is the total number of noninteracting residue pairs at
the reference state.

The desolvation potential of residue type k to have � near neighbors H (z | k)
is estimated simply by following Eq. (3.9):

H (� | k) = �(� | k)

�′
(� | k)

= [n(k,� )/n(k)]

[n(r,� )/n(r )]
, (3.36)

where r represents all 20 residue types.
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For a protein structure, the total internal energy is estimated by the summation
of the desolvation energy and pairwise interaction energy in the particular desolvated
environment:

H (s, a) =
∑
k,�

H (� | k) · n(k,� )

(3.37)

+ 1

2

∑
k,l,�k,l ,�

H (k, l, �(k,l) | �) · n(k,l,�(k,l),�).

3.3.6 Sampling Weight of Proteins in Database

When developing statistical energy functions using a database consisting of many
homologous sequences, undesirable sampling biases will be introduced. An easy way
to avoid such sampling bias is to construct a database of structures in which no pair
of proteins can have more than 25% sequence identity. By this criterion, a structure
database may exclude a significant number of informative structures, which may be
valuable for studying a specific type of proteins with very few known structures. An
alternative method to avoid such sampling bias without neglecting these structures
is to introduce weights that are properly adjusted for each structure, which may or
may not be homologous to other structures in the database.

A similarity matrix S of all proteins in the database can be used to decide the
weight for each protein structure (Miyazawa and Jernigan, 1996). The similarity
between the k-th and l-th proteins is defined by Miyazawa and Jernigan based on the
result of sequence alignment:

skl ≡ 2�kl

Lk + Ll
,

0 ≤ skl = slk ≤ 1,

skk = 1,

where �kl is the number of identical residues in the alignment, Lk and Ll are the
lengths of sequences k and l, respectively. This similarity matrix S is symmetric and
composed of real values. It has the spectral decomposition:

S =
∑

i

	i v i v
T
i , (3.38)

where 	i and v i are the i-th eigenvalue and eigenvector of S, respectively. For a
symmetric matrix, these eigenvectors form an orthonormal base. Because for the
symmetric matrix S,

∑
i 	i = Trace(S) = nprot and S is positive semidefinite, we

have

0 ≤ 	i ≤ nprot, (3.39)
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where nprot is the number of proteins included in the database. The value of 	i

reflects the weight of the corresponding orthogonal eigenvector v i to the matrix
S. For the special case where there is one distinct sequence, which is completely
dissimilar to any other nprot − 1 sequences in the database, at least one eigenvalue
will be exactly equal to 1 and the corresponding eigenvector represents this distinct
sequence but contains no information about other sequences due to the orthogonality
of the eigenvectors of matrix S. In another case when there is one set of m sequences
which are exactly the same within the group but are completely dissimilar to any other
nprot − m sequences outside this set, at least one eigenvalue will be exactly equal to
m and m − 1 eigenvalues will be equal to zero. The eigenvector corresponding to the
nonzero eigenvalue represents the whole group of those m sequences but contains
no information about other sequences.

On the basis of these characteristics, Miyazawa and Jernigan (1996) decreased
all eigenvalues > 1 to 1 to reconstruct a new weight matrix S′, so that redundant
information from similar sequences is removed and the weight wk for the k-th protein
in the database is determined. In other words, we have before weighting:

wk ≡ skk =
[∑

i

	i v i v
T
i

]
kk

= 1, (3.40)

after weighting,

wk ≡ s ′
kk =

[∑
i

	′
i v i v

T
i

]
kk

, (3.41)

where

	′
i =

{
	i , if 	i ≤ 1;
1, if 	i > 1.

Therefore, if and only if a sequence is completely dissimilar to any other sequences
(	′

i = 	i = 1), the sampling weight for that sequence will be 1. If all nprot sequences
in the database are identical, the sampling weights for these sequences will be 1/nprot.
Generally, sampling weights take a value between one and 1/nprot, and are nega-
tively proportional to the number of similar sequences.

3.4 Optimization Method

There are several drawbacks of knowledge-based potential functions derived from
statistical analysis of a database. These include the neglect of chain connectivity in the
reference state, and the problematic implicit assumption of Boltzmann distribution
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(Thomas and Dill, 1996a,b; Ben-Naim, 1997). We defer a detailed discussion to
Section 3.7.1.

An alternative method to develop potential functions for proteins is by opti-
mization. For example, in protein design, we can use the thermodynamic hypothesis
of Anfinsen to require that the native amino acid sequence aN mounted on the na-
tive structure s N has the best (lowest) fitness score compared to a set of alternative
sequences (sequence decoys) taken from unrelated proteins known to fold into a
different fold D = {s N , aD} when mounted on the same native protein structure s N :

H ( f (s N , aN )) < H ( f (s N , aD)) for all (s N , aD) ∈ D.

Equivalently, the native sequence will have the highest probability to fit into the
specified native structure. This is the same principle described in Shakhnovich and
Gutin (1993), Deutsch and Kurosky (1996), and Li et al. (1996). Sometimes we
can further require that the score difference must be greater than a constant b > 0
(Shakhnovich, 1994):

H ( f (s N , aN )) + b < H ( f (s N , aD)) for all (s N , aD) ∈ D

Similarly, for protein structure prediction and protein folding, we require that
the native amino acid sequence aN mounted on the native structure s N has the lowest
energy compared to a set of alternative conformations (decoys) D = {s D, aN }:

H ( f (s N , aN )) < H ( f (s D, aN )) for all s D ∈ D

and

H ( f (s N , aN )) + b < H ( f (s D, aS)) for all (s D, aN ) ∈ D

when we insist on maintaining an energy gap between the native structure and decoy
conformations. For linear potential function, we have

w · cN + b < w · cD for all cD = f (s D, aN ). (3.42)

Our goal is to find a set of parameters through optimization for the potential function
such that all these inequalities are satisfied.

As discussed earlier, there are three key steps in developing effective
knowledge-based potential functions using optimization: (1) the functional form,
(2) the generation of a large set of decoys for discrimination, and (3) the opti-
mization techniques. The initial step of choosing an appropriate functional form
is important. Knowledge-based pairwise potential functions are usually all in the
form of weighted linear sum of interacting residue pairs. In this functional form, the
weight coefficients are the parameters of the potential function, which are optimized
for discrimination. This is the same functional form used in statistical potential,
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where the weight coefficients are derived from database statistics. The objectives
of optimization are often maximization of the energy gap between native protein
and the average of decoys, or the energy gap between native and decoys with the
lowest score, or the z-score of the native protein (Goldstein et al., 1992; Maiorov
and Crippen, 1992; Thomas and Dill, 1996a; Koretke et al., 1996, 1998; Hao and
Scheraga, 1996; Mirny and Shakhnovich, 1996; Vendruscolo and Domanyi, 1998;
Tobi et al., 2000; Vendruscolo et al., 2000; Dima et al., 2000; Micheletti et al., 2001;
Bastolla et al., 2001).

3.4.1 Geometric Nature of Discrimination

There is a natural geometric view of the inequality requirement for weighted lin-
ear sum potential functions. A useful observation is that each of the inequalities
divides the space of R

d into two halves separated by a hyperplane (Fig. 3.4a). The
hyperplane for Eq. 3.42 is defined by the normal vector (cN − cD) and its distance
b/||cN − cD|| from the origin. The weight vector w must be located in the half-
space opposite the direction of the normal vector (cN − cD). This half-space can
be written as w · (cN − cD) + b < 0. When there are many inequalities to be satis-
fied simultaneously, the intersection of the half-spaces forms a convex polyhedron
(Edelsbrunner, 1987). If the weight vector is located in the polyhedron, all the in-
equalities are satisfied. Scoring functions with such weight vector w can discriminate
the native protein sequence from the set of all decoys. This is illustrated in Fig. 3.4a
for a two-dimensional toy example, where each straight line represents an inequality
w · (cN − cD) + b < 0 that the potential function must satisfy.

For each native protein i , there is one convex polyhedron Pi formed by the set
of inequalities associated with its decoys. If a potential function can discriminate
simultaneously n native proteins from a union of sets of sequence decoys, the weight
vector w must be located in a smaller convex polyhedron P that is the intersection
of the n convex polyhedra:

w ∈ P =
n⋂

i=1

Pi .

There is yet another geometric view of the same inequality requirements. If we
now regard (cN − cD) as a point in R

d , the relationship w · (cN − cD) + b < 0 for
all sequence decoys and native proteins requires that all points {cN − cD} are located
on one side of a different hyperplane, which is defined by its normal vector w and its
distance b/||w || to the origin (Fig. 3.4b). We can show that such a hyperplane exists
if the origin is not contained within the convex hull of the set of points {cN − cD}
(see Appendix).

The second geometric view looks very different from the first view. However,
the second view is dual and mathematically equivalent to the first geometric view.
In the first view, a point cN − cD determined by the structure–decoy pair cN =
(s N , aN ) and cD = (s N , aD) corresponds to a hyperplane representing an inequality,
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Fig. 3.4 Geometric views of the inequality requirement for protein scoring function. Here we
use a two-dimensional toy example for illustration. (a). In the first geometric view, the space R

2

of w = (w1, w2) is divided into two half-spaces by an inequality requirement, represented as a
hyperplane w · (cN − cD) + b < 0. The hyperplane, which is a line in R

2, is defined by the normal
vector (cN − cD) and its distance b/||cN − cD|| from the origin. In this figure, this distance is
set to 1.0. The normal vector is represented by a short line segment whose direction points away
from the straight line. A feasible weight vector w is located in the half-space opposite to the
direction of the normal vector (cN − cD). With the given set of inequalities represented by the
lines, any weight vector w located in the shaped polygon can satisfy all inequality requirement and
provides a linear scoring function that has perfect discrimination. (b) A second geometric view
of the inequality requirement for linear protein scoring function. The space R

2 of x = (x1, x2),
where x ≡ (cN − cD), is divided into two half-spaces by the hyperplane w · (cN − cD) + b < 0.
Here the hyperplane is defined by the normal vector w and its distance b/||w || from the origin.
The origin corresponds to the native protein. All points {cN − cD} are located on one side of the
hyperplane away from the origin, therefore satisfying the inequality requirement. That is, a linear
scoring function w such as the one represented by the straight line in this figure can have perfect
discrimination. (c) In the second toy problem, a set of inequalities are represented by a set of
straight lines according to the first geometric view. A subset of the inequalities require the weight
vector w to be located in the shaded convex polygon on the left, but another subset of inequalities
require w to be located in the dashed convex polygon on the top. Since these two polygons do
not intersect, there is no weight vector w that can satisfy all inequality requirements. That is, no
linear scoring function can classify these decoys from native protein. (d) According to the second
geometric view, no hyperplane can separate all points {cN − cD} from the origin. But a nonlinear
curve formed by a mixture of Gaussian kernels can have perfect separation of all vectors {cN − cD}
from the origin: It has perfect discrimination.
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and a solution weight vector w corresponds to a point located in the final convex
polyhedron. In the second view, each structure–decoy pair is represented as a point
cN − cD in R

d , and the solution weight vector w is represented by a hyperplane
separating all the points C = {cN − cD} from the origin.

3.4.2 Optimized Linear Potential Functions

Several optimization methods have been applied to find the weight vector w of linear
potential function. The Rosenblantt perceptron method works by iteratively updating
an initial weight vector w0 (Vendruscolo and Domanyi, 1998; Micheletti et al., 2001).
Starting with a random vector, e.g., w0 = 0, one tests each native protein and its decoy
structure. Whenever the relationship w · (cN − cD) + b < 0 is violated, one updates
w by adding to it a scaled violating vector  · (cN − cD). The final weight vector is
therefore a linear combination of protein and decoy count vectors:

w =
∑

(cN − cD) =
∑
N∈N

�N cN −
∑
D∈D

�DcD. (3.43)

Here N is the set of native proteins, andD is the set of decoys. The set of coefficients
{�N } ∪ {�D} gives a dual form representation of the weight vector w , which is an
expansion of the training examples including both native and decoy structures.

According to the first geometric view, if the final convex polyhedron P is
nonempty, there can be an infinite number of choices of w , all with perfect discrim-
ination. But how do we find a weight vector w that is optimal? This depends on
the criterion for optimality. For example, one can choose the weight vector w that
minimizes the variance of score gaps between decoys and natives:

argw min
1

|D|
∑

(w · (cN − cD))2 −
[

1

|D|
∑

D

(w · (cN − cD))

]2

as used in Tobi et al. (2000), or minimizing the Z -score of a large set of native
proteins, or minimizing the Z -score of the native protein and an ensemble of decoys
(Chiu and Goldstein, 1998; Mirny and Shakhnovich, 1996), or maximizing the ratio
R between the width of the distribution of the score and the average score difference
between the native state and the unfolded ones (Goldstein et al., 1992; Hao and
Scheraga, 1999). A series of important works using perceptron learning and other
optimization techniques (Friedrichs and Wolynes, 1989; Goldstein et al., 1992; Tobi
et al., 2000; Vendruscolo and Domanyi, 1998; Dima et al., 2000) showed that effective
linear sum potential functions can be obtained.

There is another optimality criterion according to the second geometric view
(Hu et al., 2004). We can choose the hyperplane (w, b) that separates the set of points
{cN − cD} with the largest distance to the origin. Intuitively, we want to characterize
proteins with a region defined by the training set points {cN − cD}. It is desirable
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to define this region such that a new unseen point drawn from the same protein
distribution as {cN − cD} will have a high probability of falling within the defined
region. Nonprotein points following a different distribution, which is assumed to be
centered around the origin when no a priori information is available, will have a high
probability of falling outside the defined region. In this case, we are more interested
in modeling the region or support of the distribution of protein data, rather than
estimating its density distribution function. For linear potential function, regions
are half-spaces defined by hyperplanes, and the optimal hyperplane (w, b) is then
the one with maximal distance to the origin. This is related to the novelty detection
problem and single-class support vector machine studied in statistical learning theory
(Vapnik and Chervonenkis, 1964, 1974; Schölkopf and Smola, 2002). In our case,
any nonprotein points will need to be detected as outliers from the protein distribution
characterized by {cN − cD}. Among all linear functions derived from the same set
of native proteins and decoys, an optimal weight vector w is likely to have the least
amount of mislabelings. The optimal weight vector w can be found by solving the
following quadratic programming problem:

Minimize 1
2
||w ||2 (3.44)

subject to w · (cN − cD) + b < 0 for all N ∈ N and D ∈ D. (3.45)

The solution maximizes the distance b/||w || of the plane (w, b) to the origin. We
obtained the solution by solving the following support vector machine problem:

Minimize 1
2
‖w‖2

subject to w · cN + d ≤ −1
w · cD + d ≥ 1,

(3.46)

where d > 0. Note that a solution of Problem (3.46) satisfies the constraints in In-
equalities (3.45), since subtracting the second inequality here from the first inequality
in the constraint conditions of (3.46) will give us w · (cN − cD) + 2 ≤ 0.

3.4.3 Optimized Nonlinear Potential Functions

Optimized linear potential function can be obtained using the optimization strategy
discussed above. However, it is possible that the weight vector w does not exist, i.e.,
the final convex polyhedron P = ⋂n

i=1 Pi may be an empty set. This occurs if a
large number of native protein structures are to be simultaneously stabilized against
a large number of decoy conformations, no such potential functions in the linear
functional form can be found (Vendruscolo et al., 2000; Tobi et al., 2000).

According to our geometric pictures, there are two possible scenarios. First, for
a specific native protein i , there may be severe restriction from some inequality con-
straints, which makesPi an empty set. Some decoys are very difficult to discriminate
due to perhaps deficiency in protein representation. In these cases, it is impossible
to adjust the weight vector so the native protein has a lower score than the sequence
decoy. Fig. 3.4c shows a set of inequalities represented by straight lines according
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to the first geometric view. In this case, there is no weight vector that can satisfy
all these inequality requirements. That is, no linear potential function can classify
all decoys from native protein. According to the second geometric view (Fig. 3.4d),
no hyperplane can separate all points (black and green) {cN − cD} from the origin,
which corresponds to the native structures.

Second, even if a weight vector w can be found for each native protein, i.e.,
w is contained in a nonempty polyhedron, it is still possible that the intersection
of n polyhedra is an empty set, i.e., no weight vector can be found that can dis-
criminate all native proteins from the decoys simultaneously. Computationally, the
question whether a solution weight vector w exists can be answered unambiguously
in polynomial time (Karmarkar, 1984). If a large number (e.g., hundreds) of native
protein structures are to be simultaneously stabilized against a large number of de-
coy conformations (e.g., tens of millions), no such potential functions can be found
computationally (Vendruscolo et al., 2000; Tobi et al., 2000). A similar conclusion
is drawn in a study on protein design, where it was found that no linear potential
function can simultaneously discriminate a large number of native proteins from
sequence decoys (Hu et al., 2004).

A fundamental reason for such failure is that the functional form of linear
sum is too simplistic. It has been suggested that additional descriptors of protein
structures such as higher order interactions (e.g., three-body or four-body contacts)
should be incorporated in protein description (Betancourt and Thirumalai, 1999;
Munson and Singh, 1997; Zheng et al., 1997). Functions with polynomial terms
using up to 6 degrees of Chebyshev expansion have also been used to represent
pairwise interactions in protein folding (Fain et al., 2002).

We now discuss an alternative approach. Let us still limit ourselves to pairwise
contact interactions, although it can be naturally extended to include three- or four-
body interactions (Li and Liang, 2005b). We can introduce a nonlinear potential
function analogous to the dual form of the linear function in Eq. (3.43), which takes
the following form:

H ( f (s, a)) = H (c) =
∑
D∈D

�D K (c, cD) −
∑
N∈N

�N K (c, cN ), (3.47)

where �D ≥ 0 and �N ≥ 0 are parameters of the potential function to be determined,
and cD = f (s N , aD) from the set of decoys D = {(s N , aD)} is the contact vector of
a sequence decoy D mounted on a native protein structure s N , and cN = f (s N , aN )
from the set of native training proteins N = {(s N , aN )} is the contact vector of
a native sequence aN mounted on its native structure s N . In this study, all decoy
sequences {aD} are taken from real proteins possessing different fold structures.
The difference of this functional form from the linear function in Eq. (3.43) is that a
kernel function K (x, y) replaces the linear term. A convenient kernel function K is

K (x, y) = e−||x−y||2/2�2

for any vectors x and y ∈ N ⋃D,

where �2 is a constant. Intuitively, the surface of the potential function has smooth
Gaussian hills of height �D centered on the location cD of decoy protein D, and has
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smooth Gaussian cones of depth �N centered on the location cN of native structures
N . Ideally, the value of the potential function will be −1 for contact vectors cN of
native proteins, and will be +1 for contact vectors cD of decoys.

3.4.4 Deriving Optimized Nonlinear Potential Functions

To obtain the nonlinear potential function, our goal is to find a set of parameters
{�D, �N } such that H ( f (s N , aN )) has value close to −1 for native proteins, and
the decoys have values close to +1. There are many different choices of {�D, �N }.
We use an optimality criterion originally developed in statistical learning theory
(Vapnik, 1995; Burges, 1998; Schölkopf and Smola, 2002). First, we note that we
have implicitly mapped each structure and decoy from R

210 through the kernel
function of K (x, y) = e−||x−y||2/2�2

to another space with dimensions as high as
tens of millions. Second, we then find the hyperplane of the largest margin distance
separating proteins and decoys in the space transformed by the nonlinear kernel.
That is, we search for a hyperplane with equal and maximal distance to the closest
native proteins and the closest decoys in the transformed high dimensional space.
Such a hyperplane can be found by obtaining the parameters {�D} and {�N } from
solving the following Lagrange dual form of quadratic programming problem:

Maximize
∑

i∈N∪D, �i − 1
2

∑
i, j∈N∪D yi y j �i � j e−||ci −c j ||2/2�2

subject to 0 ≤ �i ≤ C,

where C is a regularizing constant that limits the influence of each misclassified
protein or decoy (Vapnik and Chervonenkis, 1964, 1974; Vapnik, 1995; Burges,
1998; Schölkopf and Smola, 2002), and yi = −1 if i is a native protein, and yi = +1
if i is a decoy. These parameters lead to optimal discrimination of an unseen test set
(Vapnik and Chervonenkis, 1964, 1974; Vapnik, 1995; Burges, 1998; Schölkopf and
Smola, 2002). When projected back to the space of R

210, this hyperplane becomes
a nonlinear surface. For the toy problem of Fig. 3.4, Fig. 3.4d shows that such
a hyperplane becomes a nonlinear curve in R

2 formed by a mixture of Gaussian
kernels. It separates perfectly all vectors {cN − cD} (black and green) from the
origin. That is, a nonlinear potential function can have perfect discrimination.

3.4.5 Optimization Techniques

The techniques that have been used for optimizing potential function include percep-
tron learning, linear programming, gradient descent, statistical analysis, and support
vector machine (Tobi et al., 2000; Vendruscolo et al., 2000; Xia and Levitt, 2000;
Bastolla et al., 2000, 2001; Hu et al., 2004). These are standard techniques that can be
found in optimization and machine learning literature. For example, there are excel-
lent linear programming solvers based on simplex method, as implemented in CLP,
GLPK, and LP SOLVE (Berkelaar, 2004), and based on interior point method as imple-
mented in the BPMD (Mészáros, 1996), the HOPDM, and the PCX packages (Czyzyk
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et al., 2004). We neglect the details of these techniques and point readers to the
excellent treatises of Papadimitriou and Steiglitz (1998) and Vanderbei (1996).

3.5 Applications

Knowledge-based potential function has been widely used in the study of protein
structure prediction, protein folding, and protein–protein interaction. In this section,
we discuss briefly some of these applications. Additional details of applications of
knowledge-based potential can be found in other chapters of this book.

3.5.1 Protein Structure Prediction

Protein structure prediction is an extraordinarily complex task that involves two
major components: sampling the conformational space and recognizing the near
native structures from the ensemble of sampled conformations.

In protein structure prediction, methods for conformational sampling will
generate a huge number of candidate protein structures. These are often called
decoys. Among these decoys, only a few are near native structures that are
very similar to the native structure. A potential function must be used to
discriminate the near-native structures from all other decoys for a successful structure
prediction.

Several decoy sets have been developed as objective benchmarks to test if a
knowledge-based potential function can successfully identify the native and near-
native structures. For example, Park and Levitt (1996) constructed a 4-state-reduced
decoy set. This decoy test set contains native and near-native conformations of
seven sequences, along with about 650 misfolded structures for each sequence. The
positions of C� of these decoys were generated by exhaustively enumerating 10
selectively chosen residues in each protein using a 4-state off-lattice model. All
other residues were assigned the phi/psi value based on the best fit of a 4-state model
to the native chain (Park and Levitt, 1996).

A central depository of folding decoy conformations is the Decoys ‘R’Us
(Samudrala and Levitt, 2000). See Section 3.6 for the URL links to download several
folding and docking decoy sets. A variety of knowledge-based potential functions
have been developed and their performance in decoy discrimination has steadily
improved (Zhou and Zhou, 2002; Lu and Skolnick, 2001; Li et al., 2003).

Figure 3.5 shows an example of decoy discrimination on the 4-state-reduced
decoy set. This result is based on the residue-level packing and distance-dependent
geometric potantial function discussed earlier. For all of the seven proteins in the
4-state-reduced set, the native structures have the lowest energy. In addition, all of
the decoys with the lowest energy are within 2.5 Å RMSD to the native structure.

Table 3.2 lists the performance of the geometric potential function in fold-
ing and docking decoy discriminations. Several studies examine the comparative
performance of different knowledge-based potential functions (Park and Levitt,
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Fig. 3.5 Energies evaluated by packing- and distance-dependent residue contact potential plotted
against the RMSD to native structures for conformations in Park & Levitt Decoy Set.

1996; Zhou and Zhou, 2002; Gilis, 2004). Such evaluations often are based on
measuring the success in ranking native structure from a large set of decoy confor-
mations and in obtaining a large z-score for the native protein structure. Because the
development of potential function is a very active research field, the comparison of
performances of different potential functions will be different as new models and
techniques are developed and incorporated.

Not only can a knowledge-based potential function be applied at the end of
the conformation sampling to recognize near-native structures, it can also be used
during conformation generation to guide the efficient sampling of protein structures.
Details of this application can be found in Jernigan and Bahar (1996) and Hao and
Scheraga (1999). In addition, knowledge-based potential also plays an important
role in protein threading studies. Chapter 12 provides further detailed discussion.
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Table 3.2 Performance of geometric potential on folding and docking decoy discrimination

Folding
decoy
sets

4-state-reduced lattice-ssfit fisa-casp3 fisa lmds

Nativea zb Native z Native z Native z Native z
7/7 4.46 8/8 7.70 3/3 5.23 3/4 5.42 7/10 1.45

Docking
decoy
sets

Rosetta-Bound- Rosetta-Unbound- Rosetta-Unbound-
Perturb Perturb Global Vakser’s Sternberg’s

Native z Native z Native z Native z Native z
50/54 12.75 53/54 12.88 53/54 8.55 4/5 4.45 16/16 4.45

RDOCK 29/42c

a Number of native structures ranking first; e.g., 7/7 means seven out of seven native structures have the lowest energy among
their corresponding decoy sets.
b z = E − Enative/�; E and � are the mean and standard deviation of the energy values of conformations, respectively.
c Native complex is not included in these docking decoy sets. Thirty-two out of 42 decoy sets have at least one near-native
structure (cRMSD < 2.5Å) in the top 10 structures.

3.5.2 Protein–Protein Docking Prediction

Knowledge-based potential functions can also be used to study protein–protein in-
teractions. Here we give an example of predicting the binding surface of seven anti-
body or antibody-related-proteins (e.g., Fab fragment, T-cell receptor) (Li and Liang,
2005a). These protein–protein complexes are taken from the 21 CAPRI (Critical
Assessment of PRedicted Interactions) target proteins. CAPRI is a communitywide
competition designed to objectively assess the abilities in protein–protein docking
prediction (Méndez et al., 2005). In CAPRI, a blind docking prediction starts from
two known crystallographic or NMR structures of unbound proteins and ends with
a comparison to a solved structure of the protein complex, to which the participants
did not have access. Knowledge-based potential functions, together with geometric
complementarity potential functions, can be used to recognize near-native docking
complexes and to guide the generation of conformations for protein–protein docking.

When docking two proteins together, we say a cargo protein is docked to a
fixed seat protein. To determine the binding surfaces on the cargo protein, we can
examine all possible surface patches on the unbound structure of cargo protein as
candidate binding interfaces. The alpha knowledge-based potential function is then
used to identify native or near native binding surfaces. To evaluate the performance
of the potential function, we assume the knowledge of the binding interface on the
seat protein. We further assume the knowledge of the degree of near neighbors for
interface residues.

We first partition the surface of the unbound cargo protein into candidate surface
patches, each having the same size as the native binding surface of m residues.
A candidate surface patch is generated by starting from a surface residue on the
cargo protein, and following alpha edges on the boundary of the alpha shape by
breadth-first search, until m residues are found (Fig. 3.6a). We construct n candidate
surface patches by starting in turn from each of the n surface residues on the cargo
protein. Because each surface residue is the center of one of the n candidate surface
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Native antibody interface

(a) (b)

Best scored patch

Fig. 3.6 Recognition of binding surface patch of CAPRI targets. (a) Boundary of alpha shape for
a cargo protein. Each node represents a surface residue, and each edge represents the alpha edge
between two surface residues. A candidate surface patch is generated by starting from a surface
residue on the cargo protein, and following alpha edges on the boundary of the alpha shape by
breadth-first search, until m residues are included. (b) Native interface and the surface patch with
the best score on the antibody of the protein complex CAPRI Target T02. Only heavy chain (in red)
and light chain (in blue) of the antibody are drawn. The antigen is omitted from this illustration for
clarity. The best scored surface patch (in green) resembles the native interface (in yellow): 71%
residues from this surface patch are indeed on the native binding interface. The residue in white
is the starting residue used to generate this surface patch with the best score.

patches, the set of candidate surface patches covers exhaustively the whole protein
binding interface.

Second, we assume that a candidate surface patch on the cargo protein has
the same set of contacts as that of the native binding surface. The degree of near
neighbors for each hypothetical contacting residue pair is also assumed to be the
same. We replace the m residues of the native surface with the m residues from the
candidate surface patch. There are m!∏20

i=1 mi !
different ways to permute the m residues

of the candidate surface patch, where mi is the number of residue type i on the
candidate surface patch. A typical candidate surface patch has about 20 residues,
therefore the number of possible permutations is very large. For each candidate
surface patch, we take a sample of 5000 random permutations. For a candidate surface
patch S Pi , we assume that the residues can be organized so that they can interact with
the binding partner at the lowest energy. Therefore, the binding energy E(S Pi ) is
estimated as

E(S Pi ) = min
k

E(S Pi )k, k = 1, . . . , 5000.

Here E(S Pi )k is calculated based on the residue-level packing and distance-
dependent potential for the k-th permutation. The value of E(S Pi ) is used to rank
the candidate surface patches.
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Table 3.3 Recognition of native binding surface of CAPRI targets

Antibodya Antigen

Target Complex Rankb
native Overlapc Ranknative Overlap

T02 Rotavirus VP6-Fab 1/283d 0.71 1/639 0.68
T03 Flu hemagglutinin-Fab 1/297 0.56 1/834 0.71
T04 �-amylase-camelid Ab VH 1 56/89 0.60 102/261 0.03
T05 �-amylase-camelid Ab VH 2 23/90 0.57 57/263 0.25
T06 �-amylase-camelid Ab VH 3 1/88 0.70 1/263 0.62
T07 SpeA superantigen TCR� 1/172 0.57 1/143 0.61
T13 SAG1-antibody complex 1/286 0.64 1/249 0.69

a “Antibody”: Different surface patches on the antibody molecule are evaluated by the potential function, while the native
binding surface on the antigen remains unchanged. “Antigen”: similarly defined as “Antibody.”
b Ranking of the native binding surface among all candidate surface patches.
c Fraction of residues from the best candidate surface patch that overlap with residues from the native binding surface patch.
d The first number is the rank of native binding surface and the second number is the number of total candidate surface patches.

We assess the statistical potential by taking the antibody/antigen protein in turn
as the seat protein, and the antigen/antibody as the cargo protein. The native interface
on the seat protein is fixed. We test if our statistical potential can discriminate native
surface patch on the cargo protein from the set of candidate surface patches. We
also test if the best scored patch resembles the native patch. The results are listed
in Table 3.3 and the predicted antigen-binding interface of target T02 is shown in
Fig. 3.6(b) as an example. For five of the seven protein complexes, we succeeded in
discriminating the native patches on both the antibody and the antigen. Over 50% of
the residues from the best scored patch overlap with the corresponding native patch.
Our statistical potential does not work as well for targets T04 and T05, because the
antibodies of these two complexes do not use their CDR domains to recognize the
antigens as an antibody usually does, and such examples are not present in the data
set of the 34 antibody–antigen complexes, based on which the geometric potential
function was obtained.

3.5.3 Protein Design

Protein design aims to identify sequences compatible with a given protein fold
but incompatible with any alternative folds (Koehl and Levitt, 1999a(,b). The goal
is to design a novel protein that may not exist in nature but has enhanced or novel
biological function. Several novel proteins have been successfully designed in recent
years (Dahiyat and Mayo, 1997; Hill et al., 2000; Looger et al., 2003; Kuhlman et al.,
2003). The problem of protein design is complex, because even a small protein
of just 50 residues can have an astronomical number of sequences (1065). This
clearly precludes exhaustive search of the sequence space with any computational or
experimental method. Instead, protein design methods rely on potential functions for
biasing the search toward the feasible regions that encode protein sequences. To select
the correct sequences and to guide the search process, a design potential function
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is critically important. Such a potential function should be able to characterize the
global fitness landscape of many proteins simultaneously.

Here, we briefly describe the application of the optimized nonlinear design
potential function discussed in Section 3.4.3 (Hu et al., 2004) in protein design. We
aim to solve a simplified protein sequence design problem. Our goal is to distinguish
each native sequence for a major portion of representative protein structures from
a large number of alternative decoy sequences, each a fragment from proteins of
different fold.

To train the nonlinear potential function, a list of 440 proteins was compiled
from the 1998 release (WHATIF98) of the WHATIF database (Vendruscolo et al.,
2000). Using gapless threading (Maiorov and Crippen, 1992), a set of 14,080,766
sequence decoys was obtained. The entries in the WHATIF99 database that are not
present in WHATIF98 are used as a test set. After cleanup, the test set consists of
194 proteins and 3,096,019 sequence decoys.

To test the design potential functions for discriminating native proteins from
sequence decoys, we take the sequence a from the conformation–sequence pair
(s N , a) for a protein with the lowest score as the predicted sequence. If it is not the
native sequence aN , the discrimination failed and the design potential function does
not work for this protein.

The nonlinear design potential function is capable of discriminating all of the
440 native sequences. In contrast, no linear potential function can succeed in this
task. The nonlinear potential function also works well for the test set, where it
succeeded in correctly identifying 93.3% (181 out of 194) of native sequences in the
independent test set of 194 proteins. This compares favorably with results obtained
using optimized linear folding potential function taken as reported in Tobi et al.
(2000), which succeeded in identifying 80.9% (157 out of 194) of this test set. It
also has better performance than optimized nonlinear potential function based on
calculations using parameters reported in Bastolla et al. (2001), which succeeded
in identifying 73.7% (143 out of 194) of proteins in the test set. The Miyazawa–
Jernigan statistical potential succeeded in identifying 113 native proteins out of 194
(success rate 58.2%).

3.5.4 Protein Stability and Binding Affinity

Because the stability of protein in the native conformation is determined by the
distribution of the full ensemble of conformations, namely, the partition function
Z (a) of the protein sequence a, care must be taken when using statistical potentials
to compare the stabilities of different protein sequences adopting the same given
conformation as in protein design (Miyazawa and Jernigan, 1996; Sippl, 1990). This
issue is discussed in some detail in Section 3.7.1.

Nevertheless, it is expected that statistical potentials should work well in esti-
mating protein stability changes upon mutations, as the change in partition functions
of the protein sequence is small. In most such studies and studies using physics-
based empirical potential (see Chapter 2 in this book and Bordner and Abagyan
(2004)), good correlation coefficient (0.6–0.8) between predicted and measured
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Table 3.4 Database of folding and docking decoy sets

Decoys sets Type URL

Decoy ‘R’ Usa folding http://dd.stanford.edu/
Loop folding http://francisco.compbio.ucsf.edu/∼jacobson/decoy.htm
CASP folding http://predictioncenter.org/
ZDOCK, RDOCK docking http://zlab.bu.edu/∼leely/RDOCK decoy/
Vakser decoy set docking http://www.bioinformatics.ku.edu/files/vakser/decoys/
Sternberg decoy set docking http://www.sbg.bio.ic.ac.uk/docking/all decoys.html
Rosetta docking, folding http://depts.washington.edu/bakerpg/
CAPRI docking http://capri.ebi.ac.uk/

a The database of Decoys ‘R’ Us contains multiple decoy sets, single decoy sets, and loop decoy sets. 4-state-reduced decoy
set is included in the multiple decoy sets.

stability change can be achieved (Gilis and Rooman, 1996, 1997; Guerois et al.,
2002; Bordner and Abagyan, 2004; Hoppe and Schomburg, 2005; Zhou and Zhou,
2002).

Several studies have shown that statistical potentials can also be used to
predict quantitative binding free energy of protein–protein or protein–ligand inter-
actions (DeWitte and Shakhnovich, 1996; Mitchell et al., 1999; Muegge and Martin,
1999; Liu et al., 2004; Zhang et al., 2005). In fact, Xu et al. showed that a simple
number count of hydrophilic bridges across the binding interface is strongly corre-
lated with binding free energies of protein–protein interaction (Xu et al., 1997). This
study suggests that binding free energy may be predicted successfully by number
counts of various types of interfacial contacts defined using some distance thresh-
old. Such studies of number count provide an excellent benchmark to quantify the
improvement in predicting binding free energy when using statistical potentials for
different protein–protein and protein–ligand complexes. Similar to prediction of pro-
tein stability change upon mutation, knowledge based potential functions played an
important role in a successful study of predicting binding free energy changes upon
mutation (Kortemme and Baker, 2002; Kortemme et al., 2004).

3.6 Online Resources

A list of online sources of decoy data for folding and docking is provided in
Table 3.4.

3.7 Discussion

3.7.1 Knowledge-Based Statistical Potential Functions

The statistical potential functions are often derived based on several assumptions:
(1) protein energetics can be decomposed primarily into pairwise interactions; (2)
interactions are independent from each other; (3) the partition function in native
proteins Z and in reference states Z ′ are approximately equal; (4) the probability
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of occupancy of a state follows the Boltzmann distribution. These assumptions are
often unrealistic and raise questions about the validity of the statistical potential
functions: Can statistical potential functions provide energylike quantities such as
the folding free energy of a protein, or the binding free energy of a protein–protein
complex (Thomas and Dill, 1996b)? Can statistical potential functions correctly
recognize the native structures from alternative conformations?

The assumptions of statistical knowledge-based potential functions: From Eq. (3.4),
we can obtain the potential function H (c) by estimating the probability �(c). How-
ever, we need a number of assumptions for this approach to work. We need the
independency assumption to have

�(c) =
∏

i

�(ci ) =
∏

i

∏
ci

�i ,

where ci is the number of occurrences of the i-th structural feature, e.g., number of
a specific residue pair contact; �i is the probability of the i-th structural feature in
the database. That is, we have to assume that the distribution of a specific structural
feature is independent and not influenced by any other features, and is of no conse-
quence for the distributions of other features as well. We also need to assume that
c provides an adequate characterization of protein interactions, and the functional
form of w · c provides the correct measurement of the energy of the interactions. We
further need to assume that the energy for a protein–solvent system is decompos-
able, i.e., the overall energy can be partitioned into many basic energy terms, such as
pairwise interactions, desolvation energies. Moreover, the partition functions Z ′ in a
chosen reference state are approximately equal to the partition functions Z in native
proteins. These above assumptions together lead to the Boltzmann assumption that
the structural features contained in the protein database must be a population cor-
rectly sampled under the Boltzmann distribution. That is, for any protein descriptor,
we have

�i ∝ exp(−wi ).

To calculate �i in practice, we have to rely on another assumption that all protein
structures are crystallized at the same temperature. Therefore, the distribution �i is
reasonably similar for all proteins in the database, and hence the frequency counts
of protein descriptors in different protein structures can be combined by simple
summation with equal weight.

Clearly, none of these assumptions are strictly true. However, the successes of
many applications of using the statistical knowledge-based potentials indicate that
they do capture many important properties of proteins. The question for improv-
ing the statistical potential function is, how seriously each of these assumptions is
violated and to what extent it affects the validity of the potential function. A few
assumptions specific to a particular potential function (such as the coordination
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and solvation assumptions for the Miyazawa–Jernigan reaction model) have been
described earlier. Here we discuss several assumptions in detail below.

Interactions are not independent: Using an HP (Hydrophobic-Polar) model on a
two-dimensional lattice, Thomas and Dill (1996b) tested the accuracy of Miyazawa–
Jernigan contact potentials and Sippl’s distance-dependent potentials. In the HP
model, a peptide chain contains only two types of monomer: H and P . The true
energies are set as H(H,H ) = −1, H(H,P) = 0, and H(P,P) = 0. Monomers are in
contact if they are nonbonded nearest neighbors on the lattice. The conformational
space was exhaustively searched for all sequences with the chain length from 11 to
18. A sequence is considered to have a native structure if it has a unique ground
energy state. All native structures were collected to build a structure database, from
which the statistical potentials are extracted by following the Miyazawa–Jernigan or
the Sippl method. The extracted energies are denoted as e(H,H ), e(H,P), and e(P,P).

It was found that neither of these two methods can extract the correct energies.
All extracted energies by these two methods depend on chain length, while the true
energies do not. Using Miyazawa–Jernigan’s method, the (H, H ) contact is correctly
determined as dominant and attractive. However, the estimated values for e(H,P) and
e(P,P) are not equal to zero, whereas the true energies H(H,P) and H(P,P) are equal
to zero. Using Sippl’s method, the extracted potentials erroneously show a distance
dependence, i.e., (H, H ) interactions are favorable at short distances but unfavorable
at long distances, and conversely for (P, P) interactions, whereas the true energies
in the HP model only exist between a first-neighbor (H, H ) contact, and become
zero for all the interactions separated by two or more lattice units.

These systematic errors result from the assumption that the pairwise inter-
actions are independent, and thus the volume exclusion in proteins can be ne-
glected (Thomas and Dill, 1996b). However, (H, H ) interactions indirectly affect the
observed frequencies of (H, P) and (P, P) interactions. First, in both contact and
distance-dependent potentials, because only a limited number of interresidue con-
tacts can be made within the restricted volume at a given distance, the high density of
(H, H ) pairs at short distances is necessarily coupled with the low density (relative
to reference state) of (H, P) and (P, P) pairs at the same distances, especially at the
distance of one lattice unit. As a result, the extracted (H, P) and (P, P) energies are
erroneously unfavorable at short distances. Second, for distance-dependent poten-
tials, the energy of a specific type of pair interaction at a given distance is influenced
by the same type of pair at different distances. For example, the high density of
(H, H ) pairs at short distances causes a compensating depletion (relative to the uni-
form density reference state) at certain longer distances, and conversely for (H, P)
and (P, P) interactions. Admittedly this study was carried out using models of short
chain lengths and a simple alphabet of residues where the foldable sequences may
be very homologous, hence the observed artifacts are profound, and the deficiencies
of the statistical potentials revealed in this study such as the excluded volume effect
are likely to be significant in potential functions derived from real proteins.



SVNY330-Xu-Vol-I November 2, 2006 10:35

110 Xiang Li and Jie Liang

Pairwise interactions are not additive: Interactions stabilizing proteins are often
modeled by pairwise contacts at the atom or residue level. An assumption asso-
ciated with this approach is the additivity of pairwise interactions, namely, the
total energy or fitness score of a protein is the linear sum of all of its pairwise
interactions.

However, the nonadditivity effects have been clearly demonstrated in clus-
ter formation of hydrophobic methane molecules both in experiment (Ben-Naim,
1997) and in simulation (Rank and Baker, 1997; Shimizu and Chan, 2001, 2002;
Czaplewski et al., 2000). Protein structure refinement will likely require higher or-
der interactions (Betancourt and Thirumalai, 1999). Some three-body contacts have
been introduced in several studies (Eastwood and Wolynes, 2001; Rossi et al., 2001;
Godzik and Skolnick, 1992; Godzik et al., 1992), where physical models explicitly
incorporating three-body interactions are developed. In addition, several studies of
Delaunay four-body interactions clearly showed the importance of including higher
order interactions in explaining the observed frequency distribution of residue con-
tacts (Krishnamoorthy and Tropsha, 2003; Carter et al., 2001; Gan et al., 2001;
Zheng et al., 1997; Singh et al., 1996; Munson and Singh, 1997).

Li and Liang (2005b) introduced a geometric model based on the Delaunay
triangulation and alpha shape to collect three-body interactions in native proteins.
A nonadditivity coefficient �(i, j,k) is introduced to compare the three-body potential
energy e(i, j,k) with the summation of three pairwise interactions ei, j , e(i,k), and e( j,k):

�(i, j,k) = exp[−e(i, j,k)]/ exp[−(e(i, j) + e(i,k) + e( j,k))].

There are three possibilities: (1) � = 1: interaction of a triplet type is additive
in nature and can be well approximated by the sum of three pairwise interactions; (2)
� > 1: three-body interactions are cooperative and their association is more favorable
than three independent pairwise interactions; (3) � < 1: three-body interactions are
anticooperative.

After systematically quantifying the nonadditive effects of all 1540 three-body
contacts, it was found that hydrophobic interactions and hydrogen bonding interac-
tions make nonadditive contributions to protein stability, but the nonadditive nature
depends on whether such interactions are located in the protein interior or on the
protein surface. When located in the interior, many hydrophobic interactions such
as those involving alkyl residues are anticooperative, namely, � < 1. Salt-bridge and
regular hydrogen-bonding interactions such as those involving ionizable residues
and polar residues are cooperative in interior. When located on the protein surface,
these salt-bridge and regular hydrogen-bonding interactions are anticooperative with
� < 1, and hydrophobic interactions involving alkyl residues become cooperative
(Li and Liang, 2005b).

Sequence dependency of the partition function Z(a): We can obtain the total effective
energy �E(s, a) given a structure conformation s and its amino acid sequence a
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from Eq. (3.5):

�H ( f (s, a)) = �H (c) =
∑

i

�H (ci )

(3.48)

= −kT
∑

ci

ln

(
�(ci )

�′(ci )

)
− kT ln

(
Z (a)

Z ′(a)

)
,

where ci is the total number count of the occurrence of the i-th descriptor, e.g., the
total number of i-th type of pairwise contact. The summation involving Z (a) and
Z ′(a) is ignored during the evaluation of �H (ci ) by assuming Z (a) ≈ Z ′(a).

It is clear that both Z (a) and Z ′(a) do not depend on the particular struc-
tural conformation s. Therefore, the omission of the term of the partition functions
−kT ln( Z (a)

Z ′(a)
) will not affect the rank ordering of energy values of different con-

formations (i.e., decoys) for the same protein sequence. On the other hand, it is
also clear that both Z (a) and Z ′(a) depend on the specific sequence a of a protein.
Therefore, there is no sound theoretical basis to compare the stabilities between
different proteins using the same knowledge-based potential function, unless the
ratio of Z (a)/Z ′(a) for each individual sequence is known and is included during
the evaluation (Miyazawa and Jernigan, 1985; Samudrala and Moult, 1998; Sippl,
1990). Notably, DFIRE and other statistical energy functions have been successfully
used to predict binding affinities across different protein–protein/peptide complexes.
Nevertheless, the theoretical basis is not sound either, because the values of parti-
tion function Z (a) for different protein complexes can be drastically different. It
remains to be seen whether a similarly successful prediction of binding affinities can
be achieved just by using the number of native interface contacts at some specific
distance interval, i.e., the packing density along the native interface. This omission
is probably benign for the problem of predicting the free energy change of a protein
monomer or the binding free energy change of a protein–protein complex upon point
mutations, because the distribution of the ensemble of protein conformations may
not change significantly after one or several point mutations.

Evaluating potential function: The measure used for performance evaluation of
potential functions is important. For example, the z-score of native protein among
decoys is widely used as an important performance statistic. However, the z-score
strongly depends on the properties of the decoy set. Imagine we have access to the
true energy function. If a decoy set has a diverse distribution in true energy values,
the z-score of the native structure will not be very large. However, this by no means
suggests that a knowledge-based energy function that gives a larger z-score for native
protein is better than the true energy function. Alternative measures may provide
more accurate or useful performance evaluation. For example, the correlation r of
energy value and CRMSD may be helpful in protein structure prediction. Since a
researcher has no access to the native structure, he or she has to rely on the guidance
of an energy function to search for better structures with lower CRMSD to the
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unknown native structure. For this purpose, a potential function with a large r will
be very useful. Perhaps the performance of a potential function should be judged
not by a single statistic but comprehensively by a number of measures.

3.7.2 Relationship of Knowledge-Based Energy Functions
and Further Development

The Miyazawa–Jernigan contact potential is the first widely used knowledge-based
potential function. Because it is limited by the simple spatial description of a cutoff
distance, it cannot capture the finer spatial details. Several distance-dependent po-
tentials have been developed to overcome this limitation, and in general have better
performance (Lu and Skolnick, 2001; Samudrala and Moult, 1998; Zhou and Zhou,
2002). A major focus of works in this area is the development of models for the
reference state. For example, the use of the ideal gas as reference state in the poten-
tial function DFIRE significantly improves the performance in folding and docking
decoy discrimination (Zhang et al., 2004a).

Because protein surface, interior, and protein–protein interface are packed dif-
ferently, the propensity of the same pairwise interaction can be different depending
on whether the residues are solvent-exposed or are buried. The contact potential of
Simons et al. considers two types of environment, i.e., buried and nonburied envi-
ronments separately (Simons et al., 1999). The geometric potential function (Li and
Liang, 2005a) described in Section 3.3.5 incorporates both dependencies on distance
and fine-graded local packing, resulting in significant improvement in performance.
Table 3.2 shows that this potential can be successfully used in both protein structure
and docking prediction. Knowledge-based potential have also been developed to
account for the loss of backbone, side-chain, and translational entropies in folding
and binding (Amzel, 2000; Lee et al., 1994).

Another emphasis of recent development of potential functions is the ori-
entational dependency of pairwise interaction (Kortemme et al., 2003; Buchete
et al., 2003, 2004; Miyazawa and Jernigan, 2005). Kortemme et al. developed an
orientation-dependent hydrogen bonding potential, which improved prediction of
protein structure and specific protein–protein interactions (Kortemme et al., 2003).
Miyazawa and Jernigan developed a fully anisotropic distance-dependent potential,
with drastic improvements in decoy discrimination over the original Miyazawa–
Jernigan contact potential (Miyazawa and Jernigan, 2005).

Computational efficiency: Given current computing power, all potential functions
discussed above can be applied to large-scale discrimination of native or near-native
structures from decoys. For example, the geometric potential requires complex com-
putation of the Delaunay tetrahedrization and alpha shape of the molecule (see
Chapter 6 for details). Nevertheless, the time complexity is only O(N log N ), where
N is the number of residues for residual-level potentials or atoms for atom-level
potentials. For comparison, a naive implementation of contact computing without
the use of proper data structure such as a quad-tree or k-d tree is O(N 2).
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In general, atom-level potentials have better accuracy in recognizing native
structures than residue-level potentials, and are often preferred for the final refine-
ment of predicted structures, but it is computationally too expensive to be applicable
in every step of a folding or sampling computation.

Potential function for membrane protein: The potential functions we have discussed
in Section 3 are based on the structures of soluble proteins. Membrane proteins are
located in a very different physicochemical environment. They also have different
amino acid composition, and they fold differently. Potential functions developed for
soluble proteins are therefore not applicable to membrane proteins. For example,
Cys–Cys has the strongest pairing propensity because of the formation of disulfide
bond. However, Cys–Cys pairs rarely occur in membrane proteins. This and other
differences in pairwise contact propensity between membrane and soluble proteins
are discussed in Adamian and Liang (2001).

Nevertheless, the physical models underlying most potential functions devel-
oped for soluble proteins can be modified for membrane proteins (Adamian and
Liang, 2001, 2002; Adamian et al. , 2003; Park et al., 2004; Jackups and Liang,
2005). For example, Sale et al. used the MHIP potential developed in Adamian and
Liang (2001) to predict optimal bundling of TM helices. With the help of 27 addi-
tional sparse distance constraints from experiments reported in the literature, these
authors succeeded in predicting the structure of dark-adapted rhodopsin to within
3.2 Å of the crystal structure (Sale et al., 2004). It is likely that statistical potentials
can be similarly developed for protein–ligand and protein–nucleotide interactions
using the same principle.

3.7.3 Optimized Potential Function

Knowledge-based potential functions derived by optimization have a number of
characteristics that are distinct from statistical potentials. We discuss these in detail
below.

Training set for optimized potential function: Unlike statistical potential functions
where each native protein in the database contributes to the knowledge-based poten-
tial function, only a subset of native proteins contribute. In an optimized potential
function, in addition, a small fraction of decoys also contribute to the potential func-
tion. In the study of Hu et al. (2004), about 50% of native proteins and < 0.1% of
decoys from the original training data of 440 native proteins and 14 million sequence
decoys contribute to the potential function.

As illustrated in the second geometric views, the discrimination of native pro-
teins occurs at the boundary surface between the vector points and the origin. It does
not help if the majority of the training data are vector points away from the boundary
surface. This implies the need for optimized potentials to have appropriate train-
ing data. If no a priori information is known, it is likely many decoys (>millions)
will be needed to accurately define the discrimination boundary surface, because of



SVNY330-Xu-Vol-I November 2, 2006 10:35

114 Xiang Li and Jie Liang

the usually large dimension of the descriptors for proteins. However, this imposes
significant computational burden.

Various strategies have been developed to select only the most relevant vector
points. Usually, one may only include the most difficult decoys during training, such
as decoys with lower energy than native structures, decoys with lowest absolute en-
ergies, and decoys already contributing to the potential function in previous iteration
(Micheletti et al., 2001; Tobi et al., 2000; Hu et al., 2004). In addition, an iterative
training process is often necessary (Micheletti et al., 2001; Tobi et al., 2000; Hu
et al., 2004).

Reduced nonlinear potential function: The use of nonlinear terms for potential
function involves large data sets, because they are necessary a priori to define accu-
rately the discrimination surface. This demands the solution of a huge optimization
problem. Moreover, the representation of the boundary surface using a large basis
set requires expensive computing time for the evaluation of a new unseen contact
vector c. To overcome these difficulties, the nonlinear potential function needs to be
further simplified.

One simple approach is to use alternative optimal criterion, for example,
by minimizing the distance expressed in 1-norm instead of the standard 2-norm
Euclidean distance. The resulting potential function will automatically have reduced
terms. Another promising approach is to use rectangle kernels (Hu, Dai, and Liang,
manuscript).

Potential function by optimal regression: Currently, most optimized potential func-
tions are derived based on decoy discrimination, which is a form of binary classifica-
tion. Here we suggest a conceptual improvement that can significantly improve the
development of optimized potential functions. If we can measure the thermodynamic
stabilities of all major representative proteins under identical experimental condi-
tions (e.g., temperature, pH, salt concentration, and osmolarity), we can attempt to
develop potential functions with the objective of minimizing the regression errors
of fitted energy values and measured energy values. The resulting energy surface
will then provide quantitative information about protein stabilities. However, the
success of this strategy will depend on coordinated experimental efforts in protein
thermodynamic measurements. The scale of such efforts may need to be similar to
that of genome sequencing projects and structural genomics projects.

3.7.4 Data Dependency of Knowledge-Based Potentials

There are many directions to improve knowledge-based potential functions. Often
it is desirable to include additional descriptors in the energy functions to more
accurately account for solvation, hydrogen bonding, backbone conformation (e.g.,
� and � angles), and side chain entropies. Furthermore, potential functions with
different descriptors and details may be needed for different tasks [e.g., backbone
prediction versus structure refinement, (Rohl et al., 2004)].
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An important issue in both statistical potentials and optimized potentials is
their dependency on the amount of available training data and possible bias in such
data. For example, whether knowledge-based potentials derived from a bias data set
are applicable to a different class of proteins is the topic of several studies (Zhang
et al., 2004b; Khatun et al., 2004). In addition, when the amount of data is limited,
overfitting is a real problem if too many descriptors are introduced in either of the
two types of potential functions. For statistical potentials, hierarchical hypothesis
testing should help to decide whether additional terms are warranted. For optimized
potentials, cross-validation will help to uncover possible overfitting (Hu et al., 2004).

3.8 Summary

In this chapter, we discussed the general framework of developing knowledge-based
potential functions in terms of molecular descriptors, functional form, and parameter
calculations. We also discussed the underlying thermodynamic hypothesis of protein
folding. With the assumption that frequently observed protein features in a database
of structures correspond to low energy state, frequency of observed interactions can
be converted to energy terms. We then described in detail the models behind the
Miyazawa–Jernigan contact potential, distance-dependent potentials, and geometric
potentials. We also discussed how to weight sample structures of varying degree of
sequence similarity in the structural database. In the section on optimization method,
we described general geometric models for the problem of obtaining optimized
knowledge-based potential functions, as well as methods for developing optimized
linear and nonlinear potential functions. This was followed by a brief discussion of
several applications of the knowledge-based potential functions. Finally, we pointed
out general limitations and possible improvements for the statistical and optimized
potential functions.

3.9 Further Reading

Anfinsen’s thermodynamic hypothesis can be found in Anfinsen et al. (1961) and
Anfinsen (1973). More technical details of the Miyazawa–Jernigan contact poten-
tial are described in Miyazawa and Jernigan (1985, 1996). The distance-dependent
potential function was first proposed by Sippl (1990), with further development de-
scribed in Lu and Skolnick (2001); Samudrala and Moult (1998). The development
of geometric potentials can be found in Zheng et al. (1997), Carter et al. (2001),
Li et al. (2003), Krishnamoorthy and Tropsha (2003), and McConkey et al. (2003).
The gas-phase approximation of the reference state is discussed in Zhou and
Zhou (2002). Thomas and Dill offered insightful comments about the deficiency
of knowledge-based statistical potential functions (Thomas and Dill, 1996b). The
development of optimized linear potential functions can be found in Vendruscolo
et al. (2000), Micheletti et al. (2001) and Tobi et al. (2000). The geometric view for
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designing the optimized potential function and the nonlinear potential function are
based on the results in Hu et al. (2004).
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4 Computational Methods for Domain Partitioning
of Protein Structures

Stella Veretnik and Ilya Shindyalov

4.1 Introduction

Analysis of protein structures typically begins with decomposition of structure into
more basic units, called “structural domains”. The underlying goal is to reduce a
complex protein structure to a set of simpler yet structurally meaningful units, each
of which can be analyzed independently. Structural semi-independence of domains
is their hallmark: domains often have compact structure and can fold or function in-
dependently. Domains can undergo so-called “domain shuffling” when they reappear
in different combinations in different proteins thus implementing different biological
functions (Doolittle, 1995). Proteins can then be conceived as being built of such
basic blocks: some, especially small proteins, consist usually of just one domain,
while other proteins possess a more complex architecture containing multiple do-
mains. Therefore, the methods for partitioning a structure into domains are of critical
importance: their outcome defines the set of basic units upon which structural clas-
sifications are built and evolutionary analysis is performed. This is especially true
nowadays in the era of structural genomics. Today there are many methods that de-
compose the structure into domains: some of them are manual (i.e., based on human
judgment), others are semiautomatic, and still others are completely automatic (based
on algorithms implemented as software). Overall there is a high level of consistency
and robustness in the process of partitioning a structure into domains (for ∼80% of
proteins); at least for structures where domain location is obvious. The picture is less
bright when we consider proteins with more complex architectures—neither human
experts nor computational methods can reach consistent partitioning in many such
cases. This is a rather accurate reflection of biological phenomena in general since
domains are formed by different mechanisms, hence it is nearly impossible to come
up with a set of well-defined rules that captures all of the observed cases.

This chapter focuses on computational methods for domain partitioning: it
begins with an analysis of basic premises about structural domains, reviews currently
available methods, takes a detailed look into some partitioning algorithms, and finally
discusses challenges and potential new approaches for the next generation of domain
partitioning algorithms.

Note: terms “partitioning,” “decomposition,” “cutting,” and “assignment” are
used interchangeably here with no special meaning associated with a particular term.

125
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4.2 Definitions of Structural Domains

There are many definitions of protein domains; while some are based on sequence
information only (they are rather cursory), most others (see below) consider structure
information in addition to sequence information. Evolutionary information, i.e.,
recurrence of domains in different proteins, is also employed (Murzin et al., 1995).
The most common definition of domains is often referred to as structural domains.
The analysis presented here is concerned with structural domains; however, often
they will be referred to simply as “domains” throughout this chapter.

Structural domains are units of the structure that (1) are compact, (2) are stable,
(3) contain a hydrophobic core, (4) can fold independently of the rest of the pro-
tein, (5) occur in combinations with different domains, and (6) perform a specific
function. Right away we see that there are structural/thermodynamics (def. 1–4),
evolutionary (def. 5), and functional (def. 6) aspects to structural domains. Methods
for partitioning protein structure into domains use these definitions as their guides
(for more detailed discussion see Veretnik et al., 2004). There are several manual
methods for domain partitioning (SCOP, AUTHORS) (Islam et al., 1995; Murzin et
al., 1995), semiautomatic method (CATH) (Orengo et al., 1997), and a score of auto-
matic methods (Table 4.1). Human expertise is nearly always superior to algorithms
in the area of domain decompositions. However, computational methods are critical
in the current era of structural genomics, when the sheer number of solved struc-
tures overwhelms human experts. Moreover, for the theoretical/computational study
of proteins it is essential to have a consistent domain partitioning, which only can
be achieved with automatic methods. How do computational methods approach this
problem and how well do they capture the principles of structural domains? Before
addressing this question, let us point out that structure partitioning into domains is
not always unequivocally agreed upon even by human experts. The reason for it lies
in the underlying complexity of structural domains—they do not always match the
above set of definitions: some domains do recur in different combinations, but they
are small and are lacking a hydrophobic core, other domains that recur as a single
unit are large and can clearly be decomposed into separate structural units. There
are many cases in which domains are not globular, but they constitute parts of the
compact protein–protein (or nucleic acid–protein) complex; finally there are many
cases where the function is carried jointly by two or more domains. In all such cases
domains will be defined differently depending on which aspect of the definition—
structural, evolutionary, or functional—becomes the most important for a particular
research. Among three existing manual or semiautomatic methods, SCOP focuses
on evolutionary recurrent units of structures and CATH stresses structural integrity
of the units, while the AUTHORS method considers the function as well as the con-
tribution of the structural unit to a protein complex. The corresponding resources,
based on these three methods, disagree in over 20% of the cases; the rate of dis-
agreement is particularly high in proteins with complex architectures, indicating
that multiple solutions may exist in such cases. This inherent ambiguity of structural
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Table 4.1 Summary of domain decomposition methods.

Year Type of domains Approaches/models
Method Generation Strategy generated used

Rossman and Liljas
(Rossman and
Liljas, 1974)

1974 first
generation

top-down contiguous Distance plots of the
structure against itself
using C� distances,
search for strong
interactions close to
diagonal

Crippen (Crippen,
1978)

1978 first
generation

bottom-up contiguous and
noncontiguous

Clustering of small
structural units

Rose (Rose, 1979) 1979 first
generation

top-down contiguous Cutting the projection of 3D
structure onto 2D domain
disclosing plain

Wodak and Janin
(Wodak and
Janin, 1981)

1981 first
generation

top-down contiguous Finding minimum in the
interface between two
domains

PUU (Holm and
Sander, 1994)

1994 second
generation

top-down contiguous and
noncontiguous

Rendering of the contact
matrix, constructed using
rigid body oscillation

DETECTIVE
(Swindells,
1995a)

1995 second
generation

bottom-up Contiguous and
noncontiguous

Building of the hydrophobic
core

Islam et al. (Islam et
al., 1995)

1995 second
generation

top-down contiguous and
noncontiguous

Finding minima in the
interdomain contact
density

DOMAK (Siddiqui
and Barton, 1995)

1995 second
generation

top-down contiguous and
noncontiguous

Splitting structure by
maximizing
intradomain/inter-domain
contacts

Sowdhamini and
Blundell
(Sowdhamini and
Blundell, 1995)

1995 second
generation

bottom-up contiguous and
noncontiguous

Clustering of secondary
structures

Taylor (Taylor,
1999)

1999 second
generation

bottom-up contiguous and
noncontiguous

Clustering of residues in
spatial proximity using
Ising model

STRUDL (Wernisch
et al., 1999)

1999 second
generation

top-down contiguous and
noncontiguous

Finding minimum
interdomain contacts
using Kernighan–Lin
graph heuristics

DomainParser (Xu
et al., 2000)

2000 second
generation

top-down contiguous and
noncontiguous

Finds minimum
interdomain contacts
using graph theoretical
approach with maximum
flow/minimum cut using
Ford-Fulkerson algorithm

(Xuan et al., 2000) 2000 second
generation

bottom-up contiguous and
noncontiguous

Assemble domains from
rudimentary fragments
using fuzzy clustering

(cont.)
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Table 4.1 (Continued )

Year Type of domains Approaches/models
Method Generation Strategy generated used

PDP .(Alexandrov
and Shindyalov,
2003)

2003 second
generation

top-down contiguous and
noncontiguous

Finding partitioning with
minimal number of
contacts between
domains

HVdWD (Hierarchy
of Van der Waals
Domains)
(Berezovsky,
2003)

2003 second
generation

bottom-up contiguous and
noncontiguous

Clustering of short
segments. Both initial
segments and the
clustering threshold are
based primarily on van
der Waals interactions
among atoms

(Kundu et al., 2004) 2004 second
generation

top-down contiguous and
noncontiguous

Decomposition of the
structure using Gaussian
Network Model; assumes
semi-independent motion
of domains

domain definition is one of the difficult issues for computational methods, as we will
see below.

4.3 Computational Methods

As a general rule computational methods focus on structural integrity of the result-
ing domains—this is intuitively clear and practically achievable, while evolutionary
and functional information is much trickier to capture, support, and use. Historically
the most common principle of structural partitioning is based on the interpreta-
tion of the so-called “contact density,” i.e., on the simple fact that there are more
residue-to-residue contacts within a structural unit than between structural units.
The implementations of this principle can be very different in different methods,
but the underlying idea always comes back to finding regions with a high density
of interactions. The extensive atomic interactions within structural domain were
first pointed out by Wetlaufer (1973) and implemented in the very first domain
partitioning algorithm by Rossman and Liljas (1974), who use C�–C� distance
maps to identify structural domains. New computational methods have been ap-
pearing ever since; overall approximately 20 different methods had been published
in literature. Methodologically they can be separated into first generation (methods
published from 1974 to 1993) and second-generation algorithms: from 1994 until
now (Wernisch and Wodak, 2003). There were no attempts of formal training and
validation of the early algorithms: parameters of the algorithms were tuned using
all existing data (meaning overfitting algorithms to a particular data set); no vali-
dation on an independent set of data was performed. The lack of solved structures
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at that time might be the chief reason. The second-generation methods approach
the problem differently. First, algorithms were trained to optimize parameters, and
then in a separate step their performance was evaluated. While most of the first-
generation methods partition structure only into contiguous domains (consisting of
a single polypeptide fragment with single starting and ending points in a protein
chain), second-generation methods universally allow for noncontiguous domains
(consisting of several fragments separated by other residues). Domain partitioning
can be divided into two fundamental approaches: top-down (starting from the entire
structure and proceeding to partition it iteratively into smaller units) and bottom-
up (defining very small structural units and assembling them into domains). Some
methods use both approaches within their algorithm: first decomposition and then
assembly or vice versa. Here we classify each method based on its chief or overall
approach to domain identification. Generally, the process of domain decomposition
is performed in two steps: (1) tentative domains are constructed (either by splitting
the structure into domains or building domains from smaller units) and (2) tentatively
defined domains are evaluated in a postprocessing step. Overall an amazing array of
approaches has been put forward over the years to solve the domain decomposition
problem. In the rest of this section, 16 different domain partitioning methods—from
the earliest ones to the latest ones—are discussed in terms of their general approach
and methodology used.

4.3.1 Rossman and Liljas (Rossman and Liljas, 1974)

Method: C�–C� distance plots of the structure against itself are generated and
contours of interactions are examined. Domains are recognized as a series of shorter
interactions closer to the diagonal. Similar pattern of contours indicates similar
domain structure.

Results: Recurrence of different combinations of domains in various proteins
is pointed out.

4.3.2 Crippen (Crippen, 1978)

Method: Method is based on the assumption that the stable conformation of a protein
is largely due to the energetically favorable interactions of the residues which are
frequently distant in sequence, i.e., long-range interactions. In the first step, protein
chain is divided into segments—short stretches of polypeptide chain whose residues
have no long-range interactions with any other residues. Long-range interactions
between two residues are defined as follows: sequential distance is at least seven
residues, distance between C�–C� atoms is <9 Å. The segments (which correspond
frequently to isolated secondary structures or coiled regions) are then hierarchically
clustered, using contact density criteria (contact density is normalized by the size of
the individual segments). The process is repeated iteratively first joining segments
in the most intimate contact, while last clusters have few contacts relative to the
number of residues involved.
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Results: The method allows one to view the crystal structure of a protein as a
packing tree, with individual secondary structures at the bottom, structural domains
close to the top, and the subdomain structure in order of increasing complexity in the
intermediate levels of the tree. The author hypothesizes that the steps of the folding
mechanism can possibly be discerned from such packing tree. Folding intermediates
correspond to internal nodes of the packing tree; the order of their appearance can
be predicted by following the packing tree from the bottom level upwards.

4.3.3 Rose (Rose, 1979)

Method: The protein is treated as a rigid body and a set of Cartesian axes are
drawn through the center of its mass: in classical mechanics these are referred to as
“principal axes” and they correspond to eigenvectors of inertia tensors. The three-
dimensional structure of a protein is then reduced to two-dimensional space by
projecting C� atoms of each residue onto the so-called domain “disclosing plane.”
The plane is determined by two of the three principal axes: those with the larger
moments of inertia. The C� atoms are connected in sequential fashion. An arbitrary
line is drawn through the plane to divide protein into at least two pieces. The best
line is searched according to two criteria: first, the two parts of a protein must be
contiguous fragments and separated as much as possible by the line. In the ideal
situation the line will completely separate the two parts; deviation from this ideal
case is measured by the length by which one part of the protein extends into the
other (the length is defined as the sum of distances between C� atoms on their
projection onto the disclosing plane). Second, the length of two resulting domains is
compared; in the ideal case the domains will be of identical length; deviation from
this is measured with a nonlinear function. The entire process is then repeatedly
applied to each of the two domains until termination criteria are met: the projection
of the chain on the disclosing plane does not close upon itself, which indicates either
very short domains or a lack of compactness within a domain.

Results: The author points out that the hierarchy of domains resulting from such
a process, when placed in ascending order, is in accordance with the local process of
the automata theory, in which current state can be derived from the previous state. The
hierarchical domain structure might then reflect the folding process of the protein,
which proceeds by hierarchical condensation. During hierarchical condensation the
nearby hydrophobic elements coalesce to form folding primitives which in turn
coalesce to form larger module until the entire hydrophobic core is complete.

4.3.4 Wodak and Janin (Wodak and Janin, 1981)

Method: The method evaluates size and properties of domain interfaces: a domain
interface is defined as a surface area buried in contacts between two groups of
residues. Minima in the interface area are found for the entire protein structure
and then recursively for each of the partitioned units. The process stops when the
significance of interface minima drops below a predefined threshold.
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4.3.5 Holm and Sander (Holm and Sander, 1994)

Method: The method identifies folding units by finding groups of residues that have
longest intergroup oscillation time. Oscillation time � is proportional to the center
of masses and inversely proportional to the interface strength, which is determined
by nonbonded atomic interactions at the interface between two units (two atoms
are interacting if their distance is ≤4.0 Å). Folding units are found by first creating
a contact matrix and then the rendering of the contact matrix in such a way that
strongly interacting residues are grouped together (using a reciprocal averaging)
and rows/columns 1 through k belong to one unit while rows and columns of k + 1
through L(length of the protein) belong to the other unit. Bisection of the ordered
contact matrix can continue recursively for each of the resulting folding units until
some limit on unit size is reached (10–19 residues). At this point each autonomous
folding unit becomes a domain. An additional hierarchical five-level filtering is ap-
plied during the process (once the higher level filter is met, the partition is accepted):
(1) Domains should have 40 or more residues. Thus, units smaller than 80 residues
are never cut. (2) Highly flexible units are always cut. (3) �-Sheets are never cut.
(4) A cut is acceptable if both resulting units have a high globularity/compactness
value. (5) A cut that produces a nonglobular domain with less than 40 residues is
accepted on condition that the larger domain in the cut will be split into two domains
upon recursive application of the filters.

4.3.6 Swindells (Swindells, 1995b)

Method: Hydrophobic cores of the protein structure are defined using a set of rules
based on solvent exposure, minimal size of a core, fraction of the spatially adja-
cent residues, etc. The hydrophobic cores become the centers of the domains, which
grow by iteratively including residues spatially proximal to the core until most of
the residues are assigned. Isolated residues that generate contradictory results are re-
moved from the assignment. In the final step the unassigned residues are assigned by
extending domains to both ends of the structure and/or to the ends of the appropriate
secondary structure.

4.3.7 Islam, Luo, and Sternberg (Islam et al., 1995)

Method: The protein chain is cut iteratively into domains by finding the minima
in the interdomain contact density. The cutting is stopped when density of contacts
reaches an empirically determined threshold F . The series of contiguous segments is
evaluated in a postprocessing step: every two noncontiguous segments are tentatively
combined, and if their contact density is over the threshold F , the segments are
clustered together. This process is repeated iteratively until no more clustering of the
segments occurs. If any of the remaining segments are less than 32 residues long,
they are merged with most appropriate larger segment. At this point each segment
becomes a domain.
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4.3.8 Siddiqui and Barton (Siddiqui and Barton, 1995)

Method: Each position in the protein chain is considered as potential splitting point
of the chain into two domains. The intraresidue contacts within each of two potential
domains (called “split value”) are calculated at each step; the chain is split at the
position that has the highest split value. The process is continued iteratively on each of
the resulting domains until one of the stopping criteria—minimum size of the domain
or minimal split value (MSV)—is met. Two-segmented domains (in which one of the
domains is surrounded by a noncontiguous second domain or both noncontiguous
domains are arranged in an interdigitated manner) are derived in a similar process,
but instead of one potential split position within a chain, two positions (A1 B A2

domain arrangement) or four positions (A1 B1 A2 B2 domain arrangement) within a
chain are considered simultaneously for a potential split. The maximum split value
is found by varying all two (or four) potential split positions. During postprocessing
steps additional screening is performed to weed out unrealistic domains with: (a)
a high number of segments in single-domain proteins, (b) short segments in multi-
segmented domains, (c) small domains inserted into large domains.

4.3.9 Sowdhamini and Blundell (Sowdhamini and Blundell, 1995)

Method: The method clusters secondary structures into domains using a phylo-
genetic inference approach. The constructed dendrogram is based on a proximity
index, which measures the extent of interaction between a pair of secondary struc-
tures. Proximity index is defined as an average of all possible distances between
the �-carbon atoms of one secondary structure to the �-carbon atoms of the other.
Domains are then defined by choosing the clusters in the dendrogram at the level
in which disjoint factor >1. Disjoint factor measures the density of interactions be-
tween secondary structures within the domain relative to all interactions of secondary
structures in the protein.

4.3.10 Taylor (Taylor, 1999)

Method: The method uses principles of the Ising model from statistical mechan-
ics. Residues are assigned numerical labels; the label of each residue is iteratively
increased or decreased based on the average value of labels in its neighborhood.
The process continues until the label values of all the residues stabilize (or oscil-
late). Residues with the same label value constitute a domain. The neighborhood of
residues is defined by the radius R: if the distance between �-carbons of residues i
and j is less than R, then the residues are in each other’s neighborhoods. Residues
in small domains (less than 40 residues) are reassigned to the neighboring domains.

4.3.11 Wernisch, Hunting, and Wodak (Wernisch et al., 1999)

Method: The STRUDL (STRUctural Domain Limits) method uses Kernighan–Lin
graph heuristics to iteratively partition all residues of a structure into two sets with
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minimum contacts between them, repeating the process until either defined termi-
nation criteria are met or no cut can be made any further based on compactness
criteria. The search for substructures with minimum contact area begins by system-
atically subtracting residues (one at a time) from one subset (V ) and moving them
to its complement U (V + U contain all residues in the structure) in such a way that
contact between U and V increases minimally. After each move described above, a
process is initiated in which all possible switches among residues in the two sets are
tested. The arrangement which produces the lowest number of contacts between two
sets is selected. The process is repeated by moving subsequent residues from V to U
until N /2 residues are moved. From all partitions of residues between U and V the
one with lowest contact number is chosen as the final prediction and the resulting
domains go through a postprocessing step in which the validity of domains (based
on various heuristics for compactness) is assessed. The entire process repeats for
each domain.

The contact area between two sets of residues in U and V is based on the sum
of contact areas of all residues in U and V , where the contact area between any
two residues is based on the pairwise sum of all of its interacting atoms. Interaction
between atoms is determined using Voronoi cell, which in turn is based on the van
der Waals radii of the atoms.

4.3.12 Guo, Xu, and Xu (Guo et al., 2003; Xu et al., 2000)

Method: The DomainParser method uses a graph-theoretical approach to find the
best partitioning of a given structure into two parts. A protein structure is modeled
as a graph in which nodes represent residues and edges connecting nodes repre-
sent interactions between residues. The weight of connection is proportional to the
strength of interaction between two residues. A minimum cut splitting the network
into two is found by determining the maximum flow through the network, using the
Ford–Fulkerson algorithm (a more detailed description is given below in Section
4.4).

The process is repeated iteratively for each of the resulting domains until stop-
ping criteria are met. Multiple minima partitions are performed at each step; the
best partition is determined during a post-processing step by checking several basic
properties of the resulting domains. The properties include hydrophobic moment,
the number of noncontiguous fragments, domain size, compactness, and relative
motion of domains. The “acceptable” range for each property as well as a set of
stopping criteria is determined in advance using a neural network trained on the set
of known structures.

4.3.13 Xuan, Ling, and Chen (Xuan et al., 2000)

Method: The method (no name given) uses fuzzy clustering analysis for domain
recognition. In the first step the chain is partitioned into elementary fragments which
consist of residues adjacent in sequence and in similar “contact environment.” The
contact environment of a residue is defined in terms of all other residues which
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interact with that residue. In the next step the initial fragments are clustered with
other fragments using fuzzy logic and lower threshold on the criterion of similarity of
contact environment. At this point the rudimentary domains are formed. During the
last step the final domains are assembled from the rudimentary domains using prin-
ciples of minimum domain size, minimum fragment size, and integrity of secondary
structure joins.

4.3.14 Alexandrov and Shindyalov (Alexandrov and
Shindyalov, 2003)

Method: The PDP method partitions a polypeptide chain into two parts by introduc-
ing either a single cut through the chain which results in two contiguous domains or
a double cut, which will produce a contiguous and a noncontiguous domain (the two
cuts must be at least 35 residues apart). The optimal position of the cut(s) is chosen
by minimizing the number of contacts between two resulting domains. Calculation of
the number of contacts takes into account the sizes of resulting domains. The thresh-
old for domain contacts is set to be one-half of the expected number of contacts. The
expected number of contacts between domains is considered to be proportional to
their surface area. The calculation of the surface of the domain assumes the shapes of
the resulting domains to be close to spherical; thus, it is proportional to n2/3, where n
is the number of residues in a domain. The process of division is repeated iteratively
for each of the resulting domains. A post-processing step involves rechecking each
of the contacts among the resulting domains: filtering out very small domains (less
than 30 residues) and combining domains together if they exhibit a high number of
contacts.

4.3.15 Berezovsky (Berezovsky, 2003)

Method: Initially a protein chain is partitioned into segments based on the threshold
(referred to as “potential barriers”) between local maximum and minimum of van der
Waals energies calculated using 6-12 Lennard-Jones potential. Next, the pairwise
interactions between isolated segments are evaluated; segments are either joined
together or granted the status of a domain. A segment becomes a domain if its van
der Waals energy internal to the segment is at least 3 times higher than the sum of its
interaction energies with all other segments (bottom up step). The chain segmentation
step can be performed at different thresholds of “potential barrier”: lowering the
potential barrier increases the number of segments and decreases their size.

Results: Multiple solutions to the protein partitioning can be produced by
applying a series of thresholds—a unique approach so far among existing methods.
Multiplicity of solutions reflects observations that for some proteins there are several
possible domain decompositions—all of which appear to be biologically meaningful.
The authors also point out that the resulting domains are made of closed loops—
contiguous subtrajectories of the folded chain with a short C�–C� distance between
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their ends. Such closed loops are proposed to be the elementary units of structural
domains.

4.3.16 Kundu, Sorensen, and Phillips (Kundu et al., 2004)

Method: This approach to decomposition of the structure into domains assumes
a semi-independent motion and local compactness of the domains. A concept of
Gaussian Network Model (GNM) is employed to find structurally compact clusters
which are connected internally, but motionally decoupled from the other parts of
the structural units. The method employs connected graphs in which each residue
is represented by a node and connection between any two residues is determined by
C� distances of the residues. The structure is recursively partitioned into domains
by constructing Laplacian matrix, performing a single value decomposition to find
the lowest eigenvalue which corresponds to the slowest motion within the structure.
After each decomposition step, potential domains are evaluated using a layer of
filters which include minimum size of the domain, minimum length of discontinuous
fragments comprising the domain, and integrity of �-sheets.

4.4 In-depth Look into Algorithmic Domain
Decomposition

To gain a better insight into how domain decomposition methods work, two methods
are discussed here in detail—one is from the first generation of algorithms and the
other is a recent method.

Crippen’s method (Crippen, 1978) is one of the earliest methods published. It
uses a bottom-up approach of clustering secondary structures and is actually unique
among first-generation methods as it allows construction of noncontiguous domains.
Twenty-five structures were analyzed. The same 25 proteins are employed for tuning
several parameters used in the algorithm (described below). During the first step,
protein structure is decomposed into so-called “basic units”: each unit consists of
consecutive residues that do not have long-range interactions with other residues in
the unit. Long-range interaction between two residues is defined with the following
condition: distance <9Å between C� atoms of two residues that are at least seven
residues apart in sequence. The definition of long-range interactions comes from
fitting secondary structure assignments of myoglobin to the segments generated; it
matches the definition of secondary structures by Levitt and Greer (1977) rather well.
The assigned basic units are permitted to overlap during the assignment process; the
final boundaries between the segments are drawn in the middle of units overlap.
Once an entire structure is broken down into basic units, the process of clustering
begins: units with the highest contact density are paired first to form a new larger
unit. The contact density is determined by calculating all pairwise contacts between
all possible pairs of residues in two units; this value is then normalized by the
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Fig. 4.1 Domain decomposition method by Crippen. (A) Binary tree representation of hierar-
chical clustering of basic and intermediate unit for concanavalin A. (B) Histogram of number of
occurrences N of clusters formed with contact density � (data for 25 proteins). (C) Radius of
gyration as a function of number of residues for 25 whole proteins. (D) Radius of gyration as a
function of number of residues for each cluster for 25 proteins. Solid curves is the same as in (C),
dotted curve is 1.2 times the solid curve.

size of the two units. The newly constructed cluster becomes a new unit and the
process of pairing continues until only one single unit remains. Such clustering can
be formalized using a binary tree, with basic units as leaves, intermediate nodes as
clusters formed by two units at the level immediately below (Fig. 4.1A).

The root of the tree is the cluster that includes all of the residues. Intermediate
clusters can be formed by joining groups of residues that are contiguous in sequence
or alternatively by bringing two noncontiguous stretches together into a single cluster.
A break fraction for a tree is defined as follows: zero indicates that all clusters in
the tree consist of adjacent segments, while a break fraction of one indicates that
all clusters in the tree are built from sequentially nonadjacent segments. In the
real proteins break fraction is somewhere between 0 and 1, in myoglobin it is 0.262.
Theoretically domains can be assigned at any level of clustering; the decision whether
a given cluster in a tree constitutes a domain is defined by two parameters: contact
density � and radius of gyration k. Both parameters are determined by inspecting
properties of the 25 protein structures. From a histogram of contact density/residue2
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constructed for all 25 proteins, contact density between first and last assembled
clusters varies significantly; however, the range of contact density is similar for all
proteins. The threshold for contact density is chosen to be � < 0.1 contact/residue2,
which includes top one-third of strongest interacting clusters of the entire 300 clusters
of 25 proteins (Fig. 4.1B). Similarly, the radius of gyration was calculated for each
of the 25 complete proteins as well as for 300 clusters produced and plotted against
the number of residues in the unit. Two curves—one formed by radius of gyration
of complete proteins (Fig. 4.1C) and the other (produced by multiplying values of
the first curve by 1.2)—bracket the range of gyration radii that are acceptable for
domains (Fig. 4.1D). The domains are delineated by starting at the level of small
clusters (close to the bottom level of the tree) and moving upwards. The status of
each cluster is checked using parameters �gnd k: domain status is achieved if both
parameters are within an acceptable range. The resulting domain clusters correspond
well to the commonly accepted concept of spatially compact structures.

The DomainParser method (Guo et al., 2003; Xu et al., 2000) is among the
most recent methods published; it uses a top-down graph-theoretical approach for
domain decomposition and an extensive postprocessing step. During the training
stage of the algorithm multiple parameters are tuned; the method is then validated
on a SCOP data set. Domain decomposition is addressed by modeling the protein
structure as a network consisting of nodes (residues) and edges (connections between
residues). A connection between any two residues is drawn when they are adjacent in
the sequence or alternatively are in physical proximity in the structure. The strength
of the interaction between two residues is expressed as the capacity of the edge
to connect the two nodes. This edge capacity is a function of (a) the number of
atom–atom contacts between residues, (b) the number of backbone contacts between
residues, (c) the existence of backbone interactions across a �-sheet, and (d) whether
both residues belong to the same �-strand. The values for all parameters involved in
edge capacity are optimized during the training stage of the algorithm.

The partitioning of the network into two parts is then equivalent to decomposing
a given structure into two domains. Ideally, partitioning should be done using the
edges with least capacity, which will result in partitioning structure along least dense
interactions among residues. The problem of partitioning the network is solved
using maximum flow/minimum cut theorem by Ford-Fulkerson and implemented by
Edmond and Karp. The gist of the approach is as follows: artificial source and sink
node are added to the network (Fig. 4.2A). A “bottleneck”—a set of critical edges
in the network flow—is found by gradually increasing the flow of all edges in a
network. Removing the set of critical edges from the network prevents flow from the
source to the sink. At this point nodes that are connected to the source represent one
interconnected part of the network, while nodes connected to the sink are the second
interconnected part of the network. Since the node capacity is increased gradually it
is expected that nodes with least capacity (least residue–residue contacts) will be the
ones contributing to the bottleneck. The process of subdividing the network into two
parts is repeated multiple times by connecting the source and sink to a different part of
the network; a set of minimal cuts is collected and evaluated during a postprocessing
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Fig. 4.2 Domain decomposition using DomainParser algorithm. (A) Schematic representation
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(G) distribution of domain sizes; (H) neural network architecture for evaluation of decomposed
individual domains.

step. The entire procedure is then repeated in each of the resulting domains, until
either domain’s size drops below 80 residues or the partitioning produces domains
that do not meet necessary conditions of domain definitions.

The stopping criteria are multifaceted and defined by (1) domain size: no less
than 35 residues, (2) �-sheets kept intact, (3) compactness of domain above threshold
gm , (4) size of the domain–domain interface below threshold fm , (5) ratio of number
of residues and number of segments in domain is above threshold ls . The values for
gm, fm, ls , and minimum domain size are determined during the training stage of
the algorithm.
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A suite of additional parameters exists; these are involved in a post-processing
step of the algorithm, in which an assessment is made whether the substructure
meets the additional criteria of a structural domain. These parameters are (1) hy-
drophobic moment (Fig. 4.2B), (2) the number of segments in the partitioned domain
(Fig. 4.2F), (3) compactness (Fig. 4.2C), (4) the size of domain interface relative to
domain’s volume (Fig. 4.2D), (5) relative motion between compact domains (Fig.
4.2E). Distribution for each of the parameters for true versus false domains is col-
lected during the training stage using 633 correctly partitioned domains and 928
incorrectly partitioned domains. Multiple neural networks are then investigated; the
best one has 9 input nodes, 6 nodes in the hidden layer, and 1 output node (Fig.
4.2F). Performance of the DomainParser method is then evaluated using set of 1317
protein chains in which domains are defined by SCOP.

4.5 Evaluating Automatic Methods with Manual
Consensus Benchmark

Why are there so many different automatic methods for domain decomposition? A
chief reason is the complexity of the problem itself: it is nearly impossible to capture
succinctly the principles of domain decomposition and apply them successfully to
the entire universe of protein structures. Thus, every new method strives to reach a
bit further beyond existing methods in its ability to decompose complex structures.
With so many different methods available, it is essential to be able to compare the
performance of the algorithms and to determine what fraction of known structures
any given method predicts correctly. It is equally important to know what are the
strengths and weaknesses of each algorithm, in particular what types of structures
are difficult for a given method. Evaluation of automatic methods is an essential
part of the algorithm development process; in fact, the performance of each method
is typically reported along with the algorithm. However, each method uses its own
data set for evaluation of the algorithm, thus it is nearly impossible to compare the
performance of the algorithms to each other. An exception to this is a set of 55 chains
(Jones et al., 1998) which is frequently used to test the performance. However, this
is a very small data set, thus it is likely that its resolution will be insufficient to
detect differences between methods. This situation was partially rectified recently,
with construction of a large comprehensive benchmark data set developed specif-
ically for evaluation of domain decomposition algorithms (Veretnik et al., 2004).
The data set is assembled using a principle of consensus approach among expert
methods: it includes proteins for which three expert methods (CATH, SCOP, and
AUTHORS) produce similar domain decomposition. There are a total of 374 pro-
teins in this benchmark, which was used to evaluate three recent automatic methods:
PUU, DomainParser, and PDP (Fig. 4.3A).

The evaluation includes information about the success rate of each algorithm,
analysis of errors in terms of predicting fewer domains (undercut) or too many
domains (overcut). The analysis further looks into the tendencies of the methods
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Fig. 4.3 Benchmarking of automatic domain assignment methods. (A) Performance of Domain-
Parser, PDP, and PUU on consensus-based benchmark of 374 structures. (B) Evaluating tendency
to partion domains into noncontiguous fragments.
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Fig. 4.4 Examples of incorrectly assigned structures by DomainParser, PDP, and PUU.

to fragment domains into noncontiguous stretches of polypeptide chain (Fig. 4.3B).
A very important part of this evaluation process is the systematic analysis of what
types of structures are difficult for each automatic method and what types of errors
are typical for each algorithm. This analysis reveals that the PUU method tends to
produce very compact domains which consist of many discontinuous fragments.
Two methods, PUU and PDP, tend to overcut protein structures by continuing to
partition actual domains; PUU exhibits more frequent and severe cases of over-
cuts (Fig. 4.4). The DomainParser method, on the other hand, tends to undercut
structures—it produces fewer domains than human experts. This appears to be re-
lated to splitting structures with �-sheets close to the domain interface—a tricky
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Fig. 4.5 Distribution of single- and multi-domain proteins in PDB. Domains are defined using
CATH method. The distribution by domain number is given separately for archaea, bacteria, and
eukaryotes as well as to all structures in PDB.

issue (there are several parameters dealing with �-structure in the DomainParser
algorithm). A similar problem also exists for the PUU method, which frequently
fails to cut �-structures, even though it tends to cut structures too much in other
cases (PUU too has a parameter dealing with �-structure partitioning).

Another serious issue that hurts development of new methods is a severe bias
of proteins in PDB toward one-domain proteins: nearly 70% of structures are single
domains (Fig. 4.5). This overrepresentation of simple structures in PDB is due to the
difficulties associated with obtaining the crystal structures of complex multidomain
chains. This poverty of complex structures cripples the ability of computational
methods to infer principles of decomposition of multidomain proteins. A new more
comprehensive benchmarking data set, which covers many more architectures and
topologies and includes a larger fraction of multidomain structures, has been recently
published (Holland et al., 2006).

4.6 Future Goals

While benchmarking data sets are invaluable in cross-comparing methods as well
as aiding in understanding the weaknesses of current methods, the very princi-
ples underlying benchmark design requires consensus among human experts. Thus,
the most difficult and contentious cases of architectures are not even addressed by
the above benchmark. The very existence of the architectures for which multiple
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plausible domain decompositions exist refutes our simpleminded tendency to fit one
approach for partitioning to all structures. As more protein structures are solved,
the fraction of such “controversial” proteins is likely to increase. The best way to
address this inherent complexity of the protein structures might be to accept the
possibility of alternative domain decompositions and implement this feature in new
algorithms. One of the latest algorithms has such a capacity already (Berezovsky,
2003), which simply uses a series of thresholds instead of a single threshold during
structure decomposition. In general it appears that the main difficulty the algorithms
have is proceeding with partitioning too far or not far enough, rather than mak-
ing partitions in incorrect regions of the structure. This situation can be possibly
remedied by performing domain decomposition under multiple thresholds. Allow-
ing multiple thresholds is likely to produce single solutions for simple structures
and multiple solutions in the cases of complex architectures. The introduction of
multiple thresholds into existing algorithms should be relatively simple. The future
success of algorithms for domain decomposition may require a shift in our thinking
about what constitutes a good solution for this complex problem; this is likely to
involve considering alternative decomposition scenarios as an essential part of the
solution.

4.7 Summary

Domain decomposition of 3D structures is an important and not completely solved
problem. An astonishingly wide array of approaches had been implemented in an
attempt to automate this process. Currently, the best algorithms resolve more than
80% of the structures for which human experts reach consensus for domain parti-
tioning. As more complex structures are solved, we do not expect this success rate to
increase dramatically. It would be timely to reevaluate our approach to the problem
of domain decomposition and our expectation of reaching a single solution in every
case. Rather it would be constructive to accept the fact that there are multiple legiti-
mate decomposition schemes for complex architectures and adapt future algorithms
to deal with such a possibility.

4.8 Suggested Further Reading

For early fundamental works on protein domain definitions there are seminal papers
by Wetlaufer and Ristow (1973) and Richardson (1985). For a recent comprehensive
review on structural domains the paper by Ponting and Russell (2002) is recom-
mended. Evolution of domains is discussed well in Ponting et al. (2000) and Todd
et al. (2001). The thorny topic of correspondence between protein domains and exons
in genes is extensively discussed; a good start is the book Protein Evolution (Patthy,
1999). Finally, discussion of the protein universe through the lens of structural do-
mains can be found in Holm and Sander (1996) and Orengo et al. (1994).
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5.1 Introduction

The success of genome projects has generated an enormous amount of sequence
data. In order to realize the full value of the data, we need to understand its func-
tional role and its evolutionary origin. Sequence comparison methods are incredibly
valuable for this task. However, for sequences falling in the twilight zone (usually
between 20 and 35% sequence similarity), we need to resort to structural alignment
and comparison for a meaningful analysis. Such a structural approach can be used
for classification of proteins, isolation of structural motifs, and discovery of drug
targets.

The success of structural analysis rests on both the quality of the alignment of a
query with a target protein and the speed with which relevant targets can be isolated
in a large database. The multiple alignment of a set of protein structures denotes
the extraction of their maximal common substructure. For such alignments to be
computationally meaningful, the constraints of such approximate matching and a
score function (or a distance measure) need to be defined.

Comparison of protein structures is the basic building block of structural anal-
ysis. Structure comparison is carried out by first aligning two structures in 3D space
and then assessing the similarity between them. For this alignment, two structures
are superimposed onto each other. Figure 5.1 shows two protein structures from the
Protein Data Bank (PDB) (Berman et al., 2000). The similarity between these two
structures becomes evident after superimposition, as in Fig. 5.2.

Protein structure alignment of two protein structures P and Q is defined as a
one-to-one mapping between the residues of P and Q. Using this mapping, two struc-
tures can be superimposed and a similarity measure between them can be computed.
Alignment of protein structures is useful in answering a number of questions:

� A protein with unknown function but known structure can be aligned to proteins
with known functions and known structures. These alignments can provide clues
regarding the function of the query protein.

� Structural alignments can be used to classify proteins. Since the structure of a
protein is strongly linked to its function, the resulting classifications can capture
the functional and evolutionary similarity of proteins.

� Multiple structure alignment of a set of proteins with a similar function can identify
a structural motif pertaining to the function.

147
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a. b.

Fig. 5.1 Backbone trace of (a) 1lh1 (leghemoglobin from yellow lupin) (b) 1urv-A (cytoglobin
from human).

� Remote homologies that are not apparent from sequence comparison can be dis-
covered by structural alignment.

The exact alignment of protein structures is computationally expensive. This
is due to the exponential number of correspondences between the point sets of two
protein structures. [Once a correspondence has been found, the problem of aligning
them in order to minimize the RMSD is quite fast—linear in the size of the proteins
(Arun et al., 1987; Kabsch, 1978).] An early complexity result in this area is due to
Lathrop (1994) who showed that the problem of protein threading (the alignment of
a protein sequence to a protein structure) is NP-complete under variable-length gaps
and nonlocal scoring functions.

Fig. 5.2 1urv-A is superimposed on 1lh1.
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Goldman et al. (1999) have formulated the alignment problem using contact
maps. A contact map of a protein structure is a graph in which nodes comprise
the residues and edges are placed between two residues whose physical distances
are below a given threshold. The alignment of two protein structures then amounts
to finding the largest common subgraph of their contact maps. The authors show
that even a simplified version of this problem (contact maps restricted to having
a maximum degree of one) is hard to solve [NP-complete (Garey and Johnson,
1979)] and hard to approximate [MAXSNP-complete (Garey and Johnson, 1979)].
Approximate solutions within a factor of � have also been investigated by Kolodny
and Linial (2004). They show that if a scoring function similar to STRUCTAL
(Levitt and Gerstein, 1998) is used, then an approximate solution can be found in
time O(n10/�6). Though exact approximation of the structural alignment problem
is theoretically interesting, the currently available tools rely on heuristics. We focus
on them in the remainder of the chapter.

The rest of the chapter is organized as follows. Section 5.2 discusses pairwise
structure comparison and existing algorithms. Section 5.3 discusses multiple struc-
ture alignment and structural motifs. Section 5.4 presents techniques for querying
protein structure databases. Section 5.5 presents classification of protein structures
and automated classification techniques. Concluding remarks appear in Section 5.6.
References and resources follow in Section 5.7. Some suggestions for further reading
are included in Section 5.8.

5.2 Pairwise Alignment of Protein Structures

The goal of pairwise structure alignment is to find the best mapping between the
residues of two given protein structures. The general methodology for achieving this
can be summarized as follows.

1. Structure representation: Proteins have many characteristics including types
of residues, positions of different atoms, types and properties of the various
bonds. For the purposes of structural alignment, it is not feasible and usually not
necessary to include all of these aspects in the representation of proteins. Many
algorithms consider only 3D positions of a few atoms, and ignore their types. A
further simplification can be obtained by considering only the positions of the
backbone carbon atoms (C� and C�). These are used to represent a residue. This
reduces the number of atoms considered from thousands to hundreds for a typical
protein.

2. Feature extraction: Most features for structure alignment are based on secondary
structure elements (SSEs) and interresidue (inter-C� or C�) distance matrices.

3. Structure comparison and alignment optimization: First, one finds similar
features between two proteins (i.e., similar distance matrices for distance matrix-
based methods or similar SSE layouts for geometric hashing-based methods).
Sets of similar features define local alignments. These local alignments are then
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merged iteratively into a global alignment. This global alignment is optimized
further.

4. Significance assessment: The significance of the obtained alignment is com-
puted, usually by estimating the likelihood of obtaining a similar alignment at
random. This estimate is based on protein similarity, alignment length, size of the
proteins, and gaps in the alignment.

5.2.1 Measuring the Quality of an Alignment

Given two proteins A and B, we are interested in identifying the largest common
substructure of the proteins. A correspondence of size k identifies a subset of size
k from each of the proteins and establishes an equivalence between the subsets. For
example, if A = a1, a2, . . . , am and B = b1, b2, . . . , bn , then a correspondence of
size five may be defined as (a1, a2, a3, a5, a6)–(b3, b4, b5, b6, b8). A correspondence
is order preserving if it maintains the backbone order of C� atoms. For example, the
above correspondence is order preserving whereas the following correspondence is
not: (a1, a2, a3, a5, a6)–(b3, b4, b7, b8, b5). In the order-preserving formulation, the
problem of structure alignment simplifies to a 3D curve matching. The computa-
tional task becomes more difficult for non-order-preserving alignments. However,
nonorder-preserving alignments are needed in order to discover non-sequential mo-
tifs such as molecular surface motifs and binding sites. They also allow a search of
the database with partial structural information.

The similarity analysis of two protein structures is facilitated by rotations and
translations so that the common substructures of the proteins are juxtaposed. Such
rigid body transformations have been studied in detail in computer vision (Arun
et al., 1987). Given a protein A, we denote its rigid body transformation using a
mapping f as f (A).

The root-mean-square distance (RMSD) between two proteins A and B under
a correspondence R of size k and a transformation f is defined as

RMSD(A,B,R, f ) =
√∑k

i=1 dist2(ai , f (R(ai )))

k

Given two proteins and a correspondence between them, it is computationally
easy to find the transformation that minimizes the RMSD. RMSD between two
proteins A and B under a correspondence R of size k is defined as RMSD(A, B, R)
= argmin f RMSD(A, B, R, f ).

Another measure of distance between protein structures is defined using
the interresidue distances directly (and without using any rigid body transforma-
tions). This distance, distance matrix error (DME), is defined as DME(A, B, R) =
1
N

√∑k
i=1

∑k
j=1(dist2(ai , a j ) − dist2(R(ai ), R(a j ))). The advantage of this repre-

sentation is that two structures do not need to be superimposed and the measure can
be computed directly using the distance matrices.
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The interplay between the RMSD and the size of the identified common sub-
structure is interesting. Since RMSD is an average measure, it decreases monoton-
ically with the size of the common substructure. However, small alignments may
not be meaningful. Irving et al. (2001) analyzed the variation of RMSD with the
number of aligned residues. They found a linear dependence of RMSD on the num-
ber of residues for a small number of aligned residues followed by an exponential
region.

Some researchers have defined distance measures so that the effect of distant
pairs is reduced. For example, DALI (Holm and Sander, 1993) uses an elastic score
defined as follows:

�E (i, j) =
{(

�E − |d A
i j −d B

i j |
d∗

i j

)
w(d∗

i j ) i �= j

�E i = j
(5.1)

where d A
i j and d B

i j are the equivalenced elements in the distance matrices of proteins

A and B, d∗
i j is the average of d A

i j and d B
i j , �E = 0.20, and envelope function w

is defined as w(r ) = exp(−r2/400). The envelope function gives lower weights to
residues that are farther apart, thus reducing their relative contribution.

In a similar vein, Levitt and Gerstein (1998) defined a scoring scheme that
depends more on the best-fitting residues. In this scheme, a scoring matrix is created
based on an initial alignment of proteins. The score for each entry is defined as
Si, j = M

1+
(

di j
d0

)2 where di j is the distance between residues i and j , M = 20, and

d0 = 5 Å.
Jia et al. (2004) proposed a new scoring scheme for CE. CE score is defined by

rmsd
aligned length�

(
1 + num gap

aligned length�

)
where � and � are greater than 0. The significance

of an observed score is computed by using the probability density function for the
random scores.

Overall, the similarity of two protein structures is difficult to quantify using
a number. Godzik (1996) investigated the alignment of a number of protein pairs
and found that although different alignment methods produce similar results at the
SSE level, there are significant differences at the residue level. The RMSD values
and the length of aligned substructures varied widely. For example, the alignment
of azurin (1azcA) and plastocyanin (1plc) produced RMSD in the range of 1.5–6.7
Å and the length of aligned substructures varied in the range of 13–108 residues.
There is usually no unique answer to the structural alignment problem and addi-
tional input is required to characterize a good solution (e.g., in a given pair of pro-
teins, one may want to focus more on the well-conserved core and less on the loop
regions).

Once a set of similar candidates has been obtained by using a database search,
the statistical distribution of similarity scores needs to be computed in order to
assign a level of significance (p-value). It is difficult to distinguish between struc-
ture similarities that arise from evolutionary relationships and those resulting from
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physical constraints on protein folding. However, the question of significance can
be answered in a purely mathematical manner by considering the space of possible
configurations, the size of the alignment, and the distribution of the scores (Gibrat
et al., 1996; Ye and Godzik, 2004; Holm and Sander, 1993; Shindyalov and Bourne,
1998).

5.2.2 Computational Approaches

Many methods have been proposed for pairwise protein structure comparison.
[Excellent in-depth surveys can be found in Eidhammer et al. (2000) and Brown
et al. (1996).] These methods propose different approximations and approaches to
structure alignment. They use different types of representations (atoms, residues,
secondary structure elements and groups of these) and algorithms (dynamic pro-
gramming, geometric hashing, randomized algorithms). These methods are grouped
based on their data representations and algorithms.

5.2.2.1 Dynamic Programming-Based Approaches

Dynamic programming (DP) algorithms have been used to find the optimal sequence
alignment between pairs of sequences (Needleman and Wunsch, 1970). In structural
alignment, however, the traditional DP algorithm cannot be used directly. The differ-
ence is that in structure alignment, the distance between two residues is dependent on
the alignment of other residues. Sali and Blundell (1990) managed to overcome this
difficulty by using rotation- and transformation-independent features on the scor-
ing function. Employing simulated annealing, they first find possible equivalences
between two proteins depending on a set of residue properties (sequence identity,
hydrophobicity, charge, volume, torsional angles). Similarity of residue properties
is then used to create a two-dimensional similarity matrix. Finally, the proteins are
aligned by applying dynamic programming.

Orengo and Taylor (1996) proposed SSAP that uses two levels of dynamic
programming (double dynamic programming). In the upper-level dynamic program-
ming, score matrix entry Si j represents the score of aligning the i th residue of the
first protein to the j th residue of the second protein. The best path in this matrix
finds the optimal alignment of the two proteins. The value Si j is computed at the
lower level of dynamic programming: the i th and j th residues are assumed to be
aligned, and a score matrix is computed by using the difference of C�–C� vectors
of residues. The resulting score Si j represents how well the rest of the residues are
aligned when the i th and j th residues are aligned.

An example of two levels of dynamic programming is given in Fig. 5.3. In the
first lower level matrix, residue C of protein B is aligned to residue F of protein A.
To obtain the matrix, C�–C� vectors from residue C to each residue in protein B are
compared to C�–C� vectors from residue F to each residue in protein A. The best
scoring path is identified in the score matrix. Scores in this path are copied to the
main score matrix in the upper level. The second score matrix in the lower level is
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Fig. 5.3 SSAP algorithm uses two levels of dynamic programming. Lower level scoring matrices
are calculated by aligning one residue from each structure. Then, C� vectors relative to the aligned
residues are compared to fill out lower level score matrix. The best path is computed and aggregated
to the upper level (Orengo and Taylor, 1996).

computed by aligning residue C of protein B to residue V of protein A while using
C�–C� vectors from residue C in protein B and from residue V in protein A. The
best path is identified and copied to the main score matrix. After all lower matrices
are processed, the best scoring path in the upper level scoring matrix is found by
dynamic programming. This path defines the alignment between proteins.

Taylor (1999) proposed an extension to the SSAP algorithm by incorporating
a stochastic component: suboptimal alignments are allowed and double dynamic
programming is used to evaluate the effect of these suboptimal alignments iteratively.

Gerstein and Levitt (1996) proposed another approach to iterative dynamic pro-
gramming. They start with a random alignment. Given an alignment, they optimize
the RMSD by superimposing the proteins, and compute the interresidue distances.
Dynamic programming is applied to the interresidue distance matrix to find the best
residue correspondences. The current alignment is then modified using these corre-
spondences. This procedure is repeated until convergence. The entire computation
is carried out with different initial alignments and the best resulting alignment is
reported.

One major drawback of dynamic programming-based approaches is that they
preserve the sequence order of residues in the structural alignment. These sequential
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Fig. 5.4 Same layout of SSE structures can have different sequence orders due to circular mu-
tations. The layout on the left has a C AB order on the SSEs while the layout on the right has a
BC A order (Binkowski et al., 2004).

alignments cannot capture similarities between proteins where circular permutations
have occurred. Two proteins with a similar structure layout of SSEs can have different
sequence layouts of SSEs. In Fig. 5.4, SSEs A, B, and C have similar structural
layouts in both of the proteins. However, their sequence orders are significantly
different. The sequence order for the first protein is CAB whereas it is BCA for the
second protein. To discover such structural similarities where sequence order is not
preserved, a number of algorithms have been proposed. We elaborate on some of
them.

5.2.2.2 Distance Matrices and Contact Maps

Algorithms in this category represent protein structures as two-dimensional distance
matrices. For each residue in a protein, its distances to the remaining residues are
computed to construct these matrices. DALI (Holm and Sander, 1993), one of the
most popular algorithms, uses the distance matrices to find highly similar local
structures. The intuition is that if two protein structures are similar, then their distance
matrices should be similar too. In the first step of the algorithm, similar submatrices
of size six in two proteins are found by comparing their distance matrices. These
comparisons result in alignments of size six between two proteins. Then, compatible
alignments are merged to obtain larger alignments called seeds. These seeds are
randomly merged and extended by making optimal and suboptimal choices via a
Monte Carlo algorithm. The best alignments are further improved by randomly
removing parts of the alignment and realigning the proteins.

An example of merging of compatible alignments is shown in Fig. 5.5. Upon
comparison of distance matrices of proteins A and B, matrix component (a, b) is
aligned to (a′, b′). Similarly, (b, c) is aligned to (b′, c′). Since these two alignments
are overlapping (i.e., they both align b to b′), they are checked for compatibility. If
the nine matrix components for these two alignments are found similar to each other,
alignments are merged to obtain a seed of (a, b, c) − (a′, b′, c′).

Two different measures of scoring are used in DALI: a rigid body similar-
ity measure and an elastic scoring measure. This approach does not require the
alignments to be order preserving. In recent versions of DALI, the computational
performance has been improved by imposing SSE constraints on the alignments.
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Fig. 5.5 DALI algorithm first aligns small parts of each protein. First (a, b) is aligned to (a′, b′)
and (b, c) is aligned to (b′, c′). These two alignments are merged to obtain a larger alignment
(a, b, c) − (a′, b′, c′) (Holm and Sander, 1993).

CE (Shindyalov and Bourne, 1998) uses distance matrices to find small but
highly similar fragments in a manner similar to DALI. The difference is that CE uses
a combinatorial extension of these fragments. In the first stage, all combinations of
8 residue alignments between two proteins are tested and ones that meet a threshold
are selected. Then starting from a fragment, the alignment is extended by adding new
fragments. A new fragment is added if its addition will result in a better alignment
score than some threshold. To improve the performance, the program does not allow
gaps of length larger than 30 residues. After the best alignments of fragments are
found, they are further improved by using a dynamic programming approach.

Chew et al. (1999) represent a protein structure by vectors defined by adjacent
C� atoms. These vectors represent the protein backbone. They place these vectors
on a unit sphere and compare two proteins by their trace on this sphere.

5.2.2.3 Geometric Hashing

Geometric hashing allows rotation and translation invariant comparison of 3D ob-
jects. Nussinov and Wolfson (1991) adapt this idea for the comparison of protein
structures. Their approach is to use a set of reference frames for each protein and
map its residues into 3D grid cells for each reference frame. If two protein structures
are similar, then there exists a pair of reference frames (one for each protein) such
that a large number of residue pairs will be mapped to the same grid cell. A hash
function can be associated with the grid cells, allowing efficient lookup. A reference
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frame can be defined using C�, C�, and N atoms of each residue (Pennec and Ayache,
1998), or using three or more residues at a time.

Holm and Sander (1995) use geometric hashing on the secondary structure
elements. Reference frames are defined for pairs of SSEs. Based on each frame, the
locations of the rest of the SSEs are hashed. A pair of frames that maps correspond-
ing SSEs into similar locations is found. Such a matching frame forms an initial
alignment that is refined by an iterative process.

Proteins are flexible molecules capable of undergoing structural conformations
such as hinge-based motion (Rose and Stroud, 1998). Incorporation of such flexibility
implies moving away from the common assumptions of proteins as rigid bodies.
Some tools have been developed recently (Shatsky, 2004; Ye and Godzik, 2003)
that incorporate flexible alignments. Verbitsky et al. (1999) use geometric hashing
to align structures allowing hinge bending.

5.2.2.4 Hierarchical Algorithms

Hierarchical algorithms are based on rapidly identifying mappings between similar
SSE fragments of two proteins. The similarity of two fragments is defined using
length and angle constraints. Fragment pairs that align well form the seed for expen-
sive residue-level alignments.

The VAST program (Madej et al., 1995) carries out a hierarchical alignment
using SSEs. It begins with a bipartite graph: vertices on one side consist of pairs of
SSEs from the query protein and vertices on the other side consist of pairs of SSEs
from the target protein. An edge is inserted between two pairs of SSEs if they can be
aligned well. A maximal clique is found in this bipartite graph; this defines the initial
SSE alignment. This initial alignment is extended to C� atoms by Gibbs sampling.
A nice feature of the VAST program is its ability to report on the unexpectedness of
the match through a p-value. This is computed by considering the size of the match,
the size of the proteins, and the quality of the alignment.

A number of other algorithms also use hierarchical alignment (Alexandrov and
Fischer, 1996; Singh and Brutlag, 1997; Holm and Sander, 1995). LOCK (Singh
and Brutlag, 1997) represents SSEs by vectors and matches pairs of SSEs based on
similarity of angles and distances between them. The alignment of SSEs is extended
using iterative dynamic programming. Proteins are aligned and the nearest neighbor
of each residue on the other structure is computed. The residue pairs that identify
each other as the nearest neighbor define the new alignment. This process is repeated
until convergence.

Novotny et al. (2004) evaluated various pairwise structure comparison tools for
identification of similar folds. The CATH (Orengo et al., 1997) structure classifica-
tion database was used as a reference. None of the tools were able to achieve a 100%
success rate, but CE, DALI, and VAST showed best performance. Sierk and Pearson
(2004) performed a similar analysis to evaluate the performance of comparison tools
in detecting homologues. They showed that DALI was more selective than the other
tools.
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5.3 Multiple Structure Comparison and Structural
Motif Search

Protein motifs, specifically active sites and binding sites, play important roles in
biochemical reactions. Motifs are defined as substructures that are common to a set
of proteins that possess functional or evolutionary relationships. Querying proteins
for specific motifs and discovering motifs in a set of proteins are crucial for the
functional classification and understanding of proteins. Since active sites of proteins
are determined by structure of the participating amino acids rather than their sequence
order, structural motifs can be more useful than sequence motifs. However, structural
motif detection is more challenging. First, the size of the search space is much
larger than in the sequence domain. Each residue can be one of 20 amino acids,
so a motif of length 5 amounts to 205 possibilities in the sequence domain. This
number is much larger for structural motifs if one considers the number of structural
conformations of 5 residues without the sequence constraint. Also, for sequences,
the type of each residue is known with almost certainty, but for structures the data
has limited resolution. So even if two proteins have the same structural motif, their
alignment may not produce the perfect score.

Multiple structure alignment of a set of related proteins results in a consensus
structure which has the minimum RMSD sum to the protein structures in the set.
[This is similar to finding the Steiner string for a set of sequences (Gusfield, 1997).]

5.3.1 Motif Detection

An important characteristic of motif finding programs is the granularity of the dis-
covered motifs as shown in Fig. 5.6. Some of these algorithms consider only C�

atoms, while others consider all the atoms in the protein structures (Pennec and

Fig. 5.6 Motif definition for TESS program: relative conformation of the catalytic triads from
chymotrypsin 1cho.
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Ayache, 1998; Singh and Saha, 2003). Another set of methods defines motifs not
by atoms but by secondary structure elements (Kato and Takahashi, 2001). Methods
have also been proposed for the detection of small active sites while preserving atom
types in motifs (Wallace et al., 1997). There are also methods that use both sequence
and structure information simultaneously (Bradley et al., 2002). A majority of these
methods adopt RMSD as an indication of quality.

Singh and Saha (2003) proposed a framework for structural motif queries. They
incorporate the label information as well as the coordinates of the atoms. Starting
from an initial alignment, the nearest neighbors of points in two structures are found
and this information is used to modify the alignment. This process is carried out
until convergence. The distance function on the structures is modified to account for
the label information.

TESS (Wallace et al., 1997) is based on geometric hashing and finds small
(usually two or three residues long) active sites. The method considers all of the atoms
in the protein, and defines reference frames for each residue by using a combination
of C, O, N, S atoms, depending on the residue types. For each reference frame, the
relative positions of the atoms that are in the 18-Å neighborhood are stored in the
grid. The grid positions that are heavily populated are analyzed. The types of atoms
as well as their grid locations have to match for the resulting motif.

TRILOGY (Bradley et al., 2002) finds sequence–structure patterns, which are
as small as three residues, across diverse families. In this automated approach, three-
residue patterns are extracted and a sequence feature of residue types and a structure
feature of relative positions of the residues are computed for each pattern. Structure
feature is based on the C�–C� distances between residues and, C�–C� vectors for
each residue in the pattern. Sequence feature is based on the types of residues in
the pattern and their distance from each other on the protein sequence. Residues
are grouped into seven classes and these class types are used in the definition of
sequence features to increase the flexibility of the representation. Patterns that have
similar structure and sequence features are identified. These three-residue patterns
are then extended by merging patterns that vary by a single residue. This process is
carried out until the patterns fail to cover at least three SCOP superfamilies. At the
final step, significance scores are assigned to these patterns based on the likelihood
of obtaining them at random. Figure 5.7 depicts a pattern whose sequence feature
is Ax4−5[FY W ]x7−8 N .

Chen and Bahar (2004) proposed an unsupervised approach to discover fre-
quent patterns in protein families. In this approach, each residue is characterized
by its dynamic features, and biochemical and geometric features of the neighboring
residues. Dynamic features summarize the rigidness of the local structure around the
residue based on the interactions between neighboring residues; biochemical features
summarize the amino acid types and chemical properties of neighboring residues;
and geometric features summarize the relative positions of the neighboring residues
in a similar manner to Pennec and Ayache (1998). After the feature extraction step,
the frequency for each feature is computed. Features that occur at a frequency higher
than a predefined threshold are considered to be frequent patterns. Then, these fre-
quent patterns are merged to obtain longer augmented frequent patterns.
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Fig. 5.7 Features of three-residue patterns used in TRILOGY program. Points represent C�
atoms and arrows represent C� − C� vectors (Bradley et al., 2002).

Jonassen et al. (1999) find local packing motifs in protein structures. For each
residue, residues in close proximity are identified and an ordered list is created based
on these residue types. Residues that have similar ordered lists are considered as
candidates that participate in a local packing motif. The similarity of these candidates
is finally verified in the structure domain by superimposing local structures around
them.

5.3.2 Multiple Structure Alignment

Although many algorithms have been proposed for the pairwise structure alignment
problem, there are only a few algorithms available for multiple structure alignment.
A popular technique is to compute pairwise alignments, and to construct a multiple
alignment from these (Orengo and Taylor, 1996; Gerstein and Levitt, 1996; Guda
et al., 2001). Star alignment-based approaches are usually adopted for this con-
struction. First, all pairwise comparisons are performed and a pivot protein, whose
RMSD sum to other proteins is minimum, is chosen. Then, the proteins are aligned
to the pivot and a multiple structure alignment is constructed. Figure 5.8 depicts the
multiple alignment of 15 proteins to protein 1arb. A shortcoming of this approach
is that it may miss global patterns since only two proteins are considered at a time.
This is reminiscent of the problems arising during multiple alignment of sequences
(Gusfield, 1997). A set of recent algorithms capture the global relationship by first
extracting common substructures in protein structures and then by constructing mul-
tiple structure alignment using the common substructures (Leibowitz et al., 2001;
Shatsky et al., 2002; Dror et al., 2003).

Gerstein and Levitt (1996) extend iterative dynamic programming to obtain a
multiple structure alignment. Upon performing all pairwise alignments, the pivot that
has the smallest average distance to other structures is found. Then, all structures are
aligned to this structure. So, if position i in the median structure is aligned to position
j in the first structure, and to position k in the second structure, then positions j and
k are aligned to each other.
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Fig. 5.8 Multiple structure alignment of 10 proteins using 1arb as the pivot by using VAST. Molec-
ular representation is made by Cn3D (http://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml).

Guda et al. (2001) extend CE (Shindyalov and Bourne, 1998) to perform mul-
tiple structure alignment. They first compute pairwise alignments of proteins, and
choose a pivot structure. After an initial alignment is found using the pivot structure,
it is refined by a Monte Carlo algorithm.

Leibowitz et al. (2001) use geometric hashing to find common substructures.
These common substructures are used as a seed for the multiple alignment. The
seeds are merged with each other to obtain larger seeds and the seed that produces
the highest scoring alignment is reported. Shatsky et al. (2002) developed a technique
that is faster and does not require all proteins to participate in the alignment. Each
protein is used as pivot in turn and the one with the best multiple alignment is chosen.
Dror et al. (2003) further improved these algorithms by computing the common core
of the query proteins using secondary structure elements. The performance is better
since SSEs are used instead of residues. In this approach, each SSE is represented
as a line segment. A fingerprint for each SSE pair is computed based on the distance
and angle between SSEs. These fingerprints are mapped to a 5D grid. Pairs in the
same and adjacent buckets in this grid are used as the bases for multiple alignments.
For each base, rigid body transformations of proteins are computed. The bases which
have similar rigid body transformations of proteins are merged to obtain larger bases.
These large bases are used as the common core of the multiple alignment.

5.4 Structure Search in Protein Databases

As the sizes of experimentally determined (Berman et al., 2000) and theoretically
estimated (Pieper et al., 1999) protein structures grow, there is a need for scalable
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searching techniques. Current pairwise alignment techniques produce high-quality
pairwise alignments. However, such tools incur excessive running times for database
queries, i.e., when a query protein is searched against a large target set. Current tools
alleviate this problem by building online databases that contain precomputed results
for known protein structures [MMDB (Wang et al., 2002) for VAST, FSSP (Holm
and Sander, 1996) for DALI, web database for CE]. In general, scalable techniques
are needed for:

1. Searching a protein against a large set of proteins,
2. Clustering a large set of protein structures,
3. Comparing two sets of proteins, and
4. Multiple structure alignment based on pairwise comparisons.

To solve the above problems, some index-based approaches have been pro-
posed (Aung and Tan, 2004; Camoglu et al., 2004). ProtDex2 (Aung and Tan, 2004)
uses an inverted file index to index features based on SSEs. It extracts features on
SSEs by using their relative distances. The overall similarity of proteins is estimated
and the promising candidates are compared using pairwise alignment techniques.
Next, the approach developed in Camoglu et al. (2004) is discussed in detail. First,
we discuss principles of index-based approaches, then we present an index-based
structure comparison technique. The query algorithm is explained in Section 5.4.3,
and experimental results are presented in Section 5.4.4.

5.4.1 Index Based Approaches

In numerous applications from databases to image analysis, index-based solutions
have been applied to demanding search problems. The main advantage of using
index structures is that they reduce the computational complexity of searching. A
sequential search compares all of the n elements in the database with the query and
reports the best results with a complexity of O(n). This complexity can be reduced
to O(log(n)) using an index structure.

The goal of using an index structure is to reduce the number of pairwise com-
parisons by quickly selecting the promising candidates. In order to build an index
structure, some features are extracted from proteins. Then, an index structure is built
on the extracted features. Given a query protein, its features are extracted and the
database index is queried with these features. Proteins whose features are similar to
the query protein’s features are aligned using a more extensive algorithm, such as
the ones described in Section 5.5.2.

5.4.2 PSI: An Index-Based Structure Comparison Program

PSI (Protein Structure Index) (Camoglu et al., 2004) is an SSE-based approach. It
finds high-quality seeds by aligning the SSEs of a database protein with those of a
given query protein. For a query protein (or a set of query proteins), this technique
can be used to find similar proteins in a target dataset efficiently.
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PSI extracts feature vectors corresponding to triplets of neighboring SSEs.
These triplets are regarded as the building blocks of the larger protein alignment.
Later, these features are embedded in Euclidean space and stored in an index
structure.

The index construction consists of the following four steps:

1. SSE approximation: The structural features of SSEs are simplified by represent-
ing them as line segments in 3D. This is achieved by first splitting up an SSE in
two halves at the middle residue. Centers of mass are computed for each half, and
a line segment is defined between them. This line segment is extended in both
directions to cover the length of the SSE.

2. Triplet construction: Triplets of SSEs are used as primitive elements for building
an alignment. A set of matching triplets between two protein structures can be used
to align the given proteins using rigid body transformations (Arun et al., 1987).
Since residues that are spatially close are more valuable for structure similarity
(Eidhammer and Jonassen, 2001), neighborhood constraints are imposed while
building the SSE triplets. A sphere of radius 50 Å is centered at each SSE and up to
four nearest SSEs are chosen. All possible pairs of these SSEs are combined with
the center SSE to define the relevant triplets. An example of triplet construction
is shown in Fig. 5.9. Empirically, the average number of triplets per SSE turns
out to be 3.8 for the proteins in PDB.

3. Feature vector extraction: After the triplets of protein structures are determined,
feature vectors are constructed. Let <si , s j , sk> be a triplet. The line segment
approximation of each SSE is split into three equisized, non-overlapping intervals.
The middle interval of each SSE is used to represent the SSE. The pair of SSEs,
<si , s j>, contributes three values to the feature vector:
(a) mini j = minimum distance between the midregions of si and s j .
(b) maxi j = maximum distance between the midregions of si and s j .
(c) �i j = the angle between the line segment approximations of si and s j .

Fig. 5.9 The local neighborhood set of the SSE, c, of a protein. The black square corresponds to
the midpoint of c. The circles represent the midpoints of the remaining SSEs of the same protein.
50 Å is the threshold distance for local neighborhood. Four best neighboring SSEs (shown with
filled circles) are chosen.
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Fig. 5.10 SSE pair <si , s j> contributes three values to the feature vector for triplet <si , s j , sk>:
min(i, j) and max(i, j), minimum and maximum distance between the mid-portions of si and s j ,
and �(i, j), angle between si and s j .

Figure 5.10 shows the extraction of these values for a pair of SSEs. This set of
values is extracted for each pair in the triplet, resulting in a feature vector of size
nine for each triplet.

4. Multidimensional index structure construction: The feature vector for an SSE
triplet has three range values (minimum and maximum distance values) and three
angle values. Each feature vector defines an extent in a six-dimensional Euclidean
space. The feature vectors are embedded and indexed using an R*-tree (Beckmann
et al., 1990). (R*-trees are dynamic index structures that provide efficient range
search queries for multidimensional data.)

5.4.3 Query Algorithm

For a given query protein, the search technique (Camoglu et al., 2003) runs in four
steps:

Step 1: Similar triplets between database proteins and query protein are computed
and stored.

Step 2: A triplet pair graph (TPG) is constructed on similar triplet pairs. An example
of such a graph is shown in Fig. 5.11.

Step 3: A bipartite graph is constructed using the TPG. The largest matching in this
graph defines the initial alignment seed at SSE level. A p-value is computed
for each seed. An example bipartite graph is shown in Figure 5.12.

Step 4: The proteins that have large p-values are removed without further consider-
ation. The C� alignment of the remaining proteins are determined using a
pairwise structural alignment algorithm.
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Fig. 5.11 The triplet pairs between the two proteins and their scores are shown on the left. qi is
a secondary structure element of query protein and pi is a secondary structure of target protein.
The corresponding triplet pair graph (TPG) is shown on the right. The TPG has three connected
components: one with four triplet pairs, the others with two and one.

Fig. 5.12 The bipartite graph of the largest weight component in Fig. 5.11 (assuming s1 + s2 +
s3 + s4 + s7 > max(s6, s4 + s5)). There is a conflict in the alignment of SSE q1: it has an edge
to both p1 and p11. The edge with the largest weight is chosen to resolve the conflict. Assuming
s1 + s2 > s7, the initial alignment will be {q1 − p1, q2 − p2, q3 − p3, q4 − p4, q5 − p5}.

5.4.4 Experimental Evaluation of PSI

The results of PSI are verified with SCOP classification and pairwise comparison
tools. The first set of experiments analyzed how well the SCOP classification of a
query protein matched with the SCOP classifications of the top-ranking proteins re-
turned by PSI. On the average, 2.5 of the top 3 proteins and 5.4 of the top 10 proteins
share the same superfamily as the query protein. This shows that PSI captures strong
structure similarities. The same experiment was carried out for fold level classifica-
tions and similar results were obtained, showing the ability of PSI to capture remote
homologies. Detailed explanation of these experiments can be found in Camoglu
et al. (2004).

PSI was also compared with the pairwise comparison tools VAST, CE, and
DALI. More than 98% of its results concurred with those of VAST. PSI ran 3 to 3.5
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Fig. 5.13 The number of similar proteins of high significance for query protein 1d3g-A found
by VAST, DALI, and CE, and the number of such proteins returned by PSI. For example, there are
five proteins DALI and Vast found as similar but CE found dissimilar; all five of these are returned
by PSI. Note that PSI returned all proteins for which VAST, DALI, and CE agree.

times faster than VAST’s pruning step. Similar results were also obtained for CE and
DALI.

PSI can be incorporated with other tools to accelerate them by discarding
dissimilar proteins. PSI-DALI (for DALI) and PSI-CE (for CE) were implemented
in order to demonstrate this. PSI-DALI ran 2 times faster than DALI with 98% recall.
PSI-CE ran 2.7 times faster than CE with 83–92% recall.

PSI has a different recall when compared to the results of VAST, CE, and DALI.
An in-depth analysis revealed that these three comparison tools produce different
results themselves. In Fig. 5.13, the results of these tools for query protein 1d3g-A,
dihydroorotate dehydrogenase from human, are displayed. As can be seen, all tools
agree over a large portion (75 proteins) of the result; PSI returns these proteins as
well. On the whole, PSI is able to find the consensus set of results for each query.

5.5 Protein Classification

Although the study of a single structure or the alignment of a small group of structures
can reveal a great deal of information, a global comprehensive view of the protein
space is essential to understanding the fold similarities and the evolutionary process.
Such a hierarchical classification of proteins based on the analysis of structure has
been pursued by a number of researchers (Murzin et al., 1995; Orengo et al., 1997;
Holm and Sander, 1996). The resulting organization of protein structures brings a
semblance of order to a dynamic field and also provides a valuable resource to other
biologists for benchmarking studies. In one such study, Chothia et al. (2003) study
the evolution of protein domains across pathways and species. They also study the
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distribution of domain combinations. They infer a number of relationships such as
power law behavior and preferential order of domain combinations based on the
study. Gerstein (1997) analyzed representative proteomes from the three kingdoms
of life for the SSE content, small motifs of SSEs (alpha-alpha-alpha or beta-alpha-
beta), and folds. Though the genomes had similar SSE content, there were marked
differences in the observed motifs.

In this section, we introduce various structure classification databases and an
automated classification scheme for protein structures. Then, we describe the use
of pairwise comparison tools as component classifiers. In Section 5.5.3, we discuss
the use of decision trees in automated classification. Some experimental results are
presented in Section 5.5.4.

5.5.1 Structure Classification Databases

Protein structure classification databases employ different heuristics and similar-
ity metrics, and can be fully automated (Holm and Sander, 1996), semiautomated
(Orengo et al., 1997), or manual (Murzin et al., 1995).

SCOP (Structural Classification Of Proteins) (Murzin et al., 1995) is one of the
most popular classification databases. It hierarchically classifies proteins into four
categories:

� Class: This is the highest level of the hierarchy. The main similarity criteria at this
level are the type and the general layout of SSEs in the proteins. There are four
main classes: (1) all �, all the SSEs are helices, (2) all �, all the SSEs are strands,
(3) �/�, helices and strands are in close proximity, (4) � + �, helices and strands
are apart. In addition to these main classes, there are some other less populated
classes (membrane, multiple domain, small protein, etc.).

� Fold: This is the second level of the SCOP hierarchy. Members of the same fold
have similar SSE arrangements (however, this similarity is not clearly defined).
Disagreements between automated methods and SCOP appear mostly on this
level. In general, fold-level relationships are observed between proteins that have
possible remote evolutionary relationships.

� Superfamily: Proteins in the same superfamily possess functional and evolu-
tionary relationships. They have the same active sites, or participate in similar
reactions and pathways. They have significant structural similarity and some se-
quence similarity. This level is one of the most interesting classification levels,
because functional relations between proteins may be inferred using similarities
at this level.

� Family: This is the lowest level of classification. Members of a family possess
strong evolutionary and functional relationships. Identification of family members
is a fairly simple procedure since the main measure at this level is the sequence
similarity. Proteins that have more than 30% sequence identity are classified into
the same family. Proteins that have lower sequence similarity, but very strong
structural similarity and functional relationships are also classified into the same
family.
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As can be seen, there are gray areas in the SCOP database and scientists managing
SCOP use their discretion in deciding these classifications.

CATH (Orengo et al., 1997) is created using the SSAP (Orengo and Taylor,
1996) program, and also tuned manually. Like SCOP, it is hierarchical and has
four levels: class, architecture, topology, and homologous topology. Class is similar
to SCOP’s class: proteins are categorized based on the types of SSEs they have.
The architecture level classification of a protein is assigned manually based on the
orientation of SSEs in 3D without considering their connectivity. At the topology
level, SSE orientation and the connection between them are taken into account. At the
lowest level, proteins are grouped into homologous topologies if there is sufficient
evidence that they have an evolutionary relationship.

FSSP (Fold classification based on Structure-Structure alignment of Proteins)
(Holm and Sander, 1996) is constructed using the DALI program (Holm and Sander,
1993). A representative set of all available protein structures is selected and all
proteins in this representative set are aligned with each other. The resulting Z -scores
are used to build a fold tree using an average linkage clustering algorithm. FSSP is
fully automated.

Getz et al. (2002) assign SCOP and CATH classification to query proteins using
FSSP; this assignment is based on the scores of the proteins in FSSP’s answer set for
the query protein. They also found strong correlations between these classifications.
The CATH topology of a protein can be identified from its SCOP fold with 93%
accuracy, and the SCOP fold of a protein can be identified from its CATH topology
with 82% accuracy.

5.5.2 Automated Classification

With an exponential growth in the number of newly discovered protein structures,
manual databases have become harder to manage. Automated classification schemes
that can produce classifications with a similar quality to the manual classifications
are needed. Automated techniques are needed to find proteins that have similar
structural features in a database that contains thousands of structures, especially
with various distance metrics. Additionally, for recently discovered structures, the
identification of the appropriate categories for their classification is crucial. It is
not reasonable to expect every researcher to examine thousands of proteins to de-
cide the classification of the new protein. Automated techniques are needed in this
regard.

A number of schemes toward automated classification (Getz et al., 2002;
Lindahl and Eloffson, 2000), fold recognition (Lundstrom et al., 2001; Portugaly
and Linial, 2000), and structure prediction servers (Fischer, 2003; Kim et al.,
2004) from protein sequences have been proposed. But, these schemes consider only
the sequence information and ignore other sources of information that are available
such as structure. An approach developed in Can et al. (2004) uses sequence and
structure information simultaneously for the automated classification of proteins.
This is discussed in detail next.
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In the protein classification problem, there is an existing classification scheme
such as SCOP, and there is a set of new proteins that has to be classified based
on the implicit rules and conventions of the existing classification. A classification
algorithm simplifies the update of databases such as SCOP that have to accommodate
many new proteins periodically. The main questions that need to be answered during
classification are:

� Does the query protein belong to an existing category (family/superfamily/fold),
or does it need a new category to be defined?

� If the query protein belongs to an existing category, what is its classification
(label)?

The hierarchical nature of classification databases simplifies the classification
problem. For example, if a protein belongs to a family, then its superfamily and
fold are known. In the case of SCOP, the easiest classification level is family and
the hardest one is fold. A hierarchical classifier can take advantage of this. The
first attempt is to assign the protein to a family. If this is successful, then the other
levels are already known. In case the protein does not belong to an existing family,
a superfamily level classification is attempted. If the protein does not belong to an
existing superfamily, a fold level classification is attempted.

5.5.3 Building a Classifier from a Comparison Tool

Given a protein comparison tool (sequence or structure), a classifier can be designed
by comparing a given query with all proteins of known classification. Similarity
scores obtained thus provide a measure of proximity of the query protein to the
categories defined in the classification. After sorting these scores, the first classifi-
cation question (does the query belong to an existing category?) can be answered
as follows. If none of the categories show a similarity greater than some predefined
cutoff, the query protein is classified as not belonging to an existing category. This
cutoff can be determined by investigating the score distribution of each tool.

A 1-Nearest-Neighbor (1NN) classification can be used for the second classi-
fication problem (what is the category of the query protein?). The query protein is
assigned to the category of the protein that is found to be most similar, i.e., gets the
highest score, using the comparison tool.

In Can et al. (2004), five component classifiers were defined using two sequence
and three structure comparison tools. The first sequence tool uses the Hidden Markov
Model (HMM) library from the SUPERFAMILY database (Gough, 2002). This
library is manually curated to classify proteins at the SCOP superfamily level. The
models in the SUPERFAMILY database can be searched using HMM-based search
tools such as HMMER (Eddy, 1998) and SAM (Hughey and Krogh, 1995). These
tools assign a similarity score to a protein sequence according to its match with a
model. This classifier is referred to as HMMER.

The second sequence comparison tool is PSI-Blast (Altschul and Koonin,
1998). PSI-Blast is an improved version of Blast that works in iterations. In the
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Fig. 5.14 Comparison of VAST and DALI scores for a set of proteins.

first iteration, Blast is run and a new scoring scheme is created based on the set of
close neighbors. This process of searching and redefinition of score matrix can be
repeated.

The structure comparison tools used were CE (Shindyalov and Bourne, 1998),
VAST (Madej et al., 1995), and DALI (Holm and Sander, 1993). Each of these
tools performs comparisons with a different technique. As a result, they provide a
different view of structural relationships between proteins. For example, even though
both VAST and DALI compare structures, they assign different scores to the same
pair of proteins, as can be seen in Fig. 5.14. [In a similar study, Shindyalov and
Bourne (2000) compared CE and DALI scores and showed that there were many
proteins that were found similar by CE and dissimilar by DALI, and vice versa.] By
exploiting these differences, one can achieve better performance with a combination
of the tools.

Each sequence- and structure-comparison method described above assigns a
score for a pair of proteins that indicates the statistical significance of the similarity
between them. In particular, the z-scores reported by CE and DALI, p-values reported
by VAST, and e-values (− log(e-value)) reported by HMMER and PSI-Blast are used
as the similarity scores.

5.5.3.1 Performance of Component Classifiers

The individual performance (accuracy) of the tools when they are used as compo-
nent classifiers was tested with a number of experiments. It was assumed that the
classifications of all proteins in SCOP v1.59 (DS159) are known, and the goal of the
component classifiers was to classify the new proteins introduced in SCOP v1.61
(QS161) into families, superfamilies, and folds. A hierarchical classification scheme
is used (Camoglu et al., 2005). At the family level, all new proteins were queried.
At the superfamily level, only proteins that do not have family-level similarities are
queried. At the fold level, only proteins that do not have family/superfamily-level
similarities are queried.
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At the family level, the sequence tools outperform the structure tools by achiev-
ing 94.5 and 92.6% accuracy. The highest success rate of the structure tools is only
89% by VAST. For 83% of the query proteins, all five tools make correct decisions
(as to whether the query protein belongs to an existing category), for 4.1% of the
queries four tools, for 1.9% of the queries three tools, for 6.9% of the queries two
tools, and for 2.7% of the queries only one tool makes the correct decision. An
interesting point here is that for 98.2% of the proteins, at least one tool is successful.
So, it is theoretically possible to classify up to 98.2% of these proteins correctly by
combining the results of the individual tools.

At the superfamily level, the performance of the structure tools improves rela-
tive to the sequence tools, as expected. However, the overall performance of the tools
drops significantly compared to the family level. This is expected since classification
at the superfamily level is harder. HMMER has one of the best performances with a
79.1% accuracy; this is no surprise considering that HMMER is manually tuned for
superfamily classifications. Among the structure tools, VAST has the best perfor-
mance with a 78.6% success rate. PSI-Blast performs poorly with a success rate of
only 66.1%. Only 44.7% of the queries can be classified correctly by all five tools.
For 4% of the queries, none of them is successful. This again raises the possibility
of achieving better accuracy through a combination of the tools. These results are
depicted in Fig. 5.15.

Structure tools outperform sequence tools at the fold level. VAST has the best
performance with an 85% success rate. PSI-Blast has the worst performance with

Fig. 5.15 Performance of individual classifiers on recognizing the members of existing super-
families, and assigning categories to them for the new proteins in SCOP v.1.61. The first set of
bars represents the performance for recognition of existing members and the second set represents
the performance for the assignment of categories.
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a 60.7% success rate. For only 30.9% of the queries, all five tools are successful
(Camoglu et al., 2005).

Once a tool has marked a new protein as a member of an existing category, the
classification of the query protein is complete, i.e., the query protein is assigned to the
same category as its nearest neighbor. The next question is to judge the accuracy of
this assignment, i.e., whether the assigned category is the correct one. The accuracies
of the tools are high at the family level. All except DALI have success rates above
90%. HMMER has the best performance with 94.8% accuracy and is followed by
PSI-Blast with 92.3% accuracy. For 76.5% of the queries, all five tools are able
to assign the correct family label. For only 2.1% of the queries, none of them is
successful. The superfamily results can be seen in Fig. 5.15. At the fold level, all
tools seem to perform poorly. At the fold level, PSI-Blast is not able to make even one
correct fold assignment, whereas VAST assigns correct folds to 54% of the queries.
For 35.1% of the queries, none of the tools is able to assign the correct fold label.

5.5.4 Automated Classification Using Ensemble Classifier

As evident from the earlier experiments, an ensemble classifier can potentially obtain
higher classification accuracy than any single component classifier. There are many
studies in the area of machine learning and pattern recognition that address the
intelligent design of ensemble classifiers (Duda et al., 2001; Meir and Ratsch, 2003;
Schapire and Singer, 1999). These include both competitive models (e.g., bagging
and binning) and collaborative models (e.g., boosting).

Camoglu et al. (2005) employ a hierarchical decision tree to answer the question
whether the query protein belongs to an existing category. To combine different tools,
their results need to be normalized to a consistent scale. This is achieved by dividing
the scores into bins. A bin is a tool-neutral accuracy extent, e.g., 90–100%, 80–100%,
instead of a tool-specific similarity score. Bins for each tool are manually crafted to
achieve maximum performance. All proteins’ 1NN scores are obtained and sorted.
Bin boundaries are placed on this sorted list and accuracy is computed for each bin.
For example, if bin i is labeled with an accuracy of x%, then the predicted accuracy
of all proteins whose scores fall in the bin is x%.

After the bins for each tool are constructed, a decision tree is created. At each
level of this tree, a combination of tools is run and depending on their decisions,
query proteins are classified as a member of an existing category or new. The decision
tree for the family level is presented in Fig. 5.16. As can be seen, at the first level
of the decision tree, PSI-Blast and HMMER are run to classify the query protein.
Each tool reports a confidence for their classification decision and these decisions
and confidences are merged (Can et al., 2004). If the confidence of the consensus
decision is greater than 95%, the query protein is classified as a member of an existing
family. If the confidence is lower than 60%, it is classified as a member of a new
family. If the confidence is between 60 and 95%, then tools at this level cannot make
a confident decision, and the next level of the tree is used. At the next level, all of
the structure tools are run for a consensus decision. There are again two thresholds,
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Fig. 5.16 The decision tree for recognizing if a query protein belongs to an existing family.

85 and 70%. At the last level, there is only one threshold, 80%. If the confidence is
greater than this threshold, the query protein is classified as a member of an existing
family, else it is classified as a member of a new family.

There are two components of a decision tree: (1) the combination of tools at
each level and (2) the thresholds at each level. The first issue is addressed by using
the domain knowledge of the classification schemes and the classification results
for component classifiers (e.g., Fig. 5.15). For example, at the family level, it is
known that sequence tools have priority, and at the superfamily level and fold levels,
structure tools are more important. The problem of finding the right thresholds
requires more care. The thresholds can be automatically determined by examining
different choices and finding values that maximize accuracy for the training data.
But, this approach tends to overfit. Thus, the distributions are manually analyzed
and thresholds set after this analysis. An example of such an analysis is depicted in
Fig. 5.17. Although placing the cutoff at point A2 is more suitable for the training
data, it is clear that there is a natural separation at point M2. If A2 is used as the
threshold, it overfits the data and the eventual performance suffers. The determined
thresholds for superfamily and fold level classifications are shown in Table 5.1.

5.5.5 Experimental Analysis

To validate that the consensus classifier indeed improves the classification perfor-
mance, the standard validation technique in pattern recognition is applied (Duda
et al., 2001). Two data sets are used: a training set and a test set. Ensemble classifier
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Fig. 5.17 An example histogram of the confidence levels for the training data. A1 and A2 are the
thresholds found by the automated greedy approach. M1 and M2 are the manual thresholds. It is
seen that A1 and A2 overfit the data, whereas M1 and M2 do not.

Table 5.1 Heuristic decision tree rules for recognition of members of existing superfamilies
and folds. At each level, a combination of tools is run and the probability of being a member of
an existing category is assigned to each protein. The proteins that have probabilities higher than
the indicated range are assigned to the predicted category, the ones within the range are passed to
the next step, and those below the range are deemed new. For the last level, only a single
threshold exists.

Level 1 Range Level 2 Range Level 3 Threshold

Superfamily VAST 45%:93% HMMER 40%:75% CE+DALI 55%
Fold VAST 50%:85% CE 80%:90% DALI 60%

is trained with proteins introduced in SCOP 1.61 using the classifications of proteins
in SCOP 1.59, and it is validated on proteins introduced in SCOP 1.63 using the
classifications of proteins in SCOP 1.61. Automated ensemble classifier performed
well on assigning proteins to their correct classifications by achieving 98% success
for family assignments, 83% success for superfamily assignments, and 61% success
for fold assignments. The performance of each tool and the ensemble classifier for
superfamily classification (training and evaluation phases) is shown in Table 5.2. The
benefits of an ensemble classifier are obvious. Complete results appear in Camoglu
et al. (2005).

5.6 Concluding Remarks

A number of algorithms for protein comparison were presented in this chapter.
Besides a survey of the current state of the art of techniques for problems in structure
analysis such as pairwise alignment, multiple alignment, and motif discovery,
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174 Orhan Çamoğlu and Ambuj K. Singh

Table 5.2 Performance of individual tools and ensemble classifier on training and test data sets.
The performance is measured for two cases: Existing (ability to recognize the proteins from the
existing classifications) and Assignment (ability to assign correct classifications)

Existing Assignment

Training Evaluation Training Evaluation

Superfamily HMMER 78.63 79.29 68.9 39.18
CE 71.77 38.03 81.1 43.81
VAST 78.63 66.67 81.71 55.67
DALI 77.42 75.24 80.49 74.74
PSI-Blast 66.13 31.39 11.59 24.23
Ensemble 80.65 83.82 93.29 82.99

techniques that scale to large data sets were discussed in depth. In this vein, an
approach based on index structures was presented for pairwise protein structure
comparison. In this technique, SSE-based features were extracted from database
proteins and inserted into an index structure. Given a query protein, its features
were also extracted and compared using the index. A graph-based approach was
used to extend and evaluate the matches. Embedding this algorithm into well-known
pairwise structure analysis algorithms led to significant speed-ups. As data sets
such as the PDB grow in size, scalability of structure comparison algorithms will
be an important factor.

Classification of proteins was also presented. A number of existing classifica-
tion techniques based on protein structure were discussed. A technique for automated
classification of proteins was investigated in depth. The approach used a number of
sequence and comparison tools and combined them in a decision tree to increase the
classification accuracy. The use of multiple data sources is an increasingly useful cri-
terion in biological analysis. Some aspects of such an approach were presented in the
use of multiple sequence and structure comparison tools for protein classification.

Comparing protein structures quantitatively poses a number of challenges:
defining the appropriate notion of similarity, developing new algorithms based on
these notions of similarity that can scale to an exponentially increasing number of
structures, and understanding the significance of a score. The substantial amount
of research in this area is a reflection of the current challenges and activity in this
area. Other opportunities for future research include: flexible models for alignment,
simultaneous use of sequence and structure in pairwise and multiple alignment, and
evolutionary characterization of structures and protein–protein interactions.

5.7 References and Resources

5.7.1 Definitions
� Protein structure alignment: one-to-one mapping between the residues of two

protein structures.
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� Root-mean-square distance: the root-mean-square distance (RMSD) between
two proteins A and B under a correspondence R of size k and a transformation f
is defined as

RMSD(A,B,R, f ) =
√∑k

i=1 dist2(ai , f (R(ai )))

k

� Distance matrix: a two-dimensional matrix where each entry Mi j stores the Eu-
clidean distance between the i th and j th residues of a protein.

� Structural motif: a substructure that is common in the structures of a set of
proteins.

� Multiple structure alignment: the alignment of a set of related proteins that
results in a consensus structure which has the minimum RMSD sum to the protein
structures in the set.

� Feature vector: a vector composed of numerical values that summarizes the prop-
erties of an object.

� Index structure: a data structure that organizes a set of objects and supports
efficient retrieval.

5.7.2 Resources

Name Description Link

CATH Classification http://cathwww.biochem.ucl.ac.uk/latest/
CE Pairwise & multiple http://cl.sdsc.edu/

alignment
DALI Pairwise alignment http://www.ebi.ac.uk/dali/
FSSP Classification http://ekhidna.biocenter.helsinki.fi/dali/start
MASS Multiple alignment http://bioinfo3d.cs.tau.ac.il MASS/
MultiProt Multiple alignment http://bioinfo3d.cs.tau.ac.il/MultiProt/
PDB Structure repository http://www.rcsb.org/pdb/Welcome.do
ProtDex Database search http://xena1.ddns.comp.nus.edu.sg/g̃enesis/PD2.htm
PSI Database search http://bioserver.cs.ucsb.edu/proteinstructuresimilarity.php
SCOP Classification http://scop.mrc-lmb.cam.ac.uk/scop/
SSAP Pairwise alignment http://www.cathdb.info/cgi-bin/cath/GetSsapRasmol.pl
Trilogy Motif finding http://theory.lcs.mit.edu/trilogy/
URMS Pairwise alignment http://cbsusrv01.tc.cornell.edu/urms/
VAST Pairwise alignment http://www.ncbi.nih.gov/Structure/VAST/vastsearch.html

5.8 Further Reading

For readers interested in pairwise protein structure comparison, we recommend
“Protein structure comparison by alignment of distance matrices” by Holm and
Sander (1993), “Approximate protein structural alignment in polynomial time” by
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Kolodny and Linial (2004), and “Sensitivity and selectivity in protein structure
comparison” by Sierk and Pearson (2004). For more information on motif detection
and multiple structure alignment, we recommend “Discovery of sequence–structure
patterns across diverse proteins” by Bradley et al. (2002) and “MASS: multiple
structural alignment by secondary structures” by Dror et al. (2003). More infor-
mation about database searches can be found in “Index-based similarity search
for protein structure databases” by Camoglu et al. (2004) and “Rapid 3d protein
structure database searching using information retrieval techniques” by Aung and
Tan (2004). For further discussion about the comparison of classification databases
and automated classification techniques, we recommend “Automated assignment
of SCOP and CATH protein structure classifications from FSSP scores” by Getz
et al. (2002) and “Decision tree based information integration for automated protein
classification” by Camoglu et al. (2005).
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6 Computation of Protein Geometry and Its
Applications: Packing and Function Prediction

Jie Liang

6.1 Introduction

Three-dimensional atomic structures of protein molecules provide rich information
for understanding how these working molecules of a cell carry out their biologi-
cal functions. With the amount of solved protein structures rapidly accumulating,
computation of geometric properties of protein structure becomes an indispensable
component in studies of modern biochemistry and molecular biology. Before we
discuss methods for computing the geometry of protein molecules, we first briefly
describe how protein structures are obtained experimentally.

There are primarily three experimental techniques for obtaining protein struc-
tures: X-ray crystallography, solution nuclear magnetic resonance (NMR), and
freeze-sample electron microscopy (cryo-EM). In X-ray crystallography, the diffrac-
tion patterns of X-ray irradiation of a high-quality crystal of the protein molecule
are measured. Since the diffraction is due to scattering of the X-ray by the electrons
of the molecules in the crystal, the position, the intensity, and the phase of each
recorded diffraction spot provide information for the reconstruction of an electron
density map of atoms in the protein molecule. Based on independent information
of the amino acid sequence, a model of the protein conformation is then derived
by fitting model conformations of residues to the electron density map. An iterative
process called refinement is then applied to improve the quality of the fit of the
electron density map. The final model of the protein conformation consists of the
coordinates of each of the non-hydrogen atoms (Rhodes, 1999).

The solution NMR technique for solving protein structure is based on measuring
the tumbling and vibrating motions of the molecule in solution. By assessing the
chemical shifts of atomic nuclei with spins due to interactions with other atoms
in the vicinity, a set of estimated distances between specific pairs of atoms can be
derived from NOSEY spectra. When a large number of such distances are obtained,
one can derive a set of conformations of the protein molecule, each consistent with
all of the distance constraints (Crippen and Havel, 1988). Although determining
conformations from either X-ray diffraction patterns or NMR spectra is equivalent
to solving an ill-posed inverse problem, techniques such as Bayesian Markov chain
Monte Carlo with parallel tempering have been shown to be effective in obtaining
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protein structures from NMR spectra (Rieping et al., 2005). The cryo-EM technique
for obtaining protein structure is described in more detail in Chapter 11.

6.2 Theory and Model

6.2.1 The Idealized Ball Model

The shape of a protein molecule is complex. The chemical properties of atoms in
a molecule are determined by their electron charge distribution. It is this distribu-
tion that generates the scattering patterns of the X-ray diffraction. Chemical bonds
between atoms lead to transfer of electronic charges from one atom to another, and
the resulting isosurfaces of the electron density distribution depend not only on the
location of individual nuclei but also on interactions between atoms. This results in
an overall complicated isosurface of electron density (Bader, 1994).

The geometric model of a macromolecule amenable to convenient computa-
tion is an idealized model, where the shapes of atoms are approximated by three-
dimensional balls. The shape of a protein or a DNA molecule consisting of many
atoms is then the space-filling shape taken by a set of atom balls. This model is often
called the interlocking hard-sphere model, the fused ball model, the space filling
model (Lee and Richards, 1971; Richards, 1974a, 1985; Richmond, 1984), or the
union of ball model (Edelsbrunner, 1995). In this model, details on the distribution of
electron density, e.g., the differences between regions of covalent bonds and nonco-
valent bonds, are ignored. This idealization is quite reasonable, as it reflects the fact
that the electron density reaches a maximum at a nucleus, and its magnitude decays
almost spherically away from the point of the nucleus. Despite possible inaccuracy,
this idealized model has found wide acceptance, because it enables quantitative mea-
surement of important geometric properties (such as area and volume) of molecules.
Insights gained from these measurements correlate well with experimental observa-
tions (Lee and Richards, 1971; Richards, 1977, 1985; Connolly, 1983; Richards and
Lim, 1994; Gerstein and Richards, 1999).

With this idealization, the shape of each atom is that of a ball, and its size
parameter is the ball radius. There are many possible choices for the parameter set
of atomic radii (Richards, 1974b; Tsai et al., 1999). Frequently, atomic radii are
assigned the values of their van der Waals radii (Bondi, 1964). Among all these
atoms, hydrogen atom has the smallest mass, and has a much smaller radius than
those of other atoms. For simplification, the united atom model is often employed
to approximate the union of a heavy atom and the hydrogen atoms connected by a
covalent bond. In this case, the radius of the heavy atom is increased to approximate
the size of the union of the two atoms. This practice significantly reduces the total
number of atom balls in the molecule. However, this approach has been questioned
for possible inadequacy (Word et al., 1999).

The mathematical model of this idealized model is that of the union of balls
(Edelsbrunner, 1995). For a molecule M of n atoms, the i th atom is modeled as a ball
bi , whose center is located at zi ∈ R

3, and the radius of this ball is ri ∈ R, namely,
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we have bi ≡ {x|x ∈ R
3, ||x − zi || ≤ ri } parameterized by (zi , ri ). The molecule M

is formed by the union of a finite number n of such balls defining the set B:

M =
⋃

B =
n⋃

i=1

{bi }.

It creates a space-filling body corresponding to the union of the excluded volumes
vol(

⋃n
i=1 bi ) (Edelsbrunner, 1995). When the atoms are assigned the van der Waals

radii, the boundary surface ∂
⋃B of the union of balls is called the van der Waals

surface.

6.2.2 Surface Models: Lee–Richards and Connolly’s Surfaces

Protein folds into native three-dimensional shape to carry out its biological functional
roles. The interactions of a protein molecule with other molecules (such as ligand,
substrate, or other protein) determine its functional roles. Such interactions occur
physically on the surfaces of the protein molecule.

The importance of the protein surface was recognized very early on. Lee and
Richards developed the widely used solvent-accessible (SA) surface model, which
is also often called the Lee–Richards surface model (Lee and Richards, 1971). In-
tuitively, this surface is obtained by rolling a ball of radius rs everywhere along the
van der Waals surface of the molecule. The center of the solvent ball will then sweep
out the solvent-accessible surface. Equivalently, the solvent-accessible surface can
be viewed as the boundary surface ∂

⋃Brs of the union of a set of inflated balls Brs ,
where each ball takes the position of an atom, but with an inflated radius ri + rs

(Fig. 6.1a).
The solvent-accessible surface in general has many sharp crevices and sharp

corners. In the hope of obtaining a smoother surface, one can take the surface
swept out by the front instead of the center of the solvent ball. This surface is

ba c

Fig. 6.1 Geometric models of protein surfaces. (a) The solvent-accessible (SA) surface is shown
in the front. The van der Waals surface (beneath the SA surface) can be regarded as a shrunken
version of the SA surface by reducing all atomic radii uniformly by the amount of the radius of the
solvent probe rs = 1.4 Å. The elementary pieces of the solvent-accessible surface are the three
convex spherical surface pieces, the three arcs, and the vertex where the three arcs meet. (b) The
molecular surface (MS, beneath the SA surface) also has three types of elementary pieces: the
convex spheric pieces, which are shrunken versions of the corresponding pieces in the solvent-
accessible surface, the concave toroidal pieces, and concave spheric surface. The latter two are also
called the reentrant surface. (c) The toroidal surface pieces in the molecular surface correspond to
the arcs in the solvent-accessible surface, and the concave spheric surface to the vertex. The set of
elements in one surface can be continuously deformed to the set of elements in the other surface.
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the molecular surface (MS model), which is often called the Connolly’s surface
after Michael Connolly who developed the first algorithm for computing molecular
surface (Connolly, 1983). Both solvent-accessible surface and molecular surface are
formed by elementary pieces of simpler shape.

Elementary pieces: For the solvent-accessible surface model, the boundary surface
of a molecule consists of three types of elements: the convex spherical surface pieces,
arcs or curved line segments (possibly a full circle) formed by two intersecting
spheres, and a vertex that is the intersection point of three atom spheres. The whole
boundary surface of the molecules can be thought of as a surface formed by stitching
these elements together.

Similarly, the molecular surface swept out by the front of the solvent ball can
also be thought of as being formed by elementary surface pieces. In this case, they
are the convex spherical surface pieces, the toroidal surface pieces, and the concave
or inverse spherical surface pieces (Fig. 6.1b) . The latter two types of surface pieces
are often called the “reentrant surfaces” (Connolly, 1983; Richards, 1985).

The surface elements of the solvent-accessible surface and the molecular sur-
face are closely related. Imagine a process where atom balls are shrunk. The vertices
in the solvent-accessible surface become the concave spherical surface pieces, the
arcs become the toroidal surfaces, and the convex surface pieces become smaller
convex surface pieces (Fig. 6.1c). Because of this mapping, these two types of sur-
faces are combinatorially equivalent and have similar topological properties, i.e.,
they are homotopy equivalent.

However, the SA surface and the MS surface differ in their metric measure-
ment. In concave regions of a molecule, often the front of the solvent ball can sweep
out a larger volume than the center of the solvent ball. A void of size close to zero
in the solvent-accessible surface model will correspond to a void of the size of a
solvent ball (4�r3

s /3). It is therefore important to distinguish these two types of mea-
surement when interpreting the results of volume calculations of protein molecules.
The intrinsic structures of these fundamental elementary pieces are closely related
to several geometric constructs we describe below.

6.2.3 Geometric Constructs

Voronoi diagram: A Voronoi diagram (Fig. 6.2a), also known as Voronoi tessellation,
is a geometric construct that has been used for analyzing protein packing since the
early days of protein crystallography (Richards, 1974a; Finney, 1975; Gellatly and
Finney, 1982). For a two-dimensional Voronoi diagram, we consider the following
analogy. Imagine a vast forest containing a number of fire observation towers. Each
fire ranger is responsible for putting out any fire closer to his/her tower than to any
other tower. The set of all trees for which a ranger is responsible constitutes the
Voronoi cell associated with his/her tower, and the map of ranger responsibilities,
with towers and boundaries marked, constitutes the Voronoi diagram.

We formalize this for three-dimensional space. Consider the point set S of atom
centers in three-dimensional space R

3. The Voronoi region or Voronoi cell Vi of an



SVNY330-Xu-Vol-I November 2, 2006 17:2

6. Packing and Function Prediction 185

void

a cb

Fig. 6.2 Geometry of a simplified two-dimensional model molecule, to illustrate the geometric
constructs and the procedure mapping the Voronoi diagram to the Delaunay triangulation. (a) The
molecule formed by the union of atom disks of uniform size. Voronoi diagram is in dashed lines.
(b) The shape enclosed by the boundary polygon is the convex hull. It is tessellated by the Delaunay
triangulation. (c) The alpha shape of the molecule is formed by removing those Delaunay edges
and triangles whose corresponding Voronoi edges and Voronoi vertices do not intersect with the
body of the molecule. A molecular void is represented in the alpha shape by two empty triangles.

atom bi with atom center zi ∈ R
3 is the set of all points that are at least as close to

zi as to any other atom centers in S:

Vi = {x ∈ R
3|||x − zi || ≤ ||x − z j ||, z j ∈ S}. (6.1)

We can have an alternative view of the Voronoi cell of an atom bi . Consider
the distance relationship of atom center zi with atom center zk of another atom bk .
The plane bisecting the line segment connecting points zi and zk divides the full R

3

space into two half spaces, where points in one half space are closer to zi than to
zk , and points in the other half space are closer to zk than to zi . If we repeat this
process and take zk in turn from the set of all atom centers other than zi , we will have
a number of half spaces where points are closer to zi than to each atom center zk .
The Voronoi region Vi is then the common intersections of these half spaces, which
is convex. When we consider atoms of different radii, we replace the Euclidean
distance ||x − zi || with the power distance defined as: �i (x) ≡ ||x − zi ||2 − r2

i .

Delaunay tetrahedrization: Delaunay triangulation in R
2 or Delaunay tetrahedriza-

tion in R
3 is a geometric construct that is closely related to the Voronoi diagram

(Fig. 6.2b). In general, it uniquely tessellates the space of the convex hull of the
atom centers in R

3 with tetrahedra. Convex hull for a point set is the smallest convex
body that contains the point set.1 The Delaunay tetrahedrization of a molecule can
be obtained from the Voronoi diagram. Consider that the Delaunay tetrahedrization

1 For a two-dimensional toy molecule, we can imagine that we put nails at the locations of the atom

centers, and tightly wrap a rubber band around these nails. The rubber band will trace out a polygon. This

polygon and the region enclosed within is the convex hull of the set of points corresponding to the atom

centers. Similarly, imagine that if we can tightly wrap tinfoil around a set of points in three-dimensional

space, the resulting convex body formed by the tinfoil and space enclosed within is the convex hull of

this set of points in R
3.
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is formed by gluing four types of primitive elements together: vertices, edges, trian-
gles, and tetrahedra. Here vertices are just the atom centers. We obtain a Delaunay
edge by connecting atom centers zi and z j if and only if the Voronoi regions Vi and
Vj have a common intersection, which is a planar piece that may be either bounded
or extend to infinity. We obtain a Delaunay triangle connecting atom centers zi , z j ,
and zk if the common intersection of Voronoi regions Vi , Vj , and Vk exists, which is
either a line segment, or a half-line, or a line in the Voronoi diagram. We obtain De-
launay tetrahedra connecting atom centers zi , z j , zk , and zl if and only if the Voronoi
regions Vi , Vj , Vk , and Vl intersect at a point.

6.2.4 Topological Structures

Delaunay complex: The structures in both Voronoi diagram and Delaunay tetra-
hedrization are better described with concepts from algebraic topology. We focus
on the intersection relationship in the Voronoi diagram and introduce concepts for-
malizing the primitive elements. In R

3, between two and four Voronoi regions may
have common intersections. We use simplices of various dimensions to record these
intersection or overlap relationships. In Delaunay tetrahedrization, we have vertices
�0 as 0-simplices, edges �1 as 1-simplices, triangles �2 as 2-simplices, and tetrahedra
�3 as 3-simplices. Each of the Voronoi plane, Voronoi edge, and Voronoi vertices
corresponds to a 1-simplex (Delaunay edge), 2-simplex (Delaunay triangle), and 3-
simplex (Delaunay tetrahedron), respectively. If we use 0-simplices to represent the
Voronoi cells, and add them to the simplices induced by the intersection relationship,
we can think of the Delaunay tetrahedrization as the structure obtained by “gluing”
these simplices properly together. Formally, these simplices form a simplicial com-
plex K:

K = {�|I |−1|
⋂
i∈I

Vi �= ∅}, (6.2)

where I is an index set for the vertices representing atoms whose Voronoi cells
overlap, and |I | − 1 is the dimension of the simplex.

Alpha shape and protein surfaces: Imagine we can turn a knob to increase or decrease
the size of all atoms simultaneously. We can then have a model of growing balls
and obtain further information from the Delaunay complex about the shape of a
protein structure. Formally, we use a parameter � ∈ R to control the size of the atom
balls. For an atom ball bi of radius ri , we modified its radius ri at a particular �
value to ri (�) = (r2

i + �)1/2. When −ri < � < 0, the size of an atom is shrunk. The
atom could even disappear if � < 0 and |�| > ri . We start to collect the simplices
at different � value as we increase � from −∞ to +∞ (see Fig. 6.3 for a two-
dimensional example). At the beginning, we only have vertices. When � is increased
such that two atoms are close enough to intersect, we collect the corresponding
Delaunay edge that connects these two atom centers. When three atoms intersect,
we collect the corresponding Delaunay triangle spanning these three atom centers.
When four atoms intersect, we collect the corresponding Delaunay tetrahedron. At
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Fig. 6.3 The family of alpha shapes or dual simplicial complexes for a two-dimensional toy
molecule. (a) We collect simplices from the Delaunay triangulation as atoms grow by increasing
the � value. At the beginning as � grows from −∞, atoms are in isolation and we only have
vertices in the alpha shape. (b, c) When � is increased such that some atom pairs start to intersect,
we collect the corresponding Delaunay edges. (d) When three atoms intersect as � increases, we
collect the corresponding Delaunay triangles. When � = 0, the collection of vertices, edges, and
triangles form the dual simplicial complex K0, reflecting the topological structure of the protein
molecule. (e) More edges and triangles from the Delaunay triangulation are now collected as atoms
continue to grow. (d) Finally, all vertices, edges, and triangles are now collected as atoms are grown
to large enough size. We get back the full original Delaunay complex.

any specific � value, we have a dual simplicial complex or alpha complexK� formed
by the collected simplices. If all atoms take the incremented radius of ri + rs and
� = 0, we have the dual simplicial complex K0 of the protein molecule. When �
is sufficiently large, we have collected all simplices and we get the full Delaunay
complex. This series of simplicial complexes at different � value form a family of
shapes (Fig. 6.3), called alpha shapes, each faithfully representing the geometric and
topological property of the protein molecule at a particular resolution parametrized
by the � value.

An equivalent way to obtain the alpha shape at � = 0 is to take a subset of the
simplices, with the requirement that the corresponding intersections of Voronoi cells
must overlap with the body of the union of the balls. We obtain the dual complex or
alpha shape K0 of the molecule at � = 0 (Fig. 6.2c):

K0 = {�|I |−1|
⋂
i∈I

Vi ∩
⋃

B �= ∅}. (6.3)

Alpha shape provides a guide map for computing geometric properties of the
structures of biomolecules. Take the molecular surface as an example; the reentrant
surfaces are formed by the concave spherical patch and the toroidal surface. These
can be mapped from the boundary triangles and boundary edges of the alpha shape,
respectively (Edelsbrunner et al., 1995). Recall that a triangle in the Delaunay tetra-
hedrization corresponds to the intersection of three Voronoi regions, i.e., a Voronoi
edge. For a triangle on the boundary of the alpha shape, the corresponding Voronoi
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edge intersects with the body of the union of balls by definition. In this case, it inter-
sects with the solvent-accessible surface at the common intersecting vertex when the
three atoms overlap. This vertex corresponds to a concave spherical surface patch
in the molecular surface. For an edge on the boundary of the alpha shape, the corre-
sponding Voronoi plane coincides with the intersecting plane when two atoms meet,
which intersect with the surface of the union of balls on an arc. This line segment
corresponds to a toroidal surface patch. The remaining parts of the surface are con-
vex pieces, which correspond to the vertices, namely, the atoms on the boundary of
the alpha shape.

The numbers of toroidal pieces and concave spherical pieces are exactly the
numbers of boundary edges and boundary triangles in the alpha shape, respectively.
Because of the restriction of bond length and the excluded volume effects, the number
of edges and triangles in molecules are roughly on the order of O(n) (Liang et al.,
1998a).

6.2.5 Metric Measurement

We have described the relationship between the simplices and the surface ele-
ments of the molecule. Based on this relationship, we can compute efficiently
size properties of the molecule. We take the problem of volume computation as an
example.

Consider a grossly incorrect way to compute the volume of a protein molecule
using the solvent-accessible surface model. We could define that the volume of the
molecule is the summation of the volumes of individual atoms, whose radii are
inflated to account for the solvent probe. By doing so we would have significantly
exaggerated the value of the true volume, because we neglected to consider volume
overlaps. We can explicitly correct this by following the inclusion–exclusion formula:
when two atoms overlap, we subtract the overlap; when three atoms overlap, we first
subtract the pair overlaps, we then add back the triple overlap, etc. This continues
when there are four, five, or more atoms intersecting. At the combinatorial level,
the principle of inclusion–exclusion is related to the Gauss–Bonnet theorem used
by Connolly (Connolly, 1983). The corrected volume V (B) for a set of atom balls
B can then be written as

V (B) =
∑

vol(
⋂

T )>0
T ⊂B

(−1)dim(T )−1vol
(⋂

T
)

, (6.4)

where vol(
⋂

T ) represents volume overlap of various degree, and T ⊂ B is a subset
of the balls with nonzero volume overlap: vol(

⋂
T ) > 0.

However, the straightforward application of this inclusion–exclusion formula
does not work well. The degree of overlap can be very high: theoretical and simulation
studies showed that the volume overlap can be up to 7–8 degrees (Kratky, 1981;
Petitjean, 1994). It is difficult to keep track of these high degree of volume overlaps
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Fig. 6.4 An example of analytical area calculation. (A) Area can be computed using the direct
inclusion-exclusion. (B) The formula is simplified without any redundant terms when using alpha
shape.

correctly during computation, and it is also difficult to compute the volume of these
overlaps because there are many different combinatorial situations, i.e., to quantify
how large is the k-volume overlap of which one of the

(
7
k

)
or

(
8
k

)
overlapping atoms

for all of k = 2, . . . , 7 (Petitjean, 1994). It turns out that for three-dimensional
molecules, overlaps of five or more atoms at a time can always be reduced to a “+”
or a “−” signed combination of overlaps of four or fewer atom balls (Edelsbrunner,
1995). This requires that the 2-body, 3-body, and 4-body terms in Eq. (6.4) enter
the formula if and only if the corresponding edge �i j connecting the two balls
(1-simplex), triangles �i jk spanning the three balls (2-simplex), and tetrahedron �i jkl

cornered on the four balls (3-simplex) all exist in the dual simplicial complex K0

of the molecule (Edelsbrunner, 1995; Liang et al., 1998a). Atoms corresponding to
these simplices will all have volume overlaps. In this case, we have the simplified
exact expansion:

V (B) =
∑
�i ∈K

vol(bi ) −
∑

�i j ∈K
vol(bi ∩ b j )

+
∑

�i jk∈K
vol(bi ∩ b j ∩ bk) −

∑
�i jkl∈K

vol(bi ∩ b j ∩ bk ∩ bl).

The same idea is applicable for the calculation of surface area of molecules.

An example: An example of area computation by alpha shape is shown in Fig. 6.4.
Let b1, b2, b3, b4 be the four disks. To simplify the notation we write Ai for the area
of bi , Ai j for the area of bi ∩ b j , and Ai jk for the area of bi ∩ b j ∩ bk . The total area
of the union, b1 ∪ b2 ∪ b3 ∪ b4, is

Atotal = (A1 + A2 + A3 + A4)

− (A12 + A23 + A24 + A34)

+ A234.
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We add the area of bi if the corresponding vertex belongs to the alpha complex
(Fig. 6.4), we subtract the area of bi ∩ b j if the corresponding edge belongs to the
alpha complex, and we add the area of bi ∩ b j ∩ bk if the corresponding triangle
belongs to the alpha complex. Note without the guidance of the alpha complex, the
inclusion–exclusion formula may be written as

Atotal = (A1 + A2 + A3 + A4)

− (A12 + A13 + A14 + A23 + A24 + A34)

+ (A123 + A124 + A134 + A234)

− A1234.

This contains six canceling redundant terms: A13 = A123, A14 = A124, and A134 =
A1234. Computing these terms would be wasteful. Such redundancy does not occur
when we use the alpha complex: the part of the Voronoi regions contained in the
respective atom balls for the redundant terms do not intersect. Therefore, the corre-
sponding edges and triangles do not enter the alpha complex. In two dimensions, we
have terms of at most three disk intersections, corresponding to triangles in the alpha
complex. Similarly, in three dimensions the most complicated terms are intersections
of four spherical balls, and they correspond to tetrahedra in the alpha complex.

Voids and pockets: Voids and pockets represent the concave regions of a protein
surface. Because shape-complementarity is the basis of many molecular recognition
processes, binding and other activities frequently occur in pocket or void regions
of protein structures. For example, the majority of enzyme reactions take place in
surface pockets or interior voids.

The topological structure of the alpha shape also offers an effective method for
computing voids and pockets in proteins. Consider the Delaunay tetrahedra that are
not included in the alpha shape. If we repeatedly merge any two such tetrahedra on
the condition that they share a 2-simplex triangle, we will end up with discrete sets of
tetrahedra. Some of them will be completely isolated from the outside, and some of
them are connected to the outside by triangle(s) on the boundary of the alpha shape.
The former corresponds to voids (or cavities) in proteins, the latter corresponds to
pockets and depressions in proteins.

A pocket differs from a depression in that it must have an opening that is at least
narrower than one interior cross section. Formally, the discrete flow (Edelsbrunner
et al., 1998) explains the distinction between a depression and a pocket. In a two-
dimensional Delaunay triangulation, the empty triangles that are not part of the alpha
shape can be classified into obtuse triangles and acute triangles. The largest angle of
an obtuse triangle is more than 90 degrees, and the largest angle of an acute triangle
is less than 90 degrees. An empty obtuse triangle can be regarded as a “source”
of empty space that “flows” to its neighbor, and an empty acute triangle a “sink”
that collects flow from its obtuse empty neighboring triangle(s). In Fig. 6.5a, obtuse
triangles 1, 3, 4, and 5 flow to the acute triangle 2, which is a sink. Each of the discrete
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Fig. 6.5 Discrete flow of empty space illustrated for two-dimensional disks. (a) Discrete flow of
a pocket. Triangles 1, 3, 4, and 5 are obtuse. The free volume flows to the “sink” triangle 2, which
is acute. (b) In a depression, the flow is from obtuse triangles to the outside.

empty spaces on the surface of protein can be organized by the flow systems of the
corresponding empty triangles: Those that flow together belong to the same discrete
empty space. For a pocket, there is at least one sink among the empty triangles. For
a depression, all triangles are obtuse, and the discrete flow goes from one obtuse
triangle to another, from the innermost region to outside the convex hull. The discrete
flow of a depression therefore goes to infinity. Figure 6.5b gives an example of a
depression formed by a set of obtuse triangles.

Once voids and pockets are identified, we can apply the inclusion–exclusion
principle based on the simplices to compute the exact size measurement (e.g., volume
and area) of each void and pocket (Liang et al., 1998b; Edelsbrunner et al., 1998).

The distinction between voids and pockets depends on the specific set of atomic
radii and the solvent radius. When a larger solvent ball is used, the radii of all atoms
will be inflated by a larger amount. This could lead to two different outcomes. A
void or pocket may become completely filled and disappear. On the other hand, the
inflated atoms may not fill the space of a pocket, but may close off the opening
of the pocket. In this case, a pocket becomes a void. A widely used practice in
the past was to adjust the solvent ball and repeatedly compute voids, in the hope
that some pockets will become voids and hence be identified by methods designed
for cavity/void computation. The pocket algorithm (Edelsbrunner et al., 1998) and
tools such as CASTp (Liang et al., 1998c; Binkowski et al., 2003b) often make this
unnecessary.

6.3 Computation and Software

Computing Delaunay tetrahedrization and Voronoi diagram: It is easier to discuss
the computation of tetrahedrization first. The incremental algorithm developed in
Edelsbrunner and Shah (1996) can be used to compute the weighted tetrahedrization
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Fig. 6.6 An illustration of locally Delaunay edge and flips. (a) For the quadrilateral abcd, edge
ab is not locally Delaunay, as the circumcircle passing through edge ab and a third point c contains
a fourth point d. Edge cd is locally Delaunay, as b is outside the circumcircle adc. An edge-flip or
2-to-2 flip replaces edge ab by edge cd , and replace the original two triangles abc and adb with
two new triangles acd and bcd. (b) When a new vertex is inserted, we replace the old triangle
containing this new vertex with three new triangles. This is called 1-to-3 flips.

for a set of atoms of different radii. For simplicity, we sketch the outline of the
algorithm below for two-dimensional unweighted Delaunay triangulation.

The intuitive idea of the algorithm can be traced back to the original obser-
vation of Delaunay. For the Delaunay triangulation of a point set, the circumcircle
of an edge and a third point forming a Delaunay triangle must not contain a fourth
point. Delaunay showed that if all edges in a particular triangulation satisfy this
condition, the triangulation is a Delaunay triangulation. It is easy to come up with an
arbitrary triangulation for a point set. A simple algorithm to covert this triangulation
to the Delaunay triangulation is therefore to go through each of the triangles, and
make corrections using “flips” discussed below, if a specific triangle contains an
edge violating the above condition. The basic ingredients for computing Delaunay
tetrahedrization are generalizations of these observations. We discuss the concept of
locally Delaunay edge and the edge-flip primitive operation below.

Locally Delaunay edge. We say an edge ab is locally Delaunay if either it is on
the boundary of the convex hull of the point set, or if it belongs to two triangles abc
and abd , and the circumcircle of abc does not contain d (e.g., edge cd in Fig. 6.6a).

Edge-flip. If ab is not locally Delaunay (edge ab in Fig. 6.6a), then the union
of the two triangles abc ∪ abd is a convex quadrangle acbd, and edge cd is locally
Delaunay. We can replace edge ab by edge cd. We call this an edge-flip or 2-to-2
flip, as two old triangles are replaced by two new triangles.

We recursively check each boundary edge of the quadrangle abcd to see if it
is also locally Delaunay after replacing ab by cd. If not, we recursively edge-flip it.

Incremental algorithm for Delaunay triangulation. Assume we have a finite set
of points (namely, atom centers) S = {z1, z2, . . . , zi , . . . , zn}. We start with a large
auxiliary triangle that contains all these points. We insert the points one by one. At
all times, we maintain a Delaunay triangulation Di up to insertion of point zi .

After inserting point zi , we search for the triangle �i−1 that contains this new
point. We then add zi to the triangulation and split the original triangle �i−1 into three
smaller triangles. This split is called 1-to-3 flip, as it replaces one old triangle with
three new triangles. We then check if each of the three edges in �i−1 still satisfies
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Algorithm 1 Delaunay triangulation

Obtain random ordering of points {z1, . . . , zn};
for i = 1 to n do

find �i−1 such zi ∈ �i−1;
add zi , and split �i−1 into three triangles (1-to-3 flip);
while any edge ab not locally Delaunay do

flip ab to other diagonal cd (2-to-2 edge flip);
end while

end for

the locally Delaunay requirement. If not, we perform a recursive edge-flip. This
algorithm is summarized in Algorithm 1.

In R
3, the algorithm of tetrahedrization becomes more complex, but the same

basic ideas apply. In this case, we need to locate a tetrahedron instead of a triangle
that contains the newly inserted point. The concept of locally Delaunay is replaced
by the concept of locally convex, and there are flips different than the 2-to-2 flip in R

3

(Edelsbrunner and Shah, 1996). Although an incremental approach, i.e., sequentially
adding points, is not necessary for Delaunay triangulation in R

2, it is necessary in
R

3 to avoid nonflippable cases and to guarantee that the algorithm will terminate.
This incremental algorithm has excellent expected performance (Edelsbrunner and
Shah, 1996).

The computation of Voronoi diagram is conceptually easy once the Delaunay
triangulation is available. We can take advantage of the mathematical duality and
compute all of the Voronoi vertices, edges, and planar faces from the Delaunay
tetrahedra, triangles, and edges. Because one point zi may be a vertex of many
Delaunay tetrahedra, the Voronoi region of zi therefore may contain many Voronoi
vertices, edges, and planar faces. The efficient quad-edge data structure can be used
for software implementation (Guibas and Stolfi, 1985).

Volume and area computation: Let V and A denote the volume and area of the
molecule, respectively, K0 for the alpha complex, � for a simplex in K, i for a
vertex, i j for an edge, i jk for a triangle, and i jkl for a tetrahedron. The algorithm
for volume and area computation can be written as Algorithm 2. Additional details
of volume and area computation can be found in Edelsbrunner et al. (1995), and
Liang et al. (1998a).

Software: The software package Delcx for computing weighted Delaunay tetra-
hedrization, Mkalf for computing the alpha shape, Volbl for computing volume and
area of both molecules and interior voids can be found at www.alphashape.org.
The CASTp webserver for pocket computation can be found at cast.engr.uic.edu.
There are other studies that compute or use Voronoi diagrams of protein structures
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Algorithm 2 Volume and area measurement

V := A := 0.0;
for all � ∈ K do

if � is a vertex i then
V := V + vol(bi ) ; A := A + area(bi );

end if
if � is an edge ij then

V := V − vol(bi ∩ b j ) ; A := A − area(bi ∩ b j );
end if
if � is a triangle ijk then

V := V + vol(bi ∩ b j ∩ bk); A := A + area(bi ∩ b j ∩ bk);
end if
if � is a tetrahedron ijkl then

V := V − vol(bi ∩ b j ∩ bk ∩ bl) ; A := A − area(bi ∩ b j ∩ bk ∩ bl);
end if

end for

(Chakravarty et al., 2002; Goede et al., 1997; Harpaz et al., 1994), although not all
computes the weighted version which allows atoms to have different radii.

In this short description of algorithm, we have neglected many details important
for geometric computation, for example, the problem of how to handle geometric
degeneracy, namely, when three points are colinear, or when four points are coplanar.
Interested readers should consult the excellent monograph by Edelsbrunner for a
detailed treatise of these and other important topics in computational geometry
(Edelsbrunner, 2001).

6.4 Applications: Packing Analysis

An important application of the Voronoi diagram and volume calculation is the
measurement of protein packing. Tight packing is an important feature of protein
structure (Richards, 1974a, 1977), and is thought to play important roles in protein
stability and folding dynamics (Levitt et al., 1997). The packing density of a protein
is measured by the ratio of its van der Waals volume and the volume of the space
it occupies. One approach is to calculate the packing density of buried residues and
atoms using Voronoi diagram (Richards, 1974a, 1977). This approach was also used
to derive parameters of radii of atoms (Tsai et al., 1999).

Based on the computation of voids and pockets in proteins, a detailed study
surveying major representatives of all known protein structural folds showed that
there is a substantial amount of voids and pockets in proteins (Liang and Dill,
2001). On average, every 15 residues introduces a void or a pocket (Fig. 6.7a). For a
perfectly solid three-dimensional sphere of radius r , the relationship between volume
V = 4�r3/3 and surface area A = 4�r2 is: V ∝ A3/2. In contrast, Fig. 6.7b shows
that the van der Waals volume scales linearly with the van der Waals surface areas
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Fig. 6.7 Voids and pockets for a set of 636 proteins representing most of the known protein folds,
and the scaling behavior of the geometric properties of proteins. (a) The number of voids and
pockets detected with a 1.4 Å probe is linearly correlated with the number of residues in a protein.
Only proteins with less than 1,000 residues are shown. Solid triangles and empty circles represent
the pockets and the voids, respectively. (b) The van der Waals volume and van der Waals area of
proteins scale linearly with each other. Similarly, molecular surface volume also scales linearly
with molecular surface area using a probe radius of 1.4 Å. (Data not shown. Figure adapted after
Liang and Dill, 2001).

of proteins. The same linear relationship holds irrespective of whether we relate
molecular surface volume and molecular surface area, or solvent-accessible volume
and solvent-accessible surface area. This and other scaling behavior point out that
the protein interior is not packed as tight as solid (Liang and Dill, 2001). Rather,
packing defects in the form of voids and pockets are common in proteins.

If voids and pockets are prevalent in proteins, an interesting question is what
is the origin of the existence of these voids and pockets. This question was studied
by examining the scaling behavior of packing density and coordination number of
residues through the computation of voids, pockets, and edge simplices in the alpha
shapes of random compact chain polymers (Zhang et al., 2003). For this purpose,
a 32-state discrete state model was used to generate a large ensemble of compact
self-avoiding walks. This is a difficult task, as it is very challenging to generate a
large number of independent conformations of very compact chains that are self-
avoiding. The results in Zhang et al. (2003) showed that it is easy for compact random
chain polymers to have similar scaling behavior of packing density and coordination
number with chain length. This suggests that proteins are not optimized by evolution
to eliminate voids and pockets, and the existence of many pockets and voids is
random in nature, due to the generic requirement of compact chain polymers. The
frequent occurrence and the origin of voids and pockets in protein structures raise
a challenging question: How can we distinguish voids and pockets that perform
biological functions such as binding from those formed by random chance? This
question is related to the general problem of protein function prediction.
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6.5 Applications: Protein Function Prediction
from Structures

Conservation of protein structures often reveals very distant evolutionary relation-
ships, which are otherwise difficult to detect by sequence analysis (Todd et al., 2001).
Comparing protein structures can provide insightful ideas about the biochemical
functions of proteins (e.g., active sites, catalytic residues, and substrate interactions)
(Holm and Sander, 1997; Martin et al., 1998; Orengo et al., 1999).

A fundamental challenge in inferring protein function from structure is that the
functional surface of a protein often involves only a small number of key residues.
These interacting residues are dispersed in diverse regions of the primary sequences
and are difficult to detect if the only information available is the primary sequence.
Discovery of local spatial motifs from structures that are functionally relevant has
been the focus of many studies.

Graph-based methods for spatial patterns in proteins: To analyze local spatial
patterns in proteins. Artymiuk et al. developed an algorithm based on subgraph
isomorphism detection (Artymiuk et al., 1994). By representing residue side chains
as simplified pseudo-atoms, a molecular graph is constructed to represent the patterns
of side-chain pseudo-atoms and their interatomic distances. A user-defined query
pattern can then be searched rapidly against the Protein Data Bank for similarity
relationship. Another widely used approach is the method of geometric hashing. By
examining spatial patterns of atoms, Fischer et al. developed an algorithm that can
detect surface similarity of proteins (Fischer et al., 1982; Norel et al., 1994). This
method has also been applied by Wallace et al. for the derivation and matching of
spatial templates (Wallace et al., 1997). Russell developed a different algorithm that
detects side-chain geometric patterns common to two protein structures (Russell,
1998). With the evaluation of statistical significance of measured root-mean-square
distance, several new examples of convergent evolution were discovered, where
common patterns of side chains were found to reside on different tertiary folds.

These methods have a number of limitations. Most require a user-defined tem-
plate motif, restricting their utility for automated database-wide search. In addition,
the size of the spatial pattern related to protein function is also often restricted.

Predicting protein functions by matching pocket surfaces: Protein functional
surfaces are frequently associated with surface regions of prominent concavity
(Laskowski et al., 1996; Liang et al., 1998c). These include pockets and voids, which
can be accurately computed as we have discussed. Computationally, one wishes to
automatically identify voids and pockets on protein structures where interactions
exist with other molecules such as substrates, ions, ligands, or other proteins.

Binkowski et al. developed a method for predicting protein function by match-
ing a surface pocket or void on a protein of unknown or undetermined function to the
pocket or void of a protein of known function (Binkowski et al., 2003a, 2005). Ini-
tially, the Delaunay tetrahedrization and alpha shapes for almost all of the structures
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in the PDB databank are computed (Binkowski et al., 2003b). All surface pockets
and interior voids for each of the protein structures are then exhaustively computed
(Edelsbrunner et al., 1998; Liang et al., 1998b). For each pocket and void, the residues
forming the wall are then concatenated to form a short sequence fragment of amino
acid residues, while ignoring all intervening residues that do not participate in the
formation of the wall of the pocket or void. Two sequence fragments, one from the
query protein and another from one of the proteins in the database, both derived from
pocket or void surface residues, are then compared using dynamic programming.
The similarity score for any observed match is assessed for statistical significance
using an empirical randomization model constructed for short sequence patterns.

For promising matches of pocket/void surfaces showing significant sequence
similarity, we can further evaluate their similarity in shape and in relative orien-
tation. The former can be obtained by measuring the coordinate root-mean-square
distance (RMSD) between the two surfaces. The latter is measured by first placing
a unit sphere at the geometric center z0 ∈ R

3 of a pocket/void. The location of each
residue z = (x, y, z)T is then projected onto the unit sphere along the direction of
the vector from the geometric center: u = (z − z0)/||z − z0||. The projected pocket
is represented by a collection of unit vectors located on the unit sphere, and the
original orientation of residues in the pocket is preserved. The RMSD distance of
the two sets of unit vectors derived from the two pockets are then measured, which
is called the oRMSD for orientation RMSD (Binkowski et al., 2003a). This allows
similar pockets with only minor conformational changes to be detected (Binkowski
et al., 2003a).

The advantage of the method of Binkowski et al. is that it does not assume prior
knowledge of functional site residues, and does not require a priori any similarity in
either the full primary sequence or the backbone fold structures. It has no limitation
in the size of the spatially derived motif and can successfully detect patterns small
and large. This method has been successfully applied to detect similar functional
surfaces among proteins of the same fold but low sequence identities, and among
proteins of different fold (Binkowski et al., 2003a, 2004).

Function prediction through models of protein surface evolution: To match local
surfaces such as pockets and voids and to assess their sequence similarity, an effective
scoring matrix is critically important. In the original study of Binkowski et al.,
BLOSUM matrix was used. However, this is problematic, as BLOSUM matrices
were derived from analysis of precomputed large quantities of sequences, while
the information of the particular protein of interest has limited or no influence.
In addition, these precomputed sequences include buried residues in the protein
core, whose conservation reflects the need to maintain protein stability rather than
to maintain protein function. In Tseng and Liang (2005, 2006), a continuous time
Markov process was developed to explicitly model the substitution rates of residues
in binding pockets. Using a Bayesian Markov chain Monte Carlo method, the residue
substitution rates at functional pockets are estimated. The substitution rates are found
to be very different for residues in the binding site and residues on the remaining
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surface of proteins. In addition, substitution rates are also very different for residues
in the buried core and residues on the solvent-exposed surfaces.

These rates are then used to generate a set of scoring matrices of different
time intervals for residues located in the functional pocket. Application of protein-
specific and region-specific scoring matrices in matching protein surfaces results
in significantly improved sensitivity and specificity in protein function prediction
(Tseng and Liang, 2005, 2006).

In a large-scale study of predicting protein functions from structures, a subset of
100 enzyme families are collected from the total of 286 enzyme families containing
between 10 and 50 member protein structures with known Enzyme Classification
(E.C.) labels. By estimating the substitution rate matrix for residues on the active site
pocket of a query protein, a series of scoring matrices of different evolutionary time is
derived. By searching for similar pocket surfaces from a database of 770,466 pockets
derived from the CASTp database (with the criterion that each must contain at least 8
residues), this method can recover active site surfaces on enzymes similar to that on
the query structure at an accuracy of >92%. Figure 6.8 shows the Receiver Operating
Characteristics curve of this study. An example of identifying human amylase using
template surfaces from B. subtilis and from barley is shown in Fig. 6.9.
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Fig. 6.8 Large scale protein function inference. Results by matching similar functional surfaces
for 100 protein families. A correct prediction is made if the matched surface comes from a protein
structure with the same Enzyme Classification (E.C.) number (upto the 4-th digit) as that of the
query protein. The x-axis of the Receiver Operating Characteristics (ROC) curve reflects the false
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Fig. 6.9 Protein function prediction as illustrated by the example of alpha amylases. Two template
binding surfaces are used to search database of protein surfaces to identify protein structures that are
of similar functions. (a) The phylogenetic tree for the template PDB structure 1bag from B. subtilis.
(b) The template binding pocket of alpha amylase on 1bag. (c) A matched binding surface on a
different protein structure (1b2y from human, full sequence identity 22%) obtained by querying
with 1bag. (d) The phylogenetic tree for the template structure 1bg9 from H. vulgare. (e) The
template binding pocket on 1bg9. (f) A matched binding surface on a different protein structure
(1u2y from human, full sequence identity 23%) obtained by querying with 1bg9. (Adapted from
Tseng and Liang, 2006.)
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The method of surface matching based on evolutionary model is also especially
effective in solving the challenging problems of protein function prediction of or-
phan structures of unknown function (such as those obtained in structural genomics
projects), which have only sequence homologues that are themselves hypothetical
proteins with unknown functions.

6.6 Discussion

A major challenge in studying protein geometry is to understand our intuitive notions
of various geometric aspects of molecular shapes, and to quantify these notions with
mathematical models that are amenable to fast computation. The advent of the union
of the ball model of protein structures enabled rigorous definition of important geo-
metric concepts such as solvent-accessible surface and molecular surface. It also led
to the development of algorithms for area and volume calculations of proteins. Deep
understanding of the topological structure of molecular shapes is also based on the
idealized union of ball model (Edelsbrunner, 1995). A success in approaching these
problems is exemplified in the development of the pocket algorithm (Edelsbrunner
et al., 1998). Another example is the recent development of a rigorous definition of
protein–protein binding or interaction interface and algorithm for its computation
(Ban et al., 2004).

Perhaps a more fundamental problem we face is to identify important structural
and chemical features that are the determinants of biological problems of interest.
For example, we would like to know what are the shape features that have significant
influences on protein solvation, protein stability, ligand-specific binding, and protein
conformational changes. It is not clear whether our current geometric intuitions are
sufficient, or are the correct or the most relevant ones. There may still be important
unknown shape properties of molecules that elude us at the moment.

An important application of geometric computation of protein structures is to
detect patterns important for protein function. The shape of local surface regions on
a protein structure and their chemical texture are the basis of its binding interactions
with other molecules. Proteins fold into specific native structure to form these local
regions for carrying out various biochemical functions. The geometric shape and
chemical pattern of the local surface regions, and how they change dynamically are
therefore of fundamental importance in computational studies of proteins.

Another important application is the development of geometric potential func-
tions. Potential functions are important for generating conformations, for distin-
guishing native and near-native conformations from other decoy conformations in
protein structure predictions (Singh et al., 1996; Zheng et al., 1997; Li et al., 2003;
Li and Liang, 2005b) and in protein–protein docking (Li and Liang, 2005a). They
are also important for peptide and protein design (Li and Liang, 2005a; Hu et al.,
2004). Chapter 3 describes in detail the development of geometric potential and
applications in decoy discrimination and in protein–protein docking prediction.
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We have not described in detail the approach of studying protein geometry
using graph theory. In addition to side-chain pattern analysis briefly discussed ear-
lier, graph-based protein geometric model also has led to a number of important
insights, including the optimal design of model proteins formed by hydrophobic
and polar residues (Kleinberg, 2004), and methods for optimal design of side-chain
packing (Xu, 2005; Leaver-Fay et al., 2005). Another important topic we did not
touch upon is the analysis of the topology of protein backbones. Based on concepts
from knot theory, Røgen and Bohr developed a family of global geometric mea-
sures for protein structure classification (Røgen and Bohr, 2003). These measures
originate from integral formulas of Vassiliev knot invariants. With these measures,
Røgen and Fain further constructed a system that can automatically classify protein
chains into folds (Røgen and Fain, 2003). This system can reproduce the CATH
classification system that requires explicit structural alignment as well as human
curation.

Further development of descriptions of geometric shape and topological struc-
ture, as well as algorithms for their computation will provide a solid foundation for
studying many important biological problems. The other important tasks are then to
show how these descriptors may be effectively used to deepen our biological insights
and to develop accurate predictive models of biological phenomena. For example, in
computing protein–protein interfaces, a challenging task is to discriminate surfaces
that are involved in protein binding from other nonbinding surface regions, and to
understand in what fashion this depends on the properties of the binding partner
protein.

Undoubtedly, evolution plays central roles in shaping the function and stability
of protein molecules. The method of analyzing residue substitution rates using a
continuous time Markov model (Tseng and Liang, 2005, 2006), and the method
of surface mapping of conservation entropy and phylogeny (Lichtarge et al., 1996;
Glaser et al., 2003) only scratch the surface of this important issue. Much remains
to be done in incorporating evolutionary information in protein shape analysis for
understanding biological functions.

6.7 Summary

The accumulation of experimentally solved molecular structures of proteins provides
a wealth of information for studying many important biological problems. With the
development of a rigorous model of the structure of protein molecules, various shape
properties, including surfaces, voids, and pockets, and measurements of their metric
properties can be computed. Geometric algorithms have found important applica-
tions in protein packing analysis, in developing potential functions, in docking, and
in protein function prediction. It is likely further development of geometric models
and algorithms will find important applications in answering additional biological
questions.
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6.8 Further Reading

The original work of Lee and Richards surface can be found in Lee and Richards
(1971), where they also formulated the molecular surface model (Richards, 1985).
Michael Connolly developed the first method for the computation of the molecular
surface (Connolly, 1983). Tsai et al. described a method for obtaining atomic radii
parameter (Tsai et al., 1999). The mathematical theory of the union of balls and
alpha shape was developed by Herbert Edelsbrunner and colleague (Edelsbrunner,
1995; Edelsbrunner and Mücke, 1994). Algorithm for computing weighted Delaunay
tetrahedrization can be found in Edelsbrunner and Shah (1996), or in a concise
monograph with in-depth discussion of geometric computing (Edelsbrunner, 2001).
Details of area and volume calculations can be found in Edelsbrunner et al. (1995),
and Liang et al. (1998a,b). The theory of pocket computation and applications can
be found in Edelsbrunner et al. (1998), and Liang et al. (1998c). Richards and Lim
offered a comprehensive review on protein packing and protein folding (Richards and
Lim, 1994). A detailed packing analysis of proteins can be found in Liang and Dill
(2001). The study on inferring protein function by matching surfaces is described
in Binkowski et al. (2003a). The study of the evolutionary model of protein binding
pocket and its application in protein function prediction can be found in Tseng and
Liang (2006).
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7 Local Structure Prediction of Proteins

Victor A. Simossis and Jaap Heringa

7.1 Introduction

Protein architecture represents a complex and multilayered hierarchy (Fig. 7.1;
Crippen, 1978; Rose, 1979). It starts from a linear chain of amino acid residues
(primary structure) that arrange themselves in space to form local structures (sec-
ondary structure and supersecondary structure) and extends up to the globular three-
dimensional structure of a fully functional folded protein (tertiary and quaternary
structure).

This chapter focuses on how the physicochemical properties of the primary
structure enable the prediction of the local structural features of a protein, in particular
how the secondary (Section 7.2) and supersecondary structure (Section 7.3) of a
protein can be predicted from sequence and how disordered regions (Section 7.4)
and sequence repeats (Section 7.5) can be detected. In addition, the application of the
prediction of these local structures in other fields such as multiple sequence alignment
(MSA) (Section 7.6) and tertiary structure prediction (Section 7.7) is discussed.
In Section 7.8, a number of currently available software packages that perform
these tasks are presented and described in detail. Section 7.9 presents a collection
of resources for protein local structure prediction, including online software and
databases, with pointers to where they can be used or downloaded.1 Section 7.10
gives a summary of the chapter’s most important points.

7.2 Protein Secondary Structure Prediction

A secondary structure element is a section of consecutive residues in a protein se-
quence that corresponds to a local region in the associated protein tertiary structure
and shows distinct geometrical features. The two basic secondary structure types,
the �-helix and �-strand, are regular and easily distinguishable in protein tertiary
structures (Appendix 1: Biological and Chemical Basics Related to Protein Struc-
tures), while other types are sometimes harder to classify. For this reason, the ma-
jority of secondary structure prediction methods use a three-class alphabet for their

1 The quoted Internet addresses (URLs) were valid at the time this chapter was written, but may be

subject to change in the future.

207



SVNY330-Xu-Vol-I November 2, 2006 7:16

208 V.A. Simossis and J. Heringa

Fig. 7.1 Protein hierarchical classification

predictions: �-helix (H), �-strand (E), and other; the latter are often referred to as
coil (C).

Approximately 50% of the amino acids in all known proteins are associated
with either �-helices or �-strands, while on average the remaining half of protein
secondary structure is irregular. The primary reason for the regularity observed
in helices and strands is the innate polar nature of the protein backbone, which
comprises a polar nitrogen and oxygen atom in each peptide bond between two
successive amino acid residues. For a protein to become foldable with an accept-
able internal energy, the parts of the backbone buried in the internal protein core
need to form hydrogen bonds between these polar atoms. The �-helix and �-strand
conformations are optimal for this, since each nitrogen atom can associate with an
oxygen partner (and vice versa) within and between both secondary structure types.
However, in order to satisfy the hydrogen-bonding constraints, �-strands need to
interact with other �-strands, which they can do in a parallel or antiparallel fash-
ion to form a �-pleated sheet. As a result, �-strands depend on crucial interac-
tions between residues that are remotely situated in the sequence and therefore are
believed to have more pronounced context dependencies than �-helices. Conse-
quently, most prediction methods have greatest difficulty in predicting �-strands
correctly.
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7.2.1 Biochemical Features of Secondary Structures Used
in Prediction

Analyses of secondary structure and related features of the many protein structures
deposited in the Protein Data Bank (PDB) (Berman et al., 2000) have resulted in a
set of rules about �-helices, �-strands, and coil structures that are important for sec-
ondary structure prediction. Most prediction methods, either implicitly or explicitly,
make use of these observations when performing their predictions.

7.2.1.1 �-Helices

Considering that ideally one turn of the helical structure is made up of 3.6 residues,
the minimum predicted length for an �-helix should be three or four residues. Also,
�-helices are often positioned against a buried protein core and have one phase
contacting core hydrophobic amino acids, while the opposite phase interacts with
the solvent. This results in so-called amphipathic helices (Schiffer and Edmundson,
1967), which show an alternating pattern of three to four hydrophobic residues
followed by three to four hydrophilic residues. As an additional rule, proline residues
are rare in middle segments as they disrupt the �-helical turn, while they are more
frequent in the first two positions of the structure.

7.2.1.2 �-Strands

Normally, two or more �-strands constitute a �-pleated sheet with two strands form-
ing either edge. The hydrophobic nature of such edge strands is different from that
of strands that are positioned inside the sheet because they are shielded on both
sides. As side chains of constituent residues along a �-strand alternate the direction
in which they protrude, edge strands of a �-sheet can show an alternating pat-
tern of hydrophobic–hydrophilic residues, while buried strands typically comprise
hydrophobic residues only. The �-strand is the most extended conformation (i.e.,
consecutive C� atoms are farthest apart), so that it takes relatively few residues to
cross the protein core with a strand. Therefore, the number of residues in a �-strand is
usually limited and can be anything from two or three amino acids. Further, �-strands
can be disrupted by single residues that induce a kink in the extended structure of
the backbone. Such so-called �-bulges consist of relatively hydrophilic residues.

7.2.1.3 Coil Structures

Multiple alignments of protein sequences often display gapped and/or highly variable
regions, which would be expected to correspond to loop (coil) regions rather than
the other two basic secondary structures. Loop regions contain a high proportion of
small polar residues like alanine, glycine, serine, and threonine. Glycine and proline
residues are also seen in loop regions, the former due to their inherent flexibility,
and the latter for entropic reasons relating to the observed rigidity in their kinking
the backbone.
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7.2.2 Secondary Structure Prediction: The Beginning

The use of computers to predict protein secondary structure started over 30 years ago
(Nagano, 1973). All computational methods devised early on based their predictions
on single protein sequences and the average prediction accuracy lingered for a long
time in the range between 50 and 60% correctness, i.e., 50–60% of the residues
used for predictions were correctly assigned a secondary structure class H, E, or
C (Schulz, 1988). A random prediction would yield about 40% correctness given
the observed distribution of the three states in globular proteins, i.e., 30% �-helix,
20% �-strand, and 50% coil. Although significantly beyond the random level, the
accuracy of the early prediction methods was not sufficient to allow the successful
prediction of protein topology, i.e., the folded structural arrangement of protein
secondary structures.

The pioneering algorithms of Nagano (Nagano, 1973) and Chou and Fasman
(Chou and Fasman, 1974) were aimed at predicting the secondary structure for
single sequences and relied on a statistical treatment of compositional information.
Lim’s method (Lim, 1974) represented the first attempt to incorporate stereochemical
rules in prediction. The method relied mainly on conserved hydrophobic patterns in
secondary structures such as amphipathicity in helices (Schiffer and Edmundson,
1967). The early and popular GOR method (Garnier et al., 1978; Gibrat et al., 1987)
considered the influence and statistics of flanking residues on the conformational
state of a selected amino acid to be predicted. The early methods by Nagano (Nagano,
1973), Lim (Lim, 1974), Chou-Fasman (Chou and Fasman, 1974) and the GOR
method (Garnier et al., 1978; Gibrat et al., 1987) were reported to perform single
sequence secondary structure prediction with accuracies of 50, 54, 56, and 64.4%
(GOR IV; Garnier et al., 1996), respectively.

7.2.3 From Early to Recent Prediction: The Key Advances

The first important breakthrough for secondary structure prediction was the use of
multiple sequence alignment (MSA) information (Dickerson et al., 1976), which
was incorporated into an automatic prediction method for the first time by Zvelebil
et al. (1987). The use of the evolutionary information stored in an MSA of a family
of homologous proteins, as opposed to using a single sequence, is essential for more
accurate predictions and as a result, all current state-of-the-art secondary structure
prediction methods use MSAs.

Second, the use of increasingly sensitive machine-learning techniques made the
translation process of the evolutionary information in MSAs more accurate. Since
the 1990s, methods have employed various complex decision-making techniques
including neural networks (NNs), k-Nearest-Neighbor analysis (kNN), Example-
Based Learning (EBL), Hidden Markov Models (HMMs), and Support Vector Ma-
chines (SVMs). An overview of these techniques is provided in Section 7.2.5.

The third element that allowed secondary structure prediction methods to
rapidly advance was the dramatic increase in protein sequence and structure data,
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Fig. 7.2 The currently employed three-step process that leads to secondary structure prediction.
Step 1: sequence database searching (here we show the currently top methods PSI-BLAST and
SAM-T2K). Step 2: multiple sequence alignment (MSA) of the selected sequences either in the
possible output formats of the database search methods or by separately employed MSA methods.
Step 3: secondary structure prediction based on one of the MSA types of Step 2.

combined with the enhanced sensitivity of automatic database searching tools
(Altschul et al., 1997; Friedberg et al., 2000). This allowed the correct identification
of more divergent homologues and subsequently the creation of larger structural
family profiles that encapsulate more divergent information. In addition, this in-
crease in information also allowed the training of machine-learning algorithms on
larger data sets, resulting in higher method accuracy and sensitivity.

As a result, the three standard steps used by almost all current secondary
structure prediction methods are: (1) detecting homologues from a database for
the sequence to be used as input, (2) aligning these sequences, and (3) using the
position-specific information in the MSA to predict the secondary structure of the
input sequence (Fig. 7.2).
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7.2.4 Multiple Sequence Alignment Becomes a Secondary
Structure Prediction Standard

Obtaining the sequences to compile an MSA is done in two main ways: either the
MSA is made from already selected homologous sequences or a database homology
search engine is used with the query sequence as input to identify homologous
sequences in sequence databases. In the latter case, an MSA method is then used to
align the query and homologous sequences.

Since the successful first use of the PSI-BLAST database search tool (Altschul
et al., 1997; Altschul and Koonin, 1998) in the prediction method PSIPRED (Jones,
1999), most newly developed, but also older prediction methods [such as PHD (Rost
and Sander, 1993) that was updated to PHDpsi (Przybylski and Rost, 2002)], have
followed in the same footsteps and use PSI-BLAST to produce their input MSAs.
More details about how individual prediction methods do this are discussed later in
Section 7.8.

PSI-BLAST is an iterative database search technique that searches a preset
sequence database [e.g., the protein sequence database SWISS-PROT (Bairoch and
Boeckmann, 1991); for recent update see Boeckmann et al. 2003)], in multiple
separate iterative steps. The resulting PSI-BLAST MSA, also expressed as a position-
specific scoring matrix (PSSM), does not represent a global alignment, but typically
contains information from the most similar fragment of each selected homologous
sequence.

Concurrent to the PSIPRED innovation, HMMs (Section 7.2.5.3) were intro-
duced as a means to search a preset sequence database for the identification of more
divergent sequence homologues in the iterative SAM-T99 method (Karplus et al.,
1998, 1999). The difference between this method and PSI-BLAST is that the query
sequence is aligned against sequences in the database using HMMs. In addition,
an HMM model of the generated MSA can be used instead of a profile (PSSM) to
iterate the search or search other databases. Initially, the alignments produced by the
SAM-T99 search engine were better in that they more accurately detected remote
homologues compared to other search engines including PSI-BLAST (Park et al.,
1998). However, at present both search engines perform equally well due to greatly
reduced unrelated-hit contaminations in PSI-BLAST (Schaffer et al., 2001). At the
moment, the search engine of SAM-T99 has been updated to a newer version SAM-
T2K (Karplus et al., 2001), which also incorporates secondary structure information
in its scoring. SAM-T2K is an integral part of the SAM-T02 (Karplus et al., 2002,
2003) structure prediction method (Section 7.8).

In more recent years, the detection of homologies between distant sequences
has been significantly improved through profile–profile local alignment (Rychlewski
et al., 2000; Ginalski et al., 2003, 2004; Mittelman et al., 2003; von Ohsen et al.,
2003, 2004; Capriotti et al., 2004; Edgar and Sjolander, 2004; Tomii and Akiyama,
2004; Wang and Dunbrack, 2004; Soding, 2005). In these latter approaches, single
sequence input is enriched with homologous position-specific information, mainly
by using PSI-BLAST. This enriched information can be represented as either a
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profile or an HMM and two profiles or HMMs or a combination of the two can be
aligned using different profile–profile scoring schemes. Recent comparison stud-
ies of such scoring schemes (Rychlewski et al., 2000; Edgar and Sjolander, 2004;
Ohlson et al., 2004) suggest that the scoring scheme based on information theory
used in prof sim (Yona and Levitt, 2002) is the most sensitive. However, comparing
HMM profile pairs appears to produce even better results (Soding, 2005). Many of
these profile comparison methods have now moved on to the incorporation of pre-
dicted secondary structure information into their profile-scoring schemes to further
sensitize the detection of homologies (Ginalski et al., 2003, 2004; Chung and Yona,
2004; von Ohsen et al., 2004; Soding, 2005). A more comprehensive account of this
intertwining of sequence alignment and secondary structure prediction is discussed
in Section 7.6.

To date, these new-generation homology detection methods have not been ex-
plicitly applied to the secondary structure prediction problem, but attempts have
been made for the ab initio prediction of tertiary structure (von Ohsen et al., 2004).

7.2.5 State-of-the-Art Secondary Structure Prediction Techniques

The most popular machine learning approaches used in current secondary structure
prediction methods include k-nearest-neighbor analysis, artificial neural networks,
hidden Markov models, and support vector machines. Each technique offers unique
advantages and also has associated drawbacks in tackling complex problems such as
pattern recognition, which for our purpose is the identification of structural classes
from consecutive residue patterns. In the descriptions to follow, we give a basic
overview of each technique and discuss their strengths and weaknesses.

7.2.5.1 k-Nearest-Neighbor

The k-nearest-neighbor (kNN) technique is an instance-based machine learning tech-
nique. In order to predict the secondary structure of a protein, for which the structure
is unknown, the technique extrapolates from already existing information of related
proteins. As a result, the performance of this approach is directly dependent on
whether closely related examples of known secondary structure are available. As-
suming enough “related” information is available, kNN has distinct advantages over
other methods: it is easy to program and can deal with complex problems using
low-complexity approximations; it can deal with noisy data; it involves no training
or retraining with new data and never loses information content because all learning
material is explicitly used every time the method is run.

The prediction main steps involve the creation of a library of protein “frag-
ments” of known secondary structure, the creation of a distance representation
scheme for relating the library fragments to the query and a decision scheme for
discerning between multiple matching possibilities. The various k-nearest-neighbor
prediction methods approach these steps differently. As a simple example, let X be
a protein sequence for which we want to do a prediction (Fig. 7.3). Let our example
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Fig. 7.3 The kNN approach to classifying the secondary structure of a sequence fragment based
on a database of other fragments with known secondary structures. The fragment X under con-
sideration in this case is represented by a thick black line and the surrounding lines represent the
database sequences being assessed for relatedness (long arrows correspond to small relatedness).

method have access to a large, nonredundant database of variable-length protein
sequence fragments (yi ) with their corresponding secondary structures. Our method
would take sequence X and use it to scan the database for related fragments (neigh-
bors). Now, let our measure of “relatedness” be the local alignment score between
our sequence X and each fragment yi . The higher the score, the more related the frag-
ment is and therefore the lower the Euclidean distance d from X . After identifying
potential neighboring fragments, we would sort them and use only the k nearest ones
for the prediction to minimize errors and processing time, as long as we ensured that
k allowed good coverage across the whole length of X . Finally, for all sequence po-
sitions where more than one possible secondary structure was present, our decision
scheme could be a “majority vote” consensus, where the most prominent secondary
structure is assigned. Here, each possibility could be further weighed in relation
to the fragment’s distance from X , making the closest fragments count more than
less related ones. The string of these decisions would be our prediction. Again, at
this point we could apply a filter to “tidy up” the prediction, for example correcting
impossible structures such as a single-residue helix. In any case, the possibilities are
many and this was merely intended as a guide example for how a kNN prediction
works.

kNN methods outperform classical neural network (NN) methods when closely
related examples to a query are available, but their success is highly restricted as
they perform poorly in all other cases. The huge increase in data availability has
provided the kNN approaches with larger, more diverse sets of examples to train on,
thus increasing the space in which they accurately perform. Nonetheless, the data
sets that are currently available are still far from covering the entire protein universe.
As a result, the NN approach is still the best way to predict secondary structure
in a wide range of cases. As a solution to this, methods have been developed over
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Fig. 7.4 A generic schematic representation for secondary structure prediction NN using a win-
dow of 13 residues. The number 20 in the hidden layer positions represents the 20 amino acid
possibilities for each position of the 13-long window with respect to the central residue. The path
through the network outputs a value for the central residue being either helix (H), strand (E), or
coil (C).

the years that attempt to combine the best of both worlds, an example of which we
describe in Section 7.8 [APSSP2 (Raghava, 2002a)].

7.2.5.2 Neural Networks

NNs are complex machine-learning systems that are based on nonlinear statistics.
They consist of multiple interconnected layers of input and output units, and can also
contain intermediate (or “hidden”) unit layers (for a review, see Minsky and Papert,
1988). Each unit in a layer receives information from one or more other connected
units and determines its output signal based on the weights of the input signals
(Fig. 7.4). The weights of an NN are chosen depending on the training procedure
and the training set. The training procedure is done by adjusting the weights of
the internal connections to optimize the grouping of a set of input patterns into a
set of output patterns. In other words, an NN tries to encapsulate the basic trends
of the training set (usually a large number of nonredundant examples) and apply
them to unknown cases. NNs are powerful learning tools, but there is a risk of
overtraining the network, which leads to proper recognition of those patterns the
NN has been confronted with during training, but much less successful recognition
of patterns that have not been seen. For this reason, training sets must be large in
number and nonredundant so they can capture a representative sample and thus
decrease their bias toward specific cases. More importantly, when testing a trained
NN, the test set must be absolutely separate from the training set and as divergent
as possible so that the testing is objective and as unbiased as possible. NNs are
very common in secondary structure prediction and are used by all top-performing
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Fig. 7.5 An HMM for secondary structure prediction. He and Ee are helix and strand end posi-
tions, respectively; Hb and Eb are helix and strand beginning positions; and H and E are all other
helix and strand positions. The original figure from Lin et al. (2005) is reproduced with permission
from Bioinformatics, Oxford University Press.

methods, whether in combination with other systems, like YASPIN (Lin et al., 2005)
or APSSP2 (Raghava, 2002a), or on their own (more on specific NN methods in
Section 7.8).

7.2.5.3 Hidden Markov Models

HMMs are a class of probabilistic models usually applied to time series or linear
sequences (for reviews see Eddy, 1996; Durbin, 1998; Durbin et al., 2000). They
were first introduced to Bioinformatics in the 1980s (Churchill, 1989) and have
been applied as protein profile models in the last decade (Krogh et al., 1994). The
basic structure of an HMM is a series of states that are linked together through state
transitions. Each of these states also has a symbol emission probability distribution
for generating a symbol in the alphabet. For example, let us consider a sequence
modeling HMM that describes three possible amino acid states, according to what
secondary structure element (SSE) they are in (Fig. 7.5). In any point after the HMM
is initialized, we are in a state X (helix, strand or coil) and have the possibility of
either switching to a different state Y or remaining in the same state X. The decision
for this is governed by the relation between state transition probability from state X
to state Y, and from state X to X. In addition, when the transition is made the HMM
will emit (generate) a character from the alphabet (in this case the SSE symbols H,
E, or C) with the probability linked to that state. This process is repeated until an end
state is reached. In the end there are two layers in our HMM, a hidden state sequence
that we do not see and a symbol sequence that we do see.

An HMM can be parameterized by either training or building procedures. In
the training procedure of a sequence–structure prediction HMM, a set of unaligned
sequences would be used, while in the building procedure, a set of prealigned se-
quences would be used. It is generally advisable to build HMMs whenever there is
reference information possible.

The HMMs that are used in sequence database searching and structure predic-
tion are profile HMMs. A profile HMM is a strictly linear, left-to-right model that
comprises a series of nodes, each corresponding to a column in a multiple alignment
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(Krogh et al., 1994). Each node has a match state, insert state, and delete state. Each
sequence uses a series of these states to traverse the model from start to end. Using a
match state indicates that the sequence has a character in that column, while using a
delete state indicates that the sequence does not. Insert states allow sequences to have
additional characters between columns. In many ways, these models correspond to
profiles. The primary advantage of these models over standard methods of sequence
search is their ability to characterize an entire family of sequences.

7.2.5.4 Support Vector Machines

The SVM, first introduced by Vladimir Vapnik in 1992, is a linear learning machine
based on recent advances in statistical theory (Vapnik, 1995, 1998) In other words,
the main function of SVMs is to classify input patterns by first being trained on
labeled data sets (supervised learning). SVMs have been shown to be a significant
enhancement in function compared to other commonly used machine learning al-
gorithms such as the perceptron algorithm (see Section 7.2.5.2, Neural Networks)
and have been applied to many areas such as handwriting, face, voice, and object
recognition and text characterization (for a comprehensive description of SVMs see
Cristianini and Shawe-Taylor, 2000). With the turn of the millennium, SVMs were
extensively applied to classification and pattern recognition problems in bioinfor-
matics (for reviews see Byvatov and Schneider, 2003; Noble, 2004).

The power of SVMs lies in their use of nonlinear kernel (similarity) func-
tions. When a linear algorithm such as the SVM uses a dot product, replacing it
with a nonlinear kernel function allows it to operate in different space. Hence,
the kernel functions used in SVMs implicitly map the input (training or test data)
into high-dimensional feature spaces. In the high-dimensional feature spaces, linear
classifications of the data are possible (each classifier is a separate dimension); they
become nonlinear in following steps where they are transformed back to the original
input space. As a result, although SVMs are linear learning machines regarding the
high-dimensional feature spaces, in fact they act as nonlinear classifiers.

The key is to carefully design the kernel (similarity) criteria during training so
as to best discriminate each class (for more information on kernels used in computa-
tional biology see Schoelkopf et al., 2004).Ultimately, the kernel function generates a
maximum-margin hyperplane between two classes and resides somewhere in space
(Fig. 7.6). For example, if we were training an SVM for helix prediction, given
training examples labeled either “helix” or “nonhelix,” our kernel function would
generate a maximum-margin hyperplane that would split the “helix” and “nonhelix”
training examples so that the distance from the closest examples (the margin) to the
hyperplane would be maximized (Fig. 7.6). If the hyperplane is not able to fully
separate the “helix” and “nonhelix” examples, the SVM will choose a hyperplane
that splits the examples as cleanly as possible, while still maximizing the distance to
the nearest cleanly split examples. The parameters of the maximum-margin hyper-
plane are derived by solving a quadratic programming (QP) optimization problem.
The examples closest to the hyperplane (decision boundary) are “support vectors,”
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Fig. 7.6 SVM diagram illustrating an optimal separation of “helix” (red dots) and “nonhelix”
(black dots) elements showing the position of the hyperplane.

while the ones far from it have no effect (Fig. 7.6). After training, any “unknown”
input for which we want to decide whether it is helix or not is mapped into the
high-dimensional space and the SVM decides whether it is “helix” or “nonhelix.”
However, since secondary structure elements are usually classified in three states
[helix (H), strand (E), and coil (C)], the actual recognition challenge is not binary
(helix or nonhelix), but multiclass and therefore the prediction is still incomplete.
The multiclass recognition problem is tackled differently across SVM prediction
methods (Hua and Sun, 2001; Kim and Park, 2003; Ward et al., 2003; Guo et al.,
2004; Hu et al., 2004), an example of which is described in Section 7.8.

7.2.6 Consensus Secondary Structure Prediction

The majority of secondary structure prediction methods are trained using information
from proteins of known 3D structure. In modern studies, training is performed on
large data sets, thus avoiding overfitting, and the training data sets do not include
any of the proteins used to assess the final version of the method (jack-knife testing).
However, each method is trained on different sets of proteins and as a consequence
this introduces a bias to the prediction performance, depending on the type of proteins
used in the training set.

An early attempt to minimize these biasing effects was to combine predictions
from various methods to produce a single consensus (Cuff et al., 1998; Cuff and
Barton, 1999). The consensus was derived by majority voting, where the per-residue
predicted states from each method were each given an equal “vote” and the consensus



SVNY330-Xu-Vol-I November 2, 2006 7:16

7. Local Structure Prediction of Proteins 219

kept the prediction that got the majority of the “votes.” The philosophy of deriving a
consensus prediction is similar to that of having three clocks on a boat: if one clock
shows the wrong time there are always the other two to check for consistency and
since the probability that two out of three clocks will go wrong at the same time and
in a similar way is very low, it is a safe assumption to go with the majority. During
the same time, other strategies for consensus prediction were developed such as
the combination of different NN outputs (Chandonia and Karplus, 1999; Cuff and
Barton, 2000; King et al., 2000; Petersen et al., 2000); optimal method choice for
the consensus scheme by linear regression statistics (Guermeur et al., 1999) and
decision trees (Selbig et al., 1999); deriving a consensus from cascaded multiple
secondary structure classifiers (Ouali and King, 2000); and expressing the consensus
as a composite predicted secondary structure, where the variation in prediction is
not resolved but used as extended information for the successive database searching
steps for fold recognition (An and Friesner, 2002).

From these consensus-deriving strategies, the “majority voting” consensus-
deriving scheme has been employed in recent investigations using more state-of-
the-art predictions methods and the results have consistently shown that a consensus
prediction is better than any of the single predictions produced by the methods
used for deriving the consensus (Albrecht et al., 2003; McGuffin and Jones, 2003;
Ward et al., 2003). Recently, an extension to the “majority voting” dimensionality
and segmentation capabilities was introduced by using dynamic programming (DP)
to produce an optimally segmented consensus in an investigation of the effect of
alignment gaps in secondary structure prediction (Simossis and Heringa, 2004a).
The DP approach for generating a consensus has also very recently been applied to �-
barrel protein prediction (Bagos et al., 2005) and the generation of a consensus from
multiple secondary structure prediction methods (Simossis and Heringa, 2005). In
Fig. 7.7 we illustrate the relation between the “majority voting” and DP approaches.
The original “majority voting” strategy is illustrated as a small part of the DP strategy,
such that the window length of 1 (first row of the search matrix) represents the original
“majority voting” and the remaining window lengths represent the added information
used for the derivation of the consensus.

7.2.7 Tertiary Structure Feedback for Secondary
Structure Prediction

In the prediction techniques we have described up to now, predicting the secondary
structure of a protein from its amino acid sequence has mainly involved using adja-
cent information. However, when a protein folds, the secondary structure elements
that were initially formed can be influenced by the dynamics of formerly distant
regions, which now have been brought closer due to the structural rearrangement
in three-dimensional space (Blanco et al., 1994; Ramirez-Alvarado et al., 1997;
Reymond et al., 1997). Although many initial conformations remain unchanged in
the folded protein, there are regions that undergo transitions from one SSE type to
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Fig. 7.7 The dynamic programming optimal segmentation strategy for deriving a consensus
secondary structure prediction from multiple methods. The majority voting approach is limited to
the first row of the search matrix, while the use of all possible segmentations of the information
allows further optimization by dynamic programming.

another as a result of different types of interactions (Minor and Kim, 1996; Cregut
et al., 1999; Luisi et al., 1999; Derreumaux, 2001; Macdonald and Johnson, 2001).
As a result, even the best prediction methods make wrong predictions for these
cases because the transition changes only happen as a result of tertiary structure
interactions and have not yet occurred in the unfolded state.

Meiler and Baker (2003) used low-resolution tertiary structure models to feed
back three-dimensional information to the predictions and successfully raised the
quality of the predictions, particularly in �-strands (Meiler and Baker, 2003). How-
ever, the applicability of the method is limited since it is only applicable to single-
domain proteins and is not able to account for interdomain interactions.

In another approach, surface turns that change the overall direction of the
chain (“U” turns) were predicted using multiple alignments and predicted secondary
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structure propensities to improve the quality of the predictions (Hu et al., 1997;
Kolinski et al., 1997).

7.3 Protein Supersecondary Structure Prediction

As a globular protein folds, different regions of the peptide backbone often come
together (Wetlaufer, 1973; Unger and Moult, 1993). The compact combinations of
two or more adjacent �-strand and �-helical structures, irrespective of the sequence
similarity, form frequently recurring structural motifs that are known as supersec-
ondary structures (Rao and Rossmann, 1973). Almost two-thirds of all residues in
secondary structures are part of some type of supersecondary structure motif (Salem
et al., 1999) and one-third of all known proteins can be classified into ten super folds,
which are made up of different combinations between three basic supersecondary
structures: the �-hairpin, the �-hairpin, and the �-�-� motif (Salem et al., 1999).

The three basic types of supersecondary structure that are the most frequently
observed include the �-� motifs (�-hairpins, �-corners, and helix-turn-helix), the
�-� motif (�-hairpin), and the �-�-� motif (two parallel �-strands, separated by
an �-helix antiparallel to them, with two hairpins separating the three secondary
structures). Other simple combinations of secondary structure types include the �-�-
� and �-�-� motifs (Chothia, 1984). Some repetitions or combinations of the above
simple supersecondary structures are also predominant in protein structures, such
as the �-�-� (�-meander), which is formed by two �-hairpins sharing the middle
strand. More elaborate supersecondary structure combination motifs include the
Greek key (jellyroll) motif (Hutchinson and Thornton, 1993), the four-helix bundle
(two �-� units connected by a loop), and the Rossman fold (effectively two �-�-�
units that each form one-half of an open twisted parallel �-sheet). Although the
majority of protein folds consist of several supersecondary structures, they can also
be constituted by secondary structures in other contexts. An example of the latter is
the globin fold, six of whose helices cannot be assigned to any of the aforementioned
�-� supersecondary structures.

An interesting �-� motif is formed when a pair of �-helices adopt a superheli-
cal twist, resulting in a coiled-coil conformation. The usual left-handed coiled-coil
interaction involves a repeated motif of seven helical residues (abcdefg), where the
a and d positions are normally occupied by hydrophobic residues constituting the
hydrophobic core of the helix–helix interface, while the other positions display a
high likelihood to comprise polar residues. Another feature is that the heptad e and
g positions are often charged and can form salt bridges.

An example of a more complex and higher-order supersecondary structure is
the WD repeat (tryptophan-aspartate repeat), which is associated with a sequence
motif approximately 31 amino acids long that encodes a structural repeat and usu-
ally ends with tryptophan-aspartic acid (WD). WD-repeat-containing proteins are
thought to contain at least four copies of the WD repeat because all WD-repeat



SVNY330-Xu-Vol-I November 2, 2006 7:16

222 V.A. Simossis and J. Heringa

proteins are speculated to form a circular �-propeller structure. This is demonstrated
by the crystal structure of the G protein �-subunit, which is the only WD-repeat-
containing structure available. It contains seven WD repeats, each of which folds
into a small antiparallel �-sheet. WD-repeat proteins have critical roles in many
essential biological functions ranging from signal transduction, transcription regu-
lation, to apoptosis, but are probably best known due to their association with several
human diseases.

7.3.1 Fundamentals of Supersecondary Structure Prediction

The identification of supersecondary structure motifs is largely, but not entirely,
based on secondary structure prediction, as already discussed in Section 7.2. How-
ever, secondary structure information is a flat version of the protein structure, in
contrast to supersecondary structure motifs that are recurring three-dimensional
units that are formed when a protein folds. As a result, observing a pattern in sec-
ondary structure, e.g., strand–coil–strand, does not necessarily mean that it signi-
fies a �-hairpin supersecondary structure. On the contrary, such a basic secondary
structure pattern could belong to a variety of different supersecondary structure
motifs (Rost et al., 1997; de la Cruz and Thornton, 1999). Therefore, in order to
extend from a collapsed secondary structure prediction to three-dimensional su-
persecondary structure prediction, a more detailed description of its properties is
needed.

As described earlier, the secondary structure elements that make up supersec-
ondary structure units are joined together by flexible regions that in the three-state
classification of secondary structure are referred to as coil (C). Unlike the helix
(H) and strand (E) classes, coil adopts a wide range of conformations and is able
to change the protein backbone into the different supersecondary structure motifs.
As a result, identifying the properties of joining coil regions between helices and
strands is the key to identifying a supersecondary structure motif type.

7.3.2 Predicting Protein Supersecondary Structure

The methods that have been developed for the prediction of supersecondary struc-
tures have mainly employed machine learning techniques similar to those used in
secondary structure prediction, namely, HMMs (Bystroff et al., 2000), NNs (Sun
et al., 1997; Kuhn et al., 2004) and SVMs (Cai et al., 2003). In addition to these,
some methods have also employed statistical regression techniques such as Monte
Carlo-based simulations (Forcellino and Derreumaux, 2001) and a combination of
secondary structure prediction and threading against known tertiary motifs (de la
Cruz et al., 2002).

7.3.2.1 Neural Networks

Refer to Section 7.2.5.2 for an overview of NNs.
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Fig. 7.8 A simplified representation of the Monte Carlo method for predicting supersecondary
structure from sequence. This process is repeated enough times so that both the runtime and the
accuracy are at acceptable levels.

7.3.2.2 Hidden Markov Models

Refer to Section 7.2.5.3 for an overview of HMMs.

7.3.2.3 Support Vector Machines

Refer to Section 7.2.5.4 for an overview of SVMs.

7.3.2.4 Monte Carlo Simulations

A Monte Carlo (MC) simulation is a stochastic technique, i.e. it uses random num-
bers and probability statistics to investigate problems (Fig. 7.8; for a comprehensive
account see Frenkel and Smit, 2002). The invention of the MC method is often ac-
credited to Stanislaw Ulam, a Polish mathematician who is primarily known for the
design of the hydrogen bomb with Edward Teller in 1951. However, Ulam did not
invent the concept of statistical sampling, but was the first to use computers to auto-
mate it. Together with John von Neumann and Nicholas Metropolis, he developed
algorithms for computer implementations of the method, as well as means of trans-
forming nonrandom problems into random forms that would facilitate their solution
via statistical sampling. The method was first published in 1949 .()(Metropolis and
Ulam, 1949). Nicholas Metropolis named the method after the casinos of Monte
Carlo.

The strength and usefulness of MC methods is that they allow us to perform
computations that would otherwise be impossible. For example, solving equations
that describe the interactions between two atoms is fairly simple, but when attempt-
ing to solve the same equation for a fold or a whole protein (hundreds or thousands
of atoms), the task is impossible. Basically, an MC simulation samples a large sys-
tem in a number of random configurations. When selecting the number of random
configurations, one way to minimize the standard error is to maximize the sample



SVNY330-Xu-Vol-I November 2, 2006 7:16

224 V.A. Simossis and J. Heringa

size. However, due to the fact that this will be computationally expensive, a better
solution is to restrict the variance of the random sample. As a result, depending
on the restrictions applied to the MC simulation, configurations are accepted or
rejected. Standard techniques of variance reduction include antithetic variates, con-
trol variates, importance sampling, and stratified sampling (see Frenkel and Smit,
2002).

In the case of protein structures, atoms are randomly moved in a predefined
space so that the thermodynamics of the protein in a folded state are respected.
The energies of these randomly folded proteins are calculated and according to
a predefined selection criterion, they are kept as candidate structures or thrown
away. The resulting set of candidate structures generated from this random sampling
can be used to approximate the proteins folded state. The same principles apply
to supersecondary structure prediction, where only the knowledge of the primary
structure of short peptides is needed to sample a number of feasible conformations
(Derreumaux, 2001).

7.4 Protein Disordered Region Detection

Disordered regions are regions of proteins or entire proteins, which lack a fixed ter-
tiary structure, essentially because they are partially or fully unfolded. Disordered
regions have been shown to be involved in a variety of functions, including DNA
recognition, modulation of specificity/affinity of protein binding, molecular thread-
ing, activation by cleavage, and control of protein lifetimes. In a recent survey, Dunker
et al. (2002) classified the functions of approximately 100 disordered regions into
four broad categories: molecular recognition, molecular assembly/disassembly, pro-
tein modification, and entropic chains, the latter including flexible linkers, bristles,
and springs (Dunker et al., 2002).

Although disordered regions lack a defined 3D structure in their native states,
they frequently undergo disorder-to-order transitions upon binding to their partners.
As it is known that the amino acid sequence determines a protein’s 3D structure, it
is appropriate to assume that the amino acid sequence determines the lack of fixed
3D structure as well. Disordered proteins are found throughout the three kingdoms,
but are predicted to be more common in eukaryotes than in archaea or eubacteria
(Dunker et al., 2000). This would imply that intrinsic disorder is widespread but
might be increasingly required for more complex protein functions.

Disordered proteins are gaining increased attention in the biological community
(Wright and Dyson, 1999). Following the earlier work on protein folding by Ptit-
syn (1994) on molten globule structures, native proteins have been divided in three
folding states: ordered (fully folded), collapsed (molten globule-like), or extended
(random coil-like). These three forms can occur in localized regions of proteins or
comprise entire sequences. Protein function may arise from any of the three forms
or from structural transitions between these forms resulting from changes in en-
vironmental conditions. The collapsed and extended forms correspond to intrinsic
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disorder while the fully folded, ordered form is generally comprised of three sec-
ondary structure types: �-helix, �-sheet, and coil. However, since the collapsed
(molten globule-like) state is known to have secondary structure, the presence or
absence of secondary structure cannot be used to distinguish between ordered and
disordered proteins. Another feature of disordered proteins or protein regions is that
these are intrinsically dynamic and thus have relative coordinates and Ramachandran
angles that vary significantly over time, while those in ordered proteins generally
are comparatively invariant over time.

For proteins whose X-ray structures are known, the existence of disordered
stretches can be identified directly by looking for amino acids that are missing from
the electron density maps. A number of disordered regions in proteins have been
directly characterized by NMR-based structure elucidation (Bracken, 2001; Dyson
and Wright, 2002). Other sources of experimental evidence for disorder include a
random coil-type circular dichroism spectrum and an extended hydrodynamic radius,
while also limited, time-resolved proteolysis can provide useful information (Dunker
et al., 2001).

As the accumulated experimental evidence of disordered regions is still limited
and likely to cover only a small fraction of these regions existing in nature, alternative
information-based prediction approaches have been developed. In accordance with
the hypothesis that a protein’s structure and function are determined by its amino
acid sequence, it is possible in principle to predict long stretches of 30 or more
consecutive disordered residues from the primary structure. Distinguishing features
for disordered regions include a higher average flexibility index value (Vihinen
et al., 1994), a lower sequence complexity (Romero et al., 2001) as estimated by
the popular NSEG method (Wootton and Federhen, 1996), a lower aromatic content
(Xie et al., 1998), and different patterns regarding charge and hydrophobicity (Xie
et al., 1998; Uversky et al., 2000). The state-of-the-art disorder prediction methods
(Section 7.9.3) are thus generally based on the assumption that different types of
disordered sequences are more similar to each other than to ordered sequences and
vice versa, although protein regions in both the ordered and disordered class can
display local variations in flexibility.

Young et al. (1999) successfully predicted regions likely to undergo structural
change by using secondary structure prediction techniques. The authors examined
protein regions for which secondary structure prediction methods gave equally strong
preferences for two different states (Young et al., 1999). Such regions were then
further processed combining simple statistics and expert rules. The final method was
tested on 16 proteins known to undergo structural rearrangements, and on a number
of other proteins. The authors reported no false positives, and identified most known
disordered regions. The Young et al. method was further applied to the myosin family
(Kirshenbaum et al., 1999), which led to the prediction of likely disordered regions
that were previously unidentified, even though the tertiary structure of myosin was
known.

In Section 7.9.3, a number of state-of-the-art methods are identified that have
been developed especially for the prediction of protein disorder. These methods
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include the PONDR suite (Obradovic et al., 2003), and the methods FoldIndex
(Uversky et al., 2000), DISEMBL (Linding et al., 2003a), GLOBPLOT (Linding
et al., 2003b), DISOPRED2 (Ward et al., 2004), PDISORDER (unpublished), and
DISpro (Cheng et al., 2005). The highest prediction accuracies reported are currently
beyond 90% (Cheng et al., 2005).

7.5 Internal Repeats Detection

7.5.1 Genomic Repeats

An important characteristic of genomes, and particularly for those of eukaryotes, is
the high frequency of internal sequence repeats. For example, the human genome is
estimated to contain more than 50% of reiterated sequences (e.g., Heringa, 1998).
One of the main evolutionary mechanisms for repeat duplication is recombination
(Marcotte et al., 1999), which favors additional duplication after initial repeat copies
have been made. In the case of tandem repeats, there is believed to be a pronounced
correlation between copy number of repeats and further gene duplication (Heringa,
1994) due to gene slippage. Gene duplication can ease the selection pressure on an
individual gene and thus lead to an accelerated divergence of the duplicated genes,
thereby increasing the scope for evolution toward novel functions.

7.5.2 Protein Repeats

Given widespread duplication and rearrangement of genomic DNA and subsequent
gene fusion events, also at the protein level internal sequence repeats are abun-
dant and found in numerous proteins. Gene duplication may enhance the expression
of an associated protein or result in a pseudogene where less stringent selection
of mutations can quickly lead to divergence resulting in an improved protein. An
advantage of duplication followed by gene fusion at the protein level is that the
protein resulting from the new single gene complex shows a more complex and of-
ten symmetrical architecture, conferring the advantages of multiple, regulated and
spatially localized functionality. Many protein repeats comprise regular secondary
structures and form multirepeat assemblies in three dimensions of diverse sizes and
functions. In general, internal repetition affords a protein enhanced evolutionary
prospects due to an enlargement of its available binding surface area. Constraints
on sequence conservation appear to be relatively lax, for example due to binding
functions ensuing from multiple, rather than, single repeats. Repeat proteins of-
ten fulfill important cellular roles, such as zinc-finger proteins that bind DNA, the
�-propeller domain of integrin �-subunits implicated in cell–cell and cell–
extracellular matrix interactions, or titin in muscle contraction, which consists of
many repeated Ig and Fn3 domains. It is interesting in this regard that Marcotte
et al. (1999) estimated that eukaryotic proteins are three times more likely to have
internal repeats than prokaryotic proteins. The similarities found within sets of
internal repeats can be 100% in the case of identical repeats, down to the level
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where any discernible sequence similarity has been lost as a result of mutation and
insertion/deletion events. A classical example of this is chymotrypsin, where fusion
of two duplicated genes, each coding for a separate �-barrel domain, has resulted in
a two-domain enzyme. The active site consists of amino acids of both domains and
shows a greatly enhanced activity as compared to a suspected ancestral active center
within an individual ancestral barrel (Heringa, 1994). The amino acid sequences of
the two barrels have diverged so much that the duplication event had to be inferred
from the structural similarity (McLachlan, 1979).

7.5.3 Protein Repeats Detection

Considerable sequence divergence as well as the short lengths of many sequence
repeats imply that repeats detection can be a particularly arduous task. The problem
of recognizing internal sequence repeats in proteins has been tackled by many re-
searchers. One of the pioneers in the automatic detection of repeats was McLachlan,
who devised the first methods over three decades ago (McLachlan, 1972). These
methods relied on Fourier analysis (McLachlan and Stewart, 1976; McLachlan,
1977) and this technique remained popular (Kolaskar and Kulkarni-Kale, 1992;
Taylor et al., 2002). Although Fourier transforms are designed to detect periodic
behavior, the application to protein sequence signals is compromised by the fact
that many repeats are distant as a result of mutations and insertions/deletions, and
can be intervened by different irregular sequence stretches. Moreover, proteins can
contain multiple repeat types, all with different base periodicities, which decrease
the periodic signal for any one type. Finally, Fourier techniques require a relatively
large number of repetitions, whereas many proteins contain only few repeats.

Another approach to delineate repeats in protein sequences was made by explor-
ing DP. First attempts were made by McLachlan (1983) who used the DP technique
over fixed window lengths on myosin rod repeats (McLachlan, 1983). Boswell and
McLachlan (1984) elaborated the method by incorporating dampening factors and
allowing the occurrence of gaps (Boswell and McLachlan, 1984). Argos (1987) also
adopted the window technique but exploited physicochemical properties of amino
acids in addition to the PAM250 residue exchange matrix (Dayhoff et al., 1983), and
used the technique to detect repeats in, for example, frog transcription factor IIIA
(TFIIIA), human hemopexin, and chick tropoelastin (Argos, 1987). Huang et al.
(1990) used local alignments (Smith and Waterman, 1981) to find the repeats in
rabbit globin genes (Huang et al., 1990). Their method SIM is a memory optimized
implementation of the approach introduced by Waterman and Eggert (1987), which
calculates a list of top-scoring nonintersecting local alignments, meaning that no
alignment has a given matched amino acid pair in common.

Following these initial developments, a number of methods of delineating inter-
nal repeats in protein sequences were reported. These include the early and popular
REPRO method (Heringa and Argos, 1993), the fast but inexact method of Pellegrini
et al. (1999), the RADAR method (Heger and Holm, 2000), and the TRUST method
(Szklarczyk and Heringa, 2004). Taylor et al. (2002) devised a method based on
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Fourier analysis to automatically annotate repeating local 3D fragments in protein
tertiary structures. These methods are discussed in more detail in Section 7.8.4.
Links to various web interfaces to these methods are provided in Section 7.9.3.

7.6 Applications to Multiple Sequence Alignment

The prediction of protein local structure elements has increasingly infiltrated the
field of sequence alignment in recent years. In this section we will discuss how
structural features such as secondary structure, supersecondary structure, and repeats
can enrich the information used in sequence-based alignment methods toward a more
accurate detection of similarity.

7.6.1 Structure Is More Conserved Than Sequence

Most alignment methods, irrespective of whether they align two or more sequences,
rely entirely on the residue information provided by the sequences they align. As
would be expected, the detection of similarities between sequences becomes harder
as the level of mutational change that has occurred through evolution increases (Rost
et al., 1994). It has been known for many years that alignment quality suffers when
the sequence identity of two sequences drops below 30%, the so-called “twilight
zone”.

Unlike primary structure, the higher structural levels are more conserved
through evolution (Chothia and Lesk, 1986). The reason for this is that function
is mostly connected to the structure of a protein rather than its residue composition.
Therefore, although mutations may alter individual residues in a protein, the struc-
ture remains relatively unchanged so that functionality is not lost or inhibited. As a
result, structure is a better candidate for detection of homology in distant relatives.
Consequently, the use of structural information has been integrated into many align-
ment methods (Heringa, 1999, 2000, 2002; Ginalski et al., 2003; Chung and Yona,
2004; Ginalski et al., 2004; Simossis and Heringa, 2004b; von Ohsen et al., 2004;
Soding, 2005). However, the number of known structures compared to the number
of protein sequences remains limiting because the rate at which sequences are added
to databases is much faster than that at which protein structures are solved. As a
result, in the absence of a crystal structure, predictions of protein local structures
can be used to fill the gap.

7.6.2 Integrating Predicted Local Structure Information
into an Alignment

The integration of known or predicted secondary structure information into an align-
ment algorithm can be done in several ways. Early on, the approach simply involved
increasing the gap penalties in helical or strand regions in order to bias the algorithm
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to insert gaps in between SSE regions (Sander and Schneider, 1991). In more recent
approaches, in addition to the generalized exchange matrices, secondary-structure
specific exchange matrices [e.g., the Lüthy series (Luthy et al., 1994)] have been used
for scoring those sequence or profile positions that belong to the same secondary
structure class (Heringa, 1999, 2000, 2002). Other researchers have combined the
two types of matrices in different schemes (Yu et al., 1998; Hedman et al., 2002;
Ginalski et al., 2003; Chung and Yona, 2004; Teodorescu et al., 2004).

In terms of other predicted local structure elements such as repeats and super-
secondary structure, no systematic analysis has been done on how its incorporation
might aid alignment quality. However, it is conceivable that the identification of re-
peats prior to alignment would greatly aid the correct positioning of repeated regions
and avoid incorrect shifts of the alignment. Similarly and probably more importantly,
the assignment of basic supersecondary structures to the known or predicted sec-
ondary structure would also greatly improve the alignment of sequences. At least,
it would help discern between secondary structure patterns that although similar in
two dimensions, do not actually fold the same way in the 3D structure and therefore
may not align as tightly as would be assumed by current secondary structure-guided
methods.

7.6.3 Local Structure Prediction and Alignment Interdependence

The majority of the current secondary structure-integrating strategies are limited to
pairwise local alignment strategies implemented for homology detection (Ginalski et
al., 2003, 2004; Chung and Yona, 2004; von Ohsen et al., 2004; Soding, 2005). Con-
versely, the use of predicted secondary structure to guide MSA has not been exhaus-
tively investigated. Early on, Heringa used PREDATOR (Frishman and Argos, 1996,
1997) predictions to guide the alignments of the DP method PRALINE (Heringa,
1999) and found improvements in alignment quality when aligning 13 flavodoxins
with cheY, a distant signal transduction protein that has very low sequence simi-
larity but shares the same fold as the flavodoxins (Heringa, 2000). In this case, the
secondary structure prediction program used did not depend on the MSA quality.

Later, Heringa (2002) also extended the MSA–secondary structure prediction
interrelationship to an iterative scheme using SSPRED (Mehta et al., 1995), a more
advanced MSA-dependent method of the time. In this scenario, an initial MSA is
used for the prediction of the secondary structures of the sequences to be aligned
and then these predictions are reintroduced to produce a new secondary structure-
guided alignment. The new, more correct alignment is then used in the next itera-
tion step to derive new, more accurate secondary structure predictions and so on.
Simossis and Heringa have recently re-designed PRALINE (Heringa, 1999) to use
the MSA-dependent secondary structure prediction methods PHD (Rost and Sander,
1993), PROFsec (Rost, personal communication), JNET (Cuff and Barton, 2000),
and SSPro2 (Pollastri et al., 2002) in this iterative approach. Preliminary results
show that for the alignment of the 13 flavodoxin sequences and cheY, the initial
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PHD prediction for the most difficult sequence (cheY) is vastly improved by this
iterative scheme.

7.7 Applications to Local Protein Tertiary
Structure Prediction

Protein tertiary structure prediction is a vast and intense area of research. The abil-
ity to predict a protein’s 3D structure from the amino acid sequence is one of the
outstanding grand challenges in molecular biology, despite almost 40 years of com-
putational research on the subject. A multitude of approaches have been attempted
over the years to predict tertiary structure, ranging from simplified lattice models to
full-scale energy-based atomic modeling using complex force fields. These can be
grouped into two fundamentally different classes of methods to predict 3D struc-
ture from amino acid sequence. The first is ab initio prediction, which attempts to
predict the folding of an amino acid sequence without any direct reference to other
known protein structures. Computer-based calculations are employed that attempt to
minimize the free energy of a structure with a given amino acid sequence or to sim-
ulate the folding process. The utility of these methods is limited by the vast number
of possible conformations, the marginal stability of proteins, and the subtle ener-
getics of weak interactions in aqueous solution. For a detailed account of ab initio
prediction, see Chapter 13. The second group of methods takes advantage of our
growing knowledge of 3D structures of proteins. In these knowledge-based methods,
an amino acid sequence of unknown structure is examined for compatibility with
any known protein structures. These techniques are also referred to as threading (see
Chapter 12). If a significant match is detected, the known structure can be used as
an initial model. Knowledge-based methods have led to many insights into the 3D
conformation of proteins of known sequence but unknown structure. To date, the
most reliable way to predict a protein structure is homology modeling, where the
sequence of an unknown protein is aligned to another homologous protein sequence
for which the tertiary structure is known. Typically, for those parts of the query
sequence that are aligned with core secondary structures of the template structure,
the backbone topologies of these structures are taken. It is clear that for this transfer
of information the quality of the alignment between query and template sequence
is crucial. A recent survey suggested that the recent improvements in scope and
quality of comparative models largely come from the increased number of available
protein sequences, resulting in better multiple sequence alignments (Cozzetto and
Tramontano, 2005). Techniques have also been created to optimize the alignment
of query and template sequence(s) by incorporating information from the template
structure (e.g., Kleinjung et al., 2004). Two tasks then remain: one is to model the
sidechains of the core elements, while the other is to model the loops connecting
the core SSEs. Loop modeling has been defined as finding the ensemble of possible
backbone structures, associated with the sequence segment corresponding to the
loop, that are geometrically consistent with preceding and following parts of the
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loop whose 3D structures are given. The latter, also referred to as loop closure, is a
complicated chore to achieve.

A vast number of folding experiments suggest that two conformational states
are present to any significant extent, folded and unfolded. Such observations demon-
strate that protein folding and unfolding result from a cooperative transition (Bystroff
et al., 2000). The ultimate consequence of cooperativity is that if a protein is placed
in conditions under which some part of the protein structure is rendered thermody-
namically unstable, the interactions between it and the remainder of the protein will
be lost. The loss of these interactions, in turn, will then destabilize the remainder of
the structure. However, the conclusion that conditions leading to the disruption of
any part of a protein structure will unravel the protein completely, cannot be gener-
ally maintained given the recent observations of natively disordered protein regions
or even complete proteins (see Section 7.4).

Applications such as homology modeling or protein docking are based on the
assumption that a protein’s inner core is less prone to movement than surface residues.
This notion is supported by the fact that within homologous families, variations of
the basic 3D topology associated with a given family are normally located at loop
regions, ranging from the extension of a loop by one or a few extra residues, via
additional SSEs, to complete domain insertions.

The most important applications of local 3D structure modeling are recognizing
and modeling protein ligand-binding sites (An et al., 2005) and protein–protein in-
teraction (PPI) sites, where the ability to model the conformation of surface residues
is a crucial issue. Particularly, PPI sites are notoriously difficult to predict (Bordner
and Abagyan, 2005). Furthermore, the computational methods designed for these
tasks are computationally intensive, such that web interfaces to available programs
are largely absent.

Another use of local 3D protein structures is by using local segments as found
in the PDB database of tertiary structures (Dutta and Berman, 2005). An important
example of this is the Robetta server (Kim et al., 2004) for homology or ab initio
modeling, which makes use of fragment libraries. Fragment libraries are the pieces
of experimentally determined structures that Robetta uses to guide the search of
conformational space when predicting structures using its ab initio protocol, as well
as longer loop conformations in homology models.

Apart from improvements in force fields leading to enhanced and flexible dock-
ing approaches, further developments might come from new mesoscopic modeling
approaches, in which protein structures are not described at the atomic level, but by
means of mesoscopic quantities like the number of effective particles (“beads”) in
a polymer and an effective potential between these particles. Such approaches aim
to be more computationally efficient, allowing genomic pipeline screening modes,
while preserving or even enhancing accuracy.

Another avenue to future improvements will be to utilize the ever-growing ge-
nomic sequence database and exploit evolutionary comparison methods, bridging for
example multiple alignment information and structural descriptions of known bind-
ing sites and/or ligands. In such a knowledge-based approach, protein–ligand and
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protein–protein interactions might be delineated in the absence of three-dimensional
modeling scenarios.

7.8 Software Packages

In the following section we describe local structure prediction software packages
that at the time this chapter was written were either available for use as a web service
or downloadable for local use. The examples cover secondary and supersecondary
structure prediction tools using all machine learning approaches discussed (Sections
7.9.1 and 7.9.2), disordered region (Section 7.9.3), and repeats detection (Section
7.9.4).

7.8.1 Secondary Structure Prediction

7.8.1.1 k-Nearest-neighbor

Software Package 1. PSSP/ APSSP/ APSSP2
In the original PSSP secondary structure prediction method (Raghava, 2000) the
authors introduced the combination of an NN and a customised kNN technique on
single sequence prediction. The principle behind this combination was that on the
one hand, protein queries that had closely related examples of known secondary
structure would get a better prediction using the kNN technique than solely using an
NN, but on the other hand, in the event of example absence, the NN would provide
a better prediction than the kNN approach. The combination of the predictions of
the two techniques was based on per-residue state-specific probabilities of correct
prediction calculated by the NN rather than a binary (one or the other) use of the
techniques according to the query. In addition, the final prediction was further filtered
using an extra NN, much like that operating in PHD, where single-residue strands
and helices were corrected.

The customization of the kNN technique used in PSSP was first the extending
of the existing database of known examples that had earlier been derived from
126 proteins (Raghava, 2000) to a much larger training dataset by using all of the
proteins in the 1998 version of the PDB database (Berman et al., 2000). This way,
the number of possible examples was greatly increased; leading to an increase in
the number of proteins the technique could correctly handle. Second, due to the
increase in examples, the authors developed a way to minimize the computational
time of comparing the query to the example database, reporting an 800-fold increase
in computational speed (Raghava, 2000).

The most recent versions of PSSP are APSSP (Raghava, 2002b) and APSSP2
(Raghava, 2002a). APSSP and APSSP2 are both three-step methods that use an MSA
as input to a combined NN and Example-Based Learning (EBL) system. The main
difference between the two is the way the initial step is carried out. In APSSP, the
first step is performed automatically by the external secondary structure prediction
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method Jnet (Cuff and Barton, 2000). The Jnet method is described in detail later on
in the consensus approach section. Conversely, in its first step APSSP2 generates an
MSA using the PSIBLAST search tool (Altschul et al., 1997) and an initial prediction
is produced using the same standard NN as PSSP (Raghava, 2000). In the second step,
a customized EBL technique has replaced the kNN approach and is used to generate
a second separate prediction. As in PSSP, in the third step, the secondary structures
predicted from the first two steps are combined based on prediction reliability scores.

The PSSP and APSSP methods have now been replaced by APSSP2, which is
available online as an automatic prediction server and as part of the EVA assessment
server (Koh et al., 2003) (see Section 7.9.1).

7.8.1.2 Neural Networks

Software Package 1. PHD/PHDpsi/PROFsec
The secondary structure prediction method PHD (Rost and Sander, 1993) was the
first algorithm to employ NNs and database searching. At a time when prediction
was stuck in the high ends of 60%, it gave a groundbreaking boost to about 73%
(Rost and Sander, 1993). The modus operandi of PHD was the search of the SWISS-
PROT (Bairoch and Boeckmann, 1991; Boeckmann et al., 2003) database using
the MAXHOM MSA method (Sander and Schneider, 1991). The resulting MSA
was passed into the PHD three-layer network and generated its prediction [more
details can be found in Rost and Sander (1993) and a review in Heringa (2000)].
In later years, PHD was updated to PHDpsi (Przybylski and Rost, 2002) that used
the iterative homology search engine PSI-BLAST on the much larger BIG database,
which is a nonredundant merge of the PDB (Berman et al., 2000), TrEMBL, and
SWISS-PROT. More recently, although still unpublished, PHD has evolved even
more and now takes advantage of bidirectional recurrent NNs (BRNNs) in PROFsec
(Rost, personal communication).

All three PHD flavors can be used online as part of the Predict Protein Server
(Rost, personal communication), which is one of the first members of the EVA
assessment server (Koh et al., 2003) (see Section 7.9.1).

Software Package 2. PSIPRED
The PSIPRED method incorporates MSA information and NNs (Jones, 1999). The
alignment information used is represented by a position-specific scoring matrix
(PSSM) generated by the PSI-BLAST algorithm (Altschul et al., 1997; Altschul and
Koonin, 1998) and is inputted to a two-layered NN.

The accuracy of the PSIPRED method is 76.5%, as evaluated by the author
(Jones, 1999) and continues to rank among the best methods according to the EVA
assessment server (Koh et al., 2003) (see Section 7.9.1).

Software Package 3. SSPro
SSPro is an NN prediction method that employs 11 BRNNs (bidirectional recur-
rent neural networks) to generate its predictions, instead of the commonly used
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feedforward networks. The first version of SSPro (Baldi et al., 1999) used BLAST
(Altschul et al., 1997) to generate multiple alignments as input, while in the second
and current SSPro version (Pollastri et al., 2002), multiple alignments of homo-
logue sequences are obtained using PSI-BLAST (Altschul et al., 1997; Altschul and
Koonin, 1998).

The authors have quoted SSPro2 to have an average prediction accuracy (Q3)
of 78% (Pollastri et al., 2002). In addition, the SSPro algorithm has also been ex-
perimentally implemented to predict eight-state secondary structure (H: �-helix, G:
3/10-helix, I: �-helix, E: extended strand, B: �-bridge, T: turn, S: bend, C: coil) from
primary sequence. In the same paper as SSPro2, the authors present SSpro8 trained
using BLAST and PSI-BLAST profiles. The quoted overall performance (Q8) of
SSpro8 was 62–63%. An automatic server is available online and is part of the EVA
assessment server (Koh et al., 2003) (see Section 7.9.1).

Software Package 4. YASPIN
YASPIN (Lin et al., 2005) uses a feedforward perceptron NN with one hidden layer
to predict the SSEs (Bishop, 1995). These predictions are then filtered by an HMM.

The YASPIN NN uses the soft-max transition function (Bishop, 1995) with a
window of 15 residues. For each residue in that window, 20 units are used for the
scores in the PSSM and 1 unit is used to mark where the window spans termini
of protein chains. In total, the input layer has 315 units (21 × 15). For the hidden
layer we have used 15 units. The output layer has 7 units, corresponding to 7 local
structure states: helix beginning (Hb), helix (H), helix end (He), beta beginning (Eb),
beta (E), beta end (Ee), and coil (C).

The seven-state output of the NN is then filtered through an HMM, which uses
the Viterbi algorithm (Durbin, 1998) to optimally segment the seven-state predic-
tions. The HMM defines the transition probabilities between the seven local structure
states. The final output is a three-state secondary structure prediction (H: helix, E:
beta strand, C: coil). The YASPIN server has recently been added to the EVA as-
sessment server (Koh et al., 2003) (see Section 7.9.1).

7.8.1.3 Hidden Markov Models

Software Package 1. SAM-T99/SAM-T02
The SAM (Sequence Alignment and Modelling system) software package (Hughey
and Krogh, 1996) is a collection of tools that use linear HMMs for sequence analysis.
Integrated into the package are the SAM-T99 (Karplus et al., 1998; 1999) and SAM-
T02 (Karplus et al., 2002; 2003) structure prediction methods. Both methods predict
the fold and secondary structure of a target protein sequence using multitrack HMMs
and NNs.

The SAM-T02 method is an updated version of SAM-T99 and also incorporates
secondary structure information into the scoring schemes it uses. Its HMMs and NNs
have been trained on MSAs generated by the SAM-T2K iterated search procedure
(Karplus et al., 2001).
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The procedure SAM-T02 follows is to build an MSA of homologues to the
target sequence using SAM-T2K and then employ NNs to make local structure
predictions. The refinement and analysis of the HMM alignments returned can be
performed by additional software found in the SAM package. Online servers for
both SAM-T99 and SAM-T02 are available, but the authors recommend the use of
the most updated SAM-T02 method (see Section 7.9.1). Although SAM-T02 has
not yet been added to the EVA assessment server (Koh et al., 2003), SAM-T99 is
still one of the highest performing methods (Section 7.9.1).

7.8.1.4 Support Vector Machines

Software Package 1. Hua and Sun
Hua and Sun (2001) were the first to apply SVMs to predict the secondary structure at
each location along a protein strand. In their method SSEs fall into three categories:
helix (H), sheet (E), or coil. Accordingly, this multiclass recognition problem was
addressed by training three separate SVMs, one per SSE. The protein sequence is
encoded in redundant binary fashion, using an 11-residue sliding window. The final
classification of a given amino acid is the label associated with the SVM that assigns
the discriminant score that is farthest from zero. The per-residue accuracy (Q3)
and segment overlap (SOV) (Zemla et al., 1999) scores quoted by the authors are
73.5 and 76.2%, respectively, which are comparable to existing NN-based methods.
Unfortunately, no SVM methods are currently part of an automated assessment
server.

7.8.1.5 Consensus Prediction

Software Package 1. Jpred/Jnet
The initial implementation of Jpred was a purely majority voting consensus-deriving
method (Cuff et al., 1998; Cuff and Barton, 1999) (for review see Heringa, 2000). The
current Jpred (Jnet) server (Cuff and Barton, 2000) uses a refined and processed PSI-
BLAST-generated alignment, the PSI-BLAST and HMM profile of that alignment
and performs its predictions through two fully connected three-layer NNs.

The alignments Jnet uses are generated using PSI-BLAST to scan a Seg- (Woot-
ton and Federhen, 1996) and helixfilt- (D.Jones, unpublished) filtered version of the
combined SWISS-PROT (Bairoch and Boeckmann, 1991) and TrEMBL protein
sequence database. After three iterations of PSI-BLAST, all sequence pairs in the
generated alignment are compared and the sequence percentage identities are used
to cluster them. All sequences in the alignment with more than 75% identity are
removed. The alignment is then further processed by removing all gaps from the
target sequence including the corresponding column beneath that gap. This type
of alignment processing is also observed in PHD, PHDpsi, and PROFsec and it is
essential for the NN to work.

In addition to the alignment, Jnet also uses the PSI-BLAST-generated PSSM
(PSI-BLAST profile) and the HMM profile of the alignment (using HMMER). The
three input files are each used as input to the two neural networks. The first neural
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network uses a 17-residue sliding window and predicts the per-residue propensity
of helix, strand, and coil. The second network acts as a filter for each per-residue
prediction from the first network, using a 19-residue sliding window. Finally, the
three predictions are used to generate a per-residue consensus, which is the final
prediction.

The authors of Jnet have quoted an average prediction accuracy of 76.4%
when using all three input types, 71.6% when only using the refined and processed
PSI-BLAST alignment, 74.4% when using the alignment, and HMM profile of the
alignment, and 75.2% when using the alignment and the PSI-BLAST profile of the
alignment. The EVA server has stopped the assessment of the Jpred method due to
a move in URLs. The quoted Q3 of 72.8% over 167 proteins refers to the original
Jpred method (see Section 7.9.1).

Software Package 2. SymSSP/SymPRED
The original “majority voting” technique was improved upon by the use of dynamic
programming (DP) (Needleman and Wunsch, 1970) in the SymSSP (Simossis and
Heringa, 2004a) and soon after in the SymPRED (Simossis and Heringa, submitted)
methods. In both applications, an alignment of secondary structures is reduced to
a weighted profile that describes helix, strand, or coil content of each position. The
profile is scanned in windows of increasing length, from single position (window
of 1) up to the length of the whole sequence, for each secondary structure type.
Each secondary structure type segment is scored as the sum of all of its positions.
These equivalent secondary structure-specific window scores are compared and the
highest one is used to fill a search matrix. Finally, the DP routine finds the optimal
path through the search matrix and thus provides an optimally segmented consensus
prediction.

In the SymSSP method, the strategy was applied to the alignment-based pre-
dictions of a single method that preprocesses the input alignment prior to prediction
by removing whole alignment positions that show a gap in the top sequence. When
most of the discarded information was recovered for the methods PHD (Rost and
Sander, 1993), PROFsec (B. Rost, personal communication), and SSPro (Pollastri
et al., 2002), the results showed consistent modest improvement of the prediction
quality of these methods based on Q3 and SOV (Zemla et al., 1999) score results .
In the case of SymPRED, the DP strategy was applied to the predictions of various
prediction methods and the results were compared to recent simple “majority vot-
ing” investigations (Albrecht et al., 2003; McGuffin and Jones, 2003; Ward et al.,
2003). In both investigations the predictions produced were of higher quality than
those produced by the simple “majority voting” strategy.

7.8.2 Supersecondary Structure Prediction

7.8.2.1 Software Package 1. COILS2

Closely related to secondary structure prediction is the prediction of coiled-coil struc-
tures. If a soluble protein is predicted to contain �-helices, higher-order information
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as well as increased confidence in predictions made could be gained from testing the
possibility of it containing a coiled-coil supersecondary structure.

The program COILS2 (Lupas et al., 1991; Lupas, 1996) compares a query
sequence with a database of known parallel two-stranded coiled coils. A similarity
score is derived and compared to two score distributions, one for globular proteins
(without coiled coils) and one for known coiled-coil structures. The two scores are
then converted to a probability for the query sequence to adopt a coiled-coil confor-
mation. Since the program assumes the presence of heptad repeats, probabilities are
derived using default window lengths of 14, 21, and 28 amino acids. The program
can also use user-defined window lengths for the prediction of extreme coiled-coil
lengths. A recently updated scoring matrix, based on data from recent coiled-coil
structures and containing amino acid type propensities for various positions in the
heptad repeat, shows improved recognition of coiled-coil elements. The COILS2
method accurately recognizes left-handed two-stranded coiled coils but loses sen-
sitivity for coiled-coil structures consisting of more than two strands. Also, it is
not able to recognize right-handed or buried coiled–coil helices and therefore is not
applicable to transmembrane coiled-coil structures known to show basically similar
coiled-coil conformations as soluble proteins, albeit with dramatically different and
more hydrophobic constituent amino acids (Langosch and Heringa, 1998).

7.8.2.2 Software Package 2. WD-repeats Prediction

The server “WD repeat Family of Proteins” (see http://bmerc-www.bu.edu/
wdrepeat/) is able to recognize putative WD-repeat sequences associated with 4-
to 9-bladed 3D WD-repeat structures. These models combine a particular so-called
Type-1 structural model with sequence-specific pattern information. Multidomain
proteins can be handed to the server intact; the region containing the WD-repeat
domain will be identified by the server automatically.

The analysis algorithm is based on probabilistic Discrete State-space Models
(DSMs), and optimal filtering and smoothing algorithms (Stultz et al., 1993). The
mathematical basis for the models and algorithms is described in White et al. (1994).

A protein sequence submitted to the server is first classified as “generic” or
“wd repeat.” The class “generic” is designed for proteins not containing WD repeats.
Superclass “wd repeat” is designed for the WD-repeat family of proteins. Under this
superclass, there are six macroclasses for WD-repeat proteins, each of which contains
a different number of WD repeats. Sequences containing fewer than four WD repeats
will not be reported as a WD-repeat protein. This is due to the assumption that all
WD-repeat proteins adopt a �-propeller fold, which must have at least four blades
to form a circular structure. The 4- to 9-bladed (WD4 to WD9) models that can be
produced by the server correspond to sequence length ranges of 187–279, 233–332,
278–385, 323–437, 368–489, and 413–541 residues, respectively. To handle longer
sequences, the algorithm is able to add leader and trailer to the models on the fly.
Therefore, all models can recognize WD repeats within sequences longer than its
maximum domain length up to an upper limit on sequence length of 1000 residues.
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Each WD repeat has two conserved profiles denoted “profile 1” and “pro-
file 2” (which may be approximated as “GHXXXVXXVXFX” and “XLASGSXDX-
TIKVWD,” respectively, as shown at http://bmerc-www.bu.edu/wdrepeat/) that are
used in the DSM prediction. The probabilities of occurrence of each of these pro-
files will be reported if WD repeats are identified in the sequence. In addition, the �
strands within each of the aligned putative WD repeats will be designated, although
individual �-strand probabilities will not be reported. To provide the user insight in
the 3D orientation of the WD repeats, a skeleton coordinate file in PDB format is
included.

7.8.3 Disordered Region Prediction

7.8.3.1 Software Package 1. PONDR

The PONDR suite contains several disorder prediction methods (Obradovic et al.,
2003). The predictions from the methods VL2 and VLXT in the PONDR suite
(Obradovic et al., 2003) come from ensembles of feedforward NNs trained on com-
binations of amino acid composition, flexibility, and sequence complexity. Sequence
information is parsed using windows of generally 21 amino acids. The amino acid
attributes are calculated over this window, and these values are used as inputs for
the NNs, which calculate a value for the central amino acid in each window. These
prediction values are then smoothed over a sliding window of 9 amino acids. If a
residue value exceeds a threshold, the residue is declared disordered. Another predic-
tor VL3 was trained using ordinary least squares regression with partitioning of the
training set to cluster various “flavors” of disorder (Vucetic et al., 2003). Recently, a
new disorder predictor VSL1 was added to the PONDR suite. The VSL1 predictor
obtained the best results in a comparison including 20 different disorder prediction
methods presented at the CASP6 structure prediction meeting in December 2004.
The methods in the PONDR suite are not freely available.

7.8.3.2 Software Package 2. FoldIndex

The FoldIndex program is based on the calculations developed by Uversky et al.
(2000) and predicts whether a sequence will fold by computing its mean net charge
and hydrophobicity (Uversky et al., 2000). The window parameter for the FoldIndex
classifier was set to 31 residues as this value achieved the highest accuracy on a vali-
dation set. The resulting data show that the combination of low mean hydrophobicity
and relatively high net charge represents an important prerequisite for the absence of
regular structure in proteins under physiologic conditions, thus leading to “natively
unfolded” proteins.

7.8.3.3 Software Package 3. DisEMBL

Linding et al. (2003a) developed the NN-based method DisEMBL. The authors
carefully selected a number of protein sets—including a coil and a “hot loop”
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set—to train the neural nets using 5-fold cross validation, while the best param-
eter settings were selected based on ROC curves. The optimal network architecture
was a window size of 19 residues and 30 hidden units. The coil and hot loop NN
ensembles, the score distributions of positive and negative test examples were es-
timated using Gaussian kernel density estimation. Based on these distributions, a
calibration curve for converting NN output scores to probabilities was constructed.
To predict disorder for an unknown query sequence, the network output is smoothed
and the resulting amino acid disorder probabilities are plotted.

7.8.3.4 Software Package 4. GLOBPLOT

The GLOBPLOT method (Linding et al., 2003b) is based on the hypothesis that
the tendency for disorder can be expressed as P = RC−SS where RC and SS arethe
propensity for a given amino acid to be in “random coil” and regular “secondary
structure,” respectively. The RC and SS propensity values were derived by the authors
employing a data set using a single representative of each superfamily in the SCOP
database (version 1.59). The two types of propensities were then combined in a single
“Russel/Linding” amino acid propensity set, which is able to discriminate between
disorder and globular packing.

7.8.3.5 Software Package 5. DISOPRED

The DISOPRED2 method (Ward et al., 2004) exploits an SVM classifier based on
a linear kernel function and compares favorably to the above methods across the
range of decision thresholds. Ward et al. (2004) also noted that using homologous
sequences improves disorder prediction slightly as compared to single sequence
prediction, but the beneficial effect is clearly lower than that for secondary structure
prediction.

7.8.3.6 Software Package 6. PDISORDER

The PDISORDER method (Softberry, Inc.) exploits a combination of machine learn-
ing techniques comprising NNs, linear discriminant functions, and an acute smooth-
ing procedure. At the recent CASP6 prediction assessment workshop, the method
scored high in terms of the correlations it yields with crystallographic B-factors,
which are included as evidence for disorder.

7.8.3.7 Software Package 7. DISpro

Cheng et al. (2005) reported a state-of-the-art disorder prediction accuracy of 92.8%
with a false positive rate of 5% on large cross-validated tests. Their method DISpro
uses evolutionary information in the form of profiles, predicted secondary struc-
ture and relative solvent accessibility, and ensembles of 1D-recursive NNs. The
method shows an improved performance over previous methods, for example using
the CASP5 data set (Cheng et al., 2005).
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7.8.4 Internal Repeats Recognition

7.8.4.1 Software Package 1. REPRO

Heringa and Argos (1993) adapted the basic Waterman and Eggert algorithm to
repeat situations within a single protein by demanding, in addition to top-scoring
alignments being nonintersecting, that locally aligned fragments do not overlap.
They introduced a graph-based iterative clustering mechanism, which takes the thus
produced list of top-scoring nonoverlapping local alignments for a single query
sequence, declares the N-terminal matched amino acid pair in each top alignment as
start sites of a repeats pair, and then attempts to delineate associated start-sites within
the top alignments (i.e., find more repeats internal to the top alignment) that match
the repeat type based on alignment consistency with already clustered members of
the repeat type. If such new repeats are found, the cluster procedure is iterated.
The cluster consistency criterion assesses the number of established repeats that
align with a putative repeat, and selects it only if three or more of such top-scoring
alignments can be found and if at least one of these associated alignments has already
contributed one or more repeat members to the current repeat type and therefore can
be trusted to be “in phase” with that repeat type. After the clustering phase, the
repeats can be multiply aligned and turned into a profile, which can then be slid
over the query sequence to verify the repeats already found and possibly detect new
incarnations missed by the preceding algorithmic steps (Heringa and Argos, 1993):
If new repeats are found, the profile can be updated and the procedure iterated. The
REPRO algorithm is able to detect multiple repeat types independently, and is a
sensitive but slow technique. A web server for the REPRO algorithm is available at
http://ibivu.cs.vu.nl (George and Heringa, 2000).

7.8.4.2 Software Package 2. Pellegrini et al.

A quick algorithm for calculating the length and copy number of internal repeat sets
has been devised by Pellegrini et al. (1999). The method uses the Waterman and
Eggert algorithm and converts the scores of the selected top alignments to probabil-
ities. An N × N path matrix, where N is the length of the protein sequence, is then
filled with ones for matrix cells corresponding to local nonintersecting alignments
that score above a preset threshold value for the probabilities, and zero values else-
where. Two simple summing protocols are then applied to this matrix to obtain an
approximate notion of the repeat length and copy number, albeit the repeat bound-
aries are not determined. Marcotte et al. (1999) used the algorithm to derive a general
census of repeats in proteins using the SWISS-PROT protein sequence database.

7.8.4.3 Software Package 3. RADAR

The method RADAR (Heger and Holm, 2000) basically follows the algorithmic steps
of the REPRO method (Heringa and Argos, 1993). It calculates nonintersecting
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Table 7.1 A list of all prediction methods independently assessed by the EVA server and their
corresponding overall scores and test set sizes, until the end of 2004. Methods whose names are
in boldface have been covered in Section 7.8

Method Test set Score Server URL (assume “http://” at the start of each address)

APSSP2 393 75.1 www.imtech.res.in/raghava/apssp2/
Jpred 167 72.8 www.compbio.dundee.ac.uk/∼www-jpred/submit.html
JUFO 133 68.9 www.jens-meiler.de/jufo.html
PHD 446 72.2 cubic.bioc.columbia.edu/predictprotein/
PHDpsi 440 73.3 cubic.bioc.columbia.edu/predictprotein/
PROF king 443 72.7 www.aber.ac.uk/∼phiwww/prof/
PROFsec 443 75.3 cubic.bioc.columbia.edu/predictprotein/
Prospect 315 71.7 compbio.ornl.gov/cgi-bin/PROSPECT/
PSIPRED 443 76.2 bioinf.cs.ucl.ac.uk/psipred/psiform.html
SABLE 156 76.0 sable.cchmc.org/
SABLE2 99 76.9 sable.cchmc.org/
SAM-T99sec 396 76.0 www.cse.ucsc.edu/research/compbio/HMM-apps/T99-query.html
SCRATCH 217 75.7 www.igb.uci.edu/tools/scratch/
SSPRO2 257 74.3 www.igb.uci.edu/tools/scratch/
SSPRO4 68 78.7 www.igb.uci.edu/tools/scratch/
YASPIN 80 71.0 ibivu.cs.vu.nl/programs/yaspinwww/

local alignments, and then uses these in an iterative procedure to determine the
shortest nonreducible repeat unit and determine the associated boundaries. A profile
is constructed from a multiple alignment of a repeat set, and slid over the query
sequence to capture more repeats. The whole procedure is then iterated in an attempt
to find multiple repeat types. The RADAR step to find the shortest possible repeat
unit, includes an iterative wraparound DP algorithm to detect the smallest repeat
unit within a potentially reducible set of repeats. The RADAR method is sensitive
and sufficiently fast for genomic application.

7.8.4.4 Software Package 4. REP

Andrade et al. (2000) produced a supervised repeats detection method REP, which
searches the query sequence using a number of profiles, each profile containing

Table 7.2 A list of methods for predicting coiled-coil and WD-repeat protein regions from
sequence

Method Server URL (assume “http://” at the start of each address) Reference

COILS2 iubio.bio.indiana.edu:7780/archive/00000527/ Lupas et al., 1991
WD-repeat

Prediction
bmerc-www.bu.edu/psa/request.htm The same URL
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Table 7.3 A list of methods for predicting disordered protein regions from sequence

Server URL (assume “http://”
Method at the start of each address) Methodology Reference

FoldIndex bioportal.weizmann.ac.il/
fldbin/findex

Charge-
hydrophobicity
patterns

Priluski et al., 2005

DISpro www.ics.uci.edu/∼baldig/
diso.html

Neural net Cheng et al., 2005

DISEMBL dis.embl.de/ Neural net Linding et al., 2003a

GLOBPLOT globplot.embl.de/ Amino acid
propensities

Linding et al., 2003b

DISOPRED2 bioinf.cs.ucl.ac.uk/disopred/
disopred.html

SVM Ward et al., 2004

PONDR www.pondr.com Neural net Obradovic et al., 2003

DRIPPRED sbcweb.pdc.kth.se/cgi-bin/
maccallr/disorder/submit.pl

Kohonen
self-organizing
maps

http://www.forcasp.org/
paper2127.html

PDISORDER www.softberry.com/berry.phtml?
topic=pdisorder&group=
programs&subgroup=propt

Neural network http://www.forcasp.org/
upload/2197.28.pdfLinear

discriminant
function

Acute smoothing
procedure

the information of a multiple alignment of a known repeats family. The user can
scan the query sequence for the following repeat types: Ankyrin, Armadillo, HAT,
HEAT, HEAT AAA, HEAT ADB, HEAT IMB, Kelch, Leucin-e-Rich Repeats,
PFTA, PFTB, RCC1, TPR, and WD40.

Table 7.4 List of methods for internal repeats recognition

Server URL (assume “http://”
Method at the start of each address) Methodology Reference

Pellegrini
et al.

www.doe-mbi.ucla.edu/
Services/Repeats/

Waterman and
Eggert
algorithm

Pellegrini et al., 1999

RADAR www.ebi.ac.uk/Radar/ Local alignment Heger and Holm, 2000

REP www.embl-heidelberg.de/∼andrade/
papers/rep/search.html

Checking known
repeat types

Andrade et al., 2000

REPRO ibivu.cs.vu.nl/programs/reprowww/ Local alignment,
graph clustering

George and Heringa,
2000

TRUST ibivu.cs.vu.nl/programs/trustwww/ Transitivity Szklarczyk and
Heringa, 2004
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7.8.4.5 Software Package 5. TRUST

Szklarczyk and Heringa (2004) developed a method TRUST for protein internal
repeats detection based on transitivity of repeats. The authors reported an increased
sensitivity and accuracy of the method. This is achieved by exploiting the concept of
transitivity of alignments, which relies on mutual reinforcement (or attenuation) of
repeat signals, and thus can be used as a noise filter. Starting from local suboptimal
alignments, the application of transitivity allows (1) identification of distant repeat
homologues for which no alignments were found; (2) gaining confidence about
consistently well-aligned regions; and (3) reducing the contribution of nonhomolo-
gous repeats. The thus obtained increased consistency generally leads to a virtually
noise-free profile representing a generalized repeat with high fidelity. The TRUST
method also employs a rigid statistical test for self-sequence and profile-sequence
alignments.

7.9 Resources

This section contains useful resources available at the time this chapter was written
for online software applications and other useful material.

7.9.1 Secondary Structure Prediction

7.9.2 Supersecondary Structure Prediction

7.10 Summary

This chapter presents an overview of issues in predicting local structural features of
proteins. The inherent hierarchical order of protein structure is discussed in a bottom-
up fashion, from secondary structure via supersecondary structure to prediction
aspects of local three-dimensional structure, the latter including protein disordered
region detection and internal repeats recognition. Some approaches to use these
structural features in multiple sequence alignment are also discussed. State-of-the-
art prediction methods are described and the addresses of their web interfaces, if
available, are provided.
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8 Protein Contact Map Prediction

Xin Yuan and Christopher Bystroff

8.1 Introduction

Proteins are linear chains that fold into characteristic shapes and features. To un-
derstand proteins and protein folding, we try to represent the protein molecule in
such a way that its features are easy to see and manipulate. A simple representation
facilitates algorithm design for structure prediction. The simplicity of the three-
state character string representation of secondary structure is part of the reason for
secondary structure prediction receiving so much attention early in the era of com-
putational biology. One-dimensional strings are easily understood, parsed, mined,
and manipulated. But secondary structure alone does not tell us enough about the
overall shapes and features of a protein. We need a simple way to represent the overall
tertiary structure of a protein.

Here we explore a two-dimensional Boolean matrix representation of protein
structure, where each dimension is the residue number and each value is true if the
residues are spatial neighbors and false otherwise—called a “contact map.” A contact
map is the simplest representation of a protein that can be faithfully projected back
into three dimensions. As such it has received increased attention in recent years
from bioinformaticists, who see this as a data structure that is readily amenable to
data mining and machine learning.

The first goal of this chapter is to introduce the contact map data structure, how
it is calculated from the three-dimensional structure and how it is transformed from
two dimensions into three. Then we will explore a series of computational methods
that have attempted to predict contact maps directly from the primary sequence, with
or without the help of template structures from the protein database. Next, we will
discuss the various ways that contact map predictions may be evaluated for accuracy.
Finally, we will present some of the other ways contact maps have proven useful.

8.2 Definition of Interresidue Contacts and Contact Maps

Interresidue contacts have been defined in various ways. Routinely, a contact is said
to exist when a certain distance is below a threshold. The distance may be that
between C� atoms (Vendruscolo et al., 1997), between the C� atoms (Lund et al.,
1997; Thomas et al., 1996; Olmea and Valencia, 1997; Fariselli et al., 2001a,b), or
it may be the minimum distance between any pair of atoms belonging to the side

255
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chain or to the backbone of the two residues (Fariselli and Casadio, 1999; Mirny
and Domany, 1996). The following definitions of the interresidue distance Di j have
appeared at some time in the literature, each associated with a threshold distance:

1. The distance between alpha carbons (CA)
2. The distance between beta carbons (CB), using alpha carbon for glycine
3. The minimum distance between the van der Waals (vdW) spheres of heavy atoms

(HS)
4. The minimum distance between the vdW spheres of backbone heavy atoms (BB)
5. The minimum distance between the vdW spheres of side-chain heavy atoms or

alpha carbons (SC)

By one informed account, the best definition for interresidue distance is SC, the mini-
mum distance between side-chain or alpha-carbon atoms (Berrera et al., 2003). Using
a cutoff distance of around 1.0 Å between vdW spheres, SC-based contact maps effi-
ciently recognized homologue sequences in a “threading” experiment, where a query
sequence is assigned an energy score for every possible alignment of the sequence
to a set of template structures. In a threading experiment, the definition of a contact
determines which residues in the sequence are used to sum the energy. Using the
minimum distance between residues and using a short distance cutoff makes the
definition of a contact more energetically realistic, and this makes the sum of amino
acid contact potentials a better approximation of the true energy. Contact potentials
are energy functions that measure the pairwise side-chain-dependent free energy
of residue–residue contacts, irrespective of the side-chain conformations. Contact
potentials may be derived from contact maps statistics, as described in a later section.

Simpler, backbone atom-based definitions (CA or CB) with longer distance
cutoffs are more readily projected into three dimensions, since the atomic positions
used to calculate the distance depend only on the backbone angles. CB is slightly
more meaningful than CA in an energetic sense, since side chains that point toward
each other, and therefore have a shorter CB distance than CA distance, are more
likely to make an actual physical contact. Using the minimum distance measures
(HS, BB, or SC) can make projection into three dimensions more difficult because
we have not saved the precise identity of the contacting atoms in the Boolean matrix.
CB distances with a cutoff of 8 Å were chosen for use in the Critical Assessment
of Structure Prediction (CASP) experiments (Moult et al., 2003), and this is the
definition that we will discuss here, unless otherwise specified.

Having defined what we mean by the distance Di j , the definition of a contact
map is a straightforward distance threshold. For a protein of N amino acids the contact
map is an N × N matrix C whose elements are given, for all i, j = 1, . . . , N , by

Ci j =
{

1 if Dij < Dcutoff
0 otherwise

(8.1)

The set of all Di j is commonly referred to as the “distance matrix.” Therefore, we
can think of Ci j as a thresholded distance matrix. The mean difference between two
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distance matrices is sometimes called the “distance matrix error” (DME), as follows:

DME (a,b) =

N−loc∑
i=i

N∑
j=i+loc

∣∣Da
i j − Db

i j

∣∣
0.5 (N − loc − 1) (N − loc)

(8.2)

DME is variously defined as the average of absolute differences or the root-mean-
square distance difference, often with a cutoff (loc) to exclude local distances. The
DME can be shown to correlate with the root-mean-square deviation (RMSD) in
atomic positions if both numbers are derived from the same structures:

RM SD (a,b) =

√√√√
∑

i=1,N

(
xa

i − xb
i

)2

N
(8.3)

By association, since the contact map error (CME) is a crude approximation of the
DME, we can say that the sum of differences between two contact maps is a crude
approximation of the RMSD between the two proteins they represent:

CME (a,b) =

N−loc∑
i=1

N∑
j=i+loc

∣∣Ca
i j − Cb

i j

∣∣
0.5 (N − loc − 1) (N − loc)

(8.4)

But this is at best a rough correlation, and then only under the special constraint
that each contact map Ci j is derived from a 3D structure. As we will discuss later, a
simple measure such as CME by itself is usually not a good indicator of structural
prediction accuracy. This topic is discussed again in Section 8.5.

8.3 Features of a Contact Map

Contact maps and distance matrices are “internal coordinates,” and as such are
independent of the reference frame of the Cartesian atomic coordinates. This frame
invariance, plus the Boolean property, makes contact maps attractive to practitioners
of machine learning and data mining techniques. Patterns within contact maps are
meaningful even when taken out-of-context.

It is well-known that the number of contacts scales linearly with the chain length
(Thomas et al., 1996; Vendruscolo et al., 1997; Fariselli and Casadio, 1999). The
slope of the linear dependence depends only on how a contact is defined. Using CB
distances and a cutoff distance of 8 Å, and ignoring local contacts with |i − j | < 3,
the number of contacts in a compact globular protein is approximately 3.0 times the
length of the protein, with a relatively small standard deviation of ±0.4. Since every
contact involves two residues, this number implies an average of about 6 (±0.8)
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Fig. 8.1 Fraction of all CB contacts with cutoff distance 8.0 Å as a function of sequence sep-
aration distance for the four main SCOP classes of proteins. About half of all contacts are local
(3 ≤ |i − j | ≤ 5, left axis). Different fold classes have significant differences in the contact profile.
The peaks at around 28 in alpha/beta proteins correspond to the sequence distance where parallel
strands are separated by one alpha helix, called ���-units.

contacts per residue. These numbers are consistent across all fold classes, probably
reflecting the invariant packing density and size of amino acids. Parallel �/� proteins
deviate most from this average, with an average of 3.3 contacts per residue, but this
difference is less than one standard deviation. There are many protein chains with far
fewer than three contacts per residue but these are generally not globular domains.
Instead they are often parts of larger complexes which, when taken together, also
average six contacts per residue.

Most interresidue contacts in proteins are local, and the likelihood of finding
a contact drops quickly as the sequence distance between residues increases. There
are interesting and obvious class-dependent differences in the sequence separation
profile of contacts (Fig. 8.1). This distribution is important to consider when assessing
the accuracy of contact map predictions, since local contacts are easier to predict than
nonlocal ones. The “contact order” of a protein is defined as the average sequence
distance between contacting residues, and this number has been shown to correlate
with the folding rate for many small proteins (Plaxco et al., 1998). Some studies use
the contact order as a measure of the topological compexity of the fold (Kuznetsov
and Rackovsky, 2004; Punta and Rost, 2005). Recently, the notion of contact order
has been refined to take nested loop closures into account, giving an “effective
contact order” which is probably a much better measure of fold complexity (Chavez
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Fig. 8.2 Contact map of glutathione reductase, domain 2 (PDB code 3GRS, residues 166–290).
Black boxes are contacts, gray boxes: i, i + 3 contacts, shaded triangles: contacts within secondary
structure elements, gray rectangles: parallel beta-strands, double rectangles: antiparallel beta-
strands, dotted rectangles: helix–helix contacts, rounded rectangles: helix–strand contacts. Inset:
Molscript (Kraulis, 1991) drawing of 3GRS structure.

et al., 2004). In this study it was understood that the contact order should reflect the
configuration entropy lost on the formation of a contact. The effective contact order
is the entropy of the closure of a loop that may already contain contacts within it.

A trained eye can identify secondary structure elements in a contact map by
looking at the local contacts, i.e., those near the diagonal of the matrix. A helix
has an unbroken row of contacts between i , i ± 4 pairs. Extended strands have no
local contacts with 3 < |i − j | < 5, although occasional i, i + 3 contacts occur in
� strands where �-bulges or �-bends occur. Loops have some local contacts but
never an unbroken row. Figure 8.2 shows images of common contact patterns that
are found between secondary structure elements. Antiparallel and parallel � strands
give rise to unbroken rows of contacts in the off-diagonal region. A row of contacts
that is perpendicular to the diagonal of the matrix represents a pair of antiparallel
strands. These are contacts between residues i + k and j − k, where k goes from zero
through the length of the strand pairing. Similarly, a row of contacts that is parallel
to the diagonal represents a pair of parallel strands, with contacts between i + k and
j + k. Consequently, � sheets appear as a set of perpendicular or parallel rows of
contacts. The strand order can be determined by tracing the pairing interactions (gray
rectangles in Fig. 8.2). Contacts between �-helices and other secondary structure
elements appear as broken rows or “tire tracks.” If the two contacting elements are
both helices, then the contacts appear every three or four residues in both directions,
following the periodicity of the helix. If one of the elements is a strand, then we see
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Fig. 8.3 Idealized features in contact maps (thick bars) may be converted to a topological cartoon
(Michalopoulos et al., 2004) using simple drawing conventions.

a periodicity of two in the contacts in that direction, since the side chains in a strand
alternate sides of the sheet. Domains can be seen as regions of the chain that have
dense contacts, since intradomain contacts outnumber interdomain contacts.

If there is additional knowledge to resolve the ambiguity in overall handed-
ness, then the entire molecule can be reconstructed by hand from a contact map. For
example, for �/� proteins we can assume that any parallel �-�-� unit has a right-
handed crossover (more than 99% of all parallel �-�-� supersecondary structure
units are right-handed). If our assumption is right, then we know on which side of
the sheet to place the helix. The presence or absence of helix–helix contacts can be
used to resolve the placement of any additional helices with respect to the sheet.
However, without some external information about either the overall handedness or
the handedness of any substructure, two mirror-image reconstructions are possible.
Figure 8.3 shows an idealized contact map, the same one shown in Fig. 8.2, and the
corresponding protein topology (TOPS) cartoon (Michalopoulos et al. 2004) that can
be drawn using only the simplified contact map. Although TOPS cartoons such as
this one cannot be accurately projected to three dimensions without additional infor-
mation such as key contacts, the TOPS graph structures allow the easy visualization
of common topological features in proteins.

8.4 From Contact Map Prediction to 3D Structure

Contact maps that are derived from 3D protein structures can be mapped back to
their corresponding structures by taking advantage of the known stereochemistry
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of amino acids and proteinlike backbone angles. But not all square, symmetrical
Boolean matrices map to 3D objects, much less to proteinlike objects.

In mathematical terms, a contact map is an undirected graph, where the vertices
are the residues and the edges are the residue–residue contacts. But contact maps
that have been derived from true protein structures, or from any other set of points
in three dimensions, are a special subset of all undirected graphs called “sphere
intersection graphs” or “sphere of influence graphs” (SIGs) (Michael and Quint,
1999). In a SIG the edges represent the intersections of fixed-radius spheres. If a
graph is a SIG, then at least one solution exists for the positions of the vertices in 3D.
The thresholded distances from the solution configuration must correspond to the
contacts in the contact map exactly, or the graph is not a SIG. If there is no solution,
then the contact map without modification cannot represent a protein, or for that
matter, any set of points in 3D! However, there may exist a subset of the contacts
that can potentially represent a protein. The problem of mapping a predicted contact
map to 3D is the problem of finding the best SIG within a contact map.

Determining whether or not a contact map is a SIG remains an open problem for
the general case (Michael and Quint, 1999). But heuristic methods can be applied that
use additional information about proteins, including the key facts that (1) adjacent
vertices are linked with their distance fixed at 3.8 Å and (2) that all nodes are self-
avoiding (i.e., no two nodes can be closer than 3.8 Å). Figure 8.4 illustrates the
key constraints on a proteinlike SIG. In addition to these constraints, proteins have

Fig. 8.4 A proteinlike sphere intersection graph (SIG). For a contact map (a) can always be
projected to an undirected graph where the vertex positions satisfy nearest neighbor distance
constraints and self-avoidance (b). This contact map is a proteinlike SIG because vertex positions
are possible (c) such that each edge distance corresponds to a sphere intersection (d, large circles)
and all vertices are mutually avoiding (dark circles). The addition of a single contact between 1
and 9 [white box in (a)] breaks the SIG.
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characteristic secondary structures and turns that are sequence dependent and restrict
the way nodes can be arranged locally along the chain. So while there is still no
general solution for finding a SIG within a contact map, the problem of finding a
“proteinlike SIG” seems tractable and it is likely it will be solved in the near future.

If the contact map is a proteinlike SIG, then it is possible to reproduce, with
considerable accuracy, the 3D structure of the protein’s backbone from its contact
map (Havel et al., 1979; Saitoh et al., 1993). And at least one heuristic approach
has been shown to work in the presence of “noise” contacts, accurately excluding
random physically impossible contacts that were added to a true protein contact map
(Vendruscolo et al., 1997; Vendruscolo and Domany, 1998). Vendruscolo’s method
works by minimizing a cost function that contains only geometric constraints, noth-
ing resembling the true energies of the polypeptide chain. The task of predicting
the tertiary structure of a protein is split into two steps, making it a crude pathway
model. First, a reliable prediction of secondary structure must be realized, then a
coarse-grained contact map is used to select contacts between the secondary struc-
ture elements. The method succeeds even when up to 10% of the contacts are “noise.”
Interestingly, it is now possible to reconstruct a contact map from a 1D representa-
tion consisting of principal eigenvectors (PE) derived from HS contact maps (Porto
et al., 2004). The PE reconstruction of the contact combined with 3D projection
using Vendruscolo’s method builds models that are typically within RMSD 2.0 Å of
the original structure. Unfortunately, there is still a large gap between the prediction
accuracy necessary for a good 3D reconstruction and the prediction accuracy pos-
sible using today’s methods. Worse than that, the distribution of erroneous contact
predictions in real cases is probably not random, as this reconstruction algorithm
assumes.

8.5 Contact Map Prediction

Contact prediction offers a possible shortcut to predict protein tertiary structure.
Over the years, a variety of different approaches have been developed for contact
map prediction including neural networks (Fariselli et al., 2001a,b; Pollastri and
Baldi, 2002; Lund et al., 1997), support vector machines (Zhao and Karypis, 2003),
and association rules (Zaki et al., 2000). Statistical approaches have also been tried,
including correlated mutations (Olmea and Valencia, 1997; Thomas et al., 1996;
Singer et al., 2002), knowledge-based potentials (Sippl, 1990; Park et al., 2000),
and hidden Markov models (Shao and Bystroff, 2003). Statistical pair potentials
do not produce sufficiently specific contact predictions. More specific information
appears to come from neighboring residues and patterns of mutation, sequence con-
servation, and predicted secondary structure, all obtainable from multiple sequence
alignments. The various features include contacts from patterns of conserved hy-
drophobic amino acids (Aszodi et al., 1995), sequence profiles derived from multiple
sequence alignment (Fariselli et al., 2001a,b; Pollastri and Baldi, 2002; MacCallum,
2004; Hamilton et al., 2004; Shao and Bystroff, 2003), distribution of distances in
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Table 8.1 Available servers for contact map predictions

Server URL Reference(s)

CORNET gpcr.biocomp.unibo.it/cgi/predictors/cornet/ Olmea & Valencia, 1997,
pred cmapcgi.cgi Fariselli & Casadio, 1999

PDG www.pdg.cnb.uam.es:8081/ Pazos et al., 1997
pdg contact pred.html

HMMSTR www.bioinfo.rpi.edu/∼bystrc/hmmstr/ Shao & Bystroff, 2003
server.php

GPCPRED sbcweb.pdc.kth.se/cgi-bin/maccallr/ MacCallum, 2004
gpcpred/submit.pl

PoCM foo.acmc.uq.edu.au/∼nick/Protein/ Hamilton et al., 2004
contact.html

CMAPpro www.ics.uci.edu/∼baldig/ Cheng et al., 2005

proteins with known structures (Tanaka and Scheraga, 1976; Wako and Scheraga,
1982; Huang et al., 1995; Mirny and Domany, 1996; Maiorov and Crippen, 1992),
correlated mutation and/or combination with other features (Olmea and Valencia,
1997; Fariselli et al., 2001a,b; Pollastri and Baldi, 2002; Hamilton et al., 2004; Göbel
et al., 1994; Neher, 1994; Shindyalov et al., 1994), secondary structure information
(Shao and Bystroff, 2003; Zaki et al., 2000; Hamilton et al., 2004; Fariselli et al.,
2001a,b; Olmea and Valencia, 1997; Zhang and Kim, 2000; Hu et al., 2002). Beyond
ones and zeros of a contact map, knowledge-based estimates of residue–residue dis-
tance have been used to determine the approximate structure of proteins (Skolnick
et al., 1997; Wako and Scheraga, 1982; Monge et al., 1994; Aszodi et al., 1995).

The results in CASP5 (Aloy et al., 2003) and CASP6 (Graña et al., 2005) suggest
that there has been at best a very limited improvement for de novo contact prediction
methods. In the following sections we summarize a few of these approaches to
contact map prediction in detail, with an eye toward possible improvements. Table
8.1 lists the currently available web servers for contact map prediction.

8.5.1 Contact Prediction Using Statistical Models

In sequence alignments, some pairs of positions appear to covary in a physico-
chemically plausible manner, i.e., a “loss of function” point mutation may be rescued
by an additional mutation that compensates for the change (Altschuh et al., 1987).
Compensating mutations would be most effective if the mutated residues were spatial
neighbors; therefore, “correlated mutations” across evolutionary distance should
imply spacial proximity. Attempts have been made to quantify this hypothesis and
to use it for contact predictions (Neher, 1994; Göbel et al., 1994; Taylor and Hatrick,
1994).

Direct statistical methods require pairwise scoring matrices to compute the
contact scores. The scoring matrices are based on a priori models of noncovalent
residue interactions and/or protein evolution. In various approaches, the matrices
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have been based on amino acid identity (Shindyalov et al., 1994), amino acid substi-
tution probabilities (Göbel et al., 1994), contact substitution probabilities (Rodionov
and Johnson, 1994), biophysical complementarity of electrostatic charge and side
chain volume (Neher, 1994), or statistics from evolutionary models (Singer et al.,
2002). In the latter case, the energetic value of a contact was estimated as a likelihood
matrix, using a large set of proteins of known structure. Mutations are correlated
because side-chain interactions have an energetic value, and this energetic value is
therefore reflected in the database contact statistics (Fig. 8.5). The predicted target
contact energies were calculated by first generating a multiple sequence alignment
and then summing the likelihood of all residue pairs in the corresponding columns.
The likelihood approach performed better when contacts were local in the sequence,
but tended to perform poorly on nonlocal contacts. If combined with other features,
the method could give better predictions.

Fig. 8.5 Illustration of correlated mutation theory and application. (A) Several residues are shown
in their structure context, in this example, two nearby �-helices. (B) For these, six sequences (A–F)
are shown as a multiple alignment. Positions 1 and 3 show correlated substitutions (connected by
arrows), as do positions 5 and n. (C) The most parsimonious evolutionary pathways are between
sequences A and F, for positions 1 and 3. Correlated mutation detects pairs of residue positions
that show correlated substitutions without intermediates. The theory is that when a mutation
occurs in a structurally important residue (mutation 1), the intermediate has structural instability.
Compensatory mutations are then selected (mutation 2) and the structural interaction is restored.
Any intermediates are eventually eliminated from the sequence record due to reduced fitness.
(Based on a figure from Singer et al., 2002.)
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The correlated (or compensatory) mutation information is generally weak. Con-
tact prediction can be improved by combining correlated mutations with other data
such as sequence conservation and contact density information (Hamilton et al.,
2004). The principle behind contact density is simple. If two nonadjacent residues
are in contact, then we expect that the residues adjacent to them will also be in con-
tact with a high probability. Correlated mutations have been combined with other
sources of information in some of the methods described in the following sections.

A simpler statistical method is the sequence conservation at single positions.
The success of the evolutionary trace method (Lichtarge et al., 1996) in identi-
fying localized side chains based on functional conservation in protein sequence
families shows that sequence conservation is both biologically and statistically sig-
nificant when combined with known structure. In this method, conserved positions
are mapped to the surface of a known protein and clustered to find functional sites.
In practice, sequence conservation is not used alone but rather as a component of
the training data from neural networks, described in the next section.

8.5.2 Contact Maps from Neural Networks

Both the correlated mutation and likelihood approaches performed best on local
contacts, but tended to perform poorly on longer sequences where many contacts
were nonlocal. Another approach to the problem has been to train neural networks
with various encodings of multiple sequence alignments with other inputs such as
predicted secondary structure (Fariselli and Casadio, 1999; Fariselli, 2001a,b). These
tended to perform better over a wide range of sequence lengths. Fariselli’s CORNET
predictor claims to have the best contact prediction results to date. It was specifi-
cally designed to include evolutionary information in the form of a sequence profile,
sequence conservation, correlated mutations, and predicted secondary structures.
Sequence conservation was taken from the HSSP database (Dodge et al., 1998).
Correlated mutations were calculated as previously described (Olmea and Valencia,
1997; Göbel et al., 1994). This neural network approach involved encoding frequen-
cies of residues in columns of a multiple sequence alignment, as well as having inputs
based on predicted secondary structures, length of input sequence, and residue sep-
aration. Briefly, each position in the alignment has a distance array that contains the
interresidue distances between all of the possible pairs of sequences at that position.
The distance between residues is defined using an early amino acid scoring func-
tion (McLachlan, 1971). The correlation value between each pair of positions in the
alignment is computed as the correlation of the two arrays for each possible residue
pair. The network was trained by using the back-propagation algorithm, with a sin-
gle output neuron coding for contact (1) and noncontact (0). Contacts were defined
using C� atoms (CB) with an 8-Å cutoff, and only those separated by at least six
residues were used. The hidden layer consisted of eight neurons. Each residue pair
in the sequence was coded as an input vector of 210 elements (20 × (20 + 1)/2),
representing all possible pairs of amino acids. CORNET has an average off-diagonal
(nonlocal) contact accuracy of 21%. While this result is more than six times better
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than a chance prediction, it is still far from providing sufficient accuracy for a reliable
3D reconstruction.

In GIOHMM (Pollastri and Baldi, 2002), a new neural net architecture was
introduced. The contact matrix was represented as a 2D graph. It is implemented in
two steps. The first step is the construction of a statistical graphical model (Bayesian
network) for contact maps, where the states are arranged in one input plane, one
output plane, and four hidden planes. The parameters of the Bayesian network are the
local conditional probability distributions. The second step is the reparameterization
of the graphical model using artificial recurrent neural networks. In the training of
the neural net, the input includes the information for the contact, secondary structure,
and solvent accessibility. The authors cite a prediction accuracy of 60.5% for CB
contacts with an 8-Å cutoff and 45% for CB contacts with a 10-Å cutoff, but only
local contacts were considered (|i − j | < 7). While intriguing, these numbers cannot
be compared directly with those mentioned above. Prediction of local contacts is
intermediate between secondary structure prediction, for which the highest three-
state prediction accuracies average 75–80% (Jones, 1999), and nonlocal contact map
prediction, for which a highest accuracy of 21% has been reported. The same group
(P. Baldi) has recently released a new contact map predictor, CMAPpro, as part of a
battery of tools for protein feature prediction (Cheng et al., 2005). The innovation in
this neural net architecture is a heirarchical scheme where the output of local contact
predictions is used as the input for predicting nonlocal contacts.

Lund et al. combined two independent data driven methods (Lund et al., 1997).
The first used statistically derived probability distributions of the pairwise distance
between two residues, similar to the knowledge-based pair potentials of Sippl (1990).
The second consisted of a neural network with a single hidden layer connected to two
three-residue windows a defined distance apart on the sequence. For both of these
functions, the underlying physical determinants of the statistics are the various chem-
ical affinities between short sequence patterns of amino acid side chains. Nonpolar
side chains attract through the hydrophobic effect, polar side chains through hydro-
gen bonds and salt bridges. This affinity alone does not determine the likelihood
of a contact but is combined with sequence separation distance, since the polypep-
tide chain has a certain degree of stiffness that limits the ways the side chains can
come together when the loop is short. Their results showed that prediction by neural
networks is more accurate than predictions by probability density functions. The
accuracy of the prediction can be increased by using sequence profiles instead of
single sequences.

As mentioned earlier, patterns of contacts form when an �-helix is in contact
with a strand, a helix with a helix, or when two strands are paired in a � sheet. A
recent study used a neural network approach to find patterns of correlated mutations
(Hamilton et al., 2004). The main input to the neural network was a matrix of
25 mutational correlation values for a pair of five-residue windows centered on
the residues of interest. Each entry in the matrix is the correlation between two
residues (Göbel et al., 1994). This information was combined with other inputs
such as predicted secondary structure using Psi-Pred (Jones, 1999; McGuffin et al.,
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2000), the type of amino acids, and the input sequence length. Using this method
an average prediction accuracy of 21.7% was obtained. The accuracy was found to
be relatively consistent across different sequence lengths, but to vary widely with
the secondary structure. As with previous studies, contact predictions were found to
be particularly difficult for �-helical proteins (Fariselli and Casadio, 1999, Fariselli
et al., 2001b). Fariselli suggested that the poor predictions from their methods on
this subset of proteins might be a result of the underrepresentation of �-type proteins
in the training set. But in Hamilton et al., even if they trained the model on proteins
of �-type to predict an �-type protein, no improvement in prediction accuracy was
obtained. It might indicate that the patterns of contact are less locally defined in
�-helical proteins and may require the window size to be larger. Alternatively, the
predictions could be improved by finding a better measure of correlated mutations,
and perhaps by applying the contact occupancy filtering as described in Olmea and
Valencia (1997).

8.5.3 A Genetic Algorithm for �-Strand Contacts

MacCallum has noted that protein architectures impose regularities in local sequence
environments (MacCallum, 2004). Based on the fact that many proteins have pairs
of neighboring strands with similar sequence patterns, the GPCPRED algorithm
used only sequence profile and residue separation information as input to a genetic
programming approach to contact prediction. Sequence profiles are classified using
a self-organizing map algorithm (SOM), and the new classes reveal a distinctive
“striping” pattern across facing strand pairs. The predictions were equal to or better
than existing automated contact predictors that use more fitting parameters. Predic-
tions of sets of “L/10” contacts (i.e., number of contacts predicted equals length of
protein over 10), each between positions separated by at least eight residues, were
27% correct for proteins up to length L = 400. As they suggest, the predictions could
be improved if they included additional information such as sequence conservation
and correlated mutations. As good as they are, the predictions cannot be uniquely
mapped to three dimensions, but with an additional postprocessing step based on
the packing rules, this could be remedied.

8.5.4 Contact Prediction Using Support Vector Machine

A support vector machine (SVM) is a method for binary classification in an arbitrary
feature space and as such is well-suited for the contact map problem. In one study
(Zhao and Karypis, 2003), contact and noncontact residue pairs were treated as posi-
tive and negative instances in a feature space comprised of position-dependent infor-
mation for amino acid content, physicochemical environment, secondary structure,
and evolutionary correlation. SVM was used to define an optimal multidimensional
hyperplane for dividing contacts and noncontacts in the space of the features. The
model was trained on all classes of protein structure in the CATH database (Orengo
et al., 1997). The results indicated that the secondary structure feature is most helpful
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for contact prediction in proteins containing � strands. On the other hand, correlated
mutations and sequence profile methods performed the best for proteins containing
�-helices. Models learned separately for different protein classes might result in
better performance in contact prediction.

8.5.5 Prediction Using Association Rules

Data mining was used to extract valuable information from true contact maps (Hu
et al., 2002; Zaki et al., 2000) in the form of recurrent nonlocal contact patterns
and sequence–contact association rules. Zaki et al. developed a string encoding and
hashing technique to extract all of the nonlocal contact patterns for a sliding window
across all contact maps of existing structures. The contact patterns were clustered
based on their similarities, and sequence-to-contact relationships were expressed as
logical statements, or association rules. By applying association rules to the output
of the hidden Markov model HMMSTR (Bystroff et al., 2000), their contact map
predictions had about 20% accuracy for L/2 contacts with |i − j | ≥ 4, corresponding
to about 20% coverage. Even with low coverage the predictions contained physically
impossible combinations of contacts (see Fig. 8.6). To make the predictions more
meaningful, there is a need to filter out the physically impossible contacts.

8.5.6 Prediction Using Pathway Models

A contact prediction method that makes use of sequence profiles, fragment templates,
and pathway models was used for the first time in the CASP5 experiment (Shao and
Bystroff, 2003), with accuracies comparable to or higher than previous approaches,
depending on how accuracy is measured. In this prediction method, the first step is
to assign a probability to each potential contact. The probability in this case is the
database-derived likelihood of contact between any two local structure motifs.

Local structure motifs were predicted probabilistically as Markov states from
the HMMSTR model (Bystroff et al., 2000). A matrix � expresses the probability of
each motif at each sequence position, solved using the Forward/Backward algorithm
(Rabiner, 1989):

� (i, q) = P(q|i) (8.5)

Then the contact potential G(p, q, s) between any two HMMSTR states p and q,
given a sequence separation s, was calculated as the negative log of the sum over all
joint probabilities as follows:

G(p, q, s) = − log

∑
CATH

∑
i�Di,i+s<8Å

� (i, p)� (i + s, q)

∑
CATH

∑
i

� (i, p)� (i + s, q) (8.6)
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In the numerator, the sum is over all residue pairs (i, i + s) that are in contact in all
CATH proteins. In the denominator, the sum is over all residue pairs (i, i + s). To
predict contacts, we first calculate the contact potential Ei j , by summing G(p, q, s)
over all states p at i and all states q at j . Ei j may be thresholded to give a contact
map prediction.

This algorithm implies that the local structure motif folds first, followed by
motif–motif condensation to form larger units. Rule-based filtering techniques were
applied to remove contacts that were impossible given a previously defined set of
contacts. “Common sense” rules were applied. For example, any one �-strand residue
may pair with at most two other � strands, not three of course. Other rules enforced
the physically possible density of contacts and mutual contacts, and the triangle
inequality. In addition, contacts were assigned only if they had an effective sequence
separation of 8 or less after “loop closure,” similar to the effective contact order
(Chavez et al., 2004). This gave local contacts opportunity to form before assigning
nonlocal contacts (Fig. 8.6). This simple folding pathway model was sufficient to
extract the correct set of contacts for some but not all of the CASP5 targets (Shao and
Bystroff, 2003; Bystroff and Shao, 2003). The most common error was the wrong

Fig. 8.6 In the HMMSTRCM (“hamster CM”) method, a folding pathway is expressed as a
tree search in contact map space where each branch represents the addition of new contacts to
the previous set of contacts (shaded triangles, thick lines). An energy function may be applied
to select among alternative sets of contacts. Local contacts (shaded triangles) form first. These
come together (larger shaded triangles), subject to a set of simple rules. HMMSTRCM succeeded
in cases where the initial contacts were correctly assigned, but could not overcome bad initial
assignments.
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choice of the nucleation site, since early errors propagated to further errors. A better
means to choose the folding nucleation site would remedy this problem.

8.6 Evaluation of Contact Map Predictions

The current evaluation criteria used for contact map predictions include (Graña et al.,
2005; Aloy et al., 2003; Koh et al., 2003): (1) accuracy: the number of correctly
predicted contacts divided by the total number of predicted contacts; (2) coverage:
the number of correctly predicted contacts divided by the total number of contacts; (3)
improvement over random: the calculated accuracy divided by the random accuracy;
and (4) the delta evaluation: the percentage of correctly predicted contacts that are
within a certain number (delta) of residues of the experimental contact, measured
along the sequence.

Another useful measure is the distance distribution of predicted contacts, Xd :

Xd =
15∑

i=1

Pip − Pia

15di
(8.7)

where the sum runs over 15 distance bins covering the range from 0 to 60 Å. di is
the distance representing each bin. Pip is the percentage of predicted contacts whose
true distance is in bin i . Pia is the same percentage but for all of the residue pairs,
not just contacts. Defined in this way, Xd > 0 indicates that more of the predicted
contacts are either true contacts or close to being true contacts. Xd ≤ 0 indicates
that the contacts are random (Pazos et al. 1997).

Each of these criteria is well-behaved when the prediction is close to perfect,
but they diverge to different extents from good behavior when the prediction strays
from the path of perfection. A good predicted contact map should map uniquely
to the correct 3D structure. Contact maps may be divided into blocks representing
contacts between secondary structure elements (Figs. 8.2 and 8.3). If a prediction
identifies most of the contact blocks but the overall accuracy is low, we may still
recognize it as a good prediction that maps to a single correct structure. On the other
hand, if the accuracy is high but correct contacts concentrated in the local region
or in one block of the molecule, then it is less meaningful as a 3D structure. In our
opinion, we might have included the “block count” as another evaluation criterion.
It would be defined as the total number of counts of true contact blocks, with one
count for each block. The higher the block count, the better the prediction is. Since
the nonlocal contacts are harder to predict than the local ones, we might give more
weight to the nonlocal contacts.

If we look at the parallels between contact map prediction and the solution of
protein structures by NMR, we can see a more logical way of defining accuracy in
contact map prediction. NMR structures are solved by applying distance geometry
methods while minimizing a cost function that seeks to satisfy as many of the
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experimental distance constraints as possible. The result of distance geometry is
an ensemble of possible structures where each structure is a local minimum of the
distance geometry cost function and each structure satisfies the distance constraints
to about the same extent. If the distance constraints from the NMR experiment are
more self-consistent and mutually re-enforcing, then the ensemble is more tightly
clustered, and the average pairwise RMSD between members of the ensemble is
small. Some of the best NMR structures have ensembles with RMSDs around 1.0 Å,
the worst have very high RMSDs approaching random. Most often this reflects the
disorder in the polypeptide rather than the quality of the NMR data.

A contact map prediction represents an ensemble of states in the same way and
for the same reason as a set of NMR distance constraints represents an ensemble of
states. Therefore, it makes sense to measure the quality of a contact map prediction
in the same way as we measure the quality of an NMR structure, by sampling an
ensemble of 3D solutions and then measuring the diversity of the ensemble. If the
ensemble is mostly disordered, then the DME metric might make more sense, or
the size of the largest fragment with an average RMSD below a cutoff. In any case,
a measure of contact map accuracy in 3D would alleviate the problems associated
with 2D accuracy assessments, and the accuracy would better correlate with the
usefulness of the prediction.

8.7 Other Applications of Contact Maps

Up to this point, we have confined the discussion to contact prediction in globu-
lar proteins, but the prediction of membrane protein structures is potentially much
more valuable. Membrane protein structures are harder to characterize experimen-
tally, since membranes interfere with both crystallization and NMR experiments.
Electron microscopy, sometimes using monoclonal antibodies, and fluorescent res-
onance energy transfer (Eisenhawer et al., 2001) have been used with some success
to obtain the gross layout of the transmembrane parts of membrane proteins, but
in general these experiments are not sufficient to build a detailed model. Molecular
simulations have been used successfully to refine the structure of the transmembrane
regions (Enosh et al., 2004). One way contact map predictions can potentially be
used is to assign a contact or noncontact value to residues in the soluble part of a
membrane protein and use that information to predict contacts within the membrane.
This would work because transmembrane regions are either helices or strands, and
these generally pass directly through the membrane without any turns. Thus, con-
tacts on the membrane surface imply contacts within the membrane and on the other
side.

Contact maps have been used to align sequences to structures and to align struc-
tures to structure, even nonsequentially. The correlated mutation metric described in
Fig. 8.5 ignores the identity of the amino acids involved. A more specific model for
correlated mutations has been constructed in which a score for each of the possible
amino acid substitution pairs was stored in a 400 × 400 contact substitution matrix
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called CAO (Contact Accepted mutatiOn) (Lin et al., 2003; Kleinjung et al., 2004).
Each matrix element expresses the degree, positive or negative, to which the two
mutations were observed in tandem in known structures. For example, the score
for F Y:I V would be positive if a contact between an F and a Y was frequently
observed to mutate F → I and Y → V as compared to random chance. CAO is not
used, like correlated mutations, to predict contacts directly, but instead it is used to
score sequence alignments to proteins of known structure. The greater sensitivity
of this method allowed the authors to assign functional annotations to previously
uncharacterized sequences with improved confidence.

We have used contact maps to align structures nonsequentially, and have applied
the contact map alignment to search for conserved packing arrangements in protein
cores (Yuan and Bystroff, 2005). The program SCALI (Structural Core ALIgnment)
assembles a nonsequential alignment from a pairs-list of short gapless local align-
ments. Each of these short alignments relates some of the contacts in the target to
some contacts in the template. The contact map score determines which segments to
keep in a search through alignment space. The resulting alignment is nonsequential
if the aligned segments are ordered differently in the two proteins. Nonsequential
alignments do not imply homology, but may be used to find structural motifs. We
used nonsequential alignments to find recurrent multibody interactions in protein
cores.

8.8 Conclusions

Contact maps represent a useful and easily manipulated data structure for pro-
tein structure prediction by statistical, machine learning, and simulation methods.
Progress is being made toward building predictive models that use this data structure,
and new insights are being discovered about the nature of protein folding. Contact
maps are bridging the gap between accurate 1D structure predictions and 3D struc-
ture predictions, but much work remains to be done. Here is a short list of open
problems in contact map prediction as discussed in this chapter.

� Scoring and error correction. The impact of this representation on the field of pro-
tein structure prediction depends on advances in methods for correcting imperfect
contact map predictions.

� Nonlocal contacts. Most methods are far more accurate on local contacts, but the
global topology is defined by the nonlocal, or long range, contacts.

� Proteinlike SIG recognition. A general solution for the problem of recognizing a
sphere intersection graph given proteinlike constraints remains an open problem.

� Evaluation. As in all areas of structure prediction, methods for evaluating success
in contact map prediction need to correlate with usefulness, otherwise interative
training of any sort will not converge on the truth.

� Reconstruction of HS and SC contact maps. Contact maps based on side chains
work the best for fold recognition, but projecting maps into 3D is problematic.
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If a fool-proof method can be established for converting side-chain contacts to a
3D ensemble, it will eventually unleash the power of machine learning methods
to attack the protein folding problem.
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9 Modeling Protein Aggregate Assembly
and Structure

Jun-tao Guo, Carol K. Hall, Ying Xu, and Ronald Wetzel

9.1 Introduction

One might say that “protein science” got its start in the domestic arts, built around
the abilities of proteins to aggregate in response to environmental stresses such as
heating (boiled eggs), heating and cooling (gelatin), and pH (cheese). Character-
ization of proteins in the late nineteenth century likewise focused on the ability
of proteins to precipitate in response to certain salts and to aggregate in response
to heating. Investigations by Chick and Martin (Chick and Martin, 1910) showed
that the inactivating response of proteins to heat or solvent treatment is a two-step
process involving separate denaturation and precipitation steps. Monitoring the co-
agulation and flocculation responses of proteins to heat and other stresses remained
a major approach to understanding protein structure for decades, with solubility, or
susceptibility to aggregation, serving as a kind of benchmark against which results
of other methods, such as viscosity, chemical susceptibility, immune activity, crys-
tallizability, and susceptibility to proteolysis, were compared (Mirsky and Pauling,
1936; Wu, 1931). Toward the middle of the last century, protein aggregation studies
were largely left behind, as improved methods allowed elucidation of the primary
sequence of proteins, reversible unfolding studies, and ultimately high-resolution
structures. Curiously, the field of protein science, and in particular protein folding,
is now gravitating back to a closer look at protein aggregation and protein aggre-
gates. Unfortunately, the means developed during the second half of the twentieth
century for studying native, globular proteins have not proved immediately amenable
to the study of aggregate structures. Great progress is being made, however, to mod-
ify classical methods, including NMR and X-ray diffraction, as well as to develop
newer techniques, that together should continue to expand our picture of aggregate
structure (Kheterpal and Wetzel, 2006; Wetzel, 1999).

The current situation presents opportunities and challenges for computational
methods, but with an ironic contrast to the history of the development of these meth-
ods for solvated globular proteins. Computational modeling methods for globular
proteins were developed against a background in which many protein structures and
properties were well known and reasonably well understood, and could therefore
provide target structures and fundamental design concepts. In contrast, there are no
complete high-resolution structures of protein aggregates like amyloid. Furthermore,
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at least some aggregate structures appear to be hierarchical, and it is not well under-
stood how much the higher degrees of order, such as bundling of protofilaments into
amyloid fibrils, might contribute to the overall stability of the fibril. This introduces
an awkward uncertainty when attempting to model a fibril substructure; it is not clear
how much stability should be expected within the substructure, and how much might
be provided only through its superassembly into a higher order of structure. It does
not seem unreasonable to assume that the folding and stabilization of aggregates is
guided by the same general relationships that guide the folding and stabilization of
globular proteins (Williams et al., 2004). At the same time, it is possible that protein
aggregates might be stabilized by some factors that are not so well understood, owing
to our ignorance of both aggregate structure and assembly characteristics.

This chapter provides an overview of this challenging field, at a time when com-
putational approaches are just beginning to be utilized to model aggregate structures
and assembly. The first part of the chapter gives an overview of folding and aggre-
gation and a survey of the process and products of misfolding and aggregation. The
second segment provides a brief description of some of the major physical tech-
niques currently being used to characterize various aspects of aggregate structure.
The final part describes computational methods for approaching aggregate structure
and aggregate assembly.

9.2 Folding and Misfolding

The recognition that simple proteins in ideal circumstances achieve their native
folded states through thermodynamic control, influenced simply by their amino acid
sequences and necessary cofactors (Anfinsen, 1973), introduced the conundrum of
how it might be possible for all possible folded states to be explored during protein
folding, to identify and secure the free energy minimum, in a realistic time frame
(Levinthal, 1969). The solution to this paradox is now thought to be a combina-
tion of two factors: the lack of complete randomness in the starting, unfolded state
(Fleming and Rose, 2005), and a restricted folding surface, often characterized as
a rough-textured funnel, that features many (but far from infinite) parallel and in-
terconnected pathways leading from the large number of unfolded conformations to
the native state (Dill and Chan, 1997). There are exceptions to the general rule of
thermodynamic control, however. Fifteen years ago two proteins were described that
fold to a kinetically controlled local free energy minimum, producing a relatively
stable, isolatable folded state that can be induced to reengage the folding pathway
to produce a more stably folded monomeric structure (Creighton, 1992). These are
alpha-lytic protease (Baker et al., 1992) and the serpin PAI-1 (Levin and Santell,
1987).

Besides these rarely reported alternative folded states, some globular proteins
exhibit additional alternative states: misfolded aggregates. Although the ability of
proteins to convert, under stress, to irreversibly aggregated, insoluble structures has
long been appreciated, protein aggregates have never seriously been included in
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debates over whether protein folding is controlled kinetically or thermodynamically.
This may be because aggregates were considered an unnatural aberration, or be-
cause it has never been clear whether aggregate formation itself is under kinetic or
thermodynamic control.

Over the past two to three decades, the biological importance of protein ag-
gregates as nontrivial, alternative folded states has been established. Misfolding/
aggregation has been revealed to be a major side reaction during normal protein
folding in the cell (Turner and Varshavsky, 2000), which is consistent with the huge
investment paid by molecular and cellular evolution in developing pathways to man-
age aggregation such as molecular chaperones (Hartl and Hayer-Hartl, 2002) and
the ubiquitin proteasome system (Petrucelli and Dawson, 2004; Vigouroux et al.,
2004). Aggregates are associated with a wide variety of human diseases, including
Alzheimer’s disease, Creutzfeldt-Jakob disease, Huntington disease, Type II dia-
betes, and Parkinson disease (Martin, 1999; Merlini and Bellotti, 2003). These man-
ifestations of aggregation can be added to the more biotechnological challenges of
protein stability (often synonymous with avoidance of aggregation), inclusion body
formation during recombinant expression, and aggregate formation during refolding
(Wetzel, 1994; Wetzel and Goeddel, 1983). Given the ubiquitous nature of protein
aggregation, the importance of learning more about aggregate structure is clear.

The question of kinetic versus thermodynamic control of the formation of
amyloid and other aggregates is only in the early stages of being addressed. For
simple peptides that have no highly stable solution conformation, it is sometimes
possible to establish an equilibrium between bulk phase monomer and amyloid, and
to actually determine an equilibrium constant and free energy (O’Nuallain et al.,
2005; Williams et al., 2004, 2006). For stably folded, globular proteins, which only
form amyloid under conditions that disfavor the native state (Colon and Kelly, 1992;
Hurle et al., 1994; McCutchen et al., 1993), it may be difficult to identify conditions
where both native and fibril species can be populated simultaneously so that relative
stabilities might be directly assessed. Kinetic partitioning appears to play a big role in
aggregation during folding reactions of some proteins, where rapid transformation
to an aggregation-committed intermediate can effectively take molecules out of
the productive folding pathway (Finke et al., 2000; Goldberg et al., 1991; Haase-
Pettingell and King, 1988). The above considerations are important for two major
reasons. First, without having some idea of the relative thermodynamic stability of
amyloid fibrils, it is difficult to validate computational models. Second, an awareness
of both the thermodynamics and kinetics of aggregation will be important when
evaluating computational simulations of the aggregation process.

9.2.1 Types of Aggregates

Inclusion body formation in bacteria: Bacterial inclusion bodies (IBs) rich in pro-
tein were first observed when bacteria were fed amino acid analogues that were
incorporated into protein (Prouty et al., 1975) and were later observed in recombi-
nant expression of proteins, where they require elaborate methodologies for either
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suppressing their formation or facilitating recovery of native protein (De Bernardez
Clark et al., 1999; Marston and Hartley, 1990). Except for a general enrichment in
�-sheet, we have very little knowledge of the intimate details of protein structure
within IBs.

In spite of their different appearances under the EM, IBs and amyloid fibrils
share quite a few similarities in their formation and properties (Wetzel, 1992), includ-
ing a shared role of native state destabilization in their formation (Chan et al., 1996)
and a shared susceptibility toward mutations (Wetzel, 1994). Monomeric nucleation,
only recently described in the aggregation kinetics of polyglutamine amyloid forma-
tion (Chen et al., 2002), was very recently also observed in protein aggregation in
bacteria (Ignatova and Gierasch, 2005). IBs and amyloid, along with other protein
aggregates, including thermally induced aggregates and aggregates formed during
folding in vitro, appear to consist largely of �-sheet structure (Oberg et al., 1994;
Sunde and Blake, 1997). The ultrastructure of neuronal IBs formed in Huntington’s
disease tissue shows that these large aggregates are collections of fibrillar structures
(DiFiglia et al., 1997), presumably polyglutamine amyloid fibrils (Scherzinger et al.,
1997).

Amyloid and other disease-related aggregation: Over the past 10–20 years, amy-
loid fibrils and related pathological protein aggregates have become increasingly
important subjects of research. This is primarily because of the evidence that these
aggregates are associated with human disease (Martin, 1999; Merlini and Bellotti,
2003). Relative to other aggregates, we know a considerable amount about amyloid
structure. Some of these details will be discussed below in the review of biophysical
and biochemical techniques for analyzing fibril structure. Nonamyloid aggregates,
such as spherical oligomers and protofibrils (Caughey and Lansbury, 2003), may be
even more important to human disease than are mature fibrils.

Amyloid fibrils are normally found outside the cell, but there are clearly aber-
rant aggregation reactions that occur inside the cell as well. This is not surprising,
given the complex biochemical systems that have evolved to deal, at least in part,
with protein misfolding and aggregation, including molecular chaperones (Hartl and
Hayer-Hartl, 2002), the ubiquitin proteasome system (Petrucelli and Dawson, 2004;
Vigouroux et al., 2004), aggresomes (Kopito, 2000), and autophagy (Glickman,
2000). We know much less about intracellular aggregates than we do about extra-
cellular amyloid. Aggregation in the presence of chaperones, even when they can
not completely block aggregation, can lead to aggregates with substantially altered
properties (Muchowski et al., 2000). The important cross-talk between fundamental
biophysics and evolved biochemical pathways in the intracellular aggregation of
proteins is little understood.

Aggregation during refolding: The denaturing conditions required for recovery of
material from IBs yield proteins that must be refolded. Some proteins can be easily
refolded from the denatured state in vitro; these include classical models for protein
folding studies like ribonuclease and staph nuclease. More typically, proteins refold
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inefficiently, leading to formation of aggregates that limit the yields of the folding
reaction. An important area of biotechnology is the development of methods for
improving refolding yields (De Bernardez Clark et al., 1999).

Aggregation of stressed native proteins: Aggregation in vitro induced by exposure
of the native protein to stresses like heat or denaturing solvents is also important in
biotechnological applications such as enzyme reactors. This is also the classic protein
aggregation first studied as one of the few established means of characterizing protein
structure (Chick and Martin, 1910). Aggregation often takes place in the thermal
unfolding transition zone. If aggregates form at an elevated temperature, triggered
by unfolding of the native state, they tend to remain stable and insoluble when the
solution is returned to lower temperatures. This essentially irreversible removal of
native protein from solution, either at an elevated temperature or during the return
to the normal temperature range (which many times can occur without detectible
chemical changes), is the basis for the thermal inactivation of many proteins. The
ability of a particular protein to aggregate under defined conditions depends broadly
on two features: (1) the stability of the native fold and (2) the aggregation tendency
of the unfolded or misfolded states, including folding intermediates (Wetzel, 1994).

The above type of aggregate is presumably related to another major aggregation
problem of the pharmaceutical industry, the aggregates that form in protein solutions
during processing or during storage in the vial. Aggregates in injected proteins are
a serious problem for several reasons, including (1) diminution of active molecules,
(2) inflammation at the injection site, and (3) stimulation of an antibody response
(Cleland et al., 1993; Hermeling et al., 2004; Shire et al., 2004). These aggregates
can form in more subtle ways, not only during long-term storage, but also under
the influence of shear forces (for example, during injection) or due to an inadequate
lyophilization process. The study of how these aggregates form, their structures, their
biological effects, and most importantly how to avoid them, is of critical importance
to the pharmaceutical industry.

9.2.2 Structural Hierarchy of Amyloid and
Conformational Isomerism

An added complication to thinking about amyloid structure is the number of levels
of structure involved. Like the coiled coils of collagenlike molecules, amyloid fibrils
exhibit a quaternary structure that is both a distinguishing feature of amyloid and at
the same time a source of great variation in morphological forms (Goldsbury et al.,
2000; Sunde and Blake, 1997). The fundamental assembly unit of amyloid is the
protofilament, a structure normally not seen in isolation but rather as a component
of higher structure in fibrils. The classical amyloid fibril appears in the EM as a
twisted rope; the protofilaments are the major strands making up the rope. There
can be two to six protofilaments bundled together to make an amyloid fibril, with
the number tending to be characteristic of a particular protein fibril. Protofilaments
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appear to be capable of assembling into other types of superstructures as well, such
as ribbons containing multiple protofilaments in a flat array, or twisted bundles com-
posed of multiple-protofilament ribbons (Goldsbury et al., 2000). These alternatively
assembled states, often viewed in the same preparation of fibrils (Goldsbury et al.,
2000), may arise from, or at least be associated with, different conformations of the
component protein as it is packed into the fibril structure (Petkova et al., 2005). If, as
it appears, all of these forms are based on the protofilament, it would appear that the
simplest target of structure determination and prediction should be the protofilament.

It remains to be seen whether differences in quaternary structure (that is,
protofilament packing) are the basis for self-propagating conformational variants
of amyloid fibrils, or result from underlying differences in secondary and tertiary
structure (such as formation of the amyloid filament core). Whatever their source in
the assembly pathways and/or structural nuances of amyloid, different superassem-
bled states of protofilaments can be very important biologically. Conformational
variation among amyloid fibrils is now considered to be the underlying factor con-
trolling strain phenomena and species barriers in mammalian (Horiuchi et al., 2000)
and yeast (Tanaka et al., 2004) prion biology.

The recent recognition that a single amyloidogenic polypeptide can make mul-
tiple amyloid conformational states that can exhibit tangible structural differences
(Petkova et al., 2005; Tanaka et al., 2004) introduces a further complication into the
goal of approaching amyloid structure through a combined and iterative program
of experiment and computational modeling. A necessary prerequisite to success-
ful improvement of modeling approaches is the ability to validate methods through
comparison of modeled structures with experimental data. Yet different approaches
to characterizing some amyloid fibril structures have led to conflicting results. For
example, solid-state NMR suggests that the C-terminal amino acids of A�(1–40) are
involved in H-bonded �-sheet (Petkova et al., 2005) in the fibril, while scanning pro-
line mutagenesis (Williams et al., 2004) and hydrogen exchange (Whittemore et al.,
2005; Kheterpal et al., 2006) suggest that the C-terminal residues are disordered. It
now seems possible that both results are correct: the solid-state NMR result was ob-
tained on fibrils grown under conditions of agitation, while the proline and hydrogen
exchange results were obtained on fibrils grown without stirring; these two methods
of preparation are linked to fibrils with substantially differing structures (Petkova
et al., 2005).

While the existence of amyloid isomerism is, in the short term, an unwelcome
complication, in the long term it is an advantage for computational studies since it
provides an opportunity to predict and account for relatively subtle variations among
multiple fibril conformations.

9.3 Experimental Approaches to Aggregate Structure

X-ray diffraction: The difficult challenges of measuring aggregate structure owe
mainly to the difficulty of crystallizing intact fibrils, so that detailed crystal
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diffraction patterns cannot be obtained. Particularly well-ordered aggregates can
exhibit a few key reflections in powder diffraction experiments consistent with dom-
inant repeating structure. In particular, amyloid fibrils aligned in the X-ray beam
typically generate what is called the cross-� pattern, in which the reflections associ-
ated with strand–strand repeats in the hydrogen-bonding direction and in the �-sheet
packing direction are at 90◦ to each other. The pattern indicates that the �-extended
chains are oriented in the fibril (and protofilament) such that they are perpendicular
to the fibril axis, and held together by hydrogen bonds that are oriented parallel to the
fibril axis (Sunde and Blake, 1997). In rare cases, high-resolution data on crystalline
forms of short, amyloidogenic peptides have provided a number of potential insights
into amyloid structure, such as extremely low water content (Balbirnie et al., 2001;
Nelson et al., 2005) and intimate side chain packing interactions (Makin et al., 2005;
Nelson et al., 2005). While these and other (Elam et al., 2003; Schiffer et al., 1985)
examples of infinite �-sheet formation in crystal structures may offer important in-
sights into amyloid fibril structure, it must be kept in mind that protein crystals and
amyloid fibrils, while related, are different, for example in the hierarchical struc-
ture of fibrils discussed above. The question of whether crystals of amyloidogenic
peptides accurately reflect fine details of amyloid structure has not been addressed
experimentally.

Electron microscopy (EM): Our impressions of the hierarchical, filamentous struc-
ture of amyloid, and more globular structures of some other aggregates, come pri-
marily from EM studies. Scanning transmission EM can be used to determine the
mass per length of fibrils and other aggregates (Goldsbury et al., 2000). This analysis
confirms objectively and quantitatively what is already apparent by visual inspection,
that most fibril preparations are heterogeneous, containing a number of distinct types
of fibrils that vary both by the amount of twist and by the number of protofilaments
per fibril (Goldsbury et al., 2000). These morphological variations may, at least in
some cases, correspond to different self-replicating structural variants that can ex-
hibit different stabilities (Tanaka et al., 2004) and molecular substructures (Petkova
et al., 2005). In particularly favorable cases, especially in cryo-EM, image averaging
has provided significantly enhanced detail, such as the number of protofilaments and
the overall cross-sectional density within the fibril (Jimenez et al., 1999, 2002; Wille
et al., 2002).

Atomic force microscopy (AFM): Scanning probe techniques can provide striking
images that offer similar resolution to EM but with different strengths and sometimes
superior results (Stine et al., 1996). Staining is not necessary in AFM, and precise
height information can be obtained. The protofilament-based structural hierarchy
of amyloid fibrils can be studied using AFM (Kanno et al., 2005). Nonfibrillar,
potentially biologically relevant oligomeric states can also be visualized (Harper
et al., 1997). In principle, scanning probe imaging also offers a wealth of probe
types that might provide information on the chemical nature of the imaged surfaces.
Force measurements can elucidate segmental stability (Kellermayer et al., 2005).
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While technically challenging, another advantage of AFM over EM is the ability to
monitor temporal changes in structure in situ (Goldsbury et al., 1999).

Circular dichroism (CD): Like most other optical spectroscopies, CD is generally
considered to be ineffective in analysis of large, light-scattering aggregates such
as most fibril preparations. In rare cases the technique works remarkably well, not
only demonstrating the high �-sheet content expected of an amyloid preparation, but
giving fibril formation kinetics that track with other measures of amyloid assembly
(Chen et al., 2002). Conformational variants can also be distinguished by CD in
favorable cases (Yamaguchi et al., 2005).

Vibrational spectroscopy: Fourier transform infrared spectroscopy (FTIR) is one
of the few techniques available for analysis of the protein solid state, and has been
used to advantage in amyloid studies to demonstrate the existence of �-sheet, other
secondary structural elements, and the parallel/antiparallel nature of the sheet. The
method is useful as a qualitative tool to follow changes in secondary structure as an
assembly reaction proceeds, and, with appropriate cautions, can be used to extract
secondary structure content. There are a number of technical problems that must
be sorted out for the effective use of this method in analyzing protein aggregates
(Nilsson, 2004).

Solid-state NMR: Great strides have been made in recent years in the collection
and analysis of NMR data on protein aggregates in the solid state. Chemical shift
information can be interpreted in terms of the �,� angles of the alpha carbons, and
interatomic distances up to about 6 Å can be deduced from dipole–dipole couplings
(Tycko, 2000). In favorable cases, the collection of a large number of distance re-
straints can allow piecing together of a fairly high resolution structure within a single
extended chain element (Jaroniec et al., 2004). Other key structural information ob-
tained using solid-state NMR includes the parallel/antiparallel nature of adjacent
strands in protofilaments (Benzinger et al., 1998), the identification of long-range,
nonbonded interactions (Petkova et al., 2002), and the demonstration of altered
intrastrand folding in self-propagating fibrils exhibiting different morphologies in
EMs (Petkova et al., 2005). Since solid-state NMR data can be collected on bona
fide amyloid fibrils, when high-resolution data can be obtained (Jaroniec et al., 2004)
this method appears to offer the most complete insights available into amyloid fibril
structure.

Electron spin resonance: Judiciously chosen probes coupled to the thiol side chain
of mutationally introduced Cys residues have been used to sense local environment
in globular proteins (Hubbell et al., 2000), and this technique is now being applied
to amyloid fibrils. In principle, one can observe distances between spin labels, and
the mobility and solvent accessibility of the label at different positions in a protein
structure. The method has been used to map out regions of parallelism and side-chain
mobility in amyloid fibrils of A�(1–40) (Torok et al., 2002) and a number of other
proteins.
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Hydrogen–deuterium exchange: Hydrogen exchange (HX) has been used with
great success to map structural features of globular proteins, in particular backbone
secondary structure and sterically inaccessible sites. For globular proteins where
data acquisition by real-time NMR and mass spectrometry (MS) is possible, methods
can be adapted to examine the structure of the native state as well as dynamic aspects
of protein structure and folding (Ferraro et al., 2004; Li and Woodward, 1999).
Analysis of exchange into aggregates is significantly complicated by the require-
ment to break aggregate structure and restore the soluble, monomeric state to the
precursor protein before it can be analyzed. The challenge in studies of aggregate
structure has been to minimize and adjust for the loss of exchange information
occurring during the sample processing. Loss of information due to HX during
sample processing can be minimized in an MS approach using an in-line T-tube that
makes sample dissolution and presentation to the MS probe one seamless operation
(Kheterpal et al., 2000). Effective schemes for correcting data to account for
exchange during sample preparation have been described (Kheterpal et al., 2003b).
The HX-MS technique is rapid and sensitive enough to collect exchange protection
data on the oligomeric/protofibrillar intermediates of A�(1–40) amyloid assembly;
interestingly, this work showed that there is a class of highly protected H-bonds
even in metastable protofibrils (Kheterpal et al., 2003a). Proteolytic fragmentation
coincident with fibril dissolution can be used to obtain protection information on
segments of the peptide in the fibril (Wang et al., 2003, Kheterpal et al., 2006). By
using MS to analyze a large collection of overlapping proteolytic fragments from
fibrils exposed to D2O, it is possible to assign protection factors at the single residue
level (Del Mar et al., 2005).

When signal dispersion allows, and individual hydrogens have been assigned,
NMR can be used to follow the fate of each hydrogen as signal loss follows deuterium
exchange. The trick to obtaining exchange information by NMR is to identify an
aprotic NMR solvent that dissolves the protein, minimizes artifactual exchange dur-
ing data collection, and allows good dispersion of the amide proton resonances. An
effective solvent has been dichloroacetic acid/dimethylsulfoxide mixtures, and this
has allowed the NMR method to map exchange protection in amyloid fibrils com-
posed of peptides (Kuwata et al., 2003) and even the small protein �2-microglobulin
(Hoshino et al., 2002). Identical A�(1–40) fibrils have been exposed to HD exchange
monitored by both MS (Kheterpal et al., 2000, 2003b, 2006) and NMR (Whittemore
et al., 2005), and the results from the two methods are in very good agreement.

Limited proteolysis: Limited proteolysis has been used to understand globular pro-
tein structure, motility, and folding (Fontana et al., 1997). The major advantage of
the technique is the ability to provide structural information on systems that are not
readily amenable to other techniques. Major disadvantages are low resolution and a
dependence for success on factors, such as proteolysis kinetics, often out of the con-
trol of the experimenter. The basic principle is that solvent-accessible regions of the
polypeptide backbone are revealed by their ability to be cleaved by an endoproteinase
such as trypsin. Potential limitations of the use of the method are: (1) proteolysis
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Fig. 9.1 The amino acid sequence of A�(1–40).

requires at least transient exposure of a six- to eight-residue segment containing the
protease site; (2) the protein may unfold and undergo multiple cleavages after the
first cleavage event so rapidly that it becomes difficult to interpret any of the data
in terms of native structure; and (3) accessible segments lacking a cleavage site will
not be detected. The latter can be detected as a problem by comparing the cleav-
age kinetics of the folded, target state and the unfolded state; it can potentially be
overcome by exploring multiple proteases.

Limited proteolysis has been used to effectively demonstrate the lack of stable
structure in the N-terminal 10–14 residues of A�(1–40) (Fig. 9.1) when it assembles
into an amyloid fibril (Kheterpal et al., 2001). Interestingly, a percentage of the
A�(1–40) molecules in the aggregate was not cleaved, suggesting either a second
class of aggregate or a second class of folded peptides in the A� fibril. [Similar results
have been obtained in HX experiments on �-synuclein fibrils (Del Mar et al., 2005).]
Somewhat surprisingly, the rates of cleavage at sites in the exposed N-terminus were
comparable for monomer and fibril, suggesting efficient proteolysis of the fibril
despite its expected poor diffusion rate. Limited proteolysis has also been used to
characterize amyloidogenic intermediates (Polverino de Laureto et al., 2003). This
is even more challenging than analysis of fibrils, and is only possible if the molecular
species under investigation is highly populated and relatively stable with respect to
the time course of proteolysis and analysis.

Side chain accessibility analysis: Group-specific chemical modification reactions
have historically been used to probe for the location of particular residues in globular
protein structure (Means and Feeney, 1971). To some extent, this is possible for
amyloid fibril analysis as well. For example, an amine-specific reagent provided
evidence that Lys28 in some molecules of A�(1–40) in the amyloid fibril has an
exposed side chain (Iwata et al., 2001). Overall, however, exploitation of naturally
occurring amino acid reactivities suffers from the relative chemical inertness of
many of the 20 standard amino acids. One can overcome this limitation by preparing
single Cys mutants of the amyloidogenic peptide. When built into fibrils, the chemical
accessibility of the reactive sulfhydryl side chain of Cys provides structural details
otherwise difficult to obtain (Shivaprasad and Wetzel, 2006).

Cross-linking analysis: Covalent cross-linking analysis is another chemical ap-
proach to protein structure determination that has been used historically for char-
acterizing the interaction sites for protein ligands and protein–protein interactions.
The trick in a rigorous analysis is to adjust the timing of the appearance and disap-
pearance of the reactive species so that it is faster than the time scale for appreciable
structural rearrangement or dissociation in the target. Otherwise, cross-linking may
be guided more by chemical feasibility than by spatial proximity.
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Photoaffinity labeling, in principle, can overcome this problem, but the lifetime
of some photoactive species can be long, and their ultimate mode of reaction can
be by relatively slow nucleophilic displacement rather than by rapid bond insertion
(Chowdhry and Westheimer, 1979). One interesting approach to photo-cross-linking
is to use the natural photochemical activity of the normal amino acid side chains to
mediate cross-linking (Bitan and Teplow, 2004). This has the potential advantage
of avoiding the use of chemical analogues, but, as discussed above, the precision of
the method may sometimes be limited by strong biases in the reactivity of different
amino acids. Interestingly, features of A�(1–42) oligomer formation determined
using this method have been replicated in a simulation of A� aggregate (Urbanc et al.,
2004b).

With appropriate controls, a chemical cross-linking approach can also provide
useful information. Exposure to oxidizing conditions of amyloid fibrils grown from
double Cys mutants appears to introduce intrapeptide cross-links only when the side
chains are in contact within the fibril, providing important distance restraints for
fibril structure model building (Shivaprasad and Wetzel, 2004).

Kinetic analysis of fibril assembly: In principle, assembly kinetics can inform us
about the structure of a reaction product but only to the extent that the assembly
mechanism is well defined and the transition state associated with the rate-limiting
step resembles the final product. For protein aggregates these assumptions are often
difficult to make. Even so, assembly kinetics has been informative in some of the
cases where it has been used, especially in mutational analysis of amyloid structure.
For example, the difficult question of polyglutamine aggregate structure was ap-
proached by an analysis of the kinetics of aggregation of polyglutamine sequences
containing proline–glycine (PG) pairs at regular intervals. Optimal aggregation ki-
netics were observed when the number of glutamine residues between PG pairs was
nine, corresponding to extended chains in the range of seven or eight Gln residues
(Thakur and Wetzel, 2002). This is consistent with suggestions that the most stable
�-sheets are about seven residues wide (Stanger et al., 2001). The potential value of
using assembly kinetics as a link to structure is illustrated by the fact that subsequent
X-ray fiber diffraction studies on aggregates of normal, unbroken polyglutamine
sequences confirmed the width of the �-sheets in the aggregate structure suggested
by the PG mutational analysis (Sharma et al., 2005).

The above polyglutamine kinetics analysis was fruitful because the aggregation
reaction appears to be a relatively simple case of nucleated growth polymerization
(Chen et al., 2002). In contrast, spontaneous amyloid fibril formation under native
conditions by most other peptides, including yeast prions (Collins et al., 2004; Serio
et al., 2000), appears much more complex. Oligomeric intermediates are often ob-
served, and it is not always clear whether they are on-pathway or off-pathway. In spite
of this uncertainty, the use of fibril formation kinetics to score the effects of proline
substitutions on fibril formation by A�(1–42) gave information that in many ways is
in agreement with a similar analysis of A�(1–40) fibrils scored by fibril stability (see
below). A number of differences were observed (Morimoto et al., 2004), however,
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and it is not clear whether these are to be attributed to the use of kinetics information
or the difference in peptide structure.

As difficult as fibrils and other aggregates are to investigate structurally, an even
more challenging problem is the structure of the aggregation nucleus. Yet because
it holds the key to the kinetics of aggregate formation and is relatively small, the
nucleus is a particularly attractive assembly to try to model computationally. Due
to the complexity of many amyloid assembly reactions mentioned above, nucleation
kinetics analysis has proved very difficult. An exception to this is polyglutamine,
which does not seem to form significant off-pathway oligomeric aggregates under
normal aggregation conditions. Treating the nucleus as a thermodynamic entity and
the least stable species on the reaction pathway allows one to model the nucleation ki-
netics by placing the nucleus in a preequilibrium with bulk phase monomer (Ferrone,
1999). Applying the resulting kinetics expression to data from a sedimentation assay
(Wetzel, 2005) yielded the surprising result that the nucleus for polyglutamine aggre-
gation is a high-energy form of the monomer (Chen et al., 2002). Subsequent studies
allowed calculation of KN∗, the equilibrium constant describing the structural inter-
conversion of bulk phase monomer and nucleus, yielding a value of about 10−9 for a
disease-associated Q47 repeat polyglutamine (Bhattacharyya et al., 2005). This very
low Keq suggests that it will be difficult indeed to obtain any direct structural infor-
mation on the aggregation nucleus, emphasizing the importance of simulations. One
model for the polyglutamine nucleus was recently proposed based on computational
studies (Khare et al., 2005).

Analysis of elongation kinetics can also be useful in evaluating amyloid struc-
tures, in particular in probing compatibility between mutational or conformational
variants of fibrils. Cross-seeding experiments where seeding is sufficiently heavy that
the lag phase is eliminated can be particularly helpful in gauging the compatibility
between two or more monomers for adding to a preexisting fibril (O’Nuallain et al.,
2004). The possible linkage between fibril assembly and disassembly kinetics, on the
one hand, and fibril stability, on the other, is illustrated by the ability to recapitulate
the fibril elongation equilibrium constant by propagating the microscopic forward
and reverse rate constants from detailed analysis of fibril elongation (O’Nuallain
et al., 2005).

Thermodynamic analysis of fibril structure and dynamics: Growth of some amyloid
fibrils stops short of complete aggregation, and the endpoint can be shown to reflect
a dynamic equilibrium (Jarrett et al., 1994; O’Nuallain et al., 2005). This allows cal-
culation of the free energy of elongation, which further allows many of the kinds of
analysis typically done on globular proteins, such as mutational analysis of stability
(Williams et al., 2004, 2006). A significant amount of information about amyloid
fibril structure has been gleaned using scanning mutational analysis of the A�(1–40)
peptide as the changes affect the peptide’s ability to engage the amyloid structure. In-
sertion of prolines (Williams et al., 2004), alanines (Williams et al., 2006), cysteines
(Shivaprasad and Wetzel, 2006), modified cysteines (Shivaprasad and Wetzel, 2006),
and disulfide bonds (Shivaprasad and Wetzel, 2004) has generated information that
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has deepened our understanding of fibril structure and how it is stabilized. The en-
ergetic consequences of certain mutations of residues thought to be in �-sheet in the
amyloid fibril were shown to be remarkably similar (Williams et al., 2006) to the
effect of the same mutation in a parallel �-sheet in a globular protein (Merkel et al.,
1999), providing important validation of this approach and suggesting a fundamental
similarity in the way that amyloid fibrils and globular proteins are stabilized.

At the same time, amyloid appears to be somewhat more plastic than globular
proteins, sometimes disseminating the destabilizing effects of a lesion through struc-
tural distortions at a considerable distance from the site of the mutation (Williams
et al., 2004, 2006). Thus, fibrils appear to be capable of adjusting their �-sheet
networks in response to some disruptive mutations, for example resulting in fibrils
that exhibit decreased stability even while featuring a greater number of backbone
H-bonds (Williams et al., 2004). Lack of additivity in some double Ala mutants also
may indicate a more plastic structure in amyloid (Williams et al., 2006).

The aforementioned experimental approaches, such as fiber diffraction, elec-
tron microscopy, HD exchange, solid-state NMR, limited proteolysis, electron para-
magnetic resonance spectroscopy (EPR), and various chemical approaches, have
yielded valuable information about aggregate structure. But they are not sufficient
to derive high-resolution structure of protein aggregates. Computational techniques
can offer a complementary alternative to experimental methods in building structural
models of protein aggregates including amyloid fibrils, testing the stabilities of the
model structures and studying the aggregate assembly process.

9.4 Computational Approaches to Aggregate Structure

Computational methods, especially protein structure prediction and molecular dy-
namics (MD) simulations, have been widely used for modeling protein structures and
studying their dynamic behaviors. For example, the first three-dimensional work-
ing model of human plasma vitronectin was predicted through a combination of
computational methods, specifically protein threading and domain docking, and ex-
perimental observations (Xu et al., 2001). The predicted model is consistent with
all known experimental observations, including positioning of the ligand binding
sites, accessibility of protease cleavage sites (Xu et al., 2001), and data from small-
angle scattering experiments (Lynn et al., 2005). MD simulations have become
an important tool in studying the physical basis of the structure and function of
biomolecules since the first simulation work was published about three decades ago
(Karplus and McCammon, 2002). One of the examples that illustrate the power of
MD simulations to obtain functionally relevant information, which has been im-
possible using experimental techniques, is the study of conformational changes of
GroEL (Ma et al., 2000). GroEL consists of two rings, each of which has seven
identical subunits stacked back to back (Xu et al., 1997). MD simulations have been
used successfully to demonstrate the conformational changes between the open and
closed states. The simulation results have also shown that the subunits adopt an
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intermediate conformation with ATP bound, which is supported by cryo-EM results
(Karplus and McCammon, 2002).

Whereas computational structure predictions have been used extensively for
normally folded proteins, their application to misfolded structures and protein ag-
gregates has been limited. This is not surprising, given that amyloid peptides or pro-
teins adopt different conformations in soluble and fibril states. The soluble monomer
structures for some of the amyloid precursor proteins have been solved and deposited
into the Protein Data Bank (PDB) (Berman et al., 2000), such as A�(1–40) (Coles
et al., 1998; Sticht et al., 1995), insulin (Hua et al., 1995), prion (Riek et al., 1996),
and transthyretin (TTR) (Blake et al., 1978). In most cases, however, the soluble
monomer structures provide very little insight into the possible conformations of
the molecules in the amyloid fibrils. For example, A�(1–40), prion, and insulin
have predominantly �-helical structures in physiological conditions or in organic
solvents while amyloid fibrils formed by these peptides or proteins have predomi-
nantly �-sheet structures. A conformational transition from �-helix to �-sheet has
been suggested as the key step in the formation of an ordered structure upon ag-
gregation in these cases. Other protein aggregates, such as �2-microglobulin and
TTR, appear to result from the assembly of the states that have both amyloid- and
native-like structures, suggesting a role for native structure in amyloid assembly.
At the same time, amyloid fibril formation is not restricted to the relatively small
number of proteins associated with well-recognized clinical disorders. Experiments
have shown that many proteins, including such a well-known molecule as myoglobin,
under suitable conditions, can form amyloid fibrils, which suggests that the ability
to form such fibrils may be a generic property of polypeptide chains (Dobson, 1999,
2003). These observations, along with the aforementioned lack of information on
the contribution of protofilament packing to the stability of the fibril, make it very
challenging to model misfolded protein structures.

There are two possible atomic resolution computational approaches to mod-
eling amyloid fibril structure. The first is to simulate the fibril formation process
including conformational changes from the native globular protein, seed formation,
and protofilament packing. However, the atomic-resolution simulation methods that
are favored by the protein folding community cannot be applied to the study of
amyloid fibril formation due to the long time scales involved in seed formation and
in the fibrillation process. The large system sizes also present problems to computa-
tional simulation. The other atomic resolution approach bypasses the fibril formation
process and studies the chemical interactions that stabilize the fibril structure. The
rationale is that amyloid fibrils are formed from some regularly repeating building
blocks revealed by X-ray diffraction patterns (Sunde and Blake, 1998). Therefore,
the problem of modeling amyloid fibril structures can be partitioned into two steps:
modeling the monomer structural features observed in amyloid fibrils and the pack-
ing of monomer structures in oligomers. The stabilities of the proposed oligomer
models can then be tested using MD simulations.

We will discuss atomic-level structure modeling of the amyloid fibril cores and
the low- to intermediate-resolution models of aggregate assembly.
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9.4.1 Atomic Resolution Computational Approaches

MD simulations of small amyloid forming peptides: Amyloid fibril models can be
constructed from scratch based solely on experimental observations and MD simula-
tions can then be applied to test the validity of the models. Nussinov and colleagues
have done extensive studies on short amyloid peptides in an attempt to obtain the
underlying chemical principles of the atomic interactions involved in amyloid for-
mation. These peptides include a fragment (residues 113–120) derived from the
Syrian hamster prion protein (Ma and Nussinov, 2002a), two peptides (residues
22–27 and 22–29) from the human islet amyloid polypeptide (Zanuy et al., 2003;
Zanuy and Nussinov, 2003), several fragments from A� amyloid protein (Ma and
Nussinov, 2002b), and a peptide (residues 15–19) from human calcitonin (Haspel
et al., 2005). The structure of each strand was constructed using standard model-
ing software, such as Insight II’s biopolymer module (http://www.accelrys.com/).
Then the peptide chains were placed with predefined parallel or antiparallel orien-
tations. The hydrogen-bonded chains were placed at a distance of ∼5.0 Å from
each other. The distance between the sheets was set to ∼10 Å, which corre-
sponds to the average distance in a cross-� structure (Ma and Nussinov, 2002a;
Sunde and Blake, 1998). The stabilities of these supramolecular structures and
the contribution of the key residues to the stability were tested using MD simu-
lations. The assumption in using a simulation approach to test the stabilities of
oligomers is that if the peptides within the model oligomers can survive high-
temperature MD simulations, then the oligomers are considered stable. For example,
simulations of three strands of A�16−22 revealed that antiparallel �-sheet structure
is preferred while the parallel �-sheet structure is less stable, which is consistent
with solid-state NMR data. Using a similar approach, Zanuy and Nussinov studied
every possible amyloid organization of a segment (residues 22–27) of human islet
amyloid polypeptide (hIAPP), such as peptide conformations within sheets and the
lateral arrangements between sheets. They found that this short segment prefers an
antiparallel arrangement of strands within sheets and a parallel lateral association. In
the lateral association, the aromatic side chains play an important role in intersheet
interactions (Zanuy and Nussinov, 2003).

Protein threading approaches for modeling amyloid fibril structures: Protein thread-
ing seems to be a feasible approach and a natural fit for modeling monomer structures
within amyloid fibrils. First, protein structures in the PDB (Berman et al., 2000) with
cross-� features might hold the key to understanding the folding pattern in amyloid
fibrils (Jenkins and Pickersgill, 2001; Wetzel, 2002). For example, the parallel �-
helical fold fulfills the basic requirements for an underlying primordial structure of
amyloid fibrils, such as intrinsic cross-� structure and main chain hydrogen bond-
ing. If the amyloid fibril folding pattern is present in solved globular structures,
one obvious question is why these proteins such as parallel �-helical proteins do
not oligomerize. As addressed by Richardson and Richardson (2002), proteins with
�-sheet element are prevented from oligomerizing by N- and C-terminal caps, while
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in amyloid fibrils an indefinite number of �-strands may be hydrogen-bonded to-
gether into a very stable assembly due to an inherent propensity of �-structure to form
sheetlike structures. Second, protein threading, one of the three popular structure pre-
diction methods, identifies a structural homologue or analogue through aligning the
query sequence onto template structures and finds the best possible template through
evaluating sequence–structure fitness using empirical energy functions. Threading
is a valuable method for finding structural analogs as it in principle does not rely
on sequence similarity. The assumption is that some intrinsic interaction patterns
between the residues of stable protein structures contribute to the specific folding
pattern. Given recent suggestions that fibrils are stabilized by forces common to all
proteins, hydrophobic interactions and hydrogen bonding, and not by forces partic-
ular to a specific sequence (Bucciantini et al., 2002; Kayed et al., 2003; Williams
et al., 2005), threading should be a useful approach to predicting amyloid structure as
amyloid proteins do not share any detectable sequence similarity though they share
a number of structural features.

Currently, two approaches have been applied in amyloid fibril structure mod-
eling, implicit threading and explicit threading. In implicit threading, the peptide
sequences can be mapped to a known structure that fits the proposed model. For ex-
ample, Li et al. (1999) used an implicit threading method to construct their twisted
model of A� amyloid protofilaments based on limited experimental observation that
A� may form an antiparallel �-sheet with a turn located around residues 25–28. The
basic building block, a dimer of an antiparallel �-sheet with a turn located at residues
25–28 for A�(12–42), was constructed using the high-resolution structure of TTR
(PDB ID: 2pab) (Blake et al., 1978) as a template. In their model, 48 monomers
of A�(12–42) stack with four monomers per layer to form a twisted helical turn of
�-sheet. MD simulations were applied to the model in explicit aqueous solution to
test the stability of the protofilament model. Their simulation result suggests that
the twist observed in synchrotron X-ray studies might be the result of protofila-
ment packing, rather than from the structure of individual protofilaments. Using
the threading algorithm “TOPITS,” Chaney et al. (1998) identified three possible
templates for A�(1–42) structure. All three proteins share an antiparallel �-sheet
structure. The resulting model of A�(1–42) from threading studies displays a Greek
key motif with four antiparallel �-strands (1–6, 9–15, 18–24, and 29–36). They also
proposed that two A� molecules should form a dimer in order to shield unfavor-
able hydrophobic domains from the aqueous environment. In their A� protofilament
model, the C-terminal domain (residues 30–42) of each A� molecule of the dimer
extends toward the center to form an antiparallel �-sheet with the other A� dimer. In
their protofilament model, the twisted �-sheet is highly hydrophobic yet is exposed to
an aqueous environment. To resolve this thermodynamically unfavorable situation,
a fibril model with three protofilaments was constructed, which has a compact and
thermodynamically favorable structure with hydrophobic �-sheets buried inside and
the hydrophilic �-barrels made of residues 1–28 exposed to aqueous environments.

The aforementioned A� amyloid protofilament or fibril models have one com-
mon feature, a core structure containing antiparallel �-sheets, either intermolecular
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or intramolecular. Compelling evidence from solid-state NMR and liquid suspen-
sion EPR studies on full-length A� fibrils suggests that the peptides in the fibril
core are in-register, parallel arrangements (Benzinger et al., 1998; Petkova et al.,
2002; Torok et al., 2002). Though a number of models involving parallel �-sheet
have been proposed, there is no consensus on a unique structure model due to the
uncertainty of the number and the location(s) of turns in the A� peptide (Lakdawala
et al., 2002; Petkova et al., 2002). Recently, proline scanning mutagenesis experi-
ments on A�(1–40) and A�(1–42), a technique used to search for regions involved
in turns and disordered structure, have provided valuable information regarding the
possible turn regions. Experimental data from Williams et al. (2004) suggest that the
15–36 sequence of A�(1–40) is involved in the amyloid core formation with three
� strands separated by two turns at residues 22–23 and 29–30, which resembles
an existing folding pattern of the parallel �-helical proteins. In fact, this �-helical-
like model for amyloid fibrils has previously been suggested as possible folding
motif in A�, insulin fibrils, and polyglutamine fibrils (Jimenez et al., 2002; Perutz
et al., 2002; Wetzel, 2002). Based on recent experimental observations, Guo et al.
constructed a structural model for the A� amyloid fibril core structure using a thread-
ing technique and MD simulations (Fig. 9.2) (Guo et al., 2004). In their approach,
A�(15–36) was threaded against the representative parallel �-helical proteins and
several non-�-helical all-� proteins as controls. The sequence–structure alignments
with top threading scores were consistent with proline scanning mutagenesis data
with respect to the locations of turns and �-strands. The non-�-helical templates
did not score as well as �-helical proteins. Using the highest scoring alignments
from the threading analysis, and the strong evidence from solid-state NMR and EPR
studies that A� monomers are in an in-register, parallel �-sheet organization in A�

Fig. 9.2 Structural model of the core of A� amyloid fibril.
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fibrils, both left-handed and right-handed 6-mer models were generated as the core
of protofilaments and were subjected to MD simulations. The simulation results re-
vealed that the left-handed model is more stable than the right-handed model. The
total number of hydrogen bonds in the left-handed model during simulation is in
agreement with the HD exchange experiments (Guo et al., 2004).

Govaerts and colleagues also applied threading approaches to the modeling of
prion fibril structures (Govaerts et al., 2004). Their studies suggest that the sequence
of PrP27–30 is compatible with a parallel left-handed �-helical fold. In their study,
residues 89–174 are threaded onto the structure of the �-helical domain of uridyl-
transferase (1G97), which results in four rungs of �-helices. The �-helical region of
residues 177–227 is packed onto the �-helix in an arrangement appearing in known
�-helical protein structures. The exact position of the �-helices is optimized to fit
the densities observed in the projection maps of the 2D crystals (Govaerts et al.,
2004). The trimeric model from the packing of three parallel left-handed �-helical
monomers matches the structural constraints of the PrP27–30 crystals.

It will be interesting to see if other amyloid forming sequences can be threaded
reasonably well onto �-helical structures although it should be noted that there is in
fact no unequivocal evidence that the strand arrangements in amyloid fibrils formed
by a particular sequence are independent of the length of the fragment studied. For
example, shorter A� peptides may form antiparallel �-sheets while the full-length
A� peptides adopt a parallel organization (Ma and Nussinov, 2002b).

Computational docking approach: Computational docking approach has been
used to predict the fibril structure of �2-microglobulin (Benyamini et al., 2003).
Traditionally, computational docking methods are used to predict protein–protein
or protein–ligand interactions. Since fibril formation is a polymerization process,
docking methods should be useful in examining the building blocks of fibrils (Zanuy
et al., 2004). However, docking methods are only applicable in cases satisfying the
following requirements: (1) the monomer structure is known; (2) the segments in-
volved in fibril formation have been revealed by experiments; and (3) there is little
change in the monomer structure between the globular and fibrillar states. Because
of these constraints, as of now, the docking approach has limited applications in fibril
structure modeling.

Benyamini and colleagues found that this approach is applicable to the model-
ing of the �2-microglobulin fibril structure (Benyamini et al., 2003). The basic idea
is that if the monomer structure is known and experimental data have suggested the
possible segments and structural changes involved in the amyloid formation process,
the fibril structure can be constructed by “guided” docking experiments. In their se-
quence and structure analysis on �2-microglobulin, they proposed that less conserved
regions are more likely to undergo conformational change that may lead to amyloid
fiber formation. �2-microglobulin is a seven-stranded �-sandwich structure (Saper
et al., 1991). Sequence conservation analysis revealed that unlike the conserved inte-
rior strands, strands A (residues 6–12), D (residues 53–60), and G (residues 91–94)
are less conserved, suggesting they are prone to conformational changes, which is
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consistent with many experimental observations. HD exchange experiments showed
that strands A and G are not involved in fibril formation (Hoshino et al., 2002).
Limited proteolysis studies revealed that strands A, D, and G are protected in the
globular form but are not protected in the fibrillar form of �2-microglobulin (Monti
et al., 2002). They proposed that only the interior strands of �2-microglobulin struc-
ture (without strands A and G) are involved in fibril structure. The docked fibril
structures using the “core” �2-microglobulin continuous �-sheet structure with the
cross-� pattern are in agreement with the structural features of some amyloid fibrils.
However, as discussed earlier, the specific requirements of this approach, which are
that the fibril state monomer structure be known, have limited applications of the
docking approach in modeling other amyloid fibril structures.

9.4.2 Low-Resolution Models

While the atomic resolution approaches reviewed thus far offer insights on the stabil-
ity of postulated amyloid fibril structures, they do not tell us much about the assembly
process. The problem is, as mentioned earlier, that the atomic detail that makes high-
resolution models so realistic also makes them extremely computationally intensive,
precluding their application to problems involving large conformational changes or
long time scales. A more promising approach for the study of aggregate assembly is
the class of models known as low-resolution models.

Low-resolution models, also called simplified folding models, rely on a coarse-
grained representation of protein geometry and energetics. They typically account
for the motion of groups of atoms along the protein and ignore the motion of the
solvent atoms in order to enhance computational efficiency. The absence of solvent
atoms in low-resolution models means that effective potentials, or potentials of mean
force, must be used to describe the interactions between residues. There are two types
of low resolution models: lattice models which represent a protein as a linear chain
of residues confined to a lattice, and off-lattice models which represent a protein as
a chain of residues or groups of residues moving through continuous space. Low-
resolution models have provided valuable insights into the basic principles of protein
folding due to their ability to monitor large conformational changes and long time
scales (Chan and Dill, 1990; Dill, 1990; Go and Taketomi, 1978, 1979; Kolinski
et al., 1986; Kuntz et al., 1976; Levitt, 1976; Levitt and Warshel, 1975; Skolnick
and Kolinski, 1990; Taketomi et al., 1975; Tanaka and Scheraga, 1976). Their weak-
ness is their inability to make definitive statements about the folding of specific
proteins.

While the nonspecificity of low-resolution protein models is a serious disad-
vantage when trying to locate a protein’s native state structure using simulations,
it is much less of a disadvantage in simulating protein aggregation. The reason for
this is that fibrillization seems to be less sensitive to the details of the inter- and
intramolecular potentials than protein folding is. Support for this idea is the obser-
vation that the basic crossed-� protofilament structure is the same for many proteins
with different sequences. In fact, some investigators believe that fibrillization is an
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intrinsic property of proteins under slightly denatured concentrated conditions stem-
ming from the interplay between protein geometry, backbone hydrogen bonding, and
hydrophobicity (Dobson, 1999, 2003). The weak dependence of protofilament struc-
ture on sequence and the great speed of low-resolution model simulations make this
approach well suited to examinations of aggregation kinetics on a molecular level.

Low-resolution model studies of protein aggregation can be differentiated based
on several characteristics: on-lattice versus off-lattice, two-dimensional versus three-
dimensional, few chains versus many chains, short chains versus long chains, simple
interaction potential versus complex interaction potential, amorphous aggregate ver-
sus ordered (fibrillar) aggregate, and whether or not the structure of the monomer in
the fibrillar state differs or is the same as the structure of the monomer in the isolated
native state. As will be seen from the discussion below, the models have gotten more
complex and more realistic as time has progressed.

Low-resolution lattice models: The earliest low-resolution model of protein aggre-
gation was a lattice model introduced in 1994 by Patro and Przybycien (Patro and
Przybycien, 1994; Patro et al., 1996). They modeled a system of proteins as a collec-
tion of hexagons with polar and nonpolar surface sites moving on a two-dimensional
lattice. Their aim was to learn how surface characteristics influence the formation
kinetics and structure of the observed aggregates. Since their monomers were essen-
tially in the folded state, they could not explore how folding and unfolding impacts
aggregation. This early work spurred other groups to apply lattice models in the study
of protein aggregation, but with the caveat that the model proteins were allowed to
fold and unfold.

The lattice models can be distinguished according to the size of the “alphabet”
used to represent the various residues. The simplest of the lattice models is the two-
letter-alphabet “HP model” introduced by Lau and Dill (1989), in which a protein is
modeled as a chain of hydrophobic (H) and polar (P) residues arranged in a specific
sequence. Nonbonded H beads attract each other with strength ε to account for
the hydrophobic effect while nonbonded P–P and H–P interactions are set equal to
zero. This mimics the tendency of hydrophobic residues to bury themselves in the
protein interior in order to avoid contact with water. Even this simple “two-letter-
alphabet” model allows investigators to extract (via Monte Carlo simulation or exact
enumeration) the general theoretical principles that underlie the connection between
a protein’s sequence and its native structure, folding pathways, kinetics, and the like.

A common theme running through many of the lattice simulations is the nature
of the monomer structure within the ordered aggregate. The question is whether
the protein remains soluble in its native state conformation under all conditions,
adopts its native state structure within the ordered aggregate, or adopts an alternate
structure (the so-called prionlike structure). This theme was explored by Giugliarelli
et al. (2000) using a two-dimensional HP model; they found that the answer to the
previous question depends sensitively on the amino acid composition. In fact, the
most stable proteins were those whose fraction of hydrophobic residues is similar to
that found in naturally occurring proteins. Harrison et al. studied the formation of
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dimers using two- and three-dimensional HP lattice models (Harrison et al., 1999)
and a simple two-dimensional four-letter-alphabet lattice model (Harrison et al.,
2001)with residues of types H (hydrophobic), P (polar), A, and B, where A and B
have a particular affinity for each other. They observed that the protein sequences that
were marginally stable as monomers were more likely to be stabilized in an alternate
conformation by the multimeric interactions in a dimer aggregate, which was at an
energy minimum. The dimers that were rich in �-sheet structure were more likely
to propagate their conformations onto other chains, hence the term “prionlike.”

The HP model has been used by a number of groups to learn how the structure
of the ordered aggregate depends on the protein sequence, concentration, and tem-
perature. Istrail et al. (1999) studied the dependence of the aggregation of two model
proteins on the hydrophobic/hydrophilic sequence and composition along the chain
as well as chain packing fraction (essentially the concentration). Not surprisingly, the
higher the number of hydrophilic residues, the lower the aggregation propensity is.
Dima and Thirumalai (2002) used a three-dimensional HP lattice model containing
two proteins to probe how the conformational change from a compact monomeric
state to an oligomeric �-sheet state depends on temperature and concentration. They
observed three distinct ordered states, only one of which contained the native state.

Other investigators have adopted much larger alphabets to describe their lattice
proteins. The 20-letter alphabet proposed by Miyazawa and Jernigan (1985) is quite
popular. In this model the interresidue interaction potentials are estimated from the
numbers of interresidue contacts observed in crystal structures in the PDB. Broglia
et al. (1998), Bratko and Blanch (2001), Cellmer et al. (2005), and Leonhard et al.
(2003) have all used this alphabet in their Monte Carlo simulation explorations
of how protein sequence and concentration influence the aggregation kinetics and
thermodynamics of systems containing a small number of chains.

All of the work mentioned above was limited to only a few chains which is not
enough to fully explore the competition between protein folding and aggregation. In
contrast, the simulations of Combe and Frenkel (2003), Toma and Toma (2000), and
Hall and co-workers (Gupta and Hall, 1997; Gupta et al., 1998; Nguyen and Hall,
2002) were truly multichain systems. Combe and Frenkel performed Monte Carlo
simulations on a system containing twenty 8-mer peptides whose interactions were
modeled using the “Go model,” a model in which the interactions are chosen to favor
the known native state. Even though Go models introduce a strong bias toward the
isolated chain’s native state, they can still be used profitably to explore the kinetics
of protein aggregation and the competition between folding and aggregation. Toma
and Toma conducted lattice Monte Carlo simulations on systems containing as many
as twenty 12-mer HP peptides of three different sequences in an effort to learn how
the sequence and concentration affect the formation of an ordered state.

Hall and co-workers (Gupta and Hall, 1997; Gupta et al., 1998; Nguyen and
Hall, 2002) conducted simulations on systems containing as many as 40 two-
dimensional 16-mer HP chains of a single sequence in an effort to learn how the
protein concentration, denaturant concentration, and temperature affected the refold-
ing yield and the kinetics of the aggregation pathway. Denaturant concentration was
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modeled implicitly; the stronger the interaction between the hydrophobic residues,
the weaker the denaturant concentration. Since their aim was to learn how to optimize
protein folding yield during recovery from inclusion bodies, they focused primarily
on aggregation into nonstructured states. Nguyen and Hall (2002) performed sim-
ulations that mimicked four methods of thermal protein renaturation used in the
lab: dialysis, dilution (or diafiltration), quenching, and pulse renaturation (fed-batch
operation). Based on the simulation results, a strategy for rapidly obtaining high re-
folding yields was suggested which involved instantaneous removal to intermediate
denaturant concentrations followed by dialysis to the final state.

Low-resolution models—off lattice: Off–lattice low-resolution protein models have
been used extensively in the past decade to simulate the folding of an isolated
protein. They are just beginning to be used in studies of aggregation. In the simplest
of these models, a protein is represented as a flexible chain of spheres (think pearl
necklace), with each sphere representing a single residue. The interactions between
the spheres are represented by energy functions that can be divided roughly into
three categories: (1) Go-type potentials in which the parameters are chosen to favor
the protein’s known native state (Go and Taketomi, 1978; Taketomi et al., 1975),
(2) potentials based on the relative hydrophobicity of the side chains as measured
by various hydrophobicity scales (and sometimes on the partial charge), and (3)
knowledge-based potentials like the Miyazawa–Jernigan potential (Miyazawa and
Jernigan, 1985) in which statistical data on residue–residue contacts from the PDB
are used to infer side chain/side chain potentials. Local interaction potentials are
also used to maintain steric and angular constraints.

Jang et al. (2004a,b) used an off-lattice low-resolution protein model to in-
vestigate the thermodynamics and kinetics associated with the folding, aggrega-
tion, and fibrillization of �-strand peptides. The goal was to learn why multiprotein
systems sometimes form ordered aggregates and sometimes form amorphous ag-
gregates. Their off-lattice protein model consisted of 39 single-sphere residues in-
teracting intramolecularly via a square–well Go potential (Go and Taketomi, 1978;
Taketomi et al., 1975) that favored the four-strand antiparallel �-sheet native state and
intermolecularly via a second square–well Go potential that favored the formation of
a tetrameric �-sheet complex (a model fibril). In fact, the intra- and intermolecular
interactions could be interpreted as mimicking hydrogen bonding and hydrophobic
interactions, respectively. The ratio of the strengths of the intra- and intermolecular
potentials was varied. Discontinuous MD simulations (described in a later section)
were performed on systems containing a single protein and four proteins to see
how the equilibrium properties, folding pathways, and kinetics varied as a func-
tion of the ratio of the intra- and intermolecular interactions and the temperature. A
phase diagram was constructed showing which monomer states and which tetrameric
complex states were stable at various temperatures and interaction strength ratios.
At high temperatures the four-peptide system formed monomers but at low tem-
peratures the system assembled into tetrameric �-sheet complexes that were either
partially ordered , ordered, or highly ordered, depending on the relative strength of
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the inter- and intramolecular interactions. The most ordered structures were found
at intermediate values of this ratio. This implies that for ordered aggregates to form,
there must be a balance between the hydrogen bonding interactions that hold the
�-strands together in a �-sheet and the hydrophobic interactions that hold the sheets
together. If either is too large, disordered rather than ordered aggregates will form
at high concentrations.

Ding et al. (2002a,b) also used an off-lattice low-resolution model to study
the aggregation of a system of eight model Src SH3 domain proteins. Each amino
acid residue along the flexible backbone chain was represented by a single backbone
sphere and a single side-chain sphere interacting via a Go potential designed to
recover the protein’s native state. A fibrillar double �-sheet structure was observed
with inter-�-strand spacing and inter-�-sheet spacing similar to those observed in
experiments.

Intermediate-resolution protein models: In recent years a new class of protein fold-
ing models has been introduced, called intermediate-resolution folding models (Der-
reumaux, 1999; Liwo et al., 1997; Takada et al., 1999; Wallqvist and Ullner, 1994).
The idea here was to add more realistic features to the low-resolution protein fold-
ing models in the hopes that this would allow a priori prediction of the native state
structure of specific proteins based solely on their amino acid sequence. The number
of spheres used to represent protein geometry was increased from one to as many
as seven. The energy functions were expanded to include not only the three cate-
gories described for the low-resolution off-lattice models but also hydrogen-bonding
potentials, multibody terms, burial terms (in which the strength of the hydrophobic
interaction depends on the extent of burial), and special potentials for disulfide bonds
and proline.

Intermediate-resolution protein models are now being used to study aggregation
and fibril formation. In 2001, Hall and co-workers (Smith and Hall, 2001a,b,c)
introduced an implicit-solvent intermediate-resolution protein model, which they
subsequently named PRIME (Nguyen et al., 2004). This model is simple enough
to allow the simulation of systems containing many proteins over long time scales,
yet contains sufficient molecular detail to mimic real protein dynamics. The level of
molecular detail in the protein representation and interaction potential is reduced just
to the point at which the key physical features governing protein fibrillization remain
and the other features are neglected. In PRIME, each amino acid is composed of four
spheres: a three-sphere backbone comprised of united atom NH, C�, and C=O and
a single-sphere side chain (CH3 for alanine), all with realistic diameters and bond
lengths. Ideal backbone bond lengths, bond angles, C�–C� distances, and residue
L- isomerization are maintained by imposing a series of pseudo bonds whose lengths
fluctuate within a tolerance of 2% about the specified values.

All forces in PRIME are modeled by either hard-sphere or square-well poten-
tials with realistic diameters. This was done so as to allow the use of discontinuous
MD (DMD) simulation, a very fast alternative to traditional MD simulation that
is applicable to systems of molecules interacting via discontinuous potentials, e.g.,
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hard-sphere and square-well potentials (Rapaport, 1978, 1979). Instead of solving
Newton’s equation of motion at regular spaced time intervals, as in traditional MD,
DMD is event-driven. Since discontinuous potentials exert forces only when parti-
cles collide (unlike continuous potentials such as the Lennard–Jones potential), the
position and velocity of each molecule after a collision can be determined exactly,
as opposed to numerically. This imparts great speed to the algorithm, allowing sam-
pling of much wider regions of conformational space, longer time scales, and larger
systems than in traditional MD.

The solvent in PRIME is modeled implicitly by factoring its effect into the
energy function as a potential of mean force. Interactions between hydrophobic side
chains are represented by a square-well potential; interactions between polar side
chains or between polar and hydrophobic side chains are represented by a hard sphere
interaction. Hydrogen bonding between amide hydrogen atoms and carbonyl oxygen
atoms is represented by a directionally dependent square-well attraction of strength
between NH and C=O united atoms. (The angle between the “virtual” N–H and
C=O vectors can be determined from knowledge of the locations of the adjacent
united atoms along the chain.) The strength of the hydrophobic interaction is fixed
at a fraction of the strength of the hydrogen bonding interaction; this fraction is the
only adjustable parameter in the model.

By combining PRIME with DMD, Nguyen and Hall (2004a, 2005) were able
to simulate the spontaneous formation of ordered aggregates, essentially protofila-
ments, in model systems containing 48 to 96 polyalanine (Ac-KA14K-NH2) peptides
(Fig. 9.3). Polyalanine was chosen for study because synthetic polyalanine-based
peptides, which form �-helical structures at low temperatures and low peptide
concentrations, had been found experimentally to form �-sheet complexes (fib-
rils) in vitro at high temperatures and high peptide concentrations. All simulations
started from a random coil configuration equilibrated at a high temperature and
then slowly cooled to the temperature of interest so as to minimize kinetic trapping.
These simulations took approximately 40 hours on an AMD Athlon MP 2200+
single-processor workstation. The simulation results showed that the populations
of �-helices, amorphous aggregates, �-sheets, and fibrils were highly dependent

Fig. 9.3 A closeup snapshot of the 96-peptide fibrillar structure of polyalanine.
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on temperature and peptide concentration, in qualitative agreement with the ex-
perimental results of Blondelle and co-workers (Blondelle et al., 1997; Perez-Paya
et al., 1996) on Ac-KA14K-NH2 peptides. The fibrils observed in the simulations
mimicked the structural characteristics observed in experiments in that most of the
fibrillar peptides were arranged in an in-register parallel orientation, with intra-
and intersheet distances similar to those observed in experiments. The simulations
revealed that Ac-KA14K-NH2 fibril formation is nucleation dependent, which is sim-
ilarly observed in experimental studies. The formation of small fibrils was preceded
by the appearance of small amorphous aggregates, then �-sheets, and finally rapid
growth of a stable fibril. A phase diagram in the temperature–concentration plane
was mapped out delineating the regions where random coils, �-helices, �-sheets,
fibrils, and amorphous aggregates are stable (Nguyen and Hall, 2004b).

Models similar to PRIME have been developed by Stanley, Ding, Dokholyan,
Teplow (Ding et al., 2003; Urbanc et al., 2004a,b) and co-workers for use with DMD
(which they call “discrete molecular dynamics” as opposed to “discontinuous molec-
ular dynamics”). Their main focus has been on the aggregation of � amyloid, A�,
the protein whose oligomerization and fibrillization have been linked to Alzheimer’s
disease. The A� peptide is represented with a four bead per residue model as in
PRIME. Their side chain representation and energy function are more complex than
used in PRIME for polyalanine in order to account for the differences between all
20 amino acid residues. There are four types of side chains: neutral, charged hy-
drophilic, hydrophilic, and hydrophobic. The hydropathy of the various side chains
is assigned according to the scale of Kyte and Doolittle (1982). In addition to having
an attraction between hydrophobic side chains, they include a repulsive interaction
between uncharged hydrophilic side chains and either charged or uncharged side
chains. The side chain for glycine residues is absent.

This model is being used to tackle the difficult question of why A�(1–42) is so
much more amyloidogenic than A�(1–40). A�(1–42) is more likely to be associated
with the early onset forms of Alzheimer’s, with increased risk for getting Alzheimer’s
disease, with enhanced neurotoxicity, and with faster formation of fibrils in vitro.
Urbanc et al. (2004a,b) conducted DMD simulations of systems containing 32 A�
(1–40) and 32 A�(1–42) peptides starting from a system of random coil A�
monomers. Although they did not observe ordered structures in their simula-
tions, they did observe important early events in the aggregation process including
monomer folding and assembly into disordered oligomers of various sizes. Analysis
of their results indicates that there are significant differences between the oligomer
size distributions of A�(1–40) and A�(1–42), with A�(1–40) more likely to form
dimers and A�(1–42) more likely to form pentamers, in agreement with in vitro size
distribution studies. The A�(1–42) peptide was likely to form a turn at Gly37–Gly38,
whereas the A�(1–40) was not. The structural differences between the conforma-
tions of the A�(1–40) and A�(1–42) oligomers suggest that the hydrophobic core of
the A�(1–42) pentamer is more exposed than that of the A�(1–40) pentamer, and is
therefore likely to form larger oligomers. This may have implications for the biology
of Alzheimer’s disease since some believe that it is at the oligomer/protofibril level
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that A� is most toxic with A�(1–42) being more toxic than A�(1–40) (Caughey and
Lansbury, 2003).

9.5 Summary

In summary, high-resolution structural characterization of protein aggregates us-
ing classical approaches, such as X-ray crystallography or solution NMR, has been
hampered due to the insolubility and noncrystalline nature of the aggregates. En-
couraging results have begun to emerge, however. Two high-resolution, detailed
structures, both involving crystal packing with “infinite �-sheet” (Schiffer et al.,
1985) characteristics, have been obtained from crystals of amyloidogenic peptides
(Makin et al., 2005; Nelson et al., 2005). One peptide is a seven-residue fragment of a
yeast prion known as Sup35 (Nelson et al., 2005). The other one is a designed 12mer
peptide containing two KFFE motifs separated by an AAAK motif (Makin et al.,
2005). Experimental approaches as discussed in Section 9.3, including fiber diffrac-
tion, electron microscopy, hydrogen–deuterium exchange, solid-state NMR, limited
proteolysis, electron paramagnetic resonance spectroscopy, and various chemical
approaches, have yielded valuable information about the possible conformations of
aggregate structure. But these low-resolution data are not sufficient to establish a
high-resolution structure of protein aggregates, without which it will be difficult
to address some of the fundamental questions regarding the molecular mechanism
of aggregate assembly and the detailed inter- and intramolecular interactions that
stabilize protein aggregates. Computational approaches can use the low-resolution
experimental data to advance our understanding of the structure of protein aggre-
gates and amyloid fibrils. All of the models constructed so far using computational
approaches are motivated by or rely on experimental observations, and are validated
using molecular dynamic simulations, a common technique for testing the stabilities
of the models.

Considering that the insoluble nature of amyloid fibrils makes it hard to obtain
high-resolution, detailed structural information, computational approaches should
play a significant role in our efforts to solve the aggregate structure. Although compu-
tational methods are making strides in deciphering the mechanism of fibrillogenesis
and the fibril core structure, many challenging issues need to be addressed in the
future. First, computational studies of the aggregation process currently only apply
low- to intermediate-resolution models. Novel ideas are clearly needed to investi-
gate the process at a higher level given current computation capability. Second, it
is well known that all amyloid fibrils share the common cross-� structure, but the
structural details might vary from sequence to sequence. Both antiparallel and paral-
lel �-sheet organizations have been suggested for the core structure from solid-state
NMR studies. Moreover, recent studies have revealed that different growth conditions
applied to the same peptide molecule can yield fibrils with distinct morphologies
and possibly with different neurotoxicities (Petkova et al., 2005). Most importantly,
amyloid fibril morphology correlates with internal architecture of the fibril, such



SVNY330-Xu-Vol-I November 2, 2006 10:36

9. Modeling Protein Aggregate Assembly and Structure 305

as side-chain packing arrangements, and the sequences involved in the �-structure.
Therefore, it is highly likely that there exist variations of amyloid folding motifs.
Computational methods should be able to simulate the various structures under dif-
ferent conditions. In addition, comparative studies of amyloid fibril models formed
by different amyloid proteins should be done in the future to elucidate the general
principles regarding how specific interactions stabilize the fibril structures. Probably
the most challenging issue in amyloid fibril structure modeling is the modeling of
the packing patterns and detailed interactions among protofilaments, which might
vary from fibril to fibril (Jimenez et al., 2002). Last but not least, we should also
improve structural modeling techniques in such a way that new experimental data
can be incorporated into the model as constraints. With the advance in computation
speed and capability and the help from experimental observations, in the near future,
we should be able to combine modeling studies with peptide assembling simulations
for a better understanding of the process of amyloid fibril formation and detailed
structure of the fibrils.

Suggested Further Reading

A special issue of the review journal Accounts of Chemical Research on amyloid
(Vol 89, Issue 9, Sept., 2006) contains a number of articles on aspects of amyloid
structure. Recent methods for analysis of amyloid structure, as well as some compu-
tational methods, are described in detail in Methods in Enzymology, Amyloid, Prions,
and Other Protein Aggregates (R. Wetzel and I. Kheterpal, Eds.), Academic Press,
San Diego, 2006, Volumes 412 and 413. The review by Zanuy et al. (2004) pro-
vides insights on amyloid structural formation and assembly through computational
approaches.
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10.1 Introduction

10.1.1 Structural Genomics and Homology Modeling

The human genome project has already discovered millions of proteins
(http://www.swissprot.com). The potential of the genome project can only be fully
realized once we can assign, understand, manipulate, and predict the function of
these new proteins (Sanchez and Sali, 1997; Frishman et al., 2000; Domingues
et al., 2000). Predicting protein function generally requires knowledge of protein
three-dimensional structure (Blundell et al., 1978; Weber, 1990), which is ultimately
determined by protein sequence (Anfinsen, 1973). Protein structure determination
using experimental methods such as X-ray crystallography or NMR spectroscopy is
very time consuming (Johnson et al. 1994). To date, fewer than 2% of the known
proteins have had their structures solved experimentally. In 2004, more than half a
million new proteins were sequenced that almost doubled the efforts in the previ-
ous year, but only 5300 structures were solved. Although the rate of experimental
structure determination will continue to increase, the number of newly discovered
sequences grows much faster than the number of structures solved (see Fig. 10.1).

Fortunately, many protein sequences are evolutionarily related, and thus can
be classified into different families. Proteins in the same families frequently have
noticeable similarities and thus share three-dimensional architecture, which allows
a structural description of all proteins in a family even when only the structure of
a single member is known. This evolutionary relationship provides the rationale for
structural genomics, a systematic and large-scale effort toward structural character-
ization of all proteins, where a representative protein in each family is chosen to
be solved experimentally with the rest reliably predicted by a homology modeling
method (Goldsmith-Fischman and Honig, 2003; Al-Lazikani et al., 2001a). Fold
recognition has also become an important tool that supplements sequence-based
methods to detect remote homologues. However, the line between traditional ho-
mology modeling and fold recognition has diminished due to the progress in the
alignment sensitivity and the increase in database size. Ab initio structure methods
have made notable progress in recent years and are extremely important, not only for
what they can accomplish but also for what they can teach us about protein folding
(Bonneau and Baker, 2001). The progress in ab initio prediction makes it possible
in a few cases to refine homology models to the accuracy of low-resolution X-ray
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Fig. 10.1 Number of protein sequences and structures available each year. Blue bar denotes the
number of protein sequences in SWISS-PROT, red bar is the number of protein structures in PDB.

structures. In fact, if we assume that a native protein structure is at the global free-
energy minimum, comparative modeling is a simple scheme to focus the search of
conformation space by minimally disturbing those existing solutions, i.e., the exper-
imentally solved structures. The obvious advantage is that the comparative modeling
technique relaxes the stringent requirements of force field accuracy and prohibitive
conformational searching, because it dispenses with the calculation of a physical
chemistry force field and replaces it, in large part, with the counting of identical
residues between template and target sequences.

Currently there are about 2 million protein sequences in Swiss-Prot and
TrEMBL, but only 7677 protein families have been identified according to the Pfam
database ( http://pfam.wustl.edu/). This number is strongly dependent on the se-
quence similarity cutoffs used to cluster the sequence space. If 30% sequence identity
cutoff is used, which is generally considered as a threshold for successful homology
modeling, statistical estimates place the number somewhere between 10,000 and
30,000 for all proteins in Nature (Liu et al., 2004), but only a fraction of which have
distinct spatial arrangements (Brenner et al., 1997). Ninety percent of protein struc-
tures deposited today share a similar fold to others already in the PDB. Many of these
solved structures are site-directed mutants or inhibitor-bound complexes of previ-
ously deposited proteins, and many are related members of families of proteins with
similar sequences and closely related three-dimensional structures. Even proteins
with no sequence homology can have very similar folds; for example, the sulfate
and phosphate binding proteins, the transferrins, and the porphobilinogen deaminase
have similar bilobal anion binding structures but not significant sequence identities.
Protein topologies such as the four �-helix bundle, the ��-nucleotide binding motif,
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the �-jelly roll, the ��-barrel, and the �-immunoglobulin domain have been found
in a wide range of protein structures (Johnson et al., 1994; Al-Lazikani et al., 1997;
Efimov, 1993). A recent study has found that roughly 33% of all proteins have com-
plete sequence coverage to a protein with known structure (Ekman et al., 2005).
This kind of protein structure redundancy versus protein sequence variability is
the cornerstone of homology modeling algorithms. It is quite likely that homology
modeling will assume an increasingly important role in both biological and chemical
applications with the advent of structural genomics initiatives around the world.

10.1.2 History of Homology Modeling

Homology modeling techniques became important only after 1990 when hundreds of
protein structures had already been deposited in the Protein Data Bank. Early model-
ing studies in the late 1960s and early 1970s frequently relied on the construction of
hand-made wire and plastic models and only later depended on computer software
(Cox and Bonanou, 1969; Tometsko, 1970). The first homology model was built
simply by copying existing coordinates from a homologous protein and those non-
identical residues were then substituted by reassembling corresponding side chains
(Browne et al., 1969). This approach, called rigid-body assembly, is still widely em-
ployed today with considerable success, especially when the proteins have sequence
identity above 40% (Greer, 1980, 1981). The homology modeling method was pio-
neered in two studies by Browne et al. (1969) and Greer (1981). Browne et al. (1969)
published the first homology model using an X-ray-derived structure as a template.
They modeled bovine �-lactalbumin on the three-dimensional structure of hen egg-
white lysozyme, where the pair sequence identity was about 39% and only deletions
were considered as the polypeptide chain was shortened in �-lactalbumin. Their
prediction was proven generally correct later on when the structure of �-lactalbumin
was solved (Acharya et al., 1989).

McLachlan and Shotton (1971) modeled alpha-lytic proteinase of Myxobacter
495 based on the structures of both chymotrypsin and elastase, where the sequence
identity between these two proteinases was only 18% and the alignment was frag-
mented by frequent gaps. When the structure of alpha-lytic proteinase was published
(Brayer et al., 1979), it became clear that misalignment of the sequence with those of
the known 3D structures led to incorrect regions, but portions of both domains were
constructed correctly (Delbaere et al., 1979). This model demonstrated the difficulty
in aligning sequences of limited similarity and in modeling variable, mainly loop
regions.

Greer was the first to demonstrate the importance of modeling variable regions
(1981). By abstracting approximate conformations from a family of homologous
proteins of known structures, he could distinguish structurally conserved regions,
which contain strong sequence homology, and structurally variable regions, which
include all the insertions and deletions. By applying the structural distinction to new
sequences, erroneous alignments of the sequences are greatly minimized. For each
new aligned sequence, the structurally conserved regions can be constructed from
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any of the known structures. The construction of variable regions, however, is not
straightforward. However, the conformations of loops of just one- or two-residue
deletions or insertions can be extrapolated from one of the homologous structures.
This approach was further applied to predict the structure of mammalian serine
proteases based on a number of proteins from this family, including a variety of
blood-serum, intestinal, and pancreatic proteins as well as a closely related bacterial
enzyme (Greer, 1981).

Instead of deriving protein backbone structure from only one of its homologues,
Taylor (1986) developed a method of generating templates for each part of protein
to be modeled based on the conserved patterns observed in the known 3D structures
of a family. The conserved templates were derived from a small number of related
sequences of the known tertiary structures. The templates were then made more rep-
resentative by aligning with other sequences of unknown structures. The specificity
of the templates was demonstrated by their ability to identify the conserved features
in known immunoglobulin and the related sequences but not in other sequences.
However, assembling these conserved patterns into a complete structure requires the
use of a force field and conformation sampling.

Due to the small number of protein structures available before the 1990s, the
comparative modeling technique was not widely successful. The real development of
homology modeling began in the mid-1990s with the progress of genome projects
and the growth of the number of solved structures in the PDB. With the advent
of structural genomics, the importance of homology modeling continues to grow.
Although 25 years have passed since Greer’s pioneering work on comparative model
building of mammalian serine protease in 1981, the basic technique used in today’s
most advanced modeling programs remains almost the same, i.e., finding the closest
homologues as the basis of modeling the query sequence. Recent efforts in com-
parative modeling have been concentrated on the discovery of distant homologues,
the improvement of alignment accuracy, and especially the refinement of models by
optimization of empirical energy functions.

10.1.3 Accuracy and Applicability of Homology Modeling

Approximately 57% of all known sequences have at least one domain that is related
to at least one protein of known structure (Pieper et al., 2002). The probability of
finding a related known structure for a randomly selected sequence from a genome
ranges from 30% to 65%, since a few genomes have received more research attention
than others (Kelley et al., 2000; Teichmann et al., 1999; Fiser and Sali, 2003). The
percentage is steadily increasing because more distinct folds are discovered each
year, and because the number of different structural folds that proteins adopt is
limited (Irving et al., 2001). Current estimates suggest that there are between 1000
and 5000 folds in the universe of compact globular proteins, with about 200 new folds
realized annually from the structure deposition (Brenner et al., 1997). The number
of known protein sequences is close to 2 million so far. Over 1.1 million proteins can
readily have at least one of their domains reliably predicted with homology modeling
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methods. Given the rate of experimental structure determination, approximately 6000
proteins each year, it is arguable that homology modeling has already saved up to
hundreds of years of human effort, though homology models often have low quality.
In the next 10 years, structural genomics will possibly discover all protein distinct
folds in Nature, making comparative modeling applicable to almost any protein
sequence (Vitkup et al., 2001). The usefulness of comparative modeling is ever
increasing as more proteins can be predicted with higher accuracy. The accuracy of
homology modeling depends primarily on the sequence similarity between the target
sequence and the template structure.

When the sequence identity is above 40%, the alignment is straightforward,
there are not many gaps, and 90% of main-chain atoms can be modeled with an
RMSD error of about 1 Å (Sanchez and Sali, 1997). In this range of sequence iden-
tity, the structural difference between proteins mainly arises from loops and side
chains. When the sequence identity is about 30–40%, obtaining correct alignment
becomes difficult, where insertions and deletions are frequent. For sequence simi-
larity in this range, 80% of main-chain backbone atoms can be predicted to RMSD
3.5 Å, while the rest of the residues are modeled with larger errors, especially in
the insertion and deletion regions (Harrison et al., 1995; Mosimann et al., 1995;
Yang and Honig, 2000; Sauder et al., 2000). Even in correctly aligned regions, loop
modeling and side-chain placement pose difficulties (Bower et al., 1997; Rapp and
Friesner, 1999). When the sequence similarity is below 30%, the main problem be-
comes the identification of the homologue structures, and alignment becomes much
more difficult. For some sequences where the structures in the family are very con-
served in evolution (e.g., kinase family), homology modeling can make predictions
as accurate as low-resolution X-ray experiments even if the sequence identity is
much less than 30% identity to the template (Yang and Honig, 1999; Petrey et al.,
2003).

Even if homology modeling is generally much less accurate than experimental
methods, it can still be helpful in proposing and testing hypotheses in molecular biol-
ogy, such as predictions of ligand binding sites (Zhou and Johnson, 1999; Francoijs
et al., 2000), substrate specificities (Jung et al., 2000; De Rienzo et al., 2000), func-
tion annotation, protein interaction pathways, and drug design (Nugiel et al., 1995;
Sanchez and Sali, 1997). It can also provide starting models for solving structures
from X-ray crystallography, NMR, and electron microscopy (Talukdar and Wilson,
1999; Ceulemans and Russell, 2004).

10.2 Procedures in Homology Modeling

Given a protein sequence, successful homology modeling usually consists of the
following steps as shown in Fig. 10.2: (1) identify the homologue of known structure
from the Protein Data Bank; (2) align the query sequence to the template structure;
(3) build the model based on the alignment; (4) assess and refine the model. Each
step may involve some errors.
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Fig. 10.2 Basic homology modeling protocol. Homology modeling starts by scanning the PDB
for sequences similar to the target. The hit of highest sequence similarity is chosen as the template.
Model for the target is then built based on the alignment between the target and template sequence,
which will be subjected to further refinement.

10.2.1 Homologue Detection and Alignment

Homology modeling starts from selection of homologues with known structures from
the PDB. If the query sequence has high sequence identity (>30%) to the structure, the
homology detection is quite straightforward which is usually done by comparing the
query sequence with all the sequences of the structures in the PDB. This can often be
achieved simply with the dynamic programming method (Needleman and Wunsch,
1970) and its derivatives (Smith and Waterman, 1981; Gotoh, 1982). The most popu-
lar software is BLAST (Altschul et al., 1997) ( http://www.ncbi.nlm.nih.gov/blast/)
that searches sequence databases for optimal local alignments to the query. The
BLAST program improves the overall speed of searches while retaining good sen-
sitivity by breaking the query and database sequences into fragments, and initially
seeking matches between fragments. The matched fragments are then extended in
either direction in an attempt to generate an alignment with a score exceeding a
particular threshold. The score based on substitution matrices reflects the degree of
similarity between the query and the sequence being compared, capable of ranking
the quality of each pairwise alignment. The BLAST program functions very well
for alignment of sequences with high similarities. But when the sequence identity
is well below 30%, homology hits from BLAST are not reliable. A number of alter-
native strategies have been developed. These include template consensus sequences
(Taylor, 1986; Chappey et al., 1991) and profile analysis (Barton and Sternberg, 1990;
Suyama et al., 1997; Lolkema and Slotboom, 1998). All these approaches, based
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on either multiple sequence or structure alignments, are more sensitive because the
consensus sequences are more representative of the sequence family, and the profile
reflects the conserved structural or functional preferences.

In the past several years, sequence profile methods have emerged as the pri-
mary approach in distant homology detection. Position-specific profile search meth-
ods such as PSI-BLAST (Altschul et al., 1997) and hidden Markov models (HMMs)
(Krogh et al., 1994), as implemented in the SAM (Karplus et al., 1998) and HMMER
(http://hmmer.wustl.edu) packages, have vastly improved the accuracy of sequence
alignments and have extended the boundaries of detectable sequence similarity. Se-
quence profiles methods, e.g., PSI-BLAST, start from performing a pairwise search
of the database. The significant alignments are then used by the program to construct
a position-specific score matrix (PSSM). This matrix replaces the query sequence
in the next round of database searching. The procedure may be iterated until no
new significant alignments are found. The profile method can be further improved
with information from multiple structure alignment, secondary structure prediction,
and solvent accessibility. Since the structural information is more conserved than
sequence, it may represent the crucial requirement, in the process of evolution, of
residues at specific positions with respect to the stability and function of the struc-
ture as a whole. Although a major goal of this effort has been remote homologue
detection, an important side benefit has been significant improvement in alignment
quality, even at levels of sequence identity for which pairwise alignment methods are
known not to work. This, in turn, has had a positive impact on the starting alignments
used in homology modeling, and thus has the potential to extend the applicability
of homology modeling to increasingly lower levels of sequence similarity. Indeed,
perhaps the largest part of recent improvements in homology modeling can be traced
directly to improvement in sequence alignment algorithms.

If multiple homologues from the PDB have been identified, the next step is
to select one or a few templates that are most appropriate for building a model.
Sequence similarity between the query and the template is usually considered as the
primary criterion used to choose the best template. Higher sequence similarity often
suggests a closer relationship in evolution, thus more conservation of structure, and
vice versa. On the other hand, gaps (insertion or deletion) in the alignment have a
severe impact on the quality of the model to be built, since gaps are regions where
no templates are readily available to guide the model building process. Generally,
insertions in the alignment are more difficult to handle than deletions, particularly
for insertions of more than 10 residues, because modeling inserted residues is a
mini ab initio problem. Thus, the second criterion is to choose an alignment that
has fewer gaps and short insertions. Moreover, since sequences in the same family
often share similar structure and function, templates that can be clustered into the
same subfamily as the target are often favored. This can usually be achieved with
construction of a multiple alignment and phylogenetic tree (Felsenstein, 1981; Retief,
2000). If the function of the protein to be modeled (target protein) is known, templates
with similar functions should also be given more consideration. If possible, the
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environment (e.g., ligands, solvent, temperature, pH) at which the template structure
was determined and the native environment of the target protein to be modeled should
also be properly taken into account. A protein, such as calcium binding protein,
can adopt quite different conformations in solvent under different environments
(Mishig-Ochiriin et al., 2005). Thus, structures determined in environments similar
to the physiological environment of the target are generally preferred. In addition,
structures of higher quality are generally used, such as X-ray structures of high
resolution and low R-factor, and NMR structures with sufficient constraints. In the
end, structures that are most representative of the family should be used if all other
criteria are identical. The trait can easily be calculated as the average RMSD of the
structure to all other family members with known structures. The hypothesis is that
the target protein is more likely to be similar to the most “typical” structure. Instead of
relying on a single template, it can be advantageous to select multiple structures from
one or several families. Multiple template structures may be aligned with different
domains of the target, thus a composite model can be built with each domain based
on the best template. It is also useful for modeling variable regions of a structure
family, where the segment, which is not conserved, assumes multiple conformations,
and the “best” model is assumed to have the lowest value of some empirical energy
function. If the sequence identity is too low and there is no clear hit, a better approach
is always to make multiple models with each model based on one template. Thus,
the best model is determined by physical chemistry- or statistics-based energy or a
combination of both (Sippl, 1995; Petrey et al., 2003; also see Chapters 2 and 3).

In homology modeling, one of the most difficult and important tasks is to
improve sequence–template alignment. Although profile methods have significantly
improved alignment accuracy, manual inspection is often required to further improve
the quality if the alignment is well below 30% identity with frequent gaps. This is
because the current alignment software usually seeks an alignment of global opti-
mality with an empirical scoring function that may misalign functionally important
residues. Manual inspection of the alignment does not necessarily need to have the
model actually built, since residue–residue interaction in the target sequence can eas-
ily be identified from their corresponding aligned positions in the template structure.
There are several general rules to guide alignment tuning. First, charged residues
in the target sequence should not be aligned with a buried residue in the template,
unless it will form hydrogen bonds or salt bridges with another residue in the target;
second, fragments of predicted secondary structures (alpha helix and beta sheet)
in the target sequence should be aligned with the fragments of identical secondary
structure characterization from the template; third, residues with known important
functions, either for protein activity or structural stability, should be aligned with
residues of similar functions in the template; fourth, insertions or deletions in the
secondary structure regions should be pushed to the loop regions. Manual editing of
the alignment is the most tedious part in homology modeling. A misalignment by
only one residue position will result in an error of approximately 4 Å in the model
because the current homology-modeling algorithms generally cannot recover from
errors in the alignment (Fiser and Sali, 2003).
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Table 10.1 Comparative modeling programs

Programs Availability

NEST http://trantor.bioc.columbia.edu/programs/jackal/

COMPOSER http://www-cryst.bioc.cam.ac.uk/

Tripos (COMPOSER) http://www.tripos.com/

CONGEN http://www.congenomics.com/congen/congen toc.html

MODELLER http://guitar.rockefeller.edu/modeller/modeller.html

InsightII (MODELLER) http://www.accelrys.com/

SWISS-MODEL http://www.expasy.ch/swissmod/SWISS-MODEL.html

SCHRODINGER http://www.schrodinger.com

WHATIF http://swift.cmbi.kun.nl/whatif/

SEGMOD http://www.bioinformatics.ucla.edu/genemine/

DRAGON rmunro@nimr.mrc.ac.uk

ICM http://www.molsoft.com/

3D-JIGSAW http://www.bmm.icnet.uk/servers/3djigsaw/

Builder koehl@csb.stanford.edu

PrISM http://trantor.bioc.columbia.edu/programs/PrISM/index.html

10.2.2 Model Building

Given the alignment between the query sequence and templates, there are generally
four methods in model building depending on how the information in the known
structures is transferred to the query sequence. In this section we are going to discuss
the first three methods, i.e., rigid body assembly, segment matching, and spatial
restraint, and leave our own approach (artificial evolution model building) to Section
10.3 for more detailed description. Table 10.1 shows the most widely used model
building programs that are publicly available. Most of the programs were based on the
rigid body assembly method, and some have been commercialized, e.g., COMPOSER
(Sutcliffe et al., 1987a,b) in Tripos and MODELLER (Sali and Blundell, 1993) in
InsightII. In addition to model building protocols, the programs also differ from each
other in model refinement.

10.2.2.1 Model Building by Rigid Body Assembly

The simplest and most widely used method is called rigid body assembly (also called
cut-and-paste method) as shown in Fig. 10.3. This method was initiated by Greer in
1981 and is still widely used, e.g., in the software packages PriSM (Yang and Honig,
1999), Congen (Bruccoleri, 1993), and COMPOSER (Sutcliffe et al., 1987a,b). It
starts from identification of the conserved and variable regions of the templates.
The identification can often be achieved from the superimposed template structures.
Conserved regions are evident from the multiple structure alignment, that is, the
RMSDs (root mean square distance) among the fragments are relatively small, and
variable regions are usually in loops with frequent gaps in the structural alignment. A
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Fig. 10.3 Rigid body assembly with single template. Red and blue denote template and model
structure, respectively. Conformations of aligned segments a, c, and e are directly transferred to
the model; segment b is a new conformation inserted between a and c, which is obtained from
either ab initio sampling or database searching; segments c and e are fused following the deletion
of segment d.

framework for the superimposed templates can be calculated by averaging the atom
coordinates of the structurally conserved regions. The averaging is often weighted
based on the sequence similarity of the target sequence to the templates, higher
sequence similarity carrying larger weight. The core residues of the target model,
i.e., residues aligned with conserved regions of the templates, obtain their main-
chain coordinates from the closest conserved segment (in terms of RMSD to the
framework) from the template, or from the segment whose template has highest
sequence identity to the target. The model is constructed by fitting the core rigid
bodies onto the framework. The unconserved, or loop, region is then constructed
either with ab initio approach, or by searching a database for structures that fit
the anchor core regions and have a compatible sequence (Topham et al., 1993).
The side chains are modeled based on their intrinsic conformational preferences
and on the conformations of the equivalent side chains in the template structures
(Sutcliffe et al., 1987a,b). If a single template is chosen, the model construction
is straightforward, copying coordinates of aligned residues from the template to
the model, and connecting broken segments with database searching or ab initio
sampling as mentioned earlier. For strong sequence homologues, a single template
is sufficient; but for weakly homologous templates, a framework based on weighted
averaging over multiple templates is often more reliable.

10.2.2.2 Model Building by Segment Matching

Segment matching (Levitt, 1992), which has been adopted in SegMod software, is
based on the finding that most hexapeptide segments of protein structure can be
clustered into only 100 structurally different classes (Unger et al., 1989). Homology
model construction relies on approximate positions of conserved atoms from the
templates as “guiding positions” to calculate the coordinates of other atoms. The
guiding positions usually correspond to the atoms of the segments that are conserved



SVNY330-Xu-Vol-I November 2, 2006 13:25

10. Homology-Based Modeling of Protein Structure 329

in the alignment between the template structures and the target sequence. They can
be calculated by averaging the positions of corresponding atoms in all the template
structures with weights based on their sequence similarity to the target. The averaged
positions are then fitted by all-atom segments that are obtained by scanning databases
of short segments of protein structures, or by a conformation search with restraints
of potential energies or geometry rules. The segment matching method can construct
both side chain and backbone atoms. If the distance between the conserved positions
is too large, there may be no proper segments in the database to cover the missing
atoms (usually only segments of five residues have their accessible conformations
in the databank) (see Fidelis et al., 1994), thus the ab initio method may be the only
approach. Segment matching could be considered as an extension of the rigid body
assembly method since it scans a database of segments not restricted to those in the
template structures. Indeed, segment matching has other applications, such as in side
chain and loop modeling, where database scanning, instead of ab initio conformation
sampling, is employed to identify the best conformers for the prediction.

10.2.2.3 Model Building by Satisfaction of Spatial Restraints

The third group of methods, satisfaction of spatial restraints, was proposed by
Havel and Snow (1991) and Sali and Blundell (1993). The method was adopted
in one of the most widely used homology model building programs, MODELLER
( http://salilab.org). The method starts by generating many restraints for the target
protein based on its alignment to the template structure. The restraints are generally
obtained by assuming that the distance between two residues in the query model is
similar to the distance between the two corresponding aligned residues in the template
as shown in Fig. 10.4. The restraints are further supplemented with stereochemical
constraints on bond angle, bond length, peptide bond dihedral angle, nonbonded
van der Waals clashes, and so on. For weak homologues, additional constraints from
experiments, if available, should also be used to increase the model accuracy. This
additional information can be obtained from experimental data, for instance, dis-
tances between atoms of protein residues as measured by mass spectroscopy (MS)
(Chapman, 1996), which uses protein cross-linking reagents as molecular rulers, or
by nuclear Overhauser effect (NOE) restraints of NMR spectroscopy. In addition to
the hard constraints, a lower and upper bound for each restraint is often provided, with
a tight bound for stereochemical restraint and a relatively loose bound for longer dis-
tances. The bounds can be best estimated from statistical analysis of the relationships
between similar protein structures. By scanning a set of related structures, various
correlations can be quantified, such as correlations between two corresponding dis-
tances, or between corresponding main-chain dihedral angles. These relationships
are expressed as conditional probability density functions and can be used directly
as spatial restraints. Probabilities for different values of the equivalent distances and
main-chain dihedral angles are calculated from the type of residue considered, from
main-chain conformation of an equivalent residue, and from sequence similarity be-
tween the two proteins. The spatial restraints and the CHARMM22 force field terms
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Fig. 10.4 Model building by satisfaction of spatial restraints. Distance restraints to be satisfied
by the model are extracted from the template structure based on the alignment between the target
sequence and the template. For example, distance between residues L and H (residues 2 and 6) for
the model is assumed to be 10 Å, equivalent to the distance between residues L and T (residues
2 and 5) in the template structure.

enforcing proper stereochemistry (Brooks and Karplus, 1983) are combined into
an objective function. The model is obtained by optimizing the objective function
in Cartesian space. Thus, a proper model should not violate any of the constraints,
and have low energy of the objective function. The advantage of the spatial restraint
method is that it can use many different types of information about the target se-
quence including C�–C� distance and secondary structure preference. However,
for highly homologous sequences, the information is already stored in the template
structures, and introducing information derived from other members of the family
may degrade the model.

10.2.3 Homology Model Refinement

High-resolution refinement is a difficult task that requires an effective sampling
strategy and an accurate energy function. Homology model refinement is primarily
focused on tuning alignment and modeling loops and side chains (see Fig. 10.5).
Loops are usually the most variable regions of a structure where insertion and deletion
often occur. Correct alignment is the most important task for homology modeling,
since the errors introduced into the model by misalignment are hard to remove in
the later stages of refinement. When the sequence identity is above 40%, errors in
the homology structure mainly come from side chains; when the sequence identity
is between 30 and 40%, loops and side chains become most problematic. Given a
good energy function, loop and side-chain refinement can, in principle, be applied
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Fig. 10.5 Superimposition of the model for CASP (Critical assessment of techniques for protein
structure prediction) Target 113 and its native structure. The root-mean deviation distance is 2.96 Å.
The largest RMSDs typically occur in side chains and loops.

repeatedly to relax the backbone closer to native. Refinement on helix and �-sheet
can be handled with similar methods as for loops, where proper hydrogen bond
constraints should be applied to retain the secondary structure definition (Li et al.,
2004). Recent attempts have been made to use physical chemistry energy to refine
side chains, loops, and secondary structures, sometimes as a step in choosing the
alignment.

10.2.3.1 Loop Prediction

When modeling loops, the basic goal is to predict the conformation of a loop that is
fixed at both ends of its protein backbone. A number of methods have been proposed
for loop prediction, i.e., ab initio methods (Zheng and Kyle, 1996; Rapp and Friesner,
1999; Fiser et al., 2000; Xiang et al., 2002; Jacobson et al., 2004), database-related
methods (Li et al., 1999; Wojcik et al., 1999), or a combination of both (Fidelis et al.,
1994; van Vlijmen and Karplus, 1997). Ab initio methods of loop prediction involve
the generation of a large number of randomly chosen candidate conformations and
their evaluation with energetic or other criteria. Database methods generate trial
conformations based either on sequence relationships to loops of known structure,
or on geometric criteria such as the distance between the amino and carboxyl termini
of the loop in question. Once loops are generated in this way, energetic criteria are
often applied to select the final model.

Clearly, it is important that near-native conformations be present among the trial
conformations generated in the first step of loop modeling. Adequate sampling does
not appear to be a problem if a large enough number of loops are generated randomly.
Indeed, Rapp and Friesner (1999) were able to generate near-native conformations
for even a 12-residue loop. However, database methods generate a much smaller
number of trial conformations and the lack of a large enough template library to
cover the many possible conformations of longer loops (more than five residues not
including the stem, or anchoring, residues that are kept fixed) limits their utility
for these cases (Fidelis et al., 1994). Using a sequence-dependent database method,
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Wojcik et al. (1999) reported an average accuracy of 3.8 Å RMSD for the backbone
atoms of an eight-residue loop. Van Vlijmen and Karplus (1997) used CHARMM
to optimize initial conformations that were selected from the protein database. They
reported improved results for longer loops but their optimization procedure, which
involves simulated annealing, effectively extends the range of conformation space
searched beyond that provided by the database conformations. In this sense, their
approach is closer to ab initio loop generation. The accuracy of loop modeling is
highly dependent not only on the number of residues in the loop, but also on the
distance between the loop stems. Generally, when the distance between the loop
stems is shorter, the loop conformation is more like “�,” and thus has more freedom
to move around; therefore, it is more difficult to predict. A database approach is
usually more reliable, especially for long loops, if the segment identified from the
PDB comes from a protein structure of the same family as the target protein.

Because conformational sampling does not appear to be a problem for loops
of less than 12 residues, the quality of the scoring function used to evaluate loop
conformations is the major determinant of loop-prediction accuracy. Loop accuracy
is usually evaluated in terms of local RMSD (involving the optimal superposition
of the predicted and native loop independent of the rest of the structure) or global
RMSD (where the RMSD is evaluated with the loop stems kept in place). The latter
measure is preferred because the former allows for two loops to be seen as similar,
and to have a small RMSD, even if they have very different orientations in the context
of the native structure. Rapp and Friesner (1999) used the generalized Born solvation
model and the AMBER94 force field to obtain low RMSD values for the two loops
they studied. Their approach still needs to be tested on a larger sample size. Fiser
et al. (2000) have recently published an extensive ab initio study on a data set of
40 loops and also report low RMSD from known structures. Using global RMSD
as a criterion, Fiser et al. (2000) reported an accuracy of less than 2 Å for 8-residue
loops.

The study of Fiser et al. (2000) utilized a scoring function that included the
CHARMM22 force field and statistical preferences taken from protein databases.
Scoring functions based entirely on physical chemistry potentials and an accurate
solvation model have the potential of identifying the native conformation as lowest
in energy, but there are cases where lower energy conformations appear (Smith and
Honig, 1994; Steinbach, 2004). One problem may be that most loop prediction ap-
proaches seek the lowest energy conformation, thus ignoring conformational entropy
effects that will favor broad energy wells. We have recently implemented a procedure
called “colony energy” (for detail, see Section 10.3.2) that takes the shape of the en-
ergy well into account and yields highly accurate loop prediction (e.g., 1.4 Å global
RMSD for eight-residue loops) (Xiang et al., 2002). With crystal environments con-
sidered, Jacobson et al. (2004) achieved the best accuracy of 1.0 Å RMSD for eight-
residue loops with a computing-intensive approach that combines OPLS all-atom
energy function, efficient methods for loop buildup and side-chain optimization,
and the hierarchical refinement protocol. Fogolari and Tosatto (2005) demonstrated
that molecular mechanics/Poisson–Boltzmann solvent-accessible surface area, if
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Table 10.2 Loop modeling program

Programs Availability

LOOPY http://trantor.bioc.columbia.edu/programs.html

PLOP http://francisco.compbio.ucsf.edu/∼jacobson/
plop manual/plop overview.htm

COILS http://www.ch.embnet.org/software/COILS form.html

MODELLER http://guitar.rockefeller.edu/modeller/modeller.html
(loop module)

CODA http://www-cryst.bioc.cam.ac.uk/coda/

combined with the colony energy approach, is very effective in discriminating loop
decoys.

Most methodological tests compare predicted loop conformations to known
structures, with the backbone conformation of anchoring residues identical to that
of the native conformation. This does not properly simulate real modeling condi-
tions under which the backbone of the target protein may not be identical to that of
the template. Not surprisingly, loop prediction accuracy degrades as the constraints
provided by the loop ends are less accurately defined (Lessel and Schomburg, 1999;
Fiser et al., 2000). Table 10.2 shows some loop modeling software that can be easily
obtained from the Web. Other loop modeling software only exists as internal com-
ponents of model building packages listed in Table 10.1. Compared with database
scanning methods, most ab initio loop prediction programs are very slow.

10.2.3.2 Side-Chain Prediction

The greatest success in the prediction of side-chain conformations has been achieved
for core residues where packing constraints significantly simplify the problem. Even
for core residues, the accuracy of side-chain prediction degrades when the structure
of the backbone is itself not known to a high degree of accuracy. Many side-chain
programs are based on rotamer libraries (Ponder and Richard, 1987), which are gen-
erally defined in terms of side-chain torsion angles for preferred conformations of a
particular side chain. The resolution of rotamer libraries has increased over time and
rotamer libraries have been compiled simply by sampling all angles at some given
level of resolution (Maeyer et al., 1997). Since backbone conformation changes the
frequency of the rotamers, a backbone-dependent rotamer library is often used in
side-chain modeling (Dunbrack and Karplus, 1993; Canutescu et al., 2003). The
major advantage is to increase computing efficiency, since bad rotamers, e.g., clash-
ing with the backbone, have been automatically removed during construction of the
rotamer library. Baker and his co-workers have developed a “solvated rotamer” ap-
proach that shows improvement on side-chain packing at protein–protein interfaces
(Jiang et al., 2005). This approach extends current side-chain packing methods by us-
ing a rotamer library including solvated rotamers with one or more water molecules
fixed to polar functional groups in probable hydrogen-bond orientations, together
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with a simple energetic description of water-mediated hydrogen bonds. As the num-
ber of rotamers increases, however, so does the problem of sampling all possible
conformations. There have been a variety of approaches developed to deal with the
combinatorial problem in side-chain prediction (Lee and Subbiah, 1991; Lee, 1994;
Vasquez, 1996; Dahiyat and Mayo, 1997; Gordon and Mayo, 1999; Samudrala et al.,
2000; Kingsford et al., 2005).

Accuracies of about 1 Å RMSD have been reported for core residues in known
structures where the backbone has been fixed in the native conformation (Koelh and
Delarue, 1994; Vasquez, 1996; Bower et al., 1997; Samudrala and Moult, 1998). A
number of studies suggest that further improvements may still be possible. Mendes
et al. (1999) found, for example, that the use of an intrinsic torsional potential can
improve prediction accuracy. Lovell et al. (2000) reported a novel rotamer library in
which internal clashes between side chain and backbone are removed. This library
could, in principle, be used to improve prediction accuracy. Xiang and Honig (2001)
have shown that using a very detailed rotamer library, which is based on rotamers
that use Cartesian coordinates taken from known structures rather than idealized
bond lengths and angles, yields RMSD values relative to the native of only 0.62 Å
for core residues. This appears to constitute a significant improvement over existing
procedures and demonstrates that the combinatorial problem, usually assumed to
greatly complicate side-chain prediction, may in fact be of little consequence. This
was later confirmed in a more detailed study (Desmet et al., 2002), which showed that
local minima for all side-chain prediction may be almost as accurate as the global
minimum when evaluated against experimentally determined structures. Improve-
ment on side-chain prediction in recent years has mainly come from better energy
functions. Eyal et al. (2004) showed that solvent accessibility and contact surface
area are important with regard to the accuracy of side-chain prediction, particularly
for modeling buried side chains. Liang and Grishin (2002) have developed a new
and simple scoring function for side-chain prediction that consists of the following
energy terms: contact surface, volume overlap, backbone dependency, electrostatic
interactions, and desolvation energy. The weights of these energy terms were op-
timized to achieve the minimal average root-mean-square deviation between the
lowest energy rotamer and the observed side-chain conformation on a training set
of high-resolution protein structures. The derived scoring function combined with
a Monte Carlo search algorithm was used to place all side chains onto a protein
backbone simultaneously. The average prediction accuracy was 87.9 and 73.2% for
the first and second torsion angles correctly predicted to within 40 degrees of native.
As is the case for loop prediction, side-chain prediction accuracy depends sensi-
tively on the accuracy to which the backbone conformation is known (Huang et al.,
1998). This suggests the possibility of developing procedures where side-chain and
backbone conformation can be used iteratively to refine homology models.

Table 10.3 lists some publicly available side-chain prediction programs and
the methods they used. Earlier side chain predictions, e.g., RAMP (Samudrala and
Moult, 1998), SMD (Tuffery et al., 1993), and CONFMAT (Koelh and Delarue,
1994), were usually based on small rotamer libraries; more recent programs use very
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Table 10.3 Side-chain modeling program

Programs Availability

SCAP http://trantor.bioc.columbia.edu/programs/jackal/

SCWRL http://dunbrack.fccc.edu/SCWRL3.php

SMOL Nikolai.Grichine@UTSouthwestern.Edu

SCCOMP http://atlantis.weizmann.ac.il/∼eyale/

RAMP http://www.ram.org/computing/ramp/ramp.html

SMD http://condor.urbb.jussieu.fr/Smd.php

CONFMAT koehl@csb.stanford.edu

MAXSPROUT http://www.ebi.ac.uk/maxsprout/

detailed rotamer libraries, e.g., SCAP (Xiang and Honig, 2001), SCWRL (Canutescu
et al., 2003), SMOL (Liang and Grishin, 2002). In our recent benchmark study of
SCAP, SMOL, and SCWRL, SCAP excelled in prediction for core and surface
residues (Xiang et al., to be submitted). For partially buried residues, SMOL per-
formed the best, which was due to its more sufficient conformation sampling and
optimized scoring function. SCWRL also performed quite well though not as accu-
rately as the other two, but with much less CPU cost. On a 300-MHz SGI machine,
SCWRL is very fast, 3 seconds for each protein, while SMOL needs 11,700 seconds
and SCAP needs 361 seconds. Since the test was performed on the native protein
backbones, their performance may vary with homology models.

10.2.3.3 Other Improvements to Refinement

Recent improvements to refinement have been mainly achieved by increasing align-
ment accuracy. Almost all alignment software currently in use has to rely on one
of the derivatives of dynamic programming. Although dynamic programming can
obtain the global optimal alignment for a given scoring matrix, it cannot account for
nonlocal residue–residue interactions. For example, double mutant effects can only
be properly estimated if their spatial conformations are both available. As such, a
cumbersome but effective method of refining alignment is to build multiple models
based on the alternative alignments, with the best alignment corresponding to the
model of the lowest physical-chemistry energy. The assumption is that a conforma-
tion of lower energy is more likely close to the native state. The method becomes
possible due to the availability of more discriminatory energy functions and faster
model building tools (Petrey et al., 2003). Tens of thousands of models can be built
in a short time with Linux clusters, each based on one variation of alignment. An
effective scoring energy can be readily applied to the ensemble of models. The en-
ergies of these models can be further minimized with an approach similar to genetic
algorithm, i.e., shuffling segments among different models by fixing other parts
of protein, where the stems of the segment should have identical residues aligned
with the template. Similarly, genetic algorithms are also important tools to increase
model quality based on multiple templates. The multiple models, each based on one
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template, will be superimposed. Variable regions identified are exchanged and then
optimized among different models. In the optimization process, an RMSD restraint
can be applied to restrict sampling to a conformational space close to the averaged
framework of the original templates. This method has been utilized in the NEST
program and produced satisfactory results in CASP6, which will be discussed in
more detail in Section 10.3.

Recent research has attempted to use MD simulation to refine models. Lee et al.
(2001) used MD simulations with an explicit solvent model to refine Rosetta models
followed by scoring with the Poisson–Boltzman/surface area solvation model. Their
results showed that native structures could be distinguished energetically from struc-
turally different low-resolution models. Lu and Skolnick (2003) used a combination
of local restraints, knowledge-based potentials, and MD approaches that showed
promising improvements over previous studies using standard MD methods. Fan
and Mark (2004) used classical MD simulations with explicit water to refine homol-
ogy models. A significant improvement over the model structures has been observed
in a number of cases. The results indicate that homology models could be possibly
refined with MD simulations on a time scale of tens to hundreds of nanoseconds.
Qian et al. (2004) used the principal components of the variation of backbone struc-
tures within a homologous family to define a small number of evolutionarily favored
sampling directions and showed that model quality can be improved by energy-based
optimization along these directions. Li et al. (2004) developed new hierarchical and
multiscale algorithms to sample helices and flanking loops, which were evaluated
with an all-atom protein force field (OPLS) and a generalized Born continuum sol-
vent model. This method, integrated with a loop and side-chain modeling technique,
can potentially be used to refine homology structures iteratively. The next-generation
structure modeling algorithms should be able to refine a protein structure closer to
the native conformation. The most critical part is to obtain an energy function that
is sensitive enough to discriminate near-native conformations from other nonnative
folds. Though conformation sampling is also difficult, computer clusters allow more
thorough sampling of states around the original models.

10.2.4 Model Assessment

All models built by homology will have errors as discussed in the previous section.
Verification of the model, and estimation of the likelihood and magnitude of errors
has become one of the most important steps in advancing the state of the art of
homology modeling. Errors of the model are usually estimated either from the energy
of the model, or from the resemblance of a given characteristic of the model to real
structures. The most critical component is the development of a scoring function
that is capable of distinguishing good from bad models.

Scoring functions used for the evaluation of protein models generally fall into
two broad categories. “Statistical” effective energy functions (Sippl, 1995) are based
on the observed properties of amino acids in known structures, and have been widely
used in fold recognition and homology modeling applications. A variety of statistical



SVNY330-Xu-Vol-I November 2, 2006 13:25

10. Homology-Based Modeling of Protein Structure 337

criteria have been used successfully to discriminate between deliberately misfolded
and native structures. Most of them are directly or indirectly based on the analysis of
contacts, either interresidue contacts, interatom contacts, or contacts with solvent.
For example, preferential distributions of polar and apolar residues inside or outside
of a protein can be used to detect completely misfolded models (Baumann et al.,
1989); solvation potentials can detect local errors as well as complete misfolds (Holm
and Sander, 1992); packing rules have been implemented for structure evaluation
(Gregoret and Cohen, 1990). Residue or atom contacts are discriminative because
they are energetically favored, and many real structures cannot tolerate too many
unfavorable interactions. Thus, for a model to be correct, only a few infrequently
observed atomic contacts are allowed. However, bond angles and bond lengths,
though powerful in checking the quality of experimental structures, are usually
less useful for the evaluation of models because these factors have already been
considered appropriately in the model building stage (Fiser and Sali, 2003).

Physical effective energy functions (Lazaridis and Karplus, 1999a) are based
on a direct evaluation of the solvation free energy of a protein. It has been demon-
strated that such a direct evaluation of the conformational free energy can be at least
as successful as statistically based scoring functions in distinguishing the native
structure of a protein from an incorrectly folded decoy, although generally at greater
computational cost (Janardhan and Vajda, 1998; Vorobjev et al., 1998; Lazaridis and
Karplus, 1999b; Petrey and Honig, 2000). A distinct advantage of such physically
derived functions is that they are based on well-defined physical interactions, thus
making it easier to learn and to gain insight from their performance. Moreover, the
success in CASP (Critical Assessment of Protein Structure Prediction) of ab initio
methods based on purely physical chemistry methods (Lee et al., 1999) suggests
that our understanding of the forces that drive protein stability may have reached the
point where it can be translated into widely applicable computational tools. One of
the major drawbacks of accurate physical chemical description of the folding free
energy of a protein is that the treatment of solvation required usually comes at a
significant computational expense. Fast solvation models such as the generalized
Born (Still et al., 1990) and SCP-ISM (Hassan et al., 2000), together with a variety
of simplified scoring schemes (Huang et al., 1995; Petrey and Honig, 2000), may
prove to be extremely useful in this regard.

A number of freely available programs can be used to verify homology models
as shown in Table 10.4. They generally belong to one of two categories. The first
category (e.g., PROCHECK and WHATIF) checks for proper protein stereochem-
istry, such as symmetry checks, geometry checks (e.g., chirality, bond lengths, bond
angles, torsion angles), and structural packing quality; the second category (e.g.,
VERIFY3D and PROSAII) checks the fitness of sequence to structure, and assigns a
score for each residue fitting its current environment. A new graphics software called
GRASP2 is also useful in model assessment (Petrey and Honig, 2003). The software
can display alignments and template structures simultaneously for assessment of
the alignment quality. For example, insertions or deletions can be mapped to the
structures to verify that they make sense geometrically. Where residue substitutions
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Table 10.4 Model assessment program

Programs Availability

PROCHECK http://www.biochem.ucl.ac.uk/∼roman/procheck/procheck.html

WHATCHECK http://www.sander.embl-heidelberg.de/whatcheck/

ProSaII http://www.came.sbg.ac.at

VERIFY3D http://www.doe-mbi.ucla.edu/Services/Verify 3D/

ERRAT http://www.doe-mbi.ucla.edu/Services/Errat.html

ANOLEA http://www.fundp.ac.be/pub/ANOLEA.html

AQUA http://www.nmr.chem.uu.nl/users/jurgen/Aqua/server/

Probe http://kinemage.biochem.duke.edu/software/probe.php

SQUID http://www.ysbl.york.ac.uk/∼oldfield/squid/

PROVE http://www.ucmb.ulb.ac.be/UCMB/PROVE

ProQ http://www.sbc.su.se/∼bjorn/ProQ

GRASP2 http://trantor.bioc.columbia.edu/programs.html

occur, the user can verify that structural features such as hydrophobic packing are
maintained and that active-site residues and other features of the target identified
from the literature are conserved. The manual inspection should be combined with
existing programs to further identify problems in the model.

10.3 Homology Modeling with JACKAL

A new set of homology modeling tools have been developed that are publicly dis-
tributed in the JACKAL package (http://trantor.bioc.columbia.edu/programs.html).
JACKAL integrates knowledge-based and physics-based methods for protein struc-
ture prediction and refinement. At the heart of our approach to structure prediction
and refinement is the use of the colony energy concept (see Section 10.3.2). The
purpose of JACKAL is to automate the process of structure prediction, from tem-
plate identification and alignment tuning to model building, refinement and structure
verification. JACKAL contains the following major components: NEST for model
building and refinement; SCAP for side-chain modeling (Xiang and Honig, 2001);
LOOPY for loop prediction (Xiang et al., 2002); AUTOALIGN for alignment tun-
ing; CONREF for model refinement. The core of JACKAL is the NEST program,
which, based on our newly developed artificial evolution algorithm (Fig. 10.6), at-
tempts to build models by simulating the natural process of structural evolution from
the template structure to the target model. SCAP and LOOPY are used for residue
mutation and insertion/deletion, respectively.

10.3.1 Model Building with Artificial Evolution Algorithm

Given an alignment between the query and template sequence, the alignment can be
broken down into a list of operations such as residue mutation, insertion, or deletion
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Fig. 10.6 Model building with artificial evolution. m, i, and d denote mutation, insertion, and
deletion, respectively.

(Fig. 10.6 shows an alignment of 9 operations, i.e., 5 mutations, 2 insertions, and
2 deletions). Supposing the template to be the “parent structure,” it would take Nature
billions of years for the template structure to evolve into the target structure. It is
unlikely that Nature would finish the daunting task in one step. Instead, a more
probable scenario is for Nature to evolve into the target structure via multiple steps
with minimal changes to the template structure at each step. Accordingly, building
a target model could be considered a process of evolving the template structure
based on the alignment so that changes are carried out step by step, each step on
one operation. Each operation, i.e., mutation, deletion, or insertion, will disturb the
template structure and thus involve an energy cost, either positive or negative. The
model building starts from the operation with the least energy cost and so on. Each
operation is followed by a slight energy minimization to remove atom clashes. The
final structure is then subjected to more thorough energy minimization. The order for
the first round of operations does not have to be determined by actually calculating the
energy cost for each operation; instead, it can be conveniently estimated empirically.
For example, amino-acid mutation is generally easier in evolution than insertion and
deletion. As such, mutation operations on residues that are on the protein surface are
usually performed first followed by mutation of buried small-sized residues and so on.
The operation is considered successful if it does not cause a significant energy penalty
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(less than 5 kcal/mol) to the structure; otherwise the operation is discarded and will
return to the waiting list. Insertion or deletion of multiple residues is considered
as a group of operations, each operating on one residue. The operation starts from
the middle residue of the segment with deletion preferred over insertion, since the
structural effects of deletion are more reliably predicted. Similarly, operations with
more than 5 kcal/mol energy cost (an empirical cutoff that can easily be modified)
would also be considered unsuccessful and returned to the waiting list for the next
round of operations. The next round of operations actually works on the waiting list,
starting from the operation of the least energy cost that has been calculated from
the previous round, but with a doubled energy cutoff, e.g., operation with energy
penalty more than 10 kcal/mol would be considered unsuccessful for the second
round. A number of rounds (less than five rounds in total) would finally accomplish
the evolution of the template structure to the model, which will be followed by a
series of model refinements.

NEST is heavily dependent on our previous progress in side-chain and loop
modeling, i.e., the SCAP (Xiang and Honig, 2001) and LOOPY (Xiang et al., 2002)
program. Both SCAP and LOOPY have been integrated into the NEST code, though
they also exist independently in the JACKAL package. In the case of mutation, the
residue in the template structure first has its side chain changed to the correspond-
ing one in the target sequence, followed by several steps of minimization of the
new side chain. We have adopted a simple conformational sampling strategy for
side-chain modeling. Side-chain modeling is first carried out with all other parts of
protein fixed. The complete rotamer conformations for the side chain, which has
been compiled from 646 nonredundant high-resolution protein chains, will be as-
sembled onto the backbone. The rotamer with the lowest colony energy (see Section
10.3.2 for a description of the colony energy concept) will be selected as the final
conformation. However, if the rotamer of the lowest conformation energy partic-
ipates in a hydrogen bond, the conformation energy is used instead of the colony
energy because entropic effects generally do not favor hydrogen bonding, and an ac-
curate balance between hydrogen-bonding energy and entropy is difficult to achieve
in a simplified force field. If the best rotamer has positive energy, neighboring side
chains contacting with the rotamer will then be subjected to minimization. For each
of the neighboring side chains including the one that has just been mutated, a simi-
lar strategy, that is, sampling all possible rotamers with evaluation based on colony
energy, will be performed. The minimization procedure starts from the first residue
to the last in the neighboring list until all the side-chain conformations retain the
same rotamer on further iteration. If the energy of the side chain for the mutant
residue is larger than 5 kcal/mol, the mutation will be considered unsuccessful,
thus the mutation operation will be returned to the waiting list, and all other af-
fected residues associated with this operation will be restored to their previous
configurations.

An algorithm similar to LOOPY is used to minimize regions affected by in-
sertion or deletion. A segment of five to eight residues that covers the residue under
consideration is used in the minimization process. In order not to introduce large
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disturbance to the conserved region, the segment window usually slides to one par-
ticular direction depending on the location where the residue has to be handled. For
example, a larger part of the segment should be assigned to one side of the residue
under consideration if it has lower sequence alignment similarity than the other side;
it is advisable for the segment to avoid the helix or �-sheet region in order to keep
the regular secondary structure intact. If the insertion or deletion is in the helix or
�-sheet, the segment will try to cover as many residues as possible in loops. The
segment should overlap with at least one residue on either side of the operation. A
shorter segment should be used if the loop has fewer than five residues. The segment
is refined by sampling alternative conformations. If the operation is in a loop, random
conformations would be generated; otherwise, 50% of the conformations would be
generated randomly, and the other 50% would be generated that equivalently ex-
tends or shortens the regular secondary structures. In other words, conformational
sampling is performed with insertion or deletion pushed to the nearest loop region.
The backbone of each conformation is minimized using “direct tweak,” a novel en-
ergy minimization algorithm that minimizes all torsion angle freedoms of a segment
without dislodging the end residues. The “direct tweak” algorithm was achieved by
combining conventional energy minimization in torsion-angle space with a set of
chain-closure constraints that were based on the random tweak algorithm (Shenkin
et al., 1987). Pairs of segments with RMSD greater than 2 Å are then combined
(i.e., for an eight-residue segment, the first four residues in one segment joined with
the last four in another to form a new segment which is fused in the middle with a
segment closure procedure) to generate new segments. This results in a set of the
original segments plus all the newly fused segments. Side chains are then assembled
onto each of the segments, and the colony energy for each segment is calculated. The
lowest 30% survive and the procedure is repeated until a single segment remains.
In all of the above steps, no more than 200 segments are retained. The operation is
successful only when the energy increase of the segment is less than 5 kcal/mol.

10.3.2 Physical-Chemical Energy and Colony Energy Method

The energy function used in NEST can be expressed as the following terms (for
more detailed discussion of energy functions, see Chapters 2 and 3):

�E = �Evw + �Etorsion + �Ehbond + �Ehydro, (10.1)

�Evw = 61.66 � exp(−2r2) ∗ (1/r − 1.12/r0.5), (10.2)

�Ehbond = min
(
0, [−16 + 12�] cos(�DHA) cos (1.5 �HAC)/d3

HA

)
, (10.3)

if 2 Å < dHA < 3 Å, �DHA > 90◦, and �HAC > 60◦;

else �Ehbond = 0.

�Evw, �Etorsion, �Ehbond, and �Ehydro are van der Waals, torsion, hydrogen bond,
and hydrophobic energy, respectively. The van der Waals energy is evaluated with a
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Fig. 10.7 Hydrogen bond. D, A is hydrogen bond donor and acceptor, respectively. H is the
proton, and C is carbon atom.

modified expression that fits the CHARMM van der Waals curve but with repulsive
term softened to reduce sensitivity to small changes in atomic positions. In Eq. (10.2),
�is the energy at the minimum of the potential function and is chosen to correspond to
the minimum in the van der Waals potential of the CHARMM22 force field between
the two interacting atoms, and r is the ratio of the interatomic distance and the sum
of the van der Waals radii of two interacting atoms. The hydrophobic energy is
calculated based on the solvent-accessible surface area with the coefficient of 0.025
kcal/mol/Å2. Here hydrogen-bond energy Ehbond was calculated using Eq. (10.3)
(see Fig. 10.7), where � is the ratio of the solvent-accessible surface area (SASA)
of the residue in the protein and the SASA of the same conformation for the residue
isolated in solution. D is the hydrogen donor, H is the polar hydrogen, A is the
hydrogen acceptor, and C is the carbon atom bonded to A. �DHAand �HAC are the
angles defined by the coordinates of the respective atoms, and dHA is the distance
between atoms H and A. Although the value of �HAC depends on whether the atomic
orbital of the acceptor is sp2 or sp3, the �HAC angle is nevertheless close to 120◦.
Since the rotamer library is discretized, we relaxed the standard requirement that
�HAC should be larger than 90◦ (McDonald and Thornton, 1994). Ehbond is defined
to assume its minimum value when dHA is 2 Å and �DHA is 180◦. The minimum
Ehbond values for completely buried and completely exposed side chains are −2 and
−0.5 kcal/mol, respectively, representative of experimental data for hydrogen bonds
(Efimov and Brazhnikov, 2003).

For each operation (mutation, deletion, and insertion), sufficient conformation
sampling is usually performed. The mechanical energy for each sampled conforma-
tion is evaluated with Eq. (10.1). NEST does not assume the best prediction to be that
of lowest mechanical energy; instead, a new energy term called “colony energy” is
used to evaluate all candidates (see Fig. 10.8), and the conformation with the lowest
colony energy will be chosen as the prediction (Xiang et al., 2002). For an operation
with N sampled conformations, the colony energy of rotamer i , �Gi , is calculated
as

�Gi = −RT ∗ ln

[ ∑
j

exp(−E j/(RT ) − �(RMSDi j/RMSDavg)� )

]
, (10.4)
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Fig. 10.8 One-dimensional schematic of the sampled conformations. Although conformation a
is the global minimum of the mechanical energy, conformation b is structurally similar to many
conformations at local minimum, and may possess lower colony energy than conformation a
depending on the values of � and � .

where R is the gas constant, T is absolute temperature, and Ei is the mechanical
energy [Eq. (10).1] of the conformation i in the ensemble that has been sampled for
the operation. The sum is for all conformations in the ensemble, i.e., j ranges from
1 to N including i . RMSDi j is the root-mean-square distance between conformations
i and j . RMSDavg is the average of RMSD between any two conformations in the
ensemble for a given operation. The parameter � is set to −ln(1/2). The ranges of
conformational energies and three-dimensional structures sampled in a particular
application call for the use of � values that balance the conformational-energy
and RMSD-based factors appropriately. Results obtained with the training data set
suggested an optimal value for � would be 1 and 3 for side-chain and loop modeling,
respectively, (Xiang et al., 2002). Equation (10.4) approximates entropic effects by
favoring those conformations found in regions of configuration space that are visited
most frequently.

10.3.3 Model Refinement with JACKAL

Model refinement in JACKAL is performed in two steps. The first step is to increase
alignment quality, and the second step is to directly refine the model itself. A meta
server is usually used (http://bioinfo.pl/meta/) to identify as many prospective tem-
plates as possible. In the absence of a unanimous template identified by all servers,
all possible hits will be considered. For example, if multiple templates are identified
but all servers point to the same structural family, all structures in the PDB from
that family should be used as possible templates. For each template identified, a
number of alignments are obtained either from different servers or from alternative
alignments based on a particular alignment protocol. Because model building can be
done rapidly using NEST, the ensemble of sequence alignments is readily converted
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to an ensemble of 3D model structures. AUTOALIGN can be used on the ensemble
of models to repeatedly improve model quality using genetic algorithms. Specifi-
cally, all the models are superimposed based on sequence alignment and the regions
of high variability are identified. For each model, AUTOALIGN tries all possible
conformations on variable regions with corresponding segments from other models.
The resultant candidates are then clustered and ranked using the colony energy. The
conformation of the lowest colony energy is chosen as the best choice. The process
can be repeated until a stable model is derived.

For each model, unaligned regions corresponding to gaps in the sequence align-
ment are modeled using the independent LOOPY program with a similar approach
discussed above but at a more sufficient conformation sampling and energy min-
imization. Specifically, 2000 initial conformations are randomly sampled and fil-
tered against the consensus secondary-structure predictions from the meta server.
The 2000 conformations are then energy-minimized using our fast “direct tweak”
method, and the 300 conformations of lowest energy are kept. An additional 300 are
obtained from a fragment database using sequence similarity, secondary structure,
and end-point geometry. The 600 conformations are subjected to additional energy
minimization, and the conformation of lowest colony energy is selected. Side chains
are modeled with the independent SCAP program, where the initial conformation
starts from the NEST output. The final model will be further optimized using the
CONREF module that refines the model with restraints. The restraints include back-
bone hydrogen bonds and main-chain framework of the template structure, i.e., an
energy penalty would be applied if the sampled structure breaks an existing hydrogen
bond or deviates significantly (more than 2 Å) from the original model. This is to
guarantee that sampling only visits conformations close to the templates.

10.3.4 Comparison with Other Homology Modeling Software

Homology modeling has been widely used in structure prediction, and many ho-
mology modeling tools are available (Table 10.1). Given the same alignment and
template, it was generally believed there were no major differences between the best
modeling programs. However, a recent study by Wallner and Elofsson (2005) has
shown that some programs performed better than others. In their study, a benchmark
of six different homology modeling programs—MODELLER, SEGMOD/ENCAD
(Levitt, 1992), SWISS-MODEL (Schwede et al., 2003), 3D-JIGSAW (Bates et al.,
2001), NEST, and BUILDER (Koehl and Delarue, 1996)—is presented. Their study
concluded that no single modeling program consistently outperformed the others in
all tests. However, it is quite clear that three modeling programs, MODELLER,
NEST, and SEGMOD/ENCAD, perform better than the others. Detailed analy-
sis of these homology modeling programs revealed some interesting differences.
For example, using a 1.4-GHz AMD XP processor, NEST needs 17 s on aver-
age to build a model, while SEGMOD needs 6 s, and MODELLER needs 43 to
430 s in MODELLER6v2 and MODELLER6v2–10, respectively; MODELLER,
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SWISS-MODEL, and BUILDER produce more models that do not converge com-
pared to the other programs; in terms of stereochemistry (bond lengths, bond angles,
and side-chain planarity), 3D-JIGSAW, BUILDER, and SWISS-MODEL created
more residues with bad chemistry for difficult targets, while the other modeling pro-
grams showed a fairly constant number of bad residues at all sequence identities. For
sequence identities below 40%, all modeling programs manage to bridge some gaps
and build some loops correctly or incorrectly; therefore, accordingly, some models
are better or worse than the template. In this region the MODELLER programs,
NEST, SEGMOD/ENCAD, and SWISS-MODEL, improved 20% of the models.
Only NEST rarely made the models worse, while all other programs deteriorated at
least 5% of the models. The authors also found that NEST had more of its models
“among best” than the other programs; thus, selecting a model from NEST is almost
always a good choice.

10.4 Application of Homology Modeling

Homology modeling is often an efficient way to obtain information about proteins
of interest. Compared with ab initio protein folding, homology modeling is more
accurate and reliable. The quality of a homology model is directly correlated with the
sequence similarity between target and template. Though a homology model is not
perfect, it is still very useful in a wide spectrum of applications where information
about 3D conformation of a protein is required.

Highly homologous models with sequence identity above 50% to the templates
often have RMSD from the crystal structure around 2 Å, which is roughly comparable
to a medium-resolution X-ray structure except for some gapped regions. Models at
this level of accuracy can often be used to study a wide range of biological activities
that require the knowledge of conformations of individual residues, such as studying
catalytic mechanism (Zhou and Johnson, 1999; Francoijs et al., 2000; Xu et al., 2005;
Fischer et al., 2005; Kim et al., 2005), designing and improving ligands (Wang
and Hampson, 2005; Niv and Weinstein, 2005), predicting protein partners (Orban
et al., 2005), solving X-ray structures with molecular replacement (Cupp-Vickery
et al., 2003; Schwarzenbacher et al., 2004), refining NMR structures (Skolnick et al.,
1997 and Kim et al., 2004) and defining antibody epitopes (Oakhill et al., 2005).
In the middle of the accuracy level are the models based on approximately 35%
sequence identity, corresponding to 85% of C� atoms modeled within 3.5 Å of their
crystal positions. Though conformations for most side chains have significant errors,
fortunately, the active and binding sites are frequently more conserved and are thus
modeled more accurately (Sanchez and Sali, 1998; Hassan et al., 2005). Medium-
resolution models can be used to improve protein function prediction based on
sequence alone (Burley and Bonanno, 2002; Shakhnovich et al., 2003), because
ligand binding is more determined by the 3D configurations of active-site residues
than by sequence. They can also be used to construct site-directed mutants with
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altered or destroyed binding capacity, or design proteins with added disulfide bonds
for extra stability, which in turn could test hypotheses about the sequence–structure–
function relationships (Ivanenkov et al., 2005; Campillo et al., 2005). For models of
low accuracy with sequence identity less than 25%, they sometimes have less than
50% of their C� atoms within 3.5 Å of their correct positions (Fiser and Sali, 2003).
Nevertheless, such models still have the correct fold and even knowing only the fold
of a protein is frequently sufficient to predict its approximate biochemical function
(Al-Lazikani et al., 2001b). Evaluation of models in this low range of accuracy can be
used for confirming or rejecting a match between remotely related proteins (Sanchez
and Sali, 1998).

Xu et al. (2005) recently used homology modeling to study HSP90 and kinase
Erbb1 interaction. The molecular chaperone Hsp90 modulates the function of spe-
cific cell signaling proteins. Although targeting Hsp90 with the antibiotic inhibitor
geldanamycin (GA) may be a promising approach for cancer treatment, little is
known about the determinants of Hsp90 interaction with its client proteins. Previous
studies have shown that Erbb1 binds with HSP90 while Erbb2, having 82% sequence
identity to Erbb1, does not. The crystal structure of Erbb1 has been solved to a res-
olution of 2.6 Å, which was used as the template structure to build the homology
model for Erbb2. By superimposing the 3D conformations of Erbb1 and Erbb2, a
loop within the N lobe of the kinase domain of Erbb2 was identified that determines
Hsp90 binding. Further detailed analysis of the Erbb1 crystal structure and Erbb2
model identified a single residue difference (Gly745 on Erbb1 versus Asp778 on
Erbb2) that may account for their different interaction with HSP90. The analysis
implied that the amino acid sequence of the loop determines the electrostatic and
hydrophobic character of the protein’s surface, which in turn governs interaction
with Hsp90. The hypothesis was later confirmed by a number of carefully designed
mutagenesis experiments.

Another study used low-resolution comparative models to annotate protein
functions (Al-Lazikani et al., 2001). Janus kinases (JAKs) are a family of nonreceptor
protein tyrosine kinases involved in signaling cascades initiated by various cytokines,
interferons, and growth factors (Schindler and Darnell, 1995). There are four human
JAK proteins: JAK1–3 and TYK2. JAKs share seven main regions of homology,
termed JAK-homology domains JH1–7, numbered from the C to the N terminus.
JH1 is the C-terminal protein kinase domain, and JH2 is a kinaselike domain whose
precise function remains unclear. JH3–7 play a role in receptor interactions. There has
been considerable uncertainty as to whether JAKs contain SH2 domains. Application
of homology modeling and other sequence profile analysis method strongly indicates
that the Janus family of nonreceptor protein tyrosine kinases contains SH2 domains.
One of the Janus kinases, human TYK2, has an SH2 domain that contains a histidine
instead of the conserved arginine at the key phosphotyrosine-binding position, �B5.
Calculations of the pKa values of the �B5 arginines in a number of SH2 domains
and of the �B5 histidine in a homology model of TYK2 suggest that this histidine
is likely to be neutral around pH 7, thus indicating that it may have lost the ability
to bind phosphotyrosine.
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10.5 Summary

Protein-structure prediction has fascinated the scientific community for decades; it
is a problem simple to define but difficult to solve. The dream seems more and more
attainable with the explosion of sequence and structural information and because
of computational advances in many different areas. These include pure sequence
analysis, structure-based sequence analysis, conformational analysis of proteins,
and the understanding of the energetic determinants of protein stability. Homology
modeling has become a widely used tool, and fold recognition has been shown to
extend the limits of detection of sequence search methods. The advent of structural
genomic initiatives is certain to spur the development of a host of new computational
methods aimed at detecting new relationships between sequence, structure, and
function. Continued progress in ab initio modeling, combined with ever-increasing
databases, makes it possible to further refine homology models to higher accuracy.
Such models will provide the basis for a more detailed analysis of structure and
function relationships than has been available in the past and will provide powerful
tools for the analysis of experimental data and for the design of new experiments.

Despite past progress, much remains to be done. A major problem that still
plagues structure prediction by homology is that the structure of the target protein
may differ significantly from the closest available template. Unlike the rapid advances
made in experimental structure determination, progress in homology structure pre-
diction has been incremental as illustrated at the recent CASP (Critical Assessment
of Methods for Structure Prediction of Proteins, http://www.forcasp.org) competi-
tions. Reliability of these homology modeling methods depends critically on the
level of sequence identity between the modeling target and the template. When se-
quence identity is 30% or higher, backbone atoms are usually correctly modeled.
The majority of the errors come from side-chain and loop placement during refine-
ment with roughly 3–4 Å RMSD compared to high-resolution crystal structures.
When the sequence identity drops below 30%, misalignment happens frequently
and model quality suffers dramatically. To increase the utilization and value of the
computational models in biomedical research, and to reduce the need for still costly
experimental structure determination, significant improvement in the reliability and
accuracy of modeling techniques is needed by the research community. There are
two immediate goals that have to be addressed in the homology modeling commu-
nity. The first scientific goal is to expand the modeling coverage to more distantly
related proteins that exhibit as low as 10% identity to any known structures. The
quality of these models should be close to X-ray structures or high-resolution NMR
structures with less than 2 Å RMSD for backbone and side-chain atoms. Signifi-
cant improvement of modeling methods is needed to push the modeling coverage
to remote homologues of existing structures without much compromise on quality.
This is both an alignment problem and a refinement problem. Future progress on this
issue will depend on advances in the energetic evaluation of structures and the evo-
lutionary analysis of sequences, and the integration of these two fields. The second
goal is to achieve the standard of high-resolution X-ray crystal structure quality for
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comparative models that are based on known structures with higher homology (30%
sequence identity) to the modeling targets. This is predominantly a high-accuracy
refinement problem, although substantial improvement of alignment methods is also
required. The aim is to acquire the ability to reliably produce computational mod-
els with highly accurate placement of both backbone and side-chain atoms, and to
significantly reduce the need for experimental structure determinations for close
homologues of known structures.
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11 Modeling Protein Structures Based on Density
Maps at Intermediate Resolutions

Jianpeng Ma

11.1 Introduction

Structural biology is now in a special era in which increasingly more complex
biomolecules are being studied. For many of them, only low- or intermediate-
resolution density maps (6–10 Å) can be obtained by, for instance, electron cry-
omicroscopy (cryo-EM) (Bottcher et al., 1997; Conway et al., 1997; DeRosier and
Harrison, 1997; Kuhn et al., 2002; Li et al., 2002; Mancini et al., 2000; Zhang et al.,
2000; Zhou et al., 2000, 2001a,b). In certain cases, analysis in terms of intermediate-
resolution density maps is also inevitable in X-ray crystallography as exemplified
in the lengthy process of structural determination of the 50S ribosomal subunit that
incremented from 9 Å, 5 Å, to 2.4 Å (Ban et al., 1998, 1999, 2000). As a com-
mon feature in all these cases, it is usually impossible, with conventional methods,
to construct reasonably accurate atomic models from density maps. However, for
the purpose of structural analysis, it would still be very helpful if one can build
some kind of pseudo-atomic models from the density maps because this will not
only facilitate the structural determination to higher resolutions, but also assist fur-
ther biochemical studies and functional interpretation. For example, significant in-
sights into the architecture and organization of proteins can often be learned if one
can roughly locate the major secondary structural elements such as �-helices and
�-sheets. This rationale is supported by the fact that the knowledge of protein folds
can be obtained primarily from the spatial arrangement of the secondary structural
elements independent of the sequence identity of the proteins, as different sequences
can have the same fold.

Toward this end, computational methods have recently been developed to iden-
tify �-helices (helixhunter) (Jiang et al., 2001) and �-sheets [sheetminer (Kong and
Ma, 2003) and sheettracer (Kong et al., 2004)] in intermediate-resolution density
maps. The outputs of helixhunter, sheetminer, and sheettracer outline the skele-
tons of secondary structures that describe the location of �-helices and �-strands.
However, the skeletons do not contain any information of the directionality of the
secondary structures and loop connectivity, i.e., the topology, or fold, of the protein
remains unknown. To resolve this, we have recently developed an energetics-based
procedure assisted by a complementary geometry-based analysis to effectively dis-
criminate the native topology from the entire topology candidate pool.

359
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Our study of topology determination supports an important hypothesis that,
for a given protein skeleton, its native topology was the one chosen by evolution to
accommodate the largest structural variation, not merely the one trapped in a deep,
but narrow, energy well. Such a hypothesis led to the use of the average energy of
an ensemble of structures, slightly randomized in the vicinity of native skeleton,
as the parameter to rank the topology candidates. The ensemble-averaging scheme
appears to be an effective way of compensating the inevitable errors in the artificially
constructed structures and in empirical potential functions.

The contents of sections in this chapter are adopted from three seminal research
papers (Kong and Ma, 2003; Kong et al., 2004; Wu et al., 2005a) with necessary
modifications.

11.2 Sheetminer: Locating Sheets in
Intermediate-Resolution Density Maps

Figure 11.1 shows the overall procedure of sheetminer, which does not rely on any
3D structure prediction methods. Rather, it is based on a morphological analysis of
intermediate-resolution density maps, i.e., shape recognition in 3D space. One of
the most important features of sheetminer is the flat density map on which most
of the essential analyses are based. It allows one to maximally capture the elements
of shape of the density maps without being severely influenced by the fluctuation of
local density values. Based on their distance to the surface of the flat density map,
the voxels in the flat density map are divided into two groups, surface voxels and
kernel voxels. Then, for each kernel voxel, a condensation scheme is used to increase
the contrast on the edge of density maps. After that, the identification of sheets is
primarily achieved based on the ratio of two competing parameters, maximum disk
inclusion number and minimum local thickness calculated for each kernel voxel.
The identified sheet densities are then processed by a set of refinement steps before
they are marked as the final output. The parameters used in sheetminer are chosen
empirically based on exhaustive trials since there is no general rule in defining them.

This section is adapted from the original research article (Kong and Ma, 2003)
from which interested readers can find more technical details.

11.2.1 Locating Sheets in Simulated Density Maps

The algorithm sheetminer was first tested on intermediate-resolution density maps
simulated from high-resolution crystal structures. A total of 12 structurally unre-
lated proteins were chosen because, among them, the number, size, and shape of
�-sheets vary widely and they are thus expected to reasonably represent a complete
sampling of known �-sheet morphology. They are roughly split into three groups:
group I protein contains a single �-sheet (Arnold and Rossmann, 1988; Hoover
and Ludwig, 1997; Rees et al., 1983; Wittinghofer et al., 1991), group II contains
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Fig. 11.1 Flowchart for the entire computational procedure of �-sheet identification in
intermediate-resolution density maps implemented in sheetminer.

multiple independent �-sheets (Eklund et al., 1981; Khan et al., 2000; Mayer et al.,
2002; Wang et al., 2000), and group III contains typical heavy �-motifs such as
�-barrel and �-propeller (Gaudet et al., 1999; Steinbacher et al., 1994; Wilson et al.,
1992; Zanotti et al., 1998).

11.2.1.1 Results at 8-Å Resolution

The selected PDB model was first blurred (Ludtke et al., 1999) to a resolution of
8 Å. At this resolution, visual identification of �-sheets is difficult, especially for
the ones deeply buried inside proteins. Then sheetminer was used to identify sheet
densities. In all 12 proteins tested, there were a total of 35 independent �-sheets and
34 of them were successfully located by sheetminer (Fig. 11.2, only three examples
are shown here). One sheet was missed by sheetminer (circled in Fig. 11.3a) and two
small regions were mistakenly identified as sheets (false positives; one such case
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Fig. 11.2 Sheet-searching results based on simulated density maps from a total of 12 protein crys-
tal structures. There are totally 35 independent �-sheets with a wide distribution of morphology.
Sheetminer successfully located 34 of them and only missed one in MoFe protein of nitrogenase.
The schematic ribbon diagrams on the left show the crystal structures with the �-sheets (in darker
color). The middle diagrams show the blurred structures at 8-Å resolution. In diagrams on the
right, the identified sheet regions are shown on top of the ribbon diagrams.

is shown in Fig. 11.3b). Therefore, sheetminer is very effective in defining sheet
regions at this resolution.

In order to quantitatively investigate the accuracy of sheetminer in discerning
sheet regions, we computed the values of sensitivity and specificity. Sensitivity is
defined as the probability of a positive identification among voxels that are true sheet
voxels, and specificity is defined as the probability of a true negative identification
among the voxels that are not true sheet voxels. The average values of sensitivity
and specificity are 87.1 and 73.3%, respectively. Thus, the agreement between the
computationally searched sheet density maps and the real ones is very good at a
resolution of 8 Å. The high value of sensitivity indicates that the method is reliable to
outline the rough size of the sheet regions. The good value of specificity indicates that
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a) b)

Fig. 11.3 Errors in sheet-searching results. (a) The �-sheet in MoFe protein of nitrogenase (PDB
code lhl 1) that was missed by sheetminer. The region of the sheet is circled. This is the only one
missed out of the total of 35 sheets in 12 proteins. (b) One of only two small regions that were
mistakenly identified as �-sheets (false positives). The figure shows the one in aldose reductase
(PDB code 1 ads).

the method seldomly predicts false positives, i.e., mistakenly identifying nonsheet
voxels as sheet voxels. From a practical point of view, one would expect that the
specificity would be somewhat more important than the sensitivity because it is
far more important to correctly identify the overall locations of the sheets than to
define the exact size of the sheets. The latter is also a variable quantity even between
methods for assigning secondary structures at high resolutions.

11.2.1.2 Resolution Dependency

In our experience, sheetminer works best in the resolution range of 6 to 10 Å.
However, the exact outcome also depends on the nature of systems: for large sheets,
sheetminer can work to a lower resolution, but for small sheets, it is much harder with
lower resolutions. The results for a typical five-stranded sheet in p21ras (Wittinghofer
et al., 1991) at resolutions of 6, 8, and 10 Å are shown in Fig. 11.4. At 6-Å resolution,
the algorithm very accurately located not only the overall shape, but also the detailed
edge of the sheet. At 8-Å resolution, the result is still satisfactory. At 10-Å resolution,
the map is significantly fuzzier, but sheetminer was still able to find the rough location
of the sheet, despite large errors on the edge. The sensitivity values are 87.2, 78.7,
and 55.3%, while the specificity values are 92.5, 93.3, and 95.0%, for 6, 8, and 10
Å, respectively. The specificity seems to be much less resolution-dependent.

Certain degree of resolution dependence of the sensitivity is expected and
should not undermine the applicability of sheetminer. The state-of-the-art cryo-EM
techniques can now provide structures at intermediate resolutions and many of them
are at or near resolutions of 6 to 8 Å (Zhou et al., 2001a). The program helixhunter
(Jiang et al., 2001) also has a similar resolution dependency. Not surprisingly, the
identification of �-sheets is more sensitive to resolution than is that of �-helices.
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6 Å 8 Å 10 Å

Fig. 11.4 Sheet-searching results of a typical five-stranded sheet in p21ras (PDB code 121p) at
resolutions of 6, 8, and 10 Å. The upper panels show the blurred structures at three resolutions
and the lower panels show the corresponding results in which the found sheet density maps are
superimposed on the ribbon representations of the crystal structures. At 6-Å resolution, sheetminer
very accurately located not only the overall shape, but also the detailed edge of the sheet. At 8-Å
resolution, the result is also satisfactory. At 10-Å resolution, the morphology of the density map
is significantly fuzzier, but sheetminer was still able to identify the rough location of the sheet,
despite large errors on the edges.

11.2.2 Application to Real Experimental Cryo-EM Density Maps

To test its applicability to real experimental density maps, sheetminer was also exam-
ined on the F41 fragment of bacterial flagellar filament that has both X-ray structure
and intermediate-resolution cryo-EM structure available. The X-ray structure of the
fragment of Salmonella flagellar filament was available at 2.0 Å (PDB code 1io1)
(Samatey et al., 2001), and the cryo-EM structure of the same fragment was obtained
from the 9-Å cryo-EM structure of the R-type straight flagellar filament (Mimori
et al., 1995). Sheetminer successfully located two regions of �-sheets that encom-
pass five out of the six �-sheets observed in the X-ray structure (Samatey et al.,
2001) and missed only one isolated small two-stranded sheet (Fig. 11.5). It is worth
pointing out that a 9-Å experimental cryo-EM density map is significantly noisier
than a 9-Å simulated density map. Thus, the success in this case further confirmed
the applicability of sheetminer in dealing with actual experimental data.
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Fig. 11.5 Sheet-searching results for the F41 fragment of bacterial flagellar filament. The 2.0-Å
X-ray structure of the F41 fragment of Salmonella flagellar is shown on the left (PDB code liol); the
cryo-EM structure of the same fragment obtained from the 9-Å cryo-EM structure of the R-type
straight flagellar filament is shown in the middle; and the sheet-searching results are shown on the
right, superimposed on the ribbon diagram of the crystal structure. Five out of the six �-sheets
observed in the crystal structure were successfully located. Only an isolated small two-stranded
�-sheet was missed (behind the three longest helices).

11.2.3 Application to an 8-Å Experimental X-ray Density Map

Sheetminer was also tested on crystallographic electron density maps of equivalent
resolution. An example is shown for flavodoxin (PDB code 1ag9). The X-ray electron
density map was first generated from experimental diffraction data up to a resolution
of 8 Å (the original structure has a resolution of 1.8 Å), and then sheetminer was
applied to analyze the sheet density. The result is shown in Fig. 11.6 along with that
from an 8-Å density map simulated based on the atomic coordinates. The overall
results are similar in both cases. One important point is that, with sheetminer, the
conventionally not-so-useful X-ray diffraction data in the resolution range of 4–8 Å
can be used to extract meaningful structural information.

Fig. 11.6 Comparison of sheet-searching results for X-ray and simulated density maps of flavo-
doxin at 8 Å. The X-ray density map was generated using the experimental diffraction data up to
a resolution of 8 Å (the resolution of the original X-ray structure, PDB code lag9, was 1.8 Å).
The 8-Å simulated density map was obtained by artificial blurring of the X-ray structure. The
sheet-searching results were superimposed on the ribbon diagrams of the crystal structure (left for
simulated density map and right for X-ray density map).
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11.2.4 Concluding Discussion

It is clear that sheetminer works better for large sheets than for smaller sheets.
Usually, the locations of major sheets can be consistently found at intermediate
resolutions, but the exact edges of the sheets can be fuzzy. Such an inaccuracy often
makes it difficult to establish the exact length of strands even if their overall positions
are well defined. Similar problems are also seen in the helix-hunting algorithm (Jiang
et al., 2001). However, this should not be a severe problem in many regards because
even the exact length of secondary structural elements in high-resolution X-ray
structures can vary when using different assignment methods. More importantly,
the identification of protein folds would be more sensitive to the overall spatial
arrangement, rather than the exact length, of secondary structural elements.

The final outputs after the multistep processing of density maps by sheetminer
are flat, but continuous, density maps corresponding to sheet regions. They could
effectively narrow down the searching space for further model building into a pseudo
2D space. The algorithms for building pseudo-C�-traces of �-sheets identified in
density maps will be presented in the next section.

11.3 Sheettracer: Building Pseudo-traces for �-Strands
in Intermediate-Resolution Density Maps

Sheettracer (Kong et al., 2004) is tightly coupled to the sheetminer method to
trace individual �-strands based on the relatively thin, but continuous, sheet den-
sity maps output from sheetminer (Kong and Ma, 2003). Figure 11.7 shows the
overall procedure of sheettracer. A deconvolution method was also developed to
enhance the features of secondary structures in intermediate-resolution density
maps.

The morphological analysis of density maps used by sheettracer is based on
two observations: protein main-chain density is relatively higher in value than that
of side chains and all neighboring �-strands are parallel or nearly parallel. The first
observation enables the use of local peak-filtering to select backbone voxels, whose
geometrical distribution helps define sheet morphology. The second observation
facilitates local first principal component axis projection to condense the density
without losing intrastrand connectivity. Differing from other thinning schemes that
only consider the contacting neighbors, this local projection scheme reinforces the
linear distribution of voxels but simultaneously increases the distance between voxels
of different strands. This condensation results in a significantly increased efficiency
in segments clustering.

We tested the methods on the simulated 6-Å density maps from 12 represen-
tative protein crystal structures, encompassing a wide range of sheet morphologies.
Sheettracer successfully built pseudo-C� models in the sheet densities output by
sheetminer, with average values of 79.5%, 96.3%, and 1.54 Å for sensitivity, speci-
ficity, and rms deviations, respectively. For even lower-resolution (8 Å) simulated
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Fig. 11.7 Flowchart for the computational procedure of sheettracer in intermediate-resolution
density maps.

data, a deconvolution method was used to permit sheettracer to build pseudo-C�
models with average values of 71.3%, 93.8%, and 1.77 Å for sensitivity, specificity,
and rms deviations, respectively. Furthermore, sheettracer and the deconvolution
method were also tested on experimental maps of the �2 protein of reovirus at
resolutions of 7.6 and 11.8 Å.

This section is adapted from the original research article (Kong et al., 2004)
from which interested readers can find more technical details.
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Fig. 11.8 Stepwise processing of sheet density maps to discern individual �-strands, using the
sheet in the GroEL minichaperone as an example. (a) Sheet density identified by sheetminer shown
in voxels. (b) Selected voxels by local peak filter. (c) Surviving voxels after local first principal
component axis projection using the voxels in (b) as input. (d) Surviving voxels after local linearity
filtering using the voxels in (c) as input. (e) Clustered backbone voxels after k-segments processing.
The lines are the fitted segments (the first principal component axes).

11.3.1 Stepwise Discerning �-Strands on GroEL Minichaperone

Sheetminer (Kong and Ma, 2003) outputs clusters of voxels, each delineating a thin,
but continuous volume of density representing a single �-sheet. Sheettracer then
uses a multistep process to build pseudo-C�-traces in each identified sheet. Here we
first illustrate an example, a �-sheet of the apical domain of the molecular chaperonin
GroEL, also known as the minichaperone (Wang et al., 2000) (PDB code 1fy9 ).

First, each cluster of voxels was processed by a local peak filter (Fig. 11.8a) to
identify voxels that are most likely involved in forming the backbones of individual
strands (Fig. 11.8b). The local peak-filtering algorithm enhances high local density
values and thereby adjusts to variations in the magnitude of densities throughout
the map, which permits effective selection of backbone voxels even in regions of
relatively weak density. The next step was to condense the selected voxels using
local first principal component axis projection. It is to enforce the voxel distribution
along the longest axis that is meant to coincide with a strand backbone (Fig. 11.8c).
The outcome was a significantly narrowed distribution of voxels that were then
processed by a local linearity filter to pick backbone voxels with good local linearity
(Fig. 11.8d). After that, k-segments clustering (Verbeek et al., 2002) was employed
to group voxels into smaller subsets, each of which was to represent one part of a
�-strand (Fig. 11.8e). Finally, all subsets belonging to the same strand were merged
together so that each cluster of voxels represents an independent �-strand and a
pseudo-C�-trace was then built for each strand.

11.3.2 Discerning �-Strands and Building Pseudo-C�-Traces
in 12 Proteins

Sheettracer was further tested on simulated density maps of 11 other structurally un-
related proteins. They were the same set of proteins used to test sheetminer described
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Fig. 11.9 Sheet-tracing results for all 12 proteins based on 6 Å simulated density maps. The
pseudo-C�-traces depicted in darker color are superimposed on the X-ray structures of the proteins
shown in lighter color. Only one protein from each group is shown. They are (a) carboxypeptidase
A; (b) horse liver alcohol dehydrogenase; (c) phosducin. The arrows in the pseudo-C�-traces are
artificially assigned based on the crystal structures.

in the previous section. Figure 11.9 shows the results with the built pseudo-C�-traces
superimposed on the crystal structures (only one example for each group is given).
The results were statistically analyzed based on three separate measures: sensitivity,
specificity, and rms deviations (Kong and Ma, 2003). The rms deviation was calcu-
lated as the average distance of each built pseudo-C�-atom from its closest sheet
C�-atom in the superimposed crystal structure. The average sensitivity and speci-
ficity for the 12 proteins are 79.5 and 96.3%, respectively. The rms deviation is always
smaller than 2.0 Å, with an average of 1.54 Å. Given the limited resolution, such
statistical results of trace-building seem reasonable. Note that, in Fig. 11.9, strand
directions were assigned according to the known X-ray structures since sheettracer
was unable to specify them.
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Fig. 11.10 A new deconvolution method. (a) A simple 2D example of deconvolution. The left is
the original image, the middle is the image rendered with noises, and the right is the deconvoluted
image. (b) A 3D example for deconvolution (right) on a piece of �-sheet density blurred to 8 Å
(left). The C�-traces of the sheet (red) are superimposed on the density.

11.3.3 A New Method for Deconvolution of Density Maps

In order to enhance the features of secondary structural elements in density maps
for building pseudo-C�-traces, we developed a new deconvolution method. An ex-
ample is shown in Fig. 11.10a. A synthetic 2D geometrical object (left panel) was
contaminated with a level of noise that nearly renders features in the original object
indistinguishable (middle panel). Deconvolution resulted in a dramatic recovery of
object features.

The method was then tested on a simulated 3D density map blurred to 8 Å
(Fig. 11.10b, left). After deconvolution, strands are better resolved (Fig. 11.10b,
right) and the subsequent building of pseudo-C�-traces on the deconvoluted map
became trivial.

The deconvolution method was then examined on experimental density maps of
the �2 protein of reovirus. In order to have a more systematic and self-consistent test,
the cryo-EM structures of reovirus were purposely reconstructed to 7.6-Å resolution
from 7939 single particle images (100%-particle structure) and to 11.8-Å resolution
from a subset (12.5%) of the same particle images (12.5%-particle structure). Two
helices that are distinct in the 100%-particle structure (Fig. 11.11a) are bridged by
density that interconnects the helices in the 12.5%-particle structure (presumably
owing to the higher level of noise) (Fig. 11.11b). The deconvolution of the 12.5%-
particle structure yields a map with distinct densities for the helices (Fig. 11.11c).

11.3.4 Deconvolution and Trace Building in Simulated Density
Maps of 12 Proteins

As demonstrated in previous sections, sheettracer can build pseudo-C�-traces in
simulated maps at resolutions as low as 6 Å. To increase its effectiveness, the decon-
volution method was combined with sheettracer to trace strands at lower resolutions.
Figure 11.12 shows the results of tracing with simulated maps of p21ras at 8 and 9 Å.
The sensitivity, specificity, and rms deviations are 76.6%, 98.3%, and 1.65 Å and
70.2%, 96.7%, and 1.73 Å for 8 and 9 Å, respectively. The methods were then applied
to simulated density maps of the other 11 proteins at 8 Å, and resulting average sen-
sitivity, specificity, and rms deviations are 71.3%, 93.8%, and 1.77 Å, respectively.
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Fig. 11.11 The improved appearance of secondary structural elements in the experimental density
map of the �2 protein of reovirus by the deconvolution. (a) The cryo-EM structure generated using
100% particle images (100%-particle structure) highlighting the two well-separated helices. (b)
The structure generated using 12.5% particle images (12.5%-particle structure) in which the
two distinct helices are wrongfully connected. (c) The deconvolution procedure recovered the
separation of these two helices in the 12.5%-particle structure.

Fig. 11.12 Sheet-tracing results for p2lras at resolutions of 8 Å (a) and 9 Å (b) after deconvolution.
The built pseudo-C�-traces of the sheets (blue) are shown on top of the ribbon diagrams of the
crystal structure (lighter color).

These results clearly demonstrate that the deconvolution method can indeed enhance
density interpretation by sheettracer.

11.3.5 Deconvolution and Trace Building in Experimental
Maps of Reovirus �2 Protein

To test sheetracer and the deconvolution method on real experimental data, we used
the 7.6-Å cryo-EM structure of the �2 protein of reovirus (Zhang et al., 2003), the
crystal structure of which has been solved independently (Reinisch et al., 2000)
(PDB code 1ej6) and could be used to validate the sheet-tracing results. The �2
protein has 16 �-sheets, 12 of which contain three or more strands. The results of
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Fig. 11.13 Comparison of sheet-tracing results in the 7.6-Å density maps of the �2 protein of
reovirus with (yellow bar) and without (blue bar) deconvolution. There are a total of 16 �-sheets,
12 of which are large (three-stranded or more) and 4 are small (short two-stranded). In all cases
except one (sheet 8), the deconvolution resulted in smaller rms deviations relative to the crystal
structure than without. Moreover, the deconvolution brought up 5 additional �-sheets (sheets 2,
6, 10, 14, and 15) for which no pseudo-C�-traces could be built on the original maps without
deconvolution.

building pseudo-C�-traces with and without deconvolution are shown in Fig. 11.13.
Except sheet 8, the deconvoluted maps always have better rms deviations of pseudo-
C�-traces compared with those obtained from the original map. Deconvolution also
improved five additional sheets (sheets 2, 6, 10, 14, and 15) for which pseudo-C�-
traces could not be built from the original maps before deconvolution.

11.3.6 Discussion

Not surprisingly, the accuracy of tracing generated by sheettracer depends at least in
part on the reliability of sheetminer because the input to sheettracer consists of sheet
density maps identified by sheetminer from raw density maps. Usually, the sensitivity
of tracing is closely coupled to the performance of sheetminer, but the specificity of
tracing is not and is always quite good. Moreover, similar to sheetminer, the size of
�-sheets also affects the performance of sheettracer. Sheetracer naturally performs
better when the sheets are large and the strands are long because errors tend to occur
near the edges of �-sheets.
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Our results have shown that the deconvolution method significantly enhances
one’s ability to build pseudo-C�-traces for �-strands at relatively low resolutions.
However, it is hard to objectively and quantitatively measure the improvement on
the effective resolution brought by the deconvolution method.

Computational methods for identifying and tracing secondary structural ele-
ments in intermediate-resolution density maps should be valuable for several reasons.
First, the pseudo-C�-traces will facilitate more biochemical and functional studies
and will help structure refinement at higher resolutions. Second, the combination of
sheettracer with other related computational methods (Elofsson et al., 1996; Jiang
et al., 2001; Lu et al., 2002; Miller et al., 1996; Skolnick et al., 2001) will eventually
make it possible to reveal protein folds from data at intermediate or lower resolutions.
Third, the secondary structural elements established by sheettracer and related meth-
ods (Jiang et al., 2001) can provide guiding landmarks for docking atomic models of
sub-components or homology-derived models into intermediate-resolution density
maps. Accuracy of rigid-body docking should be significantly improved if even just
a few points inside a density map can be reliably identified (Rossmann, 2000).

With sheetminer and sheettracer, the secondary structural skeletons can be
deduced from intermediate-resolution density maps, but the topology, or the fold,
remains unknown. Topology determination is the topic of the next section.

11.4 Determining Protein Topology Based on Skeletons
of Secondary Structures

The output from programs like helixhunter (Jiang et al., 2001), sheetminer (Kong
and Ma, 2003), and sheettracer (Kong et al., 2004) gives the locations of �-helices
and �-strands, i.e., the skeleton of secondary structures. But it does not contain any
information of the directionality of the secondary structures and loop connectivity,
i.e., the topology of structure is undetermined. The next question is naturally how
to determine the topology, or fold, based on skeletons of secondary structures. This
is a very difficult problem since there are a large number of ways to connect the
secondary structural elements for a given skeleton (Fig. 11.14), among which only
one is the native topology selected by evolution.

In order to discriminate the native topology from all other topology candidates,
we developed an energetics-based procedure in which sequence information was first
mapped onto the modeled C�-traces and then a knowledge-based pairwise potential
function (Bahar and Jernigan, 1997) was employed for energetic evaluation. To make
the energetics-based procedure more effective, we also developed a complementary
geometry-based analysis, based on knowledge extracted from high-resolution protein
structure database, to improve the initial screening.

The empirical potential functions used in our study are very approximate. The
structures constructed around the native skeleton evidently carry large errors re-
gardless of the extensive optimization. This is particularly true for loops that were
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Fig. 11.14 Schematic representation of protein topology space. For a given secondary-structural
skeleton, there are a large number of possible topology candidates associated with it. Together
they form a topology space. In the figure, the skeleton is depicted in such a way that helices are
drawn as cylinders and strands are drawn as ribbons. In the schematic diagrams, the circles are for
�-helices and the triangles are for �-strands.

essentially built arbitrarily (although it was found that inclusion of loops was critical
for covering a substantial portion of hydrophobic surfaces). Consequently, it is im-
possible to distinguish the native topology by the energy value of a single constructed
structure because the energy of an individual structure of a nonnative topology can
frequently be lower than that of an individual structure of the native topology. To
solve this issue, we adopted a major working hypothesis that the native topology of
a given protein skeleton is the one chosen by evolution to accommodate the largest
structural variation, not merely the one trapped in a deep, but narrow, energy well.
From such a hypothesis, one can deduce that the average energy of an ensemble of
structures varying in the vicinity of the native skeleton should be the lowest, and
the standard deviation of the average energy should be the smallest. Our results
seem to support the hypothesis well. Another implication is that, in structural pre-
diction, the ensemble-averaging scheme is an effective way for compensating the
inevitable errors in the artificially constructed structures and in empirical potential
functions.

We first examined the method on secondary-structural skeletons of 50 medium-
sized single-domain proteins, among which 25 were all-helical proteins and 25 were
sheet-containing proteins. We also tested the method on skeletons in which one or
more secondary structures were purposely removed in order to examine the ability
of the method to cope with the mismatches between secondary structdures extracted
from density maps and those predicted from sequence. Finally, an eight-stranded
skeleton obtained from an experimental 7.6-Å cryo-EM density map was also ana-
lyzed by the method. In most cases, the native topology was successfully identified as
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the most energetically favorable topology. Thus, our results suggest that it is indeed
possible to derive protein native topology from secondary-structural skeletons.

This section is adapted from the original research article (Wu et al., 2005a)
from which interested readers can find more technical details.

11.4.1 Secondary Structure Prediction Based on Protein Primary
Sequence

The results of secondary structure prediction showed 12 out of 50 proteins with mis-
matches in the number of secondary structures between skeletons and assignments.
Consensus evaluation had to be used for successful assignment in three cases (3icb,
1a1w, and 1d1l). The other nine proteins with mismatches are marked with asterisks
in Tables 11.1 and 11.2.

For secondary structure assignment for an eight-stranded sheet of the �2 protein
of reovirus, PSIPRED was first employed and gave significant mismatch with the

Table 11.1 Results on 25 single-domain all-helical proteins

Native rank Native rank Topologies Native rank Native rank
PDB Total Possible Accessible geometry geometry used for energetics energetics

ID residues N 1
� topologies2 topologies3 (Method I)4 (Method II)5 energetics (mean)6 (median)7

1erc* 40 3 48 30 5th 5th 26 4th 4th

1mbg 40 3 48 20 1st 1st 20 1st 1st

2ezh 65 4 384 28 5th 4th 28 2nd 2nd

1a32 85 4 384 2 2nd 1st 2 1st 1st

1utg 70 4 384 6 5th 3rd 6 1st 1st

1mho 88 4 384 64 7th 26th 22 1st 1st

1no1 66 4 384 22 10th 14th 22 1st 1st

1i2t 61 4 384 4 1st 1st 4 1st 1st

1eo0 76 4 384 148 18th 25th 40 1st 1st

1lpe 144 5 3840 8 4th 4th 8 1st 1st

1vls 146 5 3840 12 2nd 1st 12 1st 1st

1aep 153 5 3840 15 15th 5th 15 1st 1st

1bz4 144 5 3840 4 2nd 2nd 4 1st 1st

1nkl 78 5 3840 49 5th 1st 26 1st 1st

3icb 75 5 3840 48 2nd 1st 24 1st 1st

2psr* 95 5 1920 960 2nd 4th 40 5th 7th

1l0i* 77 5 23040 58 6th 9th 34 8th 7th

2cro 65 5 3840 1544 184th 227th 200 12th 10th

2asr 142 5 3840 21 2nd 6th 21 1st 1st

1g7d 101 5 3840 15 6th 6th 15 1st 1st

1abv 105 6 46080 166 8th 8th 56 2nd 2nd

1a1w 83 6 46080 113 8th 9th 35 1st 3rd

1c15 94 6 46080 12 4th 4th 12 1st 1st

1ngr 74 6 46080 32 5th 5th 24 2nd 2nd

1bvc 153 8 10321920 14 1st 2nd 14 1st 1st

1 N� is the total number of �-helices in the crystal structures. 2 The total possible topologies. 3 The total accessible topologies were
the number of topologies surviving through the initial screening. 4 Rank of the native topology among all accessible topologies using
geometry analysis Method I. 5 Rank of the native topology among all accessible topologies using geometry analysis Method II. 6 Rank
of the native topology among all accessible topologies by energetics approach and ranked according to arithmetic mean. 7 Rank of the
native topology among all accessible topologies by energetics approach and ranked according to median.
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skeleton modeled based on an experimental 7.6-Å cryo-EM density map. Then,
a consensus approach was employed. Among all of the methods, DSC (King and
Sternberg, 1996) resulted in an assignment that matched with the skeleton from
cryo-EM data. This assignment was used to align with the skeleton.

11.4.2 Packing Geometry of Two Consecutive Secondary
Structures

To study the geometrical packing preference between two consecutive secondary
structures (�-helices or �-strands), 1084 nonhomologous protein structures with
resolutions better than 1.8 Å compiled in PISCES (Wang and Dunbrack, 2003) were
examined. Three parameters, �1, �2, and �, were employed to express the relative
arrangement of two secondary structures and their connecting loop (Fig. 11.15a).
Figure 11.15b shows the distribution of dihedral angle �. It resembled a Gaussian
distribution with a peak near zero, which suggests that the majority of two consecutive
secondary structures are arranged in a plane with a cis-configuration. The ridge of
the distribution of two packing angles, �1 and �2, was along the diagonal line from the
lower-right corner to upper-left corner, with a sum � = �1 + �2 of � (Fig. 11.15c).
This indicates that the two consecutive secondary structures have a strong tendency
to be antiparallel. When the distribution was plotted against � and � (Fig. 11.15d),
the dihedral angle was found to be centered at approximately zero and the sum of
the two packing angles was centered around �. Two other methods were also used
to analyze packing geometry, and similar statistics was obtained (Fig. 11.16). These
statistical data serve as the basis of the geometry scoring function in geometry filter.

11.4.3 All-Helical Proteins

We examined 25 all-helical proteins (Table 11.1). They contain two major types
of architecture of all-helical proteins with a single domain: up-down bundle and
orthogonal bundle (Orengo et al., 1997), and represent 14 types of topology (three
proteins do not have classified architecture and topology).
Geometry approach. In the geometry analysis, three proteins have their native
topologies ranked as 1st, and 19 other proteins have their native topologies ranked
within the top ten, and only one (PDB code: 2cro) has its native topology ranked as
184th (Table 11.1, sixth column). We further examined this particular protein and
found that it has a highly globular structure and almost all of the helices are similar in
length. These features resulted in a large number of accessible topology candidates
that survived the initial screening. In sharp contrast, myoglobin (PDB code: 1bvc)
has wider variations in the length of helices and loops, and, as a consequence, it
dramatically narrowed down the accessible topology to 14 in the initial screening
out of the total of 107 possible topologies.
Energetics approach. Table 11.1 (columns 9 and 10) illustrates the results of ener-
getics analysis on these 25 proteins, which was performed after geometry filter. A
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a) b)

c) d)

Fig. 11.15 Geometry of two consecutive secondary structures connected by a loop (Method I).
(a) Three parameters, �1, �2, and �, were used to describe the relative arrangement of the two
consecutive secondary structures connected by a loop. For an �-helix, it is represented by a vector
of the axis of the cylinder directed from the N-terminus to the C-terminus. For a loop or �-strand,
the vector runs from the first C�-atom to the last C�-atom of the loop or strand. Based on these three
vectors, we defined the packing angle �1 between vectors V1 and V2, packing angle �2 between
vectors V2 and V3, and the dihedral angle � formed by the three vectors. (b) The distribution of
loops as a function of the dihedral angle �. The curve resembles a Gaussian distribution with a
peak near zero. (c) Two-dimensional contour representation of the distribution of angles �1 and �2.
The ridge is along the diagonal line. The loops included in this calculation are within the dihedral
values between −�/6 and �/6 around the peak of the Gaussian profile shown in Fig. 11.15b.
(d) Two-dimensional contour representation of the distribution of � and �. The dihedral angle
is clearly centered at approximately zero and the sum of the two packing angles is centered at
around 180◦.

cutoff was used so that all topology candidates above the cutoff were used as input for
energetic analysis. The native topologies of 18 proteins were successfully found to
be of the lowest average energy (ranked as 1st), which is a reasonably high successful
rate. It is worth pointing out that the number of randomly perturbed structures in
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Fig. 11.16 Geometry of two consecutive secondary structures connected by a loop (Method II).
The distributions of angles � and � for loop motifs of helix–helix (HH), helix–strand (HS),
strand–helix (SH), and strand–strand (SS) are shown separately.

the ensemble of each accessible topology differs significantly due to the fact that,
for some of the energetically unfavorable topology candidates, it was much harder
to generate perturbed structures around the given skeleton that satisfied all of the
criteria. A correlation is found between the number of perturbed structures and the
average energy.

For the remaining seven proteins, three (2ezh, 1abv, and 1ngr) have their native
topology recognized as the 2nd lowest in average energy (ranked as 2nd in the ninth
column of Table 11.1). The topology of the lowest energy (1st) is very similar to the
native topology (2nd) in all cases. Figure 11.17 schematically illustrates the three
lowest energy topologies for protein 2ezh. The difference between the 1st and the
native topology (2nd) was a swap of two helices that are very similar in length and
nearby in space.

The native topologies of two other proteins, 2psr and 1l0i, were ranked 5th and
8th, respectively. Mismatches did happen between the assignment and skeleton for
both cases: two helical regions were predicted as one in the assignment of 2psr, and
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Fig. 11.17 Comparison of the three lowest-energy topology candidates for an all-helical protein
2ezh whose native topology was ranked the 2nd lowest.

one extrahelical region was predicted for 1l0i, which obviously influence the ranks
of the native topologies of these two proteins.

In the case of 2cro, due to the length similarity of all five helices of this protein
that gave rise to the largest number of accessible topology candidates in the initial
screening, the native topology was ranked as the 12th lowest in average energy.
However, despite the large error, the methods were very effective in narrowing down
the searching space of possible topologies (the native topology was ranked as the
12th among all 1544 accessible candidates).

Finally, the median energy value of the ensemble, instead of the arithmetic
mean, was computed to rank the topology candidates. This was to cross-validate the
errors in our ranking procedure resulting from the non-Boltzmann random sampling
in generating the perturbed structure ensemble. Mathematically, the median indicates
a true average in the absence of a priori knowledge of data distribution. The results,
shown in the 10th column of Table 11.1, are very consistent with those ranked
according to arithmetic mean (9th column), indicating the fidelity of the ranking
procedure.

11.4.4 Sheet-Containing Proteins

Geometry approach. We had a total of 19 alpha-beta-mixed proteins and 6 all-beta
proteins. The 19 alpha-beta-mixed proteins contain three different types of archi-
tecture and seven types of topology [3 proteins do not have classified architecture
or topology in CATH (Orengo et al., 1997)]. The 6 all-beta proteins contain three
types of architecture and three types of topology (1 protein does not have classified
architecture or topology). The seventh column of Table 11.2 shows the results of ge-
ometry analysis. In seven cases, the native topology was ranked as the lowest energy
(1st) and in eight other cases for alpha-beta-mixed proteins was ranked within the
top 10. In the all-beta cases, the native topology of one was ranked as the 1st and
four others within the top 10.
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Fig. 11.18 Comparison of secondary-structural content in all-helical proteins versus all-beta
proteins. It is clear that all-beta proteins have much lower secondary-structural content than all-
helical proteins.

There are several reasons why the search for sheet-containing topology is more
difficult. All-beta proteins have an overall lower percentage of secondary structures
and higher percentage of loop regions compared with all-helical proteins (Fig. 11.18).
Therefore, they have increased the complexity of the topology space, i.e., fewer
topology candidates can be filtered out in the initial screening. Moreover, �-helices
have more rigid structures with strong local interactions, while �-strands can bend
and twist, and also involve long-range stabilizing interactions.
Energetics approach: Table 11.2 shows the results of energetics approach on the 25
sheet-containing proteins. All of the accessible topologies were initially screened by
geometry analysis. Both the arithmetic mean and median of the energy were used as
ranking criteria to avoid sampling bias. The final ranks of the 25 proteins are shown
in columns 11 and 12, respectively, of Table 11.2. The results from the two ranking
methods are quite similar. Totally, the native topologies of 18 out of 25 proteins
have their average energy ranked the lowest. For the remaining 7 proteins, 2 have
their native topologies ranked as the 2nd-lowest average energy and 2 others as 3rd.
In all of these 4 cases, the difference between the lowest-energy topology (1st) and
the native topology (2nd) was an exchange of two secondary structures with similar
length and symmetric spatial location or the shift of the direction of certain strands in
the skeleton. As an example, Fig. 11.19 compares the lowest-energy topology (1st)
and the native topology (2nd) of protein 1eof.
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Fig. 11.19 Comparison of the lowest-energy topology with the native topology for a sheet-
containing protein 1eof whose native topology was ranked the 2nd lowest.

11.4.5 Application to Incomplete Skeletons

In all previous test cases, the secondary structures in skeleton were assumed to
be correct and they are used to judge the correctness of predicted assignment on
sequence. In reality, however, it is very likely that skeletons from experimental maps
have one or more secondary structures, especially short ones, missing. This issue
of incomplete skeleton was tested on protein 1bvc that has eight �-helices. The
skeletons of 1bvc purposely have one of the short helices H3 or H4 or both missing,
which led to more accessible topology candidates being retained for the skeleton after
initial screening. The geometry approach, however, consistently identified the native
topology as the most favorable topology (1st) in all three cases. The employment
of the energetics approach ranked the native topology 2nd, 3rd, and 1st when the
missing component(s) was H3, H4, and both, respectively. This simple example
suggested that our methods can tolerate small errors in skeleton.

It should be emphasized that, in general, the performance of the method does
depend on the accuracy of secondary structures both in skeleton and in assignment.
Usually, when the skeletons are correct (the normal assumption), the predicted as-
signment is judged based on that; when the skeletons have some small ones missing,
the dependence on predicted assignment in sequence becomes stronger. In cases
where both are drastically mistaken, the likelihood for the method to fail will be
inevitably larger.

11.4.6 Application to Real Experimental Data

The �2 protein of reovirion structure [solved to 7.6 Å by cryo-EM (Zhang et al.,
2003)] has 16 �-sheets. One of them located at the tip of the structure was chosen to
test our energetics procedure because of its continuity in sequence and comparable
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Fig. 11.20 Superposition of the secondary-structural skeleton modeled by sheetminer and sheet-
tracer (yellow) based on an experimental 7.6-Å cryo-EM electron density maps (the transparent
envelope) with that from the crystal structure (blue, PDB code: 1 ej6) of the �2 protein of reovirus.

size to all other test cases. First, the skeleton of this �-sheet was generated by
sheetminer (Kong and Ma, 2003) and sheettracer (Kong et al., 2004). All eight strands
were successfully traced, as shown in Fig. 11.20 superimposed with the independently
solved crystal structure (Reinisch et al., 2000). The secondary structure assignment
was given by the algorithm DSC (King and Sternberg, 1996).

In the initial screening, a large number of accessible topologies were retained
and geometry filtering ranked the native topology as 116th. By combining the sheet
motif filter with the geometry filter, the native topology was ranked as 4th. When
eight topology candidates were processed by energetic analysis, the native topology
moved to 1st. In this case, despite the large deviations of the main chains of the
traced �-strands from the crystal structure, our method was still able to correctly
identify the native topology.

11.4.7 Concluding Discussion

Our computational method is fully applicable to determining topology for skeletons
of unknown structures. The procedure is to first use the initial screening to remove
any inaccessible topologies, then to use the geometry-based filter to rank all of
the accessible topology candidates, and finally, with an appropriate cutoff, to select
a fraction of accessible topologies for energetics analysis. This procedure does in
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many cases narrow down the native topology to be the most energetically favorable
one on the final list. Moreover, in real applications, any additional knowledge about
the structure can be used to filter the native topology. For example, if one knows
the identity of one or a few secondary structures in the density maps, it should be
enormously helpful for filtering out the nonnative topology candidates.

The method is not perfect at this stage. It suffers from the errors contained in
both structural measurement and secondary structural prediction. There are cases
where the method would fail to narrow down the native topology candidates as top
choices, particularly in cases where severe mismatch of secondary structures occurs
between the skeleton modeled from density maps and the assignment predicted from
sequence. Nevertheless, our method allows one to determine native protein topology
from fairly limited structural data. The basic concept involved in this study may also
be useful in structure prediction by allowing effective discrimination of nonnative
topology (fold) candidates from the native topology in the vast topology space.

Finally, the successful use of the ensemble average energy of randomly per-
turbed structures for evaluating topology candidates may also have an important
implication for threading research (Elofsson et al., 1996; Jones et al., 1995; Jones
and Thornton, 1996; Kihara et al., 2001; Lu et al., 2002; Miller et al., 1996; Skolnick
et al., 2001). One could in principle get a better answer in evaluating decoys if ef-
fective structural variations and averaging around the given template are taken into
account.

11.5 Future Perspectives

In the coming years, as the field of structure biology continues to deal with larger
and more complex systems, it is inevitable that the resolutions for some of them are
lower, experimental information available for structural modeling is more meager,
and thus computational modeling aided by partial experimental data is increasingly
more important. Other examples already in the literature include recent development
of computational methods that utilize small-angle X-ray scattering (SAXS) for as-
sisting low-resolution structural determination, in which the one-dimensional X-ray
scattering profile is used as a constraint for deriving three-dimensional structures
of small globular proteins (Wu et al., 2005) and large complexes (Costenaro et al.,
2005b; Davies et al., 2005b; Svergun et al., 2001; Svergun and Koch, 2002). Incom-
plete experimental data were also used to derive biological structures in NMR-related
fields.

In all of these cases, a common feature is that the effective resolutions of the
structures were significantly improved with the assistance of powerful computational
methods. It is expected that, in the near future, more and more new modeling al-
gorithms will be developed to effectively make use of those either incomplete or
low-resolution experimental data, from which no structural models can be built by
any conventional methods.
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