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I was a young organic chemist when I met Prof. Sergio Clementi, but from the
very first moment I understood that his guide to the world of Chemometrics
would have been a brainwashing for me. And indeed it was so. Sergio was a
splendid teacher and what I know in the field of QSAR and Chemometrics is
totally due to him.

From Sergio I learned the correct ways to produce mathematical models,
and the tricks to interpret them. However, it was immediately clear that Chemo-
metrics (and cheminformatics as well) can do very little when the numerical
descriptors are poor or not related to the phenomena under study.

Few years later I had another brainwashing when I met prof. Peter Goodford at
the European Symposium on QSAR in Sorrento (Italy). I was fascinated by his
presentation and science, and I decided to learn more about. I spent in Oxford
one year and Peter was a second scientific father for me. It was fantastic to com-
plete my background working side by side with a scientist who did so much in
the field of Structure-Based Drug Design. All I know on force-fields and numeri-
cal descriptions of complex phenomena such as (macro)molecular interactions
is due to him. From that moment I never stopped to use his software GRID.

When ADME-attritions rate was large and in silico ADME procedures were
still unknown, I went to Lausanne to learn pharmacokinetics working with Prof.
Bernard Testa. Again another important man in my scientific life. Bernard pushed
me deeply in the field of pharmacokinetics, and I was surprised to see how well
Peter Goodford’s GRID was working in such a different field.

My scientific career was guided and complemented by these scientists, and the
reasons why my interests are so sparse depend on their enthusiasm and imprint-
ing. However, one thing I have always used in all the problems I have encoun-
tered, or in all the procedure I developed. I have always used Molecular Interac-
tion Fields to describe the structures of chemical and biological systems. After so
may years of work, I’m still fascinated by the amount of information they contain.
One never finishes to find new ways to extract information from them. Moreover,
combining MIF with chemometric tools, is a powerful approach to all the fields of
computer assisted drug development.

This led to the production of different algorithms, all reported in this volume
and all based on Peter’s GRID force field. It is noteworthy that GRID-MIF are cur-
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VI

rently applied in structure based, pharmacodynamic and pharmacokinetic fields,
as well as in metabolism. Another proof, (although not necessary) of the versatili-
ty, flexibility and correct bio-parameterisation of Peter’s GRID force field.

This volume reports the MIF theory, and several applications of MIFs in differ-
ent arena of the drug discovery process. MIFs are decoding the common language
of the (macro)molecules, the molecular interaction potential. Using MIF is sim-
ple, interpreting them straightforward.

It was a privilege to work on this volume with such a distinguished group of
contributors, and I’m sure that this volume will open a window on the fascinating
world of Molecular Interaction Fields.

Finally, I want to acknowledge my coworkers at Perugia University, and Prof.
Raimund Mannhold and Prof. Hugo Kubinyi for their help, contribution and
encouragement to produce this book.

Perugia, June 2005 Gabriele Cruciani

A Personal Foreword
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XIV

Volume 27 of our series “Methods and Principles in Medicinal Chemistry” is dedi-
cated to “Molecular Interaction Fields” and their impact on current drug research.

In the early 1980s Peter Goodford developed the GRID force field for determin-
ing energetically favorable binding sites on molecules of known structure. The
GRID force field has always been calibrated as far as possible by studying experi-
mental measurements, and the calibration is then checked by studying how well
GRID predicts observed crystal structures. Crystal packing is determined by free
energy considerations rather than by enthalpy alone. The force field includes
entropic terms; GRID can detect the hydrophobic binding regions which are so
important when high-affinity ligands are being designed, and it can also detect
sites for the polar groups which determine ligand selectivity. GRID may be used
to study individual molecules such as drugs, molecular arrays such as membranes
or crystals, and macromolecules such as proteins, nucleic acids, glycoproteins or
polysaccharides.

Moreover GRID can be used to understand the structural differences related to
enzyme selectivity, a fundamental field in the rational design of drugs. GRID
maps can also be used as descriptor input in statistical procedures like CoMFA,
GOLPE or SIMCA for QSAR or 3D-QSAR analyses.

The GRID force field represents the basis for several software packages specifi-
cally developed for application to pharmacodynamic aspects of drug research,
including the programs ALMOND, Pathfinder, and FLAP or, in the ADME field,
the programs VolSurf and MetaSite.

Correspondingly, the present volume is quite logically divided into three sec-
tions. An introductory section contains two chapters dealing with the theoretical
background. The chapter of Peter Goodford, who originally developed the GRID
software, focuses in detail on the basic principles of GRID, whereas the chapter
by Rebecca Wade is dedicated to “Calculation and Application of Molecular Inter-
action Fields”.

The second section refers to pharmacodynamic aspects and contains chapters
on “Protein selectivity studies using GRID-MIF” by Thomas Fox, “The Complexity
of Molecular Interaction: Molecular Shape Fingerprint by PathFinder Approach”
by McLay, Hann, Carosati, Cruciani, and Baroni, “Alignment-Independent Descip-
tors from Molecular Interaction Fields” by Manuel Pastor, “FLAP: 4-point pharma-

Preface



XV

cophore fingerprints from GRID” by Perruccio, Mason, Sciabola, and Baroni as
well as a chapter on “3D QSAR using the GRID/GOLPE approach” by Wolfgang
Sippl.

The third and last section is dedicated to pharmacokinetics including chapters
on “Molecular Interaction Fields in ADME and Safety” by Cianchetta, Li, Single-
ton, Zhang, Wildgoose, Rampe, Kang, and Vaz, “MIF-based VolSurf descriptors in
Physicochemical and Pharmacokinetic studies” by Mannhold, Berellini, Carosati,
and Benedetti, “Progress in ADME prediction using GRID-Molecular Interaction
Fields” by Zamora, Ridderstr�m, Ungell, Andersson, and Afzelius, “Rapid ADME
filters for Lead Discovery” by Oprea, Benedetti, Berellini, Olah, Fejgin, and Boyer
and finally a chapter on “GRID-Derived Molecular Interaction Fields for Predict-
ing the Site of Metabolism in Human Cytochromes” by Cruciani, Aristei, Vianello,
and Baroni.

A remarkable peculiarity of this volume is the inclusion of a CD-ROM contain-
ing some software packages used in the three sections of the book.

The series editors believe that this book is unique in its topic and presentation
and adds a fascinating facet to the series. We are indebted to all authors for their
well-elaborated contributions and we would like to thank Gabriele Cruciani for his
enthusiasm in organizing this volume. We also want to express our gratitude to
Renate Doetzer and Frank Weinreich from Wiley-VCH for their valuable contribu-
tions to this project.

September 2005 Raimund Mannhold, D�sseldorf
Hugo Kubinyi, Weisenheim am Sand

Gerd Folkers, Z�rich
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Introduction





1
The Basic Principles of GRID
Peter Goodford

1.1
Introduction

One cannot go out and buy a computer program in the confident expectation that
it will do its job exactly as expected. Of course there are some things, like a lawn
mower, where a relatively quick and easy test can be made to discover if it is good
enough. Can it cut long grass? Cut wet grass? Does it pick up all the clippings?
Will it leave beautiful light and dark stripes on the lawn? However, a molecular
interaction field (MIF) is a good deal more complicated than a lawn mower, and it
is not at all easy to establish which MIF programs work in a satisfactory way. Each
program must be assessed very carefully before deciding what software should be
used for any particular task, and many different factors must be taken into
account. Some are obvious, like the available computer hardware; its speed; the
size of its memory; and the amount of disk space on the user’s system. Some are
less apparent, such as the objectives, priorities and overall philosophy of the peo-
ple who wrote the software, and the way in which they devised and calibrated their
MIF. The most important factor is to be certain in one’s own mind about the pre-
cise jobs which one wants the program to do.

1.2
Philosophy and Objectives

Even the most superficial study of molecular interaction fields shows that each
MIF has its own particular characteristics. This field may put great emphasis on
the accurate computation of the individual atomic charges. A different MIF may
give more attention to the way in which those charges are distributed between an
atom and its bonds, and a third may place some of each atom’s charge onto its
lone pair electrons. Another MIF may attempt to make accurate predictions of the
pKa of every polar atom, in order to be certain that each one is appropriately pro-
tonated before the MIF computations begin. Some fields may require the system
under investigation to have zero overall charge. Other fields will happily do com-
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putations on a couple of phosphate ions, for example, with none of the oxygens
protonated and no counter cations so that the two anionic phosphates move
remorselessly apart until they vanish at the edge of the universe! One field may
always compute the local pH, and another may need pH information as part of
the input data. This field may give detailed attention to estimating the local dielec-
tric environment and how it changes from place to place, while that one may
assume an arbitrary overall dielectric constant.
It is not only the electrostatic treatment which is different in each MIF, but also

other molecular characteristics. Many fields require all the hydrogen coordinates
to be defined, but some only need the location of hydrogen-bonding hydrogens,
and others take no specific account of any hydrogen positions. Some fields use
simple harmonic motion to describe bond vibrations, but others attempt to con-
sider deviations from harmonicity. Some have dedicated computations which deal
with hydrogen bonds, and others pay no particular attention to hydrogen bond ge-
ometry. Most fields do not allow for tautomeric changes, but some can take tauto-
merism into account and a few can cope with alterations in the hybridisation of
an atom. Some deal exclusively with enthalpy, but others can take account of
entropy which is a major component of the hydrophobic effect.
Whenever another research group begins to study MIFs, they introduce a new

perspective and a new set of ideas, so the extension and improvement of force
fields has been a matter of continuously improving approximations. There will
never be an absolutely correct MIF, but even the very earliest work was surpris-
ingly valuable. Huggins and Pauling [1] introduced their atomic radii seventy
years ago, but they immediately extended the understanding of crystal packing
and of many other properties. However no force field is perfect, and one can only
hope that the approximations will continue to improve in the years ahead.

1.3
Priorities

The priorities of the people who create any MIF are a concrete manifestation of
their scientific philosophy and overall objectives, and seven requirements seemed
particularly important when the GRID force field [2] was being designed:

1. This force field was explicitly intended for use with the GRID method.
2. The overall objective was to predict where ligands bind to biological macro-

molecules, and so gain a better understanding of the factors involved in
binding. However that improved understanding should also help in the
design of improved ligands.

3. The GRID force field could have been calibrated either by using theoretical
calculations, or by studying experimental observations, and after much dis-
cussion the experimental approach was adopted whenever possible.

4. The input data must always be thoroughly checked before every computa-
tion, and an associated program called GRIN was written to do this job.
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5. The equations used for the computation must be reasonably straightfor-
ward, so that anybody working in the drug-discovery field (biologist, phar-
macologist, medicinal chemist, crystallographer, clinician, statistician, pat-
ent expert, administrator etc.) could easily discover exactly how program
GRID had calculated any particular result.

6. It must be relatively easy for anybody working in the field to interpret the
output from GRID.

7. An annual reappraisal policy was established so that the worst features in
the current version of GRID would always be identified, and could be dealt
with appropriately in each successive year.

It is conventional to write impersonally about scientific research, but subjective
decisions are made when one decides which features are worst, or which objec-
tives are most important for a program. The personal pronoun “we” will therefore
be used in this article, whenever it is appropriate to draw attention to subjectivity.
“We” are still discussing priorities for the forthcoming release of GRID, but before
describing the GRID force field in detail we must first describe how the GRID
method actually works.

1.4
The GRID Method

There are many programs which can be used compute the electrostatic potential
around a molecule. A computer model is first prepared from the x, y, z coordi-
nates of the atoms, and this model is then surrounded by an imaginary orthogo-
nal grid.
The next step is to compute the work needed to bring a unit electrostatic charge

from infinity to the first point on the grid, and the total work required for this job
is a measure of the electrical potential at that particular grid point. The same pro-
cedure is then repeated for each of the other grid points, including those which
are actually inside the molecule, until the potential has been calculated for every
position.
At this stage it would be possible to print out the individual potential values as a

table of numbers for detailed study. The findings could then be used as input for
further computations, but studying a printed data table would be a rather clumsy
way of displaying the results, and a much better method is to create a three-
dimensional computer plot showing a contour surface surrounding the molecule.
This contour surface defines a single user-selected value of the electrostatic poten-
tial, and the final picture usually shows the molecule together with something
looking rather like a child’s balloon!
Program GRID works in very much the same way, but the objective is to obtain

chemically specific information about the molecule. An electrostatic potential
does not normally allow one to differentiate between favorable binding sites for a
primary or a secondary or a tertiary amine cation, or tetramethyl ammonium or
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pyridinium or a sodium cation, and the GRID method is an attempt to compute
analogous potentials which do have some chemical specificity. The generic name
“target” is given to the molecule (or group of molecules) being studied by GRID,
and the object used to measure the potential at each point is called a “probe”. The
individual potential values are called “GRID values” and the final computer plot is
called a “GRID map”. Many different probes can be used on the same target one
after the other, and each probe represents a specific chemical group so that chem-
ically specific information can be accumulated about the way in which the target
might interact favorably with other molecules.
The GRID method differs in three critical ways from traditional programs

which just display electrostatic potentials:
1. GRID probes are often anisometric.
2. The target “responds” when the probe is moved around it from place to

place.
3. It is assumed that both the target and the probe are immersed in water.

These differences must now be considered in more detail.

1.4.1
GRID Probes Are Anisometric

Most GRID probes are anisometric because each probe represents an atom or a
small group of atoms. For example a carbonyl oxygen probe is one oxygen atom
with a couple of sp2 lone pairs. It has a size and a polarizability and an electro-
static charge, and each lone pair can accept one hydrogen bond. The center of the
oxygen is placed at the first grid point, and a check is then made for unacceptably
bad close contacts. If none is found the program then searches for nearby hydro-
gen-bond donor atoms on the target, and a list of those donors is made and sorted.
Target atoms are rejected from the list if their donor hydrogens are pointing the
wrong way, and the probe is then rotated (keeping its oxygen fixed at the grid
point) so that its lone pairs will be oriented until they make the best possible
hydrogen bonds to nearby target atoms. When this has been done the GRID force
field is used to compute a GRID value for that particular probe at that particular
point, and the whole process is repeated systematically until the potential for car-
bonyl oxygen is known for every grid point on the map.
An aromatic sp2 hydroxy probe differs in several ways from carbonyl oxygen.

The oxygen atom of the hydroxy is placed at the grid point as before, but the probe
has a larger polarizability and makes hydrogen bonds of a different strength. It
can accept only one hydrogen bond, but the oxygen is bonded to a hydrogen atom
which can donate. If both the donor and acceptor hydrogen bonds are made si-
multaneously they will be mutually constrained towards the sp2 angle of 120�.
The bond length from the oxygen to its hydrogen is about 1 	, and the probe’s
donor hydrogen moves round the grid point at this distance when the probe is
rotated. Figure 1.1 shows the target with an sp2 hydroxy probe placed at the first
point, ready for the computation to begin.
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The sp2 carboxyl oxygen probe differs from both sp2 carbonyl and sp2 hydroxy,
having a much greater polarizability and much greater negative charge than
either. The sp3 aliphatic hydroxy probe is distinguished by making its hydrogen
bonds at the sp3 angle of 109� instead of 120�, and by accepting at two lone pairs
instead of just one. “Multi-atom probes” can also be used, such as aromatic car-
boxylate which represents the anion of a complete benzoic acid molecule. This
multi-atom probe has two sp2 carboxy oxygens both bonded to the carboxy carbon
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Figure 1.2. The initial orientation of an sp2 hydroxy probe at its GRID point.
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which is bonded to the aromatic ring. Each oxygen has a couple of lone pairs, all
appropriately oriented and of appropriate strength. Both oxygens are deprotonat-
ed, and they both have a substantial negative charge which is partly counterba-
lanced by a modest positive charge on the carboxy carbon, so the whole probe has
an overall charge of –1. Its oxygens are both identical, and one of them is fixed as
usual at the grid point. The whole multi-atom probe is then rotated to find all the
orientations in which it can make good hydrogen bonds to the target, and good
electrostatic interactions, while avoiding steric clashes. The chosen oxygen always
stays on its grid point, and the GRID potential for that point is computed when
the best orientation of the whole multiatom probe has been established.
A multiatom probe usually finds pairs of minima which would correspond in

this example to the two oxygens of the carboxylate group. Of course the computa-
tion for a multi-atom probe takes somewhat longer than the map for a simpler
probe, but the force field was written explicitly for the program and so GRID com-
putations are never particularly time consuming.

1.4.2
The Target “Responds” to the Probe

Figure 1.2 shows in more detail how an aromatic sp2 hydroxy probe might be
placed on its grid point at the start of a cycle of computation. In this figure the
hydrogen of the probe happens to be pointing by chance towards a nearby serine
residue of the target. The orientation of the probe is completely random at this
early stage of the job, but with a slight readjustment GRID can make the probe’s
hydrogen point directly at the serine’s side chain sp3 hydroxy oxygen. A hydrogen
bond could then be formed and that would be quite a good arrangement, but a
better one is shown in Fig. 1.3. Program GRID has to search and find the better
alternative, and must do three things to make this happen:

1. GRID has to rotate the probe, while keeping its oxygen firmly anchored at
the grid point, until its hydrogen is redirected towards the nearby backbone
sp2 carbonyl oxygen as shown in Fig. 1.3.

2. The probe then has to spin about an imaginary sp2–sp2 axis (A in Fig. 1.3)
which links it to the backbone carbonyl oxygen, until the probe’s own lone
pair points as directly as possible towards the sp3 hydroxy oxygen of the
serine.

3. The sp3 hydroxy group of the serine must finally spin about bond B which
links it to the to the rest of the protein, until its hydrogen points as well as
possible towards the probe’s lone pair.

This rotation of the serine oxygen is called the “response of the target to the
probe”, and finding the best response is often a much more complicated job than
it appears in Fig. 1.3. There are usually many different hydrogen bonding groups
on or near the surface of the target, reasonably close to the probe, as shown in
Fig. 1.4, and they must all be taken into account.
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Methods are provided in GRID so that the user can adjust the size of the
“response.” For instance he could prevent the serine hydroxy from rotating on its
axis, if he knew that it was already making another strong hydrogen bond which
would be broken if the probe interacted as described above. There is also a lysine
side chain shown near the top of Figs. 1.2, 1.3 and 1.4, but the NH3

+ group of that
lysine cannot reach the probe at its grid point as things are shown in the figures.
However resetting one of the directives would allow the lysine side chain to swing
down, and perhaps make a useful hydrogen-bond interaction with the probe. The
directives are always set by default so that things like this do not happen, and long
side chains like the lysine do not normally search around during a regular GRID
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Figure 1.3. Rotational adjustments of the probe. See text.

Figure 1.4. The final position of the probe showing additional
features of the binding site. See text.
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run, unless the user has made a positive decision to release them. That kind of
decision can only be taken after a thorough study of the binding site of the pro-
tein. The user must understand some or all of its properties, and this enhance-
ment of the user’s understanding was a major objective when program GRID was
being written.

1.4.3
The Target is Immersed in Water

The concept of electrical potentials was developed by physicists in the 19th cen-
tury, and they quite naturally took a vacuum as their reference state. The dielectric
constant of a vacuum is 1.0 by definition, and many of the early experiments on
electrostatics were made in air which has a dielectric constant very close to unity.
However biological systems are full of water, and biologists must invoke a dielec-
tric constant of up to 80 in order to make traditional electrostatic calculations. It is
therefore hardly surprising that MIF computations in biological systems tend to
give unstable results, when such a large dielectric correction factor must be used.
The GRID force field was designed on a more appropriate basis for biology. It is

assumed a priori that the environment surrounding the target has a bulk dielec-
tric of 80, and that the dielectric diminishes towards 4 in the deep center of a large
globular macromolecule. These are the default values which were used in calibrat-
ing the MIF, but of course each user can alter them to any reasonable alternative
during his own GRID runs. It has been reported [3] that a value between 10 and
20 gives results which agree better with experiments on small molecules.
Some years ago a large oil company wanted to use program GRID for calcula-

tions on zeolites. These are minerals, and it was first necessary to calibrate several
elements such as silicon which had not previously been used in GRID runs. Pre-
liminary computations were then started, but the results from zeolites were mis-
leading. A bulk dielectric of 80 would clearly be inappropriate in this case, because
zeolites are used at approximately 300 �C for oil refining and are therefore com-
pletely dry. However it was impossible to find any dielectric values which yielded
satisfactory results for zeolites, and this seems to demonstrate that one should not
expect a single MIF to work for every system. Each force field should be calibrated
for the job in hand, and much more sophisticated methods are needed if one
wishes to study all 100 elements in all experimental conditions. GRID and its
force field must be restricted to the wet biological environment for which they
were calibrated.

1.5
The GRID Force Field

The target is always prepared and checked by an associated program called GRIN
which is used before the actual GRID run begins, and perhaps the most impor-
tant job of GRIN is the amalgamation of every nonpolar hydrogen atom of the
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target with its neighboring heavy atom to give an “extended atom”. Consider, for
example, a very small target H3C–CH3 consisting of one ethane molecule. GRIN
will represent this by two extended methyl atoms instead of two carbons plus six
hydrogens, and this condensation of eight real atoms into a pair of extended
atoms allows the GRID programme to run much faster. Of course there is some
loss of accuracy, but real targets for GRID are usually much more complicated
than ethane. Real targets usually have conformationally flexible side chains, and it
is very easy to place too much emphasis on the exact hydrogen coordinates of a
biological macromolecule when those hydrogens have not even been observed by
the X-ray crystallographer.
Programme GRIN also checks the target for errors, and the GRID run then

begins. The GRID energies are usually computed pairwise between the probe at
its grid point and each extended atom of the target, one by one. Recent releases of
the program include more terms, but early versions used only three energy com-
ponents for each pairwise energy EPAIR:

EPAIR = ELJ + EQ + EHB (1)

1.5.1
The Lennard-Jones Term

The ELJ term in Eq. (1) is the well-known “Lennard-Jones energy”, and is com-
puted as the sum of two terms:

ELJ = (Adi – Bdj) F (2)

in which i = –12 , j = –6 and F=1. A and B are positive constants which are chosen
so that ELJ will be calculated in kcalmol–1, and d is the distance between the probe
at its grid point and the extended atom of the target. The first term Adi is always
positive, and represents the repulsion of the atoms for each other if they are unac-
ceptably close together. The second term –Bdj is negative and measures their
induction and dispersion attractions for each other.

1.5.2
The Electrostatic Term

EQ is an electrostatic term computed as EQ = q1q2/dD where q1 is the charge of the
probe, q2 the charge of the extended target atom, and D is the dielectric constant
value to be used when their pairwise electrostatic interaction is calculated. Com-
puting D is a slow business [2] because a square-root calculation is always re-
quired, and many atom pairs must be studied in a GRID run. D must be esti-
mated individually for each pair, and extensive tests have shown that acceptable
results cannot be obtained reliably unless all pairwise values of D and EQ are
worked out. Of course it is very tempting to ignore EQ if the interacting atoms are
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more than 20 (or 30 or 40) 	 apart, but this attractive short cut is unacceptable
because it often gives rise to significant errors. The method finally adopted [2] to
compute D is based on classical electrostatics [4] with the important additional
assumption that one is dealing with a system of two homogeneous phases sepa-
rated by a flat planar surface. It is easy to construct models in which the assump-
tion of a flat surface can give rather misleading results, but in practice this does
not seem to happen very often and the general approach for calculating D seems a
reasonable approximation.

1.5.3
The Hydrogen Bond Term

EHB is a hydrogen bond term [5–7] which is used only when one of the interacting
atoms can donate a hydrogen bond and the other can accept. Equation (2) is again
used but the constants A and B now have values which depend on the chemical
nature of the interacting atoms, and the function F depends on their hybridisation
and the relative positions of the interacting atoms and their bonded neighbors.
EHB and ELJ both define relatively short-range effects, and are set to zero if the
interacting atoms are more than a few Angstroms apart.

1.5.4
The Other Terms

The ELJ, EQ and EHB functions are very simple, but they are also very well known
which gives them one particularly important advantage: everybody understands
them and can judge and criticise them for themselves. Moreover GRID displays
by default the individual ELJ, EQ and EHB and dielectric D values for every pairwise
interaction, and so the source of any suspected error can usually be discovered
very easily. After careful analysis it may then turn out that GRID did not make the
suspected error, and that the user’s worries were misplaced. Irrespective of the
final outcome, the user may gain an enhanced understanding of the system by
checking things like this for himself, and this enhanced comprehension was a
major objective when the program GRID was first being written.
As mentioned above, there is an ongoing policy to search continually for the

worst features in the current release of GRID, and then to take account of them.
Later versions of the programme therefore include many extra terms which were
not present in the original EPAIR function. For instance:

1. When there is a rather close contact between a target and a probe atom, the
computed ELJ value may be strongly positive, suggesting mutual repulsion.
However, if EHB is simultaneously negative the atoms may actually be close
together because they are making a hydrogen bond to each other, and
GRID must detect when this happens and then allow EHB to override ELJ.

2. An adjustment must be made for the effect of an atom’s charge upon the
strength of the hydrogen bonds which it makes. For example hydrogen
atoms bonded to an aliphatic carbon do not normally participate in hydro-
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gen bonding. However GRID must take special account of the alpha car-
bon atom at the N-terminal of a protein chain, because this carbon some-
times donates a hydrogen bond as it can pick up positive charge from the
nearby cationic N-terminal nitrogen.

3. Metals now receive special attention in GRID according to their hardness
or softness.

4. Some water molecules in a biological system appear to make four tetrahe-
dral sp3 hydrogen bonds. Others donate two hydrogen bonds but accept
only one, making these three interactions in roughly the same plane.
GRID must therefore be able to deal with both the flat and the tetrahedral
arrangements.

5. The input programme GRIN always checks the overall electrostatic charge
of the target, and expects nucleic acids to be surrounded by a cloud of coun-
terions which maintain overall electroneutrality. However the ions were
not mobile in early releases of GRID, and GRID maps of DNA were there-
fore full of holes which surrounded each counterion. They looked rather
like a Swiss cheese, but GRID Probes can now nudge the counterions out
of the way and thus generate a GRID map without misleading holes.

6. Some water molecules near a target may be so strongly bound that they
almost behave like a part of the target itself. GRID must therefore treat
each of these waters in a way which depends on its particular environment.
For example, a water already bound to two carboxy groups would normally
be donating a hydrogen bond to each carboxy oxygen, and would be much
more likely to accept a hydrogen bond from the probe than to donate. On
the other hand, a water already accepting from a couple of arginine guani-
dinium NH2 groups would be most likely to donate to the probe. GRID
must therefore be able to examine each water of the target and take its
local environment into account.

7. The force field now incorporates entropy terms. For instance a lysine side
chain of the target can adopt only one or two conformations when fully
extended towards a distant probe, but can assume more conformations to
reach a probe which is nearer, and GRID must be able to allow for this.

8. There is now a “hydrophobic probe” which detects hydrophobic regions on
the surface of the target, and this probe must also take account of entropy.

The list of interesting special cases could be extended indefinitely. GRID will deal
automatically with some of them, and directives are provided so the user can
decide how to deal with others.
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1.6
Nomenclature

Several different types of oxygen atom have already been mentioned including
sp2 carbonyl oxygen, sp2 carboxyl oxygen, sp2 hydroxy, sp3 hydroxy, phosphate
oxygens, aliphatic ether oxygen and furan oxygens. All of these have the same
chemical symbol O, but each type of oxygen has its own specific properties. One
needs to have a straightforward list of this detailed information for each kind of
atom, showing all its characteristics on one line across the page or visual display
screen. In order to reduce the amount of data on each line we therefore decided to
give each atom a “Type” number which would specify its hybridisation and other
electronic properties. Carbonyl oxygen for example, is a Type 8 oxygen.
Many different ways of tabulating the necessary information have been pro-

posed by scientists working in various international agencies, national labora-
tories, universities and companies. The system adopted for GRID is based on the
methods of the Protein Data Bank (PDB). Their nomenclature was agreed after
extensive international discussions between workers in many fields, and it divides
atoms into two distinct categories: “ATOM” and “HETATM”.

1.6.1
“ATOM” Records

ATOM records are used to specify molecules which occur frequently in biological
systems. These are called the “known molecules” and include amino acids, heme,
cofactors, some of the “unnatural” amino acids used by medicinal chemists and a
variety of molecules of general interest to GRID users. Here is a Protein Data
Bank ATOM record:

ATOM 234 NZ LYS 28 21.361 29.854 65.530 1.00 81.36

and some aspects of this record require a brief explanation:
1. The PDB nomenclature uses the first six characters on a line in order to

define different kinds of record, and this is an “ATOM” record.
2. The PDB nomenclature defines the sequence in which the atoms of a pro-

tein must be specified, and this happens to be the 234th atom of its pro-
tein.

3. The abbreviated name of each amino acid is also defined, and LYS is the
abbreviated name for this amino acid which is lysine.

4. The name of each atom of an amino acid is defined, and this is “nitrogen
zeta” of the lysine. The abbreviated name for this atom is defined as NZ.

5. This lysine is the 28th amino acid residue along the protein chain.

The next three numbers are the x, y, and z coordinates of this particular atom,
measured in Angstrom using orthogonal reference axes. They are essential input
data for any MIF, but the last two numbers 1.00 and 81.36 which represent the
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relative occupancy and isotropic temperature factor of the atom in the protein
crystal, are not used by GRID.
A valuable characteristic of PDB format is that so much relevant information

can be condensed into about 60 characters at the start of a line. The rest of the
line can then be used by GRID for all the other data which are needed to specify
the properties of an atom. The input program GRIN prepares all this data automa-
tically, and writes it at the end of the line after the first 60 characters.

1.6.2
“HETATM” Records

Of course GRID users also need to study all sorts of molecules as well as proteins,
and PDB format provides “HETATM” records as an easy way for doing this. If the
user wanted for some special reason to define his protein structure using
HETATM records, the same atom in the same molecule would appear like this :

HETATM 25 N3+ MOL 1 21.361 29.854 65.530 1.00 81.36

Notice the similarities and differences between the ATOM and HETATM records:
1. All the numbers and symbols are lined up in the same columns as before,

but the record now begins with the word HETATM instead of ATOM. This
name HETATM is an abbreviation for “heteroatom”.

2. The protein is no longer being treated as a string of amino acids, but as a
single molecule which can be given any molecule number (in this case 1).

3. The molecule is now called MOL instead of using the specific name LYS
which was required by PDB format for lysine in a protein. GRID can accept
any three-letter name for a molecule when HETATMs are being used,
except names such as LYS which are reserved for “known molecules”.

4. The sequence of ATOM records in a molecule is specified by PDB format.
However HETATM records can be listed in any sequence, and the nitrogen
has been moved to the 25th row of the new HETATM file. There is nothing
special about its new position, and the user could just as easily have moved
it to the first or last row of the file, or left it where it was.

5. There is a convention for HETATM names in GRID. They indicate the
structure of the atom, so this N3+ nitrogen is a HETATM with three
bonded hydrogens and it is positively charged as indicated by the + sign.
Note in particular that 3 is the count of bonded hydrogens, and not the
hybridisation which by coincidence is also sp3 in this case. Hybridisation
and other electronic properties are defined by the type of an atom which is
determined by the input programme GRIN when it prepares the data.

6. The x, y, z coordinates are unchanged, and the last two numbers 1.00 and
81.36 have not been altered. They will be overwritten by GRIN when it pre-
pares the input data.
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1.7
Calibrating the GRID Force Field

It is often convenient to think of drugs and proteins in terms of their chemical
formulae and three-dimensional structures. However, an alternative interpretation
is to regard the structure as nothing more than a set of frictionless rods and levers
which transmit forces from one part of the system to another. This is the philoso-
phy which underlies GRID, and it puts the main emphasis onto thermodynamics
rather than structure. However it does raise a number of problems:

1. When the thermodynamic viewpoint has been adopted, it is the free energy
of the system rather than the chemical structure of the molecules which
needs the most careful study. Free energies can be most conveniently com-
puted for reversible equilibria, and so the results from GRID should apply,
strictly speaking, only to equilibrium systems. GRID has been found in
practice to give useful predictions [8–11], but it is not easy to estimate the
size of any errors caused by deviations from equilibrium.

2. Some free energy changes in biology are almost vanishingly small, while
others may be greater by several orders of magnitude. The biggest changes
often correspond to covalent reactions which break the “rods and levers”,
and these can completely swamp the weaker effects. We therefore decided
to study only the ground state at body temperature, and so the GRID force
field is not applicable to ligands which bind covalently to their receptor. In
many cases this may just be another way of saying that GRID predictions
are restricted to reversible equilibrium systems.

3. It is the differences and not the similarities between one drug molecule
and another which are important, and the calibration of the GRID force
field must be sensitive enough to differentiate between similar yet different
atoms. For instance it would have been easy to assign the same parameters
to the oxygen of an aliphatic ether and the oxygen of furan, but GRID
would not have been able to differentiate between those two kinds of oxy-
gen atom if this had been done. We therefore decided not to restrict the
number of atom types in the force field, and we always welcome sugges-
tions from GRID users, although the calibration of a new atom type is a
nontrivial job which may take some considerable time. However, more
than 10 different types of oxygen atom and 20 types of nitrogen have now
been calibrated for GRID as a result of this policy.

4. One of the earliest decisions was to calibrate the GRID force field whenever
possible by using experimental measurements rather than theoretical com-
putations, and calorimetric measurements were therefore needed for the
initial calibration in order to differentiate the enthalpic and entropic contri-
butions to the overall free energy. However, only a very little calorimetric
data was readily available at that time, about well characterised biological
systems in which the structures of the interacting ligand and macromole-
cule were both known, and so a different approach was initially needed.
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Fortunately several other kinds of experimental data were available for calibrating
the GRID force field. Crystallographic measurements provided values for the Van
der Waals radii of many atoms in all sorts of molecules, and corresponding but
shorter radii were estimated for atoms making hydrogen bonds to each other.
Many experimental determinations of atomic polarizabilities have been reported,
and these were used together with the number of outer-orbital electrons in an
atom to predict its Lennard-Jones interaction energy ELJ. The observed structure of
a molecule allows one to determine the bond order and hybridisation of its atoms,
and hence to predict the maximum number of hydrogen bonds which each atom
can donate and accept. Atomic charges can, in principle, be deduced from accu-
rate X-ray data, but relatively few X-ray observations are precise enough for this
job and theoretical methods were therefore used to estimate atomic charges. This
only left the hydrogen-bond strength as an undetermined variable to be fitted to
the observations.
All the necessary data was collected together in a file called GRUB which is

revised whenever a new version of the program GRID is released. The first part of
the GRUB file contains data values for ATOMS in known molecules (The natural
amino acids, heme, cofactors, etc.). For example, there is an entry for the NZ
ATOM of lysine. The second part of GRUB has individual HETATM values, and
so it has an entry for N3+.

1.7.1
Checking the Calibration

Very many crystallographic observations have been reported on ligands bound to
macromolecules. The structure of these complexes is usually measured to within
a fraction of an Angstrom, and the formation of the crystals is determined by free
energy. We therefore decided to use these readily available, crystallographically ob-
served, ligand-macromolecule structures in order to check and refine the GRID
force field after the initial calibration. In the absence of appropriate calorimetric
measurements one cannot know whether enthalpy and entropy each make their
appropriate contributions to the overall energy values computed by GRID. How-
ever as crystal structures were used to check and refine the force field, it seemed
reasonable to hope that GRID would be able to predict the location of favorable
binding sites, and this is indeed the case [8,11].

1.7.2
Checking Datafile GRUB

Users may often want to edit their copy of GRUB, or copy it from one directory to
another, and of course mistakes may be made. It is therefore easy for errors to
creep into the stored parameters, and so various kinds of check are made:

1. The input programme GRIN always analyses the input data before each
new GRID computation. It checks both the structure of the target and the
integrity of datafile GRUB, and warns the user about any doubtful features
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in either file. In particular, it always reports the overall electrostatic charge
of the target, because MIF computations can give very misleading results if
the total charge of the whole system is significantly different from zero.

2. We frequently check GRID maps prepared from high resolution X-ray
structures, because significant calibration errors in datafile GRUB would
cause a systematic bias in the output. Many mistakes in the datafile were
corrected in this way when GRUB was first being prepared, but such
changes are not required so often now.

3. Regular users would quickly detect errors in the output from GRID by
visual inspection of their maps, and we have had valuable feedback from
users for many years. They would let us know very quickly if probes were
being systematically predicted in the wrong place. In the 1986 release of
GRUB, for example, something was wrong with the amino acid histidine
and it was a great help to learn about this from a user.

4. Another kind of check comes from people who use the results generated
by GRID as input data for further computations. For instance, we learned
in 1997 that GRID was giving statistically biased results for compounds
which contained acetylenic carbon atoms, and we had not been aware of
this until a GRID user informed us. A reappraisal showed that relatively
little information about acetylenes had been available when the GRID
force field was first being parametrised, and a slight adjustment brought
acetylene into line with the rest of the calibration data once we knew about
the bias. This shows that the statistical analysis of GRID results can make
an important contribution to the improvement of the force field.

Particular emphasis must be placed on the importance of checking all the input
data before beginning any MIF computation. Of course error checking is not a
satisfying job, but more problems seem to occur because of input errors than for
any other reason. Program GRIN always checks the input thoroughly by default,
and this helps to diminish the workload, but some users ignore error messages or
try to save a little time by altering directive LEVL to a low value which turns off
checking altogether. This is not recommended, and for our own research we never
set LEVL in programme GRIN below the default value of 3.

1.8
The Output from GRID

The GRID method was explicitly designed in order to get selective information
about binding sites, and the output can be used in two quite distinct ways:

1. To prepare GRID maps which are intuitively easy to understand, and can
therefore provide a focal point for discussions between people with back-
grounds in different fields of science, and indeed for people with little for-
mal scientific training.

2. To generate matrices of numerical data which can be analysed statistically.
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This article is not the place in which to consider statistical methods in detail, but
the use of GRID maps to interpret interesting features of molecular structures
will now be described.

1.8.1
GRID Maps from Macromolecules

Figure 1.5 shows an amphipathic alpha helix whose structure as part of a large
globular protein was observed by X-ray crystallography. No hydrogens are dis-
played, and the helix has been separated from the rest of the protein in order to
have an uncluttered figure. The side of the helix which faces towards the bottom
of the page contains alanine, leucine and similar hydrophobic amino acids. The
opposite side of the helix (the top side in the figure) has a prominent lysine side
chain and other polar groups. This type of amphipathic helix has often been ob-
served floating on the outside surface of globular proteins, with its hydrophobic
amino acids facing towards the globular centre and its polar side chains in the
surrounding water phase.
The flexible side chain of the lysine (CH2–CH2–CH2–CH2–NH3

+) is displayed in
an all-trans conformation in Fig. 1.5 because it was assigned all-trans coordinates
by the X-ray crystallographer. An all-trans structure like this is often reported
when the atoms of a side chain are in such vigorous dynamic thermal motion that
they cannot be detected by X-ray methods. Arbitrary all-trans coordinates are then
assigned by default, because the crystallographer knows that the amino acid is
lysine from the DNA sequence although he cannot observe the side chain atoms
himself.
The GRID map in Fig. 1.5 was deliberately prepared in order to demonstrate

how easy it is to obtain misleading results when inappropriate directives are
thoughtlessly used for an MIF computation. GRID would never normally generate
such a deceptive map, and a special set up was needed in order to force it to pre-
pare Fig. 1.5 at all. The blue sphere marks the terminal N3+ group of the lysine
side chain, and GRID was deliberately used on the implausible and unrealistic
assumption that the helix and its side chains were all completely rigid. There are
three energy minima (colored red in the figure) corresponding to the three hydro-
gen atoms of the cationic nitrogen, and these minima misleadingly suggest that
an incoming ligand would be able to make particularly favorable interactions in
these three highly localised positions. This must be an incorrect conclusion if the
side chain is actually sweeping backwards and forwards in vigorous motion across
a relatively wide region.
Figure 1.6 shows what happens when slightly more appropriate settings are

used for the GRID run. Torsional rotation of the sp3 amino group is now allowed
round the terminal CH2–NH3

+ bond of the side chain, and so a halo is generated.
The halo in Fig. 1.6 is not a uniform ring because there would be eclipsing be-
tween the CH2 and NH3

+ hydrogens at some torsion angles, and eclipsing would
be energetically unfavorable. This description of the NH3

+ interactions might be
reasonable if the methylene groups of the side chain were buried within the bulk
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Figure 1.5. An alpha helix with a lysine side
chain. The terminal NH3

+ group of the lysine
is marked with a blue sphere. GRID was
deliberately misused to prepare this figure on
the unrealistic assumption that the helix and
its side chains were all completely rigid.

This GRID map is therefore misleading, and
this figure demonstrates how important it is
to use MIF programs with great care because
it is very easy to obtain deceptive results by
misusing any MIF program. See text.

Figure 1.6. The same helix, but torsional rotation of the terminal side chain bond
is now permitted, and this map is slightly more realistic than Fig. 1.5. See text.
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Figure 1.7. The same helix when the whole side chain is allowed to move freely.
GRID now detects a favorable binding site where the hydroxy group (red sphere)
of a threonine side chain and the terminal NH3

+ group (blue sphere) of the lysine
can both interact simultaneously with the probe. See text.

Figure 1.8. Some residues near the surface of another protein. GRID is used to elucidate why
the polar arginine and nonpolar tryptophan side chains pack so closely together. See text.
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of the protein, as they often are in some proteins because methylene is a hydro-
phobic moiety. Movement of the buried methylenes would then be restricted, and
the most significant torsional rotation in the lysine side chain might be around
the CH2–NH3

+ bond. However, the methylene groups of the lysine in Fig. 1.6 are
not deeply buried, and the side chain with its nitrogen is actually free to move
over a wide region, so Fig. 1.6 is nearly as misleading as Fig. 1.5.
Programs GRIN and GRID always search the target for any small parts which

can move freely. However the user must set a dedicated directive (called MOVE) if
he wants this feature to be used in his computations. This directive never allows
total flexibility because the whole structure of the target might then unravel.
Domains are always treated as rigid units, and when MOVE has been set the helix
backbone is still treated as a rigid domain. However side chains can now move
[12], and the resulting GRID map is shown in Fig. 1.7.
A small red sphere now marks the hydroxy group of a nearby threonine which

is on the same side of the helix as the NH3
+ of the lysine, and directive MOVE

alerts GRID to the proximity of these two polar groups. GRID then tests whether
the flexible lysine side chain could reach far enough in the direction of the threo-
nine, so that a probe might be able to interact with both the NH3

+ and the threo-
nine hydroxy group at the same time. In this example the geometry is acceptable,
but the torsional flexibility of the lysine would be restrained by its interaction with
the probe, and an entropic allowance must be made for this. However the enthal-
pic benefit of two good hydrogen bonds outweighs any entropic penalty for tor-
sional restraint, and so this is a particularly appropriate place for an incoming li-
gand.
The red region in Fig. 1.7 shows where a probe would be located when interact-

ing with both the threonine hydroxy and the lysine NH3
+ groups. However, it was

necessary to contour this GRID map at a slightly more negative energy level than
Fig. 1.6 in order to show the result clearly, and Fig. 1.7 was therefore contoured at
an energy roughly corresponding to a pair of hydrogen bonds. At this energy level
there is no blurring due to the weaker interactions which the NH3

+ group would
make as it searched through wide regions alone at the end of its side chain, and
the absolute minimum near the threonine is unmistakable in the GRID map.
A completely different application of GRID is illustrated in Fig. 1.8 which

shows several amino acids in the cytokine binding region of the human protein
gp130. The surface of the protein faces towards the bottom left corner of the fig-
ure, and there is a sandwich structure in this part of the macromolecule where
alternate tryptophan (TRP) and arginine (ARG) side chains lie one above each
other like slices in a loaf of bread. The close-packed TRP–ARG relationship is
unexpected because arginine is one of the most polar amino acids, while the side
chain of tryptophan consists almost entirely of nonpolar hydrocarbon groups.
GRID maps suggest an interpretation of this structure. Tryptophan has two aro-

matic rings with nine CH and CH2 groups but only one nitrogen which can make
one hydrogen bond and no more. Arginine is very polar because it has a perma-
nent cationic charge and three nitrogen atoms in a guanidinium group which can
donate up to five hydrogen bonds. The cationic charge of guanidinium tends to

22



1.8 The Output from GRID

increase the strength of its donated bonds, but arginine would never accept a
hydrogen bond from a tryptophan side chain. Moreover a glance at Fig. 1.8 shows
that the observed geometry does not permit the hydrogen bonding of either
ARG180 or ARG182 to the nearby tryptophan rings, and it is most surprising that
such very polar residues should be squashed between the hydrophobic trypto-
phans in such an apparently unfavorable position. Arginines also have long flex-
ible side chains which are frequently found in vigorous motion, like the lysine in
Fig. 1.7, but the X-ray findings from gp130 show that the side chain methylene
groups of ARG180 and ARG182 are not moving much more than the adjacent
main-chain alpha-carbon atoms. This is another surprising feature of the observed
structure, because there must be an entropic penalty when these flexible side
chains are so firmly pinned down.
The PDB structure for this protein (PDB Reference: 1BQU) was therefore edited

to remove the side chains of TRP192, TRP195 and TRP151, and thus make way
for GRID probes to explore the volume normally occupied by these bulky moi-
eties. The edited file was then used to prepare a target for GRID, and the contours
in Fig 1.8 were generated using the hydrophobic probe on this target. The trypto-
phan side chains are shown in their observed positions (although the map itself
was generated when they were absent), and the contours show that GRID predicts a
hydrophobic region roughly surrounding each tryptophan ring. Further examina-
tion shows that the extended methylene chains of arginines 180 and 182 are
almost ideally arranged for making hydrophobic interactions with the trypto-
phans, although 144 has a less favorable crumpled conformation.
However, it is not only the arginine methylene groups which generated the

hydrophobic contours. GRID also predicts that the top and bottom faces of the
arginine guanidinium groups can make favorable hydrophobic interactions,
because the hydrogen bonds of guanidinium are so very firmly constrained to the
plane of the guanidinium system. This is particularly well shown by the contours
surrounding TRP195, which extend well beyond the reach of the methylene
groups in the side chains of ARG180 and ARG182.
One must conclude that hydrophobic interactions may stabilise the multilayer

TRP–ARG sandwich of gp130, in spite of the different character of these two
amino acids, and in spite of the entropic penalty mentioned above. However the
gp130 crystals themselves came from a solution which contained glycerol mole-
cules and sulfate ions, and both of these components were trapped in the crystals
where they may have helped to stabilise the observed protein structure. It would
not be altogether surprising if some alternative conformation or conformations of
gp130 may also occur in vivo, if those somewhat unphysiological substances are
not present in the human body in sufficient concentrations to stabilise the struc-
ture as observed.
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1.8.2
GRID Maps from a Small Molecule

Leucine is an amino acid, and is one of the building blocks of proteins. It has a
nitrogen atom which is shown as a blue sphere in Fig. 1.9, a pair of oxygens both
shown in red, and a small cluster of hydrophobic groups shown as yellow spheres
towards the left of the figure. Hydrogen atoms are not displayed in order to keep
the picture as clear and simple as possible, but the N3+ nitrogen (blue) has three
bonded hydrogens and is therefore cationic. The carboxy oxygens have no bonded
hydrogens and are negatively charged, so the molecule taken as a whole is electri-
cally neutral.

This very simple target was chosen in order to demonstrate the selectivity of the
GRID method. The yellow contours (A) were generated using the hydrophobic
probe, and they show that one part of the amino acid is nonpolar and very hydro-
phobic. Binding clefts on biological macromolecules often expose a hydrophobic
surface, and it is very important to detect the hydrophobic surfaces of ligands if
one wishes to design high affinity molecules.
The blue contours (C) in Fig. 1.9 were generated by the N3+ cationic amine

probe which makes good hydrogen bonds to the (red) carboxy oxygen atoms of the
target. When generating these blue contours GRID takes account of the fact that
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Figure 1.9. A molecule of leucine with GRID maps for a hydrophobic probe
(A, yellow); a multiatom cis-amide probe (B, red); and an sp3 NH3

+ probe
(C, blue). See text.
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both the interacting atoms are charged, and can therefore make a particularly
strong hydrogen bond to each other. GRID also takes account of the local dielec-
tric, and the electrostatic attraction between the target’s oxygens and the cationic
probe is therefore attenuated towards the right of the figure, because this is where
the probe would be most exposed to the higher dielectric of the surrounding bulk
water.
It is important to give careful consideration to apparently small details in a

GRID map. The carboxy group in Fig. 1.9 may appear to be symmetrical, but the
blue contours are stronger round the oxygen at the bottom of the figure. This dif-
ference between the oxygens may be caused by two quite distinct influences:

1. The upper oxygen is closer to the cationic nitrogen N3+ of the leucine, and
so the cationic N3+ probe may experience an unfavorable electrostatic
repulsion when it is close to the leucine nitrogen’s cationic charge.

2. The bottom oxygen in the figure is partly shielded from bulk water by the
hydrophobic moiety (yellow spheres) of the target, and so its dielectric envi-
ronment may tend to favor the electrostatic attraction of a cationic probe.

The red contours (B) at the top of Fig. 1.9 were generated by a multiatom amide
probe CO.NH which was arranged cis so that its hydrogen and oxygen are both on
the same side of the CN axis. This multiatom probe therefore detects regions
where it can donate a hydrogen bond from its nitrogen and can accept at its car-
bonyl oxygen. It sits between the N3+ group and a carboxy oxygen of the target,
and is at a slightly awkward angle because the hydrogen bonding atoms of the
target do not line up perfectly with those of the multiatom probe.
There are many other selective probes which can be used to elucidate the prop-

erties of a target. For instance the “amphipathic probe” finds boundary surfaces
where a part of the target with polar characteristics touches neighboring hydro-
phobic regions. It would draw attention to a boundary of this type which runs up
the middle of Fig. 1.9 where it separates the polar nitrogen and oxygen atoms on
the right from the hydrophobic carbons towards the left of the figure. Each addi-
tional probe provides qualitatively different information, and competing research
groups may reach interestingly different conclusions when studying the same set
of molecules simply because they select different probes for their investigations.

1.9
Conclusions

The design of molecular interaction fields has been a matter of continuously
improving approximations, and no force field is perfect. It is therefore critically
important to choose the right MIF for each particular job, and the GRID force
field was explicitly designed for use with the GRID method. This is an approach
which generates selective information about binding sites on proteins, therapeutic
agents and other important biological molecules of known structure. The output
is intuitively easy to understand, and can provide a focal point for discussions be-
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tween people with backgrounds in different fields of science. Results from GRID
can also be analysed statistically.
In this chapter some emphasis has been placed on the subjective influences

which can often modify the results of force field computations, and examples of
subjective decision making have been provided. However the need to make deci-
sions can enhance the GRID user’s intuitive understanding of noncovalent inter-
actions between molecules, and this enhancement was a prime objective when
the GRID method was first being devised. Figures 1.5, 1.6 and 1.7 show how
important it is to have a proper understanding of the system under investigation,
if one wants to obtain meaningful results.
The GRID force field has always been calibrated as far as possible by studying

experimental measurements, and the calibration is then checked by studying how
well GRID predicts observed crystal structures. Crystal packing is determined by
free energy considerations rather than by enthalpy alone, and recent versions of
the force field include entropic terms. GRID can detect the hydrophobic binding
regions which are so important when high-affinity ligands are being designed,
and it can also detect sites for the polar groups which determine ligand selectivity.
The GRID method is being systematically extended, and new versions are issued
from time to time.
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2
Calculation and Application of Molecular Interaction Fields
Rebecca C. Wade

2.1
Introduction

Molecular interaction fields (MIFs) can be calculated for any molecule of known
three-dimensional (3D) structure. A MIF describes the spatial variation of the in-
teraction energy between a molecular target and a chosen probe. The target may
be a macromolecule or a low molecular weight compound or a molecular com-
plex. The probe may be a molecule or a fragment of a molecule. MIFs can be
applied in many ways [1]. They can guide the process of structure-based ligand
design, their original intended application in the GRID program [2]. They may be
used to dock ligands to macromolecules [3–5]. They are frequently used to derive
quantitative structure–activity relationships (QSARs) for low molecular weight
compounds [6] but can also be used to study the structure–activity relationships of
macromolecules [7, 8]. MIFs can also be applied to the prediction of pharmacoki-
netic properties, such as in the VolSurf methodology [9].
In this chapter, I will first describe how MIFs are computed and then give

selected examples of how MIFs can be applied. MIFs will be described primarily
with reference to their calculation with the GRID program [10]. Other programs
may be used to compute MIFs; these have different energy functions and parame-
trizations.

2.2
Calculation of MIFs

2.2.1
The Target

The starting point for a MIF calculation is provided by the atomic coordinates of
the target molecule. These may have been determined experimentally or theoreti-
cally. In many calculations of MIFs, the target is treated as a rigid structure. How-



ever, in applications, it is often important to treat target flexibility, at least partially.
There are several strategies for doing this:
. Compute MIFs for multiple conformations of the target; the conformations
may come from an NMR ensemble or from conformational searches or molecu-
lar dynamics simulations.

. Permit adaptation of the position of some atoms in the target to optimize the
interaction energy of the probe during calculation of the MIFs. In the GRID
program, this is routinely done for rotatable hydrogen atoms. It is also possible
for the user to do calculations with specified side chains containing several
nonhydrogen atoms treated as movable in response to the probe position.

The target is also usually considered to have a single titration state and to be unaf-
fected by the position of the probe. However, the GRID program does allow for
probe-induced switching between histidine tautomers.
The target may consist of a single molecule or a complex of molecules or mole-

cules and ions, such as e.g. for metalloproteins. Well ordered water molecules
may also be considered part of the target. GRID also permits the possibility for a
water-bridged target–probe interaction to be considered without a priori defining
the position of the water molecule. The remaining solvent molecules are treated
as a continuum that modulates the interaction energy between probe and target
and may also have an entropic effect on the probe–target interaction.

2.2.2
The Probe

MIFs are computed for positions of the probe at points on a rectilinear grid super-
imposed on the target. It is this grid that gives the GRID program its name.
Grids of target–probe interaction energy values can be read into many molecu-

lar graphics programs which can display the MIFs as isoenergy contours or pro-
ject the energies onto molecular surfaces.
The probe is placed at each grid point in turn to compute a MIF. At its simplest,

the probe is a unit positive charge representing a proton; in this case the MIF is
the molecular electrostatic potential (MEP). Most probes are spheres parametrized
to represent a specific atom or ion type. Hydrogen atoms are usually treated impli-
citly. For example, a carbonyl carbon atom and a methyl CH3 group are both treat-
ed as spherical probes but the methyl probe has a larger radius because of the
hydrogen atoms bonded to the carbon atom. Polar hydrogen atoms that can make
hydrogen bonds can also be treated implicitly but the directional character of their
hydrogen bonds must also be modelled (see below).
Nonspherical probes containing more than one nonhydrogen atom may also be

used. In this case, the relation between the probe position and orientation and the
grid point is not completely symmetric and has to be defined. In the GRID pro-
gramme, a carboxylate group, for example, is treated as a 3-point probe with one
of the oxygen atoms centered on the grid point. At each grid point, the probe is
rotated around the grid point oxygen to energetically optimize its orientation.

2 Calculation and Application of Molecular Interaction Fields28



2.2.3
The Interaction Function

Above, MIFs have been described as fields of probe–target interaction energies.
The MIFs thus provide information on where the favorable and the unfavorable
locations for the probe around the target are. The probe–target interaction func-
tion is typically an empirical molecular mechanics energy function. Its functional
form is chosen to represent the underlying physical interactions and the function
is parametrized against experimental observations. The energy function may con-
tain explicit entropic terms or be parametrized such that it represents an interac-
tion free energy rather than just an interaction energy. More recently, functions,
sometimes referred to as potentials of mean force or knowledge-based functions,
derived from statistical analysis of molecular structures have been derived to map
out favorable and unfavorable locations for a probe with respect to a target mole-
cule [11–15]. These functions, unlike an energy function, are not required to take
a physically meaningful form. Given enough experimental data, they may repro-
duce experimental observations better than empirical energy functions but this
can be at the disadvantage of a lack of analytical differentiability and of a transpar-
ent physical interpretation. They are most often used as scoring functions for li-
gand docking but some can be used to compute MIFs.
The empirical energy functions used to compute MIFs can consist of the sum

of one or more terms. In the GRID program, the energy function is given by the
following terms:

E ¼ EVDW þ EEL þ EHB þ S (1)

where EVDW is the van der Waals energy, EEL is the electrostatic energy, EHB is the
hydrogen-bond energy and S is an entropy term.

2.2.3.1 Van der Waals Interactions
Atomic repulsion and induced dipole–induced dipole dispersive attraction are typ-
ically described by a Lennard-Jones function [16, 17]:

EVDW ¼ P

pt

A
r12pt

� C
r6pt

(2)

This is summed over all probe (p)–target (t) atom pairs and is a function of the
distance, rpt, between the atoms in the pair, which have van der Waals radii, Rp

and Rt. A ¼ 0:5CðRp þ RtÞ6 and C is given by the Slater–Kirkwood formula [18]
and is dependent on atomic polarizability and the number of effective electrons
per atom.
The functional form of the repulsive part is purely empirical and was chosen by

Lennard-Jones to fit experimental data for rare gases and because of its computa-
tional convenience. For some uses of MIFs, it is useful to make the repulsion less
abrupt by using a lower power of distance, e.g. rpt8. This has the advantage that

292.2 Calculation of MIFs
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the MIF calculation is less sensitive to the atomic positions and thus more robust
to errors in atomic coordinates or to the effects of atomic motions.

2.2.3.2 Electrostatic Interactions
Electrostatic interactions have long-range character. This makes them very impor-
tant for MIF calculations. The simplest way to compute the electrostatic interac-
tions is to compute a Coulombic energy:

Eel ¼
P

pt

qpqt
4pe0 errpt

(3)

where e0 is the permittivity of free space, er is the relative dielectric constant of the
surrounding medium, and qp and qt are partial atomic point charges in the probe
and target respectively.
The difficulty with computing electrostatic calculations is that molecular sys-

tems are heterogeneous media composed of molecules with different dielectric
properties. The solvent is usually treated implicitly as a dielectric continuum.
While water has a value of er of about 80, proteins have been assigned values of er
ranging from 2 to 80, varying according to location and type of calculation. To
account for the environment, er may be assigned a constant value or treated as a
function of interatomic distance, rpt . To account for the dielectrically discontinu-
ous boundary between molecules and the implicit solvent, the method of images
may be used (as in GRID), or the Poisson(–Boltzmann) equation solved.
The method of images treats the dielectric boundary as an infinite plane whose

effect can be modelled by the addition of image charges. Computation of the elec-
trostatic energy using the method of images requires estimation of the depths of
the atoms in the target. In GRID, this is done by counting the number of neigh-
boring target atoms within a specified distance and translating this into a depth
using a precalibrated scale [2].
Numerical solution of the Poisson–Boltzmann equation permits the irregular

shape of the dielectric boundary to be accounted for. Finite difference and multi-
grid methods on grid(s) superimposed on the target molecule are the most com-
monly used methods to solve the Poisson–Boltzmann equation. Details of solu-
tion of the Poisson–Boltzmann equation for biomacromolecules are given in refer-
ences [19–22]. To solve the Poisson–Boltzmann equation, a suitable value of the
dielectric constant for the molecular interior and the definition of the dielectric
boundary must be chosen. These are adjustable parameters to be fitted in the con-
text of the complete energy function, the treatment of molecular flexibility, and
the properties to be computed [23, 24]. The dielectric boundary can be chosen as
the van der Waals surface, the solvent accessible molecular surface (mapped by a
solvent probe surface) or the solvent accessible surface (mapped by a solvent probe
center). The choice of dielectric boundary definition can significantly impact the
magnitude of electrostatic binding free energies [25, 26].
Suitable partial atomic charges must be assigned in order to compute the elec-

trostatic energy. As for all other molecular mechanics calculations, it is important
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that all the charges are consistent with each other and with all the other parame-
ters and the complete energy function. The charges used in different empirical
energy functions or force fields may vary considerably but this difference may be
compensated in other parts of the energy functions. Charges may be derived from
ab initio or semiempirical quantum mechanical calculations, or simpler approach-
es such as electronegativity equalization. Overall, the energy function may be
parametrized to reproduce structural properties and/or energetic properties such
as solvation energies.
Specific polarization effects, beyond those modelled by a continuum dielectric

model and the movement of certain atoms, are neglected in MIF calculations.
Many-body effects are also neglected by use of a pair-wise additive energy func-
tion. Polarizable force fields are, however, becoming more common in the molec-
ular mechanics force fields used for molecular dynamics simulations, and MIFs
could be developed to account for polarizability via changes in charge magnitude
or the induction of dipoles upon movement of the probe.

2.2.3.3 Hydrogen Bonds
Hydrogen bonds are important for MIF calculations because of their specificity.
Hydrogen bonds are short-range, directional interactions that have distance and
angular dependences on the arrangements of the atoms involved. The strength of
hydrogen bonds is determined by a combination of attractive electrostatic, charge-
transfer, polarization and dispersion components and a repulsive electron-
exchange component, all of whose relative magnitudes vary. In many molecular
mechanics force fields, hydrogen bonds are modelled implicitly by means of Cou-
lombic and van der Waals terms. However, in some, including GRID, there is a
separate hydrogen-bond term [27–29]. A special hydrogen-bond term is particular-
ly important for a polar probe like a water molecule that is modelled as a sphere
with two implicit hydrogen atoms but for which, nevertheless, the geometry of
the hydrogen bonds that it makes must be treated explicitly [29].
In GRID, the hydrogen-bond energy is the product of three terms:

Ehb ¼ ErptE
h
t E

f
p (4)

The functional form and parametrization of these three terms is empirical and
constructed to reproduce experimentally observed structures in the context of the
complete energy function. Initially, these were mostly small molecule structures
from the Cambridge Structural Database (CSD). As the number of protein struc-
tures determined experimentally has grown, the Protein Databank (PDB) has
become the primary source of structural data for parametrizing hydrogen-bond
functions. For example, in recent work it was possible to develop a hydrogen-bond
angular function for fluorine atoms occurring in ligands in GRID based on obser-
vations in the Protein Databank [5].
Erpt is dependent on the separation between target and probe nonhydrogen

atoms participating in the hydrogen bond. It has the form:
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Erpt ¼
M
rmpt

� N
rnpt

(5)

where M and N depend on the chemical nature of the hydrogen-bonding atoms.
Possible values of the m and n parameters are m = 6, n = 4; m = 8, n = 6 (as in
GRID); m= 12, n= 10.
The angular terms take different functional forms depending on the chemical

types of the hydrogen bonding atoms and whether they are in the probe or the
target. The angular dependence differs for the same atom type in the probe and in
the target. This is because the target includes the interactions of the hydrogen-
bonding atom’s neighbors whereas these are absent for the probe. The probe also
has more freedom to rotate to an optimal orientation than a hydrogen-bonding
atom in the target. At each grid point, the probe is rotated to the orientation that
results in an optimal hydrogen-bond energy and, when there are multiple hydro-
gen bonds possible, the best combination is found by systematic search or analyti-
cally. In GRID, the target hydrogen atoms and lone pairs of electrons in the target
may also be allowed to move to make the most favorable hydrogen bonds with the
probe. For an sp3-hybridized hydroxy group, for example, the hydrogen assumes
the position on a circular locus perpendicular to the C–O bond and subtending a
tetrahedral angle to the C–O bond that results in the most energetically favorable
interaction with the probe.

2.2.3.4 Entropy
When a probe binds a target molecule, it may displace ordered water molecules
and it may result in ordering of a flexible part of the protein. Both these events
have entropic effects. To account for these, an entropy term has been included in
more recent versions of GRID and takes different forms according to the type of
calculation. It is computed when parts of the target are treated as flexible, when
the probe interactions are compared to that of water, and for the hydrophobic
probe, known as the 
DRY’ probe.
The entropic cost of reducing the flexibility of the target by binding a probe can

be estimated by a term proportional to the reduction in the number of accessible
target rotamers when the probe–target interaction is energetically favorable. It
should be born in mind that this is a very approximate way to estimate the entro-
pic change due to a change in mobility upon binding. Binding can be entropically
unfavorable or favorable due to changes in the motions of a target protein upon
binding a ligand [30]. Experimental [31, 32] and theoretical [33] studies suggest
that protein backbone entropy can increase upon ligand binding, particularly to
stabilize binding of a small hydrophobic ligand, and that the increased protein
mobility can be remote from the ligand binding site. These effects are difficult to
account for in MIF calculations in which the probe is only a fragment of a ligand;
the rotamer-dependent entropic term provides a measure of entropic cost local to
the probe position.
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In GRID [10], the favorable entropic contribution due to the displacement
of one water molecule from a hydrophobic surface is assumed constant. Its value
is obtained by comparing the possible hydrogen bond combinations that the water
molecule can form when at the hydrophobic surface and when in bulk water. In
bulk water, the water molecule is assumed to make three hydrogen bonds from
the possible four and there are four possible combinations of three hydrogen
bonds (1,2,3; 1,2,4; 1,3,4; 2,3,4). The entropy change is simply given by
RTln(4) = –0.848 kcalmol–1. This value is larger in magnitude than a typical attrac-
tive Lennard-Jones interaction between two atoms (about –0.2 kcalmol–1) but
smaller in magnitude than a typical hydrogen-bonding interaction (about –2 to
–4 kcalmol–1).
The hydrophobic effect can be ascribed to entropic and enthalpic effects. The


DRY’ probe detects hydrophobic regions. It can be considered to be like an

inverse’ water probe. It makes a Lennard-Jones interaction in the same way as a
water probe. It is also neutral like a water probe and has no electrostatic interac-
tion term. The hydrogen-bond energy is however inverted to reflect the fact that
polar parts of the target that are able to make hydrogen bonds will not be energet-
ically favored next to a hydrophobic probe. In addition, the constant entropic term
of –0.848 kcalmol–1 is added to the total interaction energy. The 
DRY’ hydropho-
bic probe is very useful for detecting hydrophobic patches on proteins and can
also be used in ligand docking.

2.3
Selected Applications of MIFs

2.3.1
Mapping a Ligand Binding Site in a Protein

The classic way to use MIFs is to identify energetically favorable binding sites on a
macromolecular target for probes and use these to design better binding ligands.
This was done, for example, by Mark von Itzstein and colleagues, when they iden-
tified an energetically favorable site for an amino or guanidino group in the active
site of the influenza virus neuraminidase using GRID [34]. This enabled a transi-
tion-state analogue lead compound to be modified by adding a guanidine substitu-
ent and this resulted in the drug, Relenza, which is used clinically against influ-
enza. The application of GRID MIFs to the design of anti-influenza agents is
reviewed in [35].
The computation of MIFs is generally very helpful for identifying regions where

substituents could be added to known ligands and then using the MIFs in con-
junction with docking or de novo design tools to design further compounds [36,
37]. MIFs may also be applied to detecting selective regions by visual comparison
of MIFs with different probes or with different targets, or in a systematic way by
the GRID/PCA procedure [38]. GRID is also often applied to the location of bind-
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ing sites for ordered water molecules in biomacromolecules, particularly water
molecules bridging protein–ligand interactions, see e.g. [39].

2.3.2
Deriving 3D-QSARs

Probably the most widespread application of MIFs is the derivation of 3D-QSARs
by the CoMFA [6] or GRID/GOLPE [40, 41] approach for low molecular weight
compounds. A series of compounds for which experimental measurements of
binding or activity have been made is modelled and the structures are aligned.
MIFs are computed for each molecule and then the values of the MIFs at the grid
points are correlated with activities using PLS (Partial least squares projection to
latent structures). Important regions around the molecules for explaining differ-
ences in activity in the series are detected and these guide the further design of
new molecules.
That this approach is also applicable to macromolecules was demonstrated

recently in a study of WW domains [7]. WW domains are small domains (ca.
40 amino acids) occurring in a wide variety of proteins, with a characteristic
sequence that includes two tryptophan (W) residues. They form a three-stranded
beta sheet and are stable without the formation of disulfide bridges or the pres-
ence of cofactors. WW domains bind to peptides that are often proline rich. There
are several classes of WWdomain, each having different peptide binding specifici-
ty. To compare and classify the binding properties of a set of WW domains, MIFs
were computed for the WW domains. MEPs were compared by PIPSA (see
below). MIFs were correlated with measurements of binding to one peptide, a pro-
line-rich peptide containing tyrosine, which one class of WW domains recognises.
A set of 23 WW domains was used to build the 3D-QSAR models, including WW
domains that recognise tyrosine-containing peptides, as well as WW domains that
can be considered representative of 
nonbinders’ to tyrosine-containing peptides.
3D-QSAR models were made with both the GRID/GOLPE combination (GRID

used for computing MIFs and GOLPE [42] used for chemometric analysis) and
with CoMFA (with computation of MIFs and chemometric analysis as implemen-
ted in SYBYL (Tripos)). For the GRID/GOLPE model, several probes (CH3, DRY,
H, PO4 and combinations of these) were tested. The methyl (CH3) probe was
found to describe the surface properties (mainly the shape properties) relevant for
explaining the tyrosine recognition activity best and was therefore used to build
the final GRID/GOLPE PLS model. A four latent variable (component) model was
obtained with excellent fitting (R2 = 0.99) and predictive performance (Q2 = 0.88,
standard deviation of errors of prediction SDEP = 0.03) determined by leave-one-
out analysis. The most important regions for binding specificity to tyrosine-con-
taining peptides detected in the GRID/GOLPE model are shown by the labeled
contoured regions in Fig. 2.1. With CoMFA, molecular electrostatic and steric
fields were computed for the region of the peptide binding site. In the CoMFA
QSAR model, which gave values of Q2 = 0.6 and SDEP =0.07, the same three
regions also contributed most. The region of positive coefficient was detected not
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only by the steric field but also by the electrostatic one, consistent with the large
residues being positively charged at residue 35 of the WWdomains.
The MIF-based QSAR models fit well with the known peptide specificities of

the WW domains, and aid identification of the important determinants of binding
specificity.

35

Figure 2.1. Results of chemometric analysis
by the GRID/GOLPE method for 23 different
WWdomains. (a) Plot of the predicted vs.
experimental NMR chemical shift perturba-
tion (CSP). (b) Important contributions to
recognition of tyrosine-containing peptides
are shown. The WW domain (WWP3-1) is

shown in blue, the peptide in yellow, and the
PLS coefficients for the GRID/GOLPE model
for a methyl probe are shown by the contours.
Positive weighted PLS coefficients (contour
level 0.00005) are colored green, negative PLS
coefficients (contour level –0.00005) are
colored yellow, respectively. Adapted from [7].
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2.3.3
Similarity Analysis of a Set of Related Molecules

For one or several targets, MIFs can be analysed visually. However, it is not unusu-
al to need to analyse the interaction properties of tens to thousands of molecules.
In this case, computed MIFs must be analysed automatically. This can be done by
computing similarity indices (SI) that permit the similarity of the MIFs of two
molecules to be described by one number. If SI = 1, the MIFs are identical. If
SI < 1, the MIFs differ. There are a number of expressions for computing MIFs.
Commonly used definitions are the Carbo and Hodgkin indices. These were first de-
veloped for comparing the quantum mechanically computed electron densities and
potentials of small organic compounds [43]. They can equally well be used to compare
the MEPs and other MIFs of macromolecules, as well as small molecules.
Similarity indices of MIFs can be used to aid classification of compounds

according to activity. This is exemplified by a similarity analysis of auxin plant hor-
mones and related compounds [44, 45]. In a training set, about 50 compounds
related to auxins were divided, on the basis of a biological assay and similarity
analysis, into four classes: active auxin, weak auxin activity with weak antiauxin
behavior, inactive and inhibitory. Further auxin-related compounds from a test set
were then classified by a procedure to compare similarity indices for MIFs for the
compounds with representative training set compounds for each of the classes.
MIFs were computed with the GRID program for four probes: H2O, –NH2

+, –CH3

and =O (carbonyl oxygen). The molecules were aligned either by optimizing the
MIF similarity at the molecular surface or by the similarity of atomic properties,
with biasing towards electrostatic or steric properties. All the three-dimensional
structures of the compounds, as well as the similarity data, can be explored inter-
actively in [45], which is freely accessible on the web. This MIF-based similarity
analysis was recently combined with estimation of log P and log D values, using
VolSURF [9], which is also based on GRID MIFs [46]. This led to improvement in
predictions of biological activity for certain types of auxin-like compound, showing
that their biological activity depends both on receptor binding and lipophilicity.
The recent solution of the crystal structure of an auxin binding protein (ABP1)
permitted docking studies for the auxin compounds. These yielded computed bind-
ing modes in which the carboxyl group of the auxin-like compounds coordinates a
zinc ion and the rest of the compound is accommodated in a rather hydrophobic
pocket of the protein binding site. The presence of the zinc ion was unknown at the
time of the original MIF-based similarity analysis and no metal ion probe was used
for the MIF calculations. Nevertheless, the binding modes were consistent with the

ligand-only’ alignment and similarity analysis. The docking showed that both auxins
and inhibitors could bind in the active site but that the antiauxins did so in a way that
could hinder subsequent signal transfer and auxin response.
For proteins, a similarity analysis is typically most revealing for the MEP but

can be computed for other MIFs. The MIF similarity analysis is implemented in
PIPSA (Protein Interaction Property Similarity Analysis) [8, 47] (The PIPSA soft-
ware can be obtained via http://projects.villa-bosch.de/mcm/). In the PIPSA pro-
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cedure, the proteins are aligned using a structure-based alignment, MIFs are com-
puted on a grid superimposed on the molecules, similarity indices are computed
by summation over all points within a defined skin around the proteins and within a
user-defined arc. The arcmay be chosen to cover a specific binding region or the active
site or may include the whole protein skin. The matrix of pairwise similarity indices
obtained may be subjected to clustering, principal component analysis or tree analy-
sis. PIPSA has been applied to diverse types of proteins including PH domains [47],
WW domains [7], cupredoxins [48] and E2 ubiquitin conjugating enzymes [49].
In application to 33 cupredoxin electron transfer proteins, both the MEP and

the GRID 
DRY’ hydrophobic probe MIF were used [48]. The DRY probe results
correlate better with sequence comparison of the proteins than the MEP PIPSA
results. This is because the MEP at a given grid node is governed by residues dis-
contiguous in space and extending some distance from the node. The hydropho-
bic probe energy is, on the other hand, governed by short-range interactions for
which contiguous sequence plays a greater role (see Fig. 2.2). The analysis showed
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Figure 2.2. Pairwise percentage sequence
identity for 33 cupredoxins plotted against (A)
hydrophobic MIF similarity index and (B)
electrostatic potential similarity index. The
linear regression correlation coefficients

are respectively, r2= 0.61 and r2= 0.17. The
electrostatic potential similarity index is not
well correlated with sequence identity
because it is determined by relatively long
range interactions. Adapted from [48].
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how proteins in the same sequence subfamily could have different binding speci-
ficities and how proteins in different sequence subfamilies could have similar rec-
ognition properties resulting in isofunctionality. It also showed how proteins with
low sequence identity could have sufficient similarity to bind to similar electron
donors and acceptors while having different binding specificity profiles. Both the
presence of a hydrophobic patch near the site of electron transfer and the electro-
static potential distributions were found to be important in determining the elec-
tron transfer specificity of this family of proteins.
Application of similarity analysis to WW domains was most revealing for the

MEP [7]. This showed how a set of 42 WW domains could be classified according
to MEP, in accordance with known peptide binding specificities, see Fig. 2.3.
In the case of E2 ubiquitin conjugating enzymes, the interaction properties of

about 200 protein structures were compared [49]. The pairwise similarity matrix
was visualized as a dendrogram and a kinemage projection to three-dimensional
space (see www.ubiquitin-resource.org). The analysis revealed relations between
functional groupings and electrostatic properties at specific parts of the protein
structure.

2.4
Concluding Remarks and Outlook

MIFs provide a very useful way to analyse the interaction properties of a known
molecular structure, be it of a macromolecule or a small molecule. A number of
different software packages can be used to compute MIFs, each using different
definitions of MIFs and parametrizations. The user needs to make a careful
choice of probe type(s), and accordingly the interaction function for computing
the MIF. MIFs can be used in many ways ranging from visual analysis of one MIF
to automated comparison and correlation of the data in many MIFs. MIF compu-
tations can guide and complement other types of calculation such as molecular
docking and design.
While MIF functions have been developed over about two decades, there is still

scope for improvement. Improvements are motivated by the increasing amount
of experimental data on the structures of macromolecule–ligand complexes, and
the need to account more completely for the physical properties governing probe–
target interactions. The flexibility of the target, while partially accounted for, is still
incompletely treated, both in terms of conformational sampling and in terms of
the energetics, and particularly the entropic contributions. Solvent effects are sim-
ilarly incompletely treated. Changes in protonation and polarization upon binding
also need to be better described. Nevertheless, the current functions for comput-
ing MIFs generally give good agreement with experiment and are very valuable
components of the molecular designer’s toolkit.
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Figure 2.3. Electrostatic potential dendro-
gram constructed from an electrostatic
potential distance matrix for a set of 42 WW
domains showing four clusters. WW domains
are colored according to their peptide ligand
binding preferences. Four WW domains
representative of the clusters are shown with
positive (blue) and negative (red) electro-
static isopotential contours. In the cluster of

predominantly positive potential WW
domains are WWdomains binding phos-
phorylated peptides; in the cluster of predo-
minantly negative potential WW domains are
WWdomains binding peptides containing a
positively charged residue. The WWdomains
in the other two clusters show specificity
towards neutral peptides. Adapted from [7].



2 Calculation and Application of Molecular Interaction Fields

Acknowledgments

I am indebted to Dr Peter Goodford for his excellent guidance through my doc-
toral studies on GRID and its applications, and for continuing support. I thank all
my former and present group members whose work is referred to in the referenc-
es and applications. Financial support from the Klaus Tschira Foundation is grate-
fully acknowledged.

40

References

1 R. C.Wade, Molecular Interaction
Fields, in 3D QSAR in Drug Design. The-
ory, Methods and Applications, H. Kubinyi
(ed.) ESCOM, Leiden, 1993, pp. 486–
505.

2 P. J. Goodford, A computational proce-
dure for determining energetically
favorable binding sites on biologically
important macromolecules. J. Med.
Chem. 1985, 28, 849–857.

3 G. Wu, D. H. Robertson, C. L. Brooks,
Detailed analysis of grid-based molecu-
lar docking: A case study of CDOCKER-
A CHARMm-based MD docking algo-
rithm, J. Comput. Chem. 2003, 24,
1549–1562.

4 G. M. Morris, D. S. Goodsell, R. Huey,
A. J. Olsen, Distributed automated
docking of flexible ligands to proteins:
parallel applications of AutoDock 2.4.
J. Comput. Aided Mol. Des. 1996, 10,
293–304.

5 E. Carosati, S. Sciabola, G. Cruciani,
Hydrogen Bonding Interactions of
Covalently Bonded Fluorine Atoms:
From Crystallographic Data to a New
Angular Function in the GRID Force
Field, J. Med. Chem. 2004, 47, 5114–
5125.

6 R. D. Cramer, D. E. Patterson, J. D.
Bunce, Comparative molecular field
analysis (CoMFA). 1. Effect of shape on
binding of steroids to carrier proteins,
J. Am. Chem. Soc. 1988, 110, 5959–5967.

7 K. Schleinkofer, U. Wiedemann, L. Otte,
T. Wang, G. Krause, H. Oschkinat, R. C.
Wade, Comparative Structural and Ener-
getic Analysis of WW Domain-Peptide
Interactions, J. Mol. Biol. 2004, 865–881.

8 R. C. Wade, R. R. Gabdoulline and F. De
Rienzo, Protein Interaction Property
Similarity Analysis, Int. J. Quantum
Chem. 2001, 83, 122–127.

9 P. Crivori, G. Cruciani, P. A. Carrupt,
B. Testa, Predicting blood-brain barrier
permeation from three-dimensional
molecular structure, J. Med. Chem.
2000, 43, 2204–2216.

10 P. J. Goodford, GRID, Molecular Dis-
covery, www.moldiscovery.com.

11 J. Gunther, A. Bergner, M. Hendlich,
G. Klebe, Utilising structural knowledge
in drug design strategies: applications
using Relibase, J. Mol. Biol. 2003, 326,
621–636.

12 M. I. Zavodsky, P. C. Sanschagrin, R. S.
Korde, L. A. Kuhn, Distilling the essen-
tial features of a protein surface for
improving protein-ligand docking, scor-
ing, and virtual screening, J. Comput.
Aided Mol. Des. 2002, 16, 883–902.

13 D. R. Boer, J. Kroon, J. C. Cole,
B. Smith, M. L. Verdonk, SuperStar:
comparison of CSD and PDB-based in-
teraction fields as a basis for the predic-
tion of protein-ligand interactions,
J. Mol. Biol. 2001, 312, 275–287.

14 H. Gohlke, M. Hendlich, G. Klebe,
Knowledge-based scoring function to
predict protein-ligand interactions,
J. Mol. Biol. 2000, 295, 337–356.

15 M. B�hm, G. Klebe, Development of
New Hydrogen-Bond Descriptors and
Their Application to Comparative Mo-
lecular Field Analyses, J. Med. Chem.
2002, 45, 1585–1597.

16 J. E. Lennard-Jones, Cohesion Proc. Phys.
Soc. 1931, 43, 461–482.



References 41

17 J. E. Lennard-Jones, On the determina-
tion of Molecular Fields. II. The equa-
tion of state of a gas. Proc. R. Soc. Lon-
don Ser. A. 1924, 106, 463–477.

18 J. C. Slater, J. G. A. Kirkwood, Phys. Rev.
1931, 37, 682–686.

19 F. Fogolari, A. Brigo, H. Molinari, The
Poisson–Boltzmann equation for bio-
molecular electrostatics: a tool for struc-
tural biology, J. Mol. Recognit. 2002, 15,
377–392.

20 N. A. Baker, Poisson–Boltzmann meth-
ods for biomolecular electrostatics,
Methods Enzymol. 2004, 383, 94–118.

21 D. Bashford, Macroscopic electrostatic
models for protonation states in pro-
teins, Front. Biosci. 2004, 9, 1082–1099.

22 M. Neves-Petersen, S. Petersen, Protein
electrostatics: a review of the equations
and methods used to model electrostatic
equations in biomolecules – applica-
tions in biotechnology, Biotechnol.
Annu. Rev. 2003, 9, 315–395.

23 E. Demchuk, R. C. Wade, Improving
the Continuum Dielectric Approach to
Calculating pKas of Ionizable Groups in
Proteins, J. Phys. Chem. 1996, 100,
17373–17387.

24 C. Schutz, A. Warshel, What are the
dielectric “constants” of proteins and
how to validate electrostatic models?
Proteins 2001, 44, 400–417.

25 T. Wang, S. Tomic, R.R. Gabdoulline,
R.C. Wade, How Optimal are the Bind-
ing Energetics of Barnase and Barstar?
Biophys. J. 2004, 12, 1563–1574.

26 F. Dong, M. Vijayakumar, H.-Y. Zhou,
Comparison of calculation and experi-
ment implicates significant electrostatic
contributions to the binding stability of
barnase and barstar, Biophys. J. 2003, 85,
49–60.

27 D. N. A. Boobbyer, P. J. Goodford, P. M.
McWhinnie, R. C. Wade, New Hydro-
gen-bond Potentials for Use in Deter-
mining Energetically Favourable Bind-
ing Sites on Molecules of Known Struc-
ture, J. Med. Chem. 1989, 32, 1083–1094.

28 R. C. Wade, K. Clark, P. J. Goodford,
Further Development of Hydrogen
Bond Functions for Use in Determining
Energetically Favorable Binding Sites on
Molecules of Known Structure. 1. Li-
gand Probe Groups with the Ability To

Form Two Hydrogen Bonds, J. Med.
Chem. 1993, 36, 140–147.

29 R. C. Wade, P. J. Goodford, Further De-
velopment of Hydrogen Bond Functions
for Use in Determining Energetically
Favorable Binding Sites on Molecules of
Known Structure. 2. Ligand Probe
Groups with the Ability To Form More
Than Two Hydrogen Bonds, J. Med.
Chem. 1993, 36, 148–156.

30 M. J. Stone, NMR relaxation studies of
the role of conformational entropy in
protein stability and ligand binding,
Acc. Chem. Res. 2001, 34, 379–388.

31 L. Zidek, M. V. Novotny, M. J. Stone,
Increased protein backbone conforma-
tional entropy upon hydrophobic ligand
binding, Nat. Stuct. Biol. 1999, 6,
1118–1121.

32 S. Arumugam, G. Gao, B. L. Patton,
V. Semenchenko, K. Brew, S. R. Van
Doren, Increased backbone mobility in
beta-barrel enhances entropy gain driv-
ing binding of N-TIMP-1 to MMP-3,
J. Mol. Biol. 2003, 327, 719–734.

33 B. Tidor, M. Karplus, The contribution
of vibrational entropy to molecular asso-
ciation. The dimerization of insulin,
J. Mol. Biol. 1994, 238, 405–414.

34 M. von Itzstein et al., Rational design of
potent sialidase-based inhibitors of
influenza virus replication, Nature 1993,
363, 418–423.

35 R. C. Wade, 
Flu’ and Structure Based
Drug Design, Structure 1997, 5, 1139–
1146.

36 M. T. Pisabarro, A.R. Ortiz, A. Palomer,
F. Cabre, L. Garcia, R.C. Wade, F. Gago,
D. Mauleon, G. Carganico, Rational
Modification of Human Synovial Fluid
Phospholipase A2 Inhibitors, J. Med.
Chem. 1994, 37, 337–341.

37 W. Bitomsky, R. C. Wade, Docking of
Glycosaminoglycans to Heparin-Bind-
ing Proteins: Validation for aFGF,
bFGF, and Antithrombin and Applica-
tion to IL-8, J. Am. Chem. Soc. 1999,
121, 3004–3013.

38 M. A. Kastenholz, M. Pastor, G. Cru-
ciani, E.E.J. Haaksma, T. Fox, GRID/
CPCA: A New Computational Tool To
Design Selective Ligands, J. Med. Chem.
2000, 43, 3033–3044.



2 Calculation and Application of Molecular Interaction Fields42

39 M. Fornabaio, F. Spyrakis, A. Mozzar-
elli, P. Cozzini, D. J. Abraham, G. E.
Kellogg, Simple, intuitive calculations of
free energy of binding for protein-ligand
complexes. 3. The free energy contribu-
tion of structural water molecules in
HIV-1 protease complexes, J. Med.
Chem. 2004, 47, 4507–4516.

40 M. Pastor, G. Cruciani, K. A. Watson, A
Strategy for the Incorporation of Water
Molecules Present in a Ligand Binding
Site into a Three-Dimensional Quantita-
tive Structure-Activity Relationship
Analysis, J. Med. Chem. 1997, 40, 4089–
4102.

41 A. R. Ortiz, M. Pastor, A. Palomer,
G. Cruciani, F. Gago, R. C. Wade, Relia-
bility of comparative molecular field
analysis models: effects of data scaling
and variable selection using a set of
human synovial fluid phospholipase A2
inhibitors, J. Med. Chem. 1997, 40,
1136–1148.

42 M. Baroni, G. Costantino, G. Cruciani,
D. Riganelli, R. Valigi, S. Clementi,
Generating optimal linear PLS estima-
tions (GOLPE): an advanced chemo-
metric tool for handling 3D-QSAR prob-
lems, Quant. Struct.-Act. Relat. 1993, 12,
9–20.

43 C. Burt, W.G. Richards, P. Huxley,
J. Comput. Chem. 1990, 11, 1139–1146.

44 S. Tomic, R. R. Gabdoulline, B. Kojic-
Prodic, R. C. Wade, Classification of

auxin plant hormones by interaction
property similarity indices, J. Comput.
Aided Mol. Des. 1998, 12, 63–79.

45 S. Tomic, R. R. Gabdoulline, B. Kojic-
Prodic, R. C. Wade, Classification of
auxin related compounds based on
similarity of their interaction fields:
Extension to a new set of compounds,
Internet J. Chem. 1998, 1, 26.
http://www.ijc.com/articles/1998v1/26/.

46 B. Bertosa, B. Kojic-Prodic, R. C. Wade,
M. Ramek, S. Piperaki, A. Tsantili-
Kakoulidou, S. Tomic, A New Approach
to Predict the Biological Activity of Mol-
ecules Based on Similarity of Their In-
teraction Fields and the logP and logD
Values: Application to Auxins, J. Chem.
Inf. Comput. Sci. 2003, 43, 1532–1541.

47 N. Blomberg, R. R. Gabdoulline,
M. Nilges, R. C. Wade, Classification of
protein sequences by homology model-
ing and quantitative analysis of electro-
static similarity, Proteins 1999, 37,
379–387.

48 F. De Rienzo, R. R. Gabdoulline, M. C.
Menziani, R. C. Wade, Blue copper pro-
teins: a comparative analysis of their
molecular interaction properties, Protein
Sci. 2000, 9, 1439–1454.

49 P. J. Winn, T. L. Religa, J. D. Battey,
A. Banerjee, R. C. Wade, Determinants
of Functionality in the Ubiquitin Conju-
gating Enzyme Family, Structure 2004,
12, 1563–1574.



43

II
Pharmacodynamics





3
Protein Selectivity Studies Using GRID-MIFs
Thomas Fox

3.1
Introduction

During the course of a chemical compound from initial hit in a screening cam-
paign to a marketable drug, a number of obstacles usually have to be overcome
and various characteristics have to be optimized. These are, amongst others, the
affinity to the primary target, physicochemical properties like lipophilicity and sol-
ubility, as well as its ADME (absorption, distribution, metabolism, elimination)
and toxicology profile. Another important aspect is ligand selectivity: a given li-
gand should interact selectively with only one biomolecule, as often undesired
side effects are due to interaction of the ligand with biomolecules other than the
primary target.
In the search for new, selectively interacting compounds, knowledge about the

three-dimensional structure of the desired target provides extremely useful infor-
mation enabling one to focus on ligand–protein interaction and selectivity
regions. However, the intermolecular interaction between protein and ligand is a
complex phenomenon. Therefore, it is difficult to extract enough information
from these (static) structures that can be used in the design of selective ligands,
and sometimes these (static) structures do not give sufficient useful information
at all.
In silico techniques have gained wide acceptance as a tool to support the drug

discovery and optimization process. Binding mode predictions via docking, affini-
ty predictions via QSAR and CoMFA, or the prediction of ADME(T) properties are
routinely applied [1–3].
Far less experience is available for selectivity predictions, which may be at least

partly due to the fact that the underlying experimental data are less accurate
(being the combination of binding affinities to two or more targets). In most
cases, ligand-based QSAR or 3D-CoMFA methods and their variants have been
used with the binding affinity ratio as the objective function to train the mathema-
tical model [4]. However, such methods are restricted to the chemical space of the
training set, and become rather awkward if more than two targets have to be ana-
lyzed simultaneously.
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To complement the ligands’ view on affinity and selectivity, it would be desirable
to use the information about the nature of the binding sites contained in the
three-dimensional (3D) structures of the targets. Traditionally, this has been done
by visual inspection of the protein structures. However, this is error prone, as it is
too easy to overlook an important difference, or to identify a potential source of
selectivity which cannot be confirmed experimentally.
In the last few years, a number of publications have demonstrated that the

GRID/PCA or GRID/CPCA methods can be successfully applied to characterize
the structural differences between protein binding sites, and to identify differ-
ences in the protein–ligand interactions as well as the regions on the target
enzymes which mediate highly selective interactions [4–17].
On the basis of the 3D structures of the proteins, the GRID/CPCA method ana-

lyzes the selectivity differences from the viewpoint of the target and is therefore
independent of the availability of appropriate ligand binding data for a ligand-
based QSAR analysis.
Briefly, the methodology involves five major steps: (i) retrieval of adequate 3D

structures for each of the target proteins; (ii) superimposition of the regions in
which the ligands interact with the target (binding sites); (iii) multivariate charac-
terization of the binding site by the energies of interaction between the target
macromolecules and different small chemical groups; (iv) summary of the results
by means of principal component analysis (PCA) or consensus PCA (CPCA);
(v) graphical analysis and chemical interpretation of the results.
At the same time, this approach also allows one to make a straightforward clas-

sification of protein binding sites which depends only on the interaction patterns
in the regions of interest, and not on the sequence alignment and differences in
the amino acid composition.
In this chapter, we will first review the basic principles of GRID/PCA and

GRID/CPCA, highlighting some important technical aspects necessary for their
successful application. Some space will be given to the discussion of the differ-
ences between PCA and the (hierarchical) CPCA methods, before their applica-
tion to various selectivity problems will be summarized.

3.2
GRID Calculations and Chemometric Analysis

3.2.1
Source and Selection of Target Structures

In most cases, three-dimensional target structures have been taken from crystal-
lographic analysis, however, NMR structures [14], homology models [9, 11, 12, 15]
and snapshots from MD trajectories [16] have also been employed. In the GRID/
PCA method, only one structure per target protein is used, thus a careful selection
is necessary. In general, high resolution structures with suitable ligands occupy-
ing the same binding sites should be chosen. Thus, conformational changes due
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3.2 GRID Calculations and Chemometric Analysis

to ligand binding are somewhat accounted for, and the analysis concentrates on
the differences in the protein–ligand complexes and not on possible induced-fit
phenomena. In the GRID/CPCA approach, it is possible to use several structures
for each target, thus including some information about the conformational
degrees of freedom of the protein. Therefore, as many structures as possible
should be analyzed; keeping in mind that obvious outliers, which would dominate
the PCA analysis, should be excluded.

3.2.2
Selection and Superimposition of Binding Sites

The proper alignment of the ligand binding sites is crucial for the success of the
analysis. In particular, the goal of the superimposition is not to compare the whole
protein but only the binding site, i.e. those positions where known ligands inter-
act and also those that a potential new ligand could reach. In some cases previous
investigations point to a set of important residues that interact with substrates or
inhibitors and represent the parts of the binding site involved in the ligand recog-
nition. Alternatively, starting from the protein–ligand complex, one can select
those residues which either have a direct contact with the ligand by visual inspec-
tion, or – in a more automated fashion – select residues which are within a certain
distance from the ligand. Here, a distance threshold of 3–4	 provides a useful
definition of the binding site [14, 18]. These selected residues, or rather their Ca
atoms, are used for the optimal superimposition of the proteins via a least-squares
method.
A somewhat more elaborate scheme was proposed by Matter and Schwab [4].

Starting from a global 3D alignment, in an iterative procedure they focus on those
amino acids which, after superimposition, show a low RMS deviation. Only these
residues are considered in the next round of structure alignment. In this way they
arrive at an unbiased superimposition of a large number of proteins focusing on
the most conserved parts of the structure.
However, in many cases the proteins considered in the analysis are very similar

and show only little structural variation. In these cases a superimposition of struc-
turally conserved regions with standard protein homology modeling tools has
yielded satisfactory protein superimpositions suited for the GRID/PCA or GRID/
CPCA analysis [8,9,13,17].

3.2.3
Calculation of the Molecular Interaction Field

In principle, any method which is able to produce a molecular interaction field
(MIF) could be applied to the characterization of the targets. However, almost
exclusively the GRID program [19] has been used. This is due to the size of the
problem which excludes the use of standard ab initio or semiempirical methods to
produce interaction maps. It also reflects the many successful applications of the
GRID force field in the characterization of protein active sites and the interpreta-
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tion of protein–ligand interactions [20–24]. Additionally, GRID is well linked to
GOLPE [25, 26], a software that can be used for the analysis and visualization of
the interaction energy data.
In the GRID procedure, the interaction energy between the target and a probe

is calculated at each node of a three-dimensional grid which contains the chosen
binding site. Several probes, which are parameterized to represent various small
chemical groups, are available. The results of these calculations are a collection of
three-dimensional matrices, one for each probe–target interaction. A detailed
description of the GRID program and the underlying force field parameters can
be found elsewhere [20–22].
The grid size and location should be chosen in such a way that the grid box encloses

all the positions around the binding site in which atoms of a potential ligand could
be found. This can be done by visual inspection, or one can identify all residues
which are able to interact with the ligand or are within a certain distance from the
ligand, and select the box size such that all these residues are included.
Using a 1	 spacing between the grid points seems to be a good compromise

between a sufficient mapping of the binding site and creating many variables
without real information content. With larger grid spacings, one risks missing
important differences in the binding sites, whereas a finer grid not only signifi-
cantly increases the computation time and file sizes, but also bears the risk of in-
troducing noise which hampers the chemometric analysis.
Complications arise when the proteins under investigation are differently

charged, as the charge differences and the resulting differences in the electrostatic
interactions may well mask more subtle differences in the binding sites. There-
fore, the systems should be neutralized. This is usually accomplished by prepar-
ing MIFs for counter ions and then placing the appropriate number of counter
ions around the proteins, using the utility programs MINIM and FILMAP [19]. It
is obvious, that the counter ions should be placed outside the binding site box.
In the original GRID/PCA approach, all available GRID probes were usually

used, unless there was some indication that certain interaction types (e.g. metal
ions) were not present or would show very unusual behavior [4,7]. In this way, a
detailed and comprehensive description of possible ligand–target interactions is
achieved. In the GRID/CPCA application, only a subset of five to ten probe types
are used, usually including the DRY, C3, N1, O, and OH probes, to get a manage-
able yet diverse set of interactions in the analysis (see Table 3.1).
Since GRID version 19, protein side chains may be treated as flexible by setting

the MOVE directive to values greater 0. In most analyses to date, the MOVE direc-
tive has been set to 0, i.e. the protein was considered rigid. In some applications,
the results of rigid and flexible protein treatment were compared; these compari-
sons yielded mixed results: in some cases only little differences were observed
[11], sometimes additional residues important for selectivity could be identified
with flexible side chains [9], or largely different results were reported [7]. Gener-
ally, it seems that the calculated binding site cavities are larger, and MIF differ-
ences caused by slight differences in side chain conformations disappear when
side chain flexibility is incorporated.
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3 Protein Selectivity Studies Using GRID-MIFs

Recently, FLOG [27] has been used for the characterization of protein binding
sites [28]. Conceptually, the maps produced by FLOG are similar to those obtained
by GRID, with the advantage that FLOG does not require atomic charges, and
allows for additional freedom in the placement of polar hydrogens. By default,
only five probe types are available: donor/cation, acceptor/anion, polar, hydropho-
bic, and van der Waals. Moreover, the information from these maps seems to be
somewhat redundant, so a protein characterization could be obtained with only a
subset of three probe types (donor/cation, acceptor/anion, and hydrophobic).

3.2.4
Matrix Generation and Pretreatments

For the chemometric analysis, the three-dimensional MIFs obtained from GRID
are rearranged as one-dimensional vectors. In the GRID/PCA approach [6], one
such vector is obtained for each MIF, and the vectors are used to build a two-
dimensional X matrix, in which the rows are the probe–target interactions (the
objects) and each column contains the variables that describe energetically these
interactions at a given grid point. The process used to obtain the X matrix is illus-
trated in Fig. 3.1.
A careful pretreatment is necessary to focus on the relevant variables. Often

variables with low absolute values (<0.01 kcalmol–1) and those with low standard
deviations (<0.02–0.03 kcalmol–1) are removed in order to eliminate noise. Auto-
scaling is not recommended, since all the data comes from the same source
(GRID probe–target interaction energies) and all the data are expressed in the
same units (kcalmol–1). Thus, autoscaling might introduce noise in the model,
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Figure 3.1. Procedure for building the Xmatrix in GRID/PCA. The analysis of the
interaction energies of the m probes with the 2 target proteins produces 2 � m
three-dimensional matrices. These are unfolded to obtain 2 � m one-dimensional
vectors from which the two-dimensional X matrix is built.
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increasing the importance of insignificant regions (i.e. rows in the X matrix with
little variance).
Usually, any positive interaction energy present in the X matrix is then set to

0 kcalmol–1. Thus one focuses on the negative, favorable interaction energies and
removes the information about small protein shape differences. Additionally, only
using negative interaction energies allows a straightforward interpretation of the
results.

3.2.4.1 Region Cut-outs
One of the disadvantages of the original GRID/PCA approach was due to the fact
that the whole rectangular box was used in the analysis. Thus data were also col-
lected for regions that do not lie within binding pockets. Since the homology be-
tween targets tends to be higher in the binding site than further away, these
regions are often only badly superimposed, and the PCA finds significant struc-
tural differences that hide more relevant but more subtle differences in the region
of primary interest. During the development of GRID/CPCA [8], a 
cutout tool’
was implemented in GOLPE, which allows one to select user-defined, irregularly
shaped regions within the original GRID box. This not only leads to a significant
reduction of the x variables but also facilitates the overall analysis. Indeed, most
authors use the 
cut-out tool’ to focus their selectivity analysis on individual sub-
sites.

3.2.5
GRID/PCA

The X data matrix which contains all information describing the probe–target in-
teractions can be analyzed by PCA [29, 30]. PCA is a multivariate projection meth-
od which allows one to extract the systematic information which is contained in
the data matrix and to present it in a simplified form. The original number of vari-
ables is reduced to a few factors called principal components (PCs). The result of
such an analysis can then be visualized by means of two informative plots which
allow a straightforward interpretation of the problem. In this way, PCA provides
an understanding of similarities and dissimilarities between the different protein
binding sites with respect to their interaction with potential ligands.
Briefly, PCA summarizes the variation of a data matrix as a product of two

lower-dimensional matrices, the score matrix T and the loadings matrix P. With n
objects and k grid points, the (n � k) data matrix is decomposed into the (n � a)
score matrix and the (a � k) loadings matrix plus a (n � k) 
error’ matrix of resi-
duals E:

X = T·P¢ + E (1)

As long as the number of principal components a is small, a considerable simpli-
fication of the problem is achieved. In their derivation, the PCs or score vectors
(the columns in T ) are sorted in descending importance.
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The score matrix gives a simplified picture of the objects (probe–target interac-
tions), represented by only a few, uncorrelated new variables (the PCs). Score
plots, i.e. plots of the score vectors against each other, are a summary of the rela-
tionships between the objects and reveal the essential data patterns of the objects.
Thus, objects which behave similarly have similar scores and are close in the score
plot. In our context, score plots can be used to identify clusters of objects accord-
ing to the different kind of targets (macromolecules) and probes (ligand chemical
groups) involved.
The loadings matrix gives a similar summary of the variables. The loadings indi-

cate how the original variables are linearly combined to form the scores. In the
loading plot, the distance of a point from the origin is important: variables most
relevant for the model are found at the periphery of the loading plot. Conversely,
uninfluential variables show up near the origin of the plot.
Loading plots are a means to interpret the patterns seen in the score plot. The

two plots are complementary and superimposable; a direction in one plot corre-
sponds to the same direction in the other. Thus, a pattern seen in the score plot
can be interpreted by looking along this interesting direction in the loading plot.
If most of the variation of the original data can be described by the first few

PCs, a much simpler data structure exists. In GRID/PCA, typically about 60–75%
of the variance can be explained with the first two PCs; this allows an interpreta-
tion based on the 2D plots of the leading components.

3.2.5.1 Score Plots
A typical score plot from a GRID/PCA analysis is shown in Fig. 3.2, taken from
an analysis for thrombin (thr) and trypsin (try) [31]. In this plot every point repre-
sents a single probe–target interaction (
object’). The figure clearly shows two clus-
ters of objects, one referring to interactions with thrombin, the other to interac-
tions with trypsin. PC 1 discriminates the two target proteins, thus, it can be asso-
ciated with selectivity. On the other hand, PC 2 describes general, nonselective li-
gand–target interactions. Therefore, this PC ranks the probes according to their
general ability to interact chemically with residues of the binding site. Due to the
focusing on negative energies, there is an inverse relationship between the
strength of the binding and the PC 2 scores – stronger interactions are related to
smaller (i.e. more negative) interaction energies. Therefore, the probes with lower
interaction energies show up in the top part of the score plot in Fig. 3.2, and the
probes that interact more strongly (including all the multi-atom probes) are in the
bottom part. Moreover, the points spread from top to bottom, indicating that the
probes which interact strongly with both targets should also be the most interest-
ing from the point of view of selectivity.
Thus, groups represented by probes at the bottom left and right areas of Fig.

3.2, when properly placed in the binding site, may be able to increase the selectiv-
ity of the interaction towards one of the targets.
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3.2 GRID Calculations and Chemometric Analysis

3.2.5.2 Two-Dimensional Loading Plots
Figure 3.3 shows the corresponding loading plot of the PCA model. In this plot
every point represents a position in the grid box where probe–target interactions
were computed (variables). Based on the correspondence of the score and loading
plots, the interpretation of the loading plot is straightforward.
The horizontal axis represents PC 1; therefore, variables with high absolute PC

1 loadings represent regions in the binding site where the probes show extremely
different behavior in their interaction with the two targets. As only negative (favor-
able) interactions are considered, these regions will reveal positions where a
chemical group can bind loosely with one of the targets and tightly with the other.
The further out a variable (and therefore the corresponding 3D lattice point) is
along the PC 1 axis, the more important is this binding site region for discriminat-
ing between the two targets.
The vertical axis relates to PC 2 loadings; thus points in the top part indicate

positions where the probes interact strongly with both targets, whereas points
with a PC 2 contribution close to zero represent regions with weak interactions.
Therefore, one may distinguish three types of variables and thus positions in

the binding site: (i) Points near the origin: positions where the probes only estab-
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Figure 3.2. Typical PC 1 vs. PC 2 score plot obtained with GRID/PCA (t1 vs. t2)
(T. Fox, unpublished work). The points in the plot represent the objects of the
Xmatrix: the interactions of a particular probe with one of the two targets, in
this example thrombin (thr) and trypsin (try).
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lish weak, nonselective interactions. Most of the binding site positions fall into
this category. (ii) Low absolute values for PC 1 loadings and high PC 2 loadings:
positions where the probes interact strongly with both targets. They are not inter-
esting from the point of view of the selectivity but might be exploited to increase
the affinity for both targets. (iii) High absolute values for PC 1 loadings and (at
least) intermediate PC 2 loadings: positions of selective interactions. Adequate
groups located in these positions would induce or increase the selectivity of a
ligand.

3.2.5.3 Loading Contour Maps
Due to the nature of the PCA variables in the X matrix, it is possible to relate the
points in the loading plot back to the 3D region in the binding site. In GOLPE,
this can be accomplished by loading contour maps. They highlight those active
site regions identified by the statistical model which interact strongly or selectively
with ligands. Hence, by selecting the appropriate PC and contour level it is possi-
ble to display the regions of the binding site most relevant for selective binding
and common affinity.

3.2.5.4 Problems of GRID/PCA
Whereas the GRID/PCA approach has been successfully used in a number of
selectivity problems (see below), this procedure has several shortcomings:
First, since PCA is quite sensitive to the scale of interaction energies, the infor-

mation given by probes representing weak nonbonded interactions (van der Waals
and hydrophobic) is masked by the effect of probes representing stronger interac-
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Figure 3.3. Typical PC 1 vs. PC 2 loading plot from a GRID/
PCA analysis. The points in the plot represent the variables of
the X matrix, i.e. the positions in the grid space.
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tions (coulombic and hydrogen bonds). Thus, although hydrophobic or van der
Waals interactions are important for ligand binding and selectivity, they are almost
never identified during a standard GRID/PCA calculation. Generally, the rele-
vance assigned by the method to the different probes can be unreliable and mis-
leading.
Another important problem is that PCA generates a 
general’ model – the bind-

ing site regions selected in the loading plot represent generally important regions
in the active site, but are not linked to a particular probe. For the design of selec-
tive ligands, it is much more useful to identify also the exact type of interaction
which is important for selectivity at a certain region in the binding site.
Moreover, the GRID/PCA method relies on the visual inspection of the score

plot to identify the PC which predominately discriminates the clustered objects.
This can be difficult when there are more than two clusters (e.g. arising from
more than two targets), since two or more PCs might be relevant for selectivity.
Therefore, the analysis is practically limited to two target proteins at a time; the
analysis of three or more targets is very awkward.

3.2.6
GRID/CPCA

To overcome some of the limitations of GRID/PCA, GRID/CPCA was developed
[8]. Again, the 3D structures representing the targets are analyzed using GRID,
but the MIFs obtained for the different probes are organized differently: After
rearranging the 3D MIFs, the resulting one-dimensional vectors for the different
probes are combined side-by-side, adding new variables to the same object
(Fig. 3.4). Thus, the matrix describing the systems has a row for each 3D structure
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Figure 3.4. Data collection for GRID/CPCA: Starting from the GRID calculations
for one probe, a one-dimensional vector containing all interaction energies at the
k grid points is constructed. Then the vectors for the m probes are compiled into
one long vector which contains (k � m) data points. The final X matrix is built by
stacking these vectors for every target protein.
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studied and m � k columns, corresponding to m probes � k variables present in a
single MIF.
The PCA of this matrix produces a score plot where each target 3D structure is

represented by a single point (see Fig. 3.5). When several different structures are
used to represent each target protein, the score plots should show them clustered,
indicating that the differences between the 3D structures of the same target are
less important than the differences between the proteins.

This approach has a number of additional advantages. First, several protein tar-
gets can be included in the analysis and selectivity profiles between groups of tar-
gets can be generated. In addition, many 3D structures representing the same tar-
get protein can be used. This minimizes spurious results originating from minute
differences in the crystal structures of the targets. Actually, the method highlights
the differences between the common features of the targets. In some sense, using
more than one target structure can be considered as a means to incorporate infor-
mation about conformational flexibility in the analysis.

3.2.6.1 Block Unscaled Weights
One of the main drawbacks of the original method results from the different over-
all range of the interaction energies obtained for different probes. This cannot be

56

Figure 3.5. Typical example of a CPCA score plot, here for the serine proteases
thrombin, trypsin, and factor Xa. Each point in the plot represents one input
protein structure. The different structures for each protein are clustered. PC 1
discriminates thrombin and trypsin, PC 2 distinguishes factor Xa from thrombin
and trypsin.
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corrected by autoscaling of the X matrix as each column vector contains all probe
information at one single grid point. In GRID/CPCA, the different probes are
organized in different blocks of variables. Therefore, it is now possible to apply a
weighting procedure called 
block unscaled weights’ (BUW). BUW considers all
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Figure 3.6. Effect of BUW on the distribution of the x variables (i.e. the interaction
energies obtained with GRID) for each probe: (a) distribution before and
(b) distribution after BUW to unit variance.
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variables within a single block and scales them to unit variance, and each variable
block is scaled separately. Thus, the relative scales of single variables within each
block remain unchanged, whereas each probe gets the same importance within
the model. Figure 3.6 illustrates a typical BUW procedure, showing the initial en-
ergy distribution of the x variables for each probe and the normalized distribution
after the variable block weighting.

3.2.6.2 CPCA
As the X matrix produced by this problem formulation is structured in meaning-
ful blocks, hierarchical PCA methods provide interesting additional insight
regarding the relative importance of the different blocks (i.e. probes) in the analy-
sis.
Multiblock methods have been introduced in cases where the number of vari-

ables is large and additional information is available for blocking the variables
into conceptually meaningful blocks [32, 33]. Several algorithms have been
described including hierarchical PCA (HPCA) or consensus PCA (CPCA), which
differ slightly in the underlying algorithms [34].
Within GOLPE, the CPCA approach is implemented. In Fig. 3.7 the usual


arrow scheme’ for CPCA is shown. The data matrix is divided into m blocks X1,
...Xm given by the m probes used in the GRID calculation. A starting consensus or
super score is selected as a column of one of the blocks. On each block, this vector
is multiplied by Xi to get an approximation of the block loadings pb. Then the pb is
normalized and multiplied back by Xi to get a new score tb. This is repeated until
convergence of tb and is the usual NIPALS algorithm for PCA. Once the block
scores tb for all blocks have been calculated, they are combined into a super block
T. The super score tT is then regressed on the super block to give the super weight
wT of each block score to the super score. The super weight is normalized and a
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Figure 3.7. Principle of CPCA: A start super
score tT is regressed on all blocks Xi to give
the block loadings pb. Then the block loadings
are normalized to length one and then
multiplied back through the blocks to give
the block scores tb. The block scores tb are

combined into a super block T. Then a PCA
round on T is performed to give the super
weight wT and a new super score. This is
repeated until convergence of tT [taken from
Westerhuis et al. [32]].
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new tT is calculated. A new iteration starts until the super score converges. The
super score is derived using all variables, whereas the block scores are derived
using only the variables within the corresponding block. The super weight gives
the relative importance of the different blocks Xi for each dimension. After con-
vergence, all the blocks are deflated using the super score, and the next super
score, orthogonal to the first, can be determined by repeating the described itera-
tion on the residual matrix.
Therefore, CPCA uses exactly the same objective function as PCA: it tries to

best explain the overall variance of the X matrix, but the analysis is made on two
levels: the block level, which considers each of the probes, and the super level,
which expresses the “consensus” of all blocks. CPCA provides a solution on the
super level that is identical to a solution found in regular PCA, i.e., the same T
and P matrices are obtained. Additionally, the method produces block scores tb
and block loadings pb for each of the probes and a weight matrix which gives the
contribution of each block to the overall scores. The block scores represent a par-
ticular point of view of the model given by a certain probe and provide unique
information not present in regular PCA. Object distances in the block scores can
be used to assess the relative importance of the different probes in their discrimi-
nation.
We note that on the block level, an objective function is used to obtain the scores

which is different from the standard PCA: the principal components should also
reproduce the values obtained in the overall PCA level. As a consequence, the per-
centage of the variance explained by PC 1 and PC 2 varies between 20 and 30%
compared to the much higher values in the GRID/PCA approach. Also, within
the blocks the scores are not necessarily ordered in decreasing importance. How-
ever, the separation of the objects and the interpretability of a model should be
considered as more important criteria for the quality of a model than the percen-
tage of the variance explained by PC 1 and PC 2.

3.2.6.3 Identification of Important Variable Blocks for Selectivity
Plots like those in Figs. 3.6 and 3.9 (below), which show, for each probe separately,
the distribution of the x values, convey additional information. They can be used
to identify probes that are able to distinguish between the different targets: if espe-
cially high interaction energies are found in one of the targets, this is a clear indi-
cation for the importance of this interaction type for selectivity.

3.2.6.4 Contour Plots
As for PCA, CPCA loadings can be translated into contour plots describing the
interaction fields between a GRID probe and the target protein structure. For a
selectivity study one is interested in the loadings discriminating different target
proteins. Using 
active plots’ in GOLPE, one draws a vector linking pairs of objects
in a 2D score plot which is then translated into isocontour plots that identify those
variables which contribute most to distinguishing the selected objects. To obtain
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such isocontours, GOLPE calculates the difference between the two points for the
first and second principal component and projects these differences back into the
original space (a pseudo-field) using the PCA loadings. The result is a grid plot of
the differences in the pseudo-fields that highlight the object differences for the
corresponding probe. This allows one to identify both the regions and the interac-
tion type (i.e. probe) that can produce selective interaction with respect to the start
and end points of the drawn vector (which e.g. could connect a pair of protein tar-
gets).

3.3
Applications

In the following, we will discuss applications, which use the GRID/PCA and the
GRID/CPCA methods for selectivity analyses between several macromolecular tar-
gets. The serine proteases and the matrix metalloproteases were the first applica-
tions of the CPCA method, and therefore will be used to describe the approach
in some detail. For the other studies, we can only give a short overview, highlight-
ing aspects that we find especially interesting or that constitute a development
beyond the original formulation. For more details we refer to the original litera-
ture.

3.3.1
DNA Minor Groove Binding – Compare AAA and GGG Double Helix

The first study to investigate selectivity profiles using MIFs in connection with a
chemometric analysis was published about 10 years ago [5]. There, the behavior of
all 64 possible DNA triplets with respect to 31 GRID probes was studied with
GRID/PCA.
In the comparison of the double-stranded TTGGGTT and TTAAATT base pair

sequences, the first PC distinguishes between different probes – despite neutrali-
zation of the system with counter ions, the high charge density in DNA dominates
the electrostatic interactions and thus the analysis. This is especially evident for
negatively and positively charged probes which end up at different extremes of
PC 1. This is intuitively clear – cations should interact far more favorably with
DNA than anions. The second PC discriminates between the AAA and GGG
DNA; the largest separation is achieved for positive probes.
This publication is the first example to demonstrate that MIFs can be used to

differentiate between affinity and selectivity, and that, using the appropriate
probe, selectivity for one of two targets may be achieved.
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3.3.2
Dihydrofolate Reductase

In 1995, Pastor and Cruciani investigated the differences between human and
bacterial dihydrofolate reductase (DHFR) [6]. This was the first study specifically
aimed at the investigation of structural and energetic differences between macro-
molecules using GRID MIFs. The authors showed that the analysis of GRID
MIFs with PCA can successfully highlight regions important for selectivity and
activity, and allows one to focus attention on the important parts of the active site.
Starting from the X-ray structures of one bacterial and one human DHFR, the

GRID/PCA analysis shows that PC 1 distinguishes between the two target pro-
teins, clustering the objects into two groups, while PC 2 ranks the probes.
Transferring back the interesting regions of the loading plot into the 3D space

of the active site, three regions in the binding site could be identified as important
for selectivity. In the lower part of the binding site, differences were highlighted
which stem mostly from conformational changes of a rather flexible loop, and to
some extent to an Asp in the human enzyme which would allow hydrogen bond-
ing to a ligand. In the middle of the hydrophobic pocket, differences in size and
orientation between two side chains (Leu vs. Phe) are highlighted in great detail.
However, as conformational flexibility was not taken into account in the analysis,
small changes in the side chain conformations will produce a very different pic-
ture.
A third region at the top of the active site showed markedly different interac-

tions with the probes. While most differences can be attributed to interactions
with the side chains of an unconserved amino acid, another area in this region is
produced by different backbone carbonyl orientations. Due to the presumably
lower conformational flexibility of the protein backbone compared to side chain
atoms, the authors speculate that this area would be especially promising for the
design of selective ligands.
Complementary to regions of selective interactions, the authors identified areas

with high PC 2 loadings where ligands should have strong interactions with both
enzymes. Indeed, these regions coincide with ligand atoms that interact with con-
served acidic residues known to be crucial for ligand binding.

3.3.3
Cyclooxygenase

Filipponi et al. [7] studied the differences in the active sites of the two isoforms of
cyclooxygenase (COX), an enzyme involved in the biosynthesis of pro-inflamma-
tory prostaglandins. Two isoforms of COX exist: a constitutive cyclooxygenase-1
and an inducible cyclooxygenase-2, and it is believed that COX-2 selective inhibi-
tors provide anti-inflammatory agents with a superior safety profile [35].
The two enzymes are very similar. The only amino acid difference at the core of

the binding site is the mutation Ile523 in COX-1 to the smaller Val523 in COX-2,
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which increases the size of the binding site in COX-2 and additionally opens a
second pocket, which is inaccessible in COX-1.
Using X-ray structures of COX-1 and COX-2, the GRID calculations were per-

formed both with the protein held rigid (MOVE = 0) and with flexible side chains
(MOVE = 1). While the calculation with flexible protein produced a significantly
larger binding site cavity of COX-2 than with the rigid protein, the identified selec-
tivity regions were very similar.
Selective probe-COX-2 interactions occur in a region within the second pocket

of COX-2 which is determined by Val523. The most selective probes, which can
donate more than one hydrogen, have a high degree of affinity for COX-2 in this
region.
The comparison with experimental data is somewhat complicated by the fact

that the entry to the second pocket may be closed by a salt bridge which has to be
broken to gain access to the pocket. Nevertheless, good agreement of the selectiv-
ity analysis with the selectivity profile of known inhibitors is found. In this case,
the authors come to the conclusion, that taking protein flexibility into account
with MOVE = 1 better reproduces the experimental data.

3.3.4
Penicillin Acylase

In two recent studies, Braiuca et al. applied GRID/PCA to the investigation of sub-
strate selectivity of different forms of penicillin acylase (PA), an important
enzyme in the b-lactam antibiotics industry [12, 17]. Several microbiological
sources of PA exist, the enzymes differing in selectivity, activity, or stability. The
authors used GRID-MIFs to explain the differences in PA from different sources,
E. coli (PA-EC), P. rettgeri (PA-PR), and A. faecalis (PA-AF). GRID/PCA was
employed to focus on the important parts in the active site and to reduce the noise
in the untreated MIFs.
An important aspect of this analysis was that the authors decided to build up to

four different sub-models for different probe types (e.g. donor, acceptor, hydro-
phobic, and halogen probes) to circumvent the known problem of underestimat-
ing hydrophobic interactions in the GRID/PCA approach.
The first study compared PA-EC with PA-AF [12]. The mutation of S67A in one

part of the active site leads to weaker interactions with H-bonding probes in PA-
AF. Several other amino acid differences between the enzymes translate into dif-
ferent interaction strengths or even structural differences of the protein backbone,
which are reflected in the shape of the MIFs and the interaction energy maxima.
Together with docking calculations of model substrates, the authors were able to
explain the experimental selectivity profile and the enantioselectivity of the
enzymes.
The second publication analyzes the differences between PA-EC and PA-PR

[17]. In the score plots of all sub-models the second component discriminates the
enzymes, while the first component differentiates the probes, indicative of very
similar enzymes.
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Indeed, the major difference is due to a mutation of Met142 (PA-EC) into a Leu
(PA-PR), leading to a smaller binding site in PA-PR, consistent with the observed
substrate selectivity.
Taking side chain flexibility into account with MOVE = 1, this steric hindrance

is less evident for all probe groups due to a higher conformational freedom of the
Met side chain. Interestingly, PA-PR also presents a larger MIF for halogens in
the flexible model, and this suggests that it is able to bind larger halogenated spe-
cies, such as bromine derivatives.
In addition, the flexible model identified a selectivity region which is not seen

in the rigid model. The difference is due to mutations further away from the
active site, which limit the flexibility of two amino acids in PA-PR directly involved
in substrate recognition and thus cause a more restricted interaction region. The
difference is noticeable for all probes but appears to be energetically particularly
important for the polar ones. The region of this variation is crucial for the PA–b-
lactam interactions, so the authors speculate that this might explain the lower rate
of hydrolysis of some substrates in PA-PR compared to PA-EC.

3.3.5
Serine Proteases

Kastenholz et al. published the first application of the CPCA method. It dealt with
the three serine proteases thrombin, factor Xa, and trypsin [8]. The score plot of
the analysis which employed a total of 13 X-ray structures is shown in Fig. 3.5. PC
1 distinguishes between the thrombin and trypsin structures, while PC 2 sepa-
rates factor Xa from the remaining two enzymes. The usual ligand binding re-
gion, which is very similar in all three enzymes, can be subdivided into three sub-
pockets: S1, P and D [36] (see Fig. 3.8). With the cut-out tool, each of the three
sub-pockets was investigated separately.
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Figure 3.8. Schematic drawing
of the active sites of thrombin,
trypsin, and factor Xa. The crys-
tallographic binding mode of
the inhibitor NAPAP is shown
to indicate the important sub-
pockets S1, P, and D. Amino
acids important for inhibitor
binding and those differing
between the enzymes are indi-
cated (thrombin: blue; trypsin:
red; factor Xa: green: common
residues: black).



3 Protein Selectivity Studies Using GRID-MIFs

3.3.5.1 S1 Pocket
The deep hydrophobic S1 pockets are very similar in all three proteins. All resi-
dues are conserved except for an A190S mutation in trypsin which makes its
pocket smaller and slightly more hydrophilic. While this is reflected by the
pseudo-contour fields, the authors doubt that this difference can be exploited to
design selective ligands.

3.3.5.2 P Pocket
The most striking difference between thrombin and the other two proteases is its
insertion loop Tyr60A-Trp60D that rests as a lid on the active site and forms the P
pocket. Consequently, as can be seen from the distribution of the x-variables
(GRID interaction energies) after BUW, both the hydrophobic DRY and C3
probes, and to a lesser extent the cationic probes N1+ and NM3, are most impor-
tant in the thrombin pocket (Fig. 3.9). Therefore, a ligand with either hydrophobic
or positively charged functional groups in the region of the P pocket should
improve selectivity toward thrombin. This can be visualized by the CPCA differen-
tial plot between thrombin and trypsin for the DRY probe (Fig. 3.10). Right below
the thrombin insertion loop residues, the large yellow contour indicates that
hydrophobic groups in a ligand at that position would increase its selectivity for
thrombin. This is in excellent agreement with experimental data: most thrombin
inhibitors point lipophilic groups in this direction [37, 38].
Figure 3.11 illustrates the advantage of using a chemometric description of the

protein differences over a simple comparison of the MIFs: if one considers the
simple difference of the DRY MIFs for thrombin and trypsin, both positive (yel-
low) and negative (cyan) regions show up and it is not clear whether a hydropho-
bic group in the ligand could be used to increase selectivity towards one of the
targets.
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Figure 3.9. x-Variable distribution for the 10 grid probes in
the P pocket after BUW. Blue dots indicate energies in throm-
bin, red dots in trypsin, and green dots in factor Xa.
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3.3.5.3 D Pocket
The D pocket forms a second hydrophobic area, in factor Xa it is lined by the resi-
dues Phe174, Tyr99, and Trp215 which form an 
aromatic box’ able to accommo-
date hydrophobic and positively charged functional groups. Indeed, the DRY, C3,
and the NM3 probes exhibit the highest interaction energies for factor Xa. Figure
3.12 shows the CPCA pseudo-difference field plot between factor Xa and throm-
bin for the cationic NM3 probe. Large cyan contours for the NM3 probe in the
hydrophobic box indicate that the introduction of positively charged or polarized
groups should increase selectivity for factor Xa over thrombin or trypsin. Indeed,
a number of highly active and specific factor Xa inhibitors have positively charged
groups directed toward the contour blobs in the D pocket [39]. A similar picture is
obtained for the hydrophobic DRY probe. The introduction of hydrophobic groups
in a potential ligand that reach into the D pocket has been a design principle for
selective factor Xa ligands [39].
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Figure 3.10. CPCA contour plot show-
ing field differences between thrombin
and trypsin for the DRYprobe within the
P and D pockets. Thrombin is drawn in
blue, trypsin in red, the thrombin inhibi-
tor NAPAP in gray. The yellow contours
indicate regions where a hydrophobic
group in a ligand would increase selec-
tivity towards thrombin.

Figure 3.11. Contour plot of the differ-
ence of the DRY MIFs of thrombin and
trypsin in the P and D pockets. Throm-
bin is drawn in blue, trypsin in red, the
thrombin inhibitor NAPAP in gray. The
contours indicate regions where the
difference of the DRY interaction
exceeds a threshold – cyan regions favor
thrombin, yellow regions trypsin No
clear picture emerges whether a hydro-
phobic group in the ligand would be
favorable for one of the proteins.
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3.3.6
CYP450

The family of cytochrome P450 enzymes (CYPs) plays a central role in the metab-
olism of a wide variety of xenobiotics including clinically important drugs. A num-
ber of approaches such as 3D-QSAR and pharmacophore modeling have been
used to predict inhibitory potential and metabolism of drug candidates [40–45].
In a study by Ridderstr�m et al., the GRID/CPCA strategy was applied to four

human cytochrome P450 2C homology models (CYP2C8, 2C9, 2C18, and 2C19),
all based on the X-ray structure of CYP2C5 [9].
In the score plots obtained, the first component discriminates between CYP2C8

and the other three enzymes, meaning that CYP2C8 is the most different among
the CYP2C enzymes. The second component discriminates CYP2C18, and the
third component CYP2C9 from the rest of the proteins, respectively.
The analysis of the rigid and flexible molecular interaction fields revealed that

the hydrophobic regions along with shape differences of the active sites were the
most important determinants for the selectivity among the CYP2C subfamily.
Additionally, amino acids were identified which infer selectivity to one of the fam-
ily members. The comparison with experimental mutagenesis data as well as the
observed selectivities towards substrates of the CYP2C family partly confirmed
the highlighted amino acids. However, in some cases experiments identified addi-
tional residues as important which do not show up in the chemometric analysis.
Vice versa, for some important areas identified by the GRID/CPCA analysis no
experimental evidence could be found. The authors ascribed these discrepancies
to the following reasons: First, they could be partly a result of using homology
models, and also using calculated binding modes for the analysis of ligand–pro-
tein interactions. It might also be possible that side chain movements taken into
account by GRID are not sufficient for these flexible proteins. Finally, using the

67

Figure 3.12. CPCA contour plot of the
field differences of thrombin and factor
Xa in the D pocket for the NM3 probe.
The cyan contours indicate regions
where interactions of the NM3 type
would enhance selectivity towards factor
Xa. Thrombin is drawn in blue, factor Xa
in green, and the selective factor Xa inhi-
bitor DX9065a [65] in gray.
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whole GRID box in the analysis might highlight regions as important which are
not accessible for CYP2C inhibitors.
Nevertheless, the regions conferring selectivity towards CYP2C9 could be used

to construct a receptor-pharmacophore model. This model agreed nicely with the
calculated binding mode of diclofenac pointing its aromatic 4¢ position towards
the heme. Hydroxylation of this position is specific for CYP2C9.
More recently, Afzelius and co-workers used GRID/CPCA for a comparative

analysis of protein structures of CYP2C9 and CYP2C5 from different sources:
crystal structures, homology models, and snapshots from molecular dynamics
simulations [16]. The evaluation of molecular dynamics simulations by means of
GRID/CPCA is an especially interesting new aspect in their publication.
In a first step, five available crystal structures of CYP2C5 and CYP2C9 were

compared. The resulting score plot shows that PC 1 discriminates between the
two enzymes. The second component separates substrate-free and substrate-
bound CYP2C5. Using several probes, the loading contour plots highlighted a
number of important differences in the binding sites of CYP2C5 and CYP2C9.
These areas are often close to regions where visual inspection and distance mea-
surement showed changes between the crystal structures of the two proteins.
Moreover, many of the involved amino acids had been previously identified as
important, e.g. by mutagenesis experiments.
In a second step, Afzelius et al. studied the results of cross-homology modeling,

i.e. CYP2C5 models built from CYP2C9 crystal structures and CYP2C9 models
based on CYP2C5 structures. Not surprisingly, the statistical analysis of the active
site shows that the models are close mimics of their templates. That is, the
CYP2C9 homology models closely resemble the CYP2C5 crystal structure from
which they were built and not the target, the CYP2C9 crystal structure, and vice
versa. Some improvement was possible, if the model was built from multiple tar-
gets, including bacterial CYP structures.
The last step incorporated snapshots from molecular dynamics simulations of

CYP2C9 and CYP2C5 crystals in explicit water. They were analyzed to determine
changes upon substrate binding and to investigate which parts of the cavity were
more flexible and could participate in substrate recognition and access.
The main conclusion drawn from the MD simulations is that the proteins are

highly flexible. The parts of the proteins that have high B-factors in the crystal
structure also show great flexibility in the dynamics. The same regions are flexible
in both runs, but the internal correlations of movements differ. This is reflected in
the CPCA score plot: the snapshots of each of the two CYP2C9 runs and the X-ray
structures showed up in a different quadrant and did not overlap at any time point
of the simulation. Thus, the molecular dynamics simulations cover a different
CPCA space from the crystal structures with and without substrate bound, inde-
pendent of the different starting structures.
Moreover, when the homology models are added to the analysis, they do not

occupy the same regions in the CPCA score plot as the molecular dynamics simu-
lations or the crystal structures. Actually, inclusion of the homology models shows
that they are even more diverse than the crystal structures compared with the mo-
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lecular dynamics simulations. Finally, MD simulations snapshots, homology
models, and crystal structures of both CYP2C5 and CYP2C9 were analyzed togeth-
er, again highlighting substantial differences among structures obtained from
experiment and from various calculation methods.

3.3.7
Target Family Landscapes of Protein Kinases

The potential of CPCA superscore plots to classify protein families according to
the interaction patterns between protein active sites and GRID probe atoms was
first explored by Naumann and Matter [10], leading to so-called 
target family land-
scapes’. This protein classification is solely based on a 3D interaction pattern in
the binding site region, computed using GRID MIFs, and not on protein 2D simi-
larity considerations via sequence alignment.
Naumann and Matter used a set of 26 X-ray structures of eukaryotic protein

kinases, which were classified into subfamilies with similar protein–ligand inter-
actions in the ATP binding site. As can be seen in Fig. 3.13, which shows the
CPCA score plot, PC 1 separates CDK and MAP/receptor kinases on the left from
the family of PKA kinases. The CDK family is represented by two distinct clusters
in the target family landscape, formed by two different ATP binding site confor-
mations. They correspond to the activated and inactivated kinase conformations
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Figure 3.13. Target family landscape for 26 kinase ATP binding sites,
illustrating the differences of several kinase families in chemometric space.
A clear distinction between PKA, CDK and MAP kinases is seen in PC 1
and PC 2. With kind permission from Naumann and Matter [10].
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depending on the binding of cyclin. The second PC separates MAP and other
receptor kinases with positive scores in PC 2 from the CDK family showing nega-
tive PC 1 and PC 2 scores.
Interpretation of the structural features responsible for this landscape reveals

that the main differences along PC 1 (i.e. between PKA and MAP/CDK kinases)
are found in the purine and hinge binding region, whereas the discrimination in
PC 2 is mainly driven by structural differences in the phosphate binding area.
To illustrate the use of the target family landscape for understanding kinase

selectivity profiles, Naumann and Matter used a series of 86 2,6,9-substituted pu-
rines. These selective CDK inhibitors bind to the kinase ATP binding site [46]. A
detailed comparison with experimental selectivity profiles showed good agree-
ment with the chemometric analysis.
An important observation by Naumann and Matter is the identification of addi-

tional opportunities to achieve selective interactions in the kinases phosphate
binding region, whereas most work so far has focussed on the purine binding
regions.

3.3.8
Matrix Metalloproteinases (MMPs)

The matrix metalloproteinases (MMPs) are a large family of endopeptidases,
responsible for degradation of a variety of extracellular matrix components in both
normal tissue remodeling and pathological states [47]. The active site is a cavity
spanning the entire enzyme, with three subsites on each side of the scissile bond
(S3–S3¢, see Fig. 3.14). Most of the known MMP inhibitors so far exert their func-
tion by coordinating to residues in the primed side [48], only little effort has been
put into exploring the unprimed sites [49, 50].
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Figure 3.14. Schematic drawing of the active site of the MMPs. The crystallographic
binding modes of the primed-side inhibitor PD-140798 (cyan) [66] and the unprimed-
side inhibitor PNU-142372 (gray) [49] and the catalytic zinc ion (magenta) are shown
to indicate the sub-pockets S3¢ to S3.
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The MMP family has been the goal of a number of studies which tried to ratio-
nalize the differences between the family members, explain experimental selectiv-
ity profiles of known ligands, or to indicate new opportunities for selectivity
design [4, 11, 51, 52].
In an unpublished study, Fox analyzed 46 X-ray structures of seven different

MMPs from the RCSB Protein Data Bank [53] with GRID/CPCA [31]. The result-
ing score plot is shown in Fig. 3.15, with the structures colored according to fami-
ly membership. The 
target family landscape’ clearly shows a clustering of the in-
dividual MMP family members. Three large clusters encompass MMP1, MMP3,
and MMP8, smaller clusters can be seen for MMP2, MMP7, MMP13, and
MMP14. It is not clear how much the size of the clusters in the score plot reflects
the inherent flexibility of the individual proteins, or is just a consequence of how
many experimental structures for each MMP were available for the analysis.
Nevertheless, especially the wide distribution of the MMP3 structures along PC 1
is some indication for conformational plasticity.
Inspecting the score plot, one can deduce that it should be possible to develop

selective inhibitors for either MMP1, MMP3, MMP7, or MMP8, as their interac-
tion pattern yields separate clusters in the plot. On the other hand, the scores for
MMP2, MMP13, and MMP14 are very similar – here the GRID/CPCA analysis
predicts that inhibitors cannot distinguish between these three MMPs if only the
subsites S3–S3¢ are considered in the calculations. Indeed, many experimental
SAR show parallel trends between MMP2 and MMP13 [54, 55]. Mapping back the
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Figure 3.15. Target family landscape of 46 MMPs, colored according to family membership.
Color scheme: MMP14 = orange, MMP13 = magenta, MMP7 = cyan.
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loadings into the active site reveals that changes along PC 1 are distributed over
the whole binding site. Changes along PC 2 map the well-known size difference
in the S1¢ pocket – MMPs with positive PC 2 scores fall into the class with small
S1¢ pockets, whereas a negative PC 2 indicates a large pocket. This is highlighted
in Fig. 3.16, which shows the pseudo-difference plot between MMP1 and MMP8
for the C3 probe. Here, the yellow area indicates interactions which can only be
reached in MMP8 with its large S1¢ pocket. Conversely, a bulky group in the cyan
region is favorable for MMP1 with its relative short pocket. An interesting oppor-
tunity for selectivity design is shown by the DRY pseudo-difference field between
MMP3 and MMP8: in the S3 pocket, a large yellow contour favoring MMP3 can
be seen (Fig. 3.17). Indeed, some of the few inhibitors targeting the unprimed
sites direct a phenyl ring into this region [49].
At about the same time, Terp et al. [11] used GRID/CPCA to analyze 10 MMPs

with the intention of highlighting regions that could be potential sites for obtain-
ing selectivity. Some of the structures were retrieved from the RCSB protein data
bank [53], others were obtained through homology modeling [56]. To facilitate the
analysis, the authors used the cut-out tool to focus on each of the six subsites in
turn.
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Figure 3.16. CPCA contour plot of the
field differences of MMP1 and MMP8 in
the S1¢ pocket for the C3 probe. The
cyan contours indicate regions where
interactions would enhance selectivity
towards MMP1 with its small S1¢
pocket, interactions in the yellow region
would favour MMP8 with its rather
extended S1¢ subsite. The MMP inhibi-
tor L764,004 [67] is shown in gray, the
catalytic zinc ion in magenta.

Figure 3.17. CPCA contour plot of the
DRYpseudo-field differences between
MMP3 and MMP8 on the unprimed
side of the active site. The big yellow
contour indicates regions where hydro-
phobic interactions would enhance
selectivity towards MMP3 – presumably
via interaction with a Tyr. For compari-
son, the MMP-3 selective inhibitor
PNU-142372 [49] is shown in green, the
catalytic zinc ion in magenta, and parts
of L764,004 [67] in gray.
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Only small differences were found for the S3¢, S2¢, and S1 sub-pockets. More-
over, as these pockets are rather shallow and solvent exposed, it is doubtful that
observed differences could be exploited for selectivity design.
The selectivity analysis for the S1¢ pocket is complex as it is surrounded by a

loop. Its length and amino acid composition differs between the individual
MMPs, leading to different shapes and interaction patterns for this subsite. Here,
computational techniques like GRID/CPCA are especially advantageous, as they
allow an automated, unbiased view on the interactions and an abstraction from a
discussion of differences in single amino acids. They address the sum of all inter-
actions at once, and the distances in the score plot allow one to somewhat quantify
the differences among the proteins.
The S1¢ pocket is broad and elongated in all structures except for MMP1 and

MMP7. Simulation of protein flexibility to some extent by using the MOVE option
in GRID shows that the pocket in MMP1 is able to change its shape, making it
accessible to more bulky substituents, in accordance with X-ray structures which
show induced-fit behavior [57].
Terp et al. could identify a number of additional characteristics that further dis-

tinguish the different MMPs both at the top and bottom of the S1¢ pocket. MMP2,
MMP3, MMP9, and MMP13 seem to have totally open S1¢ pockets and do not dis-
play any significant interactions. Nevertheless, it has been possible to derive inhi-
bitors that show some selectivity between MMP9 and MMP13, utilizing differ-
ences in the S1¢ pocket. The authors attribute this to different backbone conforma-
tional changes induced by the inhibitors which were not taken into account in
their analysis.
At the S2 pocket, the interactions of the DRY probe are most favorable with

MMP7 and MMP20. In MMP2 and MMP14, residue Glu210 is a major determi-
nant for selectivity: favorable interactions of the OH, N1, N1+, and NM3 probes,
but unfavorable interactions with the O probe clearly distinguish these two MMPs
from the remaining. A further distinction at this subsite is provided by the pocket
size.
In the S3 pocket, H-acceptors are more favorable for MMP1, MMP8 and

MMP14 than for the remaining MMP. In addition, MMP1 and MMP8 might also
be distinguished from MMP14 by use of more sterically demanding, polar substit-
uents at this site.
The differences found in the CPCA analysis mirror the experimental attempts

to obtain selectivity, which concentrated mostly on the S1¢ site. Especially differ-
ences in the size and shape of the S1¢ subsite have been utilized, however, the
GRID/CPCA calculations point to additional interactions in the S1¢ pocket that
could be used to distinguish between several of the MMPs. In the S2¢ and S3¢ sub-
sites, a wide range of substituents are tolerated and modifications there have often
been used to optimize oral bioavailability and solubility.
These results are in partial agreement with a recent study by Lukacova et al.

[51]. They mapped the binding sites of 24 human MMPs (either from experimen-
tal structure determination or from homology modeling) by calculating the inter-
action energies between probes and the protein. Then they used linear regression
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analysis to directly compare the interaction energies of the various MMPs and
within the six subsites. The results reiterate the high similarity of the S2 and S3¢
pockets in all MMPs. Moreover, the well-known differences in the S1¢ pocket were
observed, and the S3 pocket was also identified as being rather dissimilar among
the MMP members and thus an interesting region for selectivity considerations.
In an earlier GRID/PCA study, Matter and Schwab [4] presented a detailed com-

parison of MMP3 and MMP8. There, the main selectivity difference was attribut-
ed to differences in the S1¢ pocket: the identified contour regions were in the vi-
cinity of amino acid differences between the two enzymes. This analysis was sup-
ported by parallel CoMFA and CoMSIA analyses, which produced a consistent
picture explaining the experimental affinity and selectivity of a series of MMP3
and MMP8 inhibitors.

3.3.9
Nitric Oxide Synthases

Nitric oxide synthases (NOS) catalyze the biosynthesis of nitric oxide (NO) using
L-arginine as the substrate. Three isoforms of NOS have been identified: neuronal
NOS (nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS) [58]. Most of
the inhibitors described interact with the substrate-binding site, some of them
showing significant isoform selectivity. In addition, some pterin-based analogues
were developed which target the tetrahydrobiopterin (H4Bip) binding site.
In a study by Ji et al., the X-ray structures of nine NOS were analyzed with

GRID/CPCA [13]. In the score plot, the three NOS isoforms are well separated
and cluster in different regions. Translating back the loadings into the binding
site, the authors discussed several regions which might be explored to yield selec-
tive ligands. Dividing the active site into four sub-pockets, the analysis showed
that in three of them, especially in the so-called M, C1, and C2 pockets, there are
considerable differences among the structures, and these sites are predicted to be
very important in the design of selective ligands.
In addition, Ji et al. docked 25 NOS inhibitors into the active site to understand

the interaction mode of the inhibitors with the active site and also to understand
the importance of the MIF differences in the active site for the isoform selectivity.
In general, the experimental selectivities of the ligands agreed well with the de-
rived selectivity regions. However, as the authors point out, the selectivity of some
inhibitors with unusual kinetic behavior or even covalent binding to the target
cannot be explained with the CPCA method.
This investigation is complemented by a study by Matter and Kotsonis [59] who

studied the H4Bip binding site differences between the different NOS isoforms.
In addition to the available crystal structures, they also employed a homology
model of human nNOS in the analysis. They also found that the grouping of the
different isoforms and species in the score plot agrees with the NOS isoform clas-
sification, and they could identify a number of interactions which might be
explored to enhance selectivity for nNOS.
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3.3.10
PPARs

A GRID/CPCA analysis of the three subtypes of Peroxisome Proliferator-Activated
Receptors (PPARs) was reported by Pirard [18] using three PPARa, eight PPARc,
and three PPARd X-ray structures of the ligand binding domain (LBD).
The CPCA superweight plot showed that hydrophobic and steric interactions

contribute mostly to the discrimination between the three PPAR subtypes. From
the superweight plot, the authors selected three representative probes (DRY, C3
and OH) for the subsequent analysis.
Due to the position of the subtypes in the score plot, the pseudofield contours

in PC 1 distinguished PPARc from PPARd, whereas PC 2 highlighted the differ-
ences between PPARa and PPARc/d. Interestingly, all PPARc LBDs crystallized
with an agonist occupied the same region in the score plot, while the apo form
and the one with a partial agonist were very close to the PPARa LBDs.
Most of the known PPAR agonists, which occupy only a fraction of the large

T-shaped binding cavity, share a hydrophilic head group involved in key hydrogen
bonds with several protein side chains, a central hydrophobic part and a flexible
linker to the tail. The analysis of the main regions of the binding site (i.e. the head
region, the left and right distal cavities, and the linker between the head and the
distal cavities) shows that the differences in the distal pockets are most important,
in agreement with experimental SAR. Especially within the left distal cavity, the
different distribution of hydrophobic and bulky side chains can be exploited to
modulate the selectivity for any of the three PPAR subtypes.
Although the three remaining subsites of the PPAR LBD exhibited less varia-

tion than the distal pockets, the GRID/CPCA calculations revealed some scope for
selective interactions, in particular with the OH and C3 probes within the linker
and head regions. This analysis agreed well with site-directed mutagenesis experi-
ments, as well as the selectivity of known inhibitors.
Using the CPCA differential plots, the authors localized the structural differ-

ences that were responsible for the separation between the PPARc LBDs with a
bound agonist and the outliers. They found that this separation resulted from con-
formational changes in all five regions of the LBD, both from side chain and
backbone atom movements. It is also noteworthy that conformational changes of
helix 12, which represent the main difference between the agonist-bound and
antagonist-bound forms of PPARa, cause a smaller separation between PPARa
structures in the score plot than do these less localized conformational changes in
the various PPARc structures.

3.3.11
Bile Acid Transportation System

Ileal lipid-binding protein (ILBPs) and other fatty acid binding proteins (FABPs)
were the targets of a GRID/CPCA study by Kurz et al. [14]. ILBP is a cytosolic lipid
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binding protein that binds both bile acids and fatty acids and presumably aids
their reabsorption in the intestine.
For a first model, Kurz et al. used 30 conformers of human and pig ILBP

obtained from NMR investigations. In the CPCA score plot, this resulted in a clear
grouping; PC 1 revealed a separation of complexed from uncomplexed ILBPs,
whereas PC 2 separated human and porcine ILBP conformers.
In the corresponding CPCA differential plots, the binding site interactions

responsible for this grouping could be identified. The comparison of complexed
and uncomplexed binding cavities for both ILBPs showed a conformational rear-
rangement upon ligand binding, in agreement with experimental distance con-
straints in the inner core of ILBP. In addition, significant differences between
human and pig ILBP/bile acid complexes were identified.
A second model was built from 91 X-ray and NMR-derived conformers of 9 dif-

ferent FABPs, including the 30 ILBP conformers from the previous model. The
resulting score plot showed a complex target family landscape of the lipid binding
proteins. PC 1 separated all complexed ILBPs from uncomplexed ILBPs and from
the remaining FABPs, PC 2 differentiated the various FABPs.
This analysis not only revealed significant differences in binding site interac-

tions between FABPs and ILBPs. It also provided a classification of lipid binding
proteins by their 3D interaction pattern. Thus, it is a first step towards the identifi-
cation of interaction motifs aiding the understanding of recognition preferences
of particular lipid binding proteins.

3.3.12
Ephrin Ligands and Eph Kinases

Eph receptor tyrosine kinases play a crucial role in intercellular processes such as
angiogenesis, neurogenesis, and carcinogenesis. Based on their affinity for ephrin
ligands, the Eph kinases are divided into two subfamilies, EphA and EphB, which
bind to ephrinA and ephrinB, respectively [60].
Myshkin et al. [15] used the GRID/CPCA approach to simultaneously character-

ize the binding sites of ephrin ligands and Eph receptors. Starting from the crystal
structure of the ephrinB2-EphB2 kinase complex, they built 3D models of the
other 8 ephrins and 13 Eph kinase ligand binding domains and subjected them to
a CPCA analysis.
In the resulting score plot, the first PC discriminated between the ephrins and

the Eph kinases, which is in agreement with the complementary nature of interac-
tions between these proteins. A separate classification of the kinases and ligands
clearly showed two clusters corresponding to the A and B subfamilies. Kinases
with a unique biological interaction profile showed up as outliers in the score
plot.
Subsequently, the authors analyzed the structural basis of the eph–Eph kinase

interaction. The differential plots for the cluster of Eph kinases and the cluster of
ephrins, highlighted the complementary binding regions, i.e. areas of favorable
interaction between kinase and ligand. Additionally, the differences between the
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EphA and EphB classes were identified, as were structural features which charac-
terize the outliers.
However, a number of biological findings could not be explained by the CPCA

analysis. The authors attribute this to the fact that the ephrin–Eph kinase interac-
tions are best described by an induced fit mechanism. The necessary computa-
tional assumption of keeping the protein structure rigid did not reflect the flexibil-
ity of the protein interfaces and their structural adaptability. The homology mod-
els, on the other hand, provided a rigid protein structure that is biased by the tem-
plate protein EphB2.

3.4
Discussion and Conclusion

Despite much progress over the years, the complete understanding of ligand–pro-
tein interaction remains an elusive goal. Characterization of the binding site of
proteins with GRID-MIFs and subsequent analysis with chemometric methods
like PCA or CPCA may give some clues to answer the questions 
what substituent
would improve the selectivity of a given compound and where to place this substit-
uent?’.
As the examples published and briefly summarized above show, the GRID/PCA

and GRID/CPCA methods can be used as tools that provide ideas for favorable
structural features in newly designed ligands. In contrast to ligand-based meth-
ods, the analysis of the interactions in the binding sites of the macromolecules
gives a receptor-based view of the problem, evaluated quantitatively and with an
assignment of the relative importance of the possible interactions.
The close integration of MIF calculation, chemometrical analysis and visualiza-

tion in GOLPE is an additional advantage which allows a straightforward applica-
tion of the methodology. With GRID MIFs from different probes, one achieves a
comprehensive description of possible interactions in the binding site. Additionally,
PCA is a very effective tool for the comparison of the structures on a rational basis.
A comparison of two 3D structures carried out only on an empirical basis (sim-

ply by observation of differences) would be both more time consuming and less
reliable since the chemometrical approach is able to dispose of the 
noise’ of insig-
nificant differences and to focus on the significant variations in chemical and
structural terms.
Compared to the original GRID/PCA approach, the GRID/CPCA method offers

a number of important advantages. First, not only the regions of selective interac-
tions, but also the nature of these interactions can be identified, which leads to a
much more precise design of selective ligands. Second, more than two targets can
be investigated simultaneously, thus more complex selectivity problems may be
analyzed. Moreover, multiple structures for each target may be employed; this is a
means of incorporating information about the experimentally determined confor-
mational flexibility of the protein which goes beyond the side chain flexibility
included with the MOVE directive in GRID.
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Consequently, the applications highlighted above show that the methodology is
not only able to identify regions important for selectivity and affinity, but also
allows the classification of whole target families. A potential application of target
family landscapes could be the identification of related proteins for a particular
target that should be preferentially assayed for selectivity or an early assessment
of potential problems in the design of selective ligands.
A similar concept to classify protein binding sites has been employed in the

CavBase [61] or the SIFt [62] approach, where the binding pockets of proteins are
described by a three-dimensional collection of interaction centers which are
encoded into a fingerprint. These fingerprints can then be used to judge the simi-
larity of binding sites. An important advantage of these approaches is that they
are alignment–free, i.e. no previous superimposition of the protein sites is neces-
sary. This facilitates the comparison for even distant proteins. However, the posi-
tions of the interaction centers are based on heuristic rules, and no quantitative
calculation of interaction energies, as in the GRID-MIFs, is employed. At present
it is not clear if the mapping of the binding site is accurate enough for ligand
selectivity considerations.
Despite its successes, it is important to keep in mind the following limitations

and simplifications of the methodology described in this contribution:
1. The method can be applied only to targets for which three-dimensional

structures are available. An even more restrictive requisite is that the tar-
gets should be similar enough to permit a rational superimposition of the
binding sites. However, usually only in these cases the design of selective
compounds is a real problem which needs computational help.

2. Often, all the water is removed from the target protein structures prior to
analysis. However, water molecules may play an important role in the
enzyme and may be considered constitutive of the protein structure. In
such cases, the final results and the success of the method may depend on
keeping certain water molecules in the protein structure. The decision,
which water molecules should be kept, depends mainly on external hints,
such as a high occupancy and a low temperature factor in the crystallo-
graphic refinement or previous knowledge about its function in the pro-
tein.

3. Only enthalpy is considered, but entropy is also known to be an important
determinant of protein–ligand interactions.

4. Probably the most serious problem is the limited consideration of protein
flexibility. In many problems, differential flexibility of similar proteins
causes large experimental affinity differences of a ligand that cannot be
explained by looking at static protein structures from e.g. an X-ray experi-
ment. Some conformational freedom can be incorporated by considering
side chain flexibility via the MOVE directive in GRID; the possibility to use
several structures for a given protein in the CPCA methodology is another
means to allow for different conformations of the targets. However, it is
clear that these approximations cannot fully replace more sophisticated
methods to deal with protein flexibility [63].
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Nevertheless, despite these limitations, the GRID/PCA and GRID/CPCA method-
ology has proved useful for extracting relevant information from three-dimen-
sional structures. the GRID/CPCA approach is an especially efficient and reliable
tool for the comparison of structurally related proteins. The method provides a
large amount of information that may be exploited for ligand design, predicting
the outcome of protein point mutations, and for the design of enzymes having
tailored activities and selectivities.
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FLAP: 4-Point Pharmacophore Fingerprints from GRID
Francesca Perruccio, Jonathan S. Mason, Simone Sciabola, and Massimo Baroni

Abstract

FLAP (fingerprints for ligands and proteins) is a software developed at the Univer-
sity of Perugia (Gabriele Cruciani and Massimo Baroni, Molecular Discovery,
Italy) in collaboration with Pfizer (Sandwich UK, Jonathan Mason and Francesca
Perruccio) able to describe small molecules and protein structures in terms of 4-
or 3-point pharmacophore fingerprints. The molecular interaction fields (MIF)
calculated in GRID [1, 2], representing the interactions between probes and small
molecules or defined regions of protein structures, contain relevant information
on which kind of critical interactions a ligand may have with a receptor, or, in the
case of proteins, which possible sites of interaction are present in a selected area
of the macromolecular structure.
GRID associates specific atom types to chemical features of a ligand: these

selected atom types can be used within FLAP to build all the possible 3- or 4-phar-
macophores of the investigated small molecule. A similar approach can be applied
to protein studies: FLAP can build the 3- or 4-point pharmacophores present in
the protein active site using site points. Site points are calculated from MIFs and
they indicate favorable interactions between given probes (miming specific chemi-
cal groups) and the investigated protein region. FLAP presents several applica-
tions: it can be used as a docking tool, for ligand based virtual screening (LBVS)
and structure based virtual screening (SBVS), to calculate descriptors for chemo-
metric analysis and to investigate protein similarity. In this chapter we will pres-
ent a general overview of the FLAP software and case studies for the various appli-
cations of the approach.



4.1
Introduction

4.1.1
Pharmacophores and Pharmacophore Fingerprints

Pharmacophores are a key concept in drug design that are commonly defined as
an arrangement of molecular features or fragments forming a necessary, but not
necessarily sufficient, condition for biological activity (or of features required for
binding) [3, 4]. The history of pharmacophores has recently been reviewed by van
Drie [5] and their use described by Martin and others [6–11]. A three-dimensional
(3D) pharmacophore is defined by a critical geometric arrangement of such fea-
tures. The use of pharmacophores derived from ligands is well established, with
many methods available for their perception, the concept of pharmacophore map-
ping being to discover the common 3D patterns present in diverse molecules that
act at the same site (e.g. target enzyme or receptor, or a potential “anti-target”
such as the cytochrome P450 metabolising enzymes or HERG receptor). These
patterns can be defined by distances between “pharmacophoric” features (e.g.
atoms, functional groups or groups of atoms) with a particular property such as
hydrogen bond donors and acceptors, acidic and basic groups, and lipophilic/
hydrophobic groups. Pharmacophores have been widely used as inputs for 3D
database searching [7, 12, 13] to generate new leads and for automated 3D design
and QSAR. Their application has been further expanded by the concept of phar-
macophore “fingerprints” (see below), that represent a more systematic view of
the potential pharmacophores a molecule can exhibit. 3D pharmacophores have
been used as a diversity and similarity method for the design of combinatorial
libraries [14–17] as well as for virtual screening (using both single defined phar-
macophores and fingerprints of potential pharmacophores) [11, 18, 19]. The abil-
ity to generate complementary pharmacophores to a protein binding site gives
powerful methods that provide a common reference framework for the analysis of
both ligands and their binding sites. Mason and Cheney [14–16] have used them
to compare serine protease binding sites, through a GRID analysis, with auto-
mated generation of the pharmacophore fingerprint from the complementarity
site points, but with only a semi-automated generation of the site points and with-
out using the shape of the site. For docking, the pharmacophores could be used
individually as 3D database search queries, with the site as an added constraint,
and the use of site pharmacophores was automated in the “DiR” (design in recep-
tor) approach [15, 16, 20], but this software developed with Chemical Design is no
longer available. There is thus a need for automated methods to generate and use
complementary pharmacophores of protein binding sites together with ligand-
based pharmacophores; this need led to the development of FLAP that provides
additional capabilities, such as protein similarity studies.
Molecular similarity and diversity methods typically represent molecules by a

vector of real-valued properties (molecular weight, logP etc.) or binary values (0
for absence, 1 for presence of a substructure feature for example) in a bit-string or
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binary fingerprint, optionally including a count of the number of times the feature
is exhibited. The term “fingerprint” or “key” or “signature” is generally used to
refer to an encoding of features/characteristics a molecule exhibits (e.g., substruc-
tures, topological or 2–4 point pharmacophoric feature combinations) as a string
of bits (indicating the presence or not of a particular characteristic), with an
optional count. A wide variety of one-dimensional and two-dimensional methods
have been used, that require knowledge of the “flat” or 2D structure which repre-
sents the bonds between the atoms, together with, more recently, 3D properties
(e.g. pharmacophoric fingerprints) that require knowledge of the 3D conforma-
tional space available to a molecule. A 3D pharmacophoric fingerprint marks the
presence or absence of potential pharmacophores (combinations of different fea-
tures and distances between them, often for 3- or 4-points, i.e. triplets/triangles or
quartets/tetrahedra) within a molecule. 3D pharmacophore fingerprints can also
be calculated for the target protein binding sites, being derived from site points
complementary to the functional groups in the protein backbone and side chains,
thus bridging the ligand-based and protein structure-based universes.
The representation of a set of active compounds by a single or small set of phar-

macophores that is necessary for that activity is a well established concept, and
remains an excellent model for lead optimization. The ability to readily identify
active compounds that contain a different core structure from the compounds
used to generate the model (“lead-hopping”) is an important advantage over struc-
ture-focused methods: pharmacophores have the ability to divorce the 3D struc-
tural requirements for biological activity from the 2D chemical make-up of a
ligand [19]. This success and the importance of the pharmacophore hypothesis in
understanding the interaction of a ligand with a protein target led to the use of 3D
pharmacophores as a molecular descriptor for similarity and diversity related
tasks [14–16]. The descriptor thus generated can identify in a systematic way, with-
in the conformational sampling constraints, all the potential pharmacophores
that a molecule could exhibit, and when extended to complementary site points
all the pharmacophores of a perfectly complementary molecule. By generating the
descriptors in a common frame of reference, ligand–ligand, ligand–receptor and
receptor–receptor comparisons are all possible, enabling additional capabilities,
including selectivity analysis. Distances between pairs of features (2-point), triplet
(3-point) and quartet (4-point) pharmacophore representations have been exten-
sively used, with a variety of features sampled at each point and inter-feature dis-
tances considered in a discrete set of ranges (“bins”).
Using 4-point pharmacophores enables chirality to be handled and adds some

elements of volume/shape linked to electronic properties, increasing separation
in similarity and diversity studies. There is a large increase in the number of potential
pharmacophores that need to be considered. For example, using six possible feature
types for each point, and 10 distance ranges (bins) for each feature–feature distance,
the number of potential pharmacophores increases from 33000 for 3-point pharma-
cophores to 9.7million for 4-point pharmacophores [14–16]. Reducing the number of
distance bins to seven reduces these numbers to 9000 and 2.3 million respectively.
The granularity of conformational sampling, generally performed by torsional sam-

854.1 Introduction
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pling of rotatable bonds, affects the useful resolution that can be used, as defined by
the number and size of the distance bins. With protein site-derived pharmacophores,
binding site flexibility can be addressed by generating fingerprints for several differ-
ent conformations and optionally combining the fingerprints.

4.1.2
FLAP

FLAP is an approach and software that is specifically designed for:
. fast quantification on properties and shape complementarities between ligands
and receptors;

. extraction of chemical pattern from 3D molecular interaction field maps;

. obtaining useful 3D-descriptors for optimizing pharmacodynamic properties in
lead optimization;

. structure based drug design;

. selectivity analysis in proteins or receptors;

. 3D pharmacophoric properties calculation to bias combinatorial libraries;

. fast generation of lattice independent molecular descriptors for quantitative
structure–property relationships;

. in silico ADME and DMPK predictions;

. ADMEdatabase analyses and filters determination for early phase drug discovery;

. working with small, medium and large molecules.

FLAP can be used for automatic generation of site points for docking, automatic
generation of 3D fingerprints descriptors for ligands and proteins ready for che-
mometric analyses and lead optimization. After a brief review of the theory under-
pinning the FLAP software, this chapter will illustrate some of its applications
and case studies.

4.2
FLAP Theory

3D pharmacophores in FLAP consist of triplets or quartets of distances between
chemical features. As we mentioned before, FLAP is a computational procedure
able to explore the 3D-pharmacophore space of small molecules and protein struc-
tures. All the potential 3- and 4-point 3D pharmacophores expressed by ligands
and/or receptors are calculated taking conformational flexibility and molecular or
receptor shape into account. With 4-point pharmacophores chirality is evaluated.
Starting from GRID force field parametrization, FLAP provides a common frame
of reference to allow ligand–ligand, ligand–protein or protein–protein compari-
son. Molecular and receptor shape are precisely evaluated “on-the-fly” and com-
pared only when required.
For a small molecule as well as for a macromolecule the features are automati-

cally identified. Then all the accessible geometries for all the combinations of four
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features are calculated. In a small molecule a pharmacophore can be defined by
the atoms (described by corresponding atom types), which may have critical inter-
actions with a receptor. In a macromolecule a pharmacophore can be defined as a
combined set of all site points located in the macromolecule active site. Site points
are favorable places for ligand atoms on the corresponding molecular interaction
field maps. Site points are a key concept within FLAP and they correspond to in-
teraction energy points showing best interaction energy (local minima). Site point
positions, calculated for example in the active site of a given protein, define loca-
tions at which ligand atoms might be able to make favorable strong nonbonded
interactions. Thus they define pharmacophoric features in proteins with a com-
mon frame of reference with pharmacophoric features in ligands.
Site points are automatically selected by FLAP but users can inspect and modify

the proposed selection according to externally available information. For instance,
FLAP may suggest site points on the protein surface or in locations not so impor-
tant for selective binding. However, these positions may be inspected, deleted
and/or modified by the user. The next step will be an automatic selection of site
points based on certain criteria: this approach is, however, work in progress but it
will have the advantage of making the procedure user independent and so repro-
ducible (in the actual situation different users might select different site points
and therefore the resulting pharmacophore fingerprint will be different). Once
site points are stored, they are used to define the 3- or 4-point pharmacophore fea-
tures inside the protein, producing millions of potential combinations of pharma-
cophore feature locations.
As stated before, in the FLAP software the pharmacophores for a ligand are

defined in terms of atom types, which can interact with the receptor. The types of
interaction are categorized as:
. hydrogen bond donors (N1 type in GRID)
. hydrogen bond acceptors (O type in GRID)
. positive charge centers (N+ type in GRID)
. negative charge centers (O– type in GRID)
. hydrophobic centers (DRYprobe in GRID)
. hydrogen bond donor–acceptor centers (OH, O1, N1: or N2: type in GRID)
. shape (H type in GRID)

This approach allows the pharmacophore to be defined as 3- or 4-centers, thus
forming a triangle or a tetrahedron. The shape probe is optional, but when
selected, it allows a precise depiction of molecular shape in a protein cavity, or
around ligand molecule(s).
These six types of interaction described above are automatically identified for

each ligand molecule; this means that each ligand atom will be associated to the
corresponding atom type in GRID. However, the user can assign ligand atoms to
these six categories through a customisable parametrization database. Hydropho-
bic atoms are automatically identified by looking for atom charges, bond polarities
and donor and acceptor properties. For a protein, site points are identified via
energetic sampling of the putative active site using the six GRID probes reported
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above. For example, a site point with assigned hydrogen bond donor feature (N1
GRID probe) will be likely to be placed at a hydrogen bonding distance from a
protein’s carbonyl group (carbonyl group which should be however sterically
accessible to the N1 GRID probe). The combined set of all site points represents a
theoretical molecule that binds to all possible positions inside or in the surface of
the protein cavity. Potential pharmacophores are generated from these site points
in the same way as for a normal ligand. A pharmacophore key is thus generated
that indicates the presence or absence of all the theoretically possible combina-
tions of features and distances (potential pharmacophores); an additional chirality
indicator is then added for 4-point pharmacophores. The GRID-probe interaction
energy evaluated in the site-point locations is also recorded in the fingerprint.
This allows better description of the 3D-pharmacophores. The shape of the li-
gands or proteins under investigation, as well as the flexibility of the molecules,
are also taken into consideration during the calculation of pharmacophore finger-
prints. In the next sections of this chapter we illustrate the different applications
for the approaches available in the FLAP software.

4.3
Docking

The program FLAP fits ligand molecules into a set of GRID MIFs of a protein
structure. Thus FLAP can be used as docking program, which uses all the GRID
force fields options and capabilities.
The input target structure (protein) is investigated using the “GREATER” [21]

interface. FLAP is then able to carry out the various steps needed to obtain one or
more docked positions of the ligand into the target in an automatic way. The
FLAP program requires two input files: the target protein in the “kout” [21] for-
mat, and the ligand molecule(s) to dock into the protein. Optionally the user may
provide the location of the docking by using a simple grid cage in ASCII format.
GRID MIFs are generated for the probes that are going to best simulate the ligand
interactions. The GRID maps can be further elaborated and used as input for the
docking process. Finally FLAP will generate the results of the docking saved in a sin-
gle file and in some individual files for graphical analysis.
This information can be of particular value for ligand design selectivity studies

(anti-receptor studies), because it might be possible to make a small structural
alteration of the ligand(s) in order to tune desired binding modes at the expense
of others. The application of computational methods to study the formation of in-
termolecular complexes has been the subject of intensive research during the last
decade, indicating their importance to drug design projects [22]. It is widely
accepted that drug activity is obtained through the molecular binding of one mole-
cule (the ligand) to the pocket of another, usually larger, molecule (the receptor),
which is commonly a protein. Assuming the receptor structure is available, a pri-
mary challenge in lead discovery and optimisation is to predict both ligand orien-
tation and binding affinity. The computational process of searching for a ligand
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that is able to fit both geometrically and energetically the binding site of a protein
is called molecular docking [23].
The number of algorithms available to assess and rationalise molecular docking

studies is large and ever increasing. Many algorithms share common methodolo-
gies with novel extensions, and the diversity in both their complexity and compu-
tational speed provides a plethora of techniques to deal with modern structure-
based drug design problems [24]. Due to the increase in computer power and algo-
rithm performance, it is now possible to dock thousands to millions of ligands on
a time scale which is useful to the pharmaceutical industry [25].

4.3.1
GLUE: A New Docking Program Based on Pharmacophores

GLUE [26] is a new docking program aimed at detecting favorable modes of a
ligand with respect to the protein active site using all the options and capabilities
of the GRID force field [1, 2]. The protein cavity is mapped using several GRID
runs (Fig. 4.1(a–c)): a set of different probes is used to mimic each chemical group
carried out by the ligand and the resulting maps are encoded into compact files,
which store the local energy minima (Fig. 4.1(d)).
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Figure 4.1. Molecular interaction fields calculated in the active site of the
protein structure with the DRYprobe (a), O probe (b) and N1 probe (c).
Site points selected from the corresponding MIFs (d).
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The energy minima are exhaustively combined into 3D pharmacophores con-
sisting of quartets of distances between chemical features. With 4-point pharma-
cophores chirality is evaluated with a significant increase in the amount of
information on fundamental requirements for ligand–receptor recognition. For a
(macro)molecule the features are automatically identified. Then all the accessible
geometries for all the combinations of four features are calculated and stored in a
fingerprint of the binding site (Fig. 4.2 (a)). Afterwards, an iterative procedure
identifies all the ways in which four atoms of the ligand could bind to the target,
by pairing every atom to the nearest MIF used. Hydrophobic and polar atoms of
the ligand for which several conformers are quickly produced are fitted over their
corresponding energy minima, giving rise to sometimes millions of ligand orien-
tations, which are temporarily stored (Fig. 4.2(b)).

Then, many orientations are quickly eliminated due to redundancy and steric
hindrance constraints. Redundancy occurs whenever two or more orientations are
close enough to each other, i.e. the RMSD calculated over their 3D structures is
lower than 2.0	: therefore they are grouped by a clustering process and only one
orientation will be the candidate in order to represent the entire group. Converse-
ly, steric hindrance (Fig. 4.3) occurs whenever part of the ligand clashes into the
binding site: if possible the clashing part is accommodated along the site, other-
wise the orientation is excluded.
Indeed, this refinement allows only reliable orientations to be processed in the

next step: each orientation is optimized within the cavity by means of successive
torsions and translations. These are driven by the ligand–target interaction energy
computed by the GRID force field: each small movement is followed by an energy
reassessment according to the GRID standard equation (EGRID = ELJ + EEL + EHB +
EENTROPY) applied over the whole ligand and active site (Fig. 4.4).
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Figure 4.2. (a) All the possible pharmacophore built with site points within
the active site of the protein structure. (b) Fit of each conformer of the ligands
under investigation over their corresponding energy minima (site points).
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The optimized orientations represent possible binding modes of the ligand
within the site. The interaction energy between the entire ligand and the protein
binding site is calculating by using the GLUE equation, which provides an energy
scoring function (EGLUE) composed of the following contributions: EGLUE = ESR +
EES + ERHB + EDRY , where ESR = steric repulsion energy, EES = electrostatic energy,
ERHB = hydrogen bonding charge reinforcement, EDRY = hydrophobic energy.
The final output of the docking procedure is a set of solutions ranked according

to the corresponding scoring function values, each defined by the 3D coordinates
of its atoms and expressed as a PDB file.

4.3.2
Case Study

The docking procedure GLUE has been evaluated using a dataset of 230 different
protein–ligand X-ray structures extracted from the Protein Data Bank at Brookha-
ven, according to the following criteria: (i) varied crystallographic resolution of
chosen target, (ii) wide spectrum of receptor families, (iii) metal presence in the
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Figure 4.3. Steric hindrance can act as a
filter for the many solutions found for
each ligand when “docked” in the pro-
tein active site.

Figure 4.4. Each pose for a given ligand (red structure) is then minimized
inside the protein active site (purple structure) using the GRID force field.
In atom-type color is reported the X-ray crystallographic structure as a comparison.
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binding pocket, (iv) varied flexibility of receptor-bound ligands and (v) activities of
bound ligands varying from the low micromolar to the nanomolar range. In addi-
tion, analysis of several descriptors (MW, NROT, HBA, HBD, MlogP and PSA)
has been carried out, showing that the chosen ligands cover a broad spectrum of
physicochemical properties, most of them within the realms of what can be con-
sidered as drug likeness [27].
Docking experiments were carried out successfully, with 60% of the studied

ligand–protein complexes predicted with high accuracy, RMSD value within
2.00	, when the best ranked solution was considered. Also, keeping the same
RMSD cut-off of 2.00	, it is worth mentioning that taking the first three solutions
proposed by GLUE is sufficient to find reliable binding modes of the ligand with-
in the binding site, with only 15% uncertainty.
Using a comparative study on the docking programs DOCK, FlexX and GOLD,

performed by Paul and Rognan [28], we could compare 83 ligand–protein com-
plexes out of the whole dataset of 230 complexes.
Defining as “best pose” a well-docked solution with the value of its RMSD to

the X-ray 3D structure lower than 2.00	, the best pose obtained by GLUE was
among its three first solutions for 69 out of 83 cases (83%) , whereas DOCK,
FlexX and GOLD obtained 18 (22%), 20 (24%), 20 (24%) respectively (Fig. 4.5).

4.4
Structure Based Virtual Screening (SBVS)

The FLAP program can identify the pharmacophores that are in common between
a ligand and a putative active site “on-the-fly”. First, the protein pharmacophores
are generated and recorded together with the shape of the cavity.
As stated before, the procedure to generate the pharmacophore for the protein

includes first “sampling” a grid around a region of the protein (the putative active
site, the coordinates of which have been selected by the user). The probes used for
the calculations of the molecular interaction fields within the protein active site
can be selected by default (from hydrogen bond donors (N1 type in GRID), hydro-
gen bond acceptors (O type in GRID), positive charge centers (N+ type in GRID),
negative charge centers (O- type in GRID), hydrophobic centers (DRY probe in
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Figure 4.5. (a, b) The best pose obtained by GLUE appears to be within the three first solutions.



4.4 Structure Based Virtual Screening (SBVS)

GRID), hydrogen bond donor-acceptor centers (OH or O1 type in GRID) and
shape (H type in GRID)). There is always the opportunity for the user to custo-
mize the selection of the probes, especially in the case where a known interaction
between the target and a given is of particular interest.
From the molecular interaction fields so calculated, the points of minimum en-

ergy (site points) are consequently extracted and stored to generate all the possible
pharmacophores within the protein active site. At this stage of the procedure for
structure based virtual screening, the user can easily modify the number of site
points to be stored, removing those which appear to be located out of the active
site (region of interest) or in “inaccessible” narrow ramifications of the protein
cavity. In the same way, in the case of known conserved interactions between a
target and its ligands, more site points can be added to stress a particular position
of interest (such as a hydrogen bond acceptor or donor atom, or a hydrophobic
region). All the potential pharmacophores of the protein active site are calculated
on the basis of the stored site points (modified or not).
Then the pharmacophores of the ligands to be screened are generated (each

atom of the each ligand is classified as a GRID probe, such as hydrogen bond
donors (N1 type in GRID), hydrogen bond acceptors (O type in GRID), positive
charge centers (N+ type in GRID), negative charge centers (O– type in GRID),
hydrophobic centers (DRYprobe in GRID), hydrogen bond donor-acceptor centers
(OH or O1 type in GRID) and shape (H type in GRID)). The generation of the
pharmacophore for the ligands under investigation is performed using conforma-
tional sampling methods (random or systematic). For flexible ligands a conforma-
tional sampling is indeed needed. The method used is based on an on-the-fly gen-
eration of conformers done at search time: a quick evaluation of each conforma-
tion is performed based on an internal steric contact check to reject poor or invalid
ones. The method selects automatically the rotamers strategically located in the
ligand in such a way that their modifications produce the maximum variation of
the molecular atom positions. Once the rotamers have been selected, a random
perturbation generates a population of possible rotamer solutions. Alternatively to
random generation, the user can select a systematic search method. In the latter,
customizable angular steps and steric bump factors can be selected to tune the
number of solutions. Moreover, a systematic selection of the systematic search so-
lutions can be applied in order to reduce further the final number of rotamers.
Conversely to many other pharmacophoric methods, which append the finger-
print for each of the conformers in a unique resulting fingerprint, FLAP produces
a single fingerprint for each of the molecule conformations. For each conforma-
tion of each ligand under investigation, protein–ligand matches between all the
possible pharmacophores of the putative active site of the protein and the pharma-
cophores for each ligand conformation are then calculated.
A unique integrated feature in FLAP may be appreciated when a ligand is pro-

cessed together with receptor information. In such a case the receptor shape can
be used to “bias” (filter) the generation of conformers of the ligand. Thus, confor-
mers are generated not only to populate the conformational space, but with the
intention of matching the ligand pharmacophore with the shape and the chemical
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features of the protein cavity. The FLAP program will have now identified all the
ways in which up to four atoms of a ligand could make polar interactions with the
target. These can be of the order of thousands. Shape indeed seems to be a funda-
mental characteristic for addressing target–ligand selectivity. The process consists
of matching of the ligand pharmacophoric features into the protein pharmacopho-
ric features. The matches are accepted only when they show shape complementa-
rities and feature complementarities. The resultant matches are thus strongly
biased by protein–ligand shape similarity. Finally, the ligands (in the new docked
coordinates) are written out to a file, together with the number of matches and
other similarity indicators.
The structure based virtual screening process includes also the use of some key-

words. With these keywords FLAP filters out matches and keeps them only if they
make sense in terms of binding site shape. FLAP can also allow additional bind-
ing site volume (cavity expansion, useful when the protein structure under inves-
tigation is an homology model) and with the use of regions (definition of a sphere
within each pharmacophore needs to have at least one point) or selection of a
probe (enforcing a particular feature to be present in the calculated pharmaco-
phores) certain constraints can also be added.

4.5
Ligand Based Virtual Screening (LBVS)

In the case of ligand based virtual screening, ligands can be compared to each
other similarly to the comparison between ligands and a protein structure.
FLAP computes the ligand pharmacophores and it can identify the pharmaco-

phores that are in common between a ligand template and other ligands under
investigation. As for the protein–ligand case, ligand–ligand complementarity may
be generated using conformational sampling biased by shape complementary and
feature complementarities with one or more template molecules. The shape can
be defined around a unique template molecule, or around a combination of tem-
plate molecules. The resultant matches are then written out to a file, together
with the number of matches and other similarity indicators.
If the target of the ligands under investigation is known, another possible

approach is to compare ligands using the shape of the protein as a shape con-
straint and features in the protein cavity as additional constraints. As in the case
of structure based virtual screening, keywords are used such as regions to define a
sphere within which each pharmacophore needs to have at least one point, and
the selection of a particular probe.
Ligand based virtual screening has been performed with FLAP on an in-house

project at Pfizer, Sandwich Laboratories. For reasons of confidentiality we cannot
disclose details of the structures for the project. Both active ligands and receptor
structures were available.
Seven different pharmacophores were built in FLAP representing different se-

ries of ligands active against the same target. The virtual screening was carried
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out with the seven pharmacophores one at a time to rank a given library. The
results from the seven runs of ligand based virtual screening were then merged.
In one case the shape of the ligands was used (FLAP LB, see legend on Fig. 4.6) as
a constraint and in another case the shape of the receptor (FLAP SB, see legend
on Fig. 4.6). Exactly the same procedure was applied in Catalyst [29] for compari-
son.

4.6
Protein Similarity

Proteins can also be compared, with or without using information from ligands
that bind to them. From the protein site points FLAP identifies the pharmaco-
phores that are in common on-the-fly. Then complementarities between the pro-
teins are evaluated maximizing the site-point features and the shape complemen-
tary between protein cavities. The resultant matches are then written out to a file.
An earlier study by Mason and Cheney [14–16] with serine proteases used site-

derived fingerprints to quantify the range of different pharmacophoric shapes
complementary to the target protein binding sites, and illustrated the large differ-
ences in 3D pharmacophoric fingerprints between related targets. These can be
exploited for selectivity, whereas the common pharmacophores could represent
common binding motifs. The 4-point pharmacophore fingerprints were generated
from atoms added in the most favorable interaction regions from GRID favorable
energy contours from five pharmacophoric probes: H-bond donor (NH of amide);
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Figure 4.6. Enrichment plot using FLAP with shape constraint
of the ligands (FLAP LB), with shape constraint of the recep-
tor (FLAP SB) and comparison with Catalyst.
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H-bond acceptor (C=O), acid (C02
–), base (NH+) and lipophilic (aromatic CH). Fig-

ure 4.7 illustrates the contours and the atoms which were added (with associated
pharmacophore features) for the Factor Xa serine protease active site.
The ensemble of atoms added to the “hotspots” was treated as a hypothetical

molecule that interacts at all favorable positions in the binding site, and the phar-
macophore fingerprint was calculated and analysed from this in the same way as
for ligands [14]. For example, the Factor Xa and Thrombin serine protease active
sites had 13 complementary site points added, leading to fingerprints of 2103 and
2063 4-point pharmacophore shapes respectively, with 234 in common. The third
serine protease, Trypsin, which has a less defined S4 pocket, had only 11 signifi-
cant complementary site points, leading to a fingerprint of 1233 pharmacophore
shapes, of which 243 were in common with Factor Xa, and 120 in common for all
three serine proteases. Using 3-point fingerprints the numbers for Factor Xa,
Thrombin and Trypsin are 491, 430 and 350 respectively, with overlaps of 202 be-
tween factor Xa and Thrombin, and a common 131 pharmacophores for all three
proteins. There are clearly less “unique” pharmacophores for each protein using
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Figure 4.7. The complementary site points used for pharmacophore
fingerprint calculations (lower right), together with the energetically
favorable contours from 5 GRID probes on a Factor Xa binding site.
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the 3-point pharmacophores with a higher proportion of the total in common; the
common pharmacophores provide a set of useful common binding motifs that
can be used to drive docking studies. Ensembles of pharmacophores can thus be
identified that can be used both to differentiate the sites (selectivity) and to iden-
tify common features.
Comparison of these protein derived pharmacophore fingerprints with known

ligands, using 4-point fingerprints, shows that they can be used to search for nov-
el ligands within a database and that they are specific enough to capture ligand
selectivity between similar proteins such as these three serine proteases [14,16]. A
thrombin inhibitor (NAPAP, 6nM) showed most overlap (352) with thrombin
using 4-point pharmacophores (210 and 82 for Factor Xa and Trypsin respec-
tively), whereas with 3-point fingerprints selectivity was not captured and there
was more overlap with Factor Xa (64) than with Thrombin or Trypsin (64 and 31
respectively). Using a “decoy” molecule, a fibrinogen receptor antagonist that con-
tained the benzamide serine protease S1 pocket binding motif, the 4-point phar-
macophore fingerprint comparisons clearly indicated a lack of complementarity
(4, 2 and 0 common pharmacophores for Thrombin, Factor Xa and Trypsin
respectively), whereas with 3-point pharmacophore fingerprint comparisons failed
to differentiate this compound, with as many common pharmacophores found
(60, 57 and 48 for Thrombin, Factor Xa and Trypsin respectively) as with the
thrombin inhibitor. The comparisons possible in FLAP (see SBVS section) enable
binding site characteristics such as shape to be retained when comparing proteins
and protein to ligands, greatly enhancing the signal, providing a needed capability.

4.7
TOPP (Triplets of Pharmacophoric Points)

In this section a case study (cytochrome P450 metabolic stability) introduces a
further application of 3D fingerprint descriptors for ligands and proteins for che-
mometric analyses. Metabolic stability is used in order to describe the rate and the
extent to which a molecule is metabolized. It usually refers to the susceptibility of
compounds to undergo biotransformation. This is normally an issue in selecting
and/or designing drugs with favorable pharmacokinetics properties. The ability to
evaluate the metabolic stability of compounds in the very early stages of drug dis-
covery improves the chance of selecting a molecule with good in vivo activity. In
this context our intent was to build an in silico model able to discriminate between
metabolically stable or unstable compounds relative to cytochrome CYP2D6. The
computational tool we used to build this model is TOPP (Triplets Of Pharmaco-
phoric Points), a new in silico QSAR approach able to use 3-point pharmacophores
as 3D descriptors and GOLPE [30] as the tool to perform multivariate statistical
analysis.
The base theory underpinning TOPP is similar to the FLAP approach, pre-

viously described in this chapter. First, atoms in the molecules are classified by
the GRID force field parametrization. In this way, atoms are described according
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to their charge and hydrogen bonding properties as DRY (hydrophobic), DONN
(HBD hydrogen bond donor interactions), ACPT (HBA hydrogen bond acceptor
interactions) and DNAC (both HBD or HBA interactions). Once the classification
of the atoms in each molecule under investigation has been performed, an itera-
tive procedure is able to generate all possible combinations of three points and
four different atom types (DRY, DONN, ACPT and DNAC) encoding them in two
possible ways. One of the two possible approaches is to run TOPP in order to store
only the presence or the absence of a 3-point pharmacophore combination. The
other approach is to run TOPP in order to count the number of times that a com-
bination is present in the molecule (Fig. 4.8).

The kinds of calculations described above are done for all the molecules under
investigation and then all the data (combinations of 3-point pharmacophores) are
stored in an X-matrix of descriptors suitable to be submitted for statistical analysis.
In theory, every kind of statistical analysis and regression tool could be applied,
however in this study we decided to focus on the linear regression model using
principal component analysis (PCA) and partial least squares (PLS) (Fig. 4.9).
PCA and PLS actually work very well in all those cases in which there are data
with strongly collinear, noisy and numerous X-variables (Fig. 4.9).
Applying this procedure to investigation of the metabolic stability of CYP2D6,

we were able to find a model to correctly classify metabolically stable and unstable
compounds. This model was trained using a set of 129 compounds from the Bio-
Print [31] database. Drug-likeness and solubility properties were used as primary
filter in order to eliminate unattractive compounds and all those compounds clas-
sified as not soluble, which are always classified as metabolically stable. The data-
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Figure 4.8. Flowchart of TOPP methodology.
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set was divided into two classes: unstable class (% metabolic stability < 60; 52 com-
pounds) and stable class (% metabolic stability ‡ 60; 77 compounds). The mole-
cules, modelled in their cationic form, were converted into 3D structures using in-
house software. From the 3D structures, molecular descriptors were calculated
using the TOPP program. The descriptors were further correlated to the experi-
mental metabolic stability classes by a partial least squares discriminate analysis
and three significant latent variables were extracted from the PLS model with
cross validation. The score plot of the first two principal components shows the
compounds color-coded according to their metabolic stability (red points represent
stable compounds whereas blue points indicate unstable compounds). So far, the
validation of the model with external datasets has been performed to predict the
yes or no response for a set of 265 stable BioPrint compounds. The results indi-
cate that 215 out of 265 compounds are well predicted as stable compounds (Fig.
4.10).
Using this model as initial filter in the very early stages of drug discovery, for

example in library design and virtual screening, could be very useful in order to
decrease the large amount of compounds to be tested in vitro or in vivo.
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Figure 4.9. Multivariate statistical analysis and regression
tools can be applied to the TOPP descriptors.
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Figure 4.10. PLS score plot separating the stable compounds (red circles) from
unstable compounds (blue circles). Prediction (white circles) of the yes or no
response for a set of 265 stable BioPrint compounds.
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4.8
Conclusions

The FLAP program represents a promising approach to gaining information from
the molecular interaction field calculated by the GRID software within a region of
a protein structure and from the atom classification in GRID probes for atoms in
a ligand molecule. The key feature of this software is the transformation of a mo-
lecular field describing an interaction between a particular probe and a region of
interest of a protein structure (such as the active site) into site points, which in
turn describe the location of the most favorable interaction between the given
probe and the protein structures. The site points so calculated are used to build all
3- or 4-point pharmacophores present in the protein region under investigation
and these pharmacophores are encoded in a fingerprint.
In the same way each atom of the ligand, once classified in the corresponding

GRID probes describing features such as hydrophobicity, hydrogen bond donor or/
and acceptor capabilities and charge. These are equivalent to the protein site points,
which are used to build the 4- and 3-point pharmacophores present in the ligand.
These pharmacophores are encoded in the fingerprint the ligandunder investigation.
By generating 4- or 3-point pharmacophore fingerprints for proteins and li-

gands, FLAP is able to perform comparison between protein and ligand pharma-
cophore fingerprints, between ligand pharmacophore fingerprints and between
protein pharmacophore fingerprints. This kind of approach can be exploited very
straightforwardly in structure based virtual screening and docking, ligand based
virtual screening and protein similarity studies.
A key enhancement is that the flexibility and shape of the ligand or/and of the

active site of the protein are taken into consideration. Constraints can be set by
the user as well as other keywords able to describe particular features of the pro-
tein active site or within the ligand molecules.
The calculation of the pharmacophore fingerprints is fast and a reasonably large

number of molecules can be handled. The speed of these calculations permits the
user to readily add to the overall procedure more information about the target or
active compounds as probes in the ligand based virtual screening.
Finally, the possibility to study with linear regression models using principal

component analysis (PCA) and partial least squares (PLS) regression analysis
pharmacophores as descriptors for the corresponding molecules represents an
interesting and novel approach in QSAR.
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5
The Complexity of Molecular Interaction: Molecular Shape
Fingerprints by the PathFinder Approach
Iain McLay, Mike Hann, Emanuele Carosati, Gabriele Cruciani, and Massimo Baroni

5.1
Introduction

It is well known that molecular shape plays a key role in ligand–receptor binding,
since molecular recognition is largely mediated by shape, and similar biological
activity often reflects similar molecular shape. In fact, although the right match-
ing of pharmacophore features is required for a small molecule to bind to its tar-
get, the establishment of surface-to-surface contact between ligand and target
along the surface of the small molecule is also important.
Several computational methods, ranging from docking to virtual screening and

molecular superposition/alignment, make use of various shape descriptions.
Shape similarity is the foundation of many ligand-based methods, which seek
compounds with structure similar to known actives, and shape-complementarity
is also the basis of many receptor-based designs, where the goal is to identify com-
pounds with high complementarity in shape to a given receptor.
Clearly a method for describing a shape in simple numerical terms would assist

such work greatly. Indeed, it can be said that an efficient way of describing the
shape of any kind of molecule is nowadays central to drug discovery.
The difficulty of encoding the shape into numbers increases with the shape

complexity. Comparison of the shapes of two objects, or two molecules, is intuitive
to the human brain, but the task becomes far from trivial when the complexity of
the problem increases, i.e. when comparing and classifying several compounds or
sorting a set of compounds according to their molecular shape.
The molecular interaction fields (MIF) obtainable by GRID [1] may be used to

define the solvent accessible surface, which resembles the molecular shape. How-
ever, MIFs are descriptors that depend on the 3D-location, and usually several
thousand are required to describe a shape. In this chapter we present a novel pro-
cedure, called PathFinder, which encodes MIF into a compact alignment-free
description of molecular shape.



5.2
Background

A chemist will usually consider the structure of a drug molecule as a 2D represen-
tation (e.g. Fig. 5.1(a)), whilst for a computer it may be necessary to encode the
structure as a molecular graph (e.g. Fig. 5.1(b)). Molecular graphs are suitable for
similarity searching and substructure searching. However, the receptor, or other
drug target, does not recognise the drug through 2D or graph representations.
The drug interacts with the target as a 3D object with appropriate 3D molecular
complementarity. In a simple way it can be considered that during the binding
process the receptor senses the drug and recognises the complementarity.

GRID-derived molecular fields (MIF) are designed to explore numerically the
way a receptor could “feel” a drug molecule. The GRID force field calculates an
interaction potential between probe and molecule by assessing many different
nonbonding interactions: hydrogen bonding, charge–dipole, dipole–dipole, Len-
nard-Jones and electrostatic. The shape description for a molecule is certainly
embedded within the MIFs with positive/negative values representing repulsive
or attractive interactions and the presence/absence of molecular fields (MIF) rep-
resenting occupied or unoccupied volumes.
The GRID-derived MIFs have been processed mathematically in several differ-

ent ways to provide descriptors which are of great use both for QSAR and for gen-
eral ADME prediction. For QSAR the GRID/GOLPE procedure has been devel-
oped, in which the intermolecular comparison is performed by first aligning by
either their fields or the molecules themselves. Accordingly, although the molecu-
lar shape is of great relevance in such analyses it is strictly dependent upon the
alignment-superposition of the compounds. The alignment problem has been
addressed to some extent with the GRIND procedure, which extracts characteristic
features of the molecular fields. However, although available, the GRIND descrip-
tion of shape is not comprehensive. The well-known ADME tool VolSurf uses
another method to convert GRID fields into simple descriptors. However, very
few VolSurf descriptors are qualitatively related to molecular shape.
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Figure 5.1. A molecule of adrenaline is presented as it is drawn by
chemists (a), and as it is encoded by computational methods into
molecular graphs (b) and molecular interaction fields (c).



The absence of a precise shape description, based on the GRID molecular inter-
action fields, prompted the development of a new procedure, called PathFinder,
that is described here.

5.3
The PathFinder Approach

The PathFinder procedure is aimed at describing the shape of objects starting
from the MIF surface representation. Although the method presented in the fol-
lowing is general and could be applied to any kind of surface, we will refer to the
isopotential surface obtained by the program GRID, when using the water probe
(OH2) and setting the energy level to +0.2 kcalmol–1. In this way a molecular sur-
face is obtained which resembles the solvent-accessible molecular surface.
A subset of points, uniformly distributed on the molecular surface, is selected

from this surface. The default value is usually set to 100, which is sufficient to
describe drug-like molecules and receptor cavities. However, it is possible to select
a lower number of surface nodes if thought appropriate for the situation.
Each selected node is paired to all the remaining nodes of the molecular sur-

face, one by one, and the shortest connection “walking on the molecular surface”
between two nodes is computed. This is implemented through the graph theory
which is explained briefly here: (i) the molecular surface is encoded into a
weighted and undirected graph in which each single point from the surface repre-
sents a node and the nodes are connected by arcs; (ii) the weight for each arc sub-
tended by adjacent nodes is the euclidean distance between the two points, calcu-
lated from the cartesian coordinates; (iii) only arcs lying on the molecular surface
are utilised. Summarising, the molecular surface is encoded into a graph; its
nodes are connected to each other, when adjacent, through surface-lying paths.
Indeed, the surface computationally resembles a grid in which all nodes can be
reached from all other nodes.
The walk of minimum weight is sought by applying the Dijkstra algorithm [2].

The corresponding path is approximated by a set of segments: the minimum path
is the weight of the entire walk, representing the sum of the corresponding
weights of edges composing the walk. Therefore, two numerical values are finally
related to each node pair: their corresponding euclidean distance and the mini-
mum path.

5.3.1
Paths from Positive MIF

The minimum path has been defined as the shortest connection between two grid
nodes obtained by “walking on the molecular surface”. When coupled with the
corresponding euclidean distance it provides a novel descriptor derived from each
node pair.

1055.3 The PathFinder Approach
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Searching the minimum paths over the entire set of node pairs yields a huge
amount of path–distance couples, stored into a path–distance matrix. Its elements
count the frequency of the corresponding path–distance pairs: therefore, the
matrix expresses the probability factor for the existence of two points on the mo-
lecular surface at a specific distance and path.
Consequently, elements of the matrix corresponding to nonexisting path–dis-

tance pairs contain zero frequency value, whereas all nonzero values indicate the
molecular elongation, size, and variegation of the surface.
The frequency of path–distance pairs for a single molecule can be viewed by

means of three-dimensional plots in which the frequency distribution (z axis) is
reported versus distances (x axis) and the path–distance (y axis), see Fig. 5.2. Mo-
lecular shape peculiarities are condensed in the frequency distribution graph in
which low path–distance values (path » distance), represented by points close to
the distance axis of the plot in Fig. 5.2, characterize more planar surfaces, whereas
high path–distance values (path > distance) characterize more wrinkled surfaces.
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Figure 5.2. GRID positive MIF (a) and path–distance frequency distribution (b)
for the methotrexate. Two nodes are used as an example: their euclidean distance
and minimum path are highlighted with green lines (a) and the point representing
that node pair is indicated by P (b).



5.3 The PathFinder Approach

The minimum paths provide a molecular shape description, coded as a two-way
matrix table. The matrix may then be unfolded into a single array, which describes
the molecular shape, as illustrated in Fig. 5.3.

5.3.2
Paths from Negative MIF

It has been shown how shape-related molecular description can be extracted start-
ing from the GRID positive MIF. Similarly, the nodes of attractive interaction be-
tween the probe and the molecule (negative MIF) can be handled. The red isocon-
tour surfaces in Fig. 5.4 represent the interaction of methotrexate with the water
probe. In this case the application of the procedure described above will highlight
the relative position on the molecular surface of the chemical moiety interacting
with the water probe. The representation in Fig. 5.4(b) is not a strict shape func-
tion but more a new pharmacophoric representation of the molecule.
The main differences from the previously presented method (positive MIF), are:

1. The nodes are selected on the basis of their different energy values. Then,
only relevant nodes, with the most attractive energy, are selected; that is up
to five per region with the default setting.

2. Only nodes from different chemical groups are connected. Although the
minimum paths are calculated by connecting only nodes from negative
MIF, the walk still lies on the molecular surface (blue surface on Fig. 5.4)
as it does for positive MIF.

3. The GRID energy value of every node is combined with the frequency dis-
tribution. In fact, the GRID energies from the two nodes are multiplied,
and the product contributes to the probability factor.
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Figure 5.3. Schematic view of the PathFinder procedure: the frequency distribution is
extracted from GRID MIF, and is consequently encoded into a molecular fingerprint.
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The negative-to-negative minimum path can be applied to the MIF obtained with
all GRID probes. A common procedure makes use of water (OH2) and hydropho-
bic (DRY) probes. Accordingly, a further description OH2–DRY is given by con-
necting combined node pairs, one node from water negative MIF, the other from
the hydrophobic negative MIF. However, other probes could be used, such as the
combination of N1 (hydrogen bonding donor) and O (acceptor). In this way, a mo-
lecular description of molecular functionality is obtained.
The resulting matrix is then unfolded into a one-dimensional vector, which can

be merged with the shape description, and is suitable for multivariate statistics
analysis such as principal component analysis (PCA) and partial least squares
(PLS).
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Figure 5.4. GRID negative MIF – red colored
surface – (a) and frequency distribution (b)
are reported for the methotrexate. Two nodes
are used as examples: their euclidean dis-
tance and minimum path are highlighted with

green lines (a), whereas the point responsible
for that node pair is indicated by P (b). Each
point in (b) is characterized by three coordi-
nates: the distance, the path–distance value,
and the sum of the GRID energy products.



5.4 Examples

5.4
Examples

PathFinder is a novel procedure which numerically describes molecules on the
basis of 3D shape and functionality. Since shape is a fundamental property in
many fields, applications range from 3D QSAR to metabolism, as well as from
molecular diversity and/or similarity issues, such as clustering, classification or
database searching of drug-like molecules, to end up with shape analysis and
functional complementarity in the macromolecules recognition. A key peculiarity
of the PathFinder method is that the shape profile can be derived not only for li-
gands but also for enzymes and receptor sites. Thus, as well as ligand–ligand and
target–target similarity studies it is also possible to perform mixed target–ligand
comparisons.

5.4.1
3D-QSAR

The use of the PathFinder descriptor for QSAR is exemplified here through appli-
cation to two datasets taken from the literature: (i) 31 steroids utilized in the origi-
nal CoMFA study [3], since considered a benchmark for evaluating QSAR meth-
ods [4]; (ii) 55 inhibitors of HIV-1 reverse transcriptase proposed by Chan and co-
workers [5], interestingly this series could only be successfully correlated by
means of a structure-based approach [6].
For the first dataset, testosterone-binding globulin (TBG) and/or corticosteroid-

binding globulin (CBG) binding affinities were available. The GRID probes OH2
and DRY were used with both positive and negative MIF being encoded for the
OH2 probe whilst the DRY contributed with its negative MIF to the “self” paths
and to the so-called Mix description. 1136 active variables were obtained and
reported in the loading plots, Fig. 5.6, according to their type.
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Figure 5.5. Calculated
versus experimental
values for the PLS model
with 3 latent variables.
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Figure 5.6. Loading plots for the PLS model. Each block of variables
(black-colored) is highlighted in the corresponding plot. The shape is
the most important block of variables, inversely correlated with the activity.

Figure 5.7. (a) Calculated versus experimental values for the PLS model
with 3 latent variables. (b) Loading plots for the model. The upper plot
highlights high collinearity of the shape descriptors with activity; the lower
plot shows hydrophobic regions with orthogonal behavior with activity.
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The PathFinder descriptors were pretreated using block-unweighted (BUW)
scales, as available in the Golpe program [7], using the following BUW scales:
0.50 for shape, 2.00 for Water and Dry, 1.50 for the combined Water–Dry analysis.
The impact of shape was reduced, whereas the impact of the Water, Dry and Mix
was reinforced. Then the data were correlated to the activity by means of PLS anal-
ysis. The PLS method condensed the overall information into two smaller
matrices, which can be visualized by means of the score plot (which shows the
pattern of the compounds) and the loading plot (which shows the pattern of the
descriptors). The optimal model was obtained with three components, exhibiting
a significant statistical quality, as evinced by good R2 = 0.94 and Q2 = 0.71 values.
No superposition was required.
By screening corporate databases Chan and co-workers [5] identified 6-arylthio-

2-aminobenzonitriles with micromolar antiviral activity against HIV-1; modifica-
tion to 6-arylsulfinyl- and 6-arylsulfonyl-2-aminobenzonitriles yielded classes with
nanomolar activity. These data have recently been used [6] for a comparison of li-
gand- and structure-based GRID-derived procedures. Herein the same set is used
to test the procedure.
Again, PathFinder descriptors were generated as previously described and pre-

treated using block-unweighted (BUW) scales, using the following BUW scales:
1.50 for shape, 1.00 for Water and Dry, 0.75 for the combined Water–Dry analysis.
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Figure 5.8. Frequency distribution plots for the cytochromes 2D6 (a), 2C9 (b),
and 3A4 (c). For 3A4 the paths responsible for the peak are indicated with the
red arrow in (c) and reported, in red, in (d).
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Here, the impact of shape was reinforced whereas the impact of the combined
was reduced.
PLS analysis resulted in a three-component model that revealed good fitting

(R2 = 0.81) and internal validation (Q2 = 0.54) for HIV1-RT inhibition.

5.4.2
CYP Comparison

The rate and the site of metabolism for xenobiotics are due to a complex mixture
of recognition, shape and chemical reactivity. The human cytochrome P450 shape
in proximity to the reactive heme plays a fundamental role in molecular recogni-
tion and orientation. Thus, the CYP cavity shape modulates the likelihood of a
compound reacting with the enzyme, since it has to enter into the cavity, reach
the reactive site (the heme), adopt a stable orientation to allow the reaction to
occur and subsequently exit from the cavity. Different cytochromes show different
cavity shape, and in silico prediction cannot neglect their key role.
The PathFinder approach was used to compare the CYP cavities of CYP2C9 [8],

2D6 [9], and 3A4 [10], the most important human cytochrome enzymes. CYP2C9
and 3A4 were available as protein crystal structures whilst an homology model
was used for 2D6. Frequency distribution plots (Fig. 5.8) were obtained from non-
superposed CYP structures, selecting the iron in the heme moiety as a root depar-
ture path.
Using the iron anchor point produces a cavity description which is relative to

the reactive site position. Such a description is different from the simple distance
coordinate used before, because the site complexity here refers to a precise spatial
position (the reactive center). Figure 5.8 shows that CYP2C9 has a smaller cavity
than the other two CYPs and that CYP3A4 show the most complex shape within
the series.
These qualitative statements are due to a simple graphical analysis of the cavity

frequency distribution plot compared in Fig. 5.8. However, each cavity can be
inspected and compared in detail. For example, the peak indicated by the arrow in
Fig. 5.8 for 3A4 corresponds to the path–distance pairs reported in red color in
Fig. 5.8(d). They end up far away from the heme in a subpocket region generated
by the residues Leu 211 and Tyr 307. This subpocket is not present in the other
CYPs and can be involved in a selective recognition of the substrate molecule.
The reported procedure can be used to map the entire active site of an enzyme,

or, if linked with appropriate statistical analysis, the selective regions in a protein
family.

5.4.3
Target–Ligand Complexes

Two diverse target–ligand complexes were taken as examples. The shape fre-
quency distributions obtained from positive MIF for the complexes 1acl–DME [11]
and 1xli–GLT [12] are compared, as shown in Fig. 5.9. Both target (1acl) and ligand
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(DME) of the former complex are quite elongated and mostly hydrophobic. Con-
versely, both target (1xli) and ligand (GLT) of the latter are more compact and hy-
drophilic. In addition, the pair 1acl–DME has greater dimensions, both surface
and volume, compared to the 1xli–GLT complex. All these considerations can be
assessed quantitatively by the use of the PathFinder descriptors derived from the
positive MIF. Protein 1acl in Fig. 5.9(a) shows larger distance values when com-
pared with 1xli in Fig. 5.9(b).
The two complexes may also be compared by looking at the path–distance axis:

protein 1acl is characterized by higher values. This means that the variegated and
elongated protein surface allows the recognition of the branched ligand DME and
both variegated surfaces of target and ligand fit together. It is noteworthy how the
shape frequency distribution of protein 1acl resembles that of ligand DME,
whereas the shape frequency distribution of 1xli resembles that of ligand GLT.
The analysis can be extended to the search for complementarity using negative

MIF from different GRID probes. The complementarity of the hydrogen bonding
pattern using GRID probes O for the ligand and N1 for the protein or vice versa,
while the complementarity between hydrophobic regions can be addressed simply
using the probe DRY.
Figure 5.10 shows the distribution graphs of protein 1xli (a) and the ligand GLT

(b), respectively. MIF were produced using probe O for the protein, and the N1
probe for the ligand. The protein frequency distribution is usually more populated
than the corresponding ligand frequencies. In fact, protein cavities are larger than
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Figure 5.9. PathFinder description of target and ligand are
reported for complexes 1acl–DME and 1xli–GLT.
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ligand volumes. Some paths, two in the case of the ligand, and six in the case of
the target, refer to the same chemical entities, such as two hydrophilic regions in
the protein active site, where hydrophilic hydroxy groups of the ligand are placed.
The correspondence between the paths in the protein and in the ligand is reported
in Fig. 5.10 (c) and (d). The path in (c), obtained with the probe O on the protein
corresponds to the paths in (d) obtained with the probe N1 on the ligand.
Similarly, Fig. 5.11 shows the distribution graphs of protein 1acl (a) and the li-

gand DME (b), respectively. MIF were produced using the probe DRY for both the
ligand and the protein. Here again, some paths are highlighted. These paths link
some chemical entities in the ligand which have corresponding entities in the pro-
tein active site, in this case hydrophobic regions in the protein active site with cor-
responding hydrophobic ligand groups, the path obtained on the ligand corre-
sponds to the paths obtained on the protein.
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Figure 5.10. GRID MIF, represented in cyan,
were obtained on the target (1xli) with the
O probe (a) and on the ligand (GLT) with the
N1 probe (b). A few paths are highlighted,
connecting two hydrophilic MIF of the

binding site (a) and atoms of the ligand (b).
From a diverse orientation it is more evident
how the paths lie on the target (c) and ligand
(d) molecular surfaces, represented in yellow.
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5.5
Conclusions

We have presented a new procedure, called PathFinder, aimed at encoding the
GRID molecular interaction fields into invariant shape-descriptors, suitable for
similarity and complementarity issues. Shape similarity is the underlying founda-
tion of ligand-based methods while shape complementarity is the basis of many
receptor-based designs.
Since PathFinder works in path/distance space, the frame of reference for every

molecule is internal and, therefore, no pairwise alignment is necessary when mol-
ecules are compared. PathFinder at the same time incorporates information on
both overall shape (long distances) and local topology (shorter distances).
The new PathFinder procedure has recently been successfully applied to quino-

lones [13] and to the NAD within its site of the protein L-aspartate oxidase [14]. It
shows a number of uniquely promising attributes: the new descriptors are align-
ment-independent, highly relevant for describing the pharmacological properties
of the compounds, well suited for describing the macromolecules, ready to com-
pare macrostructures with their potential ligands without the need for virtual
docking. Moreover, path–distance descriptors are well suited for 3D quantitative
structure–metabolism relationships in which substrates can be structurally so dif-
ferent as to make the relative superposition impossible using standard tech-
niques.
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Figure 5.11. GRID MIF, represented in cyan, were obtained on the protein
target 1acl (a) and on the ligand DME (b) with the DRYprobe. A few paths
are highlighted which connect two hydrophobic MIF of the binding site (a)
and atoms of the ligand (b). The ligand molecular surface is represented in
yellow, whereas it was omitted for the protein for clarity.
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6
Alignment-independent Descriptors from
Molecular Interaction Fields
Manuel Pastor

6.1
Introduction

6.1.1
The Need for MIF-derived Alignment-independent Descriptors

Molecules are complex entities that can be numerically described in many differ-
ent ways. The molecular interaction fields (MIF) represent a very particular molec-
ular property: the ability of a molecule to establish energetically favorable interac-
tions with other molecules. For this reason, MIF have been widely used in the
field of drug discovery and development, since most biological properties of a
compound depend on its ability to bind different kinds of biomolecules, such as
transporters, receptors and enzymes.
There are different ways of applying MIF to the study of the ligand–receptor in-

teraction. MIF can be computed in the receptor binding site in order to find out
structural and physicochemical characteristics of potentially binding compounds,
as was originally described in [1]. It is also possible to proceed the other way
around and compute MIF in one or many small compounds in order to character-
ize them according to their potential to act as ligands, binding a certain receptor.
When used in this manner, the MIF can be seen as computationally obtained
descriptor variables (“molecular descriptors”), which represent properties of the
molecules, much like the calculated logP represents the molecule’s lipophilicity.
In general, the molecular descriptors allow one to obtain a mathematical repre-

sentation of the molecules and open the possibility of applying mathematical and
statistical methods to answer many useful questions. For example: how similar
are two different molecules? The simple observation of their structure might pro-
vide some answer, but this will always be subjective. However, if we describe the
molecules using some descriptor variables, the values assigned to both com-
pounds can be compared and an objective similarity index can be provided, al-
though it can be argued that the value of such an index is relative, and depends on
the appropriate choice of the variables representing the molecules. For example,
the results will be different depending on whether we use the lipophilicity or the



molecular weight or both. Moreover, no single choice can be considered correct,
and the suitability of the molecular descriptors depends on the problem to be
addressed. As a general rule, the most suitable variables describe properties of the
molecules which are strongly related to the problem being studied and which are
said to be “relevant” to the problem. In this sense, MIF are often a good choice for
describing small molecules in areas related to drug discovery, since the MIF repre-
sent well the ability of these molecules to act as ligands and bind other molecules,
and this binding is the first step in many chain events responsible for their biolog-
ical properties (for example, interaction with a receptor with respect to their phar-
macodynamic properties). For this reason, MIF-based molecular descriptors have
been extensively applied in different 3D QSAR methods, like CoMFA, COMSIA,
GRID/GOLPE, etc. For a review of such applications see [2].
Unfortunately, even if we can admit that MIFmake good, highly relevant molec-

ular descriptors, it must be borne in mind that every single MIF usually contains
several hundred or thousand variables, each representing the ability of the mole-
cule described to interact favorably with a certain kind of chemical group at a cer-
tain point in space. This particular organization of the data leads to several practi-
cal problems. The first is related to the implicit association of every variable to a
certain spatial coordinate. Let us imagine that we want to evaluate the similarity
of two molecules using MIF. The first step would be to compute a MIF for both
and then to compare their values for every single variable, however two values can
only be compared when the variable represents the same information and this
means that in both MIF the variable must represent the same position in space.
In practice, this only happens when both molecules are perfectly aligned and
placed in the precise orientation in which they would bind a certain biomolecule.
In the rare event that the structures of the ligand–receptor complexes are known
for both compounds, the alignment of the ligands can be obtained by superimpos-
ing equivalent receptor atoms. If the structure of the complexes is not available
but the structure of the receptor is known, then it is possible to attempt the dock-
ing of the structures into the receptor binding site using manual or automatic
methods. If the structure of the receptor is not available, as is often the case, one
can try to align the molecules using all the information at hand, which could be
some pharmacophoric hypothesis, common structural motifs in the ligands, etc.
However, apart from the first situation, in which the structure of the complex was
experimentally solved, every alignment operation introduces a certain amount of
subjectivity. The less information available the worse the alignment and, in the
limit, when the structure of the receptor is unknown and the structural similarity
of the compounds to be aligned is low, obtaining a suitable alignment becomes
nearly impossible. Moreover, the alignment is a time-consuming step, difficult to
perform using automatic procedures and often constituting the bottleneck in the
whole computational study. Computational methods used to perform the auto-
matic alignment on the basis of the ligand structures have been reviewed recently
[3]. However, even if some of these methods produce reasonable results, they are
far from providing a definitive answer to the problem. The problem of the align-
ment should not be underestimated and it has been recognised for a long time as
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the key step of any 3D QSAR study [4]. Since the alignment of the molecules is
the first step in the generation of their descriptors, any mistake will affect the rest
of the study. No data treatment can minimize the effect of mistakes or inaccura-
cies at this step, which will lead to unpredictable results.
Apart from the alignment problem, the use of raw MIF variables as molecular

descriptors has some practical problems, many of which are a consequence of the
fact that in the MIF the information is scattered in many different variables. In
any MIF, a lot of variables represent empty regions of space containing very little
or no information at all. The total number of variables is always large and often
rises to some hundred thousands or even more! This huge number of variables
prevents the use of simpler regression analysis methods, like multiple linear
regression, and requires the use of multivariant and megavariant methods like
partial least squares (PLS) regression or principal component analysis (PCA).
Moreover, the MIF are so huge that they are difficult to store, transmit or handle.
For all the above-mentioned reasons we decided to develop new molecular

descriptors, obtained from the MIF, but transformed in order to condense the
more relevant information into fewer variables and to solve the main drawbacks
reported above. It is important to stress that such transformation will inevitably
be associated with some loss of information and will introduce some bias, implicit
in the assumptions on the basis of which we will choose the “most relevant infor-
mation”. In our opinion, this is a price worth paying in order to obtain more use-
ful descriptors. Finally, the result of these efforts were the VolSurf descriptors and
the GRid INdependent Descriptors (GRIND), each one representing a different
method of condensing the MIF information and biased towards a certain applica-
tion. The VolSurf molecular descriptors [5] are mainly aimed at representing MIF
information relevant to the description of the phamacokinetic and physicochem-
ical features of the compounds. The GRIND [6] are more oriented towards repre-
senting the ability of a small compound to bind biomolecules (for example, recep-
tors) and therefore are better suited to represent pharmacodynamic properties.
This chapter will focus on a thorough discussion of the second type of descriptors,
the GRIND, as a representative example of the alignment-independent molecular
descriptors that can be obtained from the MIF.

6.1.2
GRIND Applications

The GRIND were published in the year 2000, and the first version of the software
used for generating and manipulating these descriptors (ALMOND) [7], was avail-
able in the same year. Since then, more than 20 applications of GRIND in the
most diverse fields have been published (see Table 6.1).
Apart from their application in practical problems, the GRIND have been the

subject of some theoretical papers, dealing for instance [28] with their information
content, performing comparisons with other descriptors and discussing their suit-
ability in drug discovery.
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Table 6.1 Published applications of the GRIND (at January 2005).

References

3D-QSAR 8–16

3D-QSPR 17–24

Molecular similarity 25, 26

Binding site characterization 27

Since the first publication of the method, much experience has been gained and
the method has been extended and improved. This chapter discusses for the first
time the details of the method, the problems more commonly found in its practi-
cal applications and the approach for the interpretation of GRIND-derived 3D
QSAR models.

6.2
GRIND

6.2.1
The Basic Idea

The GRIND method was developed with the aim of extracting the most relevant
information from a MIF and compressing it into a handful of variables. The
requirements were challenging:
. The resulting variables should not depend on the position or the orientation of
the molecule, thus making the molecular descriptors alignment-independent.

. The variables should be chemically meaningful and interpretable from a chemi-
cal point of view.

. A few variables should condense the most important information.

. They should be suitable for analysis using standard chemometric methods like
PCA and PLS.

. It should be possible to compute them in a fast and automatic way.

The first constraint, the fact that the resulting variables should not depend on the
spatial position nor orientation of the molecule, suggested the use of a geometri-
cal description based on “internal coordinates”, not making use of any external
reference system. The basic idea was to recognize in the MIF a number of highly
relevant regions and to describe their spatial distribution on the basis of their
mutual distances. Therefore, for a certain compound, we obtain a vector of values,
each one representing the presence or not in the MIF of a couple of nodes separat-
ed by a certain distance and each one belonging to a different “highly relevant re-
gion”. The value will be zero when the MIF contains no such couple of nodes at
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the given distance, and positive and the product of the MIF values at these posi-
tions, when it does. This method allows one to condense into the variables two
kinds of information: the presence or not in the MIF of a couple of nodes separat-
ed by a certain distance and the overall intensity of the MIP at both ends of the
distance. The variables so obtained are therefore richer in information and more
suitable for analysis using chemometric methods like PCA and PLS.
In greater detail, the procedure for obtaining the GRIND involves three steps,

as shown in Fig. 6.1.

6.2.1.1 Computation of MIF
In most cases, there is no a priori knowledge about which chemical groups are in
the binding site and are therefore relevant for the description. Situations in which
the structures of the binding site are known are an exception. However, in most
cases it can be assumed that the most important interactions with the ligand are
due to hydrophobic, hydrogen bond acceptor and hydrogen bond donor groups
found at the receptor-binding site. In the original GRIND formulation, the MIF
were computed with the program GRID and, by default, the GRIND method sug-
gests computing three MIF, with the following GRID probes: DRY, characterizing
hydrophobic interactions; O (an sp2 oxygen) representing hydrogen bond acceptor
groups; N (a planar, amide-like nitrogen) representing hydrogen bond donor
groups. It should be noted that this is only a default choice, sensible in the
absence of further information, but in the presence of any knowledge hinting at
other kinds of interactions it would be wiser to reconsider this choice, removing
some of the probes or adding some others, for example probes representing
charged groups when there is suspicion of the presence of ionised residues at the
binding site.
It should not be forgotten that the MIF is continuous and that programs like

GRID provide only an approximation consisting of a discrete sampling of the MIF
at certain positions, represented by the nodes of a regularly spaced three-dimen-
sional grid. The smaller the grid spacing, the better and more accurate is the sam-
pling, even if the time of computation and the storage space impose practical lim-
its to this sampling. In the context of GRIND, it is important to start from an
accurate representation of the MIF, because the descriptors may be affected by the
field discretization errors. Even if the descriptors are insensitive to the position of
the molecules in space, if the situation of the molecule within the sampling grid
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Figure 6.1. Steps involved in the computation of the grid-independent descriptors.
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is different, the actual field values may differ slightly. For this reason, it is always
advisable to work with a small grid spacing, 0.5 	 as a maximum.

6.2.1.2 Extraction of Highly Relevant Regions
In the context of GRIND methodology, we intend by “highly relevant regions”,
areas of the MIF where the ligand can establish strongly favorable interaction and
therefore the position of binding site groups which can putatively bind the com-
pound. This definition of “highly relevant” clearly orients the application of the
GRIND towards the description of ligand–receptor binding, making the resulting
variable more focused and less general.
From a practical point of view, selecting such highly relevant regions is not an

easy task. Confronted with a 3D isovolume representation of a MIF, a trained
human expert usually has no difficulty in recognizing potential regions where the
molecule could establish strong interactions. These are characterised by having
negative energies and large absolute values. However, computational algorithms
for extracting these regions must pay attention to other aspects as well as the field
values. For example, if the molecule has a region with very strong negative values,
computational algorithms could extract only this region, neglecting the rest of the
molecule (Fig. 6.2(a)). However, certain substituents can produce several favorable
regions, not too intense, and a selection based only on the field values runs the
risk of extracting an arbitrary sample that does not represent the true potential of
the molecule for interacting with the receptor (Fig. 6.2(b)).

In GRIND, the selection is performed using a balanced combination of two dif-
ferent criteria. On the one hand, the values of the field in the selected regions
should be negative (favorable) and intense. On the other hand, the distance be-
tween the regions should be as large as possible, in order to prevent excessive con-
centration on a few areas. In principle, the relative weight given to both criteria is
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Figure 6.2. Problems that might arise in the
selection of highly relevant regions when it is
based only on the MIF values: (a) charged
groups, like this COO– group, concentrate on
themselves all the selected nodes, neglecting

the effect of other groups producing weaker
interactions, (b) probes that do not establish
strong interactions with the target com-
pounds, like this O probe, select a sample of
scattered nodes.
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equal, but it can be finely tuned to provide a better selection in certain situations.
For example, when the compounds simultaneously contain groups producing
very intense MIF interactions and weak MIF interactions, a higher weight on the
distance criterion might prevent situations like the one represented in Fig. 6.2(a),
in which all the nodes are concentrated in one of the regions. These criteria were
used to compute a scoring function, which was used by an interchange optimisa-
tion algorithm [29]. This algorithm works by selecting randomly a certain number
of MIF coordinates and moves coordinates in and out of the selection until the
value of the scoring function is maximized. Finally, the algorithm yields a certain
number of grid nodes maximizing the above-mentioned criteria, and these are
identified with the “highly relevant regions” thereafter. Figure 6.3 shows the
aspect of the selected regions.

This step is one of the more critical in the GRIND procedure for several rea-
sons. By selecting only a few of the grid positions (nodes), all the rest are removed
and no longer used. Much of the information of the MIF is thrown out at this
stage, remarkably all the positive part of the MIF. Therefore, any mistake in the
selection of the regions, either conceptual or computational, has a large impact on
the results. For this reason, this is the only part of the method which often
requires some human intervention in order to adjust two algorithm parameters:
the relative weight of the field in the scoring function and the number of selected
nodes. The first parameter has already been discussed. The second parameter, the
number of nodes, was fixed by default at one hundred and in most drug-like com-
pounds this number is adequate to obtain a suitable representation of the relevant
regions. However, when the compounds are large, or they contain many substitu-
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Figure 6.3. Aspect of the highly relevant regions extracted by the GRIND
method with different settings: 50 nodes, 100 nodes and 200 nodes. The
encircled areas highlight regions which have been misrepresented due to
the selection of an incorrect number of nodes. See text for details.
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ents producing large favorable regions, this number of nodes is not enough to
build a complete map of these regions and should be increased. On the other
hand, if the number of nodes is set to too high a value the algorithm will include
in these nodes positions of the MIF representing weak, nonspecific interactions,
and the resulting map will again not be adequate. Figure 6.3 shows the result of
selecting 50, 100 and 200 nodes on the MIF obtained with a N1 probe on the
structure of Zanamivir (Relenza
). If can be clearly seen how the 50 nodes fail to
represent the regions produced by the hydroxy group substituent, while in the 200
nodes representation the algorithm saturates some regions with nodes, thus fail-
ing to extract the most relevant regions.
In our experience, the best way to tune these parameters is to carry out the pro-

cedure using default parameters and then inspect the nodes selected in order to
detect misrepresented regions. This visual inspection can be carried out on a
small series containing only a few representative structures if the original series
contains many compounds. Once the parameters have been adjusted, the proce-
dure can be run on the whole series. It is not advisable to tune-up the parameters
using as a guide statistical parameters like the r2 and q2 of the PLS models
obtained, since this can produce the opposite effect and lead to artifacts. Certainly,
the method described is not perfect and is at present being reviewed in order to
develop a better selection procedure that might work without human supervision.

6.2.1.3 MACC2 Encoding
Once the MIF is reduced to a set of nodes representing the most relevant regions,
the next step is to describe the spatial position of these nodes without using their
absolute coordinates nor any external reference system. The solution adopted in
GRIND is based on describing the node–node distances and the MIF energies rep-
resented by such nodes. In order to do this, the node–node distances were first
converted to a discrete set of distance ranges or distance “bins”, then every couple
of selected nodes was analysed in turn, measuring their mutual distance and
assigning them to a certain distance bin. At the end of the analysis, every bin is
represented by the couple of nodes for which the product of their MIF is higher,
thus representing the more favorable energy at both ends of the line linking the
nodes. The result of this analysis is an array of values, one for each distance bin,
containing 0 if no couple of nodes was found and an energy score representing
the largest product of MIF, if one or more couples was found. The vector contains
“energy scores” and not plainly “energy products” because, in order to equalize
the scale of the correlograms obtained with different GRID probes, the values
were scaled by dividing the MIF products by the maximum MIF value obtained
for this probe in a series of drug-like compounds: the full Maybridge HTS data-
base of September 2002 (see manual of [7] for further details). The effect of this
scaling is to obtain values approximately in the range 0.0 to 1.0. Other scaling
schemes can be tried, but the application of autoscaling is strongly discouraged,
because the scale of the variables obtained from the same MIF is informative and
should not be removed.
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These results can be seen, from a mathematical point of view, as a set of n quan-
titative-continuous variables, each representing a range of distances. It is possible
to represent these values in a graphic like the one represented in Fig. 6.4, which is
called a “correlogram”, in which the distances are represented on the horizontal
axis and the scaled product of energies on the vertical axis.
The first characteristic of this geometry representation that must be emphasized

is that it is completely alignment independent, since the values assigned to every
variable depend only on the mutual distance of the nodes and not on the position
of the nodes in space. Therefore, if we carry out this analysis for a series of mole-
cules not aligned in space, the variables obtained for every compound do neverthe-
less have the same meaning and the values obtained can be combined to build a
consistent descriptor matrix, without the need to align or otherwise superimpose
their structures.
One of the critical steps for carrying out the encoding is the definition of the

distance ranges. Every range defines one descriptor variable and only one couple
of nodes will be extracted to represent this range. Therefore, the ranges should be
chosen carefully: selecting too many will produce a lot of empty distances and
selecting too few will condense many different distances into a single descriptor
variable, thus losing information. It should also be borne in mind that the nodes
are regularly spaced in a 3D grid and therefore not all distances are defined, espe-
cially for small distances. The default range width was set to 0.8 times the grid
spacing, and this setting was found to work well in most cases.
As mentioned above, the descriptor variables obtained take values that represent

two different things: the presence or absence of a couple of nodes at a certain dis-
tance and the combined intensity of the MIF at both ends. If we assume that these
MIF values represent adequately the ability of the molecules to bind a certain
receptor, then the molecular descriptors obtained by the encoding should preserve
the original information, since they are simply scaled MIF products, and can
therefore be expected to be relevant for representing the binding properties of the
compounds. It should also be noticed that the GRIND produce a “fuzzy” encoding
of the structural features since the presence or absence of a certain group is not
reflected in a single descriptor variable but in many of them, often grouped
around a peak in the correlogram. In this respect, the GRIND differs from other
molecular descriptors and, in particular, from the structural fingerprints.
So far we have mentioned how to encode a single MIF in order to obtain a sin-

gle correlogram. In order to encode all the MIF computed for a structure, the
same procedure is repeated for the k MIF computed. First the encoding is used to
represent couples of nodes belonging to the same MIF, obtaining k so-called
“auto-correlograms”. Then, another set of correlograms is computed, this time
representing distances between couples of nodes in which one of the members of
the couple belongs to MIFi and the other to MIFj, the so-called “cross-correlo-
grams”. The total number of cross-correlograms can be calculated as the number
of picking MIF pairs from the set of kMIF, using the formula of combinations:

2Ck ¼ k
2

� �

¼ k
ðk� 2Þ!2! (1)
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Figure 6.4. Different graphical representations of the GRIND-generated correlograms.
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Each such correlogram can be seen as a different block of descriptor variables
characterising different binding abilities of the compounds. Usually, the whole
correlogram set is used to characterize the compounds and, accordingly, they are
represented side by side graphically (see Fig. 6.4). The total number of variables
generated by the procedure depends on the size of the largest compound, which
defines the largest node–node distance found in the series. Typically, drug-like
compounds use 50–80 variables per correlogram and the total number of variables
obtained for a three-field description oscillates between 300 and 800.
As mentioned above, the values assigned to the descriptor variables for every

compound were obtained from a single couple of nodes. By using appropriate
software, the identity and therefore the 3D coordinates of these two nodes, for
every compound, can be stored during the encoding and then represented togeth-
er with the compound structure, in order to identify the structural correspondence
of the descriptors. This is extremely useful for the model interpretation since it
allows one to represent the results of the analysis on top of the structures of the
compounds, in a language which can be understood by any chemist. Indeed, this
is one of the strong points of the descriptors: even if they can be computed with-
out aligning the structures, it is possible to revert the transform and obtain a rep-
resentation of every variable, for every compound, indicating clearly which couple
of nodes is represented by this variable.
However, the practical application of the encoding procedure produced some

unexpected problems. One of the nicest features of program GRID is its ability to
consider the conformational freedom of some polar hydrogen atoms in the com-
putations and obtain MIF reflecting the most favorable interaction produced with
the most favorable of such conformations at each grid node. This is clearly seen in
the MIF map produced by a hydroxy group, in which the favorable regions of in-
teraction with a polar probe have a crown shape, produced by the rotation of the
hydrogen and/or oxygen lone pair. However, it is obvious that two opposite nodes
of this crown cannot coexist, since they represent two different conformations of
the hydroxy group. Unfortunately, the GRIND encoding procedure often consid-
ered couples of nodes produced by the same atom in different conformations,
thus generating descriptors without physical meaning. In order to prevent this
effect, it is advisable to generate the MIF using in GRID the ALM directive (this is
the default in the latest ALMOND versions). The ALM directive adds some extra
information to the MIF, labelling every single node with the identity of the atom
contributing most to the energy of interaction. When this information is available
in the MIF, the GRIND encoding removes from the list of couples those in which
both nodes are generated by the same atom, thus preventing the generation of
meaningless descriptors.
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6.2.2
The Analysis of GRIND Variables

The way in which the GRIND were obtained produces large redundancies in the
descriptor matrix. For example, the presence of a hydrogen bond donor substitu-
ent will probably be reflected in several consecutive variables of the hydrogen
bond acceptor probe auto-correlogram as well as in many variables of other cross-
correlograms. In order to overcome this problem it is convenient for the analysis
of GRIND to use chemometric methods like principal component analysis (PCA)
or partial least squares (PLS), in which the original variables are not used directly
but are used to build a few “principal components” (PC) or “latent variables” (LV),
obtained as a linear combination of the original ones and forming the basis of the
subsequent analysis. Indeed, the GRIND were designed to be analysed using
these powerful techniques and without their application the original descriptor
matrix might not be adequate for direct analysis, mainly due to problems related
to the internal correlation and information redundancy.
GRIND can be obtained for a series of compounds of very different size and can

be used in any sort of computational study. However, we will mention here some
typical ways in which they are often analysed:

1. GRIND have often been used to build QSAR or QSPR models correlating
the structure of a series of compounds of small/medium size (typically
from 10 to 500 compounds) with their experimentally measured biological
properties. The final goal is to obtain a predictive model or rationalise the
differences in the biological property or both. In these cases, PLS is the
regression analysis tool of choice. A detailed description of the PLS tech-
nique is obviously beyond the scope of this chapter and can be found else-
where [30]. It should nevertheless be mentioned that the general principles
of PLS modelling must be applied: the number of LV to incorporate should
be carefully assessed; small increases in q2 do not justify the incorporation
of new LV. Also, the TU scores plot (also called PLS plot) for every LV
should be carefully inspected, in order to detect outliers and object cluster-
ing. If the series contain very dissimilar compounds or many correlograms,
it is often advisable to apply a mild variables selection using one or two
sequential runs of FFD variables selection [31]. Models with a q2 over 0.80
can be considered of sufficient quality, however this figure should not be
seen as a strict cut-off and in some series in which the Y values are
expected to be only approximate (for example, when they are obtained
from in vivo data, or the data was collected from multiple sources) smaller
values could be acceptable and vice versa. Since GRIND provides only an
approximate description of the most relevant regions, PLS models with ex-
tremely high values of r2 are seldom obtained. Some of the fine effects are
not well described and in most cases the r2 are lower than those obtained
with other 3D QSAR methods. Conversely, these “crude” descriptions are
very robust and perform well in prediction, which is reflected in high q2

values, often very similar to the r2. The interpretability of the models is also
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rather good, and is discussed in the next section. Several examples of
QSAR/QSPR models using GRIND can be found in the references
reported in Table 6.1.

2. In other cases, the GRIND were used to analyse larger series of com-
pounds (of the order of 100 to 10 000) in order to obtain models describing
some biological property. In most of these studies, the structural dissimi-
larity of the compound was large or very large and/or the quality of the
experimentally measured biological property was poor (obtained from mul-
tiple sources, qualitative data, etc.). In these circumstances the goal is not
so ambitious and does not aim to obtain a quantitative model: it is suffi-
cient to obtain a discriminant model that performs well in prediction, and
from the beginning the interpretation is assumed to be not affordable.
GRIND are rather suitable descriptors in these situations because it is pos-
sible to compute them quickly and without supervision. A PCA exploratory
analysis can reveal whether the descriptors are able to form clusters of
compounds with similar properties. When this is so the biological mea-
surement can be categorized (as active or inactive) and PLS-discriminant
analysis (PLS-DA) can be used to obtain simple discriminant models on
the basis of which the properties of new compounds may be predicted.
Some published applications of these methods are listed in Table 6.1 [17,
23].

3. Sometimes, the study does not aim to obtain models of any sort, but to
characterise the structure of the compounds in a biologically relevant way.
This is the case for example in combinatorial library design, when the aim
is to extract a set of compounds, bioisosteric to an active prototype, or alter-
natively, to obtain a series of compounds as dissimilar as possible. GRIND
provide a description of the compounds based on relevant features and are
therefore highly suitable for these applications. However, as mentioned
above, GRIND are largely redundant and therefore the direct use of the
variables should be avoided. For these applications, the best approach is to
start carrying out a PCA and work on the PCA score spaces, using a reason-
able number of principal components (PC). Selecting compounds in the
PC space is not difficult and can be carried out with standard chemometric
tools like simple Euclidean distances, k-means selection or other clustering
techniques. It is worth mentioning that in such score spaces, every PC rep-
resents features or a combination of features representing the maximum
structural variability in the series. Not surprisingly, the first PC nearly
always represents the size of the compounds. The meaning of subsequent
PCs changes from series to series, but could be investigated both by
inspecting the PCA loadings for the particular PC and by inspecting struc-
tures of compounds situated in opposed positions of the PCA scores plot.
An example of this kind of application can be found in [26].
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6.3
How to Interpret a GRIND-based 3D QSAR Model

6.3.1
Overview

One of the greatest advantages of 3D QSAR methods is the possibility of showing
the results in 3D graphics, in a format that can be understood by chemists and
that can be of help in obtaining new ideas and in designing new compounds with
enhanced properties. 3D QSAR models generated with GRIND can be represent-
ed in this way and can serve this purpose, but the peculiarities of the descriptors
make the procedure a little more complex and require some more effort from the
researcher.
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obtaining GRIND-based 3D QSAR models.



6.3 How to Interpret a GRIND-based 3D QSAR Model

The suggested work flowchart to follow in GRIND-based 3D QSAR studies is
shown in Fig. 6.5. The GRIND should be generated taking account of the princi-
ples mentioned above, adjusting parameters like the number of nodes. The
descriptors should then be inspected by carrying out a PCA to help to detect unac-
ceptable clustering of the series. Only then is it possible to obtain PLS models,
which must be validated from a chemometric point of view taking account of the
general principles mentioned above.
The next step is to attempt interpretation of the model, aiming to obtain a set of

hypotheses rationalizing the major reasons that explain the differences in activity
observed in the series. As stated before, the GRIND make possible a graphical rep-
resentation, as lines linking couples of nodes, but it is important to notice that
this representation does not represent a GRIND variable, but a single value of the
variable: the particular instance of this distance in a particular compound. There-
fore, since the compounds are usually not aligned, in another compound the cor-
responding couple of nodes used for the same variable might fall in a completely
different region of the space. In this sense, the GRIND 3D representations are
different from other 3D QSAR methods like CoMFA or GRID/GOLPE, in which
the 3D coefficient plots, for example, are able to represent the contribution of the
variables to the model.
For this reason, the recommended way to proceed is to identify single relevant

variables from a PLS (or PCA) plot and then visualize these variables in 3D in
some representative compounds, for example, highly active compounds and inac-
tive compounds or compounds from different structural families. The goal is to
inspect the node couples in these structures in order to identify the structural fea-
tures that are contributing to the descriptors and to rationalize the reasons
explaining the importance of these descriptors (see Fig. 6.6). This method of inter-
pretation requires a clear understanding of the two alternative graphical represen-
tations of the GRIND: the correlograms and the 3D graphics representing node
couples, which are described in detail in the next sections. The proposed method
does not aim to provide a full understanding of the effect in the model of every
single descriptor variable, because these contribute with different weights (often
very small ones) to the PC or LV which are actually correlated with the activity.
Therefore, our advice is to concentrate on the variables producing the higher and
lower peaks in the PLS coefficients bar plot (see Fig. 6.6).

6.3.2
Interpreting Correlograms

The collection of auto- and cross-correlograms computed for a single molecule
can be represented side by side in a graphic which resembles a spectrum, like
those represented in Fig. 6.4 (b) and (c). In QSAR/QSPR applications, where the
GRIND are computed for a series of compounds, it is often interesting to repre-
sent together the correlograms for all the compounds, coloring every compound
in a spectrum scale representing the value of the biological property; for example,
inactive compounds are colored blue and active compounds are colored red. In
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6.3 How to Interpret a GRIND-based 3D QSAR Model

these graphics, relevant descriptor variables can be easily identified, because red
and blue points are not mixed up, indicating that active and inactive compounds
consistently take either high or low values for this particular variable (see the areas
enclosed by the yellow dashed line in Fig. 6.6).
After chemometrical analysis of the matrix, interesting variable information

like the PCA loadings or the PLS coefficients can be represented in bar plots. An
informative graphic can be obtained by situating a correlogram plot and a PLS
coefficient plot on top of each other (Fig. 6.6). Variables with large positive contri-
butions in the PLS coefficients (high positive variables) generally identify struc-
tural features present in highly active compounds and absent in low activity com-
pounds. These can be seen in the correlogram plot as a band where the blue and
red dots are not too mixed and where the red points are above the blue points (see
the elongated area enclosed by the yellow dashed line on the right-hand side of
the correlograms in Fig. 6.6). In some circumstances, the difference between
active and inactive is due to the absence of a feature, for example, inactive com-
pounds might lack a substituent and as a consequence, some descriptors in a cer-
tain range of distances take a value of zero. In other cases the difference is quanti-
tative and reflects that active compounds have substituents able to establish
stronger interactions with the receptor than the inactive compounds. Often, the
differences in the values of the field nodes are actually reflecting differences in
the position of certain groups, for example, inactive compounds might have lower
values at certain distances because the center of the interaction region can be
located in a “nonoptimal” position. Then, in inactive compounds the nodes
located within the optimum distance range are nodes from the border of the re-
gion and therefore weaker than the nodes at the center. All these considerations
are also applicable to variables with negative contributions in PLS models, simply
by inverting the reference to highly active and low active compounds.

6.3.3
Interpreting Single Variables

Every GRIND variable represents both the presence and the intensity of a couple
of nodes present at a certain distance. Using the appropriate software it is possible
to visualize the couple of nodes which has been used to assign a value for a certain
GRIND variable in a certain compound. Unfortunately, it is not possible to obtain
a representation applicable to every compound in the series, as is the case in other
3D QSAR methods like CoMFA or GRID/GOLPE. From the point of view of inter-
pretation this implies that in order to understand the meaning of a relevant vari-
able, one should visualize couples of nodes involved in several structures, and at
least in structures with extreme differences in structure and biological activity. In
other words, the process of interpreting a variable requires one to visualize the
nodes which were used to compute values in the most active compounds, in the
less active and in at least a representative of every structural family. The goal of
this inspection is to unveil the structural features which differ in active/inactive
compounds. The difference could be qualitative, representing the presence/
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absence of the structural feature, or quantitative, due to a difference in the inten-
sity of the interaction. Additionally, it is also important to inspect different struc-
tural families of compounds in order to detect the consistency of the interactions
and any potential artifacts in the model. In particular, if the series contains differ-
ent families of compounds that exhibit different overall biological activity, then
any QSAR model will identify as detrimental for the activity any descriptor which
identifies a structure as belonging to the less active structural family. Models built
using GRIND are also susceptible to this problem and the only solution is appro-
priate series design and careful model interpretation. This problem is so common
and so important that it is discussed further in Section 6.3.4.
At the end of the process, the significant variables that are identified represent

couples of MIF nodes which are related to the biological properties of the mole-
cule and these can be transformed into a set of hypotheses with potential useful-
ness for the design of new compounds or the rationalization of the results. These
MIF nodes correspond with the spatial position where a chemical probe can estab-
lish a favorable interaction with our compound, and therefore represent chemical
groups of the binding site and not chemical groups of the ligands. The distance
which separates these positions can be easily computed from the sequential iden-
tifier of the variable, by multiplying this value by the grid spacing and the width
of the ranges in grid units (the value of the “smoothing window” in ALMOND).
For example, if the variable 23 of the N auto-correlogram is found to be important,
this means that there are two hydrogen donor groups in the binding site, separat-
ed by approximately 23 � 0.5 � 0.8 = 9.2	 (assuming that the GRIND were gener-
ated using the default values of 0.5	 of grid spacing and a smoothing window of
0.8 grid units). This distance represents the spacing between the atomic centers
and is only approximate, because the GRIND do not represent single distances
but distance ranges, which in this case have a width of 0.4	.

6.3.4
GRIND-based 3D QSAR Models are not Pharmacophores

A pharmacophore can be described as an ensemble of distances and angles be-
tween atoms or molecular features which constitutes an essential requirement of
the molecular structures for exerting a particular biological effect. The methods
for identifying pharmacophores were reviewed recently [32]. The GRIND share
with the concept of pharmacophore the description in terms of distances, even if
in GRIND the distances are between MIF nodes and therefore more related to the
distances in the receptor than to the distances in the ligand. In any case, the
results of a 3D QSAR model interpretation are a number of highly relevant vari-
ables, representing distances which can be shown in 3D and which look very
much like a pharmacophore. However, in the vast majority of cases these repre-
sentations are not pharmacophores, for reasons that are worth discussing here.
First, as was discussed above, the distances represented by GRIND refer to

atoms in the binding site and not to atoms in the ligands, as is the case in most
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pharmacophores. This makes these distances unsuitable for carrying out searches
in 3D structural databases.
The results of any QSAR model (not only GRIND generated models) express

the correlation between the differences in the structure of the compounds and
their differences in biological properties. Structural features which are common
to every compound in the series are simply not considered in the analysis. Any
pharmacophoric interpretation of the results of a QSAR analysis will miss struc-
tural features shared by all the compounds. This fact is not trivial, because most
series are constituted mainly of compounds with a certain degree of affinity for
the receptor and this reveals that most of them have relevant common features.
Therefore, as stated previously, none of these features will be present in the results
of the models and no “pharmacophore” derived from this analysis will incorporate
them. Moreover, the QSAR model results also inform us of structural features
that are detrimental for the activity, while the pharmacophores are often focused
only on the structural features that are needed to obtain active compounds.
Another reason to avoid a pharmacophoric interpretation of the 3D QSAR/

GRIND results is the presence of correlation effects. Often, the compounds in the
series studied belong to different structural families, each one characterised by a
number of structural features, like the presence of certain groups, rings or chains.
The problem is that all these features are present or absent together. For this rea-
son, the results of the QSAR analysis will assign the same importance to all these
features and if only one of them is relevant for the activity, no model would be
able to distinguish this single feature from the others, since all are present or
absent simultaneously in the tested compounds. However, if these results are ex-
trapolated to external compounds, in which maybe only some of the features are
present, the predictions will be wrong.
For all the above reasons, the results of the QSAR models obtained with GRIND

should not be considered as pharmacophores. A correct and sensible interpreta-
tion of these results would be extremely useful, but its over-interpretation can be
misleading and produce unrealistic expectations. It should also be stressed that
the above-mentioned considerations are applicable to most QSAR and 3D QSAR
results and are not a problem strictly linked to GRIND.

6.4
GRIND Limitations and Problems

6.4.1
GRIND and the Ligand Conformations

The GRIND were designed to be invariant to the position of the ligand in space
but not to conformational changes in the ligands. The problem of the ligand flex-
ibility and how to choose the appropriate ligand conformation is extremely diffi-
cult. Most 3D QSAR methods published so far are sensitive to the conformation
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of the ligands, with the exception of only a few methods [33], specifically designed
to address this problem.
It is also true that not all molecular descriptors exhibit the same sensitivity to

conformational changes. Descriptions like the MIF, based on the absolute 3D
coordinates of every atom in the structure, are very sensitive even to minute con-
formational changes. The transformation applied to MIF in descriptors like Vol-
Surf and GRIND make the resulting molecular descriptors much more indepen-
dent of conformation, in particular for small conformational changes. In the case
of GRIND, this is easy to understand: a small displacement in space of a single
polar group can change the values of energies assigned to hundreds of MIF val-
ues, but in the GRIND correlogram we will only appreciate a small shift in a sin-
gle peak. The effect of conformational changes on the results of GRIND-derived
3D QSAR models have been explored in a series of butyrophenones with activity
as 5-HT2A antagonists [34]. In this example, multiple QSAR models were
obtained, using randomly selected 3D structures from a pool of alternative confor-
mations, obtained by 2D to 3D conversion programs as structures with nearly
equivalent conformational energies. The results of this study showed that the sta-
tistical parameters of the analysis exhibit moderate variation (r2 ranged from 0.69
to 0.77 and q2LOO from 0.44 to 0.56) but the main structural features related to the
activity were identified in all instances and the predictions for external com-
pounds oscillated by less than 0.5 logarithmic units.
The claim for a really alignment and conformational independent method is

justified by the need for fast assessment methods, able to work without human
supervision on a large series of candidate compounds. In these situations, a rea-
sonable approach is to represent every compound by a single structure, represent-
ing the extended conformation or the lowest energy conformation, which can be
obtained automatically from the 2D representation of the compounds using differ-
ent computational tools. Unfortunately, there is nothing to justify the idea that the
bioactive conformation will be similar to the lowest energy one and numerous
exceptions can be found in the literature. Alternatively, every compound can be
represented by several conformations, generated by systematic conformational
analysis, the Monte Carlo method or some other methods. However, in these ap-
proaches there are also no clear criteria to decide which of the conformations
should represent the compound. Choosing the one producing the best fit to our
models is certainly tempting but there is a high risk of producing “self-consistent”
results (the fitting justifies the conformer choice and the conformer choice justi-
fies the fitting) and hence models with very low predictive power. It is also possi-
ble to average the description obtained for different conformers, even applying
weighting schemes based on energetic criteria or others, but the resulting vari-
ables cannot be considered as a description of the bioactive conformation and are
more the description of an artificial ensemble of accessible conformations. In the
particular case of GRIND, these approaches tend to produce nearly flat correlo-
grams for all the compounds and have no practical application. All in all, the prob-
lem of ligand conformation should be considered still open.
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An interesting alternative to the above-mentioned approaches is the computa-
tion of GRIND starting from the special type of MIF generated by program GRID
with different values of the directive MOVE. When this directive is set, the GRID
program automatically recognises conformationally flexible groups in the target
compounds and computes the MIF taking into consideration, from all the accessi-
ble structures in the conformational space, those producing the most favorable in-
teraction. Therefore, the resulting MIF does not represent a single structure, but
all the accessible conformations, and the energy values describe the most favor-
able energies between the probe and any of the considered conformations. As a
consequence, GRIND computed from these MIF incorporate, indirectly, informa-
tion about the flexibility of the compounds, thus inheriting the conformational
flexibility described by the so-obtained MIF. Unfortunately, the flexible GRIND
are not a general solution. In many cases, the correlograms obtained have broad,
overlapping peaks, which do not describe the structure of the compounds with
the required precision. However, some studies [19] demonstrated that this some-
what fuzzy description can be used to describe the affinity to cytochromes. This is
not surprising, if we consider that the cytochromes are part of the natural detoxifi-
cation mechanism of the body and have evolved to act on structurally diverse com-
pounds. Therefore, the structural requirements for binding a certain cytochrome
cannot be expected to be strict, as supported by the structural diversity of experi-
mentally determined substracts, and depends more on the fulfilment of some ge-
neric structural and physicochemical conditions. In these cases, the description
provided by the flexible GRIND can be used, as demonstrated by published mod-
els [19] providing reasonable predictions for the inhibition of a large series of ex-
tremely diverse compounds on cytochrome CYP2C9.

6.4.2
The Ambiguities

The GRIND method assumes that the couples of nodes selected to represent a giv-
en distance in different compounds do actually represent the same kind of poten-
tial interaction with the receptor. This is often not true, for two reasons, as repre-
sented in Fig. 6.7. In the first situation (Fig. 6.7 (a)) all the compounds in the se-
ries contain alternative sites representing exactly the same distance and from
which the candidate couples can be selected. Since the criteria for selecting the
nodes is based only on the value of the MIF energy product, different sites can be
selected in different compounds. The result is that the 3D graphic shows a non-
consistent representation of the sites and can look messy.
In the second possible scenario, represented in Fig. 6.7 (b), the alternative sites

represented by the same GRIND variable are not present in all the compounds in
the series. Actually, the same variable represents two different and unrelated posi-
tions of the compound that cannot be expected to produce the same interactions
with the receptor. These variables can be considered to be the sum of two separate
ones, each one representing separate pieces of information about the compound,
but confounded into a single variable.
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The effect of these problems on the models is different depending on the type
of situation as described in Fig. 6.7 (a) or (b). In the first situation, where the alter-
native sites are present in all the compounds, the effect of all the sites is correlated
and the model is not altered. This situation is not too dangerous, since the prob-
lem is only related to the position of the nodes represented in the 3D graphics and
affects only the interpretation. However, the second situation could be much
more dangerous, in particular when the alternative sites have different effects on
the biological properties of the compounds. In this situation, the variables are no
longer consistent and represent different information in different compounds.
Fortunately, the use of projection methods helps to minimise the negative impact
of this problem: most MIF regions are represented in many GRIND descriptors
and even if a couple of such regions are confounded in some variables, they will
participate differently in some others of the same correlogram or of different cor-
relograms. Since the projection methods make simultaneous use of all the vari-
ables, the regions which could be confounded for a single variable are never con-
founded for the ensemble of descriptors, since they will produce different patterns
of distances. This again stresses the importance of using multivariate projection
methods in association with GRIND and explains why the models behave so well
both in fitting and in prediction, even in the presence of the above described
ambiguities. The main problem in this case is that, again, the problem makes the
interpretation harder, because the individual inspection of PLS coefficients will
not easily unveil the true relationships.
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Figure 6.7. Two potential situations leading to ambiguous
GRIND descriptors. See text for details.
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6.4.3
Chirality

The GRIND descriptors are insensitive to the chirality of the structures. This has
the undesirable side effect of providing exactly the same description for the two
enantiomers associated with any chiral center. Diastereomers might, on the con-
trary, produce different correlograms, due to the presence of differences in the
internal geometry.

6.5
Recent and Future Developments

6.5.1
Latest Developments

The best way to detect the weakness of any method or program is to use it in prac-
tice. After nearly five years of applying GRIND and ALMOND to a wide range of
series, and collecting the suggestions and complaints of numerous users, we
detected several aspects of the method which required improvement. We will
mention here two of these, which were solved by applying extensions to the origi-
nal GRIND method as well as other aspects which remain still open.

6.5.1.1 Shape Description
The GRIND provide a reasonable description of the spatial position of groups able
to establish favorable interaction with the receptor, neglecting completely the
effect of other regions, maybe unable to make strong interactions but important
because for steric reasons they can prevent the binding. Therefore, some users
asked us to incorporate into the GRIND some description of the molecular shape
and, particularly, of those aspects of the shape which could be relevant to binding,
like the existence of protrusions preventing ligand docking.
With this aim, we developed the TIP probe, a pseudo-MIF representing the local

curvature of the molecular surface. The values provided by this probe have the
ability to identify any sharp change in the local curvature, like those produced by
substituents or present at the molecule ends (see Fig. 6.8), which are highlighted
as a set of relevant nodes. Even if this description is not formally a MIF, the
probe-like characterization allows a seamless integration of the description into
the GRIND. A detailed description of the computations involved as well as some
examples of the advantages of its incorporation was published recently [35].
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6.5.1.2 Anchor GRIND
GRIND provide a solution in the more general case, in which there is no a priori
knowledge about how to superimpose the compounds. However, situations where
there are some hints about common positions on the structure of the compounds
are not rare. For example, many series contain compounds with a charged group
which is known to interact with a charged residue of the binding site. In other
cases, the reason for knowing this common position are not related to the recep-
tor, but to the chemistry of the compounds, since all the structures share a com-
mon scaffold, connected with diverse substituents at a certain position. In these
situations there is not enough information to attempt a full alignment of the com-
pounds but the application of the GRIND method discards valuable information.
The anchor-GRIND method [36] proposes an intermediate solution.
In the anchor-GRIND, the MIF are generated and processed as in the regular

GRIND, but, at the encoding stage, the MACC2 transform is not applied between
node couples, but between every node and a pre-defined anchor point. The result-
ing correlograms are therefore less sensitive to the above described ambiguities
and the interpretation is much more simple, as demonstrated in some applica-
tions published recently [36]. The anchor-GRIND method has been implemented
in the latest versions of ALMOND software [7].

6.5.2
The Future

The above two examples of GRIND extensions indicate that the GRIND are
becoming more a family of descriptors than a closed methodology. There are
aspects of the method which need improvement and some others which would
open the possibility of applying the descriptors to other fields. With respect to the
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Figure 6.8. Aspect of the highly relevant
regions highlighted by the recently devel-
oped shape “probe” (TIP).
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technical improvements, as was pointed out in this chapter, it is important to
improve the way the original MIF is reduced to a set of nodes, reducing the need
for user intervention at this step. There are also promising routes to explore in
order to encode chirality into the GRIND.

6.6
Conclusions

MIF are a powerful tool for characterizing drug–receptor interactions. The
GRIND described here represent an effort to overcome some of the major limita-
tions of MIF for certain applications. However, condensing the MIF into a bunch
of highly relevant variables has a price in terms of loss of information and inter-
pretability of the results, as was thoroughly discussed here. In our opinion, for
GRIND, the balance between benefits and risk is clearly positive. Many published
applications in the last five years demonstrate the usefulness of the approach in
very diverse fields. However, we believe that there is still much work to be done
before we can extract from the MIF and the GRIND their full potential.
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7
3D-QSAR Using the GRID/GOLPE Approach
Wolfgang Sippl

7.1
Introduction

Understanding the structural properties and features affecting the biological activ-
ity of a drug molecule is important in the ongoing process of drug design. After
the initial characterization of a drug by physical means, additional quantitative
information can be obtained by using quantitative structure–activity relationships
(QSAR) [1]. Historically, the primary objective of QSAR was the understanding of
which properties are important for the specific biological activity of a series of
compounds. However, the main objective in today’s drug design is the prediction
of novel unknown compounds on the basis of previously synthesized molecules.
The strategies that can be applied for this purpose can be separated into two major
categories – the indirect ligand-based and the direct receptor-based approaches.
The common aim of both strategies is to understand structure–activity relation-
ships and to employ this knowledge in order to propose novel compounds with
enhanced activity and selectivity profile for a specific therapeutic target. The
ligand-based methods include the various QSAR and 3D-QSAR methods [2].
3D-QSAR methods, with particularly widespread successes in analyzing struc-
ture–activity data, are the comparative molecular field analysis (CoMFA) [3] and
the GRID/GOLPE approach [4]. These methods are based entirely on experimen-
tal structure–activity relationships for enzyme inhibitors or receptor ligands. For
the direct receptor-based methods, which include molecular docking and molecu-
lar dynamics simulations, the 3D-structure of a target enzyme or even a receptor–
ligand complex is required with atomistic resolution. The structures are generally
determined by either X-ray crystallography, NMR spectroscopy or protein homol-
ogy model building [5].
3D-QSAR methods, like the GRID/GOLPE method, are nowadays used widely

in drug design, since they are computationally not demanding and afford fast gen-
eration of QSARs from which the biological activity of newly synthesized mole-
cules can be predicted. The basic assumption in GRID/GOLPE is that a suitable
sampling of the molecular interaction fields around a set of aligned molecules
might provide all the information necessary for understanding their biological



activities [2]. The suitable sampling is achieved by calculating interaction energies
between each molecule and an appropriate probe at regularly spaced grid points
surrounding the molecules. The resulting energies derived from simple potential
functions can then be contoured to give a quantitative spatial description of molec-
ular properties. If correlated with biological activity, 3D-fields can be generated,
which describe the contribution of a region of interest surrounding the ligands to
the target properties. However there is one main difficulty in the application of
3D-QSAR methods: for a correct model, a spatial orientation of the ligands
towards one another has to be found, which is representative for the relative differ-
ences in the binding geometry at the protein binding site. The success of a molec-
ular field analysis is therefore determined by the quality of the choice of the ligand
superimposition [6–9]. In most cases, the first step in a 3D-QSAR study is the gen-
eration of a reliable pharmacophore model. Many alignment strategies have been
reported and compared for this purpose (a detailed comparison of different meth-
ods can be found in [10]). Depending on the molecular flexibility and the struc-
tural diversity of the investigated compounds this task of unique pharmacophore
generation becomes less feasible. Despite the difficulties concerning the molecu-
lar alignment many successful 3D-QSAR studies applying the GRID/GOLPE
approach have been reported in the last few years [11–18].
Structure-based methods nowadays are able to calculate fairly accurately the

position and orientation of a potential ligand in a receptor binding site. This has
been demonstrated by various docking studies, described in the literature [19–23].
The docking methods yield important information concerning the spatial orienta-
tion of the ligands in the binding site and also towards other ligands binding to
the same target. The major problem of today’s docking programs is the inability
to evaluate binding free energies correctly in order to rank different ligand–recep-
tor complexes. Since docking programs generate a huge amount of possible li-
gand–receptor complexes, it is impossible to determine a priori which ligand con-
formation represents the bioactive one. The problem in predicting affinity has
generated considerable interest in developing methods to calculate ligand affinity
reliably for a widely diverse series of molecules binding to the same target protein
of known structure [23–28]. For the calculation of ligand–receptor interaction
energies, most approaches rely on molecular mechanics force fields that represent
van der Waals and Coulombic interactions on the basis of empirical potentials.
Other approaches use simpler scoring functions rather than calculating the affini-
ty by molecular mechanics equations (for a detailed review see [27]). These meth-
ods commonly use available experimental data to obtain parameters for some rela-
tively simple functions that allow fast estimation of the binding energy. The esti-
mated binding energies or scores are widely used to discriminate between active
and inactive ligands, for example in virtual database screening, but are mostly not
accurate enough for 3D-QSAR analysis. The main problem in affinity prediction
is that the underlying molecular interactions are highly complex and various
terms should be taken into account to quantify the free energy of the interaction
process. Only rigorous methods, such as free energy perturbation or thermody-
namic integration are able to predict correctly the binding affinity. While these
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methods clearly have the potential of providing accurate evaluation of relative
binding free energies, they are very expensive in a computational sense [29, 30].
Regarding the strengths of both approaches, the docking programs using pro-

tein information and the 3D-QSAR methods to develop predictive models for
related molecules, prompted us and others to combine both in an automated
unbiased procedure [11–15, 31–39]. In this context, the three-dimensional struc-
ture of a target protein, along with a docking protocol is used to guide alignment
selection for comparative molecular field analysis [9]. This approach allows the
generation of a kind of target-specific scoring method considering all the struc-
ture–activity data known for a distinct ligand data set.
In this chapter the application of the GRID/GOLPE method [3] in combination

with a receptor-based alignment strategy is reported. The comprehensive utility of
this approach is exemplified by recent molecular modeling studies on different
classes of ligands from our laboratory. Special emphasis will be placed on a de-
tailed description of the combined receptor/ligand-based approach and the suc-
cessful application of this procedure for the design of novel drug molecules.

7.2
3D-QSAR Using the GRID/GOLPE Approach

3D-QSAR has been synonymous for many years with CoMFA [40], which was the
first method to implement in a QSAR method the concept that the biological
activity of a ligand can be predicted by its three-dimensional structure and that
any binding between a protein and a ligand is the product of noncovalent revers-
ible interactions. The idea behind any molecular field analysis is that the three-
dimensional properties of a molecule can be fully described by embedding the
molecule in a grid and calculating the interaction energies between the ligand and
a probe atom at any node of the grid. In the GRID/GOLPE approach the interac-
tion with the probe atom is described by GRID potentials [41]. GRID includes a
wider variety of probes than other approaches so that more different types of inter-
actions can be modeled. Another advantage of using GRID is the fact, that the
underlying potentials have been carefully developed on the basis of experimentally
determined protein-ligand complexes [41]. GRID has demonstrated its perfor-
mance in various drug discovery projects and is one of the most successful model-
ing programs. For a detailed description the reader is referred to Chapter 1.
If we want to carry out a 3D-QSAR analysis, all training set ligands have to be

aligned correctly. The relative spatial orientation within the grid plays a crucial
role in any 3D-QSAR analysis [7]. Generating 3D conformations and alignment
for compounds used in 3D-QSAR analysis is a difficult and time-consuming pro-
cess, especially when the compounds are very flexible and large in size. Moreover,
there is a risk of introducing user subjectivity in manual alignment. Thus, an
automated generation of alignment for the 3D-QSAR model could be beneficial.
When the alignment problem is solved, a descriptor matrix, whose rows repre-
sents the ligands and whose columns contain the GRID interaction energies, is
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generated. To analyze such a highly intercorrelated matrix, powerful statistical
tools such as the PLS (partial least squares) method are needed [42–45].
In spite of using PLS, spurious results can still occur due to the noise hidden in

the obtained matrix. The GOLPE (which stands for generating optimal linear PLS
estimation) approach was developed to identify which variables are meaningful
for the prediction of the biological activity and to remove those with no predictivity
[43]. Within this approach, fractional factorial design (FFD) is initially applied to
test multiple combinations of variables [45]. For each combination, a PLS model is
generated and only variables which significantly increase the predictivity are con-
sidered. Variables are then classified considering their contribution to predictivity.
A further advance in GOLPE is the implementation of the smart region definition
(SRD) procedure [44]. This is aimed at selecting the cluster of variables, rather
than the single variable mainly responsible for activity. The SRD technique seems
less prone to change correlation than any single variable selection, and improves
the interpretability of the models [11].
One of the biggest advantages of 3D-QSAR over classical QSAR is the graphical

interpretability of the statistical results. Equation coefficients can be visualized in
the region around the ligands. Upon visual inspection, regions of space contribut-
ing most to the activity can be easily recognized. The interpretation of the graphi-
cal results allows one both to check the reliability of the models easily and to design
modified compounds with improved activity or selectivity. In this respect 3D-QSAR
methods like CoMFA and GRID/GOLPE have proven to be very useful [2].
The final part of a 3D-QSAR analysis is the model validation, when the predic-

tive power of the model and hence its ability to reproduce biological activities of
novel compounds is established. Most of the 3D-QSAR modeling methods imple-
ment the leave-one-out (LOO) cross-validation procedure. The output of this pro-
cedure are the cross-validated q2 and the standard deviation of error prediction
(SDEP), which are commonly regarded as the ultimate criteria of both the robust-
ness and the predictive ability of a model. The simplest cross-validation method is
LOO, where one object at time is removed and predicted. A more robust and reli-
able method is the leave-several-out cross-validation. For example, in the leave-
20%-out cross-validation five groups of approximately the same size are generated.
Thus, 80% of the compounds are randomly selected for generation of the model,
which is then used to predict the remaining compounds. This operation must be
repeated a large number of times in order to obtain reliable statistical results. The
leave-20%-out or also the more demanding leave-50%-out cross-validation results
are much better indicators of the robustness and the predictive ability of a
3D-QSAR model than the usually used LOO procedure [46, 47]. LOO often yields
too optimistic models, which fail when predicting real test set molecules.
Despite the known limitations of the LOO procedure, it is still uncommon to

test 3D-QSAR models for their ability to correctly predict the biological activities
of compounds not included in the training set. However, many authors claim that
their models, showing high LOO q2 values, have high predictive ability in the
absence of external validation (for a detailed discussion on this problem see [48,
49]). In contrast with such expectations, it has been shown by several studies that
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a correlation between the LOO cross-validated q2 value for the training set and the
correlation coefficient r2 between the predicted and observed activities for the test
set, does not exist [48–50]. Therefore, it is highly recommended to use external
test sets to further validate a generated 3D-QSAR model [48].
The last decade has shown that 3D-QSAR methods are able to provide much

useful information which has helped in the understanding of structure–activity
relationships, in proposals of chemical modifications to enhance biological activ-
ity, and in the activity prediction of unknown compounds. However, the applica-
tion of the molecular field analysis requires a lot of a priori knowledge or at least a
synergetic interaction with other molecular modeling methods to generate a reli-
able ligand alignment. Two application examples, where we have applied the
GRID/GOLPE procedure in combination with a receptor-based alignment strategy
to develop predictive 3D-QSAR models, are reported below .

7.3
GRID/GOLPE Application Examples

7.3.1
Estrogen Receptor Ligands

Intensive research has revealed that there is a plethora of xenoestrogens in our
environment, i.e., both man-made and natural molecules that have been shown to
bind to the estrogen receptor as either agonists or antagonists. Serious concern
has recently arisen about the adverse effects of chemical compounds possessing
estrogenic activity on humans and other species, but it is practically impossible to
perform thorough toxicological tests on all of the more than 87 000 xenoestrogens
that may ultimately need to be evaluated. Thus there is an obvious need to develop
alternative methods to predict the estrogenic activity of molecules with sufficient
accuracy. These methods should ultimately facilitate the rapid screening of
untested xenoestrogens, particularly in order to distinguish which molecules
should have the highest priority for entry into expensive and stressful testing on
animals. In this context, computational methods such as QSAR seem attractive.
The effect of xenoestrogens are mediated by an intracellular estrogen receptor

(ER), which belongs to the steroid/thyroid nuclear hormone superfamily [51]. The
biological action of estradiol, the most active endogenous estrogen, and xenoestro-
gens and their primary interactions with the receptor protein have been topics of
much interest over the years [52, 53]. Over the last years a large amount of struc-
ture–activity information for modified estrogens and nonsteroidal ER ligands has
been reported in the literature [54]. Several models of the ER ligand pharmaco-
phore have been published in the last few years [54–60]. They are merely based on
the comparison of rigid or semi-rigid steroid molecules. For the present study
structure–activity data for a series of 30 structurally diverse ER ligands were
considered [60]. The molecular structures of these molecules are represented in
Table 7.1.
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Table 7.1 Structure of ER ligands of the training set.
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Table 7.1 Continued.

No No No
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OH 18
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OH 28

OH
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OH

OH 19
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OH 29

OH

OMe
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OH

OH 20

OH

OH 30

OH
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The three-dimensional structure of the ER was resolved by Brzozowski et al.
[61]. Four additional X-ray structures of the receptor liganded with different mole-
cules – estradiol, diethylstilbestrol, a nonsteroidal stilben derivative, and two
antagonists raloxifen and 4-hydroxytamoxifen – were also solved [61, 62]. The
availability of several structurally diverse structures bound to the active site of the
receptor provided important experimental information detailing the molecular
alignment of the studied molecules.
The crystal structures of the human estrogen a receptor ligand binding domain

complexed with estradiol and diethylstilbestrol (PDB code: 1ERE and 2ERD) were
taken from the Protein Databank and were overlaid using the backbone atoms
(Fig. 7.1). The ER shows a nearly identical three-dimensional structure in these X-
ray structures. The only major conformational differences are the orientation of
two sidechains in the binding pocket - His524 and Met421. As the analysis of the
crystal structures shows, estradiol and diethylstilbestrol bind similarly to the
receptor. Both ligands make hydrogen bonds with Glu353 and His524 and inter-
act in addition with hydrophobic residues. In order to determine the bioactive con-
formation of all studied ligands, we carried out a molecular docking study. Auto-
Dock, which has been shown to accurately reproduce experimentally observed
binding modes [20, 63] was used for this purpose (the program is described in
detail elsewhere [20]). AutoDock uses a simulated annealing procedure to explore
the binding possibilities of a ligand in a binding pocket [64]. The interaction ener-
gy of ligand and protein is evaluated using atom affinity potentials calculated on a
grid similar to GRID [41]. The obtained docking complexes were then refined and
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the interaction energies were calculated using the YETI force field [65, 66]. This
force field uses more sophisticated energy potentials to calculate the binding ener-
gy compared to the more simple functions implemented in docking programs,
such as AutoDock.

Estradiol and diethylstilbestrol were taken as positive controls to test the perfor-
mance of AutoDock. AutoDock was successful in reproducing the experimentally
found binding position for estradiol and diethylstilbestrol (one may speak of
reproduction if the root mean square deviation (RMSD) is below 2	 [11]). The
RMSD value between the observed and calculated position was 0.21	 for estradiol
and 0.37	 for diethylstilbestrol. Subsequently the ligand–receptor complexes for
the resulting 28 ligands were computed by applying the same docking protocol.
For each ligand the complex which showed the lowest interaction energy applying
the YETI force field was selected. Figure 7.2 shows the superimposition of all 30
ligands within the binding pocket.
To further validate the results obtained by the automated docking procedure,

the receptor binding pocket was analyzed using program GRID [41]. The hydroxy,
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Figure 7.1. Comparison of the X-ray structures of the estrogen receptor
bound to estradiol (dark-gray) and diethylstilbestrol (gray). The two
crystal structures were overlaid using the backbone atoms. Only the amino
acid residues in proximity to the binding pocket are shown for clarity.
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methyl and hydrophobic DRY probes were used in order to identify and visualize
the main interactions between the protein and the ligands. The two main regions
of interaction for the hydroxy probe correspond very well with the position of the
aliphatic and aromatic hydroxy groups of the ligands. In an effort to study the
areas of hydrophobic interaction the methyl and the hydrophobic DRY probe were
tested inside the binding pocket. A good agreement between the molecular shape
of diethylstilbestrol and estradiol and the interaction field of the methyl probe was
observed. The interaction field obtained with a methyl probe indicates mainly the
van der Waals interactions and corresponds to the location and size of the nonpo-
lar parts of the ligands. The most negative areas obtained with the hydrophobic
DRY probe are placed below and above the planar ring systems of the ligands and
correspond to the positions of the alkyl groups of diethylstilbestrol and the other
ligands. In general, visual inspection showed that the GRID interaction fields are
in excellent agreement with the experimentally determined positions of the corre-
sponding parts of the molecules. Thus, the GRID fields are perfectly suited to ver-
ify the results obtained by automatic docking programs like AutoDock.
Since we refined all protein–ligand complexes using the YETI force field we

were also interested to see whether the interaction energies could be correlated to
the observed biological activities. The interaction energies were calculated using
the YETI force field, AM1 partial charges and a distance dependent dielectric
function. A correlation coefficient of r2 = 0.541 and a LOO cross-validated coeffi-
cient of q2 = 0.490 were obtained for the 30 investigated ligands. Trends between
experimental and calculated can be distinguished, but the standard deviation of
0.83 indicates the limitations of the method. Since solvation or entropic effects
were not considered in the calculation of the binding energy, it is not surprising
that the correlation was moderate.
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Figure 7.2. Alignment of all training set ligands obtained by
the docking (estradiol is colored magenta). The solvent
accessible surface area is colored according to the electro-
static potential (red: positive, blue: negative).
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With respect to the receptor-based methods, the 3D-QSAR approach has the
advantage of dealing only with the differences in affinity of a special series of com-
pounds. In this case the interaction energy of each ligand is not important,
because some of the terms describing this energy (desolvation processes, entropic
terms) take approximately the same value for every ligand. Since only differences
in the binding affinity are regarded, these terms are not considered. Therefore we
used the comparative field analysis to develop a quantitative structure–activity
relationship for the investigated ligands.
The superimposition of the ligands derived from the molecular docking was tak-

en as structural alignment for a comparative molecular field analysis. The interac-
tion energies between the ligands and a water probe were calculated using the
GRID program employing a grid spacing of 1	. The GRID calculations gave
11 350 variables for each compound. Many of the variables derived from the GRID
analysis did not contribute to the correlation between the chemical structure and
the biological activity and could be considered as noise, which decreased the qual-
ity of the model [43]. To obtain a robust QSAR model, the irrelevant variables were
removed using the GOLPE program. From the active variables that were automa-
tically selected by GOLPE, an initial pretreatment decreased the number of vari-
ables to 8740. The D-optimal preselection procedure allowed the selection of the
most informative variables correlated with the biological activity from an initial
PLS model. This procedure reduced the number of variables from 8740 to 1105.
The SRD algorithm was performed with the aim being to select and group the
regions of variables of highest importance for the model. These groups were then
evaluated by fractional factorial design. This algorithm allowed the extraction of
the most relevant variables by building a large number of reduced models similar
to the complete model. The SRD variable preselection decreased the number of
variables to 1105 without reducing the quality of the model, and after FFD, 493
variables were selected, resulting in a significant improvement of the quality of
the model. It was concluded that many of the variables contributed to noise and
not to the robustness of the predictive model.
To form the basis for a predictive statistical model the PLS method was used to

analyze the 30 compounds. The analysis based on the receptor-based alignment
yielded a correlation coefficient with a cross-validated q2 of 0.900 using four princi-
pal components (the model generation and cross-validation was repeated 100
times). The conventional r2 of this analysis is 0.992. This means, that the model
explains approximately 99% of the variance in ligand binding of the investigated
compounds. The model also expresses good predictive ability, indicated by the
high correlation coefficient of q2 = 0.820 obtained by using the leave-50%-out
cross-validation procedure.
The comparison of the GRID/GOLPE results with a ligand-based CoMFA

model, (q2LOO value of 0.796) [60], indicated that the ligand alignment constructed
on the basis of the receptor structure supplies a better explanation of the biological
activities. This is also indicated by smaller deviations of the calculated from the
experimental values in the receptor-based model [35].
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To further validate the GRID/GOLPE model it was necessary to test its predictiv-
ity for external test sets. We carefully checked the literature for further ER data
sets, which were experimentally tested in the same assay under the same condi-
tions [67–70]. In order to test the general predictivity 36 structurally diverse ER
ligands were selected from the mentioned studies (examples are shown in
Fig. 7.3, the whole data set is described in detail in [36]).

All test set ligands were docked and scored as described in the methods section.
For three compounds AutoDock was not able to find any low energy conforma-
tion. A visual inspection of the binding site revealed that these compounds can
only bind in a low energy conformation if several amino acids change their side-
chain orientation. In the present version of AutoDock receptor flexibility cannot
be considered. The remaining compounds were successfully docked by the Auto-
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Figure 7.3. Examples of ER test set compounds.
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Dock program. The ligand alignment, as obtained by the docking procedure, is in
agreement with that of the training set molecules. All molecules form a hydrogen
bond to Glu353/Arg394, indicated by a similar position of the phenolic ring sys-
tems in the particular alignment. A second hydrogen bond to the imidazole of
His524 is formed by the potent ligands. The derived alignment indicates further
that the alkyl substituents of the ligands occupy similar regions in space corre-
sponding to two hydrophobic cavities located on both sides of the planar ring sys-
tems of the cocrystallized ligands.
The conformations, as obtained by the docking procedure, were extracted from

the binding site and were used for the prediction of binding affinity applying the
developed GRID/GOLPE PLS model. The external prediction yielded a predictive
r2 value of 0.656 and a SDEP value of 0.531 for the 33 test set compounds reflect-
ing the good predictivity of the model. The average SDEP value of 0.531 for the
external prediction is, as expected, larger than for the internal validation (0.345),
but accurate enough to use the model for the prediction of structurally diverse
compounds. The SDEP values for the individual test sets were quite similar, not
depending on the composition of the individual test sets (Tables 7.2 and 7.3). Larg-
er deviations were observed for molecules possessing flexible substituents. The
flexibility of the substituents leads to energetically very similar conformations
which made it difficult to select the correct ligand conformation for the predic-
tion.

Table 7.2. Predictive r2 values for the ER test sets.

Test set (n) Receptor-based model Ligand-based model Interaction-energy model

Test set 1 (6) 0.778 –0.550 –1.513

Test set 2 (14) 0.675 0.338 0.227

Test set 3 (7) 0.595 0.195 –1.220

Test set 4 (6) 0.508 0.615 –1.112

All test sets (33) 0.656 0.203 –0.487

Table 7.3. External SDEP values obtained for the ER different test sets.

Test set (n) Receptor-based model Ligand-based model Interaction-energy model

Test set 1 (6) 0.430 1.386 1.395

Test set 2 (14) 0.549 0.945 0.889

Test set 3 (7) 0.555 0.780 1.294

Test set 4 (6) 0.552 0.486 0.982

All test sets (33) 0.531 0.949 1.104
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In conclusion, by applying the GRID/GOLPE procedure in combination with a
receptor-base alignment a predictive and robust model was obtained. The quality
of the 3D-QSAR model was demonstrated by the accurate prediction of the struc-
turally diverse test set compounds. All other prediction methods that we applied
to the same training and test set (ligand-based 3D-QSAR models, interaction ener-
gy-based model, scoring methods) showed much lower accuracy or were unable to
correctly predict the test set ligands (Tables 7.3 and 7.4). A detailed comparison of
the individual prediction methods is beyond the scope of this chapter and the
reader is referred to the literature [36].

Table 7.4. Designed compounds predicted using the GRID/GOLPE model.

Cpd. Structure Observeda Predictedb Predictedc

4g

N

N
H

N
N

8.00 7.00 7.20

4h

N

N
H

N
N

7.41 7.62 7.66

4i

N

N
H

N
N

7.66 7.48 7.56

6g

N

N
H

N
N

7.24 6.90 6.77

6h

N

N
H

N
N

N
H

O 7.24 7.05 7.11

6i

N

N
H

N
N O

7.27 7.25 7.2

6j

N

N
H

N
N

O

O 7.14 6.88 6.92

a Inhibitory activity measured on the AChE of Torpedo californica [12].
b Predicted activity using the water probe model.
c Predicted activity using the methyl probe model.
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7.3.2
Acetylcholinesterase Inhibitors

In the second example the application of the described combined approach to a
series of aminopyridazine acetylcholinesterase (AChE) inhibitors is reported [12].
According to the cholinergic hypothesis, memory impairments in patients with
Alzheimer’s disease result from a deficit of cholinergic functions in the brain [71].
One promising strategy to overcome this deficit is the inhibition of the AChE, the
enzyme responsible for the hydrolysis of acetylcholine. The cholinergic hypothesis
has led to first approaches for drug treatment of Alzheimer patients. In connec-
tion with this, different central acting inhibitors for AChE have been developed
and introduced into therapy. Recent studies have shown that AChE inhibitors,
especially mixed-type inhibitors, which interact with the peripheral site of the
enzyme, could, in addition to AChE inhibition, act as potential inhibitors of the
formation of bA4-amyloid protein [72]. Thus, centrally active AChE inhibitors, rep-
resent a promising approach to the treatment of AD. In this context we focussed
on the search for novel potent and selective AChE inhibitors that interact with the
peripheral site of the enzyme [73]. The chemical structures of known AChE inhi-
bitors are diverse, ranging from quaternary compounds like decamethonium or
edrophonium, to natural products like huperzine, up to the potent benzylpiperi-
dines like the marketed drug donepezil [71]. The starting point of our AChE pro-
ject was the finding, that the antidepressant minaprine showed weak inhibition of
AChE [74]. Since minaprine has a unique structure among the known AChE inhi-
bitors, it was taken as a promising lead compound. When the project was started
four X-ray structures of AChE complexed with different inhibitors had been solved
[75–77] whereas no information about the binding of minaprine and related inhi-
bitors was available. As in the case of the estrogen receptor ligands we decided to
carry out docking studies to determine the exact position of the inhibitors within
the binding pocket.
A detailed inspection of the four AChE-inhibitor X-ray structures, obtained

from the Protein Databank (PDB code: 1acl bound to decamethonium, 2ack
bound to edrophonium, 1acj bound to tacrine and 1vot bound to huperzine)
yielded relevant information concerning the orientation of the inhibitors within
the binding pocket. AChE shows a nearly identical three-dimensional structure in
all known X-ray structures. The active site is located 20	 from the protein surface
at the bottom of a deep and narrow gorge. The only major conformational differ-
ence between the four complexes is the orientation of Phe330, a residue located in
the middle of the gorge (Fig. 7.4). Depending on the cocrystallized inhibitor this
aromatic residue adopts a different conformation. However the positions of the
four inhibitors in the binding pocket are quite different, indicating that more than
one clearly defined binding region exists.
In the next step we inspected the interaction possibilities within the binding

pocket by applying program GRID. The calculated GRID contour maps, obtained
with a variety of different probes, were then viewed superimposed on the crystal
structure of AChE. GRID fields are very helpful tools to detect the most favorable
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interactions for a distinct functional group within a given binding pocket. We ob-
served a nice agreement of the location and size of the GRID fields with the corre-
sponding functional groups of the cocrystallized inhibitors. As an example, the
results obtained with a trimethylammonium probe are shown in Fig. 7.5. GRID
detected a favorable interaction field for the trimethylammonium probe 4	 above
the indole ring of Trp84. It agrees perfectly with the position found for the quater-
nary group of decamethonium (as well as edrophonium) in the corresponding
X-ray structure (Fig. 7.5). Similar agreements were observed when applying other
probes like a carbonyl, methyl or the hydrophobic DRYprobe.
As in the previous example, the known crystal structures of AchE–inhibitor

complexes were taken as positive control to test the usability of AutoDock. The
same standard docking parameters were taken as for the analysis of the ER
ligands [12]. Due to the flexibility and the few polar functional groups of the inhi-
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Figure 7.4. Superimposition of the investigated crystal structures of AChE in
complex with huperzine (black), tacrine (dark-grey), edrophonium (grey) and
decamethonium (light-grey). Only the amino acid residues close to the binding
site are displayed.
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bitors several favorable docking poses were obtained for each compound. In a sub-
sequent step the top ranked poses were compared with the GRID interaction
fields calculated with the trimethylammonium, methyl, carbonyl, amide and DRY
probes. Taking the derived interaction fields as filters along with the complexes
generated by the AutoDock procedure, we were able to select the cocrystallized
conformation of all inhibitors. The closest agreement was observed when the pro-
tein structure extracted from the corresponding AchE–inhibitor complex was tak-
en as target for the docking simulation. The lowest RMSD values (calculated for
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Figure 7.5. Favorable regions of interaction between the trimethylammonium
probe and the uncomplexed active site (contour level –9.5 kcalmol–1).
Decamethonium is displayed for comparison.
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the heavy atoms) between theoretically predicted and experimentally determined
positions were for tacrine: 0.28	, for huperzine A: 0.51	, for edrophonium:
0.71	 and for decamethonium: 1.15	 [12].
The ability to accurately predict the binding conformation of tacrine, deca-

methonium, edrophonium and huperzine gave confidence that we could use our
model to evaluate the binding conformation of the aminopyridazine compounds
(Fig. 7.6). Since the aminopyridazine derivatives are comparable in size to deca-
methonium, and it is likely that they interact in a similar way with the binding
site, we took the protein structure from the AchE–decamethonium complex for
our further docking. Fig. 7.7 shows the predicted position of an aminopyridazine
in comparison to the position of decamethonium observed in the corresponding
crystal structure. The hydrophobic parts of the aminopyridazine inhibitors inter-
act with the various aromatic residues at the binding pocket. The benzyl ring of
the inhibitor displays classic p-p stacking with the aromatic ring of Trp84. It thus
occupies the binding site for the quaternary ligands. The charged nitrogen of the
piperidine makes a cation–p interaction with Phe330 and electrostatic interactions
with Tyr121. No direct hydrogen bonds were observed between the polar groups
of the inhibitor and the binding site. A similar binding orientation was observed
for all other inhibitors (Fig. 7.8). The docking poses were subsequently extracted
from the protein environment and were taken as input for a GRID/GOLPE analy-
sis.
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Figure 7.6. Examples of AChE inhibitors from the training set [12].
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The interaction fields between the aligned ligands and (i) a water and (ii) a
methyl probe were calculated by applying the GRID program. A cut-off of
+5 kcalmol–1 was applied in order to obtain a more symmetric distribution of en-
ergy values. The GRID calculation gave 17 160 variables for each compound. After
the pretreatment the data set contained 5464 variables for the water and 4456 vari-
ables for the methyl probe. Subsequently, the SRD procedure was applied to carry
out variable selection on the groups of variables chosen according to their posi-
tions in 3D space. The derived regions were subsequently used in a FFD variable
selection procedure. The number of variables was reduced to 576 for the water
and to 1097 for the methyl probe.
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Figure 7.7. Comparison between the predicted position of the amino-
pyridazine 3y (dark-grey) and the X-ray structure of decamethonium (grey).
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The LOO cross-validated q2LOO values for the initial models was 0.875 using the
water probe and 0.850 using the methyl probe. The application of the SRD/FFD
variable selection resulted in an improvement of the significance of both models.
The analysis yielded a correlation coefficient with a cross-validated q2LOO of 0.937
for the water probe and 0.923 for the methyl probe. In addition we tested the relia-
bility of the models by applying leave-20%-out and leave-50%-out cross-validation.
Both models are also robust, indicated by high correlation coefficients of q2 = 0.910
(water probe, SDEP = 0.409) and 0.895 (methyl probe, SDEP = 0.440) obtained by
using the leave-50%-out cross-validation procedure. The statistical results gave
confidence that the derived model could also be used for the prediction of novel
compounds.
To get an impression which parts of the AChE inhibitors are correlated with

variation in activity we analyzed the PLS coefficient plots (obtained using the
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Figure 7.8. Receptor-based alignment of all investigated inhibitors as
obtained by the docking study. The solvent accessible surface area is
colored according the lipophilic potential (blue: polar, brown: lipophilic).
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water and the methyl probe) and compared them with the amino acid residues of
the binding pocket. The plots indicate those lattice points where a particular prop-
erty significantly contributes and thus explains the variation in biological activity
data (Fig. 7.9). The plot obtained with the methyl probe indicated that close to the
arylpyridazine part, a region with positive coefficients exists (region A in Fig. 7.9).
The coefficients were superimposed with the original GRID field obtained for
compound 4j with the methyl probe. The interaction energies in region A are pos-
itive, therefore the decrease in activity is due to overlapping of this region. Thus, it
should be possible to get active inhibitors by reducing the ring size compared to
compound 4j (which is shown in Fig. 7.8 together with the PLS coefficient maps).
For that reason, several molecules containing hydrophobic groups were proposed
(Table 7.4). A second interesting field was observed above the arylpyridazine moi-
ety in the model obtained using the water probe. There exists a region where polar
interaction increases activity (region B in Fig. 7.9). Together with an analysis of
the entrance of the gorge (the interaction site for the arylpyridazine system) we
got the idea to design compounds bearing polar groups. In the calculated AchE–
aminopyridazine complexes we observed two polar amino acid residues (Asn280
and Asp285) located at the entrance of the gorge which could serve as an addi-
tional binding site for the substituted arylpyridazine system. To test this hypoth-
esis, several inhibitors possessing polar groups with hydrogen bond donor and
acceptor properties were synthesized and tested (Table 7.4). The designed inhibi-
tors were docked in the binding pocket by applying the developed procedure and
their biological activities were predicted using the GRID/GOLPE PLS models.
Table 7.4 shows the predicted and experimentally determined inhibitor activities
for these compounds. In general an excellent agreement between predicted and
experimentally determined values was observed, indicated by the low SDEPext val-
ues of 0.440 (water model) and 0.398 (methyl model). The reducing of the size of
the aminopyridazine ring system resulted in highly potent inhibitors 4g–4i. The
molecules of the second series of designed inhibitors containing polar groups
were also accurately predicted. The gain in activity compared to the nonsubsti-
tuted compound 3y is moderate, indicating that the potential interaction with the
two polar residues at the entrance does not play an important role. Since the two
residues are located at the entrance of the binding pocket, it may be possible that
these residues make stronger interaction with water molecules than with the pro-
tein sidechains.
In conclusion, we were able to design AChE inhibitors based on the docking

and GRID/GOLPE study which seems to interact simultaneously with the cation–
p subsite of the catalytic site and the peripheral site of the enzyme. Further sup-
port for our docking study came from the crystal structure of a novel AchE–inhibi-
tor complex [78]. The crystal structure of AChE complexed with the marketed
drug donepezil was solved in 1999. Like donepezil, our most potent inhibitors
contain a benzylpiperidine moiety which shows a similar position and orientation
when compared with the published crystal structure. The comparison of both
AchE–inhibitor complexes revealed that both kind of inhibitors adopt a compar-
able conformation in the narrow binding pocket [12]. As we predicted for our ami-
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nopyridazine inhibitors, donepezil makes no direct hydrogen bond to any amino
acid residue of the binding pocket. Only water-bridged hydrogen bonds have been
detected for donepezil, as proposed for the described aminopyridazine com-
pounds.

7.4
Conclusion

In this chapter it was shown, that combination of GRID/GOLPE and receptor-
based alignments can lead to highly predictive and meaningful 3D-QSAR models.
Besides the good predictive ability, the received models are also able to indicate
which interaction sites in the binding pocket might be responsible for the var-
iance in biological activities. In this context, it must be considered that a PLS anal-
ysis indicates only where a variation in the interaction fields is correlated with a
variation in the biological activities. If all molecules of a data set show a certain
important interaction with the receptor, indicated by a similar interaction energy
at a particular grid point for all compounds, this would not be reflected by the
resulting PLS model. Thus the degree of correspondence depends strongly on the
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Figure 7.9. PLS coefficient maps obtained using the water probe (a) and
the methyl probe (b). Opaque fields are contoured at –0.003, grid fields are
contoured at +0.003 (compound 4j is shown for comparison).
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structural diversity of the studied ligands. If one considers these circumstances,
important information can be obtained from a comparison of the contour maps
and the binding site, which can then be integrated in the drug design process.
In the last decade, structure-based methods have become major tools in drug

design, including lead finding and optimization. It has also been shown, that
structure-based methods are able to predict fairly accurately the position of ligands
in receptor binding sites. Apart from the accurate prediction of experimental data,
modern docking methods are becoming more and more efficient. Meanwhile
docking programs have been developed, which can perform the docking of highly
flexible ligands in a few seconds/minutes on modern PCs. The major problem is
still the prediction of the binding affinity, probably limited by the approximation
used in today’s scoring and force field methods [24, 26–28]. The application of 3D-
QSAR methods – such as GRID/GOLPE – may facilitate the prediction of binding
affinities if one has a series of compounds which bind in a similar way to a target
protein.
Since a multivariate QSAR analysis considers only the information which

applies to the considered data set, advantages are offered in comparison to the
more rigorous methods. The rigorous methods have to consider all influences on
ligand binding, and must calculate the corresponding amounts correctly. We
guess, that a multivariate QSAR analysis is able to provide a kind of scoring func-
tion valid for a particular data set. Since the reported combined strategy is able to
rapidly predict biological affinity, the method can be applied to large ligand series.
As long as no methods are developed which are able to solve the affinity predic-
tion problem, structure-based 3D-QSAR is an exciting strategy for drug design
studies.
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8
Use of MIF-based VolSurf Descriptors in Physicochemical
and Pharmacokinetic Studies
Raimund Mannhold, Giuliano Berellini, Emanuele Carosati, and Paolo Benedetti

8.1
ADME Properties and Their Prediction

Major causes for failure in drug development are unsuitable pharmacokinetic
properties of drug candidates including absorption, distribution, metabolism, and
excretion (ADME), which were traditionally measured at rather late stages of drug
development. Nowadays, the testing of ADME properties is done much earlier;
that is, before clinical evaluation of a compound is decided. At the same time, the
rate at which biological screening data are obtained has dramatically increased,
and high-throughput screening (HTS) facilities are now commonly used for hit-
finding. In response to these developments, combinatorial chemistry has been
adopted to feed the hit-finding machines.
Increased capacities for biological screening and chemical synthesis have in

turn magnified the demands for large quantities of early information on ADME
data. Various medium- and high-throughput in vitro ADME screens are therefore
now in use. In addition, there is an increasing need for good tools for predicting
these properties to serve two key aims: (i) at the design stage of new compounds
and compound libraries so as to reduce the risk of late-stage attrition; and (ii) to
optimize the screening and testing by looking at only the most promising com-
pounds. For reviews see [1–3].
This is the framework where computational chemistry could play an important

role in the prediction of these properties in order to obtain more efficient and fast-
er drug discovery cycles. To obtain useful descriptors for ADME properties is not
an easy task. A large number of descriptors have been developed [4], all of which
have major limitations in terms of relevance, interpretability or speed of calcula-
tion.
Alternatively, calculated molecular properties from 3D molecular fields of inter-

action energies represent a valuable approach to correlate 3D molecular structures
with physicochemical and pharmacodynamic properties. In contrast, their use in
correlations with pharmacokinetic properties is still poorly explored and exploited.
The rather new VolSurf approach [5–7] is able to compress the relevant informa-
tion present in 3D maps into a few descriptors characterized by the simplicity of
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their use and interpretation. These descriptors can be quantitatively compared
and used to build multivariate models correlating 3D molecular structures with
biological responses.

8.2
VolSurf Descriptors

The interaction of molecules with biological membranes is mediated by surface
properties such as shape, electrostatic forces, H-bonds and hydrophobicity. There-
fore, the GRID [8] force field was chosen to characterize potential polar and hydro-
phobic interaction sites around target molecules by the water (OH2), the hydro-
phobic (DRY), and the carbonyl oxygen (O) probe. The information contained in
the MIF is transformed into a quantitative scale by calculating the volume or the
surface of the interaction contours. The VolSurf procedure is as follows: (i) in the
first step, the 3D molecular field is generated from the interactions of the OH2,
the DRY, and the O probe around a target molecule; (ii) the second step consists
of the calculation of descriptors from the 3D maps obtained in the first step. The
molecular descriptors obtained, called VolSurf descriptors, refer to molecular size
and shape, to hydrophilic and hydrophobic regions and to the balance between
them; (iii) finally, chemometric tools (PCA [9], PLS [10]) are used to create rela-
tionships of the VolSurf matrix with ADME properties. A scheme of the VolSurf
programme steps is reported in Figure 8.1.
In the updated version, presented here, VolSurf descriptors are enlarged from

72 to 94. The new descriptors include elongation, diffusivity, logP, and the so-
called best volumes. Definition of the original VolSurf descriptors is given in [5–7]
and in Table 8.1; the novel descriptors are additionally defined in detail below.
Elongation descriptors give an idea of the maximum extension a molecule could

reach if properly stretched. Starting from a statistical model developed for long
chain compounds we modified it in order to take into account that part of the mol-
ecules may be fixed and hence we defined fixed and flexible contributions to the
maximum extension a molecule can reach. “elongation” is the most probable
extension of the molecule. “fixed elongation” is the portion of the extension given
by the rigid part of a molecule. The new VolSurf descriptors are “elongation” and
“ratio between elongation and fixed elongation”.
Molecular diffusion is the migration of matter along a concentration gradient

from a region of high concentration to a region of low concentration. Molecular
diffusion controls, to a degree, the transport rate of chemicals at phase boundaries
and in the slow-moving fluids found in porous media. To a lesser degree, it con-
trols the dispersion of chemicals in turbulent fluids.
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Figure 8.1. The sequence of steps in chemometric analyses using VolSurf
descriptors is schematized.
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Table 8.1 Detailed definition of VolSurf descriptors.

Size and shape descriptors

Molecular volume represents the water-excluded volume (in 	3), i.e. the volume enclosed
by the water-accessible surface computed at a repulsive value of
+0.2 kcalmol–1.

Molecular surface represents the accessible surface (in 	2) traced out by a water probe
interacting at +0.2 kcalmol–1 when a water molecule rolls over the
target molecule.

Rugosity is a measure of a molecular wrinkled surface; it represents the ratio of
volume/surface. The smaller the ratio, the larger the rugosity.

Molecular globularity is defined as S/Sequiv with Sequiv = surface area of a sphere of volume V,
where S and V are the molecular surface and volume described above,
respectively. Globularity is 1.0 for perfect spherical molecules. It
assumes values greater than 1.0 for real spheroidal molecules. Globu-
larity is also related to molecular flexibility.

Elongation represents the maximum extension a molecule could reach if properly
stretched.

EEFR (elongation,
elongation-fixed ratio)

represents the portion of the extension given by the rigid part of the
molecule. In fact, within each molecule a fixed part is considered as the
rigid core, and “EEFR” is the ratio between the elongation and the fixed
elongation.

Descriptors of hydrophilic regions

Hydrophilic
descriptors

describe the molecular envelope which is accessible to and attractively
interacts with water molecules. The volume of this envelope varies with
the level of interaction energies. Hydrophilic descriptors computed
from molecular fields of –0.2 to –1.0 kcalmol–1 account for polarizabil-
ity and dispersion forces; descriptors from molecular fields of –1.0 to
–6.0 kcalmol–1 account for polar and H-bond donor–acceptor regions.

Best volumes
(OH2 probe)

are six new descriptors which refer to the best three hydrophilic interac-
tions generated by a water molecule. The best volumes are measured at
–1.0 and –3.0 kcalmol–1. To understand the concept of best volumes,
we refer to the definition of common group used by VolSurf. When an
atom is mainly responsible for the attractive interaction energy of two
or more contiguous nodes of the grid cage, these two points belong to
the same group.
In the 3D GRID map around the molecule, some groups may be iden-
tified at specific energy values (–1.0 and –3.0), and their volume can be
calculated. BV descriptors refer to the first, second and third largest
volumes among such groups.
The contribution to the field produced by each atom of the molecule
can be appreciated by using the specific options in 3D-plots.
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Capacity factors represent the ratio of the hydrophilic surface over the total molecular
surface. In other words, it is the hydrophilic surface per surface unit.
Capacity factors are calculated at eight different energy levels, the same
levels used to compute the hydrophilic descriptors.

Descriptors of hydrophobic regions

Hydrophobic
descriptors

GRIDa uses a probe called DRY to generate 3D lipophilic fields. In
analogy to hydrophilic regions, hydrophobic regions may be defined as
the molecular envelope generating attractive hydrophobic interactions.
VolSurf computes hydrophobic descriptors at eight different energy levels
adapted to the usual energy range of hydrophobic interactions (i.e.
from –0.2 to –1.6 kcalmol–1).

Best volumes
(DRYprobe)

are six new descriptors which represent the best three hydrophobic in-
teractions generated by the DRYprobe. They are calculated as described
for the water probe, but they are measured at –0.6 and –1.0 kcalmol–1.

INTEraction enerGY (= INTEGY) moments

INTEGYmoments express the imbalance between the center of mass of a molecule and
the barycenter of its hydrophilic or hydrophobic regions.
When referring to hydrophilic regions, integy moments are vectors
pointing from the center of mass to the center of the hydrophilic
regions: high integy moments indicate a clear concentration of
hydrated regions in only one part of the molecular surface, small
moments indicate that the polar moieties are either close to the center
of mass or they balance at opposite ends of the molecule, so that their
resulting barycenter is close to the center of the molecule.
When referring to hydrophobic regions, integy moments measure the
unbalance between the center of mass of a molecule and the barycenter
of the hydrophobic regions.

Mixed descriptors

Local interaction
energy minima

represent the energy of interaction (in kcalmol–1) of the best three local
energy minima between the water probe and the target molecule. Alter-
natively, the minima can refer to the three deepest local minima in the
molecular electrostatic potential.
They are produced for both probes OH2 and DRY.

Energy minima
distances

represent the distances between the best three local energy minima
when a water probe interacts with a target molecule.
They are produced for both probes OH2 and DRY.

Hydrophilic-lipophilic
balance

is the ratio between hydrophilic regions measured at –4.0 kcalmol–1

and hydrophobic regions measured at –0.8 kcalmol–1. The balance
describes which effect dominates in the molecule, or if they are roughly
equally balanced.
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Amphiphilic moment is defined as a vector pointing from the center of the hydrophobic
domain to the center of the hydrophilic domain. The vector length is
proportional to the strength of the amphiphilic moment, and it may
determine the ability of a compound to permeate a membrane.

Critical packing
parameter

defines a ratio between the hydrophilic and lipophilic part of a mole-
cule. In contrast to the hydrophilic–lipophilic balance, critical packing
refers just to molecular shape. It is defined as:
volume(lipophilic part)/[(surface(hydrophilic part)·(length of lipophilic
part)]
Lipophilic and hydrophilic calculations are performed at –0.6 and
–3.0 kcalmol–1, respectively. Critical packing is a good parameter to
predict molecular packing such as in micelle formation, and may be
relevant in solubility studies in which the melting point plays an
important role.

Hydrogen bonding
parameter

describes the H-bonding capacity of a molecular target, as obtained
with a polar probe. The water probe presents an optimal ability to
donate and accept hydrogen bonds to and from the target. If a different
polar probe is used, the interaction may be less favorable, and in any
case the H-bonding parameters will differ depending on the nature of
the polar probe used.

Polarizability is not computed from 3D-molecular fields. Polarizability is an estimate
of the average molecular polarizability, calculated according to Millerb.
This method is based on the structure of the compounds (and not any
molecular field) and is therefore independent of the number and type
of probes used. The correlation between the experimental molecular
polarizability and the polarizability calculated with VolSurf for more
than 300 chemicals is very good (r = 0.99).

Diffusivity computed using a modified Stokes–Einstein equation, controls the dis-
persion of chemical in water fluid.

Molecular weight is simply computed by summing the atomic weights.

Log P is computed via a linear equation derived by fitting VolSurf descriptors
to experimental data on n-octanol/water partition coefficients.

a Reference [8].
b K.J. Miller, J. Am. Chem. Soc. 1990, 112, 8533–8542.

A method of estimating molecular diffusivity in water is represented by the
Stokes–Einstein equation which describes the theoretical relationship between a
chemical’s diffusivity in water and its molecular size:

DW = RT / 6pgr (1)

where DW is the chemical diffusivity in water, R is the Boltzmann constant, T the
temperature, g the solution viscosity and r is the solute hydrodynamic radius. It
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shows that it is inversely proportional to solvent viscosity and molecular hydrody-
namic radius.
A similar equation is used in VolSurf to estimate chemical diffusivity. However

in VolSurf the hydrodynamic radius is precisely estimated from the molecular
shape (globularity descriptor).
The so-called “best volumes” are new descriptors identifying the three largest

volumes of hydrophilic (probe OH2) and hydrophobic (probe DRY) regions de-
rived by individual chemical groups. Figure 8.2 represents two molecules with the
same hydrophobic total volume and different “best volumes” (identified with dif-
ferent colors). The best volume descriptors represent the largest (hydrophibic or
hydrophilic) regions around a molecule. Instead of collapsing them into an
unique descriptor giving their overall sum, the single region volumes are esti-
mated and stored.

8.3
Application Examples

In the following we describe successful applications of the updated VolSurf soft-
ware in modeling physicochemical and pharmacokinetic drug properties, com-
prising aqueous solubility, octanol/water partition coefficients, volume of distribu-
tion, and metabolic stability.
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Figure 8.2. Two molecules with an identical
total hydrophobic volume (60–�3 at
–0.6 kcal mol–1), but different “best volumes”
identified by different colours. The molecule
on the left exhibits three “best volumes” of

25 �3 (red), 25 �3 (green) and 10�3 (purple),
while naphthalene represents a unique group
which has only the first “best volume”, equal
to the total hydrophobic volume, and zero for
the second and third ones.
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8.3.1
Aqueous Solubility

Aqueous solubility [11,12] is an important characteristic of drug candidates; it can
influence not only drug delivery, but also metabolism and pharmacodynamic
properties such as receptor affinity. In synthetic chemistry, low solubility can be
problematic for homogeneous reactions, and in preclinical studies low solubility
may produce erroneous experimental determinations or precipitation.
Solubility is extremely difficult to calculate. Dozens of methods exist, but none

is reliable enough to be used in the entire chemical diversity space populated by
infinite drug candidates. Experimental solubility errors are relatively high and fre-
quent. Moreover, solubility can change dramatically with the purity of the com-
pounds, stability, and time. Solubility of liquid substances differs from that of sol-
id phase compounds. Solubility is thermodynamically affected by crystal packing,
influencing the process of crystal lattice disruption and hence polymorphism,
amorphous solid compounds lead to imprecise experimental measures. Finally,
publically available databases of solubility values contain a lot of errors.
Does the above described complexity allow one to reliably predict thermody-

namic solubility for drug candidates? While we think that this is impossible at
present, we believe it is realistic to make compound rankings for solubility behav-
ior, provided that the model used is trained appropriately. VolSurf offers a solubili-
ty model developed with controlled literature data and in-house solubility data. Al-
though the solubility error in the prediction phase can be evaluated in 0.7 log
units (not suitable to rank the solubility of very similar compounds), the model
can still be valid to filter compounds with calculated solubility below a certain
threshold.
A training set of 1028 diverse chemical structures was used to build a quantita-

tive model for thermodynamic solubility. The structures were extracted from the
literature and the dataset was further completed using solubility data produced in-
house. Solubility values are given as –log[mol L–1] at 25 �C. A three-component
PLS model was used to correlate the chemical structures and solubility values. Sta-
tistics give an r2 = 0.74, a q2 = 0.73, and a SDEC (standard deviation of the error of
calculation) [13] value = 0.89. Figure 8.3 shows the plot of calculated versus experi-
mental logS values for the 1028 training set molecules used for library model
building (grey dots). The object pattern nicely proves that a differentiation be-
tween very low, low, medium, high, and very high solubility compounds is possi-
ble; more quantitative predictions, however, will be difficult to achieve.
The average error in the external prediction is about – 0.7 log unit. While this

range is not suitable for the prediction of solubility values of external compounds,
it is still sufficient to rank compounds in different categories and to use for the
filtering of compounds in virtual databases. Overall, it seemed unlikely that this
model could be improved upon, and any attempt made to do so resulted in dan-
gerous overfitting. Many factors can play a role in solubility, and most of these are
virtually imposssible to control.
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On the basis of the above considerations we used a test set of 105 compounds
for external validation of the VolSurf model. Test set compounds are listed togeth-
er with their experimental and calculated aqueous solubility values in Table 8.2.
Projection of the test set predictions into the VolSurf training set model is docu-
mented in Fig. 8.3; the SDEP (standard deviation of the error of prediction) value
amounts to 0.99. The black dots nicely prove that the majority of the 105 test set
structures were well predicted.
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Figure 8.3. Plot of calculated versus experimental –logS
values for the 1028 training set molecules used for building
the VolSurf solubility library model (grey dots). Projections of
the predictions for the 105 compounds of the test set are
shown as black dots.
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Table 8.2 Predicted solubilities for test set compounds (n = 105).

Compound exp. logS pred. logS Compound exp. logS pred. logS

11-hydroxyprogesterone –3.82a –3.82 ethinylestradiol –3.95 b –3.99

betamethasone –3.77a –3.41 famotidine –2.49 b –2.48

betamethasone-17-valer. –4.71a –4.99 felodipine –5.89 b –4.90

cortisone –3.27a –3.23 flurbiprofen –4.36 b –3.16

cortisone acetate –4.21a –3.88 fluvastatin –3.83 b –4.23

dexamethasone –3.59 a –3.27 furosemide –4.75 b –3.47

hydrocortisone –3.11 a –3.40 glyburide –4.82 b –5.31

hydrocortisone acetate –4.34 a –3.94 griseofulvin –4.83 b –3.79

prednisolone –3.18 a –3.04 halcion –4.10 b –4.68

prednisolone acetate –4.37 a –3.90 hydrochlorothiazide –2.70 b –2.35

progesterone –4.42 a –4.09 hydrocortisone –3.09 b –3.09

testosterone –4.08 a –3.65 ibuprofen –3.62 b –2.74

triamcinolone –3.68 a –3.00 ibutilide –1.81 b –4.29

triamcinolone aceto –4.31 a –4.07 imipramine –4.52 b –4.52

triamcinolone diac –4.13 a –4.31 indomethacin –5.20 b –4.55

decadron –4.90 a –4.20 ketoconazol –3.80 b –6.26

corticosterone –3.24 a –3.57 ketoprofen –3.43 b –3.43

deoxycorticosterone acet. –3.45 a –4.54 labetalol –3.41 b –3.42

deoxycorticosterone –4.63 a –3.92 linezolid –2.07 b –3.22

cholesterol –5.29 a –4.86 melengestrol acetate –5.57 b –4.87

cholic acid –3.16 a –3.48 methotrexate –4.10 b –4.06

deydrocholic acid –3.35 a –4.04 metolazone –4.33 b –4.10

glycholic acid –3.15 a –3.96 metoprolol –1.43 b –3.25

ovabagenin –3.10 a –2.99 miconazole –5.79 b –5.79

estrone –3.95 a –3.67 minoxidil –2.04 b –1.72

fludrocortisone –3.43 a –3.46 nadolol –1.57 b –2.42

fluocortolone –3.30 a –3.52 naproxen –4.22 b –2.99

triamcinolone hexa –5.12 a –5.25 omeprazole –3.42 b –3.41

acebutolol –2.20 b –3.60 paclitaxel –6.63 b –6.89
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Table 8.2 Continued.

Compound exp. logS pred. logS Compound exp. logS pred. logS

aciclovir –2.27 b –2.20 phenazopyridine –4.53 b –3.08

almokalant –1.17 b –4.39 phenytoin –4.12 b –3.13

alprenolol –2.83 b –3.08 pindolol –3.88 b –3.73

alprostadil –3.67 b –3.66 prazosin –5.08 b –4.71

amiloride –3.18 b –2.22 primaquine –2.52 b –2.75

amitryptilin –5.14 b –5.14 probenecid –4.90 b –3.19

amoxicillin –2.09 b –2.62 promethazine –4.34 b –4.34

aspirin –1.75 b –1.74 propoxyphene –4.96 b –4.96

atenolol –1.30 b –2.63 propranolol –3.92 b –3.92

atropine –1.80 b –3.24 quinine –2.77 b –3.73

benzoic acid –1.58 b –0.82 tamoxifen –7.55 b –6.12

benzydamine –3.78 b –4.60 terfenadine –6.17 b –6.17

buprenorphine –4.37 b –5.08 testosterone –4.20 b –3.52

chlorpheniramine –2.65 b –4.27 theophylline –1.39 b –1.89

chlorpromazine –5.22 b –5.22 tipranavir –6.30 b –6.29

cimetidine –1.62 b –2.97 tirilazad –7.59 b –7.58

ciprofloxacin –3.79 b –3.58 tolterodine –2.58 b –4.96

clonidine –0.10 b –3.02 trimipramine –6.29 b –5.09

delavirdine –5.74 b –5.72 trovafloxacin –4.43 b –3.72

desipramine –3.76 b –3.98 verapamil –4.69 b –5.34

diclofenac –5.56 b –4.00 warfarin –4.74 b –4.23

enalapril –1.25 b –3.83 xanax –3.60 b –4.22

eperezolid –1.97 b –3.61 zidovudine –1.10 b –1.88

erythromycin –3.15 b –5.71

Experimental and predicted solubilities are given in mol L–1.
a The Merck Index, 12th edition.
b C. A. S. Bergstr�m et al., J. Chem. Inf. Comput. Sci. 2004, 44,
1477–1488.
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8.3.2
Octanol/Water Partition Coefficients

The importance of lipophilicity as a descriptive parameter in biostudies [14–16] is
nowadays acknowledged by its frequent use in an increasing number of research
fields. Lipophilicity is an important factor affecting the distribution and fate of
drug molecules. Increased lipophilicity has been shown to correlate with poorer
aqueous solubility, increased storage in tissues, more rapid metabolism and elim-
ination, increased rate of skin penetration, increased plasma protein binding, and
faster rate of onset of action, to mention a few. An emerging field of application is
in combinatorial chemistry. In the design of compound libraries, lipophilicity data
can be used as estimates for oral absorption as an important contribution to bioa-
vailability. Consequently, logP is included as a parameter in the well-known “rule
of five” work of Lipinski et al. [17], dedicated to define the drug-likeness of com-
pounds.
LogP has been introduced as an additional descriptor in the new release of

VolSurf. A training set of 7871 diverse chemical structures was used to build a
linear equation to calculate the logP values by fitting the structures with the other
VolSurf descriptors. Using a five-component PLS regression, statistics give an
r2 = 0.82, a q2 = 0.82, and a SDEC [13] value = 0.74. The structures and data stem
from Hansch et al. [18].
A test set of 330 compounds, obtained from different literature sources, was

used for external validation of the VolSurf equation. Test set compounds are
reported in Fig. 8.4 and listed together with their experimental and calculated
logP values in Table 8.3; the SDEP value amounts to 0.81; this closely resembles
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Figure 8.4. Plot of calculated versus experimental logP values for the 330 test set molecules.
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the experimental variability and underlines the quality of predictions. Finally, it
should be realized that the use of VolSurf for calculating logP circumvents any
fragmentization procedure, which often produces ambiguities. Taken together,
VolSurf-based logP calculation is fast, reliable and easy to compute.

Table 8.3 Prediction of experimental logP for literature test set compounds (n = 330).

Compound logPexpa logPcalc Compound logPexpa logPcalc

17-a-hydroxyprogesterone 3.15 2.81 mebendazole 3.06 2.65

17-methyltestosterone 3.74 3.16 medazepam 4.68 4.63

abecarnil 5.09 4.66 medroxyprogesterone
acetate

4.21 3.85

acadesine –2.90 –3.32 medroxyprogesterone 3.67 2.95

acenocoumarol 2.53 3.52 mefruside 1.47 1.77

acetazolamide –0.77 –1.02 megestrol acetate 3.78 4.04

albendazole 3.66 2.64 melatonin 0.88 2.40

alfuzosin 1.32 2.07 meloxicam 2.87 1.85

allopurinol 0.45 –0.15 mephenesin 0.86 0.81

alprazolam 2.78 3.87 mephenytoin 1.74 1.54

altretamine 1.58 2.33 meprobamate 0.28 0.75

aminoglutethimide 0.67 1.37 mercaptopurine 0.72 0.41

amrinone –0.59 1.46 mesterolone 4.07 2.79

anisindione 2.70 2.70 mestranol 4.06 3.62

aprobarbital 1.10 0.03 metenolon 3.74 2.89

ascorbic acid –2.17 –1.40 methaqualone 2.48 2.91

atovaquone 5.86 5.22 methimazole –0.34 1.11

azathioprine 0.25 0.87 methocarbamol –0.05 0.70

azaurine –1.74 –3.91 methohexital 1.81 0.85

azintamide 1.40 2.08 methylphenobarbital 1.85 0.91

beclamide 1.29 2.61 methylprednisolone 1.64 1.01

beclometasone 1.83 1.89 methyproscillaridin 2.34 1.87

bemetizide 1.94 1.75 methylthiouracil 1.21 0.81

bendroflumethiazid 1.69 2.67 metolazone 2.02 1.89

benorylate 2.22 2.71 metronidazole –0.70 –0.17

benzarone 4.64 3.87 miconazole 5.96 6.09

benzbromarone 5.95 5.07 midazolam 3.70 5.05
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Table 8.3 Continued.

Compound logPexpa logPcalc Compound logPexpa logPcalc

benziodarone 6.33 5.16 mifepristone 4.10 5.11

benznidazole 0.48 1.82 milrinone –0.04 1.82

betamethasone 1.49 1.50 misoprostol 3.07 2.81

bromazepam 2.02 3.10 mitotane 5.91 6.54

brotizolam 2.70 3.67 mofebutazone 4.49 1.72

budesonide 2.29 1.46 nabilone 6.57 5.26

bunazosin 2.97 2.90 nabumetone 2.83 3.56

busulfan –0.59 1.12 niacinamide –0.21 0.16

butizide 1.58 1.28 niclosamide 4.32 3.67

caffeine –0.06 0.19 nicorandil 0.29 0.56

calcifediol 7.27 4.70 nifedipine 2.35 3.31

calcipotriol 4.21 3.02 nifurtimox 0.08 1.10

calcitriol 5.18 3.81 nilvadipine 2.26 3.20

calusterone 4.26 3.38 nimodipine 3.09 3.59

camazepam 4.77 3.61 nisoldipine 3.81 4.05

carbamazepine 1.98 2.57 nitrazepam 2.63 2.80

carbimazole 3.00 1.15 nitrendipine 2.43 3.33

carisoprodol 1.67 1.87 nitrofurantoin –0.47 0.28

carmustine 1.32 1.39 nitroglycerin 1.02 1.36

cefetametpivoxil 2.33 1.68 nivaldipine 2.26 3.12

cefpodoxim 0.78 1.16 nordazepam 3.33 3.68

cefuroxime 0.33 0.73 norethindrone acetate 3.34 3.59

chloralhydrate 0.72 0.27 norethindrone 2.39 2.45

chloramphenicol 0.69 0.67 novobiocin 3.84 3.29

chlormadinone acetate 3.64 4.22 odansetron 2.64 3.64

chlormezanone 1.55 1.57 omeprazole 2.53 2.34

chlorothiazide –0.31 –0.04 ornidazole –0.33 0.59

chlorthalidone 0.32 1.16 oxandrolone 3.90 3.19

chlorzoxazone 1.87 1.94 oxazepam 3.45 2.61

cicletanine 3.09 3.47 oxcarbazepine 1.21 1.48

clioquinol 3.70 3.90 oxiconazole 6.03 5.93

clobazam 2.44 2.86 oxyphenbutazone 2.50 3.09

186



8.3 Application Examples

Table 8.3 Continued.

Compound logPexpa logPcalc Compound logPexpa logPcalc

clofazimine 7.47 6.93 pantoprazole 1.87 2.28

clofibrate 3.68 3.75 papaverine 3.22 4.53

clomethiazole 1.22 1.97 paracetamol 0.49 1.53

clonazepam 2.70 3.19 paraldehyde 1.00 –0.52

clopamide 2.35 1.75 paramethasone 1.04 1.25

cloprednol 1.07 1.70 pentaerythritol tetranitrate 1.69 2.20

clotiazepam 3.36 3.67 pentobarbital 2.11 0.59

clotrimazole 5.05 6.19 pentoxyfylline 0.10 0.81

colchicine 0.32 2.62 phenacemide 0.87 0.12

corticosterone 1.16 1.49 phenacetin 1.77 2.15

cortisol 0.54 1.02 phenazone 0.41 2.23

cortisone acetate 0.47 2.19 phenobarbital 1.37 0.51

cortisone 0.14 1.05 phenolphthalein 3.67 4.88

coumarin 1.41 2.10 phenprocoumon 4.75 4.40

cyclandelate 4.64 3.22 phensuximide 0.96 1.12

cyclophosphamide 0.80 1.64 phenylbutazone 3.17 3.20

cyproterone acetate 3.39 4.11 phenylethylmalonamide 2.25 3.52

cyproterone 2.85 3.25 phenytoin 2.09 2.21

cytarabine –3.05 –3.37 pimobendan 5.00 3.61

danazol 3.54 3.66 piracetam –1.49 –0.78

dantrolen 1.63 2.31 piroxicam 2.70 1.99

dapsone 1.07 1.72 pivmecillinam 5.80 3.06

deflazacort 2.27 2.12 polythiazide 2.29 2.22

desogestrel 5.29 3.90 prazepam 4.26 4.56

dexamethasone 1.49 1.53 praziquantel 3.43 2.62

diazepam 3.29 3.72 prazosin 2.45 3.13

diazoxide 1.20 1.64 prednimustin 5.28 5.78

dichlorphenamide 0.22 0.33 prednisolone 1.12 0.83

didanosine –1.90 –0.96 prednisone 0.72 1.11

diethylstilbestrol 4.96 5.24 prednylidene 1.16 1.12

diloxanide 1.62 2.90 primidone 1.74 1.31

dipyridamole 2.04 1.02 progabide 2.51 3.96
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Table 8.3 Continued.

Compound logPexpa logPcalc Compound logPexpa logPcalc

disulfiram 3.88 3.84 progesterone 3.78 3.68

doxazosin 4.06 3.39 propofol 4.33 3.57

enprofylline 0.36 –0.34 propylthiouracil 2.27 1.49

estradiol 3.78 3.28 propyphenazone 5.23 3.29

estradiol-valerate 6.32 4.84 proquazone 3.65 3.82

estriol 2.55 1.93 proscillaridin 1.68 1.74

estrone 3.38 3.60 protionamide 2.26 2.33

ethacridine 3.69 2.89 protirelin –2.83 –0.81

ethanol –0.24 –0.92 proxyphylline –0.58 –0.51

ethinylestradiol 3.47 3.43 psicofuranine –3.58 –3.13

ethionamide 1.73 2.08 pyrantel 4.63 2.36

ethosuximide –0.33 0.34 pyrazinamide –0.71 –0.50

etofenamate 4.36 3.15 pyridoxine –0.70 –0.04

etofibrate 3.75 4.13 pyrimethamine 3.38 2.41

etofylline –0.89 –0.77 quazepam 4.52 5.85

etoposide –1.10 0.50 ramosetron 1.98 3.12

etretinate 6.97 6.62 retinol 6.20 5.48

famciclovir –0.36 0.85 ribavirin –3.36 –3.60

fampridine 0.50 0.63 riboflavin –0.25 –1.81

felbamate –0.29 0.70 rifaximin 5.46 4.69

felodipine 4.00 4.59 riluzole 3.41 2.15

fenofibrate 5.23 4.65 rolipram 1.22 3.08

fenoximone 2.26 1.82 rutoside –3.66 –1.40

finasteride 3.01 3.66 secnidazole –0.39 0.04

floctafenine 3.85 3.44 secobarbital 2.16 0.74

fluconazole –0.11 1.50 silymarin 1.18 2.95

flucytosine –1.43 –0.61 simvastatin 5.21 3.54

fludrocortisone 0.38 1.28 spironolactone 3.19 3.51

flumazenil 1.06 2.45 stavudine –1.14 –1.00

flunisolide 1.15 1.51 stiripentol 2.40 2.70

flunitrazepam 2.11 2.95 strophanthin –2.35 –1.23

fluocortolone 1.66 1.86 sulfinpyrazone 1.44 2.54
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Table 8.3 Continued.

Compound logPexpa logPcalc Compound logPexpa logPcalc

fluorouracil –0.97 –0.64 sulfisoxazole 0.28 1.13

flupirtine 3.23 2.85 sultiam 0.03 0.56

flutamide 3.19 3.05 tacrine 3.45 3.02

fluticasone 1.45 2.51 temazepam 3.71 3.21

fructose –3.50 –3.69 tenidap 3.41 2.28

ftorafur –0.21 –0.21 tenoxicam 2.42 1.16

gestodene 2.44 2.88 terazosin 2.58 2.00

gestrinone 2.04 2.99 terizidone 0.55 0.30

griseofulvin 1.76 2.73 testolactone 3.79 3.13

halazepam 4.58 4.89 testosterone 3.22 2.69

hexobarbital 1.63 0.67 testosterone propionate 4.69 3.95

hydrochlorothiazide –0.40 0.17 tetrahydrocannabinol 7.24 5.27

hydroflumethiazide –0.25 1.29 tetrazepam 3.69 3.63

hydroxyprogesterone
caproate

5.80 4.90 tetroxoprim 0.55 1.56

hymecromone 2.11 2.32 theophylline –0.06 –0.43

ifosfamide 0.92 1.97 thiamazole 0.02 0.10

indapamide 4.29 2.16 thiamphenicol –0.70 0.21

iodoquinol 4.11 4.07 tiabendazol 2.35 1.70

ipriflavone-yambolap 4.17 3.59 tinidazole 0.03 0.79

isocarboxazid 0.97 1.60 tolnaftate 5.34 5.91

isoniazid –0.71 –0.84 topiramate 0.68 –0.24

isosorbide-2-mononitrate –1.67 –0.97 trapidil 1.94 1.44

isosorbide-5-mononitrate –1.67 –1.07 treosulfan –2.20 –0.70

isosorbide-dinitrate –1.62 0.01 triamcinolone –0.24 0.44

isoxicam 2.40 1.89 triamterene 2.06 0.52

isradipine 3.14 3.34 triazolam 2.85 4.79

kebuzone 0.68 2.27 tribenoside 4.94 4.45

ketazolam 3.71 3.48 trichlormethiazide 0.85 1.11

ketonazole 4.48 4.83 trimazosin 4.51 3.30

lacidipine 5.31 5.50 trimethadione 0.08 0.33

lamivudine –1.67 –1.53 trimethoprim 0.80 1.78

lamotrigine 3.24 1.82 trimetrexate 1.81 2.87

189



8 Use of MIF-based VolSurf Descriptors in Physicochemical and Pharmacokinetic Studies

Table 8.3 Continued.

Compound logPexpa logPcalc Compound logPexpa logPcalc

lansoprazole 3.07 3.05 trofosfamide 1.18 3.53

letrozole 1.20 3.77 troglitazone 5.99 4.61

levamisole 3.61 1.80 velnacrine 1.82 1.53

levonorgestrel 2.92 2.79 vesnarinone 1.95 3.59

loratadine 5.05 5.26 warfarin 2.79 3.73

lorazepam 3.52 3.31 xipamide 2.19 2.48

lormetazepam 3.77 3.56 xylose –2.86 –3.29

lornoxicam 3.15 1.68 zalcitabine –1.29 –1.08

lovastatin 4.81 3.19 zidovudine –0.33 –1.14

lynoestrenol 4.73 3.41 zolpidem 2.82 3.78

8.3.3
Volume of Distribution (VD)

The half-life of a drug is a major contributor to the dosing regimen, and it is a
function of the clearance and apparent volume of distribution (VD), each of which
can be predicted and combined to predict the half-life. Drugs with short half-lives
are more likely to be required to be administered more frequently than those with
long half-lives. Much attention has been focused on the prediction of human half-
life. Good success is attained if the two major components of half-life, clearance
and VD, are predicted separately and combined to generate a half-life prediction.
Volume of distribution represents a complex combination of multiple chemical

and biochemical phenomena. It is a measure of the relative partitioning of a drug
between plasma (the central compartment) and the tissues. Thus, the VD term
considers all of the tissues as a single homogeneous compartment.
The VD of a drug accounts for the total dose administration based on the ob-

served plasma concentration. VD is indicative of the extent of distribution of a
drug. The larger the VD, the greater is the extent of the distribution. The plasma
volume of an average adult is approximately 3 L. Thus, an apparent VD larger
than the plasma compartment (i.e. > 3 L) indicates that the drug is also present in
tissue or fluid outside the plasma compartment. Although the VD cannot be used
to determine the actual site of distribution of a drug in the body, it is of extreme
importance in estimating the loading dose necessary to rapidly achieve a desired
plasma concentration.
In this section, we describe a quantitative VD model on 118 chemically diverse

drugs comprising neutral and basic compounds. VD data were collected from lit-
erature by Lombardo et al. [19]. In the vast majority of cases, these data represent
VDss values, i.e. volume of distribution at steady state.
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After converting the VD data (L kg–1) into –log[VD] values, PLS discriminant
analysis was used to build the statistical model. Two significant latent variables
emerged from the PLS discriminant analysis; statistics give an r2 = 0.61, a q2 = 0.53,
and a SDEC [13] value = 0.33. Figure 8.5 shows the 2D PLS scores of the VolSurf
VD library model (empty dots).
It is extremely difficult to find compounds with experimental VD equivalent to

those collected by Lombardo. We could detect only 10 compounds, which were in
turn used as test set for external validation of the VolSurf library model. Test set
compounds are listed together with their experimental and calculated VD values
in Table 8.4; the projection of their predictions is plotted in Figure 8.5 (filled dots);
the SDEP value amounts to 0.53.
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Figure 8.5. The 2D PLS scores plot of the VD VolSurf library model (open grey points)
as well as the projection of the predictions for the ten test set compounds (filled points)
are shown. The middle bar represents the best discrimination between training
set compounds (with high and low VD).
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Table 8.4. Prediction of the volume of distribution (VD) for the test set (n = 10).

Compound VD experimental

(L kg–1)
–logVD experimental VD predicted

(L kg–1)
–logVD predicted

busulfan 0.84 a 0.08 2.15 –0.33

clindamycin 0.79 b 0.10 2.13 –0.33

esmolol 1.19 c –0.08 2.68 –0.43

fluconazole 0.63 d 0.20 1.06 –0.02

melphalan 0.50 e 0.30 0.64 0.19

mercaptopurine 5.62 f –0.75 1.02 –0.01

methyldopa 0.46 g 0.34 0.54 0.26

pravastatin 0.46 h 0.34 0.46 0.34

tacrolimus 1.26 i –0.10 3.02 –0.48

tesaglitazar 0.13 j 0.89 0.85 0.07

a Cremers, S. et al. Br. J. Clin. Pharmacol. 2002, 53, 386–389.
b Gatti, G. et al. Antimicr. Ag. Chemother. 1993, 37, 1137–1143.
c Sum, C.Y. et al. Clin. Pharmacol. Ther. 1983, 34, 427–434.
d Cutler, R.E. et al. Clin. Pharmacol. Ther. 1978, 24, 333–342.
e Physician Desk Reference (Alkeran for injection, Celgene).
f Van Os, E.C. et al. Gut 1996, 39, 63–68.
g Skerjanec, A. et al. J. Clin. Pharmacol. 1995, 35, 275–280.
h Singhvi, S. M. et al. Br. J. Clin. Pharmacol. 1990, 29, 239–243.
i Mancinelli, L.M. Clin. Pharmacol. Ther. 2001, 69, 24–31.
j Ericsson et al. Drug. Met. Disp. 2004, 32, 923–929.

8.3.4
Metabolic Stability

Metabolic trasformations tend to reduce the bioavailability of compouds and, in
turn, their pharmacological profile. The family of human P450 cytochromes com-
prises many different enzymes including 3A4, 3A5, 2C9, 2C19, 2D6, etc., among
which the 3A4 and 2C9 subtypes are involved in the great majority of the meta-
bolic transformations of drugs.
Metabolic stability in human CYP3A4 cDNA-expressed microsomal preparation

offers a suitable approach to predict the metabolic stability of external com-
pounds. From a dataset (n = 1507) from Pharmacia Corporation, each compound
was incubated at a fixed concentration for 60min with a fixed concentration of
protein at 37 �C. The reaction was stopped by adding acetonitrile to the solution
and, after centrifugation to remove the protein, the supernatant was analyzed
using LC/MS and MS. Compounds with a final concentration > 90% of the corre-
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sponding control sample were defined as stable, whereas compounds with final
concentrations below 20% of the control were defined as unstable. The solubility
of stable compounds was used as a primary filter. All the compounds with a solu-
bility lower than 10 lmol L–1 were removed from the analysis. Insoluble com-
pounds are always metabolically stable.
The above described dataset was used to build a quantitative model for meta-

bolic stability. Two significant latent variables were extracted; statistics give an
r2 = 0.44, a q2 = 0.43, and a SDEC (13) value = 0.74. Figure 8.6 shows the plot of
calculated versus experimental metabolic stability for the 1507 training set mole-
cules used for the VolSurf Metabolic Stability model building (open grey dots).
The model can be used to evaluate the metabolic stability from the 3D structure

of drug candidates prior to experimental measurements. Thus, we have used a
test set of 1346 compounds from Johnson & Johnson [20].
Figure 8.6 shows the projection of 1346 compounds from Johnson & Johnson

on the VolSurf metabolic stability model. The projected compounds are color-
coded according to their percentage experimental metabolic stability (%MS): the
red color defines compounds with %MS > 95, while the blue color defines com-
pounds with %MS < 40. The figure shows that the great majority of projected
compounds with %MS > 95 are predicted to be of medium or high stability for
the metabolic activity of the CYP3A4, while compounds with low %MS < 40 are
predicted to be unstable. The presence of outliers may be explained by the fact
that the experimental %MS of the test set compounds is obtained from the activity
of all CYP family enzymes (2C9, 3A4, 2D6 etc.), while the model uses only 3A4
mediated information.

8.4
Conclusion

The complex and often uncertain outcome of drug discovery and development
processes requires the simultaneous optimization of several properties. It has
now long been recognized that favorable potency and selectivity characteristics are
not the sole hallmarks of a successful drug discovery program, nor is the safety
profile considered to be the only hurdle to be overcome, although it is of para-
mount importance. The ability to prospectively predict the pharmacokinetics of
new chemical entities in humans is a powerful means by which one can select for
further development only those compounds with the potential to be successful
therapeutic agents.
In the present chapter, we have used an updated version of the VolSurf proce-

dure to exemplify its validity for predicting physicochemical (solubility and log P)
and pharmacokinetic properties (volume of distribution and metabolic stability) of
drug molecules.
However, the VolSurf procedure is an evolving tool. New MIF-derived descrip-

tors are planned and will soon be developed. Moreover, the descriptor space and
the chemometrical (the model) space will be much more integrated. After draw-
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ing a 2D structure, the user will add or remove groups and see instantly its projec-
tion on the ADME library model plot. So it will be simple to add a series of chem-
ical groups to a drug structure to follow its movement on the model property-plots
in real time. The gap between chemists, 3D molecular representation and ADME
propeties has never been so small.
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Figure 8.6. Proiection of 1346 compounds
from Johnson & Johnson on the 2D PLS
scores plot of the VolSurf metabolic stability
model (open grey points). The black line dis-
criminates between unstable and stable com-
pounds in the metabolic stability model: pro-
jected compounds on the left of the black line
are predicted as unstable (%MS < 40), while

projected compounds on the right are pre-
dicted as stable (%MS > 40%). The projected
compounds are color-coded according to
their percentage experimental metabolic sta-
bility (%MS): red color for compounds with
%MS > 95; blue color for compounds with
%MS < 40.
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9
Molecular Interaction Fields in ADME and Safety
Giovanni Cianchetta, Yi Li, Robert Singleton, Meng Zhang, Marianne Wildgoose,
David Rampe, Jiesheng Kang, and Roy J. Vaz

9.1
Introduction

The GRID [1] force field has been widely used in structure based drug design, in
crystallography and 3D QSAR. Moreover, there are several programs utilizing the
MIFs produced by GRID that are now being used increasingly. The first, META-
SITE, is used to predict the site of metabolism by cytochrome P450 enzymes and
is described very well in Chapter 12. The second program is VolSurf which is
largely used to describe and predict physical properties and measurements such
as permeability etc., as described in Chapter 8. The third program is FLAP which
utilizes 3 or 4 point pharmacophores derived from GRID fields which are then
used in either database searching or library design. This program has been devel-
oped to work on proteins and ligands at the same time and is well described in
Chapter 4.
Finally, there is a fourth program which encapsulates GRIND descriptors

named ALMOND. ALMOND theory is described in Chapter 6. What we will
describe below refers to our involvement in utilizing the GRIND descriptors to
model and understand various ADME and safety properties.
Accordingly, we will briefly outline the use of MIFs in three research areas. In

absorption, the use of MIFs to understand and model permeability through
PAMPA, Caco-2, MDCK cells as well as BBMEC cells has been demonstrated.
However, this approach is limited to a passive mechanism.
Outliers in these models, as well in biological assays, are due to several reasons

which encompass issues related to transporters in the cells which could be efflux
or uptake transporters. We have tried to address the problem using MIFs to under-
stand P-glycoprotein (PGP) efflux, especially as it pertains to substrates.
Secondly, we will describe the use of GRIND descriptors to obtain a general

model for inhibition of the K channel in the heart, known as the Human Ether-a-
go-go Gene (HERG).
Finally MIFs will be used to explain cytochrome P450 (CYP) 3A4 inhibition.

The use of METASITE in understanding and predicting the site of metabolism



within a particular molecule has already been described. However, METASITE
has not yet been used to predict inhibition for various CYPs. We will describe a
model which has been obtained from experimental data (inhibition of the forma-
tion of 6b-testosterone formation from testosterone itself).

9.2
GRID and MIFs

Molecular interaction fields are produced by Peter Goodford’s GRID software (see
Chapter 1). GRID alignment independent descriptors (GRIND) [2] were chosen
due to their ability to represent pharmacodynamic properties in such a way that
they are no longer dependent upon their positions in the 3D space. The GRIND
calculation starts by computing several molecular interaction fields (MIFs) using
the GRID program. The GRIND approach aims to extract the information
enclosed in the MIFs and compress it into new types of variables whose values are
independent of the spatial position of the molecule studied. Most relevant regions
are extracted from the MIFs using an optimization algorithm that uses the inten-
sity of the field at a node and the mutual node–node distances between the chosen
nodes as a scoring function. A discrete number of categories, each one represent-
ing a small rank of distances, are considered.
The innovative autocorrelation algorithm used in ALMOND allows the repre-

sentation of the descriptors in the original 3D space as a line linking two specific
MIF nodes.
GRIND variables are then grouped into blocks representing interactions be-

tween couples of nodes generated by the same probe (autocorrelograms) or com-
bination of probes (cross-correlograms). Such variables constitute a matrix of
descriptors that can be analyzed using multivariate techniques, such as principal
component analysis (PCA) and partial least squares (PLS) regression analysis.
All the calculations were done by means of the program ALMOND 3.2.0. In this

version a new kind of descriptor has been added that is able to describe the shape
of the molecule using the same GRIND formalism. Shape descriptors are repre-
sented in a correlogram-like form where the autocorrelograms describe the dis-
tance between certain regions defining the spatial extent of the molecule and the
cross-correlograms describe the distance between these regions and other regions
representing relevant interactions of the compounds.

9 Molecular Interaction Fields in ADME and Safety198



9.3
Role of Pgp Efflux in the Absorption

9.3.1
Materials and Methods

9.3.1.1 Dataset

A dataset comprised of 129 molecules, 100 Sanofi-Aventis proprietary compounds
and 29 publicly available compounds, was studied in order to obtain a 3D quanti-
tative structure–property relationship (3D-QSPR) model able to identify the struc-
tural features that a molecule should possess in order to be recognized as a sub-
strate of Pgp. All the chosen compounds have an efflux ratio in a Caco-2 assay
greater than one, which normally implies that the molecules are Pgp substrates.
The degree of inhibition of Pgp activity, calculated from the fluorescence

increase of the Calcein-AM assay was used as activity data [3]. The experimental
inhibition data are normalized to the value obtained for Cyclosporine A (which is
a competitive inhibitor of Pgp [4])so that the value for untreated cells is 0% and
100% is the value for Cyclosporine A. The inhibition value of each substrate was
then transformed in the logarithm in order to reduce the residuals for the larger
values. The activity range spans from 2.32 to 0.37, covering 1.95 log units.
All the molecules were divided into a training set (109 compounds) and a test

set (20 molecules). Activity values of the test set molecules range between 1.86
and 0.59 log units. The test set was chosen in such a way as to fully cover the activ-
ity range; the dataset was divided into four classes according to the activity value
(2.32–1.63, 1.62–1.23, 1.22–0.84, and 0.83–0.37). Then five molecules for each
class were randomly chosen, ensuring that the chosen molecules were similar to
the training set.

9.3.1.2 Computational Methods
Molecular modeling and subsequent geometry optimization were performed
using the molecular modeling software package SYBYL version 6.9.244 [5]. 3D
structures were obtained from smiles notation by means of the Unity [6] program
included in the SYBYL package. CONCORD [7] was used to generate a single con-
formation that was used for the model development and to analyze the test set
compounds. Then energy minimization was performed with the standard TRI-
POS force field using the Powell method with initial Simplex optimization. Gradi-
ent termination was set to 0.05 kcal (mol*A)–1. When needed, conformational
analysis was performed with software MOE 2004.03 release [8], limiting the num-
ber of conformers to 50 and used as described. Except for compounds with quater-
nary nitrogen atoms, structures were considered to be uncharged. The high struc-
tural diversity of the molecules that form the data set made it very difficult to find
rules for superimposition of the structures; hence, an alignment independent
method was required to analyze the dataset.

1999.3 Role of Pgp Efflux in the Absorption
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9.3.1.3 ALMOND Descriptors
940 ALMOND descriptors have been obtained using 4 GRID probes: DRY (which
represents hydrophobic interactions), O (sp2 carbonyl oxygen, representing an H
bond acceptor), N1 (neutral flat NH like in amide, an H bond donor) and the TIP
probe (molecular shape descriptor). The grid spacing was set to 0.5	 and the
smoothing window to 0.8. The number of filtered nodes was set to 100 with 50%
of relative weights. 10 groups of variables were produced by ALMOND: 4 autocor-
relograms and 6 cross-correlograms.

9.3.2
Results

The structural variance of the dataset was analyzed with principal component
analysis (PCA) [9] performed on the complete set of ALMOND descriptors calcu-
lated for the compounds which comprised the training and test sets. The first two
components explained 35% of the structural variance of the dataset. Figure 9.1
shows that no structural outliers are present in the dataset and that the training
and test sets share similar chemical space.

In order to analyze in detail the pharmacophoric aspect of the interaction be-
tween the compounds that formed the training set and the protein, the PLS multi-
variate data analysis correlating the activity with the complete set of variables
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Figure 9.1. PCA score plot derived from the analysis of the GRIND
descriptors calculated for the entire training set of 129 compounds.
The gray objects represent the compounds that form the training
set and the black dots represent the molecules of the test set.
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(940) was carried out using the algorithm implemented in the ALMOND pro-
gram. In the first instance, five of the Sanofi-Aventis compounds were strong out-
liers (data not shown); conformational analysis was performed on these molecules
using the software MOE. The final chosen conformation was that which gave the
best correlation value in the model. The PLS analysis resulted in a three latent
variables model with r2=0.82. The cross validation of the model using LOO yielded
q2 values of 0.72.
A variable selection was applied to reduce the variable number using FFD fac-

torial selection implemented in the ALMOND program using all the default val-
ues suggested by the program. The resulting number of active variables decreased
from 653 to 576. A new PLS multivariate data analysis was performed yielding a
three latent variables model with r2=0.83. The cross validation of the model using
LOO yielded q2 values of 0.75.
The quality and robustness of the obtained model were tested predicting the

activity of the test set previously defined. Figure 9.2 shows the plot of the experi-
mental versus calculated biological activities. The entire set could be modeled
without any significant outlier behavior, in spite of the fact that structurally differ-
ent classes of compounds are present in the dataset. This fact confirms a common
mechanism of action and consequently the common structural features required.
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Figure 9.2. The overall quality of the obtained
model is demonstrated in the plot of the
experimental activities (experimental Y)
versus the data calculated with our model
(calculated Y). The plot shows that the entire

training set could be modeled without any
significant outlier behavior. The color of the
objects in the chart is based upon the Caco-2
efflux ratio value for the molecule.
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9.3.3
Pharmacophoric Model Interpretation

The PLS pseudo-coefficients profile of the third component of the PLS model,
highlights the descriptors that have a greater importance in the chemometric
model. The most important 3D-pharmacophoric descriptors in the PLS model
suggest a common pharmacophore for all the substrates. The activity increases
strongly in molecules with a high value of the descriptors: 33-23, 11-33, 13-8,
14-41, 44-43. The descriptors are explained in detail in Table 9.1. The most impor-
tant descriptors in the PLS model can be arranged to obtain an approximate phar-
macophore valid for molecules actively transported by Pgp. The pharmacophore
consists of two H-bond acceptor groups, two hydrophobic areas and the size of the
molecule that plays a major role in the interaction (Fig. 9.3).
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Figure 9.3. Resulting pharmacophore for P-glycoprotein actively transported
molecules. The depicted molecule is the analgesic (narcotic) sufentanyl. The
colored areas around the molecules are the GRID fields produced by the
molecule: yellow for DRYprobe, green for TIP probe and blue for N1 probe.
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Table 9.1 Structural interpretation of the ALMOND descriptors that
are highly correlated to the variance of the experimental data.

33-23 Is related to the presence of two H-bond acceptor atoms placed 11.5	 apart.

11-33 Are the distances between two hydrophobic regions: they have to be 16.5	 apart.

13-8 Describes a distance of 4	 between the hydrophobic region previously described and
an H-bond acceptor group.

14-41 Describes a distance of 20.5	 between a hydrophobic region of the molecule and one
of the edges of the same molecule.

44-43 Is mainly related to the size, being the distance of 21.5	 that is required between two
edges of the molecule.

9.3.4
Discussion

Several papers proposing multiple recognition sites for Pgp have been presented
in the past. In this work, the pharmacophoric analysis of the dataset shows that
the requirements to interact with Pgp are the same for all 129 compounds. Since
in our database we have not included known R-site binders and anthracyclines,
we cannot say definitively that the pharmacophore found represents one of the
binding sites that have been described in the literature. Two of the molecules pres-
ent in the database, verapamil and dipyridamole, are known to bind in the H-site
described by Shapiro and Ling [10]. We also cannot definitely state that the phar-
macophore defines any functional site within the transporter. Further work, to try
to define the location of the corresponding amino acids in a protein homology
model, is in progress.
This work supports the two-step process proposed by Seelig [11]. The strong cor-

relation, highlighted by PLS statistical analysis, between pharmacophoric descrip-
tors and inhibition values suggests that substrate interaction with the protein
plays a key role in the efflux process, yielding a model in which diffusion across
the membrane (first step) is less important than substrate–protein interaction
(second step).
In our hypothesis, Pgp substrates, being prevalently lipophilic, can easily cross

the membrane and tend to accumulate in the bilayer. Here they will interact with
the protein by means of pharmacophoric recognition. Interaction will trigger a
sequence of transformations in the protein (conformational changes, ATP hydro-
lysis etc.) that have a great impact on the rate of the efflux process. The high con-
centration that substrates reach in the bilayer can help to explain the broad speci-
ficity showed by Pgp. A recent review [12] suggests that binding of substrates to
the TMDs initiates the transport cycle by facilitating ATP-dependent closed dimer
formation, the first step in the ATP switch model for transport by ABC transpor-
ters.
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Our hypothesis would be in agreement with the work of Dye et al. [13] since the
mouth of the protein may be seen as the ON-site that first interacts with the sub-
strate.
The model would be in accordance even with the suggestion of Homolya et al.

[14], the pioneers in the use of Calcein-AM as a Pgp substrate, namely, that Cal-
cein-AM and other fluorescent methyl esters are expelled directly from the cell
membrane, before reaching the cytoplasmic phase. Preemptive pumping of Cal-
cein-AM is also in accordance with the theoretical analysis of Stein [15] who
showed that the initial rate of substrate accumulation is reduced by pumping only
if such pumping is preemptive.

9.4
HERG Inhibition

9.4.1
Materials and Methods

9.4.1.1 Dataset

Our dataset consisted of 882 compounds with experimentally measured IC50 val-
ues for HERG channel inhibition. A standard whole-cell patch clamp electrophy-
siology method was used to record the currents of HERG channels stably
expressed in Chinese hamster ovary cells [16]. The number of compounds with
zero, one, or two ionizable basic nitrogen atoms was 338, 499, and 45, respectively.
Amide, aromatic and aniline nitrogen atoms were considered as nonbasic. Activity
data were reported as –log10 of IC50 (pIC50), and ranged from –2.5 to 2.5.

9.4.1.2 Computational Methods
To develop 3D pharmacophore models, the geometries of all molecules were ini-
tially generated by Concord and subsequently energy minimized using Tripos’
software package SYBYL with the standard TRIPOS force field. MIFs were then
calculated using the program GRID to determine energetically favorable interac-
tions between the molecule and a probe group. MIFs obtained from GRID calcula-
tions (DRY, carbonyl oxygen, NH amide and TIP probes) were then transformed
into alignment independent descriptors (GRIND).
Correlations between the HERG channel inhibition and GRIND descriptors

were analyzed using multivariate techniques such as principal component analy-
sis (PCA) and PLS regression analysis.
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9.4.2
Results

In order to assess the importance of the presence of a charged nitrogen atom, the
dataset was divided into two subsets. The first subset contained 338 compounds
without any basic nitrogen atoms while the second set consisted of 544 molecules
with one or two basic nitrogen atoms.

9.4.2.1 Nonbasic Nitrogen Subset
For the nonbasic nitrogen subset, the 338 molecules were split into a training set
(322 compounds) and a test set (16 molecules). To select the test set, the dataset
was divided into three groups according to the activity value of pIC50 (2>0.5;
0.5>–1; –1>–2.5). The test set compounds were randomly chosen from each group
to cover the activity range uniformly. Principal component analysis of the com-
plete dataset was performed to analyze the structural variance of both the training
and test sets. The PCA scores plot (Fig. 9.4) showed that there was no structural
outlier present in the dataset and that the training set and test set shared the same
chemical space.

The PLS multivariate data analysis of the training set was carried out on the
descriptors matrix to correlate the complete set of variables with the activity data.
From a total of 710 variables, 559 active variables remained after filtering descrip-
tors with no variability by the ALMOND program. The PLS analysis resulted in
four latent variables (LVs) with r2 = 0.76. The cross validation of the model using
the leave-one-out (LOO) method yielded q2 values of 0.72. As shown in Table 9.2,
the GRIND descriptors 11-36, 44-49, 12-28, 13-42, 14-46, 24-46 and 34-45 were
found to correlate with the inhibition activity in terms of high coefficients.
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Figure 9.4. 2D plot of PCA showing the descriptor space of training set
(open circle) and test set (filled dot) for the HERG data set (neutral molecules).



9 Molecular Interaction Fields in ADME and Safety

Table 9.2 Salient GRIND descriptors in PLS models.

GRIND GRID Subset I Subset II
descriptor MIFs

Step � Step �

11 dry–dry 36 18 36 18

44 tip–tip 49 24.5 58 29

12 dry–H-bond donor 28 14 41 20.5

13 dry–H-bond acceptor 42 21 40 20

14 dry–tip 46 23 47 23.5

24 H-bond donor–tip 46 23 52 26

34 H-bond acceptor–tip 45 22.5 49 24.5

9.4.2.2 Ionizable Nitrogen Subset
The predictive quality and robustness of the model were examined using 16 mole-
cules of the test set defined previously. Figure 9.5 plots the predicted HERG activ-
ities of the test set molecules versus experimental measured values, showing good
agreement between the two.
For the ionizable basic nitrogen subset, all 544 molecules were protonated with

a formal charge on the basic nitrogen. They were divided into a training set (518
compounds) and a test set (26 molecules). To select the test set, the dataset was
divided into three groups according to the activity value of pIC50 (2.5>1; 1>–0.5;
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Figure 9.5. Calculated vs. experimental pIC50 for 16 molecules of the test
set using model for molecules with nonionizable basic nitrogen.
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–0.5>–2.1). The test set compounds were randomly selected from each group to
represent the activity span uniformly. The PCA of the datasets was performed to
assess structural variance of both training and test sets. The PCA scores plot
(Fig. 9.6) showed the absence of any structural outlier in the dataset and that the
training set and test set shared the same chemical space.

PLS analysis was performed on the reduced set to identify a correlation between
the complete set of variables and the activity data. The ALMOND program kept
624 active variables out of a total of 750 variables after filtering out descriptors
with no variability. The 45 compounds with two basic nitrogen atoms were proton-
ated on just one of the two basic centers. For these compounds, two models were
built using one of the two isomers at a time. The isomer that produced the model
with the best r2 was chosen. The PLS analysis resulted in a model with three LVs
and r2 = 0.77. The cross validation of the model by the LOO method yielded q2

values of 0.74. As shown in Table 9.2, the GRIND descriptors that had high coeffi-
cients in the PLS model were 11-36, 44-58, 12-41, 13-40, 14-47, 24-52, and 34-49.
The predictive quality and robustness of the model were assessed using the test

set of 26 molecules selected previously. Figure 9.7 plots the predicted HERG activ-
ities of the test set molecules versus experimental measured values.
Confirming the results of a previous CoMSiA model [16], the charged nitrogen

was found to be a relevant feature correlating the variance of the structural data to
the activity data. PLS data analysis on the same training set but with all the basic
nitrogen atoms in the neutral (nonprotonated) form resulted in a PLS model of
statistically lower quality than that derived from the basic nitrogen in a protonated
form. This illustrated the importance of the positive charge to correlate the var-
iance of the structural data to the activity value for this basic nitrogen subset, in
spite of the fact that the same kinds of descriptors were found to correlate with
the activity data.
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Figure 9.6. 2D plot of PCA showing the descriptor space of training set
(open circle) and test set (filled dot) for the HERG data set (charged molecules).
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9.4.2.3 Interpretation of Pharmacophoric Models
According to the two PLS models, most of the descriptors that correlated with the
variance of the activity were very similar. For example, the distance between two
hydrophobic MIFs is 18	, and the distance between the MIFs produced by a
hydrophobic area and a H-bond acceptor group is ~21	 in both the models.
Between the two models, there are differences in terms of the descriptor dis-

tance between the edges of the molecule (tip–tip or GRIND descriptor 44) and the
space between a hydrophobic MIF and a field generated by a H-bond donor group
(dry-H-bond donor or GRIND descriptor 12). According to the PLS model built on
the first subset (molecules devoid of any basic nitrogen atom), the optimal spacing
between the fields generated by two edges of the molecule was ~25	, while the
ideal size suggested by the second model was ~29	.
The distance between the MIFs produced by a hydrophobic and a H-bond donor

group showed the greatest difference between the two models. This also revealed
an important pharmacophoric feature that defines the position of the groups that
generate the dry–H-bond donor descriptors. For a molecule devoid of any ioniz-
able basic nitrogen group, the distance was ~14	, while the optimal distance be-
tween the same two MIFs was ~21	 for molecules with a basic nitrogen atom.
Both pharmacophoric models assigned statistical importance to MIFs produced
by H-bond donor groups situated on the edge of the molecule. Figure 9.4 shows
two inhibitors and the relative GRIND descriptors 12. The distance between the
two MIFs for the molecule with no positive charge (mol31672) is different from
the other (sertindole). For both compounds, high statistical relevance was always
assigned to the field generated by the H-bond donor group close to the edge of the
structure.
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Figure 9.7. Calculated vs. experimental pIC50 for 26 molecules of the
test set using the model for the charged basic nitrogen.
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Our studies also suggested that H-bond acceptors play an important role for
compounds that bind the HERG channel (GRIND descriptors 13 and 34 in both the
pharmacophoric models, as shown in Fig. 9.8). The statistical relevance of the MIFs
generated by the hydrophobic probe confirmed the assumptions that were made in a
previous CoMSiA model [17] regarding the presence of a hydrophobic feature.

In the absence of a high quality X-ray structure of the HERG channel or experi-
ments with compounds not containing a basic nitrogen blocking the HERG chan-
nel containing mutations, one can, at best, speculate how the two classes of com-
pounds interact with the protein. The PLS multivariate analysis was able to iden-
tify two pharmacophores that showed some degree of similarity.

9.5
CYP 3A4 Inhibition

9.5.1
Materials and Methods

9.5.1.1 Dataset

The starting dataset used to develop the 3D quantitative structure property rela-
tionship (3D-QSPR) model consisted of 370 commercially available compounds.
Activity data and 2D structures were retrieved from the Cerep database [18]. Inhi-
bition of CYP 3A4 was reported as inhibition of the formation of 6b-hydroxy-tes-
tosterone [19]. Ketoconazole was used as reference compound so that all values
are expressed as percentages. The log of the normalized CYP3A4 inhibition per-
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Figure 9.8. The GRIND descriptors from field generated
by a H-bond donor group and hydrophobic area in mol11 (top)
and mol316172 (bottom).
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centage was used as the activity value. The activity range spanned from 0.3 to 2.0,
covering 1.7 log units.

9.5.1.2 Computational Methods
Molecular structures and geometry optimizations were obtained with the model-
ing software package SYBYL 6.9.2. Initial 3D structures were obtained using the
Concord program included in the SYBYL package running on an SGI worksta-
tion. All the compounds were considered in their neutral form. The energy mini-
mization was performed with the standard TRIPOS force field using the Powell
method with simplex initial optimization, gradient termination of 0.05 kcal (-
mol*A)–1 and the number of iterations set to 1000.
All QSAR analysis was carried out using the program ALMOND 3.2.0 and grid

alignment independent descriptors (GRIND).

9.5.1.3 Ligand GRIND Descriptors
A total of 640 GRIND descriptors was obtained for the set of ligands using 4 GRID
probes: DRY (representing hydrophobic interactions), O (sp2 carbonyl oxygen,
representing H bond acceptor), N1 (neutral flat NH like in amide, for H-bond
donor) and the TIP probe (molecular shape descriptor). The grid spacing was set
to 0.5	 and the smoothing window to 0.8. The number of filtered nodes was set
to 100 with 50% of relative weights. ALMOND produced ten groups of variables,
four autocorrelograms and six cross-correlograms.

9.5.1.4 Protein GRIND Descriptors
The four CYP 3A4 crystal structures (pdb code 1W0E, 1W0F, 1W0G, 1TQN)
[20, 21] were aligned to the 1W0E file using the algorithm included in the SYBYL
package. C-alpha was used as the atom type for the fitting process, which yielded
a weighted root mean square (WRMS) of 0.45, 0.53 and 0.77 for structures 1w0f,
1w0g and 1tqn, respectively.
GRIND descriptors were calculated inside the binding sites of the proteins to

find descriptors that could match those highlighted by the PLS model. GRID com-
putations on the structures were carried out using DRY, N1 and O probes. The
order of the last two probes was inverted in order to facilitate the interpretation of
cross- and auto-correlograms. The grid spacing was set to 0.5 	 and the directive
ALMD was set to 1 to reproduce the ALMOND settings. The GRID fields were
imported into ALMOND program and the GRIND descriptors were calculated
with the smoothing window set to 0.8, the number of filtered nodes set to 100 and
the relative weights set to 50%. Since ALMOND calculates TIP MIFs only for the
convex part of the molecule, no TIP evaluation was performed for the binding
sites of the proteins.

210



9.5 CYP 3A4 Inhibition

9.5.1.5 Overlap of Structures
Recently a crystal structure of CYP 2B4 has been published (pdb code 1P05) [22].
A peculiarity of this structure is that the enzyme shows a big cavity that is open to
the outer space. The common parts of the crystal structures of CYP 2B4 and
CYP3A4 were superimposed in order to assess whether the residues highlighted
by the ALMOND model belonged to flexible or rigid domains. Figure 9.9 shows
that the five residues belong to domains that show different degrees of flexibility.
PHE304 is found on a helix that is almost rigid (I helix). The domain that contains
the C and B¢ helices bears PHE108 and ILE120 and is moderately flexible. PHE213
and PHE215 are present on the “lid” domain that is composed of helices F and G,
the motion of which controls substrate entry. This domain is extremely flexible
which could help to explain the broad substrate specificity shown by CYP 3A4.

9.5.2
Results

Molecules in the dataset were divided into a training set (331 compounds) and a
test set (39 molecules). The test set was chosen to cover the activity data span of
the two subsets of data uniformly. The dataset was divided into three groups
according to the activity value. (2.02–1.45, 1.43–0.95, 0.9 0.3) Then 13 molecules
from each group were randomly chosen. The principal component analysis of the
complete dataset was performed to analyze the structural variance of both the
training and test sets. The PCA scores plot (Fig. 9.10) showed that there was no
structural outlier present in the dataset and that the training set and test set
shared the same chemical space.
PLS multivariate data analysis of the training set was carried out on the descrip-

tors matrix to correlate the complete set of variables (640) with the activity data.
The PLS analysis resulted in a three latent variables (LVs) model whose statistical
parameters are summarized in Table 9.3. The predictive quality and robustness of
the model obtained were assessed using the test set previously defined. Figure
9.11 is a plot of the predicted inhibitory activities of the test set molecules versus
the experimental measured values, showing good agreement between the two.
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Table 9.3 Statistical data of the models. Three different cross-
validated correlation coefficients were calculated using the leave
one out (LOO), leave two out (LTO) and the five random group
(5RG) methods.

LV r2 q2 LOO q2 LTO q2 5RG

1 0.7078 0.6896 0.6895 0.6863

2 0.7263 0.7042 0.7042 0.7035

3 0.7621 0.7150 0.7150 0.7106

4 0.7885 0.7097 0.7096 0.7003

5 0.8063 0.6949 0.6948 0.6846
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Table 9.4 summarizes the loadings of the first LV of the PLS model. According
to the loadings of the PLS model, strong CYP3A4 inhibitors are characterized by
intense hydrophobic interactions, by the presence of an H-bond acceptor and by
an optimal distance between the edges of the molecule. GRIND descriptor 11-23
represents the optimal span of ~11.5	 that separates two MIFs generated by
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Figure 9.9. The GRIND descriptors for mol11 (top) and mol316172 (bottom)
related to the presence of field generated by a H-bond acceptor group (blue),
hydrophobic area (yellow), and TIP field (green).

Figure 9.10. 2D plot of the PCA scores showing the descriptor
space of training set (open circle) and test set (filled dot).
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hydrophobic areas of the same molecule. Descriptor 14-33 represents the distance
of ~16.5	 between the fields produced by a hydrophobic area and by one of the
edges of the molecule.
The presence of a MIF generated by a H-bond acceptor group separated by

~12.5	 from the field produced by a hydrophobic area (GRIND descriptor 13-25)
and ~19.5 	 from that generated by an edge (GRIND descriptor 34-39) is impor-
tant to achieve CYP3A4 inhibition. The PLS model highlights that there is an opti-
mal spacing of ~20.5 	 (GRIND descriptor 44-41) between the convex parts of the
molecule. The GRIND approach allows one to project the descriptors in the space
to obtain a spatial arrangement of the energetically favorable interaction points
around the molecule studied. If we project simultaneously the descriptors that
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Figure 9.11. Calculated vs. experimental inhibitory activity for the molecules of the test set.

Figure 9.12. Projection of the GRIND descriptors identified
by the PLS model around the 3D structure of the antitussive
molecule Noscapine. The red lines between the MIFs repre-
sent the GRIND descriptors.
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have a high impact on the model, we can obtain a representation of the structural
features that are responsible for the interaction between the molecule and
CYP3A4, Fig. 9.12.

Table 9.4 Salient GRIND descriptors in PLS models.

GRIND descriptor GRID MIFs Step �

11 dry–dry 23 11.5

44 tip–tip 41 20.5

13 dry–H-bond acceptor 25 12.5

14 dry–tip 33 16.5

34 H-bond acceptor–tip 39 19.5

9.5.2.1 Distances in the Protein Pocket
Since high resolution structures of CYP3A4 have been determined by X-ray crys-
tallography, it has allowed us to confirm the pharmacophoric distances high-
lighted by the PLS model. Although two enzyme structures (1W0F and 1W0G)
had ligands bound in different positions, no significant conformational variation
was found in the four protein structures. Inspection of the GRIND descriptors
profiles for the four crystal structures revealed that the residues responsible for
the spatial arrangement of the MIFs match the descriptors highlighted by the PLS
analysis of the ligand dataset.
A distance of 11.5	 between two hydrophobic areas (GRIND descriptor 11-23)

was formed by the MIFs generated by PHE-215, PHE-213, PHE-304 and PHE-108
and by a field that lies above two of the pyrrole rings of the heme on the same side
of the PHE cluster, as shown in Fig. 9.13. GRIND descriptor13-25 is defined as a
distance of 12.5 	 between a hydrophobic area and a region that shows favorable
interaction fields for an H-bond acceptor/electron donor group. Note that the
order of N1 and O probes was inverted compared to the order used for the ligands.
The distance in the pocket between a MIF that is located approximately 2.5	
above the Fe atom of the heme and the PHE cluster previously described could be
found.
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9.5.3
Discussion

The predicted activity values for the test set compounds (Table 9.3) show the over-
all quality of the pharmacophoric model. Evidently, the pharmacophoric model
was able to correlate the variance of the experimental data with a set of distances
between interaction points present in the compounds. Descriptors 11-23 and
14-33 are related to hydrophobic interactions, consistent with the previous notion
that CYP3A4 inhibition has been described in terms of descriptors related to the
hydrophobicity of the compounds. Riley et al. [23], using N-demethylation of ery-
thromycin as probe, demonstrated the importance of hydrophobic interactions in
CYP3A4 inhibition. Working on metabolic stability, Crivori et al. [24] found that
the descriptors of the DRY autocorrelograms (11 descriptors from 23 to 44) repre-
sented the optimal distances that separated the hydrophobic regions of com-
pounds interacting with CYP3A4.
Analysis of the GRIND descriptors generated for the protein structures, allowed

us to identify the hydrophobic cavity as formed by the cluster of PHE-215, PHE-
213, PHE-304 and PHE-108. Domanski et al. [25] have demonstrated the pivotal
role of PHE-304 in CYP3A4 kinetics along with LEU-211 and ASP-214. It is
unclear how these residues are involved in the binding processes. While the struc-
ture of CYP3A4 cocrystallized with progesterone shows that ASP-214 can interact
with the ligand outside the active site pocket, all four crystal structures showed
that PHE-304 was located inside the pocket with little or no variation in the posi-
tion. The crystal structure of CYP3A4 with progesterone provides little help in
explaining the role of LEU-211.
Homotropic and heterotropic modulation of P450 3A4 substrate oxidation reac-

tions have been reported [26–37] Several hypotheses have been proposed regard-
ing multiple binding sites [38] or multiple ligands binding to the same site. Many
authors have proposed that cooperativity may be due to the binding of multiple
molecules to the enzyme, either within the active site [39–42] or at separate, dis-
tant locations on the enzyme [43–45]. Baasa et al. [46] have shown that at least
three testosterone molecules can bind to each CYP3A4, and that the observed
spin shift is caused almost exclusively by the second and third binding events
with the very low signal or spin shift caused by the first binding event.
Kenworthy et al. [45] proposed a model with three subsites in order to explain

the binding of testosterone (TS) and diazepam (DZ). One site binds diazepam,
another binds testosterone, and the third is capable of binding either diazepam or
testosterone. They found that testosterone caused extensive activation of diazepam
metabolism, whereas diazepam caused inhibition of testosterone metabolism.
Diazepam is present in the inhibitor database used to obtain the pharmacophoric
model and its inhibitory activity is well explained by the model (y-residual = 0.27
log units). The model with multiple binding sites proposed by Kenworthy helped
to explain the results of the obtained pharmacophoric model if one considers that
competition will occur in the catalytic site that can bind either DZ or TS and that
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competition in the third site will be of low importance considering the low affinity
of testosterone for this site.
With the solving of the two crystal structures of 2B4 [47, 48], an overlap of 3A4

with the 2B4 closed and open forms was performed. This was done simply to
highlight the flexibility of the enzyme as well as the potential size of a molecule or
multiple molecules that could fit into the enzyme. The overlap of CYP3A4 and
CYP2B4 structures together with the pertinent (corresponding to the pharmaco-
phoric elements) MIFs are shown in Fig. 9.5.
Many authors [49–51] have demonstrated that inhibition of catalysis by CYP3A4

is substrate dependent and that interactions observed with one CYP3A4 probe
may not be representative of those observed with other CYP3A4 substrates. The
proposed model could help to explain these data considering that different probes
could bind to different sites and therefore show different competition patterns.

9.6
Conclusions

The GRIND approach has proved useful in three ADME-TOX studies. A 3D-
QSAR was generated using inhibition data for 339 inhibitors of CYP3A4 using
testosterone metabolism (7-hydroxy testosterone formation) as a substrate A sin-
gle pharmacophore emerged which consisted of two hydrophobic elements as
well as an H-bond acceptor element. The elements corresponded well with the
MIFs generated from the published crystal structure of CYP3A4.
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Figure 9.13. Analysis of the GRIND descrip-
tors produced by the crystal structures of the
proteins allowed us to find the distances
between MIFs that could match GRIND
descriptors 11-23 and 13-25. On the left are

depicted the residues responsible for the
MIFs (white = 1TQN, yellow = 1W0E, red 1
=W0F, green = 1W0G) on the right the same
kind of descriptors generated by Noscapine.
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For Pgp it was shown that, for a diverse set of substrates, a pharmacophore
could be identified. This pharmacophore played a large role in explaining the var-
iance in PGP inhibition data from a Calcein AM fluorescent assay, suggesting that
interacting with the protein is important to inhibition to the efflux transporter.
Finally, two general 3D-QSAR models superposition independent for datasets

with and without ionizable nitrogen were obtained for HERG inhibitors.
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10.1
Introduction: ADME Field in the Drug Discovery Process

There are several aspects regarding the absorption, distribution, metabolism and
excretion (ADME) properties of new chemical entities (NCE) that are relevant dur-
ing the drug discovery process. The ADME properties of NCEs will define the
plasma profile and potential drug–drug interactions when used in patients. The
preclinical ADME studies contribute to the drug discovery process by considering
the optimal plasma concentration profile with regards to the pharmacokinetics
and pharmacodynamics, together with properties such as the frequency of dosing
(often once daily) and drug–drug interaction risks (Fig. 10.1).
The interpretation of the pharmacokinetic profile (concentration vs. time) based

on the structure is a complex task since several biological and physicochemical
processes are taking place in parallel in the human body. The in vivo data is inter-

Figure 10.1. Simulation of a pharmacokinetic
profile (concentration vs. time) for a drug
administered intravenously (i.v.) or orally
(p.o.) at (7.14mg kg–1) and with a half life of
12 h and a volume of distribution of 5 L. The

therapeutic window shows the minimum
concentration in plasma that produces the
desired effect and the maximum concentra-
tion that does not produce toxic effects.



preted based on a number of calculated parameters such as clearance, half life,
bioavailability, Cmax, Tmax, volume of distribution and area under the curve
(AUC). There have been various attempts to predict some of these composite pa-
rameters from the structure [1, 2] but in most cases the multifactorial nature of
the in vivo data makes it impossible to build a global model.
In order to address the complexity of the system and to increase the throughput,

several in vitro assays have been developed to study the individual processes.
Absorption can be studied using a cell-based system like the transport across
Caco-2 [3] or MDCK [4] cell monolayers, or even a simpler physicochemical sys-
tem like parallel artificial membrane permeation assay (PAMPA) [5], where a lipid
layer is built on top of a filter to perform the transport experiment. The distribu-
tion of a compound into the body is indirectly analyzed using in vitro systems to
measure unspecific binding to plasma proteins like albumin or a1 acid glycopro-
tein [6, 7] and the solubility in water [8] or from in vivo derived parameters like
volume of distribution [7, 9]. The drug metabolism is generally studied using
recombinant cytochromes [10], liver microsomes [10, 11] or isolated hepatocyte
[12]. Excretion processes are usually related to the previous ones and are not routi-
nely screened by in vitro systems.
In parallel to the experimental ADME field, computational models are devel-

oped for specific in vitro assays or even, in some cases, for specific pathways repre-
sented in each system (Fig. 10.2). The computational models are based on the
experimental data, and since there are still not consistent data available for some
of the properties shown in Fig. 10.2, they have not yet been addressed.
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Figure 10.2. Scheme of different experimental properties for which models can be derived.



One aspect that makes the ADME modeling different from a pharmacological
target-based study is that, in general, the proteins involved in the ADME field
have a broad substrate specificity. The low specificity of these enzymes is probably
related to the evolutionary function of these systems as a defense against various
toxic environments. Moreover, these enzymes often have lower affinity for the
substrates than for most of the pharmacological targets. This unspecificity makes
it difficult to develop global models that cover the entire chemical space. Therefore
in many cases it is more successful to build local models based on a closely related
series of compounds where similar factors influence their biological behavior.
The GRID molecular interaction fields (MIFs) have been used extensively with-

in the ADME area to compute molecular descriptions for compounds or proteins
(Fig. 10.3) [13]. For example, the interaction of the hydrophobic probe in GRID
(the DRY probe) can be used to compute the hydrophobic surface exposed by the
compound to the environment, which is related to the lipophilicity and therefore
to the passive transport or to the solubility. The program VolSurf [14] derives sev-
eral molecular descriptors from the MIFs using the water (H2O), hydrophobic
(DRY) and hydrogen bond acceptor (O) probes, with the aim being to describe the
general features of the molecules (Fig. 10.4). These descriptors were designed to
be used in the ADME field, and conceptually are quite original. Recently,
Todeschini et al. [15] published a book reporting thousands of molecular descrip-
tors. The VolSurf descriptors, however, were not included, which demonstrates
the originality of the approach. The description of the VolSurf parameters is
shown elsewhere in this book. Nevertheless, in order to show their originality
some descriptors are presented here (Fig. 10.5):
. Hydrophilic–lipophilic balances (HL1 HL2) are the ratio between the hydrophil-
ic regions measured at –3 and –4 kcalmol–1 and the hydrophobic regions mea-
sured at –0.6 and –0.8 kcalmol–1. These descriptors represent the balance be-
tween both interaction types.

. Amphiphilic moment (A) is the vector pointing from the center of the hydro-
phobic domain to the center of the hydrophilic domain. This parameter mea-
sures the distribution of the polar and nonpolar groups in the molecule.

. Critical packing parameter (CP) is the ratio between the hydrophobic and lipo-
philic parts of a molecule. In contrast to HL balance, CP refers just to the mo-
lecular shape.

22110.1 Introduction: ADME Field in the Drug Discovery Process
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10.2 Absorption

Another descriptor that has been used in the literature to measure the interaction
of a compound with a polar environment is the polar surface area (PSA). The PSA
is described as the surface area of all nitrogen and oxygen and the hydrogen atoms
attached to them. However, this descriptor does not take account of the fact that
different nitrogen and/or oxygen atoms can interact differently with the hydrophilic
environment. For example nitrobenzene and benzoic acid have very similar PSA
(40.128 and 45.825	2 respectively) [16], although the interaction pattern of both com-
pounds with water is quite different (Fig. 10.6). VolSurf descriptors are able to capture
this difference in the hydrophilic regions at –3, –4, –5 and –6 kcalmol–1, where
nitrobenzene has a lower volume of interaction than benzoic acid.
In addition to the VolSurf treatment of the GRID fields, the information from

the MIF can also be transformed to obtain a pharmacophoric type of representa-
tion, which is useful in the modeling of metabolic stability, cytochrome inhibition
or even the direct study of the ADME related proteins (Fig. 10.3). The Almond
software [17] transforms the MIF into a distance-based representation of the mole-
cule interaction. These parameters describe the geometry of the interaction and
QSAR models can be derived where the interaction with a protein is essential. De-
tailed information on these descriptors is presented elsewhere in this book.

10.2
Absorption

The permeability is one of the key factors that determines the percentage of the
compound absorbed through the gastrointestinal tract or other physical barriers,
including the blood brain barrier (BBB). The permeability is a kinetic parameter
that measures the amount of the compound transported per unit time consider-
ing the accessible surface area and the initial concentration. Among the different
experimental techniques that can be used to measure the permeability, the one
based on the transport of the compounds across Caco-2 cells has become the
industrial standard. This measurement is affected by a number of experimental
conditions like the cell culture day, the cell passage, the speed at which the cells
are shaken during the experiment, the pH in the apical or basolateral sides of the
cells and the temperature [3]. Therefore, the use of experimental data from differ-
ent published sources as a basis for computational models should be avoided for
quantitative structure–activity relationships (QSAR), especially when standard
conditions are not reported.
The compounds can cross the membranes by passive processes, which depend

only on the concentration gradient on both sides of the barrier, or by active ones,
which are mediated by the interaction of the compound with a protein. The pas-
sive processes of the epithelial cells in the gastrointestinal tract include passive
transport through the cell (trans-cellular pathway) or in the space between the
cells (para-cellular pathway) [18].
There are an increasing number of proteins of interest for drug discovery that

are described as mediating the transport of compounds across the cell monolayer
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or the blood brain barrier. These proteins can be divided into those that facilitate
the net flux from the gastrointestinal tract to the blood, called uptake systems like
the PepT1 (dipeptide carrier system), and those which go against a net absorptive
flux like P-glycoprotein. Some of these systems are relevant not only for the
absorption of the compound, but also for the excretion of the compound in the
kidney or the liver and also for the distribution of compounds between the tissues.
The Caco-2 cell-based system considers both passive pathways and some of the
active mediated transporters.

224

Figure 10.4. VolSurf descriptor derived from GRID-MIFs.

Figure 10.5. Hydrophobic/hydrophilic balance, ampiphilic
moment and critical packing



10.2 Absorption

10.2.1
Passive Transport, Trans-cellular Pathway

The key physicochemical processes that determine the passive trans-cellular trans-
port are the water desolvation of the compound before entering the membrane
and the solvation in a lipophilic environment. In order to account for these pro-
cesses the interaction of the compound with the water and with a lipophilic envi-
ronment has to be computed. These interactions have been shown to be well
described by VolSurf descriptors based on the GRID program [13] using the H2O
and the DRY probes. The volumes and surfaces at different energy levels are able
to model the passive absorption across Caco-2 cell monolayer [19, 20] (Fig. 10.7(a)),
the blood–brain barrier [21] (Fig. 10.7(b)) or permeability across the physicochem-
ical system like PAMPA [22] using the multivariate technique discriminative-PLS.
Since data from Caco-2 experiments consider not only the passive pathway, but
also a combination of the different absorption routes that may affect each, a discri-
minative model was developed (Table 10.1). Moreover, the collection of the experi-
mental data from different sources makes it difficult to combine them in a quanti-
tative manner. In the case of the blood–brain barrier a discriminative model was
derived because of the data availability. The interpretation of both models based
on the PLS coefficients (Fig. 10.7(c) and (d)) shows that a good interaction of the
compounds with the water probe has a negative impact on the permeability, while
the interaction with the DRYprobe has a positive contribution.
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Figure 10.6. Hydrophilic regions for nitrobenzene and
benzoic acid at –3, – 4, –5 and –6 kcalmol–1.
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10.2 Absorption

Table 10.1 Percentage of the compounds predicted by the Caco-2 (713 compounds,
2 latent variables) and BBB (313 compounds, 2 latent variables) discriminative
models. (High: permeable compound, medium: intermediate permeable compounds,
low: nonpermeable compounds.)

Caco-2 cell-based VolSurf model BBB discriminative-PLS VolSurf model

High Medium Low High Medium Low

High 78.24 19.09 2.65 High 80.42 16.08 3.49

Medium 43.33 52 4.66 Medium 33.33 44.44 22.22

Low 4.9 28.57 66.51 Low 1.44 9.93 88.19

Total 69.50 Total 69.50

10.2.2
Active Transport

The main factor that governs the transport of a compound by an active carrier sys-
tem is the interaction of this compound with a carrier protein. In this case the
description of the molecular structure should be similar to that used in ligand-
based design to describe the interaction of the compound with any other protein
using pharmacophoric representation or 3D-QSAR.
The GRID-based molecular representation has been used to develop models for

different carrier systems. For example: the GRID-GOLPE [2] approach or com-
parative molecular field analysis (CoMFA) [23] has been used in modeling the
PepT1 transport system (Fig. 10.8). The experimental data used as a basis for
these modeling efforts was the inhibition of the transport of a known substrate
for PepT1 by 43 close related cepfalosporines [24]. However, this CoMFA-like
study requires the superimposition of the different compounds and the definition
of alignment rules. Therefore, the use of this modeling technique to develop glo-
bal models will be very difficult.
Another GRID-based approach to the modeling of active transport is obtained

from the GRIND descriptors computed by the Almond software [17]. In this case,
the GRID interaction fields are transformed to a distance-based structure repre-
sentation called correlograms. The new descriptor set is alignment independent
and therefore can be used in a larger chemical space than the classical 3D QSAR
approach. This technique has also been applied in the P-glycoprotein case [25].
Sometimes it is useful to apply a combination of the descriptors based on the

global properties of the molecule and those based on a pharmacophoric represen-
tation. Conceptually, the global properties would better describe the initial passive
membrane permeation required to reach the site of action. Then, the specific pro-
tein interactions could be explained by the pharmacophoric descriptors. This has
been demonstrated successfully in the P-glycoprotein case [26], where two pro-
cesses are important for the transport; passive transport to the cell and active
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transport from inside the cell. Cianchetta et al. [25] obtained an initial model for
the inhibition of the P-glycoprotein transport using the VolSurf descriptor set, with
good fitting and cross-validation parameters. However, the model was not able to
predict the most active compounds. Conversely, when these authors combined
VolSurf descriptors with the GRIND descriptors they obtained a model with better
statistical parameters and a very good prediction rate over the entire activity range.

10.3
Distribution

The distribution of a compound in the human body can also be partially related to
the absorption properties. There are specific transport systems that are expressed
in certain tissues that can influence the distribution of the compound. For exam-
ple, rosuvastatin, a new member of the statin family is transported by the OATP-C
carrier system, which is selectively expressed in the liver, making this compound
selectively distributed into this organ [27]. In general it is not possible to derive
computational models for these selective transport systems since there is not yet
enough experimental information and data to support the model building and
validation. Nevertheless, there are three properties that are commonly used to
describe the distribution of a compound in the human body: the solubility, the
unspecific binding of the compound to plasma proteins and the volume of distri-
bution.

10.3.1
Solubility

Solubility is a key property in the distribution of the compound from the gastroin-
testinal tract to the blood. There have been several modeling efforts to predict the
solubility, based on different type of descriptors. The intrinsic solubility (thermo-
dynamic solubility of the neutral species) for a set of 1028 compounds has been
modeled using the VolSurf descriptors based on GRID-MIFs (Fig. 10.9(a)) and
PLS multivariate analysis [20]. The interpretation of the model can be based on
the PLS coefficients: the ratio of the surface that has an attractive interaction with
the water probe contributes positively to the solubility, while the hydrophobic in-
teractions and log P have a negative contribution.
Although several models to predict the solubility have been published, none take

into account the crystal packing of the compounds. Neglecting the crystal packing
could be relevant for some compounds, causing the solubility prediction to fail.
During the drug discovery process the solubility in a mixture of water with

another cosolvent like DMSO is commonly measured. The compounds are
usually dissolved first in DMSO and then diluted in water and/or buffer solution.
Therefore, a classification model has been successfully derived to predict the solu-
bility in this solvent mixture using the VolSurf type of descriptors (Fig. 10.9(b))
for a set of 150 compounds with two latent variables (Table 10.2).
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Figure 10.8. GRID-GOLPE model for the PepT1 transport system (2 latent
variables, r2 = 0.88, q2 = 0.66). (a) Prediction vs. experimental. (b) Activity
contribution to the PepT1 for a GRID-GOLPE.
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Table 10.2 Percentage of the compounds predicted by the discriminative models
for solubility in a mixture of 2% DMSO in water. (High: soluble compound,
high–medium: intermediate to high solubility compounds, medium–low:
intermediate to low solubility compounds, low: considered as insoluble compounds.)

High High–medium Medium–low Low

High 70 30 0 0

High–medium 25 32.5 33.5 0

Medium–low 0 29.5 65.91 4.54

Low 0 5.26 55.36 39.47

Total 59.33

10.3.2
Unspecific Protein Binding

Binding to proteins in plasma could be an important factor that influences the
distribution of the compound. Generally, this process correlates to the compound:
lipophilic compounds bind to lipophilic domains of proteins like albumin. Since
this property depends on the global characteristic of the structure, VolSurf
descriptors describe properly the unspecific binding of the compounds to plasma.
A quantitative PLS model was obtained based on a set of 408 compounds with two
latent variables with good prediction capacity. The interpretation of the model
indicates that a better interaction of the compound with the hydrophobic environ-
ment leads to better unspecific binding to albumin. Nevertheless, not all the com-
pounds bind unspecifically to human serum albumin. There is at least one bind-
ing site in albumin, called the warfarin binding site, where the interaction driving
force is not only linked to hydrophobicity, but also to ligand–protein complemen-
tarity. No model has been developed for this type of binding to albumin, since
there is little experimental information about specific binding to plasma proteins.

10.3.3
Volume of Distribution

The volume of distribution (VD) for a drug is the apparent volume that accounts
for the total dose administration based on the observed plasma concentration. The
plasma volume of the average adult is approximately 3 L. Therefore, an apparent
volume of distribution larger than the plasma compartment (i.e. greater than 3 L)
indicates that the drug is also present in tissue or fluid outside the plasma com-
partment. The volume of distribution represents a complex combination of multi-
ple chemical and biochemical phenomena. Nevertheless, in general terms and
considering only the passive distribution processes, the distribution of a com-
pound in the body depends on the partition of the compound between the differ-
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ent tissues and the plasma. The passive partition processes can be analyzed by the
lipophilicity–hydrophilicity balance [7]. In this case the application of the VolSurf
descriptors to build a computational model could be appropriate [20].

10.4
Metabolism

In the drug discovery process the study of metabolism of new chemical entities is
carried out to clarify several aspects such as: the rate and site of metabolism,
enzymes and tissues selectivity and enzyme inhibition and induction responsible
for drug–drug interactions. The complexity of the area represents a great chal-
lenge for the pharmaceutical industry. These issues have been addressed by differ-
ent approaches ranging from in vitro experiments (using different experimental
systems, expressed enzymes, tissue fractions, and hepatocytes) to more labor
intensive in vivo experiments in animals. Recently, many publications have shown
computational methods trying to address metabolic issues. GRID based models
have contributed in the field of cytochrome inhibition [28–31], site of metabolism
prediction [32], selectivity analysis [33, 34], selective site of metabolism prediction
and metabolic stability [35]. However, there are still relevant aspects that have not
been analyzed using any computational technique, like the substrate specificity
for different cytochromes and the correlation between the metabolism in recombi-
nant cytochromes and human liver microsomes. This is mainly due to the fact
that there is insufficient consistent experimental data on which to base the studies
and produce the models.
There are different families of enzymes involved in the xenobiotic metabolism,

but the most relevant one in drug discovery is the cytochrome P450 (CYP) family.
The major CYP enzymes contributing to drug metabolism are:
. CYP3A4, responsible for metabolism of approximately 50% of drugs cleared by
hepatic metabolism.

. CYP2D6, usually described as the second most relevant CYP enzyme
responsible for about 20% of drugs on the market. It is particularly relevant for
drug classes like serotonin re-uptake inhibitors (i.e. fluoxetine, fluvoxamine,
paroxetine or sertraline).

. CYP2C subfamily, responsible for the metabolism of 20% of the drugs on the
market. It covers a wide variety of therapeutical classes.

. Finally there is a set of enzymes that are responsible for the metabolism of
certain chemical classes like CYP1A2 or CYP2E1.

The percentage of drugs designated to be metabolized by each CYP is obtained
from historical data [36]. In the future other CYPs may increase in relevance for
new chemical entities.
The interaction between a substrate and a cytochrome can be described in the

same way as the interaction of a compound with any pharmacological target. The
crystal structures of several enzymes are published in the protein data bank (pdb):
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CYP2C9 (pdb codes: 1OG2, 1OG5 and 1R09), CYP 2C8 (pdb code:1PQ2) and
CYP3A4 (pdb code: 1TQN,1 WOE, 1WOF and 1WOG). Moreover several homol-
ogy models are also available for CYP1A2 [37], CYP2C9 [33,34] CYP2C19 [33],
CYP2D6 [37] and CYP3A4 [37]. The availability of the homology models and crys-
tal structures of the cytochromes leads to the possibility of using structure-based
design strategies like docking or GRID-based protein selectivity analysis, in addi-
tion to the ligand-based modeling.

10.4.1
Cytochrome P450 Inhibition

The inhibition of several cytochrome enzymes has been studied using different
MIF-based techniques. One of the experimental factors that has to be considered
in the modeling of this property is the type of inhibition. Therefore, it is relevant
to study a homologous series of compounds which, hypothetically, has the same
inhibition type, or it has to be experimentally checked.
There are several published studies based on CoMFA [38–42] or GRID/GOLPE

methodology [28, 43, 44] in the CYP inhibition area. In this case the alignment is
the most difficult step in the modeling process. Usually, in order to obtain an
objective alignment rule the studies are focused on one particular series of com-
pounds that can be easily aligned. In other cases structural-based design tech-
niques have been applied to select the conformation and the alignment used later
in the GRID/GOLPE analysis [28, 43].
The same heterogeneous series of CYP2C9 competitive inhibitors used in the

GRID/GOLPE analysis described by Afzelius et al. [28] has been utilized using an
alignment independent GRID analysis [30]. Figure 10.10 reports the predicted ver-
sus experimental value for both modeling types. The interpretation of both mod-
els pointed to the same regions in the molecule being relevant for the drug–cyto-
chrome interaction.

10.4.2
Site of Metabolism Prediction

The elucidation of the site in a molecule at which the metabolism occurs, is one of
the most time and sample consuming experimental tasks in the ADME field. In
some cases, the experimental methodology does not help one to determine the
precise location of metabolism. Nevertheless, the experimental information could
be very relevant for exploration of the pharmacological activity or the toxic effect
of the formed metabolites. Moreover, knowledge of the site of metabolism could
help in the chemical protection of the molecule, making the compound less liable
to metabolic reactions.
There are two main factors that determine the site of metabolism: (i) the chemi-

cal reactivity and (ii) the preferred orientation of the compound inside the cyto-
chrome cavity. A new technique called MetaSite [32] has been developed in order
to consider at the same time, the substrate–cytochrome interaction and the chem-
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ical reactivity of the compounds towards oxidation. The recognition part compares
the interaction profile of the enzyme based on GRID-MIFs and different confor-
mations of the potential ligands. The reactivity part comes from precomputed
reactivity values of fragments that are recognized in the structure under consid-
eration. The prediction rate for the site of metabolism for five cytochromes
(CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) has been validated using
more than 900 metabolic reactions.

10.4.3
Metabolic Stability

Together with the site of metabolism, the rate of metabolism is a fundamental fac-
tor since this will contribute to the rate of elimination of the compound from the
body. The rate of metabolism can be measured using different in vitro systems (cy-
tochrome recombinant, human liver microsome, human hepatocites, etc). Nor-
mally, the data are produced using different compounds and the rate values are
extracted from complex systems like liver microsomes, or human hepatocites.
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Figure 10.10. Prediction vs. experimental values using (a) GRID/GOLPE modeling,
r2 = 0.94; q2 = 0.73 (training set: blue dots; validation set: red dots) and (b) GRIND
independent descriptor, r2 = 0.73; q2 = 0.54.



10.4 Metabolism

Often the lack of homogenity of the data source and experimental methods makes
derivation of predictive computational models too complex.
Predictive models can be better produced when recombinant cytochrome data

are available, an experimental technique which may increase the probability of
obtaining consistent and predictive models, since one protein is involved in the
metabolic reaction. The most accurate data to describe the rate and affinity of the
ligand towards an enzyme are the kinetic parameters Vmax and Km. Neverthe-
less, the calculation of these parameters is time consuming. A less precise para-
meter is the determination of the compound percentage remaining in a cyto-
chrome incubation after a certain period of time. These metabolic data are less
accurate and can only be used to classify the compounds in a metabolic system as
stable or unstable. This type of data was the basis for a predictive model of meta-
bolic stability towards CYP3A4 [35].

10.4.4
Selectivity Analysis

Another interesting aspect that can be computationally analyzed starting from the
protein structures is the differences between the most relevant cytochromes [33].
This analysis can clarify the specific interaction pattern of each cytochrome which
can be used to predict the selective sites of metabolism when a subfamily of cyto-
chromes are compared. It may also help to analyze the differences between the
different homology and crystal structures [34].
CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 were analyzed using this

technique (unpublished data). Five different probes, which correspond to five dif-
ferent types of interactions were used: DRY (hydrophobic interaction), N1 (hydro-
gen bond donor), O (hydrogen bond acceptor), N3+ (positive electrostatic interac-
tion) and O- (negative electrostatic interaction). The grid step was 1	 and the flex-
ible option (MOVE = 1) was applied [45]. All other GRID directives were used at
default values. The use of the flexible option enables the computation of the ener-
gies not only at the actual atomic positions but also at the potential positions
where the amino acid sidechains could interact with a chemical group (probe).
The molecular interaction fields were subjected to multivariate data analysis

using consensus principal component analysis (cPCA).
The relevant points for the different proteins and probes were extracted from

the 3D representation of the loading values. Five loading fields were extracted per
protein, one for each probe, describing the selective interactions that made one
protein compared to the others. The loading field for CYP2D6 and the N1 probe is
shown in Fig. 10.11.
Using a similar approach to that already used in MetaSite the loading fields can

be transformed into a correlogram fingerprint.
This technique was applied to a study of the selective site of metabolism for the

CYP 2C subfamily (CYP2C9, CYP2C8, CYP2C19 and CYP2C18). Tables 10.3–10.6
summarize the results obtained for the selective site of metabolism. For all cases
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analyzed for CYP2C9 the methodology predicted the correct site of metabolism
within the first three options highlighted by the method.
Out of the ten substrates tested for CYP2C19, seven were well predicted by the

methodology within the first three options reported by the method and three were
mis-predicted by this selective site of metabolism method.
Four substrates out of six are well predicted by this methodology in the case of

CYP2C8 substrates.
The overall prediction rate for the selective site of metabolism within the

CYP2C subfamily based on the selective interaction profiling using the loading
plots from a cPCA analysis based on flexible GRID interaction fields was 72.4%.
Selectivity analysis has also been used to compare the crystal structures and the

homology models for CYP2C5 and CYP2C9. The conclusions from this study
showed that the homology model of CYP2C5 built from CYP2C9 is more similar
to the CYP2C9 crystal structure than to the CYP2C5 crystal and, similarly, the
homology model for CYP2C9 based on the CYP2C5 crystal structure is more sim-
ilar to the CYP2C5 than to the CYP2C9 crystal structure. The only homology
model that is more similar to the crystal structure than the template was based on
several CYP structures and this methodology is therefore recommended by the
authors [34].
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Figure 10.11. Loading fields for the cytochrome CYP2D6 and
N1. Red Cubes: selective loadings.



10.4 Metabolism

Table 10.3 CYP2C9 substrates. The experimentally determined site of metabolism.

Compound Structure Reaction Ki
(lM)

Km
(lM)

Vmax
(mmolmin–1

nmol–1)

Refer-
ence

S-Warfarin

O

O

OO

33

20

19

18

hydroxylation 13.6 4/9.9 46, 47

Progesterone

O

O

H

H

H

B

B

51-53
A hydroxylation 5.5

Diclofenac

N
O

OCl

Cl

10

(29)

hydroxylation 15/8.3 40/15 48, 49

S-Ibuprofen
O

O

30-32

22

23-28

A

B hydroxylation 50

Naproxen

O

O

O

24-26
O-desmethylation 51

Piroxicam

S

O

N

O O

N

O

N 34-36

A

15,16

B

hydroxylation 52
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Table 10.3 Continued.

Compound Structure Reaction Ki
(lM)

Km
(lM)

Vmax
(mmolmin–1

nmol–1)

Refer-
ence

Torasemide

S

N

N

O

O

N

N O

28-30

41

hydroxylation 53

Phenytoin

N

N

O

O

(29)

(25)

24

(27)

hydroxylation 6.0 54

Fluvastatin

N

O

F

O

O

O

32

33

hydroxylation 2.2/3.3 55

Gemfibrozil

O

O

O

21

25-27

hydroxylation 5.8 56

S-Miconazole

O

Cl

N

Cl

N

Cl

Cl

34 35

27

hydroxylation 6.0

R-Fluoxetine

O

F

F

F

NH

25

26

27
N-desmethylation 13.6 17.0 57
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Table 10.4 CYP2C19 substrates. The experimentally determined site of metabolism.

Compound Structure Reaction Ki
(lM)

Km
(lM)

Vmax
(mmolmin–1

nmol–1)

Refer-
ence

R-Lansoprazole

S

O

N

O

F

F

F

N

29

hydroxylation 58, 59

Moclobemide

NO

Cl

N

O

32

33 34

35

14
15

hydroxylation 60

Imipramine

N

N

Cl

40-45

23-25

17

18

N-desmethylation 61

R-Omeprazole

N

N

S

O

O

N

O

26

27

(28-30)

(40-42)

O-desmethylation 66

Proguanil
Cl N

H

N
H

N
H

NH

NH

28-33

(9)

(11)

hydroxylation 62

Bufuralol

O

O

N

(22)

34-42

hydroxylation 36 37 63
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Table 10.4 Continued.

Compound Structure Reaction Ki
(lM)

Km
(lM)

Vmax
(mmolmin–1

nmol–1)

Refer-
ence

Ticlopedine S

N

Cl

18

30
hydroxylation 1.2 64

S-Mepheny-
toin

N

N

O

O

17-19

(23)

N-desmethylation 54 2.1 65

R-Warfarin

O

O

OO

(33)

18

19

hydroxylation 55 66

R-Mepho-
barbital

N O

N

O

O

9-11

(25)

hydroxylation 34 67
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Table 10.5 CYP2C8 substrates. The experimentally determined site of metabolism.

Compound Structure Reaction Km
(lM)

Vmax
(nmolmin–1

nmol–1)

Refer-
ence

Retinoic acid
COOH

25/26

23/24

(42-44) hydroxylation 6.1
33.6
22.8

10.8
74
100

68

R-Troglita-
zone

O

S

N

O

O

O

CH
3

CH
3

CH
3

CH
3

OH

46-48(39-45)

(51)

(54)

quinone type 2.7 – 2.5
3.6 – 2.9
3.1 – 1.8
120 – 5

4.2 – 1.0
0.6 – 0.1
2.8 – 0.3
47 – 1

69

S-Rosiglita-
zone

N N

CH
3

O

S

N

O

O
33

32

15

34

12-14

hydroxylation

N-desmethylation

4 – 17
30 – 12
10 – 1.3
18 – 3.7

(nmol/h/mg)
174 – 49
7.7 – 2.0
146 – 8.4
54 – 6.0

70

S & R-Zopi-
clone

N

O

N

O

N

N

N

O

Cl

N

(42-44)

(36-39)

29

N-desmethylation
(N-oxide)

71

Diazepan

N

N

Cl

O N-desmethylation 72

Amiodarone O

O

I

I
O

N

(54/55,59/60)

N-deethylation 54.2 – 26.1

8.6 – 2.5

41.9 – 12.2

21.0 – 3.1

17.5 – 5.6

18.9 – 3.5

2.3 – 0.2

5.9 – 0.6

2.2 – 0.1

1.3 – 0.1

73
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Table 10.6. CYP2C18 substrates. The experimentally determined site of metabolism.

Compound Structure Reaction Km

(lM)
kcat
(min–1)

Kcat/Km
(min–1 lM–1)

Refer-
ence

TA derivative

Cl

Cl O

OH

O

S

25

26

hydroxylation 9 – 1

75 – 25

180 – 70

125 – 25

1.7 – 0.3

0.4 – 0.1

13

0.02

0.002

74

10.5
Conclusions

There are several ways in which GRID molecular interaction fields can be used in
the ADME area:

1. They can be used for series of related compounds to obtain 3D-QSAR mod-
els, that usually describe the special regions around the molecule as contri-
buting positively or negatively to the experimental activity.

2. They can be used directly in protein families in order to perform selectivity
analysis based on consensus principal component analysis methodology.
This technique helps to identify regions in the protein space that are selec-
tive for one enzyme. The selective region may describe the selective pattern
of the target proteins. Moreover, this information can be used to compare
different models of the same enzyme.

3. The GRID fields can be transformed into a set of molecular descriptors
describing the interaction of the compounds with different environments
such as biological membranes. These descriptors are particularly useful in
the modeling of experimental ADME properties like passive trans-cellular
permeability, solubility, unspecific binding to plasmatic proteins or volume
of distribution. They can also contribute to the description of the interac-
tion of compounds with proteins with broad substrate specificity like
CYP3A4 or P-glycoprotein.

The GRID MIFs can also be transformed to alignment independent descriptor
(GRIND) aimed to give a distance/interaction profile which has proven to be use-
ful in the description of CYP inhibition, metabolic stability and in the active trans-
porter and recognition area.
However, there are certain properties for which no modeling attempts have

been made due to the lack of the appropriate experimental data. Cytochrome sub-
strate specificity or phase II metabolism are two examples.
Although MIF seems to be very appropriate for application in the ADME area,

the interpretation of the MIF-related descriptors must be improved. Then they
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will be more used by medicinal chemists in the design of new analogs with better
pharmacokinetic profiles.
Nevertheless, the prediction of the pharmacokinetic profile from the chemical

structure reported in Fig. 10.1 is still a challenging task that remains partially
unsolved. GRID-MIF descriptors were successfully applied to a lot of related sub-
problems helping to address practical work during the drug discovery process.
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11
Rapid ADME Filters for Lead Discovery*
Tudor I. Oprea, Paolo Benedetti, Giuliano Berellini, Marius Olah, Kim Fejgin,
and Scott Boyer

11.1
Introduction

The Molecular Libraries Initiative (MLI) at NIH [1] is aimed at increasing the
availability of small molecules as chemical probes for basic research, via the NIH
Small Molecule Repository (NIH_SMR). Aimed at bridging the cultural divides
between public and private sectors, MLI is primarily focused on the early stages of
drug development, which encompass target identification, assay development,
screening and hit-to-probe analysis [1]. Envisioned as “public sector science”, these
activities are followed by lead identification and optimization, then clinical trials
(private sector science). Current proposals at NIH indicate that approximately
500 000 molecules will be physically included in the NIH_SMR. This substanti-
ates the need for developing fast, yet accurate in silico technologies to evaluate
large numbers of compounds.
MLI aims to bridge, at least in part, the “innovation deficit” [2] faced by the pri-

vate sector that is leading to increased pressure to deliver new chemical entities
(NCEs) and “best-in-class” drugs on the market. Drug discovery scientists have
been forced to develop computational tools that facilitate the identification of nov-
el molecular scaffolds (chemotypes) moving across (local) chemical spaces. In the
area of in silico drug discovery, the public sector is about to face the same chal-
lenges as the private sector.
The entire drug discovery process, in particular at the cellular and animal level,

has its own challenges [3] that contribute to the “innovation deficit”. It is thus
imperative that computational tools deliver rapid and accurate models. At the mo-
lecular level, drug–receptor interactions continue to be too complex to provide fail-
safe in silico predictions [4]: Entropy and the dielectric constant are but two exam-
ples of properties still under debate. The challenges of in silico drug discovery
include the evaluation of multiple binding modes, accessible conformational

*) This chapter is dedicated to the memory of John (“Jack”) L. Omdahl (1940–2005), vitamin D3 pio-
neer and cytochrome P450 biochemist.



states for both ligand and receptor, affinity and selectivity vs. efficacy, absorption,
metabolic stability (site of reactivity and turn-over), distribution and excretion
(ADME), as well as in vivo vs. in vitro properties of model compounds, while in
the same type seeking a favorable IP position (see Fig. 11.1).

11.2
The Rule of Five (Ro5) as ADME Filter

Computational methodology shortcomings were soon discovered by the computa-
tional, combinatorial and medicinal chemistry communities. Permeability and
solubility, key properties required for orally available compounds [5] are now routi-
nely screened using computational and experimental methods [6] prior to candi-
date lead selection. Having a high impact on the successful progression of drug
candidates towards the launch phase [7], ADME/Tox profiling has become an
essential step in early drug discovery. Fast ADME filters are likely to be required
(and iteratively refined) because of the high-throughput technologies being
deployed throughout the industry, as well as in connection with the NIH_SMR.
The first rapid ADME filter was developed by Chris Lipinski et al. at Pfizer [6].

They analyzed a subset of 2245 drugs from the World Drug Index (WDI), in order
to understand the common property features of orally available drugs. The QSAR
(Quantitative Structure–Activity Relationship) paradigm for structure-permeabil-
ity,1) first suggested [8] by Han Van de Waterbeemd et al., provided the descriptor
framework for the “Rule of Five” (Ro5): poor absorption or permeation are more
likely to occur when molecular weight (MW) is over 500; the calculated [9] octa-
nol/water partition coefficient (clogP) is over 5; there are more than 5 H-bond
donors (HDO – expressed as the sum of O–H and N–H groups); and there are
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Figure 11.1. Lead discovery requires integra-
tive approaches to address a multiple
response surface optimization problem: prop-
erties related to physical chemistry, chemical
reactivity, pharmacology and physiology

require iterative optimization for novel che-
motypes (favorable intellectual property (IP)
position), if the desired outcome is a mar-
keted drug. The increased difficulty of finding
optima is suggested by darker backgrounds.

1) The QSAR paradigm for structure-perme-
ability expresses the passive permeability as

a function of hydrophobicity, molecular size,
and hydrogen-bond capacity.



more than 10 H-bond acceptors (HAC – expressed as the sum of N and O atoms)
[6]. Any pairwise combination of the following conditions: MW > 500, cLogP > 5,
HDO > 5, and HAC > 10, may result in compounds with poor permeability
(actively transported compounds and peptides excepted). The Ro5 compliance
scheme had a major impact in the pharmaceutical industry due to its simplicity,
and was rapidly adopted by lead discovery research teams.
Ro5-compliance, from the perspective of putting a drug on the market [10],

highlights the importance of appropriate solubility and permeability. However,
one can extrapolate to other PK properties such as metabolic stability, excretion
and toxicity. Based on screening results from Merck and Pfizer, Lipinski argued
[10] that it is easier to optimize PK properties early on in drug discovery, and opti-
mize target affinity at a later stage. Ro5-compliance is already considered when
selecting “diversity library” plates, a significant subset of the NIH_SMR. The four
parameters included in the Ro5 filters have one possibly significant shortcoming:
Designed as a rapid “computational alert” [6] aimed at oral absorption, they cannot
offer a comprehensive picture when it comes to understanding ADME models.
Thus, we explored the possibility of using molecular interaction fields (MIFs) as
the basis for advanced filters for ADME properties.

11.3
Molecular Interaction Fields (MIFs): VolSurf

GRID [11] is a molecular mechanics-based program, developed by Goodford, that
estimates the interaction energy between the (macro)molecule atom types and
specifically designed chemical (GRID) probes placed at regular lattice points.
These interactions are parametrized on the basis of detailed information derived
from crystal structures. GRID energies are the sum of the Lennard-Jones, electro-
static and H-bond interactions between the target and the probe. In the case of the
DRY probe, that represents hydrophobic interactions, the energy is computed as
EDRY ¼ Eentropy þ ELJ � EHB where Eentropy is the ideal entropic contribution towards
the hydrophobic effect in an aqueous environment, ELJ is the Lennard-Jones term
that accounts for the induction and dispersion interactions, and EHB is the H-bond
term that estimates hydrogen bond interactions between the ligand and the GRID
water probe. Thus, GRID effectively estimates the MIFs between certain chemical
probes and the target (small) molecule. GRID is credited [12] as the computational
basis for designing Relenza� (Zanamivir), an anti-influenza drug marketed by
GSK [13].
Regardless of the encoded property, MIFs are typically tabulated energy values

that are not conducive to rapid ADME property evaluation. Cruciani and his co-
workers [14] developed a descriptor system aimed precisely at capturing MIF prop-
erties in a standard format. VolSurf [14] is a program that converts MIF informa-
tion into fixed types of descriptors, effectively extracting 3D information (see
Fig. 11.2). Using PLS [15 ] (partial least squares) as the statistical engine, VolSurf
establishes a relationship between MIF-related information and the target prop-
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erty, seeking differences and similarities in the descriptor values that can be
matched with differences and similarities in the target property values.
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Figure 11.2. The 3-step process of VolSurf descriptor calculation:
1. The 3D structure of the input molecule (e.g., phenol) is generated;
2. MIFs are obtained using GRID; 3. surfaces, volumes and other
descriptors are derived at different energy levels.



11.4 MIF-based ADME Models

11.4
MIF-based ADME Models

VolSurf was initially validated on oral absorption [16, 17] and blood–brain-barrier
permeation [18] models (see below). VolSurf has continued to be developed to
improve in silico predictions for ADME properties, although its use has also been
extended to receptor-based evaluation of binding affinity [19, 20]. While other soft-
ware tools for ADME modeling are available (see, e.g., [21]), the MIF-based collec-
tion of software and models available from Molecular Discovery (MD) is both
extensive and well validated by the private sector. Three programs from MD, Vol-
Surf, MetaSite and Almond, are particularly suited for rapid evaluation of large
compound sets [22] in connection with ADME/Tox related properties:
. Cytochrome P450 (CYP) inhibition / substrate prediction. Binding for the five
most important isozymes in drug metabolism (CYP1A2, CYP2C9, CYP2C19,
CYP2D6 and CYP3A4) can be evaluated with MetaSite 2.0. Using over 1000
known substrates and inhibitors for each isozyme, as well as 3D models built
from crystallographic data [23] and homology modeling, MetaSite is concep-
tually similar to the CYP2C9 [24, 25] model described by the same authors.
Substrate hydrogens are ranked in terms of the site of metabolism probability
[26] using heme Fe proximity, while a docking-based procedure evaluates the
ability of potential inhibitors to bind anywhere in the CYP binding site (see
Chapter 12).

. P-glycoprotein (P-gp) substrate predictions are evaluated using Almond 3.2, a phar-
macophore pattern analysis software that combines MIF distances with ener-
gies [27], using a model initially derived from P-gp ATP-ase activity [28]. The
model contains about 100 drugs (60 known substrates, and 40 nonbinders),
each evaluated over 100 diverse conformations (G. Cruciani, personal commu-
nication).

. Blood–brain barrier (BBB) permeability and all the other PK property predictions
discussed here are performed using VolSurf 4.0, as reviewed elsewhere [29].
BBB permeability is predicted from a PLS discriminant analysis model [18].
This model was confirmed with GPSVS.

. Caco-2 permeability prediction, based on an experimental model (Caco-2 cells
monolayer) that evaluates the intestinal absorption of drugs [30], is derived
from known literature datasets – see [31] for a review. This model was con-
firmed with GPSVS.

. Water solubility (thermodynamic) prediction, based on various literature datasets
[32, 33], is comparable to other models [29]. This model was confirmed with
GPSVS.

. DMSO solubility prediction is based on experimental determinations from the
University of Perugia [34].

. Plasma Protein Binding (PPB) prediction is based on collected plasma protein
binding values (PPB) percentage values for therapeutic drugs from literature
[35]. In this VolSurf model, values predicted to be 95% or higher are equivalent
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(due to model inaccuracy for high PPB values), whereas lower values (a desired
feature in drugs) are more accurate [29].

. Volume of distribution (VDss), a drug-disposition parameter relating the amount
of drug in the body to the concentration of the drug in the blood (or tissue),
tries to address the 
how often’ question in the therapeutic dose regimen.
The VDss VolSurf model, based on 118 drugs, is similar to that from
Pfizer [36, 37].

. hERG (Human ether-a-go-go related gene), a K+ channel that is possibly impli-
cated in the fatal arrhythmia known as torsade de pointes, appears to be the mo-
lecular target responsible for the cardiac toxicity of a wide range of therapeutic
drugs [38]. The hERG binding VolSurf model is based on over 200 drugs col-
lected from the literature [39, 40, 41], and is similar to work performed at Roche
[42]. An Almond model using 882 measured IC50 hERG inhibition values has
been disclosed [43].

11.5
Clinical Pharmacokinetics (PK) and Toxicological (Tox) Datasets

To evaluate the tools developed for rapid and accurate ADME property prediction,
we screened the clinical pharmacokinetics literature and developed a chemical
database, WOMBAT-PK (WOMBAT-Pharmacokinetics) [44]. This database con-
tains 643 drugs with known ADME properties. Currently indexed clinical pharma-
cokinetics and related physicochemical properties data are summarized in Table
11.1. The top 9 properties were captured from the following sources: Goodman &
Gilman’s 9th edition [45] (G&G), Avery’s 4th edition [46] (Av), the Physician Desk
Reference [47] (PDR). FDA’s Center for Drug Evaluation and Research website
[48] was consulted for FDA approved drug labels. Other resources (e.g., Google�)
were sometimes used to compile the WOMBAT-PK database. The maximum
recommended therapeutic dose [49] (MRTD) is available from the FDA [50],
whereas MRTDU (MRTD corrected for fu, the fraction-unbound) was determined
by using the %PPB data in WOMBAT-PK.
Experimental logD7.4 and logP values from compilation tables [51] and pKa val-

ues from Avery [46] are also included in WOMBAT-PK. In vitro binding informa-
tion reported for these drugs in medicinal chemistry literature was extracted from
the WOMBAT [44] database. Compiling clinical pharmacokinetic data requires,
typically, individual examination. Often, experimental values were “greater than”
or “less than” a given value. A systematic round-off procedure was implemented,
whereby “<5” was attributed a higher value (= 2.5), compared to “<1” (= 0.5).
Numerical values also differ, sometimes significantly, due to various factors (e.g.,
multiple dose vs. single-dose, children vs. healthy volunteers, etc.), thus conflict-
ing values were sometimes reported. The “on file” values in Table 11.1 are often
averages between G&G and Av data, although »30% of the indexed values differ
by more than 20% between these two sources (data not shown). To identify trends,
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we attenuated the effect of such discrepancies by implementing an incremental
increase procedure to some of the ADME properties, as illustrated in Table 11.2.
Incremental rank values were selected from experience whenever possible: e.g.,
experimental errors related to %Oral occur mostly for values between 20 and
80%; 6/7 and 12/7 represent the 1�2 and full value of creatinine clearance (120mL
/ 70 kgmin–1), respectively.
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Table 11.1 Experimental ADME/Tox data for model development.

Property On file G&G Av

%Oral bioavailability, %Oral 633 312 277

%Urinary excretion, %Urine 326 326

%Plasma protein binding, %PPB 502 311 434

Clearance, Cl (mLmin–1 kg–1) 491 320 422

Nonrenal clearance (fractional) 442 442

Volume of distribution, VDss (L kg
–1) 515 322 453

Half-life, T1/2 (h) 628 338 576

Terminal half-life, TT1/2 (h) 580 580

Effective concentration (mML–1) 118 118

MRTD (mM(kg-bw)–1 d–1) 433

MRTDU (mM fu) 433

ElogD7.4 277

ElogP 272

pKa1 274 274

pKa2 75 75

In vitro binding data 247
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Table 11.2 Parent value ranking for certain PK parameters.

%Oral Rank3Oral Rank5Oral %Urine RankUrine

0–5 0 0 0–1 0

5.1–19.99 0 1 1.01–5 1

20.0–79.99 1 2 5.01–20 2

80.0–95 2 3 20.01–50 3

>95.1 2 4 50.01–80 4

>80 5

%PPB RankPPB Cl (mLmin–1 kg–1) RankCl VD (L kg–1) RankVD

0–5 0 0–(6/7) 0 0–1 0

5.01–20 1 (6.01/7)–(12/7) 1 1.01–3 1

20.01–80 2 (12.01/7)–5 2 3.01–5.5 2

80.01–95 3 5.01–10 3 5.51–12 3

95.01–99 4 10.01–15.5 4 >12 4

>99.1 5 >15.5 5

11.6
VolSurf in Clinical PK Data Modeling

Ninety two VolSurf descriptors were computed for N = 623 (out of 643) drugs
from the WOMBAT-PK database. An additional 12 compounds in this dataset
could be computed with VolSurf. Some of these drugs, however (e.g., sodium
nitroprusside, Na[Fe(CN)5NO] and Auranofin (gold-based compound) are not
expected to be of general interest when modeling ADME properties. For the drugs
that had %Urine, %PPB and nonrenal clearance data, and low VDss and low Cl
(i.e., VDss < 5.5 L kg–1 and Cl < 10mLmin–1 kg–1 or LoVLoC values), we obtained
reasonably consistent models using VolSurf (data not shown). In its current
implementation, VolSurf treats all molecules as neutral species. Therefore, we
included estimated logD values from ACDLabs [52] at 5 pH values (5.9, 6.9, 7.4,
7.9 and 8.9), as well as logS, logD and logP values from ALOGPS [53], in order to
take ionization into account. Here, “logP/D/S” refers to estimated partition/solu-
bility values. The combined VolSurf & LogP/D/S model for RankUrine, RankPPB
and nonrenal clearance data is summarized in Fig. 11.3. The model shown is
quite intuitive (see Fig. 11.3): RankUrine is in the opposite loadings region from
RankPPB and nonrenal clearance. Higher RankUrine values (high renal elimina-
tion of unchanged drug) correlate well with high solubility and higher metabolic
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stability (paralleled by lower logD values [21]). Thus, “logS-” and “-OH2” (the
GRID water probe) descriptors make a significant contribution to the modeling of
this property. By contrast, “logP/D” and the GRID DRY (hydrophobic) probe have
a direct (and opposite to “logS”/”-OH2”) effect in modeling RankPPB and nonre-
nal clearance. These are two phenomena where hydrophobic interactions are like-
ly to be important (higher logD indicates CYP metabolism [21], whereas large
hydrophobic surface areas relate to direct protein binding). The model was further
validated by Y scrambling, i.e., permuting the Y variables to safeguard against
chance correlation (data not shown).

11.7
ChemGPS-VolSurf (GPSVS) in Clinical PK Property Modeling

To derive global models in a true sense, we defined chemography as the combination
of chemical property rules and objects (chemical structures) that could provide a
consistent map of chemical space [54, 55] (similar to the Mercator convention).
Chemographic rules included, initially, simple molecular properties such as size,
hydrophobicity and flexibility (see Fig. 11.4). By design, two categories of objects
were included: “Satellites” that were intentionally placed outside the property
space of interest (e.g., drug-like [56, 57]); and “core” objects that were, for the most
part, orally available drugs. ChemGPS [54], the chemical global positioning sys-
tem, comprises both the “core” and “satellite” molecules, and has been adapted to
several 2D- and 3D-based descriptor systems. An initial PCA [58] (principal com-
ponent analysis) model is developed using the predetermined set of molecules
and a fixed set of descriptors. ChemGPS (chemographic) coordinates for any
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Figure 11.3. Loadings plot for the 2-component PLS model for RankUrine,
RankPPB & nonrenal clearance for N = 283 drugs.
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external set of molecules are then extracted via PCA, using the same (fixed) set of
molecular descriptors that were used to define the chemographic. Thus, PCA-
score prediction is used to project new molecules on this predefined map, provid-
ing a consistent method of systematically mapping the chemical property space.

We established [54] that, in conjunction with 2D-based descriptors, ChemGPS
can provide global chemical space coordinates by performing extensive compari-
sons with GRID-based principal properties for heteroaromatic compounds [59],
principal properties (“z-scores”) of a-amino acids [60], as well as by comparison to
several local PCA models. The initial ChemGPS map turned out to be 9-dimen-
sional [54].
According to ChemGPS systematics, any map coordinates derived with the

same rules (dimensions) and the same objects (set of compounds) can then be
used to compare large numbers of chemicals, since the coordinates no longer
depend on chemistry (e.g., single vs. multiple chemical classes) and time (e.g., re-
doing the model by including/excluding objects or descriptors). ChemGPS is well
suited as a reference system for comparing multiple libraries, and keeping track
of previously explored regions of the chemical space [61].
FDA’s biopharmaceutics classification system, BCS [5], serves as a guide for in

vivo bioavailability and bioequivalence studies for immediate-release solid oral
dosage forms. BCS relies on two ADME properties, passive permeability and solu-
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Figure 11.4. The ChemGPS concept: chemi-
cal “satellites” are specifically positioned at
extreme ends in the molecular property space
(as suggested by size, hydrophobicity and
flexibility). When multiple objects are placed
in various regions of this space, the net result

is that predictions are obtained via interpola-
tion, not extrapolation. This improves model
predictivity, and reduces the chance of finding
outliers (although chemical outliers may still
produce unusual effects).
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bility. When combining ChemGPS objects (molecules) with VolSurf descriptors,
the PCA-predicted scores from ChemGPS-VolSurf (GPSVS scores) correlate well
[62] with passive transcellular permeability (1st dimension, GPSVS1) and with sol-
ubility (2nd dimension, GPSVS2).
GPSVS1 explains well the passive transcellular mechanism of absorption across

the epithelial tissue in the gastrointestinal tract (as observed for a Caco-2 cell
monolayer [30] system [17], and in erythrocyte ghost cells), or across the BBB (as
modeled in the Crivori dataset [18]). GPSVS1 scores correlate well to Caco-2 per-
meability data for 22 drugs (R2 = 0.67), to NMR permeability, as measured for 11
drugs in ghost erythrocyte cells (R2 = 0.81) and, in combination with GPSVS2
scores, discriminate well between drugs that pass (BBB+) or not (BBB–) the
blood–brain barrier (see [62] for details).
GPSVS2 explains, to a lesser degree, water solubility. Because most efforts to

model solubility have been focused on its relationship with logP [9], GPSVS2 was
compared not only to Abraham’s solubility dataset [32] (794 compounds), but also
to the Pomona logP dataset [63] (7954 compounds). GPSVS2 scores correlated
directly to measured logP values (R2 = 0.61), and to water solubility (R2 = 0.68).
PCA models are usually interpreted by comparing descriptor loadings (their

contribution) to the latent variables, which relate to physical meaning. However,
in GPSVS, the first two components are directly related to measured properties.
This observation was further substantiated by comparison to PLS models derived
for the same five datasets [62]. Unlike QSAR methods, GPSVS does not require
biological input (i.e., dependent variables) as a training set. However, while it
relies on PCA prediction, the 2 GPSVS dimensions are no longer orthogonal: as
they rotate to best correlate permeability and solubility. The 2 axes form an angle
[62] of approximately 430, pointing in opposite directions, i.e., optimizing perme-
ability has a negative effect on solubility and vice versa.
The GPSVS map in Fig. 11.5 shows WOMBAT-PK drugs color-coded according

to oral bioavailability. This plot does not take into account the contribution of
active processes (e.g., active efflux, intestinal metabolism, etc.) to this composite
parameter. For clarity, an orthogonal view is given in Fig. 11.5. In the absence of
individual evidence for each drug, low rank values for Cl and VDss (VDss <
5.5 L kg–1 and Cl < 10mLmin–1 kg–1, or LoVLoC) were used to further examine
these results, as shown in Table 11.3. High rank values (VDss > 5.5 L kg–1 and
Cl > 10mLmin–1 kg–1, or HiVHiC), and the alternatives (high/low) are separated
in Table 11.3. If VDss and Cl are not considered, Q4 captures 75.5% of all drugs
(90% of the good, 80% of the medium and 50% of the poor %Oral, respectively).
When the influence of active mechanisms is reduced (LoVLoC), Q4 captures
37.5% of all drugs (63.6% of the good, ~33% of the medium and ~16% of the poor
%Oral, respectively). The ratio of “good” and “medium” %Oral values drops dra-
matically in all the other instances, which appears to indicate that, at least with
respect to passive mechanisms, GPSVS-Q4 is the target property space for orally
available drugs.
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Table 11.3 %Oraldrug counts for GPSVS1/GPSVS2 quadrants as defined in Fig. 11.5.
LoV, HiV, LoC, and HiCvalues (and their combinations) are defined in text. “Unknown”
indicates that one or both VDss and Cl values were not available. To the right of each
quadrant (Q1–Q4) column, % refers to the percentage for that column, related to the
number of drugs in WOMBAT-PK analyzed with GPSVS: 154 poor, 283 medium and 176
good %Oral values; the total row % values relate to the number (613) of analyzed drugs.

%Oral VDss and Cl Q1 Q1% Q2 Q2% Q3 Q3% Q4 Q4%

poor all data 14 9.1 11 7.1 52 33.8 77 50.0

medium all data 24 8.5 4 1.4 28 9.9 227 80.2

good all data 7 4.0 1 0.6 9 5.1 159 90.3

total all data 45 7.3 16 2.6 89 14.5 463 75.5

260

Figure 11.5. GPSVS plot for 613 drugs with
known oral bioavailability. Colors codes corre-
spond to Rank3Oral (inset and Table 11.2).
Cut-off lines at GPSV1 = –6 and GPSVS2 = 5
and the four defined quadrants are shown.
Q4 contains the highest number of drugs
with medium (227) and good (159) oral

bioavailability. For orientation, small and
large MW values are located in the bottom
right (Q4), and top left (Q2) quadrants,
respectively; small and large clogP values are
in the bottom left (Q3), and top right (Q1)
quadrants.
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%Oral VDss and Cl Q1 Q1% Q2 Q2% Q3 Q3% Q4 Q4%

poor LoVLoC 5 3.2 7 4.5 36 23.4 25 16.2

medium LoVLoC 6 2.1 2 0.7 15 5.3 93 32.9

good LoVLoC 1 0.6 1 0.6 7 4.0 112 63.6

total LoVLoC 12 2.0 10 1.6 58 9.5 230 37.5

poor LoVHiC 2 1.3 0 0 0 0 30 19.5

medium LoVHiC 1 0.4 0 0 0 0 31 11.0

good LoVHiC 0 0 0 0 0 0 6 3.4

total LoVHiC 3 0.5 0 0 0 0 67 10.9

poor HiVLoC 0 0 1 0.6 1 0.6 1 0.6

medium HiVLoC 3 1.1 0 0.0 2 0.7 2 0.7

good HiVLoC 0 0 0 0 0 0 7 4.0

total HiVLoC 3 0.5 1 0.2 3 0.5 10 1.6

poor HiVHiC 2 1.3 1 0.6 4 2.6 4 2.6

medium HiVHiC 3 1.1 2 0.7 2 0.7 33 11.7

good HiVHiC 0 0 0 0 0 0 8 4.5

total HiVHiC 5 0.8 3 0.5 6 1.0 45 7.3

poor unknown 5 3.2 2 1.3 11 7.1 17 11.0

medium unknown 11 3.9 0 0 9 3.2 68 24.0

good unknown 6 3.4 0 0 2 1.1 26 14.8

total unknown 22 3.6 2 0.3 22 3.6 111 18.1

11.8
ADME Filters: GPSVS vs. Ro5

Having established that GPSVS is compliant with the BCS system [5] regarding
oral bioavailability, we further discuss its performance in comparison to Ro5 com-
pliance [6] for the WOMBAT-PK dataset. Ro5 compliance for drugs with respect to
%Oral, Cl and VDss is shown in Table 11.4. Without examining VDss and Cl, 0 and
1 Ro5 violations capture 80% and 15% of the total number of drugs, respectively.
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When Ro5 = 0, 94% of the good, 79.5% of the medium and 65% of the poor
%Oral drugs are captured. For LoVLoC, Ro5 = 0 includes 42.3% of all drugs
(66.5% of the good, ~36% of themedium and ~26% of the poor %Oral drugs, respec-
tively). The ratio of “good”, “medium” and “poor”%Oral values appears to be less sen-
sitive to VDss and Cl properties, when comparing Ro5 violations with the GPSVS
quadrants. Pfizer’s computational alert [6] was designed to be all-inclusive, since all
drug formulations (tablet, capsule, syrup, etc.) for oral delivery were appropriate, even
if %Oral was 5 or less. Even though GPSVS, like Ro5, does not include numeric
values for %Oral, it is likely that the VolSurf framework, shown to model VDss

and Cl, provides additional sensitivity to changes in molecular properties.

Table 11.4 %Oral drug counts for Ro5 compliance, as defined in the text. The columns
are placed in a manner compatible to those in Table 11.3 to facilitate comparison. R5.n
(where n is between 0 and 3) indicates the number of Ro5 criteria violated by drugs in that
column. VDss and Cl values are the same as in Table 11.3. To the right of each Ro5 value
(R5.0–R5.3) column, % refers to the percentage for that column, related to the number
of drugs in WOMBAT-PK: 163 poor, 291 medium and 178 good %Oral values; the total
row % values relate to the number (632) of analyzed drugs.

%Oral VDss and Cl R5.2 R5.2% R5.3 R5.3% R5.1 R5.1% R5.0 R5.0%

poor all data 15 9.7 13 8.4 35 22.7 100 64.9

medium all data 10 3.5 6 2.1 50 17.7 225 79.5

good all data 3 1.7 1 0.6 8 4.5 166 94.3

total all data 28 4.6 20 3.3 93 15.2 491 80.1

poor LoVLoC 6 3.9 9 5.8 23 14.9 40 26.0

medium LoVLoC 3 1.1 2 0.7 10 3.5 102 36.0

good LoVLoC 1 0.6 1 0.6 4 2.3 117 66.5

total LoVLoC 10 1.6 12 2.0 37 6.0 259 42.3

poor LoVHiC 1 0.6 0 0.0 1 0.6 30 19.5

medium LoVHiC 0 0.0 0 0.0 3 1.1 32 11.3

good LoVHiC 0 0.0 0 0.0 0 0.0 6 3.4

total LoVHiC 1 0.2 0 0.0 4 0.7 68 11.1

poor HiVLoC 1 0.6 0 0.0 2 1.3 0 0.0

medium HiVLoC 1 0.4 1 0.4 2 0.7 3 1.1

good HiVLoC 0 0.0 0 0.0 0 0.0 7 4.0

total HiVLoC 2 0.3 1 0.2 4 0.7 10 1.6
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%Oral VDss and Cl R5.2 R5.2% R5.3 R5.3% R5.1 R5.1% R5.0 R5.0%

poor HiVHiC 2 1.3 2 1.3 3 1.9 4 2.6

medium HiVHiC 2 0.7 1 0.4 14 4.9 23 8.1

good HiVHiC 0 0.0 0 0.0 1 0.6 7 4.0

total HiVHiC 4 0.7 3 0.5 18 2.9 34 5.5

poor unknown 2 1.3 2 1.3 6 3.9 26 16.9

medium unknown 4 1.4 2 0.7 21 7.4 65 23.0

good unknown 5 2.8 0 0.0 3 1.7 29 16.5

total unknown 11 1.8 4 0.7 30 4.9 120 19.6

A direct comparison between Ro5 and GPSVS quadrants is given in Fig. 11.6.
When examining Ro5 scores of 0 and 1, there are three drugs classified as “bad”
by GPSVS: the antineoplastics Paclitaxel and Vincristin (both i.v. formulations),
and Rifabutin, an antibiotic with 20% Oral and HiVHiC (VDss = 40 L kg–1,
Cl = 12mLmin–1 kg–1). The eight drugs from Q2 that have Ro5 ‡ 2 are Amphoter-
icin B (i.v.), Cyclosporine A (30.5%), Ivermectin (60%), Octreotide (1.75%), Rifam-
pin (92.5%), Tacrolimus (26%), Teniposide (i.v.), and Vinblastine (i.v.). Of these
drugs, Cyclosporine, Rifampin and Tacrolimus are high-MW peptides that do not
rely on passive transcellular mechanisms. Ivermectin, an anti-parasitic macrocyc-
lic lactone, is the only compound that appears to be a false positive.
An additional 28 drugs with Ro5 violations are placed in the Q1 and Q3 quad-

rants, of which 13 have poor, 12 medium and 3 good oral bioavailability, respec-
tively. The latter are Digitoxin, Methyldigoxin (two cardiac glycosides) and Zafirlu-
kast (a leukotriene D4 antagonist). One drug that violates two Ro5 criteria is not
flagged by GPSVS, and is present in the Q4 quadrant: Fosinopril, an angiotensin
converting enzyme inhibitor. This is, in fact, a pro-drug (MW = 563 and logP = 5.8)
that loses a propanoyl fragment (MW = 52) and has logD74 = 2.8. Of the 105 drugs
with 0 and 1 Ro5 scores (36 in GPSVS-Q1 and 69 in GPSVS-Q3), 51 have poor,
and 41 have medium oral availability, respectively.
Out of the 105 flagged (but not rejected) GPSVS compounds, almost half are

indeed, problematic, yet the majority can be “salvaged” in formulation; one com-
pound flagged by Ro5 but accepted by GPSVS is, in fact, a prodrug with otherwise
good ADME properties. The majority of the drugs are not flagged either by
GPSVS (Q4) nor Ro5 (0 and 1 violations): Of the 462 unflagged drugs, 71 have
poor %Oral values. Among these 71 drugs, 25 have LoVLoC values. To summar-
ize, of the 613 drugs for which GPSVS and Ro5 values were compared, the two
ADME filters are in agreement for 484 drugs, of which 25 are false positives (Q4,
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Ro5 < 2, yet poor oral availability) and 4 are false negatives (Q2, Ro5 ‡ 2, but medi-
um/good oral availability). Thus, the combination of GPSVS and Ro5 has a 0.7%
false negative rate, and a 5% false positive rate. We conclude that this combination
provides a very effective tool for ADME filtering.

11.9
PENGUINS: Ultrafast ADME Filter

Given current hardware limitations, it takes 10–100 times longer to compute Vol-
Surf descriptors, compared to the Ro5 properties (MW, cLogP, HDO and HAC)
for the same molecules. To speed up the procedure, we have implemented a frag-
ment-based version of GPSVS in the PENGUINS [64] software. The initial aim
(2000–2001) in developing PENGUINS (Pharmacokinetics Evaluation aNd Grid
Utilization IN Silico) was to perform rapid passive permeability (intestinal and
brain) predictions for ca. 100 000 compounds / day / CPU, on Linux-based Pen-
tium III machines, starting from 2D structural representation. The software was
designed to perform fragment recognition on massive combinatorial libraries,
then to approximate VolSurf descriptor values for whole molecules starting from
stored VolSurf descriptor values for these fragments. For multiple fragment
options, preference is given to larger fragments, to reduce the influence of approx-
imations. Using approximate VolSurf descriptors, GPSVS1 and GPSVS2 scores
starting from the ChemGPS/VolSurf model can be predicted, but the 3D structure
of the molecule is no longer required. This proves to be a significant time-saving
factor.
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Figure 11.6. Oral bioavailability distribution comparison between GPSVS
quadrants and Ro5 violations for 613 drugs. Color codes correspond to
Rank3Oral (inset and Table 11.2). See text for details.
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For comparison, the GPSVS scores from PENGUINS (fragments) are correlated
with those for the entire molecules (VolSurf) for a virtual library of 1000 mole-
cules. The reaction used to enumerate the virtual library is shown in Scheme
11.1; the 30 building fragments (R1, R2, R3) are given in Scheme 11.2. Correla-
tion plots and R2 values given in Fig. 11.7 show that the PENGUINS scores are
90% accurate. We note that, in the PENGUINS approach, certain corrections were
introduced for, e.g., the fragmentation of the amide function which is formed be-
tween the R3-aldehyde and the R1/R2-amines. These corrections were tested on a
number of small molecules before being implemented. It is encouraging that con-
formational flexibility (at least five nonterminal flexible bonds in the enumerated
products) did not appear to influence the GPSVS scores.
The PENGUINS fragment library is not exhaustive. Fragment recognition has a

built-in heuristic process, and unknown fragments can be added to the database.
The current error rate is under 5% for typical, drug-like, compounds. In PEN-
GUINS, unknown fragments are automatically converted to 3D coordinates, Vol-
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Scheme 11.1. The 3-step reaction scheme used to enumerate the 1000-compounds
virtual library. The structures of the 30 building blocks are given in Scheme 11.2.

Scheme 11.2. The 30 building blocks used for the virtual reaction in Scheme 11.1.
“A” indicates the attachment points for the remainder of each fragment, as
depicted for R1, R2 and R3 in Scheme 11.1.
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Surf descriptors are computed for that fragment and stored within the fragment
database.
Equally important in the PENGUINS approach is the speed factor: The frag-

ment-based library evaluation (from 30 reactants) in PENGUINS took under
3min, whereas the complete VolSurf evaluation for 1000 compounds took
183min (on the same CPU, under the same operating system). Ro5 parameter
computations for the same 1000 enumerated compounds required slightly more
time (6.6min) on the same machine. At current speeds (2004), running on Linux
(Pentium 4, 2 GHz, 1 GB RAM, Red Hat 7.3), PENGUINS can evaluate at least
2 000 000 virtual structures / day / CPU (enumeration with ADME filtering). If
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Figure 11.7. GPSVS score accuracy for PENGUINS: Scores from VolSurf (x-axis) for
the 1000 structures enumerated according to Schemes 11.1 and 11.2 are compared
with the scores from PENGUINS (y-axis) The R2 values are 0.91 for GPSVS1 scores (a),
and 0.9 for GPSVS2 scores (b).



11.10 Integrated ADME and Binding Affinity Predictions

the structures are already enumerated (fragment recognition only), PENGUINS
can estimate over 3 000 000 structures / day / CPU. The results are fast, within
10% error (compared to GPSVS from VolSurf), and directly interpretable in terms
of passive pharmacokinetic properties. We can therefore state that PENGUINS is
an ultrafast, high-throughput ADME property filter.

11.10
Integrated ADME and Binding Affinity Predictions

The goal to integrate ADME property prediction with estimating binding affinity,
conceptually illustrated in Fig. 11.1, is currently under implementation in PEN-
GUINS. Our earlier studies have shown that VolSurf descriptors can effectively
model ligand–receptor binding for a diverse set of X-ray complexes [19, 20]. The
GRID docking procedure, implemented in PENGUINS, was applied in conjunc-
tion with GPSVS to verify if lead compounds can be optimized at the stage of in
silico library enumeration.
The 2004.2 release of WOMBAT [44] contains 122 para-(R2) phenyl-(R1) meth-

yl-ether ERa (estrogen receptor subtype a) antagonists, including Raloxifene and
Tamoxifen, two drugs with %Oral > 50. We wanted to investigate whether the opti-
mal R1/R2 combination had been found. Based on the 8 R1 and 112 R2 substitu-
ents (not shown), a total of 896 compounds were enumerated with PENGUINS
and evaluated using GPSVS and GRID docking. Some of the compounds that
meet the criteria for affinity, permeability and %PPB, but were not included in the
initial 122 compounds are illustrated in Fig. 11.8: These compounds are estimated
to have Ki £ 100 nM against the receptor, as docked in the Raloxifene binding site
of ERa (Protein Data Bank, PDB, entry code 1ERR), good Caco-2 (passive) perme-
ability, and %PPB under 99%. Following a fast ADME filtering step in PEN-
GUINS, these compounds were predicted with the built-in VolSurf model library
[29], for greater accuracy. This study further substantiates the hypothesis that rap-
id ADME filtering prior to docking is an appropriate workflow: ADME filtering
with PENGUINS remains faster (i.e., can process many compounds) compared to
docking (fewer entries to process). For this particular study, the order in which
these two steps were performed did not affect the final list of compounds (data
not shown). PENGUINS can become effective for simultaneous ADME and bind-
ing affinity optimization, in particular when (i) the structure of the target is avail-
able and (ii) the binding mode of active molecules is known.

267



11 Rapid ADME Filters for Lead Discovery

11.11
Conclusions

The introduction of rapid ADME filters in lead discovery is not going to replace
experimental procedures; rather, it is intended to increase awareness (i.e., to pro-
vide a “computational alert” [6]) regarding potential liabilities that might occur in
later stages of drug discovery [22] (e.g., lead optimization). With respect to clinical
data on %Oral, we demonstrated the advantage of combining Ro5 and GPSVS,
compared to using either method alone, in identifying compounds of potential
interest. Although they are less accurate than the 3D-based VolSurf model, the
PENGUINS-based GPSVS filters are nonetheless orders of magnitude faster. This
effectively enables one to evaluate literally millions of virtual structures and, with-
in the PENGUINS software, evaluate additional ADME properties (e.g., %PPB or
nonrenal clearance) using the same descriptor paradigm. As shown in the evalua-
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Figure 11.8. Examples of virtual compounds enumerated with PENGUINS that are
predicted to be active, based on GRID docking in the ERa crystal structure (PDB
code 1ERR). These compounds are also predicted to have good Caco-2 permeability
and %PPB properties. The substructure in the top left (inset) is highlighted.
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tion of potential ERa ligands, one can also evaluate binding affinity when the 3D
structure of the target is known.
Additional experimental profiling and appropriate adjustment of MIF-based

models (to include chemotypes of interest) is part of the normal, heuristic process
for model improvement. As noted, PENGUINS has the ability to recognize novel
fragments, which leads to improved library (and chemotype) representation. MIF-
based predictions, whether with PENGUINS or VolSurf, are intended to provide
support in experimental design, planning and prioritization: For example, com-
pounds placed in the GPSVS-Q1 region should be first tested for solubility,
whereas compounds mapped in the GPSVS-Q3 region should be first tested for
permeability. Compounds falling in the GPSVS-Q2 region should be avoided,
whereas compounds mapped in the GPSVS-Q4 region could be considered suit-
able for additional optimization.
Because the current models are quite stable, we anticipate no changes in either

the ChemGPS object system (currently, 525 molecules), or the VolSurf descriptors
(92 descriptors to date). Thus, GPSVS – both in the full-molecule and fragment
mode – is a stable system that is potentially useful in mapping large chemical
probe libraries, e.g., NIH_SMR, in a high-throughput mode. For rapid estimation
of combinatorial synthesis planning and for virtual screening, we consider that
the significant speed gain observed for PENGUINS is well worth the trade-off in
accuracy. Once the large chemical spaces are narrowed down to fewer virtual
choices, the 3D-based (VolSurf) GPSVS scores, in combination with Ro5, are
expected to have significantly better accuracy. One of the key challenges remains
the appropriate treatment of ionic species and tautomers (as indicated in
Fig. 11.1). However, in the ultrafast ADME filtering stage, this may prove to be of
lesser significance.
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GRID-Derived Molecular Interaction Fields for Predicting the
Site of Metabolism in Human Cytochromes
Gabriele Cruciani, Yasmin Aristei, Riccardo Vianello, and Massimo Baroni

12.1
Introduction

Metabolite identification is a crucial step in the drug discovery process. Metabolite
structural information can be used to investigate phase I and II metabolic path-
ways, the presence of active or toxic metabolites, and to identify labile compounds.
The production of this information early in the discovery phase is becoming ex-
tremely important in judging whether or not a potential candidate should be
eliminated from the pipeline, and in improving the safety of new compounds.
Knowledge of the location in which functional groups are metabolized is helpful
in designing drugs with optimized safety profiles because stable groups can be
added at metabolically susceptible positions.
Researchers have recently focused on developing faster sample preparation

methods, robotic systems, and more sensitive analytical metabolite identification
tools [1–4]. LC-MS-NMR is one of the latest commercially available techniques for
the characterization of metabolites [5]. However, such techniques are usually
highly resource-demanding tasks, consuming a considerable amount of com-
pound. Moreover, due to the increasing abundance of potential candidates, experi-
mental metabolite identification remains, at the time of writing, a huge challenge.
It is common opinion [5] that the use of in silico methods to predict a hypotheti-

cal metabolite structure, combined with the most recent experimental techniques,
can speed up the process of metabolite identification by focusing experimental
work on specific target structures, thus improving the method of metabolite struc-
ture confirmation and elucidation.
The aim of the present chapter is to describe a recent in silico method. It is fast,

easy and computationally inexpensive, and able to predict human cytochrome
regioselective metabolism using ad hoc developed 3D homology models for the
enzymes and the 3D structure of the potential substrates. The method uses GRID
flexible molecular interaction fields as well as the 3D structure of the potential
substrates, automatically providing the site of metabolism (i.e. the place where the
metabolic reactions occur) in graphical output.



The fully automated computational procedure is a valuable new tool in virtual
screening and in early ADME-Tox, where drug safety and metabolic profile pat-
terns must be evaluated in order to enhance and streamline the process of devel-
oping new drug candidates.

11.2
The Human Cytochromes P450

The superfamily of P450 cytochrome enzymes is one of the most sophisticated
catalysts of drug biotransformation reactions. It represents up to 25% of the total
microsomal proteins, and over 50 cytochromes P450 are expressed by human
beings. Cytochromes P450 catalyze a wide variety of oxidative and reductive reac-
tions, and react with chemically diverse substrates. Despite the large amount of
information on the functional role of these enzymes combined with the knowl-
edge of their three-dimensional structure, elucidation of cytochrome inhibition,
induction, isoform selectivity, rate and position of metabolism all still remain
incomplete [6].
The major xenobiotic-metabolizing cytochromes P450 in humans belong to

families 1, 2 and 3, and include CYP1A2, CYP2C9, CYP2C19, CYP2D6 and
CYP3A4.
The crystal structures of human 2C9 and 3A4 cytochromes were recently

resolved and deposited in the PDB data bank [7, 8]. These structures were also
submitted to GRID computation in order to produce molecular interaction fields.
The human structure for P450-2C9 was used as a template in homology modeling
of the CYP2C19 enzyme. In fact, this enzyme has a high degree of similarity and
identity with CYP2C9.
The initial 3D structures of the CYP2D6 and CYP1A2 enzymes were kindly pro-

vided by DeRienzo et al. [9]. Then, 3D models were built using restraint-based
comparative modeling of the X-ray crystallographic structures of bacterial cyto-
chromes P450BM3, CAM, TERP and ERYF, which were used as templates (PDB
entries 2bmh, 3cpp, 1cpt and 1oxa). After this, secondary structure predictions
were obtained using the method of Rost and Sander [10]. The heme molecule,
with the iron in its ferric oxidation state, was extracted from the structure of
CYPBM3 and fitted into the active site of each of the two cytochromes. Lastly,
dynamic runs were carried out on the starting structures, without any ligands, in
order to select an average bioconformation for all the isoenzymes.
It is known that CYP1A2 preferentially binds molecules with a relatively planar

moiety, with heterocyclic aromatic amines, xanthines and quinolones. It is also
likely that surface amino acid residues are responsible for the recognition of and
the selectivity towards specific ligands [11].
CYP2C9 and CYP2C19 bind compounds with large dipoles or negative charges.

Thus oxygen-rich compounds such as carboxylic acids, sulfonamides and alcohols
are substrates for 2C9-2C19 cytochromes. Site-directed mutagenesis experiments
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demonstrated that lipophilic interactions are extremely important for binding in
the enzyme cavity [11].
CYP2D6 binds compounds with a basic nitrogen and/or positive charge. Thus

nitrogen-rich compounds such as arylalkyl amines are potential substrates for
2D6. It is known that the 3D pharmacophore model of 2D6 substrates needs at
least one basic nitrogen atom at 5–7	 from the oxidation site [12]. However, sever-
al substrates exist which show a greater distance between the oxidation site and
the basic nitrogen, e.g. tamoxifen (>10	). This example demonstrates the impor-
tant role played by CYP flexibility in substrate recognition.
Finally, the most abundant cytochrome in humans, CYP3A4, tends to exhibit a

broad substrate specificity. It binds low molecular weight and high molecular
weight compounds and shows no pharmacophoric preferences or special sub-
strate-structural constraints. This is probably due to its large cavity. Since its sub-
strates probably adopt more than one orientation in the active site, it is believed
that CYP3A4 attacks ligand positions mainly on the basis of the latter’s chemical
reactivity.
All P450 cytochromes contain a protoporphyrin group with a central iron atom

that is normally hexacoordinated in the ferric form. The substrates bind reversibly
to the enzyme and the complex undergoes reduction to the ferrous state. This
allows molecular oxygen to bind as a third partner. Molecular oxygen is trans-
formed into oxene, an electrophilic and reactive species, which normally pulls a
hydrogen radical away from the substrate and transfers a formal hydroxy group
back [13]. After release of the product, the regenerated cytochrome P450 is ready
for a new cycle.

12.3
CYPs Characterization using GRID Molecular Interaction Fields

This section describes the use of the GRID force field [14, 15] to characterize and
compare the most important human cytochrome enzymes. Program GRID is cali-
brated in an aqueous environment to obtain chemically specific information about
a (macro)molecule, called the Target. An electrostatic potential does not normally
allow favorable binding sites to be differentiated for a primary, secondary or a ter-
tiary amine cation, for pyridinium, or for a sodium cation, and the GRID method
is an attempt to compute analogous potentials which do have some chemical spec-
ificity. The object used to measure the potential at each point is given the generic
name Probe. Many different probes can be used on the same target one after the
other, and each represents a specific chemical group. A great deal of chemically
specific information can therefore be accumulated concerning the way in which
the target might interact favorably with other molecules.
The molecular interaction fields (MIF) in the binding site of the cytochromes

were obtained using a grid step size of 0.5	 and a self-accommodating dielectric
constant [16]. The grid box size for the five isoforms was placed around the active
site cavities and carefully refined using the tools available in the GRID software.
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The MIFs were generated by using both the rigid mode and the flexible mode in
GRID (directive MOVE = 0 or 1) [17]. With the flexible option, some of the amino
acid sidechains can move automatically in response to attractive or repulsive inter-
actions with the probe. The sidechain flexibility in GRID can mimic the amino
acid movements which occur in the CYPs active site to accommodate different
substrates according to their size, shape and interaction pattern. In fact, when a
ligand approaches a residue sidechain, their movements are always influenced by
neighbors and by the ligand. For example, the methylene group in the sidechain
of lysine will tend to move towards the hydrophobic moiety of an interacting li-
gand. However, if the ligand contains a positively charged group, the charged
nitrogen of lysine will tend to move away from it. What actually happens depends
on the overall balance between the effects of attraction and repulsion, and so
GRID was calibrated to simulate these movements [17]. However, it should be
noted that the flexible grid map cannot take into account the large movements of
the protein backbone.
Figure 12.1 shows the molecular interaction fields produced by the hydrogen

probe interacting with the amino acid sidechains inside the active site cavities of
the cytochromes. Such MIFs are important in evaluating the available volume in
the active site cavities, and the shape of these cavities.
With the enzyme sidechains in fixed positions, the active site volumes com-

puted by the GRID hydrogen probe ranged from 1500	3 for CYP3A4 to 640	3 for
CYP1A2. With flexible sidechains, the accessible cavity volumes increased from
5% to 10%, probably due to the release of steric hindrance and consequent reduc-
tion in steric interaction between the chemical probe and the lateral chains. The
explanation put forward is that the cytochromes may use sidechain flexibility to
allocate more space when necessary, making sub-pockets or small channels acces-
sible without changing the structure of the protein backbone.
The MIFs from the water molecule probe were generated in the subsequent

analysis. The water probe was used to find hydrophilic regions where structurally
relevant water molecules are bridged to the enzymes. With fixed sidechains, the
active site hydrophilic volumes computed by the GRID water probe ranged from
280	3 for CYP3A4 to 50	3 for CYP1A2. However, when corrected by the volume
of the cavities, the percentage ranking of hydrophilic regions according to this
scheme is: 2D6 > 3A4 > 1A2 > 2C19 > 2C9. With flexible sidechains, the total hy-
drophilic volume does not change very much, but the position of the hydrophilic
interaction, the hydrophilic pattern, changes considerably. In fact, due to synergic
interactions of the sidechains, some cytochrome cavity positions may show rein-
forced interaction with the water molecule. The authors are convinced that the
prediction of water location and water movement due to sidechain flexibility or
substrate binding is essential in order to compile the CYP–substrate interactions
correctly.
Five more chemical probes were used to characterize the cytochromes studied:

the DRY molecular interaction field simulating hydrophobic interaction, the N1-
amide nitrogen probe simulating hydrogen-bond donor interaction, the O-carbon-
yl oxygen probe simulating hydrogen-bond acceptor regions, and separate posi-
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Figure 12.1. First column: molecular interac-
tion fields, produced by the hydrogen probe,
showing the volume and shape of the active
site cavities, for CYPs 1A2 2C9 2C19 2D6
and 3A4 respectively. Second column: with
flexible sidechains, the overall cavity volumes
increase due to sub-pockets or small

channels which become accessible because
of sidechain flexibility. Third column: molecu-
lar interaction fields, produced by the water
probe, showing strong hydrophilic regions in
the active site cavities, for CYPs 1A2 2C9
2C19 2D6 and 3A4 respectively.
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tively and negatively charged probes simulating charge–charge electrostatic inter-
actions.
Figure 12.2 compares some of the MIFs obtained from the various cytochromes

studied. CYP2D6 shows the highest H-bond acceptor region volume (about 50%
of the cavity volume), while CYP2C9 is the cytochrome showing the largest hydro-
phobic regions (about 20% of its cavity is hydrophobic). CYP3A4 shows the high-
est H-bond donor region volume (about 25% of its cavity volume).
In agreement with the GRID findings, site-directed mutagenesis experiments

demonstrated that lipophilic interactions are extremely important for binding to
take place in the enzyme cavity CYP2C9. In turn, flexibility of sidechains modifies
the physicochemical enviroment of the cavity, as well as the protein pharmacopho-
ric pattern.
Figure 12.3 compares rigid and flexible molecular interaction field maps with

the hydrophobic DRY probe in the active-site cavity for CYP2C9 enzyme. Some of
the potential hydrophobic regions shown in the rigid structure are not present
when the sidechains are free to move. With flexible sidechains, the overall hydro-
phobic volume does not change, but the position of the hydrophobic interactions
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Figure 12.2. Some of the MIFs obtained from the various cytochromes studied
are compared: (a) CYP2D6, (b) CYP2C9, (c) CYP3A4.
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changes considerably. Due to synergic interactions of the sidechains, some posi-
tions may show reinforced interaction with the DRYprobe.
CYP2D6 binds compounds with a basic nitrogen and/or positive charge, and

oxidizes atoms at a distance of 5–7	 from the nitrogen. However, several sub-
strates exist which show a larger distance between the oxidation site and the basic
nitrogen, e.g. tamoxifen (>10	). GRID flexible MIF in a 2D6 cavity shows that
with an appropriate position of the sidechains, the basic nitrogen of tamoxifen
can be well accomodated in the active site when the site of oxidation corresponds
to the experimental one.
These examples demonstrate the important role played by CYP sidechain flex-

ibility in substrate recognition.

12.4
Description of the Method

The proposed methodology involves the calculation of two sets of descriptors, one
for the CYP enzymes and one for the potential substrates, representing the chem-
ical fingerprints of the enzymes and the substrates respectively. The two sets of
descriptors are then used to compare the fingerprint of the cytochrome with the
fingerprint of the substrates. As discussed in the previous section, the set of
descriptors used to characterize the CYP enzymes is based on GRID flexible mo-
lecular interaction fields (GRID-MIFs). Flexible molecular interaction fields are in-
dependent of the initial sidechain position, and are better suited to simulate the
adaptation of the enzyme to the substrate structure. Similarly, the set of descrip-
tors used to characterize the ligand substrates is based on the molecular interac-
tion field produced around each substrate.
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Figure 12.3. (a) Rigid and (b) flexible molecular interaction field maps with
the hydrophobic DRYprobe in the active-site cavity for CYP2C9 enzyme. It is
noteworthy that, due to the starting 3D structure, some of the potential
hydrophobic regions shown in (b) are not present in (a).



12 GRID-Derived Molecular Interaction Fields for Predicting the Site of Metabolism …

12.4.1
P450 Molecular Interaction Fields Transformation

The MIFs obtained from cytochrome enzymes are subsequently transformed and
simplified as shown in Fig. 12.4. A three-dimensional grid map (3D map) may be
viewed as a 3D matrix that contains forces of attraction and repulsion between a
chemical probe and a protein. A 3D map is an image of the CYP–probe molecular
interactions in which each pixel contains information about the cartesian coordi-
nates and a physicochemical interaction. In cytochrome, where a catalytic reaction
has to take place, all the 3D map information can be compressed and refers to the
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Figure 12.4. The interaction energies at a
certain spatial position (the MIF descriptors)
for the CYP2C9–DRYprobe interaction map,
are transformed into a histogram that cap-
tures the 3D pharmacophoric interactions of
the flexible protein. Such a histogram is called
a correlogram and represents the distance

between the reactive center of the cytochrome
(the oxene in the heme moiety) and the differ-
ent chemical regions inside the enzyme active
site. Different 2C9–probe interaction maps
are computed thus generating a number of
different correlograms.
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catalytic center of the enzyme, that is, the oxene atom of the protoporphyrin
group.
The selected 3D interaction points are used to calculate enzyme fingerprints

using the GRIND technology [18]. For each CYP–probe interaction map (see Fig.
12.4), this approach transforms the interaction energies at a certain spatial posi-
tion (the MIF descriptors) into a number of histograms that capture the 3D phar-
macophoric interactions of the flexible protein. Such histograms are called corre-
lograms. The correlograms represent the distance between the reactive center of
the cytochrome (the oxene in the heme moiety) and the different chemical regions
inside the enzyme active site.

12.4.2
3D Structure of Substrates and Fingerprint Generation

The majority of CYP substrates contain flexible moieties. Since the conformation
of a substrate is relevant for CYP binding and as recognition thus has a sensible
impact on the outcome of the method, the decision was taken to model each sub-
strate by using a population of diverse low-energy minimum conformations, ana-
lysing them by running them through in-house software integrated in the compu-
tational procedure. The runs were constrained to obtain a population of confor-
mers with 3D structures induced by the interaction fields and shape of the CYP
active site.
The descriptors developed to characterize the substrate chemotypes are obtained

from a mixture of molecular orbital calculations and GRID probe–pharmacophore
recognition. Molecular orbital calculations to compute the substrate’s electron
density distribution are the first to be performed. All atom charges are determined
using the AM1 Hamiltonian. Then the computed charges are used to derive a 3D
pharmacophore based on the molecular electrostatic potential (MEP) around the
substrate molecules.
Moreover, all the substrate atoms are classified into GRID probe categories,

depending on their hydrophobic, hydrogen-bond donor or acceptor capabilities.
Their distances in the space are then binned and transformed into clustered dis-
tances (see Fig. 12.5). One set of descriptors is computed for each atom type cate-
gory: hydrophobic, hydrogen-bond acceptor, hydrogen-bond donor and charged,
yielding a fingerprint for each atom category in the molecule. The distances be-
tween the different atomic positions classified using the previous criteria are then
transformed into binned distances. In this case, the distances between the differ-
ent atoms are calculated and a value of one or zero is assigned to each bin dis-
tance, respectively indicating the presence or the absence of such a distance in the
substrate [19].
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12.4.3
Substrate–CYP Enzyme Comparison: the Recognition Component

Once the protein interaction pattern is translated from Cartesian coordinates into
distances from the reactive center of the enzyme, and the structure of the ligand
has been described with similar fingerprints, both sets of descriptors can be com-
pared. The hydrophobic complementarity (see Fig. 12.5), the complementarity of
charges, and H-bonds for the protein and the substrates, are all computed using
Carb� similarity [20] indices. The prediction of the site of metabolism is based on
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Figure 12.5. All the substrate atoms are clas-
sified into GRID probe categories depending
on their hydrophobic, hydrogen-bond donor
or acceptor capabilities. Starting from a ran-
domly chosen atom their distances in the
space are then binned and transformed into
clustered distances. One set of descriptors is
computed for each atom type category:
hydrophobic, hydrogen-bond acceptor and

hydrogen-bond donor, generating a finger-
print for each atom in the molecule. The dis-
tances between the different atomic positions
classified using the previous criteria are then
transformed into binned distances. Finally,
both set of fingerprints (top = ligand; bottom
= protein) are compared. Similarity is higher
when the methyl hydrogen (representation on
the left) is exposed to the oxene moiety.
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the hypothesis that the distance between the reactive center on the protein (oxene
atom in the protoporphyrin group) and the interaction points in the protein cavity
(GRID-MIF) should correlate to the distance between the reactive center of the
molecule (i.e. positions of hydrogen atoms and heteroatoms) and the position of
the different atom types in the molecule [21–23].
Finally, the different atoms in each substrate are assigned a similarity score.

Due to the computation mechanism, the score is proportional to the exposure of
such substrate atoms to the reactive heme and represents the accessibility compo-
nent.
The accessibility component, Ei, represents the recognition between the specific

CYP-protein and the ligand when the ligand is positioned in the CYP-protein and
exposes the atom i to the heme. It depends on the ligand 3D structure, conforma-
tion, chirality, and on the 3D structure and sidechain flexibility of the CYP-
enzyme. Thus the Ei score is proportional to the exposure of the ligand atom i to
the heme group of a specific CYP-enzyme.

12.4.4
The Reactivity Component

Cytochromes P450 catalyze oxidative and reductive reactions. Oxidative biotrasfor-
mations are more frequent and include aromatic and sidechain hydroxylation, N-,
O-, S-dealkylation, N-oxidation, sulfoxidation, N-hydroxylation, deamination,
dehalogenation and desulfuration. The majority of these reactions require the for-
mation of radical species; this is usually the rate-determining step for the reactiv-
ity process [24].
When Ri is the reactivity of atom i in the appropriate reaction mechanism, it

represents the activation energy required to produce the reactive intermediate. It
depends on the ligand 3D structure and on the mechanism of reaction. Therefore,
Ri is a score proportional to the reactivity of the ligand atom i in a specific reaction
mechanism.
Furthermore, in this reaction mechanism, Ri does not depend on the P450

enzyme, but is only related to the molecular topology and 3D structure. There is
only little experimental data available which reports the Ri component for drug-
like compounds. However, the quantification of the Ri component can be approxi-
mated using ab initio methods. The problem is that on line calculations using ab
initio methods take too long to be of any practical use. Therefore the authors have
developed a faster procedure which has three steps. The first step involves collect-
ing the great majority of drug-like substrates for human cytochromes and dissect-
ing them into nonredundant chemical fragments, hundreds of fragments were
selected. In the second step ab initio calculations1), simulating hydrogen abstrac-
tion processes, were carried out on all the fragments and on all the fragment
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1) Open-shell radicals were optimized at the
AM1 semi-empirical level. Single point
energy evaluations were performed by DFT
at the B3LYP/6-311G** level of theory since

correlation between experimental and calcu-
lated radical stabilities resulted in reason-
able agreement for this level of theory.
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atomic positions. Although this process is long and time-consuming, once done it
does not need to be repeated. Fragments were classified as being stable, nonreac-
tive, medium, moderate and strongly reactive, and were then ranked in a quantita-
tive reactivity scale ranging from 0.5 (stable) to 1.5 (strongly reactive). In the third
step, a software routine was produced that recognizes the constitutive fragments
of the fragmentized substrate when a potential cytochrome substrate is given.
After recognition, the reactivity component Ri can be assigned.

12.4.5
Computation of the Probability of a Site being the Metabolic Site

Once the accessibility and reactivity components are calculated, the site of metab-
olism can be described by a probability function PSM (probability of being the site
of metabolism) reported in Eq. (1), which is correlated to, and can be roughly con-
sidered to be the free energy of the overall process [25]:

PSM,i = Ei Ri (1)

where: P is the probability of an atom i being the site of metabolism; E is the
accessibility of atom i to the heme; R is the reactivity of atom i in the actual mech-
anism of reaction.
For the same ligand, and the same cytochrome, the PSM function assumes differ-

ent values for different ligand atoms according to the Ei and Ri components.
When a ligand atom i is well exposed to the reaction center of the heme (Ei has a
high score), but its reactivity is very low (Ri has a very low score), the probability of
metabolism in atom i will be very low or zero. Similarly, when a ligand atom i is
very reactive in the considered mechanism (Ri has a high score), but atom i is not
exposed to the reaction center of the heme (Ei has a very low score), the probability
of metabolism in atom i will be close to zero. Therefore, to be the site of metabo-
lism, an atom i should possess both non-neglecting accessibility and reactivity
components in relation to the heme.
Figure 12.6 illustrates the effect of Eq. (1) on a test ligand molecule, a substrate

of CYP2D6 enzyme. The calculations report both the accessibility components
and the reactivity components, and therefore the probability of being the site of
metabolism for all the reactive atoms of the test molecule. It is important to point
out that the PSM value is a maximum at the experimental site of metabolism,
where accessibility is high and reactivity is good, thus demonstrating that enzyme
recognition and ligand reactivity play an important role, which should be consid-
ered molecule by molecule.
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12.5
An Overview of the Most Significant Results

It is important to stress that the method highlighted here requires neither train-
ing nor docking procedures and associated scoring functions, nor 2D or 3D QSAR
models. The only experimental information used as input is the 3D structure of
the human cytochromes. From the 3D CYP structures, GRID provides all the flex-
ible molecular interaction fields, which in turn form the basis of the remaining
calculations.
The methodology was validated on carefully selected data from the literature:

150 metabolic reactions catalyzed by CYP1A2, 160 by CYP2C9, 140 by CYP2C19,
200 by CYP2D6, and 350 by CYP3A4, together with information concerning their
sites of metabolism. Table 12.1 summarizes the results obtained. It is important
to note that the compounds demonstrated different metabolic pathways. Some
are metabolized at only one site; others at two sites and, very rarely, some at three.
Moreover, substrates show a large structural diversity, including both rigid com-
pounds (e.g. steroids) and very flexible ones with more than 10 rotatable bonds,
not to mention a wide range of molecular weights and lipophilicity.
Table 12.1 shows that in more than 70% of CYP2C9 reactions, the first option

selected by the methodology matches the experimental one. Moreover, in more
than 16% of cases, the second atom is that which fits the experimental one. There-
fore, in considering the overall ranking list for the single and multiple sites of me-
tabolism, the methodology predicts the site of metabolism for CYP2C9 within the
first two atoms selected in approximately 86% of the reactions, independent of the
conformer used.
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Figure 12.6. The different components affect-
ing Eq. (1) are reported for three atoms of car-
teolol, a substrate of CYP2D6. (a) Reactivity
component, (b) accessibility component and
(c) the probability of being the site of metabo-
lism for the first three ranked atoms of the

test molecule. The probability of being the
site of metabolism is a maximum at the dark
gray circle. It is important to point out that
the PSM value is a maximum at the experimen-
tal site of metabolism where accessibility is
high and reactivity is good.
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Table 12.1. Results obtained when testing the methodology on
carefully selected data from the literature. Predictions obtained
from static and flexible GRID-MIFs are compared.

2C9 152 substrates Static MIFs Flex MIFs

Sim 70% 86%

2C19 125 substrates Static MIFs Flex MIFs

Sim – 81%

Sim+React –

2D6 200 substrates Static MIFs Flex MIFs

Sim 62% 86%

3A4 340 substrates Static MIFs Flex MIFs

Sim 65% 78%

1A2 135 substrates Static MIFs Flex MIFs

Sim – 75%

Similar results were obtained with the other human cytochromes. However,
CYP 3A4 requires deeper insight. Its broad substrate specificity, probably due to
its large cavity, suggests that its substrates may adopt more than one orientation
in the active site. For this reason it has been reported (but not proved) that
CYP3A4 attacks ligand positions mainly determined by their chemical reactivity.
However, the results obtained suggest that, although the reactivity component
relative to CYP3A4 is the largest, the recognition component is still the metabolic-
site-determining step of the reaction.
Table 12.2 reports a similar investigation carried out by several pharmaceutical

companies, using internal proprietary compounds for which information con-
cerning their sites of metabolism in human CYPs is known [26–28]. The results
show similar trends to those reported in Table 12.1 for the compounds selected
from a careful search of the literature. This demonstrates that the method,
unbiased by training or by local models, is generally applicable. It thus demon-
strates a fundamental requirement that any method to be applied in the arena of
metabolism should possess.
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12.5 An Overview of the Most Significant Results

Table 12.2. Results obtained when the methodology was tested
by various pharmaceutical companies, using internal proprietary
compounds for which information concerning their sites of
metabolism in human CYPs is known [26–28].

Sanofi Aventis 2C9 90 Substrates 82%

Bridgewater USA (Drug Design I group)

Pfizer 2D6 14 Substrates 85%

Sandwich (UK) (PDM group)

Pfizer 3A4 55 Substrates 86%

Sandwich (UK) (PDM group)

Janssen 2C9 2D6 3A4 50 Substrates 85%

Beerse Belgium

12.5.1
Importing Different P450 Cytochromes

This procedure was designed to work with any cytochrome structure and, for
example, can be applied to humans, bacteria, fish and plant cytochromes. There
are more than 120 P450 families, and more than 1000 P450 enzymes. All these
structures can in theory be imported, processed and used for the prediction of the
site of metabolism. The procedure is totally automatic, does not require any user
assistance, and only requires the availability of the 3D structure of the enzyme.
A flow-chart of the computation is shown in Fig. 12.7. The GRID-based repre-

sentations for the main human cytochrome enzymes are precomputed and stored
in the software. However, as previously stated, any cytochrome structure in pdb
format can be imported, with MIF also computed and stored. Once the 3D struc-
ture of the compound has been provided, the semi-empirical calculations of
charges and radical abstraction energy assignments, pharmacophoric recognition,
descriptor handling and similarity computation are carried out automatically. The
user needs only to introduce the structure of the ligand in a smile, 2D-sdf or
3D-mol2 file.
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12.7 Software Package

12.6
Conclusions

A methodology has been developed to predict the site of metabolism for substrates
of the most important human cytochromes. On average, in about 85% of cases
the method predicted the correct site of metabolism within the first two choices in
the ranking list.
The methodology does not use any training set, or supervised or unsupervised

technique. Conversely, the method relies on flexible molecular interaction fields
generated by the GRID force field on the CYP homology modeling structures that
were treated and filtered to extract the most relevant information. The methodolo-
gy is easy to use and fast. The method only requires a few seconds per molecule to
predict a site of metabolism for drug-like substrates. It is important to note that
the method does not use any training set, statistical model or supervised tech-
nique, and it has proven to be predictive for very different validation sets exam-
ined by various pharmaceutical companies.
The 3D structure of the substrate to be analyzed (the starting conformation) has

an impact on the outcome of the method. Satisfactory results were obtained using
the in-house conformer generation, which is biased by the MIFs and the flexible
shape of the active site of the enzymes. The latter procedure is automatically per-
formed when a molecule or a set of molecules are provided in SMILE, 2D SDF or
3D co-ordinates.
The methodology can be applied automatically to all the cytochromes whose 3D

structure is known, and can be used to suggest either new positions that should
be protected in order to avoid metabolic degradation, or to check the suitability of
a pro-drug. Moreover, this procedure can be used to determine potential interac-
tions between virtual compounds for early toxicity filtering.
Although first applied in the metabolism arena, where all the enzymes contain

a clear reaction center, the procedure can work equally well in all fields in which
enzymes contain anchor points related to the process under investigation.

12.7
Software Package

The procedure is called MetaSite (Site of Metabolism prediction) [25]. The MetaSite
procedure is fully automated and does not require any user assistance. All the work
can be handled and submitted in a batch queue. The molecular interaction fields for
CYPs obtained from the GRID package are precomputed and stored inside the soft-
ware. The semiempirical calculations, pharmacophoric recognition, descriptor hand-
ling, similarity computation, and reactivity computation are carried out automatically
once the structures of the compounds are provided. The complete calculation is per-
formed in a few seconds in IRIX SGI machines, and is even faster in the Linux or
Windows environment. For example, processing a database of 100 compounds, start-
ing from 3Dmolecular structures, takes about three minutes at full resolution with a

289



12 GRID-Derived Molecular Interaction Fields for Predicting the Site of Metabolism …

R14000 Silicon Graphics 500 MHz CPU, less than a minute in a Windows Pentium
machine, and about 30 seconds using a Linux Pentium machine. Starting from
SMILE notation, processing a database of 100 compounds (each in one of 20 confor-
mations) takes about six minutes at full resolution with a R14000 Silicon Graphics
500 MHz CPU, three minutes using a Windows Pentium machine, and about one
minute in a Linux Pentiummachine.
The MetaSite software is available to non-profit organizations free of charge,

and can be downloaded from www.moldiscovery.com.
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– binding affinity prediction 267
– descriptors 173
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– prediction 86, 173 ff., 219 ff.
– properties 173 ff., 219 ff., 242 ff., 254 ff.
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ADME/Tox profiling 45, 250 ff., 274
– drug safety 274
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– descriptor 200
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angiotensin converting enzyme inhibitor 264
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aqueous solubility 180 ff., 220, 253 ff.
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biological membrane 242
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– interaction with target 46 ff.
– nonbonded interaction 87
– orientation 89 f., 146
– parametrization database 87
– pharmacophore 84
– polar atom 90
– position in receptor binding site 166
– protein complex 46
– protein interaction 45 ff., 67 ff.
– receptor recognition 90
– receptor-complex 118, 146 ff.
– recognition 47
– selectivity 45, 61 ff., 78, 88
– surface-to-surface contact with target 103
lipid binding 75
lipophilic fields, 3D 177
lipophilicity 36, 45, 117, 178 ff., 221, 232
liver microsome 220, 232
loading contour map 54
loading plot 53 f.
local interaction energy minimum 177
logD 257
logP 178 ff., 194, 228, 254 ff.
logP/D 257
logP/D/S 256
logS 257

m
MACC2
– encoding 124
– transform 140
MAP kinases 69
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mapping of ligand binding site in protein
33

matrix 50 ff.
– generation 50
– object 50
matrix metalloproteinases (MMPs) 60 ff.
– family 71 ff.
– inhibitor 70 ff.
maximum recommended therapeutic dose

(MRTD) 254
MDCK cells 220
megavariant analysis 119
membrane, biological 242
metabolic stability 97 ff., 179 ff., 192 ff.,

232 ff., 250 ff.
– ADME/Tox 274
– GRID-based model 232
– in silico model 97
– in vivo activity 97
– rate of elimination 234
– site of reactivity 250
metabolism, see also ADME 198, 220, 232 f.
– human hepatocyte 234
– human liver microsome 234
– intestinal 259
– orientation of the compound inside the

cytochrome cavity 233
– recombinant cytochrome 234
– site of metabolism 282 ff.
metabolite
– identification 273 ff.
– in silico method 273
– GRID flexible molecular interaction field

273
– LC-MS-NMR technique 273
– toxic 273
metalloprotein 28
MetaSite 197 f., 232 ff., 253, 289
microsome, human liver 220, 232 ff.
MIF, seemolecular interaction fields
MINIM 48
minimum path 105 ff.
– negative-to-negative 108
MLI, seeMolecular Libraries Initiative
MMPs, see matrix metalloproteinases
model
– discriminative 253
– global 257
– GPSVS 253
– GRID-based 286
– homology 67 ff., 233 ff., 289
– interaction energy 153 ff.

– ligand-based, see also fingerprints for
ligands and proteins 45, 77, 145 ff., 227,
232

– pharmacophoric 215 f., 227
– receptor-based 77, 154 ff., 253
– structure-based 37, 166
– VolSurf & LogP/D/S 256
MOE 199 ff.
molecular diffusion 174 ff.
Molecular Discovery (MD) 253
molecular dynamics 68
molecular docking 38, 88 ff., 233
– AutoDock 151 ff.
– conformation 156
– DOCK 92
– FlexX 92
– GLUE 89 ff.
– GOLD 92
– ligand-receptor complex 146
– orientation of ligand 146
– PENGUINS 267
– steric hindrance 90 f.
molecular electrostatic potential (MEP) 28 ff.
– MIF 28
molecular globularity 176
molecular interaction fields (MIF) 117 ff.
– ADME property 251 ff.
– ALM directive 127
– application 33 ff.
– auto-correlogram 125 ff.
– calculation 27 f., 47, 77
– cross-correlogram 125 ff.
– distance 207
– drug-receptor interaction 141
– electrostatic interaction 30
– energy product 137
– flexible 67
– GRID 47
– GRID DRY hydrophobic probe 37
– GRID force field 47
– halogen 63
– ligand-receptor interaction 117
– methyl probe model 162
– rigid 67
– selectivity profile 60
– similarity 36
– structure-based ligand design 27
– transformation 119
– value 122 ff.
– VolSurf 251
– water probe model 162
Molecular Libraries Initiative (MLI) 249
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molecular modelling software package 199,
210

molecular shape 87
– 3D-QSAR 109
– critical packing parameter 178, 221 f.
– descriptor 200 ff.
– globularity descriptor 179
– ligand-receptor binding 103
– metabolism 109
– molecular interaction fields (MIF) 103
– PathFinder 103
– protein-ligand shape similarity 94, 103 ff.
– shape-complementarity 103 ff.
– target-ligand selectivity 94
molecular size 257
molecular structure
– GRID force field 16
– GRID map 19
molecular surface 176
– graph 105
– grid 28
– solvent-accessible 30, 105, 153
molecular volume 176
molecular weight 178, 250
Monte Carlo method 136
motif, interaction 76
MOVE 21, 48, 62 ff.,78, 137, 235, 276
MRTD, see maximum recommended

therapeutic dose
multiple binding site 215
multiple ligands binding to the same site

215
multivariant analysis 119
multivariate statistical analysis 97 ff., 198 ff.
– discriminative model 225
– partial least squares (PLS) 108, 124, 198 ff.
– principal component analysis (PCA) 108,

198 ff.

n
new chemical entities (NCE) 219, 232, 249
– ADME properties 219
NIH_SMR, see Small Molecule Repository
NIPALS 58
nitric oxide synthases (NOS) 74
– endothelial (eNOS) 74
– inducible (iNOS) 74
– inhibitor 74
– isoform 74
– neuronal (nNOS) 74
node 37, 48, 123 ff., 198
– MEP 37
NOS, see nitric oxide synthases

o
object 50 ff., 259
– core 257
– satellite 257
objective function 59
oral absorption 184, 251 ff.
oxidation, N- 283

p
3D-pattern
– interaction 76
– property 84
PA, see penicillin acylase
PAMPA, see parallel artificial membrane

permeation assay
para-cellular pathway 225
parallel artificial membrane permeation assay

(PAMPA) 220
partial least squares (PLS), see also

chemometrical analysis 120 f., 148, 198 ff.
– coefficient 133, 228
– coefficient plot 163 f.
– discriminant analysis 191, 225
– model 180, 202, 230
– multivariate data analysis 205
– pseudo-coefficients profile 202
– regression 184
– score plot 193
partition coefficient 178 ff.
– calculated octanol/water partition

coefficient (clogP) 250
– logP 178 ff., 194, 228, 254
– n-octanol/water 178 ff.
partition/solubility value 256
passive transport 221 ff.
path
– chemical entity in ligand 114
– corresponding entity in protein active site

114
path-distance frequency distribution 106 ff.
PathFinder 103
– 3D shape 109
– enzyme and receptor site 109
– functionality 109
– GRID molecular interaction fields (MIF)

104
– GRID negative MIF 107 f.
– GRID positive MIF 105 ff.
– isopotential surface 105
– mapping of active site 112
– procedure 105
pathway
– para-cellular 225
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– trans-cellular 225
PC, see also principal component 52 ff., 128
PCA, see principal component analysis
PENGUINS, see pharmacokinetics evaluation

and grid utilization in silico
penicillin acylase (PA) 62
– A. faecalis (PA-AF) 62
– E. coli (PA-EC) 62
– P. rettgeri (PA-PR) 62
PepT1 227
permeability 224, 242 ff., 253 ff.
– brain 264
– intestinal 264
permeation 250
peroxisome proliferator-activated receptor

(PPAR) 75
PGP, see P-glycoprotein
P-glycoprotein 199, 217, 253
pharmacodynamic property 45ff, 180, 198
pharmacological
– activity 233
– target-based study 221
pharmacokinetic (PK) property 194, 251 ff.
– MIF 27
– modeling 257
– profile 219
– study 173
– VolSurf 27, 254 ff.
pharmacokinetics evaluation and grid

utilization in silico (PENGUINS) 264 ff.
– ADME property filter 267
– binding affinity 267
– fragment library 265
– fragment-based GPSVS 264
– MIF-based prediction 269
pharmacophore 84 ff.
– 2-point 85
– 3D database search query 84
– 3D model 204
– 3-point 85
– 4-point 85 ff.
– conformation 93
– descriptor 202
– feature 84
– GRID probe 93
– identification of active compounds 85
– interaction of ligand with protein target

85, 281
– ligand-based 84
– model 202, 215, 253
– molecular descriptor 85
– molecular flexibility 146
– potential 88

– protein site-derived 86
– virtual screening 84
pharmacophore fingerprint 84 ff.
– 3D property 85
– shape of ligand 88
phosphate binding region 70
physicochemical
– PAMPA 220
– property 45, 173, 194
PIPSA, see protein interaction property

similarity analysis
PKA kinases 69
Plasma Protein Binding (PPB) prediction

253
plot
– contour 59
– differential 75
– grid 60
– score 52, 76, 205
– loading 53 f.
PLS, see partial least squares
pocket
– D 66
– P 64
– S1 64 ff.
– S2 73
– S3 73
Poisson-Boltzmann equation 30
polar surface area (PSA) 223
polarizability 178
polarization effect 31
– hydrogen bond 31
Pomona logP dataset 259
Powell method 210
PPAR, see peroxisome proliferator-activated

receptor
PPB, see Plasma Protein Binding
prediction
– MIF-based 269
– site of metabolism 273 ff., 284 ff.
principal component (PC) 52 ff., 128
principal component analysis (PCA), see also

chemometrical analysis 46 ff., 200 ff.
– consensus PCA (cPCA) 46 ff., 63 ff., 236 ff.
– hierarchical PCA (hPCA) 58
– NIPALS 58
– score prediction 258
– score plot 52, 205
probe, see also GRID probe 6, 27 f., 275 ff.
– 3-point 28
– acceptor 62
– acceptor/anion 50
– acid 96
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– amphipathic 25
– base 96
– charge (q1) 11, 60, 101
– donor 62
– donor/cation 50
– DRY 32 f., 48, 64 ff., 87 ff., 108, 121, 177,

200 ff., 221 ff., 251
– halogen 62
– hydrophobic 13 ff., 32, 50, 62, 101, 221
– lipophilic 96
– methyl 34
– multi-atom probe 7
– nonspherical 28
– pharmacophoric 96
– polar 50
– rotational adjustment 9
– spherical 28
– target interaction 50 ff.
– van der Waals 50
– water (OH2) 108, 176 ff., 225, 251
protein
– 3D fingerprint descriptor 86
– active site 69
– domain 21
– family 69
– fatty acid binding 75
– flexibility 73 ff.
– homology model 47, 145
– human serum albumin 230
– interaction of compounds with protein

45 ff., 242, 283
– ligand complex 46
– ligand interaction 45 ff., 67 ff.
– lipid binding 75
– kinase 69
– PH domain 37
– plasma 230, 253
– unspecific binding 230, 242
– selectivity analysis 45 ff., 232
– structure 78
– substrate specificity 221
– WWdomain 34 ff.
– unspecific binding to plasmatic proteins

230, 242
protein binding site/cavity 51, 78
– complementary pharmacophore 84
– FLOG 50
– interaction points (GRID molecular

interaction fields) 283
protein chain
– alpha carbon atom at N-terminus 13
Protein DataBank (PDB) 14 ff., 31, 232
– ATOM 14

– GLUE 91
– HETATM 15
– nomenclature 14 f.
– type number 14
protein GRIND descriptor 210
protein interaction property similarity analysis

(PIPSA) 34 ff.
PSA, see polar surface area
purine binding 70

q
3D-QSAR 34, 84, 145 ff., 199, 227
– ADME 242
– comparative molecular field analysis

(CoMFA) 34, 118, 145 ff.
– GRID force field 197
– GRID/GOLPE 34, 118, 145 ff.
– partial least squares (PLS) 34
3D-QSPR (quantitative structure property

relationship) 209
QSAR, see quantitative structure-activity

relationship
QSPR (quantitative structure property

relationship), see 3D-QSPR
quantitative structure-activity relationship

(QSAR), see also 3D-QSAR
– analysis 210, 224
– biological activity 145
– CoMSiA 118
– GRID-derived MIF 104
– GRID/GOLPE 104
– GRIND-based 130 ff.
– interpretability of statistical results 148
– ligand-based 45, 145
– MIF-based 35
– model 135 f.
– paradigm for structure-permeability 250
– pharmacophore 101, 134 f., 146
– receptor-based 145
– structure-based 166
– TOPP 97

r
rank value 259
– clearance 259
– HiVHiC 259
– LoVLoC 259
– volume of distribution 259
RCSB protein data bank 71 f.
reactivity component Ri 283 f.
receptor
– 3D pharmacophore 86
– affinity 180
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– kinase 69
– type of interaction 87
recognition
– component 282 ff.
– ligand 47
region for selectivity and activity 61, 74
repulsion 29
RMSD, see root mean square deviation
Ro5, see Rule of Five
root mean square deviation (RMSD) 92,

152 ff.
rotamer 32, 93
rugosity 176
Rule of Five (Ro5) 250 f., 261 ff.

s
score plot 52, 76, 205
SDEC, see standard deviation of the error of

calculation
SDEP, see standard deviation of the error of

prediction
selective
– ligand 61 ff., 77 f.
– region 33, 45, 63
selectivity 52 ff., 74 ff., 250
– isoform 74
– substrate 62
selectivity analysis 51 ff., 232 ff.
– based on consensus principal component

analysis (cPCA) 73, 242
– GRID molecular interaction fields 45
– GRID-based 233
– selective site of metabolism 235
serin proteases 60 ff.
serotonin re-uptake inhibitor 232
side chain flexibility 48, 61 ff., 78, 283
SIFt 78
similarity
– analysis 36
– score 283
– index (SI) 36 f.
– matrix 38
– PIPSA 34 ff.
site of metabolism
– chemical reactivity 233
– MetaSite 289
– prediction 232 f., 273 ff., 284 ff.
– probability function PSM 284
site point
– favorable place for ligand atom 87
– interaction energy 87 ff.
– pharmacophoric feature 87 ff.
Slater-Kirkwood formula 29

Small Molecule Repository (NIH_SMR)
249 f., 269

smart region definition (SRD) 148 ff.
smile notation 286 ff.
solubility 45, 73, 99, 180 ff., 220 f., 242 ff.,

253 ff.
– Abraham’s solubility dataset 259
SRD, see smart region definition
standard deviation of the error of calculation

(SDEC) 180 ff.
standard deviation of the error of prediction

(SDEP) 34, 156 ff., 181 ff.
steric
– hindrance 63
– property 36
Stokes-Einstein equation 178
structure, 3D 79
substituent 33, 77
sulfoxidation 283
superimposition 46 f.
surface
– hydrophobic area 257
– planar 12
– property 34
SYBYL 199 ff.

t
target 6 ff., 27 f., 275 ff.
– charge (q2) 11 ff.
– contour map 59
– family classification 77
– family landscape 69 ff.
– flexibility 21, 28 ff.
– immersed in water 6 ff.
– ligand complex 112
– ligand interaction 50 ff.
– ligand selectivity 94
– polar interaction with ligand 94
– probe interaction 50 ff.
– protein, kout format 88
– response to probe 8 f.
– superimposition 46
– water molecule 13
tautomer 28
test set 155 ff., 181, 207 ff.
thermodynamic
– GRID force field 16
– integration 146
thrombin 63
TIP MIF 210
tissue selectivity 232
TOPP, see triplets of pharmacophoric points
toxic effect 233, 251
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toxicity 289
toxicological (Tox) dataset 254
trans-cellular
– pathway 225
– permeability (GPSVS 1st dimension) 242,

259
transport
– across cell monolayer 220
– active 227
– active transporter area 242
– bile acid system 75 f.
– Caco-2 cells 220 ff.
– CoMFA 227
– GRID/GOLPE 227
– MDCK cells 220
– passive 221 ff.
– PepT1 227
Triplets of pharmacophoric points (TOPP) 97
– drug-likeness 99
– partial least squares (PLS) 98 ff.
– principal component analysis (PCA) 98
– solubility 99
– theory 98
TRIPOS force field 199 ff.
– SYBYL 204
trypsin 63

v
van der Waals
– interaction 29, 146 ff.
– radius 17, 29
– surface 30
– term 31
variable 50 ff., 133, 200 ff., 257
– block 59
– latent (LV) 205 ff., 259
VD, see volume of distribution
vector 50
virtual screening
– ligand based (LBVS) 83 ff.

– shape of ligand (FLAP LB) 95
– structure based (SBVS) 83 ff.

– shape of receptor (FLAP SB) 95
VolSurf 36, 104, 119, 173, 197, 251
– 3D-based model 268
– application 179 ff.
– BBB discriminative PLS model 227, 253
– Caco-2 cell based model 227
– ChemGPS-VolSurf (GPSVS) 257
– clinical PK data modeling 256
– descriptors 173 ff., 221 ff., 259 ff.
– HERG binding model 254
– metabolic stability model 193
– MIF-based 173, 269
– oral absorption 253
– pharmacokinetic and physiochemical

feature 119, 173
– plasma protein binding, unspecific 230
– PLS 251
– procedure 174
– VD library model 191
volume of distribution (VD) 190 ff., 220 ff.,

242, 254

w
walking on the molecular surface 105
water 13, 78
– desolvation 225
– probe, see also GRID probe 108, 176 ff.,

225, 251 ff.
water solubility, see also aqueous solubility

259
– prediction 253
weight root mean square (WRMS) 210
weighting procedure 56 f., 110
Wombat-Pharmacokinetics (WB-PK)

254 ff.
WOMBATdatabase 254 ff., 267
World Drug Index (WDI) 250
WRMS, see weight root mean square

y
YETI force field 152 f.
– protein-ligand complex 153
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